Revellame, Emmanuel D; Hernandez, Rafael; French, W Todd; Holmes, William E; Forks, Allison; Callahan, Robert
2013-11-01
Lipid-enhancement of activated sludges was conducted to increase the amount of saponifiable lipids in the sludges. The sludges were obtained from a conventional activated sludge (CAS) and an oxidation ditch process (ODP). Results showed 59-222% and 150-250% increase in saponifiable lipid content of the sludges from CAS and ODP, respectively. The fatty acid methyl ester (FAMEs) obtained from triacylglycerides was 57-67% (of total FAMEs) for enhanced CAS and 55-73% for enhanced ODP, a very significant improvement from 6% to 10% (CAS) and 4% to 8% (ODP). Regardless of the source, the enhancement resulted in sludges with similar fatty acid profile indicating homogenization of the lipids in the sludges. This study provides a potential strategy to utilize existing wastewater treatment facilities as source of significant amount of lipids for biofuel applications. Published by Elsevier Ltd.
Sodhi, Vijay; Bansal, Ajay; Jha, Mithilesh Kumar
2018-04-30
This study proposed a maintenance metabolism based upgraded activated sludge as MANODOX system that restricts excess biosludge generation from high strength real tannery effluent. The MANODOX experimental demonstration has been done using a sequenced operational arrangement of a MBBR, anaerobic digester, and oxidation ditch connected to CAS reactor, discussed in detail manner. Experimental trends revealed a prominently lower sludge yield upto 0.271 gVSS/gCOD (72% overall sludge reduction) that corresponds to parallel run CAS (0.92 gVSS/gCOD). MANODOX implementation confirmed high quality treated effluent with prominent COD and suspended solids reduction upto 97.1% and 96% respectively. The biodegradability observation was further supported by anaerobic and aerobic batch digestion analysis. The variation of soluble component turbidity analysis reflects the enriched non-flocculating predatory microbial population appears to may have been responsible for sludge reduction. MANODOX system provided a sustainable practical alternative for under capacity activated sludge based treatment facilities for a variety of wastewater types. Copyright © 2018 Elsevier Ltd. All rights reserved.
Herzog, Bastian; Lemmer, Hilde; Huber, Bettina; Horn, Harald; Müller, Elisabeth
2014-02-01
The intensive use of benzotriazoles as corrosion inhibitors for various applications and their application in dishwasher detergents result in an almost omnipresence of benzotriazole (BTri), 4-methyl- and 5-methyl-benzotriazole (4-TTri and 5-TTri, respectively) in aquatic systems. This study aims on the evaluation of the biodegradation potential of activated sludge communities (ASCs) toward the three benzotriazoles regarding aerobic, anoxic, and anaerobic conditions and different nutrients. ASCs were taken from three wastewater treatment plants with different technologies, namely, a membrane bioreactor (MBR-MH), a conventional activated sludge plant CAS-E (intermittent nitrification/denitrification), and CAS-M (two-stage activated sludge treatment) and used for inoculation of biodegradation setups. All ASCs eliminated up to 30 mg L(-1) 5-TTri and BTri under aerobic conditions within 2-7 and 21-49 days, respectively, but not under anoxic or anaerobic conditions. 4-TTri was refractory at all conditions tested. Significant differences were observed for BTri biodegradation with non-acclimated ASCs from MBR-MH with 21 days, CAS-E with 41 days, and CAS-M with 49 days. Acclimated ASCs removed BTri within 7 days. Furthermore, different carbon and nitrogen concentrations revealed that nitrogen was implicitly required for biodegradation while carbon showed no such effect. The fastest biodegradation occurred for 5-TTri with no need for acclimatization, followed by BTri. BTri showed sludge-specific biodegradation patterns, but, after sludge acclimation, was removed with the same pattern, regardless of the sludge used. Under anaerobic conditions in the presence of different electron acceptors, none of the three compounds showed biological removal. Thus, presumably, aerobic biodegradation is the major removal mechanism in aquatic systems.
Sahar, Eyal; Messalem, Rami; Cikurel, Haim; Aharoni, Avi; Brenner, Asher; Godehardt, Manuel; Jekel, Martin; Ernst, Mathias
2011-10-15
The fates of several macrolide, sulphonamide, and trimethoprim antibiotics contained in the raw sewage of the Tel-Aviv wastewater treatment plant (WWTP) were investigated after the sewage was treated using either a full-scale conventional activated sludge (CAS) system coupled with a subsequent ultrafiltration (UF) step or a pilot membrane bioreactor (MBR) system. Antibiotics removal in the MBR system, once it achieved stable operation, was 15-42% higher than that of the CAS system. This advantage was reduced to a maximum of 20% when a UF was added to the CAS. It was hypothesized that the contribution of membrane separation (in both systems) to antibiotics removal was due either to sorption to biomass (rather than improvement in biodegradation) or to enmeshment in the membrane biofilm (since UF membrane pores are significantly larger than the contaminant molecules). Batch experiments with MBR biomass showed a markedly high potential for sorption of the tested antibiotics onto the biomass. Moreover, methanol extraction of MBR biomass released significant amounts of sorbed antibiotics. This finding implies that more attention must be devoted to the management of excess sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lares, Mirka; Ncibi, Mohamed Chaker; Sillanpää, Markus; Sillanpää, Mika
2018-04-15
Wastewater treatment plants (WWTPs) are acting as routes of microplastics (MPs) to the environment, hence the urgent need to examine MPs in wastewaters and different types of sludge through sampling campaigns covering extended periods of time. In this study, the efficiency of a municipal WWTP to remove MPs from wastewater was studied by collecting wastewater and sludge samples once in every two weeks during a 3-month sampling campaign. The WWTP was operated based on the conventional activated sludge (CAS) process and a pilot-scale membrane bioreactor (MBR). The microplastic particles and fibers from both water and sludge samples were identified by using an optical microscope, Fourier Transform Infrared (FTIR) microscope and Raman microscope. Overall, the retention capacity of microplastics in the studied WWTP was found to be 98.3%. Most of the MP fraction was removed before the activated sludge process. The efficiency of an advanced membrane bioreactor (MBR) technology was also examined. The main related finding is that MBR permeate contained 0.4 MP/L in comparison with the final effluent of the CAS process (1.0 MP/L). According to this study, both microplastic fibers and particles are discharged from the WWTP to the aquatic environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Guo, Jingbo; Fu, Xin; Andrés Baquero, G; Sobhani, Reza; Nolasco, Daniel A; Rosso, Diego
2016-03-15
Over the seasonal cycles, the mean cell retention time (MCRT) of the activated sludge process is varied to compensate the wastewater temperature variations. The effects of these variations on the carbon footprint (CFP) and effluent quality index (EQI) of a conventional activated sludge (CAS) process and a nitrification/denitrification (NDN) process were quantified. The carbon emission included both biogenic and non-biogenic carbon. Carbon emissions of wasted biosolids management were also addressed. Our results confirmed that the effluent quality indicated by EQI was not necessarily improved by increasing MCRT. Higher MCRT increased the carbon emission and reduced excess sludge production, which decreased the potential for biogas energy recovery. The NDN process was preferable to the CAS process from the perspective of effluent quality. This consideration extended to the whole plant CFP if the N2O emitted during NDN was limited ([N2O]<1% [NH4(+)]removed) as the carbon emission per unit effluent quality achieved by NDN process is less than that of the CAS process. By putting forward carbon emission intensity (γ) derived from CFP and EQI, our work provides a quantitative tool for decision makers evaluating process alternatives when there is a trade-off between carbon emission and effluent quality. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Jun; Li, Shi-Yu; Jiang, Feng; Wu, Ke; Liu, Guang-Li; Lu, Hui; Chen, Guang-Hao
2015-09-01
Oxic-settling-anaerobic process (OSA) was known as a cost-effective way to reduce the excess sludge production with simple upgrade of conventional activated sludge process (CAS). A low oxidation-reduction potential (ORP) level was the key factor to sludge decay and lysis in the sludge holding tank of the OSA process. However, the ORP control with nitrogen purge or chemical dosing in the OSA process would induce extra expense and complicate the operation. Hence, in this study, a sludge holding tank using gravity thickening was applied to OSA process to reduce the excess sludge production without any ORP control. Results showed that the modified OSA process not only reduced the excess sludge production effectively but also improved the sludge settleability without affected the treatment capacity. The reduction of the excess sludge production in the modified OSA process resulted from interactions among lots of factors. The key element of the process was the gravity thickening sludge holding tank.
Comparison of bacterial communities of conventional and A-stage activated sludge systems
Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Lotti, Tommaso; Garcia-Ruiz, Maria-Jesus; Osorio, Francisco; Gonzalez-Lopez, Jesus; van Loosdrecht, Mark C. M.
2016-01-01
The bacterial community structure of 10 different wastewater treatment systems and their influents has been investigated through pyrosequencing, yielding a total of 283486 reads. These bioreactors had different technological configurations: conventional activated sludge (CAS) systems and very highly loaded A-stage systems. A-stage processes are proposed as the first step in an energy producing municipal wastewater treatment process. Pyrosequencing analysis indicated that bacterial community structure of all influents was similar. Also the bacterial community of all CAS bioreactors was similar. Bacterial community structure of A-stage bioreactors showed a more case-specific pattern. A core of genera was consistently found for all influents, all CAS bioreactors and all A-stage bioreactors, respectively, showing that different geographical locations in The Netherlands and Spain did not affect the functional bacterial communities in these technologies. The ecological roles of these bacteria were discussed. Influents and A-stage bioreactors shared several core genera, while none of these were shared with CAS bioreactors communities. This difference is thought to reside in the different operational conditions of the two technologies. This study shows that bacterial community structure of CAS and A-stage bioreactors are mostly driven by solids retention time (SRT) and hydraulic retention time (HRT), as suggested by multivariate redundancy analysis. PMID:26728449
Energy saving system with high effluent quality for municipal sewage treatment by UASB-DHS.
Tanaka, H; Takahashi, M; Yoneyama, Y; Syutsubo, K; Kato, K; Nagano, A; Yamaguchi, T; Harada, H
2012-01-01
An up-flow anaerobic sludge blanket (UASB) - down-flow hanging sponge (DHS) was applied to Japanese municipal sewage treatment, and its treatability, energy consumption, and sludge production were evaluated. The designed sewage load was 50 m(3)/d. The sewage typically had a chemical oxygen demand (COD) of 402 mg/L, a suspended solids (SS) content of 167 mg/L, and a temperature of 17-29 °C. The UASB and DHS exhibited theoretical hydraulic retention times of 9.7 and 2.5 h, respectively. The entire system was operated without temperature control. Operation was started with mesophilic anaerobic digested sludge for the UASB and various sponge media for the DHS. Continuous operational data suggest that although the cellulose decomposition and methanogenic process in the UASB are temperature sensitive, stable operation can be obtained by maintaining a satisfactory sludge volume index and sludge concentration. For the DHS, the cube-type medium G3-2 offers superior filling rates, biological preservation and operational execution. The SS derived from the DHS contaminated the effluent but could be removed by optional sand filtration. A comparison with conventional activated sludge (CAS) treatment confirmed that this system is adequate for municipal sewage treatment, with an estimated energy requirement and excess sludge production approximately 75 and 85% less than those of CAS, respectively.
Radjenović, Jelena; Petrović, Mira; Barceló, Damià
2009-02-01
In this paper we report on the performances of full-scale conventional activated sludge (CAS) treatment and two pilot-scale membrane bioreactors (MBRs) in eliminating various pharmaceutically active compounds (PhACs) belonging to different therapeutic groups and with diverse physico-chemical properties. Both aqueous and solid phases were analysed for the presence of 31 pharmaceuticals included in the analytical method. The most ubiquitous contaminants in the sewage water were analgesics and anti-inflammatory drugs ibuprofen (14.6-31.3 microg/L) and acetaminophen (7.1-11.4 microg/L), antibiotic ofloxacin (0.89-31.7 microg/L), lipid regulators gemfibrozil (2.0-5.9 microg/L) and bezafibrate (1.9-29.8 microg/L), beta-blocker atenolol (0.84-2.8 microg/L), hypoglycaemic agent glibenclamide (0.12-15.9 microg/L) and a diuretic hydrochlorothiazide (2.3-4.8 microg/L). Also, several pharmaceuticals such as ibuprofen, ketoprofen, diclofenac, ofloxacin and azithromycin were detected in sewage sludge at concentrations up to 741.1, 336.3, 380.7, 454.7 and 299.6 ng/g dry weight. Two pilot-scale MBRs exhibited enhanced elimination of several pharmaceutical residues poorly removed by the CAS treatment (e.g., mefenamic acid, indomethacin, diclofenac, propyphenazone, pravastatin, gemfibrozil), whereas in some cases more stable operation of one of the MBR reactors at prolonged SRT proved to be detrimental for the elimination of some compounds (e.g., beta-blockers, ranitidine, famotidine, erythromycin). Moreover, the anti-epileptic drug carbamazepine and diuretic hydrochlorothiazide by-passed all three treatments investigated. Furthermore, sorption to sewage sludge in the MBRs as well as in the entire treatment line of a full-scale WWTP is discussed for the encountered analytes. Among the pharmaceuticals encountered in sewage sludge, sorption to sludge could be a relevant removal pathway only for several compounds (i.e., mefenamic acid, propranolol, and loratidine). Especially in the case of loratidine the experimentally determined sorption coefficients (Kds) were in the range 2214-3321 L/kg (mean). The results obtained for the solid phase indicated that MBR wastewater treatment yielding higher biodegradation rate could reduce the load of pollutants in the sludge. Also, the overall output load in the aqueous and solid phase of the investigated WWTP was calculated, indicating that none of the residual pharmaceuticals initially detected in the sewage sludge were degraded during the anaerobic digestion. Out of the 26 pharmaceutical residues passing through the WWTP, 20 were ultimately detected in the treated sludge that is further applied on farmland.
Valentín-Vargas, Alexis; Toro-Labrador, Gladys; Massol-Deyá, Arturo A.
2012-01-01
The assembling of bacterial communities in conventional activated sludge (CAS) bioreactors was thought, until recently, to be chaotic and mostly unpredictable. Studies done over the last decade have shown that specific, and often, predictable random and non-random factors could be responsible for that process. These studies have also motivated a “structure–function” paradigm that is yet to be resolved. Thus, elucidating the factors that affect community assembly in the bioreactors is necessary for predicting fluctuations in community structure and function. For this study activated sludge samples were collected during a one-year period from two geographically distant CAS bioreactors of different size. Combining community fingerprinting analysis and operational parameters data with a robust statistical analysis, we aimed to identify relevant links between system performance and bacterial community diversity and dynamics. In addition to revealing a significant β-diversity between the bioreactors’ communities, results showed that the largest bioreactor had a less dynamic but more efficient and diverse bacterial community throughout the study. The statistical analysis also suggests that deterministic factors, as opposed to stochastic factors, may have a bigger impact on the community structure in the largest bioreactor. Furthermore, the community seems to rely mainly on mechanisms of resistance and functional redundancy to maintain functional stability. We suggest that the ecological theories behind the Island Biogeography model and the species-area relationship were appropriate to predict the assembly of bacterial communities in these CAS bioreactors. These results are of great importance for engineers and ecologists as they reveal critical aspects of CAS systems that could be applied towards improving bioreactor design and operation. PMID:22880016
Sahar, E; Ernst, M; Godehardt, M; Hein, A; Herr, J; Kazner, C; Melin, T; Cikurel, H; Aharoni, A; Messalem, R; Brenner, A; Jekel, M
2011-01-01
The potential of membrane bioreactor (MBR) systems to remove organic micropollutants was investigated at different scales, operational conditions, and locations. The effluent quality of the MBR system was compared with that of a plant combining conventional activated sludge (CAS) followed by ultrafiltration (UF). The MBR and CAS-UF systems were operated and tested in parallel. An MBR pilot plant in Israel was operated for over a year at a mixed liquor suspended solids (MLSS) range of 2.8-10.6 g/L. The MBR achieved removal rates comparable to those of a CAS-UF plant at the Tel-Aviv wastewater treatment plant (WWTP) for macrolide antibiotics such as roxythromycin, clarithromycin, and erythromycin and slightly higher removal rates than the CAS-UF for sulfonamides. A laboratory scale MBR unit in Berlin - at an MLSS of 6-9 g/L - showed better removal rates for macrolide antibiotics, trimethoprim, and 5-tolyltriazole compared to the CAS process of the Ruhleben sewage treatment plant (STP) in Berlin when both were fed with identical quality raw wastewater. The Berlin CAS exhibited significantly better benzotriazole removal and slightly better sulfamethoxazole and 4-tolyltriazole removal than its MBR counterpart. Pilot MBR tests (MLSS of 12 g/L) in Aachen, Germany, showed that operating flux significantly affected the resulting membrane fouling rate, but the removal rates of dissolved organic matter and of bisphenol A were not affected.
Gu, Jun; Xu, Guangjing; Liu, Yu
2017-03-01
The conventional activated sludge (CAS) process has been widely employed for wastewater treatment for more than one hundred years. Recently, more and more concerns have been raised on the CAS process due to its high energy consumption and production of huge amount of waste activated sludge, which are inevitably linked to the issue of environmental sustainability and global climate change. Facing to such emerging and challenging situation, this study reported a novel A-B process in which an anaerobic moving bed biofilm reactor (AMBBR) served a lead A-stage for COD capture towards biogas production and an integrated fixed-biofilm and activated sludge sequencing batch reactor (IFAS-SBR) was employed as B-stage for biological nitrogen removal. Results showed that about 85% of wastewater COD was removed in the steady-state AMBBR with a total energy production rate of 0.28 kWh/m 3 wastewater treated, while 85% of N-removal was achieved when the stable nitrite shunt was established in the IFAS-SBR. Moreover, 90% of dissolved methane in the AMBBR effluent could be removed by the proposed flash chamber at the lower energy demand of 0.12 kWh/m 3 which could be offset by the potential energy harvested from produced methane. Compared to the CAS process, the production of waste sludge was reduced by about 75% in the proposed A-B process due to the efficient COD capture at the A-stage, leading to significant energy savings from aeration for COD oxidation and post-treatment of waste sludge at the B-stage. Consequently, this study offers in-depth insights into A-B process which should be considered as an ideal candidate for achieving the energy-neutral or even energy positive operation of a municipal wastewater treatment. Given the complex situation in A-B process, future study is needed to look into the system optimization towards the operational synergy between A- and B-stage in terms of energy recovery and nitrogen removal. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Lihui; Duan, Feng; Huang, Yaji
2015-04-01
Experiments were conducted in a thermogravimetric analyzer to assess the enhancement of combustion characteristics of different solid fuels blended with organic calcium compounds (OCCs). Rice husk, sewage sludge, and bituminous coal, and two OCC were used in this study. Effect of different mole ratios of calcium to sulfur (Ca/S ratio) on the combustion characteristics were also investigated. Results indicated that combustion performance indexes for bituminous coal impregnated by OCC were improved, however, an inverse trend was found for sewage sludge because sewage sludge has lower ignition temperature and higher volatile matter content compared to those of OCC. For rice husk, effect of added OCC on the combustion characteristics is not obvious. Different solid fuels show different combustion characteristics with increases of Ca/S ratio. The maximum combustion performance indexes appear at Ca/S ratios of 1:1, 2:1, and 3:1 for OCC blended with Shenhua coal, rice husk, and sewage sludge, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wojnarowicz, Pola; Ogunlaja, Olumuyiwa O; Xia, Chen; Parker, Wayne J; Helbing, Caren C
2013-12-03
Improved endocrine disrupting compound (EDC) removal is desirable in municipal wastewater treatment plants (MWWTPs) although increased removal does not always translate into reduced biological activity. Suitable methods for determining reduction in biological activity of effluents are needed. In order to determine which MWWTPs are the most effective at removing EDC activities, we operated three configurations of pilot sized biological reactors (conventional activated sludge, CAS; nitrifying activated sludge, NAS; and biological nutrient removal, BNR) receiving the same influent under simulated winter and summer conditions. As frogs are model organisms for the study of thyroid hormone (TH) action, we used the North American species Rana catesbeiana in a cultured tadpole tailfin (C-fin) assay to compare the effluents. TH-responsive (thyroid hormone receptors alpha (thra) and beta (thrb)) and stress-responsive (superoxide dismutase, catalase, and heat shock protein 30) mRNA transcript levels were examined. Effluents infrequently perturbed stress-responsive transcript abundance but thra/thrb levels were significantly altered. In winter conditions, CAS caused frequent TH perturbations while BNR caused none. In summer conditions, however, BNR caused substantial TH perturbations while CAS caused few. Our findings contrast other studies of seasonal variations of EDC removal and accentuate the importance of utilizing appropriate biological readouts for assessing EDC activities.
Van Den Hende, Sofie; Beelen, Veerle; Julien, Lucie; Lefoulon, Alexandra; Vanhoucke, Thomas; Coolsaet, Carlos; Sonnenholzner, Stanislaus; Vervaeren, Han; Rousseau, Diederik P L
2016-10-01
To replace costly mechanical aeration by photosynthetical aeration, upflow anaerobic sludge blanket (UASB) effluent of food-industry was treated in an outdoor MaB-floc raceway pond. Photosynthetic aeration was sufficient for nitrification, but the raceway effluent quality was below current discharge limits, despite the high hydraulic retention time (HRT) of 35days. Hereafter, conventional activated sludge (CAS) effluent of food-industry was treated in this pond to recover phosphorus. The two-day HRT results in a more realistic pond area, but the phosphorus removal efficiency was low (20%). High biomass productivities were obtained, i.e. 31.3 and 24.9ton total suspended solids hapond(-1)year(-1) for UASB and CAS effluent, respectively. Bioflocculation enabled successful harvesting of CAS effluent-fed MaB-flocs by settling and filtering at 150-250μm to 22.7% total solids. To conclude, MaB-floc raceway ponds cannot be recommended as the sole treatment for these food-industry effluents, but huge potential lies in added-value biomass production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ma, Huaji; Zhang, Shuting; Lu, Xuebin; Xi, Bo; Guo, Xingli; Wang, Han; Duan, Jingxiao
2012-07-01
A pilot-scale lysis-cryptic growth system was built and operated continuously for excess sludge reduction. Combined ultrasonic/alkaline disintegration and hydrolysis/acidogenesis were integrated into its sludge pretreatment system. Continuous operation showed that the observed biomass yield and the sludge reduction efficiency of the lysis-cryptic growth system were 0.27 kg VSS/kg COD consumed and 56.5%, respectively. The water quality of its effluent was satisfactory. The sludge pretreatment system performed well and its TCOD removal efficiency was 7.9% which contributed a sludge reduction efficiency of 2.1%. The SCOD, VFA, TN, NH(4)(+)-N, TP and pH in the supernatant of pretreated sludge were 1790 mg/L, 1530 mg COD/L, 261.1mg/L, 114.0mg/L, 93.1mg/L and 8.69, respectively. The total operation cost of the lysis-cryptic growth system was $ 0.186/m(3) wastewater, which was 11.4% less than that of conventional activated sludge (CAS) system without excess sludge pretreatment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mailler, R; Gasperi, J; Rocher, V; Gilbert-Pawlik, S; Geara-Matta, D; Moilleron, R; Chebbo, G
2014-04-01
This paper compares the removal performances of two complete wastewater treatment plants (WWTPs) for all priority substances listed in the Water Framework Directive and additional compounds of interest including flame retardants, surfactants, pesticides, and personal care products (PCPs) (n = 104). First, primary treatments such as physicochemical lamellar settling (PCLS) and primary settling (PS) are compared. Similarly, biofiltration (BF) and conventional activated sludge (CAS) are then examined. Finally, the removal efficiency per unit of nitrogen removed of both WWTPs for micropollutants is discussed, as nitrogenous pollution treatment results in a special design of processes and operational conditions. For primary treatments, hydrophobic pollutants (log K ow > 4) are well removed (>70 %) for both systems despite high variations of removal. PCLS allows an obvious gain of about 20 % regarding pollutant removals, as a result of better suspended solids elimination and possible coagulant impact on soluble compounds. For biological treatments, variations of removal are much weaker, and the majority of pollutants are comparably removed within both systems. Hydrophobic and volatile compounds are well (>60 %) or very well removed (>80 %) by sorption and volatilization. Some readily biodegradable molecules are better removed by CAS, indicating a better biodegradation. A better sorption of pollutants on activated sludge could be also expected considering the differences of characteristics between a biofilm and flocs. Finally, comparison of global processes efficiency using removals of micropollutants load normalized to nitrogen shows that PCLS + BF is as efficient as PS + CAS despite a higher compactness and a shorter hydraulic retention time (HRT). Only some groups of pollutants seem better removed by PS + CAS like alkylphenols, flame retardants, or di-2-ethylhexyl phthalate (DEHP), thanks to better biodegradation and sorption resulting from HRT and biomass characteristics. For both processes, and out of the 68 molecules found in raw water, only half of them are still detected in the water discharged, most of the time close to their detection limit. However, some of them are detected at higher concentrations (>1 μg/L and/or lower than environmental quality standards), which is problematic as they represent a threat for aquatic environment.
Fenu, A; Guglielmi, G; Jimenez, J; Spèrandio, M; Saroj, D; Lesjean, B; Brepols, C; Thoeye, C; Nopens, I
2010-08-01
Membrane bioreactors (MBRs) have been increasingly employed for municipal and industrial wastewater treatment in the last decade. The efforts for modelling of such wastewater treatment systems have always targeted either the biological processes (treatment quality target) as well as the various aspects of engineering (cost effective design and operation). The development of Activated Sludge Models (ASM) was an important evolution in the modelling of Conventional Activated Sludge (CAS) processes and their use is now very well established. However, although they were initially developed to describe CAS processes, they have simply been transferred and applied to MBR processes. Recent studies on MBR biological processes have reported several crucial specificities: medium to very high sludge retention times, high mixed liquor concentration, accumulation of soluble microbial products (SMP) rejected by the membrane filtration step, and high aeration rates for scouring purposes. These aspects raise the question as to what extent the ASM framework is applicable to MBR processes. Several studies highlighting some of the aforementioned issues are scattered through the literature. Hence, through a concise and structured overview of the past developments and current state-of-the-art in biological modelling of MBR, this review explores ASM-based modelling applied to MBR processes. The work aims to synthesize previous studies and differentiates between unmodified and modified applications of ASM to MBR. Particular emphasis is placed on influent fractionation, biokinetics, and soluble microbial products (SMPs)/exo-polymeric substances (EPS) modelling, and suggestions are put forward as to good modelling practice with regard to MBR modelling both for end-users and academia. A last section highlights shortcomings and future needs for improved biological modelling of MBR processes. (c) 2010 Elsevier Ltd. All rights reserved.
Ma, Jinxing; Wang, Zhiwei; Li, Huan; Park, Hee-Deung; Wu, Zhichao
2016-06-01
Metagenomic sequencing was used to investigate the microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor (MBR). The results showed that the microbial community in the MBR was highly diverse. Notably, function analysis of the dominant genera indicated that common genes from different phylotypes were identified for important functional potentials with the observation of variation of abundances of genes in a certain taxon (e.g., Dechloromonas). Despite maintaining similar metabolic functional potentials with a parallel full-scale conventional activated sludge (CAS) system due to treating the identical wastewater, the MBR had more abundant nitrification-related bacteria and coding genes of ammonia monooxygenase, which could well explain its excellent ammonia removal in the low-temperature period. Furthermore, according to quantification of the genes involved in exopolysaccharide and extracellular polymeric substance (EPS) protein metabolism, the MBR did not show a much different potential in producing EPS compared to the CAS system, and bacteria from the membrane biofilm had lower abundances of genes associated with EPS biosynthesis and transport compared to the activated sludge in the MBR.
Weiss, Stefan; Reemtsma, Thorsten
2008-08-01
The potential of a lab-scale membrane bioreactor (MBR) to remove polar pollutants from municipal wastewater was studied for industrial and household chemicals over a period of 22 months parallel to a conventional activated sludge (CAS) treatment. For half of the compounds, such as benzotriazole, 5-tolyltriazole (5-TTri), benzothiazole-2-sulfonate and 1,6-naphthalene disulfonate (1,6-NDSA), removal by MBR was significantly better than in CAS, while no improvement was recorded for the other half (1,5-NDSA, 1,3-NDSA, 4-TTri and naphthalene-1-sulfonate). The influence of operational conditions on trace pollutant removal by MBR was studied but no significant effects were found for variation of hydraulic retention time (7h-14h) and sludge retention time (26d-102d), suggesting that the lowest values selected have already been high enough for good removal. It is shown that the seemingly inconsistent results reported here and in previous studies regarding the comparison of trace pollutant removal in MBR and CAS are highly consistent. MBR is neither superior for well degradable compounds that are already extensively degraded in CAS treatment nor for recalcitrant compounds that are not amenable to biodegradation. For most compounds of intermediate removal in CAS treatment (15-80%), among them pharmaceuticals, personal care products and industrial chemicals, the MBR is clearly superior and reduces the effluent concentration by 20-50%. Despite of this clear benefit of MBR, the effect is not pronounced enough to serve as a sole argument for employing MBR in municipal wastewater treatment.
Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J
2016-01-15
The objective of this study was to assess the economic and environmental sustainability of submerged anaerobic membrane bioreactors (AnMBRs) in comparison with aerobic-based technologies for moderate-/high-loaded urban wastewater (UWW) treatment. To this aim, a combined approach of steady-state performance modelling, life cycle analysis (LCA) and life cycle costing (LCC) was used, in which AnMBR (coupled with an aerobic-based post-treatment) was compared to aerobic membrane bioreactor (AeMBR) and conventional activated sludge (CAS). AnMBR with CAS-based post-treatment for nutrient removal was identified as a sustainable option for moderate-/high-loaded UWW treatment: low energy consumption and reduced sludge production could be obtained at given operating conditions. In addition, significant reductions can be achieved in different aspects of environmental impact (global warming potential (GWP), abiotic depletion, acidification, etc.) and LCC over existing UWW treatment technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Leal, Cristiano; Amaral, António Luís; Costa, Maria de Lourdes
2016-08-01
Activated sludge systems are prone to be affected by foaming occurrences causing the sludge to rise in the reactor and affecting the wastewater treatment plant (WWTP) performance. Nonetheless, there is currently a knowledge gap hindering the development of foaming events prediction tools that may be fulfilled by the quantitative monitoring of AS systems biota and sludge characteristics. As such, the present study focuses on the assessment of foaming events in full-scale WWTPs, by quantitative protozoa, metazoa, filamentous bacteria, and sludge characteristics analysis, further used to enlighten the inner relationships between these parameters. In the current study, a conventional activated sludge system (CAS) and an oxidation ditch (OD) were surveyed throughout a period of 2 and 3 months, respectively, regarding their biota and sludge characteristics. The biota community was monitored by microscopic observation, and a new filamentous bacteria index was developed to quantify their occurrence. Sludge characteristics (aggregated and filamentous biomass contents and aggregate size) were determined by quantitative image analysis (QIA). The obtained data was then processed by principal components analysis (PCA), cross-correlation analysis, and decision trees to assess the foaming occurrences, and enlighten the inner relationships. It was found that such events were best assessed by the combined use of the relative abundance of testate amoeba and nocardioform filamentous index, presenting a 92.9 % success rate for overall foaming events, and 87.5 and 100 %, respectively, for persistent and mild events.
Mu, Hui; Li, Yan; Zhao, Yuxiao; Zhang, Xiaodong; Hua, Dongliang; Xu, Haipeng; Jin, Fuqiang
2018-02-01
The anaerobic digestion of single fruit and vegetable wastes (FVW) can be easily interrupted by rapid acidogenesis and inhibition of methanogen, and the digestion system tends to be particularly unstable at high solid content. In this study, the anaerobic digestion of FVW in batch experiments under mesophilic condition at a high solid concentration of 10% was successfully conducted to overcome the acidogenesis problem through several modifications. Firstly, compared with the conventional anaerobic sludge (CAS), the acclimated anaerobic granular sludge (AGS) was found to be a better inoculum due to its higher Archaea abundance. Secondly, waste activated sludge (WAS) was chosen to co-digest with FVW, because WAS had abundant proteins that could generate intermediate ammonium. The ammonium could neutralize the accumulated volatile fatty acids (VFAs) and prevent the pH value of the digestion system from rapidly decreasing. Co-digestion of FVW and WAS with TS ratio of 60:40 gave the highest biogas yield of 562 mL/g-VS and the highest methane yield of 362 mL/g-VS. Key parameters in the digestion process, including VFAs concentration, pH, enzyme activity, and microbial activity, were also examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
2011-04-30
This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 562, Waste Systems, in accordance with the Federal Facility Agreement and Consent Order (1996; as amended March 2010). CAU 562 consists of 13 Corrective Action Sites (CASs) located in Areas 2, 23, and 25 of the Nevada National Security Site. Site characterization activities were performed in 2009 and 2010, and the results are presented in Appendix A of the Corrective Action Decision Document for CAU 562. The scope of work required to implement the recommended closure alternatives is summarized. (1) CAS 02-26-11, Lead Shot, will be clean closedmore » by removing shot. (2) CAS 02-44-02, Paint Spills and French Drain, will be clean closed by removing paint and contaminated soil. As a best management practice (BMP), asbestos tile will be removed. (3) CAS 02-59-01, Septic System, will be clean closed by removing septic tank contents. As a BMP, the septic tank will be removed. (4) CAS 02-60-01, Concrete Drain, contains no contaminants of concern (COCs) above action levels. No further action is required; however, as a BMP, the concrete drain will be removed. (5) CAS 02-60-02, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. As a BMP, the drain grates and drain pipe will be removed. (6) CAS 02-60-03, Steam Cleaning Drain, will be clean closed by removing contaminated soil. As a BMP, the steam cleaning sump grate and outfall pipe will be removed. (7) CAS 02-60-04, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. (8) CAS 02-60-05, French Drain, will be clean closed by removing contaminated soil. (9) CAS 02-60-06, French Drain, contains no COCs above action levels. No further action is required. (10) CAS 02-60-07, French Drain, requires no further action. The french drain identified in historical documentation was not located during corrective action investigation activities. (11) CAS 23-60-01, Mud Trap Drain and Outfall, will be clean closed by removing sediment from the mud trap. As a BMP, the mud trap and outfall pipe will be removed. (12) CAS 23-99-06, Grease Trap, will be clean closed by removing sediment from the grease trap and backfilling the grease trap with grout. (13) CAS 25-60-04, Building 3123 Outfalls, will be clean closed by removing contaminated soil and the sludge-containing outfall pipe.« less
Yuan, Heyang; Herzog, Bastian; Helmreich, Brigitte; Lemmer, Hilde; Müller, Elisabeth
2014-07-15
The aerobic biodegradation of 5-methyl-benzotriazole (5-TTri) was optimized using lab-scale setups and activated sludge communities (ASC) collected from three wastewater treatment plants (WWTP) MBR-MH, CAS-E and CAS-M being different in their treatment technologies. ASC inocula were diluted to rule out non-biodegrading species and incubated under two nutrient conditions: A) mineral salt media (MSM) and B) carbon and nitrogen supplied MSM giving MSM-CN. 5-TTri removal with the ASC ranged from 60% to 100% in only 10 days. 100 μL suspended biomass from the biodegrading setups was subsequently plated on solid media to eliminate possible activated sludge remnants. After growth occurred, mixed colonies were harvested and inoculated in fresh liquid MSM containing 20 mg L(-1) 5-TTri. These bacterial consortia showed good 5-TTri removal in MSM-CN rather than in MSM, indicating nutrient supply being required for efficient biodegradation. In addition, experiments with high 5-TTri concentrations ranging from 20 to 1,000 mg L(-1) were conducted in both, MSM and MSM-CN and the maximal 5-TTri removal capacity of the ASC evaluated. 50 mg L(-1) 5-TTri was still removed in both media whereas 100 mg L(-1) was solely removed in MSM-CN. 5-TTri biodegradation patterns also indicated that 5-TTri might be co-metabolized by microbial consortia. Furthermore, experiments with gradient-solid-media-plates showed 5-TTri to be inhibitory for the ASC in concentrations above 50 mg L(-1) and revealed the optimal conditions regarding carbon and nitrogen concentration and pH value for effective 5-TTri biodegradation by ASC. Nitrogen proved a crucial factor for enhancing organisms' biodegradation capacity with an optimal pH around 7 while carbon showed no such effect. Copyright © 2013 Elsevier B.V. All rights reserved.
Brepols, Ch; Schäfer, H; Engelhardt, N
2010-01-01
Based on the practical experience in design and operation of three full-scale membrane bioreactors (MBR) for municipal wastewater treatment that were commissioned since 1999, an overview on the different design concepts that were applied to the three MBR plants is given. The investment costs and the energy consumption of the MBRs and conventional activated sludge (CAS) plants (with and without tertiary treatment) in the Erft river region are compared. It is found that the specific investment costs of the MBR plants are lower than those of comparable CAS with tertiary treatment. A comparison of the specific energy demand of MBRs and conventional WWTPs is given. The structure of the MBRs actual operational costs is analysed. It can be seen that energy consumption is only responsible for one quarter to one third of all operational expenses. Based on a rough design and empirical cost data, a cost comparison of a full-scale MBR and a CAS is carried out. In this example the CAS employs a sand filtration and a disinfection in order to achieve comparable effluent quality. The influence of membrane lifetime on life cycle cost is assessed.
Becker, Adilson M; Yu, Kevin; Stadler, Lauren B; Smith, Adam L
2017-01-01
Food waste is increasingly viewed as a resource that should be diverted from landfills. This study used life cycle assessment to compare co-management of food waste and domestic wastewater using anaerobic membrane bioreactor (AnMBR) against conventional activated sludge (CAS) and high rate activated sludge (HRAS) with three disposal options for food waste: landfilling (LF), anaerobic digestion (AD), and composting (CP). Based on the net energy balance (NEB), AnMBR and HRAS/AD were the most attractive scenarios due to cogeneration of produced biogas. However, cogeneration negatively impacted carcinogenics, non-carcinogenics, and ozone depletion, illustrating unavoidable tradeoffs between energy recovery from biogas and environmental impacts. Fugitive emissions of methane severely increased global warming impacts of all scenarios except HRAS/AD with AnMBR particularly affected by effluent dissolved methane emissions. AnMBR was also most sensitive to food waste diversion participation, with 40% diversion necessary to achieve a positive NEB at the current state of development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Blair, Benjamin; Nikolaus, Adam; Hedman, Curtis; Klaper, Rebecca; Grundl, Timothy
2015-09-01
Conventional activated sludge (CAS) wastewater treatment processes are insufficient at removing many pharmaceutical and personal care products (PPCPs) from wastewater. In addition, negative mass balances, where the effluent concentration is greater than the influent concentration, have been observed in wastewater treatment studies and a further understanding of these results is needed. In this study, the fate and occurrence of 57 PPCPs and hormones were evaluated in an activated sludge process and the mass balances were determined. The goal of the project was to understand the PPCPs biological degradation and the extent of sorption to solids. The samples containing in situ PPCPs (i.e. samples were not spiked with additional PPCPs) were evaluated. Forty-eight of the PPCPs were detected in the soluble form and 29 were detected sorbed to solids. Two notable results were found. First, the results of this study indicate a subset of the highly biodegradable PPCPs stop being degraded at low, yet notable, concentrations. Second, the results revealed that negative mass balances were present for a subset of the PPCPs when evaluating both the soluble and sorbed concentration, for example carbamazepine and ofloxacin. Desorption from solids was not found to attribute to negative mass balances. Overall, the results from this study provide new insights into the fate of PPCPs during CAS wastewater treatment by evaluating the degradation kinetics and sorption and the results may explain the consistent levels of highly degradable PPCPs being emitted from WWTPs worldwide. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sapkota, Amir; Heidler, Jochen; Halden, Rolf U
2007-01-01
The antimicrobial compound triclocarban (TCC; 3,4,4'-trichlorocarbanilide; CAS# 101-20-2) is a high-production-volume chemical, recently suggested to cause widespread contamination of US water resources. To test this hypothesis, we developed an isotope dilution liquid chromatography electrospray ionization tandem mass spectrometry method for ultratrace analysis of TCC (0.9 ng/L detection limit) and analyzed low-volume water samples (200 mL) along with primary sludge samples from across the United States. All river water samples (100%) collected downstream of wastewater treatment plants had detectable levels of TCC, as compared to 56% of those taken upstream. Concentrations of TCC (mean+/-standard deviation) downstream of sewage treatment plants (84+/-110 ng/L) were significantly higher (P<0.05; Wilcoxon rank sum test) than those of samples taken upstream (12+/-15 ng/L). Compared to surface water, mean TCC concentrations found in dried, primary sludge obtained from municipal sewage treatment plants in five states were six orders of magnitude greater (19,300+/-7100 microg/kg). Several river samples contained a co-contaminant, identified based on its chromatographic retention time, molecular base ion, and MS/MS fragmentation behavior as 4,4'-dichlorocarbanilide (DCC; CAS# 1219-99-4). In addition to TCC and DCC, municipal sludge contained a second co-contaminant, 3,3',4,4'-tetrachlorocarbanilide (TetraCC; CAS# 4300-43-0). Both newly detected compounds were present as impurities (0.2%(w/w) each) in technical grade TCC (99%). Application of the new method for chlorocarbanilide analysis yielded TCC occurrence data for 13 US states, confirmed the role of sewage treatment plants as environmental inputs of TCC, and identified DCC and TetraCC as previously unrecognized pollutants released into the environment alongside TCC.
Siegrist, H; Joss, A
2012-01-01
A brief review of the fate of micropollutants in membrane-based wastewater treatment due to sorption, stripping, biological degradation/transformation and membrane separation is discussed, to give an overview of these technologies due to the growing importance for water reuse purposes. Compared with conventional activated sludge treatment (CAS) micropollutant removal in membrane bioreactor (MBR) is slightly improved due to complete suspended solids removal and increased sludge age. For discharge to sensitive receiving waters advanced treatment, such as post-ozonation or activated carbon adsorption, is recommended. In water reuse plants nanofiltration (NF) and reverse osmosis (RO) efficiently reject micropollutants due to size exclusions as well as electrostatic and hydrophobic effects reaching potable quality. To remove micropollutants fully, additionally post-ozone or the addition of powdered activated carbon (PAC) have to be applied, which in parallel also reduce NDMA precursors. The concentrate has to be treated if disposed to sensitive receiving waters due to its high micropollutant concentration and ecotoxicity potential. The present review summarizes principles and capabilities for the most important membrane-based applications for wastewater treatment, i.e. porous membranes in MBRs (micro- or ultrafiltration) and dense membrane applications (NF and RO) for water reuse.
40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.
Code of Federal Regulations, 2014 CFR
2014-07-01
... casting, wastewater treatment, solid waste. 721.10667 Section 721.10667 Protection of Environment... iron casting, wastewater treatment, solid waste. (a) Chemical substance and significant new uses... and iron casting, wastewater treatment, solid waste (PMN P-12-560; CAS No. 1391739-82-4; chemical...
40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.
Code of Federal Regulations, 2013 CFR
2013-07-01
... casting, wastewater treatment, solid waste. 721.10667 Section 721.10667 Protection of Environment... iron casting, wastewater treatment, solid waste. (a) Chemical substance and significant new uses... and iron casting, wastewater treatment, solid waste (PMN P-12-560; CAS No. 1391739-82-4; chemical...
NASA Astrophysics Data System (ADS)
González, Susana; Petrovic, Mira; Barceló, Damiá
2008-07-01
SummaryThe removal of selected surfactants, linear alkylbenzene sulfonates (LAS), coconut diethanol amides (CDEA) and alkylphenol ethoxylates and their degradation products were investigated using a two membrane bioreactor (MBR) with hollow fiber and plate and frame membranes. The two pilot plants MBR run in parallel to a full-scale conventional activated sludge (CAS) treatment. A total of eight influent samples with the corresponding effluent samples were analysed by solid phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS-MS). The results indicate that both MBR have a better effluent quality in terms of chemical and biological oxygen demand (COD and BOD), NH4+ , concentration and total suspended solids (TSS). MBR showed a better similar performance in the overall elimination of the total nonylphenolic compounds, achieving a 75% of elimination or a 65% (the same elimination reached by CAS). LAS and CDEA showed similar elimination in the three systems investigated and no significant differences were observed.
Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor
Radjenovic, Jelena; Barceló, Damiá
2006-01-01
Much attention has recently been devoted to the life and behaviour of pharmaceuticals in the water cycle. In this study the behaviour of several pharmaceutical products in different therapeutic categories (analgesics and anti-inflammatory drugs, lipid regulators, antibiotics, etc.) was monitored during treatment of wastewater in a laboratory-scale membrane bioreactor (MBR). The results were compared with removal in a conventional activated-sludge (CAS) process in a wastewater-treatment facility. The performance of an MBR was monitored for approximately two months to investigate the long-term operational stability of the system and possible effects of solids retention time on the efficiency of removal of target compounds. Pharmaceuticals were, in general, removed to a greater extent by the MBR integrated system than during the CAS process. For most of the compounds investigated the performance of MBR treatment was better (removal rates >80%) and effluent concentrations of, e.g., diclofenac, ketoprofen, ranitidine, gemfibrozil, bezafibrate, pravastatin, and ofloxacin were steadier than for the conventional system. Occasionally removal efficiency was very similar, and high, for both treatments (e.g. for ibuprofen, naproxen, acetaminophen, paroxetine, and hydrochlorothiazide). The antiepileptic drug carbamazepine was the most persistent pharmaceutical and it passed through both the MBR and CAS systems untransformed. Because there was no washout of biomass from the reactor, high-quality effluent in terms of chemical oxygen demand (COD), ammonium content (N-NH4), total suspended solids (TSS), and total organic carbon (TOC) was obtained. PMID:17115140
Co-conditioning and dewatering of chemical sludge and waste activated sludge.
Chang, G R; Liu, J C; Lee, D J
2001-03-01
The conditioning and dewatering behaviors of chemical and waste activated sludges from a tannery were studied. Capillary suction time (CST), specific resistance to filtration (SRF), and bound water content were used to evaluate the sludge dewatering behaviors. Zeta potentials were also measured. Experiments were conducted on each sludge conditioned and dewatered separately, and on the sludge mixed at various ratios. Results indicate that the chemical sludge was relatively difficult to be dewatered, even in the presence of polyelectrolyte. When the waste activated sludge was mixed with the chemical sludge at ratios of 1:1 and 2:1, respectively, the dewaterability of chemical sludge improved remarkably while the relatively better dewaterability of the waste activated sludge deteriorated only to a limited extent. As the mixing ratios became 4:1 and 8:1, the dewaterability of the mixed sludge was equal to that of the waste activated sludge. The optimal polyelectrolyte dosage for the mixed sludge was equal to or less than that of the waste activated sludge. It is proposed that the chemical sludges act as skeleton builders that reduce the compressibility of the mixed sludge whose dewaterability is enhanced. Bound water contents of sludge decreased at low polyelectrolyte dosage and were not significantly affected as polyelectrolyte dosage increased. Advantages and disadvantages of co-conditioning and dewatering chemical sludge and waste activated sludge were discussed.
[Adsorption of a dye by sludges and the roles of extracellular polymeric substances].
Kong, Wang-sheng; Liu, Yan
2007-12-01
This paper investigated the adsorption of a dye, acid turquoise blue A, by four kinds of sludges including activated sludge, anaerobic sludge, dried activated sludge, and dried anaerobic sludge, respectively. The roles of extracellular polymeric substances (EPS) including the soluble EPS (SEPS) and bound EPS (BEPS) for the biosorption of activated sludge and anaerobic sludge were further studied. Results show that the relation between four kinds of sludge adsorption amount and remained concentration of the dye fitted well both Freundlich model (R2: 0.921-0.995) and Langmuir model (R2: 0.958-0.993), but not quite fitted BET model (R2: 0.07-0.863). The adsorption capability of dried anaerobic sludge ranked the highest, and dried activated sludge was the lowest. According to Langmuir isotherm, the maximum adsorption amount of dried anaerobic, anaerobic, activated, and dried activated sludge was 104 mg/g, 86 mg/g, 65 mg/g, 20 mg/g, respectively. The amount of the dye found in EPS for both activated sludge and anaerobic sludge were over 50%, illustrating that EPS adsorption was predominant in adsorption of the dye by sludge. The amount of adsorbed dye by BEPS was greater than that by SEPS for anaerobic sludge, but for activated sludge the result was quite opposite. The amount of adsorbed dye by unit mass SEPS was much higher than the corresponding values of BEPS for both sludges. The average amount of adsorbed dye by unit mass SEPS was 52 times of the corresponding value of BEPS for activated sludge, and 10 times for anaerobic sludge. The relation between adsorption amount of dye by BEPS from anaerobic sludge and remained concentration of the dye in mixed liquor was best fitted to Langmuir model (R2: 0.9986).
Tran, Ngoc Han; Gin, Karina Yew-Hoong
2017-12-01
This study provided the first comprehensive data on the occurrence and removal of twenty-five target emerging contaminants (ECs) in a full-scale water reclamation plant (WRP) in the Southeast Asian region. Nineteen out of the twenty-five ECs were ubiquitously detected in raw influent samples. Concentrations of the detected ECs in raw influent samples ranged substantially from 44.3 to 124,966ng/L, depending upon the compound and sampling date. The elimination of ECs in full-scale conventional activated sludge (CAS) and membrane bioreactor (MBR) systems at a local WRP was evaluated and compared. Several ECs, such as acetaminophen, atenolol, fenoprofen, indomethacin, ibuprofen, and oxybenzone, exhibited excellent removal efficiencies (>90%) in biological wastewater treatment processes, while some of the investigated compounds (carbamazepine, crotamiton, diclofenac, and iopamidol) appeared to be persistent in the both CAS and MBR systems. Field-based monitoring results showed that MBR outperformed CAS in the elimination of most target ECs. The relationship between molecular characteristics of ECs (i.e. physicochemical properties and structural features) and their removal efficiencies during biological wastewater treatment was also elucidated. Excellent removal efficiencies (>90%) were often noted for ECs with the sole presence of electron donating groups (i.e. phenolic [OH], amine [NH 2 ], methoxy [OCH 3 ], phenoxy [OC 6 H 5 ], or alkyl groups). Conversely, ECs with the absence of electron donating groups or the predominance of strong electron withdrawing groups (e.g. halogenated, carbonyl, carboxyl, and sulfonamide) tended to show poor removal efficiencies (<30%) in biological wastewater treatment processes. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant Evenson
2006-05-01
This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 151, Septic Systems and Discharge Area, at the Nevada Test Site, Nevada, according to the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). Corrective Action Unit 151 is comprised of eight corrective action sites (CASs): (1) CAS 02-05-01, UE-2ce Pond; (2) CAS 12-03-01, Sewage Lagoons (6); (3) CAS 12-04-01, Septic Tanks; (4) CAS 12-04-02, Septic Tanks; (5) CAS 12-04-03, Septic Tank; (6) CAS 12-47-01, Wastewater Pond; (7) CAS 18-03-01, Sewage Lagoon; and (8) CAS 18-99-09, Sewer Line (Exposed). The purpose of this Corrective Action Decision Document ismore » to identify and provide the rationale for the recommendation of corrective action alternatives (CAAs) for each of the eight CASs within CAU 151. Corrective action investigation (CAI) activities were performed from September 12 through November 18, 2005, as set forth in the CAU 151 Corrective Action Investigation Plan and Record of Technical Change No. 1. Additional confirmation sampling was performed on December 9, 2005; January 10, 2006; and February 13, 2006. Analytes detected during the CAI were evaluated against appropriate final action levels (FALs) to identify the contaminants of concern for each CAS. The results of the CAI identified contaminants of concern at two of the eight CASs in CAU 151 and required the evaluation of CAAs. Assessment of the data generated from investigation activities conducted at CAU 151 revealed the following: (1) Soils at CASs 02-05-01, 12-04-01, 12-04-02, 12-04-03, 12-47-01, 18-03-01, 18-99-09, and Lagoons B through G of CAS 12-03-01 do not contain contamination at concentrations exceeding the FALs. (2) Lagoon A of CAS 12-03-01 has arsenic above FALs in shallow subsurface soils. (3) One of the two tanks of CAS 12-04-01, System No.1, has polychlorinated biphenyls (aroclor-1254), trichloroethane, and cesium-137 above FALs in the sludge. Both CAS 12-04-01, System No.1 tanks contain trichloroethane and 1,4-dichlorobenzene above ''Resource Conservation and Recovery Act'' toxicity characteristic limits. Based on the evaluation of analytical data from the CAI, review of future and current operations at the eight CASs, and the detailed and comparative analysis of the potential CAAs, the following corrective actions are recommended for CAU 151. No Further Action is the recommended corrective action for soils at CASs 02-05-01, 12-04-01, 12-04-02, 12-04-03, 18-03-01, and 18-99-09; and Lagoons C, D, F, and G of CAS 12-03-01. No Further Action with implementation of a best management practice (BMP) is recommended for soils at CAS 12-47-01 and Lagoons B and E of CAS 12-03-01. To be protective of future workers should the present scenario used to calculate FALs change, an administrative use restriction will be recorded per the FFACO agreement as a BMP. Close in Place with Administrative Controls is the recommended corrective action for Lagoon A of CAS 12-03-01. Based on the evaluation of analytical data from the CAI; review of future and current operations at CASs 12-04-01, 12-04-02, and 12-04-03; and the detailed and comparative analysis of the potential CAAs, the following corrective actions are recommended for the septic tanks at these CASs. No Further Action with implementation of BMPs is the recommended corrective action for septic tanks that do not contain potential source material from CAS 12-04-01, System No.4 (four tanks); CAS 12-04-02, System No.5 (six tanks); and CAS 12-04-03, System No.3 (four tanks). Clean Closure with implementation of BMPs is the recommended corrective action for the septic tanks from CAS 12-04-01, System No.1 (two tanks). The preferred CAAs were evaluated on technical merit focusing on performance, reliability, feasibility, safety, and cost. The alternatives were judged to meet all requirements for the technical components evaluated. The alternatives meet all applicable federal and state regulations for closure of the site and will reduce potential exposure pathways to the contaminated media to an acceptable level at CAU 151.« less
Zhang, Liang; Liu, Miaomiao; Zhang, Shujun; Yang, Yandong; Peng, Yongzhen
2015-12-01
A pilot-scale activated sludge bioreactor was filled with immobile carrier to treat high ammonium wastewater. Autotrophic nitrogen elimination occurred rapidly by inoculating nitrifying activated sludge and anammox biofilm. As the ammonium loading rate increased, nitrogen removal rate of 1.2kgNm(-3)d(-1) was obtained with the removal efficiency of 80%. Activated sludge diameter distribution profiles presented two peak values, indicating simultaneous existence of flocculent and granular sludge. Red granular sludge was observed in the reactor. Furthermore, the results of morphological and molecular analysis showed that the characteristics of granular sludge were similar to that of biofilm, while much different from the flocculent sludge. It was assumed granular sludge was formed through the continuous growth and detachment of anammox biofilm. The mechanism of granular sludge formation was discussed and the procedure model was proposed. According to the experimental results, the integrated fixed-biofilm activated sludge reactor provided an alternative to nitrogen removal based on anammox. Copyright © 2015 Elsevier Ltd. All rights reserved.
Activated Sludge. Student Manual. Biological Treatment Process Control.
ERIC Educational Resources Information Center
Boe, Owen K.; Klopping, Paul H.
This student manual contains the textual material for a seven-lesson unit on activated sludge. Topic areas addressed in the lessons include: (1) activated sludge concepts and components (including aeration tanks, aeration systems, clarifiers, and sludge pumping systems); (2) activated sludge variations and modes; (3) biological nature of activated…
Improvement of primary settling performance with activated sludge.
Yetis, U; Tarlan, E
2002-04-01
In biological treatment plants employing activated sludge processes, it is possible to recirculate some portion of the waste activated sludge that is not sent to the aeration basin, to the inlet of the primary sedimentation tanks. But in the literature there is no detailed information about the conditions, ratios and the characteristics of the waste sludge that can be recirculated back. However, depending on its settling characteristics, the addition of waste activated sludge to raw wastewater may improve primary settling. Settling tests have shown that the effect of waste activated sludge on primary settling is strongly dependent on the mean cell residence time (or sludge age), theta(c), of the waste activated sludge and also on the suspended solids concentration. Different sludge ages of 4, 6, 8, 10, 14, 20 and 26 days, and for each sludge age at least five different initial suspended solids concentrations were studied. A sludge age of 8-10 days achieved the optimum efficiency in terms of the remaining suspended solids concentration as well as percent-suspended solids removal. Also, the settled sludge volumes were measured throughout the experiments; so, the comparison was made between settled sludge volumes, initial suspended solids (SS) concentrations and theta(c).
[Dynamics of quickly absorption of the carbon source in wastewater by activated sludge].
Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang
2011-09-01
In this paper, absorption characteristics of organic matter in municipal wastewater by three kinds of activated sludge (carbon-enriching, nitrification and denitrification sludge) were studied, and the absorption kinetic data was checked using three kinds of absorption kinetic equations based on Ritchie rate equation. The objectives of this study were to investigate the absorption mechanism of activated sludge to organic matter in municipal wastewater, and to identify the possibility of reclaiming organic matter by activated sludge. Results indicated that in the early 30 min, absorption process of organic matter by activated sludge was found to be mainly physical adsorption, which could be expressed by the Lagergren single-layer adsorption model. The carbon-enriching sludge had the highest adsorption capacity (COD/SS) which was 60 mg/g but the adsorption rate was lower than that of denitrification sludge. While nitrification sludge had the lowest adsorption rate and higher adsorption capacity compared with denitrification sludge, which was about 35 mg/g. The rates of the fitting index theta(0) of carbon-enriching, nitrification and denitrification sludge were 0.284, 0.777 and 0.923, respectively, which indicated that the sorbed organic matter on the surface of carbon-enriching sludge was the easiest fraction to be washed away. That is, the combination intensity of carbon-enriching sludge and organic matter was the feeblest, which was convenient for carbon-enriching sludge to release sorbed carbon. Furthermore, by fitting with Langmuir model, concentration of organic matter was found to be the key parameter influencing the adsorption capacity of activated sludge, while the influence of temperature was not obvious. The kinetic law of organic matter absorption by activated sludge was developed, which introduces a way to kinetically analyze the removing mechanism of pollutant by activated sludge and provides theoretical base for the reclaiming of nutriments in wastewater by the absorption of activated sludge.
Rational Design of Mini-Cas9 for Transcriptional Activation.
Ma, Dacheng; Peng, Shuguang; Huang, Weiren; Cai, Zhiming; Xie, Zhen
2018-04-20
Nuclease dead Cas9 (dCas9) has been widely used for modulating gene expression by fusing with different activation or repression domains. However, delivery of the CRISPR/Cas system fused with various effector domains in a single adeno-associated virus (AAV) remains challenging due to the payload limit. Here, we engineered a set of downsized variants of Cas9 including Staphylococcus aureus Cas9 (SaCas9) that retained DNA binding activity by deleting conserved functional domains. We demonstrated that fusing FokI nuclease domain to the N-terminal of the minimal SaCas9 (mini-SaCas9) or to the middle of the split mini-SaCas9 can trigger efficient DNA cleavage. In addition, we constructed a set of compact transactivation domains based on the tripartite VPR activation domain and self-assembled arrays of split SpyTag:SpyCatch peptides, which are suitable for fusing to the mini-SaCas9. Lastly, we produced a single AAV containing the mini-SaCas9 fused with a downsized transactivation domain along with an optimized gRNA expression cassette, which showed efficient transactivation activity. Our results highlighted a practical approach to generate down-sized CRISPR/Cas9 and gene activation systems for in vivo applications.
Ong, Y H; Chua, A S M; Lee, B P; Ngoh, G C
2013-01-01
To date, little information is known about the operation of the enhanced biological phosphorus removal (EBPR) process in tropical climates. Along with the global concerns on nutrient pollution and the increasing array of local regulatory requirements, the applicability and compliance accountability of the EBPR process for sewage treatment in tropical climates is being evaluated. A sequencing batch reactor (SBR) inoculated with seed sludge from a conventional activated sludge (CAS) process was successfully acclimatized to EBPR conditions at 28 °C after 13 days' operation. Enrichment of Candidatus Accumulibacter phosphatis in the SBR was confirmed through fluorescence in situ hybridization (FISH). The effects of operational pH and influent C:P ratio on EBPR were then investigated. At pH 7 or pH 8, phosphorus removal rates of the EBPR processes were relatively higher when operated at C:P ratio of 3 than C:P ratio of 10, with 0.019-0.020 and 0.011-0.012 g-P/g-MLVSS•day respectively. One-year operation of the 28 °C EBPR process at C:P ratio of 3 and pH 8 demonstrated stable phosphorus removal rate of 0.020 ± 0.003 g-P/g-MLVSS•day, corresponding to effluent with phosphorus concentration <0.5 mg/L. This study provides the first evidence on good EBPR activity at relatively high temperature, indicating its applicability in a tropical climate.
Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian
2015-01-01
Wastewater treatment plants are considered as hot reservoirs of antimicrobial resistance. However, the fates of antibiotic-resistant bacteria during biological treatment processes and relevant influencing factors have not been fully understood. This study evaluated the effects of the sludge loading rate on the growth and release of six kinds of antibiotic-resistant bacteria in an activated sludge system. The results indicated that higher sludge loading rates amplified the growth of all six types of antibiotic resistant bacteria. The release of most antibiotic-resistant bacteria through both the effluent and biosolids was amplified with increased sludge loading rate. Biosolids were the main pattern for all antibiotic-resistant bacteria release in an activated sludge system, which was determined primarily by their growth in the activated sludge. A higher sludge loading rate reactor tended to retain more antibiotic resistance. An activated sludge system with lower sludge loading rates was considered more conducive to the control of antibiotic resistance.
Litti, Iu V; Nekrasova, V K; Kulikov, N I; Siman'kova, M V; Nozhevnikova, A N
2013-01-01
Attached activated sludge from the Krasnaya Polyana (Sochi) wastewater treatment plant was studied after the reconstruction by increased aeration and water recycle, as well as by the installation of a bristle carrier for activated sludge immobilization. The activated sludge biofilms developing under conditions of intense aeration were shown to contain both aerobic and anaerobic microorganisms. Activity of a strictly anaerobic methanogenic community was revealed, which degraded organic compounds to methane, further oxidized by aerobic methanotrophs. Volatile fatty acids, the intermediates of anaerobic degradation of complex organic compounds, were used by both aerobic and anaerobic microorganisms. Anaerobic oxidation of ammonium with nitrite (anammox) and the presence of obligate anammox bacteria were revealed in attached activated sludge biofilms. Simultaneous aerobic and anaerobic degradation of organic contaminants by attached activated sludge provides for high rates of water treatment, stability of the activated sludge under variable environmental conditions, and decreased excess sludge formation.
Kim, Young Mo; Chon, Dong-Hyun; Kim, Hee-Sik; Park, Chul
2012-09-01
The goal of this study was to investigate the bacterial community in activated sludge with an anaerobic side-stream reactor (ASSR), a process permitting significant decrease in sludge production during wastewater treatment. The study operated five activated sludge systems with different sludge treatment schemes serving as various controls for the activated sludge with ASSR. Bacterial communities were analyzed by denaturing gradient gel electrophoresis (DGGE), sequencing and construction of phylogenetic relationships of the identified bacteria. The DGGE data showed that activated sludge incorporating ASSR contained higher diversity of bacteria, resulting from long solids retention time and recirculation of sludge under aerobic and anaerobic conditions. The similarity of DGGE profiles between ASSR and separate anaerobic digester (control) was high indicating that ASSR is primarily related to conventional anaerobic digesters. Nevertheless, there was also unique bacteria community appearing in ASSR. Interestingly, sludge in the main system and in ASSR showed considerably different bacterial composition indicating that ASSR allowed enriching its own bacterial community different than that from the aeration basin, although two reactors were connected via sludge recirculation. In activated sludge with ASSR, sequences represented by predominant DGGE bands were affiliated with Proteobacteria. The remaining groups were composed of Spirochaetes, Clostridiales, Chloroflexi, and Actinobacteria. Their putative role in the activated sludge with ASSR is also discussed in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.
Increased plasma xanthine oxidoreductase activity deteriorates coronary artery spasm.
Watanabe, Ken; Shishido, Tetsuro; Otaki, Yoichiro; Watanabe, Tetsu; Sugai, Takayuki; Toshima, Taku; Takahashi, Tetsuya; Yokoyama, Miyuki; Kinoshita, Daisuke; Murase, Takayo; Nakamura, Takashi; Wanezaki, Masahiro; Tamura, Harutoshi; Nishiyama, Satoshi; Takahashi, Hiroki; Arimoto, Takanori; Yamauchi, So; Yamanaka, Tamon; Miyamoto, Takuya; Kubota, Isao; Watanabe, Masafumi
2018-06-23
Increased reactive oxygen species (ROS) contributes to the development of endothelial dysfunction, which is involved in coronary artery spasm (CAS). Xanthine oxidoreductase (XOR) plays a pivotal role in producing both uric acid and ROS. However, the association between plasma XOR activity and CAS has not been elucidated. The aim of this study was to investigate whether plasma XOR activity is associated with CAS. We measured XOR activity in 104 patients suspected for CAS, who presented without significant coronary artery stenosis and underwent intracoronary acetylcholine provocation tests. CAS was provoked in 44 patients and they had significantly higher XOR activity as compared with those without CAS. The patients were divided into three groups based on the XOR activity. The prevalence rate of CAS was increased with increasing XOR activity. A multivariate logistic regression analysis showed that the 3rd tertile group exhibited a higher incidence of CAS as compared with the 1st tertile group [odds ratio (OR) 6.9, P = 0.001) and the 2nd tertile group (OR 3.2, P = 0.033) after adjustment for conventional CAS risk factors, respectively. The C index was significantly improved by the addition of XOR activity to the baseline model based on CAS risk factors. Furthermore, the 3rd tertile group had the highest incidence of severe spasm defined as total obstruction, flow-limiting stenosis, diffuse spasm, multivessel spasm, and/or lethal arrhythmia. This is a first report to elucidate the association of plasma XOR activity with CAS. Increased plasma XOR activity is significantly associated with CAS.
The presence and role of bacterial quorum sensing in activated sludge
Chong, Grace; Kimyon, Onder; Rice, Scott A.; Kjelleberg, Staffan; Manefield, Mike
2012-01-01
Summary Activated sludge used for wastewater treatment globally is composed of a high‐density microbial community of great biotechnological significance. In this study the presence and purpose of quorum sensing via N‐acylated‐l‐homoserine lactones (AHLs) in activated sludge was explored. The presence of N‐heptanoyl‐l‐homoserine lactone in organic extracts of sludge was demonstrated along with activation of a LuxR‐based AHL monitor strain deployed in sludge, indicating AHL‐mediated gene expression is active in sludge flocculates but not in the bulk aqueous phase. Bacterial isolates from activated sludge were screened for AHL production and expression of phenotypes commonly but not exclusively regulated by AHL‐mediated gene transcription. N‐acylated‐l‐homoserine lactone and exoenzyme production were frequently observed among the isolates. N‐acylated‐l‐homoserine lactone addition to sludge upregulated chitinase activity and an AHL‐ and chitinase‐producing isolate closely related to Aeromonas hydrophila was shown to respond to AHL addition with upregulation of chitinase activity. N‐acylated‐l‐homoserine lactones produced by this strain were identified and genes ahyI/R and chiA, encoding AHL production and response and chitinase activity respectively, were sequenced. These experiments provide insight into the relationship between AHL‐mediated gene expression and exoenzyme activity in activated sludge and may ultimately create opportunities to improve sludge performance. PMID:22583685
NASA Astrophysics Data System (ADS)
Ong, Soon-An; Toorisaka, Eiichi; Hirata, Makoto; Hano, Tadashi
2013-03-01
The adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solutions by activated sludge and dried sludge was investigated under laboratory conditions to assess its potential in removing metal ions. The adsorption behavior of metal ions onto activated sludge and dried sludge was analyzed with Weber-Morris intra-particle diffusion model, Lagergren first-order model and pseudo second-order model. The rate constant of intra-particle diffusion on activated sludge and dried sludge increased in the sequence of Cu(II) > Ni(II) > Cd(II). According to the regression coefficients, it was observed that the kinetic adsorption data can fit better by the pseudo second-order model compared to the first-order Lagergren model with R 2 > 0.997. The adsorption capacities of metal ions onto activated sludge and dried sludge followed the sequence Ni(II) ≈ Cu(II) > Cd(II) and Cu(II) > Ni(II) > Cd(II).
Nie, Yafeng; Qiang, Zhimin; Ben, Weiwei; Liu, Junxin
2014-06-01
Sludge ozonation is considered as a promising technology to achieve a complete reduction of excess sludge, but as yet its effects on the removal of endocrine-disrupting chemicals (EDCs) and conventional pollutants (i.e., COD, N and P) in the activated sludge process are still unclear. In this study, two lab-scale continuous-operating activated sludge treatment systems were established: one was operated in conjunction with ozonation for excess sludge reduction, and the other was operated under normal conditions as control. The results indicate that an ozone dose of 100 mg O₃ g(-1)SS led to a zero yield of excess sludge in the sludge-reduction system during a continuous-operating period of 45d. Although ozonation gave a relatively lower specific oxygen uptake rate of activated sludge, it had little effect on the system's removal performance of COD and nitrogen substances. As a plus, sludge ozonation contributed a little more removal of target EDCs (estrone, 17β-estrodiol, estriol, 17α-ethinylestradiol, bisphenol A, and 4-nonylphenol). However, the total phosphorus removal declined notably due to its accumulation in the sludge-reduction system, which necessitates phosphorus recovery for the activated sludge process. Copyright © 2014 Elsevier Ltd. All rights reserved.
Aerobic Heterotrophic Bacterial Populations of Sewage and Activated Sludge
Prakasam, T. B. S.; Dondero, N. C.
1970-01-01
An activated sludge from a sewage treatment plant and a laboratory activated sludge developed on an artificial waste were compared for their ability to utilize 11 aromatic compounds. There were several significant differences between them. The laboratory sludge contained higher numbers of organisms and metabolized the aromatics to a greater extent. Laboratory activated sludges acclimated to utilization of the aromatics differed from each other in population structure and the pattern of oxygen consumption with aromatic substrates. The oxidative patterns of uncontrolled mixed populations were unreliable for investigating metabolic pathways. Extracts of the various sludges elevated the plate counts of the sludges. PMID:5418946
Zhang, Peng; Shen, Yu; Guo, Jin-Song; Li, Chun; Wang, Han; Chen, You-Peng; Yan, Peng; Yang, Ji-Xiang; Fang, Fang
2015-07-10
In this work, proteins in extracellular polymeric substances extracted from anaerobic, anoxic and aerobic sludges of wastewater treatment plant (WWTP) were analyzed to probe their origins and functions. Extracellular proteins in WWTP sludges were identified using shotgun proteomics, and 130, 108 and 114 proteins in anaerobic, anoxic and aerobic samples were classified, respectively. Most proteins originated from cell and cell part, and their most major molecular functions were catalytic activity and binding activity. The results exhibited that the main roles of extracellular proteins in activated sludges were multivalence cations and organic molecules binding, as well as in catalysis and degradation. The catalytic activity proteins were more widespread in anaerobic sludge compared with those in anoxic and aerobic sludges. The structure difference between anaerobic and aerobic sludges could be associated with their catalytic activities proteins. The results also put forward a relation between the macro characteristics of activated sludges and micro functions of extracellular proteins in biological wastewater treatment process.
Interference activity of a minimal Type I CRISPR–Cas system from Shewanella putrefaciens
Dwarakanath, Srivatsa; Brenzinger, Susanne; Gleditzsch, Daniel; Plagens, André; Klingl, Andreas; Thormann, Kai; Randau, Lennart
2015-01-01
Type I CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)–Cas (CRISPR-associated) systems exist in bacterial and archaeal organisms and provide immunity against foreign DNA. The Cas protein content of the DNA interference complexes (termed Cascade) varies between different CRISPR-Cas subtypes. A minimal variant of the Type I-F system was identified in proteobacterial species including Shewanella putrefaciens CN-32. This variant lacks a large subunit (Csy1), Csy2 and Csy3 and contains two unclassified cas genes. The genome of S. putrefaciens CN-32 contains only five Cas proteins (Cas1, Cas3, Cas6f, Cas1821 and Cas1822) and a single CRISPR array with 81 spacers. RNA-Seq analyses revealed the transcription of this array and the maturation of crRNAs (CRISPR RNAs). Interference assays based on plasmid conjugation demonstrated that this CRISPR-Cas system is active in vivo and that activity is dependent on the recognition of the dinucleotide GG PAM (Protospacer Adjacent Motif) sequence and crRNA abundance. The deletion of cas1821 and cas1822 reduced the cellular crRNA pool. Recombinant Cas1821 was shown to form helical filaments bound to RNA molecules, which suggests its role as the Cascade backbone protein. A Cascade complex was isolated which contained multiple Cas1821 copies, Cas1822, Cas6f and mature crRNAs. PMID:26350210
Effect of potassium ferrate on disintegration of waste activated sludge (WAS).
Ye, Fenxia; Ji, Haizhuang; Ye, Yangfang
2012-06-15
The activated sludge process of wastewater treatment results in the generation of a considerable amount of excess activated sludge. Increased attention has been given to minimization of waste activated sludge recently. This paper investigated the effect of potassium ferrate oxidation pretreatment on the disintegration of the waste activated sludge at various dosages of potassium ferrate. The results show that potassium ferrate pretreatment disintegrated the sludge particle, resulting in the reduction of total solid content by 31%. The solubility (SCOD/TCOD) of the sludge increased with the increase of potassium ferrate dosage. Under 0.81 g/g SS dosage of potassium ferrate, SCOD/TCOD reached 0.32. Total nitrogen (TN) and total phosphorous (TP) concentrations in the solution all increased significantly after potassium ferrate pretreatment. The sludge particles reduced from 116 to 87 μm. The settleability of the sludge (SVI) was enhanced by 17%, which was due to the re-flocculation by the by-product, Fe(III), during potassium ferrate oxidation and the decrease of the viscosity. From the result of the present investigations, it can be concluded that potassium ferrate oxidation is a feasible method for disintegration of excess activated sludge. Copyright © 2012 Elsevier B.V. All rights reserved.
Digital image processing and analysis for activated sludge wastewater treatment.
Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed
2015-01-01
Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.
Martins, C L; Velho, V F; Ramos, S R A; Pires, A S C D; Duarte, E C N F A; Costa, R H R
2016-01-01
The aim of this study was to investigate the ability of the oxic-settling-anaerobic (OSA)-process and the folic acid addition applied in the activated sludge process to reduce the excess sludge production. The study was monitored during two distinct periods: activated sludge system with OSA-process, and activated sludge system with folic acid addition. The observed sludge yields (Yobs) were 0.30 and 0.08 kgTSS kg(-1) chemical oxygen demand (COD), control phase and OSA-process (period 1); 0.33 and 0.18 kgTSS kg(-1) COD, control phase and folic acid addition (period 2). The Yobs decreased by 73 and 45% in phases with the OSA-process and folic acid addition, respectively, compared with the control phases. The sludge minimization alternatives result in a decrease in excess sludge production, without negatively affecting the performance of the effluent treatment.
The role and control of sludge age in biological nutrient removal activated sludge systems.
Ekama, G A
2010-01-01
The sludge age is the most fundamental and important parameter in the design, operation and control of biological nutrient removal (BNR) activated sludge (AS) systems. Generally, the better the effluent and waste sludge quality required from the system, the longer the sludge age, the larger the biological reactor and the more wastewater characteristics need to be known. Controlling the reactor concentration does not control sludge age, only the mass of sludge in the system. When nitrification is a requirement, sludge age control becomes a requirement and the secondary settling tanks can no longer serve the dual purpose of clarifier and waste activated sludge thickeners. The easiest and most practical way to control sludge age is with hydraulic control by wasting a defined proportion of the reactor volume daily. In AS plants with reactor concentration control, nitrification fails first. With hydraulic control of sludge age, nitrification will not fail, rather the plant fails by shedding solids over the secondary settling tank effluent weirs.
Liu, Xin-Wen; He, Ruo; Shen, Dong-Sheng
2008-09-01
In order to explore the pathway of the anaerobic biotreatment of the wastewater containing pentachlorophenol (PCP) and ensure the normal operation of Upflow Anaerobic Sludge Blanket (UASB) reactor, the anaerobic sludge under different acclimation conditions were selected to seed and start up UASB reactors. Anaerobic toxicity assays were employed to study the biological activity, the tolerance and the capacity to degrade PCP of different anaerobic granular sludge from UASB reactors. Results showed that the anaerobic granular sludge acclimated to chlorophenols (CPs) could degrade PCP more quickly (up to 9.50mg-PCP g(-1)TVS d(-1)). And the anaerobic granular sludge without acclimation to CPs had only a little activity of degrading PCP (less than 0.07 mg-PCP g(-1)TVS d(-1)). Different PCP concentrations (2, 4, 6, 8 mg L(-1)) had different inhibition effects on glucose utilization, volatile fatted acidity (VFA)-degrading and methanogens activity of PCP degradation anaerobic granular sludge, and the biological activity declined with the increase in PCP concentration. The methanogens activity suffered inhibition from PCP more easily. The different acclimation patterns of seeded sludge had distinctly different effects on biological activity of the degradation of PCP of anaerobic granular sludge from UASB reactors. The biological activity of the anaerobic granular sludge acclimated to PCP only was also inhibited. This inhibition was weak compared to that of anaerobic granular sludge acclimated to CPs, further, the activity could recover more quickly in this case. In the same reactor, the anaerobic granular sludge from the mid and base layers showed higher tolerance to PCP than that from super layer or if the sludge is unacclimated to CPs, and the corresponding recovery time of the biological activity in the mid and base layers were short. Acetate-utilizing methanogens and syntrophic propinate degraders were sensitive to PCP, compared to syntrophic butyrate degraders.
Iglesias, Raquel; Simón, Pedro; Moragas, Lucas; Arce, Augusto; Rodriguez-Roda, Ignasi
2017-06-01
The paper assesses the costs of full-scale membrane bioreactors (MBRs). Capital expenditures (CAPEX) and operating expenses (OPEX) of Spanish MBR facilities have been verified and compared to activated sludge plants (CAS) using water reclamation treatment (both conventional and advanced). Spanish MBR facilities require a production of 0.6 to 1.2 kWh per m 3 , while extended aeration (EA) and advanced reclamation treatment require 1.2 kWh per m 3 . The energy represents around 40% of the OPEX in MBRs. In terms of CAPEX, the implementation costs of a CAS facility followed by conventional water reclamation treatment (physical-chemical + sand filtration + disinfection) ranged from 730 to 850 €.m -3 d, and from 1,050 to 1,250 €.m -3 d in the case of advanced reclamation treatment facilities (membrane filtration) with a capacity of 8,000 to 15,000 m 3 d -1 . The MBR cost for similar capacities ranges between 700 and 960 €.m -3 d. This study shows that MBRs that have been recently installed represent a cost competitive option for water reuse applications for medium and large capacities (over 10,000 m 3 d -1 ), with similar OPEX to EA and conventional water reclamation treatment. In terms of CAPEX, MBRs are cheaper than EA, followed by advanced water reclamation treatment.
Weiss, Stefan; Jakobs, Jutta; Reemtsma, Thorsten
2006-12-01
A set of three benzotriazole corrosion inhibitors was analyzed by liquid chromatography-mass spectrometry in wastewaters and in a partially closed water cycle in the Berlin region. Benzotriazole (BTri) and two isomers of tolyltriazole (TTri) were determined in untreated municipal wastewater with mean dissolved concentrations of 12 microg/L (BTri), 2.1 microg/L (4-TTri), and 1.3 microg/L (5-TTri). Removal in conventional activated sludge (CAS) municipal wastewater treatment ranged from 37% for BTri to insignificant removal for 4-TTri. In laboratory batch tests 5-TTri was mineralized completely and 4-TTri was mineralized to only 25%. This different behavior of the three benzotriazoles was confirmed by following the triazoles through a partially closed water cycle, into bank filtrate used for drinking water production, where BTri (0.1 microg/L) and 4-TTri (0.03 microg/ L) but no 5-TTri were detected after a travel time of several months. The environmental half-life appears to increase from 5-TTri over BTri to 4-TTri. Treatment of municipal wastewater by a lab-scale membrane bioreactor (MBR) instead of CAS improved the removal of BTri and 5-TTri but could not avoid their discharge. Almost complete removal was achieved by ozonation of the treatment plant effluent with 1 mg O3/mg DOC.
The Impact of DNA Topology and Guide Length on Target Selection by a Cytosine-Specific Cas9.
Tsui, Tsz Kin Martin; Hand, Travis H; Duboy, Emily C; Li, Hong
2017-06-16
Cas9 is an RNA-guided DNA cleavage enzyme being actively developed for genome editing and gene regulation. To be cleaved by Cas9, a double stranded DNA, or the protospacer, must be complementary to the guide region, typically 20-nucleotides in length, of the Cas9-bound guide RNA, and adjacent to a short Cas9-specific element called Protospacer Adjacent Motif (PAM). Understanding the correct juxtaposition of the protospacer- and PAM-interaction with Cas9 will enable development of versatile and safe Cas9-based technology. We report identification and biochemical characterization of Cas9 from Acidothermus cellulolyticus (AceCas9). AceCas9 depends on a 5'-NNNCC-3' PAM and is more efficient in cleaving negative supercoils than relaxed DNA. Kinetic as well as in vivo activity assays reveal that AceCas9 achieves optimal activity when combined with a guide RNA containing a 24-nucleotide complementarity region. The cytosine-specific, DNA topology-sensitive, and extended guide-dependent properties of AceCas9 may be explored for specific genome editing applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Strand
2006-05-01
This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 219, Septic Systems and Injection Wells, in Areas 3, 16, and 23 of the Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 219 is comprised of the following corrective action sites (CASs): (1) 03-11-01, Steam Pipes and Asbestos Tiles; (2) 16-04-01, Septic Tanks (3); (3) 16-04-02, Distribution Box; (4) 16-04-03, Sewer Pipes; (5) 23-20-01, DNA Motor Pool Sewage and Waste System; and (6) 23-20-02, Injection Well. The purpose of this Corrective Action Decision Document/Closure Report ismore » to provide justification and documentation supporting the recommendation for closure of CAU 219 with no further corrective action beyond the application of a use restriction at CASs 16-04-01, 16-04-02, and 16-04-03. To achieve this, corrective action investigation (CAI) activities were performed from June 20 through October 12, 2005, as set forth in the CAU 219 Corrective Action Investigation Plan and Record of Technical Change No. 1. A best management practice was implemented at CASs 16-04-01, 16-04-02, and 16-04-03, and corrective action was performed at CAS 23-20-01 between January and April 2006. In addition, a use restriction will be applied to CASs 16-04-01, 16-04-02, and 16-04-03 to provide additional protection to Nevada Test Site personnel. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: (1) Determine whether contaminants of concern (COCs) are present. (2) If COCs are present, determine their nature and extent. (3) Provide sufficient information and data to complete appropriate corrective actions. The CAU 219 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels (FALs) established in this document. A Tier 2 evaluation was conducted, and a FAL of 185,000 micrograms per kilogram was calculated for chlordane at CASs 16-04-01, 16-04-02, and 16-04-03 based on an occasional use area exposure scenario. This evaluation of chlordane based on the Tier 2 FAL determined that no FALs were exceeded. Therefore, the DQO data needs were met, and it was determined that no corrective action (based on risk to human receptors) is necessary for the site. The following contaminants were determined to be present at concentrations exceeding their corresponding FALs: (1) The surface soil surrounding the main concrete pad at CAS 23-20-01 contained Aroclor-1254, Aroclor-1260, and chlordane above the FALs. This soil, along with the COCs, was subsequently removed at CAS 23-20-01. (2) The sludge in the concrete box of the catch basin at the large concrete pad at CAS 23-20-01 contained lead and benzo(a)pyrene above the FALs. This contamination was limited to the sludge in the concrete box of the catch basin and did not migrate to the subsurface features beneath it. The contaminated and the concrete box of the catch basin were subsequently recovered at CAS 23-20-01.« less
Han, Sang Eun; Seo, Young Sam; Kim, Daeil; Sung, Soon-Kee; Kim, Woo Taek
2007-08-01
Fruit ripening involves complex biochemical and physiological changes. Ethylene is an essential hormone for the ripening of climacteric fruits. In the process of ethylene biosynthesis, cyanide (HCN), an extremely toxic compound, is produced as a co-product. Thus, most cyanide produced during fruit ripening should be detoxified rapidly by fruit cells. In higher plants, the key enzyme involved in the detoxification of HCN is beta-cyanoalanine synthase (beta-CAS). As little is known about the molecular function of beta-CAS genes in climacteric fruits, we identified two homologous genes, MdCAS1 and MdCAS2, encoding Fuji apple beta-CAS homologs. The structural features of the predicted polypeptides as well as an in vitro enzyme activity assay with bacterially expressed recombinant proteins indicated that MdCAS1 and MdCAS2 may indeed function as beta-CAS isozymes in apple fruits. RNA gel-blot studies revealed that both MdCAS1 and MdCAS2 mRNAs were coordinately induced during the ripening process of apple fruits in an expression pattern comparable with that of ACC oxidase and ethylene production. The MdCAS genes were also activated effectively by exogenous ethylene treatment and mechanical wounding. Thus, it seems like that, in ripening apple fruits, expression of MdCAS1 and MdCAS2 genes is intimately correlated with a climacteric ethylene production and ACC oxidase activity. In addition, beta-CAS enzyme activity was also enhanced as the fruit ripened, although this increase was not as dramatic as the mRNA induction pattern. Overall, these results suggest that MdCAS may play a role in cyanide detoxification in ripening apple fruits.
Interference activity of a minimal Type I CRISPR-Cas system from Shewanella putrefaciens.
Dwarakanath, Srivatsa; Brenzinger, Susanne; Gleditzsch, Daniel; Plagens, André; Klingl, Andreas; Thormann, Kai; Randau, Lennart
2015-10-15
Type I CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR-associated) systems exist in bacterial and archaeal organisms and provide immunity against foreign DNA. The Cas protein content of the DNA interference complexes (termed Cascade) varies between different CRISPR-Cas subtypes. A minimal variant of the Type I-F system was identified in proteobacterial species including Shewanella putrefaciens CN-32. This variant lacks a large subunit (Csy1), Csy2 and Csy3 and contains two unclassified cas genes. The genome of S. putrefaciens CN-32 contains only five Cas proteins (Cas1, Cas3, Cas6f, Cas1821 and Cas1822) and a single CRISPR array with 81 spacers. RNA-Seq analyses revealed the transcription of this array and the maturation of crRNAs (CRISPR RNAs). Interference assays based on plasmid conjugation demonstrated that this CRISPR-Cas system is active in vivo and that activity is dependent on the recognition of the dinucleotide GG PAM (Protospacer Adjacent Motif) sequence and crRNA abundance. The deletion of cas1821 and cas1822 reduced the cellular crRNA pool. Recombinant Cas1821 was shown to form helical filaments bound to RNA molecules, which suggests its role as the Cascade backbone protein. A Cascade complex was isolated which contained multiple Cas1821 copies, Cas1822, Cas6f and mature crRNAs. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Chong, N. M.; Fan, C. H.; Yang, Y. C.
2017-01-01
The molecular biology method of high-throughput pyrosequencing was employed to examine the change of activated sludge community structures during the process in which activated sludge was acclimated to and degraded a target xenobiotic. The sample xenobiotic organic compound used as the activated sludge acclimation target was the herbicide 2,4-dichlorphenoxyacetic acid (2,4-D). Indigenous activated sludge microorganisms were acclimated to 2,4-D as the sole carbon source in both the batch and the continuous-flow reaction modes. Sludge masses at multiple time points during the course of acclimation were subjected to pyrosequencing targeting the microorganisms’ 16S rRNA genes. With the bacterial 16S rRNA sequencing results the genera that increased in abundance were checked with degradative pathway databases or literature to confirm that they are commonly seen as potent degraders of 2,4-D. From this systematic examination of degrader changes at time points during activated sludge acclimation and degradation of the target xenobiotic, the trend of degrader evolution in activated sludge over the sludge’s acclimation process to a xenobiotic was traced.
Tyupa, Dmitry V; Kalenov, Sergei V; Skladnev, Dmitry A; Khokhlachev, Nikolay S; Baurina, Marina M; Kuznetsov, Alexander Ye
2015-01-01
Toxic impact of silver and uranium salts on activated sludge of wastewater treatment facilities has been studied. Some dominating cultures (an active nitrogen fixer Agrobacterium tumifaciens (A.t) and micromyces such as Fusarium nivale, Fusarium oxysporum, and Penicillium glabrum) have been isolated and identified as a result of selection of the activated sludge microorganisms being steadiest under stressful conditions. For these cultures, the lethal doses of silver amounted 1, 600, 50, and 300 µg/l and the lethal doses of uranium were 120, 1,500, 1,000, and 1,000 mg/l, respectively. A.tumifaciens is shown to be more sensitive to heavy metals than micromyces. Synthetic granular activated sludge was formed on the basis of three cultures of the isolated micromyces steadiest against stress. Its granules were much more resistant to silver than the whole native activated sludge was. The concentration of silver causing 50 % inhibition of synthetic granular activated sludge growth reached 160-170 μg/l as far as for the native activated sludge it came only to 100-110 μg/l.
Fan, Haitao; Liu, Xiuhong; Wang, Hao; Han, Yunping; Qi, Lu; Wang, Hongchen
2017-02-01
In activated sludge systems, the aeration process consumes the most energy. The energy cost can be dramatically reduced by decreasing the operating dissolved oxygen (DO) concentration. However, low DO may lead to incomplete nitrification and poor settling performance of activated sludge flocs (ASFs). This study investigates oxygen transfer dynamics and settling performances of activated sludge under different sludge retention times (SRTs) and DO conditions using microelectrodes and microscopic techniques. Our experimental results showed that with longer SRTs, treatment capacity and settling performances of activated sludge improved due to smaller floc size and less extracellular polymeric substances (EPS). Long-term low DO conditions produced larger flocs and more EPS per unit sludge, which produced a more extensive anoxic area and led to low oxygen diffusion performance in flocs. Long SRTs mitigated the adverse effects of low DO. According to the microelectrode analysis and fractal dimension determination, smaller floc size and less EPS in the long SRT system led to high oxygen diffusion property and more compact floc structure that caused a drop in the sludge volume index (SVI). In summary, our results suggested that long SRTs of activated sludge can improve the operating performance under low DO conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M
2015-01-01
The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.
Amanatidou, Elisavet; Samiotis, Georgios; Trikoilidou, Eleni; Pekridis, George; Taousanidis, Nikolaos
2015-02-01
Zero net sludge growth can be achieved by complete retention of solids in activated sludge wastewater treatment, especially in high strength and biodegradable wastewaters. When increasing the solids retention time, MLSS and MLVSS concentrations reach a plateau phase and observed growth yields values tend to zero (Yobs ≈ 0). In this work, in order to evaluate sedimentation problems arised due to high MLSS concentrations and complete sludge retention operational conditions, two identical innovative slaughterhouse wastewater treatment plants were studied. Measurements of wastewaters' quality characteristics, treatment plant's operational conditions, sludge microscopic analysis and state point analysis were conducted. Results have shown that low COD/Nitrogen ratios increase sludge bulking and flotation phenomena due to accidental denitrification in clarifiers. High return activated sludge rate is essential in complete retention systems as it reduces sludge condensation and hydraulic retention time in the clarifiers. Under certain operational conditions sludge loading rates can greatly exceed literature limit values. The presented methodology is a useful tool for estimation of sedimentation problems encountered in activated sludge wastewater treatment plants with complete retention time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cell-type-specific genome editing with a microRNA-responsive CRISPR–Cas9 switch
Hirosawa, Moe; Fujita, Yoshihiko; Parr, Callum J. C.; Hayashi, Karin; Kashida, Shunnichi; Hotta, Akitsu; Woltjen, Knut
2017-01-01
Abstract The CRISPR–Cas9 system is a powerful genome-editing tool useful in a variety of biotechnology and biomedical applications. Here we developed a synthetic RNA-based, microRNA (miRNA)-responsive CRISPR–Cas9 system (miR-Cas9 switch) in which the genome editing activity of Cas9 can be modulated through endogenous miRNA signatures in mammalian cells. We created miR-Cas9 switches by using a miRNA-complementary sequence in the 5΄-UTR of mRNA encoding Streptococcus pyogenes Cas9. The miR-21-Cas9 or miR-302-Cas9 switches selectively and efficiently responded to miR-21-5p in HeLa cells or miR-302a-5p in human induced pluripotent stem cells, and post-transcriptionally attenuated the Cas9 activity only in the target cells. Moreover, the miR-Cas9 switches could differentially control the genome editing by sensing endogenous miRNA activities within a heterogeneous cell population. Our miR-Cas9 switch system provides a promising framework for cell-type selective genome editing and cell engineering based on intracellular miRNA information. PMID:28525578
CRISPRscan: designing highly efficient sgRNAs for CRISPR/Cas9 targeting in vivo
Moreno-Mateos, Miguel A.; Vejnar, Charles E.; Beaudoin, Jean-Denis; Fernandez, Juan P.; Mis, Emily K.; Khokha, Mustafa K.; Giraldez, Antonio J.
2015-01-01
CRISPR/Cas9 technology provides a powerful system for genome engineering. However, variable activity across different single guide RNAs (sgRNAs) remains a significant limitation. We have analyzed the molecular features that influence sgRNA stability, activity and loading into Cas9 in vivo. We observe that guanine enrichment and adenine depletion increase sgRNA stability and activity, while loading, nucleosome positioning and Cas9 off-target binding are not major determinants. We additionally identified truncated and 5′ mismatch-containing sgRNAs as efficient alternatives to canonical sgRNAs. Based on these results, we created a predictive sgRNA-scoring algorithm (CRISPRscan.org) that effectively captures the sequence features affecting Cas9/sgRNA activity in vivo. Finally, we show that targeting Cas9 to the germ line using a Cas9-nanos-3′-UTR fusion can generate maternal-zygotic mutants, increase viability and reduce somatic mutations. Together, these results provide novel insights into the determinants that influence Cas9 activity and a framework to identify highly efficient sgRNAs for genome targeting in vivo. PMID:26322839
Conrad, A; Cadoret, A; Corteel, P; Leroy, P; Block, J-C
2006-01-01
Our study investigated the adsorption/desorption by/from activated sludge flocs, dispersed in river water or in diluted wastewater, of organic compounds (C(11)-LAS, azoalbumin and azocasein) at concentrations relevant to environmental conditions. Activated sludge flocs, used as a model of biological aggregates, are characterized by a very heterogeneous matrix able to sorb the three organic compounds tested at 4 degrees C. The adsorbed amount of C(11)-LAS by activated sludge flocs was higher than that of azocasein or azoalbumin, as shown by the Freundlich parameters (K(ads)=8.6+/-1.7, 1.6+/-0.3 and 0.3+/-0.1 micromol(1-1/n)g(-1)l(1/n) for C(11)-LAS, azocasein and azoalbumin, respectively; n=3 sludges). C(11)-LAS sorption from activated sludge appeared to be partially reversible in river water, while a marked hysteresis phenomenon was observed for azocasein and azoalbumin, implying a low degree of reversibility in their exchange between activated sludge and river water. It has also been displayed that the conductivity variation of bulk water (comprised between 214 and 838 microS cm(-1)) exerted no dramatic effect on the C(11)-LAS desorption from activated sludge flocs, while a little effect of it on azocasein desorption was observed. Thus, biological aggregates as activated sludge flocs can serve as an intermediate carrier for C(11)-LAS, while it represents a sink for proteins.
Utilizing waste activated sludge for animal feeding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beszedits, S.
1981-01-01
Activated sludge has a high protein content and is a good source of B-group vitamins and generally also of minerals (Ca, Mg, Fe and K). Propionibacterium freudenreichii can be readily incorporated into the activated sludge to synthesize vitamin B12, particularly high vitamin yields being obtained with sewage mixed with dairy waste. Numerous examples of successful use of activated sludge in animal feeding are given.
Spacer capture and integration by a type I-F Cas1-Cas2-3 CRISPR adaptation complex.
Fagerlund, Robert D; Wilkinson, Max E; Klykov, Oleg; Barendregt, Arjan; Pearce, F Grant; Kieper, Sebastian N; Maxwell, Howard W R; Capolupo, Angela; Heck, Albert J R; Krause, Kurt L; Bostina, Mihnea; Scheltema, Richard A; Staals, Raymond H J; Fineran, Peter C
2017-06-27
CRISPR-Cas adaptive immune systems capture DNA fragments from invading bacteriophages and plasmids and integrate them as spacers into bacterial CRISPR arrays. In type I-E and II-A CRISPR-Cas systems, this adaptation process is driven by Cas1-Cas2 complexes. Type I-F systems, however, contain a unique fusion of Cas2, with the type I effector helicase and nuclease for invader destruction, Cas3. By using biochemical, structural, and biophysical methods, we present a structural model of the 400-kDa Cas1 4 -Cas2-3 2 complex from Pectobacterium atrosepticum with bound protospacer substrate DNA. Two Cas1 dimers assemble on a Cas2 domain dimeric core, which is flanked by two Cas3 domains forming a groove where the protospacer binds to Cas1-Cas2. We developed a sensitive in vitro assay and demonstrated that Cas1-Cas2-3 catalyzed spacer integration into CRISPR arrays. The integrase domain of Cas1 was necessary, whereas integration was independent of the helicase or nuclease activities of Cas3. Integration required at least partially duplex protospacers with free 3'-OH groups, and leader-proximal integration was stimulated by integration host factor. In a coupled capture and integration assay, Cas1-Cas2-3 processed and integrated protospacers independent of Cas3 activity. These results provide insight into the structure of protospacer-bound type I Cas1-Cas2-3 adaptation complexes and their integration mechanism.
Cas9 gRNA engineering for genome editing, activation and repression
Kiani, Samira; Chavez, Alejandro; Tuttle, Marcelle; ...
2015-09-07
Here we demonstrate that by altering the length of Cas9-associated guide RNA(gRNA) we were able to control Cas9 nuclease activity and simultaneously perform genome editing and transcriptional regulation with a single Cas9 protein. We exploited these principles to engineer mammalian synthetic circuits with combined transcriptional regulation and kill functions governed by a single multifunctional Cas9 protein.
Ekstrand, Eva-Maria; Karlsson, Marielle; Truong, Xu-Bin; Björn, Annika; Karlsson, Anna; Svensson, Bo H; Ejlertsson, Jörgen
2016-10-01
Kraft fibre sludge from the pulp and paper industry constitutes a new, widely available substrate for the biogas production industry, with high methane potential. In this study, anaerobic digestion of kraft fibre sludge was examined by applying continuously stirred tank reactors (CSTR) with sludge recirculation. Two lab-scale reactors (4L) were run for 800days, one on fibre sludge (R1), and the other on fibre sludge and activated sludge (R2). Additions of Mg, K and S stabilized reactor performance. Furthermore, the Ca:Mg ratio was important, and a stable process was achieved at a ratio below 16:1. Foaming was abated by short but frequent mixing. Co-digestion of fibre sludge and activated sludge resulted in more robust conditions, and high-rate operation at stable conditions was achieved at an organic loading rate of 4g volatile solids (VS)L(-1)day(-1), a hydraulic retention time of 4days and a methane production of 230±10NmL per g VS. Copyright © 2016. Published by Elsevier Ltd.
Gravitational sedimentation of flocculated waste activated sludge.
Chu, C P; Lee, D J; Tay, J H
2003-01-01
The sedimentation characteristics of flocculated wastewater sludge have not been satisfactorily explored using the non-destructive techniques, partially owing to the rather low solid content (ca. 1-2%) commonly noted in the biological sediments. This paper investigated, for the first time, the spatial-temporal gravitational settling characteristics of original and polyelectrolyte flocculated waste activated sludge using Computerized Axial Tomography Scanner. The waste activated sludge possessed a distinct settling characteristic from the kaolin slurries. The waste activated sludges settled more slowly and reached a lower solid fraction in the final sediment than the latter. Flocculation markedly enhanced the settleability of both sludges. Although the maximum achievable solid contents for the kaolin slurries were reduced, flocculation had little effects on the activated sludge. The purely plastic rheological model by Buscall and White (J Chem Soc Faraday Trans 1(83) (1987) 873) interpreted the consolidating sediment data, while the purely elastic model by Tiller and Leu (J. Chin. Inst. Chem. Eng. 11 (1980) 61) described the final equilibrated sediment. Flocculation produced lower yield stress during transient settling, thereby resulting in the more easily consolidated sludge than the original sample. Meanwhile, the flocculated activated sludge was stiffer in the final sediment than in the original sample. The data reported herein are valuable to the theories development for clarifier design and operation.
Guide-bound structures of an RNA-targeting A-cleaving CRISPR–Cas13a enzyme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knott, Gavin J.; East-Seletsky, Alexandra; Cofsky, Joshua C.
CRISPR adaptive immune systems protect bacteria from infections by deploying CRISPR RNA (crRNA)-guided enzymes to recognize and cut foreign nucleic acids. Type VI-A CRISPR–Cas systems include the Cas13a enzyme, an RNA-activated RNase capable of crRNA processing and single-stranded RNA degradation upon target-transcript binding. Here we present the 2.0-Å resolution crystal structure of a crRNA-bound Lachnospiraceae bacterium Cas13a (LbaCas13a), representing a recently discovered Cas13a enzyme subtype. This structure and accompanying biochemical experiments define the Cas13a catalytic residues that are directly responsible for crRNA maturation. In addition, the orientation of the foreign-derived target-RNA-specifying sequence in the protein interior explains the conformational gatingmore » of Cas13a nuclease activation. These results describe how Cas13a enzymes generate functional crRNAs and how catalytic activity is blocked before target-RNA recognition, with implications for both bacterial immunity and diagnostic applications.« less
Guide-bound structures of an RNA-targeting A-cleaving CRISPR–Cas13a enzyme
Knott, Gavin J.; East-Seletsky, Alexandra; Cofsky, Joshua C.; ...
2017-09-11
CRISPR adaptive immune systems protect bacteria from infections by deploying CRISPR RNA (crRNA)-guided enzymes to recognize and cut foreign nucleic acids. Type VI-A CRISPR–Cas systems include the Cas13a enzyme, an RNA-activated RNase capable of crRNA processing and single-stranded RNA degradation upon target-transcript binding. Here we present the 2.0-Å resolution crystal structure of a crRNA-bound Lachnospiraceae bacterium Cas13a (LbaCas13a), representing a recently discovered Cas13a enzyme subtype. This structure and accompanying biochemical experiments define the Cas13a catalytic residues that are directly responsible for crRNA maturation. In addition, the orientation of the foreign-derived target-RNA-specifying sequence in the protein interior explains the conformational gatingmore » of Cas13a nuclease activation. These results describe how Cas13a enzymes generate functional crRNAs and how catalytic activity is blocked before target-RNA recognition, with implications for both bacterial immunity and diagnostic applications.« less
NASA Astrophysics Data System (ADS)
Sarif, S. F. Z. Mohd; Alias, S. S.; Ridwan, F. Muhammad; Salim, K. S. Ku; Abidin, C. Z. A.; Ali, U. F. Md.
2018-03-01
Ozonation of activated sludge in the present of titanium dioxide (TiO2) as catalyst to enhance the production of hydroxyl radical was evaluated in comparison to the sole ozonation process. In this process, the catalytic ozontion showed improvement in increasing ozone consumption and improving activated sludge disintegration and solubilisation. The reduction of total suspended solid (TSS), volatile suspended solid (VSS) and soluble chemical oxygen demand (SCOD) solubilisation was better in the catalytic ozonation system. Initial pH 7 of activated sludge was found best to disintegrate and solubilise the sludge flocs. However upon additional of sodium hydroxide (NaOH) in pH adjustment enhanced the solubilisation of organic matter from the flocs and cells, making the initial pH 9 is the best condition for activated sludge solubilisation. Yet the initial pH 7 of activated sludge supernatant was the best condition to achieve SCOD solubilisation due to sludge floc disintegration, when it had stronger correlation between TSS reduction and SCOD solubilisation (R2=0.961). Lower amount of catalyst of 100 mgTiO2/gTSS was found to disintegrate and solubilise the activated sludge better with 30.4% TSS reduction and 25.2% SCOD solubilisation efficiency, compared to 200 mgTiO2/gTSS with 21.9% and 17.1% TSS reduction and SCOD solubilisation, respectively.
Maier, Lisa-Katharina; Stachler, Aris-Edda; Saunders, Sita J.; Backofen, Rolf; Marchfelder, Anita
2015-01-01
The prokaryotic immune system CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) is a defense system that protects prokaryotes against foreign DNA. The short CRISPR RNAs (crRNAs) are central components of this immune system. In CRISPR-Cas systems type I and III, crRNAs are generated by the endonuclease Cas6. We developed a Cas6b-independent crRNA maturation pathway for the Haloferax type I-B system in vivo that expresses a functional crRNA, which we termed independently generated crRNA (icrRNA). The icrRNA is effective in triggering degradation of an invader plasmid carrying the matching protospacer sequence. The Cas6b-independent maturation of the icrRNA allowed mutation of the repeat sequence without interfering with signals important for Cas6b processing. We generated 23 variants of the icrRNA and analyzed them for activity in the interference reaction. icrRNAs with deletions or mutations of the 3′ handle are still active in triggering an interference reaction. The complete 3′ handle could be removed without loss of activity. However, manipulations of the 5′ handle mostly led to loss of interference activity. Furthermore, we could show that in the presence of an icrRNA a strain without Cas6b (Δcas6b) is still active in interference. PMID:25512373
Zeng, Qingling; Li, Yongmei; Yang, Shijia
2013-01-01
Abstract Estrogen in wastewater are responsible for a significant part of the endocrine-disrupting effects observed in the aquatic environment. The effect of sludge retention time (SRT) on the removal and fate of 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) in an anaerobic–anoxic–oxic activated sludge system designed for nutrient removal was investigated by laboratory-scale experiments using synthetic wastewater. With a hydraulic retention time of 8 h, when SRT ranged 10–25 days, E2 was almost completely removed from water, and EE2 removal efficiency was 65%–81%. Both estrogens were easily sorbed onto activated sludge. Distribution coefficients (Kd) of estrogens on anaerobic sludge were greater than those on anoxic and aerobic sludges. Mass balance calculation indicated that 99% of influent E2 was degraded by the activated sludge process, and 1% remained in excess sludge; of influent EE2, 62.0%–80.1% was biodegraded; 18.9%–34.7% was released in effluent; and 0.88%–3.31% remained in excess sludge. Optimal SRT was 20 days for both estrogen and nutrient removal. E2 was almost completely degraded, and EE2 was only partly degraded in the activated sludge process. Residual estrogen on excess sludge must be considered in the sludge treatment and disposal processes. The originality of the work is that removal of nutrients and estrogens were linked, and optimal SRT for both estrogen and nutrient removal in an enhanced biological phosphorus removal system was determined. This has an important implication for the design and operation of full-scale wastewater treatment plants. PMID:23633892
Cell-type-specific genome editing with a microRNA-responsive CRISPR-Cas9 switch.
Hirosawa, Moe; Fujita, Yoshihiko; Parr, Callum J C; Hayashi, Karin; Kashida, Shunnichi; Hotta, Akitsu; Woltjen, Knut; Saito, Hirohide
2017-07-27
The CRISPR-Cas9 system is a powerful genome-editing tool useful in a variety of biotechnology and biomedical applications. Here we developed a synthetic RNA-based, microRNA (miRNA)-responsive CRISPR-Cas9 system (miR-Cas9 switch) in which the genome editing activity of Cas9 can be modulated through endogenous miRNA signatures in mammalian cells. We created miR-Cas9 switches by using a miRNA-complementary sequence in the 5΄-UTR of mRNA encoding Streptococcus pyogenes Cas9. The miR-21-Cas9 or miR-302-Cas9 switches selectively and efficiently responded to miR-21-5p in HeLa cells or miR-302a-5p in human induced pluripotent stem cells, and post-transcriptionally attenuated the Cas9 activity only in the target cells. Moreover, the miR-Cas9 switches could differentially control the genome editing by sensing endogenous miRNA activities within a heterogeneous cell population. Our miR-Cas9 switch system provides a promising framework for cell-type selective genome editing and cell engineering based on intracellular miRNA information. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban
2015-01-15
Sewage sludge disposal onto lands has been stabilized previously but still many pollutants are not efficiently removed. Special interest has been focused on pharmaceutical compounds due to their potential ecotoxicological effects. Nowadays, there is scarce information about their occurrence in different sludge stabilization treatments. In this work, the occurrence of twenty-two pharmaceutically active compounds has been studied in sludge from four sludge stabilization treatments: anaerobic digestion, aerobic digestion, composting and lagooning. The types of sludge evaluated were primary, secondary, anaerobically-digested and dehydrated, composted, mixed, aerobically-digested and dehydrated and lagoon sludge. Nineteen of the twenty-two pharmaceutically active compounds monitored were detected in sewage sludge. The most contaminated samples were primary sludge, secondary sludge and mixed sludge (the average concentrations of studied compounds in these sludges were 179, 310 and 142 μg/kg dm, respectively) while the mean concentrations found in the other types of sewage sludge were 70 μg/kg dm (aerobically-digested sludge), 63 μg/kg dm (lagoon sludge), 12 μg/kg dm (composted sludge) and 8 μg/kg dm (anaerobically-digested sludge). The antibiotics ciprofloxacin and norfloxacin were found at the highest concentration levels in most of the analyzed sludge samples (up to 2660 and 4328 μg/kg dm, respectively). Anaerobic-digestion treatment reduced more considerably the concentration of most of the studied compounds than aerobic-digestion (especially in the case of bezafibrate and fluoroquinolones) and more than anaerobic stabilization ponds (in the case of acetaminophen, atenolol, bezafibrate, carbamazepine, 17α-ethinylestradiol, naproxen and salicylic acid). Ecotoxicological risk assessment, of sludge application onto soils, has also been evaluated. Risk quotients, expressed as the ratio between the predicted environmental concentration and the predicted non-effect concentration, were lower than 1 for all the pharmaceutically active compounds so no significant risks are expected to occur due to the application of sewage sludge onto soils, except for 17α-ethinylestradiol when chronic toxicity was considered. Copyright © 2014 Elsevier B.V. All rights reserved.
An innovative approach to increase biofuel feedstock lipid yields from municipal sewage sludge via manipulation of carbon:nitrogen (C:N) ratio and glucose loading in activated sludge bioreactors was investigated. Sludge lipid and fatty acid methyl ester (biodiesel) yields (% cel...
Tan, Songwen; Cui, Chunzhi; Hou, Yang; Chen, Xuncai; Xu, Aiqin; Li, Weiguo; You, Hong
2017-01-30
A technique is proposed to treat saline hazardous wastewater by using marine activated sludge, cultivated with sea mud as seed. Since the developed marine activated sludge had phenol-tolerant microorganisms (MAS-1, MAS-2 and MAS-3) which originated from the ocean, it was envisaged that these bacteria could survive and breakdown phenol in saline environments. In this work, typical phenol-tolerant microorganisms were isolated from the marine activated sludge and identified. After a hierarchical acclimation process, the marine activated sludge was used to treat the industrial phenolic wastewater with high salinity. The marine activated sludge was able to break down phenol and other organic components effectively and efficiently in treating the wastewater with salinity of 5.7% w/v. The results showed a high removal of phenol (99%), COD (80%) and NH 3 -N (68%). Copyright © 2016 Elsevier Ltd. All rights reserved.
Reduction of excess sludge production using mechanical disintegration devices.
Strünkmann, G W; Müller, J A; Albert, F; Schwedes, J
2006-01-01
The usability of mechanical disintegration techniques for the reduction of excess sludge production in the activated sludge process was investigated. Using three different disintegration devices (ultrasonic homogeniser, stirred media mill, high pressure homogeniser) and different operational parameters of the disintegration, the effect of mechanical disintegration on the excess sludge production and on the effluent quality was studied within a continuously operated, laboratory scale wastewater treatment system with pre-denitrification. Depending on the operational conditions and the disintegration device used, a reduction of excess sludge production of up to 70% was achieved. A combination of mechanical disintegration with a membrane bioreactor process with high sludge age is more energy effective concerning reduction of sludge production than with a conventional activated sludge process at lower sludge ages. Depending on the disintegration parameters, the disintegration has no, or only minor, negative effect on the soluble effluent COD and on the COD-removal capacity of the activated sludge process. Nitrogen-removal was slightly deteriorated by the disintegration, whereas the system used was not optimised for nitrogen removal before disintegration was implemented.
Jabari, Pouria; Yuan, Qiuyan; Oleszkiewicz, Jan A
2017-09-11
The potential of hydrolysis/fermentation of activated sludge in sludge holding tank (SHT) to produce additional carbon for the biological nutrient removal (BNR) process was investigated. The study was conducted in anaerobic batch tests using the BNR sludge (from a full-scale Westside process) and the mixture of BNR sludge with conventional non-BNR activated sludge (to have higher biodegradable particulate chemical oxygen demand (bpCOD) in sludge). The BioWin 4.1 was used to simulate the anaerobic batch test of the BNR sludge. Also, the overall effect of FCOD production and nutrient release on BNR efficiency of the Westside process was estimated. The experimental results showed that the phosphorous uptake of sludge increased during hydrolysis/ fermentation condition up to the point when poly-P was completely utilized; afterwards, it decreased significantly. The BioWin simulation could not predict the loss of aerobic phosphorous uptake after poly-P was depleted. The results showed that in the case of activated sludge with relatively higher bpCOD (originating from plants with short sludge retention time or without primary sedimentation), beneficial effect of SHT on BNR performance is feasible. In order to increase the potential of SHT to enhance BNR efficiency, a relatively low retention time and high sludge load is recommended.
Niu, Tianhao; Zhou, Zhen; Shen, Xuelian; Qiao, Weimin; Jiang, Lu-Man; Pan, Wei; Zhou, Jijun
2016-03-01
A sludge process reduction activated sludge (SPRAS), with a sludge process reduction module composed of a micro-aerobic tank and a settler positioned before conventional activated sludge process, showed good performance of pollutant removal and sludge reduction. Two SPRAS systems were operated to investigate effects of micro-aeration on sludge reduction performance and microbial community structure. When dissolved oxygen (DO) concentration in the micro-aerobic tank decreased from 2.5 (SPH) to 0.5 (SPL) mg/L, the sludge reduction efficiency increased from 42.9% to 68.3%. Compared to SPH, activated sludge in SPL showed higher contents of extracellular polymeric substances and dissolved organic matter. Destabilization of floc structure in the settler, and cell lysis in the sludge process reduction module were two major reasons for sludge reduction. Illumina-MiSeq sequencing showed that microbial diversity decreased under high DO concentration. Proteobacteria, Bacteroidetes and Chloroflexi were the most abundant phyla in the SPRAS. Specific comparisons down to the class and genus level showed that fermentative, predatory and slow-growing bacteria in SPL community were more abundant than in SPH. The results revealed that micro-aeration in the SPRAS improved hydrolysis efficiency and enriched fermentative and predatory bacteria responsible for sludge reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Genome Editing with CRISPR-Cas9: Can It Get Any Better?
Haeussler, Maximilian; Concordet, Jean-Paul
2017-01-01
The CRISPR-Cas revolution is taking place in virtually all fields of life sciences. Harnessing DNA cleavage with the CRISPR-Cas9 system of Streptococcus pyogenes has proven to be extraordinarily simple and efficient, relying only on the design of a synthetic single guide RNA (sgRNA) and its co-expression with Cas9. Here, we review the progress in the design of sgRNA from the original dual RNA guide for S. pyogenes and Staphylococcus aureus Cas9 (SpCas9 and SaCas9). New assays for genome-wide identification of off-targets have provided important insights into the issue of cleavage specificity in vivo. At the same time, the on-target activity of thousands of guides has been determined. These data have led to numerous online tools that facilitate the selection of guide RNAs in target sequences. It appears that for most basic research applications, cleavage activity can be maximized and off-targets minimized by carefully choosing guide RNAs based on computational predictions. Moreover, recent studies of Cas proteins have further improved the flexibility and precision of the CRISPR-Cas toolkit for genome editing. Inspired by the crystal structure of the complex of sgRNA-SpCas9 bound to target DNA, several variants of SpCas9 have recently been engineered, either with novel protospacer adjacent motifs (PAMs) or with drastically reduced off-targets. Novel Cas9 and Cas9-like proteins called Cpf1 have also been characterized from other bacteria and will benefit from the insights obtained from SpCas9. Genome editing with CRISPR-Cas9 may also progress with better understanding and control of cellular DNA repair pathways activated after Cas9-induced DNA cleavage. PMID:27210042
Farasat, Iman; Salis, Howard M.
2016-01-01
The ability to precisely modify genomes and regulate specific genes will greatly accelerate several medical and engineering applications. The CRISPR/Cas9 (Type II) system binds and cuts DNA using guide RNAs, though the variables that control its on-target and off-target activity remain poorly characterized. Here, we develop and parameterize a system-wide biophysical model of Cas9-based genome editing and gene regulation to predict how changing guide RNA sequences, DNA superhelical densities, Cas9 and crRNA expression levels, organisms and growth conditions, and experimental conditions collectively control the dynamics of dCas9-based binding and Cas9-based cleavage at all DNA sites with both canonical and non-canonical PAMs. We combine statistical thermodynamics and kinetics to model Cas9:crRNA complex formation, diffusion, site selection, reversible R-loop formation, and cleavage, using large amounts of structural, biochemical, expression, and next-generation sequencing data to determine kinetic parameters and develop free energy models. Our results identify DNA supercoiling as a novel mechanism controlling Cas9 binding. Using the model, we predict Cas9 off-target binding frequencies across the lambdaphage and human genomes, and explain why Cas9’s off-target activity can be so high. With this improved understanding, we propose several rules for designing experiments for minimizing off-target activity. We also discuss the implications for engineering dCas9-based genetic circuits. PMID:26824432
Maier, Lisa-Katharina; Stachler, Aris-Edda; Saunders, Sita J; Backofen, Rolf; Marchfelder, Anita
2015-02-13
The prokaryotic immune system CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) is a defense system that protects prokaryotes against foreign DNA. The short CRISPR RNAs (crRNAs) are central components of this immune system. In CRISPR-Cas systems type I and III, crRNAs are generated by the endonuclease Cas6. We developed a Cas6b-independent crRNA maturation pathway for the Haloferax type I-B system in vivo that expresses a functional crRNA, which we termed independently generated crRNA (icrRNA). The icrRNA is effective in triggering degradation of an invader plasmid carrying the matching protospacer sequence. The Cas6b-independent maturation of the icrRNA allowed mutation of the repeat sequence without interfering with signals important for Cas6b processing. We generated 23 variants of the icrRNA and analyzed them for activity in the interference reaction. icrRNAs with deletions or mutations of the 3' handle are still active in triggering an interference reaction. The complete 3' handle could be removed without loss of activity. However, manipulations of the 5' handle mostly led to loss of interference activity. Furthermore, we could show that in the presence of an icrRNA a strain without Cas6b (Δcas6b) is still active in interference. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Guide-bound structures of an RNA-targeting A-cleaving CRISPR-Cas13a enzyme
Knott, Gavin J.; East-Seletsky, Alexandra; Cofsky, Joshua C.; Holton, James M.; Charles, Emeric; O’Connell, Mitchell R.; Doudna, Jennifer A.
2018-01-01
CRISPR adaptive immune systems protect bacteria from infections by deploying CRISPR RNA (crRNA)-guided enzymes to recognize and cut foreign nucleic acids. Type VI-A CRISPR-Cas systems include the Cas13a enzyme, an RNA-activated ribonuclease (RNase) capable of crRNA processing and single-stranded RNA degradation upon target transcript binding. Here we present the 2.0 Å resolution crystal structure of a crRNA-bound L. bacterium Cas13a (LbaCas13a), representing a recently discovered Cas13a enzyme subtype. This structure and accompanying biochemical experiments define for the first time the Cas13a catalytic residues that are directly responsible for crRNA maturation. In addition, the orientation of the foreign-derived target RNA-specifying sequence in the protein interior explains the conformational gating of Cas13a nuclease activation. These results describe how Cas13a enzymes generate functional crRNAs and how catalytic activity is blocked prior to target RNA recognition, with implications for both bacterial immunity and diagnostic applications. PMID:28892041
Merlo, Rion P; Trussell, R Shane; Hermanowicz, Slawomir W; Jenkins, David
2007-03-01
The properties of sludges from a pilot-scale submerged membrane bioreactor (SMBR) and two bench-scale complete-mix, activated sludge (CMAS) reactors treating municipal primary effluent were determined. Compared with the CMAS sludges, the SMBR sludge contained a higher amount of soluble microbial products (SMP) and colloidal material attributed to the use of a membrane for solid-liquid separation; a higher amount nocardioform bacteria, resulting from efficient foam trapping; and a lower amount of extracellular polymeric substances (EPS), possibly because there was no selective pressure for the sludge to settle. High aeration rates in both the CMAS and SMBR reactors produced sludges with higher numbers of smaller particles. Normalized capillary suction time values for the SMBR sludge were lower than for the CMAS sludges, possibly because of its lower EPS content.
Biodegradation of Organophosphate Chemical Warfare Agents by Activated Sludge
2012-03-01
Holmstedt, B. (1963). Structure- activity relationships of the organophosphorus anticholinesterase agents. In: Koelle, G.B. (ed.), Handbuch...BIODEGRADATION OF ORGANOPHOSPHATE CHEMICAL WARFARE AGENTS BY ACTIVATED SLUDGE Steven J. Schuldt...AFIT/GES/ENV/12-M04 BIODEGRADATION OF ORGANOPHOSPHATE CHEMICAL WARFARE AGENTS BY ACTIVATED SLUDGE THESIS Presented to the
Deng, Yu; Li, Bing; Yu, Ke; Zhang, Tong
2016-02-15
This study reported significant suppressive matrix effects in analyses of six pharmaceutical and personal care products (PPCPs) in activated sludge, sterilized activated sludge and untreated sewage by ultra-performance liquid chromatography-tandem mass spectrometry. Quantitative matrix evaluation on selected PPCPs supplemented the limited quantification data of matrix effects on mass spectrometric determination of PPCPs in complex environment samples. The observed matrix effects were chemical-specific and matrix-dependent, with the most pronounced average effect (-55%) was found on sulfadiazine in sterilized activated sludge. After correcting the matrix effects by post-spiking known amount of PPCPs, the removal mechanisms and biotransformation kinetics of selected PPCPs in activated sludge system were revealed by batch experiment. Experimental data elucidated that the removal of target PPCPs in the activated sludge process was mainly by biotransformation while contributions of adsorption, hydrolysis and volatilization could be neglected. High biotransformation efficiency (52%) was observed on diclofenac while other three compounds (sulfadiazine, sulfamethoxazole and roxithromycin) were partially biotransformed by ~40%. The other two compounds, trimethoprim and carbamazepine, showed recalcitrant to biotransformation of the activated sludge. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zuo, N.; Ji, F. Y.
2013-02-01
By researching the influence of sludge age (SRT) on phosphorous removal and sludge characteristics in the HA-A/A-MCO (hydrolysis-acidification-anaerobic/anoxic-multistep continuous oxic tank) process, which has the effect of simultaneous phosphorous and nitrogen removal and sludge reduction, it is found that extended SRT is helpful for improving the ability of anaerobic phosphorous release and chemical recovery of phosphate, but the hosphorous removal efficiency is not affected. Extended SRT causes the system to have even more active sludge; it can also lead to the system having a powerful ability of biochemical reaction by using superiority of concentration. Meanwhile, extended SRT can still reduce sludge yield. Extended SRT cannot make soluble metabolic product (SMP) accumulate in the reactor, so that the pollutant removal power is reduced; it also cannot affect the activity of the sludge. However, extended SRT is able to make the coagulation of the sludge hard, and cause the sludge volume index value increase, but cannot cause sludge bulking.
Wyrwicka, Anna; Urbaniak, Magdalena
2016-01-01
The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae) and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot), while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx), catalase (CAT) and guaiacol peroxidase (POx), were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST). Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity.
Wyrwicka, Anna; Urbaniak, Magdalena
2016-01-01
The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae) and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot), while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx), catalase (CAT) and guaiacol peroxidase (POx), were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST). Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity. PMID:27327659
Reyes, Paula; Urtubia, Alejandra; Schiappacasse, María C; Chamy, Rolando; Montalvo, Silvio; Borja, Rafael
2014-01-01
The macromolecular composition of activated sludge (lipids, intracellular proteins and intracellular polysaccharides) was studied together with its capacity to store macromolecules such as polyhydroxybutyrate (PHB) in a conventional activated sludge system fed with synthetic sewage water at an organic load rate of 1.0 kg COD/(m(3)·d), varying the dissolved oxygen (DO) and temperature. Six DO concentrations (0.8, 1.0, 1.5, 2.0, 2.5 and 8 mg/L) were studied at 20°C with a sludge retention time (SRT) of 6 days. In addition, four temperatures (10ºC, 15ºC, 20ºC and 30ºC) were assessed at constant DO (2 mg/L) with 2 days SRT in a second experimental run. The highest lipid content in the activated sludge was 95.6 mg/g VSS, obtained at 30°C, 2 mg/L of DO and a SRT of 2 days. The highest content of intracellular proteins in the activated sludge was 87.8 mg/g VSS, obtained at 20°C, 8 mg/L of DO and a SRT of 6 days. The highest content of intracellular polysaccharides in the activated sludge was 76.6 mg/g VSS, which was achieved at 20°C, a SRT of 6 days and a wide range of DO. The activated sludge PHB storage was very low for all the conditions studied.
Improvement of sedimentation and dewatering of municipal sludge by radiation
NASA Astrophysics Data System (ADS)
Sawai, Teruko; Yamazaki, Masao; Shimokawa, Toshinari; Sekiguchi, Masayuki; Sawai, Takeshi
As the promotion of sewerage system, the volume of municipal sludge in Tokyo has increased rapidly. Due to recent changes in the properties of the sludge, moreover, it has become difficult to thicken the liquid sewage sludge by sedimentation and to dewater the thickening sludge mechanically. The development of a new effective method for sludge treatment is necessary. Therefore, a study on the improvement of sedimentation and dewatering of sewage sludge by irradiation with 60Co gamma rays and electron beams was undertaken. Sedimentation tests and various dewatering tests were carried out for the waste activated sludge and anaerobically digested sludge. From the changes in the settling rate, capillary suction time, water content of the sludge cake, and the quality of separated water by irradiation, the optimum irradiation conditions for improving the sedimentation and dewatering of 2 types sludge were determined. The necessary dose for improving the sedimentation and dewatering was observed to be 1-3 kGy for the activated sludge and 5-10 kGy for the digested sludge. To confirm the cause of those changes by irradiation, the zeta potential and viscosity of the sludge were measured.
The role of EPS concentration in MBR foaming: analysis of a submerged pilot plant.
Di Bella, Gaetano; Torregrossa, Michele; Viviani, Gaspare
2011-01-01
Foaming in Membrane BioReactor (MBR) is a frequently discussed topic. Some authors reported that the phenomenon is due to filamentous organisms, like at Conventional Activated Sludge (CAS) plants. However, in recent years, other authors reported that the Extra-cellular Polymer Substances (EPSs) concentration is an important factor for controlling foam as well. Nevertheless, even if a number of MBR plants are affected by foaming, presently there are no suitable methods to evaluate the phenomenon. To facilitate the study of this controversial phenomenon in an MBR system, certain foam tests proposed in the past for CASPs were investigated. The results of the tests were able to adequately measure quantity, stability and quality of the foam. In particular, the Scum Index increased proportionally with the EPS concentration and mixed liquor viscosity; Foam Power was mainly correlated with the protein concentration of in the EPS; Foam Rating was also correlated with the EPS concentration. Copyright © 2010 Elsevier Ltd. All rights reserved.
Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization.
Tiehm, A; Nickel, K; Zellhorn, M; Neis, U
2001-06-01
The pretreatment of waste activated sludge by ultrasonic disintegration was studied in order to improve the anaerobic sludge stabilization. The ultrasound frequency was varied within a range from 41 to 3217 kHz. The impact of different ultrasound intensities and treatment times was examined. Sludge disintegration was most significant at low frequencies. Low-frequency ultrasound creates large cavitation bubbles which upon collapse initiate powerful jet streams exerting strong shear forces in the liquid. The decreasing sludge disintegration efficiency observed at higher frequencies was attributed to smaller cavitation bubbles which do not allow the initiation of such strong shear forces. Short sonication times resulted in sludge floc deagglomeration without the destruction of bacteria cells. Longer sonication brought about the break-up of cell walls, the sludge solids were distintegrated and dissolved organic compounds were released. The anaerobic digestion of waste activated sludge following ultrasonic pretreatment causing microbial cell lysis was significantly improved. There was an increase in the volatile solids degradation as well as an increase in the biogas production. The increase in digestion efficiency was proportional to the degree of sludge disintegration. To a lesser degree the deagglomeration of sludge flocs also augmented the anaerobic volatile solids degradation.
Bitton, Gabriel; Koopman, Ben
1982-01-01
A method was developed to assess the activity of filamentous bacteria in activated sludge. It involves the incubation of activated sludge with 2(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride followed by staining with malachite green. Both cells and 2(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride-formazan crystals can be observed in prepared specimens by using bright-field microscopy. This procedure allowed us to distinguish between inactive and actively metabolizing filaments after chlorine application to control the bulking of activated sludge. Images PMID:16345999
Human Enteropathogen Load in Activated Sewage Sludge and Corresponding Sewage Sludge End Products▿
Graczyk, Thaddeus K.; Lucy, Frances E.; Tamang, Leena; Miraflor, Allen
2007-01-01
This study demonstrated a significant reduction in the concentrations of Cryptosporidium parvum and Cryptosporidium hominis oocysts, Giardia lamblia cysts, and spores of human-virulent microsporidia in dewatered and biologically stabilized sewage sludge cake end products compared to those of the respective pathogens in the corresponding samples collected during the sludge activation process. PMID:17277215
40 CFR Appendix G to Part 403 - Pollutants Eligible for a Removal Credit
Code of Federal Regulations, 2012 CFR
2012-07-01
... and leachate collection system. I—firing of sewage sludge in a sewage sludge incinerator. 1 The... Trichloroethylene 3 10 9500 3 10 Zinc 4500 4500 4500 1 Active sewage sludge unit without a liner and leachate collection system. 2 Active sewage sludge unit with a liner and leachate collection system. 3 Value expressed...
40 CFR Appendix G to Part 403 - Pollutants Eligible for a Removal Credit
Code of Federal Regulations, 2011 CFR
2011-07-01
... and leachate collection system. I—firing of sewage sludge in a sewage sludge incinerator. 1 The... Trichloroethylene 3 10 9500 3 10 Zinc 4500 4500 4500 1 Active sewage sludge unit without a liner and leachate collection system. 2 Active sewage sludge unit with a liner and leachate collection system. 3 Value expressed...
40 CFR Appendix G to Part 403 - Pollutants Eligible for a Removal Credit
Code of Federal Regulations, 2014 CFR
2014-07-01
... and leachate collection system. I—firing of sewage sludge in a sewage sludge incinerator. 1 The... Trichloroethylene 3 10 9500 3 10 Zinc 4500 4500 4500 1 Active sewage sludge unit without a liner and leachate collection system. 2 Active sewage sludge unit with a liner and leachate collection system. 3 Value expressed...
Nguyen, Minh Tuan; Mohd Yasin, Nazlina Haiza; Miyazaki, Toshiki; Maeda, Toshinari
2014-12-01
The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 μmol g(-1) dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sakai, K; Miyake, S; Iwama, K; Inoue, D; Soda, S; Ike, M
2015-01-01
To clarify the polyhydroxyalkanoate (PHA) accumulation potential and the PHA-accumulating microbial community structure in activated sludge in municipal wastewater treatment plants (WWTPs) and to identify their influential factors. Nine activated sludge samples were collected from municipal WWTPs employing various biological treatment processes. In acetate-fed 24-h batch experiments under aerobic and nitrogen- and phosphorus-limited conditions, polyhydroxybutyrate (PHB) content of activated sludge increased from 0-1·3 wt% to 7·9-24 wt%, with PHB yields of 0·22-0·50 C-mol 3-hydroxybutyrate (C-mol acetate)(-1). Microbial community analyses found that activated sludge samples that accumulated >20 wt% of PHB after 24-h PHA accumulation experiments had >5·0 × 10(8) copies g(-1)-mixed liquor-suspended solid of phaC genes. Results indicated that (i) activated sludge in municipal WWTPs can accumulate up to approx. 20 wt% of PHA without enrichment processes, (ii) PHA accumulation potential of activated sludge varied depending on the operational conditions (treatment processes) of WWTPs, and (iii) phaC gene number can provide a simple indication of PHA accumulation potential. This is the first study to compare the PHA accumulation potential and PHA-accumulating microbial communities in activated sludge of various treatment processes. Our findings may be useful for enhancing the resource recovery potential of wastewater treatment systems. © 2014 The Society for Applied Microbiology.
Effect of gamma-ray irradiation on the dewaterability of waste activated sludge
NASA Astrophysics Data System (ADS)
Wu, Yuqi; Jiang, Yinghe; Ke, Guojun; Liu, Yingjiu
2017-01-01
The effect of gamma-ray irradiation on waste activated sludge (WAS) dewaterability was investigated with irradiation doses of 0-15 kGy. Time to filter (TTF50), specific resistance of filtration (SRF) and water content of sludge cake were measured to evaluate sludge dewaterability. Soluble chemical oxygen demand (SCOD), soluble extracellular polymeric substances (EPS) concentration and sludge particle size were determined to explain changes in sludge dewaterability. The optimal irradiation dose to obtain the maximum dewaterability characteristics was 1-4 kGy, which generated sludge with optimal disintegration (1.5-4.0%), soluble EPS concentration (590-750 mg/L) and particle size distribution (100-115 μm diameter). The combination of irradiation and cationic polyacrylamide (CPAM) addition exhibited minimal synergistic effect on increasing sludge dewatering rate compared with CPAM conditioning alone.
Magnusson, Björn; Ekstrand, Eva-Maria; Karlsson, Anna; Ejlertsson, Jörgen
2018-05-01
The activated sludge process within the pulp and paper industry is generally run to minimize the production of waste activated sludge (WAS), leading to high electricity costs from aeration and relatively large basin volumes. In this study, a pilot-scale activated sludge process was run to evaluate the concept of treating the wastewater at high rate with a low sludge age. Two 150 L containers were used, one for aeration and one for sedimentation and sludge return. The hydraulic retention time was decreased from 24 hours to 7 hours, and the sludge age was lowered from 12 days to 2-4 days. The methane potential of the WAS was evaluated using batch tests, as well as continuous anaerobic digestion (AD) in 4 L reactors in mesophilic and thermophilic conditions. Wastewater treatment capacity was increased almost four-fold at maintained degradation efficiency. The lower sludge age greatly improved the methane potential of the WAS in batch tests, reaching 170 NmL CH 4 /g VS at a sludge age of 2 days. In addition, the continuous AD showed a higher methane production at thermophilic conditions. Thus, the combination of high-rate wastewater treatment and AD of WAS is a promising option for the pulp and paper industry.
Versatile High-Throughput Fluorescence Assay for Monitoring Cas9 Activity.
Seamon, Kyle J; Light, Yooli K; Saada, Edwin A; Schoeniger, Joseph S; Harmon, Brooke
2018-06-05
The RNA-guided DNA nuclease Cas9 is now widely used for the targeted modification of genomes of human cells and various organisms. Despite the extensive use of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) systems for genome engineering and the rapid discovery and engineering of new CRISPR-associated nucleases, there are no high-throughput assays for measuring enzymatic activity. The current laboratory and future therapeutic uses of CRISPR technology have a significant risk of accidental exposure or clinical off-target effects, underscoring the need for therapeutically effective inhibitors of Cas9. Here, we develop a fluorescence assay for monitoring Cas9 nuclease activity and demonstrate its utility with S. pyogenes (Spy), S. aureus (Sau), and C. jejuni (Cje) Cas9. The assay was validated by quantitatively profiling the species specificity of published anti-CRISPR (Acr) proteins, confirming the reported inhibition of Spy Cas9 by AcrIIA4 and Cje Cas9 by AcrIIC1 and no inhibition of Sau Cas9 by either anti-CRISPR. To identify drug-like inhibitors, we performed a screen of 189 606 small molecules for inhibition of Spy Cas9. Of 437 hits (0.2% hit rate), six were confirmed as Cas9 inhibitors in a direct gel electrophoresis secondary assay. The high-throughput nature of this assay makes it broadly applicable for the discovery of additional Cas9 inhibitors or the characterization of Cas9 enzyme variants.
Versatile High-Throughput Fluorescence Assay for Monitoring Cas9 Activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seamon, Kyle Jeffrey; Light, Yooli Kim; Saada, Edwin A.
Here, the RNA-guided DNA nuclease Cas9 is now widely used for the targeted modification of genomes of human cells and various organisms. Despite the extensive use of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) systems for genome engineering and the rapid discovery and engineering of new CRISPR-associated nucleases, there are no high-throughput assays for measuring enzymatic activity. The current laboratory and future therapeutic uses of CRISPR technology have a significant risk of accidental exposure or clinical off-target effects, underscoring the need for therapeutically effective inhibitors of Cas9. Here, we develop a fluorescence assay for monitoring Cas9 nuclease activity and demonstrate itsmore » utility with S. pyogenes (Spy), S. aureus (Sau), and C. jejuni (Cje) Cas9. The assay was validated by quantitatively profiling the species specificity of published anti-CRISPR (Acr) proteins, confirming the reported inhibition of Spy Cas9 by AcrIIA4 and Cje Cas9 by AcrIIC1 and no inhibition of Sau Cas9 by either anti-CRISPR. To identify drug-like inhibitors, we performed a screen of 189 606 small molecules for inhibition of Spy Cas9. Of 437 hits (0.2% hit rate), six were confirmed as Cas9 inhibitors in a direct gel electrophoresis secondary assay. The high-throughput nature of this assay makes it broadly applicable for the discovery of additional Cas9 inhibitors or the characterization of Cas9 enzyme variants.« less
Versatile High-Throughput Fluorescence Assay for Monitoring Cas9 Activity
Seamon, Kyle Jeffrey; Light, Yooli Kim; Saada, Edwin A.; ...
2018-05-14
Here, the RNA-guided DNA nuclease Cas9 is now widely used for the targeted modification of genomes of human cells and various organisms. Despite the extensive use of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) systems for genome engineering and the rapid discovery and engineering of new CRISPR-associated nucleases, there are no high-throughput assays for measuring enzymatic activity. The current laboratory and future therapeutic uses of CRISPR technology have a significant risk of accidental exposure or clinical off-target effects, underscoring the need for therapeutically effective inhibitors of Cas9. Here, we develop a fluorescence assay for monitoring Cas9 nuclease activity and demonstrate itsmore » utility with S. pyogenes (Spy), S. aureus (Sau), and C. jejuni (Cje) Cas9. The assay was validated by quantitatively profiling the species specificity of published anti-CRISPR (Acr) proteins, confirming the reported inhibition of Spy Cas9 by AcrIIA4 and Cje Cas9 by AcrIIC1 and no inhibition of Sau Cas9 by either anti-CRISPR. To identify drug-like inhibitors, we performed a screen of 189 606 small molecules for inhibition of Spy Cas9. Of 437 hits (0.2% hit rate), six were confirmed as Cas9 inhibitors in a direct gel electrophoresis secondary assay. The high-throughput nature of this assay makes it broadly applicable for the discovery of additional Cas9 inhibitors or the characterization of Cas9 enzyme variants.« less
USDA-ARS?s Scientific Manuscript database
The Cas9 endonuclease of the Type II-a clustered regularly interspersed short palindromic repeats (CRISPR), of Streptococcus pyogenes (SpCas9) has been adapted as a widely used tool for genome editing and genome engineering. Herein, we describe a gene encoding a novel Cas9 ortholog (BpsuCas9) and th...
Development of an ATP measurement method suitable for xenobiotic treatment activated sludge biomass.
Nguyen, Lan Huong; Chong, Nyuk-Min
2015-09-01
Activated sludge consumes a large amount of energy to degrade a xenobiotic organic compound. By tracking the energy inventory of activated sludge biomass during the sludge's degradation of a xenobiotic, any disadvantageous effect on the sludge's performance caused by energy deficiency can be observed. The purpose of this study was to develop a reliable and accurate method for measuring the ATP contents of activated sludge cells that were to degrade a xenobiotic organic. Cell disruption and cellular ATP extraction were performed by a protocol with which xenobiotic degrading activated sludge biomass was washed with SDS, treated by Tris and TCA, and followed by bead blasting. The suspension of disrupted cells was filtered before the filtrate was injected into HPLC that was set at optimal conditions to measure the ATP concentration therein. This extraction protocol and HPLC measurement of ATP was evaluated for its linearity, limits of detection, and reproducibility. Evaluation test results reported a R(2) of 0.999 of linear fit of ATP concentration versus activated sludge concentration, a LOD=0.00045mg/L, a LOQ=0.0015mg/L for HPLC measurement of ATP, a MDL=0.46mg/g SS for ATP extraction protocol, and a recovery efficiency of 96.4±2%. This method of ATP measurement was simple, rapid, reliable, and was unburdened of some limitations other methods may have. Copyright © 2015 Elsevier B.V. All rights reserved.
Fu, Qiang; Li, Shiyu; Wang, Zhaofei; Shan, Wenya; Ma, Jingjiao; Cheng, Yuqiang; Wang, Hengan; Yan, Yaxian; Sun, Jianhe
2017-01-01
Shiga toxin-converting bacteriophages (Stx phages) carry the stx gene and convert nonpathogenic bacterial strains into Shiga toxin-producing bacteria. There is limited understanding of the effect that an Escherichia coli ( E. coli ) clustered regularly interspaced short palindromic repeats (CRISPR)-Cas adaptive immune system has on Stx phage lysogen. We investigated heat-stable nucleoid-structuring (H-NS) mutation-mediated CRISPR-Cas activation and its effect on E. coli Stx2 phage lysogen. The Δ hns mutant (MG1655Δ hns ) of the E. coli K-12 strain MG1655 was obtained. The Δ hns mutant lysogen that was generated after Stx phage lysogenic infection had a repressed growth status and showed subdued group behavior, including biofilm formation and swarming motility, in comparison to the wild-type strain. The de-repression effect of the H-NS mutation on CRISPR-Cas activity was then verified. The results showed that cas gene expression was upregulated and the transformation efficiency of the wild-type CRISPR plasmids was decreased, which may indicate activation of the CRISPR-Cas system. Furthermore, the function of CRISPR-Cas on Stx2 phage lysogen was investigated by activating the CRISPR-Cas system, which contains an insertion of the protospacer regions of the Stx2 phage Min27. The phage release and toxin production of four lysogens harboring the engineered CRISPRs were investigated. Notably, in the supernatant of the Δ hns mutant lysogen harboring the Min27 spacer, both the progeny phage release and the toxin production were inhibited after mitomycin C induction. These observations demonstrate that the H-NS mutation-activated CRISPR-Cas system plays a role in modifying the effects of the Stx2 phage lysogen. Our findings indicated that H-NS mutation-mediated CRISPR-Cas activation in E. coli protects bacteria against Stx2 phage lysogeny by inhibiting the phage release and toxin production of the lysogen.
Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals.
Falås, P; Baillon-Dhumez, A; Andersen, H R; Ledin, A; la Cour Jansen, J
2012-03-15
Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct difference between nitrifying activated sludge and suspended biofilm carrier removal of several pharmaceuticals was demonstrated. Biofilm carriers from full-scale nitrifying wastewater treatment plants, demonstrated considerably higher removal rates per unit biomass (i.e. suspended solids for the sludges and attached solids for the carriers) of diclofenac, ketoprofen, gemfibrozil, clofibric acid and mefenamic acid compared to the sludges. Among the target pharmaceuticals, only ibuprofen and naproxen showed similar removal rates per unit biomass for the sludges and biofilm carriers. In contrast to the pharmaceutical removal, the nitrification capacity per unit biomass was lower for the carriers than the sludges, which suggests that neither the nitrite nor the ammonia oxidizing bacteria are primarily responsible for the observed differences in pharmaceutical removal. The low ability of ammonia oxidizing bacteria to degrade or transform the target pharmaceuticals was further demonstrated by the limited pharmaceutical removal in an experiment with continuous nitritation and biofilm carriers from a partial nitritation/anammox sludge liquor treatment process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Full scale implementation of the nutrient limited BAS process at Södra Cell Värö.
Malmqvist, A; Berggren, B; Sjölin, C; Welander, T; Heuts, L; Fransén, A; Ling, D
2004-01-01
A combination of the suspended carrier biofilm process and the activated sludge process (biofilm-activated sludge--BAS) has been shown to be very successful for the treatment of different types of pulp and paper mill effluents. The robust biofilm pre-treatment in combination with activated sludge results in a stable, compact and highly efficient process. Recent findings have shown that nutrient limited operation of the biofilm process greatly improves the sludge characteristics in the following activated sludge stage, while minimising sludge production and effluent discharge of nutrients. The nutrient limited BAS process was implemented at full scale at the Södra Cell Värö kraft mill and taken into operation in July 2002. After start-up and optimisation over about 5 months, the process meets all effluent discharge limits. The removal of COD is close to 70% and the removal of EDTA greater than 90%. Typical effluent concentrations of suspended solids and nutrients during stable operations have been 20-30 mg/L TSS, 0.3-0.5 mg/L phosphorus and 3-5 mg/L nitrogen. The sludge production was 0.09 kgSS/kg COD removed and the sludge volume index was 50-100 mL/g.
Genome Editing with CRISPR-Cas9: Can It Get Any Better?
Haeussler, Maximilian; Concordet, Jean-Paul
2016-05-20
The CRISPR-Cas revolution is taking place in virtually all fields of life sciences. Harnessing DNA cleavage with the CRISPR-Cas9 system of Streptococcus pyogenes has proven to be extraordinarily simple and efficient, relying only on the design of a synthetic single guide RNA (sgRNA) and its co-expression with Cas9. Here, we review the progress in the design of sgRNA from the original dual RNA guide for S. pyogenes and Staphylococcus aureus Cas9 (SpCas9 and SaCas9). New assays for genome-wide identification of off-targets have provided important insights into the issue of cleavage specificity in vivo. At the same time, the on-target activity of thousands of guides has been determined. These data have led to numerous online tools that facilitate the selection of guide RNAs in target sequences. It appears that for most basic research applications, cleavage activity can be maximized and off-targets minimized by carefully choosing guide RNAs based on computational predictions. Moreover, recent studies of Cas proteins have further improved the flexibility and precision of the CRISPR-Cas toolkit for genome editing. Inspired by the crystal structure of the complex of sgRNA-SpCas9 bound to target DNA, several variants of SpCas9 have recently been engineered, either with novel protospacer adjacent motifs (PAMs) or with drastically reduced off-targets. Novel Cas9 and Cas9-like proteins called Cpf1 have also been characterized from other bacteria and will benefit from the insights obtained from SpCas9. Genome editing with CRISPR-Cas9 may also progress with better understanding and control of cellular DNA repair pathways activated after Cas9-induced DNA cleavage. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
Lee, Ciaran M; Davis, Timothy H; Bao, Gang
2018-04-01
What is the topic of this review? In this review, we analyse the performance of recently described tools for CRISPR/Cas9 guide RNA design, in particular, design tools that predict CRISPR/Cas9 activity. What advances does it highlight? Recently, many tools designed to predict CRISPR/Cas9 activity have been reported. However, the majority of these tools lack experimental validation. Our analyses indicate that these tools have poor predictive power. Our preliminary results suggest that target site accessibility should be considered in order to develop better guide RNA design tools with improved predictive power. The recent adaptation of the clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system for targeted genome engineering has led to its widespread application in many fields worldwide. In order to gain a better understanding of the design rules of CRISPR/Cas9 systems, several groups have carried out large library-based screens leading to some insight into sequence preferences among highly active target sites. To facilitate CRISPR/Cas9 design, these studies have spawned a plethora of guide RNA (gRNA) design tools with algorithms based solely on direct or indirect sequence features. Here, we demonstrate that the predictive power of these tools is poor, suggesting that sequence features alone cannot accurately inform the cutting efficiency of a particular CRISPR/Cas9 gRNA design. Furthermore, we demonstrate that DNA target site accessibility influences the activity of CRISPR/Cas9. With further optimization, we hypothesize that it will be possible to increase the predictive power of gRNA design tools by including both sequence and target site accessibility metrics. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Lakshminarasimman, Narasimman; Quiñones, Oscar; Vanderford, Brett J; Campo-Moreno, Pablo; Dickenson, Eric V; McAvoy, Drew C
2018-05-28
This study determined biotransformation rates (k bio ) and sorption-distribution coefficients (K d ) for a select group of trace organic compounds (TOrCs) in anaerobic, anoxic, and aerobic activated sludge collected from two different biological nutrient removal (BNR) treatment systems located in Nevada (NV) and Ohio (OH) in the United States (US). The NV and OH facilities operated at solids retention times (SRTs) of 8 and 23 days, respectively. Using microwave-assisted extraction, the biotransformation rates of the chosen TOrCs were measured in the total mixed liquor. Sulfamethoxazole, trimethoprim, and atenolol biotransformed in all three redox regimes irrespective of the activated sludge source. The biotransformation of N, N-diethyl-3-methylbenzamide (DEET), triclosan, and benzotriazole was observed in aerobic activated sludge from both treatment plants; however, anoxic biotransformation of these three compounds was seen only in anoxic activated sludge from NV. Carbamazepine was recalcitrant in all three redox regimes and both sources of activated sludge. Atenolol and DEET had greater biotransformation rates in activated sludge with a higher SRT (23 days), while trimethoprim had a higher biotransformation rate in activated sludge with a lower SRT (8 days). The remaining compounds did not show any dependence on SRT. Lyophilized, heat inactivated sludge solids were used to determine the sorption-distribution coefficients. Triclosan was the most sorptive compound followed by carbamazepine, sulfamethoxazole, DEET, and benzotriazole. The sorption-distribution coefficients were similar across redox conditions and sludge sources. The biotransformation rates and sorption-distribution coefficients determined in this study can be used to improve fate prediction of the target TOrCs in BNR treatment systems. Copyright © 2018. Published by Elsevier B.V.
Reducing capacities and redox potentials of humic substances extracted from sewage sludge.
Yang, Zhen; Du, Mengchan; Jiang, Jie
2016-02-01
Humic substances (HS) are redox active organic materials that can be extracted from sewage sludge generated in wastewater treatment processes. Due to the poor understanding of reducing capacity, redox potentials and redox active functional groups of HS in sewage sludge, the potential contribution of sludge HS in transformation of wastewater contaminants is unclear. In the present study, the number of electrons donated or accepted by sewage sludge HS were quantified before and after reduction by iron compounds that possess different redox potentials and defined as the reducing capacity of the sewage sludge. In contrast to previous studies of soil and commercial humic acids (HA), reduced sludge HA showed a lower reducing capacity than that of native HA, which implies formation of semiquinone radicals since the semiquinone radical/hydroquinone pair has a much higher redox potential than the quinone/hydroquinone pair. It is novel that reducing capacities of sludge HA were determined in the redox potential range from -314 to 430 mV. The formation of semiquinone radicals formed during the reduction of quinone moieties in sludge HA is shown by three-dimensional excitation/emission matrix fluorescence spectroscopies information, increasing fluorescence intensities and blue-shifting of the excitation/emission peak of reduced sludge HA. Knowledge of sludge HS redox potentials and corresponding reducing capacities makes it possible to predict the transformation of redox active pollutants and facilitate manipulation and optimization of sludge loading wastewater treatment processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy.
Shibata, Mikihiro; Nishimasu, Hiroshi; Kodera, Noriyuki; Hirano, Seiichi; Ando, Toshio; Uchihashi, Takayuki; Nureki, Osamu
2017-11-10
The CRISPR-associated endonuclease Cas9 binds to a guide RNA and cleaves double-stranded DNA with a sequence complementary to the RNA guide. The Cas9-RNA system has been harnessed for numerous applications, such as genome editing. Here we use high-speed atomic force microscopy (HS-AFM) to visualize the real-space and real-time dynamics of CRISPR-Cas9 in action. HS-AFM movies indicate that, whereas apo-Cas9 adopts unexpected flexible conformations, Cas9-RNA forms a stable bilobed structure and interrogates target sites on the DNA by three-dimensional diffusion. These movies also provide real-time visualization of the Cas9-mediated DNA cleavage process. Notably, the Cas9 HNH nuclease domain fluctuates upon DNA binding, and subsequently adopts an active conformation, where the HNH active site is docked at the cleavage site in the target DNA. Collectively, our HS-AFM data extend our understanding of the action mechanism of CRISPR-Cas9.
Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos
Tu, Zhuchi; Yang, Weili; Yan, Sen; Yin, An; Gao, Jinquan; Liu, Xudong; Zheng, Yinghui; Zheng, Jiezhao; Li, Zhujun; Yang, Su; Li, Shihua; Guo, Xiangyu; Li, Xiao-Jiang
2017-01-01
CRISPR-Cas9 is a powerful new tool for genome editing, but this technique creates mosaic mutations that affect the efficiency and precision of its ability to edit the genome. Reducing mosaic mutations is particularly important for gene therapy and precision genome editing. Although the mechanisms underlying the CRSIPR/Cas9-mediated mosaic mutations remain elusive, the prolonged expression and activity of Cas9 in embryos could contribute to mosaicism in DNA mutations. Here we report that tagging Cas9 with ubiquitin-proteasomal degradation signals can facilitate the degradation of Cas9 in non-human primate embryos. Using embryo-splitting approach, we found that shortening the half-life of Cas9 in fertilized zygotes reduces mosaic mutations and increases its ability to modify genomes in non-human primate embryos. Also, injection of modified Cas9 in one-cell embryos leads to live monkeys with the targeted gene modifications. Our findings suggest that modifying Cas9 activity can be an effective strategy to enhance precision genome editing. PMID:28155910
Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beloglazova, Natalia; Petit, Pierre; Flick, Robert
Clustered regularly interspaced short palindromic repeats (CRISPRs) and Cas proteins represent an adaptive microbial immunity system against viruses and plasmids. Cas3 proteins have been proposed to play a key role in the CRISPR mechanism through the direct cleavage of invasive DNA. Here, we show that the Cas3 HD domain protein MJ0384 from Methanocaldococcus jannaschii cleaves endonucleolytically and exonucleolytically (3'-5') single-stranded DNAs and RNAs, as well as 3'-flaps, splayed arms, and R-loops. The degradation of branched DNA substrates by MJ0384 is stimulated by the Cas3 helicase MJ0383 and ATP. The crystal structure of MJ0384 revealed the active site with two boundmore » metal cations and together with site-directed mutagenesis suggested a catalytic mechanism. Our studies suggest that the Cas3 HD nucleases working together with the Cas3 helicases can completely degrade invasive DNAs through the combination of endo- and exonuclease activities.« less
[Research on the treatment of wastewater containing PVA by ozonation-activated sludge process].
Xing, Xiao-Qiong; Huang, Cheng-Lan; Liu, Min; Chen, Ying
2012-11-01
The wastewater containing polyvinyl alcohol (PVA) was characterized with poor biodegradability, and was difficult to remove. In order to find an economically reasonable and practical technology, the research on the removal efficiency of different concentration wastewater containing PVA by ozonation-activated sludge process was studied, and the result was compared with the traditional activated sludge process. The results showed that the ozonation-activated sludge process was not suitable for treating influent with COD below 500 mg x L(-1) and the wastewater PVA concentration was 10-30 mg x L(-1). When the influent COD was between 500-800 mg x L(-1) and the PVA concentration was 15-60 mg x L(-1), the system had advantages on dealing with this kind of wastewater, and the average removal efficiency of COD and PVA were 92.8% and 57.4%, which were better than the traditional activated sludge process 4.1% and 15.2% respectively. In addition, the effluent concentrations of COD could keep between 30-60 mg x L(-1). When the influent COD was 1 000-1 200 mg x L(-1) and the PVA concentration was 20-70 mg x L(-1), the average removal efficiencies of COD and PVA were 90.9% and 45.3%, which were better than the traditional activated sludge process 12.8% and 12.1% respectively, but the effluent should to be further treated. Compared with the traditional activated sludge process, ozonation-activated sludge process had high treatment efficiency, stable running effect, and effectively in dealing with industrial wastewater containing PVA.
Lei, Li; Ni, Jinren
2014-04-15
A three-dimensional three-phase fluid model, supplemented by laboratory data, was developed to simulate the hydrodynamics, oxygen mass transfer, carbon oxidation, nitrification and denitrification processes in an oxidation ditch. The model provided detailed phase information on the liquid flow field, gas hold-up distribution and sludge sedimentation. The three-phase model described water-gas, water-sludge and gas-sludge interactions. Activated sludge was taken to be in a pseudo-solid phase, comprising an initially separated solid phase that was transported and later underwent biological reactions with the surrounding liquidmedia. Floc parameters were modified to improve the sludge viscosity, sludge density, oxygen mass transfer rate, and carbon substrate uptake due to adsorption onto the activated sludge. The validation test results were in very satisfactory agreement with laboratory data on the behavior of activated sludge in an oxidation ditch. By coupling species transport and biological process models, reasonable predictions are made of: (1) the biochemical kinetics of dissolved oxygen, chemical oxygen demand (COD) and nitrogen variation, and (2) the physical kinematics of sludge sedimentation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Seka, A M; Van De Wiele, T; Verstraete, W
2001-08-01
Instantaneous improvement of the settling of bulking filamentous activated sludge can be achieved by the addition of a polymer or a large amount (up to 100% of the MLSS concentration) of talc powder to the sludge. Long-term improvement relies on repeated additions, as these additives have no adverse effects on the causative filaments. A multi-component additive was compared to the traditional additives in lab-scale activated sludge units using three highly filamentous sludges from different industrial treatment plants. The study demonstrated that the multi-component additive was superior to the traditional remedies. It was shown that, in the case of severe filamentous bulking, a single addition of the new additive immediately improved sludge settling and exerted a destructive effect on the causative filamentous bacteria. Thus, the latter additive also ensured a long-term sludge sedimentation improvement. The traditional additives exhibited an immediate and short-term effect. The novel additive also retarded sludge rising due to denitrification and it improved sludge dewaterability. The study revealed Nostocoido limicola II, with slightly hydrophobic cell wall, to be somewhat resistant to the quaternary ammonium salt present as biocide in the additive.
Single-stranded DNA cleavage by divergent CRISPR-Cas9 enzymes
Ma, Enbo; Harrington, Lucas B.; O’Connell, Mitchell R.; Zhou, Kaihong; Doudna, Jennifer A.
2015-01-01
Summary Double-stranded DNA (dsDNA) cleavage by Cas9 is a hallmark of type II CRISPR-Cas immune systems. Cas9–guide RNA complexes recognize 20-base-pair sequences in DNA and generate a site-specific double-strand break, a robust activity harnessed for genome editing. DNA recognition by all studied Cas9 enzymes requires a protospacer adjacent motif (PAM) next to the target site. We show that Cas9 enzymes from evolutionarily divergent bacteria can recognize and cleave single-stranded DNA (ssDNA) by an RNA-guided, PAM-independent recognition mechanism. Comparative analysis shows that in contrast to the type II-A S. pyogenes Cas9 that is widely used for genome engineering, the smaller type II-C Cas9 proteins have limited dsDNA binding and unwinding activity and promiscuous guide-RNA specificity. These results indicate that inefficiency of type II-C Cas9 enzymes for genome editing results from a limited ability to cleave dsDNA, and suggest that ssDNA cleavage was an ancestral function of the Cas9 enzyme family. PMID:26545076
[Ultrasonic sludge treatment and its application on aerobic digestion].
Li, Huan; Jin, Yi-ying; Nie, Yong-feng; Li, Lei; Yang, Hai-ying
2007-07-01
In order to enhance the degradation efficiency of waste activated sludge (WAS) in conventional aerobic digestion, various ultrasonic assisted treatment methods were investigated including ultrasonic disintegration of influent sludge, ultrasonic improvement of influent sludge activity and ultrasonic disintegration of return sludge. Firstly the effects of ultrasonic sludge treatment were studied to choose appropriate ultrasonic parameters, and then the experiments of aerobic digestion with different ultrasonic treatments were carried out. The results show that 1.0 W/mL, 10 minutes ultrasonic treatment can increase soluble chemical oxygen demand (SCOD) in the supernatant phase of sludge sample by 5.4 times and decrease total suspended solid (TSS) by 16%; 0.05 W/mL, 10 min ultrasonic treatment can increase the specific oxygen uptake rate (SOUR) of sludge sample by 29%. The two kinds of ultrasonic influent sludge pretreatment can't improve aerobic digestion effectively. Ultrasonic return sludge disintegration can enhance the volatile suspended solid (VSS) degradation ratio by 15%. Furthermore, the settlement performance of digested sludge is still good and the pollutant concentrations of supernatant phase increase slightly. So ultrasonic return sludge disintegration is considered as the most appropriate assisted treatment mode for aerobic digestion.
Molecular Mechanisms of RNA-Targeting by Cas13-containing Type VI CRISPR-Cas Systems.
O'Connell, Mitchell
2018-06-22
Prokaryotic adaptive immune systems use CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats) and CRISPR associated (Cas) proteins for RNA-guided cleavage of foreign genetic elements. The focus of this review, Type VI CRISPR-Cas systems, include a single protein known as Cas13 (formerly C2c2), that when assembled with a crRNA forms a crRNA-guided RNA-targeting effector complex. Type VI CRISPR-Cas systems can be divided into four subtypes (A-D) based on Cas13 phylogeny. All Cas13 proteins studied to date possess two enzymatically distinct ribonuclease activities that are required for optimal interference. One RNase is responsible for pre-crRNA processing to form mature Type VI interference complexes, while the other RNase activity provided by the two HEPN (Higher Eukaryotes and Prokaryotes Nucleotide-binding) domains, is required for degradation of target RNA during viral interference. In this review, I will compare and contrast what is known about the molecular architecture and behavior of Type VI (A-D) CRISPR-Cas13 interference complexes, how this allows them to carry out their RNA-targeting function, how Type VI accessory proteins are able to modulate Cas13 activity, and how together all of these features have led to the rapid development of a range of RNA-targeting applications. Throughout I will also discuss some of the outstanding questions regarding Cas13's molecular behavior, and its role in bacterial adaptive immunity and RNA-targeting applications. Copyright © 2018. Published by Elsevier Ltd.
Occurrence and activity of Archaea in aerated activated sludge wastewater treatment plants.
Gray, Neil D; Miskin, Ian P; Kornilova, Oksana; Curtis, Thomas P; Head, Ian M
2002-03-01
The occurrence, distribution and activity of archaeal populations within two aerated, activated sludge wastewater treatment systems, one treating domestic waste and the second treating mixed domestic and industrial wastewater, were investigated by denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction (PCR)-amplified ribosomal RNA gene fragments and process measurements. In the plant receiving mixed industrial and domestic waste the archaeal populations found in the mixed liquor were very similar to those in the influent sewage, though a small number of DGGE bands specific to the mixed liquor were identified. In contrast, the activated sludge treating principally domestic waste harboured distinct archaeal populations associated with the mixed liquor that were not prevalent in the influent sewage. We deduce that the Archaea in the plant treating mixed wastewater were derived principally from the influent, whereas those in the plant treating solely domestic waste were actively growing in the treatment plant. Archaeal 16S rRNA gene sequences related to the Methanosarcinales, Methanomicrobiales and the Methanobacteriales were detected. Methanogenesis was measured in activated sludge samples incubated under oxic and anoxic conditions, demonstrating that the methanogens present in both activated sludge plants were active only in anoxic incubations. The relatively low rates of methanogenesis measured indicated that, although active, the methanogens play a minor role in carbon turnover in activated sludge.
Functional Insights Revealed by the Kinetic Mechanism of CRISPR/Cas9.
Raper, Austin T; Stephenson, Anthony A; Suo, Zucai
2018-02-28
The discovery of prokaryotic adaptive immunity prompted widespread use of the RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) endonuclease Cas9 for genetic engineering. However, its kinetic mechanism remains undefined, and details of DNA cleavage are poorly characterized. Here, we establish a kinetic mechanism of Streptococcus pyogenes Cas9 from guide-RNA binding through DNA cleavage and product release. Association of DNA to the binary complex of Cas9 and guide-RNA is rate-limiting during the first catalytic turnover, while DNA cleavage from a pre-formed ternary complex of Cas9, guide-RNA, and DNA is rapid. Moreover, an extremely slow release of DNA products essentially restricts Cas9 to be a single-turnover enzyme. By simultaneously measuring the contributions of the HNH and RuvC nuclease activities of Cas9 to DNA cleavage, we also uncovered the kinetic basis by which HNH conformationally regulates the RuvC cleavage activity. Together, our results provide crucial kinetic and functional details regarding Cas9 which will inform gene-editing experiments, guide future research to understand off-target DNA cleavage by Cas9, and aid in the continued development of Cas9 as a biotechnological tool.
Koh, Y K K; Chiu, T Y; Paterakis, N; Boobis, A; Scrimshawe, M D; Lester, J N; Cartmell, E
2009-12-01
An analytical method has been developed and applied to determine the concentrations of the nonionic alkylphenol polyethoxylate surfactants and their metabolites, alkylphenoxy carboxylates and alkyphenols, in sewage sludges. The compounds were extracted with methanol/acetone (1:1 v/v) from sludge, and concentrated extracts were cleaned by silica solid-phase extraction prior to determination by liquid chromatography tandem mass spectrometry. The recoveries, determined by spiking sewage sludge at two concentrations, ranged from 51% to 89% with method detection limits from 6 microg kg(-1) to 60 microg kg(-1). The methodology was subsequently applied to sludge samples obtained from a carbonaceous activated sludge plant, a nitrifying/denitrifying activated sludge plant and a nitrifying/ denitrifying activated sludge plant with phosphorus removal. Concentrations of nonylphenolic compounds were two to three times higher than their octyl analogues. Long-chain nonylphenol polyethoxylates (NP3-12EO) ranged from 16 microg kg(-1) to 11754 microg kg(-1). The estrogenic metabolite nonylphenol was present at concentrations ranging from 33 microg kg(-1) to 6696 microg kg(-1).
Adsorption behavior of sulfamethazine in an activated sludge process treating swine wastewater.
Ben, Weiwei; Qiang, Zhimin; Yin, Xiaowei; Qu, Jiuhui; Pan, Xun
2014-08-01
Swine wastewater is an important pollution source of antibiotics entering the aquatic environment. In this work, the adsorption behavior of sulfamethazine (SMN), a commonly-used sulfonamide antibiotic, on activated sludge from a sequencing batch reactor treating swine wastewater was investigated. The results show that the adsorption of SMN on activated sludge was an initially rapid process and reached equilibrium after 6hr. The removal efficiency of SMN from the water phase increased with an increasing concentration of mixed liquor suspended solids, while the adsorbed concentration of SMN decreased. Solution pH influenced both the speciation of SMN and the surface properties of activated sludge, thus significantly impacting the adsorption process. A linear partition model could give a good fit for the equilibrium concentrations of SMN at the test temperatures (i.e., 10, 20 and 30°C). The partition coefficient (Kd) was determined to be 100.5L/kg at 20°C, indicating a quite high adsorption capacity for SMN. Thermodynamic analysis revealed that SMN adsorption on activated sludge was an exothermic process. This study could help to clarify the fate and behavior of sulfonamide antibiotics in the activated sludge process and assess consequent environmental risks arising from sludge disposal as well. Copyright © 2014. Published by Elsevier B.V.
Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins.
Bondy-Denomy, Joseph; Garcia, Bianca; Strum, Scott; Du, Mingjian; Rollins, MaryClare F; Hidalgo-Reyes, Yurima; Wiedenheft, Blake; Maxwell, Karen L; Davidson, Alan R
2015-10-01
The battle for survival between bacteria and the viruses that infect them (phages) has led to the evolution of many bacterial defence systems and phage-encoded antagonists of these systems. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated (cas) genes comprise an adaptive immune system that is one of the most widespread means by which bacteria defend themselves against phages. We identified the first examples of proteins produced by phages that inhibit a CRISPR-Cas system. Here we performed biochemical and in vivo investigations of three of these anti-CRISPR proteins, and show that each inhibits CRISPR-Cas activity through a distinct mechanism. Two block the DNA-binding activity of the CRISPR-Cas complex, yet do this by interacting with different protein subunits, and using steric or non-steric modes of inhibition. The third anti-CRISPR protein operates by binding to the Cas3 helicase-nuclease and preventing its recruitment to the DNA-bound CRISPR-Cas complex. In vivo, this anti-CRISPR can convert the CRISPR-Cas system into a transcriptional repressor, providing the first example-to our knowledge-of modulation of CRISPR-Cas activity by a protein interactor. The diverse sequences and mechanisms of action of these anti-CRISPR proteins imply an independent evolution, and foreshadow the existence of other means by which proteins may alter CRISPR-Cas function.
Tamis, J; van Schouwenburg, G; Kleerebezem, R; van Loosdrecht, M C M
2011-11-15
Sludge predation can be an effective solution to reduce sludge production at a wastewater treatment plant. Oligochaete worms are the natural consumers of biomass in benthic layers in ecosystems. In this study the results of secondary sludge degradation by the aquatic Oligochaete worm Aulophorus furcatus in a 125 m(3) reactor and further sludge conversion in an anaerobic tank are presented. The system was operated over a period of 4 years at WWTP Wolvega, the Netherlands and was fed with secondary sludge from a low loaded activated sludge process. It was possible to maintain a stable and active population of the aquatic worm species A. furcatus during the full period. Under optimal conditions a sludge conversion of 150-200 kg TSS/d or 1.2-1.6 kg TSS/m(3)/d was established in the worm reactor. The worms grew as a biofilm on carrier material in the reactor. The surface specific conversion rate reached 140-180 g TSS/m(2)d and the worm biomass specific conversion rate was 0.5-1 g TSS sludge/g dry weight worms per day. The sludge reduction under optimal conditions in the worm reactor was 30-40%. The degradation by worms was an order of magnitude larger than the endogenous conversion rate of the secondary sludge. Effluent sludge from the worm reactor was stored in an anaerobic tank where methanogenic processes became apparent. It appeared that besides reducing the sludge amount, the worms' activity increased anaerobic digestibility, allowing for future optimisation of the total system by maximising sludge reduction and methane formation. In the whole system it was possible to reduce the amount of sludge by at least 65% on TSS basis. This is a much better total conversion than reported for anaerobic biodegradability of secondary sludge of 20-30% efficiency in terms of TSS reduction. Copyright © 2011 Elsevier Ltd. All rights reserved.
Girault, R; Bridoux, G; Nauleau, F; Poullain, C; Buffet, J; Peu, P; Sadowski, A G; Béline, F
2012-02-01
In this study, the maximum ratio of greasy sludge to incorporate with waste activated sludge was investigated in batch and CSTR experiments. In batch experiments, inhibition occurred with a greasy sludge ratio of more than 20-30% of the feed COD. In CSTR experiments, the optimal greasy sludge ratio was 60% of the feed COD and inhibition occurred above a ratio of 80%. Hence, batch experiments can predict the CSTR yield when the degradation phenomenon are additive but cannot be used to determine the maximum ratio to be used in a CSTR configuration. Additionally, when the ratio of greasy sludge increased from 0% to 60% of the feed COD, CSTR methane production increased by more than 60%. When the greasy sludge ratio increased from 60% to 90% of the feed COD, the reactor yield decreased by 75%. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kavitha, S; Adish Kumar, S; Kaliappan, S; Yeom, Ick Tae; Rajesh Banu, J
2014-10-01
The significance of citric acid, a cation binding agent, was investigated for the exclusion of extracellular polymeric substance (EPS) from waste activated sludge (WAS) and anaerobic biodegradability following enzymatic bacterial pretreatment. EPS was removed with 0.05 g/g SS of citric acid. The results of pretreatment found that the suspended solids reduction and chemical oxygen demand solubilisation were 21.4% and 16.2% for deflocculated-bacterially pretreated sludge, 14.28% and 10.0% for flocculated sludge (without EPS removal and bacterially pretreated) and 8.5% and 6.5% for control sludge (raw sludge), respectively. Further assessing anaerobic biodegradability, the biogas yield potential of deflocculated and bacterially pretreated, flocculated, and control sludges were found to be 0.455 L/(g VS), 0.343 L/(g VS), and 0.209 L/(g VS), respectively. Thus, phase-separated disintegration enhanced anaerobic biodegradability efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hou, Kai; Ai, Tao; Hu, Wei-Kun; Luo, Ban; Wu, Yi-Ping; Liu, Rong
2017-12-01
The clinical application of orbital magnetic resonance (MR) T2-mapping imaging in detecting the disease activity of Graves' ophthalmopathy (GO), and the predictive values of therapy response to intravenous glucocorticoid (ivGC) were investigated. Approved by the local institutional review board (IRB), 106 consecutive patients with GO were included in this prospective study. All subjects were divided into two groups according to the patients' clinical activity score (CAS): the CAS positive group (CAS ≥3) or the CAS negative group (CAS <3). T2 relaxation time of extraocular muscles (T2RT; ms) and the areas of four extra-ocular muscles (AEOMs; mm 2 ) were measured by 3D T2-mapping MR sequence before and after methylprednisolone treatment, so as the CAS and some ophthalmic examinations including visual acuity, intra-ocular pressure, eyeball movement, diplopia and proptosis. In addition, 24 healthy volunteers were recruited as the control group. The mean T2RT and AEOMs in CAS positive group were higher than those in CAS negative group. Both CAS positive and negative groups had significantly higher mean T2RT and AEOMs than the control group (P<0.01). There was a positive correlation between T2RT and AEOMs values in GO patients, both of them had a positive correlation with CAS and the ophthalmic examinations. It was concluded that to evaluate the activity of GO, CAS was mostly related to inflammation symptoms of ocular surface, more than that, T2RT and AEOMs were also related to abnormal findings of the ophthalmic examinations including high ocular pressure, impaired eyeball movement, diplopia and proptosis. T2RT and AEOMs can reflex the inflammation state of ocular muscles better. CAS combined with 3D T2-mapping MR imaging could improve the sensitivity of detection of active GO so as the prediction and evaluation of the response to methylprednisolone treatment.
Microbial Ecology of Activated Sludge
Dias, F. F.; Bhat, J. V.
1964-01-01
Over 300 bacterial strains were isolated from seven samples of activated sludge by plating on sewage agar. Gram-negative bacteria of the genera Zoogloea and Comamonas predominated. Many isolates (51%) showed sudanophilic inclusions of poly-β-hydroxybutyric acid, whereas 34% accumulated iodophilic material on media containing starch. A large number required either vitamins or amino acids, or both, for growth. None of the isolates tested for their ability to bring about changes in autoclaved sewage produced an effluent comparable in quality to the activated sludge control, although the Zoogloea did produce activated sludgelike flocs. A study of 150 bacterial strains isolated from raw sewage revealed that they differed from the sludge isolates in several respects. Coliforms, which constitute nearly a quarter of the sewage isolates, were rarely encountered in sludge. PMID:14215970
Fate of personal care and household products in source separated sanitation.
Butkovskyi, A; Rijnaarts, H H M; Zeeman, G; Hernandez Leal, L
2016-12-15
Removal of twelve micropollutants, namely biocides, fragrances, ultraviolet (UV)-filters and preservatives in source separated grey and black water treatment systems was studied. All compounds were present in influent grey water in μg/l range. Seven compounds were found in influent black water. Their removal in an aerobic activated sludge system treating grey water ranged from 59% for avobenzone to >99% for hexylcinnamaldehyde. High concentrations of hydrophobic micropollutants in sludge of aerobic activated sludge system indicated the importance of sorption for their removal. Six micropollutants were found in sludge of an Up-flow anaerobic sludge blanket (UASB) reactor treating black water, with four of them being present at significantly higher concentrations after addition of grey water sludge to the reactor. Hence, addition of grey water sludge to the UASB reactor is likely to increase micropollutant content in UASB sludge. This approach should not be followed when excess UASB sludge is designed to be reused as soil amendment. Copyright © 2016 Elsevier B.V. All rights reserved.
Sivakumar, S; Song, Y C; Kim, S H; Jang, S H
2015-11-01
Waste activated sludge was aerobically treated to demonstrate multiple uses such as cultivating an oil degrading bacterial consortium; studying the influence of a bulking agent (peat moss) and total petroleum hydrocarbon concentration on bacterial growth and producing a soil conditioner using waste activated sludge. After 30 days of incubation, the concentration of oil-degrading bacteria was 4.3 x 10(8) CFU g(-1) and 4.5 x 10(8) CFU g(-1) for 5 and 10 g of total petroleum hydrocarbon, respectively, in a mixture of waste activated sludge (1 kg) and peat moss (0.1 kg). This accounts for approximately 88.4 and 91.1%, respectively, of the total heterotrophic bacteria (total-HB). The addition of bulking agent enhanced total-HB population and total petroleum hydrocarbon-degrading bacterial population. Over 90% of total petroleum hydrocarbon degradation was achieved by the mixture of waste activated sludge, bulking agent and total petroleum hydrocarbon. The results of physico-chemical parameters of the compost (waste activated sludge with and without added peat moss compost) and a substantial reduction in E. coli showed that the use of this final product did not exhibit risk when used as soil conditioner. Finally, the present study demonstrated that cultivation of total petroleum hydrocarbon-degrading bacterial consortium and production of compost from waste activated sludge by aerobic treatment was feasible.
Sun, Fei-yun; Wang, Xiao-mao; Li, Xiao-yan
2011-04-01
A membrane bioreactor (MBR) and an activated sludge process (ASP) were operated side by side to evaluate the change of sludge supernatant characteristics and the evolution of the sludge fouling propensity. The MBR sludge had a higher organic concentration and more biopolymer clusters (BPC) in the supernatant compared with ASP. BPC increased in both concentration and size in the MBR. The results show that the change in the liquid-phase property had a profound effect on the sludge fouling propensity. MBR operation transformed typical activated sludge to MBR sludge with a higher fouling propensity. Distinct from the ASP, membrane filtration retained soluble microbial products (SMP) within the MBR, and the vast membrane surface provided a unique environment for the transformation of SMP to large size BPC, leading to further sludge deposition on the membrane surface. Thus, membrane filtration is the crucial cause of the inevitable fouling problem in submerged MBRs. Copyright © 2011 Elsevier Ltd. All rights reserved.
A simple empirical model for the clarification-thickening process in wastewater treatment plants.
Zhang, Y K; Wang, H C; Qi, L; Liu, G H; He, Z J; Fan, H T
2015-01-01
In wastewater treatment plants (WWTPs), activated sludge is thickened in secondary settling tanks and recycled into the biological reactor to maintain enough biomass for wastewater treatment. Accurately estimating the activated sludge concentration in the lower portion of the secondary clarifiers is of great importance for evaluating and controlling the sludge recycled ratio, ensuring smooth and efficient operation of the WWTP. By dividing the overall activated sludge-thickening curve into a hindered zone and a compression zone, an empirical model describing activated sludge thickening in the compression zone was obtained by empirical regression. This empirical model was developed through experiments conducted using sludge from five WWTPs, and validated by the measured data from a sixth WWTP, which fit the model well (R² = 0.98, p < 0.001). The model requires application of only one parameter, the sludge volume index (SVI), which is readily incorporated into routine analysis. By combining this model with the conservation of mass equation, an empirical model for compression settling was also developed. Finally, the effects of denitrification and addition of a polymer were also analysed because of their effect on sludge thickening, which can be useful for WWTP operation, e.g., improving wastewater treatment or the proper use of the polymer.
Petitjean, Michel
2017-10-01
Some major proteins families, such as carbonic anhydrases (CAs), have a conical cavity at the active site. No algorithm was available to compute conical cavities, so we needed to design one. The fast algorithm we designed let us show on a set of 717 CAs extracted from the PDB database that γ-CAs are characterized by active site cavity cone angles significantly larger than those of α-CAs and β-CAs: the generatrix-axis angles are greater than 60° for the γ-CAs while they are smaller than 50° for the other CAs. Free binaries of the CONICA software implementing the algorithm are available through a software repository at http://petitjeanmichel.free.fr/itoweb.petitjean.freeware.html. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cloning of a heavy-metal-binding protein derived from activated-sludge microorganisms.
Sano, Daisuke; Myojo, Ken; Omura, Tatsuo
2006-09-01
A gene of the heavy-metal-binding protein (HMBP) was newly isolated from a genetic DNA library of activated-sludge microorganisms. HMBP was produced by transformed Escherichia coli, and the copper-binding ability of HMBP was confirmed. HMBP derived from activated sludge could be available as heavy metal adsorbents in water and wastewater treatments.
Lipid profiling in sewage sludge.
Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei
2017-06-01
High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Adsorption of mercury by activated carbon prepared from dried sewage sludge in simulated flue gas.
Park, Jeongmin; Lee, Sang-Sup
2018-04-25
Conversion of sewage sludge to activated carbon is attractive as an alternative method to ocean dumping for the disposal of sewage sludge. Injection of activated carbon upstream of particulate matter control devices has been suggested as a method to remove elemental mercury from flue gas. Activated carbon was prepared using various activation temperatures and times and was tested for their mercury adsorption efficiency using lab-scale systems. To understand the effect of the physical property of the activated carbon, its mercury adsorption efficiency was investigated as a function of their Brunauer-Emmett-Teller (BET) surface area. Two simulated flue gas conditions: (1) without hydrogen chloride (HCl) and (2) with 20 ppm HCl, were used to investigate the effect of flue gas composition on the mercury adsorption capacity of activated carbon. Despite very low BET surface area of the prepared sewage sludge activated carbons, their mercury adsorption efficiencies were comparable under both simulated flue gas conditions to those of pinewood and coal activated carbons. After injecting HCl into the simulated flue gas, all sewage sludge activated carbons demonstrated high adsorption efficiencies, i.e., more than 87%, regardless of their BET surface area. IMPLICATIONS We tested activated carbons prepared from dried sewage sludge to investigate the effect of their physical properties on their mercury adsorption efficiency. Using two simulated flue gas conditions, we conducted mercury speciation for the outlet gas. We found that the sewage sludge activated carbon had comparable mercury adsorption efficiency to pinewood and coal activated carbons, and the presence of HCl minimized the effect of physical property of the activated carbon on its mercury adsorption efficiency.
Mesquita, D P; Dias, O; Amaral, A L; Ferreira, E C
2009-04-01
In recent years, a great deal of attention has been focused on the research of activated sludge processes, where the solid-liquid separation phase is frequently considered of critical importance, due to the different problems that severely affect the compaction and the settling of the sludge. Bearing that in mind, in this work, image analysis routines were developed in Matlab environment, allowing the identification and characterization of microbial aggregates and protruding filaments in eight different wastewater treatment plants, for a combined period of 2 years. The monitoring of the activated sludge contents allowed for the detection of bulking events proving that the developed image analysis methodology is adequate for a continuous examination of the morphological changes in microbial aggregates and subsequent estimation of the sludge volume index. In fact, the obtained results proved that the developed image analysis methodology is a feasible method for the continuous monitoring of activated sludge systems and identification of disturbances.
Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi
2016-01-01
In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production.
A Novel Model for the Entire Settling-Thickening Process in a Secondary Settling Tank.
He, Zhijiang; Zhang, Yuankai; Wang, Hongchen; Qi, Lu; Yin, Xunfei; Zhang, Xiaojun; Wen, Yang
2016-12-01
Sludge settling and thickening occur simultaneously in secondary settling tanks (SSTs). The ability to accurately calculate the settling and thickening capacity of activated sludge was of great importance. Despite extensive studies on the development of settling velocity models for use with SSTs, these models have not been applied due to the difficulty in calibrating the related parameters. Additionally, there have been some studies of the thickening behavior of the activated sludge in SSTs. In this study, a novel settling and thickening model for activated sludge was developed, and the model was validated using experimental data (R2 = 0.830 to 0.963, p < 0.001), which is more reasonable for the characterization of the settling and thickening behavior of the activated sludge in an SST. The application of these models requires only one critical parameter, namely, the stirred sludge volume index SSVI3.5, which is readily available in a water resource recovery facility.
Li, X Y; Yang, S F
2007-03-01
Laboratory experiments on the activated sludge (AS) process were carried out to investigate the influence of microbial extracellular polymeric substances (EPS), including loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS), on biomass flocculation, sludge settlement and dewaterability. The heat EPS extraction method was modified to include a mild step and a harsh step for extracting the LB-EPS and TB-EPS, respectively, from the sludge suspension. Six lab-scale AS reactors were used to grow AS with different carbon sources of glucose and sodium acetate, and different sludge retention times (SRTs) of 5, 10 and 20 days. The variation in the bioreactor condition produced sludge with different abundances of EPS and different flocculation and separation characteristics. The sludge that was fed on glucose had more EPS than the sludge that was fed on acetate. For any of the feeding substrates, the sludge had a nearly consistent TB-EPS value regardless of the SRT, and an LB-EPS content that decreased with the SRT. The acetate-fed sludge performed better than the glucose-fed sludge in terms of bioflocculation, sludge sedimentation and compression, and sludge dewaterability. The sludge flocculation and separation improved considerably as the SRT lengthened. The results demonstrate that the LB-EPS had a negative effect on bioflocculation and sludge-water separation. The parameters for the performance of sludge-water separation were much more closely correlated with the amount of LB-EPS than with the amount of TB-EPS. It is argued that although EPS is essential to sludge floc formation, excessive EPS in the form of LB-EPS could weaken cell attachment and the floc structure, resulting in poor bioflocculation, greater cell erosion and retarded sludge-water separation.
Genetic and epigenetic control of gene expression by CRISPR–Cas systems
Lo, Albert; Qi, Lei
2017-01-01
The discovery and adaption of bacterial clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas) systems has revolutionized the way researchers edit genomes. Engineering of catalytically inactivated Cas variants (nuclease-deficient or nuclease-deactivated [dCas]) combined with transcriptional repressors, activators, or epigenetic modifiers enable sequence-specific regulation of gene expression and chromatin state. These CRISPR–Cas-based technologies have contributed to the rapid development of disease models and functional genomics screening approaches, which can facilitate genetic target identification and drug discovery. In this short review, we will cover recent advances of CRISPR–dCas9 systems and their use for transcriptional repression and activation, epigenome editing, and engineered synthetic circuits for complex control of the mammalian genome. PMID:28649363
Combined System of Activated Sludge and Ozonation for the Treatment of Kraft E1 Effluent
Assalin, Marcia Regina; dos Santos Almeida, Edna; Durán, Nelson
2009-01-01
The treatment of paper mill effluent for COD, TOC, total phenols and color removal was investigated using combined activated sludge-ozonation processes and single processes. The combined activated sludge-O3/pH 10 treatment was able to remove around 80% of COD, TOC and color from Kraft E1 effluent. For the total phenols, the efficiency removal was around 70%. The ozonation post treatment carried out at pH 8.3 also showed better results than the single process. The COD, TOC, color and total phenols removal efficiency obtained were 75.5, 59.1, 77 and 52.3%, respectively. The difference in the concentrations of free radical produced by activated sludge-O3/pH 10 and activated sludge-O3/pH 8.3 affected mainly the TOC and total phenol removal values. PMID:19440438
[Inhibition of Denitrification by Total Phenol Load of Coal Gasification Wastewater].
Zhang, Yu-ying; Chen, Xiu-rong; Wang, Lu; Li, Jia-hui; Xu, Yan; Zhuang, You-jun; Yu, Ze-ya
2016-03-15
High loaded phenolic pollutants, refractory and high toxic, which existed in coal gasification wastewater, could cause the inhibition of sludge activity. In biological denitrification process of activated sludge treatment system, people tend to focus on the phenol inhibition on the efficiency and activity of nitrifying bacteria while there are few researches on the denitrification process. In order to investigate the inhibition of phenolic compounds from coal gasification wastewater on the denitrification and sludge activity, we used anoxic denitrification system to indentify the influence of different phenol load on denitrification efficiency (removal efficiency of NO₃⁻-N and NO₂⁻-N) as well as the stress and degradation activity of sludge. The results showed that when the concentration of total phenol was changed from 50 mg · L⁻¹ to 200 mg · L⁻¹, the removal rates of NO₃⁻-N and NO₂⁻-N were changed from 55% and 25% to 83% and 83% respectively. In the process of sludge domestication, the characteristics of denitrifying sludge were influenced to a certain degree.
Chan, W I; Liao, P H; Lo, K V
2010-11-01
Using the microwave-enhanced advanced oxidation process (MW/H2O2-AOP), the pH and irradiation intensity on waste activated sludge samples were investigated to provide insight to the athermal effects on nutrients release, solids destruction, particle size distribution and dewaterability, and to demonstrate their interrelationships. Carbonaceous matters and nutrients released into solution depended on the irradiation intensity and time. Higher irradiation levels tended to be more effective in the solubilization of nutrients and had more pronounced effects in the dewaterability of sludge. In terms of particle size distribution, detectable particles increased in size for treatments in acidic conditions, while the dewaterability of treated sludge was improved. In treatments under neutral and alkaline conditions, the particle size range increased, with more small particles formed, thereby significantly deteriorating the dewaterability of sludge treated in alkaline conditions. The best results for the solubilization of nutrients were in alkaline conditions with high irradiation power, but dewaterability of the sludge was compromised. Sludge treatment with the MW/H2O2-AOP in acidic conditions with high irradiation power yielded the best dewaterable sludge and significant nutrient solubilization; therefore, it is the recommended treatment condition for activated sludge.
Zubrowska-Sudol, Monika; Walczak, Justyna
2014-09-15
The purpose of the study was to analyse the impact of hydrodynamic disintegration of thickened excess activated sludge, performed at different levels of energy density (70, 140 and 210 kJ/L), on the activity of microorganisms involved in nutrient removal from wastewater, i.e. nitrifiers, denitrifiers and phosphorus accumulating organisms (PAOs). Ammonium and nitrogen utilisation rates and phosphorus release rates for raw and disintegrated sludge were determined using batch tests. The experiment also included: 1) analysis of organic and nutrient compound release from activated sludge flocs, 2) determination of the sludge disintegration degree (DD), and 3) evaluation of respiratory activity of the biomass by using the oxygen uptake rate (OUR) batch test. It was shown that the activity degree of the examined groups of microorganisms depended on energy density and related sludge disintegration degree, and that inactivation of individual groups of microorganisms occurred at different values of DD. Least resistant to the destruction of activated sludge flocs turned out to be phosphorus accumulating organisms, while the most resistant were denitrifiers. A decrease of 20-40% in PAO activity was noted already at DD equal to 3-5%. The threshold values of DD, after crossing which the inactivation of nitrifiers and denitrifiers occurred, were equal to 8% and 10%, respectively. At lesser DD values an increase in the activity of these groups of microorganisms was observed, averaging 20.2-41.7% for nitrifiers and 9.98-36.3% for denitrifiers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nucleosome breathing and remodeling constrain CRISPR-Cas9 function
Isaac, R Stefan; Jiang, Fuguo; Doudna, Jennifer A; Lim, Wendell A; Narlikar, Geeta J; Almeida, Ricardo
2016-01-01
The CRISPR-Cas9 bacterial surveillance system has become a versatile tool for genome editing and gene regulation in eukaryotic cells, yet how CRISPR-Cas9 contends with the barriers presented by eukaryotic chromatin is poorly understood. Here we investigate how the smallest unit of chromatin, a nucleosome, constrains the activity of the CRISPR-Cas9 system. We find that nucleosomes assembled on native DNA sequences are permissive to Cas9 action. However, the accessibility of nucleosomal DNA to Cas9 is variable over several orders of magnitude depending on dynamic properties of the DNA sequence and the distance of the PAM site from the nucleosome dyad. We further find that chromatin remodeling enzymes stimulate Cas9 activity on nucleosomal templates. Our findings imply that the spontaneous breathing of nucleosomal DNA together with the action of chromatin remodelers allow Cas9 to effectively act on chromatin in vivo. DOI: http://dx.doi.org/10.7554/eLife.13450.001 PMID:27130520
Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch.
Oakes, Benjamin L; Nadler, Dana C; Flamholz, Avi; Fellmann, Christof; Staahl, Brett T; Doudna, Jennifer A; Savage, David F
2016-06-01
The clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated protein Cas9 from Streptococcus pyogenes is an RNA-guided DNA endonuclease with widespread utility for genome modification. However, the structural constraints limiting the engineering of Cas9 have not been determined. Here we experimentally profile Cas9 using randomized insertional mutagenesis and delineate hotspots in the structure capable of tolerating insertions of a PDZ domain without disruption of the enzyme's binding and cleavage functions. Orthogonal domains or combinations of domains can be inserted into the identified sites with minimal functional consequence. To illustrate the utility of the identified sites, we construct an allosterically regulated Cas9 by insertion of the estrogen receptor-α ligand-binding domain. This protein showed robust, ligand-dependent activation in prokaryotic and eukaryotic cells, establishing a versatile one-component system for inducible and reversible Cas9 activation. Thus, domain insertion profiling facilitates the rapid generation of new Cas9 functionalities and provides useful data for future engineering of Cas9.
Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition
Rollie, Clare; Schneider, Stefanie; Brinkmann, Anna Sophie; Bolt, Edward L; White, Malcolm F
2015-01-01
The adaptive prokaryotic immune system CRISPR-Cas provides RNA-mediated protection from invading genetic elements. The fundamental basis of the system is the ability to capture small pieces of foreign DNA for incorporation into the genome at the CRISPR locus, a process known as Adaptation, which is dependent on the Cas1 and Cas2 proteins. We demonstrate that Cas1 catalyses an efficient trans-esterification reaction on branched DNA substrates, which represents the reverse- or disintegration reaction. Cas1 from both Escherichia coli and Sulfolobus solfataricus display sequence specific activity, with a clear preference for the nucleotides flanking the integration site at the leader-repeat 1 boundary of the CRISPR locus. Cas2 is not required for this activity and does not influence the specificity. This suggests that the inherent sequence specificity of Cas1 is a major determinant of the adaptation process. DOI: http://dx.doi.org/10.7554/eLife.08716.001 PMID:26284603
Enhancement of activated sludge disintegration and dewaterability by Fenton process
NASA Astrophysics Data System (ADS)
Heng, G. C.; Isa, M. H.
2016-06-01
Municipal and industrial wastewater treatment plants produce large amounts of sludge. This excess sludge is an inevitable drawback inherent to the activated sludge process. In this study, the waste activated sludge was obtained from the campus wastewater treatment plant at Universiti Teknologi PETRONAS (UTP), Malaysia. Fenton pretreatment was optimized by using the response surface methodology (RSM) to study the effects of three operating conditions including the dosage of H2O2 (g H2O2/kg TS), the molar ratio of H2O2/Fe2+ and reaction time. The optimum operating variables to achieve MLVSS removal 65%, CST reduction 28%, sCOD 11000 mg/L and EPS 500 mg/L were: 1000 g H2O2/kg TS, H2O2/Fe2+ molar ratio 70 and reaction time 45 min. Fenton process was proved to be able to enhance the sludge disintegration and dewaterability.
Kavitha, S; Adish Kumar, S; Yogalakshmi, K N; Kaliappan, S; Rajesh Banu, J
2013-12-01
In this study, the effect of Ethylene diamine tetra acetic acid (EDTA) on Extracellular polymeric substance (EPS) removal tailed with bacterial enzymatic pretreatment on aerobic digestion of activated sludge was studied. In order to enhance the accessibility of sludge to the enzyme secreting bacteria; the extracellular polymeric substances were removed using EDTA. EDTA efficiently removed the EPS with limited cell lysis and enhanced the sludge enzyme activity at its lower concentration of 0.2 g/g SS. The sludge was then subjected to bacterial pretreatment to enhance the aerobic digestion. In aerobic digestion the best results in terms of Suspended solids (SS) reduction (48.5%) and COD (Chemical oxygen demand) solubilization (47.3%) was obtained in experimental reactor than in control. These results imply that aerobic digestion can be enhanced efficiently through bacterial pretreatment of EPS removed sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.
SUMMARY REPORT: THE CAUSES AND CONTROL OF ACTIVATED SLUDGE BULKING AND FOAMING
This 92-page Technology Transfer Summary Report provides reference material on the causes and controls of sludge bulking and foaming in activated sludge treatment that can be readily understood, and it includes sufficient detail to help plant operators control their systems. The ...
Ge, Huoqing; Batstone, Damien; Keller, Jurg
2016-01-01
The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.
Complete solids retention activated sludge process.
Amanatidou, E; Samiotis, G; Trikoilidou, E; Pekridis, G; Tsikritzis, L
2016-01-01
In a slaughterhouse's full-scale extended aeration activated sludge wastewater treatment plant (WWTP), operating under complete solids retention time, the evolution of mixed liquor suspended solids (MLSS) and mixed liquor volatile suspended solids (MLVSS) concentration, food to micro-organisms ratio (F/M) and substrate utilization rate (SUR) were studied for over a year. Biomass growth phases in correlation to sludge biological and morphological characteristics were studied. Three distinguished growth phases were observed during the 425 days of monitoring. The imposed operational conditions led the process to extended biomass starvation conditions, minimum F/M, minimum SUR and predator species growth. MLSS and MLVSS reached a stabilization phase (plateau phase) where almost zero sludge accumulation was observed. The concept of degradation of the considered non-biodegradable particulate compounds in influent and in biomass (cell debris) was also studied. Comparison of evolution of observed sludge yields (Yobs) in the WWTP with Yobs predictions by activated sludge models verified the degradation concept for the considered non-biodegradable compounds. Control of the sedimentation process was achieved, by predicting the solids loading rate critical point using state point analysis and stirred/unstirred settling velocity tests and by applying a high return activated sludge rate. The nitrogen gas related sedimentation problems were taken into consideration.
Li, Juan; Xing, Xing; Li, Jiao; Shi, Mei; Lin, Aijun; Xu, Congbin; Zheng, Jianzhong; Li, Ronghua
2018-03-01
Sewage sludge produced from wastewater treatment is a pressing environmental issue. Mismanagement of the massive amount of sewage sludge would threat our valuble surface and shallow ground water resources. Use of activated carbon prepared from carbonization of these sludges for heavy metal removal can not only minimize and stabilize these hazardous materials but also realize resources reuse. In this study, thiol-functionalized activated carbon was synthesized from coal-blended sewage sludge, and its capacity was examined for removing Cu(II), Pb(II), Cd(II) and Ni(II) from water. Pyrolysis conditions to prepare activated carbons from the sludge and coal mixture were examined, and the synthesized material was found to achieve the highest BET surface area of 1094 m 2 /g under 500 °C and 30 min. Batch equilibrium tests indicated that the thiol-functionalized activated carbon had a maximum sorption capacity of 238.1, 96.2, 87.7 and 52.4 mg/g for Pb(II), Cd(II), Cu(II) and Ni(II) removal from water, respectively. Findings of this study suggest that thiol-functionalized activated carbon prepared from coal-blended sewage sludge would be a promising sorbent material for heavy metal removal from waters contaminated with Cu(II), Pb(II), Cd(II) and Ni(II). Copyright © 2017 Elsevier Ltd. All rights reserved.
Kumar Singh, Nitin; Singh, Jasdeep; Bhatia, Aakansha; Kazmi, A A
2016-01-01
In the present study, a pilot-scale reactor incorporating polyvinyl alcohol gel beads as biomass carrier and operating in biological activated sludge mode (a combination of moving bed biofilm reactor (MBBR) and activated sludge) was investigated for the treatment of actual municipal wastewater. The results, during a monitoring period of 4 months, showed effective removal of chemical oxygen demand (COD), biological oxygen demand (BOD) and NH3-N at optimum conditions with 91%, ∼92% and ∼90% removal efficiencies, respectively. Sludge volume index (SVI) values of activated sludge varied in the range of 25-72 mL/g, indicating appreciable settling characteristics. Furthermore, soluble COD and BOD in the effluent of the pilot plant were reduced to levels well below discharge limits of the Punjab Pollution Control Board, India. A culture dependent method was used to enrich and isolate abundant heterotrophic bacteria in activated sludge. In addition to this, 16S rRNA genes analysis was performed to identify diverse dominant bacterial species in suspended and attached biomass. Results revealed that Escherichia coli, Pseudomonas sp. and Nitrosomonas communis played a significant role in biomass carrier, while Acinetobactor sp. were dominant in activated sludge of the pilot plant. Identification of ciliated protozoa populations rendered six species of ciliates in the plant, among which Vorticella was the most dominant.
Modin, Oskar; Saheb Alam, Soroush; Persson, Frank; Wilén, Britt-Marie
2015-01-01
New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC) per g volatile suspend solids (VSS) for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215–230 nm were also rapidly removed. PMID:25768429
Polyhydroxyalkanoate production potential of heterotrophic bacteria in activated sludge.
Inoue, Daisuke; Suzuki, Yuta; Uchida, Takahiro; Morohoshi, Jota; Sei, Kazunari
2016-01-01
This study was conducted to evaluate the polyhydroxyalkanoate (PHA) production potential of cultivable heterotrophic bacteria in activated sludge by genotypic and phenotypic characterizations. A total of 114 bacterial strains were isolated from four activated sludge samples taken from a lab-scale sequencing batch reactor and three wastewater treatment processes of two municipal wastewater treatment plants. PCR detection of the phaC genes encoding class I and II PHA synthase revealed that 15% of the total isolates possessed phaC genes, all of which had the closest similarities to known phaC genes of α- and β-Proteobacteria and Actinobacteria. PHA production experiments under aerobic and nitrogen-limited conditions showed that 68% of the total isolates were capable of producing PHA from at least one of the six substrates used (acetate, propionate, lactate, butyrate, glucose and glycerol). Genotypic and phenotypic characterizations revealed that 75% of the activated sludge bacteria had PHA production potential. Our results also indicated that short-chain fatty acids would be the preferable substrates for PHA production by activated sludge bacteria, and that there might be a variety of unidentified phaC genes in activated sludge. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Moretti, Paul; Choubert, Jean-Marc; Canler, Jean-Pierre; Buffière, Pierre; Pétrimaux, Olivier; Lessard, Paul
2018-02-01
The integrated fixed-film activated sludge (IFAS) process is being increasingly used to enhance nitrogen removal for former activated sludge systems. The aim of this work is to evaluate a numerical model of a new nitrifying/denitrifying IFAS configuration. It consists of two carrier-free reactors (anoxic and aerobic) and one IFAS reactor with a filling ratio of 43% of carriers, followed by a clarifier. Simulations were carried out with GPS-X involving the nitrification reaction combined with a 1D heterogeneous biofilm model, including attachment/detachment processes. An original iterative calibration protocol was created comprising four steps and nine actions. Experimental campaigns were carried out to collect data on the pilot in operation, specifically for modelling purpose. The model used was able to predict properly the variations of the activated sludge (bulk) and the biofilm masses, the nitrification rates of both the activated sludge and the biofilm, and the nitrogen concentration in the effluent for short (4-10 days) and long (300 days) simulation runs. A calibrated parameter set is proposed (biokinetics, detachment, diffusion) related to the activated sludge, the biofilm and the effluent variables to enhance the model prediction on hourly and daily data sets.
Ma, Weiwei; Han, Yuxing; Xu, Chunyan; Han, Hongjun; Zhu, Hao; Li, Kun; Zheng, Mengqi
2018-05-04
Even though coal gasification wastewater (CGW) treated by various biochemical treatment processes generally met the national discharge standard, its potential biotoxicity was still unknown. Therefore, in this study, bioassay with Tetrahymena thermophila (T. thermophila) was conducted to comprehensively evaluate the variation of biotoxicity in raw CGW and the treated effluent from lab-scale micro-electrolysis integrated with biological reactor (MEBR), single iron-carbon micro-electrolysis (ICME) and conventional activated sludge (CAS) processes. The results illustrated that raw CGW presented intensive acute toxicity with 24 h EC 50 value of 8.401% and toxic unit (TU) value of 11.90. Moreover, it performed significant cell membrane destruction and DNA damage even at 10% dilution concentration. The toxicant identification results revealed that multiple toxic polar compounds such as phenolic, heterocyclic and polycyclic aromatic compounds were the main contributors for biotoxicity. Furthermore, these compounds could accelerate oxidative stress, thereby inducing oxidative damage of cell membrane and DNA. As for treated effluent, TU value was decreased by 90.58% in MEBR process. An effective biotoxicity reduction was achieved in MEBR process owing to high removal efficiency in polar organic toxicants. In contrast, effluent from ICME and CAS processes presented relatively high acute toxicity and genotoxicity, because various heterocyclic and polycyclic aromatic compounds were difficult to be degraded in these processes. Therefore, it was suggested that MEBR was a potential and feasible process for improving CGW treatment and minimizing ecological risk. Copyright © 2018. Published by Elsevier B.V.
Lu, Zai-Liang; Li, Jiu-Yu; Jiang, Jun; Xu, Ren-Kou
2012-10-01
Biochars were prepared from wastewater sludge from two wastewater treatment plants in Nanjing using a pyrolysis method at 300, 500 and 700 degrees C. The properties of the biochars were measured, and their amelioration effects on the acidity of a red soil and environmental risk of application of sludge biochars were examined to evaluate the possibility of agricultural application of wastewater sludge biochars in red soils. Results indicated that incorporation of both sludge and sludge biochar increased soil pH due to the alkalinity of sludge and sludge biochar, and the mineralization of organic N and nitrification of ammonium N from wastewater sludge induced soil pH fluctuated during incubation. The amelioration effects of biochars generated at 500 and 700 degrees C on the soil were significantly greater than that of sludge significantly. Sludge and sludge biochar contain ample base cations of Ca2+, Mg2+, K+ and Na+ and thus incorporation of sludge and sludge biochar increased the contents of soil exchangeable base cations and decreased soil exchangeable aluminum and H+. Contents of heavy metals in sludge biochars were greater than these in their feedstock sludge, while the contents of Cu, Pb, Ni and As in sludge biochars were lower than the standard values of heavy metals were wastewater sludge for agricultural use in acid soils in China except for Zn and Cd. The contents of available forms of heavy metals in the biochars generated from sludge from Chengdong wastewater treatment plant was lower than these in the corresponding sludge, suggesting that pyrolysis proceed decreased the activity of heavy metals in wastewater sludge. After 90-day incubation of the soil with sludge and sludge biochar, the differences in the contents of soil available heavy metals were not significant between the biochars and their feedstock sludge from Jiangxizhou wastewater treatment plant, and the contents in the treatments with biochars added was lower than these in the treatments with the corresponding sludge from Chengdong wastewater treatment plant for most of heavy metals. It can be concluded that the biochars from wastewater sludge could be used as soil amendments to adjust soil acidity. Application of sludge biochars did not increase activity and availability of heavy metals compared with direct incorporation of the sludge.
40 CFR 503.24 - Management practices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... event. (h) The leachate collection system for an active sewage sludge unit that has a liner and leachate... three years after the sewage sludge unit closes. (i) Leachate from an active sewage sludge unit that has a liner and leachate collection system shall be collected and shall be disposed in accordance with...
40 CFR 503.24 - Management practices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... event. (h) The leachate collection system for an active sewage sludge unit that has a liner and leachate... three years after the sewage sludge unit closes. (i) Leachate from an active sewage sludge unit that has a liner and leachate collection system shall be collected and shall be disposed in accordance with...
40 CFR 503.24 - Management practices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... event. (h) The leachate collection system for an active sewage sludge unit that has a liner and leachate... three years after the sewage sludge unit closes. (i) Leachate from an active sewage sludge unit that has a liner and leachate collection system shall be collected and shall be disposed in accordance with...
40 CFR 503.24 - Management practices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... event. (h) The leachate collection system for an active sewage sludge unit that has a liner and leachate... three years after the sewage sludge unit closes. (i) Leachate from an active sewage sludge unit that has a liner and leachate collection system shall be collected and shall be disposed in accordance with...
Performance indicators and indices of sludge management in urban wastewater treatment plants.
Silva, C; Saldanha Matos, J; Rosa, M J
2016-12-15
Sludge (or biosolids) management is highly complex and has a significant cost associated with the biosolids disposal, as well as with the energy and flocculant consumption in the sludge processing units. The sludge management performance indicators (PIs) and indices (PXs) are thus core measures of the performance assessment system developed for urban wastewater treatment plants (WWTPs). The key PIs proposed cover the sludge unit production and dry solids concentration (DS), disposal/beneficial use, quality compliance for agricultural use and costs, whereas the complementary PIs assess the plant reliability and the chemical reagents' use. A key PI was also developed for assessing the phosphorus reclamation, namely through the beneficial use of the biosolids and the reclaimed water in agriculture. The results of a field study with 17 Portuguese urban WWTPs in a 5-year period were used to derive the PI reference values which are neither inherent to the PI formulation nor literature-based. Clusters by sludge type (primary, activated, trickling filter and mixed sludge) and by digestion and dewatering processes were analysed and the reference values for sludge production and dry solids were proposed for two clusters: activated sludge or biofilter WWTPs with primary sedimentation, sludge anaerobic digestion and centrifuge dewatering; activated sludge WWTPs without primary sedimentation and anaerobic digestion and with centrifuge dewatering. The key PXs are computed for the DS after each processing unit and the complementary PXs for the energy consumption and the operating conditions DS-determining. The PX reference values are treatment specific and literature based. The PI and PX system was applied to a WWTP and the results demonstrate that it diagnosis the situation and indicates opportunities and measures for improving the WWTP performance in sludge management. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Hui; Du, Zhiyun; Zhang, Changyuan; Tang, Zhikai; He, Yan; Zhang, Qiuyan; Zhao, Jun; Zheng, Xi
2014-05-16
Aldehyde dehydrogenase 1 (ALDH1) is reported as a biomarker for identifying some cancer stem cells, and down-regulation or inhibition of the enzyme can be effective in anti-drug resistance and a potent therapeutic for some tumours. In this paper, the inhibitory activity, mechanism mode, molecular docking and 3D-QSAR (three-dimensional quantitative structure activity relationship) of curcumin analogues (CAs) against ALDH1 were studied. Results demonstrated that curcumin and CAs possessed potent inhibitory activity against ALDH1, and the CAs compound with ortho di-hydroxyl groups showed the most potent inhibitory activity. This study indicates that CAs may represent a new class of ALDH1 inhibitor.
The CRISPR/Cas9 system is a powerful tool for studying gene function. Here, we describe a method that allows temporal control of CRISPR/Cas9 activity based on conditional Cas9 destabilization. We demonstrate that fusing an FKBP12-derived destabilizing domain to Cas9 (DD-Cas9) enables conditional Cas9 expression and temporal control of gene editing in the presence of an FKBP12 synthetic ligand. This system can be easily adapted to co-express, from the same promoter, DD-Cas9 with any other gene of interest without co-modulation of the latter.
Geng, Chunnu; Bergheaud, Valérie; Garnier, Patricia; Zhu, Yong-Guan; Haudin, Claire-Sophie
2018-03-01
Sludge recycled in agriculture may bring antibiotics into cropped soils. The nature, total amount, and availability of the antibiotics in soil partly depend on the sludge treatments. Our paper compares the fate of N-acetyl sulfamethoxazole (AC-SMX) residues between soils incubated with the same sludge but submitted to different processes before being added in soil. The fate of 14 C-AC-SMX residues was studied in mixtures of soil and sludges at different treatment levels: 1) activated and 2) centrifuged sludges, both enriched with 14 C-AC-SMX, and 3) limed and 4) heat-dried sludges obtained by treating the previously contaminated centrifuged sludge. The evolution of the extractability of 14 C residues (CaCl 2 , methanol) and their mineralization were followed during 119 days. More than 80% of the initial 14 C-activity was no longer extractable after 14 days, except in soil with limed sludge. Liming and drying the centrifuged sludge decreased the mineralized 14 C fraction from 5.7-6.4% to 1.2-1.8% and consequently, the corresponding soils contained more 14 C residues after 119 days. Although 14 C residues were more CaCl 2 -extractable in soil with limed sludge, they seemed to be poorly bioavailable for biodegradation. For all solid sludges, the mineralization rate of 14 C-AC-SMX residues was strongly correlated to that of sludge organic carbon, with a coefficient three times lower for the limed and dried sludges than for the centrifuged sludge after 14 days. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pamukoglu, M Yunus; Kargi, Fikret
2007-09-05
Copper(II) ion toxicity onto activated sludge organisms was eliminated by addition of powdered waste sludge (PWS) to the feed wastewater for removal of Cu(II) ions by biosorption before biological treatment. The synthetic feed wastewater containing 14 or 22 mgl(-1) Cu(II) was mixed with PWS in a mixing tank where Cu(II) ions were adsorbed onto PWS and the mixture was fed to a sedimentation tank to separate Cu(II) containing PWS from the feed wastewater. The activated sludge unit fed with the effluent of the sedimentation tank was operated at a hydraulic residence time (HRT) of 10h and sludge age (SRT) of 10 days. To investigate Cu(II), COD and toxicity removal performance of the activated sludge unit at different PWS loadings, the system was operated at different PWS loading rates (0.1-1 gPWSh(-1)) while the Cu(II) loading rate was constant throughout the operation. Percent copper, COD and toxicity removals increased with increasing PWS loading rate due to increased adsorption of Cu(II) onto PWS yielding low Cu(II) contents in the feed. Biomass concentration in the aeration tank increased and the sludge volume index (SVI) decreased with increasing PWS loading rate due to elimination of Cu(II) from the feed wastewater by PWS addition. PWS addition to the Cu(II) containing wastewater was proven to be effective for removal of Cu(II) by biosorption before biological treatment. Approximately, 1 gPWSh(-1) should be added for 28 mgCuh(-1) loading rate for complete removal of Cu(II) from the feed wastewater to obtain high COD removals in the activated sludge unit.
Ye, Fenxia; Liu, Xinwen; Li, Ying
2012-01-15
The activated sludge process of wastewater results in the generation of a considerable amount of excess activated sludge. In many wastewater treatment plants, the bottleneck of the sludge handling system is the dewatering operation. This paper investigated the effect of potassium ferrate pretreatment on the physicochemical properties of the excess activated sludge at various dosages of potassium ferrate. The particle size, extracellular polymeric substances (EPS) content and chemical components, and sludge disintegration degree were measured to explain the observed changes of physicochemical properties. It was expected that potassium ferrate could enhance the filterability and dewaterability of the sludge. However, the results showed that potassium ferrate had a negative effect on the filterability by measuring the capillary suction time (CST), but improved the settleability and dewaterability extent by determining the water content in the dewatered cake, although the flocs size reduced slightly. Loosely bound EPS (LB-EPS) content, polysaccharides (PS) and proteins (PN) contents in LB-EPS all increased with increasing the amount of potassium ferrate. However, Tightly bound EPS (TB-EPS) content, PS and PN contents in TB-EPS did not changed significantly at first, and decreased slightly under higher dosage of potassium ferrate. EPS, especially LB-EPS played more important role in the observed changes of the settleability and filterability than the sludge particle size. Copyright © 2011 Elsevier B.V. All rights reserved.
Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
2009-07-31
Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) andmore » the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was implemented. (6) At CAS 09-23-01, Area 9 Gravel Gertie, a UR was implemented. (7) At CAS 09-34-01, Underground Detection Station, no work was performed.« less
Zhou, Xu; Jin, Wenbiao; Chen, Hongyi; Chen, Chuan; Han, Songfang; Tu, Renjie; Wei, Wei; Gao, Shu-Hong; Xie, Guo-Jun; Wang, Qilin
2017-11-01
The enhancement of sludge dewaterability is of great importance for facilitating the sludge disposal during the operation of wastewater treatment plants. In this study, a novel oxidative conditioning approach was applied to enhance the dewaterability of waste activated sludge by the combination of zero-valent iron (ZVI) and peroxymonosulfate (PMS). It was found that the dewaterability of sludge was significantly improved after the addition of ZVI (0-4 g/g TSS) (TSS: total suspended solids) and PMS (0-1 g/g TSS). The optimal addition amount of ZVI and PMS was 0.25 g/g TSS and 0.1 g/g TSS, respectively, under which the capillary suction time of the sludge was reduced by approximately 50%. The decomposition of sludge flocs could contribute to the improved sludge dewaterability. Economic analysis demonstrated that the proposed conditioning process with ZVI and PMS was more economical than the ZVI + peroxydisulfate and the traditional Fenton conditioning processes.
Fragmentation of the CRISPR-Cas Type I-B signature protein Cas8b.
Richter, Hagen; Rompf, Judith; Wiegel, Julia; Rau, Kristina; Randau, Lennart
2017-11-01
CRISPR arrays are transcribed into long precursor RNA species, which are further processed into mature CRISPR RNAs (crRNAs). Cas proteins utilize these crRNAs, which contain spacer sequences that can be derived from mobile genetic elements, to mediate immunity during a reoccurring virus infection. Type I CRISPR-Cas systems are defined by the presence of different Cascade interference complexes containing large and small subunits that play major roles during target DNA selection. Here, we produce the protein and crRNA components of the Type I-B CRISPR-Cas complex of Clostridium thermocellum and Methanococcus maripaludis. The C. thermocellum Cascade complexes were reconstituted and analyzed via size-exclusion chromatography. Activity of the heterologous M. maripaludis CRISPR-Cas system was followed using phage lambda plaques assays. The reconstituted Type-I-B Cascade complex contains Cas7, Cas5, Cas6b and the large subunit Cas8b. Cas6b can be omitted from the reconstitution protocol. The large subunit Cas8b was found to be represented by two tightly associated protein fragments and a small C-terminal Cas8b segment was identified in recombinant complexes and C. thermocellum cell lysate. Production of Cas8b generates a small C-terminal fragment, which is suggested to fulfill the role of the missing small subunit. A heterologous, synthetic M. maripaludis Type I-B system is active in E. coli against phage lambda, highlighting a potential for genome editing using endogenous Type-I-B CRISPR-Cas machineries. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.
Lehneck, Ronny; Neumann, Piotr; Vullo, Daniela; Elleuche, Skander; Supuran, Claudiu T; Ficner, Ralf; Pöggeler, Stefanie
2014-04-01
Carbonic anhydrases (CAs) are metalloenzymes catalyzing the reversible hydration of carbon dioxide to bicarbonate (hydrogen carbonate) and protons. CAs have been identified in archaea, bacteria and eukaryotes and can be classified into five groups (α, β, γ, δ, ζ) that are unrelated in sequence and structure. The fungal β-class has only recently attracted attention. In the present study, we investigated the structure and function of the plant-like β-CA proteins CAS1 and CAS2 from the filamentous ascomycete Sordaria macrospora. We demonstrated that both proteins can substitute for the Saccharomyces cerevisiae β-CA Nce103 and exhibit an in vitro CO2 hydration activity (kcat /Km of CAS1: 1.30 × 10(6) m(-1) ·s(-1) ; CAS2: 1.21 × 10(6 ) m(-1) ·s(-1) ). To further investigate the structural properties of CAS1 and CAS2, we determined their crystal structures to a resolution of 2.7 Å and 1.8 Å, respectively. The oligomeric state of both proteins is tetrameric. With the exception of the active site composition, no further major differences have been found. In both enzymes, the Zn(2) (+) -ion is tetrahedrally coordinated; in CAS1 by Cys45, His101 and Cys104 and a water molecule and in CAS2 by the side chains of four residues (Cys56, His112, Cys115 and Asp58). Both CAs are only weakly inhibited by anions, making them good candidates for industrial applications. CAS1 and CAS2 bind by x-ray crystallography (View interaction) Structural data have been deposited in the Protein Data Bank database under accession numbers 4O1J for CAS1 and 4O1K for CAS2. © 2014 FEBS.
Koo, Yoon; Ka, Donghyun; Kim, Eun-Jin; Suh, Nayoung; Bae, Euiyoung
2013-10-23
Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins form an RNA-mediated microbial immune system against invading foreign genetic elements. Cas5 proteins constitute one of the most prevalent Cas protein families in CRISPR-Cas systems and are predicted to have RNA recognition motif (RRM) domains. Cas5d is a subtype I-C-specific Cas5 protein that can be divided into two distinct subgroups, one of which has extra C-terminal residues while the other contains a longer insertion in the middle of its N-terminal RRM domain. Here, we report crystal structures of Cas5d from Streptococcus pyogenes and Xanthomonas oryzae, which respectively represent the two Cas5d subgroups. Despite a common domain architecture consisting of an N-terminal RRM domain and a C-terminal β-sheet domain, the structural differences between the two Cas5d proteins are highlighted by the presence of a unique extended helical region protruding from the N-terminal RRM domain of X. oryzae Cas5d. We also demonstrate that Cas5d proteins possess not only specific endoribonuclease activity for CRISPR RNAs but also nonspecific double-stranded DNA binding affinity. These findings suggest that Cas5d may play multiple roles in CRISPR-mediated immunity. Furthermore, the specific RNA processing was also observed between S. pyogenes Cas5d protein and X. oryzae CRISPR RNA and vice versa. This cross-species activity of Cas5d provides a special opportunity for elucidating conserved features of the CRISPR RNA processing event. Copyright © 2013 Elsevier Ltd. All rights reserved.
Solubilization of municipal sewage waste activated sludge by novel lytic bacterial strains.
Lakshmi, M Veera; Merrylin, J; Kavitha, S; Kumar, S Adish; Banu, J Rajesh; Yeom, Ick-Tae
2014-02-01
Extracellular polymeric substances (EPS) are an extracellular matrix found in sludge which plays a crucial role in flocculation by interacting with the organic solids. Therefore, to enhance pretreatment of sludge, EPS have to be removed. In this study, EPS were removed with a chemical extractant, NaOH, to enhance the bacterial pretreatment. A lysozyme secreting bacterial consortium was isolated from the waste activated sludge (WAS). The result of density gradient gel electrophoresis (DGGE) analysis revealed that the isolated consortium consists of two strains. The two novel strains isolated were named as Jerish03 (NCBI accession number KC597266) and Jerish 04 (NCBI accession number KC597267) and they belong to the genus Bacillus. Pretreatment with these novel strains enhances the efficiency of the aerobic digestion of sludge. Sludge treated with the lysozyme secreting bacterial consortium produced 29 % and 28.5 % increase in suspended solids (SS) reduction and chemical oxygen demand (COD) removal compared to the raw activated sludge (without pretreatment) during aerobic digestion. It is specified that these two novel strains had a high potential to enhance WAS degradation efficiency in aerobic digestion.
Defontaine, G; Thormann, J; Lartiges, B S; El Samrani, A G; Barrs, O
2005-01-01
The role of mineral surface hydrophobicity in attachment to activated sludge flocs was investigated. Fluorite and quartz particles of similar granulometry were hydrophobized by adsorbing sodium oleate and dodecylamine chloride, respectively. Mineral hydrophobicity was assessed by flotation expriments. The attachment of particles to microbial flocs was determined by optical microscopy. The results indicate that hydrophobized particles are always better incorporated within activated sludge flocs than non-coated particles. A comparison with Aquatal particles used as sludge ballast reveals that hydrophobized minerals are associated with microbial flocs to the same extent.
Utilization and Conversion of Sewage Sludge as Metal Sorbent
NASA Astrophysics Data System (ADS)
Gong, Xu Dong; Li, Loretta Y.
2013-04-01
Most biosolids are disposed on land. With improvements in wastewater treatment processes and upgrading of treatment plants across Canada, biosolids generation will increase dramatically. These biosolids will need to be dealt with because they contain various contaminants, including heavy metals and several classes of emerging contaminants. A number of researchers have recently focused on preparation of sewage sludge-based adsorbents by carbonation, physical activation and chemical activation for decontamination of air and wastewater. These previous studies have indicated that sludge-based activated carbon can have good adsorption performance for organic substances in dye wastewater. The overall results suggest that activated carbon from sewage sludge can produce a useful adsorbent, while also reducing the amount of sewage sludge to be disposed. However, sludge-derived activated carbon has not been extensively studied, especially for adsorption of heavy metal ions in wastewater and for its capacity to remove emerging contaminants, such as poly-fluorinated compounds (PFCs). Previous research has indicated that commercial activated carbons adsorb organic compounds more efficiently than heavy metal ions. 45 Activated carbon can be modified to enhance its adsorption capacity for special heavy metal ions,46 e.g. by addition of inorganic and organic reagents. The modifications which are successful for commercial activated carbon should also be effective for sludge-derived activated carbon, but this needs to be confirmed. Our research focuses on (a) investigation of techniques for converting sewage sludge (SS) to activated carbon (AC) as sorbents; (b) exploration of possible modification of the activated carbon (MAC) to improve its sorption capacity; (c) examination of the chemical stability of the activated carbon and the leachability of contaminants from activated carbon,; (d) comparison of adsorptivity with that of other sorbents. Based on XRD and FT-IR, we successfully converted SS to AC and further modified it to improve absorption. SSMAC has large specific surface areas based on the BET technique. Batch adsorption results indicate that metal adsorption for SSMAC > SSAC, with adsorption occurring within the first 5 minutes of contact. Comparison of the adsorptivity of various sorbents such as commercial activated carbon (CAC), mineral sorbents such as perlite, clinoptilolite and illite indicates that SSMAC × CAC × clinoptilolite > kaolite.
Barañao, P A; Hall, E R
2004-01-01
Activated Sludge Model No 3 (ASM3) was chosen to model an activated sludge system treating effluents from a mechanical pulp and paper mill. The high COD concentration and the high content of readily biodegradable substrates of the wastewater make this model appropriate for this system. ASM3 was calibrated based on batch respirometric tests using fresh wastewater and sludge from the treatment plant, and on analytical measurements of COD, TSS and VSS. The model, developed for municipal wastewater, was found suitable for fitting a variety of respirometric batch tests, performed at different temperatures and food to microorganism ratios (F/M). Therefore, a set of calibrated parameters, as well as the wastewater COD fractions, was estimated for this industrial wastewater. The majority of the calibrated parameters were in the range of those found in the literature.
Seka, M A; Van DeWiele, T; Verstraete, W
2002-01-01
A multi-component additive formulated for a more efficient control of activated sludge filamentous bulking was evaluated at a full-scale treatment plant experiencing severe filamentous bulking. It was found that, besides offering an immediate improvement of sludge settling, the multi-component additive was able to eliminate the filamentous bacteria causing the bulking. Hence, contrary to ordinary additives, this novel additive yielded immediate as well as long-term improvements in sludge sedimentation upon a few additions. Preliminary lab-scale toxicity tests showed that the treatment of the sludge by the additive should not impart any toxicity to the resulting effluent.
Schuppler, M; Wagner, M; Schön, G; Göbel, U B
1998-01-01
Hitherto, few environmental samples have been investigated by a 'full cycle rRNA analysis'. Here the results of in situ hybridization experiments with specific rRNA-targeted oligonucleotide probes developed on the basis of new sequences derived from a previously described comparative 16S rRNA analysis of nocardioform actinomycetes in activated sludge are reported. Application of the specific probes enabled identification and discrimination of the distinct populations of nocardioform actinomycetes in activated sludge. One of the specific probes (DLP) detected rod-shaped bacteria which were found in 13 of the 16 investigated sludge samples from various wastewater treatment plants, suggesting their importance in the wastewater treatment process. Another probe (GLP2) hybridized with typically branched filaments of nocardioforms mainly found in samples from enhanced biological phosphorus removal plants, suggesting that these bacteria are involved in sludge foaming. The combination of in situ hybridization with fluorescently labelled rRNA-targeted oligonucleotide probes and confocal laser scanning microscopy improved the detection of nocardioform actinomycetes, which often showed only weak signals inside the activated-sludge flocs.
Use of hydrodynamic disintegration to accelerate anaerobic digestion of surplus activated sludge.
Grübel, Klaudiusz; Machnicka, Alicja
2009-12-01
Hydrodynamic disintegration of activated sludge resulted in organic matter and polymers transfer from the solid phase into the liquid phase. Disintegration by hydrodynamic cavitation had a positive effect on the degree and rate of excess sludge anaerobic digestion. Also, addition of a part of anaerobic digested sludge containing adapted microorganisms resulted in acceleration of the process. The disruption of cells of foam microorganisms and addition to the digestion process led to an increase of biogas production.
[Harvest of the carbon source in wastewater by the adsorption and desorption of activated sludge].
Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang; Mei, Yi-Jun
2011-04-01
The carbon source in municipal wastewater was adsorbed by activated sludge and then harvested through the hydrolysis of activated sludge. Results indicated that activated sludge had high absorbing ability towards organic carbon and phosphorus under continuous operation mode, and the average COD and TP absorption rate reached as high as 63% and 76%, respectively. Moreover, about 50% of the soluble carbon source was outside of the sludge cell and could be released under mild hydrolysis condition. Whereas the absorbed amount of nitrogen was relatively low, and the removal rate of ammonia was only 13% . Furthermore, the releases of organic carbon, nitrogen and phosphorus from the sludge absorbing pollutants in the wastewater were studied. By comparing different hydrolysis conditions of normal (pH 7.5, 20 degrees C), heating (pH 7.5, 60 degrees C) and the alkaline heating (pH 11, 60 degrees C), the last one presented the optimum hydrolysis efficiency. Under which, the release rate of COD could reach 320 mg/g after 24 hours, whereas nitrogen and phosphorus just obtained low release rates of 18 mg/g and 2 mg/g, respectively. Results indicate that the carbon source in wastewater could be harvested by the adsorption and desorption of activated sludge, and the concentrations of nitrogen and phosphorus are low and would not influence the reuse of the harvested carbon source.
New CRISPR-Cas systems from uncultivated microbes
NASA Astrophysics Data System (ADS)
Burstein, David; Harrington, Lucas B.; Strutt, Steven C.; Probst, Alexander J.; Anantharaman, Karthik; Thomas, Brian C.; Doudna, Jennifer A.; Banfield, Jillian F.
2017-02-01
CRISPR-Cas systems provide microbes with adaptive immunity by employing short DNA sequences, termed spacers, that guide Cas proteins to cleave foreign DNA. Class 2 CRISPR-Cas systems are streamlined versions, in which a single RNA-bound Cas protein recognizes and cleaves target sequences. The programmable nature of these minimal systems has enabled researchers to repurpose them into a versatile technology that is broadly revolutionizing biological and clinical research. However, current CRISPR-Cas technologies are based solely on systems from isolated bacteria, leaving the vast majority of enzymes from organisms that have not been cultured untapped. Metagenomics, the sequencing of DNA extracted directly from natural microbial communities, provides access to the genetic material of a huge array of uncultivated organisms. Here, using genome-resolved metagenomics, we identify a number of CRISPR-Cas systems, including the first reported Cas9 in the archaeal domain of life, to our knowledge. This divergent Cas9 protein was found in little-studied nanoarchaea as part of an active CRISPR-Cas system. In bacteria, we discovered two previously unknown systems, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. Notably, all required functional components were identified by metagenomics, enabling validation of robust in vivo RNA-guided DNA interference activity in Escherichia coli. Interrogation of environmental microbial communities combined with in vivo experiments allows us to access an unprecedented diversity of genomes, the content of which will expand the repertoire of microbe-based biotechnologies.
New CRISPR–Cas systems from uncultivated microbes
Burstein, David; Harrington, Lucas B.; Strutt, Steven C.; ...
2016-12-22
We present that CRISPR-Cas systems provide microbes with adaptive immunity by employing short DNA sequences, termed spacers, that guide Cas proteins to cleave foreign DNA. Class 2 CRISPR-Cas systems are streamlined versions, in which a single RNA-bound Cas protein recognizes and cleaves target sequences. The programmable nature of these minimal systems has enabled researchers to repurpose them into a versatile technology that is broadly revolutionizing biological and clinical research. However, current CRISPR-Cas technologies are based solely on systems from isolated bacteria, leaving the vast majority of enzymes from organisms that have not been cultured untapped. Metagenomics, the sequencing of DNAmore » extracted directly from natural microbial communities, provides access to the genetic material of a huge array of uncultivated organisms. Here, using genome-resolved metagenomics, we identify a number of CRISPR-Cas systems, including the first reported Cas9 in the archaeal domain of life, to our knowledge. This divergent Cas9 protein was found in little-studied nanoarchaea as part of an active CRISPR-Cas system. In bacteria, we discovered two previously unknown systems, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. Notably, all required functional components were identified by metagenomics, enabling validation of robust in vivo RNA-guided DNA interference activity in Escherichia coli. Lastly, interrogation of environmental microbial communities combined with in vivo experiments allows us to access an unprecedented diversity of genomes, the content of which will expand the repertoire of microbe-based biotechnologies.« less
New CRISPR–Cas systems from uncultivated microbes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burstein, David; Harrington, Lucas B.; Strutt, Steven C.
We present that CRISPR-Cas systems provide microbes with adaptive immunity by employing short DNA sequences, termed spacers, that guide Cas proteins to cleave foreign DNA. Class 2 CRISPR-Cas systems are streamlined versions, in which a single RNA-bound Cas protein recognizes and cleaves target sequences. The programmable nature of these minimal systems has enabled researchers to repurpose them into a versatile technology that is broadly revolutionizing biological and clinical research. However, current CRISPR-Cas technologies are based solely on systems from isolated bacteria, leaving the vast majority of enzymes from organisms that have not been cultured untapped. Metagenomics, the sequencing of DNAmore » extracted directly from natural microbial communities, provides access to the genetic material of a huge array of uncultivated organisms. Here, using genome-resolved metagenomics, we identify a number of CRISPR-Cas systems, including the first reported Cas9 in the archaeal domain of life, to our knowledge. This divergent Cas9 protein was found in little-studied nanoarchaea as part of an active CRISPR-Cas system. In bacteria, we discovered two previously unknown systems, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. Notably, all required functional components were identified by metagenomics, enabling validation of robust in vivo RNA-guided DNA interference activity in Escherichia coli. Lastly, interrogation of environmental microbial communities combined with in vivo experiments allows us to access an unprecedented diversity of genomes, the content of which will expand the repertoire of microbe-based biotechnologies.« less
Gulde, Rebekka; Anliker, Sabine; Kohler, Hans-Peter E; Fenner, Kathrin
2018-01-02
To optimize removal of organic micropollutants from the water cycle, understanding the processes during activated sludge treatment is essential. In this study, we hypothesize that aliphatic amines, which are highly abundant among organic micropollutants, are partly removed from the water phase in activated sludge through ion trapping in protozoa. In ion trapping, which has been extensively investigated in medical research, the neutral species of amine-containing compounds diffuse through the cell membrane and further into acidic vesicles present in eukaryotic cells such as protozoa. There they become trapped because diffusion of the positively charged species formed in the acidic vesicles is strongly hindered. We tested our hypothesis with two experiments. First, we studied the distribution of the fluorescent amine acridine orange in activated sludge by confocal fluorescence imaging. We observed intense fluorescence in distinct compartments of the protozoa, but not in the bacterial biomass. Second, we investigated the distribution of 12 amine-containing and eight control micropollutants in both regular activated sludge and sludge where the protozoa had been inactivated. In contrast to most control compounds, the amine-containing micropollutants displayed a distinctly different behavior in the noninhibited sludge compared to the inhibited one: (i) more removal from the liquid phase; (ii) deviation from first-order kinetics for the removal from the liquid phase; and (iii) higher amounts in the solid phase. These results provide strong evidence that ion trapping in protozoa occurs and that it is an important removal mechanism for amine-containing micropollutants in batch experiments with activated sludge that has so far gone unnoticed. We expect that our findings will trigger further investigations on the importance of this process in full-scale wastewater treatment systems, including its relevance for accumulation of ammonium.
Ta, Huy Q; Thomas, Keena S; Schrecengost, Randy S; Bouton, Amy H
2008-11-01
Resistance to chemotherapy remains a major obstacle for the treatment of breast cancer. Understanding the molecular mechanism(s) of resistance is crucial for the development of new effective therapies to treat this disease. This study examines the putative role of p130(Cas) (Cas) in resistance to the cytotoxic agent Adriamycin. High expression of Cas in primary breast tumors is associated with the failure to respond to the antiestrogen tamoxifen and poor prognosis, highlighting the potential clinical importance of this molecule. Here, we show a novel association between Cas and resistance to Adriamycin. We show that Cas overexpression renders MCF-7 breast cancer cells less sensitive to the growth inhibitory and proapoptotic effects of Adriamycin. The catalytic activity of the nonreceptor tyrosine kinase c-Src, but not the epidermal growth factor receptor, is critical for Cas-mediated protection from Adriamycin-induced death. The phosphorylation of Akt and extracellular signal-regulated kinase 1/2 (ERK1/2) is elevated in Cas-overexpressing cells treated with Adriamycin, whereas expression of the proapoptotic protein Bak is decreased. Conversely, Cas depletion in the more resistant T47D and MDA-MB-231 cell lines increases sensitivity to Adriamycin. Based on these data, we propose that Cas activates growth and survival pathways regulated by c-Src, Akt, and ERK1/2 that lead to the inhibition of mitochondrial-mediated apoptosis in the presence of Adriamycin. Because Cas is frequently expressed at high levels in breast cancers, these findings raise the possibility of resensitizing Cas-overexpressing tumors to chemotherapy through perturbation of Cas signaling pathways.
Jobbágy, A; Tardy, G M; Literáthy, B
2004-01-01
In 1999 the existing activated sludge unit of the Southpest Wastewater Treatment Plant was supplemented by a two-stage biofilter system aiming for nitrification and post-denitrification. In this arrangement excess biomass of the filters is wasted through the activated sludge unit, facilitating backseeding, and recirculation of the nitrate-rich effluent of the N-filter serves for decreasing the methanol demand of the DN-filter and for saving aeration energy at the same time. The paper reports on the development of an ASM1-based mathematical model that proved to be adequate for describing the interactions in the combined system and was used to compare the efficiency of different treatment options. Full-scale results verified that backseeding may considerably improve performance. However, nitrification ability of the activated sludge unit depends on the treatment temperature and, if unexpected, can be limited by insufficient oxygen supply. The upgrading possibilities outlined may serve as a new perspective for implementation of combined activated sludge-biofilter systems.
Zhang, Yaobin; Feng, Yinghong; Quan, Xie
2015-04-01
Heat or alkali pretreatment is the effective method to improve hydrolysis of waste sludge and then enhance anaerobic sludge digestion. However the pretreatment may inactivate the methanogens in the sludge. In the present work, zero-valent iron (ZVI) was used to enhance the methanogenic activity in anaerobic sludge digester under two methanogens-suppressing conditions, i.e. heat-pretreatment and alkali condition respectively. With the addition of ZVI, the lag time of methane production was shortened, and the methane yield increased by 91.5% compared to the control group. The consumption of VFA was accelerated by ZVI, especially for acetate, indicating that the acetoclastic methanogenesis was enhanced. In the alkali-condition experiment, the hydrogen produced decreased from 27.6 to 18.8 mL when increasing the ZVI dosage from 0 to 10 g/L. Correspondingly, the methane yield increased from 1.9 to 32.2 mL, which meant that the H2-utilizing methanogenes was enriched. These results suggested that the addition of ZVI into anaerobic digestion of sludge after pretreated by the heat or alkali process could efficiently recover the methanogenic activity and increase the methane production and sludge reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation.
Dominguez, Antonia A; Lim, Wendell A; Qi, Lei S
2016-01-01
The bacterial CRISPR-Cas9 system has emerged as a multifunctional platform for sequence-specific regulation of gene expression. This Review describes the development of technologies based on nuclease-deactivated Cas9, termed dCas9, for RNA-guided genomic transcription regulation, both by repression through CRISPR interference (CRISPRi) and by activation through CRISPR activation (CRISPRa). We highlight different uses in diverse organisms, including bacterial and eukaryotic cells, and summarize current applications of harnessing CRISPR-dCas9 for multiplexed, inducible gene regulation, genome-wide screens and cell fate engineering. We also provide a perspective on future developments of the technology and its applications in biomedical research and clinical studies.
Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation
Dominguez, Antonia A.; Lim, Wendell A.; Qi, Lei S.
2016-01-01
The bacterial CRISPR–Cas9 system has emerged as a multifunctional platform for sequence-specific regulation of gene expression. This Review describes the development of technologies based on nuclease-deactivated Cas9, termed dCas9, for RNA-guided genomic transcription regulation, both by repression through CRISPR interference (CRISPRi) and by activation through CRISPR activation (CRISPRa). We highlight different uses in diverse organisms, including bacterial and eukaryotic cells, and summarize current applications of harnessing CRISPR–dCas9 for multiplexed, inducible gene regulation, genome-wide screens and cell fate engineering. We also provide a perspective on future developments of the technology and its applications in biomedical research and clinical studies. PMID:26670017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiani, Samira; Chavez, Alejandro; Tuttle, Marcelle
Here we demonstrate that by altering the length of Cas9-associated guide RNA(gRNA) we were able to control Cas9 nuclease activity and simultaneously perform genome editing and transcriptional regulation with a single Cas9 protein. We exploited these principles to engineer mammalian synthetic circuits with combined transcriptional regulation and kill functions governed by a single multifunctional Cas9 protein.
Seth, Kunal; Harish
2016-11-25
Redesigned Cas9 has emerged as a tool with various applications like gene editing, gene regulation, epigenetic modification and chromosomal imaging. Target specific single guide RNA (sgRNA) can be used with Cas9 for precise gene editing with high efficiency than previously known methods. Further, nuclease-deactivated Cas9 (dCas9) can be fused with activator or repressor for activation (CRISPRa) and repression (CRISPRi) of gene expression, respectively. dCas9 fused with epigenetic modifier like methylase or acetylase further expand the scope of this technique. Fluorescent probes can be tagged to dCas9 to visualize the chromosome. Due to its wide-spread application, simplicity, accessibility, efficacy and universality, this technique is expanding the structural and functional genomic studies of plant and developing CRISPR crops. The present review focuses on current status of using repurposed Cas9 system in these various areas, with major focus on application in plants. Major challenges, concerns and future directions of using this technique are discussed in brief. Copyright © 2016 Elsevier Inc. All rights reserved.
40 CFR 503.20 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... who prepares sewage sludge that is placed on a surface disposal site, to the owner/operator of a surface disposal site, to sewage sludge placed on a surface disposal site, and to a surface disposal site... sludge remains is not an active sewage sludge unit. The demonstration shall include the following...
40 CFR 503.20 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... who prepares sewage sludge that is placed on a surface disposal site, to the owner/operator of a surface disposal site, to sewage sludge placed on a surface disposal site, and to a surface disposal site... sludge remains is not an active sewage sludge unit. The demonstration shall include the following...
40 CFR 503.20 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... who prepares sewage sludge that is placed on a surface disposal site, to the owner/operator of a surface disposal site, to sewage sludge placed on a surface disposal site, and to a surface disposal site... sludge remains is not an active sewage sludge unit. The demonstration shall include the following...
40 CFR 503.20 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... who prepares sewage sludge that is placed on a surface disposal site, to the owner/operator of a surface disposal site, to sewage sludge placed on a surface disposal site, and to a surface disposal site... sludge remains is not an active sewage sludge unit. The demonstration shall include the following...
EFFECT OF RECYCLING THERMOPHILICALLY DIGESTED SLUDGE ON THE ACTIVATED SLUDGE PROCESS
A full-scale investigation was undertaken at Chicago's Hanover Park Water Reclamation Plant (WRP) to study whether the net sludge production from the WRP could be reduced by implementing a scheme developed by W. Torpey et al. (1984). n this process, sludge is withdrawn from a the...
Nam, Ki Hyun; Ding, Fran; Haitjema, Charles; Huang, Qingqiu; DeLisa, Matthew P; Ke, Ailong
2012-10-19
The CRISPR (clustered regularly interspaced short palindromic repeats) system is a prokaryotic RNA-based adaptive immune system against extrachromosomal genetic elements. Cas2 is a universally conserved core CRISPR-associated protein required for the acquisition of new spacers for CRISPR adaptation. It was previously characterized as an endoribonuclease with preference for single-stranded (ss)RNA. Here, we show using crystallography, mutagenesis, and isothermal titration calorimetry that the Bacillus halodurans Cas2 (Bha_Cas2) from the subtype I-C/Dvulg CRISPR instead possesses metal-dependent endonuclease activity against double-stranded (ds)DNA. This activity is consistent with its putative function in producing new spacers for insertion into the 5'-end of the CRISPR locus. Mutagenesis and isothermal titration calorimetry studies revealed that a single divalent metal ion (Mg(2+) or Mn(2+)), coordinated by a symmetric Asp pair in the Bha_Cas2 dimer, is involved in the catalysis. We envision that a pH-dependent conformational change switches Cas2 into a metal-binding competent conformation for catalysis. We further propose that the distinct substrate preferences among Cas2 proteins may be determined by the sequence and structure in the β1-α1 loop.
A pilot-scale microwave technology for sludge sanitization and drying.
Mawioo, Peter M; Garcia, Hector A; Hooijmans, Christine M; Velkushanova, Konstantina; Simonič, Marjana; Mijatović, Ivan; Brdjanovic, Damir
2017-12-01
Large volumes of sludge are produced from onsite sanitation systems in densely populated areas (e.g. slums and emergency settlements) and wastewater treatment facilities that contain high amounts of pathogens. There is a need for technological options which can effectively treat the rapidly accumulating sludge under these conditions. This study explored a pilot-scale microwave (MW) based reactor as a possible alternative for rapid sludge treatment. The reactor performance was examined by conducting a series of batch tests using centrifuged waste activated sludge (C-WAS), non-centrifuged waste activated sludge (WAS), faecal sludge (FS), and septic tank sludge (SS). Four kilograms of each sludge type were subjected to MW treatment at a power of 3.4kW for various time durations ranging from 30 to 240min. During the treatment the temperature change, bacteria inactivation (E. coli, coliforms, Staphylococcus aureus, and enterococcus faecalis) and sludge weight/volume reduction were measured. Calorific values (CV) of the dried sludge and the nutrient content (total nitrogen (TN) and total phosphorus (TP)) in both the dried sludge and the condensate were also determined. It was found that MW treatment was successful to achieve a complete bacterial inactivation and a sludge weight/volume reduction above 60%. Besides, the dried sludge and condensate had high energy (≥16MJ/kg) and nutrient contents (solids; TN≥28mg/g TS and TP≥15mg/g TS; condensate TN≥49mg/L TS and TP≥0.2mg/L), having the potential to be used as biofuel, soil conditioner, fertilizer, etc. The MW reactor can be applied for the rapid treatment of sludge in areas such as slums and emergency settlements. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Feng, Yinghong; Zhang, Yaobin; Quan, Xie; Chen, Suo
2014-04-01
Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidification process. Considering that, ZVI was added into an anaerobic sludge digestion system to accelerate the sludge digestion in this study. The results indicated that ZVI effectively enhanced the decomposition of protein and cellulose, the two main components of the sludge. Compared to the control test without ZVI, the degradation of protein increased 21.9% and the volatile fatty acids production increased 37.3% with adding ZVI. More acetate and less propionate are found during the hydrolysis-acidification with ZVI. The activities of several key enzymes in the hydrolysis and acidification increased 0.6-1 time. ZVI made the methane production raise 43.5% and sludge reduction ratio increase 12.2 percent points. Fluorescence in situ hybridization analysis showed that the abundances of hydrogen-consuming microorganisms including homoacetogens and hydrogenotrophic methanogens with ZVI were higher than the control, which reduced the H2 accumulation to create a beneficial condition for the sludge digestion in thermodynamics. Copyright © 2013 Elsevier Ltd. All rights reserved.
Stabilization of waste-activated sludge through the anoxic-aerobic digestion process.
Hashimoto, S; Fujita, M; Terai, K
1982-08-01
During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludge continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q(r)/Q(s) ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q(r)/Q(s) ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.
MiDAS: the field guide to the microbes of activated sludge.
McIlroy, Simon Jon; Saunders, Aaron Marc; Albertsen, Mads; Nierychlo, Marta; McIlroy, Bianca; Hansen, Aviaja Anna; Karst, Søren Michael; Nielsen, Jeppe Lund; Nielsen, Per Halkjær
2015-01-01
The Microbial Database for Activated Sludge (MiDAS) field guide is a freely available online resource linking the identity of abundant and process critical microorganisms in activated sludge wastewater treatment systems to available data related to their functional importance. Phenotypic properties of some of these genera are described, but most are known only from sequence data. The MiDAS taxonomy is a manual curation of the SILVA taxonomy that proposes a name for all genus-level taxa observed to be abundant by large-scale 16 S rRNA gene amplicon sequencing of full-scale activated sludge communities. The taxonomy can be used to classify unknown sequences, and the online MiDAS field guide links the identity to the available information about their morphology, diversity, physiology and distribution. The use of a common taxonomy across the field will provide a solid foundation for the study of microbial ecology of the activated sludge process and related treatment processes. The online MiDAS field guide is a collaborative workspace intended to facilitate a better understanding of the ecology of activated sludge and related treatment processes--knowledge that will be an invaluable resource for the optimal design and operation of these systems. © The Author(s) 2015. Published by Oxford University Press.
Yu, Jie; Liu, Dongfang; Li, Kexun
2015-03-01
The concentrations of tetracycline-intermediate resistant, tetracycline-resistant heterotrophic bacteria, and total heterotrophic bacteria were examined to assess the influence of tetracycline on tetracycline-resistant heterotrophs by the R2A agar cultivation method in the tetracycline fortified activated sludge process and in the natural background. Results showed that the percentages of both tetracycline-intermediate resistant and tetracycline-resistant heterotrophic bacteria in total heterotrophic bacteria were significantly increased, after tetracycline was fed to activated sludge for a 3 months period under four different operating conditions, as compared with the background. In order to investigate the mechanism of activated sludge resistance to tetracycline, polymerase chain reaction experiments were carried out to analyze the existence and evolution of tet genes in the presence of tetracycline. Results revealed that only tet A and tet B genes out of the 11 target tet genes were observed in tetracycline treated activated sludge while no tet gene was detected in background. This indicated that tet A gene could accumulate in activated sludge with slower and continuous influent, while the accumulation of tet B gene could be attributed to shorter hydraulic retention time. Therefore, it was proposed in this study that tetracycline-resistant genes created by efflux pumps spread earlier and quicker to encode resistance to tetracycline, which facilitated the increase in tetracycline-resistance.
MiDAS: the field guide to the microbes of activated sludge
McIlroy, Simon Jon; Saunders, Aaron Marc; Albertsen, Mads; Nierychlo, Marta; McIlroy, Bianca; Hansen, Aviaja Anna; Karst, Søren Michael; Nielsen, Jeppe Lund; Nielsen, Per Halkjær
2015-01-01
The Microbial Database for Activated Sludge (MiDAS) field guide is a freely available online resource linking the identity of abundant and process critical microorganisms in activated sludge wastewater treatment systems to available data related to their functional importance. Phenotypic properties of some of these genera are described, but most are known only from sequence data. The MiDAS taxonomy is a manual curation of the SILVA taxonomy that proposes a name for all genus-level taxa observed to be abundant by large-scale 16 S rRNA gene amplicon sequencing of full-scale activated sludge communities. The taxonomy can be used to classify unknown sequences, and the online MiDAS field guide links the identity to the available information about their morphology, diversity, physiology and distribution. The use of a common taxonomy across the field will provide a solid foundation for the study of microbial ecology of the activated sludge process and related treatment processes. The online MiDAS field guide is a collaborative workspace intended to facilitate a better understanding of the ecology of activated sludge and related treatment processes—knowledge that will be an invaluable resource for the optimal design and operation of these systems. Database URL: http://www.midasfieldguide.org PMID:26120139
Effect of EPS Content on Activated Sludge Reduction in Process of Predation by T. tubifex
NASA Astrophysics Data System (ADS)
Lei, Yingjie; Ai, Cuiling; Zhang, Guochun
2017-12-01
A Sludge reduction in a conventional activated sludge process combined with a membrane biofilm inoculated with T. tubifex was investigated. The influence of microbial extracellular polymeric substances (EPS) extracted in forms of LB-EPS and TB-EPS respectively on the surface properties of biomass was studied. Results showed that variations of polysaccharides and protein along with the increasing of EPS feeding would affect the existence of T. tubifex. When the amount of EPS varied from 10 to 50μg/mg, the specific resistance of a sludge suspension was obtained from 3.5×107 to 1.4×107 S2/g. Meanwhile, polysaccharides content in EPS was to be positively correlated with the SSR of sludge suspension whereas protein content would be not. Anyway, it can be argued that an increase in LB-EPS not TB-EPS may affect the performance of activated sludge reduction with efficiency about 40.1% to 31.6%.
Reduction of selenite to elemental selenium nanoparticles by activated sludge.
Jain, Rohan; Matassa, Silvio; Singh, Satyendra; van Hullebusch, Eric D; Esposito, Giovanni; Lens, Piet N L
2016-01-01
Total selenium removal by the activated sludge process, where selenite is reduced to colloidal elemental selenium nanoparticles (BioSeNPs) that remain entrapped in the activated sludge flocs, was studied. Total selenium removal efficiencies with glucose as electron donor (2.0 g chemical oxygen demand (COD) L(-1)) at neutral pH and 30 °C gave 2.9 and 6.8 times higher removal efficiencies as compared to the electron donors lactate and acetate, respectively. Total selenium removal efficiencies of 79 (±3) and 86 (±1) % were achieved in shake flasks and fed batch reactors, respectively, at dissolved oxygen (DO) concentrations above 4.0 mg L(-1) and 30 °C when fed with 172 mg L(-1) (1 mM) Na2SeO3 and 2.0 g L(-1) COD of glucose. Continuously operated reactors operating at neutral pH, 30 °C and a DO >3 mg L(-1) removed 33.98 and 36.65 mg of total selenium per gram of total suspended solids (TSS) at TSS concentrations of 1.3 and 3.0 g L(-1), respectively. However, selenite toxicity to the activated sludge led to failure of a continuously operating activated sludge reactor at the applied loading rates. This suggests that a higher hydraulic retention time (HRT) or different reactor configurations need to be applied for selenium-removing activated sludge processes. Graphical Abstract Scheme representing the possible mechanisms of selenite reduction at high and low DO levels in the activated sludge process.
A Broad-Spectrum Inhibitor of CRISPR-Cas9.
Harrington, Lucas B; Doxzen, Kevin W; Ma, Enbo; Liu, Jun-Jie; Knott, Gavin J; Edraki, Alireza; Garcia, Bianca; Amrani, Nadia; Chen, Janice S; Cofsky, Joshua C; Kranzusch, Philip J; Sontheimer, Erik J; Davidson, Alan R; Maxwell, Karen L; Doudna, Jennifer A
2017-09-07
CRISPR-Cas9 proteins function within bacterial immune systems to target and destroy invasive DNA and have been harnessed as a robust technology for genome editing. Small bacteriophage-encoded anti-CRISPR proteins (Acrs) can inactivate Cas9, providing an efficient off switch for Cas9-based applications. Here, we show that two Acrs, AcrIIC1 and AcrIIC3, inhibit Cas9 by distinct strategies. AcrIIC1 is a broad-spectrum Cas9 inhibitor that prevents DNA cutting by multiple divergent Cas9 orthologs through direct binding to the conserved HNH catalytic domain of Cas9. A crystal structure of an AcrIIC1-Cas9 HNH domain complex shows how AcrIIC1 traps Cas9 in a DNA-bound but catalytically inactive state. By contrast, AcrIIC3 blocks activity of a single Cas9 ortholog and induces Cas9 dimerization while preventing binding to the target DNA. These two orthogonal mechanisms allow for separate control of Cas9 target binding and cleavage and suggest applications to allow DNA binding while preventing DNA cutting by Cas9. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, Fuqiang; Ding, Xiao; Feng, Yongmei; Seebeck, Timothy; Jiang, Yanfang; Davis, Gregory D
2017-04-07
Bacterial CRISPR-Cas systems comprise diverse effector endonucleases with different targeting ranges, specificities and enzymatic properties, but many of them are inactive in mammalian cells and are thus precluded from genome-editing applications. Here we show that the type II-B FnCas9 from Francisella novicida possesses novel properties, but its nuclease function is frequently inhibited at many genomic loci in living human cells. Moreover, we develop a proximal CRISPR (termed proxy-CRISPR) targeting method that restores FnCas9 nuclease activity in a target-specific manner. We further demonstrate that this proxy-CRISPR strategy is applicable to diverse CRISPR-Cas systems, including type II-C Cas9 and type V Cpf1 systems, and can facilitate precise gene editing even between identical genomic sites within the same genome. Our findings provide a novel strategy to enable use of diverse otherwise inactive CRISPR-Cas systems for genome-editing applications and a potential path to modulate the impact of chromatin microenvironments on genome modification.
Chen, Fuqiang; Ding, Xiao; Feng, Yongmei; Seebeck, Timothy; Jiang, Yanfang; Davis, Gregory D.
2017-01-01
Bacterial CRISPR–Cas systems comprise diverse effector endonucleases with different targeting ranges, specificities and enzymatic properties, but many of them are inactive in mammalian cells and are thus precluded from genome-editing applications. Here we show that the type II-B FnCas9 from Francisella novicida possesses novel properties, but its nuclease function is frequently inhibited at many genomic loci in living human cells. Moreover, we develop a proximal CRISPR (termed proxy-CRISPR) targeting method that restores FnCas9 nuclease activity in a target-specific manner. We further demonstrate that this proxy-CRISPR strategy is applicable to diverse CRISPR–Cas systems, including type II-C Cas9 and type V Cpf1 systems, and can facilitate precise gene editing even between identical genomic sites within the same genome. Our findings provide a novel strategy to enable use of diverse otherwise inactive CRISPR–Cas systems for genome-editing applications and a potential path to modulate the impact of chromatin microenvironments on genome modification. PMID:28387220
Park, Chul; Helm, Richard F; Novak, John T
2008-12-01
The fate of activated sludge extracellular proteins in sludge digestion was investigated using three different cation-associated extraction methods and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Extraction methods used were the cation exchange resin (CER) method for extracting calcium (Ca2+) and magnesium (Mg2+), sulfide extraction for removing iron, and base treatment (pH 10.5) for dissolving aluminum. Extracellular polymeric substances extracted were then subjected to SDS-PAGE, and the resultant protein profiles were examined before and after sludge digestion. The SDS-PAGE results showed that three methods led to different SDS-PAGE profiles for both undigested and digested sludges. The results further revealed that CER-extracted proteins remained mainly undegraded in anaerobic digestion, but were degraded in aerobic digestion. While the fate of sulfide- and base-extracted proteins was not clear for aerobic digestion, their changes in anaerobic digestion were elucidated. Most sulfide-extracted proteins were removed by anaerobic digestion, while the increase in protein band intensity and diversity was observed for base-extracted proteins. These results suggest that activated sludge flocs contain different fractions of proteins that are distinguishable by their association with certain cations and that each fraction undergoes different fates in anaerobic and aerobic digestion. The proteins that were resistant to degradation and generated during anaerobic digestion were identified by liquid chromatography tandem mass spectrometry. Protein identification results and their putative roles in activated sludge and anaerobic digestion are discussed in this study.
Naturally Occurring Off-Switches for CRISPR-Cas9.
Pawluk, April; Amrani, Nadia; Zhang, Yan; Garcia, Bianca; Hidalgo-Reyes, Yurima; Lee, Jooyoung; Edraki, Alireza; Shah, Megha; Sontheimer, Erik J; Maxwell, Karen L; Davidson, Alan R
2016-12-15
CRISPR-Cas9 technology would be enhanced by the ability to inhibit Cas9 function spatially, temporally, or conditionally. Previously, we discovered small proteins encoded by bacteriophages that inhibit the CRISPR-Cas systems of their host bacteria. These "anti-CRISPRs" were specific to type I CRISPR-Cas systems that do not employ the Cas9 protein. We posited that nature would also yield Cas9 inhibitors in response to the evolutionary arms race between bacteriophages and their hosts. Here, we report the discovery of three distinct families of anti-CRISPRs that specifically inhibit the CRISPR-Cas9 system of Neisseria meningitidis. We show that these proteins bind directly to N. meningitidis Cas9 (NmeCas9) and can be used as potent inhibitors of genome editing by this system in human cells. These anti-CRISPR proteins now enable "off-switches" for CRISPR-Cas9 activity and provide a genetically encodable means to inhibit CRISPR-Cas9 genome editing in eukaryotes. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.
Naturally occurring off-switches for CRISPR-Cas9
Pawluk, April; Amrani, Nadia; Zhang, Yan; Garcia, Bianca; Hidalgo-Reyes, Yurima; Lee, Jooyoung; Edraki, Alireza; Shah, Megha; Sontheimer, Erik J.; Maxwell, Karen L.; Davidson, Alan R.
2017-01-01
Summary CRISPR-Cas9 technology would be enhanced by the ability to inhibit Cas9 function spatially, temporally, or conditionally. Previously, we discovered small proteins encoded by bacteriophages that inhibit the CRISPR-Cas systems of their host bacteria. These “anti-CRISPRs” were specific to type I CRISPR-Cas systems that do not employ the Cas9 protein. We posited that nature would also yield Cas9 inhibitors in response to the evolutionary arms race between bacteriophages and their hosts. Here, we report the discovery of three distinct families of anti-CRISPRs that specifically inhibit the CRISPR-Cas9 system of Neisseria meningitidis. We show that these proteins bind directly to N. meningitidis Cas9 (NmeCas9), and can be used as potent inhibitors of genome editing by this system in human cells. These anti-CRISPR proteins now enable “off-switches” for CRISPR-Cas9 activity, and provide a genetically-encodable means to inhibit CRISPR-Cas9 genome editing in eukaryotes. PMID:27984730
The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit.
Murugan, Karthik; Babu, Kesavan; Sundaresan, Ramya; Rajan, Rakhi; Sashital, Dipali G
2017-10-05
CRISPR-Cas systems defend prokaryotes against bacteriophages and mobile genetic elements and serve as the basis for revolutionary tools for genetic engineering. Class 2 CRISPR-Cas systems use single Cas endonucleases paired with guide RNAs to cleave complementary nucleic acid targets, enabling programmable sequence-specific targeting with minimal machinery. Recent discoveries of previously unidentified CRISPR-Cas systems have uncovered a deep reservoir of potential biotechnological tools beyond the well-characterized Type II Cas9 systems. Here we review the current mechanistic understanding of newly discovered single-protein Cas endonucleases. Comparison of these Cas effectors reveals substantial mechanistic diversity, underscoring the phylogenetic divergence of related CRISPR-Cas systems. This diversity has enabled further expansion of CRISPR-Cas biotechnological toolkits, with wide-ranging applications from genome editing to diagnostic tools based on various Cas endonuclease activities. These advances highlight the exciting prospects for future tools based on the continually expanding set of CRISPR-Cas systems. Copyright © 2017 Elsevier Inc. All rights reserved.
Qiao, Sen; Kawakubo, Yuki; Koyama, Toichiro; Furukawa, Kenji
2008-11-01
This study evaluated performance of swim-bed (SB) reactors packed with a novel acrylic fiber carrier (BF) and swim-bed activated sludge (SBAS) reactor for partial nitritation of anaerobic sludge digester liquor from a municipal wastewater treatment plant. Comparison of characteristics of sludge obtained from both the reactors was also made. The average conversion rates of ammonium to nitrite were 52.3% and 40.0% under relatively high nitrogen loading rates over 3.0 kg-N/m(3)/d, respectively in two reactors. The average BOD(5) removal efficiencies were 74.3% and 64.4%, respectively in the two reactors. The size of the sludge pellets taken from SB and SBAS reactors was found to be approximately three times (229 mum versus 88 mum) of that of the seed sludge. This sludge also had relatively high extracellular proteins levels indicating better sludge settling capability as compared to the sludge taken from SBAS reactor. Although the effluent nitrite/ammonium ratios had fluctuated in both reactor in some extent, the low dissolved oxygen concentration (average of 2.5 versus 0.35 mg/l), low suspended solids (average of 33.3 versus 33.5 mg/l), and about 50% ammonium conversion to nitrite demonstrated the application potential of anammox process for nitrogen removal.
Effect of Malathion on the Microbial Ecology of Activated Sludge
2015-03-26
EFFECT OF MALATHION ON THE MICROBIAL ECOLOGY OF ACTIVATED SLUDGE THESIS Seth K. Martin, Senior Master Sergeant, USAF AFIT-ENV-MS-15-M-095 DEPARTMENT...Government and is not subject to copyright protection in the United States. AFIT-ENV-MS-15-M-095 EFFECT OF MALATHION ON THE MICROBIAL ECOLOGY OF ACTIVATED...UNLIMITED. AFIT-ENV-MS-15-M-095 EFFECT OF MALATHION ON THE MICROBIAL ECOLOGY OF ACTIVATED SLUDGE THESIS Seth K. Martin, B.S. Senior Master Sergeant
[Research on change process of nitrosation granular sludge in continuous stirred-tank reactor].
Yin, Fang-Fang; Liu, Wen-Ru; Wang, Jian-Fang; Wu, Peng; Shen, Yao-Liang
2014-11-01
In order to investigate the effect of different types of reactors on the nitrosation granular sludge, a continuous stirred-tank reactor (CSTR) was studied, using mature nitrosation granular sludge cultivated in sequencing batch reactor (SBR) as seed sludge. Results indicated that the change of reactor type and influent mode could induce part of granules to lose stability with gradual decrease in sludge settling ability during the initial period of operation. However, the flocs in CSTR achieved fast granulation in the following reactor operation. In spite of the changes of particle size distribution, e. g. the decreasing number of granules with diameter larger than 2.5 mm and the increasing number of granules with diameter smaller than 0.3 mm, granular sludge held the absolute predominance of sludge morphology in CSTR during the entire experimental period. Moreover, results showed that the change of reactor type and influent mode didn't affect the nitrite accumulation rate which was still kept at about 85% in effluent. Additionally, the average activity of the sludge in CSTR was stronger than that of the seed sludge, because the newly generated small particles in CSTR had higher specific reactive activity than the larger granules.
Fate of return activated sludge after ozonation: an optimization study for sludge disintegration.
Demir, Ozlem; Filibeli, Ayse
2012-09-01
The effects of ozonation on sludge disintegration should be investigated before the application of ozone during biological treatment, in order to minimize excess sludge production. In this study, changes in sludge and supernatant after ozonation of return activated sludge were investigated for seven different ozone doses. The optimum ozone dose to avoid inhibition of ozonation and high ozone cost was determined in terms of disintegration degree as 0.05 g O3/gTS. Suspended solid and volatile suspended solid concentrations of sludge decreased by 77.8% and 71.6%, respectively, at the optimum ozone dose. Ozonation significantly decomposed sludge flocs. The release of cell contents was proved by the increase of supernatant total nitrogen (TN) and phosphorus (TP). While TN increased from 7 mg/L to 151 mg/L, TP increased from 8.8 to 33 mg/L at the optimum ozone dose. The dewaterability and filterability characteristics of the ozonated sludge were also examined. Capillary suction time increased with increasing ozone dosage, but specific resistance to filtration increased to a specific value and then decreased dramatically. The particle size distribution changed significantly as a result of floc disruption at an optimum dose of 0.05 gO3/gTS.
Peeters, Bart; Dewil, Raf; Vernimmen, Luc; Van den Bogaert, Benno; Smets, Ilse Y
2013-07-01
This paper presents a new application of polyaluminiumchloride (PACl) as a conditioner for waste activated sludge prior its dewatering and drying. It is demonstrated at lab scale with a shear test-based protocol that a dose ranging from 50 to 150 g PACl/kg MLSS (mixed liquor suspended solids) mitigates the stickiness of partially dried sludge with a dry solids content between 25 and 60 %DS (dry solids). E.g., at a solids dryness of 46% DS the shear stress required to have the pre-consolidated sludge slip over a steel surface is reduced with 35%. The salient feature of PACl is further supported by torque data from a full scale decanter centrifuge used to dewater waste sludge. The maximal torque developed by the screw conveyor inside the decanter centrifuge is substantially reduced with 20% in the case the sludge feed is conditioned with PACl. The beneficial effect of waste sludge conditioning with PACl is proposed to be the result of the bound water associated with the aluminium polymers in PACl solutions which act as a type of lubrication for the intrinsically sticky sludge solids during the course of drying. It can be anticipated that PACl addition to waste sludge will become a technically feasible and very effective method to avoid worldwide fouling problems in direct sludge dryers, and to reduce torque issues in indirect sludge dryers as well as in sludge decanter centrifuges. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kinetic model of excess activated sludge thermohydrolysis.
Imbierowicz, Mirosław; Chacuk, Andrzej
2012-11-01
Thermal hydrolysis of excess activated sludge suspensions was carried at temperatures ranging from 423 K to 523 K and under pressure 0.2-4.0 MPa. Changes of total organic carbon (TOC) concentration in a solid and liquid phase were measured during these studies. At the temperature 423 K, after 2 h of the process, TOC concentration in the reaction mixture decreased by 15-18% of the initial value. At 473 K total organic carbon removal from activated sludge suspension increased to 30%. It was also found that the solubilisation of particulate organic matter strongly depended on the process temperature. At 423 K the transfer of TOC from solid particles into liquid phase after 1 h of the process reached 25% of the initial value, however, at the temperature of 523 K the conversion degree of 'solid' TOC attained 50% just after 15 min of the process. In the article a lumped kinetic model of the process of activated sludge thermohydrolysis has been proposed. It was assumed that during heating of the activated sludge suspension to a temperature in the range of 423-523 K two parallel reactions occurred. One, connected with thermal destruction of activated sludge particles, caused solubilisation of organic carbon and an increase of dissolved organic carbon concentration in the liquid phase (hydrolysate). The parallel reaction led to a new kind of unsolvable solid phase, which was further decomposed into gaseous products (CO(2)). The collected experimental data were used to identify unknown parameters of the model, i.e. activation energies and pre-exponential factors of elementary reactions. The mathematical model of activated sludge thermohydrolysis appropriately describes the kinetics of reactions occurring in the studied system. Copyright © 2012 Elsevier Ltd. All rights reserved.
Negative Feedback Regulation of HIV-1 by Gene Editing Strategy.
Kaminski, Rafal; Chen, Yilan; Salkind, Julian; Bella, Ramona; Young, Won-Bin; Ferrante, Pasquale; Karn, Jonathan; Malcolm, Thomas; Hu, Wenhui; Khalili, Kamel
2016-08-16
The CRISPR/Cas9 gene editing method is comprised of the guide RNA (gRNA) to target a specific DNA sequence for cleavage and the Cas9 endonuclease for introducing breaks in the double-stranded DNA identified by the gRNA. Co-expression of both a multiplex of HIV-1-specific gRNAs and Cas9 in cells results in the modification and/or excision of the segment of viral DNA, leading to replication-defective virus. In this study, we have personalized the activity of CRISPR/Cas9 by placing the gene encoding Cas9 under the control of a minimal promoter of HIV-1 that is activated by the HIV-1 Tat protein. We demonstrate that functional activation of CRISPR/Cas9 by Tat during the course of viral infection excises the designated segment of the integrated viral DNA and consequently suppresses viral expression. This strategy was also used in a latently infected CD4+ T-cell model after treatment with a variety of HIV-1 stimulating agents including PMA and TSA. Controlled expression of Cas9 by Tat offers a new strategy for safe implementation of the Cas9 technology for ablation of HIV-1 at a very early stage of HIV-1 replication during the course of the acute phase of infection and the reactivation of silent proviral DNA in latently infected cells.
Highly efficient Cas9-mediated transcriptional programming
Chavez, Alejandro; Scheiman, Jonathan; Vora, Suhani; ...
2015-03-02
The RNA-guided nuclease Cas9 can be reengineered as a programmable transcription factor. However, modest levels of gene activation have limited potential applications. Here we describe an improved transcriptional regulator through the rational design of a tripartite activator, VP64-p65-Rta (VPR), fused to nuclease-null Cas9. Here, we demonstrate its utility in activating endogenous coding and non-coding genes, targeting several genes simultaneously and stimulating neuronal differentiation of human induced pluripotent stem cells (iPSCs).
Gao, Xuefei; Tsang, Jason C.H.; Gaba, Fortis; Wu, Donghai; Lu, Liming; Liu, Pentao
2014-01-01
The transcription activator–like effectors (TALEs) and the RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR) associated protein (Cas9) utlilize distinct molecular mechanisms in targeting site recognition. The two proteins can be modified to carry additional functional domains to regulate expression of genomic loci in mammalian cells. In this study, we have compared the two systems in activation and suppression of the Oct4 and Nanog loci by targeting their enhancers. Although both are able to efficiently activate the luciferase reporters, the CRISPR/dCas9 system is much less potent in activating the endogenous loci and in the application of reprogramming somatic cells to iPS cells. Nevertheless, repression by CRISPR/dCas9 is comparable to or even better than TALE repressors. We demonstrated that dCas9 protein binding results in significant physical interference to binding of native transcription factors at enhancer, less efficient active histone markers induction or recruitment of activating complexes in gene activation. This study thus highlighted the merits and drawbacks of transcription regulation by each system. A combined approach of TALEs and CRISPR/dCas9 should provide an optimized solution to regulate genomic loci and to study genetic elements such as enhancers in biological processes including somatic cell reprogramming and guided differentiation. PMID:25223790
NASA Astrophysics Data System (ADS)
Kupchishin, A. I.; Niyazov, M. N.; Taipova, B. G.; Voronova, N. A.; Khodarina, N. N.
2018-01-01
Complex experimental studies on the effect of electron irradiation on the deposition rate of active sludge in aqueous systems by the optical method have been carried out. The obtained dependences of density (ρ) on time (t) are of the same nature for different radiation sources. The experimental curves of the dependence of the active sludge density on time are satisfactorily described by an exponential model.
Zhou, Xu; Wang, Qilin; Jiang, Guangming; Liu, Peng; Yuan, Zhiguo
2015-06-01
Improvement of sludge dewaterability is crucial for reducing the costs of sludge disposal in wastewater treatment plants. This study presents a novel conditioning method for improving waste activated sludge dewaterability by combination of persulfate and zero-valent iron. The combination of zero-valent iron (0-30g/L) and persulfate (0-6g/L) under neutral pH substantially enhanced the sludge dewaterability due to the advanced oxidization reactions. The highest enhancement of sludge dewaterability was achieved at 4g persulfate/L and 15g zero-valent iron/L, with which the capillary suction time was reduced by over 50%. The release of soluble chemical oxygen demand during the conditioning process implied the decomposition of sludge structure and microorganisms, which facilitated the improvement of dewaterability due to the release of bound water that was included in sludge structure and microorganism. Economic analysis showed that the proposed conditioning process with persulfate and ZVI is more economically favorable for improving WAS dewaterability than classical Fenton reagent. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pei, Jin; Yao, Hong; Wang, Hui; Shan, Dan; Jiang, Yichen; Ma, Lanqianya; Yu, Xiaohua
2015-09-01
Ultrasonic and ozone pre-treatment technologies were employed in this study to improve the anaerobic digestion efficiency of pharmaceutical waste activated sludge. The sludge solubilisation achieved 30.01% (150,000 kJ/kg TS) and 28.10% (0.1g O3/g TS) after ultrasonic treatment and ozone treatment. The anaerobic biodegradability after ultrasonic treatment was higher compared to ozonation due to the higher cumulative methane volume observed after 6 days (249 ml vs 190 ml). The ozonated sludge released the highest concentration of Cu(2+) into the liquid phase (6.640 mg L(-1)) compared to 0.530 mg/L for untreated sludge and 0.991 mg/L for sonicated sludge. The acute toxicity test measured by luminescent bacteria showed that anaerobic digestion could degrade toxic compounds and result in a reduction in toxicity. The main mechanism of action led to some differences in the treated sludge exhibiting higher potential for methane production from pharmaceutical waste sludge with ultrasonic treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of activated sludge culture conditions on Waxberry wastewater
NASA Astrophysics Data System (ADS)
Shi, Liang; He, Lingfeng; Zhang, Yongli
2018-03-01
Treated activated sludge is suitable for the treatment of wastewater. Biochemical method is used to treat the wastewater, and the influence of time on the COD index is investigated. The results showed that time had a significant effect on COD, and then affected the performance of activated sludge. Under different time, according to the order of time from short to long, COD decreases in turn. Under the action of activated sludge, the degradation of myrica rubra wastewater samples, after 25 h aeration for 96 h, the effect is better. Under this condition, the COD value was reduced at 72 mg/L, and the COD removal efficiency of myrica rubra wastewater was up to 93.39 %, and reached the two level discharge standard of municipal wastewater treatment.
Li, Xuesong; Ma, Hongzhi; Wang, Qunhui; Matsumoto, Shoichiro; Maeda, Toshinari; Ogawa, Hiroaki I
2009-05-01
A strain of sludge-lysing bacteria was isolated from waste activated sludge (WAS) in this study. The result of 16S rRNA gene analysis demonstrated that it was a species of new genus Brevibacillus (named Brevibacillus sp. KH3). The strain could release the protease with molecule weight of about 40 kDa which could enhance the efficiency of sludge thermophilic aerobic digestion. During the sterilized sludge digestion experiment inoculated with Brevibacillus sp. KH3, the maximum protease activity was 0.41 U/ml at pH 8 and 50 degrees C, and maximum TSS removal ratio achieved 32.8% after 120 h digestion at pH 8 and 50 degrees C. In the case of un-sterilized sludge digestion inoculated with Brevibacillus sp. KH3, TSS removal ratio in inoculated-group was 54.8%, increasing at 11.86% compared with un-inoculation (46.2%). The result demonstrated that inoculation of Brevibacillus sp. KH3 could help to degrade the EPS and promote the collapse of cells and inhibit the growth of certain kinds of microorganisms. It indicated that Brevibacillus sp. KH3 strain had a high potential to enhance WAS-degradation efficiency in thermophilic aerobic digestion.
Kamei-Ishikawa, Nao; Ito, Ayumi; Umita, Teruyuki
2013-09-15
Radionuclides were widely released into the environment due to the nuclear accident at the Fukushima Daiichi Nuclear Power Plant. Some of these radionuclides have flowed into municipal sewage treatment plants through sewer systems. We have observed the fate of stable Sr in the sewage treatment process as a means to predict the fate of radiostrontium. Concentrations of stable Sr were determined in sewage influent, effluent, dewatered sludge, and incinerated sewage sludge ash collected from a sewage treatment plant once a month from July to December 2011. In the mass balance of Sr in the sewage treatment plant, 76% of the Sr entering the plant was discharged to the receiving water on average. Additionally, 14% of the Sr flowing through the plant was transferred to the sewage sludge and then concentrated in the sludge ash without being released to the atmosphere. We also investigated Sr sorption by activated sludge in a batch experiment. Measurements at 3 and 6h after the contact showed Sr was sorbed in the activated sludge; however, the measurements indicated Sr desorption from activated sludge occurred 48 h after the contact. Copyright © 2013 Elsevier B.V. All rights reserved.
Stabilization of chromium-bearing electroplating sludge with MSWI fly ash-based Friedel matrices.
Qian, Guangren; Yang, Xiaoyan; Dong, Shixiang; Zhou, Jizhi; Sun, Ying; Xu, Yunfeng; Liu, Qiang
2009-06-15
This work investigated the feasibility and effectiveness of MSWI fly ash-based Friedel matrices on stabilizing/solidifying industrial chromium-bearing electroplating sludge using MSWI fly ash as the main raw material with a small addition of active aluminum. The compressive strength, leaching behavior and chemical speciation of heavy metals and hydration phases of matrices were characterized by TCLP, XRD, FTIR and other experimental methods. The results revealed that MSWI fly ash-based Friedel matrices could effectively stabilize chromium-bearing electroplating sludge, the formed ettringite and Friedel phases played a significant role in the fixation of heavy metals in electroplating sludge. The co-disposal of chromium-bearing electroplating sludge and MSWI fly ash-based Friedel matrices with a small addition of active aluminum is promising to be an effective way of stabilizing chromium-bearing electroplating sludge.
Disintegration of excess activated sludge--evaluation and experience of full-scale applications.
Zábranská, J; Dohányos, M; Jenícek, P; Kutil, J
2006-01-01
Anaerobic digestion of sewage sludge can be improved by introducing a disintegration of excess activated sludge as a pretreatment process. The disintegration brings a deeper degradation of organic matter and less amount of output sludge for disposal, a higher production of biogas and consequently energy yield, in some cases suppression of digesters foaming and better dewaterability. The full-scale application of disintegration by a lysate-thickening centrifuge was monitored long term in three different WWTPs. The evaluation of contribution of disintegration to biogas production and digested sludge quality was assessed and operational experience is discussed. Increment of specific biogas production was evaluated in the range of 15-26%, organic matter in digested sludge significantly decreased to 48-49%. Results proved that the installation of a disintegrating centrifuge in WWTPs of different sizes and conditions would be useful and beneficial.
Baawain, Mahad S; Al-Jabri, Mohsin; Choudri, B S
2015-11-01
Domestic and industrial wastewaters are mostly treated by biological process such as activated sludge, aerobic pond, and anaerobic treatment. This study focuses on characterizing the quality of sewage sludge in the Sultanate of Oman chosen from three industrial sewage treatment plants (STPs): Rusayl Industrial Estate (RSL.IE); Sohar Industrial Estate (SIE); and Raysut Industrial Estate (RIE). Samples of recycled activated sludge (RAS) and wasted activated sludge (WAS) were collected over a period of 12 months across above mentioned STPs. Parameters analyzed are electrical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content (VC). The obtained values for pH and EC were low for both RAS and WAS samples, except EC values of RIE that was more than 1000 μS/cm. The range of VC percentages in RAS and WAS samples were 44 to 86% and 41 to 77%, respectively. The measured values for chloride, sulfate, nitrate and phosphate were higher than the other anions. The average values of the cations in RAS and WAS samples were within the Omani Standards, suitable for the re-use of sludge in agriculture except for Cd in RSL.IE. The study recommends that a regular maintenance should be performed at the studied STPs to prevent any accumulation of some harmful substances, which may affect the sludge quality, and the sludge drying beds should be large enough to handle the produced sludge for better management.
BAAWAIN, Mahad S.; AL-JABRI, Mohsin; CHOUDRI, B.S.
2015-01-01
Background: Domestic and industrial wastewaters are mostly treated by biological process such as activated sludge, aerobic pond, and anaerobic treatment. This study focuses on characterizing the quality of sewage sludge in the Sultanate of Oman chosen from three industrial sewage treatment plants (STPs): Rusayl Industrial Estate (RSL.IE); Sohar Industrial Estate (SIE); and Raysut Industrial Estate (RIE). Methods: Samples of recycled activated sludge (RAS) and wasted activated sludge (WAS) were collected over a period of 12 months across above mentioned STPs. Parameters analyzed are electrical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content (VC). Results: The obtained values for pH and EC were low for both RAS and WAS samples, except EC values of RIE that was more than 1000 μS/cm. The range of VC percentages in RAS and WAS samples were 44 to 86% and 41 to 77%, respectively. The measured values for chloride, sulfate, nitrate and phosphate were higher than the other anions. Conclusion: The average values of the cations in RAS and WAS samples were within the Omani Standards, suitable for the re-use of sludge in agriculture except for Cd in RSL.IE. The study recommends that a regular maintenance should be performed at the studied STPs to prevent any accumulation of some harmful substances, which may affect the sludge quality, and the sludge drying beds should be large enough to handle the produced sludge for better management. PMID:26744704
Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a.
Swarts, Daan C; van der Oost, John; Jinek, Martin
2017-04-20
The CRISPR-associated protein Cas12a (Cpf1), which has been repurposed for genome editing, possesses two distinct nuclease activities: endoribonuclease activity for processing its own guide RNAs and RNA-guided DNase activity for target DNA cleavage. To elucidate the molecular basis of both activities, we determined crystal structures of Francisella novicida Cas12a bound to guide RNA and in complex with an R-loop formed by a non-cleavable guide RNA precursor and a full-length target DNA. Corroborated by biochemical experiments, these structures reveal the mechanisms of guide RNA processing and pre-ordering of the seed sequence in the guide RNA that primes Cas12a for target DNA binding. Furthermore, the R-loop complex structure reveals the strand displacement mechanism that facilitates guide-target hybridization and suggests a mechanism for double-stranded DNA cleavage involving a single active site. Together, these insights advance our mechanistic understanding of Cas12a enzymes and may contribute to further development of genome editing technologies. Copyright © 2017 Elsevier Inc. All rights reserved.
The role of Cas8 in type I CRISPR interference.
Cass, Simon D B; Haas, Karina A; Stoll, Britta; Alkhnbashi, Omer S; Sharma, Kundan; Urlaub, Henning; Backofen, Rolf; Marchfelder, Anita; Bolt, Edward L
2015-05-05
CRISPR (clustered regularly interspaced short palindromic repeat) systems provide bacteria and archaea with adaptive immunity to repel invasive genetic elements. Type I systems use 'cascade' [CRISPR-associated (Cas) complex for antiviral defence] ribonucleoprotein complexes to target invader DNA, by base pairing CRISPR RNA (crRNA) to protospacers. Cascade identifies PAMs (protospacer adjacent motifs) on invader DNA, triggering R-loop formation and subsequent DNA degradation by Cas3. Cas8 is a candidate PAM recognition factor in some cascades. We analysed Cas8 homologues from type IB CRISPR systems in archaea Haloferax volcanii (Hvo) and Methanothermobacter thermautotrophicus (Mth). Cas8 was essential for CRISPR interference in Hvo and purified Mth Cas8 protein responded to PAM sequence when binding to nucleic acids. Cas8 interacted physically with Cas5-Cas7-crRNA complex, stimulating binding to PAM containing substrates. Mutation of conserved Cas8 amino acid residues abolished interference in vivo and altered catalytic activity of Cas8 protein in vitro. This is experimental evidence that Cas8 is important for targeting Cascade to invader DNA. © 2015 Authors.
Palanisamy, Arun P.; Suryakumar, Geetha; Panneerselvam, Kavin; Willey, Christopher D.; Kuppuswamy, Dhandapani
2017-01-01
Early work in pressure overloaded (PO) myocardium shows that integrins mediate focal adhesion complex formation by recruiting the adaptor protein p130Cas (Cas) and nonreceptor tyrosine kinase c-Src. To explore c-Src role in Cas-associated changes during PO, we used a feline right ventricular in vivo PO model and a three-dimensional (3D) collagen-embedded adult cardiomyocyte in vitro model that utilizes a Gly-Arg-Gly-Asp-Ser (RGD) peptide for integrin stimulation. Cas showed slow electrophoretic mobility (band-shifting), recruitment to the cytoskeleton, and tyrosine phosphorylation at 165, 249, and 410 sites in both 48 h PO myocardium and 1 h RGD-stimulated cardiomyocytes. Adenoviral mediated expression of kinase inactive (negative) c-Src mutant with intact scaffold domains (KN-Src) in cardiomyocytes did not block the RGD stimulated changes in Cas. Furthermore, expression of KN-Src or kinase active c-Src mutant with intact scaffold function (A-Src) in two-dimensionally (2D) cultured cardiomyocytes was sufficient to cause Cas band-shifting, although tyrosine phosphorylation required A-Src. These data indicate that c-Src’s adaptor function, but not its kinase function, is required for a serine/threonine specific phosphorylation(s) responsible for Cas band-shifting. To explore this possibility, Chinese hamster ovary cells that stably express Cas were infected with either β-gal or KN-Src adenoviruses and used for Cas immunoprecipitation combined with mass spectrometry analysis. In the KN-Src expressing cells, Cas showed phosphorylation at the serine-639 (human numbering) site. A polyclonal antibody raised against phospho-serine-639 detected Cas phosphorylation in 24–48 h PO myocardium. Our studies indicate that c-Src’s adaptor function mediates serine-639 phosphorylation of Cas during integrin activation in PO myocardium. PMID:25976166
Ohga, Rie; Ota, Satoshi; Kawahara, Atsuo
2015-01-01
The type II clustered regularly interspaced short palindromic repeats (CRISPR) associated with Cas9 endonuclease (CRISPR/Cas9) has become a powerful genetic tool for understanding the function of a gene of interest. In zebrafish, the injection of Cas9 mRNA and guide-RNA (gRNA), which are prepared using an in vitro transcription system, efficiently induce DNA double-strand breaks (DSBs) at the targeted genomic locus. Because gRNA was originally constructed by fusing two short RNAs CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA), we examined the effect of synthetic crRNAs and tracrRNA with Cas9 mRNA or Cas9 protein on the genome editing activity. We previously reported that the disruption of tyrosinase (tyr) by tyr-gRNA/Cas9 mRNA causes a retinal pigment defect, whereas the disruption of spns2 by spns2-gRNA1/Cas9 mRNA leads to a cardiac progenitor migration defect in zebrafish. Here, we found that the injection of spns2-crRNA1, tyr-crRNA and tracrRNA with Cas9 mRNA or Cas9 protein simultaneously caused a migration defect in cardiac progenitors and a pigment defect in retinal epithelial cells. A time course analysis demonstrated that the injection of crRNAs and tracrRNA with Cas9 protein rapidly induced genome modifications compared with the injection of crRNAs and tracrRNA with Cas9 mRNA. We further show that the crRNA-tracrRNA-Cas9 protein complex is functional for the visualization of endogenous gene expression; therefore, this is a very powerful, ready-to-use system in zebrafish. PMID:26010089
Ivanov, Yury V; Shariat, Nikki; Register, Karen B; Linz, Bodo; Rivera, Israel; Hu, Kai; Dudley, Edward G; Harvill, Eric T
2015-10-26
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) are widely distributed among bacteria. These systems provide adaptive immunity against mobile genetic elements specified by the spacer sequences stored within the CRISPR. The CRISPR-Cas system has been identified using Basic Local Alignment Search Tool (BLAST) against other sequenced and annotated genomes and confirmed via CRISPRfinder program. Using Polymerase Chain Reactions (PCR) and Sanger DNA sequencing, we discovered CRISPRs in additional bacterial isolates of the same species of Bordetella. Transcriptional activity and processing of the CRISPR have been assessed via RT-PCR. Here we describe a novel Type II-C CRISPR and its associated genes-cas1, cas2, and cas9-in several isolates of a newly discovered Bordetella species. The CRISPR-cas locus, which is absent in all other Bordetella species, has a significantly lower GC-content than the genome-wide average, suggesting acquisition of this locus via horizontal gene transfer from a currently unknown source. The CRISPR array is transcribed and processed into mature CRISPR RNAs (crRNA), some of which have homology to prophages found in closely related species B. hinzii. Expression of the CRISPR-Cas system and processing of crRNAs with perfect homology to prophages present in closely related species, but absent in that containing this CRISPR-Cas system, suggest it provides protection against phage predation. The 3,117-bp cas9 endonuclease gene from this novel CRISPR-Cas system is 990 bp smaller than that of Streptococcus pyogenes, the 4,017-bp allele currently used for genome editing, and which may make it a useful tool in various CRISPR-Cas technologies.
Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii.
Jiang, Wenzhi; Brueggeman, Andrew J; Horken, Kempton M; Plucinak, Thomas M; Weeks, Donald P
2014-11-01
The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system has become a powerful and precise tool for targeted gene modification (e.g., gene knockout and gene replacement) in numerous eukaryotic organisms. Initial attempts to apply this technology to a model, the single-cell alga, Chlamydomonas reinhardtii, failed to yield cells containing edited genes. To determine if the Cas9 and single guide RNA (sgRNA) genes were functional in C. reinhardtii, we tested the ability of a codon-optimized Cas9 gene along with one of four different sgRNAs to cause targeted gene disruption during a 24-h period immediately following transformation. All three exogenously supplied gene targets as well as the endogenous FKB12 (rapamycin sensitivity) gene of C. reinhardtii displayed distinct Cas9/sgRNA-mediated target site modifications as determined by DNA sequencing of cloned PCR amplicons of the target site region. Success in transient expression of Cas9 and sgRNA genes contrasted with the recovery of only a single rapamycin-resistant colony bearing an appropriately modified FKB12 target site in 16 independent transformation experiments involving >10(9) cells. Failure to recover transformants with intact or expressed Cas9 genes following transformation with the Cas9 gene alone (or even with a gene encoding a Cas9 lacking nuclease activity) provided strong suggestive evidence for Cas9 toxicity when Cas9 is produced constitutively in C. reinhardtii. The present results provide compelling evidence that Cas9 and sgRNA genes function properly in C. reinhardtii to cause targeted gene modifications and point to the need for a focus on development of methods to properly stem Cas9 production and/or activity following gene editing. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Chen, Xingjuan; Li, Wennan; Hiett, S. Christopher; Obukhov, Alexander G.
2016-01-01
Voltage-gated Kv7 channels are inhibited by agonists of Gq-protein-coupled receptors, such as histamine. Recent works have provided evidence that inhibition of vascular Kv7 channels may trigger vessel contractions. In this study, we investigated how Kv7 activity modulates the histamine-induced contractions in “healthy” and metabolic syndrome (MetS) pig right coronary arteries (CAs). We performed isometric tension and immunohistochemical studies with domestic, lean Ossabaw, and MetS Ossabaw pig CAs. We found that neither the Kv7.2/Kv7.4/Kv7.5 activator ML213 nor the general Kv7 inhibitor XE991 altered the tension of CA rings under preload, indicating that vascular Kv7 channels are likely inactive in the preloaded rings. Conversely, ML213 potently dilated histamine-pre-contracted CAs, suggesting that Kv7 channels are activated during histamine applications and yet partially inhibited by histamine. Immunohistochemistry analysis revealed strong Kv7.4 immunostaining in the medial and intimal layers of the CA wall, whereas Kv7.5 immunostaining intensity was strong in the intimal but weak in the medial layers. The medial Kv7 immunostaining was significantly weaker in MetS Ossabaw CAs as compared to lean Ossabaw or domestic CAs. Consistently, histamine-pre-contracted MetS Ossabaw CAs exhibited attenuated ML213-dependent dilations. In domestic pig CAs, where medial Kv7 immunostaining intensity was stronger, histamine-induced contractions spontaneously decayed to ~31% of the peak amplitude within 4 minutes. Oppositely, in Ossabaw CAs, where Kv7 immunostaining intensity was weaker, the histamine-induced contractions were more sustained. XE991 pretreatment significantly slowed the decay rate of histamine-induced contractions in domestic CAs, supporting the hypothesis that increased Kv7 activity correlates with a faster rate of histamine-induced contraction decay. Alternatively, XE991 significantly decreased the amplitude of bradykinin-dependent dilations in pre-contracted CAs. We propose that in CAs, a decreased expression or a loss of function of Kv7 channels may lead to sustained histamine-induced contractions and reduced endothelium-dependent relaxation, both risk factors for coronary spasm. PMID:26844882
Closure Report for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
2012-08-15
This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 562, Waste Systems, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 562 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 562 consists of the following 13 Corrective Action Sites (CASs), located in Areas 2, 23, and 25 of the Nevadamore » National Security Site: · CAS 02-26-11, Lead Shot · CAS 02-44-02, Paint Spills and French Drain · CAS 02-59-01, Septic System · CAS 02-60-01, Concrete Drain · CAS 02-60-02, French Drain · CAS 02-60-03, Steam Cleaning Drain · CAS 02-60-04, French Drain · CAS 02-60-05, French Drain · CAS 02-60-06, French Drain · CAS 02-60-07, French Drain · CAS 23-60-01, Mud Trap Drain and Outfall · CAS 23-99-06, Grease Trap · CAS 25-60-04, Building 3123 Outfalls Closure activities began in October 2011 and were completed in April 2012. Activities were conducted according to the Corrective Action Plan for CAU 562 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste and hazardous waste. Some wastes exceeded land disposal limits and required offsite treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite or offsite landfills. NNSA/NSO requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 562 · The transfer of CAU 562 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO« less
CRISPR/Cas9 Immune System as a Tool for Genome Engineering.
Hryhorowicz, Magdalena; Lipiński, Daniel; Zeyland, Joanna; Słomski, Ryszard
2017-06-01
CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) adaptive immune systems constitute a bacterial defence against invading nucleic acids derived from bacteriophages or plasmids. This prokaryotic system was adapted in molecular biology and became one of the most powerful and versatile platforms for genome engineering. CRISPR/Cas9 is a simple and rapid tool which enables the efficient modification of endogenous genes in various species and cell types. Moreover, a modified version of the CRISPR/Cas9 system with transcriptional repressors or activators allows robust transcription repression or activation of target genes. The simplicity of CRISPR/Cas9 has resulted in the widespread use of this technology in many fields, including basic research, biotechnology and biomedicine.
Wang, Zhenyu; Zheng, Guanyu; Zhou, Lixiang
2015-09-01
Mechanisms responsible for the sludge dewaterability enhanced by filamentous fungi during fungal treatment of sludge were investigated in the present study. The filamentous fungus Mucor sp. GY-1, isolated from waste activated sludge, enhanced sludge dewaterability by 82.1% to achieve the lowest value of normalized sludge specific resistance to filtration (SRF), 8.18 × 10(10) m · L/kg · g-TSS. During the fungal treatment of sludge, 57.8% of slime extracellular polymeric substances (EPS) and 51.1% of polysaccharide in slime EPS were degraded, respectively, by Mucor sp. GY-1, contributing to the improvement of sludge dewaterability. Slime EPS is much more available for Mucor sp. GY-1 than either LB-EPS or TB-EPS that bound with microbial cells. In addition, filamentous fungus Mucor sp. GY-1 entrapped small sludge particles and inhibited the destruction of sludge flocs larger than 100 μm, thus enhancing sludge dewaterability, during fungal treatment of sludge using Mucor sp. GY-1. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Influence of accessories mixing ratio on sludge biophysical co-drying].
Yang, Jin-Long; Du, Qiong; Li, Dong; Han, Rong; Zhao, Yan; Wang, Hong-Tao
2011-08-01
Parameters (temperature, water content and so on) in the process of sludge biophysical co-drying were studied in self-made biophysical co-drying reactor. The sludge: tree bark: recycled sludge was set as 7: 3: 0.5, 9: 3: 0.5, 12: 3: 0.5 respectively. The results suggested that sludge temperature first increased then decreased along with drying time, water content decreased in the first 96 h, then had no obvious variability. While sludge: tree bark: recycled sludge was 9: 3: 0.5, the temperature of sludge spiraling, received to max 67 degrees C at 48 h under three different accessories mixture ratio, and was kept for 72 h above 55 degrees C, then spiraling, the final water content of sludge decreased from 74.1% to 61.8%, received the optimal water content removing rate 43.5%. Accessories mixing ratio had important influence on the process of sludge biophysical co-drying, sludge with proper mixing ratio can modify the structure of sludge, improve sludge permeability, arouse and keep microorganic activity, which will enhance sludge temperature and strengthen water content removal rate.
EVALUATION OF ACTIVATED BIOFILTRATION AND ACTIVATED BIOFILTRATION/ACTIVATED SLUDGE TECHNOLOGIES
The paper presents the results of a review and investigation of the activated biofilter (ABF) and activated biofilter/activated sludge (ABF/AS) technologies and a review of operating records of several municipal plants in the U.S. using these technologies. The overall objective o...
Andrianisa, Harinaivo Anderson; Ito, Ayumi; Sasaki, Atsushi; Aizawa, Jiro; Umita, Teruyuki
2008-12-01
The potential of activated sludge to catalyse bio-oxidation of arsenite [As(III)] to arsenate [As(V)] and bio-reduction of As(V) to As(III) was investigated. In batch experiments (pH 7, 25 degrees C) using activated sludge taken from a treatment plant receiving municipal wastewater non-contaminated with As, As(III) and As(V) were rapidly biotransformed to As(V) under aerobic condition and As(III) under anaerobic one without acclimatisation, respectively. Sub-culture of the activated sludge using a minimal liquid medium containing 100mg As(III)/L and no organic carbon source showed that aerobic arsenic-resistant bacteria were present in the activated sludge and one of the isolated bacteria was able to chemoautotrophically oxidise As(III) to As(V). Analysis of arsenic species in a full-scale oxidation ditch plant receiving As-contaminated wastewater revealed that both As(III) and As(V) were present in the influent, As(III) was almost completely oxidised to As(V) after supply of oxygen by the aerator in the oxidation ditch, As(V) oxidised was reduced to As(III) in the anaerobic zone in the ditch and in the return sludge pipe, and As(V) was the dominant species in the effluent. Furthermore, co-precipitation of As(V) bio-oxidised by activated sludge in the plant with ferric hydroxide was assessed by jar tests. It was shown that the addition of ferric chloride to mixed liquor as well as effluent achieved high removal efficiencies (>95%) of As and could decrease the residual total As concentrations in the supernatant from about 200 microg/L to less than 5 microg/L. It was concluded that a treatment process combining bio-oxidation with activated sludge and coagulation with ferric chloride could be applied as an alternative technology to treat As-contaminated wastewater.
Liu, Kun; Chen, Yinguang; Xiao, Naidong; Zheng, Xiong; Li, Mu
2015-04-21
Recently, the use of waste activated sludge to bioproduce short-chain fatty acids (SCFA) has attracted much attention as the sludge-derived SCFA can be used as a preferred carbon source to drive biological nutrient removal or biopolymer (polyhydroxyalkanoates) synthesis. Although large number of humic acid (HA) has been reported in sludge, the influence of HA on SCFA production has never been documented. This study investigated the effects on sludge-derived SCFA production of two commercially available humic acids (referred to as SHHA and SAHA purchased respectively from Shanghai Reagent Company and Sigma-Aldrich) that differ in chemical structure, hydrophobicity, surfactant properties, and degree of aromaticity. It was found that SHHA remarkably enhanced SCFA production (1.7-3.5 folds), while SAHA had no obvious effect. Mechanisms study revealed that all four steps (solubilization, hydrolysis, acidification, and methanogenesis) involved in sludge fermentation were unaffected by SAHA. However, SHHA remarkably improved the solubilization of sludge protein and carbohydrate and the activity of hydrolysis enzymes (protease and α-glucosidase) owing to its greater hydrophobicity and protection of enzyme activity. SHHA also enhanced the acidification step by accelerating the bioreactions of glyceradehyde-3P → d-glycerate 1,3-diphosphate, and pyruvate → acetyl-CoA due to its abundant quinone groups which served as electron acceptor. Further investigation showed that SHHA negatively influenced the activity of acetoclastic methanogens for its competition for electrons and inhibition on the reaction of acetyl-CoA → 5-methyl-THMPT, which caused less SCFA being consumed. All these observations were in correspondence with SHHA significantly enhancing the production of sludge derived SCFA.
Bioflocculation of mesophilic and thermophilic activated sludge.
Vogelaar, J C T; De Keizer, A; Spijker, S; Lettinga, G
2005-01-01
Thermophilic activated sludge treatment is often hampered by a turbid effluent. Reasons for this phenomenon are so far unknown. Here, the hypothesis of the temperature dependency of the hydrophobic interaction as a possible cause for diminished thermophilic activated sludge bioflocculation was tested. Adsorption of wastewater colloidal particles was monitored on different flat surfaces as a function of temperature. Adsorption on a hydrophobic surface varied with temperature between 20 and 60 degrees C and no upward or downward trend could be observed. This makes the hydrophobic interaction hypothesis unlikely in explaining the differences in mesophilic and thermophilic activated sludge bioflocculation. Both mesophilic and thermophilic biomass did not flocculate with wastewater colloidal particles under anaerobic conditions. Only in the presence of oxygen, with biologically active bacteria, the differences in bioflocculation behavior became evident. Bioflocculation was shown only to occur with the combination of wastewater and viable mesophilic biomass at 30 degrees C, in the presence of oxygen. Bioflocculation did not occur in case the biomass was inactivated or when oxygen was absent. Thermophilic activated sludge hardly showed any bioflocculation, also under mesophilic conditions. Despite the differences in bioflocculation behavior, sludge hydrophobicity and sludge zetapotentials were almost similar. Theoretical calculations using the DLVO (Derjaguin, Landau, Verweij and Overbeek) theory showed that flocculation is unlikely in all cases due to long-range electrostatic forces. These calculations, combined with the fact that bioflocculation actually did occur at 30 degrees C and the unlikelyness of the hydrophobic interaction, point in the direction of bacterial exo-polymers governing bridging flocculation. Polymer interactions are not included in the DLVO theory and may vary as a function of temperature.
Xin, Xiao-Dong; He, Jun-Guo; Qiu, Wei; Tang, Jian; Liu, Tian-Tian
2015-01-01
Waste activated sludge from a lab-scale sequencing batch reactor was used to investigate the potential relation of microbial community with lysozyme digestion process for sludge solubilization. The results showed the microbial community shifted conspicuously as sludge suffered lysozyme digestion. Soluble protein and polysaccharide kept an increasing trend in solution followed with succession of microbial community. The rise of lysozyme dosage augmented the dissimilarity among communities in various digested sludge. A negative relationship presented between community diversity and lysozyme digestion process under various lysozyme/TS from 0 to 240min (correlation coefficient R(2) exceeded 0.9). Pareto-Lorenz curves demonstrated that microbial community tended to be even with sludge disintegration process by lysozyme. Finally, with diversity (H) decrease and community distribution getting even, the SCOD/TCOD increased steadily in solution which suggested the sludge with high community diversity and uneven population distribution might have tremendous potential for improving their biodegradability by lysozyme digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Keating, C; Cysneiros, D; Mahony, T; O'Flaherty, V
2013-01-01
In this study, the ability of various sludges to digest a diverse range of cellulose and cellulose-derived substrates was assessed at different temperatures to elucidate the factors affecting hydrolysis. For this purpose, the biogas production was monitored and the specific biogas activity (SBA) of the sludges was employed to compare the performance of three anaerobic sludges on the degradation of a variety of complex cellulose sources, across a range of temperatures. The sludge with the highest performance on complex substrates was derived from a full-scale bioreactor treating sewage at 37 °C. Hydrolysis was the rate-limiting step during the degradation of complex substrates. No activity was recorded for the synthetic cellulose compound carboxymethylcellulose (CMC) using any of the sludges tested. Increased temperature led to an increase in hydrolysis rates and thus SBA values. The non-granular nature of the mesophilic sludge played a positive role in the hydrolysis of solid substrates, while the granular sludges proved more effective on the degradation of soluble compounds.
Sato, K; Ochi, S; Mizuochi, M
2001-01-01
Sewage treatment plants in Japan are subjected to advanced treatment to remove nutrients and hence control eutrophication problems in lakes and bays. This paper discusses the advantages and disadvantages of the separate digestion treatment mode for sludge generated from advanced wastewater treatment. In the separate digestion only primary sludge is digested and the excess activated sludge is directly dewatered. Separate digestion can reduce the return load of nutrients to approximately one third, and has major potential for the beneficial use of sludge.
Falås, P; Longrée, P; la Cour Jansen, J; Siegrist, H; Hollender, J; Joss, A
2013-09-01
Removal of organic micropollutants in a hybrid biofilm-activated sludge process was investigated through batch experiments, modeling, and full-scale measurements. Batch experiments with carriers and activated sludge from the same full-scale reactor were performed to assess the micropollutant removal rates of the carrier biofilm under oxic conditions and the sludge under oxic and anoxic conditions. Clear differences in the micropollutant removal kinetics of the attached and suspended growth were demonstrated, often with considerably higher removal rates for the biofilm compared to the sludge. For several micropollutants, the removal rates were also affected by the redox conditions, i.e. oxic and anoxic. Removal rates obtained from the batch experiments were used to model the micropollutant removal in the full-scale process. The results from the model and plant measurements showed that the removal efficiency of the process can be predicted with acceptable accuracy (± 25%) for most of the modeled micropollutants. Furthermore, the model estimations indicate that the attached growth in hybrid biofilm-activated sludge processes can contribute significantly to the removal of individual compounds, such as diclofenac. Copyright © 2013 Elsevier Ltd. All rights reserved.
Protists as bioindicators in activated sludge: Identification, ecology and future needs.
Foissner, Wilhelm
2016-08-01
When the activated sludge process was developed, operators and scientists soon recognized protists as valuable indicators. However, only when Curds et al. (1968) showed with a few photographs the need of ciliates for a clear plant effluent, sewage protistology began to bloom but was limited by the need of species identification. Still, this is a major problem although several good guides are available. Thus, molecular kits should be developed for identification. Protists are indicators in two stages of wastewater treatment, viz., in the activated sludge and in the environmental water receiving the plant effluent. Continuous control of the protist and bacterial communities can prevent biological sludge foaming and bulking and may greatly save money for sludge oxygenation because several protist species are excellent indicators for the amount of oxygen present. The investigation of the effluent-receiving rivers gives a solid indication about the long term function of sewage works. The literature on protist bioindication in activated sludge is widely distributed. Thus, I compiled the data in a simple Table, showing which communities and species indicate good, mediocre, or poor plant performance. Further, many details on indication are provided, such as sludge loading and nitrifying conditions. Such specific features should be improved by appropriate statistics and more reliable identification of species. Then, protistologists have a fair chance to become important in wastewater works. Activated sludge is a unique habitat for particular species, often poorly or even undescribed. As an example, I present two new species. The first is a minute (∼30μm) Metacystis that makes an up to 300μm-sized mucous envelope mimicking a sludge floc. The second is a Phialina that is unique in having the contractile vacuole slightly posterior to mid-body. Finally, I provide a list of species which have the type locality in sewage plants. Copyright © 2016 Elsevier GmbH. All rights reserved.
Sivrioğlu, Özge; Yonar, Taner
2015-04-01
In this study, the acute toxicities of raw, physicochemical pre-treated, ozonated, and Fenton reagent applied samples of dairy wastewater toward activated sludge microorganisms, evaluated using the International Organization for Standardization's respiration inhibition test (ISO 8192), are presented. Five-day biological oxygen demand (BOD5) was measured to determine the biodegradability of physicochemical treatment, ozonation, Fenton oxidation or no treatment (raw samples) of dairy wastewater. Chemical pretreatment positively affected biodegradability, and the inhibition exhibited by activated sludge was removed to a considerable degree. Ozonation and the Fenton process exhibited good chemical oxygen demand removal (61%) and removal of toxins. Low sludge production was observed for the Fenton process applied to dairy effluents. We did not determine the inhibitory effect of the Fenton-process on the activated sludge mixture. The pollutant-removal efficiencies of the applied processes and their associated operating costs were determined. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks.
Ibarbalz, Federico M; Figuerola, Eva L M; Erijman, Leonardo
2013-07-01
Biological degradation of domestic and industrial wastewater by activated sludge depends on a common process of separation of the diverse self-assembled and self-sustained microbial flocs from the treated wastewater. Previous surveys of bacterial communities indicated the presence of a common core of bacterial phyla in municipal activated sludge, an observation consistent with the concept of ecological coherence of high taxonomic ranks. The aim of this work was to test whether this critical feature brings about a common pattern of abundance distribution of high bacterial taxa in industrial and domestic activated sludge, and to relate the bacterial community structure of industrial activated sludge with relevant operational parameters. We have applied 454 pyrosequencing of 16S rRNA genes to evaluate bacterial communities in full-scale biological wastewater treatment plants sampled at different times, including seven systems treating wastewater from different industries and one plant that treats domestic wastewater, and compared our datasets with the data from municipal wastewater treatment plants obtained by three different laboratories. We observed that each industrial activated sludge system exhibited a unique bacterial community composition, which is clearly distinct from the common profile of bacterial phyla or classes observed in municipal plants. The influence of process parameters on the bacterial community structure was evaluated using constrained analysis of principal coordinates (CAP). Part of the differences in the bacterial community structure between industrial wastewater treatment systems were explained by dissolved oxygen and pH. Despite the ecological relevance of floc formation for the assembly of bacterial communities in activated sludge, the wastewater characteristics are likely to be the major determinant that drives bacterial composition at high taxonomic ranks. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rosso, Diego; Lothman, Sarah E; Jeung, Matthew K; Pitt, Paul; Gellner, W James; Stone, Alan L; Howard, Don
2011-11-15
Integrated fixed-film activated sludge (IFAS) processes are becoming more popular for both secondary and sidestream treatment in wastewater facilities. These processes are a combination of biofilm reactors and activated sludge processes, achieved by introducing and retaining biofilm carrier media in activated sludge reactors. A full-scale train of three IFAS reactors equipped with AnoxKaldnes media and coarse-bubble aeration was tested using off-gas analysis. This was operated independently in parallel to an existing full-scale activated sludge process. Both processes achieved the same percent removal of COD and ammonia, despite the double oxygen demand on the IFAS reactors. In order to prevent kinetic limitations associated with DO diffusional gradients through the IFAS biofilm, this systems was operated at an elevated dissolved oxygen concentration, in line with the manufacturer's recommendation. Also, to avoid media coalescence on the reactor surface and promote biofilm contact with the substrate, high mixing requirements are specified. Therefore, the air flux in the IFAS reactors was much higher than that of the parallel activated sludge reactors. However, the standardized oxygen transfer efficiency in process water was almost same for both processes. In theory, when the oxygen transfer efficiency is the same, the air used per unit load removed should be the same. However, due to the high DO and mixing requirements, the IFAS reactors were characterized by elevated air flux and air use per unit load treated. This directly reflected in the relative energy footprint for aeration, which in this case was much higher for the IFAS system than activated sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.
Improvement of activated sludge dewaterability by humus soil induced bioflocculation.
Choi, Young-Gyun; Kim, Seong-Hong; Kim, Hee-Jun; Kim, Gyu Dong; Chung, Tai-Hak
2004-01-01
Effects of humus soil particles on the dewaterability of activated sludge were investigated. Cations leaching increased proportionally with the dosage of humus soil, and the leaching was not significant after 2 h. Divalent cations, Ca2+ and Mg2+, leaching from the humus soil played an important role in improving dewaterability of the biological sludge. On the contrary, dewaterability was not affected or slightly deteriorated by the monovalent cations, K+ and Na+ leached from the humus soil. Improvement in dewaterability of the sludge by addition of humus soil was higher than that of equivalent cations mixture. It seemed that the decrease of supracolloidal bio-particles (1 to 100 microm in diameter) resulted in diminishing of the blinding effect on cake and filter medium. SRF (specific resistance to filtration) of the humus soil added sludge varied in parallel with the M/D (monovalent to divalent cation) ratio, and the M/D ratio could be utilized as a useful tool for evaluation of the sludge dewatering characteristics. Long-term effects of humus soil on the improvement of activated sludge dewaterability were clearly identified by continuous operation results of a bench-scale MLE (Modified Ludzack Ettinger) system combined with a humus soil contactor. On the other hand, dewaterability of the control sludge was only slightly improved by a decrease in M/D ratio of the wastewater influent.
Effect of humic acid in leachate on specific methanogenic activity of anaerobic granular sludge.
Guo, Mengfei; Xian, Ping; Yang, Longhui; Liu, Xi; Zhan, Longhui; Bu, Guanghui
2015-01-01
In order to find out the effects of humic acid (HA) in anaerobic-treated landfill leachate on granular sludge, the anaerobic biodegradability of HA as well as the influences of HA on the total cumulative methane production, the anaerobic methanization process and the specific methanogenic activity (SMA) of granular sludge are studied in this paper. Experimental results show that as a non-biodegradable organic pollutant, HA is also difficult to be decomposed by microbes in the anaerobic reaction process. Presence of HA and changes in the concentration have no significant influences on the total cumulative methane production and the anaerobic methanization process of granular sludge. Besides, the total cumulative methane production cannot reflect the inhibition of toxics on the methanogenic activity of granular sludge on the premise of sufficient reaction time. Results also show that HA plays a promoting role on SMA of granular sludge. Without buffering agent the SMA value increased by 19.2% on average due to the buffering and regulating ability of HA, while with buffering agent the SMA value increased by 5.4% on average due to the retaining effect of HA on the morphology of the sludge particles. However, in the presence of leachate the SMA value decreased by 27.6% on average, because the toxic effect of the toxics in the leachate on granular sludge is much larger than the promoting effect of HA.
Yang, Chao; Zhang, Wei; Liu, Ruihua; Zhang, Chi; Gong, Ting; Li, Qiang; Wang, Shufang; Song, Cunjiang
2013-09-01
Activated sludge is an alternative to pure cultures for polyhydroxyalkanoate (PHA) production due to the presence of many PHA-producing bacteria in activated sludge community. In this study, activated sludge was submitted to aerobic dynamic feeding in a sequencing batch reactor. During domestication, the changes of bacterial community structure were observed by terminal restriction fragment length polymorphism analysis. Furthermore, some potential PHA-producing bacteria, such as Thauera, Acinetobacter and Pseudomonas, were identified by denaturing gradient gel electrophoresis analysis. The constructed PHA synthase gene library was analyzed by DNA sequencing. Of the 80 phaC genes obtained, 76 belonged to the Class I PHA synthase, and four to the Class II PHA synthase. Gas chromatography-mass spectrometry analysis showed that PHA produced by activated sludge was composed of three types of monomers: 3-hydroxybutyrate, 3-hydroxyvalerate and 3-hydroxydodecanoate (3HDD). This is the first report of production of medium-chain-length PHAs (PHAMCL ) containing 3HDD by activated sludge. Further studies suggested that a Pseudomonas strain may play an important role in the production of PHAMCL containing 3HDD. Moreover, a Class II PHA synthase was found to have a correlation with the production of 3HDD-containing PHAMCL . © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondala, Andro; Hernandez, Rafael; French, Todd
2012-01-01
The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2%more » w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.« less
[Treatment of carbonization effluent by the ultrasonic radiation and activated sludge process].
Ning, Ping; Xu, Jinqiu; Huang, Dongbin; Ma, Xiaoli; Xu, Xiaojun; Li, Ziyan
2003-05-01
The paper deals with the degradation of organic pollutants by the ultrasonic irradiation-activated sludge process. The treatment of the real coking wastewater of Kunming coke making-gas plant was studied with the water quality model. Using the ultrasonic irradiation-activated sludge process the organic pollutants in the real coking wastewater can be degraded effectively. The influence factors of the ultrasonic degradation effect such as initial concentration, aerated gas and ultrasonic density were investigated and mechanism was explored. The result shows that the ultrasonic degradation effect was high with the decrease of initial concentration of the CODCr, the presence of aerated gas and the increase of ultrasonic density. At the initial CODCr concentration of 807 mg/L, when air acted as aerated gas and only air itself (no ultrasound) was exerted on the wastewater, the degradation rate of the CODCr will be 4.5%. However, when the ultrasound of the intensity of 119.4 kW/m2 was exerted on the wastewater, the degradation rate of the CODCr will be 65%. Compared with the activated sludge process alone, the combination of the ultrasonic irradiation and activated sludge process can increase the degradation rate of the CODCr from 45% to 81%. The oxygen consumption rate of the carbonization effluent obviously decreased in the presence of the activated sludge. This shows the carbonization effluent is not biotoxic behind the ultrasonic irradiation.
Shao, Linlin; Jiang, Wenbo; Feng, Li; Zhang, Liqiu
2014-06-01
This study explored the amount and composition of pyrolysis gas and oil derived from wet material or dried material during the preparation of sludge-corncob activated carbon, and evaluated the physicochemical and surface properties of the obtained two types of sludge-corncob-activated carbons. For wet material, owing to the presence of water, the yields of sludge-corncob activated carbon and the oil fraction slightly decreased while the yield of gases increased. The main pyrolysis gas compounds were H2 and CO2, and more H2 was released from wet material than dried material, whereas the opposite holds for CO2 Heterocyclics, nitriles, organic acids, and steroids were the major components of pyrolysis oil. Furthermore, the presence of water in wet material reduced the yield of polycyclic aromatic hydrocarbons from 6.76% to 5.43%. The yield of furfural, one of heterocyclics, increased sharply from 3.51% to 21.4%, which could be explained by the enhanced hydrolysis of corncob. In addition, the surface or chemical properties of the two sludge-corncob activated carbons were almost not affected by the moisture content of the raw material, although their mesopore volume and diameter were different. In addition, the adsorption capacities of the two sludge-corncob activated carbons towards Pb and nitrobenzene were nearly identical. © The Author(s) 2014.
Lin, Tzu-Lung; Pan, Yi-Jiun; Hsieh, Pei-Fang; Hsu, Chun-Ru; Wu, Meng-Chuan; Wang, Jin-Town
2016-08-17
Analysis of the genome of Klebsiella pneumoniae NTUH-K2044 strain revealed the presence of two clustered regularly interspaced short palindromic repeats (CRISPR) arrays separated with CRISPR-associated (cas) genes. Carbapenem-resistant K. pneumoniae isolates were observed to be less likely to have CRISPR-Cas than sensitive strains (5/85 vs. 22/132). Removal of the transcriptional repressor, H-NS, was shown to prevent the transformation of plasmids carrying a spacer and putative proto-spacer adjacent motif (PAM). The CRISPR-Cas system also decreased pUC-4K plasmid stability, resulting in plasmid loss from the bacteria with acquisition of new spacers. Analysis of the acquired proto-spacers in pUC-4K indicated that 5'-TTN-3' was the preferred PAM in K. pneumoniae. Treatment of cells by imipenem induced hns expression, thereby decreasing cas3 expression and consequently repressed CRISPR-Cas activity resulted in increase of plasmid stability. In conclusion, NTUH-K2044 CRISPR-Cas contributes to decrease of plasmid transformation and stability. Through repression of CRISPR-Cas activity by induced H-NS, bacteria might be more able to acquire DNA to confront the challenge of imipenem.
Lin, Tzu-Lung; Pan, Yi-Jiun; Hsieh, Pei-Fang; Hsu, Chun-Ru; Wu, Meng-Chuan; Wang, Jin-Town
2016-01-01
Analysis of the genome of Klebsiella pneumoniae NTUH-K2044 strain revealed the presence of two clustered regularly interspaced short palindromic repeats (CRISPR) arrays separated with CRISPR-associated (cas) genes. Carbapenem-resistant K. pneumoniae isolates were observed to be less likely to have CRISPR-Cas than sensitive strains (5/85 vs. 22/132). Removal of the transcriptional repressor, H-NS, was shown to prevent the transformation of plasmids carrying a spacer and putative proto-spacer adjacent motif (PAM). The CRISPR-Cas system also decreased pUC-4K plasmid stability, resulting in plasmid loss from the bacteria with acquisition of new spacers. Analysis of the acquired proto-spacers in pUC-4K indicated that 5′-TTN-3′ was the preferred PAM in K. pneumoniae. Treatment of cells by imipenem induced hns expression, thereby decreasing cas3 expression and consequently repressed CRISPR-Cas activity resulted in increase of plasmid stability. In conclusion, NTUH-K2044 CRISPR-Cas contributes to decrease of plasmid transformation and stability. Through repression of CRISPR-Cas activity by induced H-NS, bacteria might be more able to acquire DNA to confront the challenge of imipenem. PMID:27531594
CRISPR-Cas9 conformational activation as elucidated from enhanced molecular simulations
Miao, Yinglong; Walker, Ross C.; Jinek, Martin; McCammon, J. Andrew
2017-01-01
CRISPR-Cas9 has become a facile genome editing technology, yet the structural and mechanistic features underlying its function are unclear. Here, we perform extensive molecular simulations in an enhanced sampling regime, using a Gaussian-accelerated molecular dynamics (GaMD) methodology, which probes displacements over hundreds of microseconds to milliseconds, to reveal the conformational dynamics of the endonuclease Cas9 during its activation toward catalysis. We disclose the conformational transition of Cas9 from its apo form to the RNA-bound form, suggesting a mechanism for RNA recruitment in which the domain relocations cause the formation of a positively charged cavity for nucleic acid binding. GaMD also reveals the conformation of a catalytically competent Cas9, which is prone for catalysis and whose experimental characterization is still limited. We show that, upon DNA binding, the conformational dynamics of the HNH domain triggers the formation of the active state, explaining how the HNH domain exerts a conformational control domain over DNA cleavage [Sternberg SH et al. (2015) Nature, 527, 110–113]. These results provide atomic-level information on the molecular mechanism of CRISPR-Cas9 that will inspire future experimental investigations aimed at fully clarifying the biophysics of this unique genome editing machinery and at developing new tools for nucleic acid manipulation based on CRISPR-Cas9. PMID:28652374
CRISPR-Cas9 conformational activation as elucidated from enhanced molecular simulations.
Palermo, Giulia; Miao, Yinglong; Walker, Ross C; Jinek, Martin; McCammon, J Andrew
2017-07-11
CRISPR-Cas9 has become a facile genome editing technology, yet the structural and mechanistic features underlying its function are unclear. Here, we perform extensive molecular simulations in an enhanced sampling regime, using a Gaussian-accelerated molecular dynamics (GaMD) methodology, which probes displacements over hundreds of microseconds to milliseconds, to reveal the conformational dynamics of the endonuclease Cas9 during its activation toward catalysis. We disclose the conformational transition of Cas9 from its apo form to the RNA-bound form, suggesting a mechanism for RNA recruitment in which the domain relocations cause the formation of a positively charged cavity for nucleic acid binding. GaMD also reveals the conformation of a catalytically competent Cas9, which is prone for catalysis and whose experimental characterization is still limited. We show that, upon DNA binding, the conformational dynamics of the HNH domain triggers the formation of the active state, explaining how the HNH domain exerts a conformational control domain over DNA cleavage [Sternberg SH et al. (2015) Nature , 527 , 110-113]. These results provide atomic-level information on the molecular mechanism of CRISPR-Cas9 that will inspire future experimental investigations aimed at fully clarifying the biophysics of this unique genome editing machinery and at developing new tools for nucleic acid manipulation based on CRISPR-Cas9.
Nam, Ki Hyun; Ding, Fran; Haitjema, Charles; Huang, Qingqiu; DeLisa, Matthew P.; Ke, Ailong
2012-01-01
The CRISPR (clustered regularly interspaced short palindromic repeats) system is a prokaryotic RNA-based adaptive immune system against extrachromosomal genetic elements. Cas2 is a universally conserved core CRISPR-associated protein required for the acquisition of new spacers for CRISPR adaptation. It was previously characterized as an endoribonuclease with preference for single-stranded (ss)RNA. Here, we show using crystallography, mutagenesis, and isothermal titration calorimetry that the Bacillus halodurans Cas2 (Bha_Cas2) from the subtype I-C/Dvulg CRISPR instead possesses metal-dependent endonuclease activity against double-stranded (ds)DNA. This activity is consistent with its putative function in producing new spacers for insertion into the 5′-end of the CRISPR locus. Mutagenesis and isothermal titration calorimetry studies revealed that a single divalent metal ion (Mg2+ or Mn2+), coordinated by a symmetric Asp pair in the Bha_Cas2 dimer, is involved in the catalysis. We envision that a pH-dependent conformational change switches Cas2 into a metal-binding competent conformation for catalysis. We further propose that the distinct substrate preferences among Cas2 proteins may be determined by the sequence and structure in the β1–α1 loop. PMID:22942283
Retrofitting activated sludge systems to intermittent aeration for nitrogen removal.
Hanhan, O; Artan, N; Orhon, D
2002-01-01
The paper provides the basis and the conceptual approach of applying process kinetics and modelling to the design of alternating activated sludge systems for retrofitting existing activated sludge plants to intermittent aeration for nitrogen removal. It shows the significant role of the two specific parameters, namely, the aerated fraction and the cycle time ratio on process performance through model simulations and proposes a way to incorporate them into a design procedure using process stoichiometry and mass balance. It illustrates the effect of these parameters, together with the sludge age, in establishing the balance between the denitrification potential and the available nitrogen created in the anoxic/aerobic sequences of system operation.
Evaluation of activated sludge for biodegradation of propylene glycol as an aircraft deicing fluid.
Delorit, Justin D; Racz, LeeAnn
2014-04-01
Aircraft deicing fluid used at airport facilities is often collected for treatment or disposal in order to prevent serious ecological threats to nearby surface waters. This study investigated lab scale degradation of propylene glycol, the active ingredient in a common aircraft deicing fluid, by way of a laboratory-scale sequencing batch reactor containing municipal waste water treatment facility activated sludge performing simultaneous organic carbon oxidation and nitrification. The ability of activated sludge to remove propylene glycol was evaluated by studying the biodegradation and sorption characteristics of propylene glycol in an activated sludge medium. The results indicate sorption may play a role in the fate of propylene glycol in AS, and the heterotrophic bacteria readily degrade this compound. Therefore, a field deployable bioreactor may be appropriate for use in flight line applications.
Xie, Guo-Jun; Liu, Bing-Feng; Wang, Qilin; Ding, Jie; Ren, Nan-Qi
2016-04-15
Waste activated sludge is a valuable resource containing multiple nutrients, but is currently treated and disposed of as an important source of pollution. In this work, waste activated sludge after ultrasound pretreatment was reused as multiple nutrients for biofuel production. The nutrients trapped in sludge floc were transferred into liquid medium by ultrasonic disintegration during first 30 min, while further increase of pretreatment time only resulted in slight increase of nutrients release. Hydrogen production by Ethanoligenens harbinense B49 from glucose significantly increased with the concentration of ultrasonic sludge, and reached maximum yield of 1.97 mol H2/mol glucose at sludge concentration of 7.75 g volatile suspended solids/l. Without addition of any other chemicals, waste molasses rich in carbohydrate was efficiently turned into hydrogen with yield of 189.34 ml H2/g total sugar by E. harbinense B49 using ultrasonic sludge as nutrients. The results also showed that hydrogen production using pretreated sludge as multiple nutrients was higher than those using standard nutrients. Acetic acid produced by E. harbinense B49 together with the residual nutrients in the liquid medium were further converted into hydrogen (271.36 ml H2/g total sugar) by Rhodopseudomonas faecalis RLD-53 through photo fermentation, while ethanol was the sole end product with yield of 220.26 mg/g total sugar. Thus, pretreated sludge was an efficient nutrients source for biofuel production, which could replace the standard nutrients. This research provided a novel strategy to achieve environmental friendly sludge disposal and simultaneous efficient biofuel recovery from organic waste. Copyright © 2016 Elsevier Ltd. All rights reserved.
McCaffrey, Stacey A; Black, Ryan A; Butler, Stephen F
2018-03-01
The PainCAS is a web-based clinical tool for assessing and tracking pain and opioid risk in chronic pain patients. Despite evidence for its utility within the clinical setting, the PainCAS scales have never been subject to psychometric evaluation. The current study is the first to evaluate the psychometric properties of the PainCAS Interference with Daily Activities, Psychological/Emotional Distress, and Pain scales. Patients (N = 4797) from treatment centers and hospitals in 16 different states completed the PainCAS as part of routine clinical assessment. A subsample (n = 73) from two hospital-based treatment centers also completed comparator measures. Rasch Rating Scale Models were employed to evaluate the Interference with Daily Activities and Psychological/Emotional Distress scales, and empirical evaluation included assessment of dimensionality, discrimination, item fit, reliability, information, and person-to-item targeting. Additionally, convergent and discriminant validity were evaluated through classical test theory approaches. Convergent validity of the Pain scales was evaluated through correlations with corresponding comparator items. One Interference with Daily Activities item was removed due to poor functioning and discrimination. The retained items from the Interference with Daily Activities and Psychological/Emotional Distress scales conformed to unidimensional Rasch measurement models, yielding satisfactory item fit, reliability, precision, and coverage. Further, results provided support for the convergent and discriminant validity of these two scales. Convergent validity between the PainCAS Pain and BPI Pain items was also strong. Taken together, results provide strong psychometric support for these PainCAS Pain scales. Strengths and limitations of the current study are discussed.
Baawain, Mahad S; Al-Jabri, Mohsin; Choudri, B S
2014-02-01
There are more than 350 wastewater treatment plants distributed across different parts of Oman. Some of them produce large quantities of domestic sewage sludge, particularly this study focused on characterizing domestic sludge of six treatment plants that may contain various pollutants, therefore the proper management of domestic sewage sludge is essential. Samples of domestic sewage sludge were collected for each month over a period of one year in 2010. Samples of retained/recycled activated sludge (RAS) and waste activated sludge (WAS) were analyzed for elec-trical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content. All tests were conducted according to the Standard Method for the Examination of Water and Wastewater. Monitoring ofelectrical conductivity, nitrite and nitrate, the presence of chloride, sulfate and phosphate were higher than the other anions, the phosphate was found very high in all domestic STPs. The average obtained values of the cations in both domestic RAS and WAS samples were within the Omani Standards. The study showed the very high concentration of phosphate, it might be worth to further investigate on the sources of phosphate. Cations in both domestic RAS and WAS samples were low and suggest that the domestic sludge can be re used in agriculture. A regular maintenance should be performed to prevent any accumulation of some harmful substances which may affect the sludge quality and the sludge drying beds should be large enough to handle the produced sludge for better management.
Lv, Xiao-Mei; Song, Ju-Sheng; Li, Ji; Zhai, Kun
2017-08-01
In the present study, quick-lime-based thermal-alkaline sludge disintegration (SD) under low temperature was combined with cryptic growth to investigate the excess sludge reduction efficiency in the sequencing batch reactor (SBR). The optimized condition of SD was as follows: T = 80℃, pH = 11, t = 180 min, and the SD rate was about 42.1%. With 65.6% of excess sludge disintegrated and returned to the SBR, the system achieved sludge reduction rate of about 40.1%. The lysis-cryptic growth still obtained satisfactory sludge reduction efficiency despite the comparative low SD rate, which suggested that disintegration rate might not be the decisive factor for cryptic-growth-based sludge reduction. Lysis-cryptic growth did not impact the effluent quality, yet the phosphorus removal performance was enhanced, with effluent total phosphorus concentration decreased by 0.3 mg/L (33%). Crystal compounds of calcium phosphate precipitate were detected in the system by Fourier transform infrared spectroscopy and X-ray diffraction, which indicated the phosphorus removal potential of SD using lime. Moreover, endogenous dehydrogenase activity of activated sludge in the lysis-cryptic system was enhanced, which was beneficial for sludge reduction. SD and cryptic growth in the present study demonstrates an economical and effective approach for sludge reduction.
Cai, Meiqiang; Hu, Jianqiang; Lian, Guanghu; Xiao, Ruiyang; Song, Zhijun; Jin, Micong; Dong, Chunying; Wang, Quanyuan; Luo, Dewen; Wei, Zongsu
2018-04-01
The dewatering of waste activated sludge by integrated hydrodynamic cavitation (HC) and Fenton reaction was explored in this study. We first investigated the effects of initial pH, sludge concentration, flow rate, and H 2 O 2 concentration on the sludge dewaterability represented by water content, capillary suction time and specific resistance to filtration. The results of dewatering tests showed that acidic pH and low sludge concentration were favorable to improve dewatering performance in the HC/Fenton system, whereas optimal flow rate and H 2 O 2 concentration applied depended on the system operation. To reveal the synergism of HC/Fenton treatment, a suite of analysis were implemented: three-dimensional excitation emission matrix (3-DEEM) spectra of extracellular polymeric substances (EPS) such as proteins and polysaccharides, zeta potential and particle size of sludge flocs, and SEM/TEM imaging of sludge morphology. The characterization results indicate a three-step mechanism, namely HC fracture of different EPS in sludge flocs, Fenton oxidation of the released EPS, and Fe(III) re-flocculation, that is responsible for the synergistically enhanced sludge dewatering. Results of current study provide a basis to improve our understanding on the sludge dewatering performance by HC/Fenton treatment and possible scale-up of the technology for use in wastewater treatment plants. Copyright © 2017 Elsevier B.V. All rights reserved.
Enhancement of waste activated sludge aerobic digestion by electrochemical pre-treatment.
Song, Li-Jie; Zhu, Nan-Wen; Yuan, Hai-Ping; Hong, Ying; Ding, Jin
2010-08-01
Electrochemical technology with a pair of RuO(2)/Ti mesh plate electrode is first applied to pre-treat Waste Activated Sludge (WAS) prior to aerobic digestion in this study. The effects of various operating conditions were investigated including electrolysis time, electric power, current density, initial pH of sludge and sludge concentration. The study showed that the sludge reduction increased with the electrolysis time, electric power or current density, while decreased with the sludge concentration. Additionally, higher or lower pH than 7.0 was propitious to remove organic matters. The electrochemical pre-treatment removed volatile solids (VS) and volatile suspended solids (VSS) by 2.75% and 7.87%, respectively, with a WAS concentration of 12.9 g/L, electrolysis time of 30 min, electric power of 5 W and initial sludge pH of 10. In the subsequent aerobic digestion, the sludge reductions for VS and VSS after solids retention time (SRT) of 17.5 days were 34.25% and 39.59%, respectively. However, a SRT of 23.5 days was necessary to achieve equivalent reductions without electrochemical pre-treatment. Sludge analysis by Scanning Electron Microscope (SEM) images and infrared (IR) spectra indicated that electrochemical pre-treatment can rupture sludge cells, remove and solubilize intracellular substances, especially protein and polysaccharide, and consequently enhance the aerobic digestion. (c) 2010 Elsevier Ltd. All rights reserved.
Belhaj, Dalel; Elloumi, Nada; Jerbi, Bouthaina; Zouari, Mohamed; Abdallah, Ferjani Ben; Ayadi, Habib; Kallel, Monem
2016-10-01
Use of sewage sludge, a biological residue produced from sewage treatment processes in agriculture, is an alternative disposal technique of waste. To study the usefulness of sewage sludge amendment for Helianthus annuus, a pot experiment was conducted by mixing sewage sludge at 2.5, 5, and 7.5 % (w/w) amendment ratios to the agricultural soil. Soil pH decreased whereas electrical conductivity, organic matter, total N, available P, and exchangeable Na, K, and Ca increased in soil amended with sewage sludge in comparison to unamended soil. Sewage sludge amendment led to significant increase in Pb, Ni, Cu, Cr, and Zn concentrations of soil. The increased concentration of heavy metals in soil due to sewage sludge amendment led to increases in shoot and root concentrations of Cr, Cu, Ni, and Zn in plant as compared to those grown on unamended soil. Accumulation was more in roots than shoots for most of the heavy metals. Moreover, high metal removal for the harvestable parts of the crops was recorded. Sewage sludge amendment increased root and shoot length, leaves number, biomass, and antioxidant activities of sunflower. Significant increases in the activities of antioxidant enzymes and in the glutathione, proline, and soluble sugar content in response to amendment with sewage sludge may be defense mechanisms induced in response to heavy metal stress. Graphical abstract Origin, fate and behavior of sewage sludge fertilizer.
Performance intensification of Prague wastewater treatment plant.
Novák, L; Havrlíková, D
2004-01-01
Prague wastewater treatment plant was intensified during 1994--1997 by construction of new regeneration tank and four new secondary settling tanks. Nevertheless, more stringent effluent limits and operational problems gave rise to necessity for further intensification and optimisation of plant performance. This paper describes principal operational problems of the plant and shows solutions and achieved results that have lead to plant performance stabilisation. The following items are discussed: low nitrification capacity, nitrification bioaugmentation, activated sludge bulking, insufficient sludge disposal capacity, chemical precipitation of raw wastewater, simultaneous precipitation, sludge chlorination, installation of denitrification zones, sludge rising in secondary settling tanks due to denitrification, dosage of cationic polymeric organic flocculant to secondary settling tanks, thermophilic operation of digestors, surplus activated sludge pre-thickening, mathematical modelling.
Geng, Chunnu; Bergheaud, Valérie; Garnier, Patricia; Zhu, Yong-Guan; Haudin, Claire-Sophie
2016-01-01
Acetyl Sulfamethoxazole (AC-SMX) and acetaminophen (ACM) can be found in municipal sewage sludge, and their content and availability may be influenced by sludge treatments, such as drying and liming. A sludge similarly centrifuged with/without a flocculant was spiked with (14)C-labelled AC-SMX or ACM. Then, it was either limed (20% CaO) or/and dried under different laboratory conditions (1 week at ambient temperature; and 48 h at 40 or 80 °C). The total amount and distribution of the (14)C-compounds among several chemical fractions, based on the sludge floc definition, were assessed at the end of the treatments. All the (14)C-activity brought initially was recovered in the limed and/or dried sludges for AC-SMX but only between 44.4 and 84.9% for ACM, with the highest rate obtained for the limed sludge. Drying at 80 °C or liming increased the percentage of the sludge total organic carbon recovered in the extracts containing soluble extracellular polymeric substances (S-EPS) and the percentage of the total (14)C-activity extracted simultaneously. The non-extractable residues represented only 3.9-11.6% of the total (14)C-activity measured in the treated sludges for AC-SMX and 16.9-21.8% for ACM. The presence of AC-SMX and ACM residues in the treated sludges, after liming and drying under different conditions, was shown using some (14)C-labelled molecules. At this time scale and according to the extraction method selected, most of the (14)C-residues remained soluble and easily extractable for both compounds. This result implies that certain precautions should be taken when storing sludges before being spread on the field. Sludge piles, particularly the limed sludge, should be protected from rain to limit the production of lixiviates, which may contain residues of AC-SMX and ACM. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fleit, E.; Melicz, Z.; Sándor, D.; Zrínyi, M.; Filipcsei, G.; László, K.; Dékány, I.; Király, Z.
Performance of biological wastewater treatment depends to a large extent on mechanical strength, size distribution, permeability and other textural properties of the activated sludge flocs. A novel approach was developed in applying synthetic polymer materials to organize floc architecture instead of spontaneously formed activated sludge floc. Developed microcarrier polymer materials were used in our experiments to mitigate technological goals. Preliminary results suggest that the PVA-PAA (polyvinyl alcohol-polyacrylic acid copolymer) is a feasible choice for skeleton material replacing "traditional" activated sludge floc. Use of PVA-PAA hydrogel material as microreactors and methods for biofilm formation of wastewater bacteria on the carrier material are described. Laboratory scale experimental results with microscopic size bioreactors and their potential application for simultaneous nitrification and denitrification are presented.
Virus elimination in activated sludge systems: from batch tests to mathematical modeling.
Haun, Emma; Ulbricht, Katharina; Nogueira, Regina; Rosenwinkel, Karl-Heinz
2014-01-01
A virus tool based on Activated Sludge Model No. 3 for modeling virus elimination in activated sludge systems was developed and calibrated with the results from laboratory-scale batch tests and from measurements in a municipal wastewater treatment plant (WWTP). The somatic coliphages were used as an indicator for human pathogenic enteric viruses. The extended model was used to simulate the virus concentration in batch tests and in a municipal full-scale WWTP under steady-state and dynamic conditions. The experimental and modeling results suggest that both adsorption and inactivation processes, modeled as reversible first-order reactions, contribute to virus elimination in activated sludge systems. The model should be a useful tool to estimate the number of viruses entering water bodies from the discharge of treated effluents.
Adsorption mechanisms and impact factors of oxytetracycline on activated sludge
NASA Astrophysics Data System (ADS)
Xiancai, Song; Dongfang, Liu; Lejun, Zhao
2017-03-01
The adsorption mechanisms and the effect of Oxytetracycline (OTC) onto activated sludge were studied. The results show that the adsorption of Oxytetracycline (OTC) onto activated sludge was coincident with the Pseudo-second-order kinetic model which suggested that chemical adsorption mechanism was dominant. The influences including pH and metal ions on the OTC were examined. It was demonstrated that the adsorption process was highly pH-dependant, which indicate that cationic exchange mechanisms may play an important role in the adsorption process. Na+, K+, Ca2+, Mg2+ and Cd2+ ions more or less inhibited the adsorption of OTC on activated sludge while Cu2+ enhanced the adsorption ability. The phenomenon may reflect the result that a surface complexation mechanism could involved in the adsorption.
Araujo, Moacir Messias de; Lermontov, André; Araujo, Philippe Lopes da Silva; Zaiat, Marcelo
2013-09-01
An innovative biomass carrier (Biobob®) was tested for municipal wastewater treatment in an activated sludge system to evaluate the pollutant removal performance and the sludge generation for different carrier volumes. The experiment was carried out in a pilot-scale cyclic activated sludge system (CASS®) built with three cylindrical tanks in a series: an anoxic selector (2.1 m(3)), an aerobic selector (2.5 m(3)) and the main aerobic reactor (25.1 m(3)). The results showed that by adding the Biobob® carrier decreased the MLVSS concentration, which consequently reduced the waste sludge production of the system. Having 7% and 18% (v/v) support material in the aerobic reactor, the observed biomass yield decreased 18% and 36%, respectively, relative to the reactor operated with suspended biomass. The addition of media did not affect the system's performance for COD and TSS removal. However, TKN and TN removal were improved by 24% and 14%, respectively, using 18% (v/v) carrier. Copyright © 2013 Elsevier Ltd. All rights reserved.
Huang, Cheng; Lai, Jia; Sun, Xiuyun; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Wang, Lianjun
2016-11-01
In this study, the combination treatment of NaOH and Mg(OH)2 was applied to anaerobic digestion of waste activated sludge (WAS) for simultaneously enhancement of volatile fatty acids (VFAs) production, nutrients removal and sludge dewaterability. The maximum VFAs production (461mg COD/g VSS) was obtained at the NaOH/Mg(OH)2 ratio of 75:25, which was much higher than that of the blank or sole NaOH. Moreover, nutrients removal and sludge dewaterability were improved by the combined using of NaOH and Mg(OH)2. Mechanism investigations revealed that the presence of Mg(OH)2 could maintain alkaline environment, which contributed to inhibit the activity of methanogens. Also, the bridging between Mg(2+) and extracellular polymeric substances (EPS) plays an important role in the solubilization and dewatering of sludge. High-throughput sequencing analysis demonstrated that the abundance of bacteria involved in sludge hydrolysis and VFAs accumulation was greatly enriched with the mixtures of NaOH and Mg(OH)2. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yin, Bo; Liu, Hongbo; Wang, Yuanyuan; Bai, Jie; Liu, He; Fu, Bo
2016-03-01
The real cause to the low yield of volatile fatty acids (VFAs), from inhibition or low biodegradation, is uncertain in sludge anaerobic fermentation. In this study, poor biodegradability of proteins and fast decrease of the indigenous hydrolase activity in the residual post-fermented sludge were found to be the major reasons. With the addition of trypsin or alkaline protease in residual post-fermented sludge after primary alkaline fermentation, degradation efficiency of refractory protein increased by 33.6% and 34.8%, respectively. Accordingly, the VFAs yields were improved by 69.7% and 106.1%, respectively. Furthermore, the activities of added trypsin and alkaline protease could maintain at 13.52 U/mL and 19.11 U/mL in the alkaline fermentation process. This study demonstrated that exploiting the refractory proteins in residual post-fermented sludge by protease addition seems to be a very promising way for improving VFAs yield of conventional alkaline fermentations with waste activated sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.
Membrane filtration device for studying compression of fouling layers in membrane bioreactors
Bugge, Thomas Vistisen; Larsen, Poul; Nielsen, Per Halkjær; Christensen, Morten Lykkegaard
2017-01-01
A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology’s ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation. PMID:28749990
Bengtsson, Simon; de Blois, Mark; Wilén, Britt-Marie; Gustavsson, David
2018-03-20
The aerobic granular sludge (AGS) technology is growing towards becoming a mature option for new municipal wastewater treatment plants and capacity extensions. A process based on AGS was compared to conventional activated sludge processes (with and without enhanced biological phosphorus removal), an integrated fixed-film activated sludge (IFAS) process and a membrane bioreactor (MBR) by estimating the land area demand (footprint), electricity demand and chemicals' consumption. The process alternatives compared included pre-settling, sludge digestion and necessary post-treatment to achieve effluent concentrations of 8 mg/L nitrogen and 0.2 mg/L phosphorus at 7°C. The alternative based on AGS was estimated to have a 40-50% smaller footprint and 23% less electricity requirement than conventional activated sludge. In relation to the other compact treatment options IFAS and MBR, the AGS process had an estimated electricity usage that was 35-70% lower. This suggests a favourable potential for processes based on AGS although more available experience of AGS operation and performance at full scale is desired.
Ye, Caihong; Yuan, Haiping; Dai, Xiaohu; Lou, Ziyang; Zhu, Nanwen
2016-11-01
Waste activated sludge (WAS) requires a long digestion time because of a rate-limiting hydrolysis step - the first phase of anaerobic digestion (AD). Pretreatment can be used prior to AD to facilitate the hydrolysis step and improve the efficiency of WAS digestion. This study evaluated a novel application of electrochemical (EC) technology employed as the pretreatment method prior to AD of WAS, focusing on the effect of process conditions on sludge disintegration and subsequent AD process. A superior process condition of EC pretreatment was obtained by reaction time of 30 min, electrolysis voltage of 20 V, and electrode distance of 5 cm, under which the disintegration degree of WAS ranged between 9.02% and 9.72%. In the subsequent batch AD tests, 206 mL/g volatile solid (VS) methane production in EC pretreated sludge was obtained, which was 20.47% higher than that of unpretreated sludge. The AD time was 19 days shorter for EC pretreated sludge compared to the unpretreated sludge. Additionally, the EC + AD reactor achieved 41.84% of VS removal at the end of AD. The analysis of energy consumption showed that EC pretreatment could be effective in enhancing sludge AD with reduced energy consumption when compared to other pretreatment methods.
An examination of the treatment of iron-dosed waste activated sludge by anaerobic digestion.
Johnson, D K; Carliell-Marquet, C M; Forster, C F
2003-08-01
Anaerobic digestion is an important sludge treatment process enabling stabilisation of the organic fraction of sewage sludge prior to land application. Any practice which might retard the anaerobic digestion process will jeopardize the stability of the resulting digested sludge. This paper reports on an investigation into the relative digestibility of iron-dosed waste activated sludge (WAS) from a sewage treatment works (STW) with chemical phosphorus removal (CPR), in comparison to WAS from a works without phosphorus removal. Two laboratory scale anaerobic digesters (51) were fed initially with non iron-dosed WAS (Works M) at a solids retention time of 19 days. After 2 months the iron-dosed CPR sludge (Works R) was introduced into the second digester, resulting in a 32% decrease in biogas production and an increase in the methane content of the biogas from an average of 74% to 81%. Pre-treatment of the CPR sludge with sodium sulphide and shear, both alone and in combination, caused the gas production to deteriorate further. Pre-acidification and pre-treatment with EDTA did result in an enhanced gas production but it was still not comparable with that of the digester being fed with non-iron-dosed sludge. The daily gas production was found to be linearly related to the amount of bound iron in the sludge.
Luiz, Marguti André; Sidney Seckler, Ferreira Filho; Passos, Piveli Roque
2018-06-01
An emerging practice for water treatment plant (WTP) sludge is its disposal in wastewater treatment plants (WWTP), an alternative that does not require the installation of sludge treatment facilities in the WTP. This practice can cause both positive and negative impacts in the WWTP processes since the WTP sludge does not have the same characteristics as domestic wastewater. This issue gives plenty of information in laboratory and pilot scales, but lacks data from full-scale studies. The main purpose of this paper is to study the impact of disposing sludge from the Rio Grande conventional WTP into the ABC WWTP, an activated sludge process facility. Both plants are located in São Paulo, Brazil, and are full-scale facilities. The WTP volumetric flow rate (4.5 m³/s) is almost three times that of WWTP (1.6 m³/s). The data used in this study came from monitoring the processes at both plants. The WWTP liquid phase treatment analysis included the variables BOD, COD, TSS, VSS, ammonia, total nitrogen, phosphorus and iron, measured at the inlet, primary effluent, mixed liquor, and effluent. For the WWTP solids treatment, the parameters tested were total and volatile solids. The performance of the WWTP process was analyzed with and without sludge addition: 'without sludge' in years 2005 and 2006 and 'with sludge' from January 2007 to March 2008. During the second period, the WTP sludge addition increased the WWTP removal efficiencies for solids (93%-96%), organic matter (92%-94% for BOD) and phosphorus (52%-88%), when compared to the period 'without sludge'. These improvements can be explained by higher feed concentrations combined to same or lower effluent concentrations in the 'with sludge' period. No critical negative impacts occurred in the sludge treatment facilities, since the treatment units absorbed the extra solids load from the WTP sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.
Philips, Patrick J.; Stinson, Beverley; Zaugg, Steven D.; Furlong, Edward T.; Kolpin, Dana W.; Esposito, Kathleen; Bodniewicz, B.; Pape, R.; Anderson, J.
2005-01-01
The second phase of the study focused on one of the most common wastewater treatment processes operated in the United States, the Activated Sludge process. Using four controlled parallel activated sludge pilots, a more detailed assessment of the impact of Sludge Retention Time (SRT) on the reduction or removal of ECs was performed.
Moreb, Eirik Adim; Hoover, Benjamin; Yaseen, Adam; Valyasevi, Nisakorn; Roecker, Zoe; Menacho-Melgar, Romel; Lynch, Michael D
2017-12-15
Phage-derived "recombineering" methods are utilized for bacterial genome editing. Recombineering results in a heterogeneous population of modified and unmodified chromosomes, and therefore selection methods, such as CRISPR-Cas9, are required to select for edited clones. Cells can evade CRISPR-Cas-induced cell death through recA-mediated induction of the SOS response. The SOS response increases RecA dependent repair as well as mutation rates through induction of the umuDC error prone polymerase. As a result, CRISPR-Cas selection is more efficient in recA mutants. We report an approach to inhibiting the SOS response and RecA activity through the expression of a mutant dominant negative form of RecA, which incorporates into wild type RecA filaments and inhibits activity. Using a plasmid-based system in which Cas9 and recA mutants are coexpressed, we can achieve increased efficiency and consistency of CRISPR-Cas9-mediated selection and recombineering in E. coli, while reducing the induction of the SOS response. To date, this approach has been shown to be independent of recA genotype and host strain lineage. Using this system, we demonstrate increased CRISPR-Cas selection efficacy with over 10 000 guides covering the E. coli chromosome. The use of dominant negative RecA or homologues may be of broad use in bacterial CRISPR-Cas-based genome editing where the SOS pathways are present.
Applications of CRISPR/Cas System to Bacterial Metabolic Engineering.
Cho, Suhyung; Shin, Jongoh; Cho, Byung-Kwan
2018-04-05
The clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) adaptive immune system has been extensively used for gene editing, including gene deletion, insertion, and replacement in bacterial and eukaryotic cells owing to its simple, rapid, and efficient activities in unprecedented resolution. Furthermore, the CRISPR interference (CRISPRi) system including deactivated Cas9 (dCas9) with inactivated endonuclease activity has been further investigated for regulation of the target gene transiently or constitutively, avoiding cell death by disruption of genome. This review discusses the applications of CRISPR/Cas for genome editing in various bacterial systems and their applications. In particular, CRISPR technology has been used for the production of metabolites of high industrial significance, including biochemical, biofuel, and pharmaceutical products/precursors in bacteria. Here, we focus on methods to increase the productivity and yield/titer scan by controlling metabolic flux through individual or combinatorial use of CRISPR/Cas and CRISPRi systems with introduction of synthetic pathway in industrially common bacteria including Escherichia coli . Further, we discuss additional useful applications of the CRISPR/Cas system, including its use in functional genomics.
Cas9-catalyzed DNA Cleavage Generates Staggered Ends: Evidence from Molecular Dynamics Simulations
NASA Astrophysics Data System (ADS)
Zuo, Zhicheng; Liu, Jin
2016-11-01
The CRISPR-associated endonuclease Cas9 from Streptococcus pyogenes (spCas9) along with a single guide RNA (sgRNA) has emerged as a versatile toolbox for genome editing. Despite recent advances in the mechanism studies on spCas9-sgRNA-mediated double-stranded DNA (dsDNA) recognition and cleavage, it is still unclear how the catalytic Mg2+ ions induce the conformation changes toward the catalytic active state. It also remains controversial whether Cas9 generates blunt-ended or staggered-ended breaks with overhangs in the DNA. To investigate these issues, here we performed the first all-atom molecular dynamics simulations of the spCas9-sgRNA-dsDNA system with and without Mg2+ bound. The simulation results showed that binding of two Mg2+ ions at the RuvC domain active site could lead to structurally and energetically favorable coordination ready for the non-target DNA strand cleavage. Importantly, we demonstrated with our simulations that Cas9-catalyzed DNA cleavage produces 1-bp staggered ends rather than generally assumed blunt ends.
Rational design of a split-Cas9 enzyme complex
Wright, Addison V.; Sternberg, Samuel H.; Taylor, David W.; ...
2015-02-23
Cas9, an RNA-guided DNA endonuclease found in clustered regularly interspaced short palindromic repeats (CRISPR) bacterial immune systems, is a versatile tool for genome editing, transcriptional regulation, and cellular imaging applications. Structures of Streptococcus pyogenes Cas9 alone or bound to single-guide RNA (sgRNA) and target DNA revealed a bilobed protein architecture that undergoes major conformational changes upon guide RNA and DNA binding. To investigate the molecular determinants and relevance of the interlobe rearrangement for target recognition and cleavage, we designed a split-Cas9 enzyme in which the nuclease lobe and α-helical lobe are expressed as separate polypeptides. The lobes do not interactmore » on their own, the sgRNA recruits them into a ternary complex that recapitulates the activity of full-length Cas9 and catalyzes site-specific DNA cleavage. The use of a modified sgRNA abrogates split-Cas9 activity by preventing dimerization, allowing for the development of an inducible dimerization system. We propose that split-Cas9 can act as a highly regulatable platform for genome-engineering applications.« less
Rational design of a split-Cas9 enzyme complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Addison V.; Sternberg, Samuel H.; Taylor, David W.
Cas9, an RNA-guided DNA endonuclease found in clustered regularly interspaced short palindromic repeats (CRISPR) bacterial immune systems, is a versatile tool for genome editing, transcriptional regulation, and cellular imaging applications. Structures of Streptococcus pyogenes Cas9 alone or bound to single-guide RNA (sgRNA) and target DNA revealed a bilobed protein architecture that undergoes major conformational changes upon guide RNA and DNA binding. To investigate the molecular determinants and relevance of the interlobe rearrangement for target recognition and cleavage, we designed a split-Cas9 enzyme in which the nuclease lobe and α-helical lobe are expressed as separate polypeptides. The lobes do not interactmore » on their own, the sgRNA recruits them into a ternary complex that recapitulates the activity of full-length Cas9 and catalyzes site-specific DNA cleavage. The use of a modified sgRNA abrogates split-Cas9 activity by preventing dimerization, allowing for the development of an inducible dimerization system. We propose that split-Cas9 can act as a highly regulatable platform for genome-engineering applications.« less
CRISPR-Cas9 Structures and Mechanisms.
Jiang, Fuguo; Doudna, Jennifer A
2017-05-22
Many bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems employ the dual RNA-guided DNA endonuclease Cas9 to defend against invading phages and conjugative plasmids by introducing site-specific double-stranded breaks in target DNA. Target recognition strictly requires the presence of a short protospacer adjacent motif (PAM) flanking the target site, and subsequent R-loop formation and strand scission are driven by complementary base pairing between the guide RNA and target DNA, Cas9-DNA interactions, and associated conformational changes. The use of CRISPR-Cas9 as an RNA-programmable DNA targeting and editing platform is simplified by a synthetic single-guide RNA (sgRNA) mimicking the natural dual trans-activating CRISPR RNA (tracrRNA)-CRISPR RNA (crRNA) structure. This review aims to provide an in-depth mechanistic and structural understanding of Cas9-mediated RNA-guided DNA targeting and cleavage. Molecular insights from biochemical and structural studies provide a framework for rational engineering aimed at altering catalytic function, guide RNA specificity, and PAM requirements and reducing off-target activity for the development of Cas9-based therapies against genetic diseases.
Rational design of a split-Cas9 enzyme complex.
Wright, Addison V; Sternberg, Samuel H; Taylor, David W; Staahl, Brett T; Bardales, Jorge A; Kornfeld, Jack E; Doudna, Jennifer A
2015-03-10
Cas9, an RNA-guided DNA endonuclease found in clustered regularly interspaced short palindromic repeats (CRISPR) bacterial immune systems, is a versatile tool for genome editing, transcriptional regulation, and cellular imaging applications. Structures of Streptococcus pyogenes Cas9 alone or bound to single-guide RNA (sgRNA) and target DNA revealed a bilobed protein architecture that undergoes major conformational changes upon guide RNA and DNA binding. To investigate the molecular determinants and relevance of the interlobe rearrangement for target recognition and cleavage, we designed a split-Cas9 enzyme in which the nuclease lobe and α-helical lobe are expressed as separate polypeptides. Although the lobes do not interact on their own, the sgRNA recruits them into a ternary complex that recapitulates the activity of full-length Cas9 and catalyzes site-specific DNA cleavage. The use of a modified sgRNA abrogates split-Cas9 activity by preventing dimerization, allowing for the development of an inducible dimerization system. We propose that split-Cas9 can act as a highly regulatable platform for genome-engineering applications.
CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.
Koonin, Eugene V; Makarova, Kira S
2013-05-01
The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails.
Exploiting CRISPR/Cas systems for biotechnology
Sampson, Timothy R.; Weiss, David S.
2015-01-01
The Cas9 endonuclease is the central component of the Type II CRISPR/Cas system, a prokaryotic adaptive restriction system against invading nucleic acids, such as those originating from bacteriophages and plasmids. Recently, this RNA-directed DNA endonuclease has been harnessed to target DNA sequences of interest. Here, we review the development of Cas9 as an important tool to not only edit the genomes of a number of different prokaryotic and eukaryotic species, but also as an efficient system for site-specific transcriptional repression or activation. Additionally, a specific Cas9 protein has been observed to target an RNA substrate, suggesting that Cas9 may have the ability to be programmed to target RNA as well. Cas proteins from other CRISPR/Cas subtypes may also be exploited in this regard. Thus, CRISPR/Cas systems represent an effective and versatile biotechnological tool, which will have significant impact on future advancements in genome engineering. PMID:24323919
Exploiting CRISPR/Cas systems for biotechnology.
Sampson, Timothy R; Weiss, David S
2014-01-01
The Cas9 endonuclease is the central component of the Type II CRISPR/Cas system, a prokaryotic adaptive restriction system against invading nucleic acids, such as those originating from bacteriophages and plasmids. Recently, this RNA-directed DNA endonuclease has been harnessed to target DNA sequences of interest. Here, we review the development of Cas9 as an important tool to not only edit the genomes of a number of different prokaryotic and eukaryotic species, but also as an efficient system for site-specific transcriptional repression or activation. Additionally, a specific Cas9 protein has been observed to target an RNA substrate, suggesting that Cas9 may have the ability to be programmed to target RNA as well. Cas proteins from other CRISPR/Cas subtypes may also be exploited in this regard. Thus, CRISPR/Cas systems represent an effective and versatile biotechnological tool, which will have significant impact on future advancements in genome engineering. © 2014 WILEY Periodicals, Inc.
Schramm, Andreas; Santegoeds, Cecilia M.; Nielsen, Helle K.; Ploug, Helle; Wagner, Michael; Pribyl, Milan; Wanner, Jiri; Amann, Rudolf; de Beer, Dirk
1999-01-01
A combination of different methods was applied to investigate the occurrence of anaerobic processes in aerated activated sludge. Microsensor measurements (O2, NO2−, NO3−, and H2S) were performed on single sludge flocs to detect anoxic niches, nitrate reduction, or sulfate reduction on a microscale. Incubations of activated sludge with 15NO3− and 35SO42− were used to determine denitrification and sulfate reduction rates on a batch scale. In four of six investigated sludges, no anoxic zones developed during aeration, and consequently denitrification rates were very low. However, in two sludges anoxia in flocs coincided with significant denitrification rates. Sulfate reduction could not be detected in any sludge in either the microsensor or the batch investigation, not even under short-term anoxic conditions. In contrast, the presence of sulfate-reducing bacteria was shown by fluorescence in situ hybridization with 16S rRNA-targeted oligonucleotide probes and by PCR-based detection of genes coding for the dissimilatory sulfite reductase. A possible explanation for the absence of anoxia even in most of the larger flocs might be that oxygen transport is not only diffusional but enhanced by advection, i.e., facilitated by flow through pores and channels. This possibility is suggested by the irregularity of some oxygen profiles and by confocal laser scanning microscopy of the three-dimensional floc structures, which showed that flocs from the two sludges in which anoxic zones were found were apparently denser than flocs from the other sludges. PMID:10473433
Potential of activated sludge disintegration.
Boehler, M; Siegrist, H
2006-01-01
The disposal of sewage sludge and the agricultural use of stabilised sludge are decreasing due to more stringent regulations in Europe. An increasing fraction of sewage sludge must therefore be dewatered, dried, incinerated and the ashes disposed of in landfills. These processes are cost-intensive and also lead to the loss of valuable phosphate resources incorporated in the sludge ash. The implementation of processes that could reduce excess sludge production and recycle phosphate is therefore recommended. Disintegration of biological sludge by mechanical, thermal and physical methods could significantly reduce excess sludge production, improve the settling properties of the sludge and reduce bulking and scumming. The solubilised COD could also improve denitrification if the treated sludge is recycled to the anoxic zone. However, disintegration partly inhibits and kills nitrifiers and could therefore shorten their effective solid retention time, thus reducing the safety of the nitrification. This paper discusses the potential of disintegration on sludge reduction, the operating stability of nitrification, the improvement of denitrification and also presents an energy and cost evaluation.
Melvin, Steven D; Leusch, Frederic D L
2016-01-01
Trace organic contaminants (TrOCs), such as endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs), represent global threats to aquatic animals and ecosystems. A major source of TrOCs in the aquatic environment is via the discharge of treated sewage, so there is an urgent need to evaluate the comparative efficiencies of the most widely used sewage treatment technologies as regards elimination of these compounds from wastewater. To address this need, 976 published articles were compiled focusing on estimates of removal (%) for 20 common environmental TrOCs, from five major sewage treatment technologies: conventional activated sludge (CAS), oxidation ditch (OD), membrane bioreactor (MBR), ponds and constructed wetlands (PCW), and trickling biological filters (TBF). A quantitative meta-analysis was performed to compare standardized relative removal efficiencies (SREs) of the compounds amongst these technologies, and where possible potential sources of heterogeneity were considered (e.g., flow rates and chemical sorption potential). The results indicate that the most widely used CAS treatment and the less common TBF provide comparatively poor overall removal of common organic micropollutants. Membrane bioreactors appear to be capable of achieving the greatest overall removal efficiencies, but the sustainability and economic viability of this option has been questioned. Treatment with OD systems may be more economical while still achieving comparatively high removal efficiencies, and the analysis revealed OD to be the best option for targeting highly potent estrogenic EDCs. This study offers a unique global assessment of TrOC removal via leading sewage treatment technologies, and is an important step in the identification of effective options for treating municipal sewage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Activated-Sludge Nitrification in the Presence of Linear and Branched-Chain Alkyl Benzene Sulfonates
Baillod, Charles R.; Boyle, W. C.
1968-01-01
The effects of biodegradable linear alkyl benzene sulfonate and branched-chain alkyl benzene sulfonate detergents on activated-sludge nitrification were investigated by administering a synthetic waste containing up to 23 mg of each detergent per liter to eight bench-scale, batch, activated-sludge units. It was found that both detergents tended to promote complete oxidation of ammonia to nitrate, whereas control units produced approximately equal amounts of nitrite and nitrate. Various hypotheses are offered to explain the phenomenon. PMID:5636474
Li, Shuyan; Li, Jijin; Yuan, Jing; Li, Guoxue; Zang, Bing; Li, Yangyang
2017-07-01
The aim of this study was to investigate the influence of inoculants on compost stability, maturity and enzyme activities during composting of chicken manure and cornstalk. Two microbial inoculants (originated from aerobic municipal sludge and municipal solid waste, respectively) were used in composting at the rate of 0.3% of initial raw materials (wet weight). No microbial inoculums were added to the control. The experiment was conducted under aerobic conditions for 53 days. The results show that enzyme activity is an important index to comprehensively evaluate the composting stability and maturity. Microbes originated from sludge works best in terms of composting stability and maturity (C:N ratio decreased from 15.5 to 10, and germination index increased to 109%). Microbial inoculums originated from sludge and municipal solid waste extended the time of thermophilic phase for 11 and 7 days, respectively. Microbial inoculums originated from sludge and MSW significantly increased the average of catalase activity (by 15.0% and 12.1%, respectively), urease activity (by 21.5% and 12.2%, respectively) and cellulase activity (by 32.1% and 26.1%, respectively) during composting.
NASA Astrophysics Data System (ADS)
Nikolaeva, L. A.; Khusaenova, A. Z.
2014-05-01
A method for utilizing production wastes is considered, and a process circuit arrangement is proposed for utilizing a mixture of activated silt and sludge from chemical water treatment by incinerating it with possible heat recovery. The sorption capacity of the products from combusting a mixture of activated silt and sludge with respect to gaseous emissions is experimentally determined. A periodic-duty adsorber charged with a fixed bed of sludge is calculated, and the heat-recovery boiler efficiency is estimated together with the technical-economic indicators of the proposed utilization process circuit arrangement.
Features of CRISPR-Cas Regulation Key to Highly Efficient and Temporally-Specific crRNA Production.
Rodic, Andjela; Blagojevic, Bojana; Djordjevic, Magdalena; Severinov, Konstantin; Djordjevic, Marko
2017-01-01
Bacterial immune systems, such as CRISPR-Cas or restriction-modification (R-M) systems, affect bacterial pathogenicity and antibiotic resistance by modulating horizontal gene flow. A model system for CRISPR-Cas regulation, the Type I-E system from Escherichia coli , is silent under standard laboratory conditions and experimentally observing the dynamics of CRISPR-Cas activation is challenging. Two characteristic features of CRISPR-Cas regulation in E. coli are cooperative transcription repression of cas gene and CRISPR array promoters, and fast non-specific degradation of full length CRISPR transcripts (pre-crRNA). In this work, we use computational modeling to understand how these features affect the system expression dynamics. Signaling which leads to CRISPR-Cas activation is currently unknown, so to bypass this step, we here propose a conceptual setup for cas expression activation, where cas genes are put under transcription control typical for a restriction-modification (R-M) system and then introduced into a cell. Known transcription regulation of an R-M system is used as a proxy for currently unknown CRISPR-Cas transcription control, as both systems are characterized by high cooperativity, which is likely related to similar dynamical constraints of their function. We find that the two characteristic CRISPR-Cas control features are responsible for its temporally-specific dynamical response, so that the system makes a steep (switch-like) transition from OFF to ON state with a time-delay controlled by pre-crRNA degradation rate. We furthermore find that cooperative transcription regulation qualitatively leads to a cross-over to a regime where, at higher pre-crRNA processing rates, crRNA generation approaches the limit of an infinitely abrupt system induction. We propose that these dynamical properties are associated with rapid expression of CRISPR-Cas components and efficient protection of bacterial cells against foreign DNA. In terms of synthetic applications, the setup proposed here should allow highly efficient expression of small RNAs in a narrow time interval, with a specified time-delay with respect to the signal onset.
Vullo, Daniela; Lehneck, Ronny; Pöggeler, Stefanie; Supuran, Claudiu T
2018-12-01
The two β-carbonic anhydrases (CAs, EC 4.2.1.1) recently cloned and purified from the ascomycete fungus Sordaria macrospora, CAS1 and CAS2, were investigated for their inhibition with a panel of 39 aromatic, heterocyclic, and aliphatic sulfonamides and one sulfamate, many of which are clinically used agents. CAS1 was efficiently inhibited by tosylamide, 3-fluorosulfanilamide, and 3-chlorosulfanilamide (K I s in the range of 43.2-79.6 nM), whereas acetazolamide, methazolamide, topiramate, ethoxzolamide, dorzolamide, and brinzolamide were medium potency inhibitors (K I s in the range of 360-445 nM). CAS2 was less sensitive to sulfonamide inhibitors. The best CAS2 inhibitors were 5-amino-1,3,4-thiadiazole-2-sulfonamide (the deacetylated acetazolamide precursor) and 4-hydroxymethyl-benzenesulfonamide, with K I s in the range of 48.1-92.5 nM. Acetazolamide, dorzolamide, ethoxzolamide, topiramate, sulpiride, indisulam, celecoxib, and sulthiame were medium potency CAS2 inhibitors (K I s of 143-857 nM). Many other sulfonamides showed affinities in the high micromolar range or were ineffective as CAS1/2 inhibitors. Small changes in the structure of the inhibitor led to important differences of the activity. As these enzymes may show applications for the removal of anthropically generated polluting gases, finding modulators of their activity may be crucial for designing environmental-friendly CO 2 capture processes.
Carrère, Hélène; Bougrier, Claire; Castets, Delphine; Delgenès, Jean Philippe
2008-11-01
Thermal treatments with temperature ranging from 60 to 210 degrees C were applied to 6 waste-activated sludge samples originating from high or medium load, extended aeration wastewater treatment processes that treated different wastewaters (urban, urban and industrial or slaughterhouse). COD sludge solubilisation was linearly correlated with the treatment temperature on the whole temperature range and independently of the sludge samples. Sludge batch mesophilic biodegradability increased with treatment temperature up to 190 degrees C. In this temperature range, biodegradability enhancement or methane production increase by thermal hydrolysis was shown to be a function of sludge COD solubilisation but also of sludge initial biodegradability. The lower the initial biodegradability means the higher efficiency of thermal treatment.
Yang, Sheng-Fu; Lin, Cheng-Fang; Lin, Angela Yu-Chen; Hong, Pui-Kwan Andy
2011-05-01
This study investigated the adsorption, desorption, and biodegradation characteristics of sulfonamide antibiotics in the presence of activated sludge with and without being subjected to NaN(3) biocide. Batch experiments were conducted and the relative contributions of adsorption and biodegradation to the observed removal of sulfonamide antibiotics were determined. Three sulfonamide antibiotics including sulfamethoxazole (SMX), sulfadimethoxine (SDM), and sulfamonomethoxine (SMM), which had been detected in the influent and the activated sludge of wastewater treatment plants (WWTP) in Taiwan, were selected for this study. Experimental results showed that the antibiotic compounds were removed via sorption and biodegradation by the activated sludge, though biodegradation was inhibited in the first 12 h possibly due to competitive inhibition of xenobiotic oxidation by readily biodegradable substances. The affinity of sulfonamides to sterilized sludge was in the order of SDM > SMM > SMX. The sulfonamides existed predominantly as anions at the study pH of 6.8, which resulted in a low level of adsorption to the activated sludge. The adsorption/desorption isotherms were of a linear form, as well described by the Freundlich isotherm with the n value approximating unity. The linear distribution coefficients (K(d)) were determined from batch equilibrium experiments with values of 28.6 ± 1.9, 55.7 ± 2.2, and 110.0 ± 4.6 mL/g for SMX, SMM, and SDM, respectively. SMX, SMM, and SDM desorb reversibly from the activated sludge leaving behind on the solids 0.9%, 1.6%, and 5.2% of the original sorption dose of 100 μg/L. The sorbed antibiotics can be introduced into the environment if no further treatments were employed to remove them from the biomass. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-06-27
This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 104, Area 7 Yucca Flat Atmospheric Test Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 104 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management. CAU 104 consists of the following 15 Corrective Action Sites (CASs), located in Area 7 of the Nevada National Securitymore » Site: · CAS 07-23-03, Atmospheric Test Site T-7C · CAS 07-23-04, Atmospheric Test Site T7-1 · CAS 07-23-05, Atmospheric Test Site · CAS 07-23-06, Atmospheric Test Site T7-5a · CAS 07-23-07, Atmospheric Test Site - Dog (T-S) · CAS 07-23-08, Atmospheric Test Site - Baker (T-S) · CAS 07-23-09, Atmospheric Test Site - Charlie (T-S) · CAS 07-23-10, Atmospheric Test Site - Dixie · CAS 07-23-11, Atmospheric Test Site - Dixie · CAS 07-23-12, Atmospheric Test Site - Charlie (Bus) · CAS 07-23-13, Atmospheric Test Site - Baker (Buster) · CAS 07-23-14, Atmospheric Test Site - Ruth · CAS 07-23-15, Atmospheric Test Site T7-4 · CAS 07-23-16, Atmospheric Test Site B7-b · CAS 07-23-17, Atmospheric Test Site - Climax Closure activities began in October 2012 and were completed in April 2013. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan for CAU 104. The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste, mixed waste, and recyclable material. Some wastes exceeded land disposal limits and required treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite landfills. The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NFO for closure of CAU 104 · The transfer of CAU 104 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO« less
NSP-CAS Protein Complexes: Emerging Signaling Modules in Cancer.
Wallez, Yann; Mace, Peter D; Pasquale, Elena B; Riedl, Stefan J
2012-05-01
The CAS (CRK-associated substrate) family of adaptor proteins comprises 4 members, which share a conserved modular domain structure that enables multiple protein-protein interactions, leading to the assembly of intracellular signaling platforms. Besides their physiological role in signal transduction downstream of a variety of cell surface receptors, CAS proteins are also critical for oncogenic transformation and cancer cell malignancy through associations with a variety of regulatory proteins and downstream effectors. Among the regulatory partners, the 3 recently identified adaptor proteins constituting the NSP (novel SH2-containing protein) family avidly bind to the conserved carboxy-terminal focal adhesion-targeting (FAT) domain of CAS proteins. NSP proteins use an anomalous nucleotide exchange factor domain that lacks catalytic activity to form NSP-CAS signaling modules. Additionally, the NSP SH2 domain can link NSP-CAS signaling assemblies to tyrosine-phosphorylated cell surface receptors. NSP proteins can potentiate CAS function by affecting key CAS attributes such as expression levels, phosphorylation state, and subcellular localization, leading to effects on cell adhesion, migration, and invasion as well as cell growth. The consequences of these activities are well exemplified by the role that members of both families play in promoting breast cancer cell invasiveness and resistance to antiestrogens. In this review, we discuss the intriguing interplay between the NSP and CAS families, with a particular focus on cancer signaling networks.
Trejo-Solís, Cristina; Palencia, Guadalupe; Zúñiga, Sergio; Rodríguez-Ropon, Andrea; Osorio-Rico, Laura; Torres Luvia, Sanchez; Gracia-Mora, Isabel; Marquez-Rosado, Lucrecia; Sánchez, Aurora; Moreno-García, Miguel E; Cruz, Arturo; Bravo-Gómez, María Elena; Ruiz-Ramírez, Lena; Rodríguez-Enriquez, Sara; Sotelo, Julio
2005-01-01
Abstract In this work, we investigated the effects of Casiopeina II-gly (Cas IIgly)—a new copper compound exhibiting antineoplastic activity—on glioma C6 cells under both in vitro and in vivo conditions, as an approach to identify potential therapeutic agents against malignant glioma. The exposure of C6 cells to Cas IIgly significantly inhibited cell proliferation, increased reactive oxygen species (ROS) formation, and induced apoptosis in a dose-dependent manner. In cultured C6 cells, Cas IIgly caused mitochondrio-nuclear translocation of apoptosis induction factor (AIF) and endonuclease G at all concentrations tested; in contrast, fragmentation of nucleosomal DNA, cytochrome c release, and caspase-3 activation were observed at high concentrations. Administration of N-acetyl-l-cystein, an antioxidant, resulted in significant inhibition of AIF translocation, nucleosomal DNA fragmentation, and caspase-3 activation induced by Cas IIgly. These results suggest that caspase-dependent and caspase-independent pathways both participate in apoptotic events elicited by Cas IIgly. ROS formation induced by Cas IIgly might also be involved in the mitochondrio-nuclear translocation of AIF and apoptosis. In addition, treatment of glioma C6-positive rats with Cas IIgly reduced tumor volume and mitotic and cell proliferation indexes, and increased apoptotic index. Our findings support the use of Cas IIgly for the treatment of malignant gliomas. PMID:16036107
Ziani, Paola R; Müller, Talise E; Stefanello, Flavia V; Fontana, Barbara D; Duarte, Tâmie; Canzian, Julia; Rosemberg, Denis B
2018-07-01
Nicotine is an alkaloid with positive effects on learning and memory processes. Exposure to conspecific alarm substance (CAS) elicits fear responses in zebrafish, but the effects of nicotine on aversive behaviors and associative learning in this species remain unclear. Here, we evaluated whether nicotine enhances contextual fear responses in zebrafish and investigated a putative involvement of brain acetylcholinesterase (AChE) in associative learning. Fish were exposed to 1 mg/L nicotine for 3 min and then kept in non-chlorinated water for 20 min. Later, animals were transferred to experimental tanks in the absence or presence of 3.5 mL/L CAS for 5 min (training session). After 24 h, fish were tested in tanks with similar or altered context in the absence of CAS (post-training session) and brain AChE activity was further assessed. At training, CAS increased freezing, erratic movements, and decreased the time spent in top area, while nicotine abolished the effects of CAS on erratic movements. Nicotine/CAS group tested in a similar context showed exacerbated freezing and reduced transitions to top area. Moreover, a decrease in distance traveled was observed in control, nicotine, and nicotine/CAS groups at post-training. Nicotine also stimulated brain AChE activity in CAS-exposed animals reintroduced in tanks with similar context. Although freezing bouts and time spent in top could serve as behavioral endpoints that reflect CAS-induced sensitization, the effects of nicotine occurred in a context-dependent manner. Collectively, our data suggest an involvement of cholinergic signaling in aversive learning, reinforcing the growing utility of zebrafish models to explore the neurobehavioral effects of nicotine in vertebrates. Copyright © 2018 Elsevier Inc. All rights reserved.
Cokgor, Emine Ubay; Aydinli, Ebru; Tas, Didem Okutman; Zengin, Gulsum Emel; Orhon, Derin
2014-01-01
The efficiency of aerobic stabilization on the treatment sludge generated from the leather industry was investigated to meet the expected characteristics and conditions of sludge prior to landfill. The sludge types subjected to aerobic stabilization were chemical treatment sludge, biological excess sludge, and the mixture of both chemical and biological sludges. At the end of 23 days of stabilization, suspended solids, volatile suspended solids and total organic carbon removal efficiencies were determined as 17%, 19% and 23% for biological sludge 31%, 35% and 54% for chemical sludge, and 32%, 34% and 63% for the mixture of both chemical and biological sludges, respectively. Model simulations of the respirometric oxygen uptake rate measurements showed that the ratio of active biomass remained the same at the end of the stabilization for all the sludge samples. Although mixing the chemical and biological sludges resulted in a relatively effective organic carbon and solids removal, the level of stabilization achieved remained clearly below the required level of organic carbon content for landfill. These findings indicate the potential risk of setting numerical restrictions without referring to proper scientific support.
Cas9 versus Cas12a/Cpf1: Structure-function comparisons and implications for genome editing.
Swarts, Daan C; Jinek, Martin
2018-05-22
Cas9 and Cas12a are multidomain CRISPR-associated nucleases that can be programmed with a guide RNA to bind and cleave complementary DNA targets. The guide RNA sequence can be varied, making these effector enzymes versatile tools for genome editing and gene regulation applications. While Cas9 is currently the best-characterized and most widely used nuclease for such purposes, Cas12a (previously named Cpf1) has recently emerged as an alternative for Cas9. Cas9 and Cas12a have distinct evolutionary origins and exhibit different structural architectures, resulting in distinct molecular mechanisms. Here we compare the structural and mechanistic features that distinguish Cas9 and Cas12a, and describe how these features modulate their activity. We discuss implications for genome editing, and how they may influence the choice of Cas9 or Cas12a for specific applications. Finally, we review recent studies in which Cas12a has been utilized as a genome editing tool. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes. © 2018 Wiley Periodicals, Inc.
Lebar, Tina; Jerala, Roman
2016-10-21
Transcriptional activator-like effector (TALE)- and CRISPR/Cas9-based designable recognition domains represent a technological breakthrough not only for genome editing but also for building designed genetic circuits. Both platforms are able to target rarely occurring DNA segments, even within complex genomes. TALE and dCas9 domains, genetically fused to transcriptional regulatory domains, can be used for the construction of engineered logic circuits. Here we benchmarked the performance of the two platforms, targeting the same DNA sequences, to compare their advantages for the construction of designed circuits in mammalian cells. Optimal targeting strands for repression and activation of dCas9-based designed transcription factors were identified; both platforms exhibited good orthogonality and were used to construct functionally complete NOR gates. Although the CRISPR/dCas9 system is clearly easier to construct, TALE-based activators were significantly stronger, and the TALE-based platform performed better, especially for the construction of layered circuits.
Inhibition of CRISPR-Cas9 with Bacteriophage Proteins.
Rauch, Benjamin J; Silvis, Melanie R; Hultquist, Judd F; Waters, Christopher S; McGregor, Michael J; Krogan, Nevan J; Bondy-Denomy, Joseph
2017-01-12
Bacterial CRISPR-Cas systems utilize sequence-specific RNA-guided nucleases to defend against bacteriophage infection. As a countermeasure, numerous phages are known that produce proteins to block the function of class 1 CRISPR-Cas systems. However, currently no proteins are known to inhibit the widely used class 2 CRISPR-Cas9 system. To find these inhibitors, we searched cas9-containing bacterial genomes for the co-existence of a CRISPR spacer and its target, a potential indicator for CRISPR inhibition. This analysis led to the discovery of four unique type II-A CRISPR-Cas9 inhibitor proteins encoded by Listeria monocytogenes prophages. More than half of L. monocytogenes strains with cas9 contain at least one prophage-encoded inhibitor, suggesting widespread CRISPR-Cas9 inactivation. Two of these inhibitors also blocked the widely used Streptococcus pyogenes Cas9 when assayed in Escherichia coli and human cells. These natural Cas9-specific "anti-CRISPRs" present tools that can be used to regulate the genome engineering activities of CRISPR-Cas9. Copyright © 2017 Elsevier Inc. All rights reserved.
Reconstituting the Evolutionary History of Cronobacter Driven by Differentiated CRISPR Activity.
Zeng, Haiyan; Zhang, Jumei; Wu, Qingping; He, Wenjing; Wu, Haoming; Ye, Yingwang; Li, Chengsi; Ling, Na; Chen, Moutong; Wang, Juan; Cai, Shuzhen; Lei, Tao; Ding, Yu; Xue, Liang
2018-03-09
Cronobacter strains harboring the CRISPR-Cas system are important foodborne pathogens causing serious neonatal infections. However, the specific role of the CRISPR-Cas system in bacterial evolution remains relatively unexplored. In this study, we investigated the impact of CRISPR-Cas in Cronobacter evolution and obtained 137 new whole-genome sequences of Cronobacter by next-generation sequencing technology. Among the strains examined (n=240), 90.6% (193/213) of prevalent species Cronobacter sakazakii , Cronobacter malonaticus , and Cronobacter dublinensis strains had intact CRISPR-Cas systems. Two rare species, Cronobacter condimenti (n=2) and Cronobacter universalis (n=6), lacked and preserved the CRISPR-Cas system at a low frequency (1/6), respectively. These results suggest that the presence of one CRISPR-Cas system in Cronobacter is important for the species to maintain genome homeostasis for survival. The Cronobacter ancestral strain was likely to harbored both subtype I-E and I-F CRISPR-Cas systems, during the long evolutionary process, subtype I-E was retained, while subtype I-F selectively degenerated in Cronobacter species and was even lost in the major Cronobacter pathovars. Moreover, significantly higher CRISPR activity was observed in plant-associated species C. dublinensis than in the virulence-related species C. sakazakii and C. malonaticus Similar spacers of CRISPR arrays were rarely found among species, suggesting intensive change through adaptive acquisition and loss. Differentiated CRISPR activity appears to be the product of environmental selective pressure and might contribute to the bidirectional divergence and speciation of Cronobacter IMPORTANCE This study reports the evolutionary history of Cronobacter under the selective pressure of the CRISPR-Cas system. One CRISPR-Cas system in Cronobacter is important for maintaining genome homeostasis, whereas two types of systems may be redundant and not conducive for acquiring beneficial DNA for environmental adaption and pathogenicity. Differentiated CRISPR activity has contributed to the bidirectional divergence and genetic diversity of Cronobacter This perspective makes a significant contribution to the literature by providing new insights into CRISPR-Cas systems in general, while further expanding the roles of CRISPR beyond conferring adaptive immunity and demonstrating a link to adaptation and species divergence in a genus. Moreover, our study provides new insights into the balance between genome homeostasis and the uptake of beneficial DNA related to CRISPR-based activity in the evolution of Cronobacter . Copyright © 2018 American Society for Microbiology.
Micropollutant removal from black water and grey water sludge in a UASB-GAC reactor.
Butkovskyi, A; Sevenou, L; Meulepas, R J W; Hernandez Leal, L; Zeeman, G; Rijnaarts, H H M
2018-02-01
The effect of granular activated carbon (GAC) addition on the removal of diclofenac, ibuprofen, metoprolol, galaxolide and triclosan in a up-flow anaerobic sludge blanket (UASB) reactor was studied. Prior to the reactor studies, batch experiments indicated that addition of activated carbon to UASB sludge can decrease micropollutant concentrations in both liquid phase and sludge. In continuous experiments, two UASB reactors were operated for 260 days at an HRT of 20 days, using a mixture of source separated black water and sludge from aerobic grey water treatment as influent. GAC (5.7 g per liter of reactor volume) was added to one of the reactors on day 138. No significant difference in COD removal and biogas production between reactors with and without GAC addition was observed. In the presence of GAC, fewer micropollutants were washed out with the effluent and a lower accumulation of micropollutants in sludge and particulate organic matter occurred, which is an advantage in micropollutant emission reduction from wastewater. However, the removal of micropollutants by adding GAC to a UASB reactor would require more activated carbon compared to effluent post-treatment. Additional research is needed to estimate the effect of bioregeneration on the lifetime of activated carbon in a UASB-GAC reactor.
Li, Zheng; Qi, Rong; Wang, Bo; Zou, Zhe; Wei, Guohong; Yang, Min
2013-01-01
A full-scale oxidation ditch process for treating sewage was simulated with the ASM2d model and optimized for minimal cost with acceptable performance in terms of ammonium and phosphorus removal. A unified index was introduced by integrating operational costs (aeration energy and sludge production) with effluent violations for performance evaluation. Scenario analysis showed that, in comparison with the baseline (all of the 9 aerators activated), the strategy of activating 5 aerators could save aeration energy significantly with an ammonium violation below 10%. Sludge discharge scenario analysis showed that a sludge discharge flow of 250-300 m3/day (solid retention time (SRT), 13-15 days) was appropriate for the enhancement of phosphorus removal without excessive sludge production. The proposed optimal control strategy was: activating 5 rotating disks operated with a mode of "111100100" ("1" represents activation and "0" represents inactivation) for aeration and sludge discharge flow of 200 m3/day (SRT, 19 days). Compared with the baseline, this strategy could achieve ammonium violation below 10% and TP violation below 30% with substantial reduction of aeration energy cost (46%) and minimal increment of sludge production (< 2%). This study provides a useful approach for the optimization of process operation and control.
Hurst, C J; Farrah, S R; Gerba, C P; Melnick, J L
1978-01-01
The development and evaluation of methods for the quantitative recovery of enteroviruses from sewage sludge are reported. Activated sewage sludge solids were collected by centrifugation, and elution of the solid-associated virus was accomplished by mechanical agitation in glycine buffer at pH 11.0. Eluted viruses were concentrated either onto an aluminum hydroxide floc or by association with a floc which formed de novo upon adjustment of the glycine eluate to pH 3.5. Viruses which remained in the liquid phase after lowering the pH of glycine eluate were concentrated by adsorption to and elution from membrane filters. The method of choice included high pH glycine elution and subsequent low pH concentration; it yielded an efficiency of recovery from activated sludge of 80% for poliovirus type 1, 68% for echovirus type 7, and 75% for coxsackievirus B3. This method was used to study the survival of naturally occurring virus in sludge at a sewage treatment plant and after subsequent land disposal of the solids after aerobic digestion. Reduction of enterovirus titers per gram (dry weight) of solids were modest during sludge activation but increased to a rate of 2 log 10/week after land disposal. PMID:29559
Hurst, C J; Farrah, S R; Gerba, C P; Melnick, J L
1978-07-01
The development and evaluation of methods for the quantitative recovery of enteroviruses from sewage sludge are reported. Activated sewage sludge solids were collected by centrifugation, and elution of the solid-associated virus was accomplished by mechanical agitation in glycine buffer at pH 11.0. Eluted viruses were concentrated either onto an aluminum hydroxide floc or by association with a floc which formed de novo upon adjustment of the glycine eluate to pH 3.5. Viruses which remained in the liquid phase after lowering the pH of glycine eluate were concentrated by adsorption to and elution from membrane filters. The method of choice included high pH glycine elution and subsequent low pH concentration; it yielded an efficiency of recovery from activated sludge of 80% for poliovirus type 1, 68% for echovirus type 7, and 75% for coxsackievirus B3. This method was used to study the survival of naturally occurring virus in sludge at a sewage treatment plant and after subsequent land disposal of the solids after aerobic digestion. Reduction of enterovirus titers per gram (dry weight) of solids were modest during sludge activation but increased to a rate of 2 log 10/week after land disposal.
Subha, B.; Muthukumar, M.
2012-01-01
Sago industries effluent containing large amounts of organic content produced excess sludge which is a serious problem in wastewater treatment. In this study ozonation has been employed for the reduction of excess sludge production in activated sludge process. Central composite design is used to study the effect of ozone treatment for the reduction of excess sludge production in sago effluent and to optimise the variables such as pH, ozonation time, and retention time. ANOVA showed that the coefficient determination value (R 2) of VSS and COD reduction were 0.9689 and 0.8838, respectively. VSS reduction (81%) was achieved at acidic pH 6.9, 12 minutes ozonation, and retention time of 10 days. COD reduction (87%) was achieved at acidic pH 6.7, 8 minutes of ozonation time, and retention time of 6 days. Low ozonation time and high retention time influence maximum sludge reduction, whereas low ozonation time with low retention time was effective for COD reduction. PMID:22593666
Oleszczuk, Patryk; Rycaj, Marcin; Lehmann, Johannes; Cornelissen, Gerard
2012-06-01
The goal of the research was to determine the phytotoxicity (using Lepidium sativum) of two activated carbon/biochar-amended sewage sludges. Apart from the impact of the AC/biochar dose, the influence of biochar particle diameter (<300, 300-500 and >500 μm) and the influence of the contact time (7, 60, 90 days) between AC/biochar and sewage sludges on their phytotoxicity was also assessed. No negative impact of sewage sludges on seed germination was observed (P>0.05). The application of AC or biochar to the sludges positively affected root growth by reducing the harmful effect by 7.8 to 42% depending on the material used. Furthermore, the reduction range clearly depended on the type of sewage sludge. No differences were observed in the inhibition of the toxic effect between both biochar types used and the biochar particle size. The extension of the contact time between AC/biochar and sewage sludges had a negative impact on root growth. Copyright © 2012 Elsevier Inc. All rights reserved.
Extracellular polymers of ozonized waste activated sludge.
Liu, J C; Lee, C H; Lai, J Y; Wang, K C; Hsu, Y C; Chang, B V
2001-01-01
Effect of ozonation on characteristics of waste activated sludge was investigated in the current study. Concentrations of cell-bound extracellular polymers (washed ECPs) did not change much upon ozonation, whereas the sum of cell-bound and soluble extracellular polymers (unwashed ECPs) increased with increasing ozone dose. Washed ECPs in original sludge as divided by molecular weight distribution was 39% < 1,000 Da (low MW), 30% from 1,000 to 10,000 Da (medium MW), and 31% > 10,000 Da (high MW). It was observed that the low-MW fraction decreased, and the high-MW fraction increased in ozonized sludge. The unwashed ECPs were characterized as 44% in low MW, 30% in medium MW, and 26% in high MW. Both low-MW and medium-MW fractions of unwashed ECPs decreased while high-MW fraction increased in ozonized sludge. The dewaterability of ozonized sludge, assessed by capillary suction time (CST) and specific resistance to filtration (SRF), deteriorated with ozone dose. The optimal dose of cationic polyelectrolyte increased with increasing ozone dose. The production rate and the accumulated amount of methane gas of ozonized sludge were also higher.
Kavitha, S; Jayashree, C; Adish Kumar, S; Yeom, Ick Tae; Rajesh Banu, J
2014-09-01
In this study, the role of sodium dodecyl sulfate (SDS) was explored for the removal of extracellular polymeric substance (EPS) from waste activated sludge (WAS) followed by enzymatic bacterial pretreatment, which enhanced the subsequent anaerobic biodegradability. EPS was removed with 0.02 g/g SS of SDS. In the results of pretreatment, the suspended solids reduction and chemical oxygen demand solubilization were found to be 25.7% and 19.79% for deflocculated and bacterially pretreated sludge, whereas they were found to be 15.7% and 11% for flocculated sludge (without EPS removal and bacterially pretreated) and 7.85% and 6% for control sludge (raw sludge), respectively. Upon examining the anaerobic biodegradability, the biogas yield potential of deflocculated and bacterially pretreated, flocculated, deflocculated alone, and control sludges were found to be 0.467 L/(g VS), 0.355 L/(g VS), 0.315 L/(g VS), and 0.212 L/(g VS), respectively. Thus, the deflocculation and bacterial pretreatment improved the anaerobic biodegradability efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.
Temperature effect on CRISPR-Cas9 mediated genome editing.
Xiang, Guanghai; Zhang, Xingying; An, Chenrui; Cheng, Chen; Wang, Haoyi
2017-04-20
Zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR-Cas9) are the most commonly used genome editing tools. Previous studies demonstrated that hypothermia treatment increased the mutation rates induced by ZFNs and TALENs in mammalian cells. Here, we characterize the effect of different culture temperatures on CRISPR-Cas9 mediated genome editing and find that the genome editing efficiency of CRISPR-Cas9 is significantly hampered by hypothermia treatment, unlike ZFN and TALEN. In addition, hyperthermia culture condition enhances genome editing by CRISPR-Cas9 in some cell lines, due to the higher enzyme activity and sgRNA expression level at higher temperature. Our study has implications on CRISPR-Cas9 applications in a broad spectrum of species, many of which do not live at 37°C. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
Toxicities of triclosan, phenol, and copper sulfate in activated sludge.
Neumegen, Rosalind A; Fernández-Alba, Amadeo R; Chisti, Yusuf
2005-04-01
The effect of toxicants on the BOD degradation rate constant was used to quantitatively establish the toxicity of triclosan, phenol, and copper (II) against activated sludge microorganisms. Toxicities were tested over the following ranges of concentrations: 0-450 mg/L for phenol, 0-2 mg/L for triclosan, and 0-35 mg/L for copper sulfate (pentahydrate). According to the EC(50) values, triclosan was the most toxic compound tested (EC(50) = 1.82 +/- 0.1 mg/L), copper (II) had intermediate toxicity (EC(50) = 18.3 +/- 0.37 mg/L), and phenol was the least toxic (EC(50) = 270 +/- 0.26 mg/L). The presence of 0.2% DMSO had no toxic effect on the activated sludge. The toxicity evaluation method used was simple, reproducible, and directly relevant to activated sludge wastewater treatment processes.
BAAWAIN, Mahad S.; AL-JABRI, Mohsin; CHOUDRI, B.S.
2014-01-01
Abstract Background There are more than 350 wastewater treatment plants distributed across different parts of Oman. Some of them produce large quantities of domestic sewage sludge, particularly this study focused on characterizing domestic sludge of six treatment plants that may contain various pollutants, therefore the proper management of domestic sewage sludge is essential. Methods Samples of domestic sewage sludge were collected for each month over a period of one year in 2010. Samples of retained/recycled activated sludge (RAS) and waste activated sludge (WAS) were analyzed for elec-trical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content. All tests were conducted according to the Standard Method for the Examination of Water and Wastewater. Results Monitoring ofelectrical conductivity, nitrite and nitrate, the presence of chloride, sulfate and phosphate were higher than the other anions, the phosphate was found very high in all domestic STPs. The average obtained values of the cations in both domestic RAS and WAS samples were within the Omani Standards. Conclusion The study showed the very high concentration of phosphate, it might be worth to further investigate on the sources of phosphate. Cations in both domestic RAS and WAS samples were low and suggest that the domestic sludge can be re used in agriculture. A regular maintenance should be performed to prevent any accumulation of some harmful substances which may affect the sludge quality and the sludge drying beds should be large enough to handle the produced sludge for better management. PMID:26060740
Hassan, Mubashir; Shahzadi, Saba; Alashwal, Hany; Zaki, Nazar; Seo, Sung-Yum; Moustafa, Ahmed A
2018-05-22
Cas scaffolding protein family member 4 and protein tyrosine kinase 2 are signaling proteins, which are involved in neuritic plaques burden, neurofibrillary tangles, and disruption of synaptic connections in Alzheimer's disease. In the current study, a computational approach was employed to explore the active binding sites of Cas scaffolding protein family member 4 and protein tyrosine kinase 2 proteins and their significant role in the activation of downstream signaling pathways. Sequential and structural analyses were performed on Cas scaffolding protein family member 4 and protein tyrosine kinase 2 to identify their core active binding sites. Molecular docking servers were used to predict the common interacting residues in both Cas scaffolding protein family member 4 and protein tyrosine kinase 2 and their involvement in Alzheimer's disease-mediated pathways. Furthermore, the results from molecular dynamic simulation experiment show the stability of targeted proteins. In addition, the generated root mean square deviations and fluctuations, solvent-accessible surface area, and gyration graphs also depict their backbone stability and compactness, respectively. A better understanding of CAS and their interconnected protein signaling cascade may help provide a treatment for Alzheimer's disease. Further, Cas scaffolding protein family member 4 could be used as a novel target for the treatment of Alzheimer's disease by inhibiting the protein tyrosine kinase 2 pathway.
Small molecule inhibitors of Ca 2+-S100B reveal two protein conformations
Cavalier, Michael C.; Ansari, Mohd. Imran; Pierce, Adam D.; ...
2016-01-04
The drug pentamidine inhibits calcium-dependent complex formation with p53 ( CaS100B·p53) in malignant melanoma (MM) and restores p53 tumor suppressor activity in vivo. However, off-target effects associated with this drug were problematic in MM patients. Structure–activity relationship (SAR) studies were therefore completed in this study with 23 pentamidine analogues, and X-ray structures of CaS100B·inhibitor complexes revealed that the C-terminus of S100B adopts two different conformations, with location of Phe87 and Phe88 being the distinguishing feature and termed the “FF-gate”. For symmetric pentamidine analogues ( CaS100B· 5a, CaS100B· 6b) a channel between sites 1 and 2 on S100B was occluded bymore » residue Phe88, but for an asymmetric pentamidine analogue ( CaS100B· 17), this same channel was open. Finally, the CaS100B· 17 structure illustrates, for the first time, a pentamidine analog capable of binding the “open” form of the “FF-gate” and provides a means to block all three “hot spots” on CaS100B, which will impact next generation CaS100B·p53 inhibitor design.« less
Small molecule inhibitors of Ca 2+-S100B reveal two protein conformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavalier, Michael C.; Ansari, Mohd. Imran; Pierce, Adam D.
The drug pentamidine inhibits calcium-dependent complex formation with p53 ( CaS100B·p53) in malignant melanoma (MM) and restores p53 tumor suppressor activity in vivo. However, off-target effects associated with this drug were problematic in MM patients. Structure–activity relationship (SAR) studies were therefore completed in this study with 23 pentamidine analogues, and X-ray structures of CaS100B·inhibitor complexes revealed that the C-terminus of S100B adopts two different conformations, with location of Phe87 and Phe88 being the distinguishing feature and termed the “FF-gate”. For symmetric pentamidine analogues ( CaS100B· 5a, CaS100B· 6b) a channel between sites 1 and 2 on S100B was occluded bymore » residue Phe88, but for an asymmetric pentamidine analogue ( CaS100B· 17), this same channel was open. Finally, the CaS100B· 17 structure illustrates, for the first time, a pentamidine analog capable of binding the “open” form of the “FF-gate” and provides a means to block all three “hot spots” on CaS100B, which will impact next generation CaS100B·p53 inhibitor design.« less
Cas9, Cpf1 and C2c1/2/3―What's next?
Yamamoto, Takashi; Sakuma, Tetsushi
2017-01-01
ABSTRACT Since the rapid emergence of clustered regulatory interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system, developed as a genome engineering tool in 2012–2013, most researchers in the life science field have had a fixated interest in this fascinating technology. CRISPR-Cas9 is an RNA-guided DNA endonuclease system, which consists of Cas9 nuclease defining a few targeting base via protospacer adjacent motif complexed with easily customizable single guide RNA targeting around 20-bp genomic sequence. Although Streptococcus pyogenes Cas9 (SpCas9), one of the Cas9 proteins that applications in genome engineering were first demonstrated, still has wide usage because of its high nuclease activity and broad targeting range, there are several limitations such as large molecular weight and potential off-target effect. In this commentary, we describe various improvements and alternatives of CRISPR-Cas systems, including engineered Cas9 variants, Cas9 homologs, and novel Cas proteins other than Cas9. These variations enable flexible genome engineering with high efficiency and specificity, orthogonal genetic control at multiple gene loci, gene knockdown, or fluorescence imaging of transcripts mediated by RNA targeting, and beyond. PMID:28140746
Cas9, Cpf1 and C2c1/2/3-What's next?
Nakade, Shota; Yamamoto, Takashi; Sakuma, Tetsushi
2017-05-04
Since the rapid emergence of clustered regulatory interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system, developed as a genome engineering tool in 2012-2013, most researchers in the life science field have had a fixated interest in this fascinating technology. CRISPR-Cas9 is an RNA-guided DNA endonuclease system, which consists of Cas9 nuclease defining a few targeting base via protospacer adjacent motif complexed with easily customizable single guide RNA targeting around 20-bp genomic sequence. Although Streptococcus pyogenes Cas9 (SpCas9), one of the Cas9 proteins that applications in genome engineering were first demonstrated, still has wide usage because of its high nuclease activity and broad targeting range, there are several limitations such as large molecular weight and potential off-target effect. In this commentary, we describe various improvements and alternatives of CRISPR-Cas systems, including engineered Cas9 variants, Cas9 homologs, and novel Cas proteins other than Cas9. These variations enable flexible genome engineering with high efficiency and specificity, orthogonal genetic control at multiple gene loci, gene knockdown, or fluorescence imaging of transcripts mediated by RNA targeting, and beyond.
Palanisamy, Arun P; Suryakumar, Geetha; Panneerselvam, Kavin; Willey, Christopher D; Kuppuswamy, Dhandapani
2015-12-01
Early work in pressure overloaded (PO) myocardium shows that integrins mediate focal adhesion complex formation by recruiting the adaptor protein p130Cas (Cas) and nonreceptor tyrosine kinase c-Src. To explore c-Src role in Cas-associated changes during PO, we used a feline right ventricular in vivo PO model and a three-dimensional (3D) collagen-embedded adult cardiomyocyte in vitro model that utilizes a Gly-Arg-Gly-Asp-Ser (RGD) peptide for integrin stimulation. Cas showed slow electrophoretic mobility (band-shifting), recruitment to the cytoskeleton, and tyrosine phosphorylation at 165, 249, and 410 sites in both 48 h PO myocardium and 1 h RGD-stimulated cardiomyocytes. Adenoviral mediated expression of kinase inactive (negative) c-Src mutant with intact scaffold domains (KN-Src) in cardiomyocytes did not block the RGD stimulated changes in Cas. Furthermore, expression of KN-Src or kinase active c-Src mutant with intact scaffold function (A-Src) in two-dimensionally (2D) cultured cardiomyocytes was sufficient to cause Cas band-shifting, although tyrosine phosphorylation required A-Src. These data indicate that c-Src's adaptor function, but not its kinase function, is required for a serine/threonine specific phosphorylation(s) responsible for Cas band-shifting. To explore this possibility, Chinese hamster ovary cells that stably express Cas were infected with either β-gal or KN-Src adenoviruses and used for Cas immunoprecipitation combined with mass spectrometry analysis. In the KN-Src expressing cells, Cas showed phosphorylation at the serine-639 (human numbering) site. A polyclonal antibody raised against phospho-serine-639 detected Cas phosphorylation in 24-48 h PO myocardium. Our studies indicate that c-Src's adaptor function mediates serine-639 phosphorylation of Cas during integrin activation in PO myocardium. © 2015 Wiley Periodicals, Inc.
Role of the adapter protein Abi1 in actin-associated signaling and smooth muscle contraction.
Wang, Tao; Cleary, Rachel A; Wang, Ruping; Tang, Dale D
2013-07-12
Actin filament polymerization plays a critical role in the regulation of smooth muscle contraction. However, our knowledge regarding modulation of the actin cytoskeleton in smooth muscle just begins to accumulate. In this study, stimulation with acetylcholine (ACh) induced an increase in the association of the adapter protein c-Abl interactor 1 (Abi1) with neuronal Wiskott-Aldrich syndrome protein (N-WASP) (an actin-regulatory protein) in smooth muscle cells/tissues. Furthermore, contractile stimulation activated N-WASP in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer efficiency of an N-WASP sensor. Abi1 knockdown by lentivirus-mediated RNAi inhibited N-WASP activation, actin polymerization, and contraction in smooth muscle. However, Abi1 silencing did not affect myosin regulatory light chain phosphorylation at Ser-19 in smooth muscle. In addition, c-Abl tyrosine kinase and Crk-associated substrate (CAS) have been shown to regulate smooth muscle contraction. The interaction of Abi1 with c-Abl and CAS has not been investigated. Here, contractile activation induced formation of a multiprotein complex including c-Abl, CAS, and Abi1. Knockdown of c-Abl and CAS attenuated the activation of Abi1 during contractile activation. More importantly, Abi1 knockdown inhibited c-Abl phosphorylation at Tyr-412 and the interaction of c-Abl with CAS. These results suggest that Abi1 is an important component of the cellular process that regulates N-WASP activation, actin dynamics, and contraction in smooth muscle. Abi1 is activated by the c-Abl-CAS pathway, and Abi1 reciprocally controls the activation of its upstream regulator c-Abl.
Role of the Adapter Protein Abi1 in Actin-associated Signaling and Smooth Muscle Contraction*
Wang, Tao; Cleary, Rachel A.; Wang, Ruping; Tang, Dale D.
2013-01-01
Actin filament polymerization plays a critical role in the regulation of smooth muscle contraction. However, our knowledge regarding modulation of the actin cytoskeleton in smooth muscle just begins to accumulate. In this study, stimulation with acetylcholine (ACh) induced an increase in the association of the adapter protein c-Abl interactor 1 (Abi1) with neuronal Wiskott-Aldrich syndrome protein (N-WASP) (an actin-regulatory protein) in smooth muscle cells/tissues. Furthermore, contractile stimulation activated N-WASP in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer efficiency of an N-WASP sensor. Abi1 knockdown by lentivirus-mediated RNAi inhibited N-WASP activation, actin polymerization, and contraction in smooth muscle. However, Abi1 silencing did not affect myosin regulatory light chain phosphorylation at Ser-19 in smooth muscle. In addition, c-Abl tyrosine kinase and Crk-associated substrate (CAS) have been shown to regulate smooth muscle contraction. The interaction of Abi1 with c-Abl and CAS has not been investigated. Here, contractile activation induced formation of a multiprotein complex including c-Abl, CAS, and Abi1. Knockdown of c-Abl and CAS attenuated the activation of Abi1 during contractile activation. More importantly, Abi1 knockdown inhibited c-Abl phosphorylation at Tyr-412 and the interaction of c-Abl with CAS. These results suggest that Abi1 is an important component of the cellular process that regulates N-WASP activation, actin dynamics, and contraction in smooth muscle. Abi1 is activated by the c-Abl-CAS pathway, and Abi1 reciprocally controls the activation of its upstream regulator c-Abl. PMID:23740246
Kiełbasa, Anna; Walczyńska, Aleksandra; Fiałkowska, Edyta; Pajdak-Stós, Agnieszka; Kozłowski, Jan
2014-12-01
Temperature-Size Rule (TSR) is a phenotypic body size response of ectotherms to changing temperature. It is known from the laboratory studies, but seasonal patterns in the field were not studied so far. We examined the body size changes in time of rotifers inhabiting activated sludge. We hypothesize that temperature is the most influencing parameter in sludge environment, leading sludge rotifers to seasonally change their body size according to TSR, and that oxygen content also induces the size response. The presence of TSR in Lecane inermis rotifer was tested in a laboratory study with two temperature and two food-type treatments. The effect of interaction between temperature and food was significant; L. inermis followed TSR in one food type only. The seasonal variability in the body sizes of the rotifers L. inermis and Cephalodella gracilis was estimated by monthly sampling and analyzed by multiple regression, in relation to the sludge parameters selected as the most influential by multivariate analysis, and predicted to alter rotifer body size (temperature and oxygen). L. inermis varied significantly in size throughout the year, and this variability is explained by temperature as predicted by the TSR, but not by oxygen availability. C. gracilis also varied in size, though this variability was explained by both temperature and oxygen. We suggest that sludge age acts as a mortality factor in activated sludge. It may have a seasonal effect on the body size of L. inermis and modify a possible effect of oxygen. Activated sludge habitat is driven by both biological processes and human regulation, yet its resident organisms follow general evolutionary rule as they do in other biological systems. The interspecific response patterns differ, revealing the importance of taking species-specific properties into account. Our findings are applicable to sludge properties enhancement through optimizing the conditions for its biological component.
Azari, Mohammad; Walter, Uwe; Rekers, Volker; Gu, Ji-Dong; Denecke, Martin
2017-05-01
The performance of biological treatment for high ammonium removal from landfill leachate has been demonstrated. The plant was upgraded combining the activated sludge process followed by activated carbon reactor. Based on a long-term analysis of data collected from 2006 to 2015, the average total nitrogen removal efficiency of 94% was achieved for wastewaters with a C: N ratio varying from 1 to 5 kg-COD kg-TN -1 . But without the presence of activated carbon reactor, the average of biological removal efficiency for total nitrogen was only 82% ± 6% for the activated sludge stage. It means that up to 20% of the nitrogen in the influent can only be eliminated by microorganisms attached to granular activated carbon. After upgrades of the plant, the energy efficiency showed a reduction in the specific energy demand from 1.6 to less than 0.2 kWh m -3 . Methanol consumption and sludge production was reduced by 91% and 96%, respectively. Fluorescent in situ Hybridization was used for microbial diversity analysis on floccular sludge and granular biofilm samples. Anaerobic ammonium oxidation (anammox) bacteria and nitrifiers were detected and Candidatus Scalindua was found in two forms of flocs and biofilms. Due to stochastic risk assessment based on the long-term data analysis given in this research, the treatment criteria were achieved and the combination of granular activated carbon biofilm process and activated sludge can be a novel and sought approach to better enrich anammox biomass for full-scale treatment applications to reduce operating costs and promote nutrient removal stability and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
Devi, T Poornima; Ebenezer, A Vimala; Kumar, S Adish; Kaliappan, S; Banu, J Rajesh
2014-09-01
Excess sludge disintegration by energy intensive processes like mechanical pretreatment is considered to be high in cost. In this study, an attempt has been made to disintegrate excess sludge by disperser in a cost effective manner by deflocculating the sludge using sodium dodecyl sulphate (SDS) at a concentration of 0.04 g/g SS. The disperser pretreatment was effective at a specific energy input of 5013 kJ/kg TS where deflocculated sludge showed higher chemical oxygen demand solubilisation and suspended solids reduction of 26% and 22.9% than flocculated sludge and was found to be 18.8% and 18.6% for former and latter respectively. Higher accumulation of volatile fatty acid (700 mg/L) in deflocculated sludge indicates better hydrolysis of sludge by proposed method. The anaerobic biodegradability resulted in higher biogas production potential of 0.522 L/(g VS) for deflocculated sludge. Cost analysis of the study showed 43% net energy saving in deflocculated sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shirazi, F; Kontoyiannis, DP
2015-01-01
Candida biofilms play an important role in infections associated with medical devices and are resistant to antifungals. We hypothesized that the echinocandin micafungin (MICA) exerts an enhanced antifungal activity against caspofungin (CAS)-susceptible (CAS-S) and CAS–non-susceptible (CAS-NS) Candida albicans and Candida parapsilosis which is at least in part through apoptosis, even in the biofilm environment. Apoptosis was characterized by detecting reactive oxygen species (ROS) accumulation, depolarization of mitochondrial membrane potential (MMP), DNA fragmentation, lack of plasma membrane integrity, and metacaspase activation following exposure of Candida biofilm to MICA for 3h at 37°C in RPMI 1640 medium. The minimum inhibitory concentration was higher for CAS (2.0–16.0 μg/mL) than for MICA (1.0–8.0 μg/mL) for Candida biofilms. Elevated intracellular ROS levels and depolarization of MMP was evident in CAS-S C. albicans (3.0–4.2 fold) and C. parapsilosis (4.8–5.4 fold) biofilms compared with CAS-NS (1.2 fold) after exposure to MICA (0.25x-1xMIC). Elevated intracellular ROS levels and depolarization of MMP was evident in CAS-S C. albicans (3.0–4.2 fold) and C. parapsilosis (4.8–5.4 fold) biofilms compared with CAS-NS (1.2 fold) after exposure to MICA (0.25x-1xMIC). Finally higher ß-1, 3 glucan levels were seen in sessile cells compared to planktonic cells, especially in CAS-NS strains. MICA treatment might induce a metacaspase-dependent apoptotic process in biofilms of both CAS-S C. albicans and C. parapsilosis, and to some degree in CAS-NS strains. PMID:26065323
Ternes, T A; Kreckel, P; Mueller, J
1999-01-12
Aerobic batch experiments containing a diluted slurry of activated sludge from a real sewage treatment plant (STP) near Frankfurt/Main were undertaken, in order to investigate the persistence of natural estrogens and contraceptives under aerobic conditions. The batch experiments showed that while in contact with activated sludge the natural estrogen 17 beta-estradiol was oxidized to estrone, which was further eliminated in the batch experiments in an approximate linear time dependence. Further degradation products of estrone were not observed. 16 alpha-hydroxyestrone was rapidly eliminated, again without detection of further degradation products. The contraceptive 17 alpha-ethinylestradiol was principally persistent under the selected aerobic conditions, whereas mestranol was rapidly eliminated and small portions of 17 alpha-ethinylestradiol were formed by demethylation. Additionally, two glucuronides of 17 beta-estradiol (17 beta-estradiol-17-glucuronide and 17 beta-estradiol-3-glucuronide) were cleaved in contact with the diluted activated sludge solution and thus 17 beta-estradiol was released. The glucuronidase activity of the activated sludge was further confirmed by the cleavage of 4-methylumbelliferyl-beta-D-glucuronide (MUF-beta-glucuronide) in a solution of a activated sludge slurry and Milli-Q-water (1:100, v/v). The turnover rate obtained was approximately steady state, with a turnover rate of 0.1 mumol/l for the released MUF. Hence, it is very likely that the glucuronic acid moiety of 17 beta-estradiol glucuronides and other estrogen glucuronides become cleaved in a real municipal STP, so that the concentrations of the free estrogens increase.
Nguyen, Vivi L; He, Xia; de Los Reyes, Francis L
2016-11-01
If the in situ growth rate of filamentous bacteria in activated sludge can be quantified, researchers can more accurately assess the effect of operating conditions on the growth of filaments and improve the mathematical modeling of filamentous bulking. We developed a method to quantify the in situ specific growth rate of Sphaerotilus natans (a model filament) in activated sludge using the species-specific 16S rRNA:rDNA ratio. Primers targeting the 16S rRNA of S. natans were designed, and real-time PCR and RT-PCR were used to quantify DNA and RNA levels of S. natans, respectively. A positive linear relationship was found between the rRNA:rDNA ratio (from 440 to 4500) and the specific growth rate of S. natans (from 0.036 to 0.172 h -1 ) using chemostat experiments. The in situ growth rates of S. natans in activated sludge samples from three water reclamation facilities were quantified, illustrating how the approach can be applied in a complex environment such as activated sludge. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Wang, Lu; Chen, Xiu-rong; Yan, Long; He, Yi-xuan; Shi, Zhen-dong
2015-04-01
Using different rations of sludge extracts and supernate from 4-Chlorophenol (4-CP) simulated wastewater's excess sludge after centrifugation to cultivate the Chlorella vulgaris to achieve the goal of excess sludge utilization together with chlorella cultivating. The experiments were performed in 500 mL flasks with different rations of sludge extracts & BG-11 and supernate & BG-11 in a light growth chamber respectively. Number of algal cells, Chlorophyll, enzyme activity, oil and water total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), toxicity index were investigated. Result showed that the nutrition supplies and toxicity in the excess sludge were removed efficiently via Chlorella vulgaris, the removal rates of TN and TP were at least 40% and 90% respectively; After 10 days cultivation, the density growth of 50% sludge extracts was 20 times higher of the beginning while its chlorophyll content was lower than that of the blank group. Sludge extracts could promote the proliferation of algae, but were not conducive to the synthesis of chlorophyll. The quantity of SOD in per cell showed Chlorella vulgaris gave a positive response via stimulation from toxicant in sludge extracts and supernate. The best time for collecting chlorella vulgaris was the fifth day of cultivation, taking neutral oil accumulation as the evaluating indicator for its utilization combined with the removal of supplies and toxicity.
Chen, Zhan; Zhang, Weijun; Wang, Dongsheng; Ma, Teng; Bai, Runying; Yu, Dezhong
2016-10-15
The effects of combined calcium peroxide (CaO2) oxidation with chemical re-flocculation on dewatering performance and physicochemical properties of waste activated sludge was investigated in this study. The evolutions of extracellular polymeric substances (EPS) distribution, composition and morphological properties were analyzed to unravel the sludge conditioning mechanism. It was found that sludge filtration performance was enhanced by calcium peroxide oxidation with the optimal dosage of 20 mg/gTSS. However, this enhancement was not observed at lower dosages due to the absence of oxidation and the performance deteriorated at higher dosages because of the release of excess EPS, mainly as protein-like substances. The variation in soluble EPS (SEPS) component can be fitted well with pseudo-zero-order kinetic model under CaO2 treatment. At the same time, extractable EPS content (SEPS and loosely bound EPS (LB-EPS)) were dramatically increased, indicating sludge flocs were effectively broken and their structure became looser after CaO2 addition. The sludge floc structure was reconstructed and sludge dewaterability was significantly enhanced using chemical re-flocculation (polyaluminium chloride (PACl), ferric iron (FeCl3) and polyacrylamide (PAM)). The inorganic coagulants performed better in improving sludge filtration dewatering performance and reducing cake moisture content than organic polymer, since they could act as skeleton builders and decrease the sludge compressibility. Copyright © 2016 Elsevier Ltd. All rights reserved.
Benaicheta, Nora; Labbaci, Fatima Z; Bouchenak, Malika; Boukortt, Farida O
2016-01-14
Type 2 diabetes (T2D) is a major risk factor of CVD. The effects of purified sardine proteins (SP) were examined on glycaemia, insulin sensitivity and reverse cholesterol transport in T2D rats. Rats fed a high-fat diet (HFD) for 5 weeks, and injected with a low dose of streptozotocin, were used. The diabetic rats were divided into four groups, and they were fed casein (CAS) or SP combined with 30 or 5% lipids, for 4 weeks. HFD-induced hyperglycaemia, insulin resistance and hyperlipidaemia in rats fed HFD, regardless of the consumed protein. In contrast, these parameters lowered in rats fed SP combined with 5 or 30% lipids, and serum insulin values reduced in SP v. CAS. HFD significantly increased total cholesterol and TAG concentrations in the liver and serum, whereas these parameters decreased with SP, regardless of lipid intake. Faecal cholesterol excretion was higher with SP v. CAS, combined with 30 or 5% lipids. Lecithin:cholesterol acyltransferase (LCAT) activity and HDL3-phospholipids (PL) were higher in CAS-HF than in CAS, whereas HDL2-cholesteryl esters (CE) were lower. Otherwise, LCAT activity and HDL2-CE were higher in the SP group than in the CAS group, whereas HDL3-PL and HDL3-unesterified cholesterol were lower. Moreover, LCAT activity lowered in the SP-HF group than in the CAS-HF group, when HDL2-CE was higher. In conclusion, these results indicate the potential effects of SP to improve glycaemia, insulin sensitivity and reverse cholesterol transport, in T2D rats.
Evaluation of Control Parameters for the Activated Sludge Process
ERIC Educational Resources Information Center
Stall, T. Ray; Sherrard, Josephy H.
1978-01-01
An evaluation of the use of the parameters currently being used to design and operate the activated sludge process is presented. The advantages and disadvantages for the use of each parameter are discussed. (MR)
Predicting the degradability of waste activated sludge.
Jones, Richard; Parker, Wayne; Zhu, Henry; Houweling, Dwight; Murthy, Sudhir
2009-08-01
The objective of this study was to identify methods for estimating anaerobic digestibility of waste activated sludge (WAS). The WAS streams were generated in three sequencing batch reactors (SBRs) treating municipal wastewater. The wastewater and WAS properties were initially determined through simulation of SBR operation with BioWin (EnviroSim Associates Ltd., Flamborough, Ontario, Canada). Samples of WAS from the SBRs were subsequently characterized through respirometry and batch anaerobic digestion. Respirometry was an effective tool for characterizing the active fraction of WAS and could be a suitable technique for determining sludge composition for input to anaerobic models. Anaerobic digestion of the WAS revealed decreasing methane production and lower chemical oxygen demand removals as the SRT of the sludge increased. BioWin was capable of accurately describing the digestion of the WAS samples for typical digester SRTs. For extended digestion times (i.e., greater than 30 days), some degradation of the endogenous decay products was assumed to achieve accurate simulations for all sludge SRTs.
The thermal behaviour of the co-combustion between paper sludge and rice straw.
Xie, Zeqiong; Ma, Xiaoqian
2013-10-01
The thermal characteristics and kinetics of paper sludge, rice straw and their blends were evaluated under combustion condition. The paper sludge was blended with rice straw in the range of 10-95 wt.% to investigate their co-combustion behaviour. There was significant interaction between rice straw and paper sludge in high temperature. The combustion of paper sludge and rice straw could be divided into two stages. The value of the activation energy obtained by the Friedman and the Ozawa-Flynn-Wall (OFW) first decreased and then increased with the conversion degree rising. The average activation energy did not monotonically decrease with increasing the percentage of rice straw in the blends. When the percentage of rice straw in the blends was 80%, the value of the average activation energy was the smallest, which was 139 kJ/mol obtained by OFW and 132 kJ/mol obtained by Friedman, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ince, Orhan; Kolukirik, Mustafa; Cetecioglu, Zeynep; Eyice, Ozge; Inceoglu, Ozgul; Ince, Bahar
2009-12-01
The aim of this study was to determine the effect of toluene on an anaerobic sludge taken from a full-scale upflow anaerobic sludge blanket (UASB) reactor in terms of potential activity and composition of acetoclastic methanogens. Specific methanogenic activity (SMA) test results showed that 5%, 9.5%, 14%, 24%, 29%, 38% and 62% inhibition occurred in the potential methane production (PMP) rate of the sludge at toluene concentrations of 0.1 mM, 0.2 mM, 0.3 mM, 0.4 mM, 0.5 mM, 0.6 mM and 1 mM, respectively. Fluorescence in situ hybridization (FISH) results showed that relative abundance of archaeal cells was approx. 19% throughout the SMA tests. The anaerobic sludge was dominated by acetoclastic genus Methanosaeta which were slightly affected by increasing toluene concentrations do not have any effect on relative abundance of Methanosaeta spp., which was between 73% +/- 1.6 and 68% +/- 2.1 of the archaeal population.
Phyto-dewatering of sewage sludge using Panicum repens L.
El-Gendy, A S; El-Kassas, H I; Razek, T M A; Abdel-Latif, H
2017-04-01
Experiments in the field environment have been conducted to study the growth of Panicum repens L., an aquatic plant, in the sewage sludge matrix. The experiments were also carried out to investigate the ability of this plant to dewater sewage sludge to increase the capacity of conventional drying beds. In addition, the ability of Panicum repens L. to reduce the sludge contents of certain elements (copper (Cu), Iron (Fe), Sodium (Na), lead (Pb), and Zinc (Zn)) was also investigated. All experiments were carried out in batch reactors. Different plant coverage densities were tested (0.00 to 27.3 kg/m 2 ). The liquid sewage sludge was collected from a wastewater treatment plant in Helwan city, Cairo Governorate, Egypt. The collected sludge represents a mixture of the primary sludge and waste activated sludge before discharging into drying beds.
Towards ubiquitous access of computer-assisted surgery systems.
Liu, Hui; Lufei, Hanping; Shi, Weishong; Chaudhary, Vipin
2006-01-01
Traditional stand-alone computer-assisted surgery (CAS) systems impede the ubiquitous and simultaneous access by multiple users. With advances in computing and networking technologies, ubiquitous access to CAS systems becomes possible and promising. Based on our preliminary work, CASMIL, a stand-alone CAS server developed at Wayne State University, we propose a novel mobile CAS system, UbiCAS, which allows surgeons to retrieve, review and interpret multimodal medical images, and to perform some critical neurosurgical procedures on heterogeneous devices from anywhere at anytime. Furthermore, various optimization techniques, including caching, prefetching, pseudo-streaming-model, and compression, are used to guarantee the QoS of the UbiCAS system. UbiCAS enables doctors at remote locations to actively participate remote surgeries, share patient information in real time before, during, and after the surgery.
Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress.
LeBlanc, Chantal; Zhang, Fei; Mendez, Josefina; Lozano, Yamile; Chatpar, Krishna; Irish, Vivian F; Jacob, Yannick
2018-01-01
The CRISPR/Cas9 system has greatly improved our ability to engineer targeted mutations in eukaryotic genomes. While CRISPR/Cas9 appears to work universally, the efficiency of targeted mutagenesis and the adverse generation of off-target mutations vary greatly between different organisms. In this study, we report that Arabidopsis plants subjected to heat stress at 37°C show much higher frequencies of CRISPR-induced mutations compared to plants grown continuously at the standard temperature (22°C). Using quantitative assays relying on green fluorescent protein (GFP) reporter genes, we found that targeted mutagenesis by CRISPR/Cas9 in Arabidopsis is increased by approximately 5-fold in somatic tissues and up to 100-fold in the germline upon heat treatment. This effect of temperature on the mutation rate is not limited to Arabidopsis, as we observed a similar increase in targeted mutations by CRISPR/Cas9 in Citrus plants exposed to heat stress at 37°C. In vitro assays demonstrate that Cas9 from Streptococcus pyogenes (SpCas9) is more active in creating double-stranded DNA breaks at 37°C than at 22°C, thus indicating a potential contributing mechanism for the in vivo effect of temperature on CRISPR/Cas9. This study reveals the importance of temperature in modulating SpCas9 activity in eukaryotes, and provides a simple method to increase on-target mutagenesis in plants using CRISPR/Cas9. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Chemical and Biophysical Modulation of Cas9 for Tunable Genome Engineering.
Nuñez, James K; Harrington, Lucas B; Doudna, Jennifer A
2016-03-18
The application of the CRISPR-Cas9 system for genome engineering has revolutionized the ability to interrogate genomes of mammalian cells. Programming the Cas9 endonuclease to induce DNA breaks at specified sites is achieved by simply modifying the sequence of its cognate guide RNA. Although Cas9-mediated genome editing has been shown to be highly specific, cleavage events at off-target sites have also been reported. Minimizing, and eventually abolishing, unwanted off-target cleavage remains a major goal of the CRISPR-Cas9 technology before its implementation for therapeutic use. Recent efforts have turned to chemical biology and biophysical approaches to engineer inducible genome editing systems for controlling Cas9 activity at the transcriptional and protein levels. Here, we review recent advancements to modulate Cas9-mediated genome editing by engineering split-Cas9 constructs, inteins, small molecules, protein-based dimerizing domains, and light-inducible systems.
Merrylin, J; Kaliappan, S; Kumar, S Adish; Yeom, Ick-Tae; Banu, J Rajesh
2014-01-01
A protease-secreting bacteria was used to pretreat municipal sewage sludge to enhance aerobic digestion. To enhance the accessibility of the sludge to the enzyme, extracellular polymeric substances were removed using citric acid thereby removing the flocs in the sludge. The conditions for the bacterial pretreatment were optimized using response surface methodology. The results of the bacterial pretreatment indicated that the suspended solids reduction was 18% in sludge treated with citric acid and 10% in sludge not treated with citric acid whereas in raw sludge, suspended solids reduction was 5.3%. Solubilization was 10.9% in the sludge with extracellular polymeric substances removed in contrast to that of the sludge with extracellular polymeric substances, which was 7.2%, and that of the raw sludge, which was just 4.8%. The suspended solids reduction in the aerobic reactor containing pretreated sludge was 52.4% whereas that in the control reactor was 15.3%. Thus, pretreatment with the protease-secreting bacteria after the removal of extracellular polymeric substances is a cost-effective and environmentally friendly method.
2013-09-01
after anaerobic digestion at thermophilic conditions (60- 70C). Application of biofilm covered activated carbon particles as a microbial inoculum...Sludge Thickener; Sludge = Sludge after anaerobic digestion at thermophilic conditions (60- 70C). C3. Microscopic evaluation of dechlorinating...associated enzymes are capable of opening the biphenyl ring structure and transform the molecule into a linear structure, this changed structure was not
Ebenezer, A Vimala; Kaliappan, S; Adish Kumar, S; Yeom, Ick-Tae; Banu, J Rajesh
2015-06-01
In the present study, the potential benefits of deflocculation on microwave pretreatment of waste activated sludge were investigated. Deflocculation in the absence of cell lysis was achieved through the removal of extra polymeric substances (EPS) by sodium citrate (0.1g sodium citrate/g suspended solids), and DNA was used as a marker for monitoring cell lysis. Subsequent microwave pretreatment yielded a chemical oxygen demand (COD) solubilisation of 31% and 21%, suspended solids (SS) reduction of 37% and 22%, for deflocculated and flocculated sludge, respectively, with energy input of 14,000kJ/kg TS. When microwave pretreated sludge was subjected to anaerobic fermentation, greater accumulation of volatile fatty acid (860mg/L) was noticed in deflocculated sludge, indicating better hydrolysis. Among the samples subjected to BMP (Biochemical methane potential test), deflocculated microwave pretreated sludge showed better amenability towards anaerobic digestion with high methane production potential of 0.615L (gVS)(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.
Microwave pyrolysis of oily sludge with activated carbon.
Chen, Yi-Rong
2016-12-01
The aim of this study is to explore catalytic microwave pyrolysis of crude oil storage tank sludge for fuels using granular activated carbon (GAC) as a catalyst. The effect of GAC loading on the yield of pyrolysis products was also investigated. Heating rate of oily sludge and yield of microwave pyrolysis products such as oil and fuel gas was found to depend on the ratio of GAC to oily sludge. The optimal GAC loading was found to be 10%, while much smaller and larger feed sizes adversely influenced production. During oily sludge pyrolysis, a maximum oil yield of 77.5% was achieved. Pyrolytic oils with high concentrations of diesel oil and gasoline (about 70 wt% in the pyrolytic oil) were obtained. The leaching of heavy metals, such as Cr, As and Pb, was also suppressed in the solid residue after pyrolysis. This technique provides advantages such as harmless treatment of oily sludge and substantial reduction in the consumption of energy, time and cost.
Roles of magnetite and granular activated carbon in improvement of anaerobic sludge digestion.
Peng, Hong; Zhang, Yaobin; Tan, Dongmei; Zhao, Zhiqiang; Zhao, Huimin; Quan, Xie
2018-02-01
Granular activated carbon (GAC) or magnetite could promote methane production from organic wastes, but their roles in enhancing anaerobic sludge digestion have not been clarified. GAC, magnetite and their combination were complemented into sludge digesters, respectively. Experimental results showed that average methane production increased by 7.3% for magnetite, 13.1% for GAC, and 20% for the combination of magnetite and GAC, and the effluent TCOD of the control, magnetite, GAC and magnetite-GAC digesters on day 56 were 53.2, 49.6, 48.0 and 46.6 g/L, respectively. Scanning electron microscope (SEM), nitrogen adsorption, Fourier transform infrared spectroscopy (FTIR) and microbial analysis indicated that magnetite enriched iron-reducing bacteria responsible for sludge hydrolysis while GAC enhanced syntrophic metabolism between iron-reducing bacteria and methanogens due to its high electrical conductivity and large surface area. Supplementing magnetite and GAC together into an anaerobic digester simultaneously accelerated sludge hydrolysis and methane production, resulting in better sludge digestion performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhou, Xin X; Zou, Xinzhi; Chung, Hokyung K; Gao, Yuchen; Liu, Yanxia; Qi, Lei S; Lin, Michael Z
2018-02-16
Optical control of CRISPR-Cas9-derived proteins would be useful for restricting gene editing or transcriptional regulation to desired times and places. Optical control of Cas9 functions has been achieved with photouncageable unnatural amino acids or by using light-induced protein interactions to reconstitute Cas9-mediated functions from two polypeptides. However, these methods have only been applied to one Cas9 species and have not been used for optical control of different perturbations at two genes. Here, we use photodissociable dimeric fluorescent protein domains to engineer single-chain photoswitchable Cas9 (ps-Cas9) proteins in which the DNA-binding cleft is occluded at baseline and opened upon illumination. This design successfully controlled different species and functional variants of Cas9, mediated transcriptional activation more robustly than previous optogenetic methods, and enabled light-induced transcription of one gene and editing of another in the same cells. Thus, a single-chain photoswitchable architecture provides a general method to control a variety of Cas9-mediated functions.
Stabilization of waste-activated sludge through the anoxic-aerobic digestion process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, S.; Fujita, M.; Terai, K.
1982-08-01
During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludgemore » continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q /SUB r/ /Q /SUB s/ ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q /SUB r/ /Q /SUB s/ ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.« less
Li, J; Garny, K; Neu, T; He, M; Lindenblatt, C; Horn, H
2007-01-01
Physical, chemical and biological characteristics were investigated for aerobic granules and sludge flocs from three laboratory-scale sequencing batch reactors (SBRs). One reactor was operated as normal SBR (N-SBR) and two reactors were operated as granular SBRs (G-SBR1 and G-SBR2). G-SBR1 was inoculated with activated sludge and G-SBR2 with granules from the municipal wastewater plant in Garching (Germany). The following major parameters and functions were measured and compared between the three reactors: morphology, settling velocity, specific gravity (SG), sludge volume index (SVI), specific oxygen uptake rate (SOUR), distribution of the volume fraction of extracellular polymeric substances (EPS) and bacteria, organic carbon and nitrogen removal. Compared with sludge flocs, granular sludge had excellent settling properties, good solid-liquid separation, high biomass concentration, simultaneous nitrification and denitrification. Aerobic granular sludge does not have a higher microbial activity and there are some problems including higher effluent suspended solids, lower ratio of VSS/SS and no nitrification at the beginning of cultivation. Measurement with CLSM and additional image analysis showed that EPS glycoconjugates build one main fraction inside the granules. The aerobic granules from G-SBR1 prove to be heavier, smaller and have a higher microbial activity compared with G-SBR2. Furthermore, the granules were more compact, with lower SVI and less filamentous bacteria.
Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field.
He, Zhi-Yao; Men, Ke; Qin, Zhou; Yang, Yang; Xu, Ting; Wei, Yu-Quan
2017-05-01
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) system provides a novel genome editing technology that can precisely target a genomic site to disrupt or repair a specific gene. Some CRISPR-Cas9 systems from different bacteria or artificial variants have been discovered or constructed by biologists, and Cas9 nucleases and single guide RNAs (sgRNA) are the major components of the CRISPR-Cas9 system. These Cas9 systems have been extensively applied for identifying therapeutic targets, identifying gene functions, generating animal models, and developing gene therapies. Moreover, CRISPR-Cas9 systems have been used to partially or completely alleviate disease symptoms by mutating or correcting related genes. However, the efficient transfer of CRISPR-Cas9 system into cells and target organs remains a challenge that affects the robust and precise genome editing activity. The current review focuses on delivery systems for Cas9 mRNA, Cas9 protein, or vectors encoding the Cas9 gene and corresponding sgRNA. Non-viral delivery of Cas9 appears to help Cas9 maintain its on-target effect and reduce off-target effects, and viral vectors for sgRNA and donor template can improve the efficacy of genome editing and homology-directed repair. Safe, efficient, and producible delivery systems will promote the application of CRISPR-Cas9 technology in human gene therapy.
Rakotonimaro, Tsiverihasina V; Neculita, Carmen Mihaela; Bussière, Bruno; Benzaazoua, Mostafa; Zagury, Gérald J
2017-01-01
The treatment of mine drainage-impacted waters generates considerable amounts of sludge, which raises several concerns, such as storage and disposal, stability, and potential social and environmental impacts. To alleviate the storage and management costs, as well as to give the mine sludge a second life, recovery and reuse have recently become interesting options. In this review, different recovery and reuse options of sludge originating from active and passive treatment of mine drainage are identified and thoroughly discussed, based on available laboratory and field studies. The most valuable products presently recovered from the mine sludge are the iron oxy-hydroxides (ochre). Other by-products include metals, elemental sulfur, and calcium carbonate. Mine sludge reuse includes the removal of contaminants, such as As, P, dye, and rare earth elements. Mine sludge can also be reused as stabilizer for contaminated soil, as fertilizer in agriculture/horticulture, as substitute material in construction, as cover over tailings for acid mine drainage prevention and control, as material to sequester carbon dioxide, and in cement and pigment industries. The review also stresses out some of the current challenges and research needs. Finally, in order to move forward, studies are needed to better estimate the contribution of sludge recovery/reuse to the overall costs of mine water treatment.
Yan, S; Tyagi, R D; Surampalli, R Y
2006-01-01
Activated sludge from different full-scale wastewater treatment plants (municipal, pulp and paper industry, starch manufacturing and cheese manufacturing wastewaters) was used as a source of microorganisms to produce biodegradable plastics in shake flask experiments. Acetate, glucose and different wastewaters were used as carbon sources. Pulp and paper wastewater sludge was found to accumulate maximum concentration (43% of dry weight of suspended solids) of polyhydroxy alkanoates (PHA) with acetate as carbon source. Among the different wastewaters tested as a source of carbon, pulp and paper industry and starch industry wastewaters were found to be the best source of carbon while employing pulp and paper activated sludge for maximum accumulation of PHA. High concentration of volatile fatty acids in these wastewaters was the probable reason.
Mulepati, Sabin; Bailey, Scott
2011-09-09
RNA transcribed from clustered regularly interspaced short palindromic repeats (CRISPRs) protects many prokaryotes from invasion by foreign DNA such as viruses, conjugative plasmids, and transposable elements. Cas3 (CRISPR-associated protein 3) is essential for this CRISPR protection and is thought to mediate cleavage of the foreign DNA through its N-terminal histidine-aspartate (HD) domain. We report here the 1.8 Å crystal structure of the HD domain of Cas3 from Thermus thermophilus HB8. Structural and biochemical studies predict that this enzyme binds two metal ions at its active site. We also demonstrate that the single-stranded DNA endonuclease activity of this T. thermophilus domain is activated not by magnesium but by transition metal ions such as manganese and nickel. Structure-guided mutagenesis confirms the importance of the metal-binding residues for the nuclease activity and identifies other active site residues. Overall, these results provide a framework for understanding the role of Cas3 in the CRISPR system.
The use of waste mussel shells for the adsorption of dyes and heavy metals
NASA Astrophysics Data System (ADS)
Papadimitriou, Chrysi A.; Krey, Grigorios; Stamatis, Nikolaos; Kallaniotis, Argyris
2016-04-01
Mussel culture is very important sector of the Greek agricultural economy. The majority of mussel culture activities take place in the area of Central Macedonia, Greece, 60% of total mussel production in Greece producing almost 12 tons of waste mussels shells on a daily basis. Currently there is no legislation concerning the disposal of mussel shells. In the present study the waste shells were used for the removal of dyes and heavy metals from aqueous solutions while powdered mussel shells were added in activated sludge processes for the removal of hexavalent chromium. Mussel shells were cleaned, dried and then crushed in order to form a powder. Powdered mussels shells were used in standard adsorption experiments for the removal of methylene blue and methyl red as well as for the removal of Cr (VI), Cd and Cu. Moreover the powdered mussel shells were added in laboratory scale activated sludge reactors treating synthetic wastewater with hexavalent chromium, in order investigate the effects in activated sludge processes and their potential attribution to the removal of hexavalent chromium. Adsorption experiments indicated almost 100% color removal, while adsorption was directly proportional to the amount of powdered mussel shells added in each case. The isotherms calculated for the case of methylene blue indicated similar adsorption capacity and properties to those of the commercially available activated carbon SAE 2, Norit. High removal efficiencies were observed for the metals, especially in the case of chromium and copper. The addition of powdered mussel shells in the activated sludge processes enhanced the removal of chromium and phosphorus, while enabled the formation of heavier activated sludge flocs and thus enhanced the settling properties of the activated sludge.
Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex.
Konermann, Silvana; Brigham, Mark D; Trevino, Alexandro E; Joung, Julia; Abudayyeh, Omar O; Barcena, Clea; Hsu, Patrick D; Habib, Naomi; Gootenberg, Jonathan S; Nishimasu, Hiroshi; Nureki, Osamu; Zhang, Feng
2015-01-29
Systematic interrogation of gene function requires the ability to perturb gene expression in a robust and generalizable manner. Here we describe structure-guided engineering of a CRISPR-Cas9 complex to mediate efficient transcriptional activation at endogenous genomic loci. We used these engineered Cas9 activation complexes to investigate single-guide RNA (sgRNA) targeting rules for effective transcriptional activation, to demonstrate multiplexed activation of ten genes simultaneously, and to upregulate long intergenic non-coding RNA (lincRNA) transcripts. We also synthesized a library consisting of 70,290 guides targeting all human RefSeq coding isoforms to screen for genes that, upon activation, confer resistance to a BRAF inhibitor. The top hits included genes previously shown to be able to confer resistance, and novel candidates were validated using individual sgRNA and complementary DNA overexpression. A gene expression signature based on the top screening hits correlated with markers of BRAF inhibitor resistance in cell lines and patient-derived samples. These results collectively demonstrate the potential of Cas9-based activators as a powerful genetic perturbation technology.
Treatment of old landfill leachate with high ammonium content using aerobic granular sludge.
Ren, Yanan; Ferraz, Fernanda; Kang, Abbass Jafari; Yuan, Qiuyan
2017-01-01
Aerobic granular sludge has become an attractive alternative to the conventional activated sludge due to its high settling velocity, compact structure, and higher tolerance to toxic substances and adverse conditions. Aerobic granular sludge process has been studied intensively in the treatment of municipal and industrial wastewater. However, information on leachate treatment using aerobic granular sludge is very limited. This study investigated the treatment performance of old landfill leachate with different levels of ammonium using two aerobic sequencing batch reactors (SBR): an activated sludge SBR (ASBR) and a granular sludge SBR (GSBR). Aerobic granules were successfully developed using old leachate with low ammonium concentration (136 mg L -1 NH 4 + -N). The GSBR obtained a stable chemical oxygen demand (COD) removal of 70% after 15 days of operation; while the ASBR required a start-up of at least 30 days and obtained unstable COD removal varying from 38 to 70%. Ammonium concentration was gradually increased in both reactors. Increasing influent ammonium concentration to 225 mg L -1 N, the GSBR removed 73 ± 8% of COD; while COD removal of the ASBR was 59 ± 9%. The GSBR was also more efficient than the ASBR for nitrogen removal. The granular sludge could adapt to the increasing concentrations of ammonium, achieving 95 ± 7% removal efficiency at a maximum influent concentration of 465 mg L -1 N. Ammonium removal of 96 ± 5% was obtained by the ASBR when it was fed with a maximum of 217 mg L -1 NH 4 + -N. However, the ASBR was partially inhibited by free-ammonia and nitrite accumulation rate increased up to 85%. Free-nitrous acid and the low biodegradability of organic carbon were likely the main factors affecting phosphorus removal. The results from this research suggested that aerobic granular sludge have advantage over activated sludge in leachate treatment.
Kim, Dong-Jin; Lee, Jonghak
2012-01-01
Hydrolysis of waste activated sludge (WAS) has been regarded as the rate limiting step of anaerobic sludge digestion. Therefore, in this study, the effect of ultrasound and hydraulic residence time during sludge hydrolysis was investigated with the goal of enhancing methane production from anaerobic digestion (AD). WAS was ultrasonically disintegrated for hydrolysis, and it was semi-continuously fed to an anaerobic digesters at various hydraulic retention times (HRTs). The results of these experiments showed that the solids and chemical oxygen demand (COD) removal efficiencies when using ultrasonically disintegrated sludge were higher during AD than the control sludge. The longer the HRT, the higher the removal efficiencies of solids and COD, while methane production increased with lower HRT. Sludge with 30% hydrolysis produced 7 × more methane production than the control sludge. The highest methane yields were 0.350 m(3)/kg volatile solids (VS)(add) and 0.301 m(3)/kg COD(con) for 16 and 30% hydrolyzed sludge, respectively. In addition, we found that excess ultrasound irradiation may inhibit AD since the 50% hydrolyzed sludge produced lower methane yields than 16 and 30% hydrolyzed sludge.
Behler, Juliane; Sharma, Kundan; Reimann, Viktoria; Wilde, Annegret; Urlaub, Henning; Hess, Wolfgang R
2018-03-01
Specialized RNA endonucleases for the maturation of clustered regularly interspaced short palindromic repeat (CRISPR)-derived RNAs (crRNAs) are critical in CRISPR-CRISPR-associated protein (Cas) defence mechanisms. The Cas6 and Cas5d enzymes are the RNA endonucleases in many class 1 CRISPR-Cas systems. In some class 2 systems, maturation and effector functions are combined within a single enzyme or maturation proceeds through the combined actions of RNase III and trans-activating CRISPR RNAs (tracrRNAs). Three separate CRISPR-Cas systems exist in the cyanobacterium Synechocystis sp. PCC 6803. Whereas Cas6-type enzymes act in two of these systems, the third, which is classified as subtype III-B variant (III-Bv), lacks cas6 homologues. Instead, the maturation of crRNAs proceeds through the activity of endoribonuclease E, leaving unusual 13- and 14-nucleotide-long 5'-handles. Overexpression of RNase E leads to overaccumulation and knock-down to the reduced accumulation of crRNAs in vivo, suggesting that RNase E is the limiting factor for CRISPR complex formation. Recognition by RNase E depends on a stem-loop in the CRISPR repeat, whereas base substitutions at the cleavage site trigger the appearance of secondary products, consistent with a two-step recognition and cleavage mechanism. These results suggest the adaptation of an otherwise very conserved housekeeping enzyme to accommodate new substrates and illuminate the impressive plasticity of CRISPR-Cas systems that enables them to function in particular genomic environments.
Suresh Kumar, M; Mudliar, S N; Reddy, K M K; Chakrabarti, T
2004-12-01
Most of the excess sludge from a wastewater treatment plant (60%) is disposed by landfill. As a resource utilization of excess sludge, the production of biodegradable plastics using the sludge has been proposed. Storage polymers in bacterial cells can be extracted and used as biodegradable plastics. However, widespread applications have been limited by high production cost. In the present study, activated sludge bacteria in a conventional wastewater treatment system were induced, by controlling the carbon: nitrogen ratio to accumulate storage polymers. Polymer yield increased to a maximum 33% of biomass (w/w) when the C/N ratio was increased from 24 to 144, where as specific growth yield decreased with increasing C/N ratio. The conditions which are required for the maximum polymer accumulation were optimized and are discussed.
Nonoxidative removal of organics in the activated sludge process
Modin, Oskar; Persson, Frank; Wilén, Britt-Marie; Hermansson, Malte
2016-01-01
ABSTRACT The activated sludge process is commonly used to treat wastewater by aerobic oxidation of organic pollutants into carbon dioxide and water. However, several nonoxidative mechanisms can also contribute to removal of organics. Sorption onto activated sludge can remove a large fraction of the colloidal and particulate wastewater organics. Intracellular storage of, e.g., polyhydroxyalkanoates (PHA), triacylglycerides (TAG), or wax esters can convert wastewater organics into precursors for high-value products. Recently, several environmental, economic, and technological drivers have stimulated research on nonoxidative removal of organics for wastewater treatment. In this paper, we review these nonoxidative removal mechanisms as well as the existing and emerging process configurations that make use of them for wastewater treatment. Better utilization of nonoxidative processes in activated sludge could reduce the wasteful aerobic oxidation of organic compounds and lead to more resource-efficient wastewater treatment plants. PMID:27453679
New insights into co-digestion of activated sludge and food waste: Biogas versus biofertilizer.
Ma, Yingqun; Yin, Yao; Liu, Yu
2017-10-01
This study explored two holistic approaches for co-digestion of activated sludge and food waste. In Approach 1, mixed activated sludge and food waste were first hydrolyzed with fungal mash, and produced hydrolysate without separation was directly subject to anaerobic digestion. In Approach 2, solid generated after hydrolysis of food waste by fungal mash was directly converted to biofertilizer, while separated liquid with high soluble COD concentration was further co-digested with activated sludge for biomethane production. Although the potential energy produced from Approach 1 was about 1.8-time higher than that from Approach 2, the total economic revenue generated from Approach 2 was about 1.9-fold of that from Approach 1 due to high market value of biofertilizer. It is expected that this study may lead to a paradigm shift in biosolid management towards environmental and economic sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hirota, Kikue; Yokota, Yuji; Sekimura, Toru; Uchiumi, Hiroshi; Guo, Yong; Ohta, Hiroyuki; Yumoto, Isao
2016-08-01
A dairy wastewater treatment system composed of the 1st segment (no aeration) equipped with a facility for the destruction of milk fat particles, four successive aerobic treatment segments with activated sludge and a final sludge settlement segment was developed. The activated sludge is circulated through the six segments by settling sediments (activated sludge) in the 6th segment and sending the sediments beck to the 1st and 2nd segments. Microbiota was examined using samples from the non-aerated 1st and aerated 2nd segments obtained from two farms using the same system in summer or winter. Principal component analysis showed that the change in microbiota from the 1st to 2nd segments concomitant with effective wastewater treatment is affected by the concentrations of activated sludge and organic matter (biological oxygen demand [BOD]), and dissolved oxygen (DO) content. Microbiota from five segments (1st and four successive aerobic segments) in one location was also examined. Although the activated sludge is circulating throughout all the segments, microbiota fluctuation was observed. The observed successive changes in microbiota reflected the changes in the concentrations of organic matter and other physicochemical conditions (such as DO), suggesting that the microbiota is flexibly changeable depending on the environmental condition in the segments. The genera Dechloromonas, Zoogloea and Leptothrix are frequently observed in this wastewater treatment system throughout the analyses of microbiota in this study. Copyright © 2016. Published by Elsevier B.V.
JPL Activated Carbon Treatment System (ACTS) for sewage
NASA Technical Reports Server (NTRS)
1976-01-01
An Activated Carbon Treatment System (ACTS) was developed for sewage treatment and is being applied to a one-million gallon per day sewage treatment pilot plant in Orange County California. Activities reported include pyrolysis and activation of carbon-sewage sludge, and activated carbon treatment of sewage to meet ocean discharge standards. The ACTS Sewage treatment operations include carbon-sewage treatment, primary and secondary clarifiers, gravity (multi-media) filter, filter press dewatering, flash drying of carbon-sewage filter cake, and sludge pyrolysis and activation. Tests were conducted on a laboratory scale, 10,000 gallon per day demonstration plant and pilot test equipment. Preliminary economic studies are favorable to the ACTS process relative to activated sludge treatment for a 175,000,000 gallon per day sewage treatment plant.
RNA-programmed genome editing in human cells
Jinek, Martin; East, Alexandra; Cheng, Aaron; Lin, Steven; Ma, Enbo; Doudna, Jennifer
2013-01-01
Type II CRISPR immune systems in bacteria use a dual RNA-guided DNA endonuclease, Cas9, to cleave foreign DNA at specific sites. We show here that Cas9 assembles with hybrid guide RNAs in human cells and can induce the formation of double-strand DNA breaks (DSBs) at a site complementary to the guide RNA sequence in genomic DNA. This cleavage activity requires both Cas9 and the complementary binding of the guide RNA. Experiments using extracts from transfected cells show that RNA expression and/or assembly into Cas9 is the limiting factor for Cas9-mediated DNA cleavage. In addition, we find that extension of the RNA sequence at the 3′ end enhances DNA targeting activity in vivo. These results show that RNA-programmed genome editing is a facile strategy for introducing site-specific genetic changes in human cells. DOI: http://dx.doi.org/10.7554/eLife.00471.001 PMID:23386978
Chiochetta, Claudete G; Goetten, Luís C; Almeida, Sônia M; Quaranta, Gaetana; Cotelle, Sylvie; Radetski, Claudemir M
2014-01-01
The chemical and ecotoxicological characteristics of fresh and stabilized industrial organic sludge leachates were compared to obtain information regarding how the stabilization process can influence the ecotoxic potential of this industrial waste, which could be used for the amendment of degraded soil. Physicochemical analysis of the sludge leachates, as well as a battery of eco(geno)toxicity tests on bacteria, algae, daphnids, and higher plants (including Vicia faba genotoxicity test) and the determination of hydrolytic enzyme activity, was performed according to standard methods. The chemical comparison of the two types of leachate showed that the samples obtained from stabilized sludge had a lower organic content and higher metal content than leachates of the fresh sludge. The eco(geno)toxicological results obtained with aquatic organisms showed that the stabilized sludge leachate was more toxic than the fresh sludge leachate, both originating from the same industrial organic sludge sample. Nevertheless, phytotoxicity tests carried out with a reference peat soil irrigated with stabilized sludge leachate showed the same toxicity as the fresh sludge leachate. In the case of the industrial solid organic sludge studied, stabilization through a biodegradation process promoted a higher metal mobility/bioavailability/eco(geno)toxicity in the stabilized sludge leachate compared to the fresh sludge leachate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Y.; Kawase, Y.
2006-07-01
In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial compostingmore » mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.« less
Zhang, Hongzi; Xiang, Hai; Zhang, Guoliang; Cao, Xia; Meng, Qing
2009-08-15
The presence of high-strength oil and grease (O&G) in wastewater poses serious challenges for environment. Addition of surfactant into the activated sludge bioreactor is feasible in reducing high concentrations of O&G via enhancing its bioavailability. In this paper, an aqueous biosurfactant solution of rhamnolipid as a cell-free culture broth of Pseudomonas aeruginosa zju.um1 was added into a batch of aerobic activated sludge system for treatment of the waste frying oil. This treatment was conducted on both bench and pilot-scales, whereas the removal efficiency of frying oil was determined by analyzing the residue concentration of O&G and chemical oxygen demand (COD). In the presence of varying concentrations of rhamnolipid from 22.5 mg/L to 90 mg/L, aerobic treatment for 30 h was enough to remove over 93% of O&G while this biodegradability was only 10% in the control system with the absence of rhamnolipids. The equivalent biodegradability was similarly obtained on COD under addition of rhamnolipid. Compared with bench studies, a higher treatment efficiency with the presence of rhamnolipids was achieved on a pilot-scale of activated sludge system, in which a short time of 12h was required for removing approximately 95% of O&G while the control treatment attained a low efficiency of 17%. Finally, foaming and biodegradability of rhamnolipids in activated sludge system were further examined in the whole treatment process. It seems that the addition of rhamnolipid-containing culture broth showed great potential for treatment of oily wastewater by activated sludge.
Jin, Lingyun; Zhang, Guangming; Zheng, Xiang
2015-02-01
A key step in sludge treatment is sludge dewatering. However, activated sludge is generally very difficult to be dewatered. Sludge dewatering performance is largely affected by the sludge moisture distribution. Sludge disintegration can destroy the sludge structure and cell wall, so as change the sludge floc structure and moisture distribution, thus affecting the dewatering performance of sludge. In this article, the disintegration methods were ultrasound treatment, K2FeO4 oxidation and KMnO4 oxidation. The degree of disintegration (DDCOD), sludge moisture distribution and the final water content of sludge cake after centrifuging were measured. Results showed that three disintegration methods were all effective, and K2FeO4 oxidation was more efficient than KMnO4 oxidation. The content of free water increased obviously with K2FeO4 and KMnO4 oxidations, while it decreased with ultrasound treatment. The changes of free water and interstitial water were in the opposite trend. The content of bounding water decreased with K2FeO4 oxidation, and increased slightly with KMnO4 oxidation, while it increased obviously with ultrasound treatment. The water content of sludge cake after centrifuging decreased with K2FeO4 oxidation, and did not changed with KMnO4 oxidation, but increased obviously with ultrasound treatment. In summary, ultrasound treatment deteriorated the sludge dewaterability, while K2FeO4 and KMnO4 oxidation improved the sludge dewaterability. Copyright © 2014. Published by Elsevier B.V.
Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao
2016-01-01
Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge. PMID:27905538
Persistence of pathogenic prion protein during simulated wastewater treatment processes
Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.
2008-01-01
Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.
NASA Astrophysics Data System (ADS)
Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao
2016-12-01
Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge.
Caprai, V; Florea, M V A; Brouwers, H J H
2018-06-15
Despite numerous studies concerning the application of by-products in the construction field, municipal solid waste incineration (MSWI) residues are not widely used as secondary building materials. In some European countries, washing treatment to the full bottom ash (BA) fraction (0-32 mm) is applied, isolating more contaminated particles, smaller than 0.063 mm. Therefore, a MWSI sludge is produced, having a high moisture content, and thus a limited presence of soluble species. In order to enhance its performance as building material, here, dry mechanical activation is applied on MSWI sludge. Thereafter, a reactivity comparison between reference BA and untreated and treated MSWI sludge is provided, evaluating their behaviour in the presence of cement and their pozzolanic activity. Moreover, the mechanical performances, as 25% substitution of Portland cement (PC) are assessed, based on the EN 450. Mechanical activation enhances MSWI sludge physically due to the improved particle morphology and packing. Chemically, the hydration degree of PC is enhanced by the MSWI sludge by ≈25%. The milling treatment proved to be beneficial to the residues performances in the presence of PC, providing 32% higher strength than untreated sample. Environmentally, the compliance with the unshaped material legislation is successfully verified, according to the Soil Quality Decree. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Xu; Li, Meiyan; Liu, Junxin; Qu, Jiuhui
2016-07-01
Millions of tons of waste activated sludge (WAS) produced from biological wastewater treatment processes cause severe adverse environmental consequences. A better understanding of WAS composition is thus very critical for sustainable sludge management. In this work, the occurrence and distribution of several fundamental sludge constituents were explored in WAS samples from nine full-scale wastewater treatment plants (WWTPs) of Beijing, China. Among all the components investigated, active heterotrophic biomass was dominant in the samples (up to 9478mg/L), followed by endogenous residues (6736mg/L), extracellular polymeric substances (2088mg/L), and intracellular storage products (464mg/L) among others. Moreover, significant differences (p<0.05) were observed in composition profiles of sludge samples among the studied WWTPs. To identify the potential parameters affecting the variable fractions of sludge components, wastewater source as well as design and operational parameters of WWTPs were studied using statistical methods. The findings indicated that the component fraction of sewage sludge depends more on wastewater treatment alternatives than on wastewater characteristics among other parameters. A principal component analysis was conducted, which further indicated that there was a greater proportion of residual inert biomass in the sludge produced by the combined system of the conventional anaerobic/anoxic/oxic process and a membrane bioreactor. Additionally, a much longer solids retention time was also found to influence the sludge composition and induce an increase in both endogenous inert residues and extracellular polymeric substances in the sludge. Copyright © 2016. Published by Elsevier B.V.
Yan, Winston X; Chong, Shaorong; Zhang, Huaibin; Makarova, Kira S; Koonin, Eugene V; Cheng, David R; Scott, David A
2018-04-19
Bacterial class 2 CRISPR-Cas systems utilize a single RNA-guided protein effector to mitigate viral infection. We aggregated genomic data from multiple sources and constructed an expanded database of predicted class 2 CRISPR-Cas systems. A search for novel RNA-targeting systems identified subtype VI-D, encoding dual HEPN domain-containing Cas13d effectors and putative WYL-domain-containing accessory proteins (WYL1 and WYL-b1 through WYL-b5). The median size of Cas13d proteins is 190 to 300 aa smaller than that of Cas13a-Cas13c. Despite their small size, Cas13d orthologs from Eubacterium siraeum (Es) and Ruminococcus sp. (Rsp) are active in both CRISPR RNA processing and targeting, as well as collateral RNA cleavage, with no target-flanking sequence requirements. The RspWYL1 protein stimulates RNA cleavage by both EsCas13d and RspCas13d, demonstrating a common regulatory mechanism for divergent Cas13d orthologs. The small size, minimal targeting constraints, and modular regulation of Cas13d effectors further expands the CRISPR toolkit for RNA manipulation and detection. Copyright © 2018 Elsevier Inc. All rights reserved.
Simultaneous Fluorescent Gram Staining and Activity Assessment of Activated Sludge Bacteria
Forster, Scott; Snape, Jason R.; Lappin-Scott, Hilary M.; Porter, Jonathan
2002-01-01
Wastewater treatment is one of the most important commercial biotechnological processes, and yet the component bacterial populations and their associated metabolic activities are poorly understood. The novel fluorescent dye hexidium iodide allows assessment of Gram status by differential absorption through bacterial cell walls. Differentiation between gram-positive and gram-negative wastewater bacteria was achieved after flow cytometric analysis. This study shows that the relative proportions of gram-positive and gram-negative bacterial cells identified by traditional microscopy and hexidium iodide staining were not significantly different. Dual staining of cells for Gram status and activity proved effective in analyzing mixtures of cultured bacteria and wastewater populations. Levels of highly active organisms at two wastewater treatment plants, both gram positive and gram negative, ranged from 1.5% in activated sludge flocs to 16% in the activated sludge fluid. Gram-positive organisms comprised <5% of the total bacterial numbers but accounted for 19 and 55% of the highly active organisms within flocs at the two plants. Assessment of Gram status and activity within activated sludge samples over a 4-day period showed significant differences over time. This method provides a rapid, quantitative measure of Gram status linked with in situ activity within wastewater systems. PMID:12324319
Simultaneous fluorescent gram staining and activity assessment of activated sludge bacteria.
Forster, Scott; Snape, Jason R; Lappin-Scott, Hilary M; Porter, Jonathan
2002-10-01
Wastewater treatment is one of the most important commercial biotechnological processes, and yet the component bacterial populations and their associated metabolic activities are poorly understood. The novel fluorescent dye hexidium iodide allows assessment of Gram status by differential absorption through bacterial cell walls. Differentiation between gram-positive and gram-negative wastewater bacteria was achieved after flow cytometric analysis. This study shows that the relative proportions of gram-positive and gram-negative bacterial cells identified by traditional microscopy and hexidium iodide staining were not significantly different. Dual staining of cells for Gram status and activity proved effective in analyzing mixtures of cultured bacteria and wastewater populations. Levels of highly active organisms at two wastewater treatment plants, both gram positive and gram negative, ranged from 1.5% in activated sludge flocs to 16% in the activated sludge fluid. Gram-positive organisms comprised <5% of the total bacterial numbers but accounted for 19 and 55% of the highly active organisms within flocs at the two plants. Assessment of Gram status and activity within activated sludge samples over a 4-day period showed significant differences over time. This method provides a rapid, quantitative measure of Gram status linked with in situ activity within wastewater systems.
Release and control of hydrogen sulfide during sludge thermal drying.
Weng, Huanxin; Dai, Zhixi; Ji, Zhongqiang; Gao, Caixia; Liu, Chongxuan
2015-10-15
The release of hydrogen sulfide (H2S) during sludge drying is a major environmental problem because of its toxicity to human health. A series of experiments were performed to investigate the mechanisms and factors controlling the H2S release. Results of this study show that: (1) the biomass and activity of sulfate-reducing bacteria (SRB) in sludge were the major factors controlling the amount of H2S release, (2) the sludge drying temperature had an important effect on both the extent and the timing of H2S release from the sludge, and (3) decreasing sludge pH increased the H2S release. Based on the findings from this study, a new system that integrates sludge drying and H2S gas treatment was developed, by which 97.5% of H2S and 99.7% of smoke released from sludge treatments was eliminated. Copyright © 2015 Elsevier B.V. All rights reserved.
Release and control of hydrogen sulfide during sludge thermal drying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weng, Huanxin; Dai, Zhixin; Ji, Zhongqiang
2015-04-15
The release of hydrogen sulfide (H2S) during sludge drying is a major environmental problem because of its toxicity to human health. A series of experiments were performed to investigate the mechanisms and factors controlling the H2S release. Results of this study show that: 1) the biomass and activity of sulfate-reducing bacteria (SRB) in sludge were the major factors controlling the amount of H2S release, 2) the sludge drying temperature had an important effect on both the extent and the timing of H2S release from the sludge, and 3) decreasing sludge pH increased the H2S release. Based on the findings frommore » this study, a new system that integrates sludge drying and H2S gas treatment was developed to reduce the amount of H2S released from sludge treatments.« less
Wang, Yong-Hui; Yuan, Yang; Yang, Xiao-Quan; Wang, Jin-Mei; Guo, Jian; Lin, Yuan
2016-07-01
The aims of this work were to construct corn protein hydrolysate (CPH)-based curcumin nanoparticles (Cur NPs) and to compare the colloidal stability, bioaccessibility and antioxidant activity of the Cur NPs stabilized CPH and sodium caseinate (NaCas) respectively. The results indicated that Cur solubility could be considerably improved after the Cur NPs fabrication. The spectroscopy results demonstrated that the solubilization of Cur should be attributed to its complexation with CPH or NaCas. The Cur NPs exhibited good colloidal stability after 1 week's storage but showed smaller (40 nm) size in CPH than in NaCas (100 nm). After lyophilization, the Cur NPs powders showed good rehydration properties and chemical stability, and compared with NaCas, the size of Cur NPs stabilized by CPH was still smaller. Additionally, the Cur NPs exhibited higher chemical stability against the temperature compared with free Cur, and the CPH could protect Cur from degradation more efficiently. Comparing with NaCas, the Cur NPs stabilized by CPH exhibited better bioaccessibility and antioxidant activity. This study demonstrated that CPH may be better than NaCas in Cur NPs fabrication and it opens up the possibility of using hydrophobic protein hydrolysate to construct the NPs delivery system.
ERIC Educational Resources Information Center
Saunders, F. Michael
1978-01-01
Presents the 1978 literature review of wastewater treatment. This review covers: (1) activated sludge process; (2) process control; (3) oxygen uptake and transfer; (4) phosphorus removal; (5) nitrification; (6) industrial wastewater; and (7) aerobic digestion. A list of 136 references is also presented. (HM)
ERIC Educational Resources Information Center
Shepard, Clinton L.; Walasek, James B.
This monograph contains a variety of selected materials related to wastewater treatment and water quality education and instruction. Part I presents a brief discussion of the activated sludge process in wastewater treatment operations. Part II, Instructional Units, contains selected portions of existing programs which may be utilized in…
Ushani, U; Rajesh Banu, J; Kavitha, S; Kaliappan, S; Yeom, Ick Tae
2017-05-01
In this study, an attempt was made to disintegrate waste activated sludge (WAS) in a cost-effective way. During the first phase of this study, effective break down of extracellular polymeric substance (EPS) was performed by deflocculating WAS with 0.1 g/g SS of MgSO 4 . Deflocculation rate was 92% with discharge rate of extractable EPS at 185 mg/L. In the second phase, effective bacterial cell disintegration was obtained at 36 h post treatment. Maximum solubilization of deflocculated sludge was approximately 21%, which was higher than that of flocculated sludge (14.2%) or the control (4.5%). Biodegradability studies were assessed through kinetic analysis by non-linear regression modeling. Results revealed that the deflocculated sludge had higher methane generation (at about 235.8 mL/gVs) compared to flocculated sludge (at 146.1 mL/gVs) or the control (at 34.8 mL/gVs). Cost assessment of the present work revealed that the net yield for each ton of the deflocculated sludge was about 32.99 USD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biological Uptake of Phosphorus by Activated Sludge 1
Yall, Irving; Boughton, William H.; Knudsen, Richard C.; Sinclair, Norval A.
1970-01-01
The ability of activated sludge to remove phosphates was studied by adding carrier-free 32P to raw sewage and measuring incorporation of the radioactivity into the cells over a period of time. Radioisotope determinations indicated that 48% of the 32P radioactivity was removed by 12 hr. However, chemical methods indicated that only 30% of the orthophosphate apparently disappeared from the sewage during this period. Experiments with sludge prelabeled with 32P indicated that considerable phosphate turnover occurred. The cells released large amounts of radioactivity as they were incorporating fresh phosphates. Starvation in isotonic saline for 18 hr caused the sludge to dump phosphate. When introduced into fresh sewage containing 32P, the starved sludge removed about 60% of the radioactivity in 6 hr with little phosphate turnover. The ability of sludge to remove 32P was inhibited approximately 83% by 10−3m 2,4-dinitrophenol. This inhibition was at the expense of the cell fraction that contained ribonucleic acid and deoxyribonucleic acid. The sludge cells released orthophosphate when exposed to the chemical agent. Experiments using 45Ca indicated that calcium phosphate precipitation plays a minor role in phosphate removal under our experimental conditions. PMID:5456935
Biological uptake of phosphorus by activated sludge.
Yall, I; Boughton, W H; Knudsen, R C; Sinclair, N A
1970-07-01
The ability of activated sludge to remove phosphates was studied by adding carrier-free (32)P to raw sewage and measuring incorporation of the radioactivity into the cells over a period of time. Radioisotope determinations indicated that 48% of the (32)P radioactivity was removed by 12 hr. However, chemical methods indicated that only 30% of the orthophosphate apparently disappeared from the sewage during this period. Experiments with sludge prelabeled with (32)P indicated that considerable phosphate turnover occurred. The cells released large amounts of radioactivity as they were incorporating fresh phosphates. Starvation in isotonic saline for 18 hr caused the sludge to dump phosphate. When introduced into fresh sewage containing (32)P, the starved sludge removed about 60% of the radioactivity in 6 hr with little phosphate turnover. The ability of sludge to remove (32)P was inhibited approximately 83% by 10(-3)m 2,4-dinitrophenol. This inhibition was at the expense of the cell fraction that contained ribonucleic acid and deoxyribonucleic acid. The sludge cells released orthophosphate when exposed to the chemical agent. Experiments using (45)Ca indicated that calcium phosphate precipitation plays a minor role in phosphate removal under our experimental conditions.
Ding, Jia-li; Liu, Rui; Zheng, Wei; Yu, Wei-juan; Ye, Zhao-xia; Chen, Lu-jun; Zhang, Yong-ming
2015-10-01
In order to determine eleven commonly used veterinary antibiotics (including four tetracyclines, two sulfonamides, three quinolones and two macrolides) in piggery wastewater and activated sludge in the Yangtze River Delta region, the conditions of solid phase extraction and high performance liquid chromatography-tandem mass spectrometry were optimized. The recovery rate and relative standard deviations of the method were confirmed as 73% - 105.2%, 3.1% - 10.2% for piggery wastewater (n = 3) and 57.4% - 104.6%, 1.9% - 10.9% (n = 3) respectively for the activated sludge. Removal of antibiotics was then studied in a membrane bioreactor. The results showed that antibiotics of both tetracycline and sulfonamide species took a large portion in the wastewater, while tetracycline species were the dominant in the sludge. Tetracycline species in the wastewater were removed by 85.2%, mainly through biodegradation (51.9%) and secondly by sludge adsorption (33.2%). By comparison, sulfonamide species was removed by 95.8%, almost all through biodegradation while little by sludge adsorption. Flask tests suggested that the accumulated antibiotics in the sludge give no significant influence on the microbial removal of organics and ammonium.
Luo, Wentian; Galvan, Daniel L; Woodard, Lauren E; Dorset, Dan; Levy, Shawn; Wilson, Matthew H
2017-08-21
Integrating DNA delivery systems hold promise for many applications including treatment of diseases; however, targeted integration is needed for improved safety. The piggyBac (PB) transposon system is a highly active non-viral gene delivery system capable of integrating defined DNA segments into host chromosomes without requiring homologous recombination. We systematically compared four different engineered zinc finger proteins (ZFP), four transcription activator-like effector proteins (TALE), CRISPR associated protein 9 (SpCas9) and the catalytically inactive dSpCas9 protein fused to the amino-terminus of the transposase enzyme designed to target the hypoxanthine phosphoribosyltransferase (HPRT) gene located on human chromosome X. Chimeric transposases were evaluated for expression, transposition activity, chromatin immunoprecipitation at the target loci, and targeted knockout of the HPRT gene in human cells. One ZFP-PB and one TALE-PB chimera demonstrated notable HPRT gene targeting. In contrast, Cas9/dCas9-PB chimeras did not result in gene targeting. Instead, the HPRT locus appeared to be protected from transposon integration. Supplied separately, PB permitted highly efficient isolation of Cas9-mediated knockout of HPRT, with zero transposon integrations in HPRT by deep sequencing. In summary, these tools may allow isolation of 'targeted-only' cells, be utilized to protect a genomic locus from transposon integration, and enrich for Cas9-mutated cells. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.
Sakuma, Tetsushi; Mochida, Keiji; Nakade, Shota; Ezure, Toru; Minagawa, Sachi; Yamamoto, Takashi
2018-04-01
Single-cell cloning is an essential technique for establishing genome-edited cell clones mediated by programmable nucleases such as CRISPR-Cas9. However, residual genome-editing activity after single-cell cloning may cause heterogeneity in the clonal cells. Previous studies showed efficient mutagenesis and rapid degradation of CRISPR-Cas9 components in cultured cells by introducing Cas9 ribonucleoproteins (RNPs). In this study, we investigated how the timing for single-cell cloning of Cas9 RNP-transfected cells affected the heterogeneity of the resultant clones. We carried out transfection of Cas9 RNPs targeting several loci in the HPRT1 gene in HCT116 cells, followed by single-cell cloning at 24, 48, 72 hr and 1 week post-transfection. After approximately 3 weeks of incubation, the clonal cells were collected and genotyped by high-resolution microchip electrophoresis and Sanger sequencing. Unexpectedly, long-term incubation before single-cell cloning resulted in highly heterogeneous clones. We used a lipofection method for transfection, and the media containing transfectable RNPs were not removed before single-cell cloning. Therefore, the active Cas9 RNPs were considered to be continuously incorporated into cells during the precloning incubation. Our findings provide a warning that lipofection of Cas9 RNPs may cause continuous introduction of gene mutations depending on the experimental procedures. © 2018 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Vincent, Julie; Forquet, Nicolas; Molle, Pascal; Wisniewski, Christelle
2012-07-01
This work was designed to study the hydraulic properties of sludge deposit, focusing on the impact of operating conditions (i.e. loads and feeding frequencies) on air entrance (aerobic mineralization optimization) into the sludge deposit. The studied sludge deposits came from six 2m(2) pilot-scale SDRBs that had been in operation for 50 months with three different loads of 30, 50, and 70 kg of SSm(-2) y(-1). Two influents were assessed (i.e. activated sludge and septage) presenting different characteristics (i.e. pollutant contents, physical properties...). Two experimental approaches were employed based on establishing the water retention curve (capillary pressure versus volumetric water content) and the hydrotextural diagram to determine the hydraulic properties of sludge deposit. The study obtained valuable information for optimizing operating conditions, specifically for efficient management of loading frequency to optimize aerobic conditions within the sludge deposit. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wang, Tianfeng; Chen, Jie; Shen, Honglang; An, Dong
2016-10-01
The role of total solids content on sludge thermophilic anaerobic digestion was investigated in batch reactors. A range of total solids content from 2% to 10% was evaluated with two replicates. The lowest inhibitory concentration for free ammonia and total ammonia of sludge thermophilic anaerobic digestion was 110.9-171.4mg/L and 1313.1-1806.7mg/L, respectively. The volumetric biogas production rate increased with increasing of total solids content, but the corresponding biogas yield per gram volatile solid decreased. The result of normalized capillary suction time indicated that the dewaterability of digested sludge at high total solids content was poor, while solid content of sediment obtained by centrifuging sludge at 2000g for 10min increased with increasing of total solids content of sludge. The results suggest that thickened sludge mixed with dewatered sludge at an appropriate ratio could get high organic loading rate, high biogas yield and adequate dewatering effort. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bench-scale reactors were used to test a novel thermo-oxidation process on municipal wastewater treatment plant (WWTP) waste activated sludge (WAS) using hydrogen peroxide (H2O2) to achieve a Class A sludge product appropriate for land application. Reactor ...
Spontaneous CRISPR loci generation in vivo by non-canonical spacer integration
Nivala, Jeff; Shipman, Seth L.; Church, George M.
2018-01-01
The adaptation phase of CRISPR-Cas immunity depends on the precise integration of short segments of foreign DNA (spacers) into a specific genomic location within the CRISPR locus by the Cas1-Cas2 integration complex. Although off-target spacer integration outside of canonical CRISPR arrays has been described in vitro, no evidence of non-specific integration activity has been found in vivo. Here, we show that non-canonical off-target integrations can occur within bacterial chromosomes at locations that resemble the native CRISPR locus by characterizing hundreds of off-target integration locations within Escherichia coli. Considering whether such promiscuous Cas1-Cas2 activity could have an evolutionary role through the genesis of neo-CRISPR loci, we combed existing CRISPR databases and available genomes for evidence of off-target integration activity. This search uncovered several putative instances of naturally occurring off-target spacer integration events within the genomes of Yersinia pestis and Sulfolobus islandicus. These results are important in understanding alternative routes to CRISPR array genesis and evolution, as well as in the use of spacer acquisition in technological applications. PMID:29379209
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
2008-04-01
Corrective Action Unit (CAU) 151 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Septic Systems and Discharge Area. CAU 151 consists of the following eight Corrective Action Sites (CASs), located in Areas 2, 12, and 18 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 02-05-01, UE-2ce Pond; (2) CAS 12-03-01, Sewage Lagoons (6); (3) CAS 12-04-01, Septic Tanks; (4) CAS 12-04-02, Septic Tanks; (5) CAS 12-04-03, Septic Tank; (6) CAS 12-47-01, Wastewater Pond; (7) CAS 18-03-01, Sewage Lagoon; and (8) CAS 18-99-09, Sewer Line (Exposed). CAU 151 closure activitiesmore » were conducted according to the FFACO (FFACO, 1996; as amended February 2008) and the Corrective Action Plan for CAU 151 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007) from October 2007 to January 2008. The corrective action alternatives included no further action, clean closure, and closure in place with administrative controls. CAU 151 closure activities are summarized in Table 1. Closure activities generated liquid remediation waste, sanitary waste, hydrocarbon waste, and mixed waste. Waste generated was appropriately managed and disposed. Waste that is currently staged onsite is being appropriately managed and will be disposed under approved waste profiles in permitted landfills. Waste minimization activities included waste characterization sampling and segregation of waste streams. Some waste exceeded land disposal restriction limits and required offsite treatment prior to disposal. Other waste meeting land disposal restrictions was disposed of in appropriate onsite or offsite landfills. Waste disposition documentation is included as Appendix C.« less
Surveillance for vancomycin-resistant enterococci: type, rates, costs, and implications.
Shadel, Brooke N; Puzniak, Laura A; Gillespie, Kathleen N; Lawrence, Steven J; Kollef, Marin; Mundy, Linda M
2006-10-01
To evaluate 2 active surveillance strategies for detection of enteric vancomycin-resistant enterococci (VRE) in an intensive care unit (ICU). Thirty-month prospective observational study. ICU at a university-affiliated referral center. All patients with an ICU stay of 24 hours or more were eligible for the study. Clinical active surveillance (CAS), involving culture of a rectal swab specimen for detection of VRE, was performed on admission, weekly while the patient was in the ICU, and at discharge. Laboratory-based active surveillance (LAS), involving culture of a stool specimen for detection of VRE, was performed on stool samples submitted for Clostridium difficile toxin detection. Enteric colonization with VRE was detected in 309 (17%) of 1,872 patients. The CAS method initially detected 280 (91%) of the 309 patients colonized with VRE, compared with 25 patients (8%) detected by LAS; colonization in 4 patients (1%) was initially detected by analysis of other clinical specimens. Most patients with colonization (76%) would have gone undetected by LAS alone, whereas use of the CAS method exclusively would have missed only 3 patients (1%) who were colonized. CAS cost Dollars 1,913 per month, or Dollars 57,395 for the 30-month study period. Cost savings of CAS from preventing cases of VRE colonization and bacteremia were estimated to range from Dollars 56,258 to Dollars 303,334 per month. A patient-based CAS strategy for detection of enteric colonization with VRE was superior to LAS. In this high-risk setting, CAS appeared to be the most efficient and cost-effective surveillance method. The modest costs of CAS were offset by the averted costs associated with the prevention of VRE colonization and bacteremia.
Role of indigenous iron in improving sludge dewaterability through peroxidation
Zhou, Xu; Jiang, Guangming; Wang, Qilin; Yuan, Zhiguo
2015-01-01
Improvement of sludge dewaterability is important for reducing the total costs for the treatment and disposal of sludge in wastewater treatment plants. In this study, we investigate the use of hydrogen peroxide as an oxidizing reagent for the conditioning of waste activated sludge. Significant improvement to sludge dewaterability was attained after the addition of hydrogen peroxide at 30 mg/g TS and 28 mg/g TS under acidic conditions (pH = 3.0), with the highest reduction of capillary suction time being 68% and 56%, respectively, for sludge containing an iron concentration of 56 mg Fe/g TS and 25 mg Fe/g TS, respectively. The observations were due to Fenton reactions between the iron contained in sludge (indigenous iron) and hydrogen peroxide. For the sludge with an insufficient level of indigenous iron, the addition of ferrous chloride was found to be able to improve the sludge dewaterability. The results firstly indicated that indigenous iron can be utilized similarly as the externally supplied iron salt to improve sludge dewaterability through catalyzing the Fenton reactions. PMID:25559367
Liu, He; Shi, Jiasheng; Xu, Xiaoyu; Zhan, Xinmin; Fu, Bo; Li, Yifei
2017-12-01
This study was conducted to explore the mechanism of dewaterability improvement of waste activated sludge by the filamentous fungus Talaromyces flavus S1. When the fungal spores were inoculated to the sterilized sludge, the sludge dewaterability was significantly improved by 48.1% and the reasons can be attributed to sludge pellet formation and degradation of extracellular polymeric substances, in particular the slime-EPS and loosely-bound EPS (LB-EPS). With the addition of fungal mycelium into the either sterilized sludge or non-sterilized sludge, the values of CST decreased by 74.0% and 43.7%, respectively, suggesting the fungal mycelium can improve the sludge dewaterability. After conditioned by the mycelium, the sludge cake by the diaphragm filter press was thicker and showed less water content than the control sludge. The results in this study demonstrated that the Talaromyces flavus S1 can serve as an environmentally friendly biological dewatering agent and has a promising application potential in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Influences of Different Conditioners on Dehydration Ratio of Activated Sludge
NASA Astrophysics Data System (ADS)
Zhuo, Qiongfang; Zheng, Wenli; Yi, Hao; Chen, Sili; Xu, Zhencheng; Jin, Zhong; Lan, Yongzhe; Guo, Qingwei
2017-11-01
Excess sludge contains a large quantity of water with water content reaching about 97%-99%. Besides microorganisms and germs, the sludge is of complicated composition, including heavy metals, persistent organic pollutants, PPCPs, endocrine disrupters, etc. It covers a large area with harmfulness, so it needs further treatment. However, due to existence of extracellular polymeric substances in the sludge, the sludge has poor dehydration property, so how to improve dehydration of sludge is a difficult point in water treatment industry. Chemical conditioning—mechanical dehydration method is sludge dehydration technology which has been widely applied in China. Most sludge treatment plants use organic and inorganic conditioners like polyacrylamide (PAM), polyaluminum chloride (PAC) and polymerized ferrous sulfate (PFS), etc. With characteristics of low toxicity and degradation resistance, these conditioners pose potential risks to the environment and they are adverse to follow-up resource utilization. Therefore, influences of 17 conditioners on sludge dehydration ratio were discussed in this paper, expecting to seek for green, environmentally friendly and highly efficient conditioner so as to improve resource utilization ratio of sludge.
Enhanced Multistatic Active Sonar via Innovative Signal Processing
2015-09-30
3. DATES COVERED (From - To) Oct. 01, 2014-Sept. 30, 2015 4. TITLE AND SUBTITLE Enhanced Multistatic Active Sonar via Innovative Signal...active sonar (CAS) in the presence of strong direct blast is studied for the Doppler-tolerant linear frequency modulation waveform. A receiver design...beamformer variants is examined. 15. SUBJECT TERMS Pulsed active sonar (PAS), continuous active sonar (CAS), strong delay and Doppler-spread direct blast
Brar, Satinder K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y
2009-10-01
This study investigated the production of biopesticides, protease and chitinase activity by Bacillus thuringiensis grown in raw wastewater sludge at high solids concentration (30 g/L). The rheology of wastewater sludge was modified with addition of Tween-80 (0.2% v/v). This addition resulted in 1.6 and 1.3-fold increase in cell and spore count, respectively. The maximum specific growth rate (micro(max)) augmented from 0.17 to 0.22 h(-1) and entomotoxicity (Tx) increased by 29.7%. Meanwhile, volumetric mass transfer coefficient (k(L)a) showed marked variations during fermentation, and oxygen uptake rate (OUR) increased 2-fold. The proteolytic activity increased while chitinase decreased for Tween amended wastewater sludge, but the entomotoxicity increased. The specific entomotoxicity followed power law when plotted against spore concentration and the relation between Tx and protease activity was linear. The viscosity varied and volume percent of particles increased in Tween-80 amended wastewater sludge and particle size (D(50)) decreased at the end of fermentation. Thus, there was an increase in entomotoxicity at higher suspended solids (30 g/L) as Tween addition improved rheology (viscosity, particle size, surface tension); enhanced maximum growth rate and OUR.
Feng, L Y; Yang, L Q; Zhang, L X; Chen, H L; Chen, J
2013-01-01
Sludge with low organic content always results in an unsatisfactory performance, even failure of anaerobic digestion. The alkaline pretreatment effect on anaerobic digestion of sludge with low organic content has seldom been studied although it gives many benefits for sludge with high organic content. In this study the influence of alkaline pretreatment (pH 10, an effective alkaline pH) on the solubilization and methane production from waste activated sludge (WAS) with low organic content was investigated. Results from biochemical methane potential (BMP) experiments showed that anaerobic biodegradability of WAS was greatly improved by alkaline pretreatment at pH 10. Methane production from the current WAS under conditions of pretreatment time 4 h and digestion time 15 d was 139.6 mL/g VS (volatile solids), much higher than that from the unpretreated WAS with digestion time of 20 d (75.2 mL/g VS). Also, the solubilization of WAS was significantly accelerated by alkaline pretreatment. Mechanism exploration indicated that the general activities of anaerobic microorganisms, specific activities of key enzymes and the amounts of methanogens were enhanced by alkaline pretreatment at pH 10, showing good agreement with methane production.
Scalas, Daniela; Banche, Giuliana; Merlino, Chiara; Giacchino, Franca; Allizond, Valeria; Garneri, Giuseppe; Patti, Rosaria; Roana, Janira; Mandras, Narcisa; Tullio, Vivian; Cuffini, Anna Maria
2012-01-01
Phagocyte-dependent cellular immunity in chronic kidney disease patients undergoing haemodialysis treatment is frequently impaired owing to the uraemic state, resulting in an intrinsic susceptibility to developing invasive fungal infections with high mortality rates. Since synergism between phagocytic cells and antifungal drugs may be crucial for successful therapy, the aim of this study was to evaluate the effects exerted by caspofungin (CAS) on the functional activities of polymorphonuclear cells (PMNs) in haemodialysed patients (HDs) towards Candida albicans compared with those of PMNs from healthy subjects (HSs). PMNs were separated from venous blood samples of 66 HDs and 30 HSs (as controls), and measurement of phagocytic and intracellular fungicidal activities of HD-PMNs and HS-PMNs was performed in the presence of CAS at the minimum inhibitory concentration (MIC) and at sub-MICs. CAS-free controls were also included. In the drug-free test condition, no significant difference between the phagocytic activity of HD-PMNs and HS-PMNs was detected. In contrast, a progressive decline in the intracellular killing activity of HD-PMNs against proliferating yeasts was observed. CAS at MIC and sub-MIC levels was able to improve significantly the intracellular fungicidal activity of HD-PMNs against C. albicans, restoring their functionality. These findings provide evidence that CAS exerts a synergistic effect on HD-PMNs against C. albicans, being able to strength the depressed intracellular killing activity. These results corroborate the use of CAS as an effective therapeutic option for the treatment of invasive fungal infections in HDs, in whom even a marginal influence of antifungal drugs on host response may have a relevant effect. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
ENHANCED BIODEGRADATION OF IOPROMIDE AND TRIMETHOPRIM IN NITRIFYING ACTIVATED SLUDGE
Iopromide and trimethoprim are frequently detected pharmaceuticals in effluents of wastewater treatment plants and in surface waters due to their persistence and high usage. Laboratory scale experiments showed that a significantly higher removal rate in nutrifying activated sludg...
Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria
NASA Astrophysics Data System (ADS)
Bestawy, Ebtesam El.; Helmy, Shacker; Hussien, Hany; Fahmy, Mohamed; Amer, Ranya
2013-03-01
Removal of heavy metals from contaminated domestic-industrial effluent using eight resistant indigenous bacteria isolated from acclimatized activated sludge was investigated. Molecular identification using 16S rDNA amplification revealed that all strains were Gram-negative among which two were resistant to each of copper, cadmium and cobalt while one was resistant to each of chromium and the heavy metal mixture. They were identified as Enterobacter sp. (Cu1), Enterobacter sp. (Cu2), Stenotrophomonas sp. (Cd1), Providencia sp. (Cd2), Chryseobacterium sp. (Co1), Comamonas sp. (Co2), Ochrobactrum sp. (Cr) and Delftia sp. (M1) according to their resistance pattern. Strains Cu1, Cd1, Co2 and Cr were able to resist 275 mg Cu/l, 320 mg Cd/l, 140 mg Co/l and 29 mg Cr/l respectively. The four resistant strains were used as a mixture to remove heavy metals (elevated concentrations) and reduce the organic load of wastewater effluent. Results revealed that using the proposed activated sludge with the resistant bacterial mixture was more efficient for heavy metal removal compared to the activated sludge alone. It is therefore recommended that the proposed activated sludge system augmented with the acclimatized strains is the best choice to ensure high treatment efficiency and performance under metal stresses especially when industrial effluents are involved.
Morohoshi, Tomohiro; Okutsu, Noriya; Xie, Xiaonan; Ikeda, Tsukasa
2016-01-01
Activated sludge is a complicated mixture of various microorganisms that is used to treat sewage and industrial wastewater. Many bacteria produce N-acylhomoserine lactone (AHL) as a quorum-sensing signal molecule to regulate the expression of the exoenzymes used for wastewater treatment. Here, we isolated an AHL-producing bacteria from an activated sludge sample collected from an electronic component factory, which we named Alicycliphilus sp. B1. Clone library analysis revealed that Alicycliphilus was a subdominant genus in this sample. When we screened the activated sludge sample for AHL-producing strains, 12 of 14 the AHL-producing isolates were assigned to the genus Alicycliphilus. A putative AHL-synthase gene, ALISP_0667, was cloned from the genome of B1 and transformed into Escherichia coli DH5α. The AHLs were extracted from the culture supernatants of the B1 strain and E. coli DH5α cells harboring the ALISP_0667 gene and were identified by liquid chromatography-mass spectrometry as N-(3-hydroxydecanoyl)-l-homoserine lactone and N-(3-hydroxydodecanoyl)-l-homoserine lactone. The results of comparative genomic analysis suggested that the quorum-sensing genes in the B1 strain might have been acquired by horizontal gene transfer within activated sludge. PMID:27490553
Hu, Qing-Yuan; Li, Meng; Wang, Can; Ji, Min
2015-09-15
A powdered activated carbon-activated sludge (PAC-AS) system, a traditional activated sludge (AS) system, and a powdered activated carbon (PAC) system were operated to examine the insights into the influence of PAC addition on biological treatment. The average COD removal efficiencies of the PAC-AS system (39%) were nearly double that of the AS system (20%). Compared with the average efficiencies of the PAC system (7%), COD removal by biodegradation in the PAC-AS system was remarkably higher than that in the AS system. The analysis of the influence of PAC on water quality and sludge properties showed that PAC facilitated the removal of hydrophobic matter and metabolic acidic products, and also enhanced the biomass accumulation, sludge settleability, and specific oxygen uptake rate inside the biological system. The microbial community structures in the PAC-AS and AS systems were monitored. The results showed that the average well color development in the PAC-AS system was higher than that in the AS system. The utilization of various substrates by microorganisms in the two systems did not differ. The dissimilarity index was far less than one; thus, showing that the microbial community structures of the two systems were the same. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Qian-Qian; Zhang, Zheng-Zhe; Guo, Qiong; Wang, Jiao-Jiao; Wang, Hui-Zhong; Jin, Ren-Cun
2015-04-01
In the present study, the short- and long-term effects of Zn(II) on the anaerobic ammonium oxidation (anammox) performance and sludge characteristics were evaluated. The anammox activity decreased with increasing Zn(II) concentration and pre-exposure time in short-term tests. The half maximal inhibitory concentration (IC50) of Zn(II) was found to be 25.0 mg L(-1). The 24 and 48-h pre-exposure time was a restricted factor impacting the anammox activity, and washing the inhibited sludge with buffer solution only worked under 0 and 24-h pre-exposure time. The anammox sludge could tolerate 5 mg L(-1) Zn(II) but was suppressed at 8 mg L(-1). The inhibited performance could be remitted, as the combination strategies were applied, and after the short term of recovery period, the inhibited sludge characteristics were remitted to the normal.
Factors influencing suspended solids concentrations in activated sludge settling tanks.
Kim, Y; Pipes, W O
1999-05-31
A significant fraction of the total mass of sludge in an activated sludge process may be in the settling tanks if the sludge has a high sludge volume index (SVI) or when a hydraulic overload occurs during a rainstorm. Under those conditions, an accurate estimate of the amount of sludge in the settling tanks is needed in order to calculate the mean cell residence time or to determine the capacity of the settling tanks to store sludge. Determination of the amount of sludge in the settling tanks requires estimation of the average concentration of suspended solids in the layer of sludge (XSB) in the bottom of the settling tanks. A widely used reference recommends averaging the concentrations of suspended solids in the mixed liquor (X) and in the underflow (Xu) from the settling tanks (XSB=0. 5{X+Xu}). This method does not take into consideration other pertinent information available to an operator. This is a report of a field study which had the objective of developing a more accurate method for estimation of the XSB in the bottom of the settling tanks. By correlation analysis, it was found that only 44% of the variation in the measured XSB is related to sum of X and Xu. XSB is also influenced by the SVI, the zone settling velocity at X and the overflow and underflow rates of the settling tanks. The method of averaging X and Xu tends to overestimate the XSB. A new empirical estimation technique for XSB was developed. The estimation technique uses dimensionless ratios; i.e., the ratio of XSB to Xu, the ratio of the overflow rate to the sum of the underflow rate and the initial settling velocity of the mixed liquor and sludge compaction expressed as a ratio (dimensionless SVI). The empirical model is compared with the method of averaging X and Xu for the entire range of sludge depths in the settling tanks and for SVI values between 100 and 300 ml/g. Since the empirical model uses dimensionless ratios, the regression parameters are also dimensionless and the model can be readily adopted for other activated sludge processes. A simplified version of the empirical model provides an estimation of XSB as a function of X, Xu and SVf and can be used by an operator when flow conditions are normal. Copyright 1999 Elsevier Science B.V.
Buntner, D; Spanjers, H; van Lier, J B
2014-03-15
The objective of the present study was to evaluate the impact of excess aerobic sludge on the specific methanogenic activity (SMA), in order to establish the maximum allowable aerobic sludge loading. In batch tests, different ratios of aerobic sludge to anaerobic inoculum were used, i.e. 0.03, 0.05, 0.10 and 0.15, showing that low ratios led to an increased SMA. However, the ratio 0.15 caused more than 20% SMA decrease. In addition to the SMA tests, the potential influence of biopolymers and extracellular substances, that are generated as a result of excess aerobic sludge hydrolysis, on membrane performance was determined by assessing the fouling potential of the liquid broth, taking into account parameters such as specific resistance to filtration (SRF) and supernatant filterability (SF). Addition of aerobic sludge to the anaerobic biomass resulted in a high membrane fouling potential. The increase in biopolymers could be ascribed to aerobic sludge hydrolysis. A clear positive correlation between the concentration of the colloidal fraction of biopolymer clusters (cBPC) and the SRF was observed and a negative correlation between the cBPC and the SF measured at the end of the above described SMA tests. The latter implies that sludge filtration resistance increases when more aerobic sludge is hydrolyzed, and thus more cBPC is released. During AnMBR operation, proteins significantly contributed to sludge filterability decrease expressed as SRF and SF, whereas the carbohydrate fraction of SMP was of less importance due to low concentrations. On the contrary, carbohydrates seemed to improve filterability and diminish SRF of the sludge. Albeit, cBPC increase caused an increase in mean TMP during the AnMBR operation, confirming that cBPC is positively correlated to membrane fouling. Copyright © 2013 Elsevier Ltd. All rights reserved.
Metaproteomics Provides Functional Insight into Activated Sludge Wastewater Treatment
Wilmes, Paul; Wexler, Margaret; Bond, Philip L.
2008-01-01
Background Through identification of highly expressed proteins from a mixed culture activated sludge system this study provides functional evidence of microbial transformations important for enhanced biological phosphorus removal (EBPR). Methodology/Principal Findings A laboratory-scale sequencing batch reactor was successfully operated for different levels of EBPR, removing around 25, 40 and 55 mg/l P. The microbial communities were dominated by the uncultured polyphosphate-accumulating organism “Candidatus Accumulibacter phosphatis”. When EBPR failed, the sludge was dominated by tetrad-forming α-Proteobacteria. Representative and reproducible 2D gel protein separations were obtained for all sludge samples. 638 protein spots were matched across gels generated from the phosphate removing sludges. 111 of these were excised and 46 proteins were identified using recently available sludge metagenomic sequences. Many of these closely match proteins from “Candidatus Accumulibacter phosphatis” and could be directly linked to the EBPR process. They included enzymes involved in energy generation, polyhydroxyalkanoate synthesis, glycolysis, gluconeogenesis, glycogen synthesis, glyoxylate/TCA cycle, fatty acid β oxidation, fatty acid synthesis and phosphate transport. Several proteins involved in cellular stress response were detected. Conclusions/Significance Importantly, this study provides direct evidence linking the metabolic activities of “Accumulibacter” to the chemical transformations observed in EBPR. Finally, the results are discussed in relation to current EBPR metabolic models. PMID:18392150
Proposal for a screening test to evaluate the fate of organic micropollutants in activated sludge.
Salvetti, Roberta; Vismara, Renato; Dal Ben, Ilaria; Gorla, Elena; Romele, Laura
2011-04-01
The concentrations of organic micropollutants are usually low in wastewaters (order of magnitude of mg L(-1)). However, their emission standards, especially in the case of carcinogenic and bioaccumulating substances, are often much lower (order of magnitude of microg L(-1)). Since these substances, in some cases, can be adsorbable or volatile, their removal via volatilization, biodegradation or sludge adsorption in a wastewater treatment plant (WWTP) becomes a significant feature to include in the usual design process, in order to verify the emission standards in gas and sludge too. In this study a simple screening batch test for the evaluation of the fate of organic micropollutants in water, air and sludge is presented. The test is set up by means of simple laboratory instruments and simulates an activated sludge tank process. In this study the results obtained for four substances with different chemical properties (i.e. toluene, benz(a)anthracene, phenol and benzene) are presented. The screening test proposed can be a useful tool to assess in about one month the fate of organic micropollutants in an activated sludge tank of a WWTP. Moreover, the test can constitute a useful support in the use of mathematical models, since it allows the verification of model results and the calibration of the reactions involved in the removal process.
Kayashima, Takakazu; Taruki, Masanori; Katagiri, Kazuomi; Nabeoka, Ryosuke; Yoshida, Tomohiko; Tsuji, Toshiaki
2014-02-01
The Organisation for Economic Co-operatoin and development (OECD) Guidelines for the Testing of Chemicals list 7 types of tests for determining the ready biodegradability of chemical compounds (301A-F and 310). The present study compares the biodegradation performance of test guideline 301C, which is applied in Japan's Chemical Substances Control Law, with the performance of the other 6 ready biodegradability tests (RBTs) listed in the guidelines. Test guideline 301C specifies use of activated sludge precultured with synthetic sewage containing glucose and peptone (301C sludge) as a test inoculum; in the other RBTs, however, activated sludge from wastewater treatment plants (WWTP sludge) is frequently employed. Analysis based on percentage of biodegradation and pass levels revealed that the biodegradation intensity of test guideline 301C is relatively weak compared with the intensities of RBTs using WWTP sludge, and the following chemical compounds are probably not biodegraded under test guideline 301C conditions: phosphorus compounds; secondary, tertiary, and quaternary amines; and branched quaternary carbon compounds. The relatively weak biodegradation intensity of test guideline 301C may be related to the markedly different activities of the 301C and WWTP sludges. These findings will be valuable for evaluating RBT data in relation to Japan's Chemical Substances Control Law. © 2013 SETAC.
Genomewide Screen for Synthetic Lethal Interactions with Mutant KRAS in Lung Cancer
2017-11-01
proposed work uses the same concept but with a novel approach. 15. SUBJECT TERMS CRISPR /Cas9, synthetic lethality, KRAS 16. SECURITY CLASSIFICATION OF: 17...essential in cells bearing an activated RAS. We used CRISPR /Cas9-based screening approach for this purpose. Body The overall objective was to identify...of the inducible hCas9 into the AAVS1 site through CRISPR /Cas9-mediated knockin approach. Shown in the top is gRNA sequence for AAVS1. Shown in the
Mondal, Tania; Rouch, Duncan A; Thurbon, Nerida; Smith, Stephen R; Deighton, Margaret A
2015-06-01
Factors affecting the decay of Salmonella Birkenhead and coliphage, as representatives of bacterial and viral pathogens, respectively, during mesophilic anaerobic digestion (MAD) and air drying treatment of anaerobically digested sewage sludge were investigated. Controlled concentrations of S. Birkenhead were inoculated into non-sterile, autoclaved, γ-irradiated and nutrient-supplemented sludge and cultures were incubated at 37 °C (MAD sludge treatment temperature) or 20 °C (summer air drying sludge treatment temperature). Nutrient limitation caused by microbial competition was the principal mechanism responsible for the decay of S. Birkenhead by MAD and during air drying of digested sludge. The effects of protease activity in sludge on MS2 coliphage decay in digested and air dried sludge were also investigated. MS2 coliphage showed a 3.0-3.5 log10 reduction during incubation with sludge-protease extracts at 37 °C for 25 h. Proteases produced by indigenous microbes in sludge potentially increase coliphage inactivation and may therefore have a significant role in the decay of enteric viruses in sewage sludge. The results help to explain the loss of viability of enteric bacteria and viral pathogens with treatment process time and contribute to fundamental understanding of the various biotic inactivation mechanisms operating in sludge treatment processes at mesophilic and ambient temperatures.
Technologies for reducing sludge production in wastewater treatment plants: State of the art.
Wang, Qilin; Wei, Wei; Gong, Yanyan; Yu, Qiming; Li, Qin; Sun, Jing; Yuan, Zhiguo
2017-06-01
This review presents the state-of-the-art sludge reduction technologies applied in both wastewater and sludge treatment lines. They include chemical, mechanical, thermal, electrical treatment, addition of chemical un-coupler, and predation of protozoa/metazoa in wastewater treatment line, and physical, chemical and biological pretreatment in sludge treatment line. Emphasis was put on their effect on sludge reduction performance, with 10% sludge reduction to zero sludge production in wastewater treatment line and enhanced TS (total solids) or volatile solids removal of 5-40% in sludge treatment line. Free nitrous acid (FNA) technology seems good in wastewater treatment line but it is only under the lab-scale trial. In sludge treatment line, thermal, ultrasonic (<4400kJ/kg TS), FNA pretreatment and temperature-phased anaerobic digestion (TPAD) are promising if pathogen inactivation is not a concern. However, thermal pretreatment and TPAD are superior to other pretreatment technologies when pathogen inactivation is required. The new wastewater treatment processes including SANI®, high-rate activated sludge coupled autotrophic nitrogen removal and anaerobic membrane bioreactor coupled autotrophic nitrogen removal also have a great potential to reduce sludge production. In the future, an effort should be put on the effect of sludge reduction technologies on the removal of organic micropollutants and heavy metals. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Hang; Hou, Guangying; Zhang, Li; Ju, Lei; Liu, Chunguang
2017-02-01
Sewage sludge, as a very significant sources of BPS (up to 523mg/kg dw) introduction into the environment, must be handled properly. Therefore, it is important to access BPS removal and its effect on sludge treatment with the biological treatment. However, it is unclear for its effect on the hydrolysis of sludge. In this research, impact of BPS on sludge hydrolysis by α-Amylase is studied from the respect of component of soluble organic matter in sludge using three-dimensional fluorescence spectra. Enzyme activity assay suggests that sludge hydrolysis is inhibited due to the denaturation of α-Amylase with BPS exposure. In order to illuminate the interaction mechanism between BPS and α-Amylase, UV-vis, steady-state fluorescence, circular dichroism, synchronous fluorescence, light scattering spectra, enzyme activity assay and molecule docking techniques are applied. Results show that BPS interacts with α-Amylase by hydrophobic bond in the activity region of α-Amylase. This interaction not only causes an unfolding skeleton structure of α-Amylase and a less hydrophobic microenvironment of tyrosine and tryptophan residues, but also leads to a specific fluorophore quenching involving static and dynamic type. This work provides direct evidence about enzyme toxicity of BPS and establishes a new strategy to investigate the interaction between protein and BPS at a molecular level, which is helpful for clarifying the bioactivities of BPS. Copyright © 2016 Elsevier B.V. All rights reserved.
Kruse, Myriam; Zumbrägel, Sabine; Bakker, Evert; Spieck, Eva; Eggers, Till; Lipski, André
2013-10-01
Metabolically-active autotrophic nitrite oxidizers from activated sludge were labeled with (13)C-bicarbonate under exposure to different temperatures and nitrite concentrations. The labeled samples were characterized by FAME-SIP (fatty acid methyl ester-stable isotope probing). The compound cis-11-palmitoleic acid, which is the major lipid of the most abundant nitrite oxidizer in activated sludge, Candidatus Nitrospira defluvii, showed (13)C-incorporation in all samples exposed to 3 mM nitrite. Subsequently, the lipid cis-7-palmitoleic acid was labeled, and it indicated the activity of a nitrite oxidizer that was different from the known Nitrospira taxa in activated sludge. The highest incorporation of cis-7-palmitoleic acid label was found after incubation with a nitrite concentration of 0.3 mM at 17 and 22°C. While activity of Nitrobacter populations could not be detected by the FAME-SIP approach, an unknown nitrite oxidizer with the major lipid cis-9 isomer of palmitoleic acid exhibited (13)C-incorporation at 28°C with 30 mM nitrite. These results indicated flexibility of nitrite-oxidizing guilds in a complex community responding to different conditions. Labeled lipids so far not described for activated sludge-associated nitrifiers indicated the presence of unknown nitrite oxidizers in this habitat. The FAME-SIP-based information can be used to define appropriate conditions for the enrichment of nitrite-oxidizing guilds from complex samples. Copyright © 2013 Elsevier GmbH. All rights reserved.
Wang, Sen; Li, Zhiwei; Gao, Mengchun; She, Zonglian; Guo, Liang; Zheng, Dong; Zhao, Yangguo; Ma, Bingrui; Gao, Feng; Wang, Xuejiao
2017-02-01
The nitrogen and phosphorus removal, microbial enzymatic activity, and microbial community of a sequencing batch reactor (SBR) were evaluated under long-term exposure to nickel oxide nanoparticles (NiO NPs). High NiO NP concentration (over 5 mg L -1 ) affected the removal of chemical oxygen demand, nitrogen, and phosphorus. The presence of NiO NP inhibited the microbial enzymatic activities and reduced the nitrogen and phosphorus removal rates of activated sludge. The microbial enzymatic activities of the activated sludge showed a similar variation trend to the nitrogen and phosphorus removal rates with the increase in NiO NP concentration from 0 to 60 mg L -1 . The Ni content in the effluent and activated sludge showed an increasing trend with the increase in NiO NP concentration. Some NiO NPs were absorbed on the sludge surface or penetrate the cell membrane into the interior of microbial cells in the activated sludge. NiO NP facilitated the increase in reactive oxygen species by disturbing the balance between the oxidation and anti-oxidation processes, and the variation in lactate dehydrogenase demonstrated that NiO NP could destroy the cytomembrane and cause variations in the microbial morphology and physiological function. High-throughput sequencing demonstrated that the microbial community of SBR had some obvious changes at 0-60 mg L -1 NiO NPs at the phyla, class and genus levels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hit and go CAS9 delivered through a lentiviral based self-limiting circuit.
Petris, Gianluca; Casini, Antonio; Montagna, Claudia; Lorenzin, Francesca; Prandi, Davide; Romanel, Alessandro; Zasso, Jacopo; Conti, Luciano; Demichelis, Francesca; Cereseto, Anna
2017-05-22
In vivo application of the CRISPR-Cas9 technology is still limited by unwanted Cas9 genomic cleavages. Long-term expression of Cas9 increases the number of genomic loci non-specifically cleaved by the nuclease. Here we develop a Self-Limiting Cas9 circuit for Enhanced Safety and specificity (SLiCES) which consists of an expression unit for Streptococcus pyogenes Cas9 (SpCas9), a self-targeting sgRNA and a second sgRNA targeting a chosen genomic locus. The self-limiting circuit results in increased genome editing specificity by controlling Cas9 levels. For its in vivo utilization, we next integrate SLiCES into a lentiviral delivery system (lentiSLiCES) via circuit inhibition to achieve viral particle production. Upon delivery into target cells, the lentiSLiCES circuit switches on to edit the intended genomic locus while simultaneously stepping up its own neutralization through SpCas9 inactivation. By preserving target cells from residual nuclease activity, our hit and go system increases safety margins for genome editing.
Zeng, Jie; Gao, Jun-Min; Chen, You-Peng; Yan, Peng; Dong, Yang; Shen, Yu; Guo, Jin-Song; Zeng, Ni; Zhang, Peng
2016-01-01
As important constituents of activated sludge flocs, extracellular polymeric substances (EPS) play significant roles in pollutants adsorption, the formation and maintenance of microbial aggregates, and the protection of microbes from external environmental stresses. In this work, EPS in activated sludge from a municipal wastewater treatment plant (M-WWTP) with anaerobic/anoxic/oxic (A2/O) process and a hyperhaline wastewater treatment plant (H-WWTP) with anaerobic/oxic (A/O) process were extracted by ultrasound method. The proteins and polysaccharides contents in EPS were determined by using a modified Lowry method and anthrone colorimetry respectively to analyze the detail differences in two types of WWTPs. Fourier transform-infrared spectroscopy and three-dimensional excitation-emission matrix fluorescence spectroscopy demonstrated proteins and polysaccharides were the dominant components of the two types of EPS, and the aromatic protein-like substances accounted for a larger proportion in EPS proteins. The results of the aggregation test indicated that EPS were good for the sludge aggregation, and the EPS in oxic sludge were more beneficial to sludge aggregation than that in anoxic sludge. Anoxic sludge EPS in H-WWTP showed a negligible effect on sludge aggregation. Comparative study on EPS of different tanks in the M-WWTP and H-WWTP was valuable for understanding the characteristics of EPS isolated from two typical wastewater treatment processes. PMID:27220287
Synthetic CRISPR RNA-Cas9-guided genome editing in human cells.
Rahdar, Meghdad; McMahon, Moira A; Prakash, Thazha P; Swayze, Eric E; Bennett, C Frank; Cleveland, Don W
2015-12-22
Genome editing with the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 nuclease system is a powerful technology for manipulating genomes, including introduction of gene disruptions or corrections. Here we develop a chemically modified, 29-nucleotide synthetic CRISPR RNA (scrRNA), which in combination with unmodified transactivating crRNA (tracrRNA) is shown to functionally replace the natural guide RNA in the CRISPR-Cas9 nuclease system and to mediate efficient genome editing in human cells. Incorporation of rational chemical modifications known to protect against nuclease digestion and stabilize RNA-RNA interactions in the tracrRNA hybridization region of CRISPR RNA (crRNA) yields a scrRNA with enhanced activity compared with the unmodified crRNA and comparable gene disruption activity to the previously published single guide RNA. Taken together, these findings provide a platform for therapeutic applications, especially for nervous system disease, using successive application of cell-permeable, synthetic CRISPR RNAs to activate and then silence Cas9 nuclease activity.
KOH catalysed preparation of activated carbon aerogels for dye adsorption.
Ling, Sie King; Tian, H Y; Wang, Shaobin; Rufford, Thomas; Zhu, Z H; Buckley, C E
2011-05-01
Organic carbon aerogels (CAs) were prepared by a sol-gel method from polymerisation of resorcinol, furfural, and hexamethylenetetramine catalysed by KOH at around pH 9 using ambient pressure drying. The effect of KOH in the sol-gel on CA synthesis was studied. It was found that addition of KOH prior to the sol-gel polymerisation process improved thermal stability of the gel, prevented the crystallinity of the gel to graphite, increased the microporosity of CA and promoted activation of CA. The CAs prepared using the KOH catalyst exhibited higher porosity than uncatalysed prepared samples. Activation in CO(2) at higher temperature also enhanced the porosity of CAs. Adsorption tests indicated that the CAs were effective for both basic and acid dye adsorption and the adsorption increased with increasing surface area and pore volume. The kinetic adsorption of dyes was diffusion control and could be described by the second-order kinetic model. The equilibrium adsorption of dyes was higher than activated carbon. Copyright © 2011 Elsevier Inc. All rights reserved.
Yoon, Seong-Hoon; Lee, Sangho
2005-09-01
Mathematical models were developed to elucidate the relationships among process control parameters and the effect of these parameters on the performance of anoxic/oxic biological wastewater processes combined with sludge disintegrators (A/O-SD). The model equations were also applied for analyses of activated sludge processes hybrid with sludge disintegrators (AS-SD). Solubilization ratio of sludge in the sludge disintegrator, alpha, hardly affected sludge reduction efficiencies if the biomass was completely destructed to smaller particulates. On the other hand, conversion efficiency of non-biodegradable particulates to biodegradable particulates, beta, significantly affected sludge reduction efficiencies because beta was directly related to the accumulation of non-biodegradable particulates in bioreactors. When 30% of sludge in the oxic tank was disintegrated everyday and beta was 0.5, sludge reduction was expected to be 78% and 69% for the A/O-SD and AS-SD processes, respectively. Under this condition, the sludge disintegration number (SDN), which is the amount of sludge disintegrated divided by the reduced sludge, was calculated to be around 4. Due to the sludge disintegration, live biomass concentration decreased while other non-biodegradable particulates concentration increased. As a consequence, the real F/M ratio was expected to be much higher than the apparent F/M. The effluent COD was maintained almost constant for the range of sludge disintegration rate considered in this study. Nitrogen removal efficiencies of the A/O-SD process was hardly affected by the sludge disintegration until daily sludge disintegration reaches 40% of sludge in the oxic tank. Above this level of sludge disintegration, autotrophic biomass concentration decreases overly and TKN in the effluent increases abruptly in both the A/O-SD and AS-SD processes. Overall, the trends of sludge reduction and effluent quality according to operation parameters matched well with experimental results found in literatures.
CRISPR/Cas9 for cancer research and therapy.
Zhan, Tianzuo; Rindtorff, Niklas; Betge, Johannes; Ebert, Matthias P; Boutros, Michael
2018-04-16
CRISPR/Cas9 has become a powerful method for making changes to the genome of many organisms. First discovered in bacteria as part of an adaptive immune system, CRISPR/Cas9 and modified versions have found a widespread use to engineer genomes and to activate or to repress the expression of genes. As such, CRISPR/Cas9 promises to accelerate cancer research by providing an efficient technology to dissect mechanisms of tumorigenesis, identify targets for drug development, and possibly arm cells for cell-based therapies. Here, we review current applications of the CRISPR/Cas9 technology for cancer research and therapy. We describe novel Cas9 variants and how they are used in functional genomics to discover novel cancer-specific vulnerabilities. Furthermore, we highlight the impact of CRISPR/Cas9 in generating organoid and mouse models of cancer. Finally, we provide an overview of the first clinical trials that apply CRISPR/Cas9 as a therapeutic approach against cancer. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Primary processing of CRISPR RNA by the endonuclease Cas6 in Staphylococcus epidermidis.
Wakefield, Noelle; Rajan, Rakhi; Sontheimer, Erik J
2015-10-07
In many bacteria and archaea, an adaptive immune system (CRISPR-Cas) provides immunity against foreign genetic elements. This system uses CRISPR RNAs (crRNAs) derived from the CRISPR array, along with CRISPR-associated (Cas) proteins, to target foreign nucleic acids. In most CRISPR systems, endonucleolytic processing of crRNA precursors (pre-crRNAs) is essential for the pathway. Here we study the Cas6 endonuclease responsible for crRNA processing in the Type III-A CRISPR-Cas system from Staphylococcus epidermidis RP62a, a model for Type III-A CRISPR-Cas systems, and define substrate requirements for SeCas6 activity. We find that SeCas6 is necessary and sufficient for full-length crRNA biogenesis in vitro, and that it relies on both sequence and stem-loop structure in the 3' half of the CRISPR repeat for recognition and processing. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BECHTEL NEVADA
This Closure Report (CR) documents the closure activities for Corrective Action Unit (CAU) 165, Area 25 and 26 Dry Well and Washdown Areas, according to the Federal Facility Agreement and Consent Order (FFACO) of 1996. CAU 165 consists of 8 Corrective Action Sites (CASs) located in Areas 25 and 26 of the Nevada Test Site (NTS). The NTS is located approximately 105 kilometers (65 miles) northwest of Las Vegas, nevada. Site closure activities were performed according to the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 165. CAU 165 consists of the following CASs: (1) CASmore » 25-07-06, Train Decontamination Area; (2) CAS 25-07-07, Vehicle Washdown; (3) CAS 25-20-01, Lab Drain Dry Well; (4) CAS 25-47-01, Reservoir and French Drain; (5) CAS 25-51-02, Drywell; (6) CAS 25-59-01, Septic System; (7) CAS 26-07-01, Vehicle Washdown Station; and (8) CAS 26-59-01, Septic System. CAU 165, Area 25 and 26 Dry Well and Washdown Areas, consists of eight CASs located in Areas 25 and 26 of the NTS. The approved closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls.« less
Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector
Kabadi, Ami M.; Ousterout, David G.; Hilton, Isaac B.; Gersbach, Charles A.
2014-01-01
Engineered DNA-binding proteins that manipulate the human genome and transcriptome have enabled rapid advances in biomedical research. In particular, the RNA-guided CRISPR/Cas9 system has recently been engineered to create site-specific double-strand breaks for genome editing or to direct targeted transcriptional regulation. A unique capability of the CRISPR/Cas9 system is multiplex genome engineering by delivering a single Cas9 enzyme and two or more single guide RNAs (sgRNAs) targeted to distinct genomic sites. This approach can be used to simultaneously create multiple DNA breaks or to target multiple transcriptional activators to a single promoter for synergistic enhancement of gene induction. To address the need for uniform and sustained delivery of multiplex CRISPR/Cas9-based genome engineering tools, we developed a single lentiviral system to express a Cas9 variant, a reporter gene and up to four sgRNAs from independent RNA polymerase III promoters that are incorporated into the vector by a convenient Golden Gate cloning method. Each sgRNA is efficiently expressed and can mediate multiplex gene editing and sustained transcriptional activation in immortalized and primary human cells. This delivery system will be significant to enabling the potential of CRISPR/Cas9-based multiplex genome engineering in diverse cell types. PMID:25122746
The therapeutic application of CRISPR/Cas9 technologies for HIV
Saayman, Sheena; Ali, Stuart A.; Morris, Kevin V.; Weinberg, Marc S.
2015-01-01
Introduction The use of antiretroviral therapy (ART) has led to a significant decrease in morbidity and mortality in HIV-infected individuals. Nevertheless gene-based therapies represent a promising therapeutic paradigm for HIV-1, as they have the potential for sustained viral inhibition and reduced treatment interventions. One new method amendable to a gene-based therapy is the clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 gene editing system. Areas covered CRISPR/Cas9 can be engineered to successfully modulate an array of disease-causing genetic elements. We discuss the diverse roles that CRISPR/Cas9 may play in targeting HIV and eradicating infection. The Cas9 nuclease coupled with one or more small guide RNAs (sgRNAs) can target the provirus to mediate excision of the integrated viral genome. Moreover, a modified nuclease deficient Cas9 fused to transcription activating domains may induce targeted activation of proviral gene expression allowing for the purging of the latent reservoirs. These technologies can also be exploited to target host dependency factors such as the co-receptor CCR5, thus preventing cellular entry of the virus. Expert opinion The diversity of the CRISPR/Cas9 technologies hold great promise for targeting different stages of the viral life cycle, and have the capacity for mediating an effective and sustained genetic therapy against HIV. PMID:25865334
Forage and tree seedling growth in a soil with an encased swine sludge layer.
Penn, Chad J; Will, Rodney; Fultz, Lisa; Hamilton, Doug
2013-10-15
The closure of swine farms requires decommissioning of lagoons that contain large amounts of swine solids (sludge). Sludge is typically transported and land applied to soils. However, in some cases this process could be economically prohibitive and/or unpractical. An alternative idea is to encase sludge with lagoon soil berms after removing overlying effluent, followed by establishment of forages or short-rotation woody crops on the encased sludge. The objective of this study was to investigate growth potential for several forages and tree species into a pure layer of swine sludge. Alfalfa (Meticago sativa), bermudagrass (Cynodon dactylon), switchgrass (Panicum virgatum), green ash (Fraxinus pennsylvanica), black locust (Robinia pseudoacacia), and sycamore (Platanus occidentalis) were established in 40 cm deep pots consisting of a lagoon berm soil overlaying a sludge layer for 12 w followed by analysis of aboveground and belowground biomass production. "New" and "old" sludge was collected from an active 10 year old lagoon and decommissioned 50 year old lagoon, respectively. A control (soil only) was used. Encased sludge treatments increased forage biomass production. Sycamore and green ash were sensitive to new sludge but not old sludge as these species had less biomass production in new sludge than control and showed tissue trace nutrient deficiencies. While both sludge materials contained adequate nutrients, the new sludge had a salt concentration 1.8 times higher than old sludge as indicated by electrical conductivity (12.4 mS). Thus, the forage crops and black locust were able to thrive in new sludge due to their salt tolerance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Microbial release of 226Ra2+ from (Ba,Ra)SO4 sludges from uranium mine wastes.
Fedorak, P M; Westlake, D W; Anders, C; Kratochvil, B; Motkosky, N; Anderson, W B; Huck, P M
1986-01-01
226Ra2+ is removed from uranium mine effluents by coprecipitation with BaSO4. (Ba,Ra)SO4 sludge samples from two Canadian mine sites were found to contain active heterotrophic populations of aerobic, anaerobic, denitrifying, and sulfate-reducing bacteria. Under laboratory conditions, sulfate reduction occurred in batch cultures when carbon sources such as acetate, glucose, glycollate, lactate, or pyruvate were added to samples of (Ba,Ra)SO4 sludge. No external sources of nitrogen or phosphate were required for this activity. Further studies with lactate supplementation showed that once the soluble SO4(2-) in the overlying water was depleted, Ba2+ and 226Ra2+ were dissolved from the (Ba,Ra)SO4 sludge, with the concurrent production of S2-. Levels of dissolved 226Ra2+ reached approximately 400 Bq/liter after 10 weeks of incubation. Results suggest that the ultimate disposal of these sludges must maintain conditions to minimize the activity of the indigenous sulfate-reducing bacteria to ensure that unacceptably high levels of 226Ra2+ are not released to the environment. PMID:3752993
Accurate evaluation for the biofilm-activated sludge reactor using graphical techniques
NASA Astrophysics Data System (ADS)
Fouad, Moharram; Bhargava, Renu
2018-05-01
A complete graphical solution is obtained for the completely mixed biofilm-activated sludge reactor (hybrid reactor). The solution consists of a series of curves deduced from the principal equations of the hybrid system after converting them in dimensionless form. The curves estimate the basic parameters of the hybrid system such as suspended biomass concentration, sludge residence time, wasted mass of sludge, and food to biomass ratio. All of these parameters can be expressed as functions of hydraulic retention time, influent substrate concentration, substrate concentration in the bulk, stagnant liquid layer thickness, and the minimum substrate concentration which can maintain the biofilm growth in addition to the basic kinetics of the activated sludge process in which all these variables are expressed in a dimensionless form. Compared to other solutions of such system these curves are simple, easy to use, and provide an accurate tool for analyzing such system based on fundamental principles. Further, these curves may be used as a quick tool to get the effect of variables change on the other parameters and the whole system.
Schönhusen, U; Flöter, A; Junghans, P; Albrecht, E; Petzke, K J; Zitnan, R; Guilloteau, P; Metges, C C; Hammon, H M
2010-09-01
The study was designed to examine whether feeding soy protein isolate as partial replacement of casein (CN) affects jejunal protein synthesis and whether effects may be ameliorated by supplementation of those AA known to be at lower concentrations in soy protein isolate than in CN. Goat kids (14 d) were fed comparable milk protein diets, in which 50% of the crude protein was CN (CAS), soy protein isolate (SPI), or soy protein isolate supplemented with AA (SPIA) for 43 d (n=8 per group). On d 42, plasma concentrations of protein, urea, and AA were measured before and after morning feeding. In the morning of d 43, [15N]RNA from yeast [13 mg/kg of body weight (BW)] was given with the diet to measure the reutilization of dietary RNA precursors for mucosal RNA biosynthesis. Four hours later, an oral dose of l-[1-(13)C]leucine (180 mg/kg of BW) was administered and blood samples were collected between -15 and +45 min relative to tracer administration for analysis of plasma 13C alpha-ketoisocaproic acid and 13C recovery in blood CO2. Kids were killed 60 min after the tracer application, and jejunal tissue was collected to determine mucosal morphology, cell proliferation, enzyme activities, RNA synthesis, and fractional protein synthesis rate. Plasma protein concentrations were higher in CAS than in SPI and SPIA. Plasma concentrations of Thr were higher in CAS than in SPI and SPIA, and those of Met were lower in SPI than in CAS and SPIA. In mid-jejunum, villus circumferences were higher in CAS than in SPI and SPIA, and villus height and villus height:crypt depth ratio were higher in CAS than in SPI. In mid-jejunum, mucosal protein concentrations were higher in CAS than in SPI and SPIA and mucosal activities of aminopeptidase N tended to be higher in CAS than in SPI, whereas activities of dipeptidyl peptidase IV tended to be lower in SPI than in SPIA. Activities of 5' nucleotidase and xanthine oxidase were lower in CAS than in SPI. The 13C recovery in blood CO2 tended to be higher in SPI than in CAS. In mid-jejunum, 15N enrichment of RNA tended to be higher in CAS than in SPI, and 13C enrichment of protein-bound Leu was higher in SPI than in CAS. In mid-jejunum, the fractional protein synthesis rate tended to be higher in SPI than in CAS. Our results revealed changes in intestinal growth after soy protein feeding that were associated with effects on intestinal RNA and protein synthesis but that were not ameliorated by AA supplementation. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
The South 8th Street site contained a 2.5 acre oily sludge pit with very low pH waste produced by oil recycling activities. This sludge was treated using in-situ solidification/stabilization technology applied by deep soil mixing augers. The problems encountered, solutions develo...
40 CFR 503.21 - Special definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... strata on the other side. (g) Final cover is the last layer of soil or other material placed on a sewage... soil or other material used to cover sewage sludge placed on an active sewage sludge unit. (e... collect and remove leachate from a sewage sludge unit. (j) Liner is soil or synthetic material that has a...
40 CFR 503.21 - Special definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... strata on the other side. (g) Final cover is the last layer of soil or other material placed on a sewage... soil or other material used to cover sewage sludge placed on an active sewage sludge unit. (e... collect and remove leachate from a sewage sludge unit. (j) Liner is soil or synthetic material that has a...
40 CFR 503.21 - Special definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... strata on the other side. (g) Final cover is the last layer of soil or other material placed on a sewage... soil or other material used to cover sewage sludge placed on an active sewage sludge unit. (e... collect and remove leachate from a sewage sludge unit. (j) Liner is soil or synthetic material that has a...
40 CFR 503.21 - Special definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... strata on the other side. (g) Final cover is the last layer of soil or other material placed on a sewage... soil or other material used to cover sewage sludge placed on an active sewage sludge unit. (e... collect and remove leachate from a sewage sludge unit. (j) Liner is soil or synthetic material that has a...
40 CFR 503.21 - Special definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... strata on the other side. (g) Final cover is the last layer of soil or other material placed on a sewage... soil or other material used to cover sewage sludge placed on an active sewage sludge unit. (e... collect and remove leachate from a sewage sludge unit. (j) Liner is soil or synthetic material that has a...
Ferrer-Polonio, E; Fernández-Navarro, J; Alonso-Molina, J L; Amorós-Muñoz, I; Bes-Piá, A; Mendoza-Roca, J A
2017-12-01
Sludge production in wastewater treatment plants is nowadays a big concern due to the high produced amounts and their characteristics. Consequently, the study of techniques that reduce the sludge generation in wastewater treatment plants is becoming of great importance. In this work, four laboratory sequencing batch reactors (SBRs), which treated municipal wastewater, were operated to study the effect of adding the metabolic uncoupler 3,3',4',5-tetrachlorosalicylanilide (TCS) on the sludge reduction, the SBRs performance and the microbial hydrolytic enzymatic activities (MHEA). In addition, different operating conditions of the SBRs were tested to study the effect of the TCS on the process: two dissolved oxygen (DO) concentrations (2 and 9 mg L -1 ) and two F/M ratio (0.18 and 0.35 g COD·g MLVSS -1 ·d -1 ). The sludge production decreased under high DO concentrations. At the same time, the DNA and EPS production increased in the four SBRs. After these stress conditions, the performance of the reactors were recovered when DO was around 2 mg L -1 . From that moment on, results showed that TCS addition implied a reduction of the adenosine triphosphate (ATP) production, which implied a decrease in the sludge production. In spite of this reduction, the SBRs performances did not decay due to the increase in the global MHEA. Additionally, the sludge reduction was enhanced by the increase of the F/M ratio, achieving 28% and 60% of reduction for the low and the high F/M ratio, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sludge reduction by ozone: Insights and modeling of the dose-response effects.
Fall, C; Silva-Hernández, B C; Hooijmans, C M; Lopez-Vazquez, C M; Esparza-Soto, M; Lucero-Chávez, M; van Loosdrecht, M C M
2018-01-15
Applying ozone to the return flow in an activated sludge (AS) process is a way for reducing the residual solids production. To be able to extend the activated sludge models to the ozone-AS process, adequate prediction of the tri-atoms effects on the particulate COD fractions is needed. In this study, the biomass inactivation, COD mineralization, and solids dissolution were quantified in batch tests and dose-response models were developed as a function of the reacted ozone doses (ROD). Three kinds of model-sludge were used. S1 was a lab-cultivated synthetic sludge with two components (heterotrophs X H and X P ). S2 was a digestate of S1 almost made by the endogenous residues, X P . S3 was from a municipal activated sludge plant. The specific ozone uptake rate (SO 3 UR, mgO 3 /gCOD.h) was determined as a tool for characterizing the reactivity of the sludges. SO 3 UR increased with the X H fraction and decreased with more X P . Biomass inactivation was exponential (e -β.ROD ) as a function of the ROD doses. The percentage of solids reduction was predictable through a linear model (C Miner + Y sol ROD), with a fixed part due to mineralization (C Miner ) and a variable part from the solubilization process. The parameters of the models, i.e. the inactivation and the dissolution yields (β, 0.008-0.029 (mgO 3 /mgCOD ini ) -1 vs Y sol , 0.5-2.8 mg COD sol /mgO 3 ) varied in magnitude, depending on the intensity of the scavenging reactions and potentially the compactness of the flocs for each sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.
CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference.
Hochstrasser, Megan L; Taylor, David W; Bhat, Prashant; Guegler, Chantal K; Sternberg, Samuel H; Nogales, Eva; Doudna, Jennifer A
2014-05-06
In bacteria, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) DNA-targeting complex Cascade (CRISPR-associated complex for antiviral defense) uses CRISPR RNA (crRNA) guides to bind complementary DNA targets at sites adjacent to a trinucleotide signature sequence called the protospacer adjacent motif (PAM). The Cascade complex then recruits Cas3, a nuclease-helicase that catalyzes unwinding and cleavage of foreign double-stranded DNA (dsDNA) bearing a sequence matching that of the crRNA. Cascade comprises the CasA-E proteins and one crRNA, forming a structure that binds and unwinds dsDNA to form an R loop in which the target strand of the DNA base pairs with the 32-nt RNA guide sequence. Single-particle electron microscopy reconstructions of dsDNA-bound Cascade with and without Cas3 reveal that Cascade positions the PAM-proximal end of the DNA duplex at the CasA subunit and near the site of Cas3 association. The finding that the DNA target and Cas3 colocalize with CasA implicates this subunit in a key target-validation step during DNA interference. We show biochemically that base pairing of the PAM region is unnecessary for target binding but critical for Cas3-mediated degradation. In addition, the L1 loop of CasA, previously implicated in PAM recognition, is essential for Cas3 activation following target binding by Cascade. Together, these data show that the CasA subunit of Cascade functions as an essential partner of Cas3 by recognizing DNA target sites and positioning Cas3 adjacent to the PAM to ensure cleavage.
Kavitha, S; Jayashree, C; Adish Kumar, S; Kaliappan, S; Rajesh Banu, J
2014-12-01
In this investigation, an effort was made to pretreat surplus waste activated sludge (WAS) inexpensively by a novel combined process involving thermo chemical disperser pretreatment. This pretreatment was found to be efficient at a specific energy (SE) consumption of 3360.94 kJ/kg TS, with the chemical oxygen demand (COD) solubilization of 20%. This was comparatively higher than thermo chemically treated sludge where the solubilization was found to be 15.5% at a specific energy consumption of 10,330 kJ/kg TS respectively. Higher production of volatile fatty acids (VFA) (675 mg/L) in anaerobic fermentation of pretreated WAS indicates better hydrolysis performance. The biogas production potential of sludge pretreated through this combined technique was found to be 0.455 (L/gVS) and comparatively higher than thermo chemically pretreated sludge. Economic investigation provides 90% net energy savings in this combined pretreatment. Therefore, this combined process was considered to be potentially effective and economical in sludge disintegration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kavitha, S; Jessin Brindha, G M; Sally Gloriana, A; Rajashankar, K; Yeom, Ick Tae; Rajesh Banu, J
2016-01-01
An investigation was performed to study the influence of ultrasonic aided bacterial disintegration on the aerobic degradability of sludge. In first phase of the study, effective floc disruption was achieved at an ultrasonic specific energy input of 2.45kJ/kg TS with 44.5mg/L of Extracellular Polymeric Substance (EPS) release including 0.035U/mL and 0.025U/mL protease and amylase activity respectively. In second phase, experimental outcomes revealed bacterial disintegration of floc disrupted-sludge showing a maximum solubilization of about 23% and was observed to be superior to bacterially disintegrated (11%) and control (6%), respectively. The result of aerobic biodegradability of ultrasonic aided bacterially pretreated sludge showed volatile solids (VS) degradation of about 40.2%. The kinetic study of aerobic biodegradability through non linear regression modelling reveals that floc disrupted sludge showed better biodegradability with decay constant of about 0.19d(-1) relatively higher than the control (0.14d(-1)) and bacterially disintegrated (0.17d(-1)) sludges. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Yifu; Yuan, Xingzhong; Wang, Dongbo; Wang, Hou; Wu, Zhibin; Jiang, Longbo; Mo, Dan; Yang, Guojing; Guan, Renpeng; Zeng, Guangming
2018-04-21
In this study, zero valent iron (ZVI) activated peroxymonosulfate (PMS) as novel technique (i.e. ZVI-PMS technology) was employed to enhance sludge dewatering. In optimal sludge dewatering conditions of ZVI and KHSO 5 dosages, the specific resistance to filtration (SRF) was reduced by 83.6%, which was further decreased to 90.6% after combination of ZVI-PMS with thermal treatment at 50 °C (i.e. ZVI-PMS-T technology). Subsequently, the ESR spectrum and quenching tests demonstrated that OH, rather than SO 4 - , was predominant radicals in ZVI-PMS conditioning. Thereafter, the variation of physicochemical properties and the distributions and compositions of extracellular polymeric substances (EPS) were further investigated to uncover the influence of these techniques on sludge bulk properties. The results indicated that sludge particles were disintegrated into smaller particles and surface charges were neutralized, sludge flowability were elevated obviously after treatments. In ZVI cycle experiment, the high dewatering efficiency was maintained by ZVI-PMS and ZVI-PMS-T pretreatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Yu; Bu, Cui-Na; Kang, Qi; Ahmad, Hafiz Adeel; Zhang, Jian; Gao, Baoyu; Ni, Shou-Qing
2017-11-01
Reducing activity of commensal bacteria in inocula may enhance anammox bacteria proliferation and realization of anammox process. Fast start-up of anammox process in an UASB reactor was successfully achieved by using autoclaved sludge (anaerobic granular sludge pretreated by autoclaving) and 0.3% active anammox sludge as inoculum. Continuous experiments indicated that R2 (autoclaved sludge addition) could shorten the start-up period from 72days to 63days. The first 50days anammox population specific growth rates (μ) of R1 (the control) and R2 were determined to be 0.014d -1 and 0.045d -1 using q-PCR assays. Analysis of coefficient of variations of nitrogen removal performance during days 96-225 indicated that R2 was more stable than R1. The Illumina MiSeq sequencing showed that autoclaving could decrease microbial diversity of sludge and enhance the abundance of anammox bacteria. Furthermore, PICRUSt community functions forecast and c-di-GMP measure illuminated the result of higher stability in R2. Copyright © 2017 Elsevier Ltd. All rights reserved.
TANK 26 EVAPORATOR FEED PUMP TRANSFER ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamburello, D; Si Lee, S; Richard Dimenna, R
2008-09-30
The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximummore » and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.05 and 0.1 wt% sludge solids weight fraction into the eductor, respectively. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth.« less
Citeau, M; Olivier, J; Mahmoud, A; Vaxelaire, J; Larue, O; Vorobiev, E
2012-09-15
Pressurised electro-osmotic dewatering (PEOD) of two sewage sludges (activated and anaerobically digested) was studied under constant electric current (C.C.) and constant voltage (C.V.) with a laboratory chamber simulating closely an industrial filter. The influence of sludge characteristics, process parameters, and electrode/filter cloth position was investigated. The next parameters were tested: 40 and 80 A/m², 20, 30, and 50 V-for digested sludge dewatering; and 20, 40 and 80 A/m², 20, 30, and 50 V-for activated sludge dewatering. Effects of filter cloth electric resistance and initial cake thickness were also investigated. The application of PEOD provides a gain of 12 points of dry solids content for the digested sludge (47.0% w/w) and for the activated sludge (31.7% w/w). In PEOD processed at C.C. or at C.V., the dewatering flow rate was similar for the same electric field intensity. In C.C. mode, both the electric resistance of cake and voltage increase, causing a temperature rise by ohmic effect. In C.V. mode, a current intensity peak was observed in the earlier dewatering period. Applying at first a constant current and later on a constant voltage, permitted to have better control of ohmic heating effect. The dewatering rate was not significantly affected by the presence of filter cloth on electrodes, but the use of a thin filter cloth reduced remarkably the energy consumption compared to a thicker one: 69% of reduction energy input at 45% w/w of dry solids content. The reduction of the initial cake thickness is advantageous to increase the final dry solids content. Copyright © 2012 Elsevier Ltd. All rights reserved.
Inhibition of Anaerobic Phosphate Release by Nitric Oxide in Activated Sludge
Van Niel, E. W. J.; Appeldoorn, K. J.; Zehnder, A. J. B.; Kortstee, G. J. J.
1998-01-01
Activated sludge not containing significant numbers of denitrifying, polyphosphate [poly(P)]-accumulating bacteria was grown in a fill-and-draw system and exposed to alternating anaerobic and aerobic periods. During the aerobic period, poly(P) accumulated up to 100 mg of P · g of (dry) weight. When portions of the sludge were incubated anaerobically in the presence of acetate, 80 to 90% of the intracellular poly(P) was degraded and released as orthophosphate. Degradation of poly(P) was mainly catalyzed by the concerted action of polyphosphate:AMP phosphotransferase and adenylate kinase, resulting in ATP formation. In the presence of 0.3 mM nitric oxide (NO) in the liquid-phase release of phosphate, uptake of acetate, formation of poly-β-hydroxybutyrate, utilization of glycogen, and formation of ATP were severely inhibited or completely abolished. In cell extracts of the sludge, adenylate kinase activity was completely inhibited by 0.15 mM NO. The nature of this inhibition was probably noncompetitive, similar to that with hog adenylate kinase. Activated sludge polyphosphate glucokinase was also completely inhibited by 0.15 mM NO. It is concluded that the inhibitory effect of NO on acetate-mediated phosphate release by the sludge used in this study is due to the inhibition of adenylate kinase in the phosphate-releasing organisms. The inhibitory effect of nitrate and nitrite on phosphate release is probably due to their conversion to NO. The lack of any inhibitory effect of NO on adenylate kinase of the poly(P)-accumulating Acinetobacter johnsonii 210A suggests that this type of organism is not involved in the enhanced biological phosphate removal by the sludges used. PMID:9687452
Xu, Qiuxiang; Li, Xiaoming; Ding, Rongrong; Wang, Dongbo; Liu, Yiwen; Wang, Qilin; Zhao, Jianwei; Chen, Fei; Zeng, Guangming; Yang, Qi; Li, Hailong
2017-11-01
Cadmium (Cd) is present in significant levels in waste activated sludge, but its potential toxicities on anaerobic fermentation of sludge remain largely unknown. This work therefore aims to provide such support. Experimental results showed that the impact of Cd on short-chain fatty acids (SCFA) production from sludge anaerobic fermentation was dose-dependent. The presence of environmentally relevant level of Cd (e.g., 0.1 mg/g VSS) enhanced SCFA production by 10.6%, but 10 mg/g VSS of Cd caused 68.1% of inhibition. Mechanism exploration revealed that although all levels of Cd did not cause extra leakage of intracellular substrates, 0.1 mg/g VSS Cd increased the contents of both soluble and loosely-bound extracellular polymeric substances (EPS), thereby benefitting sludge solubilization. On the contrary, 10 mg/g VSS Cd decreased the levels of all EPS layers, which reduced the content of soluble substrates. It was also found that 0.1 mg/g VSS Cd benefited both the hydrolysis and acidogenesis but 10 mg/g VSS Cd inhibited all the hydrolysis, acidogenesis, and methanogenesis processes. Further investigations with microbial community and enzyme analysis showed that the pertinent presence of Cd enhanced the activities of protease, acetate kinase, and oxaloacetate transcarboxylase whereas 10 mg/g VSS Cd decreased the microbial diversity, the abundances of functional microbes, and the activities of key enzymes. Finally, one strategy that could effectively mitigate the adverse impact of high Cd levels on SCFA production was proposed and examined. This work provides insights into Cd-present sludge fermentation systems, and the findings obtained may guide engineers to manipulate sludge treatment systems in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Settling properties of aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM)
NASA Astrophysics Data System (ADS)
Mat Saad, Azlina; Aini Dahalan, Farrah; Ibrahim, Naimah; Yasina Yusuf, Sara; Aqlima Ahmad, Siti; Khalil, Khalilah Abdul
2018-03-01
Aerobic granulation technology is applied to treat domestic and industrial wastewater. The Aerobic granular sludge (AGS) cultivated has strong properties that appears to be denser and compact in physiological structure compared to the conventional activated sludge. It offers rapid settling for solid:liquid separation in wastewater treatment. Aerobic granules were developed using sequencing batch reactor (SBR) with intermittent aerobic - anaerobic mode with 8 cycles in 24 hr. This study examined the settling velocity performance of cultivated aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM). The elemental composition in both AGS and AGSM were determined using X-ray fluorescence (XRF). The results showed that AGSM has higher settling velocity 30.5 m/h compared to AGS.
pH-dependent biotransformation of ionizable organic micropollutants in activated sludge.
Gulde, Rebekka; Helbling, Damian E; Scheidegger, Andreas; Fenner, Kathrin
2014-12-02
Removal of micropollutants (MPs) during activated sludge treatment can mainly be attributed to biotransformation and sorption to sludge flocs, whereby the latter process is known to be of minor importance for polar organic micropollutants. In this work, we investigated the influence of pH on the biotransformation of MPs with cationic-neutral speciation in an activated sludge microbial community. We performed batch biotransformation, sorption control, and abiotic control experiments for 15 MPs with cationic-neutral speciation, one control MP with neutral-anionic speciation, and two neutral MPs at pHs 6, 7, and 8. Biotransformation rate constants corrected for sorption and abiotic processes were estimated from measured concentration time series with Bayesian inference. We found that biotransformation is pH-dependent and correlates qualitatively with the neutral fraction of the ionizable MPs. However, a simple speciation model based on the assumption that only the neutral species is efficiently taken up and biotransformed by the cells tends to overpredict the effect of speciation. Therefore, additional mechanisms such as uptake of the ionic species and other more complex attenutation mechanisms are discussed. Finally, we observed that the sorption coefficients derived from our control experiments were small and showed no notable pH-dependence. From this we conclude that pH-dependent removal of polar, ionizable organic MPs in activated sludge systems is less likely an effect of pH-dependent sorption but rather of pH-dependent biotransformation. The latter has the potential to cause marked differences in the removal of polar, ionizable MPs at different operational pHs during activated sludge treatment.
Foladori, P; Bruni, L; Tamburini, S; Ziglio, G
2010-07-01
A rapid multi-step procedure, potentially amenable to automation, was proposed for quantifying viable and active bacterial cells, estimating their biovolume using flow cytometry (FCM) and to calculate their biomass within the main stages of a wastewater treatment plant: raw wastewater, settled wastewater, activated sludge and effluent. Fluorescent staining of bacteria using SYBR-Green I + Propidium Iodide (to discriminate cell integrity or permeabilisation) and BCECF-AM (to identify enzymatic activity) was applied to count bacterial cells by FCM. A recently developed specific procedure was applied to convert Forward Angle Light Scatter measured by FCM into the corresponding bacterial biovolume. This conversion permits the calculation of the viable and active bacterial biomass in wastewater, activated sludge and effluent, expressed as Volatile Suspended Solids (VSS) or particulate Chemical Oxygen Demand (COD). Viable bacterial biomass represented only a small part of particulate COD in raw wastewater (4.8 +/- 2.4%), settled wastewater (10.7 +/- 3.1%), activated sludge (11.1 +/- 2.1%) and effluent (3.2 +/- 2.2%). Active bacterial biomass counted for a percentage of 30-47% of the viable bacterial biomass within the stages of the wastewater treatment plant. Copyright 2010 Elsevier Ltd. All rights reserved.
Wastewater and sludge management and research in Oman: An overview.
Jaffar Abdul Khaliq, Suaad; Ahmed, Mushtaque; Al-Wardy, Malik; Al-Busaidi, Ahmed; Choudri, B S
2017-03-01
It is well recognized that management of wastewater and sludge is a critical environmental issue in many countries. Wastewater treatment and sludge production take place under different technical, economic, and social contexts, thus requiring different approaches and involving different solutions. In most cases, a regular and environmentally safe wastewater treatment and associated sludge management requires the development of realistic and enforceable regulations, as well as treatment systems appropriate to local circumstances. The main objective of this paper is to provide useful information about the current wastewater and sludge treatment, management, regulations, and research in Oman. Based on the review and discussion, the wastewater treatment and sludge management in Oman has been evolving over the years. Further, the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman. Wastewater treatment and sludge management in Oman have been evolving over the years. Sludge utilization has been a challenge due to its association with human waste. Therefore, composting of sewage sludge is the best option in agriculture activities. Sludge and wastewater utilization can add up positively in the economic aspects of the country in terms of creating jobs and improving annual income rate. The number of research projects done on wastewater reuse and other ongoing ones related to the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman.
Xiao, Keke; Pei, Kangyue; Wang, Hui; Yu, Wenbo; Liang, Sha; Hu, Jingping; Hou, Huijie; Liu, Bingchuan; Yang, Jiakuan
2018-09-01
Fenton's reagent has been widely used to enhance sludge dewaterability. However, drawbacks associated with hydrogen peroxide (H 2 O 2 ) in Fenton's reagents exist, since it is a hazardous chemical and shows carcinogenicity, explosivity, instability, and corrosivity. Moreover, initial acidification and subsequent neutralization are needed as optimal conditions for homogeneous Fenton conditioning and final filtrate discharge. In this study, a Fenton-like process for the enhanced dewaterability of waste activated sludge with in-situ generation of H 2 O 2 and without extra pH adjustment was firstly proposed, namely citric acid (CA)-assisted oxygen activation in an air/nano zero-valent iron (nZVI) system and chemical re-coagulation with polydiallyldimethylammonium chloride (PDMDAAC). Using the response surface methodology (RSM), the optimal doses of CA, nZVI, and PDMDAAC were determined to be 13, 33, and 9 mg g -1 dry solids (DS), respectively. This composite conditioner showed a good dewatering capability compared with the raw sludge, e.g. the capillary suction time decreased from 130.0 to 9.5 s. The enhanced sludge dewaterability was further confirmed by laboratory-scale diaphragm filter press dewatering tests, which produced a lower cake moisture content compared with the raw sludge, and the final pH of the filtrate was close to neutrality. The citric acid promoted the production of H 2 O 2 and Fe(II)/Fe(III) species, the degradation of protein in tightly-bound extracellular polymeric substances, and the decomposition of protein-N in the solid phase of sludge, resulting a greater conversion of bound water to free water. The results of electron spin resonance indicated that the hydroxyl radicals were mainly responsible for the decomposition of proteinaceous compounds. The subsequent chemical re-coagulation with PDMDAAC can make the zeta potential of sludge samples less negative, reduce the repulsive electrostatic interactions, and agglomerate the smaller particles into larger aggregates, thus enhancing sludge dewaterability. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kjellerup, B V; Keiding, K; Nielsen, P H
2001-01-01
A large industrial activated sludge wastewater treatment plant had temporary problems with settling and dewatering of the sludge. Microscopical investigations revealed that the poor settling properties were not due to presence of filamentous bacteria, but poor floc properties. In order to characterise the changes in floc properties that led to settling and dewatering problems and to find reasons for this taking place, a comprehensive monitoring program was conducted during more than one year. The monitoring program included various measurements of floc settleability, floc strength and sludge dewaterability. The monitoring program revealed that a deterioration of the floc strength and the settling properties in the process tanks was closely connected to downstream dewatering problems and poor effluent quality. Particularly severe problems were observed a few weeks after the production at the factory had started after summer closedown. Possible reasons for the changes in floc properties in the process tanks were found by a) analysing change in wastewater composition by evaluating the different production lines in the industrial plant, b) evaluating the operation of the plant, and c) performing short-term laboratory experiments testing factors that could potentially affect floc properties (absence of oxygen, presence of sulphide, detergents, etc). Among several measured parameters, the use of floc strength measurements in particular proved useful to monitor the activated sludge floc properties at this industrial plant. The described strategy can be useful in general to find and solve many solid/liquid separation problems in activated sludge wastewater treatment plants.
BIOLOGICALLY ENHANCED OXYGEN TRANSFER IN THE ACTIVATED SLUDGE PROCESS (JOURNAL)
Biologically enhanced oxgyen transfer has been a hypothesis to explain observed oxygen transfer rates in activated sludge systems that were well above that predicted from aerator clean-water testing. The enhanced oxygen transfer rates were based on tests using BOD bottle oxygen ...
Zhang, Peng; Xu, Xiao-Yan; Chen, You-Peng; Xiao, Meng-Qian; Feng, Bo; Tian, Kai-Xun; Chen, Yue-Hui; Dai, You-Zhi
2018-02-01
In this work, the protein coronas of activated sludge proteins on TiO 2 nanoparticles (TNPs) and ZnO nanoparticles (ZNPs) were characterized. The proteins with high affinity to TNPs and ZNPs were identified by shotgun proteomics, and their effects of on the distributions of TNPs and ZNPs in activated sludge were concluded. In addition, the effects of protein coronas on the aggregations of TNPs and ZNPs were evaluated. Thirty and nine proteins with high affinities to TNPs and ZNPs were identified, respectively. The proteomics and adsorption isotherms demonstrated that activated sludge had a higher affinity to TNPs than to ZNPs. The aggregation percentages of ZNPs at 35, 53, and 106 mg/L of proteins were 13%, 14%, and 18%, respectively, whereas those of TNPs were 21%, 30%, 41%, respectively. The proteins contributed to ZNPs aggregation by dissolved Zn ion-bridging, whereas the increasing protein concentrations enhanced the TNPs aggregation through macromolecule bridging flocculation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hossain, Md Iqbal; Paparini, Andrea; Cord-Ruwisch, Ralf
2017-03-01
Glycogen accumulating organisms (GAO) are known to allow anaerobic uptake of biological oxygen demand (BOD) in activated sludge wastewater treatment systems. In this study, we report a rapid transition of suspended activated sludge biomass to a GAO dominated biofilm by selective enrichment using sequences of anaerobic loading followed by aerobic exposure of the biofilm to air. The study showed that within eight weeks, a fully operational, GAO dominated biofilm had developed, enabling complete anaerobic BOD uptake at a rate of 256mg/L/h. The oxygen uptake by the biofilm directly from the atmosphere had been calculated to provide significant energy savings. This study suggests that wastewater treatment plant operators can convert activated sludge systems readily into a "passive aeration" biofilm that avoids costly oxygen transfer to bulk wastewater solution. The described energy efficient BOD removal system provides an opportunity to be coupled with novel nitrogen removal processes such as anammox. Copyright © 2016. Published by Elsevier Ltd.
Transesterification of Waste Activated Sludge for Biosolids Reduction and Biodiesel Production.
Maeng, Min Ho; Cha, Daniel K
2018-02-01
Transesterification of waste activated sludge (WAS) was evaluated as a cost-effective technique to reduce excess biosolids and recover biodiesel feedstock from activated sludge treatment processes. A laboratory-scale sequencing batch reactor (SBR) was operated with recycling transesterification-treated WAS back to the aeration basin. Seventy percent recycling of WAS resulted in a 48% reduction of excess biosolids in comparison with a conventional SBR, which was operated in parallel as the control SBR. Biodiesel recovery of 8.0% (dried weight basis) was achieved at an optimum transesterification condition using acidic methanol and xylene as cosolvent. Average effluent soluble chemical oxygen demand (COD) and total suspended solids (TSS) concentrations from the test SBR and control SBR were comparable, indicating that the recycling of transesterification-treated WAS did not have detrimental effect on the effluent quality. This study demonstrated that transesterification and recycling of WAS may be a feasible technique for reducing excess biosolids, while producing valuable biodiesel feedstock from the activated sludge process.
Anammox biofilm in activated sludge swine wastewater treatment plants.
Suto, Ryu; Ishimoto, Chikako; Chikyu, Mikio; Aihara, Yoshito; Matsumoto, Toshimi; Uenishi, Hirohide; Yasuda, Tomoko; Fukumoto, Yasuyuki; Waki, Miyoko
2017-01-01
We investigated anammox with a focus on biofilm in 10 wastewater treatment plants (WWTPs) that use activated sludge treatment of swine wastewater. In three plants, we found red biofilms in aeration tanks or final sedimentation tanks. The biofilm had higher anammox 16S rRNA gene copy numbers (up to 1.35 × 10 12 copies/g-VSS) and higher anammox activity (up to 295 μmoL/g-ignition loss/h) than suspended solids in the same tank. Pyrosequencing analysis revealed that Planctomycetes accounted for up to 17.7% of total reads in the biofilm. Most of them were related to Candidatus Brocadia or Ca. Jettenia. The highest copy number and the highest proportion of Planctomycetes were comparable to those of enriched anammox sludge. Thus, swine WWTPs that use activated sludge treatment can fortuitously acquire anammox biofilm. Thus, concentrated anammox can be detected by focusing on red biofilm. Copyright © 2016 Elsevier Ltd. All rights reserved.
Le Moullec, Y; Potier, O; Gentric, C; Leclerc, J P
2011-05-01
This paper presents an experimental and numerical study of an activated sludge channel pilot plant. Concentration profiles of oxygen, COD, NO(3) and NH(4) have been measured for several operating conditions. These profiles have been compared to the simulated ones with three different modelling approaches, namely a systemic approach, CFD and compartmental modelling. For these three approaches, the kinetics model was the ASM-1 model (Henze et al., 2001). The three approaches allowed a reasonable simulation of all the concentration profiles except for ammonium for which the simulations results were far from the experimental ones. The analysis of the results showed that the role of the kinetics model is of primary importance for the prediction of activated sludge reactors performance. The fact that existing kinetics parameters in the literature have been determined by parametric optimisation using a systemic model limits the reliability of the prediction of local concentrations and of the local design of activated sludge reactors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Silvestri, Daniele; Wacławek, Stanisław; Gončuková, Zuzanna; Padil, Vinod V T; Grübel, Klaudiusz; Černík, Miroslav
2018-05-24
A novel method for assessing the disintegration degree (DD) of waste activated sludge (WAS) with the use of differential centrifugal sedimentation method (DCS) was shown herein. The method was validated for a WAS sample at four levels of disintegration in the range of 14.4-82.6% corresponding to the median particle size range of 8.5-1.6 µm. From the several sludge disintegration methods used (i.e. microwave, alkalization, ultrasounds and peroxydisulfate activated by ultrasounds), the activated peroxydisulfate disintegration resulted in the greatest DD 83% and the smallest median particle size of WAS. Particle size distribution of pretreated sludge, measured by DCS, was in a negative correlation with the DD, determined from soluble chemical oxygen demand (SCOD; determination coefficient of 0.995). Based on the obtained results, it may be concluded that the DCS analysis can approximate the WAS disintegration degree.
Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism.
Tao, Jia; Qin, Lian; Liu, Xiaoying; Li, Bolin; Chen, Junnan; You, Juan; Shen, Yitian; Chen, Xiaoguo
2017-07-01
The granulation of activated sludge and effect of granular activated carbon (GAC) was investigated under the alternative anaerobic and aerobic conditions. The results showed that GAC accelerated the granulation, but had no obvious effect on the bacterial community structure of granules. The whole granulation process could be categorized into three phases, i.e. lag, granulation and granule maturation phase. During lag period GAC provided nuclei for sludge to attach, and thus enhanced the morphological regularization of sludge. During granulation period the granule size increased significantly due to the growth of bacteria in granules. GAC reduced the compression caused by the inter-particle collisions and thus accelerate the granulation. GAC has no negative effect on the performance of SBR, and thus efficient simultaneous removal of COD, nitrogen and phosphorus were obtained during most of the operating time. Copyright © 2017. Published by Elsevier Ltd.
Zhang, Ying; Zhang, Chaojie; Zhang, Xuan; Feng, Leiyu; Li, Yongmei; Zhou, Qi
2016-10-01
Alkaline treatment with steel slag and NaOH addition were investigated under different pH conditions for the fermentation of waste activated sludge. Better performance was achieved in steel slag addition scenarios for both sludge hydrolysis and acidification. More solubilization of organic matters and much production of higher VFA (volatile fatty acid) in a shorter time can be achieved at pH10 when adjusted by steel slag. Higher enzyme activities were also observed in steel slag addition scenarios under the same pH conditions. Phosphorus concentration in the supernatant increased with fermentation time and pH in NaOH addition scenarios, while in contrast most phosphorus was released and captured by steel slag simultaneously in steel slag addition scenarios. These results suggest that steel slag can be used as a substitute for NaOH in sludge alkaline treatment. Copyright © 2016. Published by Elsevier B.V.
Yang, Y; Zhao, Y Q; Babatunde, A O; Kearney, P
2009-01-01
In view of the well recognized need of reject water treatment in MWWTP (municipal wastewater treatment plant), this paper outlines two strategies for P removal from reject water using alum sludge, which is produced as by-product in drinking water treatment plant when aluminium sulphate is used for flocculating raw waters. One strategy is the use of the alum sludge in liquid form for co-conditioning and dewatering with the anaerobically digested activated sludge in MWWTP. The other strategy involves the use of the dewatered alum sludge cakes in a fixed bed for P immobilization from the reject water that refers to the mixture of the supernatant of the sludge thickening process and the supernatant of the anaerobically digested sludge. Experimental trials have demonstrated that the alum sludge can efficiently reduce P level in reject water. The co-conditioning strategy could reduce P from 597-675 mg P/L to 0.14-3.20 mg P/L in the supernatant of the sewage sludge while the organic polymer dosage for the conditioning of the mixed sludges would also be significantly reduced. The second strategy of reject water filtration with alum sludge bed has shown a good performance of P reduction. The alum sludge has P-adsorption capacity of 31 mg-P/g-sludge, which was tested under filtration velocity of 1.0 m/h. The two strategies highlight the beneficial utilization of alum sludge in wastewater treatment process in MWWTP, thus converting the alum sludge as a useful material, rather than a waste for landfill.
Characterization, modeling and application of aerobic granular sludge for wastewater treatment.
Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping
2009-01-01
Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.
Review of municipal sludge use as a soil amendment on disturbed lands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, C.A.; Hendrickson, P.L.
1990-08-01
The US Department of Energy is examining options of improving soil conditions at Hanford reclamation sites. One promising technology is the incorporation of municipal sewage sludge into the soil profile. This report reviews the potential benefits and adverse consequences of sludge use in land reclamation. Land reclamation comprises those activities instigated to return a mechanically disturbed site to some later successional state. Besides the introduction of suitable plant species to disturbed lands, reclamation generally requires measures to enhance long-term soil nutrient content, moisture retention or drainage, and mitigation of toxic effects from metals and pH. One of the more effectivemore » means of remediating adverse soil characteristics is the application of complex organic manures such as municipal sewage sludge. Sewage sludges contain complete macro- and micronutrients necessary to sustain plant growth. The application of sewage sludge may reestablish microbial activity in sterile soils. Physical properties, such as water-holding capacity and percentage water-stable aggregates, also improve with the addition of sewage sludge. Sludge applications may also increase the rate of degradation of some hydrocarbon pollutants in soils. Potential adverse impacts associated with the application of sewage sludge to land include negative public perception of human waste products; concerns regarding pathogen buildup and spread in the soils, plants, and water; entrance and accumulation of heavy metals in the food chain; salt accumulation in the soil and ground water; leaching of nitrates into ground water; and accumulation of other potentially toxic substances, such as boron and synthetic hydrocarbons, in the soil, plants, and food chain. 56 refs., 10 tabs.« less
Characterization, Modeling and Application of Aerobic Granular Sludge for Wastewater Treatment
NASA Astrophysics Data System (ADS)
Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping
Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.
Anjum, Muzammil; Al-Talhi, Hasan A; Mohamed, Saleh A; Kumar, Rajeev; Barakat, M A
2018-06-15
Biogas production using waste activated sludge (WAS) is one of the most demanding technologies for sludge treatment and generating energy in sustainable manner. The present study deals with the photocatalytic pretreatment of WAS using ZnO-ZnS@polyaniline (ZnO-ZnS@PANI) nanocomposite as means for increasing its degradability for improved biogas production by anaerobic digestion (AD). Photocatalysis accelerated the hydrolysis of WAS and increased the sCOD by 6.7 folds after 6 h and transform tCOD into bioavailable sCOD. After the AD of WAS, a removal of organic matter (60.6%) and tCOD (69.3%) was achieved in photocatalytic pretreated sludge. The biogas production was 1.6 folds higher in photocatalytic sludge with accumulative biogas up to 1645.1 ml L -1 vs after 45 days compared with the raw sludge (1022.4 ml L -1 VS ). Moreover, the photocatalysis decrease the onset of methanogenesis from 25 to 12 days while achieve the maximum conversion rate of reducing sugars into organic acids at that time. These results suggested that photocatalysis is an efficient pretreatment method and ZnO-ZnS@PANI can degrade sludge efficiently for enhance biogas production in anaerobic digestion process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Caluwé, Michel; Daens, Dominique; Blust, Ronny; Geuens, Luc; Dries, Jan
2017-02-01
In the present study, the influence of a changing feeding pattern from continuous to pulse feeding on the characteristics of activated sludge was investigated with a wastewater from the petrochemical industry from the harbour of Antwerp. Continuous seed sludge, adapted to the industrial wastewater, was used to start up three laboratory-scale sequencing batch reactors. After an adaptation period from the shift to pulse feeding, the effect of an increasing organic loading rate (OLR) and volume exchange ratio (VER) were investigated one after another. Remarkable changes of the specific oxygen uptake rate (sOUR), microscopic structure, sludge volume index (SVI), SVI 30 /SVI 5 ratio, and settling rate were observed during adaptation. sOUR increased two to five times and treatment time decreased 43.9% in 15 days. Stabilization of the SVI occurred after a period of 20 days and improved significantly from 300 mL·g -1 to 80 mL·g -1 . Triplication of the OLR and VER had no negative influence on sludge settling and effluent quality. Adaptation time of the microorganisms to a new feeding pattern, OLR and VER was relatively short and sludge characteristics related to aerobic granular sludge were obtained. This study indicates significant potential of the batch activated sludge system for the treatment of this industrial petrochemical wastewater.