Gravitational sedimentation of flocculated waste activated sludge.
Chu, C P; Lee, D J; Tay, J H
2003-01-01
The sedimentation characteristics of flocculated wastewater sludge have not been satisfactorily explored using the non-destructive techniques, partially owing to the rather low solid content (ca. 1-2%) commonly noted in the biological sediments. This paper investigated, for the first time, the spatial-temporal gravitational settling characteristics of original and polyelectrolyte flocculated waste activated sludge using Computerized Axial Tomography Scanner. The waste activated sludge possessed a distinct settling characteristic from the kaolin slurries. The waste activated sludges settled more slowly and reached a lower solid fraction in the final sediment than the latter. Flocculation markedly enhanced the settleability of both sludges. Although the maximum achievable solid contents for the kaolin slurries were reduced, flocculation had little effects on the activated sludge. The purely plastic rheological model by Buscall and White (J Chem Soc Faraday Trans 1(83) (1987) 873) interpreted the consolidating sediment data, while the purely elastic model by Tiller and Leu (J. Chin. Inst. Chem. Eng. 11 (1980) 61) described the final equilibrated sediment. Flocculation produced lower yield stress during transient settling, thereby resulting in the more easily consolidated sludge than the original sample. Meanwhile, the flocculated activated sludge was stiffer in the final sediment than in the original sample. The data reported herein are valuable to the theories development for clarifier design and operation.
Li, X Y; Yang, S F
2007-03-01
Laboratory experiments on the activated sludge (AS) process were carried out to investigate the influence of microbial extracellular polymeric substances (EPS), including loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS), on biomass flocculation, sludge settlement and dewaterability. The heat EPS extraction method was modified to include a mild step and a harsh step for extracting the LB-EPS and TB-EPS, respectively, from the sludge suspension. Six lab-scale AS reactors were used to grow AS with different carbon sources of glucose and sodium acetate, and different sludge retention times (SRTs) of 5, 10 and 20 days. The variation in the bioreactor condition produced sludge with different abundances of EPS and different flocculation and separation characteristics. The sludge that was fed on glucose had more EPS than the sludge that was fed on acetate. For any of the feeding substrates, the sludge had a nearly consistent TB-EPS value regardless of the SRT, and an LB-EPS content that decreased with the SRT. The acetate-fed sludge performed better than the glucose-fed sludge in terms of bioflocculation, sludge sedimentation and compression, and sludge dewaterability. The sludge flocculation and separation improved considerably as the SRT lengthened. The results demonstrate that the LB-EPS had a negative effect on bioflocculation and sludge-water separation. The parameters for the performance of sludge-water separation were much more closely correlated with the amount of LB-EPS than with the amount of TB-EPS. It is argued that although EPS is essential to sludge floc formation, excessive EPS in the form of LB-EPS could weaken cell attachment and the floc structure, resulting in poor bioflocculation, greater cell erosion and retarded sludge-water separation.
Zhang, Liang; Liu, Miaomiao; Zhang, Shujun; Yang, Yandong; Peng, Yongzhen
2015-12-01
A pilot-scale activated sludge bioreactor was filled with immobile carrier to treat high ammonium wastewater. Autotrophic nitrogen elimination occurred rapidly by inoculating nitrifying activated sludge and anammox biofilm. As the ammonium loading rate increased, nitrogen removal rate of 1.2kgNm(-3)d(-1) was obtained with the removal efficiency of 80%. Activated sludge diameter distribution profiles presented two peak values, indicating simultaneous existence of flocculent and granular sludge. Red granular sludge was observed in the reactor. Furthermore, the results of morphological and molecular analysis showed that the characteristics of granular sludge were similar to that of biofilm, while much different from the flocculent sludge. It was assumed granular sludge was formed through the continuous growth and detachment of anammox biofilm. The mechanism of granular sludge formation was discussed and the procedure model was proposed. According to the experimental results, the integrated fixed-biofilm activated sludge reactor provided an alternative to nitrogen removal based on anammox. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wen, Yue; Zheng, Wanlin; Yang, Yundi; Cao, Asheng; Zhou, Qi
2015-05-15
In this study, the flocculation and sedimentation performance of activated sludge (AS) with single and multiple dosing of trivalent aluminum (Al(3+)) were studied. The AS samples were cultivated in sequencing batch reactors at 22 °C. The dosages of Al(3+) were 0.00, 0.125, 0.5, 1.0, and 1.5 meq/L for single dosing, and 0.1 meq/L for multiple dosing. Under single dosing conditions, as Al(3+) dosage increased, the zeta potential, total interaction energy, and effluent turbidity decreased, whereas the sludge volume index (SVI) increased, indicating that single Al(3+) dosing could enhance sludge flocculation, but deteriorate sedimentation. By comparison, adding an equal amount of Al(3+) through multiple dosing achieved a similar reduction in turbidity, but the zeta potential was higher, while the loosely bound extracellular polymeric substances (LB-EPS) content and SVI remarkably declined. Although the difference in the flocculation performances between the two dosing patterns was not significant, the underlying mechanisms were quite distinct: the interaction energy played a more important role under single dosing conditions, whereas multiple dosing was more effective in reducing the EPS content. Multiple dosing, which allows sufficient time for sludge restructuring and floc aggregation, could simultaneously optimize sludge flocculation and sedimentation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of chemical treatment on the acute toxicity of two commercial textile dye carriers.
Arsian-Alaton, I; Iskender, G; Ozerkan, B; Germirli Babuna, F; Okay, O
2007-01-01
In the present experimental study, the effect of chemical treatment (coagulation-flocculation) on the acute toxicity exerted by two commercial dye carriers (called Carrier A and B herein) often used in the textile industry was investigated. Two different test organisms were selected to elucidate the situations in activated sludge treatment systems (activated sludge microorganisms) as well as in receiving water bodies (ultimate marine discharge). According to the results of a comprehensive analysis covering COD removal efficiencies, sludge settling characteristics and operating costs involved in coagulation-flocculation, the optimum treatment conditions were defined as follows; application of 750 mg/L ferrous sulphate at a pH of 9.0 for Carrier A; and application of 550 mg/L ferrous sulphate at a pH of 9.0 for Carrier B. The acute toxicities of both dye carriers towards marine microalgea Phaeodactylum tricornutum could be reduced significantly after being subjected to coagulation-flocculation. Fair toxicity removals (towards heterotrophic mixed bacterial culture accommodated in activated sludge treatment) were obtained with coagulation-flocculation for both of the carriers under investigation.
Lin, Xiaoqing; Li, Xiaodong; Lu, Shengyong; Wang, Fei; Chen, Tong; Yan, Jianhua
2015-10-01
Flocculants are widely used to improve the properties of sludge dewatering in industrial wastewater treatment. However, there have been no studies conducted on the influence of flocculants on the formation of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) during sewage sludge incineration. This paper selected three typical kinds of flocculants, including polyacrylamide (PAM), poly-ferric chloride (PFC), and polyaluminum chloride (PAC) flocculant, to study their influences on the formation of PCDD/Fs during sewage sludge incineration. The results indicated that PAM flocculant, which is an organic flocculant, inhibited the formation of PCDD/Fs in sewage sludge incineration, while inorganic flocculant, such as PFC and PAC flocculant, promoted the formation. The most probable explanation is that the amino content in the PAM flocculant acted as an inhibitor in the formation of PCDD/Fs, while the chlorine content, especially the metal catalyst in the PFC and PAC flocculants, increased the formation rate. The addition of flocculants nearly did not change the distribution of PCDD/F homologues. The PCDFs contributed the most toxic equivalent (TEQ) value, especially 2, 3, 4, 7, 8-PeCDF. Therefore, the use of inorganic flocculants in industrial wastewater treatment should be further assessed and possibly needs to be strictly regulated if the sludge is incinerated. From this aspect, a priority to the use of organic flocculants should be given.
Kavitha, S; Adish Kumar, S; Kaliappan, S; Yeom, Ick Tae; Rajesh Banu, J
2014-10-01
The significance of citric acid, a cation binding agent, was investigated for the exclusion of extracellular polymeric substance (EPS) from waste activated sludge (WAS) and anaerobic biodegradability following enzymatic bacterial pretreatment. EPS was removed with 0.05 g/g SS of citric acid. The results of pretreatment found that the suspended solids reduction and chemical oxygen demand solubilisation were 21.4% and 16.2% for deflocculated-bacterially pretreated sludge, 14.28% and 10.0% for flocculated sludge (without EPS removal and bacterially pretreated) and 8.5% and 6.5% for control sludge (raw sludge), respectively. Further assessing anaerobic biodegradability, the biogas yield potential of deflocculated and bacterially pretreated, flocculated, and control sludges were found to be 0.455 L/(g VS), 0.343 L/(g VS), and 0.209 L/(g VS), respectively. Thus, phase-separated disintegration enhanced anaerobic biodegradability efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bala Subramanian, S; Yan, S; Tyagi, R D; Surampalli, R Y
2010-04-01
Wastewater treatment plants often face the problems of sludge settling mainly due to sludge bulking. Generally, synthetic organic polymer and/or inorganic coagulants (ferric chloride, alum and quick lime) are used for sludge settling. These chemicals are very expensive and further pollute the environment. Whereas, the bioflocculants are environment friendly and may be used to flocculate the sludge. Extracellular polymeric substances (EPS) produced by sludge microorganisms play a definite role in sludge flocculation. In this study, 25 EPS producing strains were isolated from municipal wastewater treatment plant. Microorganisms were selected based on EPS production properties on solid agar medium. Three types of EPS (slime, capsular and bacterial broth mixture of both slime and capsular) were harvested and their characteristics were studied. EPS concentration (dry weight), viscosity and their charge (using a Zetaphoremeter) were also measured. Bioflocculability of obtained EPS was evaluated by measuring the kaolin clay flocculation activity. Six bacterial strains (BS2, BS8, BS9, BS11, BS15 and BS25) were selected based on the kaolin clay flocculation. The slime EPS was better for bioflocculation than capsular EPS and bacterial broth. Therefore, extracted slime EPS (partially purified) from six bacterial strains was studied in terms of sludge settling [sludge volume index (SVI)] and dewatering [capillary suction time (CST)]. Biopolymers produced by individual strains substantially improved dewaterability. The extracted slime EPS from six different strains were partially characterized. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Chen, Zhan; Zhang, Weijun; Wang, Dongsheng; Ma, Teng; Bai, Runying; Yu, Dezhong
2016-10-15
The effects of combined calcium peroxide (CaO2) oxidation with chemical re-flocculation on dewatering performance and physicochemical properties of waste activated sludge was investigated in this study. The evolutions of extracellular polymeric substances (EPS) distribution, composition and morphological properties were analyzed to unravel the sludge conditioning mechanism. It was found that sludge filtration performance was enhanced by calcium peroxide oxidation with the optimal dosage of 20 mg/gTSS. However, this enhancement was not observed at lower dosages due to the absence of oxidation and the performance deteriorated at higher dosages because of the release of excess EPS, mainly as protein-like substances. The variation in soluble EPS (SEPS) component can be fitted well with pseudo-zero-order kinetic model under CaO2 treatment. At the same time, extractable EPS content (SEPS and loosely bound EPS (LB-EPS)) were dramatically increased, indicating sludge flocs were effectively broken and their structure became looser after CaO2 addition. The sludge floc structure was reconstructed and sludge dewaterability was significantly enhanced using chemical re-flocculation (polyaluminium chloride (PACl), ferric iron (FeCl3) and polyacrylamide (PAM)). The inorganic coagulants performed better in improving sludge filtration dewatering performance and reducing cake moisture content than organic polymer, since they could act as skeleton builders and decrease the sludge compressibility. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Effect of polymeric aluminum-iron on EPS and bio-flocculation in A2/O system].
Wen, Qin-Xue; Liu, Ai-Cui; Chen, Zhi-Qiang; Shi, Han-Chang; Lü, Bing-Nan
2012-04-01
Polymeric aluminum-iron (PAFC) was added at the end of aeration tank to enhance phosphorus removal, so that the phosphorus concentration in the effluent could meet the calss A standard in municipal sewage treatment plant pollutant discharge standard (GB 18918-2002). The characteristics of extracellular polymer substances (EPS) and bio-flocculation for the activated sludge in the A2/O system were analyzed in the experiment. The results showed that, the gross of EPS varied little with the increase in PAFC dosage, while, the ratio of albumen to polysaccharide declined from 3.30 to 2.30. When the PAFC dosage increased, the concentration of Al3+ in EPS increased during the whole anaerobic-anoxic-aerobic cycle. The flocs of activated sludge became larger after PAFC addition, Zeta potential of the effluent dropped significantly from - 15.83 mV to -21.20 mV and sludge yield increased. Therefore, bio-flocculation of the activated sludge in the A2/O system improved when a proper amount of PAFC was added, subsequently improve the water quality of the effluent.
Bioflocculation of mesophilic and thermophilic activated sludge.
Vogelaar, J C T; De Keizer, A; Spijker, S; Lettinga, G
2005-01-01
Thermophilic activated sludge treatment is often hampered by a turbid effluent. Reasons for this phenomenon are so far unknown. Here, the hypothesis of the temperature dependency of the hydrophobic interaction as a possible cause for diminished thermophilic activated sludge bioflocculation was tested. Adsorption of wastewater colloidal particles was monitored on different flat surfaces as a function of temperature. Adsorption on a hydrophobic surface varied with temperature between 20 and 60 degrees C and no upward or downward trend could be observed. This makes the hydrophobic interaction hypothesis unlikely in explaining the differences in mesophilic and thermophilic activated sludge bioflocculation. Both mesophilic and thermophilic biomass did not flocculate with wastewater colloidal particles under anaerobic conditions. Only in the presence of oxygen, with biologically active bacteria, the differences in bioflocculation behavior became evident. Bioflocculation was shown only to occur with the combination of wastewater and viable mesophilic biomass at 30 degrees C, in the presence of oxygen. Bioflocculation did not occur in case the biomass was inactivated or when oxygen was absent. Thermophilic activated sludge hardly showed any bioflocculation, also under mesophilic conditions. Despite the differences in bioflocculation behavior, sludge hydrophobicity and sludge zetapotentials were almost similar. Theoretical calculations using the DLVO (Derjaguin, Landau, Verweij and Overbeek) theory showed that flocculation is unlikely in all cases due to long-range electrostatic forces. These calculations, combined with the fact that bioflocculation actually did occur at 30 degrees C and the unlikelyness of the hydrophobic interaction, point in the direction of bacterial exo-polymers governing bridging flocculation. Polymer interactions are not included in the DLVO theory and may vary as a function of temperature.
Zhang, Zheng-Zhe; Cheng, Ya-Fei; Bai, Yu-Hui; Xu, Lian-Zeng-Ji; Xu, Jia-Jia; Shi, Zhi-Jian; Zhang, Qian-Qian; Jin, Ren-Cun
2018-02-01
Magnetic nanoparticles (NPs) have been widely applied in environmental remediation, biomass immobilization and wastewater treatment, but their potential impact on anaerobic ammonium oxidation (anammox) biomass remains unknown. In this study, the short-term and long-term impacts of maghemite NPs (MHNPs) on the flocculent sludge wasted from a high-rate anammox reactor were investigated. Batch assays showed that the presence of MHNPs up to 200 mg L -1 did not affect anammox activity, reactive oxygen species production, or cell membrane integrity. Moreover, long-term addition of 1-200 mg L -1 MHNPs had no adverse effects on reactor performance. Notably, the specific anammox activity, the abundance of hydrazine synthase structural genes and the content of extracellular polymeric substance were increased with elevated MHNP concentrations. Meanwhile, the community structure was shifted to higher abundance of Candidatus Kuenenia indicated by high-throughput sequencing. Therefore, MHNPs could be applied to enhance anammox flocculent sludge due to their favorable biocompatibility. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Ruijing; Ning, Xun-an; Sun, Jian; Wang, Yujie; Liang, Jieying; Lin, Meiqing; Zhang, Yaping
2015-10-01
The strain Acinetobacter baumannii YNWH 226 was utilized to degrade Congo red (CR) under aerobic conditions. CR was employed as the sole carbon source to produce extracellular polymeric substances (EPS) used as potent bioflocculants in this strain. A total of 98.62% CR was removed during the 48-h decoloration experiments using CR (100 mg/L). A total of 83% bioadsorption and 65% biodegradation were responsible for the decoloration and degradation of CR through the strain. The bioflocculant showed high flocculation activity and dewaterability on textile dyeing sludge. A maximum flocculation of 78.62% with a minimum SBF of 3.07×10(9) s(2)/g and a CST of 58.4 s were achieved. We investigated the internal relationship between the decolorization efficiency of YNWH 226 and the flocculation activity and dewatering capacity of its EPS. The components and structure of the EPS highly influenced the decolorization efficiency of CR and the flocculation activity and dewatering capacity on sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multi-step process for concentrating magnetic particles in waste sludges
Watson, John L.
1990-01-01
This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed.
Multi-step process for concentrating magnetic particles in waste sludges
Watson, J.L.
1990-07-10
This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed. 7 figs.
Fujita, M; Ike, M; Jang, J H; Kim, S M; Hirao, T
2001-01-01
We propose the bioproduction of a bioflocculant from lower-molecular fatty acids as an innovative strategy for utilizing waste sludge digestion liquor. Fundamental studies on the production, characterization and application of a novel bioflocculant were performed. Citrobactersp. TKF04 was screened out of 1,564 natural isolates as a bacterial strain capable of a bioflocculant from acetic and propionic acids. TKF04 produced the bioflocculant during the logarithmic growth in the batch cultivation, and it could be recovered from the culture supernatant by ethanol precipitation. The fed-batch cultivation with feeding of acetic acid: ammonium 10;1 (mole) to maintain pH 8.5 led to the hyper-production of the bioflocculant. The bioflocculant was found to be effective for flocculating a kaolin suspension, when added at a final concentration of 1-10 mg/l, over a wide range of pHs (2-8) and temperatures (3-95 degrees C), while the addition of cations was not required. It could flocculate a variety of inorganic and organic suspended particles including kaolin, diatomite, bentonite, activated carbon, soil and activated sludge. These indicated that the bioflocculant possesses flocculating activity comparable or superior to that of synthetic flocculants. The bioflocculation was identified as a chitosan-like biopolymer.
Kooijman, Guido; Lopes, Wilton; Zhou, Zhongbo; Guo, Hongxiao; de Kreuk, Merle; Spanjers, Henri; van Lier, Jules
2017-03-23
In this work, we investigated the effects of flocculation aid (FA) addition to an anaerobic dynamic membrane bioreactor (AnDMBR) (7 L, 35 °C) treating waste-activated sludge (WAS). The experiment consisted of three distinct periods. In period 1 (day 1-86), the reactor was operated as a conventional anaerobic digester with a solids retention time (SRT) and hydraulic retention time (HRT) of 24 days. In period 2 (day 86-303), the HRT was lowered to 18 days with the application of a dynamic membrane while the SRT was kept the same. In period 3 (day 303-386), a cationic FA in combination with FeCl₃ was added. The additions led to a lower viscosity, which was expected to lead to an increased digestion performance. However, the FAs caused irreversible binding of the substrate, lowering the volatile solids destruction from 32% in period 2 to 24% in period 3. An accumulation of small particulates was observed in the sludge, lowering the average particle size by 50%. These particulates likely caused pore blocking in the cake layer, doubling the trans-membrane pressure. The methanogenic consortia were unaffected. Dosing coagulants and flocculants into an AnDMBR treating sludge leads to a decreased cake layer permeability and decreased sludge degradation.
The influence of sludge retention time on sludge flocculation in IFAS system
NASA Astrophysics Data System (ADS)
Wang, Mengdi; Wen, Yue
2017-11-01
The IFAS system was cultivated in five sequencing batch reactors. The sludge retention times (SRT) were 6 d, 8 d, 10 d, 15 d and 25 d respectively. In this dissertation, the influence of SRT on suspended sludge flocculation in IFAS system and its mechanisms were studied. It was found that in the IFAS system, the specific turbidity of supernatant and SVI value of suspended sludge both decreased as the SRT increased. In addition, extending SRT was capable of reducing the extracellular polymeric substances (EPS) content and the interaction energy barriers, increasing the percentage of bivalent and trivalent cations in pellet, thus improved the sludge flocculation and reduced effluent turbidity.
Kavitha, S; Jayashree, C; Adish Kumar, S; Yeom, Ick Tae; Rajesh Banu, J
2014-09-01
In this study, the role of sodium dodecyl sulfate (SDS) was explored for the removal of extracellular polymeric substance (EPS) from waste activated sludge (WAS) followed by enzymatic bacterial pretreatment, which enhanced the subsequent anaerobic biodegradability. EPS was removed with 0.02 g/g SS of SDS. In the results of pretreatment, the suspended solids reduction and chemical oxygen demand solubilization were found to be 25.7% and 19.79% for deflocculated and bacterially pretreated sludge, whereas they were found to be 15.7% and 11% for flocculated sludge (without EPS removal and bacterially pretreated) and 7.85% and 6% for control sludge (raw sludge), respectively. Upon examining the anaerobic biodegradability, the biogas yield potential of deflocculated and bacterially pretreated, flocculated, deflocculated alone, and control sludges were found to be 0.467 L/(g VS), 0.355 L/(g VS), 0.315 L/(g VS), and 0.212 L/(g VS), respectively. Thus, the deflocculation and bacterial pretreatment improved the anaerobic biodegradability efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evaluation of Dewatering Performance and Fractal Characteristics of Alum Sludge
Sun, Yongjun; Fan, Wei; Zheng, Huaili; Zhang, Yuxin; Li, Fengting; Chen, Wei
2015-01-01
The dewatering performance and fractal characteristics of alum sludge from a drinking-water treatment plant were investigated in this study. Variations in residual turbidity of supernatant, dry solid content (DS), specific resistance to filtration (SRF), floc size, fractal dimension, and zeta potential were analyzed. Sludge dewatering efficiency was evaluated by measuring both DS and SRF. Results showed that the optimum sludge dewatering efficiency was achieved at 16 mg∙L-1 flocculant dosage and pH 7. Under these conditions, the maximum DS was 54.6%, and the minimum SRF was 0.61 × 1010 m∙kg-1. Floc-size measurements demonstrated that high flocculant dosage significantly improved floc size. Correlation analysis further revealed a strong correlation between fractal dimension and floc size after flocculation. A strong correlation also existed between floc size and zeta potential, and flocculants with a higher cationic degree had a larger correlation coefficient between floc size and zeta potential. In the flocculation process, the main flocculation mechanisms involved adsorption bridging under an acidic condition, and a combination between charge neutralization and adsorption-bridging interaction under neutral and alkaline conditions. PMID:26121132
Bezawada, J; Hoang, N V; More, T T; Yan, S; Tyagi, N; Tyagi, R D; Surampalli, R Y
2013-10-15
Growth profile and extracellular polymeric substances (EPS) production of Serratia sp.1 was studied in shake flask fermentation for 72 h using wastewater sludge as raw material. Maximum cell concentration of 6.7 × 10(9) cfu/mL was obtained at 48 h fermentation time. EPS dry weight, flocculation activity and dewaterability of different EPS (tightly bound or TB-EPS, loosely bound or LB-EPS and broth-EPS or B-EPS) were also measured. The highest concentration of LB-EPS (2.45 g/L) and TB-EPS (0.99 g/L) were attained at 48 h of fermentation. Maximum flocculation activity and dewaterability (ΔCST) of TB-EPS (76.4%, 14.5s and 76.5%, 15.5s), LB-EPS (67.8%, 8.1s and 64.7%, 7.6s) and broth EPS (61%, 6.1s and 70.4%, 6.8s) were obtained at 36 and 48 h of growth. Higher flocculation activity and dewaterability were achieved with TB-EPS than with the two other EPS. Characterization of TB-EPS and LB-EPS was done in terms of their protein and carbohydrate content. Protein content was much higher in TB-EPS where as carbohydrate content was only slightly higher in TB-EPS than LB-EPS. Morphology of the Serratia strain after fermentation in sludge and TSB was observed under a scanning electron microscope and the cell size was found to be bigger in the sludge medium than the TSB medium. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ushani, U; Rajesh Banu, J; Kavitha, S; Kaliappan, S; Yeom, Ick Tae
2017-05-01
In this study, an attempt was made to disintegrate waste activated sludge (WAS) in a cost-effective way. During the first phase of this study, effective break down of extracellular polymeric substance (EPS) was performed by deflocculating WAS with 0.1 g/g SS of MgSO 4 . Deflocculation rate was 92% with discharge rate of extractable EPS at 185 mg/L. In the second phase, effective bacterial cell disintegration was obtained at 36 h post treatment. Maximum solubilization of deflocculated sludge was approximately 21%, which was higher than that of flocculated sludge (14.2%) or the control (4.5%). Biodegradability studies were assessed through kinetic analysis by non-linear regression modeling. Results revealed that the deflocculated sludge had higher methane generation (at about 235.8 mL/gVs) compared to flocculated sludge (at 146.1 mL/gVs) or the control (at 34.8 mL/gVs). Cost assessment of the present work revealed that the net yield for each ton of the deflocculated sludge was about 32.99 USD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, Chai Siah; Chong, Mei Fong; Robinson, John; Binner, Eleanor
2015-07-01
The production of natural biopolymers as flocculants for water treatment is highly desirable due to their inherent low toxicity and low environmental footprint. In this study, bio-flocculants were extracted from Hibiscus/Abelmoschus esculentus (okra) by using a water extraction method, and the extract yield and its performance in sludge dewatering were evaluated. Single factor experimental design was employed to obtain the optimum conditions for extraction temperature (25-90 °C), time (0.25-5 h), solvent loading (0.5-5 w/w) and agitation speed (0-225 rpm). Results showed that extraction yield was affected non-linearly by all experimental variables, whilst the sludge dewatering ability was only influenced by the temperature of the extraction process. The optimum extraction conditions were obtained at 70 °C, 2 h, solvent loading of 2.5 w/w and agitation at 200 rpm. Under the optimal conditions, the extract yield was 2.38%, which is comparable to the extraction of other polysaccharides (0.69-3.66%). The bio-flocculants displayed >98% removal of suspended solids and 68% water recovery during sludge dewatering, and were shown to be comparable with commercial polyacrylamide flocculants. This work shows that bio-flocculants could offer a feasible alternative to synthetic flocculants for water treatment and sludge dewatering applications, and can be extracted using only water as a solvent, minimising the environmental footprint of the extraction process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Subudhi, Sanjukta; Batta, Neha; Pathak, Mihirjyoti; Bisht, Varsha; Devi, Arundhuti; Lal, Banwari; Al khulifah, Bader
2014-10-01
A bioflocculant-producing bacterial isolate designated as 'TERI-IASST N' was isolated from activated sludge samples collected from an oil refinery. This isolate demonstrated maximum bioflocculation activity (74%) from glucose among 15 different bioflocculant-producing bacterial strains isolated from the sludge samples and identified as Achromobacter sp. based on 16S rRNA gene sequence. Optimization of pH and supplementation of urea as nitrogen source in the production medium enhanced the flocculation activity of strain TERI-IASST N to 84% (at pH 6). This strain revealed maximum flocculation activity (90%) from sucrose compared to the flocculation activity observed from other carbon sources as investigated (glucose, lactose, fructose, maltose and starch). Ca(2+) served as the suitable divalent cation for maximum bioflocculation activity of TERI-IASST strain N. Maximum flocculation activity was observed at optimum C/N ratio of 1. Flocculation activity of this strain decreased to 75% in the presence of heavy metals; Zn, Pb, Ni, Cu and Cd. In addition strain N revealed considerable biosorption of Zn (430mgL(-1)) and Pb (30mgL(-1)). Bioflocculant yield of strain N was 10.5gL(-1). Fourier transform infrared spectrum indicated the presence of carboxyl, hydroxyl, and amino groups, typical of glycoprotein. Spectroscopic analysis of bioflocculant by nuclear magnetic resonance revealed that it is a glycoprotein, consisting of 57% total sugar and 13% protein. Copyright © 2014 Elsevier Ltd. All rights reserved.
Godvin Sharmila, V; Kavitha, S; Rajashankar, K; Yeom, Ick Tae; Rajesh Banu, J
2015-12-01
This investigation explores the influence of titanium dioxide (TiO2) in deflocculating (removal of extracellular polymeric substance - EPS) the sludge and subsequent biomass disintegration by bacterial pretreatment. The EPS removed at an optimized TiO2 dosage of 0.03g/g of SS of TiO2 and a solar radiation exposure time of 15min to enhance the subsequent bacterial disintegration. The outcomes of the bacterial pretreatment reveal SS reduction and COD solubilization for the deflocculated (EPS removed and bacterially pretreated) sludge was observed to be 22.8% and 22.9% which was comparatively greater than flocculated (raw sludge inoculated with bacteria) and control (raw) sludge. The higher methane production potential of about 0.43(gCOD/gVSS) was obtained in deflocculated sludge than the flocculated (0.20gCOD/gVSS) and control (0.073gCOD/gVSS). Economic assessment of this study provides a net profit of about 131.9USD/Ton in deflocculated sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dries, Jan; Daens, Dominique; Geuens, Luc; Blust, Ronny
2014-01-01
The present study compares conventional wastewater treatment technologies (coagulation-flocculation and activated sludge) and powdered activated carbon (PAC) treatment for the removal of acute ecotoxicity from wastewater generated by tank truck cleaning (TTC) processes. Ecotoxicity was assessed with a battery of four commercially available rapid biological toxicity testing systems, verified by the US Environmental Protection Agency. Chemical coagulation-flocculation of raw TTC wastewater had no impact on the inhibition of the bioluminescence by Vibrio fischeri (BioTox assay). Subsequent biological treatment with activated sludge without PAC resulted in BioTox inhibition-free effluent (<10% inhibition). In contrast, activated sludge treatment without PAC produced an effluent that significantly inhibited (>50%) (i) the bioluminescence by Photobacterium leiognathi (ToxScreen³ test kit), (ii) the photosynthesis by the green algae Chlorella vulgaris (LuminoTox SAPS test kit), and (iii) the particle ingestion by the crustacean Thamnocephalus platyurus (Rapidtoxkit test kit). The lowest inhibition was measured after activated sludge treatment with the highest PAC dose (400 mg/L), demonstrating the effectiveness of PAC treatment for ecotoxicity removal from TTC wastewater. In conclusion, the combination of bioassays applied in the present study represents a promising test battery for rapid ecotoxicty assessment in wastewater treatment.
Tang, Wei; Song, Liyan; Li, Dou; Qiao, Jing; Zhao, Tiantao; Zhao, Heping
2014-01-01
Synthetic high polymer flocculants, frequently utilized for flocculating efficiency and low cost, recently have been discovered as producing increased risk to human health and the environment. Development of a more efficient and environmentally sound alternative flocculant agent is investigated in this paper. Bioflocculants are produced by microorganisms and may exhibit a high rate of flocculation activity. The bioflocculant ETH-2, with high flocculating activity (2849 mg Kaolin particle/mg ETH-2), produced by strain Enterobacter sp. isolated from activated sludge, was systematically investigated with regard to its production, characterization, and flocculation mechanism. Analyses of microscopic observation, zeta potential and ETH-2 structure demonstrates the bridging mechanism, as opposed to charge neutralization, was responsible for flocculation of the ETH-2. ETH-2 retains high molecular weight (603 to 1820 kDa) and multi-functional groups (hydroxyl, amide and carboxyl) that contributed to flocculation. Polysaccharides mainly composed of mannose, glucose, and galactose, with a molar ratio of 1∶2.9∶9.8 were identified as the active constituents in bioflocculant. The structure of the long backbone with active sites of polysaccharides was determined as a primary basis for the high flocculation activity. Bioflocculant ETH-2 is cation independent, pH tolerant, and thermally stable, suggesting a potential fit for industrial application. PMID:25485629
The Trickling Filter/Solids Contact Process: Application to Army Wastewater Plants
1988-08-01
technology (activated sludge and rotating biological contactors [RBC]). 3 7 For the study, the plant was to be sized at 10 mgd. Electricity purchased from...Project Costs* Estimated Cost** ($K) Trickling Rotating Filter/Solids Activated Biological Item Contact Sludge Contactor Preliminary treatment 1100 1100...basins 4500 - Rotating biological contactor reactors - 4520 Flocculator clarifiers 2000 - - Conventional secondary clarifiers 1770 1500 Dual-media
Technological Aspects of Waterworks Sludge Treatment
NASA Astrophysics Data System (ADS)
Belkanova, M. Yu; Nikolaenko, E. V.; Gevel, D. A.
2017-11-01
The water yielding capacity of the sludge in water-supply network treatment facilities is determined by the water quality in a water source and its treatment technology. The paper studies the sludge of water-supply network treatment facilities formed in the conditions of low turbidity and average water colour index in the water source. Such sludge has a low water yielding capacity and is subject to conditioning. The paper shows the influence of seasonal variations of turbidity, water colour index and temperature of the feed water on the specific sludge filtration resistance. It considers the specific features of sludge formation in different settling basins influencing its water yielding capacity. It is shown that the washwater return performed at one of the blocks of the facilities increases the feed water turbidity and leads to the formation of the sludge easily susceptible to conditioning. The paper studies the following methods of the reagent sludge treatment: polyacrylamide-based flocculant treatment, joint treatment with flocculant and vermiculite filler, lime treatment. The use of vermiculite allows to reduce the required flocculant dose. The author determines optimum doses of reagents allowing to direct the sludge for further mechanical dewatering after conditioning. It is shown that, when the sludge is processed with lime, the filtrate formed at dewatering can be reused as an alkalifying agent, which will allow one to cut the costs for the acquisition of reagents.
Vestner, R J; Günthert, F Wolfgang
2004-01-01
Full-scale investigations at a WWTP with a two-stage secondary settling tank process revealed relationships between significant operating parameters and performance in terms of effluent suspended solids concentration. Besides common parameters (e.g. surface overflow rate and sludge volume loading rate) feed SS concentration and flocculation time must be considered. Concentration of the return activated sludge may help to estimate the performance of existing secondary settling tanks.
Li, Xiang; Zheng, Huaili; Gao, Baoyu; Sun, Yongjun; Liu, Bingzhi; Zhao, Chuanliang
2017-01-01
Flocculation as the core technology of sludge pretreatment can improve the dewatering performance of sludge that enables to reduce the cost of sludge transportation and the subsequent disposal costs. Therefore, synthesis of high-efficiency and economic flocculant is remarkably desired in this field. This study presents a cationic polyacrylamide (CPAM) flocculant with microblock structure synthesized through ultraviolet (UV)-initiated template copolymerization by using acrylamide (AM) and methacrylamido propyl trimethyl ammonium chloride (MAPTAC) as monomers, sodium polyacrylate (PAAS) as template, and 2,2'-azobis [2-(2-imidazolin-2-yl) propane] dihydrochloride (VA-044) as photoinitiator. The microblock structure of the CPAM was observed through nuclear magnetic resonance ( 1 H NMR and 13 C NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) analyses. Furthermore, thermogravimetric/differential scanning calorimetry (TG/DSC) analysis was used to evaluate its thermal decomposition property. The copolymerization mechanism was investigated through the determination of the binding constant M K and study on polymerization kinetics. Results showed that the copolymerization was conducted in accordance with the I (ZIP) template polymerization mechanism, and revealed the coexistence of bimolecular termination free-radical reaction and mono-radical termination in the polymerization process. Results of sludge dewatering tests indicated the superior flocculation performance of microblock flocculant than random distributed CPAM. The residual turbidity, filter cake moisture content, and specific resistance to filtration reached 9.37 NTU, 68.01%, and 6.24 (10 12 m kg -1 ), respectively, at 40 mg L -1 of template poly(AM-MAPTAC) and pH 6.0. Furthermore, all flocculant except commercial CPAM showed a wide scope of pH application. Copyright © 2016 Elsevier Ltd. All rights reserved.
Process and system for treating waste water
Olesen, Douglas E.; Shuckrow, Alan J.
1978-01-01
A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.
A novel acrylamide-free flocculant and its application for sludge dewatering.
Lu, Lianghua; Pan, Zhida; Hao, Nan; Peng, Wenqing
2014-06-15
In the present research, copolymers of methyl acrylate (MA) with anionic or cationic monomers were synthesized via emulsion polymerization, and used as sludge dewatering aids in wastewater treatment. The copolymerization of different stoichiometry of two monomers afforded a variety of water soluble copolymers with charge densities ranging from 40% to 80%, which align with the charge density of current flocculant products. These copolymers resemble current commercial products, but provide a greener solution by eliminating acrylamide monomer, which is a suspected carcinogen. High molecular weight copolymers were achieved by applying powder-like synthesis process with intrinsic viscosity of final products as high as 12.98 dl/g for anionic flocculant and 10.74 dl/g for cationic flocculant. The copolymers of methyl acrylate and [2-(Acryloyloxy)ethyl]trimethylammonium chloride (AETAC) with 55% charge density exhibited comparable performance in clay settling test, real water jar test, and sludge dewatering, when compared to AM-based commercial product in the real wastewater treatment application. Copyright © 2014 Elsevier Ltd. All rights reserved.
Performance intensification of Prague wastewater treatment plant.
Novák, L; Havrlíková, D
2004-01-01
Prague wastewater treatment plant was intensified during 1994--1997 by construction of new regeneration tank and four new secondary settling tanks. Nevertheless, more stringent effluent limits and operational problems gave rise to necessity for further intensification and optimisation of plant performance. This paper describes principal operational problems of the plant and shows solutions and achieved results that have lead to plant performance stabilisation. The following items are discussed: low nitrification capacity, nitrification bioaugmentation, activated sludge bulking, insufficient sludge disposal capacity, chemical precipitation of raw wastewater, simultaneous precipitation, sludge chlorination, installation of denitrification zones, sludge rising in secondary settling tanks due to denitrification, dosage of cationic polymeric organic flocculant to secondary settling tanks, thermophilic operation of digestors, surplus activated sludge pre-thickening, mathematical modelling.
Nguyen, Minh Tuan; Mohd Yasin, Nazlina Haiza; Miyazaki, Toshiki; Maeda, Toshinari
2014-12-01
The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 μmol g(-1) dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of potassium ferrate on disintegration of waste activated sludge (WAS).
Ye, Fenxia; Ji, Haizhuang; Ye, Yangfang
2012-06-15
The activated sludge process of wastewater treatment results in the generation of a considerable amount of excess activated sludge. Increased attention has been given to minimization of waste activated sludge recently. This paper investigated the effect of potassium ferrate oxidation pretreatment on the disintegration of the waste activated sludge at various dosages of potassium ferrate. The results show that potassium ferrate pretreatment disintegrated the sludge particle, resulting in the reduction of total solid content by 31%. The solubility (SCOD/TCOD) of the sludge increased with the increase of potassium ferrate dosage. Under 0.81 g/g SS dosage of potassium ferrate, SCOD/TCOD reached 0.32. Total nitrogen (TN) and total phosphorous (TP) concentrations in the solution all increased significantly after potassium ferrate pretreatment. The sludge particles reduced from 116 to 87 μm. The settleability of the sludge (SVI) was enhanced by 17%, which was due to the re-flocculation by the by-product, Fe(III), during potassium ferrate oxidation and the decrease of the viscosity. From the result of the present investigations, it can be concluded that potassium ferrate oxidation is a feasible method for disintegration of excess activated sludge. Copyright © 2012 Elsevier B.V. All rights reserved.
Nitrogen removal from the saline sludge liquor by electrochemical denitrification.
Xie, Z M; Li, X Y; Chan, K Y
2006-01-01
Sludge liquor from the sludge dewatering process has a high ammonia content. In the present study, a lab-scale electrochemical (EC) system with a pair of Ti electrode plates was used for treating the sludge centrate liquor of digested wastewater sludge with a NH4(+) - N content of around 500 mg/L. The sludge liquor had a high salinity due to seawater being used for toilet flushing in Hong Kong. The results show that the EC process is highly effective for denitrification of the saline sludge liquor. Complete nitrogen removal could be achieved within 1 hr or so. The rate of EC denitrification increased with the current intensity applied. The best current efficiency for nitrogen removal was obtained for a gap distance between the electrodes at 8 mm. Electro-chlorination was considered to be the major mechanism of EC denitrification. The formation of chlorination by-products (CBPs) appeared to be minimal with the total trihalomethanes (THM) detected at a level of 300 microg/L or lower. The power consumption for EC denitrification was around 23 kWh/kg N. Additional electro-flocculation with a pair of iron needle electrodes could enhance the flocculation and subsequent sedimentation of colloidal organics in the sludge liquor, increasing the organic removal from less than 30% to more than 70%. Therefore, the EC process including both electro-denitrification and electro-flocculation can be developed as the most cost-effective method for treatment of the saline sludge liquor.
The presence and role of bacterial quorum sensing in activated sludge
Chong, Grace; Kimyon, Onder; Rice, Scott A.; Kjelleberg, Staffan; Manefield, Mike
2012-01-01
Summary Activated sludge used for wastewater treatment globally is composed of a high‐density microbial community of great biotechnological significance. In this study the presence and purpose of quorum sensing via N‐acylated‐l‐homoserine lactones (AHLs) in activated sludge was explored. The presence of N‐heptanoyl‐l‐homoserine lactone in organic extracts of sludge was demonstrated along with activation of a LuxR‐based AHL monitor strain deployed in sludge, indicating AHL‐mediated gene expression is active in sludge flocculates but not in the bulk aqueous phase. Bacterial isolates from activated sludge were screened for AHL production and expression of phenotypes commonly but not exclusively regulated by AHL‐mediated gene transcription. N‐acylated‐l‐homoserine lactone and exoenzyme production were frequently observed among the isolates. N‐acylated‐l‐homoserine lactone addition to sludge upregulated chitinase activity and an AHL‐ and chitinase‐producing isolate closely related to Aeromonas hydrophila was shown to respond to AHL addition with upregulation of chitinase activity. N‐acylated‐l‐homoserine lactones produced by this strain were identified and genes ahyI/R and chiA, encoding AHL production and response and chitinase activity respectively, were sequenced. These experiments provide insight into the relationship between AHL‐mediated gene expression and exoenzyme activity in activated sludge and may ultimately create opportunities to improve sludge performance. PMID:22583685
Zhi-Qiang, Chen; Jun-Wen, Li; Yi-Hong, Zhang; Xuan, Wang; Bin, Zhang
2012-01-01
The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs), two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates. PMID:22859954
Anbalagan, Anbarasan; Schwede, Sebastian; Lindberg, Carl-Fredrik; Nehrenheim, Emma
2017-02-01
The indigenous microalgae-activated sludge (MAAS) process during remediation of municipal wastewater was investigated by studying the influence of iron flocculation step and light intensity. In addition, availability of total phosphorous (P) and photosynthetic activity was examined in fed-batch and batch mode under northern climatic conditions and limited lighting. This was followed by a semi-continuous operation with 4 d of hydraulic retention time and mean cell residence time of 6.75 d in a photo-bioreactor (PBR) with varying P availability. The fed-batch condition showed that P concentrations of 3-4 mg L -1 were effective for photosynthetic chl. a development in iron flocculated conditions. In the PBR, the oxygen evolution rate increased with increase in the concentration of MAAS (from 258 to 573 mg TSS L -1 ) at higher surface photosynthetic active radiation (250 and 500 μmol m -2 s -1 ). Additionally, the rate approached a saturation phase at low MAAS (110 mg L -1 ) with higher light intensities. Semi-continuous operation with luxury P uptake and effective P condition showed stable average total nitrogen removal of 88 and 92% respectively, with residual concentrations of 3.77 and 2.21 mg L -1 . The corresponding average P removal was 68 and 59% with residual concentrations of 2.32 and 1.75 mg L -1 . The semi-continuous operation produced a rapidly settleable MAAS under iron flocculated condition with a settling velocity of 92-106 m h -1 and sludge volume index of 31-43 ml g -1 in the studied cases. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Guoxiang
The extended DLVO (XDLVO) theory was applied to elucidate the potential effects of CeO{sub 2} nanoparticles (CeO{sub 2} NPs) on sludge aggregation and the role of extracellular polymeric substances (EPS). In this study, seven different concentrations of CeO{sub 2} NPs were added to activated sludge cultured in sequencing batch reactors (SBRs) and compared with a control test that received no CeO{sub 2} NPs. After exposure to 50 mg/L CeO{sub 2} NPs, a negligible change (p>0.1) occurred in the sludge volume index (SVI), whereas the flocculability and aggregation of the sludge decreased by 18.8% and 11.2%, respectively, resulting in a highmore » effluent turbidity. The XDLVO theory demonstrated that the adverse effects of the CeO{sub 2} NPs on sludge aggregation were due to an enhanced barrier energy. Compared to the van der Waals energies (W{sub A}) and the electric double layer (W{sub R}), the acid-base interaction (W{sub AB}) markedly changed for the various concentrations of CeO{sub 2} NPs. The EPS played a decisive role in the sludge surface characteristics, as the removal of EPS equals to the negative effects induced by 5–10 mg/L CeO{sub 2} NPs on the sludge flocculability and aggregation. The presence of CeO{sub 2} NPs induced negative contributions to the tight boundary EPS (TB-EPS) and core bacteria while positive contributions to the total interaction energy of the loose boundary EPS (LB-EPS). - Highlights: • CeO{sub 2} NPs adversely affected the flocculability and aggregation of the sludge. • The presence of CeO{sub 2} NPs increased the energy barrier and led to a stable suspension. • The removal of EPS equals to the negative effects induced by 5–10 mg/L CeO{sub 2} NPs. • The acid-base interaction was dominate and markedly changed for the CeO{sub 2} NPs. • CeO{sub 2} NPs induced negative contributions to the TB-EPS while positive to the LB-EPS.« less
Pretreatment of palm oil mill effluent (POME) using Moringa oleifera seeds as natural coagulant.
Bhatia, Subhash; Othman, Zalina; Ahmad, Abdul Latif
2007-06-25
Moringa oleifera seeds, an environmental friendly and natural coagulant are reported for the pretreatment of palm oil mill effluent (POME). In coagulation-flocculation process, the M. oleifera seeds after oil extraction (MOAE) are an effective coagulant with the removal of 95% suspended solids and 52.2% reduction in the chemical oxygen demand (COD). The combination of MOAE with flocculant (NALCO 7751), the suspended solids removal increased to 99.3% and COD reduction was 52.5%. The coagulation-flocculation process at the temperature of 30 degrees C resulted in better suspended solids removal and COD reduction compared to the temperature of 40, 55 and 70 degrees C. The MOAE combined with flocculant (NALCO 7751) reduced the sludge volume index (SVI) to 210mL/g with higher recovery of dry mass of sludge (87.25%) and water (50.3%).
Chen, Wei; Gao, Xiaohong; Xu, Hang; Cai, Yan; Cui, Jianfeng
2017-03-01
Extracellular polymeric substances (EPS) are high molecular weight polymers and play a significant role in floc stability, floc size, bioflocculation and sludge settleability. The destruction and reconstruction of EPS improve the performance of solid-water separation processes. In this study, the influence of combined ultrasound pretreatment and chemical re-flocculation on the spatial distribution and composition of EPS was examined. Settleability efficiency demonstrated that the optimal operating condition was an ultrasound pretreatment time of 15 min at pH 6. Sludge particles were greatly disintegrated and the protein-like substances were converted into smaller molecules after ultrasound treatment, and pH had important effects on solubilization and degradation of protein-like substances. The flocs of sludge water after addition of polyacrylamide were larger in size and denser in structure than those resulting from addition of polyaluminium chloride. However, polyaluminium chloride had a better capacity for degrading EPS, especially at a dosage of 1.2 g/g total suspended solids. The results of this research show that the combination of ultrasonication and chemical re-flocculation is effective in treating sludge water from a drinking water treatment plant. Copyright © 2016 Elsevier Ltd. All rights reserved.
A novel method for harmless disposal and resource reutilization of steel wire rope sludges.
Zhang, Li; Liu, Yang-Sheng
2016-10-01
Rapid development of steel wire rope industry has led to the generation of large quantities of pickling sludge, which causes significant ecological problems and considerable negative environmental effects. In this study, a novel method was proposed for harmless disposal and resource reutilization of the steel wire rope sludge. Based on the method, two steel wire rope sludges (the Pb sludge and the Zn sludge) were firstly extracted by hydrochloric or sulfuric acid and then mixed with the hydrochloride acid extracting solution of aluminum skimmings to produce composite polyaluminum ferric flocculants. The optimum conditions (acid concentration, w/v ratio, reaction time, and reaction temperature) for acid extraction of the sludges were studied. Results showed that 97.03 % of Pb sludge and 96.20 % of Zn sludge were extracted. Leaching potential of the residues after acid extraction was evaluated, and a proposed treatment for the residues had been instructed. The obtained flocculant products were used to purify the real domestic wastewater and showed an equivalent or better performance than the commercial ones. This method is environmental-friendly and cost-effective when compared with the conventional sludge treatments.
Zhang, Zhiqiang; Zhang, Jiao; Zhao, Jianfu; Xia, Siqing
2015-02-01
The effect of short-time aerobic digestion on bioflocculation of extracellular polymeric substances (EPSs) from waste activated sludge (WAS) was investigated. Bioflocculation of the EPS was found to be enhanced by 2∼6 h of WAS aerobic digestion under the conditions of natural sludge pH (about 7), high sludge concentration by gravity thickening, and dissolved oxygen of about 2 mg/L. With the same EPS extraction method, the total suspended solid content reduction of 0.20 and 0.36 g/L and the volatile suspended solid content reduction of 0.19 and 0.26 g/L were found for the WAS samples before and after aerobic digestion of 4 h. It indicates that more EPS is produced by short-time aerobic digestion of WAS. The scanning electron microscopy images of the WAS samples before and after aerobic digestion of 4 h showed that more EPS appeared on the surface of zoogloea by aerobic digestion, which reconfirmed that WAS aerobic digestion induced abundant formation of EPS. By WAS aerobic digestion, the flocculating rate of the EPS showed about 31 % growth, almost consistent with the growth of its yield (about 34 %). The EPSs obtained before and after the aerobic digestion presented nearly the same components, structures, and Fourier transform infrared spectra. These results revealed that short-time aerobic digestion of WAS enhanced the flocculation of the EPS by promoting its production.
Sodhi, Vijay; Bansal, Ajay; Jha, Mithilesh Kumar
2018-04-30
This study proposed a maintenance metabolism based upgraded activated sludge as MANODOX system that restricts excess biosludge generation from high strength real tannery effluent. The MANODOX experimental demonstration has been done using a sequenced operational arrangement of a MBBR, anaerobic digester, and oxidation ditch connected to CAS reactor, discussed in detail manner. Experimental trends revealed a prominently lower sludge yield upto 0.271 gVSS/gCOD (72% overall sludge reduction) that corresponds to parallel run CAS (0.92 gVSS/gCOD). MANODOX implementation confirmed high quality treated effluent with prominent COD and suspended solids reduction upto 97.1% and 96% respectively. The biodegradability observation was further supported by anaerobic and aerobic batch digestion analysis. The variation of soluble component turbidity analysis reflects the enriched non-flocculating predatory microbial population appears to may have been responsible for sludge reduction. MANODOX system provided a sustainable practical alternative for under capacity activated sludge based treatment facilities for a variety of wastewater types. Copyright © 2018 Elsevier Ltd. All rights reserved.
Solubilization of municipal sewage waste activated sludge by novel lytic bacterial strains.
Lakshmi, M Veera; Merrylin, J; Kavitha, S; Kumar, S Adish; Banu, J Rajesh; Yeom, Ick-Tae
2014-02-01
Extracellular polymeric substances (EPS) are an extracellular matrix found in sludge which plays a crucial role in flocculation by interacting with the organic solids. Therefore, to enhance pretreatment of sludge, EPS have to be removed. In this study, EPS were removed with a chemical extractant, NaOH, to enhance the bacterial pretreatment. A lysozyme secreting bacterial consortium was isolated from the waste activated sludge (WAS). The result of density gradient gel electrophoresis (DGGE) analysis revealed that the isolated consortium consists of two strains. The two novel strains isolated were named as Jerish03 (NCBI accession number KC597266) and Jerish 04 (NCBI accession number KC597267) and they belong to the genus Bacillus. Pretreatment with these novel strains enhances the efficiency of the aerobic digestion of sludge. Sludge treated with the lysozyme secreting bacterial consortium produced 29 % and 28.5 % increase in suspended solids (SS) reduction and chemical oxygen demand (COD) removal compared to the raw activated sludge (without pretreatment) during aerobic digestion. It is specified that these two novel strains had a high potential to enhance WAS degradation efficiency in aerobic digestion.
Effects of Surfactants on the Improvement of Sludge Dewaterability Using Cationic Flocculants
Zhai, Jun; Teng, Houkai; Zhao, Chun; Zhao, Chuanliang; Liao, Yong
2014-01-01
The effects of the cationic surfactant (cationic cetyl trimethyl ammonium bromide, CTAB) on the improvement of the sludge dewaterability using the cationic flocculant (cationic polyacrylamide, CPAM) were analyzed. Residual turbidity of supernatant, dry solid (DS) content, extracellular polymeric substances (EPS), specific resistance to filtration (SRF), zeta potential, floc size, and settling rate were investigated, respectively. The result showed that the CTAB positively affected the sludge conditioning and dewatering. Compared to not using surfactant, the DS and the settling rate increased by 8%–21.2% and 9.2%–15.1%, respectively, at 40 mg·L−1 CPAM, 10×10−3 mg·L−1 CTAB, and pH 3. The residual turbidities of the supernatant and SRF were reduced by 14.6%–31.1% and 6.9%–7.8% compared with turbidities and SRF without surfactant. Furthermore, the release of sludge EPS, the increases in size of the sludge flocs, and the sludge settling rate were found to be the main reasons for the CTAB improvement of sludge dewatering performance. PMID:25347394
Devi, T Poornima; Ebenezer, A Vimala; Kumar, S Adish; Kaliappan, S; Banu, J Rajesh
2014-09-01
Excess sludge disintegration by energy intensive processes like mechanical pretreatment is considered to be high in cost. In this study, an attempt has been made to disintegrate excess sludge by disperser in a cost effective manner by deflocculating the sludge using sodium dodecyl sulphate (SDS) at a concentration of 0.04 g/g SS. The disperser pretreatment was effective at a specific energy input of 5013 kJ/kg TS where deflocculated sludge showed higher chemical oxygen demand solubilisation and suspended solids reduction of 26% and 22.9% than flocculated sludge and was found to be 18.8% and 18.6% for former and latter respectively. Higher accumulation of volatile fatty acid (700 mg/L) in deflocculated sludge indicates better hydrolysis of sludge by proposed method. The anaerobic biodegradability resulted in higher biogas production potential of 0.522 L/(g VS) for deflocculated sludge. Cost analysis of the study showed 43% net energy saving in deflocculated sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ebenezer, A Vimala; Kaliappan, S; Adish Kumar, S; Yeom, Ick-Tae; Banu, J Rajesh
2015-06-01
In the present study, the potential benefits of deflocculation on microwave pretreatment of waste activated sludge were investigated. Deflocculation in the absence of cell lysis was achieved through the removal of extra polymeric substances (EPS) by sodium citrate (0.1g sodium citrate/g suspended solids), and DNA was used as a marker for monitoring cell lysis. Subsequent microwave pretreatment yielded a chemical oxygen demand (COD) solubilisation of 31% and 21%, suspended solids (SS) reduction of 37% and 22%, for deflocculated and flocculated sludge, respectively, with energy input of 14,000kJ/kg TS. When microwave pretreated sludge was subjected to anaerobic fermentation, greater accumulation of volatile fatty acid (860mg/L) was noticed in deflocculated sludge, indicating better hydrolysis. Among the samples subjected to BMP (Biochemical methane potential test), deflocculated microwave pretreated sludge showed better amenability towards anaerobic digestion with high methane production potential of 0.615L (gVS)(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.
Membrane filtration device for studying compression of fouling layers in membrane bioreactors
Bugge, Thomas Vistisen; Larsen, Poul; Nielsen, Per Halkjær; Christensen, Morten Lykkegaard
2017-01-01
A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology’s ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation. PMID:28749990
Upgrading the hydrolytic potential of immobilized bacterial pretreatment to boost biogas production.
Ushani, U; Kavitha, S; Johnson, M; Yeom, Ick Tae; Banu, J Rajesh
2017-01-01
In this study, surfactant dioctyl sodium sulphosuccinate (DOSS)-mediated immobilized bacterial pretreatment of waste activated sludge (WAS) was experimentally proved to be an efficient and economically feasible process for enhancing the biodegradability of WAS. The maximal floc disruption with negligible cell cleavage was achieved at surfactant dosage of 0.009 g/g SS. Results of the outcome of bacterial pretreatment of sludge biomass revealed that chemical oxygen demand (COD) solubilization for deflocculated (EPS removed-bacterially pretreated) sludge was 20 %, which was higher than that of flocculated (14 %) or control (5 %). The pretreatment was swift in deflocculated sludge with a rate constant of about 0.064 h -1 . Biochemical methane potential (BMP) assay resulted in significant methane yield at 0.24 gCOD/gCOD for deflocculated sludge. Economic assessment of the proposed method showed a net profit of about 57.39 USD/ton of sludge.
Zhang, Peng; Xu, Xiao-Yan; Chen, You-Peng; Xiao, Meng-Qian; Feng, Bo; Tian, Kai-Xun; Chen, Yue-Hui; Dai, You-Zhi
2018-02-01
In this work, the protein coronas of activated sludge proteins on TiO 2 nanoparticles (TNPs) and ZnO nanoparticles (ZNPs) were characterized. The proteins with high affinity to TNPs and ZNPs were identified by shotgun proteomics, and their effects of on the distributions of TNPs and ZNPs in activated sludge were concluded. In addition, the effects of protein coronas on the aggregations of TNPs and ZNPs were evaluated. Thirty and nine proteins with high affinities to TNPs and ZNPs were identified, respectively. The proteomics and adsorption isotherms demonstrated that activated sludge had a higher affinity to TNPs than to ZNPs. The aggregation percentages of ZNPs at 35, 53, and 106 mg/L of proteins were 13%, 14%, and 18%, respectively, whereas those of TNPs were 21%, 30%, 41%, respectively. The proteins contributed to ZNPs aggregation by dissolved Zn ion-bridging, whereas the increasing protein concentrations enhanced the TNPs aggregation through macromolecule bridging flocculation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impact of influent COD/N ratio on disintegration of aerobic granular sludge.
Luo, Jinghai; Hao, Tianwei; Wei, Li; Mackey, Hamish R; Lin, Ziqiao; Chen, Guang-Hao
2014-10-01
Disintegration of aerobic granular sludge (AGS) is a challenging issue in the long-term operation of an AGS system. Chemical oxygen demand (COD)-to-nitrogen (N) ratio (COD/N), often variable in industrial wastewaters, could be a destabilizing factor causing granule disintegration. This study investigates the impact of this ratio on AGS disintegration and identifies the key causes, through close monitoring of AGS changes in its physical and chemical characteristics, microbial community and treatment performance. For specific comparison, two lab-scale air-lift type sequencing batch reactors, one for aerobic granular and the other for flocculent sludge, were operated in parallel with three COD/N ratios (4, 2, 1) applied in the influent of each reactor. The decreased COD/N ratios of 2 and 1 strongly influenced the stability of AGS with regard to physical properties and nitrification efficiency, leading to AGS disintegration when the ratio was decreased to 1. Comparatively the flocculent sludge maintained relatively stable structure and nitrification efficiency under all tested COD/N ratios. The lowest COD/N ratio resulted in a large microbial community shift and extracellular polymeric substances (EPS) reduction in both flocculent and granular sludges. The disintegration of AGS was associated with two possible causes: 1) reduction in net tyrosine production in the EPS and 2) a major microbial community shift including reduction in filamentous bacteria leading to the collapse of granule structure. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kavitha, S; Saranya, T; Kaliappan, S; Adish Kumar, S; Yeom, Ick Tae; Rajesh Banu, J
2015-01-01
The present study investigates the impacts of phase separated disintegration through CaCl2 (calcium chloride) mediated biosurfactant producing bacterial pretreatment. In the initial phase of the study, the flocs were disintegrated (deflocculation) with 0.06g/gSS of CaCl2. In the subsequent phase, the sludge biomass was disintegrated (cell disintegration) through potent biosurfactant producing new novel bacteria, Planococcus jake 01. The pretreatment showed that suspended solids reduction and chemical oxygen demand solubilization for deflocculated - bacterially pretreated sludge was found to be 17.14% and 14.14% which were comparatively higher than flocculated sludge (treated with bacteria alone). The biogas yield potential of deflocculated - bacterially pretreated, flocculated, and control sludges were observed to be 0.322(L/gVS), 0.225(L/gVS) and 0.145(L/gVS) respectively. To our knowledge, this is the first study to present the thorough knowledge of biogas production potential through a novel phase separated biosurfactant bacterial pretreatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zdybel, Jolanta; Karamon, Jacek; Różycki, Mirosław; Bilska-Zając, Ewa; Kłapeć, Teresa; Cencek, Tomasz
2016-11-01
Because traditional methods used for sewage sludge parasitological examinations have low sensitivity, a new, highly effective method (own method - OM) was devised. The principle of this method is to eliminate the flocculent effect on the structure of sewage sludge by mechanically damaging floccules in the presence of surfactants and to increase the effectiveness of egg isolation processes in large volumes of liquids. The objective of this study was to estimate the effectiveness of the OM in detecting nematode eggs in sewage sludge samples containing flocculants. In the first stage, the effectiveness of the OM was compared to 4 other methods routinely used in parasitological examinations of dehydrated sewage sludge. Next, method standardisation was performed using sewage sludge samples supplemented with eggs from 3 parasite species (Ascaris suum, Toxocara canis and Trichuris vulpis). The study demonstrated that OM efficiency was 6-65 times greater than other methods, depending on the method and type of detected eggs. Limit of detection (LOD) calculations for the OM were performed on samples supplemented with a known number of parasite eggs resulting in 10, 5 and 3 eggs/50 g of sample for A. suum, T. vulpis and T. canis eggs, respectively. The limits of quantification (LOQ) of the OM were established as 200 eggs/50 g of sample for A. suum and T. vulpis eggs and 50 eggs/50 g of sample for T. canis eggs. The rectilinear regression functions, which determined the relationship between the number of eggs detected in OM measurements and the number of eggs contained in the samples, were characterised by high and statistically significant coefficients of determination (r 2 ). The slopes of the trend lines were 0.3188, 0.3821 and 0.3276, and the intercepts were -11.223, -9.0261 and -23.15 for A. suum, T. canis and T. vulpis eggs, respectively. Method sensitivity, calculated as the slope coefficient of the regression function and expressed as a percentage, ranged from 32% to 38% depending on egg type. The study confirmed that the OM may be applied to quantify parasite eggs in dehydrated sewage sludge containing polyelectrolytes. Copyright © 2016 Elsevier Inc. All rights reserved.
Guo, Junyuan; Yang, Chunping; Zeng, Guangming
2013-09-01
Sterilization, alkaline-thermal and acid-thermal treatments were applied to activated sludge and the pre-treated sludge was used as raw material for Rhodococcus R3 to produce polymeric substances. After 60 h of fermentation, bioflocculant of 2.7 and 4.2 g L(-1) were produced in sterilized and alkaline-thermal treated sludge as compared to that of 0.9 g L(-1) in acid-thermal treated sludge. Response surface methodology (RSM) was employed to optimize the treatment process of swine wastewater using the composite of bioflocculant and zeolite modified by calcining with MgO. The optimal flocculating conditions were bioflocculant of 24 mg L(-1), modified zeolite of 12 g L(-1), CaCl2 of 16 mg L(-1), pH of 8.3 and contact time of 55 min, and the corresponding removal rates of COD, ammonium and turbidity were 87.9%, 86.9%, and 94.8%. The use of the composite by RSM provides a feasible way to improve the pollutant removal efficiencies and recycle high-level of ammonium from wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.
Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim; Demeestere, Kristof; Van Hulle, Stijn W H
2015-01-01
A major concern for landfilling facilities is the treatment of their leachate. To optimize organic matter removal from this leachate, the combination of two or more techniques is preferred in order to meet stringent effluent standards. In our study, coagulation-flocculation and ozonation are compared as pre- treatment steps for stabilized landfill leachate prior to granular activated carbon (GAC) adsorption. The efficiency of the pre treatment techniques is evaluated using COD and UVA254 measurements. For coagulation- flocculation, different chemicals are compared and optimal dosages are determined. After this, iron (III) chloride is selected for subsequent adsorption studies due to its high percentage of COD and UVA254 removal and good sludge settle-ability. Our finding show that ozonation as a single treatment is effective in reducing COD in landfill leachate by 66% compared to coagulation flocculation (33%). Meanwhile, coagulation performs better in UVA254 reduction than ozonation. Subsequent GAC adsorption of ozonated effluent, coagulated effluent and untreated leachate resulted in 77%, 53% and 8% total COD removal respectively (after 6 bed volumes). The effect of the pre-treatment techniques on GAC adsorption properties is evaluated experimentally and mathematically using Thomas and Yoon-Nelson models. Mathematical modelling of the experimental GAC adsorption data shows that ozonation increases the adsorption capacity and break through time with a factor of 2.5 compared to coagulation-flocculation.
Cai, Meiqiang; Hu, Jianqiang; Lian, Guanghu; Xiao, Ruiyang; Song, Zhijun; Jin, Micong; Dong, Chunying; Wang, Quanyuan; Luo, Dewen; Wei, Zongsu
2018-04-01
The dewatering of waste activated sludge by integrated hydrodynamic cavitation (HC) and Fenton reaction was explored in this study. We first investigated the effects of initial pH, sludge concentration, flow rate, and H 2 O 2 concentration on the sludge dewaterability represented by water content, capillary suction time and specific resistance to filtration. The results of dewatering tests showed that acidic pH and low sludge concentration were favorable to improve dewatering performance in the HC/Fenton system, whereas optimal flow rate and H 2 O 2 concentration applied depended on the system operation. To reveal the synergism of HC/Fenton treatment, a suite of analysis were implemented: three-dimensional excitation emission matrix (3-DEEM) spectra of extracellular polymeric substances (EPS) such as proteins and polysaccharides, zeta potential and particle size of sludge flocs, and SEM/TEM imaging of sludge morphology. The characterization results indicate a three-step mechanism, namely HC fracture of different EPS in sludge flocs, Fenton oxidation of the released EPS, and Fe(III) re-flocculation, that is responsible for the synergistically enhanced sludge dewatering. Results of current study provide a basis to improve our understanding on the sludge dewatering performance by HC/Fenton treatment and possible scale-up of the technology for use in wastewater treatment plants. Copyright © 2017 Elsevier B.V. All rights reserved.
Method for processing aqueous wastes
Pickett, John B.; Martin, Hollis L.; Langton, Christine A.; Harley, Willie W.
1993-01-01
A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.
Performance indicators and indices of sludge management in urban wastewater treatment plants.
Silva, C; Saldanha Matos, J; Rosa, M J
2016-12-15
Sludge (or biosolids) management is highly complex and has a significant cost associated with the biosolids disposal, as well as with the energy and flocculant consumption in the sludge processing units. The sludge management performance indicators (PIs) and indices (PXs) are thus core measures of the performance assessment system developed for urban wastewater treatment plants (WWTPs). The key PIs proposed cover the sludge unit production and dry solids concentration (DS), disposal/beneficial use, quality compliance for agricultural use and costs, whereas the complementary PIs assess the plant reliability and the chemical reagents' use. A key PI was also developed for assessing the phosphorus reclamation, namely through the beneficial use of the biosolids and the reclaimed water in agriculture. The results of a field study with 17 Portuguese urban WWTPs in a 5-year period were used to derive the PI reference values which are neither inherent to the PI formulation nor literature-based. Clusters by sludge type (primary, activated, trickling filter and mixed sludge) and by digestion and dewatering processes were analysed and the reference values for sludge production and dry solids were proposed for two clusters: activated sludge or biofilter WWTPs with primary sedimentation, sludge anaerobic digestion and centrifuge dewatering; activated sludge WWTPs without primary sedimentation and anaerobic digestion and with centrifuge dewatering. The key PXs are computed for the DS after each processing unit and the complementary PXs for the energy consumption and the operating conditions DS-determining. The PX reference values are treatment specific and literature based. The PI and PX system was applied to a WWTP and the results demonstrate that it diagnosis the situation and indicates opportunities and measures for improving the WWTP performance in sludge management. Copyright © 2016 Elsevier Ltd. All rights reserved.
Guo, Junyuan; Chen, Cheng
2017-10-01
This study investigated the production of a bioflocculant by using rice stover and its potential in sludge dewatering. Production of the bioflocculant was positively associated with cell growth and highest value of 2.37 g L -1 was obtained with main backbone of polysaccharides. The bioflocculant showed good performances in sludge dewatering, after conditioned by this bioflocculant, dry solids (DS) and specific resistance to filtration (SRF) of typical wastewater activated sludge reached 19.3% and 4.8 × 10 12 m kg -1 , respectively, which were much better than the ones obtained with chemical flocculants. Sludge dewatering was further improved when the bioflocculant and polyaluminum chloride (PAC) were used simultaneously, and the optimized conditioning process by the composite was bioflocculant of 10.5 g kg -1 , PAC of 19.4 g kg -1 , and pH of 8.1. Under this optimal condition, DS and SRF of the sludge appeared as 24.1% and 3.0 × 10 12 m kg -1 , respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Guo, Junyuan; Yang, Chunping; Peng, Lanyan
2014-01-01
Sterilization, alkaline-thermal, and acid-thermal treatments were applied to different suspended sludge solids (SSS) concentrations and the pre-treated sludge was used as raw material for bioflocculant-producing bacteria R3 to produce bioflocculant. After 60 h of fermentation, three forms of bioflocculant (broth, capsular, and slime) were extracted, and maximum broth bioflocculant of 2.9 and 4.1 g L(-1) were produced in sterilized and alkaline-thermal treated sludge as compared to that of 1.8 g L(-1) in acid-thermal treated sludge. Higher bioflocculant quantity was produced in SS of 15, 25, and 35 g L(-1) compared to that produced in SS of 45, 55, and 65 g L(-1). Bioflocculant combined with 0.5 g Ca(2+) in 1.0 L kaolin suspension acted as conditioning agent, and maximum flocculating activity of 94.5% and 92.8% was achieved using broth and slime bioflocculant, respectively. The results demonstrated that wastewater sludge could be used as sources to prepare bioflocculants. Copyright © 2013 Elsevier Ltd. All rights reserved.
Estimating biodiversity of fungi in activated sludge communities using culture-independent methods.
Evans, Tegan N; Seviour, Robert J
2012-05-01
Fungal diversity of communities in several activated sludge plants treating different influent wastes was determined by comparative sequence analyses of their 18S rRNA genes. Methods for DNA extraction and choice of primers for PCR amplification were both optimised using denaturing gradient gel electrophoresis profile patterns. Phylogenetic analysis revealed that the levels of fungal biodiversity in some communities, like those treating paper pulp wastes, were low, and most of the fungi detected in all communities examined were novel uncultured representatives of the major fungal subdivisions, in particular, the newly described clade Cryptomycota. The fungal populations in activated sludge revealed by these culture-independent methods were markedly different to those based on culture-dependent data. Members of the genera Penicillium, Cladosporium, Aspergillus and Mucor, which have been commonly identified in mixed liquor, were not identified in any of these plant communities. Non-fungal eukaryotic 18S rRNA genes were also amplified with the primer sets used. This is the first report where culture-independent methods have been applied to flocculated activated sludge biomass samples to estimate fungal community composition and, as expected, the data obtained gave a markedly different view of their population biodiversity compared to that based on culture-dependent methods.
Development and investigation of a selective latex flocculant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikitin, I.N.; Preobrazhenskii, B.P.; Tsyrlov, M.Ya.
1982-01-01
Investigations were made on the use of two synthetic latexes as selective flocculants in the flotation cleaning of coal. The most commonly used latex in the industry contained sodium dibutylnaphthalenesulfonate, which is a biologically ''hard'' emulsifier. It was determined that butadiene-styrene latexes may successfully be used as selective coal sludge flocculants. The most efficient was a latex synthesized using biodegradable emulsifiers--potassium soaps of disproportionated rosin with a small quantity of synthetic fatty acids. Also, it was concluded that the values of the ash level in the flotation concentrate and tailings could be controlled by regulating the latex consumption.
Methods for Converter Sludge Dehydration Intensification
NASA Astrophysics Data System (ADS)
Vakhromeev, M. I.; Moreva, Y. A.; Starkova, L. G.
2017-11-01
The article considers the intensification methods for converter sludge dehydration exemplified by the sludges of the Oxygen Converter Workshop (OCW) of the Open Joint-Stock Company “Magnitogorsk Iron and Steel Works” (MMK, OJSC), one of the largest metallurgical companies in the Southern Urals. Converter sludges can contain up to 45-70% of ferrum [21] which is interesting in terms of their use as an addition to a sinter-feed mixture. Sludge intensifies the sintering process. It positively influences pelletizing and fusion mixture melting dynamics at sintering. Over the period of the converter sludge dehydration complex operation at the OCW, MMK, OJSC, it was revealed that processing results in obtaining of high humidity sludge. It causes sludge freezing during the winter period, thus, its transportation involves extra costs for sludge warming up. To resolve the above-mentioned problem, the following works were performed in 2016: - experimental studies of how the application of the low-molecular anionic flocculate “SEURVEY” FL-3 influences sludge humidity reduction. - experimental studies of how the filtering press process operation parameters influence sludge humidity reduction. The new flocculate application didn't lower the dehydrated sludge humidity (the objective was the humidity of not more than 15%). Basing upon the conducted research results, we can make a conclusion that putting into operation the sewage water reactant treatment technology with the use of “SEURVEY”, FL-3 (H-10) is not recommended. The research of the influence the filtering press process parameters have on the dehydration process intensification demonstrated that reaching of the obtained residue humidity value lower than 15% is possible under the reduction of the filtering press chamber depths to 30 mm and with the application of additional operation “Residue drying” with compressed air. This way of the sludge dehydration problem resolving at filtering presses of the converter sludge dehydration complex of the OCW, MMK, OJSC, can be recommended for application.
Hwang, Jeong-Ha; Han, Dong-Woo
2015-01-01
Economic and rapid reduction of sludge water content in sewage wastewater is difficult and requires special advanced treatment technologies. This study focused on optimizing and modeling decreased sludge water content (Y1) and removing turbidity (Y2) with magnetic iron oxide nanoparticles (Fe3O4, MION) using a central composite design (CCD) and response surface methodology (RSM). CCD and RSM were applied to evaluate and optimize the interactive effects of mixing time (X1) and MION concentration (X2) on chemical flocculent performance. The results show that the optimum conditions were 14.1 min and 22.1 mg L(-1) for response Y1 and 16.8 min and 8.85 mg L(-1) for response Y2, respectively. The two responses were obtained experimentally under this optimal scheme and fit the model predictions well (R(2) = 97.2% for Y1 and R(2) = 96.9% for Y2). A 90.8% decrease in sludge water content and turbidity removal of 29.4% were demonstrated. These results confirm that the statistical models were reliable, and that the magnetic flocculation conditions for decreasing sludge water content and removing turbidity from sewage wastewater were appropriate. The results reveal that MION are efficient for rapid separation and are a suitable alterative to sediment sludge during the wastewater treatment process.
Improving primary treatment of urban wastewater with lime-induced coagulation.
Marani, Dario; Ramadori, Roberto; Braguglia, Camilla Maria
2004-01-01
The enhancement of primary treatment efficiency through the coagulation process may yield several advantages, including lower aeration energy in the subsequent biological unit and higher recovery of biogas from sludge digestion. In this work sewage coagulation with lime was studied at pilot plant level, using degritted sewage from the city of Rome. The work aimed at optimising the operating conditions (coagulant dosage or treatment pH, and mixing conditions in the coagulation and flocculation tanks), in order to maximise the efficiency of suspended Chemical Oxygen Demand (COD) removal and to minimise sludge production. Lime dosage optimisation resulted in an optimal treatment pH of 9. Lime addition up to pH 9 may increase COD removal rate in the primary treatment from typical 30-35% of plain sedimentation up to 55-70%. Within the velocity gradients experimented in this work (314-795 s(-1) for the coagulation tank and 13-46 s(-1) for the flocculation tank), mixing conditions did not significantly affect the lime-enhanced process, which seems to be controlled by slow lime dissolution. Sludge produced in the lime-enhanced process settled and compacted easily, inducing an average 36% decrease in sludge volume with respect to plain settling. However excess sludge was produced, which was not accounted for by the amount of suspended solids removed. This is probably due to incomplete dissolution of lime, which may be partially incorporated in the sludge.
Chitosan use in chemical conditioning for dewatering municipal-activated sludge.
Zemmouri, H; Mameri, N; Lounici, H
2015-01-01
This work aims to evaluate the potential use of chitosan as an eco-friendly flocculant in chemical conditioning of municipal-activated sludge. Chitosan effectiveness was compared with synthetic cationic polyelectrolyte Sedipur CF802 (Sed CF802) and ferric chloride (FeCl₃). In this context, raw sludge samples from Beni-Messous wastewater treatment plant (WWTP) were tested. The classic jar test method was used to condition sludge samples. Capillary suction time (CST), specific resistance to filtration (SRF), cakes dry solid content and filtrate turbidity were analyzed to determine filterability, dewatering capacity of conditioned sludge and the optimum dose of each conditioner. Data exhibit that chitosan, FeCl₃and Sed CF802 improve sludge dewatering. Optimum dosages of chitosan, Sed CF802 and FeCl₃allowing CST values of 6, 5 and 9 s, were found, respectively, between 2-3, 1.5-3 and 6 kg/t ds. Both polymers have shown faster water removal with more permeable sludge. SRF values were 0.634 × 10¹², 0.932 × 10¹² and 2 × 10¹² m/kg for Sed CF802, chitosan and FeCl₃respectively. A reduction of 94.68 and 87.85% of the filtrate turbidity was obtained with optimal dosage of chitosan and Sed CF802, respectively. In contrast, 54.18% of turbidity abatement has been obtained using optimal dosage of FeCl₃.
Proof of concept for a new energy-positive wastewater treatment scheme.
Remy, C; Boulestreau, M; Lesjean, B
2014-01-01
For improved exploitation of the energy content present in the organic matter of raw sewage, an innovative concept for treatment of municipal wastewater is tested in pilot trials and assessed in energy balance and operational costs. The concept is based on a maximum extraction of organic matter into the sludge via coagulation, flocculation and microsieving (100 μm mesh size) to increase the energy recovery in anaerobic sludge digestion and decrease aeration demand for carbon mineralisation. Pilot trials with real wastewater yield an extraction of 70-80% of total chemical oxygen demand into the sludge while dosing 15-20 mg/L Al and 5-7 mg/L polymer with stable operation of the microsieve and effluent limits below 2-3 mg/L total phosphorus. Anaerobic digestion of the microsieve sludge results in high biogas yields of 600 NL/kg organic dry matter input (oDMin) compared to 430 NL/kg oDMin for mixed sludge from a conventional activated sludge process. The overall energy balance for a 100,000 population equivalent (PE) treatment plant (including biofilter for post-treatment with full nitrification and denitrification with external carbon source) shows that the new concept is an energy-positive treatment process with comparable effluent quality than conventional processes, even when including energy demand for chemicals production. Estimated operating costs for electricity and chemicals are in the same range for conventional activated sludge processes and the new concept.
Method for processing aqueous wastes
Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.
1993-12-28
A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.
Li, Ruo-Hong; Li, Xiao-Yan
2017-12-01
A sequencing batch reactor-based system was developed for enhanced phosphorus (P) removal and recovery from municipal wastewater. The system consists of an iron-dosing SBR for P precipitation and a side-stream anaerobic reactor for sludge co-fermentation with food waste. During co-fermentation, sludge and food waste undergo acidogenesis, releasing phosphates under acidic conditions and producing volatile fatty acids (VFAs) into the supernatant. A few types of typical food waste were investigated for their effectiveness in acidogenesis and related enzymatic activities. The results show that approximately 96.4% of total P in wastewater was retained in activated sludge. Food waste with a high starch content favoured acidogenic fermentation. Around 55.7% of P from wastewater was recovered as vivianite, and around 66% of food waste loading was converted into VFAs. The new integration formed an effective system for wastewater treatment, food waste processing and simultaneous recovery of P and VFAs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sharmila, V Godvin; Dhanalakshmi, P; Rajesh Banu, J; Kavitha, S; Gunasekaran, M
2017-11-01
In the present study, the deflocculated sludge was disintegrated through thin layer immobilized titanium dioxide (TiO 2 ) as photocatalyst under solar irradiation. The deflocculation of sludge was carried out by 0.05g/g SS of sodium citrate aiming to facilitate more surface area for subsequent TiO 2 mediated disintegration. The proposed mode of disintegration was investigated by varying TiO 2 dosage, pH and time. The maximum COD solubilization of 18.4% was obtained in the optimum 0.4g/L of TiO 2 dosage with 5.5 pH and exposure time of 40min. Anaerobic assay of disintegrated samples confirms the role of deflocculation as methane yield was found to be higher in deflocculated (235.6mL/gVS) than the flocculated sludge (146.8mL/gVS). Moreover, the proposed method (Net cost for control - Net cost for deflocculation) saves sludge management cost of about $132 with 53.8% of suspended solids (SS) reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zheng, Huaili; Liao, Yi; Zheng, Meizhen; Zhu, Chuanjun; Ji, Fangying; Ma, Jiangya; Fan, Wei
2014-01-01
A copolymer of acrylamide (AM) with acryloyloxyethyl trimethyl ammonium chloride (DAC) as the cationic monomer was synthesized under the irradiation of high-pressure mercury lamp with 2,2-azobis(2-amidinopropane) dihydrochloride (V-50) as the photoinitiator. The compositions of the photoinduced copolymer were characterized by Fourier transform infrared spectra (FTIR), ultraviolet spectra (UV), and scanning electron microscope (SEM). The effects of 6 important factors, that is, photo-initiators concentration, monomers concentration, CO(NH2)2 (urea) concentrations, pH value, mass ratio of AM to DAC, and irradiation time on the molecular weight and dissolving time, were investigated. The optimal reaction conditions were that the photo-initiators concentration was 0.3%, monomers concentration was 30 wt.%, irradiation time was 60 min, urea concentration was 0.4%, pH value was 5.0, and mass ratio of AM to DAC was 6 : 4. Its flocculation properties were evaluated with activated sludge using jar test. The zeta potential of supernatant at different cationic monomer contents was simultaneously measured. The results demonstrated the superiority of the copolymer over the commercial polyacrylamide as a flocculant. PMID:24683343
Occurrence and fate of acrylamide in water-recycling systems and sludge in aggregate industries.
Junqua, Guillaume; Spinelli, Sylvie; Gonzalez, Catherine
2015-05-01
Acrylamide is a hazardous substance having irritant and toxic properties as well as carcinogen, mutagen, and impaired fertility possible effects. Acrylamide might be found in the environment as a consequence of the use of polyacrylamides (PAMs) widely added as a flocculant for water treatment. Acrylamide is a monomer used to produce polyacrylamide (PAM) polymers. This reaction of polymerization can be incomplete, and acrylamide molecules can be present as traces in the commercial polymer. Thus, the use of PAMs may generate a release of acrylamide in the environment. In aggregate industries, PAM is widely involved in recycling process and water reuse (aggregate washing). Indeed, these industries consume large quantities of water. Thus, European and French regulations have favored loops of recycling of water in order to reduce water withdrawals. The main goal of this article is to study the occurrence and fate of acrylamide in water-recycling process as well as in the sludge produced by the flocculation treatment process in aggregate production plants. Moreover, to strengthen the relevance of this article, the objective is also to demonstrate if the recycling system leads to an accumulation effect in waters and sludge and if free acrylamide could be released by sludge during their storage. To reach this objective, water sampled at different steps of recycling water process has been analyzed as well as different sludge corresponding to various storage times. The obtained results reveal no accumulation effect in the water of the water-recycling system nor in the sludge.
NASA Astrophysics Data System (ADS)
Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab
2018-03-01
All water treatment plants produce waste/residue amid the treatment of raw water. This study selectively investigates the clariflocculator sludge for its physicochemical characteristics and potential reuse options. Sieve analysis, XRF, SEM, XRD, FTIR, and TG-DTA instrumental techniques have been used to characterize the sludge sample. Results show that clariflocculator sludge contains about 78% fine sand having grain size range 150-75 μm. SiO2, Al2O3, Fe2O3 and CaO constitute the maximum percentage of chemical compounds present in the sludge and quartz is the main crystalline phase of the sludge. Recycling and reuse of this sludge, especially, as fine sand in preparing mortar, concrete mix and other civil engineering products would pave the way for constructive utilization with safe and sustainable sludge management strategies.
Ghangrekar, M M; Asolekar, S R; Joshi, S G
2005-03-01
Sludge characteristics available inside the reactor are of vital importance to maximize advantages of UASB reactor. The organic loading rate and sludge loading rate applied during start-up are among the important parameters to govern the sludge characteristics. Effects of these loading rates on the characteristics of the sludge developed are evaluated in six laboratory scale UASB reactors. The sludge characteristics considered are VSS/SS ratio of the sludge, sludge volume index, specific gravity, settling velocity and metal contents of the sludge developed under different loading rates. The experimental results indicate that, for developing good characteristics sludge, during primary start-up from flocculent inoculum sludge, organic loading rate and sludge loading rate should be in the range of 2.0-4.5 kg COD/m3 d and 0.1-0.25 kg COD/kg VSS d, respectively (chemical oxygen demand, COD). Proper sludge granulation and higher COD removal efficiency will be achieved by these loading rates.
Yang, Y; Zhao, Y Q; Babatunde, A O; Kearney, P
2009-01-01
In view of the well recognized need of reject water treatment in MWWTP (municipal wastewater treatment plant), this paper outlines two strategies for P removal from reject water using alum sludge, which is produced as by-product in drinking water treatment plant when aluminium sulphate is used for flocculating raw waters. One strategy is the use of the alum sludge in liquid form for co-conditioning and dewatering with the anaerobically digested activated sludge in MWWTP. The other strategy involves the use of the dewatered alum sludge cakes in a fixed bed for P immobilization from the reject water that refers to the mixture of the supernatant of the sludge thickening process and the supernatant of the anaerobically digested sludge. Experimental trials have demonstrated that the alum sludge can efficiently reduce P level in reject water. The co-conditioning strategy could reduce P from 597-675 mg P/L to 0.14-3.20 mg P/L in the supernatant of the sewage sludge while the organic polymer dosage for the conditioning of the mixed sludges would also be significantly reduced. The second strategy of reject water filtration with alum sludge bed has shown a good performance of P reduction. The alum sludge has P-adsorption capacity of 31 mg-P/g-sludge, which was tested under filtration velocity of 1.0 m/h. The two strategies highlight the beneficial utilization of alum sludge in wastewater treatment process in MWWTP, thus converting the alum sludge as a useful material, rather than a waste for landfill.
Giannakis, Stefanos; Gamarra Vives, Franco Alejandro; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César
2015-11-01
In this study, wastewater from the output of three different secondary treatment facilities (Activated Sludge, Moving Bed Bioreactor and Coagulation-Flocculation) present in the municipal wastewater treatment plant of Vidy, Lausanne (Switzerland), was further treated with various oxidation processes (UV, UV/H2O2, solar irradiation, Fenton, solar photo-Fenton), at laboratory scale. For this assessment, 6 organic micropollutants in agreement with the new environmental legislation requirements in Switzerland were selected (Carbamazepine, Clarithromycin, Diclofenac, Metoprolol, Benzotriazole, Mecoprop) and monitored throughout the treatment. Also, the overall removal of the organic load was assessed. After each secondary treatment, the efficiency of the AOPs increased in the following order: Coagulation-Flocculation < Activated Sludge < Moving Bed Bioreactor, in almost all cases. From the different combinations tested, municipal wastewater subjected to biological treatment followed by UV/H2O2 resulted in the highest elimination levels. Wastewater previously treated by physicochemical treatment demonstrated considerably inhibited micropollutant degradation rates. The degradation kinetics were determined, yielding: k (UV) < k (UV/H2O2) and k (Fenton) < k (solar irradiation) < k (photo-Fenton). Finally, the evolution of global pollution parameters (COD & TOC elimination) was followed and the degradation pathways for the effluent organic matter are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Giannakis, Stefanos; Voumard, Margaux; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César
2016-10-01
In this work, disinfection by 5 Advanced Oxidation Processes was preceded by 3 different secondary treatment systems present in the wastewater treatment plant of Vidy, Lausanne (Switzerland). 5 AOPs after two biological treatment methods (conventional activated sludge and moving bed bioreactor) and a physiochemical process (coagulation-flocculation) were tested in laboratory scale. The dependence among AOPs efficiency and secondary (pre)treatment was estimated by following the bacterial concentration i) before secondary treatment, ii) after the different secondary treatment methods and iii) after the various AOPs. Disinfection and post-treatment bacterial regrowth were the evaluation indicators. The order of efficiency was Moving Bed Bioreactor > Activated Sludge > Coagulation-Flocculation > Primary Treatment. As far as the different AOPs are concerned, the disinfection kinetics were: UVC/H2O2 > UVC and solar photo-Fenton > Fenton or solar light. The contextualization and parallel study of microorganisms with the micropollutants of the effluents revealed that higher exposure times were necessary for complete degradation compared to microorganisms for the UV-based processes and inversed for the Fenton-related ones. Nevertheless, in the Fenton-related systems, the nominal 80% removal of micropollutants deriving from the Swiss legislation, often took place before the elimination of bacterial regrowth risk. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fujita, M; Ike, M; Tachibana, S; Kitada, G; Kim, S M; Inoue, Z
2000-01-01
A bacterial strain, TKF04, capable of producing a bioflocculant from acetic and/or propionic acids was isolated from a biofilm formed in inside a kitchen drain. It was identified as a Citrobacter based on its morphological and physiological characteristics and the partial sequences of its 16S rRNA. TKF04 produced the bioflocculant during the logarithmic phase of growth, and the optimum temperature and pH for the bioflocculant production were 30 degrees C and 7.2-10.0, respectively. It could utilize some organic acids and sugars for its growth as the sole carbon sources when yeast extract was supplemented; however, only acetate and propionate were found to be good substrates for the bioflocculant production. The crude bioflocculant could be recovered from the supernatant of the culture broth by ethanol precipitation and dialysis against deionized water. It was found to be effective for flocculation of a kaolin suspension, when added at a final concentration of 1-10 mg/l, over a wide range of pHs (2-8) and temperatures (approximately 3-95 degrees C), while the co-presence of cations (Na+, K+, Ca2+, Mg2+, Fe2+, Al3+ or Fe3+) did not enhance the flocculating activity. It could efficiently flocculate a variety of inorganic and organic suspended particles, including kaolin, diatomite, bentonite, activated carbon, soil and activated sludge. It contained glucosamine as the major component, and the molecular weight was estimated to be between 232 and 440 kDa by gel filtration. The observation that the flocculating activity was completely lost following chitinase treatment and its analysis with a Fourier transform infrared spectrometer suggested that the bioflocculant is a biopolymer structurally-similar to chitin or chitosan.
Ozonation strategies to reduce sludge production of a seafood industry WWTP.
Campos, J L; Otero, L; Franco, A; Mosquera-Corral, A; Roca, E
2009-02-01
In this work, several alternatives related to the application of ozone in different streams of a seafood industry WWTP were evaluated to minimize the production of waste sludge. The WWTP was composed of two coagulation-flocculation units and a biological unit and generated around of 6550 kg/d of sludge. Ozone was applied to sludge coming from flotation units (110 g TSS/L) at doses up to 0.03 g O(3)/g TSS during batch tests, no solids solubilization being observed. Ozone doses ranging from 0.007 to 0.02 g O(3)/g TSS were also applied to the raw wastewater in a bubble column reaching a 6.8% of TSS removal for the highest ozone dose. Finally, the effect of the pre-ozonation (0.05 g O(3)/g TSS) of wastewater coming from the first flotation unit was tested in two activated sludge systems during 70 days. Ozonation caused a reduction of the observed yield coefficient of biomass from 0.14 to 0.07g TSS/g COD(Tremoved) and a slight improvement of COD removal efficiencies. On the basis of the capacity for ozone production available in the industry, a maximum reduction of sludge generated by the WWTP of 7.5% could be expected.
H2 production with anaerobic sludge using activated-carbon supported packed-bed bioreactors.
Lee, Kuo-Shing; Lo, Yung-Sheng; Lo, Yung-Chung; Lin, Ping-Jei; Chang, Jo-Shu
2003-01-01
Packed-bed bioreactors containing activated carbon as support carrier were used to produce H2 anaerobically from a sucrose-limiting medium while acclimated sewage sludge was used as the H2 producer. The effects of bed porosity (epsilon(b)) and substrate loading rate on H2 fermentation were examined using packed beds with epsilon(b) of 70-90% being operated at hydraulic retention times (HRT) of 0.5-4 h. Higher epsilon(b) and lower HRT favored H2 production. With 20 g COD l(-1) of sucrose in the feed, the optimal H2 production rate (7.4 l h(-1) l(-1)) was obtained when the bed with epsilon(b) = 90% was operated at HRT = 0.5 h. Flocculation of cells enhanced the retention of sludge for stable operations of the bioreactor at low HRTs. The gas products resulting from fermentative H2 production consisted of 30-40% H2 and 60-70% CO2. Butyric acid was the primary soluble product, followed by propionic acid and valeric acid.
Effective water content reduction in sewage wastewater sludge using magnetic nanoparticles.
Lakshmanan, Ramnath; Kuttuva Rajarao, Gunaratna
2014-02-01
The present work compares the use of three flocculants for sedimentation of sludge and sludge water content from sewage wastewater i.e. magnetic iron oxide nanoparticles (MION), ferrous sulfate (chemical) and Moringa crude extract (protein). Sludge water content, wet/dry weight, turbidity and color were performed for, time kinetics and large-scale experiment. A 30% reduction of the sludge water content was observed when the wastewater was treated with either protein or chemical coagulant. The separation of sludge from wastewater treated with MION was achieved in less than 5min using an external magnet, resulted in 95% reduction of sludge water content. Furthermore, MION formed denser flocs and more than 80% reduction of microbial content was observed in large volume experiments. The results revealed that MION is efficient in rapid separation of sludge with very low water content, and thus could be a suitable alternative for sludge sedimentation and dewatering in wastewater treatment processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor.
Lee, Kuo-Shing; Wu, Ji-Fang; Lo, Yung-Sheng; Lo, Yung-Chung; Lin, Ping-Jei; Chang, Jo-Shu
2004-09-05
A novel bioreactor containing self-flocculated anaerobic granular sludge was developed for high-performance hydrogen production from sucrose-based synthetic wastewater. The reactor achieved an optimal volumetric hydrogen production rate of approximately 7.3 L/h/L (7,150 mmol/d/L) and a maximal hydrogen yield of 3.03 mol H2/mol sucrose when it was operated at a hydraulic retention time (HRT) of 0.5 h with an influent sucrose concentration of 20 g COD/L. The gas-phase hydrogen content and substrate conversion also exceeded 40 and 90%, respectively, under optimal conditions. Packing of a small quantity of carrier matrices on the bottom of the upflow reactor significantly stimulated sludge granulation that can be accomplished within 100 h. Among the four carriers examined, spherical activated carbon was the most effective inducer for granular sludge formation. The carrier-induced granular sludge bed (CIGSB) bioreactor was started up with a low HRT of 4-8 h (corresponding to an organic loading rate of 2.5-5 g COD/h/L) and enabled stable operations at an extremely low HRT (up to 0.5 h) without washout of biomass. The granular sludge was rapidly formed in CIGSB supported with activated carbon and reached a maximal concentration of 26 g/L at HRT = 0.5 h. The ability to maintain high biomass concentration at low HRT (i.e., high organic loading rate) highlights the key factor for the remarkable hydrogen production efficiency of the CIGSB processes.
Geng, Chunnu; Bergheaud, Valérie; Garnier, Patricia; Zhu, Yong-Guan; Haudin, Claire-Sophie
2016-01-01
Acetyl Sulfamethoxazole (AC-SMX) and acetaminophen (ACM) can be found in municipal sewage sludge, and their content and availability may be influenced by sludge treatments, such as drying and liming. A sludge similarly centrifuged with/without a flocculant was spiked with (14)C-labelled AC-SMX or ACM. Then, it was either limed (20% CaO) or/and dried under different laboratory conditions (1 week at ambient temperature; and 48 h at 40 or 80 °C). The total amount and distribution of the (14)C-compounds among several chemical fractions, based on the sludge floc definition, were assessed at the end of the treatments. All the (14)C-activity brought initially was recovered in the limed and/or dried sludges for AC-SMX but only between 44.4 and 84.9% for ACM, with the highest rate obtained for the limed sludge. Drying at 80 °C or liming increased the percentage of the sludge total organic carbon recovered in the extracts containing soluble extracellular polymeric substances (S-EPS) and the percentage of the total (14)C-activity extracted simultaneously. The non-extractable residues represented only 3.9-11.6% of the total (14)C-activity measured in the treated sludges for AC-SMX and 16.9-21.8% for ACM. The presence of AC-SMX and ACM residues in the treated sludges, after liming and drying under different conditions, was shown using some (14)C-labelled molecules. At this time scale and according to the extraction method selected, most of the (14)C-residues remained soluble and easily extractable for both compounds. This result implies that certain precautions should be taken when storing sludges before being spread on the field. Sludge piles, particularly the limed sludge, should be protected from rain to limit the production of lixiviates, which may contain residues of AC-SMX and ACM. Copyright © 2015 Elsevier Ltd. All rights reserved.
Feng, Li; Liu, Shuang; Zheng, Huaili; Liang, Jianjun; Sun, Yongjun; Zhang, Shixin; Chen, Xin
2018-06-01
In this study, the ultrasonic (US)-initiated template copolymerization was employed to synthesize a novel cationic polyacrylamide (CPAM) characterized by a microblock structure using dimethyldiallylammonium chloride (DMDAAC) and acrylamide (AM) as monomers, and sodium polyacrylate (NaPAA) as template. The polymers structure property was analyzed by Fourier transform infrared spectroscopy (FT-IR), 1 H nuclear magnetic resonance spectroscopy ( 1 H NMR) and thermogravimetric analysis (TGA). The results showed that a novel cationic microblock structure was successfully synthesized in the template copolymer of DMDAAC and AM (TPADM). Meanwhile, the analysis result of association constant (M K ) provided powerful support for a I Zip-up (ZIP) template polymerization mechanism and the formation of the microblock structure. The factors affecting the polymerization were investigated, including ultrasonic power, ultrasonic time, monomer concentration, initiator concentration, m AM :m DMDAAC and n NaPAA :n DMDAAC . The sludge dewatering performance of the polymers was evaluated in terms of specific resistance to filtration (SRF), filter cake moisture content (FCMC), floc size (d 50 ) and fractal dimension (D f ). Flocculation mechanism was also analyzed and discussed. The sludge dewatering results revealed that the polymer with the novel microblock structure showed a more excellent flocculation performance than those with randomly distributed cationic units. A desirable flocculation performance with a SRF of 4.5 × 10 12 m kg -1 , FCMC of 73.1%, d 50 of 439.156 µm and D f of 1.490 were obtained at pH of 7.0, dosage of 40 mg L -1 and the molecular weight of 5.0 × 10 6 Da. The cationic microblock extremely enhanced the polymer charge neutralization and bridging ability, thus obtaining the excellent sludge dewatering performance. Copyright © 2018 Elsevier B.V. All rights reserved.
Aerobic granular sludge: a promising technology for decentralised wastewater treatment.
Li, Z H; Kuba, T; Kusuda, T
2006-01-01
In order to evaluate the characteristics of aerobic granular sludge, a sequencing batch reactor, feeding with synthetic wastewater at the organic loading rate of 8 kg COD/m3 d, was employed on the laboratory scale. Granules occurred in the reactor within 1 week after the inoculation from conventional flocculent sludge. Aerobic granular sludge was characterised by the outstanding settling properties and considerable contaminates removal efficiencies. The SVI30 values were in the range of 20 to 40 ml g(-1). However, the sludge volume index of short settling time (e.g. SVI10--10 min) is suggested to describe the fast settling properties of aerobic granular sludge. The potential application in the decentralised system is evaluated from the point view of footprint and high bioactivity. The occurrence of sloughing, resulting from the outgrowth of filamentous organisms, would be responsible for the instability of aerobic granules. The starvation phase should therefore be carefully controlled for the maintenance and stability of aerobic granular sludge system.
The use of waterworks sludge for the treatment of vegetable oil refinery industry wastewater.
Basibuyuk, M; Kalat, D G
2004-03-01
Water treatment works using coagulation/flocculation in the process stream will generate a waste sludge. This sludge is termed as ferric, alum, or lime sludge based on which coagulant was primarily used. The works in Adana, Turkey uses ferric chloride. The potential for using this sludge for the treatment of vegetable oil refinery industry wastewater by coagulation has been investigated. The sludge acted as a coagulant and excellent oil and grease, COD and TSS removal efficiencies were obtained. The optimum conditions were a pH of 6 and a sludge dose of 1100 mg SS l(-1). The efficiency of sludge was also compared with alum and ferric chloride for the vegetable oil refinery wastewater. At doses of 1300-1900 mg SS l(-1), the sludge was as effective as ferric chloride and alum at removing oil and grease, COD, and TSS. In addition, various combinations of ferric chloride and waterworks sludge were also examined. Under the condition of 12.5 mg l(-1) fresh ferric chloride and 1000 mg SS l(-1) sludge dose, 99% oil and grease 99% TSS and 83% COD removal efficiencies were obtained.
Xie, B; Dai, X-C; Xu, Y-T
2007-05-08
The cause and control of foaming and bulking in triple oxidation ditch at a wastewater treatment plant (WWTP) were investigated. The results showed that the foaming and bulking was mainly caused by the excessive propagation of Microthrix parvicella, and mostly occurred in the cold winter and spring. Batch and continuous flow experiments indicated that biological techniques such as reducing sludge retention time (SRT) and increasing F/M ratio, chemical methods such as addition of chlorine (NaOCl), quaternary ammonium salt (QAS), or cationic polyacrylamide flocculants (PAM), polyaluminum salt (PAC) could decrease Sludge Volume Index (SVI) and control foaming and bulking at different levels. In practical application, the shorter SRT was effective to control foaming and bulking in initial stage, although it took longer time. Addition of 10gClkgMLSSd(-1) could gradually change the activated sludge with serious foaming and bulking to normal state within a week. Pre-alert control strategies should be established for the control of filamentous foaming and bulking.
Daigger, Glen T; Siczka, John S; Smith, Thomas F; Frank, David A; McCorquodale, J A
The performance characteristics of relatively shallow (3.3 and 3.7 m sidewater depth in 30.5 m diameter) activated sludge secondary clarifiers were extensively evaluated during a 2-year testing program at the City of Akron Water Reclamation Facility (WRF), Ohio, USA. Testing included hydraulic and solids loading stress tests, and measurement of sludge characteristics (zone settling velocity (ZSV), dispersed and flocculated total suspended solids), and the results were used to calibrate computational fluid dynamic (CFD) models of the various clarifiers tested. The results demonstrated that good performance could be sustained at surface overflow rates in excess of 3 m/h, as long as the clarifier influent mixed liquor suspended solids (MLSS) concentration was controlled to below critical values. The limiting solids loading rate (SLR) was significantly lower than the value predicted by conventional solids flux analysis based on the measured ZSV/MLSS relationship. CFD analysis suggested that this resulted because mixed liquor entering the clarifier was being directed into the settled sludge blanket, diluting it and also creating a 'thin' concentration sludge blanket that overlays the thicker concentration sludge blanket typically expected. These results indicate the need to determine the allowable SLR for shallow clarifiers using approaches other than traditional solids flux analysis. A combination of actual testing and CFD analyses are demonstrated here to be effective in doing so.
González, C; García, P A; Muñoz, R
2009-01-01
Piggery wastewater is characterized by its high content in nitrogen and phosphorus, as well as by a low C/N ratio. This type of wastewater is traditionally spread to croplands (with its subsequent leaching to groundwater) or rarely discharged into natural water bodies, which ultimately cause severe episodes of eutrophication in aquatic ecosystems. In this context, activated sludge systems constitute a robust and efficient treatment option. The performance of an activated sludge process using a pre-denitrification configuration treating both sieved and flocculated swine slurry at a hydraulic retention time (HRT) of 7.7 days was evaluated. In order to avoid bacterial wash-out, sludge from the settler was recirculated to the anoxic tank to accomplish denitrification. Once the biomass was acclimatized, the reactor was fed with swine slurry containing 19, 2.6, and 0.27 g/L of total chemical oxygen demand (COD), total Kjeldhal nitrogen (TKN), and soluble P, respectively. Nitrogen removal showed a clear dependency on the influent composition. When the influent TKN/total COD and soluble COD/total COD ratios were respectively 0.12-0.15 and 0.7, the reactor exhibited good removal efficiencies (up to 99 and 91 for N-NH(4)(+), TKN, respectively) while PO(4)(3-) was removed up to 65%. However, when the influent TKN/total COD ratio rose to 0.26 and soluble COD/total COD decreased to 0.3, the denitrification process was severely hindered concomitant with and accumulation of nitrite. Nevertheless, organic matter degradation was not affected by influent composition. At the last stage of the experiment, removals of dissolved phosphorus fell to 40% when the redox potential (ORP) profile showed a constant value of -400 mV, likely due to phosphate released from bacterial sludge.
Zbik, Marek S; Martens, Wayde N; Frost, Ray L; Song, Yen-Fang; Chen, Yi-Ming; Chen, Jian-Hua
2010-05-01
The aggregate structure which occurs in aqueous smectitic suspensions is responsible for poor water clarification, difficulties in sludge dewatering and the unusual rheological behaviour of smectite rich soils. These macroscopic properties are dictated by the 3D structural arrangement of smectite finest fraction within flocculated aggregates. Here, we report results from a relatively new technique, transmission X-ray microscopy (TXM), which makes it possible to investigate the internal structure and 3D tomographic reconstruction of the smectite clay aggregates modified by Al(13) Keggin macro-molecule [Al(13)(O)(4)(OH)(24)(H(2)O)(12)](7+). Three different treatment methods were shown resulted in three different micro-structural environments of the resulting flocculation. In case of smectite sample prepared in Methods 1 and 3 particles fall into the primary minimum where Van der Waals forces act between FF oriented smectite flakes and aggregates become approach irreversible flocculation. In case of sample prepared using Method 2, particles contacting by edges (EE) and edge to face (EF) orientation fell into secondary minimum and weak flocculation resulted in severe gelation and formation of the micelle-like texture in fringe superstructure, which was first time observed in smectite based gel. Copyright 2010 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Arasmith, E. E.
The jar test is used to determine the proper chemical dosage required for good coagulation and flocculation of water. The test is commonly used in potable water, secondary effluent prior to advanced wastewater treatment, secondary clarifier influent, and sludge conditioning practice. Designed for individuals who have completed National Pollutant…
Fate of cyanobacteria in drinking water treatment plant lagoon supernatant and sludge.
Pestana, Carlos J; Reeve, Petra J; Sawade, Emma; Voldoire, Camille F; Newton, Kelly; Praptiwi, Radisti; Collingnon, Lea; Dreyfus, Jennifer; Hobson, Peter; Gaget, Virginie; Newcombe, Gayle
2016-09-15
In conventional water treatment processes, where the coagulation and flocculation steps are designed to remove particles from drinking water, cyanobacteria are also concentrated into the resultant sludge. As a consequence, cyanobacteria-laden sludge can act as a reservoir for metabolites such as taste and odour compounds and cyanotoxins. This can pose a significant risk to water quality where supernatant from the sludge treatment facility is returned to the inlet to the plant. In this study the complex processes that can take place in a sludge treatment lagoon were investigated. It was shown that cyanobacteria can proliferate in the conditions manifest in a sludge treatment lagoon, and that cyanobacteria can survive and produce metabolites for at least 10days in sludge. The major processes of metabolite release and degradation are very dependent on the physical, chemical and biological environment in the sludge treatment facility and it was not possible to accurately model the net effect. For the first time evidence is provided to suggest that there is a greater risk associated with recycling sludge supernatant than can be estimated from the raw water quality, as metabolite concentrations increased by up to 500% over several days after coagulation, attributed to increased metabolite production and/or cell proliferation in the sludge. Copyright © 2016 Elsevier B.V. All rights reserved.
CFD-aided modelling of activated sludge systems - A critical review.
Karpinska, Anna M; Bridgeman, John
2016-01-01
Nowadays, one of the major challenges in the wastewater sector is the successful design and reliable operation of treatment processes, which guarantee high treatment efficiencies to comply with effluent quality criteria, while keeping the investment and operating cost as low as possible. Although conceptual design and process control of activated sludge plants are key to ensuring these goals, they are still based on general empirical guidelines and operators' experience, dominated often by rule of thumb. This review paper discusses the rationale behind the use of Computational Fluid Dynamics (CFD) to model aeration, facilitating enhancement of treatment efficiency and reduction of energy input. Several single- and multiphase approaches commonly used in CFD studies of aeration tank operation, are comprehensively described, whilst the shortcomings of the modelling assumptions imposed to evaluate mixing and mass transfer in AS tanks are identified and discussed. Examples and methods of coupling of CFD data with biokinetics, accounting for the actual flow field and its impact on the oxygen mass transfer and yield of the biological processes occurring in the aeration tanks, are also critically discussed. Finally, modelling issues, which remain unaddressed, (e.g. coupling of the AS tank with secondary clarifier and the use of population balance models to simulate bubbly flow or flocculation of the activated sludge), are also identified and discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wang, Dongbo; Liu, Xuran; Zeng, Guangming; Zhao, Jianwei; Liu, Yiwen; Wang, Qilin; Chen, Fei; Li, Xiaoming; Yang, Qi
2018-03-01
Previous investigations showed that cationic polyacrylamide (cPAM), a flocculant widely used in wastewater pretreatment and waste activated sludge dewatering, deteriorated methane production during anaerobic digestion of sludge. However, details of how cPAM affects methane production are poorly understood, hindering deep control of sludge anaerobic digestion systems. In this study, the mechanisms of cPAM affecting sludge anaerobic digestion were investigated in batch and long-term tests using either real sludge or synthetic wastewaters as the digestion substrates. Experimental results showed that the presence of cPAM not only slowed the process of anaerobic digestion but also decreased methane yield. The maximal methane yield decreased from 139.1 to 86.7 mL/g of volatile suspended solids (i.e., 1861.5 to 1187.0 mL/L) with the cPAM level increasing from 0 to 12 g/kg of total suspended solids (i.e., 0-236.7 mg/L), whereas the corresponding digestion time increased from 22 to 26 d. Mechanism explorations revealed that the addition of cPAM significantly restrained the sludge solubilization, hydrolysis, acidogenesis, and methanogenesis processes. It was found that ∼46% of cAPM was degraded in the anaerobic digestion, and the degradation products significantly affected methane production. Although the theoretically biochemical methane potential of cPAM is higher than that of protein and carbohydrate, only 6.7% of the degraded cPAM was transformed to the final product, methane. Acrylamide, acrylic acid, and polyacrylic acid were found to be the main degradation metabolites, and their amount accounted for ∼50% of the degraded cPAM. Further investigations showed that polyacrylic acid inhibited all the solubilization, hydrolysis, acidogenesis, and methanogenesis processes while acrylamide and acrylic acid inhibited the methanogenesis significantly. Copyright © 2017 Elsevier Ltd. All rights reserved.
Feasibility of bioleaching combined with Fenton oxidation to improve sewage sludge dewaterability.
Liu, Changgeng; Zhang, Panyue; Zeng, Chenghua; Zeng, Guangming; Xu, Guoyin; Huang, Yi
2015-02-01
A novel joint method of bioleaching with Fenton oxidation was applied to condition sewage sludge. The specific resistance to filtration (SRF) and moisture of sludge cake (MSC) were adopted to evaluate the improvement of sludge dewaterability. After 2-day bioleaching, the sludge pH dropped to about 2.5 which satisfied the acidic condition for Fenton oxidation. Meanwhile, the SRF declined from 6.45×10(10) to 2.07×10(10) s2/g, and MSC decreased from 91.42% to 87.66%. The bioleached sludge was further conditioned with Fenton oxidation. From an economical point of view, the optimal dosages of H2O2 and Fe2+ were 0.12 and 0.036 mol/L, respectively, and the optimal reaction time was 60 min. Under optimal conditions, SRF, volatile solids reduction, and MSC were 3.43×10(8) s2/g, 36.93%, and 79.58%, respectively. The stability and settleability of sewage sludge were both improved significantly. Besides, the results indicated that bioleaching-Fenton oxidation was more efficient in dewatering the sewage sludge than traditional Fenton oxidation. The sludge conditioning mechanisms by bioleaching-Fenton oxidation might mainly include the flocculation effects and the releases of extracellular polymeric substances-bound water and intercellular water. Copyright © 2014. Published by Elsevier B.V.
Development of a flocculation sub-model for a 3-D CFD model based on rectangular settling tanks.
Gong, M; Xanthos, S; Ramalingam, K; Fillos, J; Beckmann, K; Deur, A; McCorquodale, J A
2011-01-01
To assess performance and evaluate alternatives to improve the efficiency of rectangular Gould II type final settling tanks (FSTs), New York City Department of Environmental Protection and City College of NY developed a 3D computer model depicting the actual structural configuration of the tanks and the current and proposed hydraulic and solids loading rates. Fluent 6.3.26™ was the base platform for the computational fluid dynamics (CFD) model, for which sub-models of the SS settling characteristics, turbulence, flocculation and rheology were incorporated. This was supplemented by field and bench scale experiments to quantify the coefficients integral to the sub-models. The 3D model developed can be used to consider different baffle arrangements, sludge withdrawal mechanisms and loading alternatives to the FSTs. Flocculation in the front half of the rectangular tank especially in the region before and after the inlet baffle is one of the vital parameters that influences the capture efficiency of SS. Flocculation could be further improved by capturing medium and small size particles by creating an additional zone with an in-tank baffle. This was one of the methods that was adopted in optimizing the performance of the tank where the CCNY 3D CFD model was used to locate the in-tank baffle position. This paper describes the development of the flocculation sub-model and the relationship of the flocculation coefficients in the known Parker equation to the initial mixed liquor suspended solids (MLSS) concentration X0. A new modified equation is proposed removing the dependency of the breakup coefficient to the initial value of X0 based on preliminary data using normal and low concentration mixed liquor suspended solids values in flocculation experiments performed.
Lu, Yi; Zhang, Chunmei; Zheng, Guanyu; Zhou, Lixiang
2018-04-22
Prior to mechanical dewatering, sludge conditioning is indispensable to reduce the difficulty of sludge treatment and disposal. The effect of bioacidification conditioning driven by Acidithiobacillus ferrooxidans LX5 on the dewatering rate and extent of sewage sludge during compression dewatering process was investigated in this study. The results showed that the bioacidification of sludge driven by A. ferrooxidans LX5 simultaneously improved both the sludge dewatering rate and extent, which was not attained by physical/chemical conditioning approaches, including ultrasonication, microwave, freezing/thawing, or by adding the chemical conditioner cationic polyacrylamide (CPAM). During the bioacidification of sludge, the decrease in sludge pH induced the damage of sludge microbial cell structures, which enhanced the dewatering extent of sludge, and the added Fe 2+ and the subsequent bio-oxidized Fe 3+ effectively flocculated the damaged sludge flocs to improve the sludge dewatering rate. In the compression dewatering process consisting of filtration and expression stages, high removal of moisture and a short dewatering time were achieved during the filtration stage and the expression kinetics were also improved because of the high elasticity of sludge cake and the rapid creeping of the aggregates within the sludge cake. In addition, the usefulness of bioacidification driven by A. ferrooxidans LX5 in improving the compression dewatering of sewage sludge could not be attained by the chemical treatment of sludge through pH modification and Fe 3+ addition. Therefore, the bioacidification of sludge driven by A. ferrooxidans LX5 is an effective conditioning method to simultaneously improve the rate and extent of compression dewatering of sewage sludge.
Sowmya Packyam, G; Kavitha, S; Adish Kumar, S; Kaliappan, S; Yeom, Ick Tae; Rajesh Banu, J
2015-09-01
In this study, ultrasonication was used for sludge deflocculation, followed by cell disintegration using ozone. The effect of this phase separated sono-ozone pretreatment is evaluated based on extra polymeric substances release, deoxyribonucleic acid (DNA) in the medium, solubilization of intra cellular components and suspended solids (SS) reduction. Ultrasonically induced deflocculation was optimized at an energy dosage of 76.4(log 1.88)kJ/kg TS. During cell disintegration (ozone dosage 0.0011 mgO3/mgSS), chemical oxygen demand solubilization (COD) and SS reduction of sonic mediated ozone pretreated sludge were 25.4% and 17.8% comparatively higher than ozone pretreated sludge, respectively. Further, biogas production potential of control (raw), flocculated (ozone pretreated), and deflocculated (sonic mediated ozone pretreated) sludges were observed to be 0.202, 0.535 and 0.637 L/(gVS), respectively. Thus, the phase separated pretreatment at lower ultrasonic specific energy and low dose ozone proved to enhance the anaerobic biodegradability efficiently. Copyright © 2015 Elsevier B.V. All rights reserved.
Huang, Xiangfeng; Mu, Tianshuai; Shen, Changming; Lu, Lijun; Liu, Jia
2016-12-01
Volatile fatty acid (VFA) production stimulated by saponin (SP), an environmentally friendly bio-surfactant, was investigated during sludge alkaline fermentation in laboratory studies and pilot applications. The combined use of SP and pH 9 condition significantly enhanced VFA production to approximately 425 mg COD/g VSS, which was 4.7-fold of raw sludge and 1.5-fold of sole pH 10 adjustment (the optimum pH for alkaline fermentation). Further results indicated that SP & pH 9 condition provided sufficient substrates for acidification and decreased the consumption of VFAs through methanogenesis. Moreover, SP accompanied by moderate alkaline condition (i.e. pH 9) showed weaker inhibitory effects on key enzyme activities and metabolic potential of acidification microorganisms than sole pH 10 adjustment. On this basis, a pilot-scale system involving anaerobic fermentation and anaerobic-anoxic-aerobic step-feed bioreaction tanks was established to study the potential of VFAs as supplementary carbon sources for wastewater treatment. The influent of the pilot system was sanitary wastewater characterized by low C/N ratios from a scenic rural area. After flocculation and nutrient precipitation, the fermentation supernatant was mixed with the influent at a volume ratio of 1:30. With this approach, nitrogen and phosphorus concentrations in effluent fulfilled the first-A wastewater discharge standard in China.
Stable aerobic granules in continuous-flow bioreactor with self-forming dynamic membrane.
Liu, Hongbo; Li, Yajie; Yang, Changzhu; Pu, Wenhong; He, Liu; Bo, Fu
2012-10-01
A novel continuous-flow bioreactor with aerobic granular sludge and self-forming dynamic membrane (CGSFDMBR) was developed for efficient wastewater treatment. Under continuous-flow operation, aerobic granular sludge was successfully cultivated and characterized with small particle size of about 0.1-1.0mm, low settling velocity of about 15-25 m/h, loose structure and high water content of about 96-98%. To maintain the stability of aerobic granular sludge, strategies based on the differences of settling velocity and particle-size between granular and flocculent sludge were implemented. Moreover, in CGSFDMBR, membrane fouling was greatly relieved. Dynamic membrane was just cleaned once in more than 45 days' operation. CGSFDMBR presented good performance in treating septic tank wastewater, obtaining average COD, NH(4)(+)-N, TN and TP removal rates of 83.3%, 73.3%, 67.3% and 60%, respectively, which was more efficient than conventional bioreactors since that carbon, nitrogen and phosphorus were simultaneously removed in a single aerobic reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.
Flocculation mechanism of the actinomycete Streptomyces sp. hsn06 on Chlorella vulgaris.
Li, Yi; Xu, Yanting; Zheng, Tianling; Wang, Hailei
2017-09-01
In this study, an actinomycete Streptomyces sp. hsn06 with the ability to harvest Chlorella vulgaris biomass was used to investigate the flocculation mechanism. Streptomyces sp. hsn06 exhibited flocculation activity on algal cells through mycelial pellets with adding calcium. Calcium was determined to promote flocculation activity of mycelial pellets as a bridge binding with mycelial pellets and algal cells, which implied that calcium bridging is the main flocculation mechanism for mycelial pellets. Characteristics of flocculation activity confirmed proteins in mycelial pellets involved in flocculation procedure. The morphology and structure of mycelial pellets also caused dramatic effects on flocculation activity of mycelial pellets. According to the results, Streptomyces sp. hsn06 can be used as a novel flocculating microbial resource for high-efficiency harvesting of microalgae biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.
State of the art on granular sludge by using bibliometric analysis.
Zheng, Tianlong; Li, Pengyu; Wu, Wenjun; Liu, Jianguo; Shi, Zhining; Guo, Xuesong; Liu, Junxin
2018-04-01
With rapid industrialization and urbanization in the nineteenth century, the activated sludge process (ASP) has experienced significant steps forward in the face of greater awareness of and sensitivity toward water-related environmental problems. Compared with conventional flocculent ASP, the major advantages of granular sludge are characterized by space saving and resource recovery, where the methane and hydrogen recovery in anaerobic granular and 50% more space saving, 30-50% of energy consumption reduction, 75% of footprint cutting, and even alginate recovery in aerobic granular. Numerous engineers and scientists have made great efforts to explore the superiority over the last 40 years. Therefore, a bibliometric analysis was desired to trace the global trends of granular sludge research from 1992 to 2016 indexed in the SCI-EXPANDED. Articles were published in 276 journals across 44 subject categories spanning 1420 institutes across 68 countries. Bioresource Technology (293, 11.9%), Water Research (235, 9.6%), and Applied Microbiology and Biotechnology (127, 5.2%) dominated in top three journals. The Engineering (991, 40.3%), China (906, 36.9%), and Harbin Inst Technol, China (114, 4.6%) were the most productive subject category, country, and institution, respectively. The hotspot is the emerging techniques depended on granular reactors in response to the desired removal requirements and bio-energy production (primarily in anaerobic granular sludge). In view of advanced and novel bio-analytical methods, the characteristics, functions, and mechanisms for microbial granular were further revealed in improving and innovating the granulation techniques. Therefore, a promising technique armed with strengthened treatment efficiency and efficient resource and bio-energy recovery can be achieved.
Fra-Vázquez, A; Morales, N; Figueroa, M; Val Del Río, A; Regueiro, L; Campos, J L; Mosquera-Corral, A
2016-09-01
Aerobic granular sludge represents an interesting approach for simultaneous organic matter and nitrogen removal in wastewater treatment plants. However, the information about microbial communities in aerobic granular systems dealing with industrial wastewater like pig slurry is limited. Herein, bacterial diversity and dynamics were assessed in a pilot scale plant using aerobic granular sludge for organic matter and nitrogen elimination from swine slurry during more than 300 days. Results indicated that bacterial composition evolved throughout the operational period from flocculent activated sludge, used as inoculum, to mature aerobic granules. Bacterial diversity increased at the beginning of the granulation process and then declined due to the application of transient organic matter and nitrogen loads. The operational conditions of the pilot plant and the degree of granulation determined the microbial community of the aerobic granules. Brachymonas, Zoogloea and Thauera were attributed with structural function as they are able to produce extracellular polymeric substances to maintain the granular structure. Nitrogen removal was justified by partial nitrification (Nitrosomonas) and denitrification (Thauera and Zoogloea), while Comamonas was identified as the main organic matter oxidizing bacteria. Overall, clear links between bacterial dynamics and composition with process performance were found and will help to predict their biological functions in wastewater ecosystems improving the future control of the process. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1212-1221, 2016. © 2016 American Institute of Chemical Engineers.
Li, Yi; Xu, Yanting; Liu, Lei; Jiang, Xiaobing; Zhang, Kun; Zheng, Tianling; Wang, Hailei
2016-10-01
Bioflocculant from Shinella albus xn-1 could be used to harvest energy-producing microalga Chlorella vulgaris biomass for the first time. In this study, we investigated the flocculation activity and mode of strain xn-1, the characteristics of bioflocculant, the effect of flocculation conditions and optimized the flocculation efficiency. The results indicated that strain xn-1 exhibited flocculation activity through secreting bioflocculant; the bioflocculant with high thermal stability, pH stability and low molecular weight was proved to be not protein and polysaccharide, and flocculation active component was confirmed to contain triple bond and cumulated double bonds; algal pH, temperature and metal ions showed great impacts on the flocculation efficiency of bioflocculant; the maximum flocculation activity of bioflocculant reached 85.65% after the response surface optimization. According to the results, the bioflocculant from S. albus xn-1 could be a good potential in applications for high-efficiency harvesting of microalgae. Copyright © 2016 Elsevier Ltd. All rights reserved.
Volumetric modeling of two sludge piles from water treatment plants in a Brazilian reservoir.
Almeida, Aline Mansur; Wada, Eduardo Yukio Basílio; Wasserman, Julio Cesar
2018-01-01
Water treatment plants are designed to continuously produce drinkable water, meeting defined criteria of potability. However, besides potable water, these plants produce sludges that are disposed of in the environment. The present work aimed to evaluate the sludges generated in two water treatment plants and disposed of in the margin of the Juturnaíba dam. Since alum has been used as a flocculating agent in these two plants, the concentrations of aluminum were measured in the sludges and in surface sediments. The generated piles are extremely soft to walk on and difficult to measure, so indirect modeling procedures had to be applied. The calculated mass of the sludge piles at each plant are similar and respectively 60,370 and 61,479 tons. The aluminum content of the residues, calculated according to its dosage, was 33.2 and 32.6 g kg -1 in the piles from the two plants. The amount of alum dosed to the water corresponds almost to the excess of aluminum in the sludge, compared to the sediments. It was concluded that regardless of the fact that residues are disposed of in very restricted areas, they are directly in contact with the water and may constitute a threat for the environment and humans' health.
Soluble microbial products (SMPs) release in activated sludge systems: a review
2012-01-01
This review discusses the characterization, production and implications of soluble microbial products (SMPs) in biological wastewater treatment. The precise definition of SMPs is open to talk about, but is currently regarded as “the pool of organic compounds that are released into solution from substrate metabolism and biomass decay”'. Some of the SMPs have been identified as humic acids, polysaccharides, proteins, amino acids, antibiotics, extracellular enzymes and structural components of cells and products of energy metabolism. They adversely affect the kinetic activity, flocculating and settling properties of sludge. This review outlines some important findings with regard to biodegradability and treatability of SMPs and also the effect of process parameters on their production. As SMPs are produced during biological treatment process, their trace amounts normally remain in the effluent that defines the highest COD removal efficiency. Their presence in effluent represents a high potential risk of toxic by-product formation during chlorine disinfection. Studies have indicated that among all wastewater post-treatment processes, the adsorption by granular activated carbon combined with biologically induced degradation is the most effective method for removal of SMPs. However, it may be concludes that the knowledge regarding SMPs is still under progress and more work is required to fully understand their contribution to the treatment process. PMID:23369231
Soluble microbial products (SMPs) release in activated sludge systems: a review.
Azami, Hamed; Sarrafzadeh, Mohammad Hossein; Mehrnia, Mohammad Reza
2012-12-18
This review discusses the characterization, production and implications of soluble microbial products (SMPs) in biological wastewater treatment. The precise definition of SMPs is open to talk about, but is currently regarded as "the pool of organic compounds that are released into solution from substrate metabolism and biomass decay"'. Some of the SMPs have been identified as humic acids, polysaccharides, proteins, amino acids, antibiotics, extracellular enzymes and structural components of cells and products of energy metabolism. They adversely affect the kinetic activity, flocculating and settling properties of sludge. This review outlines some important findings with regard to biodegradability and treatability of SMPs and also the effect of process parameters on their production. As SMPs are produced during biological treatment process, their trace amounts normally remain in the effluent that defines the highest COD removal efficiency. Their presence in effluent represents a high potential risk of toxic by-product formation during chlorine disinfection. Studies have indicated that among all wastewater post-treatment processes, the adsorption by granular activated carbon combined with biologically induced degradation is the most effective method for removal of SMPs. However, it may be concludes that the knowledge regarding SMPs is still under progress and more work is required to fully understand their contribution to the treatment process.
Ho, Y C; Norli, I; Alkarkhi, Abbas F M; Morad, N
2009-01-01
The performance of pectin in turbidity reduction and the optimum condition were determined using Response Surface Methodology (RSM). The effect of pH, cation's concentration, and pectin's dosage on flocculating activity and turbidity reduction was investigated at three levels and optimized by using Box-Behnken Design (BBD). Coagulation and flocculation process were assessed with a standard jar test procedure with rapid and slow mixing of a kaolin suspension (aluminium silicate), at 150 rpm and 30 rpm, respectively, in which a cation e.g. Al(3+), acts as coagulant, and pectin acts as the flocculant. In this research, all factors exhibited significant effect on flocculating activity and turbidity reduction. The experimental data and model predictions well agreed. From the 3D response surface graph, maximum flocculating activity and turbidity reduction are in the region of pH greater than 3, cation concentration greater than 0.5 mM, and pectin dosage greater than 20 mg/L, using synthetic turbid wastewater within the range. The flocculating activity for pectin and turbidity reduction in wastewater is at 99%.
Flocculation of kaolin and lignin by bovine blood and hemoglobin
USDA-ARS?s Scientific Manuscript database
Polymeric flocculants are used extensively for water purification, inhibition of soil erosion, and reduction in water leakage from unlined canals. Production of highly active, renewable polymeric flocculants to replace synthetic flocculants is a priority. Using suspensions of kaolin, flocculation ...
Amuda, O S; Amoo, I A; Ajayi, O O
2006-02-28
This study investigated the effect of coagulation/flocculation treatment process on wastewater of Fumman Beverage Industry, Ibadan, Nigeria. The study also compared different dosages of coagulant, polyelectrolyte (non-ionic polyacrylamide) and different pH values of the coagulation processes. The effect of different dosages of polyelectrolyte in combination with coagulant was also studied. The results reveal that low pH values (3-8), enhance removal efficiency of the contaminants. Percentage removal of 78, 74 and 75 of COD, TSS and TP, respectively, were achieved by the addition of 500 mg/L Fe2(SO4)3.3H2O and 93, 94 and 96% removal of COD, TSS and TP, respectively, were achieved with the addition of 25 mg/L polyelectrolyte to the coagulation process. The volume of sludge produced, when coagulant was used solely, was higher compared to the use of polyelectrolyte combined with Fe2(SO4)3.3H2O. This may be as a result of non-ionic nature of the polyelectrolyte; hence, it does not chemically react with solids of the wastewater. Coagulation/flocculation may be useful as a pre-treatment process for beverage industrial wastewater prior to biological treatment.
Bian, Bo; Zhang, Limin; Zhang, Qin; Zhang, Shaopeng; Yang, Zhen; Yang, Weiben
2018-08-01
A cost-effective approach for pretreatment of chemical sludge for further dewatering, based on the idea of "using waste to treat waste", is provided. It is a coupled heating/acidification pretreatment method, where waste sulfuric acid is employed and relatively low temperatures (<100 °C) are applied. Effects of reaction time, temperature, and dosage of waste acid on dewatering performance (both dewatering speed and degree) are studied. Under the optimal conditions (reaction time: 30 min; temperature: 90 °C; waste acid dosage: 0.175 g/(g dried sludge)), the method of this work demonstrates three advantages compared to the conventional method using lime+polyacrylamide: lower moisture content of treated sludge; higher calorific value for incineration process; and lower cost. Detailed mechanism of the pretreatment for dewatering is investigated via characterizations and statistical analyses of various parameters, among which zeta potential, particle size, protein and polysaccharide contents, soluble chemical oxygen demand (SCOD), reduction of combined water and volatile suspended solid (VSS), are associated with dewatering performance. Both heating and acidification generate disintegration of cells in sludge, giving rise to two phenomena: more organic matters are released into solution and more bound water turns into free water. Meantime, the released organic polymers flocculate sludge particles, further accelerating the solid-liquid separation process. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gao, Hongyu; Zhang, Weijun; Song, Zhenzhen; Yang, Xiaofang; Yang, Lian; Cao, Mengdi; Wang, Dongsheng; Liao, Guiying
2017-06-13
Chemical conditioning has been used for enhancing wastewater sludge dewaterability for many years, but the characteristics of odorous pollutants emission in sludge conditioning were still unclear. In this work, the transfer behavior of different odorous pollutants between air, liquid and solid phases under typical chemical conditioning processes for high-pressure dewatering was systematically investigated. The results indicated that that besides hydrogen sulfide (H 2 S) and ammonia (NH 3 ), 21 kinds of volatile organic contaminants (VOCs) were identified and quantified by gas chromatography-mass spectrometry (GC-MS), while the concentrations and composition of odorous pollutants varied greatly for different conditioning processes. VOCs were composed by three main constituents including benzenes, halogeno benzene and hydrocarbons. According to mass balance analysis, about 50% of VOCs adsorbed within sludge extracellular polymeric substances (EPS) fraction. Since EPS was damaged and/or flocculation in different chemical conditioning processes, VOCs distributed in solid phase transformed into liquid phase and then released into air. The discrepancies in mass of odorous pollutants before and after chemical conditioning were likely to be related to chemical conversion under acidification, oxidation and precipitation in the presence of ferric ions.
Holle, Ann Van; Machado, Manuela D; Soares, Eduardo V
2012-02-01
Flocculation is an eco-friendly process of cell separation, which has been traditionally exploited by the brewing industry. Cell surface charge (CSC), cell surface hydrophobicity (CSH) and the presence of active flocculins, during the growth of two (NCYC 1195 and NCYC 1214) ale brewing flocculent strains, belonging to the NewFlo phenotype, were examined. Ale strains, in exponential phase of growth, were not flocculent and did not present active flocculent lectins on the cell surface; in contrast, the same strains, in stationary phase of growth, were highly flocculent (>98%) and presented a hydrophobicity of approximately three to seven times higher than in exponential phase. No relationship between growth phase, flocculation and CSC was observed. For comparative purposes, a constitutively flocculent strain (S646-1B) and its isogenic non-flocculent strain (S646-8D) were also used. The treatment of ale brewing and S646-1B strains with pronase E originated a loss of flocculation and a strong reduction of CSH; S646-1B pronase E-treated cells displayed a similar CSH as the non-treated S646-8D cells. The treatment of the S646-8D strain with protease did not reduce CSH. In conclusion, the increase of CSH observed at the onset of flocculation of ale strains is a consequence of the presence of flocculins on the yeast cell surface and not the cause of yeast flocculation. CSH and CSC play a minor role in the auto-aggregation of the ale strains since the degree of flocculation is defined, primarily, by the presence of active flocculins on the yeast cell wall.
Characterization of water treatment sludge and its reuse as coagulant.
Ahmad, Tarique; Ahmad, Kafeel; Ahad, Abdul; Alam, Mehtab
2016-11-01
Coagulation-flocculation process results in the generation of large volume of waste or residue, known as water treatment sludge (WTS), in the purification of surface water for potable supplies. Sustainable management of the inevitable waste requires careful attention from the plant operators and sludge managers. In this study, WTS produced with the optimum alum dose of 30 ml/L at the laboratory scale has been treated with sulphuric acid to bring forth a product known as sludge reagent product (SRP). The performance of SRP is evaluated for its efficiency in removing the colloidal suspensions from the Yamuna river water over wide pH range of 2-13. 1% sludge acidified with sulphuric acid of normality 2.5 at the rate of 0.05 ml/ml sludge has been observed as the optimum condition for preparing SRP from WTS. The percentage turbidity removal is greater at higher pH value and increases with increasing the dosage of SRP. The optimum SRP dosage of 8 ml/L in the pH range of 6-8 performed well in removing the colloidal suspension and other impurities from the Yamuna water. The quality of treated water met the prescribed standards for most of the quality parameters. Thus, SRP has the potential to substitute the conventional coagulants partially or completely in the water treatment process, depending on the quality needed at the users end. Copyright © 2016 Elsevier Ltd. All rights reserved.
A review on paint sludge from automotive industries: Generation, characteristics and management.
Salihoglu, Guray; Salihoglu, Nezih Kamil
2016-03-15
The automotive manufacturing process results in the consumption of several natural sources and the generation of various types of wastes. The primary source of hazardous wastes at an automotive manufacturing plant is the painting process, and the major waste fraction is paint sludge, which is classified with EU waste code of 080113* implying hazardous characteristics. The amount of the paint sludge generated increases every year with the worldwide increase in the car production. The characteristics of the paint sludge, which mainly designate the management route, are mainly determined by the type of the paint used, application technique employed, and the chemicals applied such as flocculants, detackifiers, pH boosters, antifoam agents, and biocides as well as the dewatering techniques preferred. Major routes for the disposal of the paint sludges are incineration as hazardous waste or combustion at cement kilns. Because of high dissolved organic carbon content of the paint, the paint sludge cannot be accepted by landfills according to European Union Legislations. More investigations are needed in the field of paint sludge recycling such as recycling it as a new paint or as other formulations, or making use of the sludge for the production of construction materials. Research on the applicability of the paint sludge in composting and biogasification can also be useful. Ongoing research is currently being conducted on new application techniques to increase the effectiveness of paint transfer, which helps to prevent the generation of paint sludge. Advancements in paint and coating chemistry such as the reduction in the coating layers with its thickness also help to decrease the level of paint sludge generation. Investigations on the effects of the chemicals on the recycling potential of paint sludges and consideration of these effects by the chemical manufacturer companies would be extremely important. This review presents the formation of paint sludge, the factors affecting its characteristics, common disposal routes, the findings of the field trips to automotive manufacturing plants in Turkey, and a summary of the characterization findings of the paint sludge samples from a plant in Turkey. Copyright © 2016 Elsevier Ltd. All rights reserved.
Characterization of a bioflocculant produced by the marine myxobacterium Nannocystis sp. NU-2.
Zhang, J; Liu, Z; Wang, S; Jiang, P
2002-08-01
The marine myxobacterium strain NU-2, which can grow on high concentrations (up to 7%) of NaCl, was isolated from a salt soil sample collected from the coast of the Huanghai Sea, China. Morphological properties and 16S rDNA sequence analysis indicated that the isolate is a novel species related to the genus Nannocystis. Nannocystis sp. NU-2 produced a new kind of flocculating substance in a starch medium with a yield of 14.8 g l(-1). The NU-2 flocculant was composed of 40.3% proteins and 56.5% polysaccharides, of which glucose, mannose and glucuronic acid were the principal constituents in the relative proportions of 5:4:1. The flocculation activity of the NU-2 flocculant depends strongly on cations such as Fe(3+) and Al(3+). When a 30 mg l(-1) FeCl(3) solution is present in kaolin clay suspension, 30 mg l(-1)of the flocculant produced a high flocculating activity value of 90%, which remained unchanged over an extensive pH range (pH 2.0-13.0). The flocculant was tested for its ability to bleach dyeing liquors, and the bleaching activities were 98.2% for acid red in 100 mg l(-1)of the flocculant and 99.0% for direct emerald blue in 50 mg l(-1)of the flocculant under test conditions. Use of the flocculant to bleach basic pink and cation emerald blue liquors was not effective.
Zou, Jinte; Li, Yongmei
2016-10-01
Releases of organic compounds and phosphorus from phosphorus-accumulating granular sludge (PGS) and phosphorus-accumulating flocculent sludge (PFS) during low-temperature thermal pretreatment and anaerobic fermentation were investigated. Meanwhile, biogas production potential and microbial community structures were explored. The results indicate that much more soluble chemical oxygen demand (SCOD) and phosphorus were released from PGS than from PFS via low-temperature thermal pretreatment because of the higher extracellular polymeric substances (EPS) content in PGS and higher ratio of phosphorus reserved in EPS. Furthermore, PGS contains more anaerobes and dead cells, resulting in much higher SCOD and volatile fatty acids release from PGS than those from PFS during fermentation. PGS fermentation facilitated the n-butyric acid production, and PGS exhibited the hydrogen production potential during fermentation due to the presence of hydrogen-producing bacteria. Therefore, anaerobic fermentation combined with low-temperature thermal pretreatment can facilitate the recovery of carbon and phosphorus as well as producing hydrogen from PGS. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zou, Jinte; Pan, Jiyang; He, Hangtian; Wu, Shuyun; Xiao, Naidong; Ni, Yongjiong; Li, Jun
2018-07-01
The effect of fermentation pH (uncontrolled, 4 and 10) on the releases of carbon source and phosphorus from nitrifying aerobic granular sludge (N-AGS) was investigated. Meanwhile, metal ion concentration and microbial community characterization were explored during N-AGS fermentation. The results indicated that N-AGS fermentation at pH 10 significantly promoted the releases of soluble chemical oxygen demand (SCOD) and total volatile fatty acids (TVFAs). However, SCOD and TVFA released from N-AGS were inhibited at pH 4. Moreover, acidic condition promoted phosphorus release (mainly apatite) from N-AGS during anaerobic fermentation. Nevertheless, alkaline condition failed to increase phosphorus concentration due to the formation of chemical-phosphate precipitates. Compared with the previously reported flocculent sludge fermentation, N-AGS fermentation released more SCOD and TVFAs, possibly due to the greater extracellular polymeric substances content and some hydrolytic-acidogenic bacteria in N-AGS. Therefore, N-AGS alkaline fermentation facilitated the carbon source recovery, while N-AGS acidic fermentation benefited the phosphorus recovery. Copyright © 2018. Published by Elsevier Ltd.
Microbial Flocculant for Nature Soda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Peiyong; Zhang, Tong; Chen, Cuixian
2004-03-31
Microbial flocculant for nature soda has been studied. Lactobacillus TRJ21, which was able to produce an excellent biopolymer flocculant for nature soda, was obtained in our lab. The microbial flocculant was mainly produced when the bacteria laid in stationary growth phase. Fructose or glucose, as carbon sources, were more favorable for the bacterial growth and flocculant production. The bacteria was able to use ammonium sulfate or Urea as nitrogen to produce flocculant, but was not able to use peptone effectively. High C/N ratio was more favorable to Lactobacillus TRJ21 growth and flocculant production than low C/N ratio. The biopolymer flocculantmore » was mainly composed of polysaccharide and protein with a molecular weight 1.38x106 by gel permeation chromatography. It was able to be easily purified from the culture medium by acetone. Protein in the flocculant was tested for the flocculating activity ingredient by heating the flocculant.« less
USDA-ARS?s Scientific Manuscript database
Whole blood is a highly complex substance. Hemoglobin, the most abundant blood protein, can function as a flocculant of colloidal clay; most of the other blood components exhibit poor flocculant activity. For the purpose of processing raw whole blood into a flocculant product, the practical value of...
Moreti, Livia O R; Coldebella, Priscila Ferri; Camacho, Franciele P; Carvalho Bongiovani, Milene; Pereira de Souza, Aloisio Henrique; Kirie Gohara, Aline; Matsushita, Makoto; Fernandes Silva, Marcela; Nishi, Letícia; Bergamasco, Rosângela
2016-01-01
This study aimed to evaluate the efficiency of the coagulation/flocculation/dissolved air flotation (C/F/DAF) process using the coagulant Moringa oleifera (MO) seed powder, and to analyse the profile of fatty acids present in the generated sludge after treatment. For the tests, deionized water artificially contaminated with cell cultures of Anabaena flos-aquae was used, with a cell density in the order of 10(4) cells mL(-1). C/F/DAF tests were conducted using 'Flotest' equipment. For fatty acid profile analyses, a gas chromatograph equipped with a flame ionization detector was used. It was seen that the optimal dosage (100 mg L(-1)) of MO used in the C/F/DAF process was efficient at removing nearly all A. flos-aquae cells (96.4%). The sludge obtained after treatment contained oleic acid (61.7%) and palmitic acid (10.8%). Thus, a water treatment process using C/F/DAF linked to integral MO powder seed was found to be efficient in removing cells of cyanobacteria, and produced a sludge rich in oleic acid that is a precursor favourable for obtaining quality biodiesel, thus becoming an alternative application for the recycling of such biomass.
Shi, Chaohong; Zhu, Nengwu; Shang, Ru; Kang, Naixin; Wu, Pingxiao
2015-11-01
The heavy metals content and dewaterability of municipal sewage sludge (MSS) are important parameters affecting its subsequent disposal and land application. Six kinds of inoculums were prepared to examine the characteristics of heavy metals removal and MSS dewaterability improvement in bioleaching processes. The results showed that Cu, Zn and Cd bioleaching efficiencies (12 days) were 81-91, 87-93 and 81-89%, respectively, which were significantly higher than those of Fe-S control (P < 0.05) and blank control (P < 0.01). The bioleaching boosted by the prepared inoculums could also significantly enhance MSS dewaterability (P < 0.01). The centrifugal dehydration efficiency of MSS rose from 73.00 to 90.00% at day 12. Microscopic observations and energy dispersive spectrum analysis demonstrated that the dewaterability improvement might be attributed to the changes of sludge structure from flocculent to obvious granular and the formation of secondary minerals mainly consisting of iron, oxygen and sulfur elements. The results above demonstrated that bacterial consortium enriched from acid mine drainage (AMD) was suitable to boost sludge bioleaching for heavy metals removal and dewaterability improvement. It also suggested that the synergy of sulfur/ferrous-oxidizing bacteria (SFOB) enriched from AMD and the cooperation of exogenous and indigenous SFOB significantly promoted bioleaching efficiencies.
NASA Astrophysics Data System (ADS)
Ferland, Pierre; Malito, John T.; Phillips, Everett C.
Alcan International Ltd. in collaboration with Ondeo Nalco Company have carried out a fundamental study on the dissolution and performance of a 100% anionic polymer. The effects of method of preparation, solvent composition, temperature and exposure time on flocculent activity under conditions relevant to both atmospheric and pressure decantation were investigated. Flocculent activity was determined using static and dynamic settling tests, and the results were correlated with the reduced specific viscosity (RSV). For any given method of preparation of the flocculent solutions (makeup/dilution) the RSV tended to decrease with increasing solution ionic strength, independent of ionic speciation. While a significant loss in flocculent activity occurred with long exposure of the solution to high temperature, only a minor loss occurred in the short time required to flocculate and settle the mud in a decanter operating at 150 °C. Recent results in an actual plant pressure decanter appear to validate this conclusion.
Okaiyeto, Kunle; Nwodo, Uchechukwu U; Mabinya, Leonard V; Okoh, Anthony I
2013-10-16
The physicochemical and flocculating properties of a bioflocculant produced by a bacterial consortium composed of Halomonas sp. Okoh and Micrococcus sp. Leo were investigated. The purified bioflocculant was cation and pH dependent, and optimally flocculated kaolin clay suspension at a dosage of 0.1 mg/mL. The flocculating activity of the bioflocculant was stimulated in the presence of Ca2+, Mn2+, Al3+ and had a wide pH range of 2-10, with the highest flocculating activity of 86% at pH 8. The bioflocculant was thermostable and retained more than 70% of its flocculating activity after being heated at 80 °C for 30 min. Thermogravimetric analyses revealed a partial thermal decomposition of the biofloculant at 400 °C. The infrared spectrum showed the presence of hydroxyl, carboxyl and amino moieties as functional groups. The bioflocculant produced by the bacterial consortium appears to hold promising alternative to inorganic and synthetic organic flocculants that are widely used in wastewater treatment.
Okaiyeto, Kunle; Nwodo, Uchechukwu U.; Mabinya, Leonard V.; Okoh, Anthony I.
2013-01-01
The physicochemical and flocculating properties of a bioflocculant produced by a bacterial consortium composed of Halomonas sp. Okoh and Micrococcus sp. Leo were investigated. The purified bioflocculant was cation and pH dependent, and optimally flocculated kaolin clay suspension at a dosage of 0.1 mg/mL. The flocculating activity of the bioflocculant was stimulated in the presence of Ca2+, Mn2+, Al3+ and had a wide pH range of 2–10, with the highest flocculating activity of 86% at pH 8. The bioflocculant was thermostable and retained more than 70% of its flocculating activity after being heated at 80 °C for 30 min. Thermogravimetric analyses revealed a partial thermal decomposition of the biofloculant at 400 °C. The infrared spectrum showed the presence of hydroxyl, carboxyl and amino moieties as functional groups. The bioflocculant produced by the bacterial consortium appears to hold promising alternative to inorganic and synthetic organic flocculants that are widely used in wastewater treatment. PMID:24135818
Modeling of Heavy Metal Transformation in Soil Ecosystem
NASA Astrophysics Data System (ADS)
Kalinichenko, Kira; Nikovskaya, Galina N.
2017-04-01
The intensification of industrial activity leads to an increase in heavy metals pollution of soils. In our opinion, sludge from biological treatment of municipal waste water, stabilized under aerobic-anaerobic conditions (commonly known as biosolid), may be considered as concentrate of natural soil. In their chemical, physical and chemical and biological properties these systems are similar gel-like nanocomposites. These contain microorganisms, humic substances, clay, clusters of nanoparticles of heavy metal compounds, and so on involved into heteropolysaccharides matrix. It is known that microorganisms play an important role in the transformation of different nature substances in soil and its health maintenance. The regularities of transformation of heavy metal compounds in soil ecosystem were studied at the model of biosolid. At biosolid swelling its structure changing (gel-sol transition, weakening of coagulation contacts between metal containing nanoparticles, microbial cells and metabolites, loosening and even destroying of the nanocomposite structure) can occur [1, 2]. The promotion of the sludge heterotrophic microbial activities leads to solubilization of heavy metal compounds in the system. The microbiological process can be realized in alcaligeneous or acidogeneous regimes in dependence on the type of carbon source and followed by the synthesis of metabolites with the properties of flocculants and heavy metals extragents [3]. In this case the heavy metals solubilization (bioleaching) in the form of nanoparticles of hydroxycarbonate complexes or water soluble complexes with oxycarbonic acids is observed. Under the action of biosolid microorganisms the heavy metals-oxycarbonic acids complexes can be transformed (catabolised) into nano-sizing heavy metals- hydroxycarbonates complexes. These ecologically friendly complexes and microbial heteropolysaccharides are able to interact with soil colloids, stay in the top soil profile, and improve soil structure due to the formation of water-stable aggregates. The alkaligeneous microbiological process in natural ecosystems by co-metabolism of appropriate carbon source is more advantages for environment. Thus the possibility of solubilization of heavy metal compounds in the soil due to stimulating its biological activities of native microorganisms is proved. The studies on the interactions in the system of sludge solid has allowed to develop the "green" biotechnological process of heavy metals solubilization in contaminated soils and sludges. 1. Kalinichenko KV, Nikovskaya GN, and Ulberg ZR (2012) Bioextraction of heavy metals from colloidal sludge systems. Colloid Journ. 74(5) : 553-557. 2. Kalinichenko KV, Nikovskaya GN, and Ulberg ZR (2013) Changes in the surface properties and stability of biocolloids of a sludge system upon extraction of heavy metals. Colloid Journ. 75(3) : 274-278. 3. Nikovskaya GN, Kalinichenko KV (2013) Bioleaching of heavy metals from sludge after biological treatment of municipal effluent. Journ. of Water Chem. and Techn. 35(2) : 80-85.
Meriç, Süreyya; De Nicola, Elena; Iaccarino, Mario; Gallo, Marialuisa; Di Gennaro, Annamaria; Morrone, Gaetano; Warnau, Michel; Belgiorno, Vincenzo; Pagano, Giovanni
2005-10-01
This study was designed to investigate the composition and the toxicity of leather tanning wastewater and conditioned sludge collected at the leather tanning wastewater treatment plant (CODISO) located in Solofra, Avellino (Southern Italy). Samples were analyzed for their conventional parameters (COD, TSS, chromium and ammonia) and for metal content. Effluent samples included raw wastewater, and samples collected following coagulation/flocculation process and biological treatment. A set of toxicity endpoints were tested using sea urchin and marine microalgal bioassays by evaluating acute embryotoxicity, developmental defects, changes in sperm fertilization success and transmissible damage from sperm to the offspring, and changes in algal growth rate. Dose-related toxicity to sea urchin embryogenesis and sperm fertilization success was exerted by effluent or sludge samples according to the following rank: conditioned sludge > coagulated effluent > or = raw influent > effluent from biological treatment. Offspring quality was not affected by sperm exposure to any wastewater or to sludge samples. Algal growth was inhibited by raw or coagulated effluent to a similar extent and, again, the effluent from the biological treatment resulted in a decreased toxicity. The results suggest that coagulated effluent and conditioned sludge result in higher toxicity than raw influent in sea urchin embryos and sperm, whereas the biological wastewater treatment of coagulated effluent, in both sea urchins and algae, cause a substantial improvement of wastewater quality. Hence a final biological wastewater treatment should be operated to minimize any environmental damage from tannery wastewater.
Batta, Neha; Subudhi, Sanjukta; Lal, Banwari; Devi, Arundhuti
2013-11-01
Lead is one of the four heavy metals that has a profound damaging effects on human health. In the recent past there has been an increasing global concern for development of sustainable bioremediation technologies for detoxification of lead contaminant. Present investigation highlights for lead biosorption by a newly isolated novel bacterial species; Achromobacter sp. TL-3 strain, isolated from activated sludge samples contaminated with heavy metals (collected from oil refinery, Assam, North-East India). For isolation of lead tolerant bacteria, sludge samples were enriched into Luria Broth medium supplemented separately with a range of lead nitrate; 250, 500, 750, 1000, 1250 and 1500 ppm respectively. The bacterial consortium that could tolerate 1500 ppm of lead nitrate was selected further for purification of lead tolerant bacterial isolates. Purified lead tolerant bacterial isolates were then eventually inoculated into production medium supplemented with ethanol and glycerol as carbon and energy source to investigate for bioflocculant production. Bioflocculant production was estimated by monitoring the potential of lead tolerant bacterial isolate to flocculate Kaolin clay in presence of 1% CaCl2. Compared to other isolates, TL-3 isolate demonstrated for maximum bioflocculant activity of 95% and thus was identified based on 16S rRNA gene sequence analysis. TL3 isolate revealed maximum homology (98%) with Achromobacter sp. and thus designated as Achromobacter sp. TL-3. Bioflocculant activity of TL-3 isolate was correlated with the change in pH and growth. Achromobacter sp. TL-3 has significant potential for lead biosorption and can be effectively employed for detoxification of lead contaminated waste effluents/waste waters.
Review of cost versus scale: water and wastewater treatment and reuse processes.
Guo, Tianjiao; Englehardt, James; Wu, Tingting
2014-01-01
The US National Research Council recently recommended direct potable water reuse (DPR), or potable water reuse without environmental buffer, for consideration to address US water demand. However, conveyance of wastewater and water to and from centralized treatment plants consumes on average four times the energy of treatment in the USA, and centralized DPR would further require upgradient distribution of treated water. Therefore, information on the cost of unit treatment processes potentially useful for DPR versus system capacity was reviewed, converted to constant 2012 US dollars, and synthesized in this work. A logarithmic variant of the Williams Law cost function was found applicable over orders of magnitude of system capacity, for the subject processes: activated sludge, membrane bioreactor, coagulation/flocculation, reverse osmosis, ultrafiltration, peroxone and granular activated carbon. Results are demonstrated versus 10 DPR case studies. Because economies of scale found for capital equipment are counterbalanced by distribution/collection network costs, further study of the optimal scale of distributed DPR systems is suggested.
Performance of a zero valent iron-based anaerobic system in swine wastewater treatment.
Wu, Donglei; Zheng, Shuangshuang; Ding, Aqiang; Sun, Guodong; Yang, Meiqing
2015-04-09
In this paper, short-term exposure experiments with different ZVI concentrations were conducted to research the effects of ZVI adding on the anaerobic system for treating swine wastewater. Increasing the ZVI dose had a stimulatory effect on COD removal and CH4 production possibly due to a higher corrosion-induced H2 and dissolved ferrous ions, which could stimulate the methanogenesis and thus the biodegradation. In addition, the abiotic corrosion reactions such as flocculation, adsorption and precipitation were inevitable to removal some suspended COD. However, high ZVI doses had a potential risk on microorganism due to the present of large numbers of solid iron species in sludge, which likely encapsulated the cells and even damaged the cellular structure. Taken as a whole, the most enhancing effect induced by ZVI was observed at the rZVI/VSS of 2.63, and the maximum efficiency of per ZVI adding occurred at the rZVI/VSS of 0.74. But the ZVI concentration of 50 g/L (the rZVI/VSS was 5.26) was proved too high to facilitate microorganism activity, considering the higher LDH leakage and lower intracellular ATP level than the only sludge system. Copyright © 2014 Elsevier B.V. All rights reserved.
Flocculation behavior and mechanism of bioflocculant produced by Aspergillus flavus.
Aljuboori, Ahmad H Rajab; Idris, Azni; Al-Joubory, Hamid Hussain Rijab; Uemura, Yoshimitsu; Ibn Abubakar, B S U
2015-03-01
In this study, the flocculation behavior and mechanism of a cation-independent bioflocculant IH-7 produced by Aspergillus flavus were investigated. Results showed 91.6% was the lowest flocculating rate recorded by IH-7 (0.5 mg L(-1)) at pH range 4-8. Moreover, IH-7 showed better flocculation performance than polyaluminum chloride (PAC) at a wide range of flocculant concentration (0.06-25 mg L(-1)), temperature (5-45 °C) and salinity (10-60% w/w). The current study found that cation addition did not significantly enhance the flocculating rate and IH-7 is a positively charged bioflocculant. These findings suggest that charge neutralization is the main flocculation mechanism of IH-7 bioflocculant. IH-7 was significantly used to flocculate different types of suspended solids such as activated carbons, kaolin clays, soil solids and yeast cells. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cerqueira, Maristela B R; Caldas, Sergiane S; Primel, Ednei G
2014-04-04
Recent studies have shown a decrease in the concentration of pesticides, pharmaceuticals and personal care products (PCPs) in water after treatment. A possible explanation for this phenomenon is that these compounds may adhere to the sludge; however, investigation of these compounds in drinking water treatment sludge has been scarce. The sludge generated by drinking water treatment plants during flocculation and decantation steps should get some special attention not only because it has been classified as non-inert waste but also because it is a very complex matrix, consisting essentially of inorganic (sand, argil and silt) and organic (humic substances) compounds. In the first step of this study, three QuEChERS methods were used, and then compared, for the extraction of pesticides (atrazine, simazine, clomazone and tebuconazole), pharmaceuticals (amitriptyline, caffeine, diclofenac and ibuprofen) and PCPs (methylparaben, propylparaben, triclocarban and bisphenol A) from drinking water treatment sludge. Afterwards, the study of different sorbents in the dispersive solid phase extraction (d-SPE) step was evaluated. Finally, a new QuEChERS method employing chitin, obtained from shrimp shell waste, was performed in the d-SPE step. After having been optimized, the method showed limits of quantification (LOQ) between 1 and 50 μg kg(-1) and the analytical curves showed r values higher than 0.98, when liquid chromatography tandem mass spectrometry was employed. Recoveries ranged between 50 and 120% with RSD≤15%. The matrix effect was evaluated and compensated with matrix-matched calibration. The method was applied to drinking water treatment sludge samples and methylparaben and tebuconazole were found in concentration
Maher, Chris; Neethling, J B; Murthy, Sudhir; Pagilla, Krishna
2015-11-15
The role of adsorption and/or complexation in removal of reactive or unreactive effluent phosphorus by already formed chemical precipitates or complexes has been investigated. Potential operational efficiency gains resulting from age of chemically precipitated tertiary alum sludge and the recycle of sludge to the process stream was undertaken at the Iowa Hill Water Reclamation Facility which employs the DensaDeg(®) process (IDI, Richmond, VA) for tertiary chemical P removal to achieve a filtered final effluent total phosphorus concentration of <30 μg/L. The effect of sludge solids age was found to be insignificant over the solids retention time (SRT) of 2-8 days, indicating that the solids were unaffected by the aging effects of decreasing porosity and surface acidity. The bulk of solids inventory was retained in the clarifier blanket, providing no advantage in P removal from increased solids inventory at higher SRTs. When solids recycle was redirected from the traditional location of the flocculation reactor to a point just prior to chemical addition in the chemical mixing reactor, lower effluent soluble P concentrations at lower molar doses of aluminum were achieved. At laboratory scale, the "spent" or "waste" chemical alum sludge from P removal showed high capacity and rapid kinetics for P sorption from real wastewater effluents. Saturation concentrations were in the range of 8-29 mg soluble reactive P/g solids. Higher saturation concentrations were found at higher temperatures. Alum sludge produced without a coagulant aid polymer had a much higher capacity for P sorption than polymer containing alum sludge. The adsorption reaction reached equilibrium in less than 10 min with 50% or greater removal within the first minute. Copyright © 2015 Elsevier Ltd. All rights reserved.
Maghsoudi, Ehsan; Fortin, Nathalie; Greer, Charles; Duy, Sung Vo; Fayad, Paul; Sauvé, Sébastien; Prévost, Michèle; Dorner, Sarah
2015-10-01
The effects of particulate attached bacteria (PAB) and phycocyanin on the simultaneous biodegradation of a mixture of microcystin-LR, YR, LY, LW, LF and cylindrospermopsin (CYN) was assessed in clarifier sludge of a drinking water treatment plant (DWTP) and in a drinking water source. The biomass from lake water and clarifier sludge was able to degrade all microcystins (MCs) at initial concentrations of 10µgL(-1) with pseudo-first order reaction half-lives ranging from 2.3 to 8.8 days. CYN was degraded only in the sludge with a biodegradation rate of 1.0×10(-1)d(-1) and a half-life of 6.0 days. This is the first study reporting multiple MCs and CYN biodegradation in the coagulation-flocculation sludge of a DWTP. The removal of PAB from the lake water and the sludge prolonged the lag time substantially, such that no biodegradation of MCLY, LW and LF was observed within 24 days. Biodegradation rates were shown to increase in the presence of C-phycocyanin as a supplementary carbon source for indigenous bacteria, a cyanobacterial product that accompanies cyanotoxins during cyanobacteria blooms. MCs in mixtures degraded more slowly (or not at all) than if they were degraded individually, an important outcome as MCs in the environment are often present in mixtures. The results from this study showed that the majority of the bacterial biomass responsible for the biodegradation of cyanotoxins is associated with particles or biological flocs and there is a potential for extreme accumulation of cyanotoxins within the DWTP during a transient bloom. Copyright © 2015 Elsevier Inc. All rights reserved.
A comparative study of sludges from Athabasca and northern Holland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muszalski, P.; Hornof, V.; Kotlyar, L.
1995-12-31
The tailings produced during bitumen separation from Athabasca oil sands have a high water holdings capacity. While chemical treatment will increase the rate of settling of these tailings it has little effect on the final degree of solids consolidation. These characteristics have been attributed to the presence of ultra fine (< 0.2 {mu}m), aluminosilicate clays. Ultra fines readily flocculate to form gels within which both fine and coarse particles may be embedded. In this work a comparison has been made between the properties of fine tailings from a bitumen extraction plant with those of {open_quotes}difficult{close_quotes} sludges from other extractive industries.more » The {open_quotes}difficult{close_quotes} sludges, from plants in northern Holland, were supplied, courtesy of Suncor Inc. There was a similarity between the amount and size distribution of solids in all the samples tested. However, as evidenced by a greater degree of stability to mechanical stress, the structure of the Dutch sludges was stronger than that observed for the Suncor material. This property has been attributed to the presence of natural organic matter (NOM) or humic material, which is noted for its aggregation and binding properties. In the presence of such organic matter specific chemical interactions between colloidal particles and organic molecules, rather than DLVO interactions, are of primary importance.« less
Organic polyelectrolytes in water treatment.
Bolto, Brian; Gregory, John
2007-06-01
The use of polymers in the production of drinking water is reviewed, with emphasis on the nature of the impurities to be removed, the mechanisms of coagulation and flocculation, and the types of polymers commonly available. There is a focus on polymers for primary coagulation, their use as coagulant aids, in the recycling of filter backwash waters, and in sludge thickening. Practicalities of polymer use are discussed, with particular attention to polymer toxicity, and the presence of residual polymer in the final drinking water. The questions of polymer degradation and the formation of disinfection by-products are also addressed.
Grenda, Kinga; Arnold, Julien; Gamelas, José A F; Rasteiro, Maria G
2018-06-21
Tannin extracts from the bark of Acacia mearnsii and wood of Schinopsis balansae, commonly known as Quebracho, were employed. These were modified at laboratory sale via the Mannich aminomethylation with formaldehyde and dimethylamine hydrochloride. Some reaction conditions were varied, namely the formaldehyde dosage and reaction time, while keeping the Mannich solution activation time constant, and their influence on the shear viscosity of the created bio-coagulants was evaluated. The effect of the final pH of the products on their shear viscosity was also analyzed. Up-scaling of the Mannich reaction for tannin from South Africa was performed and the procedure developed at 1-L scale was reproducible in upscaled conditions. One example of a modified South Africa tannin and the modified Quebracho tannin was subsequently selected for the treatment of an industrial wastewater and tested for color and turbidity reduction in jar tests. The effluent treatment was carried out in a single and dual system with cationic synthetic flocculation agents of different charge degree. Good turbidity and decoloration results (93 and 89% reduction, respectively) were obtained with the simultaneous introduction of a cationic, 40% charged polyacrylamide, with minimal dosage (5 ppm) of the latter additive. The tannin-based coagulant from Acacia mearnsii was successfully applied in dual system with cationic polyacrylamide flocculant for industrial wastewater treatment at pilot plant scale. It was shown to satisfactorily treat the water and generate less sludge.
Effective flocculation of fine mineral suspensions using Moringa oleifera seeds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickett, T.M.
1995-12-31
The purpose of this research was to investigate the feasibility of using Moringa oleifera seeds, or the active components of the seeds, in the clarification of waters containing suspended mineral fines. In comparative testing using a hematite suspension, the flocculating activity of Moringa oleifera seeds was better than alum. Twenty milligrams of seed powder was sufficient to clarify the hematite to near zero turbidity, while the same amount of alum had a minimal effect on turbidity. Extracts were prepared from the seeds in an attempt to separate the proteins. A crude protein extract was enriched by lowering the pH tomore » 6.0. Only 0.08 mg/L of the enriched extract was required to flocculate a minusil suspension. Environmentally friendly protein flocculants could theoretically be produced and enhanced with recombinant DNA techniques as an alternative to chemical flocculants currently used in water treatment.« less
Bouaouine, Omar; Bourven, Isabelle; Khalil, Fouad; Baudu, Michel
2018-04-01
Opuntia ficus-indica that belongs to the Cactaceae family and is a member of Opuntia kind has received increasing research interest for wastewater treatment by flocculation. The objectives of this study were (i) to provide more information regarding the active constituents of Opuntia spp. and (ii) to improve the extracting and using conditions of the flocculant molecules for water treatment. A classic approach by jar test experiments was used with raw and extracted material by solubilization and precipitation. The surface properties of solid material were characterized by FTIR, SEM, zeta potential measurement, and surface titration. The splitting based on the solubility of the material with pH and the titration of functional groups completed the method. The optimal pH value for a coagulation-flocculation process using cactus solid material (CSM) was 10.0 and a processing rate of 35 mg L -1 . The alkaline pH of flocculation suggests an adsorption mechanism with bridging effect between particles by water-soluble extracted molecules. To validate this mechanism, an extraction water was carried out at pH = 10 (optimum of flocculation) and the solution was acidified (pH = 7) to allow precipitation of so considered active flocculant molecules. The strong flocculant property of this extract was verified, and titration of this solution showed at least one specific pKa of 9.0 ± 0.6. This pKa corresponds to phenol groups, which could be assigned to lignin and tannin.
Okaiyeto, Kunle; Nwodo, Uchechukwu U; Mabinya, Leonard V; Okoli, Arinze S; Okoh, Anthony I
2016-01-01
This study assessed the bioflocculant (named MBF-W7) production potential of a bacterial isolate obtained from Algoa Bay, Eastern Cape Province of South Africa. The 16S ribosomal deoxyribonucleic acids gene sequence analysis showed 98% sequence similarity to Bacillus licheniformis strain W7. Optimum culture conditions for MBF-W7 production include 5% (v/v) inoculum size, maltose and NH4NO3 as carbon and nitrogen sources of choice, medium pH of 6 as the initial pH of the growth medium. Under these optimal conditions, maximum flocculating activity of 94.9% was attained after 72 h of cultivation. Chemical composition analyses showed that the purified MBF-W7 was a glycoprotein which was predominantly composed of polysaccharides 73.7% (w/w) and protein 6.2% (w/w). Fourier transform infrared spectroscopy revealed the presence of hydroxyl, carboxyl and amino groups as the main functional groups identified in the bioflocculant molecules. Thermogravimetric analyses showed the thermal decomposition profile of MBF-W7. Scanning electron microscopy imaging revealed that bridging played an important role in flocculation. MBF-W7 exhibited excellent flocculating activity for kaolin clay suspension at 0.2 mg/ml over a wide pH range of 3-11; with the maximal flocculation rate of 85.8% observed at pH 3 in the presence of Mn(2+). It maintained and retained high flocculating activity of over 70% after heating at 100°C for 60 min. MBF-W7 showed good turbidity removal potential (86.9%) and chemical oxygen demand reduction efficiency (75.3%) in Tyume River. The high flocculating rate of MBF-W7 makes it an attractive candidate to replace chemical flocculants utilized in water treatment.
Problems in processing Rheinische Braunkohle (soft coal) (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Hartmann, G.B.
At Wesseling, difficulties were encountered with the hydrogenation of Rhine brown coal. The hydrogenation reaction was proceeding too rapidly at 600 atm pressure under relatively low temperature and throughput conditions. This caused a build-up of ''caviar'' deposits containing ash and asphalts. This flocculation of asphalt seemed to arise because the rapid reaction produced a liquid medium unable to hold the heavy asphalt particles in suspension. A stronger paraffinic character of the oil was also a result. To obtain practical, problem-free yields, throughput had to be increased (from .4 kg/liter/hr to more than .5), and temperature had to be increased (frommore » 24.0 MV to 24,8 MV). Further, a considerable increase in sludge recycling was recommended. The Wesseling plant was unable to increase the temperature and throughput. However, more sludge was recycled, producing a paste better able to hold higher-molecular-weight particles in suspension. If this were not to solve the ''caviar'' deposit problems, further recommendations were suggested including addition of more heavy oil.« less
Zhao, Chuanliang; Zheng, Huaili; Sun, Yongjun; Zhang, Shixin; Liang, Jianjun; Liu, Yongzhi; An, Yanyan
2018-05-30
Graft modified flocculants have recently received increasing attention in the field of water treatment as they have the combinative advantages of synthetic and natural polymeric flocculants. In this work, surface-active monomer benzyl(methacryloyloxyethyl)dimethylammonium chloride (BMDAC) was selected to graft on dextran (DX) with high molecular weight (10.3 × 10 6 g/mol) produced through enzyme-catalyzed process in order to remove dissolved dyes from wastewater. The flocculant (DAB) was fabricated by ultrasound initiated polymerization technique, and the structure characterization of FTIR, 1 H/ 12 C NMR, XRD and XPS spectrum confirmed the successful grafting. Then the Congo red (CR) removal efficiency by DAB was optimized based on the flocculation conditions, including wastewater initial pH, flocculant dosage and initial dye concentration. The effect of suspended solids on the removal of dyes was evaluated in kaolin-CR simulated wastewater. The results indicated that the optimal removal efficiency of CR was 68.1% and 88.2% in single CR and kaolin-CR flocculation system, respectively. The improvement of removal efficiency was attributed to the fact that partial CR molecules were adsorbed onto kaolin particles before flocculation, and were synergistically flocculated accompanied by kaolin particles. Finally, the flocculation mechanism was discussed by a detailed investigation of the zeta potentials, FTIR and XPS spectra of flocs, which can provide important reference for optimizing the flocculation conditions and designing novel high-performance flocculants. Copyright © 2018. Published by Elsevier B.V.
Lv, Junping; Guo, Junyan; Feng, Jia; Liu, Qi; Xie, Shulian
2017-06-01
Sulfate is a primary sulfur source and can be available in wastewaters. Nevertheless, effect of sulfate ions on growth and pollutants removal of microalgae seems to be less investigated. At the present study, self-flocculating microalga Chlorococcum sp. GD was grown in synthetic municipal wastewater with different sulfate concentrations. Results indicated that Chlorococcum sp. GD grew better in synthetic municipal wastewater with 18, 45, 77, 136 and 271mg/L SO 4 2- than in wastewater without SO 4 2- . Chlorococcum sp. GD had also excellent removal efficiencies of nitrogen and phosphorus and effectively flocculated in sulfate wastewater. Sulfate deprivation weakened the growth, pollutants removal and self-flocculation of Chlorococcum sp. GD in wastewater. Antioxidative enzymes activity significantly increased and photosynthetic activity significantly decreased when Chlorococcum sp. GD was cultivated in sulfate-free wastewater. Sulfate deprivation probably reduced cell activity of growth, pollutants removal and flocculation via inducing the over-accumulation of reactive oxygen species (ROS). Copyright © 2017 Elsevier Ltd. All rights reserved.
Zulkeflee, Zufarzaana; Aris, Ahmad Zaharin; Shamsuddin, Zulkifli H; Yusoff, Mohd Kamil
2012-01-01
A bioflocculant-producing bacterial strain with highly mucoid and ropy colony morphological characteristics identified as Bacillus spp. UPMB13 was found to be a potential bioflocculant-producing bacterium. The effect of cation dependency, pH tolerance and dosage requirement on flocculating ability of the strain was determined by flocculation assay with kaolin as the suspended particle. The flocculating activity was measured as optical density and by flocs formation. A synergistic effect was observed with the addition of monovalent and divalent cations, namely, Na⁺, Ca²⁺, and Mg²⁺, while Fe²⁺ and Al³⁺ produced inhibiting effects on flocculating activity. Divalent cations were conclusively demonstrated as the best cation source to enhance flocculation. The bioflocculant works in a wide pH range, from 4.0 to 8.0 with significantly different performances (P < 0.05), respectively. It best performs at pH 5.0 and pH 6.0 with flocculating performance of above 90%. A much lower or higher pH would inhibit flocculation. Low dosage requirements were needed for both the cation and bioflocculant, with only an input of 50 mL/L for 0.1% (w/v) CaCl₂ and 5 mL/L for culture broth, respectively. These results are comparable to other bioflocculants produced by various microorganisms with higher dosage requirements.
Okaiyeto, Kunle; Nwodo, Uchechukwu U; Okoli, Stanley A; Mabinya, Leonard V; Okoh, Anthony I
2016-04-01
Chemical flocculants are generally used in drinking water and wastewater treatment due to their efficacy and cost effectiveness. However, the question of their toxicity to human health and environmental pollution has been a major concern. In this article, we review the application of some chemical flocculants utilized in water treatment, and bioflocculants as a potential alternative to these chemical flocculants. To the best of our knowledge, there is no report in the literature that provides an up-to-date review of the relevant literature on both chemical flocculants and bioflocculants in one paper. As a result, this review paper comprehensively discussed the various chemical flocculants used in water treatment, including their advantages and disadvantages. It also gave insights into bioflocculants production, challenges, various factors influencing their flocculating efficiency and their industrial applications, as well as future research directions including improvement of bioflocculants yields and flocculating activity, and production of cation-independent bioflocculants. The molecular biology and synthesis of bioflocculants are also discussed. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Li, Yi; Xu, Yanting; Zheng, Tianling; Wang, Hailei
2018-02-01
The aim of this work was to investigate the flocculation mechanism by Gram-positive bacterium, Micrococcus sp. hsn08 as a means for harvesting Chlorella vulgaris biomass. Bacterial cells of Micrococcus sp. hsn08 were added into algal culture to harvest algal cells through direct contacting with algae to form flocs. Viability dependence test confirmed that flocculation activity does not depend on live bacteria, but on part of the peptidoglycan. The further investigation has determined that amino acids in cell wall play an important role to flocculate algal cells. Positively charged calcium can combine bacterial and algal cells together, and form a bridge between them, thereby forming the flocs, suggesting that ions bridging is the main flocculation mechanism. These results suggest that bacterial cells of Micrococcus sp. hsn08 can be applied to harvest microalgae biomass with the help of amino acids in cell wall. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Qi; Huang, Bin; Chen, Xin; Shi, Yi
2015-05-15
Bioregeneration of nitrate-laden ion exchange brine is desired to minimize its environmental impacts, but faces common challenges, i.e., enriching sufficient salt-tolerant denitrifying bacteria and stabilizing brine salinity and alkalinity for stable brine biotreatment and economically removing undesired organics derived in biotreatment. Incorporation of 0.25 M bicarbonate in 0.5 M chloride brine little affected resin regeneration but created a benign alkaline condition to favor bio-based brine regeneration. The first-quarter sulfate-mainly enriched spent brine (SB) was acidified with carbon source acetic acid for using CaCl2 at an efficiency >80% to remove sulfate. Residual Ca(2+) was limited below 2 mM by re-mixing the first-quarter and remained SB to favor denitrification. Under [Formula: see text] system buffered pH condition (8.3-8.8), nitrate was removed at 0.90 gN/L/d by hematite-enriched well-settled activated sludge (SVI 8.5 ml/g) and the biogenic alkalinity was retained as bicarbonate. The biogenic alkalinity met the need of alkalinity in removing residual Ca(2+) after sulfate removal and in CaCl2-induced CaCO3 flocculation to remove 63% of soluble organic carbon (SOC) in biotreated brine. Carbon-limited denitrification was also operated after activated sludge acclimation with sulfide to cut SOC formation during denitrification. Overall, this bicarbonate-incorporation approach, stabilizing the brine salinity and alkalinity for stable denitrification and economical removal of undesired SOC, suits long-term cost-effective brine bioregeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Treatment of variable and intermittently flowing wastewaters.
Kocasoy, Günay
1993-11-01
The biological treatment of wastewaters originating from hotels and residential areas of seasonal use, flowing intermittently, is difficult due to the fact that bacteria cannot survive during periods of no-flow. An investigation has been conducted in order to develop a system which will be able to overcome the difficulties encountered. After a long investigation the following system has given satisfactory results. The wastewater was taken initially into an aeration tank operating as a sequential batch reactor. Waste was taken after the sedimentation phase of the reactor into a coagulation-flocculation tank where it was treated by chemical means, and then settled in order to separate the floes. When the population of bacteria in the aeration tank reached the required level, the physico-chemical treatment was terminated and the tank used for chemical treatment has been started to be used as an equalization tank while the aeration and sedimentation tanks have been used as an activated sludge unit. This system has been proved to be a satisfactory method for the above mentioned wastes.
De Gisi, Sabino; Galasso, Maurizio; De Feo, Giovanni
2013-01-01
The treatment of wastewater derived from a biodiesel fuel (BDF) production plant with alkali-catalyzed transesterification was studied at full scale. The investigated wastewater treatment plant consisted of the following phases: primary adsorption/coagulation/flocculation/sedimentation processes, biological treatment with the combination of trickling filter and activated sludge systems, secondary flocculation/sedimentation processes, and reverse osmosis (RO) system with spiral membranes. All the processes were developed in a continuous mode, while the RO experiment was performed with batch tests. Two types of BDF wastewater were considered: the first wastewater (WW1) had an average total chemical oxygen demand (COD), pH and feed flow rate of 10,850.8 mg/L, 5.9 and 2946.7 L/h, respectively, while the second wastewater (WW2) had an average total COD, pH and feed flow rate of 43,898.9 mg/L, 3.3 and 2884.6 L/h, respectively. The obtained results from the continuous tests showed a COD removal percentage of more than 90% for the two types of wastewater considered. The removal of biorefractory COD and salts was obtained with a membrane technology in order to reuse the RO permeate in the factory production cycle. The rejections percentage of soluble COD, chlorides and sulphates were 92.8%, 95.0% and 99.5%, respectively. Because the spiral membranes required a high number of washing cycles, the use of plane membranes was preferable. Finally, the RO reject material should be evaporated using the large amount of inexpensive heat present in this type of industry.
Moazzem, Shamima; Wills, Jamie; Fan, Linhua; Roddick, Felicity; Jegatheesan, Veeriah
2018-03-01
Reusing treated effluents in industries is a great option to conserve freshwater resources. For example, car wash centres all over Australia are estimated to use 17.5 billion litres of water and discharge it as wastewater and spend $75 million a year for both purchasing fresh water and for treating and/or discharging the wastewater. Therefore, it is important to develop simple but reliable systems that can help to treat and reuse car wash wastewater. Significant savings could also be associated with the implementation of such systems. This study evaluates the performance of granular and membrane filtration systems with coagulation/flocculation and sedimentation in treating car wash wastewater for the purpose of reuse. Overall, 99.9% of turbidity, 100% of suspended solids and 96% of COD were removed from the car wash wastewater after treating by coagulation, flocculation, sedimentation, sand filtration, ceramic ultrafiltration and reverse osmosis and the treated water meets the standards required for class A recycled water in Australia and standards imposed in Belgium and China. The treated water can be reused. However, optimisation is required to reduce the sludge produced by this system.
Cobbledick, Jeffrey; Nguyen, Alexander; Latulippe, David R
2014-07-01
The current challenges associated with the design and operation of net-energy positive wastewater treatment plants demand sophisticated approaches for the monitoring of polymer-induced flocculation. In anaerobic digestion (AD) processes, the dewaterability of the sludge is typically assessed from off-line lab-bench tests - the capillary suction time (CST) test is one of the most common. Focused beam reflectance measurement (FBRM) is a promising technique for real-time monitoring of critical performance attributes in large scale processes and is ideally suited for dewatering applications. The flocculation performance of twenty-four cationic polymers, that spanned a range of polymer size and charge properties, was measured using both the FBRM and CST tests. Analysis of the data revealed a decreasing monotonic trend; the samples that had the highest percent removal of particles less than 50 microns in size as determined by FBRM had the lowest CST values. A subset of the best performing polymers was used to evaluate the effects of dosage amount and digestate sources on dewatering performance. The results from this work show that FBRM is a powerful tool that can be used for optimization and on-line monitoring of dewatering processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Pengfei; Hui, Cai; Bai, Naling; Yang, Shengmao; Wan, Li; Zhang, Qichun; Zhao, Yuhua
2015-12-01
In the present work, a novel bioflocculant, EPS-1, was prepared and used to flocculate the kaolin suspension and Microcystis aeruginosa. We focused on the characteristics and flocculation performance of EPS-1, especially with regard to its protein components. An important attribute of EPS-1 was its protein content, with 18 protein types identified that occupied a total content of 31.70% in the EPS-1. Moreover, the flocculating activity of these protein components was estimated to be no less than 33.93%. Additionally, polysaccharides that occupied 57.12% of the total EPS-1 content consisted of four monosaccharides: maltose, D-xylose, mannose, and D-fructose. In addition, carbonyl, amino, and hydroxyl groups were identified as the main functional groups. Three main elements, namely C1s, N1s, and O1s, were present in EPS-1 with relative atomic percentages of 62.63%, 24.91%, and 10.5%, respectively. Zeta potential analysis indicated that charge neutralization contributed to kaolin flocculation, but was not involved in M. aeruginosa flocculation. The flocculation conditions of EPS-1 were optimized, and the maximum flocculating efficiencies were 93.34% within 2 min for kaolin suspension and 87.98% within 10 min for M. aeruginosa. These results suggest that EPS-1 could be an alternative to chemical flocculants for treating wastewaters and cyanobacterium-polluted freshwater.
Zhang, Lili; Yu, Yang; Li, Xinhua; Li, Xiaona; Zhang, Huajiang; Zhang, Zhen; Xu, Yunhe
2017-01-01
In the current study, we focused on the mechanism underlying starch flocculation by the sweet potato sour liquid. The traditional microbial techniques and 16S rDNA sequencing revealed that Lactobacillus was dominant flocculating microorganism in sour liquid. In total, 86 bacteria, 20 yeasts, and 10 molds were isolated from the sour liquid and only eight Lactobacillus species exhibited flocculating activity. Lactobacillus paracasei subsp. paracasei L1 strain with a high flocculating activity was isolated and identified, and the mechanism of starch flocculation was examined. L. paracasei subsp. paracasei L1 cells formed chain-like structures on starch granules. Consequently, these cells connected the starch granules to one another, leading to formation of large flocs. The results of various treatments of L1 cells indicated that bacterial surface proteins play a role in flocculation and L1 cells adhered to the surface of starch granules via specific surface proteins. These surface starch-binding proteins were extracted using the guanidine hydrochloride method; 10 proteins were identified by mass spectrometry: three of these proteins were glycolytic enzymes; two were identified as the translation elongation factor Tu; one was a cell wall hydrolase; one was a surface antigen; one was lyzozyme M1; one was a glycoside hydrolase; and one was an uncharacterized proteins. This study will paves the way for future industrial application of the L1 isolate in starch processing and food manufacturing. PMID:28791000
Applicability of dynamic membrane technology in anaerobic membrane bioreactors.
Ersahin, Mustafa Evren; Ozgun, Hale; Tao, Yu; van Lier, Jules B
2014-01-01
This study investigated the applicability of dynamic membrane technology in anaerobic membrane bioreactors for the treatment of high strength wastewaters. A monofilament woven fabric was used as support material for dynamic membrane formation. An anaerobic dynamic membrane bioreactor (AnDMBR) was operated under a variety of operational conditions, including different sludge retention times (SRTs) of 20 and 40 days in order to determine the effect of SRT on both biological performance and dynamic membrane filtration characteristics. High COD removal efficiencies exceeding 99% were achieved during the operation at both SRTs. Higher filtration resistances were measured during the operation at SRT of 40 days in comparison to SRT of 20 days, applying a stable flux of 2.6 L/m(2) h. The higher filtration resistances coincided with lower extracellular polymeric substances concentration in the bulk sludge at SRT of 40 days, likely resulting in a decreased particle flocculation. Results showed that dynamic membrane technology achieved a stable and high quality permeate and AnDMBRs can be used as a reliable and satisfactory technology for treatment of high strength wastewaters. Copyright © 2013 Elsevier Ltd. All rights reserved.
Li, Yajie; Tabassum, Salma; Chu, Chunfeng; Zhang, Zhenjia
2018-02-01
In this paper, the inhibition of methanogens by phenol in coal gasification wastewater (CGW) was investigated by both anaerobic toxicity tests and a lab-scale anaerobic biofilter reactor (AF). The anaerobic toxicity tests indicated that keeping the phenol concentration in the influent under 280mg/L could maintain the methanogenic activity. In the AF treating CGW, the result showed that adding glucose solution as co-substrate could be beneficial for the quick start-up of the reactor. The effluent chemical oxygen demand (COD) and total phenol reached 1200 and 100mg/L, respectively, and the methane production rate was 175mLCH 4 /gCOD/day. However, if the concentration of phenol was increased, the inhibition of anaerobic micro-organisms was irreversible. The threshold of total phenol for AF operation was 200-250mg/L. The extracellular polymeric substances (EPS) and particle size distribution of anaerobic granular sludge in the different stages were also examined, and the results indicated that the influence of toxicity in the system was more serious than its effect on flocculation of EPS. Moreover, the proportion of small size anaerobic granular sludge gradually increased from 10.2% to 34.6%. The results of high through-put sequencing indicated that the abundance of the Chloroflexi and Planctomycetes was inhibited by the toxicity of the CGW, and some shifts in the microbial community were observed at different stages. Copyright © 2017. Published by Elsevier B.V.
Dhillon, Gurpreet Singh; Kaur, Surinder; Brar, Satinder Kaur; Verma, Mausam
2012-08-15
The potential of brewer's spent grain (BSG), a common waste from the brewing industry, as a support-substrate for laccase production by the well-known laccase producer Trametes versicolor ATCC 20869 under solid-state fermentation conditions was assessed. An attempt was made to improve the laccase production by T. versicolor through supplementing the cultures with inducers, such as 2,2-azino bis(3-ethylbenzthiazoline-6-sulfonic acid), copper sulfate, ethanol, gallic acid, veratryl alcohol, and phenol. A higher laccase activity of 13506.2 ± 138.2 IU/gds (gram dry substrate) was obtained with a phenol concentration of 10 mg/kg substrate in a tray bioreactor after 12 days of incubation time. The flocculation properties of the laccase treated crude beer samples have been studied by using various parameters, such as viscosity, turbidity, ζ potential, total polyphenols, and total protein content. The present results indicated that laccase (25 IU/L) showed promising results as a good flocculating agent. The laccase treatment showed better flocculation capacity compared to the industrial flocculation process using stabifix as a flocculant. The laccase treatments (25 IU/L) at 4 ± 1 °C and room temperature have shown almost similar flocculation properties without much variability. The study demonstrated the potential of in-house produced laccase using brewer's spent grain for the clarification and flocculation of crude beer as a sustainable alternative to traditional flocculants, such as stabifix and bentonite.
Methylation of hemoglobin to enhance flocculant performance
USDA-ARS?s Scientific Manuscript database
An inexpensive bioflocculant, bovine hemoglobin (Hb), has been covalently modified through methylation of the side chain carboxyl groups of aspartic and glutamic acid residues to improve its flocculation activity. Potentiometric titration of the recovered products showed approximately 28% degree of ...
Physico-chemical processes for landfill leachate treatment: Experiments and mathematical models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, W.; Ngo, H.H.; Kim, S.H.
2008-07-01
In this study, the adsorption of synthetic landfill leachate onto four kinds of activated carbon has been investigated. From the equilibrium and kinetics experiments, it was observed that coal based PAC presented the highest organic pollutants removal efficiency (54%), followed by coal based GAC (50%), wood based GAC (33%) and wood based PAC (14%). The adsorption equilibrium of PAC and GAC was successfully predicted by Henry-Freundlich adsorption model whilst LDFA + Dual isotherm Kinetics model could describe well the batch adsorption kinetics. The flocculation and flocculation-adsorption experiments were also conducted. The results indicated that flocculation did not perform well onmore » organics removal because of the dominance of low molecular weight organic compounds in synthetic landfill leachate. Consequently, flocculation as pretreatment to adsorption and a combination of flocculation-adsorption could not improve much the organic removal efficiency for the single adsorption process.« less
Sales, Rafael; Abreu, Paulo Cesar
2015-02-01
Microalgae is largely used in aquaculture as feed. More recently, these microorganisms have been considered as an important feedstock for biodiesel production. However, the concentration of produced biomass represents a large parcel of production costs. In this study, we have evaluated the influence of natural pH variation of culture medium, caused by photosynthetic activity, on the flocculation of the marine microalgae Nannochloropsis oculata. Experiments were conducted with the same culture with different pH values (8.5 and 9.6), obtained after exposing the cells to different light conditions. For each pH value, different treatments were composed by adding 0, 5, 10, and 30 mM of NaOH and the flocculant Flopam® (FO4800 SH) at concentrations of 0, 0.5, 1, and 5 ppm. Higher flocculation efficiencies were obtained for the culture with pH 9.6 in comparison to 8.5 for the same NaOH and Flopam concentrations. Lower concentrations of base and flocculant were needed for flocculating the culture in higher pH, representing an economy of 20 % in the costs of crop harvesting.
Pathak, Mihirjyoti; Devi, Arundhuti; Sarma, Hridip Kumar; Lal, Banwari
2014-07-01
A bioflocculating activity of 89.8% was depicted by an activated sludge-borne bacteria Pseudomonas aeruginosa strain IASST201 with a yield of bioflocculant of 2.68 g L(-1) obtained from production media broth after optimization of different parameters. The highest bioflocculation efficiency was found at the pre-stationary phase of the bacterial growth period in the production media broth at 96th hour examined from a growth-flocculation kinetics study. 85.67% of bioflocculation was observed in oil-field formation water, with a separation of 68.7% of aliphatic hydrocarbon contents of the formation water after the application of the bacterial bioflocculant by entrapment mechanism with formation of flocs which was analyzed and examined comparatively through gas-chromatography. Extensive removal of heavy metal contents of the oil-field formation water due to bioflocculation was estimated by Atomic Absorption Spectrophotometer (AAS). The SEM and AFM studies declare the extracellular polymeric nature of the bioflocculant produced by this bacterium clumped within bacterial biofilm supported with FTIR study of the extracted bioflocculant. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lochmatter, Samuel; Holliger, Christof
2014-08-01
The transformation of conventional flocculent sludge to aerobic granular sludge (AGS) biologically removing carbon, nitrogen and phosphorus (COD, N, P) is still a main challenge in startup of AGS sequencing batch reactors (AGS-SBRs). On the one hand a rapid granulation is desired, on the other hand good biological nutrient removal capacities have to be maintained. So far, several operation parameters have been studied separately, which makes it difficult to compare their impacts. We investigated seven operation parameters in parallel by applying a Plackett-Burman experimental design approach with the aim to propose an optimized startup strategy. Five out of the seven tested parameters had a significant impact on the startup duration. The conditions identified to allow a rapid startup of AGS-SBRs with good nutrient removal performances were (i) alternation of high and low dissolved oxygen phases during aeration, (ii) a settling strategy avoiding too high biomass washout during the first weeks of reactor operation, (iii) adaptation of the contaminant load in the early stage of the startup in order to ensure that all soluble COD was consumed before the beginning of the aeration phase, (iv) a temperature of 20 °C, and (v) a neutral pH. Under such conditions, it took less than 30 days to produce granular sludge with high removal performances for COD, N, and P. A control run using this optimized startup strategy produced again AGS with good nutrient removal performances within four weeks and the system was stable during the additional operation period of more than 50 days. Copyright © 2014 Elsevier Ltd. All rights reserved.
Production of a novel bioflocculant and its flocculation performance in aluminum removal.
Li, Lixin; Ma, Fang; Zuo, Huimin
2016-04-02
A novel bioflocculant CBF with high flocculating activity, produced by mixed culture of Rhizobium radiobacter F2 and Bacillus sphaericus F6 from soil, was investigated with regard to its production and flocculation performance in Al(III) removal. The most preferred carbon source, nitrogen source and C/N ratio (w/w) for strains F2 and F6 to produce CBF were glucose, urea and 20, respectively. The optimal inoculum size for CBF production was 10 % (v/v). The optimal initial pH, culture temperature and shaking speed were 7-8, 30°C and 140 r/min for 24 h, respectively, under which the flocculating activity of the bioflocculant reached 98.52 %. According to literature review, flocculant dosage, coagulant aid dosage, pH, hydraulic condition of coagulation and sedimentation time are considered as influencing parameters for CBF flocculation performance in Al(III) removal by L16(4(5)) orthogonal design. The optimal conditions for Al(III) removal obtained through analysis and verification experiments were as follows: CBF, 28 mg/L; coagulant aid, 1.5 mL/L; initial pH, 8.0; and hydraulic conditions of coagulation: stir speed, 160 r/min; stir time, 40 s; and sedimentation time, 30 min. Under the optimal conditions, the removal efficiency of Al(III) was 92.95 %. Overall, these findings indicate that bioflocculant CBF offers an effective alternative method of decreasing Al(III) during drinking water treatment.
Yan, Shan; Yao, Haosheng; Chen, Zhen; Zeng, Shengquan; Xi, Xi; Wang, Yuanpeng; He, Ning; Li, Qingbiao
2015-01-01
As an environmentally friendly and industrially useful biopolymer, poly-γ-glutamic acid (γ-PGA) from Bacillus licheniformis CGMCC 2876 was characterized by the high-resolution mass spectrometry and (1)H NMR. A flocculating activity of 11,474.47 U mL(-1) obtained with γ-PGA, and the effects of carbon sources, ions, and chemical properties (D-/L-composition and molecular weight) on the production and flocculating activity of γ-PGA were discussed. Being a bioflocculant in the sugar refinery process, the color and turbidity of the sugarcane juice was IU 1,877.36 and IU 341.41 with 0.8 ppm of γ-PGA, respectively, which was as good as the most widely used chemically synthesized flocculant in the sugarcane industry--polyacrylamide with 1 ppm. The γ-PGA produced from B. licheniformis CGMCC 2876 could be a promising alternate of chemically synthesized flocculants in the sugarcane industry. © 2015 American Institute of Chemical Engineers.
Co-conditioning and dewatering of chemical sludge and waste activated sludge.
Chang, G R; Liu, J C; Lee, D J
2001-03-01
The conditioning and dewatering behaviors of chemical and waste activated sludges from a tannery were studied. Capillary suction time (CST), specific resistance to filtration (SRF), and bound water content were used to evaluate the sludge dewatering behaviors. Zeta potentials were also measured. Experiments were conducted on each sludge conditioned and dewatered separately, and on the sludge mixed at various ratios. Results indicate that the chemical sludge was relatively difficult to be dewatered, even in the presence of polyelectrolyte. When the waste activated sludge was mixed with the chemical sludge at ratios of 1:1 and 2:1, respectively, the dewaterability of chemical sludge improved remarkably while the relatively better dewaterability of the waste activated sludge deteriorated only to a limited extent. As the mixing ratios became 4:1 and 8:1, the dewaterability of the mixed sludge was equal to that of the waste activated sludge. The optimal polyelectrolyte dosage for the mixed sludge was equal to or less than that of the waste activated sludge. It is proposed that the chemical sludges act as skeleton builders that reduce the compressibility of the mixed sludge whose dewaterability is enhanced. Bound water contents of sludge decreased at low polyelectrolyte dosage and were not significantly affected as polyelectrolyte dosage increased. Advantages and disadvantages of co-conditioning and dewatering chemical sludge and waste activated sludge were discussed.
[Adsorption of a dye by sludges and the roles of extracellular polymeric substances].
Kong, Wang-sheng; Liu, Yan
2007-12-01
This paper investigated the adsorption of a dye, acid turquoise blue A, by four kinds of sludges including activated sludge, anaerobic sludge, dried activated sludge, and dried anaerobic sludge, respectively. The roles of extracellular polymeric substances (EPS) including the soluble EPS (SEPS) and bound EPS (BEPS) for the biosorption of activated sludge and anaerobic sludge were further studied. Results show that the relation between four kinds of sludge adsorption amount and remained concentration of the dye fitted well both Freundlich model (R2: 0.921-0.995) and Langmuir model (R2: 0.958-0.993), but not quite fitted BET model (R2: 0.07-0.863). The adsorption capability of dried anaerobic sludge ranked the highest, and dried activated sludge was the lowest. According to Langmuir isotherm, the maximum adsorption amount of dried anaerobic, anaerobic, activated, and dried activated sludge was 104 mg/g, 86 mg/g, 65 mg/g, 20 mg/g, respectively. The amount of the dye found in EPS for both activated sludge and anaerobic sludge were over 50%, illustrating that EPS adsorption was predominant in adsorption of the dye by sludge. The amount of adsorbed dye by BEPS was greater than that by SEPS for anaerobic sludge, but for activated sludge the result was quite opposite. The amount of adsorbed dye by unit mass SEPS was much higher than the corresponding values of BEPS for both sludges. The average amount of adsorbed dye by unit mass SEPS was 52 times of the corresponding value of BEPS for activated sludge, and 10 times for anaerobic sludge. The relation between adsorption amount of dye by BEPS from anaerobic sludge and remained concentration of the dye in mixed liquor was best fitted to Langmuir model (R2: 0.9986).
Ramalingam, K; Xanthos, S; Gong, M; Fillos, J; Beckmann, K; Deur, A; McCorquodale, J A
2012-01-01
New York City Environmental Protection is in the process of incorporating biological nitrogen removal (BNR) in its wastewater treatment plants (WWTPs) which entails operating the aeration tanks with higher levels of mixed liquor suspended solids (MLSS) than a conventional activated sludge process. The objective of this paper is to discuss two of the important parameters introduced in the 3D CFD model that has been developed by the City College of New York (CCNY) group: (a) the development of the 'discrete particle' measurement technique to carry out the fractionation of the solids in the final settling tank (FST) which has critical implications in the prediction of the effluent quality; and (b) the modification of the floc aggregation (K(A)) and floc break-up (K(B)) coefficients that are found in Parker's flocculation equation (Parker et al. 1970, 1971) used in the CFD model. The dependence of these parameters on the predictions of the CFD model will be illustrated with simulation results on one of the FSTs at the 26th Ward WWTP in Brooklyn, NY.
Kriipsalu, Mait; Marques, Marcia; Nammari, Diauddin R; Hogland, William
2007-09-30
The objective was to investigate the aerobic biodegradation of oily sludge generated by a flotation-flocculation unit (FFU) of an oil refinery wastewater treatment plant. Four 1m(3) pilot bioreactors with controlled air-flow were filled with FFU sludge mixed with one of the following amendments: sand (M1); matured oil compost (M2); kitchen waste compost (M3) and shredded waste wood (M4). The variables monitored were: pH, total petroleum hydrocarbons (TPHs), polycyclic aromatic hydrocarbons (PAHs), total carbon (C(tot)), total nitrogen (N(tot)) and total phosphorus (P(tot)). The reduction of TPH based on mass balance in M1, M2, M3 and M4 after 373 days of treatment was 62, 51, 74 and 49%; the reduction of PAHs was 97%, +13% (increase), 92 and 88%, respectively. The following mechanisms alone or in combination might explain the results: (i) most organics added with amendments biodegrade faster than most petroleum hydrocarbons, resulting in a relative increase in concentration of these recalcitrant contaminants; (ii) some amendments result in increased amounts of TPH and PAHs to be degraded in the mixture; (iii) sorption-desorption mechanisms involving hydrophobic compounds in the organic matrix reduce bioavailability, biodegradability and eventually extractability; (iv) mixture heterogeneity affecting sampling. Total contaminant mass reduction seems to be a better parameter than concentration to assess degradation efficiency in mixtures with high content of biodegradable amendments.
Nanoparticles in Constanta-North Wastewater Treatment Plant
NASA Astrophysics Data System (ADS)
Panaitescu, I. M.; Panaitescu, Fanel-Viorel L.; Panaitescu, Ileana-Irina F. V.
2015-02-01
In this paper we describe the route of the nanoparticles in the WWTP and demonstrate how to use the simulation flow sensitivity analysis within STOATTM program to evaluate the effect of variation of the constant, "k" in the equation v= kCh settling on fixed concentration of nanoparticles in sewage water from a primary tank of physical-biological stage. Wastewater treatment facilities are designed to remove conventional pollutants from sanitary waste. Major processes of treatment includes: a) physical treatment-remove suspended large solids by settling or sedimentation and eliminate floating greases; b) biological treatment-degradation or consumption of the dissolved organic matter using the means of cultivated in activated sludge or the trickling filters; c) chemical treatment-remove other matters by the means of chemical addition or destroying pathogenic organisms through disinfection; d) advanced treatment- removing specific constituents using processes such as activated carbon, membrane separation, or ion exchange. Particular treatment processes are: a) sedimentation; b) coagulation and flocculation; c) activated sludge; d) sand filters; e) membrane separation; f) disinfection. Methods are: 1) using the STOATTM program with input and output data for primary tank and parameters of wastewater. 2) generating a data file for influent using a sinusoidal model and we accepted defaults STOATTM data. 3) After this, getting spreadsheet data for various characteristics of wastewater for 48 hours:flow, temperature, pH, volatile fatty acids, soluble BOD, COD inert soluble particulate BOD, COD inert particles, volatile solids, volatile solids, ammonia, nitrate and soluble organic nitrogen. Findings and Results:1.Graphics after 48 hour;. 2.Graphics for parameters - flow,temperature, pH/units hours; 3.Graphics of nanoparticles; 4. Graphics of others volatile and non-volatile solids; 5. Timeseries data and summary statistics. Biodegradation of nanoparticles is the breakdown of organic molecules that may cause changes in the physical structure or the surface characteristic of the material.
Xu, Kun; Liu, Yao; Wang, Yang; Tan, Ying; Liang, Xuecheng; Lu, Cuige; Wang, Haiwei; Liu, Xiusheng; Wang, Pixin
2015-01-01
Series of anionic flocculants with outstanding flocculation performance, poly(acrylic acid-co-acrylamide)/diatomite composite flocculants (PAAD) were successfully prepared through aqueous solution copolymerization and applied to flocculate from oil-field fracturing waste-water. The structure of PAAD was characterized by Fourier transform infra-red spectroscopy, (13)C nuclear magnetic resonance and X-ray diffraction tests, and its properties were systematically evaluated by viscometer, thermogravimetry analysis and flocculation measurements. Furthermore, the influences of various reaction parameters on the apparent viscosity of flocculant solution were studied, and the optimum synthesis condition was determined. The novel composite flocculants exhibited outstanding flocculation properties. Specifically, the dosage of composite flocculants that could make the transmittance of treated wastewater exceed 90% was only approximately 12-35 ppm, which was far lower than that of conventional flocculants. Meanwhile, the settling time was lower than 5 s, which was similar to that of conventional flocculants. This was because PAAD flocculants had a higher absorption capacity, and larger chain extending space than conventional linear flocculants, which could refrain from the entanglement of linear polymer chains and significantly improve flocculation capacity.
Enhanced removal of Zn(2+) or Cd(2+) by the flocculating Chlorella vulgaris JSC-7.
Alam, Md Asraful; Wan, Chun; Zhao, Xin-Qing; Chen, Li-Jie; Chang, Jo-Shu; Bai, Feng-Wu
2015-05-30
Microalgae are attracting attention due to their potentials in mitigating CO2 emissions and removing environmental pollutants. However, harvesting microalgal biomass from diluted cultures is one of the bottlenecks for developing economically viable processes for this purpose. Microalgal cells can be harvested by cost-effective sedimentation when flocculating strains are used. In this study, the removal of Zn(2+) and Cd(2+) by the flocculating Chlorella vulgaris JSC-7 was studied. The experimental results indicated that more than 80% Zn(2+) and 60% Cd(2+) were removed by the microalgal culture within 3 days in the presence up to 20.0mg/L Zn(2+) and 4.0mg/L Cd(2+), respectively, which were much higher than that observed with the culture of the non-flocculating C. vulgaris CNW11. Furthermore, the mechanism underlying this phenomenon was explored by investigating the effect of Zn(2+) and Cd(2+) on the growth and metabolic activities of the microalgal strains. It was found that the flocculation of the microalga improved its growth, synthesis of photosynthetic pigments and antioxidation activity under the stressful conditions, indicating a better tolerance to the heavy metal ions for a potential in removing them more efficiently from contaminated wastewaters, together with a bioremediation of other nutritional components contributed to the eutrophication of aquatic ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.
Makene, Vedastus W; Tijani, Jimoh O; Petrik, Leslie F; Pool, Edmund J
2016-08-01
Effective treatment of textile effluent prior to discharge is necessary in order to avert the associated adverse health impacts on human and aquatic life. In the present investigation, coagulation/flocculation processes were evaluated for the effectiveness of the individual treatment. Effectiveness of the treatment was evaluated based on the physicochemical characteristics. The quality of the pre-treated and post-flocculation treated effluent was further evaluated by determination of cytotoxicity and inflammatory activity using RAW264.7 cell cultures. Cytotoxicity was determined using WST-1 assay. Nitric oxide (NO) and interleukin 6 (IL-6) were used as biomarkers of inflammation. NO was determined in cell culture supernatant using the Griess reaction assay. The IL-6 secretion was determined using double antibody sandwich enzyme linked immunoassay (DAS ELISA). Cytotoxicity results show that raw effluent reduced the cell viability significantly (P < 0.001) compared to the negative control. All effluent samples treated by coagulation/flocculation processes at 1 in 100 dilutions had no cytotoxic effects on RAW264.7 cells. The results on inflammatory activities show that the raw effluent and effluent treated with 1.6 g/L of Fe-Mn oxide induced significantly (P < 0.001) higher NO production than the negative control. The inflammatory results further show that the raw effluent induced significantly (P < 0.001) higher production of IL-6 than the negative control. Among the coagulants/flocculants evaluated Al2(SO4)3.14H2O at a dosage of 1.6 g/L was the most effective to remove both toxic and inflammatory pollutants. In conclusion, the inflammatory responses in RAW264.7 cells can be used as sensitive biomarkers for monitoring the effectiveness of coagulation/flocculation processes used for textile effluent treatment.
Activated Sludge. Student Manual. Biological Treatment Process Control.
ERIC Educational Resources Information Center
Boe, Owen K.; Klopping, Paul H.
This student manual contains the textual material for a seven-lesson unit on activated sludge. Topic areas addressed in the lessons include: (1) activated sludge concepts and components (including aeration tanks, aeration systems, clarifiers, and sludge pumping systems); (2) activated sludge variations and modes; (3) biological nature of activated…
Improvement of primary settling performance with activated sludge.
Yetis, U; Tarlan, E
2002-04-01
In biological treatment plants employing activated sludge processes, it is possible to recirculate some portion of the waste activated sludge that is not sent to the aeration basin, to the inlet of the primary sedimentation tanks. But in the literature there is no detailed information about the conditions, ratios and the characteristics of the waste sludge that can be recirculated back. However, depending on its settling characteristics, the addition of waste activated sludge to raw wastewater may improve primary settling. Settling tests have shown that the effect of waste activated sludge on primary settling is strongly dependent on the mean cell residence time (or sludge age), theta(c), of the waste activated sludge and also on the suspended solids concentration. Different sludge ages of 4, 6, 8, 10, 14, 20 and 26 days, and for each sludge age at least five different initial suspended solids concentrations were studied. A sludge age of 8-10 days achieved the optimum efficiency in terms of the remaining suspended solids concentration as well as percent-suspended solids removal. Also, the settled sludge volumes were measured throughout the experiments; so, the comparison was made between settled sludge volumes, initial suspended solids (SS) concentrations and theta(c).
[Dynamics of quickly absorption of the carbon source in wastewater by activated sludge].
Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang
2011-09-01
In this paper, absorption characteristics of organic matter in municipal wastewater by three kinds of activated sludge (carbon-enriching, nitrification and denitrification sludge) were studied, and the absorption kinetic data was checked using three kinds of absorption kinetic equations based on Ritchie rate equation. The objectives of this study were to investigate the absorption mechanism of activated sludge to organic matter in municipal wastewater, and to identify the possibility of reclaiming organic matter by activated sludge. Results indicated that in the early 30 min, absorption process of organic matter by activated sludge was found to be mainly physical adsorption, which could be expressed by the Lagergren single-layer adsorption model. The carbon-enriching sludge had the highest adsorption capacity (COD/SS) which was 60 mg/g but the adsorption rate was lower than that of denitrification sludge. While nitrification sludge had the lowest adsorption rate and higher adsorption capacity compared with denitrification sludge, which was about 35 mg/g. The rates of the fitting index theta(0) of carbon-enriching, nitrification and denitrification sludge were 0.284, 0.777 and 0.923, respectively, which indicated that the sorbed organic matter on the surface of carbon-enriching sludge was the easiest fraction to be washed away. That is, the combination intensity of carbon-enriching sludge and organic matter was the feeblest, which was convenient for carbon-enriching sludge to release sorbed carbon. Furthermore, by fitting with Langmuir model, concentration of organic matter was found to be the key parameter influencing the adsorption capacity of activated sludge, while the influence of temperature was not obvious. The kinetic law of organic matter absorption by activated sludge was developed, which introduces a way to kinetically analyze the removing mechanism of pollutant by activated sludge and provides theoretical base for the reclaiming of nutriments in wastewater by the absorption of activated sludge.
Agunbiade, Mayowa Oladele; Van Heerden, Esta; Pohl, Carolina H; Ashafa, Anofi Tom
2017-06-12
The discharge of poorly treated effluents into the environment has far reaching, consequential impacts on human and aquatic life forms. Thus, we evaluated the flocculating efficiency of our test bioflocculant and we report for the first time the ability of the biopolymeric flocculant produced by Arthrobacter humicola in the treatment of sewage wastewater. This strain was isolated from sediment soil sample at Sterkfontein dam in the Eastern Free State province of South Africa. Basic Local Alignment Search Tool (BLAST) analysis of the nucleotide sequence of the 16S rDNA revealed the bacteria to have 99% similarity to Arthrobacter humicola strain R1 and the sequence was deposited in the Gene bank as Arthrobacter humicola with accession number KC816574.1. Flocculating activity was enhanced with the aid of divalent cations, pH 12, at a dosage concentration of 0.8 mg/mL. The purified bioflocculant was heat stable and could retain more than 78% of its flocculating activity after heating at 100 °C for 25 min. Fourier Transform Infrared Spectroscopy analysis demonstrated the presence of hydroxyl and carboxyl moieties as the functional groups. The thermogravimetric analysis was used to monitor the pyrolysis profile of the purified bioflocculant and elemental composition revealed C: O: Na: P: K with 13.90: 41.96: 26.79: 16.61: 0.74 weight percentage respectively. The purified bioflocculant was able to remove chemical oxygen demand, biological oxygen demand, suspended solids, nitrate and turbidity from sewage waste water at efficiencies of 65.7%, 63.5%, 55.7%, 71.4% and 81.3% respectively. The results of this study indicate the possibility of using the bioflocculant produced by Arthrobacter humicola as a potential alternative to synthesized chemical flocculants in sewage waste water treatment and other industrial waste water.
Park, Chul-Hwi; Park, Jun-Won; Han, Gee-Bong
2016-10-14
The membrane fouling control via the addition of nanoporous zeolite membrane fouling reducer (Z-MFR) to the submerged membrane bioreactor (MBR) was investigated. Using scanning electron microscopy/energy-dispersive X-ray (SEM/EDX) analysis techniques, the characteristics of fouling on a hollow fiber membrane surface were also analyzed. The addition of Z-MFR to the MBR led to the adsorption of foulants and the flocculation of mixed liquor suspended solids (MLSSs), which resulted in substantially enhancing the membrane filterability. The critical flux values obtained from the sewage mixed liquors of 3400 mg L(-1) at the effective dosage rate of 0.03 mg Z-MFR mg(-1) MLSS was 85 L m(-2) h(-1) (LMH), which was enhanced by 42%. The transmembrane pressure (TMP) variation under the operating conditions of 30 LMH with 3500 mg MLSS L(-1) showed that the addition of Z-MFR extended the time required to reach the critical flux of 0.32 bar by 2.6-fold longer than the control. Thus, due to the hybrid functions of adsorbing foulants and precipitating colloidal substances with the addition of Z-MFR, a decrease in the foulant amount and an improvement of sludge flocculation have been attained simultaneously. As a result, the membrane fouling control was achieved effectively with the addition of the Z-MFR.
Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian
2015-01-01
Wastewater treatment plants are considered as hot reservoirs of antimicrobial resistance. However, the fates of antibiotic-resistant bacteria during biological treatment processes and relevant influencing factors have not been fully understood. This study evaluated the effects of the sludge loading rate on the growth and release of six kinds of antibiotic-resistant bacteria in an activated sludge system. The results indicated that higher sludge loading rates amplified the growth of all six types of antibiotic resistant bacteria. The release of most antibiotic-resistant bacteria through both the effluent and biosolids was amplified with increased sludge loading rate. Biosolids were the main pattern for all antibiotic-resistant bacteria release in an activated sludge system, which was determined primarily by their growth in the activated sludge. A higher sludge loading rate reactor tended to retain more antibiotic resistance. An activated sludge system with lower sludge loading rates was considered more conducive to the control of antibiotic resistance.
Noh, Won; Kim, Jungmin; Lee, Sang-Jun; Ryu, Byung-Gon; Kang, Chang-Min
2018-02-01
Microalgae have been extensively studied for the production of various products. However, to date, microalgal biomass has not become economically feasible, mainly due to different issues such as contamination from various sources that occurs during downstream processes, and which leads to low quality biomass with limited application. In this study, to overcome contamination by flocculants and other microorganisms, the cationic biopolymer α-Poly-l-lysine (α-PLL) was applied. The cationic amine moiety and polymeric chain of α-PLL rendered microalgal harvesting efficient. With increasing α-PLL chain length, efficient dose- and time-dependent harvesting was achieved. In addition to efficient flocculation performance, biomass harvested using α-PLL showed suppressed biological contamination through the inherent antimicrobial activity of α-PLL. Thus, it is possible to upgrade the quality and storability of produced microalgal biomass using α-PLL-induced flocculation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Litti, Iu V; Nekrasova, V K; Kulikov, N I; Siman'kova, M V; Nozhevnikova, A N
2013-01-01
Attached activated sludge from the Krasnaya Polyana (Sochi) wastewater treatment plant was studied after the reconstruction by increased aeration and water recycle, as well as by the installation of a bristle carrier for activated sludge immobilization. The activated sludge biofilms developing under conditions of intense aeration were shown to contain both aerobic and anaerobic microorganisms. Activity of a strictly anaerobic methanogenic community was revealed, which degraded organic compounds to methane, further oxidized by aerobic methanotrophs. Volatile fatty acids, the intermediates of anaerobic degradation of complex organic compounds, were used by both aerobic and anaerobic microorganisms. Anaerobic oxidation of ammonium with nitrite (anammox) and the presence of obligate anammox bacteria were revealed in attached activated sludge biofilms. Simultaneous aerobic and anaerobic degradation of organic contaminants by attached activated sludge provides for high rates of water treatment, stability of the activated sludge under variable environmental conditions, and decreased excess sludge formation.
Kim, Young Mo; Chon, Dong-Hyun; Kim, Hee-Sik; Park, Chul
2012-09-01
The goal of this study was to investigate the bacterial community in activated sludge with an anaerobic side-stream reactor (ASSR), a process permitting significant decrease in sludge production during wastewater treatment. The study operated five activated sludge systems with different sludge treatment schemes serving as various controls for the activated sludge with ASSR. Bacterial communities were analyzed by denaturing gradient gel electrophoresis (DGGE), sequencing and construction of phylogenetic relationships of the identified bacteria. The DGGE data showed that activated sludge incorporating ASSR contained higher diversity of bacteria, resulting from long solids retention time and recirculation of sludge under aerobic and anaerobic conditions. The similarity of DGGE profiles between ASSR and separate anaerobic digester (control) was high indicating that ASSR is primarily related to conventional anaerobic digesters. Nevertheless, there was also unique bacteria community appearing in ASSR. Interestingly, sludge in the main system and in ASSR showed considerably different bacterial composition indicating that ASSR allowed enriching its own bacterial community different than that from the aeration basin, although two reactors were connected via sludge recirculation. In activated sludge with ASSR, sequences represented by predominant DGGE bands were affiliated with Proteobacteria. The remaining groups were composed of Spirochaetes, Clostridiales, Chloroflexi, and Actinobacteria. Their putative role in the activated sludge with ASSR is also discussed in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.
Yeast flocculation: New story in fuel ethanol production.
Zhao, X Q; Bai, F W
2009-01-01
Yeast flocculation has been used in the brewing industry to facilitate biomass recovery for a long time, and thus its mechanism of yeast flocculation has been intensively studied. However, the application of flocculating yeast in ethanol production garnered attention mainly in the 1980s and 1990s. In this article, updated research progress in the molecular mechanism of yeast flocculation and the impact of environmental conditions on yeast flocculation are reviewed. Construction of flocculating yeast strains by genetic approach and utilization of yeast flocculation for ethanol production from various feedstocks were presented. The concept of self-immobilized yeast cells through their flocculation is revisited through a case study of continuous ethanol fermentation with the flocculating yeast SPSC01, and their technical and economic advantages are highlighted by comparing with yeast cells immobilized with supporting materials and regular free yeast cells as well. Taking the flocculating yeast SPSC01 as an example, the ethanol tolerance of the flocculating yeast was also discussed.
NASA Astrophysics Data System (ADS)
Ong, Soon-An; Toorisaka, Eiichi; Hirata, Makoto; Hano, Tadashi
2013-03-01
The adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solutions by activated sludge and dried sludge was investigated under laboratory conditions to assess its potential in removing metal ions. The adsorption behavior of metal ions onto activated sludge and dried sludge was analyzed with Weber-Morris intra-particle diffusion model, Lagergren first-order model and pseudo second-order model. The rate constant of intra-particle diffusion on activated sludge and dried sludge increased in the sequence of Cu(II) > Ni(II) > Cd(II). According to the regression coefficients, it was observed that the kinetic adsorption data can fit better by the pseudo second-order model compared to the first-order Lagergren model with R 2 > 0.997. The adsorption capacities of metal ions onto activated sludge and dried sludge followed the sequence Ni(II) ≈ Cu(II) > Cd(II) and Cu(II) > Ni(II) > Cd(II).
Zhang, Bo; Chen, Sanfeng
2015-09-01
In this study, flocculation of Chlorella sorokiniana cultivated in swine manure wastewater, BG-11 medium and BG-11 medium supplemented with different organic matters (glucose, urea and tryptone) was investigated. The results demonstrated that the minimum amount of Al(3+) required for complete flocculation in wastewater would increase substantially, and flocculation efficiency became highly sensitive to pH. Tryptone could cause similar extent of inhibition on flocculation as in wastewater. Meanwhile, glucose could increase concentrations of Algogenic Organic Matter (AOM), inhibiting flocculation strongly at higher pH, including flocculation induced by Al(3+) and autoflocculation. However, urea had little effect on flocculation of C. sorokiniana. Moreover, the major factors: dilution times, pH and flocculants dosage, which had significant impact on flocculation efficiency of C. sorokiniana in piggery wastewater, were optimized using response surface methodology (RSM). The optimal flocculation efficiency (100%) was achieved at pH 8.5, 7-folds of dilution and 52.14 mg L(-1) of Al(3+). Copyright © 2015 Elsevier Ltd. All rights reserved.
Guo, Xinxin; Wang, Yili; Wang, Dongsheng
2017-11-01
A novel activated sludge (AS) conditioning method through permanganate/bisulfate (PM/BS) process was proposed. The method involved a new conditioner of reactive Mn(III) intermediate. Moreover, a Mn(III) conditioning-horizontal electro-dewatering (Mn(III) C-HED) process was established to improve AS dewatering performance. Underlying mechanisms were unraveled by investigating changes in physicochemical characteristics, scanning electron microscope (SEM) morphology, and transformation of water and organic matters. The optimum dewatering conditions for Mn(III) C-HED process with the final water content of 86.94% were determined as the combination of KMnO 4 0.01 mol/L AS and NaHSO 3 0.05 mol/L AS at 20 V for 120 min. Results showed that Mn(III) C-HED process effectively reduced free water and bound water with the corresponding removal ratios of 51.68% and 87.62% at the anode-side as well as 36.55% and 85.08% at the cathode-side, respectively. During the PM/BS process, the produced Mn(III), Mn 2+ , and MnO 2 exerted chemical and physical effects on AS conditioning and dewatering. Mn(III) disintegrated extracellular polymeric substances (EPS) fractions and cells in AS, as well as induced partial bound water release. Additionally, flocculation effect induced by Mn 2+ and MnO 2 skeleton building also benefited AS dewatering. AS cells were further disrupted under the effect of a horizontal electric field. Accordingly, EPS within the AS matrix was solubilized, tightly bound (TB)-EPS or loosely bound (LB)-EPS was converted to their corresponding outer EPS fractions, and AS dewaterability improved. Additionally, changes in pH and temperature at HED stage damaged the AS cells and changed the floc properties, thereby leading to easy separation of liquid and AS particles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nie, Yafeng; Qiang, Zhimin; Ben, Weiwei; Liu, Junxin
2014-06-01
Sludge ozonation is considered as a promising technology to achieve a complete reduction of excess sludge, but as yet its effects on the removal of endocrine-disrupting chemicals (EDCs) and conventional pollutants (i.e., COD, N and P) in the activated sludge process are still unclear. In this study, two lab-scale continuous-operating activated sludge treatment systems were established: one was operated in conjunction with ozonation for excess sludge reduction, and the other was operated under normal conditions as control. The results indicate that an ozone dose of 100 mg O₃ g(-1)SS led to a zero yield of excess sludge in the sludge-reduction system during a continuous-operating period of 45d. Although ozonation gave a relatively lower specific oxygen uptake rate of activated sludge, it had little effect on the system's removal performance of COD and nitrogen substances. As a plus, sludge ozonation contributed a little more removal of target EDCs (estrone, 17β-estrodiol, estriol, 17α-ethinylestradiol, bisphenol A, and 4-nonylphenol). However, the total phosphorus removal declined notably due to its accumulation in the sludge-reduction system, which necessitates phosphorus recovery for the activated sludge process. Copyright © 2014 Elsevier Ltd. All rights reserved.
Perpetuini, Giorgia; Di Gianvito, Paola; Arfelli, Giuseppe; Schirone, Maria; Corsetti, Aldo; Tofalo, Rosanna; Suzzi, Giovanna
2016-07-01
Yeasts involved in secondary fermentation of traditional sparkling wines should show specific characteristics, such as flocculation capacity and autolysis. Recently it has been postulated that autophagy may contribute to the outcome of autolysis. In this study, 28 flocculent wine Saccahromyces cerevisiae strains characterized by different flocculation degrees were studied for their autolytic and autophagic activities. Autolysis was monitored in synthetic medium through the determination of amino acid nitrogen and total proteins released. At the same time, novel primer sets were developed to determine the expression of the genes ATG1, ATG17 and ATG29. Twelve strains were selected on the basis of their autolytic rate and ATG gene expressions in synthetic medium and were inoculated in a base wine. After 30, 60 and 180 days the autolytic process and ATG gene expressions were evaluated. The obtained data showed that autolysis and ATG gene expressions differed among strains and were independent of the degree of flocculation. This biodiversity could be exploited to select new starter stains to improve sparkling wine production. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Aerobic Heterotrophic Bacterial Populations of Sewage and Activated Sludge
Prakasam, T. B. S.; Dondero, N. C.
1970-01-01
An activated sludge from a sewage treatment plant and a laboratory activated sludge developed on an artificial waste were compared for their ability to utilize 11 aromatic compounds. There were several significant differences between them. The laboratory sludge contained higher numbers of organisms and metabolized the aromatics to a greater extent. Laboratory activated sludges acclimated to utilization of the aromatics differed from each other in population structure and the pattern of oxygen consumption with aromatic substrates. The oxidative patterns of uncontrolled mixed populations were unreliable for investigating metabolic pathways. Extracts of the various sludges elevated the plate counts of the sludges. PMID:5418946
Selection of the surface water treatment technology - a full-scale technological investigation.
Pruss, Alina
2015-01-01
A technological investigation was carried out over a period of 2 years to evaluate surface water treatment technology. The study was performed in Poland, in three stages. From November 2011 to July 2012, for the first stage, flow tests with a capacity of 0.1-1.5 m³/h were performed simultaneously in three types of technical installations differing by coagulation modules. The outcome of the first stage was the choice of the technology for further investigation. The second stage was performed between September 2012 and March 2013 on a full-scale water treatment plant. Three large technical installations, operated in parallel, were analysed: coagulation with sludge flotation, micro-sand ballasted coagulation with sedimentation, coagulation with sedimentation and sludge recirculation. The capacity of the installations ranged from 10 to 40 m³/h. The third stage was also performed in a full-scale water treatment plant and was aimed at optimising the selected technology. This article presents the results of the second stage of the full-scale investigation. The critical treatment process, for the analysed water, was the coagulation in an acidic environment (6.5 < pH < 7.0) carried out in a system with rapid mixing, a flocculation chamber, preliminary separation of coagulation products, and removal of residual suspended solids through filtration.
Zhang, Zhi-qiang; Lin, Bo; Xia, Si-qing; Wang, Xue-jiang; Yang, A-mimg
2007-01-01
The flocculating activity of a novel bioflocculant MMF1 produced by multiple-microorganism consortia MM1 was investigated. MM1 was composed of strain BAFRT4 identified as Staphylococcus sp. and strain CYGS1 identified as Pseudomonas sp. The flocculating activity of MMF1 isolated from the screening medium was 82.9%, which is remarkably higher than that of the bioflocculant produced by either of the strains under the same condition. Brewery wastewater was also used as the carbon source for MM1, and the cost-effective production medium for MM1 mainly comprised 1.0 L brewery water (chemical oxygen demand (COD) 5000 mg/L), 0.5 g/L urea, 0.5 g/L yeast extract, and 0.2 g/L (NH4)2SO4. The optimal conditions for the production of MMF1 was inoculum size 2%, initial pH 6.0, cultivating temperature 30 degrees C, and shaking speed 160 r/min, under which the flocculating activity of the MMF1 reached 96.8%. Fifteen grams of purified bioflocculant could be recovered from 1.0 L of fermentation broth. MMF1 was identified as a macromolecular substance containing both protein and polysaccharide. It showed good flocculating performance in treating indigotin printing and dyeing wastewater, and the maximal removal efficiencies of COD and chroma were 79.2% and 86.5%, respectively.
Zhang, Peng; Shen, Yu; Guo, Jin-Song; Li, Chun; Wang, Han; Chen, You-Peng; Yan, Peng; Yang, Ji-Xiang; Fang, Fang
2015-07-10
In this work, proteins in extracellular polymeric substances extracted from anaerobic, anoxic and aerobic sludges of wastewater treatment plant (WWTP) were analyzed to probe their origins and functions. Extracellular proteins in WWTP sludges were identified using shotgun proteomics, and 130, 108 and 114 proteins in anaerobic, anoxic and aerobic samples were classified, respectively. Most proteins originated from cell and cell part, and their most major molecular functions were catalytic activity and binding activity. The results exhibited that the main roles of extracellular proteins in activated sludges were multivalence cations and organic molecules binding, as well as in catalysis and degradation. The catalytic activity proteins were more widespread in anaerobic sludge compared with those in anoxic and aerobic sludges. The structure difference between anaerobic and aerobic sludges could be associated with their catalytic activities proteins. The results also put forward a relation between the macro characteristics of activated sludges and micro functions of extracellular proteins in biological wastewater treatment process.
NASA Astrophysics Data System (ADS)
Manning, A. J.; Schoellhamer, D. H.; Mehta, A. J.; Schladow, G.; Monismith, S. G.; Huang, I. B.; Kuwabara, J. S.; Carter, J. L.; Sheremet, A.; Parsons, D. R.; Whitehouse, R. J. S.; Todd, D.; Benson, T.; Spearman, J.
2016-12-01
Many coastal and inland waterways are dominated by muddy sediments; typically a mixture of clay minerals and various types of organic matter. When cohesive sediment is entrained into suspension, the particles tend to flocculate. Flocs are less dense, but faster settling than their constituent particles thus affecting their depositional characteristics. As flocs grow, their effective densities generally decrease, but their settling rates rise due to the Stokes' Law relationship. Flocculation effects become even more complex when purely cohesive sediments are mixed with different ratios of non-cohesive sediments, and if biological activity (e.g., exudate production) affects the resultant cohesion. Developing instrumentation that can provide key physical and dynamical data on depositional rates of flocculating sediments is extremely important in advancing our understanding of natural flocculation processes. Complementary qualitative and quantitative data improve our understanding of the depositional and aggregational physical processes through parameterization. This presentation will demonstrate recent advances in the study of the flocculation process through the use of video image technology. One such device pioneered at HR Wallingford, and implemented with co-authors, is the high-resolution floc video camera, LabSFLOC - Laboratory Spectral Flocculation Characteristics (developed by Prof. Manning). LabSFLOC can observe (directly or indirectly) floc spectral physical properties, including: floc size, settling velocity, effective density, porosity, shape, mass, and settling flux (using controlled volume referencing). These data are highly desirable for sediment transport modelers. Examples of floc measurements from locations in estuaries, tidal lagoons, river deltas, and lakes from locations across the US will be presented. In addition, we will demonstrate how video floc data can be used to parameterize floc settling characteristics for use in modeling.
Flocculation Settling Dynamics of Natural Cohesive Suspended Sediments: "Floccin' Across the USA!"
NASA Astrophysics Data System (ADS)
Manning, A. J.; Schoellhamer, D. H.; Mehta, A. J.; Schladow, G.; Monismith, S. G.; Huang, I. B.; Kuwabara, J. S.; Carter, J. L.; Sheremet, A.; Parsons, D. R.; Whitehouse, R. J. S.; Todd, D.; Benson, T.; Spearman, J.
2017-12-01
Many coastal and inland waterways are dominated by muddy sediments; comprising a mixture of clay minerals and various types of organic matter. When cohesive sediment is entrained into suspension, the particles tend to flocculate. Flocs are less dense, but faster settling than their constituent particles thus affecting their depositional characteristics. As flocs grow, their effective densities generally decrease, but their settling rates rise due to the Stokes' Law relationship. Flocculation effects become even more complex when purely cohesive sediments are mixed with different ratios of non-cohesive sediments, and if biological activity (e.g., exudate production) affects the resultant cohesion. Developing instrumentation that can provide key physical and dynamical data on depositional rates of flocculating sediments is extremely important in advancing our understanding of natural flocculation processes. Complementary qualitative and quantitative data improve our understanding of the depositional and aggregational physical processes through parameterization. This presentation will demonstrate recent advances in the study of the flocculation process through the use of video image technology. One such device pioneered at HR Wallingford, and implemented with co-authors, is the high-resolution floc video camera, LabSFLOC - Laboratory Spectral Flocculation Characteristics (developed by Prof. Manning). LabSFLOC can observe (directly or indirectly) floc spectral physical properties, including: floc size, settling velocity, effective density, porosity, shape, mass, and settling flux (using controlled volume referencing). These data are highly desirable for sediment transport modelers. Examples of floc measurements from locations in estuaries, tidal lagoons, river deltas, and lakes from locations across the US will be presented. In addition, we will demonstrate how video floc data can be used to parameterize floc settling characteristics for use in modeling.
Hansen, R; Thogersen, T; Rogalla, F
2007-01-01
In the early 1990s, the Wastewater Treatment Plant (WWTP) of Frederikshavn, Denmark, was extended to meet new requirements for nutrient removal (8 mg/L TN, 1.5 mg TP/L) as well as to increase its average daily flow to 16,500 m(3)/d (4.5 MGD). As the most economical upgrade of the existing activated sludge (AS) plant, a parallel biological aerated filter (BAF) was selected, and started up in 1995. Running two full scale processes in parallel for over ten years on the same wastewater and treatment objectives enabled a direct comparison in relation to operating performance, costs and experience. Common pretreatment consists of screening, an aerated grit and grease removal and three primary settlers with chemical addition. The effluent is then pumped to the two parallel biological treatment stages, AS with recirculation and an upflow BAF with floating media. The wastewater is a mixture of industrial and domestic wastewater, with a dominant discharge of fish processing effluent which can amount to 50% of the flow. The maximum hydraulic load on the pretreatment section as a whole is 1,530 m(3)/h. Approximately 60% of the sewer system is combined with a total of 32 overflow structures. To avoid the direct discharge of combined sewer overflows into the receiving waters, the total hydraulic wet weather capacity of the plant is increased to 4,330 m(3)/h, or 6 times average flow. During rain, some of the raw sewage can be directed through a stormwater bypass to the BAF, which can be modified in its operation to accommodate various treatment needs: either using simultaneous nitrification/denitrification in all filters with recirculation introducing bottom aeration with full nitrification in some filters for storm treatment and/or post-denitrification in one filter. After treatment, the wastewater is discharged to the Baltic Sea through a 500 m outfall. The BAF backwash sludge, approximately 1,900 m(3) per 24 h in dry weather, is redirected to the AS plant. Primary settler sludge and the combined biosolids from the AS plant are anaerobically digested, with methane gas being used for generation of heat and power. On-line measurements for the parameters NO3, NO2, NH4, temperature as well as dissolved oxygen (DO) are used for control of aeration and external carbon source (methanol). Dosing of flocculants for P-removal is carried out based on laboratory analysis and jar tests. This paper discusses the experience gained from the plant operation during the last ten years, compiling comparative performance and cost data of the two processes, as well as their optimisation.
Digital image processing and analysis for activated sludge wastewater treatment.
Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed
2015-01-01
Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.
Revellame, Emmanuel D; Hernandez, Rafael; French, W Todd; Holmes, William E; Forks, Allison; Callahan, Robert
2013-11-01
Lipid-enhancement of activated sludges was conducted to increase the amount of saponifiable lipids in the sludges. The sludges were obtained from a conventional activated sludge (CAS) and an oxidation ditch process (ODP). Results showed 59-222% and 150-250% increase in saponifiable lipid content of the sludges from CAS and ODP, respectively. The fatty acid methyl ester (FAMEs) obtained from triacylglycerides was 57-67% (of total FAMEs) for enhanced CAS and 55-73% for enhanced ODP, a very significant improvement from 6% to 10% (CAS) and 4% to 8% (ODP). Regardless of the source, the enhancement resulted in sludges with similar fatty acid profile indicating homogenization of the lipids in the sludges. This study provides a potential strategy to utilize existing wastewater treatment facilities as source of significant amount of lipids for biofuel applications. Published by Elsevier Ltd.
Martins, C L; Velho, V F; Ramos, S R A; Pires, A S C D; Duarte, E C N F A; Costa, R H R
2016-01-01
The aim of this study was to investigate the ability of the oxic-settling-anaerobic (OSA)-process and the folic acid addition applied in the activated sludge process to reduce the excess sludge production. The study was monitored during two distinct periods: activated sludge system with OSA-process, and activated sludge system with folic acid addition. The observed sludge yields (Yobs) were 0.30 and 0.08 kgTSS kg(-1) chemical oxygen demand (COD), control phase and OSA-process (period 1); 0.33 and 0.18 kgTSS kg(-1) COD, control phase and folic acid addition (period 2). The Yobs decreased by 73 and 45% in phases with the OSA-process and folic acid addition, respectively, compared with the control phases. The sludge minimization alternatives result in a decrease in excess sludge production, without negatively affecting the performance of the effluent treatment.
Effect of different starvation conditions on the flocculation of Saccharomyces cerevisiae.
Soares, E V; Vroman, A
2003-01-01
To study the effect of different starvation conditions on the flocculation of an ale brewing yeast of Saccharomyces cerevisiae NCYC 1195. Flocculation was assessed by a micro-flocculation technique (Soares and Mota 1997). Carbon-starved cells of a NewFlo phenotype strain did not lose flocculation during a 48 h period. Cells incubated only in the presence of fermentable carbon sources (glucose, galactose and maltose at 2%, w/v), showed a progressive flocculation loss. The incubation of cells in 4% (v/v) ethanol did not induce a flocculation loss. The simultaneous incubation of cells in the presence of 2% (w/v) glucose and 15 microg ml(-1) cycloheximide hindered flocculation loss. The presence of 0.1 mmol l(-1) PMSF or 10 mmol l-1 EDTA prevented partially or completely, respectively, the loss of flocculation in the presence of glucose. Fermentable sugars induced a flocculation loss, which seems to require de novo protein synthesis and the involvement of different proteases. The findings reported here contribute to the elucidation of the role of nutrients on the physiological control of yeast flocculation.
The role and control of sludge age in biological nutrient removal activated sludge systems.
Ekama, G A
2010-01-01
The sludge age is the most fundamental and important parameter in the design, operation and control of biological nutrient removal (BNR) activated sludge (AS) systems. Generally, the better the effluent and waste sludge quality required from the system, the longer the sludge age, the larger the biological reactor and the more wastewater characteristics need to be known. Controlling the reactor concentration does not control sludge age, only the mass of sludge in the system. When nitrification is a requirement, sludge age control becomes a requirement and the secondary settling tanks can no longer serve the dual purpose of clarifier and waste activated sludge thickeners. The easiest and most practical way to control sludge age is with hydraulic control by wasting a defined proportion of the reactor volume daily. In AS plants with reactor concentration control, nitrification fails first. With hydraulic control of sludge age, nitrification will not fail, rather the plant fails by shedding solids over the secondary settling tank effluent weirs.
Liu, Xin-Wen; He, Ruo; Shen, Dong-Sheng
2008-09-01
In order to explore the pathway of the anaerobic biotreatment of the wastewater containing pentachlorophenol (PCP) and ensure the normal operation of Upflow Anaerobic Sludge Blanket (UASB) reactor, the anaerobic sludge under different acclimation conditions were selected to seed and start up UASB reactors. Anaerobic toxicity assays were employed to study the biological activity, the tolerance and the capacity to degrade PCP of different anaerobic granular sludge from UASB reactors. Results showed that the anaerobic granular sludge acclimated to chlorophenols (CPs) could degrade PCP more quickly (up to 9.50mg-PCP g(-1)TVS d(-1)). And the anaerobic granular sludge without acclimation to CPs had only a little activity of degrading PCP (less than 0.07 mg-PCP g(-1)TVS d(-1)). Different PCP concentrations (2, 4, 6, 8 mg L(-1)) had different inhibition effects on glucose utilization, volatile fatted acidity (VFA)-degrading and methanogens activity of PCP degradation anaerobic granular sludge, and the biological activity declined with the increase in PCP concentration. The methanogens activity suffered inhibition from PCP more easily. The different acclimation patterns of seeded sludge had distinctly different effects on biological activity of the degradation of PCP of anaerobic granular sludge from UASB reactors. The biological activity of the anaerobic granular sludge acclimated to PCP only was also inhibited. This inhibition was weak compared to that of anaerobic granular sludge acclimated to CPs, further, the activity could recover more quickly in this case. In the same reactor, the anaerobic granular sludge from the mid and base layers showed higher tolerance to PCP than that from super layer or if the sludge is unacclimated to CPs, and the corresponding recovery time of the biological activity in the mid and base layers were short. Acetate-utilizing methanogens and syntrophic propinate degraders were sensitive to PCP, compared to syntrophic butyrate degraders.
Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite
Vandamme, Dries; Pohl, Philip I.; Beuckels, Annelies; ...
2015-08-20
Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH) 2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5 mM). Zeta potentialmore » measurements suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5 mM, flocculation was also observed at a pH of 10. Furthermore, zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism.« less
Enhanced Harvesting of Chlorella vulgaris Using Combined Flocculants.
Ma, Xiaochen; Zheng, Hongli; Zhou, Wenguang; Liu, Yuhuan; Chen, Paul; Ruan, Roger
2016-10-01
In this study, a novel flocculation strategy for harvesting Chlorella vulgaris with combined flocculants, poly (γ-glutamic acid) (γ-PGA) and calcium oxide (CaO), has been developed. The effect of flocculant dosage, the order of flocculant addition, mixing speed, and growth stage on the harvesting efficiency was evaluated. Results showed that the flocculation using combined flocculants significantly decreases the flocculant dosage and settling time compared with control. It was also found that CaO and γ-PGA influenced microalgal flocculation by changing the zeta potential of cells and pH of microalgal suspension. The most suitable order of flocculant addition was CaO first and then γ-PGA. The optimal mixing speed was 200 rpm for 0.5 min, followed by 50 rpm for another 4.5 min for CaO and γ-PGA with the highest flocculation efficiency of 95 % and a concentration factor of 35.5. The biomass concentration and lipid yield of the culture reusing the flocculated medium were similar to those when a fresh medium was used. Overall, the proposed method requires low energy input, alleviates biomass and water contamination, and reduces utilization of water resources and is feasible for harvesting C. vulgaris for biofuel and other bio-based chemical production.
Tiwari, Onkar Nath; Khangembam, Romi; Shamjetshabam, Minerva; Sharma, Aribam Subhalaxmi; Oinam, Gunapati; Brand, Jerry J
2015-08-01
Bioflocculant exopolysaccharide (EPS) production by 40 cyanobacterial strains during their photoautotrophic growth was investigated. Highest levels of EPS were produced by Nostoc sp. BTA97 and Anabaena sp. BTA990. EPS production was maximum during stationary growth phase, when nitrogenase activity was very low. Maximum EPS production occurred at pH 8.0 in the absence of any combined nitrogen source. The cyanobacterial EPS consisted of soluble protein and polysaccharide that included substantial amounts of neutral sugars and uronic acid. The EPS isolated from Anabaena sp. BTA990 and Nostoc sp. BTA97 demonstrated high flocculation capacity. There was a positive correlation between uronic acid content and flocculation activity. The flocculant bound a cationic dye, Alcian Blue, indicating it to be polyanionic. The 16S rRNA gene sequences for Nostoc sp. BTA97 and Anabaena sp. BTA990 were deposited at NCBI GenBank, and accession numbers were obtained as KJ830951 and KJ830948, respectively. The results of these experiments indicate that strains Anabaena sp. BTA990 and Nostoc sp. BTA97 are good candidates for the commercial production of EPS and might be utilized in industrial applications as an alternative to synthetic and abiotic flocculants.
NASA Astrophysics Data System (ADS)
Chong, N. M.; Fan, C. H.; Yang, Y. C.
2017-01-01
The molecular biology method of high-throughput pyrosequencing was employed to examine the change of activated sludge community structures during the process in which activated sludge was acclimated to and degraded a target xenobiotic. The sample xenobiotic organic compound used as the activated sludge acclimation target was the herbicide 2,4-dichlorphenoxyacetic acid (2,4-D). Indigenous activated sludge microorganisms were acclimated to 2,4-D as the sole carbon source in both the batch and the continuous-flow reaction modes. Sludge masses at multiple time points during the course of acclimation were subjected to pyrosequencing targeting the microorganisms’ 16S rRNA genes. With the bacterial 16S rRNA sequencing results the genera that increased in abundance were checked with degradative pathway databases or literature to confirm that they are commonly seen as potent degraders of 2,4-D. From this systematic examination of degrader changes at time points during activated sludge acclimation and degradation of the target xenobiotic, the trend of degrader evolution in activated sludge over the sludge’s acclimation process to a xenobiotic was traced.
Tyupa, Dmitry V; Kalenov, Sergei V; Skladnev, Dmitry A; Khokhlachev, Nikolay S; Baurina, Marina M; Kuznetsov, Alexander Ye
2015-01-01
Toxic impact of silver and uranium salts on activated sludge of wastewater treatment facilities has been studied. Some dominating cultures (an active nitrogen fixer Agrobacterium tumifaciens (A.t) and micromyces such as Fusarium nivale, Fusarium oxysporum, and Penicillium glabrum) have been isolated and identified as a result of selection of the activated sludge microorganisms being steadiest under stressful conditions. For these cultures, the lethal doses of silver amounted 1, 600, 50, and 300 µg/l and the lethal doses of uranium were 120, 1,500, 1,000, and 1,000 mg/l, respectively. A.tumifaciens is shown to be more sensitive to heavy metals than micromyces. Synthetic granular activated sludge was formed on the basis of three cultures of the isolated micromyces steadiest against stress. Its granules were much more resistant to silver than the whole native activated sludge was. The concentration of silver causing 50 % inhibition of synthetic granular activated sludge growth reached 160-170 μg/l as far as for the native activated sludge it came only to 100-110 μg/l.
Fan, Haitao; Liu, Xiuhong; Wang, Hao; Han, Yunping; Qi, Lu; Wang, Hongchen
2017-02-01
In activated sludge systems, the aeration process consumes the most energy. The energy cost can be dramatically reduced by decreasing the operating dissolved oxygen (DO) concentration. However, low DO may lead to incomplete nitrification and poor settling performance of activated sludge flocs (ASFs). This study investigates oxygen transfer dynamics and settling performances of activated sludge under different sludge retention times (SRTs) and DO conditions using microelectrodes and microscopic techniques. Our experimental results showed that with longer SRTs, treatment capacity and settling performances of activated sludge improved due to smaller floc size and less extracellular polymeric substances (EPS). Long-term low DO conditions produced larger flocs and more EPS per unit sludge, which produced a more extensive anoxic area and led to low oxygen diffusion performance in flocs. Long SRTs mitigated the adverse effects of low DO. According to the microelectrode analysis and fractal dimension determination, smaller floc size and less EPS in the long SRT system led to high oxygen diffusion property and more compact floc structure that caused a drop in the sludge volume index (SVI). In summary, our results suggested that long SRTs of activated sludge can improve the operating performance under low DO conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M
2015-01-01
The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.
Liu, Xin; Fatehi, Pedram; Ni, Yonghao
2012-07-01
A process for removing inhibitors from pre-hydrolysis liquor (PHL) of a kraft-based dissolving pulp production process by adsorption and flocculation, and the characteristics of this process were studied. In this process, industrially produced PHL was treated with unmodified and oxidized activated carbon as an absorbent and polydiallyldimethylammonium chloride (PDADMAC) as a flocculant. The overall removal of lignin and furfural in the developed process was 83.3% and 100%, respectively, while that of hemicelluloses was 32.7%. These results confirmed that the developed process can remove inhibitors from PHL prior to producing value-added products, e.g. ethanol and xylitol via fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Amanatidou, Elisavet; Samiotis, Georgios; Trikoilidou, Eleni; Pekridis, George; Taousanidis, Nikolaos
2015-02-01
Zero net sludge growth can be achieved by complete retention of solids in activated sludge wastewater treatment, especially in high strength and biodegradable wastewaters. When increasing the solids retention time, MLSS and MLVSS concentrations reach a plateau phase and observed growth yields values tend to zero (Yobs ≈ 0). In this work, in order to evaluate sedimentation problems arised due to high MLSS concentrations and complete sludge retention operational conditions, two identical innovative slaughterhouse wastewater treatment plants were studied. Measurements of wastewaters' quality characteristics, treatment plant's operational conditions, sludge microscopic analysis and state point analysis were conducted. Results have shown that low COD/Nitrogen ratios increase sludge bulking and flotation phenomena due to accidental denitrification in clarifiers. High return activated sludge rate is essential in complete retention systems as it reduces sludge condensation and hydraulic retention time in the clarifiers. Under certain operational conditions sludge loading rates can greatly exceed literature limit values. The presented methodology is a useful tool for estimation of sedimentation problems encountered in activated sludge wastewater treatment plants with complete retention time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yang, Zhen; Jia, Shuying; Zhuo, Ning; Yang, Weiben; Wang, Yuping
2015-12-01
Insufficient research is available on flocculation of combined pollutants of heavy metals and antibiotics, which widely exist in livestock wastewaters. Aiming at solving difficulties in flocculation of this sort of combined pollution, a novel pH- and temperature-responsive biomass-based flocculant, carboxymethyl chitosan-graft-poly(N-isoproyl acrylamide-co-diallyl dimethyl ammonium chloride) (denoted as CND) with two responsive switches [lower critical solution temperature (LCST) and isoelectric point (IEP)], was designed and synthesized. Its flocculation performance at different temperatures and pHs was evaluated using copper(II) and tetracycline (TC) as model contaminants. CND exhibited high efficiency for coremoval of both contaminants, whereas two commercial flocculants (polyaluminum chloride and polyacrylamide) did not. Especially, flocculation performance of the dual-responsive flocculant under conditions of temperature>LCST and IEP(contaminants)
Characteristics and settling behaviour of particles from blast furnace flue gas washing.
Kiventerä, Jenni; Leiviskä, Tiina; Keski-Ruismäki, Kirsi; Tanskanen, Juha
2016-05-01
A lot of particles from iron-making are removed with blast furnace off-gas and routed to the gas cleaning system. As water is used for cleaning the gas, the produced wash water contains a large amount of particles such as valuable Fe and C. However, the presence of zinc prevents recycling. In addition, the high amount of calcium results in uncontrolled scaling. Therefore, the properties of the wash water from scrubber and sludge, from the Finnish metal industry (SSAB Raahe), were evaluated in this study. Size fractionation of wash water revealed that Fe, Zn, Al, Mn, V, Cr and Cd appeared mainly in the larger fractions (>1.2 μm) and Na, Mg, Si, Ni, K, Cu and As appeared mainly in the smaller fractions (<1.2 μm) or in dissolved form. Calcium was found both in the larger fractions and dissolved (∼60 mg/L). Most of the particles in wash water were included in the 1.2-10 μm particle size and were settled effectively. However, a clear benefit was observed when using a chemical to enhance particle settling. In comparison to 2.5 h of settling without chemical, the turbidity was further decreased by about 94%, iron 85% and zinc 50%. Coagulation-flocculation experiments indicated that both low and high molecular weight cationic polymers could provide excellent purification results in terms of turbidity. Calcium should be removed by other methods. The particles in sludge were mostly in the 2-4 μm or 10-20 μm fractions. Further sludge settling resulted in high solids removal. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gao, Changfei; Liu, Lifen; Yang, Fenglin
2018-02-01
A novel bio-electrochemical system (BES) was developed by integrating micro-electrolysis/electro-flocculation from attaching a sacrificing Al anode to the bio-anode, it effectively treated high load wastewater with energy recovery (maximum power density of 365.1 mW/m 3 and a maximum cell voltage of 0.97 V), and achieving high removals of COD (>99.4%), NH 4 + -N (>98.7%) and TP (>98.6%). The anode chamber contains microbes, activated carbon (AC)/graphite granules and Al anode. It was separated from the cathode chamber containing bifunctional catalytic and filtration membrane cathode (loaded with Fe/Mn/C/F/O catalyst) by a multi-medium chamber (MMC) filled with manganese sand and activated carbon granules, which replaced expensive PEM and reduced cost. An air contact oxidation bed for aeration was still adopted before liquid entering the cathode chamber. micro-electrolysis/electro-flocculation helps in achieving high removal efficiencies and contributes to membrane fouling migration. The increase of activated carbon in the separator MMC increased power generation and reduced system electric resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Conrad, A; Cadoret, A; Corteel, P; Leroy, P; Block, J-C
2006-01-01
Our study investigated the adsorption/desorption by/from activated sludge flocs, dispersed in river water or in diluted wastewater, of organic compounds (C(11)-LAS, azoalbumin and azocasein) at concentrations relevant to environmental conditions. Activated sludge flocs, used as a model of biological aggregates, are characterized by a very heterogeneous matrix able to sorb the three organic compounds tested at 4 degrees C. The adsorbed amount of C(11)-LAS by activated sludge flocs was higher than that of azocasein or azoalbumin, as shown by the Freundlich parameters (K(ads)=8.6+/-1.7, 1.6+/-0.3 and 0.3+/-0.1 micromol(1-1/n)g(-1)l(1/n) for C(11)-LAS, azocasein and azoalbumin, respectively; n=3 sludges). C(11)-LAS sorption from activated sludge appeared to be partially reversible in river water, while a marked hysteresis phenomenon was observed for azocasein and azoalbumin, implying a low degree of reversibility in their exchange between activated sludge and river water. It has also been displayed that the conductivity variation of bulk water (comprised between 214 and 838 microS cm(-1)) exerted no dramatic effect on the C(11)-LAS desorption from activated sludge flocs, while a little effect of it on azocasein desorption was observed. Thus, biological aggregates as activated sludge flocs can serve as an intermediate carrier for C(11)-LAS, while it represents a sink for proteins.
Utilizing waste activated sludge for animal feeding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beszedits, S.
1981-01-01
Activated sludge has a high protein content and is a good source of B-group vitamins and generally also of minerals (Ca, Mg, Fe and K). Propionibacterium freudenreichii can be readily incorporated into the activated sludge to synthesize vitamin B12, particularly high vitamin yields being obtained with sewage mixed with dairy waste. Numerous examples of successful use of activated sludge in animal feeding are given.
Torres, Luis G; Belloc, Claudia; Vaca, Mabel; Iturbe, Rosario; Bandala, Erick R
2009-11-01
Wastewater produced in the contaminated soil washing was treated by means of coagulation-flocculation (CF) process. The wastewater contained petroleum hydrocarbons, a surfactant, i.e., sodium dodecyl sulfate (SDS) as well as salts, brownish organic matter and other constituents that were lixiviated from the soil during the washing process. The main goal of this work was to develop a process for treating the wastewaters generated when washing hydrocarbon-contaminated soils in such a way that it could be recycled to the washing process, and also be disposed at the end of the process properly. A second objective was to study the relationship among the coagulant and flocculant doses and the pH at which the CF process is developed, for systems where methylene blue active substances (MBAS) as well as oil and greases were present. The results for the selection of the right coagulant and flocculant type and dose, the optimum pH value for the CF process and the interactions among the three parameters are detailed along this work. The best coagulant and flocculant were FeCl(3) and Tecnifloc 998 at doses of 4,000 and 1 mg/L, correspondingly at pH of 5. These conditions gave color, turbidity, chemical oxygen demand (COD) and conductivity removals of 99.8, 99.6, 97.1 and 35%, respectively. It was concluded that it is feasible to treat the wastewaters generated in the contaminated soil washing process through CF process, and therefore, wastewaters could be recycled to the washing process or disposed to drainage.
Simple systems for treating pumped, turbid water with flocculants and a geotextile dewatering bag.
Kang, Jihoon; McLaughlin, Richard A
2016-11-01
Pumping sediment-laden water from excavations is often necessary on construction sites. This water is often treated by pumping it through geotextile dewatering bags. The bags are not designed to filter the fine sediments that create high turbidity, but dosing with a flocculant prior to the bag could result in greater turbidity control. This study compared two systems for introducing flocculant: passive dosing of commercial solid biopolymer (chitosan) and injection of dissolved polyacrylamide (PAM) in a length of corrugated pipe connected to the bag. The biopolymer system consisted of sequential porous socks containing a "charging agent" followed by chitosan in the corrugated pipe with two levels of dosing. The dissolved PAM was injected into turbid water at a flow-weighted concentration at 1 mg L(-1). For each treatment, sediment-laden turbid water in the range of 2000 to 3500 nephelometric turbidity units (NTU) was pumped into the upstream of corrugated pipe and samples were taken from pipe entrance, pipe exit, and dewatering bag exit. Without flocculant treatment, the dewatering bag reduced turbidity by 70% but the addition of flocculant increased the turbidity reduction up to 97% relative to influent. At the pipe exit, the low-dose biopolymer was less effective in reducing turbidity (37%) but it was equally effective as the high-dose biopolymer or PAM injection after the bag. Our results suggest that a relatively simple treatment with flocculants, either passively or actively, can be very effective in reducing turbidity for pumped water on construction sites. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mir-Tutusaus, J A; Sarrà, M; Caminal, G
2016-11-15
Hospital wastewaters have a high load of pharmaceutical active compounds (PhACs). Fungal treatments could be appropriate for source treatment of such effluents but the transition to non-sterile conditions proved to be difficult due to competition with indigenous microorganisms, resulting in very short-duration operations. In this article, coagulation-flocculation and UV-radiation processes were studied as pretreatments to a fungal reactor treating non-sterile hospital wastewater in sequential batch operation and continuous operation modes. The influent was spiked with ibuprofen and ketoprofen, and both compounds were successfully degraded by over 80%. UV pretreatment did not extent the fungal activity after coagulation-flocculation measured as laccase production and pellet integrity. Sequential batch operation did not reduce bacteria competition during fungal treatment. The best strategy was the addition of a coagulation-flocculation pretreatment to a continuous reactor, which led to an operation of 28days without biomass renovation. Copyright © 2016 Elsevier B.V. All rights reserved.
Harvesting of freshwater microalgae biomass by Scenedesmus sp. as bioflocculant
NASA Astrophysics Data System (ADS)
Rinanti, A.; Purwadi, R.
2018-01-01
This study is particularly expected to provide information on the diversity of microalgae as the flocculant agent that gives the highest biomass yield. Bioflocculation was done by using one of the flocculating microalgae i.e. Scenedesmus obliquus to concentrate on non-flocculating microalgae Chlorella vulgaris. The freshwater microalgae S. obliquus tested it ability to harvest other non-flocculating microalgae, increased sedimentation rate in the flocculation process and increased biomass yield. The flocculation of biomass microalgae with chemical flocculant as comparison was done by adding alum (K2SO4·Al2 (SO4)3·24H2O). The addition of alum (K2SO4·Al2 (SO4)3·24H2O) as flocculant at pH 11 and S. obliquus sp. as bioflocculant caused significant alteration of nutrition of microalgae. Overall, the essential content produced by flocculation method with addition of alum or with bioflocculation (%, mg/100 mg dry weight) are lipid 31,64; 38,69, protein 30,79; 38.50%, and chlorophyll 0.6253; 0.8420). Harvesting with bioflocculation methods conducted at the end of the cultivation period increase the amount of biomass significantly and can accelerate the settling time of biomass. Harvesting microalgae cells by bioflocculation method becomes an economically competitive harvesting method compared to alum as a chemical flocculant because of the cheaper cost of flocculant, not toxic so it does not require further water treatment after harvesting due to the use of alum as chemical flocculants.
Alam, Md Asraful; Wan, Chun; Guo, Suo-Lian; Zhao, Xin-Qing; Huang, Zih-You; Yang, Yu-Liang; Chang, Jo-Shu; Bai, Feng-Wu
2014-07-01
High cost of biomass recovery is one of the bottlenecks for developing cost-effective processes with microalgae, particularly for the production of biofuels and bio-based chemicals through biorefinery, and microalgal biomass recovery through cell flocculation is a promising strategy. Some microalgae are naturally flocculated whose cells can be harvested by simple sedimentation. However, studies on the flocculating agents synthesized by microalgae cells are still very limited. In this work, the cell flocculation of a spontaneously flocculating microalga Chlorella vulgaris JSC-7 was studied, and the flocculating agent was identified to be cell wall polysaccharides whose crude extract supplemented at low dosage of 0.5 mg/L initiated the more than 80% flocculating rate of freely suspended microalgae C. vulgaris CNW11 and Scenedesmus obliquus FSP. Fourier transform infrared (FTIR) analysis revealed a characteristic absorption band at 1238 cm(-1), which might arise from PO asymmetric stretching vibration of [Formula: see text] phosphodiester. The unique cell wall-associated polysaccharide with molecular weight of 9.86×10(3) g/mol, and the monomers consist of glucose, mannose and galactose with a molecular ratio of 5:5:2. This is the first time to our knowledge that the flocculating agent from C. vulgaris has been characterized, which could provide basis for understanding the cell flocculation of microalgae and breeding of novel flocculating microalgae for cost-effective biomass harvest. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Ekstrand, Eva-Maria; Karlsson, Marielle; Truong, Xu-Bin; Björn, Annika; Karlsson, Anna; Svensson, Bo H; Ejlertsson, Jörgen
2016-10-01
Kraft fibre sludge from the pulp and paper industry constitutes a new, widely available substrate for the biogas production industry, with high methane potential. In this study, anaerobic digestion of kraft fibre sludge was examined by applying continuously stirred tank reactors (CSTR) with sludge recirculation. Two lab-scale reactors (4L) were run for 800days, one on fibre sludge (R1), and the other on fibre sludge and activated sludge (R2). Additions of Mg, K and S stabilized reactor performance. Furthermore, the Ca:Mg ratio was important, and a stable process was achieved at a ratio below 16:1. Foaming was abated by short but frequent mixing. Co-digestion of fibre sludge and activated sludge resulted in more robust conditions, and high-rate operation at stable conditions was achieved at an organic loading rate of 4g volatile solids (VS)L(-1)day(-1), a hydraulic retention time of 4days and a methane production of 230±10NmL per g VS. Copyright © 2016. Published by Elsevier Ltd.
Environmentally friendly cellulose-based polyelectrolytes in wastewater treatment.
Grenda, Kinga; Arnold, Julien; Gamelas, José A F; Rasteiro, Maria G
2017-09-01
Natural-based polyelectrolytes (PELs), with all the advantages coming from being produced from renewable and biodegradable sources, are a potential solution for the removal of dyes from wastewater. In this work, surplus Eucalyptus bleached cellulose fibres from a paper mill were modified to increase the charge and solubility of cellulose. First, reactive aldehyde groups were introduced in the cellulose backbone by periodate oxidation of cellulose. Further modification with alkylammonium produced positively charged cellulose-based PELs. The final products were characterized by several analytical techniques. The PEL with the highest substitution degree of cationic groups was evaluated for its performance in decolouration processes, bentonite being used as aid. This was found to be effective for colour removal of either anionic or cationic dyes. Bio-PELs can thus be considered as very favourable eco-friendly flocculation agents for decolouration of harsh effluents from several industries, considering their biodegradable nature and thus the ability to produce less sludge.
NASA Astrophysics Data System (ADS)
Sarif, S. F. Z. Mohd; Alias, S. S.; Ridwan, F. Muhammad; Salim, K. S. Ku; Abidin, C. Z. A.; Ali, U. F. Md.
2018-03-01
Ozonation of activated sludge in the present of titanium dioxide (TiO2) as catalyst to enhance the production of hydroxyl radical was evaluated in comparison to the sole ozonation process. In this process, the catalytic ozontion showed improvement in increasing ozone consumption and improving activated sludge disintegration and solubilisation. The reduction of total suspended solid (TSS), volatile suspended solid (VSS) and soluble chemical oxygen demand (SCOD) solubilisation was better in the catalytic ozonation system. Initial pH 7 of activated sludge was found best to disintegrate and solubilise the sludge flocs. However upon additional of sodium hydroxide (NaOH) in pH adjustment enhanced the solubilisation of organic matter from the flocs and cells, making the initial pH 9 is the best condition for activated sludge solubilisation. Yet the initial pH 7 of activated sludge supernatant was the best condition to achieve SCOD solubilisation due to sludge floc disintegration, when it had stronger correlation between TSS reduction and SCOD solubilisation (R2=0.961). Lower amount of catalyst of 100 mgTiO2/gTSS was found to disintegrate and solubilise the activated sludge better with 30.4% TSS reduction and 25.2% SCOD solubilisation efficiency, compared to 200 mgTiO2/gTSS with 21.9% and 17.1% TSS reduction and SCOD solubilisation, respectively.
Zeng, Qingling; Li, Yongmei; Yang, Shijia
2013-01-01
Abstract Estrogen in wastewater are responsible for a significant part of the endocrine-disrupting effects observed in the aquatic environment. The effect of sludge retention time (SRT) on the removal and fate of 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) in an anaerobic–anoxic–oxic activated sludge system designed for nutrient removal was investigated by laboratory-scale experiments using synthetic wastewater. With a hydraulic retention time of 8 h, when SRT ranged 10–25 days, E2 was almost completely removed from water, and EE2 removal efficiency was 65%–81%. Both estrogens were easily sorbed onto activated sludge. Distribution coefficients (Kd) of estrogens on anaerobic sludge were greater than those on anoxic and aerobic sludges. Mass balance calculation indicated that 99% of influent E2 was degraded by the activated sludge process, and 1% remained in excess sludge; of influent EE2, 62.0%–80.1% was biodegraded; 18.9%–34.7% was released in effluent; and 0.88%–3.31% remained in excess sludge. Optimal SRT was 20 days for both estrogen and nutrient removal. E2 was almost completely degraded, and EE2 was only partly degraded in the activated sludge process. Residual estrogen on excess sludge must be considered in the sludge treatment and disposal processes. The originality of the work is that removal of nutrients and estrogens were linked, and optimal SRT for both estrogen and nutrient removal in an enhanced biological phosphorus removal system was determined. This has an important implication for the design and operation of full-scale wastewater treatment plants. PMID:23633892
Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban
2015-01-15
Sewage sludge disposal onto lands has been stabilized previously but still many pollutants are not efficiently removed. Special interest has been focused on pharmaceutical compounds due to their potential ecotoxicological effects. Nowadays, there is scarce information about their occurrence in different sludge stabilization treatments. In this work, the occurrence of twenty-two pharmaceutically active compounds has been studied in sludge from four sludge stabilization treatments: anaerobic digestion, aerobic digestion, composting and lagooning. The types of sludge evaluated were primary, secondary, anaerobically-digested and dehydrated, composted, mixed, aerobically-digested and dehydrated and lagoon sludge. Nineteen of the twenty-two pharmaceutically active compounds monitored were detected in sewage sludge. The most contaminated samples were primary sludge, secondary sludge and mixed sludge (the average concentrations of studied compounds in these sludges were 179, 310 and 142 μg/kg dm, respectively) while the mean concentrations found in the other types of sewage sludge were 70 μg/kg dm (aerobically-digested sludge), 63 μg/kg dm (lagoon sludge), 12 μg/kg dm (composted sludge) and 8 μg/kg dm (anaerobically-digested sludge). The antibiotics ciprofloxacin and norfloxacin were found at the highest concentration levels in most of the analyzed sludge samples (up to 2660 and 4328 μg/kg dm, respectively). Anaerobic-digestion treatment reduced more considerably the concentration of most of the studied compounds than aerobic-digestion (especially in the case of bezafibrate and fluoroquinolones) and more than anaerobic stabilization ponds (in the case of acetaminophen, atenolol, bezafibrate, carbamazepine, 17α-ethinylestradiol, naproxen and salicylic acid). Ecotoxicological risk assessment, of sludge application onto soils, has also been evaluated. Risk quotients, expressed as the ratio between the predicted environmental concentration and the predicted non-effect concentration, were lower than 1 for all the pharmaceutically active compounds so no significant risks are expected to occur due to the application of sewage sludge onto soils, except for 17α-ethinylestradiol when chronic toxicity was considered. Copyright © 2014 Elsevier B.V. All rights reserved.
Reller, Megan E; Mendoza, Carlos E; Lopez, M Beatriz; Alvarez, Maricruz; Hoekstra, Robert M; Olson, Christy A; Baier, Kathleen G; Keswick, Bruce H; Luby, Stephen P
2003-10-01
We conducted a study to determine if use of a new flocculant-disinfectant home water treatment reduced diarrhea. We randomly assigned 492 rural Guatemalan households to five different water treatment groups: flocculant-disinfectant, flocculant-disinfectant plus a customized vessel, bleach, bleach plus a vessel, and control. During one year of observation, residents of control households had 4.31 episodes of diarrhea per 100 person-weeks, whereas the incidence of diarrhea was 24% lower among residents of households receiving flocculant-disinfectant, 29% lower among those receiving flocculant-disinfectant plus vessel, 25% lower among those receiving bleach, and 12% lower among households receiving bleach plus vessel. In unannounced evaluations of home drinking water, free chlorine was detected in samples from 27% of flocculant-disinfectant households, 35% of flocculant-disinfectant plus vessel households, 35% of bleach households, and 43% of bleach plus vessel households. In a setting where diarrhea was a leading cause of death, intermittent use of home water treatment with flocculant-disinfectant decreased the incidence of diarrhea.
An innovative approach to increase biofuel feedstock lipid yields from municipal sewage sludge via manipulation of carbon:nitrogen (C:N) ratio and glucose loading in activated sludge bioreactors was investigated. Sludge lipid and fatty acid methyl ester (biodiesel) yields (% cel...
Tan, Songwen; Cui, Chunzhi; Hou, Yang; Chen, Xuncai; Xu, Aiqin; Li, Weiguo; You, Hong
2017-01-30
A technique is proposed to treat saline hazardous wastewater by using marine activated sludge, cultivated with sea mud as seed. Since the developed marine activated sludge had phenol-tolerant microorganisms (MAS-1, MAS-2 and MAS-3) which originated from the ocean, it was envisaged that these bacteria could survive and breakdown phenol in saline environments. In this work, typical phenol-tolerant microorganisms were isolated from the marine activated sludge and identified. After a hierarchical acclimation process, the marine activated sludge was used to treat the industrial phenolic wastewater with high salinity. The marine activated sludge was able to break down phenol and other organic components effectively and efficiently in treating the wastewater with salinity of 5.7% w/v. The results showed a high removal of phenol (99%), COD (80%) and NH 3 -N (68%). Copyright © 2016 Elsevier Ltd. All rights reserved.
Reduction of excess sludge production using mechanical disintegration devices.
Strünkmann, G W; Müller, J A; Albert, F; Schwedes, J
2006-01-01
The usability of mechanical disintegration techniques for the reduction of excess sludge production in the activated sludge process was investigated. Using three different disintegration devices (ultrasonic homogeniser, stirred media mill, high pressure homogeniser) and different operational parameters of the disintegration, the effect of mechanical disintegration on the excess sludge production and on the effluent quality was studied within a continuously operated, laboratory scale wastewater treatment system with pre-denitrification. Depending on the operational conditions and the disintegration device used, a reduction of excess sludge production of up to 70% was achieved. A combination of mechanical disintegration with a membrane bioreactor process with high sludge age is more energy effective concerning reduction of sludge production than with a conventional activated sludge process at lower sludge ages. Depending on the disintegration parameters, the disintegration has no, or only minor, negative effect on the soluble effluent COD and on the COD-removal capacity of the activated sludge process. Nitrogen-removal was slightly deteriorated by the disintegration, whereas the system used was not optimised for nitrogen removal before disintegration was implemented.
Westman, Johan O; Mapelli, Valeria; Taherzadeh, Mohammad J; Franzén, Carl Johan
2014-11-01
Yeast has long been considered the microorganism of choice for second-generation bioethanol production due to its fermentative capacity and ethanol tolerance. However, tolerance toward inhibitors derived from lignocellulosic materials is still an issue. Flocculating yeast strains often perform relatively well in inhibitory media, but inhibitor tolerance has never been clearly linked to the actual flocculation ability per se. In this study, variants of the flocculation gene FLO1 were transformed into the genome of the nonflocculating laboratory yeast strain Saccharomyces cerevisiae CEN.PK 113-7D. Three mutants with distinct differences in flocculation properties were isolated and characterized. The degree of flocculation and hydrophobicity of the cells were correlated to the length of the gene variant. The effect of different strength of flocculation on the fermentation performance of the strains was studied in defined medium with or without fermentation inhibitors, as well as in media based on dilute acid spruce hydrolysate. Strong flocculation aided against the readily convertible inhibitor furfural but not against less convertible inhibitors such as carboxylic acids. During fermentation of dilute acid spruce hydrolysate, the most strongly flocculating mutant with dense cell flocs showed significantly faster sugar consumption. The modified strain with the weakest flocculation showed a hexose consumption profile similar to the untransformed strain. These findings may explain why flocculation has evolved as a stress response and can find application in fermentation-based biorefinery processes on lignocellulosic raw materials. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Wang, Jun; Li, Shi-Yu; Jiang, Feng; Wu, Ke; Liu, Guang-Li; Lu, Hui; Chen, Guang-Hao
2015-09-01
Oxic-settling-anaerobic process (OSA) was known as a cost-effective way to reduce the excess sludge production with simple upgrade of conventional activated sludge process (CAS). A low oxidation-reduction potential (ORP) level was the key factor to sludge decay and lysis in the sludge holding tank of the OSA process. However, the ORP control with nitrogen purge or chemical dosing in the OSA process would induce extra expense and complicate the operation. Hence, in this study, a sludge holding tank using gravity thickening was applied to OSA process to reduce the excess sludge production without any ORP control. Results showed that the modified OSA process not only reduced the excess sludge production effectively but also improved the sludge settleability without affected the treatment capacity. The reduction of the excess sludge production in the modified OSA process resulted from interactions among lots of factors. The key element of the process was the gravity thickening sludge holding tank.
Jabari, Pouria; Yuan, Qiuyan; Oleszkiewicz, Jan A
2017-09-11
The potential of hydrolysis/fermentation of activated sludge in sludge holding tank (SHT) to produce additional carbon for the biological nutrient removal (BNR) process was investigated. The study was conducted in anaerobic batch tests using the BNR sludge (from a full-scale Westside process) and the mixture of BNR sludge with conventional non-BNR activated sludge (to have higher biodegradable particulate chemical oxygen demand (bpCOD) in sludge). The BioWin 4.1 was used to simulate the anaerobic batch test of the BNR sludge. Also, the overall effect of FCOD production and nutrient release on BNR efficiency of the Westside process was estimated. The experimental results showed that the phosphorous uptake of sludge increased during hydrolysis/ fermentation condition up to the point when poly-P was completely utilized; afterwards, it decreased significantly. The BioWin simulation could not predict the loss of aerobic phosphorous uptake after poly-P was depleted. The results showed that in the case of activated sludge with relatively higher bpCOD (originating from plants with short sludge retention time or without primary sedimentation), beneficial effect of SHT on BNR performance is feasible. In order to increase the potential of SHT to enhance BNR efficiency, a relatively low retention time and high sludge load is recommended.
Niu, Tianhao; Zhou, Zhen; Shen, Xuelian; Qiao, Weimin; Jiang, Lu-Man; Pan, Wei; Zhou, Jijun
2016-03-01
A sludge process reduction activated sludge (SPRAS), with a sludge process reduction module composed of a micro-aerobic tank and a settler positioned before conventional activated sludge process, showed good performance of pollutant removal and sludge reduction. Two SPRAS systems were operated to investigate effects of micro-aeration on sludge reduction performance and microbial community structure. When dissolved oxygen (DO) concentration in the micro-aerobic tank decreased from 2.5 (SPH) to 0.5 (SPL) mg/L, the sludge reduction efficiency increased from 42.9% to 68.3%. Compared to SPH, activated sludge in SPL showed higher contents of extracellular polymeric substances and dissolved organic matter. Destabilization of floc structure in the settler, and cell lysis in the sludge process reduction module were two major reasons for sludge reduction. Illumina-MiSeq sequencing showed that microbial diversity decreased under high DO concentration. Proteobacteria, Bacteroidetes and Chloroflexi were the most abundant phyla in the SPRAS. Specific comparisons down to the class and genus level showed that fermentative, predatory and slow-growing bacteria in SPL community were more abundant than in SPH. The results revealed that micro-aeration in the SPRAS improved hydrolysis efficiency and enriched fermentative and predatory bacteria responsible for sludge reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Goossens, Katty V. Y.; Stassen, Catherine; Stals, Ingeborg; Donohue, Dagmara S.; Devreese, Bart; De Greve, Henri; Willaert, Ronnie G.
2011-01-01
Saccharomyces cerevisiae cells possess a remarkable capacity to adhere to other yeast cells, which is called flocculation. Flocculation is defined as the phenomenon wherein yeast cells adhere in clumps and sediment rapidly from the medium in which they are suspended. These cell-cell interactions are mediated by a class of specific cell wall proteins, called flocculins, that stick out of the cell walls of flocculent cells. The N-terminal part of the three-domain protein is responsible for carbohydrate binding. We studied the N-terminal domain of the Flo1 protein (N-Flo1p), which is the most important flocculin responsible for flocculation of yeast cells. It was shown that this domain is both O and N glycosylated and is structurally composed mainly of β-sheets. The binding of N-Flo1p to d-mannose, α-methyl-d-mannoside, various dimannoses, and mannan confirmed that the N-terminal domain of Flo1p is indeed responsible for the sugar-binding activity of the protein. Moreover, fluorescence spectroscopy data suggest that N-Flo1p contains two mannose carbohydrate binding sites with different affinities. The carbohydrate dissociation constants show that the affinity of N-Flo1p for mono- and dimannoses is in the millimolar range for the binding site with low affinity and in the micromolar range for the binding site with high affinity. The high-affinity binding site has a higher affinity for low-molecular-weight (low-MW) mannose carbohydrates and no affinity for mannan. However, mannan as well as low-MW mannose carbohydrates can bind to the low-affinity binding site. These results extend the cellular flocculation model on the molecular level. PMID:21076009
Genetic diversity of FLO1 and FLO5 genes in wine flocculent Saccharomyces cerevisiae strains.
Tofalo, Rosanna; Perpetuini, Giorgia; Di Gianvito, Paola; Schirone, Maria; Corsetti, Aldo; Suzzi, Giovanna
2014-11-17
Twenty-eight flocculent wine strains were tested for adhesion and flocculation phenotypic variability. Moreover, the expression patterns of the main genes involved in flocculation (FLO1, FLO5 and FLO8) were studied both in synthetic medium and in presence of ethanol stress. Molecular identification and typing were achieved by PCR-RFLP of the 5.8S ITS rRNA region and microsatellite PCR fingerprinting, respectively. All isolates belong to Saccharomyces cerevisiae species. The analysis of microsatellites highlighted the intraspecific genetic diversity of flocculent wine S. cerevisiae strains allowing obtaining strain-specific profiles. Moreover, strains were characterized on the basis of adhesive properties. A wide biodiversity was observed even if none of the tested strains were able to form biofilms (or 'mats'), or to adhere to polystyrene. Moreover, genetic diversity of FLO1 and FLO5 flocculating genes was determined by PCR. Genetic diversity was detected for both genes, but a relationship with the flocculation degree was not found. So, the expression patterns of FLO1, FLO5 and FLO8 genes was investigated in a synthetic medium and a relationship between the expression of FLO5 gene and the flocculation capacity was established. To study the expression of FLO1, FLO5 and FLO8 genes in floc formation and ethanol stress resistance qRT-PCR was carried out and also in this case strains with flocculent capacity showed higher levels of FLO5 gene expression. This study confirmed the diversity of flocculation phenotype and genotype in wine yeasts. Moreover, the importance of FLO5 gene in development of high flocculent characteristic of wine yeasts was highlighted. The obtained collection of S. cerevisiae flocculent wine strains could be useful to study the relationship between the genetic variation and flocculation phenotype in wine yeasts. Copyright © 2014 Elsevier B.V. All rights reserved.
[Influence of tap water treatment on perfluorinated compounds residue in the dissolved phase].
Zhang, Hong; Chen, Qing-wu; Wang, Xin-xuan; Chai, Zhi-fang; Shen, Jin-can; Yang, Bo; Liu, Guo-qing
2013-09-01
To study the perfluorinated compounds (PFCs) residues through water treatments including flocculation, sedimentation, sand filtration, ozonation with activated carbon and chlorination, as well as the seasonal variation of PFCs in the raw water of waterworks, 13 PFCs species in the dissolved phase of raw water, finished water, as well as the water samples after flocculation, sedimentation, sand filtration, and ozonation with activated carbon filtration were measured by the high performance liquid chromatography-tandem mass spectrometry combined with solid phase extraction. Results indicated that sigma PFCs residue in water was higher in spring and summer than that in fall and winter. The vast majority of PFCs in samples were of short and medium chains (C < or = 10), and perfluorooctane sulfonate was the most typical residue species. Among the five water treatment stages, sedimentation, sand filtration and ozonation with activated carbon filtration can remove PFCs, while flocculation and chlorination significantly raise the levels of short- (C < or = 6) and medium-chain (10 > or = C > or = 7) PFCs, respectively, causing sigma PFCs increase in finished water by 10%-44% compared to raw water. However, the PFCs residues in finished water are still far below their limit values, posing no threat against human health.
Liu, Zhan-Ying; Hu, Zhi-Quan; Wang, Tao; Chen, Yan-Ying; Zhang, Jianbin; Yu, Jing-Ran; Zhang, Tong; Zhang, Yong-Feng; Li, Yong-Li
2013-07-01
A microbial-flocculants-producing (MBF-producing) bacterium, named TG-1, was isolated from waste water of a starch factory, and identified as Klebsiella sp. TG-1. The microbial flocculants (MBF) produced by TG-1, named as MBF-TG-1, was applied to defecating the strong basic trona suspension in the trona industry. After optimizing medium and culturing conditions with single-factor and orthogonal designs, the highest flocculation rate of 86.9% was achieved. Chemical analysis showed that the purified microbial flocculants (MBF-TG-1) was mainly composed of polysaccharides (84.6%), with a small amount of protein or amino acid (11.1%). Bridging mechanism was supposed as the main flocculation mechanism by analyzing the flocculation process and the biochemistry properties of MBF-TG-1. The high flocculation rate (84%) was also achieved with a low-cost medium (the solid residue of tofu production from food industry). Copyright © 2013 Elsevier Ltd. All rights reserved.
Zenooz, Alireza Moosavi; Ashtiani, Farzin Zokaee; Ranjbar, Reza; Nikbakht, Fatemeh; Bolouri, Oberon
2017-07-03
Biodiesel production from microalgae feedstock should be performed after growth and harvesting of the cells, and the most feasible method for harvesting and dewatering of microalgae is flocculation. Flocculation modeling can be used for evaluation and prediction of its performance under different affective parameters. However, the modeling of flocculation in microalgae is not simple and has not performed yet, under all experimental conditions, mostly due to different behaviors of microalgae cells during the process under different flocculation conditions. In the current study, the modeling of microalgae flocculation is studied with different neural network architectures. Microalgae species, Chlorella sp., was flocculated with ferric chloride under different conditions and then the experimental data modeled using artificial neural network. Neural network architectures of multilayer perceptron (MLP) and radial basis function architectures, failed to predict the targets successfully, though, modeling was effective with ensemble architecture of MLP networks. Comparison between the performances of the ensemble and each individual network explains the ability of the ensemble architecture in microalgae flocculation modeling.
Merlo, Rion P; Trussell, R Shane; Hermanowicz, Slawomir W; Jenkins, David
2007-03-01
The properties of sludges from a pilot-scale submerged membrane bioreactor (SMBR) and two bench-scale complete-mix, activated sludge (CMAS) reactors treating municipal primary effluent were determined. Compared with the CMAS sludges, the SMBR sludge contained a higher amount of soluble microbial products (SMP) and colloidal material attributed to the use of a membrane for solid-liquid separation; a higher amount nocardioform bacteria, resulting from efficient foam trapping; and a lower amount of extracellular polymeric substances (EPS), possibly because there was no selective pressure for the sludge to settle. High aeration rates in both the CMAS and SMBR reactors produced sludges with higher numbers of smaller particles. Normalized capillary suction time values for the SMBR sludge were lower than for the CMAS sludges, possibly because of its lower EPS content.
Biodegradation of Organophosphate Chemical Warfare Agents by Activated Sludge
2012-03-01
Holmstedt, B. (1963). Structure- activity relationships of the organophosphorus anticholinesterase agents. In: Koelle, G.B. (ed.), Handbuch...BIODEGRADATION OF ORGANOPHOSPHATE CHEMICAL WARFARE AGENTS BY ACTIVATED SLUDGE Steven J. Schuldt...AFIT/GES/ENV/12-M04 BIODEGRADATION OF ORGANOPHOSPHATE CHEMICAL WARFARE AGENTS BY ACTIVATED SLUDGE THESIS Presented to the
Yang, Zhen; Yang, Hu; Jiang, Ziwen; Cai, Tao; Li, Haijiang; Li, Haibo; Li, Aimin; Cheng, Rongshi
2013-06-15
In the current work, a series of amphoteric grafting chitosan-based flocculants (carboxymethyl chitosan-graft-polyacrylamide, denoted as CMC-g-PAM) was designed and prepared successfully. The flocculants were applied to eliminate various dyes from aqueous solutions. Among different graft copolymers, CMC-g-PAM11 with a PAM grafting ratio of 74% demonstrated the most efficient performance for removal of both the anionic dye (Methyl Orange, MO) and the cationic dye (Basic Bright Yellow, 7GL) under the corresponding favored conditions (80 mg/L of the flocculant at pH 4.0, and 160 mg/L at pH 11.0). In comparison with its precursors, chitosan and carboxymethyl chitosan, CMC-g-PAM11 showed higher removal efficiencies and wider flocculation windows. More importantly, the graft copolymer produced notably more compacted flocs based on image analysis in combination with fractal theory, which was of great significance in practical water treatment. Furthermore, the flocculation mechanism was discussed in detail. The grafted polyacrylamide chains were found to contribute much to the improved bridging and sweeping flocculation effects, but reduced charge neutralization flocculation for the effect of charge screening. Copyright © 2013 Elsevier B.V. All rights reserved.
Ponce-Robles, L; Oller, I; Agüera, A; Trinidad-Lozano, M J; Yuste, F J; Malato, S; Perez-Estrada, L A
2018-08-15
Cork boiling wastewater is a very complex mixture of naturally occurring compounds leached and partially oxidized during the boiling cycles. The effluent generated is recalcitrant and could cause a significant environmental impact. Moreover, if this untreated industrial wastewater enters a municipal wastewater treatment plant it could hamper or reduce the efficiency of most activated sludge degradation processes. Despite the efforts to treat the cork boiling wastewater for reusing purposes, is still not well-known how safe these compounds (original compounds and oxidation by-products) will be. The purpose of this work was to apply an HPLC-high resolution mass spectrometry method and subsequent non-target screening using a multivariate analysis method (PCA), to explore relationships between samples (treatments) and spectral features (masses or compounds) that could indicate changes in formation, degradation or polarity, during coagulation/flocculation (C/F) and photo-Fenton (PhF). Although, most of the signal intensities were reduced after the treatment line, 16 and 4 new peaks were detected to be formed after C/F and PhF processes respectively. The use of this non-target approach showed to be an effective strategy to explore, classify and detect transformation products during the treatment of an unknown complex mixture. Copyright © 2018 Elsevier B.V. All rights reserved.
Deng, Yu; Li, Bing; Yu, Ke; Zhang, Tong
2016-02-15
This study reported significant suppressive matrix effects in analyses of six pharmaceutical and personal care products (PPCPs) in activated sludge, sterilized activated sludge and untreated sewage by ultra-performance liquid chromatography-tandem mass spectrometry. Quantitative matrix evaluation on selected PPCPs supplemented the limited quantification data of matrix effects on mass spectrometric determination of PPCPs in complex environment samples. The observed matrix effects were chemical-specific and matrix-dependent, with the most pronounced average effect (-55%) was found on sulfadiazine in sterilized activated sludge. After correcting the matrix effects by post-spiking known amount of PPCPs, the removal mechanisms and biotransformation kinetics of selected PPCPs in activated sludge system were revealed by batch experiment. Experimental data elucidated that the removal of target PPCPs in the activated sludge process was mainly by biotransformation while contributions of adsorption, hydrolysis and volatilization could be neglected. High biotransformation efficiency (52%) was observed on diclofenac while other three compounds (sulfadiazine, sulfamethoxazole and roxithromycin) were partially biotransformed by ~40%. The other two compounds, trimethoprim and carbamazepine, showed recalcitrant to biotransformation of the activated sludge. Copyright © 2015 Elsevier B.V. All rights reserved.
Comparative assessment of the breakdown of high-molecular flocculants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baichenko, A.A.; Baichenko, A.A.; Kaminskii, V.S.
1977-01-01
In recent years, a much wider range of water-soluble polymer flocculants has come into use to accelerate the clarification of coal and clay-coal suspensions, in which the solid phase comprises flotation tailings or slurry. The major distinguishing feature in this development has been the switch from gel-type flocculants to granular or powder types. Difficulties arise in the use of flocculants, from the relative ease with which they break down during storage or solution preparation. Different polymers behave differently under the same mechanical or chemical forces. Failure to appreciate this often leads to erroneous conclusions regarding the specific effectiveness of variousmore » flocculants. Breakdown data are described on various high-molecular flocculants, showing that the major factors that influence the breakdown of polyoxyethylene (POE) can be traced in other polymer flocculants as well.« less
NASA Astrophysics Data System (ADS)
Zuo, N.; Ji, F. Y.
2013-02-01
By researching the influence of sludge age (SRT) on phosphorous removal and sludge characteristics in the HA-A/A-MCO (hydrolysis-acidification-anaerobic/anoxic-multistep continuous oxic tank) process, which has the effect of simultaneous phosphorous and nitrogen removal and sludge reduction, it is found that extended SRT is helpful for improving the ability of anaerobic phosphorous release and chemical recovery of phosphate, but the hosphorous removal efficiency is not affected. Extended SRT causes the system to have even more active sludge; it can also lead to the system having a powerful ability of biochemical reaction by using superiority of concentration. Meanwhile, extended SRT can still reduce sludge yield. Extended SRT cannot make soluble metabolic product (SMP) accumulate in the reactor, so that the pollutant removal power is reduced; it also cannot affect the activity of the sludge. However, extended SRT is able to make the coagulation of the sludge hard, and cause the sludge volume index value increase, but cannot cause sludge bulking.
Wyrwicka, Anna; Urbaniak, Magdalena
2016-01-01
The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae) and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot), while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx), catalase (CAT) and guaiacol peroxidase (POx), were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST). Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity.
Wyrwicka, Anna; Urbaniak, Magdalena
2016-01-01
The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae) and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot), while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx), catalase (CAT) and guaiacol peroxidase (POx), were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST). Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity. PMID:27327659
Reyes, Paula; Urtubia, Alejandra; Schiappacasse, María C; Chamy, Rolando; Montalvo, Silvio; Borja, Rafael
2014-01-01
The macromolecular composition of activated sludge (lipids, intracellular proteins and intracellular polysaccharides) was studied together with its capacity to store macromolecules such as polyhydroxybutyrate (PHB) in a conventional activated sludge system fed with synthetic sewage water at an organic load rate of 1.0 kg COD/(m(3)·d), varying the dissolved oxygen (DO) and temperature. Six DO concentrations (0.8, 1.0, 1.5, 2.0, 2.5 and 8 mg/L) were studied at 20°C with a sludge retention time (SRT) of 6 days. In addition, four temperatures (10ºC, 15ºC, 20ºC and 30ºC) were assessed at constant DO (2 mg/L) with 2 days SRT in a second experimental run. The highest lipid content in the activated sludge was 95.6 mg/g VSS, obtained at 30°C, 2 mg/L of DO and a SRT of 2 days. The highest content of intracellular proteins in the activated sludge was 87.8 mg/g VSS, obtained at 20°C, 8 mg/L of DO and a SRT of 6 days. The highest content of intracellular polysaccharides in the activated sludge was 76.6 mg/g VSS, which was achieved at 20°C, a SRT of 6 days and a wide range of DO. The activated sludge PHB storage was very low for all the conditions studied.
Improvement of sedimentation and dewatering of municipal sludge by radiation
NASA Astrophysics Data System (ADS)
Sawai, Teruko; Yamazaki, Masao; Shimokawa, Toshinari; Sekiguchi, Masayuki; Sawai, Takeshi
As the promotion of sewerage system, the volume of municipal sludge in Tokyo has increased rapidly. Due to recent changes in the properties of the sludge, moreover, it has become difficult to thicken the liquid sewage sludge by sedimentation and to dewater the thickening sludge mechanically. The development of a new effective method for sludge treatment is necessary. Therefore, a study on the improvement of sedimentation and dewatering of sewage sludge by irradiation with 60Co gamma rays and electron beams was undertaken. Sedimentation tests and various dewatering tests were carried out for the waste activated sludge and anaerobically digested sludge. From the changes in the settling rate, capillary suction time, water content of the sludge cake, and the quality of separated water by irradiation, the optimum irradiation conditions for improving the sedimentation and dewatering of 2 types sludge were determined. The necessary dose for improving the sedimentation and dewatering was observed to be 1-3 kGy for the activated sludge and 5-10 kGy for the digested sludge. To confirm the cause of those changes by irradiation, the zeta potential and viscosity of the sludge were measured.
Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization.
Tiehm, A; Nickel, K; Zellhorn, M; Neis, U
2001-06-01
The pretreatment of waste activated sludge by ultrasonic disintegration was studied in order to improve the anaerobic sludge stabilization. The ultrasound frequency was varied within a range from 41 to 3217 kHz. The impact of different ultrasound intensities and treatment times was examined. Sludge disintegration was most significant at low frequencies. Low-frequency ultrasound creates large cavitation bubbles which upon collapse initiate powerful jet streams exerting strong shear forces in the liquid. The decreasing sludge disintegration efficiency observed at higher frequencies was attributed to smaller cavitation bubbles which do not allow the initiation of such strong shear forces. Short sonication times resulted in sludge floc deagglomeration without the destruction of bacteria cells. Longer sonication brought about the break-up of cell walls, the sludge solids were distintegrated and dissolved organic compounds were released. The anaerobic digestion of waste activated sludge following ultrasonic pretreatment causing microbial cell lysis was significantly improved. There was an increase in the volatile solids degradation as well as an increase in the biogas production. The increase in digestion efficiency was proportional to the degree of sludge disintegration. To a lesser degree the deagglomeration of sludge flocs also augmented the anaerobic volatile solids degradation.
Bitton, Gabriel; Koopman, Ben
1982-01-01
A method was developed to assess the activity of filamentous bacteria in activated sludge. It involves the incubation of activated sludge with 2(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride followed by staining with malachite green. Both cells and 2(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride-formazan crystals can be observed in prepared specimens by using bright-field microscopy. This procedure allowed us to distinguish between inactive and actively metabolizing filaments after chlorine application to control the bulking of activated sludge. Images PMID:16345999
Human Enteropathogen Load in Activated Sewage Sludge and Corresponding Sewage Sludge End Products▿
Graczyk, Thaddeus K.; Lucy, Frances E.; Tamang, Leena; Miraflor, Allen
2007-01-01
This study demonstrated a significant reduction in the concentrations of Cryptosporidium parvum and Cryptosporidium hominis oocysts, Giardia lamblia cysts, and spores of human-virulent microsporidia in dewatered and biologically stabilized sewage sludge cake end products compared to those of the respective pathogens in the corresponding samples collected during the sludge activation process. PMID:17277215
40 CFR Appendix G to Part 403 - Pollutants Eligible for a Removal Credit
Code of Federal Regulations, 2012 CFR
2012-07-01
... and leachate collection system. I—firing of sewage sludge in a sewage sludge incinerator. 1 The... Trichloroethylene 3 10 9500 3 10 Zinc 4500 4500 4500 1 Active sewage sludge unit without a liner and leachate collection system. 2 Active sewage sludge unit with a liner and leachate collection system. 3 Value expressed...
40 CFR Appendix G to Part 403 - Pollutants Eligible for a Removal Credit
Code of Federal Regulations, 2011 CFR
2011-07-01
... and leachate collection system. I—firing of sewage sludge in a sewage sludge incinerator. 1 The... Trichloroethylene 3 10 9500 3 10 Zinc 4500 4500 4500 1 Active sewage sludge unit without a liner and leachate collection system. 2 Active sewage sludge unit with a liner and leachate collection system. 3 Value expressed...
40 CFR Appendix G to Part 403 - Pollutants Eligible for a Removal Credit
Code of Federal Regulations, 2014 CFR
2014-07-01
... and leachate collection system. I—firing of sewage sludge in a sewage sludge incinerator. 1 The... Trichloroethylene 3 10 9500 3 10 Zinc 4500 4500 4500 1 Active sewage sludge unit without a liner and leachate collection system. 2 Active sewage sludge unit with a liner and leachate collection system. 3 Value expressed...
Impacts of flocculation on the distribution and diagenesis of iron in boreal estuarine sediments
NASA Astrophysics Data System (ADS)
Jilbert, Tom; Asmala, Eero; Schröder, Christian; Tiihonen, Rosa; Myllykangas, Jukka-Pekka; Virtasalo, Joonas J.; Kotilainen, Aarno; Peltola, Pasi; Ekholm, Päivi; Hietanen, Susanna
2018-03-01
Iron (Fe) plays a key role in sedimentary diagenetic processes in coastal systems, participating in various redox reactions and influencing the burial of organic carbon. Large amounts of Fe enter the marine environment from boreal river catchments associated with dissolved organic matter (DOM) and as colloidal Fe oxyhydroxides, principally ferrihydrite. However, the fate of this Fe pool in estuarine sediments has not been extensively studied. Here we show that flocculation processes along a salinity gradient in an estuary of the northern Baltic Sea efficiently transfer Fe and OM from the dissolved phase into particulate material that accumulates in the sediments. Flocculation of Fe and OM is partially decoupled. This is likely due to the presence of discrete colloidal ferrihydrite in the freshwater Fe pool, which responds differently from DOM to estuarine mixing. Further decoupling of Fe from OM occurs during sedimentation. While we observe a clear decline with distance offshore in the proportion of terrestrial material in the sedimentary particulate organic matter (POM) pool, the distribution of flocculated Fe in sediments is modulated by focusing effects. Labile Fe phases are most abundant at a deep site in the inner basin of the estuary, consistent with input from flocculation and subsequent focusing. The majority of the labile Fe pool is present as Fe (II), including both acid-volatile sulfur (AVS)-bound Fe and unsulfidized phases. The ubiquitous presence of unsulfidized Fe (II) throughout the sediment column suggests Fe (II)-OM complexes derived from reduction of flocculated Fe (III)-OM, while other Fe (II) phases are likely derived from the reduction of flocculated ferrihydrite. Depth-integrated rates of Fe (II) accumulation (AVS-Fe + unsulfidized Fe (II) + pyrite) for the period 1970-2015 are greater in the inner basin of the estuary with respect to a site further offshore, confirming higher rates of Fe reduction in near-shore areas. Mössbauer 57Fe spectroscopy shows that refractory Fe is composed largely of superparamagnetic Fe (III), high-spin Fe (II) in silicates, and, at one station, also oxide minerals derived from past industrial activities. Our results highlight that the cycling of Fe in boreal estuarine environments is complex, and that the partial decoupling of Fe from OM during flocculation and sedimentation is key to understanding the role of Fe in sedimentary diagenetic processes in coastal areas.
Sakai, K; Miyake, S; Iwama, K; Inoue, D; Soda, S; Ike, M
2015-01-01
To clarify the polyhydroxyalkanoate (PHA) accumulation potential and the PHA-accumulating microbial community structure in activated sludge in municipal wastewater treatment plants (WWTPs) and to identify their influential factors. Nine activated sludge samples were collected from municipal WWTPs employing various biological treatment processes. In acetate-fed 24-h batch experiments under aerobic and nitrogen- and phosphorus-limited conditions, polyhydroxybutyrate (PHB) content of activated sludge increased from 0-1·3 wt% to 7·9-24 wt%, with PHB yields of 0·22-0·50 C-mol 3-hydroxybutyrate (C-mol acetate)(-1). Microbial community analyses found that activated sludge samples that accumulated >20 wt% of PHB after 24-h PHA accumulation experiments had >5·0 × 10(8) copies g(-1)-mixed liquor-suspended solid of phaC genes. Results indicated that (i) activated sludge in municipal WWTPs can accumulate up to approx. 20 wt% of PHA without enrichment processes, (ii) PHA accumulation potential of activated sludge varied depending on the operational conditions (treatment processes) of WWTPs, and (iii) phaC gene number can provide a simple indication of PHA accumulation potential. This is the first study to compare the PHA accumulation potential and PHA-accumulating microbial communities in activated sludge of various treatment processes. Our findings may be useful for enhancing the resource recovery potential of wastewater treatment systems. © 2014 The Society for Applied Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckman, John C.
2012-07-01
A water treatment system at a United States Environmental Protection Agency (USEPA) Superfund site impacted by radiological contaminants is used to treat water entering the site. The United States Army Corps of Engineers (USACE) is actively managing the remedial action for the USEPA using contracts to support the multiple activities on site. The site is where former gas mantle production facilities operated around the turn of the century. The manufacturing facilities used thorium ores to develop the mantles and disposed of off-specification mantles and ore residuals in the surrounding areas. During Site remedial actions, both groundwater and surface water comesmore » into contact with contaminated soils and must be collected and treated at an on-site treatment facility. The radionuclides thorium and radium with associated progeny are the main concern for treatment. Suspended solids, volatile organic compounds, and select metals are also monitored during water treatment. The water treatment process begins were water is pumped to a collection tank where debris and grit settle out. Stored water is pumped to a coagulant tank containing poly-aluminum chloride to collect dissolved solids. The water passes into a reaction tube where aspirated air is added or reagent added to remove Volatile Organic Compounds (VOC'S) by mass transfer and convert dissolved iron to a solid. The water enters the flocculent polymer tank to drop solids out. The flocculated water overflows to a fluidized bed contact chamber to increase precipitation. Flocculation is where colloids of material drop out of suspension and settle. The settled solids are periodically removed and disposed of as radioactive waste. The water is passed through filters and an ion exchange process to extract the radionuclides. Several million liters of water are processed each year from two water treatment plants servicing different areas of the remediation site. Ion exchange resin and filter material are periodically replaced and disposed of as radioactive waste. A total of 0.85 m{sup 3} of waste sludge per year requires disposal on average, in addition to another 6.6 m{sup 3} of waste cartridge filters. All water discharges are regulated by a state of New Jersey Pollutant Discharge Elimination System Permit implemented by the Federal Water Pollution Control Act (Clean Water Act). Laboratory analyses are required to satisfy requirements of the state NPDES permit. Specific monitoring parameters and discharge rates will be provided. Use of the water treatment systems drastically reduces the amount of contaminated water requiring solidification and water disposal to near zero. Millions of liters of potentially contaminated water from excavation activities is treated and released within permit limits. A small volume of solid radioactive waste (21 cubic meters) is generated annually from water treatment process operations. Management of ground and surface water is effectively controlled in remediation areas by the use of sumps, erosion control measures and pumping of water to storage vessels. Continued excavations can be made as water impacting the site is effectively controlled. (authors)« less
Fu, Ruijie; Yao, Kai; Zhang, Qisheng; Jia, Dongying; Zhao, Jiayuan; Chi, Yuanlong
2017-05-01
A series of collagen hydrolysates (CHs) were prepared from pigskin shavings by using pepsin (PCH), trypsin (TCH), Alcalase (ACH), HCl (HCH), and NaOH (NCH). Their physicochemical properties, including degree of collagen hydrolysis, molecular weight distribution, electric charge, and microstructure, were investigated, and their flocculation performance was evaluated in a kaolin suspension, at varied pHs and concentrations. PCH exhibited high flocculation capability under acidic and neutral conditions, and its efficiency for removing suspended particles was approximately 80% at a concentration of 0.05 g/L. TCH, ACH, HCH, and NCH showed almost no flocculation capability. The flocculation capability of PCH could be mainly due to a combination of optimal molecular weight distribution and electric charge. This study could provide an environment-friendly natural flocculant and also proposes a promising approach for the reuse of collagen wastes. Graphical Abstract ᅟ.
Effect of gamma-ray irradiation on the dewaterability of waste activated sludge
NASA Astrophysics Data System (ADS)
Wu, Yuqi; Jiang, Yinghe; Ke, Guojun; Liu, Yingjiu
2017-01-01
The effect of gamma-ray irradiation on waste activated sludge (WAS) dewaterability was investigated with irradiation doses of 0-15 kGy. Time to filter (TTF50), specific resistance of filtration (SRF) and water content of sludge cake were measured to evaluate sludge dewaterability. Soluble chemical oxygen demand (SCOD), soluble extracellular polymeric substances (EPS) concentration and sludge particle size were determined to explain changes in sludge dewaterability. The optimal irradiation dose to obtain the maximum dewaterability characteristics was 1-4 kGy, which generated sludge with optimal disintegration (1.5-4.0%), soluble EPS concentration (590-750 mg/L) and particle size distribution (100-115 μm diameter). The combination of irradiation and cationic polyacrylamide (CPAM) addition exhibited minimal synergistic effect on increasing sludge dewatering rate compared with CPAM conditioning alone.
Magnusson, Björn; Ekstrand, Eva-Maria; Karlsson, Anna; Ejlertsson, Jörgen
2018-05-01
The activated sludge process within the pulp and paper industry is generally run to minimize the production of waste activated sludge (WAS), leading to high electricity costs from aeration and relatively large basin volumes. In this study, a pilot-scale activated sludge process was run to evaluate the concept of treating the wastewater at high rate with a low sludge age. Two 150 L containers were used, one for aeration and one for sedimentation and sludge return. The hydraulic retention time was decreased from 24 hours to 7 hours, and the sludge age was lowered from 12 days to 2-4 days. The methane potential of the WAS was evaluated using batch tests, as well as continuous anaerobic digestion (AD) in 4 L reactors in mesophilic and thermophilic conditions. Wastewater treatment capacity was increased almost four-fold at maintained degradation efficiency. The lower sludge age greatly improved the methane potential of the WAS in batch tests, reaching 170 NmL CH 4 /g VS at a sludge age of 2 days. In addition, the continuous AD showed a higher methane production at thermophilic conditions. Thus, the combination of high-rate wastewater treatment and AD of WAS is a promising option for the pulp and paper industry.
Inhibition of Alkaline Flocculation by Algal Organic Matter for Chlorella vulgaris
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandamme, Dries; Beuckels, Annelies; Vadelius, Eric
2016-01-01
Alkaline flocculation is a promising strategy for the concentration of microalgae for bulk biomass production. However, previous studies have shown that biological changes during the cultivation negatively affect flocculation efficiency. The influence of changes in cell properties and in the quality and composition of algal organic matter (AOM) were studied using Chlorella vulgaris as a model species. In batch cultivation, flocculation was increasingly inhibited over time and mainly influenced by changes in medium composition, rather than biological changes at the cell surface. Total carbohydrate content of the organic matter fraction sized bigger than 3 kDa increased over time and thismore » fraction was shown to be mainly responsible for the inhibition of alkaline flocculation. The monosaccharide identification of this fraction mainly showed the presence of neutral and anionic monosaccharides. An addition of 30–50 mg L -1 alginic acid, as a model for anionic carbohydrate polymers containing uronic acids, resulted in a complete inhibition of flocculation. Furthermore, these results suggest that inhibition of alkaline flocculation was caused by interaction of anionic polysaccharides leading to an increased flocculant demand over time.« less
Whittington, P N; George, N
1992-08-05
The optimization of microbial flocculation for subsequent biomass separation must relate the floc properties to separation process criteria. The effects of flocculant type, dose, and hydrodynamic conditions on floc formation in laminar tube flow were determined for an Escherichia coli system. Combined with an on-line aggregation sensor, this technique allows the flocculation process to be rapidly optimized. This is important, because interbatch variation in fermentation broth has consequences for flocculation control and subsequent downstream processing. Changing tube diameter and length while maintaining a constant flow rate allowed independent study of the effects of shear and time on the flocculation rate and floc characteristics. Tube flow at higher shear rates increased the rate and completeness of flocculation, but reduced the maximum floc size attained. The mechanism for this size limitation does not appear to be fracture or erosion of existing flocs. Rearrangement of particles within the flocs appears to be most likely. The Camp number predicted the extent of flocculation obtained in terms of the reduction in primary particle number, but not in terms of floc size.
Cationic flocculants carrying hydrophobic functionalities: applications for solid/liquid separation.
Schwarz, S; Jaeger, W; Paulke, B-R; Bratskaya, S; Smolka, N; Bohrisch, J
2007-07-26
The flocculation behaviors of three series of polycations with narrow molecular weight distributions carrying hydrophobic substituents on their backbones [poly(N-vinylbenzyl-N,N,N-trimethylammonium chloride), poly(N-vinylbenzyl-N,N-dimethyl-N-butylammonium chloride), and poly(N-vinylbenzylpyridinium chloride)] were investigated in dispersions of monodisperse polystyrene latexes and kaolin. Apparently, the charge density of the polycations decreases with increasing substituent hydrophobicity and increasing molecular weight of the polyelectrolytes. The necessary amount of flocculant for phase separation in dispersions with high substrate surface charge densities increases with increasing hydrophobicity of the polyelectrolyte. Nevertheless, the introduction of hydrophobic functionalities is beneficial, resulting in a substantial broadening of the range between the minimum and maximum amounts of flocculant necessary for efficient flocculation (flocculation window). An increase in ionic strength supports this effect. When the substrate has a low charge density, the hydrophobic interactions play a much more significant role in the flocculation process. Here, the minimum efficient doses remained the same for all three polyelectrolytes investigated, but the width of the flocculation window increased as the polycation hydrophobicity and the molecular weight increased. The necessary amount of flocculant increased with an increase in particle size at constant solid content of the dispersion, as well as with a decreasing number of particles at a constant particle size.
CO2 controlled flocculation of microalgae using pH responsive cellulose nanocrystals
NASA Astrophysics Data System (ADS)
Eyley, Samuel; Vandamme, Dries; Lama, Sanjaya; van den Mooter, Guy; Muylaert, Koenraad; Thielemans, Wim
2015-08-01
Cellulose nanocrystals were grafted with imidazole functionalities up to DS 0.06 using a one-pot functionalization strategy. The resulting nanocrystals were shown to have a pH responsive surface charge which was found to be positive below pH 6 and negative above pH 7. These imidazolyl cellulose nanocrystals were tested for flocculation of Chlorella vulgaris using CO2 to induce flocculation. Up to 90% flocculation efficiency was achieved with 200 mg L-1 dose. Furthermore, the modified cellulose nanocrystals showed good compatibility with the microalgae during cultivation, giving potential for the production of reversible flocculation systems.Cellulose nanocrystals were grafted with imidazole functionalities up to DS 0.06 using a one-pot functionalization strategy. The resulting nanocrystals were shown to have a pH responsive surface charge which was found to be positive below pH 6 and negative above pH 7. These imidazolyl cellulose nanocrystals were tested for flocculation of Chlorella vulgaris using CO2 to induce flocculation. Up to 90% flocculation efficiency was achieved with 200 mg L-1 dose. Furthermore, the modified cellulose nanocrystals showed good compatibility with the microalgae during cultivation, giving potential for the production of reversible flocculation systems. Electronic supplementary information (ESI) available: Spectra for all products. See DOI: 10.1039/C5NR03853G
Impact of Saccharomyces cerevisiae strains on traditional sparkling wines production.
Di Gianvito, Paola; Perpetuini, Giorgia; Tittarelli, Fabrizia; Schirone, Maria; Arfelli, Giuseppe; Piva, Andrea; Patrignani, Francesca; Lanciotti, Rosalba; Olivastri, Lino; Suzzi, Giovanna; Tofalo, Rosanna
2018-07-01
Sparkling wine fermentation is a challenge for yeasts due to the hostile conditions. A phenotype sought in starters is flocculation, because it reduces riddling time. For this reason, six flocculent Saccharomyces cerevisiae wine strains with different flocculation degree and autolytic activity and two commercial strains were tested for traditional sparkling wine production in a winery. Yeast viability, free aminoacids and high molecular weight nitrogen release and physico-chemical composition of sparkling wines were evaluated. Moreover, strains were tested for their aromatic potential. Obtained data revealed that flocculent yeasts presented oenological performances (in terms of fermentation rate, maximum pressure reached, free aminoacids - AAN and high molecular weight nitrogen - HMWN release) similar to the commercial strains. All considered strains were able to complete fermentation and viable cells of all strains were detected in all sparkling wines produced even after 6 months. F6789 and F10471 strains showed slow fermentation kinetics reaching the maximum of pressure at 180 days. Regarding nitrogen compounds release, FI strain was characterized by the highest amount of AAN and HMWN released, followed by F6789. Strains showed a considerable diversification in terms of number and amount of aroma molecules produced and sparkling wines obtained with autochthonous flocculent strains presented a higher amount of alcohols and esters already after 3 months. Further studies are necessary to select starter strains to improve traditional sparkling wines production. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degreif, Daniel; de Rond, Tristan; Bertl, Adam
Cells modulate lipid metabolism in order to maintain membrane homeostasis. In this paper, we use a metabolic engineering approach to manipulate the stoichiometry of fatty acid unsaturation, a regulator of cell membrane fluidity, in Saccharomyces cerevisiae. Unexpectedly, reduced lipid unsaturation triggered cell-cell adhesion (flocculation), a phenomenon characteristic of industrial yeast but uncommon in laboratory strains. We find that ER lipid saturation sensors induce expression of FLO1 – encoding a cell wall polysaccharide binding protein – independently of its canonical regulator. In wild-type cells, Flo1p-dependent flocculation occurs under oxygen-limited growth, which reduces unsaturated lipid synthesis and thus serves as the environmentalmore » trigger for flocculation. Transcriptional analysis shows that FLO1 is one of the most highly induced genes in response to changes in lipid unsaturation, and that the set of membrane fluidity-sensitive genes is globally activated as part of the cell's long-term response to hypoxia during fermentation. Finally, our results show how the lipid homeostasis machinery of budding yeast is adapted to carry out a broad response to an environmental stimulus important in biotechnology.« less
Degreif, Daniel; de Rond, Tristan; Bertl, Adam; Keasling, Jay D; Budin, Itay
2017-05-01
Cells modulate lipid metabolism in order to maintain membrane homeostasis. Here we use a metabolic engineering approach to manipulate the stoichiometry of fatty acid unsaturation, a regulator of cell membrane fluidity, in Saccharomyces cerevisiae. Unexpectedly, reduced lipid unsaturation triggered cell-cell adhesion (flocculation), a phenomenon characteristic of industrial yeast but uncommon in laboratory strains. We find that ER lipid saturation sensors induce expression of FLO1 - encoding a cell wall polysaccharide binding protein - independently of its canonical regulator. In wild-type cells, Flo1p-dependent flocculation occurs under oxygen-limited growth, which reduces unsaturated lipid synthesis and thus serves as the environmental trigger for flocculation. Transcriptional analysis shows that FLO1 is one of the most highly induced genes in response to changes in lipid unsaturation, and that the set of membrane fluidity-sensitive genes is globally activated as part of the cell's long-term response to hypoxia during fermentation. Our results show how the lipid homeostasis machinery of budding yeast is adapted to carry out a broad response to an environmental stimulus important in biotechnology. Copyright © 2017 International Metabolic Engineering Society. All rights reserved.
Development of an ATP measurement method suitable for xenobiotic treatment activated sludge biomass.
Nguyen, Lan Huong; Chong, Nyuk-Min
2015-09-01
Activated sludge consumes a large amount of energy to degrade a xenobiotic organic compound. By tracking the energy inventory of activated sludge biomass during the sludge's degradation of a xenobiotic, any disadvantageous effect on the sludge's performance caused by energy deficiency can be observed. The purpose of this study was to develop a reliable and accurate method for measuring the ATP contents of activated sludge cells that were to degrade a xenobiotic organic. Cell disruption and cellular ATP extraction were performed by a protocol with which xenobiotic degrading activated sludge biomass was washed with SDS, treated by Tris and TCA, and followed by bead blasting. The suspension of disrupted cells was filtered before the filtrate was injected into HPLC that was set at optimal conditions to measure the ATP concentration therein. This extraction protocol and HPLC measurement of ATP was evaluated for its linearity, limits of detection, and reproducibility. Evaluation test results reported a R(2) of 0.999 of linear fit of ATP concentration versus activated sludge concentration, a LOD=0.00045mg/L, a LOQ=0.0015mg/L for HPLC measurement of ATP, a MDL=0.46mg/g SS for ATP extraction protocol, and a recovery efficiency of 96.4±2%. This method of ATP measurement was simple, rapid, reliable, and was unburdened of some limitations other methods may have. Copyright © 2015 Elsevier B.V. All rights reserved.
Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals.
Falås, P; Baillon-Dhumez, A; Andersen, H R; Ledin, A; la Cour Jansen, J
2012-03-15
Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct difference between nitrifying activated sludge and suspended biofilm carrier removal of several pharmaceuticals was demonstrated. Biofilm carriers from full-scale nitrifying wastewater treatment plants, demonstrated considerably higher removal rates per unit biomass (i.e. suspended solids for the sludges and attached solids for the carriers) of diclofenac, ketoprofen, gemfibrozil, clofibric acid and mefenamic acid compared to the sludges. Among the target pharmaceuticals, only ibuprofen and naproxen showed similar removal rates per unit biomass for the sludges and biofilm carriers. In contrast to the pharmaceutical removal, the nitrification capacity per unit biomass was lower for the carriers than the sludges, which suggests that neither the nitrite nor the ammonia oxidizing bacteria are primarily responsible for the observed differences in pharmaceutical removal. The low ability of ammonia oxidizing bacteria to degrade or transform the target pharmaceuticals was further demonstrated by the limited pharmaceutical removal in an experiment with continuous nitritation and biofilm carriers from a partial nitritation/anammox sludge liquor treatment process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Full scale implementation of the nutrient limited BAS process at Södra Cell Värö.
Malmqvist, A; Berggren, B; Sjölin, C; Welander, T; Heuts, L; Fransén, A; Ling, D
2004-01-01
A combination of the suspended carrier biofilm process and the activated sludge process (biofilm-activated sludge--BAS) has been shown to be very successful for the treatment of different types of pulp and paper mill effluents. The robust biofilm pre-treatment in combination with activated sludge results in a stable, compact and highly efficient process. Recent findings have shown that nutrient limited operation of the biofilm process greatly improves the sludge characteristics in the following activated sludge stage, while minimising sludge production and effluent discharge of nutrients. The nutrient limited BAS process was implemented at full scale at the Södra Cell Värö kraft mill and taken into operation in July 2002. After start-up and optimisation over about 5 months, the process meets all effluent discharge limits. The removal of COD is close to 70% and the removal of EDTA greater than 90%. Typical effluent concentrations of suspended solids and nutrients during stable operations have been 20-30 mg/L TSS, 0.3-0.5 mg/L phosphorus and 3-5 mg/L nitrogen. The sludge production was 0.09 kgSS/kg COD removed and the sludge volume index was 50-100 mL/g.
Lakshminarasimman, Narasimman; Quiñones, Oscar; Vanderford, Brett J; Campo-Moreno, Pablo; Dickenson, Eric V; McAvoy, Drew C
2018-05-28
This study determined biotransformation rates (k bio ) and sorption-distribution coefficients (K d ) for a select group of trace organic compounds (TOrCs) in anaerobic, anoxic, and aerobic activated sludge collected from two different biological nutrient removal (BNR) treatment systems located in Nevada (NV) and Ohio (OH) in the United States (US). The NV and OH facilities operated at solids retention times (SRTs) of 8 and 23 days, respectively. Using microwave-assisted extraction, the biotransformation rates of the chosen TOrCs were measured in the total mixed liquor. Sulfamethoxazole, trimethoprim, and atenolol biotransformed in all three redox regimes irrespective of the activated sludge source. The biotransformation of N, N-diethyl-3-methylbenzamide (DEET), triclosan, and benzotriazole was observed in aerobic activated sludge from both treatment plants; however, anoxic biotransformation of these three compounds was seen only in anoxic activated sludge from NV. Carbamazepine was recalcitrant in all three redox regimes and both sources of activated sludge. Atenolol and DEET had greater biotransformation rates in activated sludge with a higher SRT (23 days), while trimethoprim had a higher biotransformation rate in activated sludge with a lower SRT (8 days). The remaining compounds did not show any dependence on SRT. Lyophilized, heat inactivated sludge solids were used to determine the sorption-distribution coefficients. Triclosan was the most sorptive compound followed by carbamazepine, sulfamethoxazole, DEET, and benzotriazole. The sorption-distribution coefficients were similar across redox conditions and sludge sources. The biotransformation rates and sorption-distribution coefficients determined in this study can be used to improve fate prediction of the target TOrCs in BNR treatment systems. Copyright © 2018. Published by Elsevier B.V.
Reducing capacities and redox potentials of humic substances extracted from sewage sludge.
Yang, Zhen; Du, Mengchan; Jiang, Jie
2016-02-01
Humic substances (HS) are redox active organic materials that can be extracted from sewage sludge generated in wastewater treatment processes. Due to the poor understanding of reducing capacity, redox potentials and redox active functional groups of HS in sewage sludge, the potential contribution of sludge HS in transformation of wastewater contaminants is unclear. In the present study, the number of electrons donated or accepted by sewage sludge HS were quantified before and after reduction by iron compounds that possess different redox potentials and defined as the reducing capacity of the sewage sludge. In contrast to previous studies of soil and commercial humic acids (HA), reduced sludge HA showed a lower reducing capacity than that of native HA, which implies formation of semiquinone radicals since the semiquinone radical/hydroquinone pair has a much higher redox potential than the quinone/hydroquinone pair. It is novel that reducing capacities of sludge HA were determined in the redox potential range from -314 to 430 mV. The formation of semiquinone radicals formed during the reduction of quinone moieties in sludge HA is shown by three-dimensional excitation/emission matrix fluorescence spectroscopies information, increasing fluorescence intensities and blue-shifting of the excitation/emission peak of reduced sludge HA. Knowledge of sludge HS redox potentials and corresponding reducing capacities makes it possible to predict the transformation of redox active pollutants and facilitate manipulation and optimization of sludge loading wastewater treatment processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Research on the treatment of wastewater containing PVA by ozonation-activated sludge process].
Xing, Xiao-Qiong; Huang, Cheng-Lan; Liu, Min; Chen, Ying
2012-11-01
The wastewater containing polyvinyl alcohol (PVA) was characterized with poor biodegradability, and was difficult to remove. In order to find an economically reasonable and practical technology, the research on the removal efficiency of different concentration wastewater containing PVA by ozonation-activated sludge process was studied, and the result was compared with the traditional activated sludge process. The results showed that the ozonation-activated sludge process was not suitable for treating influent with COD below 500 mg x L(-1) and the wastewater PVA concentration was 10-30 mg x L(-1). When the influent COD was between 500-800 mg x L(-1) and the PVA concentration was 15-60 mg x L(-1), the system had advantages on dealing with this kind of wastewater, and the average removal efficiency of COD and PVA were 92.8% and 57.4%, which were better than the traditional activated sludge process 4.1% and 15.2% respectively. In addition, the effluent concentrations of COD could keep between 30-60 mg x L(-1). When the influent COD was 1 000-1 200 mg x L(-1) and the PVA concentration was 20-70 mg x L(-1), the average removal efficiencies of COD and PVA were 90.9% and 45.3%, which were better than the traditional activated sludge process 12.8% and 12.1% respectively, but the effluent should to be further treated. Compared with the traditional activated sludge process, ozonation-activated sludge process had high treatment efficiency, stable running effect, and effectively in dealing with industrial wastewater containing PVA.
Lei, Li; Ni, Jinren
2014-04-15
A three-dimensional three-phase fluid model, supplemented by laboratory data, was developed to simulate the hydrodynamics, oxygen mass transfer, carbon oxidation, nitrification and denitrification processes in an oxidation ditch. The model provided detailed phase information on the liquid flow field, gas hold-up distribution and sludge sedimentation. The three-phase model described water-gas, water-sludge and gas-sludge interactions. Activated sludge was taken to be in a pseudo-solid phase, comprising an initially separated solid phase that was transported and later underwent biological reactions with the surrounding liquidmedia. Floc parameters were modified to improve the sludge viscosity, sludge density, oxygen mass transfer rate, and carbon substrate uptake due to adsorption onto the activated sludge. The validation test results were in very satisfactory agreement with laboratory data on the behavior of activated sludge in an oxidation ditch. By coupling species transport and biological process models, reasonable predictions are made of: (1) the biochemical kinetics of dissolved oxygen, chemical oxygen demand (COD) and nitrogen variation, and (2) the physical kinematics of sludge sedimentation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Seka, A M; Van De Wiele, T; Verstraete, W
2001-08-01
Instantaneous improvement of the settling of bulking filamentous activated sludge can be achieved by the addition of a polymer or a large amount (up to 100% of the MLSS concentration) of talc powder to the sludge. Long-term improvement relies on repeated additions, as these additives have no adverse effects on the causative filaments. A multi-component additive was compared to the traditional additives in lab-scale activated sludge units using three highly filamentous sludges from different industrial treatment plants. The study demonstrated that the multi-component additive was superior to the traditional remedies. It was shown that, in the case of severe filamentous bulking, a single addition of the new additive immediately improved sludge settling and exerted a destructive effect on the causative filamentous bacteria. Thus, the latter additive also ensured a long-term sludge sedimentation improvement. The traditional additives exhibited an immediate and short-term effect. The novel additive also retarded sludge rising due to denitrification and it improved sludge dewaterability. The study revealed Nostocoido limicola II, with slightly hydrophobic cell wall, to be somewhat resistant to the quaternary ammonium salt present as biocide in the additive.
[Ultrasonic sludge treatment and its application on aerobic digestion].
Li, Huan; Jin, Yi-ying; Nie, Yong-feng; Li, Lei; Yang, Hai-ying
2007-07-01
In order to enhance the degradation efficiency of waste activated sludge (WAS) in conventional aerobic digestion, various ultrasonic assisted treatment methods were investigated including ultrasonic disintegration of influent sludge, ultrasonic improvement of influent sludge activity and ultrasonic disintegration of return sludge. Firstly the effects of ultrasonic sludge treatment were studied to choose appropriate ultrasonic parameters, and then the experiments of aerobic digestion with different ultrasonic treatments were carried out. The results show that 1.0 W/mL, 10 minutes ultrasonic treatment can increase soluble chemical oxygen demand (SCOD) in the supernatant phase of sludge sample by 5.4 times and decrease total suspended solid (TSS) by 16%; 0.05 W/mL, 10 min ultrasonic treatment can increase the specific oxygen uptake rate (SOUR) of sludge sample by 29%. The two kinds of ultrasonic influent sludge pretreatment can't improve aerobic digestion effectively. Ultrasonic return sludge disintegration can enhance the volatile suspended solid (VSS) degradation ratio by 15%. Furthermore, the settlement performance of digested sludge is still good and the pollutant concentrations of supernatant phase increase slightly. So ultrasonic return sludge disintegration is considered as the most appropriate assisted treatment mode for aerobic digestion.
Occurrence and activity of Archaea in aerated activated sludge wastewater treatment plants.
Gray, Neil D; Miskin, Ian P; Kornilova, Oksana; Curtis, Thomas P; Head, Ian M
2002-03-01
The occurrence, distribution and activity of archaeal populations within two aerated, activated sludge wastewater treatment systems, one treating domestic waste and the second treating mixed domestic and industrial wastewater, were investigated by denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction (PCR)-amplified ribosomal RNA gene fragments and process measurements. In the plant receiving mixed industrial and domestic waste the archaeal populations found in the mixed liquor were very similar to those in the influent sewage, though a small number of DGGE bands specific to the mixed liquor were identified. In contrast, the activated sludge treating principally domestic waste harboured distinct archaeal populations associated with the mixed liquor that were not prevalent in the influent sewage. We deduce that the Archaea in the plant treating mixed wastewater were derived principally from the influent, whereas those in the plant treating solely domestic waste were actively growing in the treatment plant. Archaeal 16S rRNA gene sequences related to the Methanosarcinales, Methanomicrobiales and the Methanobacteriales were detected. Methanogenesis was measured in activated sludge samples incubated under oxic and anoxic conditions, demonstrating that the methanogens present in both activated sludge plants were active only in anoxic incubations. The relatively low rates of methanogenesis measured indicated that, although active, the methanogens play a minor role in carbon turnover in activated sludge.
Koh, Y K K; Chiu, T Y; Paterakis, N; Boobis, A; Scrimshawe, M D; Lester, J N; Cartmell, E
2009-12-01
An analytical method has been developed and applied to determine the concentrations of the nonionic alkylphenol polyethoxylate surfactants and their metabolites, alkylphenoxy carboxylates and alkyphenols, in sewage sludges. The compounds were extracted with methanol/acetone (1:1 v/v) from sludge, and concentrated extracts were cleaned by silica solid-phase extraction prior to determination by liquid chromatography tandem mass spectrometry. The recoveries, determined by spiking sewage sludge at two concentrations, ranged from 51% to 89% with method detection limits from 6 microg kg(-1) to 60 microg kg(-1). The methodology was subsequently applied to sludge samples obtained from a carbonaceous activated sludge plant, a nitrifying/denitrifying activated sludge plant and a nitrifying/ denitrifying activated sludge plant with phosphorus removal. Concentrations of nonylphenolic compounds were two to three times higher than their octyl analogues. Long-chain nonylphenol polyethoxylates (NP3-12EO) ranged from 16 microg kg(-1) to 11754 microg kg(-1). The estrogenic metabolite nonylphenol was present at concentrations ranging from 33 microg kg(-1) to 6696 microg kg(-1).
Adsorption behavior of sulfamethazine in an activated sludge process treating swine wastewater.
Ben, Weiwei; Qiang, Zhimin; Yin, Xiaowei; Qu, Jiuhui; Pan, Xun
2014-08-01
Swine wastewater is an important pollution source of antibiotics entering the aquatic environment. In this work, the adsorption behavior of sulfamethazine (SMN), a commonly-used sulfonamide antibiotic, on activated sludge from a sequencing batch reactor treating swine wastewater was investigated. The results show that the adsorption of SMN on activated sludge was an initially rapid process and reached equilibrium after 6hr. The removal efficiency of SMN from the water phase increased with an increasing concentration of mixed liquor suspended solids, while the adsorbed concentration of SMN decreased. Solution pH influenced both the speciation of SMN and the surface properties of activated sludge, thus significantly impacting the adsorption process. A linear partition model could give a good fit for the equilibrium concentrations of SMN at the test temperatures (i.e., 10, 20 and 30°C). The partition coefficient (Kd) was determined to be 100.5L/kg at 20°C, indicating a quite high adsorption capacity for SMN. Thermodynamic analysis revealed that SMN adsorption on activated sludge was an exothermic process. This study could help to clarify the fate and behavior of sulfonamide antibiotics in the activated sludge process and assess consequent environmental risks arising from sludge disposal as well. Copyright © 2014. Published by Elsevier B.V.
Tamis, J; van Schouwenburg, G; Kleerebezem, R; van Loosdrecht, M C M
2011-11-15
Sludge predation can be an effective solution to reduce sludge production at a wastewater treatment plant. Oligochaete worms are the natural consumers of biomass in benthic layers in ecosystems. In this study the results of secondary sludge degradation by the aquatic Oligochaete worm Aulophorus furcatus in a 125 m(3) reactor and further sludge conversion in an anaerobic tank are presented. The system was operated over a period of 4 years at WWTP Wolvega, the Netherlands and was fed with secondary sludge from a low loaded activated sludge process. It was possible to maintain a stable and active population of the aquatic worm species A. furcatus during the full period. Under optimal conditions a sludge conversion of 150-200 kg TSS/d or 1.2-1.6 kg TSS/m(3)/d was established in the worm reactor. The worms grew as a biofilm on carrier material in the reactor. The surface specific conversion rate reached 140-180 g TSS/m(2)d and the worm biomass specific conversion rate was 0.5-1 g TSS sludge/g dry weight worms per day. The sludge reduction under optimal conditions in the worm reactor was 30-40%. The degradation by worms was an order of magnitude larger than the endogenous conversion rate of the secondary sludge. Effluent sludge from the worm reactor was stored in an anaerobic tank where methanogenic processes became apparent. It appeared that besides reducing the sludge amount, the worms' activity increased anaerobic digestibility, allowing for future optimisation of the total system by maximising sludge reduction and methane formation. In the whole system it was possible to reduce the amount of sludge by at least 65% on TSS basis. This is a much better total conversion than reported for anaerobic biodegradability of secondary sludge of 20-30% efficiency in terms of TSS reduction. Copyright © 2011 Elsevier Ltd. All rights reserved.
Girault, R; Bridoux, G; Nauleau, F; Poullain, C; Buffet, J; Peu, P; Sadowski, A G; Béline, F
2012-02-01
In this study, the maximum ratio of greasy sludge to incorporate with waste activated sludge was investigated in batch and CSTR experiments. In batch experiments, inhibition occurred with a greasy sludge ratio of more than 20-30% of the feed COD. In CSTR experiments, the optimal greasy sludge ratio was 60% of the feed COD and inhibition occurred above a ratio of 80%. Hence, batch experiments can predict the CSTR yield when the degradation phenomenon are additive but cannot be used to determine the maximum ratio to be used in a CSTR configuration. Additionally, when the ratio of greasy sludge increased from 0% to 60% of the feed COD, CSTR methane production increased by more than 60%. When the greasy sludge ratio increased from 60% to 90% of the feed COD, the reactor yield decreased by 75%. Copyright © 2011 Elsevier Ltd. All rights reserved.
Microbial Ecology of Activated Sludge
Dias, F. F.; Bhat, J. V.
1964-01-01
Over 300 bacterial strains were isolated from seven samples of activated sludge by plating on sewage agar. Gram-negative bacteria of the genera Zoogloea and Comamonas predominated. Many isolates (51%) showed sudanophilic inclusions of poly-β-hydroxybutyric acid, whereas 34% accumulated iodophilic material on media containing starch. A large number required either vitamins or amino acids, or both, for growth. None of the isolates tested for their ability to bring about changes in autoclaved sewage produced an effluent comparable in quality to the activated sludge control, although the Zoogloea did produce activated sludgelike flocs. A study of 150 bacterial strains isolated from raw sewage revealed that they differed from the sludge isolates in several respects. Coliforms, which constitute nearly a quarter of the sewage isolates, were rarely encountered in sludge. PMID:14215970
Fate of personal care and household products in source separated sanitation.
Butkovskyi, A; Rijnaarts, H H M; Zeeman, G; Hernandez Leal, L
2016-12-15
Removal of twelve micropollutants, namely biocides, fragrances, ultraviolet (UV)-filters and preservatives in source separated grey and black water treatment systems was studied. All compounds were present in influent grey water in μg/l range. Seven compounds were found in influent black water. Their removal in an aerobic activated sludge system treating grey water ranged from 59% for avobenzone to >99% for hexylcinnamaldehyde. High concentrations of hydrophobic micropollutants in sludge of aerobic activated sludge system indicated the importance of sorption for their removal. Six micropollutants were found in sludge of an Up-flow anaerobic sludge blanket (UASB) reactor treating black water, with four of them being present at significantly higher concentrations after addition of grey water sludge to the reactor. Hence, addition of grey water sludge to the UASB reactor is likely to increase micropollutant content in UASB sludge. This approach should not be followed when excess UASB sludge is designed to be reused as soil amendment. Copyright © 2016 Elsevier B.V. All rights reserved.
Sivakumar, S; Song, Y C; Kim, S H; Jang, S H
2015-11-01
Waste activated sludge was aerobically treated to demonstrate multiple uses such as cultivating an oil degrading bacterial consortium; studying the influence of a bulking agent (peat moss) and total petroleum hydrocarbon concentration on bacterial growth and producing a soil conditioner using waste activated sludge. After 30 days of incubation, the concentration of oil-degrading bacteria was 4.3 x 10(8) CFU g(-1) and 4.5 x 10(8) CFU g(-1) for 5 and 10 g of total petroleum hydrocarbon, respectively, in a mixture of waste activated sludge (1 kg) and peat moss (0.1 kg). This accounts for approximately 88.4 and 91.1%, respectively, of the total heterotrophic bacteria (total-HB). The addition of bulking agent enhanced total-HB population and total petroleum hydrocarbon-degrading bacterial population. Over 90% of total petroleum hydrocarbon degradation was achieved by the mixture of waste activated sludge, bulking agent and total petroleum hydrocarbon. The results of physico-chemical parameters of the compost (waste activated sludge with and without added peat moss compost) and a substantial reduction in E. coli showed that the use of this final product did not exhibit risk when used as soil conditioner. Finally, the present study demonstrated that cultivation of total petroleum hydrocarbon-degrading bacterial consortium and production of compost from waste activated sludge by aerobic treatment was feasible.
Sun, Fei-yun; Wang, Xiao-mao; Li, Xiao-yan
2011-04-01
A membrane bioreactor (MBR) and an activated sludge process (ASP) were operated side by side to evaluate the change of sludge supernatant characteristics and the evolution of the sludge fouling propensity. The MBR sludge had a higher organic concentration and more biopolymer clusters (BPC) in the supernatant compared with ASP. BPC increased in both concentration and size in the MBR. The results show that the change in the liquid-phase property had a profound effect on the sludge fouling propensity. MBR operation transformed typical activated sludge to MBR sludge with a higher fouling propensity. Distinct from the ASP, membrane filtration retained soluble microbial products (SMP) within the MBR, and the vast membrane surface provided a unique environment for the transformation of SMP to large size BPC, leading to further sludge deposition on the membrane surface. Thus, membrane filtration is the crucial cause of the inevitable fouling problem in submerged MBRs. Copyright © 2011 Elsevier Ltd. All rights reserved.
A simple empirical model for the clarification-thickening process in wastewater treatment plants.
Zhang, Y K; Wang, H C; Qi, L; Liu, G H; He, Z J; Fan, H T
2015-01-01
In wastewater treatment plants (WWTPs), activated sludge is thickened in secondary settling tanks and recycled into the biological reactor to maintain enough biomass for wastewater treatment. Accurately estimating the activated sludge concentration in the lower portion of the secondary clarifiers is of great importance for evaluating and controlling the sludge recycled ratio, ensuring smooth and efficient operation of the WWTP. By dividing the overall activated sludge-thickening curve into a hindered zone and a compression zone, an empirical model describing activated sludge thickening in the compression zone was obtained by empirical regression. This empirical model was developed through experiments conducted using sludge from five WWTPs, and validated by the measured data from a sixth WWTP, which fit the model well (R² = 0.98, p < 0.001). The model requires application of only one parameter, the sludge volume index (SVI), which is readily incorporated into routine analysis. By combining this model with the conservation of mass equation, an empirical model for compression settling was also developed. Finally, the effects of denitrification and addition of a polymer were also analysed because of their effect on sludge thickening, which can be useful for WWTP operation, e.g., improving wastewater treatment or the proper use of the polymer.
Bacterial reduction of Cr(VI) at technical scale--the Malaysian experience.
Zakaria, Zainul Akmar; Ahmad, Wan Azlina; Zakaria, Zainoha; Razali, Firdausi; Karim, Norsuhada Abdul; Sum, Mohamad Md; Sidek, Mohd Saufi Mohd
2012-07-01
The bacterial reduction of Cr(VI) from industrial wastewater was evaluated using a 2.0-m(3) bioreactor. Liquid pineapple waste was used as a nutrient for the biofilm community formed inside the bioreactor. The use of rubber wood sawdust as packing material was able to immobilize more than 10(6) CFU mL(-1) of Acinetobacter haemolyticus cells after 3 days of contact time. Complete reduction of 15-240 mg L(-1) of Cr(VI) was achieved even after 3 months of bioreactor operation. Cr(VI) was not detected in the final effluent fraction indicating complete removal of Cr from solution from the flocculation/coagulation step and the unlikely re-oxidation of Cr(III) into Cr(VI). Impatiens balsamina L. and Gomphrena globosa L. showed better growth in the presence of soil-sludge mixture compared to Coleus scutellarioides (L.) Benth. Significant amounts of Cr accumulated at different sections of the plants indicate its potential application in Cr phytoremediation effort. The bacterial-based system was also determined not to be detrimental to human health based on the low levels of Cr detected in the hair and nail samples of the plant operators. Thus, it can be said that bacterial-based Cr(VI) treatment system is a feasible alternative to the conventional system especially for lower Cr(VI) concentrations, where sludge generated can be used as growth supplement for ornamental plant as well as not detrimental to the health of the workers.
Cloning of a heavy-metal-binding protein derived from activated-sludge microorganisms.
Sano, Daisuke; Myojo, Ken; Omura, Tatsuo
2006-09-01
A gene of the heavy-metal-binding protein (HMBP) was newly isolated from a genetic DNA library of activated-sludge microorganisms. HMBP was produced by transformed Escherichia coli, and the copper-binding ability of HMBP was confirmed. HMBP derived from activated sludge could be available as heavy metal adsorbents in water and wastewater treatments.
Lipid profiling in sewage sludge.
Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei
2017-06-01
High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Adsorption of mercury by activated carbon prepared from dried sewage sludge in simulated flue gas.
Park, Jeongmin; Lee, Sang-Sup
2018-04-25
Conversion of sewage sludge to activated carbon is attractive as an alternative method to ocean dumping for the disposal of sewage sludge. Injection of activated carbon upstream of particulate matter control devices has been suggested as a method to remove elemental mercury from flue gas. Activated carbon was prepared using various activation temperatures and times and was tested for their mercury adsorption efficiency using lab-scale systems. To understand the effect of the physical property of the activated carbon, its mercury adsorption efficiency was investigated as a function of their Brunauer-Emmett-Teller (BET) surface area. Two simulated flue gas conditions: (1) without hydrogen chloride (HCl) and (2) with 20 ppm HCl, were used to investigate the effect of flue gas composition on the mercury adsorption capacity of activated carbon. Despite very low BET surface area of the prepared sewage sludge activated carbons, their mercury adsorption efficiencies were comparable under both simulated flue gas conditions to those of pinewood and coal activated carbons. After injecting HCl into the simulated flue gas, all sewage sludge activated carbons demonstrated high adsorption efficiencies, i.e., more than 87%, regardless of their BET surface area. IMPLICATIONS We tested activated carbons prepared from dried sewage sludge to investigate the effect of their physical properties on their mercury adsorption efficiency. Using two simulated flue gas conditions, we conducted mercury speciation for the outlet gas. We found that the sewage sludge activated carbon had comparable mercury adsorption efficiency to pinewood and coal activated carbons, and the presence of HCl minimized the effect of physical property of the activated carbon on its mercury adsorption efficiency.
Mesquita, D P; Dias, O; Amaral, A L; Ferreira, E C
2009-04-01
In recent years, a great deal of attention has been focused on the research of activated sludge processes, where the solid-liquid separation phase is frequently considered of critical importance, due to the different problems that severely affect the compaction and the settling of the sludge. Bearing that in mind, in this work, image analysis routines were developed in Matlab environment, allowing the identification and characterization of microbial aggregates and protruding filaments in eight different wastewater treatment plants, for a combined period of 2 years. The monitoring of the activated sludge contents allowed for the detection of bulking events proving that the developed image analysis methodology is adequate for a continuous examination of the morphological changes in microbial aggregates and subsequent estimation of the sludge volume index. In fact, the obtained results proved that the developed image analysis methodology is a feasible method for the continuous monitoring of activated sludge systems and identification of disturbances.
Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi
2016-01-01
In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production.
A Novel Model for the Entire Settling-Thickening Process in a Secondary Settling Tank.
He, Zhijiang; Zhang, Yuankai; Wang, Hongchen; Qi, Lu; Yin, Xunfei; Zhang, Xiaojun; Wen, Yang
2016-12-01
Sludge settling and thickening occur simultaneously in secondary settling tanks (SSTs). The ability to accurately calculate the settling and thickening capacity of activated sludge was of great importance. Despite extensive studies on the development of settling velocity models for use with SSTs, these models have not been applied due to the difficulty in calibrating the related parameters. Additionally, there have been some studies of the thickening behavior of the activated sludge in SSTs. In this study, a novel settling and thickening model for activated sludge was developed, and the model was validated using experimental data (R2 = 0.830 to 0.963, p < 0.001), which is more reasonable for the characterization of the settling and thickening behavior of the activated sludge in an SST. The application of these models requires only one critical parameter, namely, the stirred sludge volume index SSVI3.5, which is readily available in a water resource recovery facility.
Combined System of Activated Sludge and Ozonation for the Treatment of Kraft E1 Effluent
Assalin, Marcia Regina; dos Santos Almeida, Edna; Durán, Nelson
2009-01-01
The treatment of paper mill effluent for COD, TOC, total phenols and color removal was investigated using combined activated sludge-ozonation processes and single processes. The combined activated sludge-O3/pH 10 treatment was able to remove around 80% of COD, TOC and color from Kraft E1 effluent. For the total phenols, the efficiency removal was around 70%. The ozonation post treatment carried out at pH 8.3 also showed better results than the single process. The COD, TOC, color and total phenols removal efficiency obtained were 75.5, 59.1, 77 and 52.3%, respectively. The difference in the concentrations of free radical produced by activated sludge-O3/pH 10 and activated sludge-O3/pH 8.3 affected mainly the TOC and total phenol removal values. PMID:19440438
[Inhibition of Denitrification by Total Phenol Load of Coal Gasification Wastewater].
Zhang, Yu-ying; Chen, Xiu-rong; Wang, Lu; Li, Jia-hui; Xu, Yan; Zhuang, You-jun; Yu, Ze-ya
2016-03-15
High loaded phenolic pollutants, refractory and high toxic, which existed in coal gasification wastewater, could cause the inhibition of sludge activity. In biological denitrification process of activated sludge treatment system, people tend to focus on the phenol inhibition on the efficiency and activity of nitrifying bacteria while there are few researches on the denitrification process. In order to investigate the inhibition of phenolic compounds from coal gasification wastewater on the denitrification and sludge activity, we used anoxic denitrification system to indentify the influence of different phenol load on denitrification efficiency (removal efficiency of NO₃⁻-N and NO₂⁻-N) as well as the stress and degradation activity of sludge. The results showed that when the concentration of total phenol was changed from 50 mg · L⁻¹ to 200 mg · L⁻¹, the removal rates of NO₃⁻-N and NO₂⁻-N were changed from 55% and 25% to 83% and 83% respectively. In the process of sludge domestication, the characteristics of denitrifying sludge were influenced to a certain degree.
Chan, W I; Liao, P H; Lo, K V
2010-11-01
Using the microwave-enhanced advanced oxidation process (MW/H2O2-AOP), the pH and irradiation intensity on waste activated sludge samples were investigated to provide insight to the athermal effects on nutrients release, solids destruction, particle size distribution and dewaterability, and to demonstrate their interrelationships. Carbonaceous matters and nutrients released into solution depended on the irradiation intensity and time. Higher irradiation levels tended to be more effective in the solubilization of nutrients and had more pronounced effects in the dewaterability of sludge. In terms of particle size distribution, detectable particles increased in size for treatments in acidic conditions, while the dewaterability of treated sludge was improved. In treatments under neutral and alkaline conditions, the particle size range increased, with more small particles formed, thereby significantly deteriorating the dewaterability of sludge treated in alkaline conditions. The best results for the solubilization of nutrients were in alkaline conditions with high irradiation power, but dewaterability of the sludge was compromised. Sludge treatment with the MW/H2O2-AOP in acidic conditions with high irradiation power yielded the best dewaterable sludge and significant nutrient solubilization; therefore, it is the recommended treatment condition for activated sludge.
Zhou, Zhiwei; Yang, Yanling; Li, Xing
2015-11-01
Large amounts of drinking water treatment sludge (DWTS) are produced during the flocculation or flotation process. The recycling of DWTS is important for reducing and reclaiming the waste residues from drinking water treatment. To improve the coagulation step of the DWTS recycling process, power ultrasound was used as a pretreatment to disintegrate the DWTS and degrade or inactivate the constituents that are difficult to remove by coagulation. The effects of ultrasound pretreatment on the characteristics of DWTS, including the extent of disintegration, variation in DWTS floc characteristics, and DWTS dewaterability, were investigated. The capacity of the recycling process to remove particulates and organic matter from low-turbidity surface water compared to a control treatment process without DWTS was subsequently evaluated. The coagulation mechanism was further investigated by analyzing the formation, breakage, and re-growth of re-coagulated flocs. Our results indicated that under the low energy density applied (0.03-0.033 W/mL) for less than 15 min at a frequency of 160 kHz, the level of organic solubilization was less elevated, which was evidenced by the lower release of proteins and polysaccharides and lower fluorescence intensities of humic- and protein-like substances. The applied ultrasound conditions had an adverse effect on the dewaterability of the DWTS. Ultrasound pretreatment had no significant impact on the pH or surface charge of the DWTS flocs, whereas particle size decreased slightly and the specific surface area was moderately increased. The pollution removal capacity decreased somewhat for the recycled sonicated DWTS treatment, which was primarily ascribed to organic solubilization rather than variability in the floc characteristics of sonicated DWTS. The main coagulation mechanism was floc sweeping and physical adsorption. The breakage process of the flocs formed by the recycling process displayed distinct irreversibility, and the flocs were stronger and more resistant to breakage compared to those from the control treatment. Copyright © 2015 Elsevier B.V. All rights reserved.
Zubrowska-Sudol, Monika; Walczak, Justyna
2014-09-15
The purpose of the study was to analyse the impact of hydrodynamic disintegration of thickened excess activated sludge, performed at different levels of energy density (70, 140 and 210 kJ/L), on the activity of microorganisms involved in nutrient removal from wastewater, i.e. nitrifiers, denitrifiers and phosphorus accumulating organisms (PAOs). Ammonium and nitrogen utilisation rates and phosphorus release rates for raw and disintegrated sludge were determined using batch tests. The experiment also included: 1) analysis of organic and nutrient compound release from activated sludge flocs, 2) determination of the sludge disintegration degree (DD), and 3) evaluation of respiratory activity of the biomass by using the oxygen uptake rate (OUR) batch test. It was shown that the activity degree of the examined groups of microorganisms depended on energy density and related sludge disintegration degree, and that inactivation of individual groups of microorganisms occurred at different values of DD. Least resistant to the destruction of activated sludge flocs turned out to be phosphorus accumulating organisms, while the most resistant were denitrifiers. A decrease of 20-40% in PAO activity was noted already at DD equal to 3-5%. The threshold values of DD, after crossing which the inactivation of nitrifiers and denitrifiers occurred, were equal to 8% and 10%, respectively. At lesser DD values an increase in the activity of these groups of microorganisms was observed, averaging 20.2-41.7% for nitrifiers and 9.98-36.3% for denitrifiers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sun, Yongjun; Zhu, Chengyu; Sun, Wenquan; Xu, Yanhua; Xiao, Xuefeng; Zheng, Huaili; Wu, Huifang; Liu, Cuiyun
2017-05-15
In this work, a highly efficient and environmentally friendly chitosan-based graft flocculant, namely, acrylamide- and dimethyl diallyl ammonium chloride-grafted chitosan [CS-g-P(AM-DMDAAC)], was prepared successfully through plasma initiation. FTIR results confirmed the successful polymerization of CS-g-P(AM-DMDAAC) and P(AM-DMDAAC). P(AM-DMDAAC) was the copolymer of acrylamide- and dimethyl diallyl ammonium chloride. SEM results revealed that a densely cross-linked network structure formed on the surface. XRD results verified that the ordered crystal structure of chitosan in CS-g-P(AM-DMDAAC) was changed into an amorphous structure after plasma-induced polymerization. The flocculation results of low-algal-turbidity water further showed the optimal flocculation efficiency of turbidity removal rate, COD removal rate, and Chl-a removal rate were 99.02%, 96.11%, and 92.20%, respectively. The flocculation efficiency of CS-g-P(AM-DMDAAC) were significantly higher than those obtained by cationic polyacrylamide (CPAM) and Polymeric aluminum and iron (PAFC). This work provided a valuable basis for the design of eco-friendly naturally modified polymeric flocculants to enhance the flocculation of low-algal-turbidity water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Du, Zhaoli; Cheng, Yanfei; Zhu, Hui; He, Xiuping; Zhang, Borun
2015-02-01
Flocculent gene FLO1 and its truncated form FLO1c with complete deletion of repeat unit C were expressed in a non-flocculent industrial strain Saccharomyces cerevisiae CE6 to generate recombinant flocculent strains 6-AF1 and 6-AF1c respectively. Both strains of 6-AF1 and 6-AF1c displayed strong flocculation and better cell growth than the control strain CE6-V carrying the empty vector under acetic acid stress. Moreover, the flocculent strains converted glucose to ethanol at much higher rates than the control strain CE6-V under acetic acid stress. In the presence of 0.6% (V/V) acetic acid, the average ethanol production rates of 6-AF1 and 6-AF1c were 1.56 and 1.62 times of that of strain CE6-V, while the ethanol production rates of 6-AF1 and 6-AF1c were 1.21 and 1.78 times of that of strain CE6-V under 1.0% acetic acid stress. Results in this study indicate that acetic acid tolerance and fermentation performance of industrial S. cerevisiae under acetic acid stress can be improved largely by flocculation endowed by expression of flocculent genes, especially FLO1c.
Enhancement of activated sludge disintegration and dewaterability by Fenton process
NASA Astrophysics Data System (ADS)
Heng, G. C.; Isa, M. H.
2016-06-01
Municipal and industrial wastewater treatment plants produce large amounts of sludge. This excess sludge is an inevitable drawback inherent to the activated sludge process. In this study, the waste activated sludge was obtained from the campus wastewater treatment plant at Universiti Teknologi PETRONAS (UTP), Malaysia. Fenton pretreatment was optimized by using the response surface methodology (RSM) to study the effects of three operating conditions including the dosage of H2O2 (g H2O2/kg TS), the molar ratio of H2O2/Fe2+ and reaction time. The optimum operating variables to achieve MLVSS removal 65%, CST reduction 28%, sCOD 11000 mg/L and EPS 500 mg/L were: 1000 g H2O2/kg TS, H2O2/Fe2+ molar ratio 70 and reaction time 45 min. Fenton process was proved to be able to enhance the sludge disintegration and dewaterability.
Kavitha, S; Adish Kumar, S; Yogalakshmi, K N; Kaliappan, S; Rajesh Banu, J
2013-12-01
In this study, the effect of Ethylene diamine tetra acetic acid (EDTA) on Extracellular polymeric substance (EPS) removal tailed with bacterial enzymatic pretreatment on aerobic digestion of activated sludge was studied. In order to enhance the accessibility of sludge to the enzyme secreting bacteria; the extracellular polymeric substances were removed using EDTA. EDTA efficiently removed the EPS with limited cell lysis and enhanced the sludge enzyme activity at its lower concentration of 0.2 g/g SS. The sludge was then subjected to bacterial pretreatment to enhance the aerobic digestion. In aerobic digestion the best results in terms of Suspended solids (SS) reduction (48.5%) and COD (Chemical oxygen demand) solubilization (47.3%) was obtained in experimental reactor than in control. These results imply that aerobic digestion can be enhanced efficiently through bacterial pretreatment of EPS removed sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.
SUMMARY REPORT: THE CAUSES AND CONTROL OF ACTIVATED SLUDGE BULKING AND FOAMING
This 92-page Technology Transfer Summary Report provides reference material on the causes and controls of sludge bulking and foaming in activated sludge treatment that can be readily understood, and it includes sufficient detail to help plant operators control their systems. The ...
Ge, Huoqing; Batstone, Damien; Keller, Jurg
2016-01-01
The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.
Complete solids retention activated sludge process.
Amanatidou, E; Samiotis, G; Trikoilidou, E; Pekridis, G; Tsikritzis, L
2016-01-01
In a slaughterhouse's full-scale extended aeration activated sludge wastewater treatment plant (WWTP), operating under complete solids retention time, the evolution of mixed liquor suspended solids (MLSS) and mixed liquor volatile suspended solids (MLVSS) concentration, food to micro-organisms ratio (F/M) and substrate utilization rate (SUR) were studied for over a year. Biomass growth phases in correlation to sludge biological and morphological characteristics were studied. Three distinguished growth phases were observed during the 425 days of monitoring. The imposed operational conditions led the process to extended biomass starvation conditions, minimum F/M, minimum SUR and predator species growth. MLSS and MLVSS reached a stabilization phase (plateau phase) where almost zero sludge accumulation was observed. The concept of degradation of the considered non-biodegradable particulate compounds in influent and in biomass (cell debris) was also studied. Comparison of evolution of observed sludge yields (Yobs) in the WWTP with Yobs predictions by activated sludge models verified the degradation concept for the considered non-biodegradable compounds. Control of the sedimentation process was achieved, by predicting the solids loading rate critical point using state point analysis and stirred/unstirred settling velocity tests and by applying a high return activated sludge rate. The nitrogen gas related sedimentation problems were taken into consideration.
Li, Juan; Xing, Xing; Li, Jiao; Shi, Mei; Lin, Aijun; Xu, Congbin; Zheng, Jianzhong; Li, Ronghua
2018-03-01
Sewage sludge produced from wastewater treatment is a pressing environmental issue. Mismanagement of the massive amount of sewage sludge would threat our valuble surface and shallow ground water resources. Use of activated carbon prepared from carbonization of these sludges for heavy metal removal can not only minimize and stabilize these hazardous materials but also realize resources reuse. In this study, thiol-functionalized activated carbon was synthesized from coal-blended sewage sludge, and its capacity was examined for removing Cu(II), Pb(II), Cd(II) and Ni(II) from water. Pyrolysis conditions to prepare activated carbons from the sludge and coal mixture were examined, and the synthesized material was found to achieve the highest BET surface area of 1094 m 2 /g under 500 °C and 30 min. Batch equilibrium tests indicated that the thiol-functionalized activated carbon had a maximum sorption capacity of 238.1, 96.2, 87.7 and 52.4 mg/g for Pb(II), Cd(II), Cu(II) and Ni(II) removal from water, respectively. Findings of this study suggest that thiol-functionalized activated carbon prepared from coal-blended sewage sludge would be a promising sorbent material for heavy metal removal from waters contaminated with Cu(II), Pb(II), Cd(II) and Ni(II). Copyright © 2017 Elsevier Ltd. All rights reserved.
Kumar Singh, Nitin; Singh, Jasdeep; Bhatia, Aakansha; Kazmi, A A
2016-01-01
In the present study, a pilot-scale reactor incorporating polyvinyl alcohol gel beads as biomass carrier and operating in biological activated sludge mode (a combination of moving bed biofilm reactor (MBBR) and activated sludge) was investigated for the treatment of actual municipal wastewater. The results, during a monitoring period of 4 months, showed effective removal of chemical oxygen demand (COD), biological oxygen demand (BOD) and NH3-N at optimum conditions with 91%, ∼92% and ∼90% removal efficiencies, respectively. Sludge volume index (SVI) values of activated sludge varied in the range of 25-72 mL/g, indicating appreciable settling characteristics. Furthermore, soluble COD and BOD in the effluent of the pilot plant were reduced to levels well below discharge limits of the Punjab Pollution Control Board, India. A culture dependent method was used to enrich and isolate abundant heterotrophic bacteria in activated sludge. In addition to this, 16S rRNA genes analysis was performed to identify diverse dominant bacterial species in suspended and attached biomass. Results revealed that Escherichia coli, Pseudomonas sp. and Nitrosomonas communis played a significant role in biomass carrier, while Acinetobactor sp. were dominant in activated sludge of the pilot plant. Identification of ciliated protozoa populations rendered six species of ciliates in the plant, among which Vorticella was the most dominant.
Modin, Oskar; Saheb Alam, Soroush; Persson, Frank; Wilén, Britt-Marie
2015-01-01
New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC) per g volatile suspend solids (VSS) for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215–230 nm were also rapidly removed. PMID:25768429
Liu, Hongyi; Yang, Xiaogang; Zhang, Yong; Zhu, Hangcheng; Yao, Juming
2014-08-01
This work presents a synthesis process and flocculation characteristics of an eco-friendly flocculant based on bamboo pulp cellulose (BPC) from Phyllostachys heterocycla. Ployacrylamide (PAM) was grafted onto the BPC by free-radical graft copolymerization in homogeneous aqueous solution. The optimal synthesis conditions of the bamboo pulp cellulose-graft-ployacrylamide flocculant (BPC-g-PAM) and its performance on wastewater treatments were investigated. A UV-based method was used to rapidly determine the degree of substitution (DS) of BPC. The results showed that, under the optimal synthesis conditions, the obtained BPC-g-PAM held a grafting ratio of 43.8% and DS of 1.31. Turbidity removal of the product reached 98.0% accompanying with the significant flocculation and sedimentation in target suspensions. The flocculation mechanism was explored by means of zeta potential method. For negatively charged contaminants, like kaolin clay particles, the BPC-g-PAM could remove the contaminants efficiently via bridging and charge neutralization in acidic or neutral environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Polyhydroxyalkanoate production potential of heterotrophic bacteria in activated sludge.
Inoue, Daisuke; Suzuki, Yuta; Uchida, Takahiro; Morohoshi, Jota; Sei, Kazunari
2016-01-01
This study was conducted to evaluate the polyhydroxyalkanoate (PHA) production potential of cultivable heterotrophic bacteria in activated sludge by genotypic and phenotypic characterizations. A total of 114 bacterial strains were isolated from four activated sludge samples taken from a lab-scale sequencing batch reactor and three wastewater treatment processes of two municipal wastewater treatment plants. PCR detection of the phaC genes encoding class I and II PHA synthase revealed that 15% of the total isolates possessed phaC genes, all of which had the closest similarities to known phaC genes of α- and β-Proteobacteria and Actinobacteria. PHA production experiments under aerobic and nitrogen-limited conditions showed that 68% of the total isolates were capable of producing PHA from at least one of the six substrates used (acetate, propionate, lactate, butyrate, glucose and glycerol). Genotypic and phenotypic characterizations revealed that 75% of the activated sludge bacteria had PHA production potential. Our results also indicated that short-chain fatty acids would be the preferable substrates for PHA production by activated sludge bacteria, and that there might be a variety of unidentified phaC genes in activated sludge. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Moretti, Paul; Choubert, Jean-Marc; Canler, Jean-Pierre; Buffière, Pierre; Pétrimaux, Olivier; Lessard, Paul
2018-02-01
The integrated fixed-film activated sludge (IFAS) process is being increasingly used to enhance nitrogen removal for former activated sludge systems. The aim of this work is to evaluate a numerical model of a new nitrifying/denitrifying IFAS configuration. It consists of two carrier-free reactors (anoxic and aerobic) and one IFAS reactor with a filling ratio of 43% of carriers, followed by a clarifier. Simulations were carried out with GPS-X involving the nitrification reaction combined with a 1D heterogeneous biofilm model, including attachment/detachment processes. An original iterative calibration protocol was created comprising four steps and nine actions. Experimental campaigns were carried out to collect data on the pilot in operation, specifically for modelling purpose. The model used was able to predict properly the variations of the activated sludge (bulk) and the biofilm masses, the nitrification rates of both the activated sludge and the biofilm, and the nitrogen concentration in the effluent for short (4-10 days) and long (300 days) simulation runs. A calibrated parameter set is proposed (biokinetics, detachment, diffusion) related to the activated sludge, the biofilm and the effluent variables to enhance the model prediction on hourly and daily data sets.
Anaerobic treatment of municipal wastewater using the UASB-technology.
Urban, I; Weichgrebe, D; Rosenwinkel, K-H
2007-01-01
The anaerobic treatment of municipal wastewater enables new applications for the reuse of wastewater. The effluent could be used for irrigation as the included nutrients are not affected by the treatment. Much more interesting now are renewable energies and the retrenchment of CO(2) emission. With the anaerobic treatment of municipal wastewater, not only can the CO(2) emission be reduced but "clean" energy supply can be gained by biogas. Most important for the sustainability of this process is the gathering of methane from the liquid effluent of the reactor, because the negative climate-relevant effect from the degassing methane is much higher than the positive effect from saving CO(2) emission. In this study, UASB reactors were used with a flocculent sludge blanket for the biodegradation of the carbon fraction in the wastewater with different temperatures and concentrations. It could be shown that the positive effect is much higher for municipal wastewater with high concentrations in hot climates.
Lu, Zai-Liang; Li, Jiu-Yu; Jiang, Jun; Xu, Ren-Kou
2012-10-01
Biochars were prepared from wastewater sludge from two wastewater treatment plants in Nanjing using a pyrolysis method at 300, 500 and 700 degrees C. The properties of the biochars were measured, and their amelioration effects on the acidity of a red soil and environmental risk of application of sludge biochars were examined to evaluate the possibility of agricultural application of wastewater sludge biochars in red soils. Results indicated that incorporation of both sludge and sludge biochar increased soil pH due to the alkalinity of sludge and sludge biochar, and the mineralization of organic N and nitrification of ammonium N from wastewater sludge induced soil pH fluctuated during incubation. The amelioration effects of biochars generated at 500 and 700 degrees C on the soil were significantly greater than that of sludge significantly. Sludge and sludge biochar contain ample base cations of Ca2+, Mg2+, K+ and Na+ and thus incorporation of sludge and sludge biochar increased the contents of soil exchangeable base cations and decreased soil exchangeable aluminum and H+. Contents of heavy metals in sludge biochars were greater than these in their feedstock sludge, while the contents of Cu, Pb, Ni and As in sludge biochars were lower than the standard values of heavy metals were wastewater sludge for agricultural use in acid soils in China except for Zn and Cd. The contents of available forms of heavy metals in the biochars generated from sludge from Chengdong wastewater treatment plant was lower than these in the corresponding sludge, suggesting that pyrolysis proceed decreased the activity of heavy metals in wastewater sludge. After 90-day incubation of the soil with sludge and sludge biochar, the differences in the contents of soil available heavy metals were not significant between the biochars and their feedstock sludge from Jiangxizhou wastewater treatment plant, and the contents in the treatments with biochars added was lower than these in the treatments with the corresponding sludge from Chengdong wastewater treatment plant for most of heavy metals. It can be concluded that the biochars from wastewater sludge could be used as soil amendments to adjust soil acidity. Application of sludge biochars did not increase activity and availability of heavy metals compared with direct incorporation of the sludge.
40 CFR 503.24 - Management practices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... event. (h) The leachate collection system for an active sewage sludge unit that has a liner and leachate... three years after the sewage sludge unit closes. (i) Leachate from an active sewage sludge unit that has a liner and leachate collection system shall be collected and shall be disposed in accordance with...
40 CFR 503.24 - Management practices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... event. (h) The leachate collection system for an active sewage sludge unit that has a liner and leachate... three years after the sewage sludge unit closes. (i) Leachate from an active sewage sludge unit that has a liner and leachate collection system shall be collected and shall be disposed in accordance with...
40 CFR 503.24 - Management practices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... event. (h) The leachate collection system for an active sewage sludge unit that has a liner and leachate... three years after the sewage sludge unit closes. (i) Leachate from an active sewage sludge unit that has a liner and leachate collection system shall be collected and shall be disposed in accordance with...
40 CFR 503.24 - Management practices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... event. (h) The leachate collection system for an active sewage sludge unit that has a liner and leachate... three years after the sewage sludge unit closes. (i) Leachate from an active sewage sludge unit that has a liner and leachate collection system shall be collected and shall be disposed in accordance with...
Microbial granulation for lactic acid production.
Kim, Dong-Hoon; Lee, Mo-Kwon; Hwang, Yuhoon; Im, Wan-Taek; Yun, Yeo-Myeong; Park, Chul; Kim, Mi-Sun
2016-01-01
This work investigated the formation of microbial granules to boost the productivity of lactic acid (LA). The flocculated form of LA-producing microbial consortium, dominated by Lactobacillus sp. (91.5% of total sequence), was initially obtained in a continuous stirred-tank reactor (CSTR), which was fed with 2% glucose and operated at a hydraulic retention time (HRT) of 12 h and pH 5.0 ± 0.1 under a thermophilic condition (50°C). The mixed liquor in the CSTR was then transferred to an up-flow anaerobic sludge blanket reactor (UASB). The fermentation performance and granulation process were monitored with a gradual decrease of HRT from 8.0 to 0.17 h, corresponding to an increase in the substrate loading from 60 to 2,880 g glucose L(-1) d(-1) . As the operation continued, the accumulation of biomass in the UASB was clearly observed, which changed from flocculent to granular form with decrease in HRT. Up to the HRT decrease to 0.5 h, the LA concentration was maintained at 19-20 g L(-1) with over 90% of substrate removal efficiency. However, further decrease of HRT resulted in a decrease of LA concentration with increase in residual glucose. Nevertheless, the volumetric LA productivity continuously increased, reaching 67 g L-fermenter (-1) h(-1) at HRT 0.17 h. The size of LA-producing granules and hydrophobicity gradually increased with decrease in HRT, reaching 6.0 mm and 60%, respectively. These biogranules were also found to have high settling velocities and low porosities, ranging 2.69-4.73 cm s(-1) and 0.39-0.92, respectively. © 2015 Wiley Periodicals, Inc.
Wang, Yili; Guo, Jinlong; Tang, Hongxiao
2002-01-01
Factors of pretreatment coagulation/flocculation units were studied using raw water of low temperature and low turbidity. Aluminum sulfate (AS) and selected polyaluminium chlorides (PACls) were all effective in the DAF process when used under favorable conditions of coagulant addition, coagulation, flocculation and flotation units. Compared with the AS coagulant, PACls, at lower dosage, could give the same effective performance even with shorter coagulation/flocculation time or lower recycle ratio during the treatment of cold water. This is attributed to the higher-charged polymeric Al species, and the lower hydrophilic and more compact flocculated flocs of PACl coagulant. Based on results of pilot experiments, the goal of FRD system can be achieved by combining a DAF heterocoagulation reactor with PACl coagulant (F), an efficient flocculation reactor (R), as well as an economical auto-dosing system (D).
Analysis of angle effect on particle flocculation in branch flow
NASA Astrophysics Data System (ADS)
Prasad, Karthik; Fink, Kathryn; Liepmann, Dorian
2014-11-01
Hollow point microneedle drug delivery systems are known to be highly susceptible to blockage, owing to their very small structures. This problem has been especially noted when delivering suspended particle solutions, such as vaccines. Attempts to reduce particle flocculation in such devices through surface treatments of the particles have been largely unsuccessful. Furthermore, the particle clog only forms at the mouths of the microneedle structures, leaving the downstream walls clear. This implies that the sudden change in length scales alter the hydrodynamic interactions, creating the conditions for particle flocculation. However, while it is known that particle flocculation occurs, the physics behind the event are obscure. We utilize micro-PIV to observe how the occurrence and formation of particle flocculation changes in relation to the angle encountered by particle laden flow into microfluidic branch structures. The results offer the ability to optimize particle flocculation in MEMS devices, increasing device efficacy and longevity.
Geng, Chunnu; Bergheaud, Valérie; Garnier, Patricia; Zhu, Yong-Guan; Haudin, Claire-Sophie
2018-03-01
Sludge recycled in agriculture may bring antibiotics into cropped soils. The nature, total amount, and availability of the antibiotics in soil partly depend on the sludge treatments. Our paper compares the fate of N-acetyl sulfamethoxazole (AC-SMX) residues between soils incubated with the same sludge but submitted to different processes before being added in soil. The fate of 14 C-AC-SMX residues was studied in mixtures of soil and sludges at different treatment levels: 1) activated and 2) centrifuged sludges, both enriched with 14 C-AC-SMX, and 3) limed and 4) heat-dried sludges obtained by treating the previously contaminated centrifuged sludge. The evolution of the extractability of 14 C residues (CaCl 2 , methanol) and their mineralization were followed during 119 days. More than 80% of the initial 14 C-activity was no longer extractable after 14 days, except in soil with limed sludge. Liming and drying the centrifuged sludge decreased the mineralized 14 C fraction from 5.7-6.4% to 1.2-1.8% and consequently, the corresponding soils contained more 14 C residues after 119 days. Although 14 C residues were more CaCl 2 -extractable in soil with limed sludge, they seemed to be poorly bioavailable for biodegradation. For all solid sludges, the mineralization rate of 14 C-AC-SMX residues was strongly correlated to that of sludge organic carbon, with a coefficient three times lower for the limed and dried sludges than for the centrifuged sludge after 14 days. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pamukoglu, M Yunus; Kargi, Fikret
2007-09-05
Copper(II) ion toxicity onto activated sludge organisms was eliminated by addition of powdered waste sludge (PWS) to the feed wastewater for removal of Cu(II) ions by biosorption before biological treatment. The synthetic feed wastewater containing 14 or 22 mgl(-1) Cu(II) was mixed with PWS in a mixing tank where Cu(II) ions were adsorbed onto PWS and the mixture was fed to a sedimentation tank to separate Cu(II) containing PWS from the feed wastewater. The activated sludge unit fed with the effluent of the sedimentation tank was operated at a hydraulic residence time (HRT) of 10h and sludge age (SRT) of 10 days. To investigate Cu(II), COD and toxicity removal performance of the activated sludge unit at different PWS loadings, the system was operated at different PWS loading rates (0.1-1 gPWSh(-1)) while the Cu(II) loading rate was constant throughout the operation. Percent copper, COD and toxicity removals increased with increasing PWS loading rate due to increased adsorption of Cu(II) onto PWS yielding low Cu(II) contents in the feed. Biomass concentration in the aeration tank increased and the sludge volume index (SVI) decreased with increasing PWS loading rate due to elimination of Cu(II) from the feed wastewater by PWS addition. PWS addition to the Cu(II) containing wastewater was proven to be effective for removal of Cu(II) by biosorption before biological treatment. Approximately, 1 gPWSh(-1) should be added for 28 mgCuh(-1) loading rate for complete removal of Cu(II) from the feed wastewater to obtain high COD removals in the activated sludge unit.
Ye, Fenxia; Liu, Xinwen; Li, Ying
2012-01-15
The activated sludge process of wastewater results in the generation of a considerable amount of excess activated sludge. In many wastewater treatment plants, the bottleneck of the sludge handling system is the dewatering operation. This paper investigated the effect of potassium ferrate pretreatment on the physicochemical properties of the excess activated sludge at various dosages of potassium ferrate. The particle size, extracellular polymeric substances (EPS) content and chemical components, and sludge disintegration degree were measured to explain the observed changes of physicochemical properties. It was expected that potassium ferrate could enhance the filterability and dewaterability of the sludge. However, the results showed that potassium ferrate had a negative effect on the filterability by measuring the capillary suction time (CST), but improved the settleability and dewaterability extent by determining the water content in the dewatered cake, although the flocs size reduced slightly. Loosely bound EPS (LB-EPS) content, polysaccharides (PS) and proteins (PN) contents in LB-EPS all increased with increasing the amount of potassium ferrate. However, Tightly bound EPS (TB-EPS) content, PS and PN contents in TB-EPS did not changed significantly at first, and decreased slightly under higher dosage of potassium ferrate. EPS, especially LB-EPS played more important role in the observed changes of the settleability and filterability than the sludge particle size. Copyright © 2011 Elsevier B.V. All rights reserved.
Fan, Jianhua; Zheng, Lvhong; Bai, Yunpeng; Saroussi, Shai; Grossman, Arthur R.
2017-01-01
Concentrating algal cells by flocculation as a prelude to centrifugation could significantly reduce the energy and cost of harvesting the algae. However, how variation in phenotypic traits such as cell surface features, cell size and motility alter the efficiency of metal cation and pH-induced flocculation is not well understood. Our results demonstrate that both wild-type and cell wall-deficient strains of the green unicellular alga Chlamydomonas reinhardtii efficiently flocculate (>90%) at an elevated pH of the medium (pH 11) upon the addition of divalent cations such as calcium and magnesium (>5 mM). The trivalent ferric cation (at 10 mM) proved to be essential for promoting flocculation under weak alkaline conditions (pH ∼8.5), with a maximum efficiency that exceeded 95 and 85% for wild-type CC1690 and the cell wall-deficient sta6 mutant, respectively. Near complete flocculation could be achieved using a combination of 5 mM calcium and a pH >11, while the medium recovered following cell removal could be re-cycled without affecting algal growth rates. Moreover, the absence of starch in the cell had little overall impact on flocculation efficiency. These findings contribute to our understanding of flocculation in different Chlamydomonas strains and have implications with respect to inexpensive methods for harvesting algae with different phenotypic traits. Additional research on the conditions (e.g., pH and metal ions) used for efficient flocculation of diverse algal groups with diverse characteristics, at both small and large scale, will help establish inexpensive procedures for harvesting cell biomass. PMID:29209355
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, Caroline; Lischeske, James J.; Sievers, David A.
2015-11-03
One viable treatment method for conversion of lignocellulosic biomass to biofuels begins with saccharification (thermochemical pretreatment and enzymatic hydrolysis), followed by fermentation or catalytic upgrading to fuels such as ethanol, butanol, or other hydrocarbons. The post-hydrolysis slurry is typically 4-8 percent insoluble solids, predominantly consisting of lignin. Suspended solids are known to inhibit fermentation as well as poison catalysts and obstruct flow in catalyst beds. Thus a solid-liquid separation following enzymatic hydrolysis would be highly favorable for process economics, however the material is not easily separated by filtration or gravimetric methods. Use of a polyacrylamide flocculant to bind the suspendedmore » particles in a corn stover hydrolyzate slurry into larger flocs (1-2mm diameter) has been found to be extremely helpful in improving separation. Recent and ongoing research on novel pretreatment methods yields hydrolyzate material with diverse characteristics. Therefore, we need a thorough understanding of rapid and successful flocculation design in order to quickly achieve process design goals. In this study potential indicators of flocculation performance were investigated in order to develop a rapid analysis method for flocculation procedure in the context of a novel hydrolyzate material. Flocculation conditions were optimized on flocculant type and loading, pH, and mixing time. Filtration flux of the hydrolyzate slurry was improved 170-fold using a cationic polyacrylamide flocculant with a dosing of approximately 22 mg flocculant/g insoluble solids at an approximate pH of 3. With cake washing, sugar recovery exceeded 90 percent with asymptotic yield at 15 L wash water/kg insoluble solids.« less
Wu, Hu; Liu, Zhouzhou; Li, Aimin; Yang, Hu
2017-05-01
China is a major textile manufacturer in the world; as a result, large quantities of dyeing effluents are generated every year in the country. In this study, the performances of two cationic starch-based flocculants with different chain architectures, i.e., starch-graft-poly[(2-methacryloyloxyethyl) trimethyl ammonium chloride] (STC-g-PDMC) and starch-3-chloro-2-hydroxypropyl trimethyl ammonium chloride (STC-CTA), in flocculating dissolved organic matter (DOM) in dyeing secondary effluents were investigated and compared with that of polyaluminum chloride (PAC). In the exploration of the flocculation mechanisms, humic acid (HA) and bovine serum albumin (BSA) were selected as main representatives of DOM in textile dyeing secondary effluents, which were humic/fulvic acid-like and protein-like extracellular matters according to the studied wastewater's characteristics based on its three-dimensional excitation-emission matrix spectrum. According to experimental results of the flocculation of both the real and synthetic wastewaters, STC-g-PDMC with cationic branches had remarkable advantages over STC-CTA and PAC because of the more efficient charge neutralization and bridging flocculation effects of STC-g-PDMC. Another interesting finding in this study was the reaggregation phenomenon after restabilization at an overdose during the flocculation of BSA effluents by STC-g-PDMC at a very narrow pH range under a nearly neutral condition. This phenomenon might be ascribed to the formation of STC-g-PDMC/BSA complexes induced by some local charge interactions between starch-based flocculant and the amino acid fragments of protein due to charge patch effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhou, Xu; Jin, Wenbiao; Chen, Hongyi; Chen, Chuan; Han, Songfang; Tu, Renjie; Wei, Wei; Gao, Shu-Hong; Xie, Guo-Jun; Wang, Qilin
2017-11-01
The enhancement of sludge dewaterability is of great importance for facilitating the sludge disposal during the operation of wastewater treatment plants. In this study, a novel oxidative conditioning approach was applied to enhance the dewaterability of waste activated sludge by the combination of zero-valent iron (ZVI) and peroxymonosulfate (PMS). It was found that the dewaterability of sludge was significantly improved after the addition of ZVI (0-4 g/g TSS) (TSS: total suspended solids) and PMS (0-1 g/g TSS). The optimal addition amount of ZVI and PMS was 0.25 g/g TSS and 0.1 g/g TSS, respectively, under which the capillary suction time of the sludge was reduced by approximately 50%. The decomposition of sludge flocs could contribute to the improved sludge dewaterability. Economic analysis demonstrated that the proposed conditioning process with ZVI and PMS was more economical than the ZVI + peroxydisulfate and the traditional Fenton conditioning processes.
Defontaine, G; Thormann, J; Lartiges, B S; El Samrani, A G; Barrs, O
2005-01-01
The role of mineral surface hydrophobicity in attachment to activated sludge flocs was investigated. Fluorite and quartz particles of similar granulometry were hydrophobized by adsorbing sodium oleate and dodecylamine chloride, respectively. Mineral hydrophobicity was assessed by flotation expriments. The attachment of particles to microbial flocs was determined by optical microscopy. The results indicate that hydrophobized particles are always better incorporated within activated sludge flocs than non-coated particles. A comparison with Aquatal particles used as sludge ballast reveals that hydrophobized minerals are associated with microbial flocs to the same extent.
Zheng, Bei; Ge, Xiao-peng; Yu, Zhi-yong; Yuan, Sheng-guang; Zhang, Wen-jing; Sun, Jing-fang
2012-08-01
Atomic force microscope (AFM) fluid imaging was applied to the study of micro-flocculation filtration process and the optimization of micro-flocculation time and the agitation intensity of G values. It can be concluded that AFM fluid imaging proves to be a promising tool in the observation and characterization of floc morphology and the dynamic coagulation processes under aqueous environmental conditions. Through the use of AFM fluid imaging technique, optimized conditions for micro-flocculation time of 2 min and the agitation intensity (G value) of 100 s(-1) were obtained in the treatment of dye-printing industrial tailing wastewater by the micro-flocculation filtration process with a good performance.
Utilization and Conversion of Sewage Sludge as Metal Sorbent
NASA Astrophysics Data System (ADS)
Gong, Xu Dong; Li, Loretta Y.
2013-04-01
Most biosolids are disposed on land. With improvements in wastewater treatment processes and upgrading of treatment plants across Canada, biosolids generation will increase dramatically. These biosolids will need to be dealt with because they contain various contaminants, including heavy metals and several classes of emerging contaminants. A number of researchers have recently focused on preparation of sewage sludge-based adsorbents by carbonation, physical activation and chemical activation for decontamination of air and wastewater. These previous studies have indicated that sludge-based activated carbon can have good adsorption performance for organic substances in dye wastewater. The overall results suggest that activated carbon from sewage sludge can produce a useful adsorbent, while also reducing the amount of sewage sludge to be disposed. However, sludge-derived activated carbon has not been extensively studied, especially for adsorption of heavy metal ions in wastewater and for its capacity to remove emerging contaminants, such as poly-fluorinated compounds (PFCs). Previous research has indicated that commercial activated carbons adsorb organic compounds more efficiently than heavy metal ions. 45 Activated carbon can be modified to enhance its adsorption capacity for special heavy metal ions,46 e.g. by addition of inorganic and organic reagents. The modifications which are successful for commercial activated carbon should also be effective for sludge-derived activated carbon, but this needs to be confirmed. Our research focuses on (a) investigation of techniques for converting sewage sludge (SS) to activated carbon (AC) as sorbents; (b) exploration of possible modification of the activated carbon (MAC) to improve its sorption capacity; (c) examination of the chemical stability of the activated carbon and the leachability of contaminants from activated carbon,; (d) comparison of adsorptivity with that of other sorbents. Based on XRD and FT-IR, we successfully converted SS to AC and further modified it to improve absorption. SSMAC has large specific surface areas based on the BET technique. Batch adsorption results indicate that metal adsorption for SSMAC > SSAC, with adsorption occurring within the first 5 minutes of contact. Comparison of the adsorptivity of various sorbents such as commercial activated carbon (CAC), mineral sorbents such as perlite, clinoptilolite and illite indicates that SSMAC × CAC × clinoptilolite > kaolite.
Effect of DEXTRAN-graft-POLYACRYLAMIDE Internal Structure on Flocculation Process Parameters
NASA Astrophysics Data System (ADS)
Bezugla, T.; Kutsevol, N.; Shyichuk, A.; Ziolkowska, D.
2008-08-01
Dextran-graft-Polyacrylamide copolymers (D-g-PAA) of brush-like architecture were tested as flocculation aids in the model kaolin suspensions. Due to expanded conformation the D-g-PAA copolymers are more effective flocculants than individual PAA with close molecular mass. The internal structure of D-g-PAA copolymers which is determined by number and length of grafted PAA chains, the distance between grafts, etc., has the significant influence on flocculation behavior of such polymers.
Barañao, P A; Hall, E R
2004-01-01
Activated Sludge Model No 3 (ASM3) was chosen to model an activated sludge system treating effluents from a mechanical pulp and paper mill. The high COD concentration and the high content of readily biodegradable substrates of the wastewater make this model appropriate for this system. ASM3 was calibrated based on batch respirometric tests using fresh wastewater and sludge from the treatment plant, and on analytical measurements of COD, TSS and VSS. The model, developed for municipal wastewater, was found suitable for fitting a variety of respirometric batch tests, performed at different temperatures and food to microorganism ratios (F/M). Therefore, a set of calibrated parameters, as well as the wastewater COD fractions, was estimated for this industrial wastewater. The majority of the calibrated parameters were in the range of those found in the literature.
Seka, M A; Van DeWiele, T; Verstraete, W
2002-01-01
A multi-component additive formulated for a more efficient control of activated sludge filamentous bulking was evaluated at a full-scale treatment plant experiencing severe filamentous bulking. It was found that, besides offering an immediate improvement of sludge settling, the multi-component additive was able to eliminate the filamentous bacteria causing the bulking. Hence, contrary to ordinary additives, this novel additive yielded immediate as well as long-term improvements in sludge sedimentation upon a few additions. Preliminary lab-scale toxicity tests showed that the treatment of the sludge by the additive should not impart any toxicity to the resulting effluent.
Schuppler, M; Wagner, M; Schön, G; Göbel, U B
1998-01-01
Hitherto, few environmental samples have been investigated by a 'full cycle rRNA analysis'. Here the results of in situ hybridization experiments with specific rRNA-targeted oligonucleotide probes developed on the basis of new sequences derived from a previously described comparative 16S rRNA analysis of nocardioform actinomycetes in activated sludge are reported. Application of the specific probes enabled identification and discrimination of the distinct populations of nocardioform actinomycetes in activated sludge. One of the specific probes (DLP) detected rod-shaped bacteria which were found in 13 of the 16 investigated sludge samples from various wastewater treatment plants, suggesting their importance in the wastewater treatment process. Another probe (GLP2) hybridized with typically branched filaments of nocardioforms mainly found in samples from enhanced biological phosphorus removal plants, suggesting that these bacteria are involved in sludge foaming. The combination of in situ hybridization with fluorescently labelled rRNA-targeted oligonucleotide probes and confocal laser scanning microscopy improved the detection of nocardioform actinomycetes, which often showed only weak signals inside the activated-sludge flocs.
Use of hydrodynamic disintegration to accelerate anaerobic digestion of surplus activated sludge.
Grübel, Klaudiusz; Machnicka, Alicja
2009-12-01
Hydrodynamic disintegration of activated sludge resulted in organic matter and polymers transfer from the solid phase into the liquid phase. Disintegration by hydrodynamic cavitation had a positive effect on the degree and rate of excess sludge anaerobic digestion. Also, addition of a part of anaerobic digested sludge containing adapted microorganisms resulted in acceleration of the process. The disruption of cells of foam microorganisms and addition to the digestion process led to an increase of biogas production.
[Harvest of the carbon source in wastewater by the adsorption and desorption of activated sludge].
Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang; Mei, Yi-Jun
2011-04-01
The carbon source in municipal wastewater was adsorbed by activated sludge and then harvested through the hydrolysis of activated sludge. Results indicated that activated sludge had high absorbing ability towards organic carbon and phosphorus under continuous operation mode, and the average COD and TP absorption rate reached as high as 63% and 76%, respectively. Moreover, about 50% of the soluble carbon source was outside of the sludge cell and could be released under mild hydrolysis condition. Whereas the absorbed amount of nitrogen was relatively low, and the removal rate of ammonia was only 13% . Furthermore, the releases of organic carbon, nitrogen and phosphorus from the sludge absorbing pollutants in the wastewater were studied. By comparing different hydrolysis conditions of normal (pH 7.5, 20 degrees C), heating (pH 7.5, 60 degrees C) and the alkaline heating (pH 11, 60 degrees C), the last one presented the optimum hydrolysis efficiency. Under which, the release rate of COD could reach 320 mg/g after 24 hours, whereas nitrogen and phosphorus just obtained low release rates of 18 mg/g and 2 mg/g, respectively. Results indicate that the carbon source in wastewater could be harvested by the adsorption and desorption of activated sludge, and the concentrations of nitrogen and phosphorus are low and would not influence the reuse of the harvested carbon source.
Lu, Qiuyi; Yan, Bin; Xie, Lei; Huang, Jun; Liu, Yang; Zeng, Hongbo
2016-09-15
Water management and treatment of mineral tailings and oil sands tailings are becoming critical challenges for the sustainable development of natural resources. Polymeric flocculants have been widely employed to facilitate the flocculation and settling of suspended fine solid particles in tailings, resulting in the separation of released water and solid sediments. In this study, a new flocculation process was developed for the treatment of oil sands tailings by using two oppositely charged polymers, i.e. an anionic polyacrylamide and a natural cationic biopolymer, chitosan. The new process was able to not only improve the clarity of supernatant after settling but also achieve a high settling efficiency. Treatment of the oil sands tailings using pure anionic polyacrylamide showed relatively high initial settling rate (ISR) of ~10.3m/h but with poor supernatant clarity (>1000NTU); while the treatment using pure cationic polymer resulted in clear supernatant (turbidity as low as 22NTU) but relatively low ISR of >2m/h. In the new flocculation process, the addition of anionic polyacrylamide to the tailings was followed by a cationic polymer, which showed both a high ISR (~7.7m/h) and a low turbidity (71NTU) of the supernatant. The flocculation mechanism was further investigated via the measurements of floc size, zeta potential and surface forces. The new flocculation process was revealed to include two steps: (1) bridging of fine solids by anionic polyacrylamide, and (2) further aggregation and flocculation mediated by charge neutralisation of the cationic polymer, which significantly eliminated the fine solids in the supernatants as well as increases floc size. Our results provide insights into the basic understanding of the interactions between polymer flocculants and solid particles in tailings treatment, as well as the development of novel tailings treatment technologies. Copyright © 2016 Elsevier B.V. All rights reserved.
Gulde, Rebekka; Anliker, Sabine; Kohler, Hans-Peter E; Fenner, Kathrin
2018-01-02
To optimize removal of organic micropollutants from the water cycle, understanding the processes during activated sludge treatment is essential. In this study, we hypothesize that aliphatic amines, which are highly abundant among organic micropollutants, are partly removed from the water phase in activated sludge through ion trapping in protozoa. In ion trapping, which has been extensively investigated in medical research, the neutral species of amine-containing compounds diffuse through the cell membrane and further into acidic vesicles present in eukaryotic cells such as protozoa. There they become trapped because diffusion of the positively charged species formed in the acidic vesicles is strongly hindered. We tested our hypothesis with two experiments. First, we studied the distribution of the fluorescent amine acridine orange in activated sludge by confocal fluorescence imaging. We observed intense fluorescence in distinct compartments of the protozoa, but not in the bacterial biomass. Second, we investigated the distribution of 12 amine-containing and eight control micropollutants in both regular activated sludge and sludge where the protozoa had been inactivated. In contrast to most control compounds, the amine-containing micropollutants displayed a distinctly different behavior in the noninhibited sludge compared to the inhibited one: (i) more removal from the liquid phase; (ii) deviation from first-order kinetics for the removal from the liquid phase; and (iii) higher amounts in the solid phase. These results provide strong evidence that ion trapping in protozoa occurs and that it is an important removal mechanism for amine-containing micropollutants in batch experiments with activated sludge that has so far gone unnoticed. We expect that our findings will trigger further investigations on the importance of this process in full-scale wastewater treatment systems, including its relevance for accumulation of ammonium.
Characterization of specialized flocculent yeasts to improve sparkling wine fermentation.
Tofalo, R; Perpetuini, G; Di Gianvito, P; Arfelli, G; Schirone, M; Corsetti, A; Suzzi, G
2016-06-01
Flocculent wine yeasts were characterized for the expression of FLO1, FLO5, FLO8, AMN1 and RGA1 genes, growth kinetics and physicochemical properties of the cell surface during a 6-month sparkling wine fermentation period. The expression of FLO1, FLO5, FLO8, AMN1 and RGA1 genes was determined by RT-qPCR. The physicochemical characterization of yeast surface properties was evaluated by the microbial adhesion to solvents method. FLO5 gene was the most expressed one and a linear correlation with the flocculent degree was found. Flocculent strains were more hydrophobic than the commercial wine strain EC1118. Gene expressions and the ability to face secondary wine fermentation conditions were strain dependent. The importance of FLO5 gene in developing the high flocculent characteristic of wine yeasts was highlighted. Cell surface properties depended on the time of fermentation. Better knowledge about the expression of some genes encoding the flocculent phenotype which could be useful to select suitable starter cultures to improve sparkling wine technology was achieved. A step forward in understanding the complexity and strain-specific nature of flocculation phenotype was done. © 2016 The Society for Applied Microbiology.
Buyel, Johannes F; Fischer, Rainer
2015-02-10
The use of synthetic polymers as flocculants can increase filter capacity and thus reduce the costs of downstream processing during the production of plant-derived biopharmaceutical proteins, but this may also attract regulatory scrutiny due to the potential toxicity of such compounds. Therefore, we investigated the efficacy of three non-toxic natural flocculants (chitosan, kaolin and polyphosphate) alone and in combination with each other or with a synthetic polymer (Polymin P) during the clarification of tobacco leaf extracts. We used a design-of-experiments approach to determine the impact of each combination on filter capacity. We found that Polymin P was most effective when used on its own but the natural flocculants were more effective when used in combination. The combination of chitosan and polyphosphate was the most effective natural flocculant, and this was identified as a potential replacement for Polymin P under neutral and acidic extraction conditions independent of the conductivity, even though the efficiency of flocculation was lower than for Polymin P. None of the tested flocculants reduced the concentration of total soluble protein in the feed stream or the recovery of the model fluorescent protein DsRed. Copyright © 2014 Elsevier B.V. All rights reserved.
Jobbágy, A; Tardy, G M; Literáthy, B
2004-01-01
In 1999 the existing activated sludge unit of the Southpest Wastewater Treatment Plant was supplemented by a two-stage biofilter system aiming for nitrification and post-denitrification. In this arrangement excess biomass of the filters is wasted through the activated sludge unit, facilitating backseeding, and recirculation of the nitrate-rich effluent of the N-filter serves for decreasing the methanol demand of the DN-filter and for saving aeration energy at the same time. The paper reports on the development of an ASM1-based mathematical model that proved to be adequate for describing the interactions in the combined system and was used to compare the efficiency of different treatment options. Full-scale results verified that backseeding may considerably improve performance. However, nitrification ability of the activated sludge unit depends on the treatment temperature and, if unexpected, can be limited by insufficient oxygen supply. The upgrading possibilities outlined may serve as a new perspective for implementation of combined activated sludge-biofilter systems.
Zhang, Yaobin; Feng, Yinghong; Quan, Xie
2015-04-01
Heat or alkali pretreatment is the effective method to improve hydrolysis of waste sludge and then enhance anaerobic sludge digestion. However the pretreatment may inactivate the methanogens in the sludge. In the present work, zero-valent iron (ZVI) was used to enhance the methanogenic activity in anaerobic sludge digester under two methanogens-suppressing conditions, i.e. heat-pretreatment and alkali condition respectively. With the addition of ZVI, the lag time of methane production was shortened, and the methane yield increased by 91.5% compared to the control group. The consumption of VFA was accelerated by ZVI, especially for acetate, indicating that the acetoclastic methanogenesis was enhanced. In the alkali-condition experiment, the hydrogen produced decreased from 27.6 to 18.8 mL when increasing the ZVI dosage from 0 to 10 g/L. Correspondingly, the methane yield increased from 1.9 to 32.2 mL, which meant that the H2-utilizing methanogenes was enriched. These results suggested that the addition of ZVI into anaerobic digestion of sludge after pretreated by the heat or alkali process could efficiently recover the methanogenic activity and increase the methane production and sludge reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.
40 CFR 503.20 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... who prepares sewage sludge that is placed on a surface disposal site, to the owner/operator of a surface disposal site, to sewage sludge placed on a surface disposal site, and to a surface disposal site... sludge remains is not an active sewage sludge unit. The demonstration shall include the following...
40 CFR 503.20 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... who prepares sewage sludge that is placed on a surface disposal site, to the owner/operator of a surface disposal site, to sewage sludge placed on a surface disposal site, and to a surface disposal site... sludge remains is not an active sewage sludge unit. The demonstration shall include the following...
40 CFR 503.20 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... who prepares sewage sludge that is placed on a surface disposal site, to the owner/operator of a surface disposal site, to sewage sludge placed on a surface disposal site, and to a surface disposal site... sludge remains is not an active sewage sludge unit. The demonstration shall include the following...
40 CFR 503.20 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... who prepares sewage sludge that is placed on a surface disposal site, to the owner/operator of a surface disposal site, to sewage sludge placed on a surface disposal site, and to a surface disposal site... sludge remains is not an active sewage sludge unit. The demonstration shall include the following...
EFFECT OF RECYCLING THERMOPHILICALLY DIGESTED SLUDGE ON THE ACTIVATED SLUDGE PROCESS
A full-scale investigation was undertaken at Chicago's Hanover Park Water Reclamation Plant (WRP) to study whether the net sludge production from the WRP could be reduced by implementing a scheme developed by W. Torpey et al. (1984). n this process, sludge is withdrawn from a the...
Moreno, Patricio A; Reed, Gregory D
2007-05-01
The difference in performance of three differently designed circular secondary clarifiers in the same wastewater treatment plant was analyzed in this paper. Data obtained using flocculated suspended solids and disperse suspended solids tests were analyzed using statistical tools. The conventional clarifier showed more variability in the average effluent suspended solids concentration when compared with the flocculator-clarifiers. Furthermore, a difference in performance among the two different flocculator-clarifiers was found.
A pilot-scale microwave technology for sludge sanitization and drying.
Mawioo, Peter M; Garcia, Hector A; Hooijmans, Christine M; Velkushanova, Konstantina; Simonič, Marjana; Mijatović, Ivan; Brdjanovic, Damir
2017-12-01
Large volumes of sludge are produced from onsite sanitation systems in densely populated areas (e.g. slums and emergency settlements) and wastewater treatment facilities that contain high amounts of pathogens. There is a need for technological options which can effectively treat the rapidly accumulating sludge under these conditions. This study explored a pilot-scale microwave (MW) based reactor as a possible alternative for rapid sludge treatment. The reactor performance was examined by conducting a series of batch tests using centrifuged waste activated sludge (C-WAS), non-centrifuged waste activated sludge (WAS), faecal sludge (FS), and septic tank sludge (SS). Four kilograms of each sludge type were subjected to MW treatment at a power of 3.4kW for various time durations ranging from 30 to 240min. During the treatment the temperature change, bacteria inactivation (E. coli, coliforms, Staphylococcus aureus, and enterococcus faecalis) and sludge weight/volume reduction were measured. Calorific values (CV) of the dried sludge and the nutrient content (total nitrogen (TN) and total phosphorus (TP)) in both the dried sludge and the condensate were also determined. It was found that MW treatment was successful to achieve a complete bacterial inactivation and a sludge weight/volume reduction above 60%. Besides, the dried sludge and condensate had high energy (≥16MJ/kg) and nutrient contents (solids; TN≥28mg/g TS and TP≥15mg/g TS; condensate TN≥49mg/L TS and TP≥0.2mg/L), having the potential to be used as biofuel, soil conditioner, fertilizer, etc. The MW reactor can be applied for the rapid treatment of sludge in areas such as slums and emergency settlements. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Feng, Yinghong; Zhang, Yaobin; Quan, Xie; Chen, Suo
2014-04-01
Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidification process. Considering that, ZVI was added into an anaerobic sludge digestion system to accelerate the sludge digestion in this study. The results indicated that ZVI effectively enhanced the decomposition of protein and cellulose, the two main components of the sludge. Compared to the control test without ZVI, the degradation of protein increased 21.9% and the volatile fatty acids production increased 37.3% with adding ZVI. More acetate and less propionate are found during the hydrolysis-acidification with ZVI. The activities of several key enzymes in the hydrolysis and acidification increased 0.6-1 time. ZVI made the methane production raise 43.5% and sludge reduction ratio increase 12.2 percent points. Fluorescence in situ hybridization analysis showed that the abundances of hydrogen-consuming microorganisms including homoacetogens and hydrogenotrophic methanogens with ZVI were higher than the control, which reduced the H2 accumulation to create a beneficial condition for the sludge digestion in thermodynamics. Copyright © 2013 Elsevier Ltd. All rights reserved.
Stabilization of waste-activated sludge through the anoxic-aerobic digestion process.
Hashimoto, S; Fujita, M; Terai, K
1982-08-01
During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludge continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q(r)/Q(s) ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q(r)/Q(s) ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.
MiDAS: the field guide to the microbes of activated sludge.
McIlroy, Simon Jon; Saunders, Aaron Marc; Albertsen, Mads; Nierychlo, Marta; McIlroy, Bianca; Hansen, Aviaja Anna; Karst, Søren Michael; Nielsen, Jeppe Lund; Nielsen, Per Halkjær
2015-01-01
The Microbial Database for Activated Sludge (MiDAS) field guide is a freely available online resource linking the identity of abundant and process critical microorganisms in activated sludge wastewater treatment systems to available data related to their functional importance. Phenotypic properties of some of these genera are described, but most are known only from sequence data. The MiDAS taxonomy is a manual curation of the SILVA taxonomy that proposes a name for all genus-level taxa observed to be abundant by large-scale 16 S rRNA gene amplicon sequencing of full-scale activated sludge communities. The taxonomy can be used to classify unknown sequences, and the online MiDAS field guide links the identity to the available information about their morphology, diversity, physiology and distribution. The use of a common taxonomy across the field will provide a solid foundation for the study of microbial ecology of the activated sludge process and related treatment processes. The online MiDAS field guide is a collaborative workspace intended to facilitate a better understanding of the ecology of activated sludge and related treatment processes--knowledge that will be an invaluable resource for the optimal design and operation of these systems. © The Author(s) 2015. Published by Oxford University Press.
Yu, Jie; Liu, Dongfang; Li, Kexun
2015-03-01
The concentrations of tetracycline-intermediate resistant, tetracycline-resistant heterotrophic bacteria, and total heterotrophic bacteria were examined to assess the influence of tetracycline on tetracycline-resistant heterotrophs by the R2A agar cultivation method in the tetracycline fortified activated sludge process and in the natural background. Results showed that the percentages of both tetracycline-intermediate resistant and tetracycline-resistant heterotrophic bacteria in total heterotrophic bacteria were significantly increased, after tetracycline was fed to activated sludge for a 3 months period under four different operating conditions, as compared with the background. In order to investigate the mechanism of activated sludge resistance to tetracycline, polymerase chain reaction experiments were carried out to analyze the existence and evolution of tet genes in the presence of tetracycline. Results revealed that only tet A and tet B genes out of the 11 target tet genes were observed in tetracycline treated activated sludge while no tet gene was detected in background. This indicated that tet A gene could accumulate in activated sludge with slower and continuous influent, while the accumulation of tet B gene could be attributed to shorter hydraulic retention time. Therefore, it was proposed in this study that tetracycline-resistant genes created by efflux pumps spread earlier and quicker to encode resistance to tetracycline, which facilitated the increase in tetracycline-resistance.
MiDAS: the field guide to the microbes of activated sludge
McIlroy, Simon Jon; Saunders, Aaron Marc; Albertsen, Mads; Nierychlo, Marta; McIlroy, Bianca; Hansen, Aviaja Anna; Karst, Søren Michael; Nielsen, Jeppe Lund; Nielsen, Per Halkjær
2015-01-01
The Microbial Database for Activated Sludge (MiDAS) field guide is a freely available online resource linking the identity of abundant and process critical microorganisms in activated sludge wastewater treatment systems to available data related to their functional importance. Phenotypic properties of some of these genera are described, but most are known only from sequence data. The MiDAS taxonomy is a manual curation of the SILVA taxonomy that proposes a name for all genus-level taxa observed to be abundant by large-scale 16 S rRNA gene amplicon sequencing of full-scale activated sludge communities. The taxonomy can be used to classify unknown sequences, and the online MiDAS field guide links the identity to the available information about their morphology, diversity, physiology and distribution. The use of a common taxonomy across the field will provide a solid foundation for the study of microbial ecology of the activated sludge process and related treatment processes. The online MiDAS field guide is a collaborative workspace intended to facilitate a better understanding of the ecology of activated sludge and related treatment processes—knowledge that will be an invaluable resource for the optimal design and operation of these systems. Database URL: http://www.midasfieldguide.org PMID:26120139
Khunawattanakul, Wanwisa; Puttipipatkhachorn, Satit; Rades, Thomas; Pongjanyakul, Thaned
2008-03-03
Composite dispersions of chitosan (CS), a positively charged polymer, and magnesium aluminum silicate (MAS), a negatively charged clay, were prepared and rheology, flocculate size and zeta potential of the CS-MAS dispersions were investigated. High and low molecular weights of CS (HCS and LCS, respectively) were used in this study. Moreover, the effects of heat treatment at 60 degrees C on the characteristics of the CS-MAS dispersions and the zeta potential of MAS upon addition of CS at different pHs were examined. Incorporation of MAS into CS dispersions caused an increase in viscosity and a shift of CS flow type from Newtonian to pseudoplastic flow with thixotropic properties. Heat treatment brought about a significant decrease in viscosity and hysteresis area of the composite dispersions. Microscopic studies showed that flocculation of MAS occurred after mixing with CS. The size and polydispersity index of the HCS-MAS flocculate were greater than those of the LCS-MAS flocculate. However, a narrower size distribution and the smaller size of the HCS-MAS flocculate were found after heating at 60 degrees C. Zeta potentials of the CS-MAS flocculates were positive and slightly increased with increasing MAS content. In the zeta potential studies, the negative charge of the MAS could be neutralized by the addition of CS. Increasing the pH and molecular weight of CS resulted in higher CS concentrations required to neutralize the charge of MAS. These findings suggest that the electrostatic interaction between CS and MAS caused a change in flow behavior and flocculation of the composite dispersions, depending on the molecular weight of CS. Heat treatment affected the rheological properties and the flocculate size of the composite dispersions. Moreover, pH of medium and molecular weight of CS influence the zeta potential of MAS.
A simple shear limited, single size, time dependent flocculation model
NASA Astrophysics Data System (ADS)
Kuprenas, R.; Tran, D. A.; Strom, K.
2017-12-01
This research focuses on the modeling of flocculation of cohesive sediment due to turbulent shear, specifically, investigating the dependency of flocculation on the concentration of cohesive sediment. Flocculation is important in larger sediment transport models as cohesive particles can create aggregates which are orders of magnitude larger than their unflocculated state. As the settling velocity of each particle is determined by the sediment size, density, and shape, accounting for this aggregation is important in determining where the sediment is deposited. This study provides a new formulation for flocculation of cohesive sediment by modifying the Winterwerp (1998) flocculation model (W98) so that it limits floc size to that of the Kolmogorov micro length scale. The W98 model is a simple approach that calculates the average floc size as a function of time. Because of its simplicity, the W98 model is ideal for implementing into larger sediment transport models; however, the model tends to over predict the dependency of the floc size on concentration. It was found that the modification of the coefficients within the original model did not allow for the model to capture the dependency on concentration. Therefore, a new term within the breakup kernel of the W98 formulation was added. The new formulation results is a single size, shear limited, and time dependent flocculation model that is able to effectively capture the dependency of the equilibrium size of flocs on both suspended sediment concentration and the time to equilibrium. The overall behavior of the new model is explored and showed align well with other studies on flocculation. Winterwerp, J. C. (1998). A simple model for turbulence induced flocculation of cohesive sediment. .Journal of Hydraulic Research, 36(3):309-326.
Effect of EPS Content on Activated Sludge Reduction in Process of Predation by T. tubifex
NASA Astrophysics Data System (ADS)
Lei, Yingjie; Ai, Cuiling; Zhang, Guochun
2017-12-01
A Sludge reduction in a conventional activated sludge process combined with a membrane biofilm inoculated with T. tubifex was investigated. The influence of microbial extracellular polymeric substances (EPS) extracted in forms of LB-EPS and TB-EPS respectively on the surface properties of biomass was studied. Results showed that variations of polysaccharides and protein along with the increasing of EPS feeding would affect the existence of T. tubifex. When the amount of EPS varied from 10 to 50μg/mg, the specific resistance of a sludge suspension was obtained from 3.5×107 to 1.4×107 S2/g. Meanwhile, polysaccharides content in EPS was to be positively correlated with the SSR of sludge suspension whereas protein content would be not. Anyway, it can be argued that an increase in LB-EPS not TB-EPS may affect the performance of activated sludge reduction with efficiency about 40.1% to 31.6%.
Reduction of selenite to elemental selenium nanoparticles by activated sludge.
Jain, Rohan; Matassa, Silvio; Singh, Satyendra; van Hullebusch, Eric D; Esposito, Giovanni; Lens, Piet N L
2016-01-01
Total selenium removal by the activated sludge process, where selenite is reduced to colloidal elemental selenium nanoparticles (BioSeNPs) that remain entrapped in the activated sludge flocs, was studied. Total selenium removal efficiencies with glucose as electron donor (2.0 g chemical oxygen demand (COD) L(-1)) at neutral pH and 30 °C gave 2.9 and 6.8 times higher removal efficiencies as compared to the electron donors lactate and acetate, respectively. Total selenium removal efficiencies of 79 (±3) and 86 (±1) % were achieved in shake flasks and fed batch reactors, respectively, at dissolved oxygen (DO) concentrations above 4.0 mg L(-1) and 30 °C when fed with 172 mg L(-1) (1 mM) Na2SeO3 and 2.0 g L(-1) COD of glucose. Continuously operated reactors operating at neutral pH, 30 °C and a DO >3 mg L(-1) removed 33.98 and 36.65 mg of total selenium per gram of total suspended solids (TSS) at TSS concentrations of 1.3 and 3.0 g L(-1), respectively. However, selenite toxicity to the activated sludge led to failure of a continuously operating activated sludge reactor at the applied loading rates. This suggests that a higher hydraulic retention time (HRT) or different reactor configurations need to be applied for selenium-removing activated sludge processes. Graphical Abstract Scheme representing the possible mechanisms of selenite reduction at high and low DO levels in the activated sludge process.
Silva, P G; Silva, H J
2007-02-01
The influence of mineral nutrients on the growth and self-flocculation of Tolypothrix tenuis was studied. The identification of possible limiting nutrients in the culture medium was performed by the biomass elemental composition approach. A factorial experimental design was used in order to estimate the contribution of macronutrients and micronutrients, as well as their interactions. Iron was identified to be limiting in the culture medium. The micronutrients influenced mainly cellular growth without effects on self-flocculation. Conversely, the self-flocculation capacity of the biomass increased at higher concentrations of macronutrients. The optimization of mineral nutrition of T. tenuis allowed a 73% increase in the final biomass level and 3.5 times higher flocculation rates.
Recuperation de la matiere organique biodegradable presente dans l'effluent d'un MBBR a forte charge
NASA Astrophysics Data System (ADS)
Brosseau, Catherine
High-rate processes are receiving great interest due to their potential to favor the energy balance of water resource recovery facilities (WRRFs) either for their design or retrofit. Anaerobic digestion is a process that allows the valorization of organic biodegradable matter contained in sludge into biogas. This process also produces a stabilized sludge named digestate or biosolids that can be reused for agriculture purposes. This project proposed a secondary treatment train composed of a high-rate moving bed biofilm reactor (HR-MBBR) to biotransform colloidal and soluble biodegradable organics into particulate matter followed by an enhanced and compact physico-chemical separation process to recover mainly particulate organics and a part of the colloidal matter. A high-rate biological process operated at a low hydraulic retention time aimed at transforming colloidal and soluble fractions of organic matter into a particulate fraction for recovery by downstream separation process. The HR-MBBR effluent solids are known for their poor settleability, therefore requiring an efficient separation process downstream to ensure their recovery and to meet the effluent discharge regulations. The global objective of this project was to maximize the recovery of organic biodegradable matter for valorization into biogas by anaerobic digestion with an innovative treatment train combining an HR-MBBR and a separation process. The specific objectives of this report were 1) to characterize the HR-MBBR effluent solids and 2) to determine the efficiency of several physico-chemical separation processes combined with unbiodegradable or natural based coagulants and polymers. Effluents of lab-scale HR-MBBR fed with a synthetic soluble or domestic wastewater influent and the effluent of a full-scale HR-MBBR were used to evaluate the efficiency of separation processes adapted at bench-scale in jar-tests experiments. The processes studied were conventionnal settling, ballasted flocculation, dissolved air flotation and an innovative enhanced flotation process. Unlike conventional settling and dissolved air flotation, ballasted flocculation and enhanced flotation use a ballasted or flotation agent to accelerate the sludge settling or flotation rate. The original scientific hypothesis of this project is that the combination of enhanced flotation and natural based chemicals can meet a target total suspended solids (TSS) concentration of less or equal to 10 mg TSS/L in the clarified effluent of an HR-MBBR. The separation processes efficiencies were evaluated based on their TSS recoveries. Monitoring the chemical oxygen demand (COD) fractions allowed to better understand the underlying mechanisms of organic matter biotransformation and capture throughout the proposed treatment train. The concentration of solids expressed in TSS concentration in the MBBR effluent with a synthetic soluble influent was kept very low, from 27 to 61 mg TSS/L, which is about 2 to 9 times less than the expected concentration for an MBBR fed with domestic wastewater. Without the presence of particulate matter in the influent, the particulate matter in the MBBR effluent represented only the production of biomass detached by the shearing forces between the carriers. The TSS concentration and the efficiency of colloidal and soluble matter biotransformation into particulate matter increased with the MBBR hydraulic retention time. Wide volumetric particle size distributions ranging from 5 to 1000 mum in the lab-scale MBBR effluent were observed with a higher proportion of particles larger than 100 mum for a synthetic feed, and a higher proportion of small size particles of 30 mum for a domestic wastewater feed. The presence of lots of small size particles was attributed to unsettleable solids in the influent unchanged in the reactor. Despite the high proportion of large size particles for the MBBR with a synthetic feed, poor settleability of effluent solids was observed as static settling could only achieve TSS recoveries between 35 to 78%. Hence, coagulating agents were necessary to enhance the solids recovery. The combination of the innovative enhanced flotation process and unbiodegradable chemicals allowed to achieve TSS recovery efficiencies up to 97%. The enhanced flotation efficiency was reduced when using natural based chemicals, especially the natural based polymer which was not suited to treat waters with such high TSS concentrations. The hypothesis of the residual TSS concentration of 10 mg TSS/L was verified for half of the HR-MBBR operating conditions and the recovery efficiency did not seem to be influenced by the reactor hydraulic retention time, organic loading rate and temperature. More experiments are needed to confirm the effect of these parameters on TSS recovery efficiency. Although natural based chemicals reduced the coagulation and flocculation efficiency, they allowed a decrease in sludge production, which can represent a significant cost benefit. These chemicals resulted in an increase of 33 to 60% of the total COD of the MBBR effluent, compared to the unbiodegradable chemicals which only contributed about 2%. Natural based chemicals are recommended over unbiodegradable ones to promote the use of high biodegradability potential chemicals and to reduce the production of chemical sludge. However, to offset the increase of total COD, it may be required to add a treatment downstream to meet target secondary treatment COD concentration. Conventionnal settling and ballasted flocculation offered similar TSS recovery efficiencies to enhanced flottation (88% TSS recovery efficiency). The efficiency was reduced by 34% when using the dissolved air flotation process, much lower than the ones expected for such a separation process. The efficiency reduction was attributed to non-optimized and unadapted flotation lab-scale setups to treat medium strength wastewater. A similar innovative treatment train is currently being tested at pilot-scale in order to evaluate its carbon footprint and its potential to be eventually transposed to full-scale. Furthermore, the biodegradability and the biochemical methane production of the natural based chemicals are being determined. This project allowed to determine the potential of the innovative enhanced flotation process to recover the HR-MBBR solids when combined with natural based chemicals which are currently not often used in wastewater treatment for resource recovery.
Park, Chul; Helm, Richard F; Novak, John T
2008-12-01
The fate of activated sludge extracellular proteins in sludge digestion was investigated using three different cation-associated extraction methods and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Extraction methods used were the cation exchange resin (CER) method for extracting calcium (Ca2+) and magnesium (Mg2+), sulfide extraction for removing iron, and base treatment (pH 10.5) for dissolving aluminum. Extracellular polymeric substances extracted were then subjected to SDS-PAGE, and the resultant protein profiles were examined before and after sludge digestion. The SDS-PAGE results showed that three methods led to different SDS-PAGE profiles for both undigested and digested sludges. The results further revealed that CER-extracted proteins remained mainly undegraded in anaerobic digestion, but were degraded in aerobic digestion. While the fate of sulfide- and base-extracted proteins was not clear for aerobic digestion, their changes in anaerobic digestion were elucidated. Most sulfide-extracted proteins were removed by anaerobic digestion, while the increase in protein band intensity and diversity was observed for base-extracted proteins. These results suggest that activated sludge flocs contain different fractions of proteins that are distinguishable by their association with certain cations and that each fraction undergoes different fates in anaerobic and aerobic digestion. The proteins that were resistant to degradation and generated during anaerobic digestion were identified by liquid chromatography tandem mass spectrometry. Protein identification results and their putative roles in activated sludge and anaerobic digestion are discussed in this study.
Flocculation of high purity wheat straw soda lignin.
Piazza, G J; Lora, J H; Garcia, R A
2014-01-01
In industrial process, acidification causes non-sulfonated lignin insolubility. The flocculants poly(diallyldimethylammonium chloride) (pDADMAC) and bovine blood (BB) also caused lignin insolubility while cationic polyacrylamide, chitosan, and soy protein PF 974 were ineffective. Turbidity determined optimal flocculant, but turbidity magnitude with BB was greater than expected. pDADMAC caused negative lignin Zeta potential to became positive, but BB-lignin Zeta potential was always negative. Insoluble lignin did not gravity sediment, and flocculant-lignin mixtures were centrifuged. Pellet and supernatant dry mass and corrected spectroscopic results were in good agreement for optimal pDADMAC and BB. Spectroscopy showed 87-92% loss of supernatant lignin. Nitrogen analysis showed BB concentrated in the pellet until the pellet became saturated with BB. Subtracting ash and BB mass from pellet and supernatant mass confirmed optimal BB. Low levels of alum caused increased lignin flocculation at lower levels of pDADMAC and BB, but alum did not affect optimal flocculant. Published by Elsevier Ltd.
Qiao, Sen; Kawakubo, Yuki; Koyama, Toichiro; Furukawa, Kenji
2008-11-01
This study evaluated performance of swim-bed (SB) reactors packed with a novel acrylic fiber carrier (BF) and swim-bed activated sludge (SBAS) reactor for partial nitritation of anaerobic sludge digester liquor from a municipal wastewater treatment plant. Comparison of characteristics of sludge obtained from both the reactors was also made. The average conversion rates of ammonium to nitrite were 52.3% and 40.0% under relatively high nitrogen loading rates over 3.0 kg-N/m(3)/d, respectively in two reactors. The average BOD(5) removal efficiencies were 74.3% and 64.4%, respectively in the two reactors. The size of the sludge pellets taken from SB and SBAS reactors was found to be approximately three times (229 mum versus 88 mum) of that of the seed sludge. This sludge also had relatively high extracellular proteins levels indicating better sludge settling capability as compared to the sludge taken from SBAS reactor. Although the effluent nitrite/ammonium ratios had fluctuated in both reactor in some extent, the low dissolved oxygen concentration (average of 2.5 versus 0.35 mg/l), low suspended solids (average of 33.3 versus 33.5 mg/l), and about 50% ammonium conversion to nitrite demonstrated the application potential of anammox process for nitrogen removal.
Effect of Malathion on the Microbial Ecology of Activated Sludge
2015-03-26
EFFECT OF MALATHION ON THE MICROBIAL ECOLOGY OF ACTIVATED SLUDGE THESIS Seth K. Martin, Senior Master Sergeant, USAF AFIT-ENV-MS-15-M-095 DEPARTMENT...Government and is not subject to copyright protection in the United States. AFIT-ENV-MS-15-M-095 EFFECT OF MALATHION ON THE MICROBIAL ECOLOGY OF ACTIVATED...UNLIMITED. AFIT-ENV-MS-15-M-095 EFFECT OF MALATHION ON THE MICROBIAL ECOLOGY OF ACTIVATED SLUDGE THESIS Seth K. Martin, B.S. Senior Master Sergeant
McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine
2015-01-01
High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed.
McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine
2015-01-01
High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed. PMID:25706650
Sakhawoth, Yasine; Michot, Laurent J; Levitz, Pierre; Malikova, Natalie
2017-10-06
Flocculation and its tuning are of utmost importance in the optimization of several industrial protocols in areas such as purification of waste water and civil engineering. Herein, we studied the polyelectrolyte-induced flocculation of clay colloids on a model system consisting of purified clay colloids of well-defined size fractions and ionene polyelectrolytes presenting regular and tunable chain charge density. To characterize ionene-induced clay flocculation, we turned to the combination of light absorbance (turbidity) and ζ-potential measurements, as well as adsorption isotherms. Our model system allowed us to identify the exact ratio of positive and negative charges in clay-ionene mixtures, the (c+/c-) ratio. For all samples studied, the onset of efficient flocculation occurred consistently at c+/c- ratios significantly below 1, which indicated the formation of highly ionene-deficient aggregates. At the same time, the ζ-potential measurements indicated an apparent zero charge on such aggregates. Thus, the ζ-potential values could not provide the stoichiometry inside the clay-ionene aggregates. The early onset of flocculation in clay-ionene mixtures is reminiscent of the behavior of multivalent salts and contrasts that of monovalent salts, for which a large excess amount of ions is necessary to achieve flocculation. Clear differences in the flocculation behavior are visible as a function of the ionene charge density, which governs the conformation of the ionene chains on the clay surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Research on change process of nitrosation granular sludge in continuous stirred-tank reactor].
Yin, Fang-Fang; Liu, Wen-Ru; Wang, Jian-Fang; Wu, Peng; Shen, Yao-Liang
2014-11-01
In order to investigate the effect of different types of reactors on the nitrosation granular sludge, a continuous stirred-tank reactor (CSTR) was studied, using mature nitrosation granular sludge cultivated in sequencing batch reactor (SBR) as seed sludge. Results indicated that the change of reactor type and influent mode could induce part of granules to lose stability with gradual decrease in sludge settling ability during the initial period of operation. However, the flocs in CSTR achieved fast granulation in the following reactor operation. In spite of the changes of particle size distribution, e. g. the decreasing number of granules with diameter larger than 2.5 mm and the increasing number of granules with diameter smaller than 0.3 mm, granular sludge held the absolute predominance of sludge morphology in CSTR during the entire experimental period. Moreover, results showed that the change of reactor type and influent mode didn't affect the nitrite accumulation rate which was still kept at about 85% in effluent. Additionally, the average activity of the sludge in CSTR was stronger than that of the seed sludge, because the newly generated small particles in CSTR had higher specific reactive activity than the larger granules.
Fate of return activated sludge after ozonation: an optimization study for sludge disintegration.
Demir, Ozlem; Filibeli, Ayse
2012-09-01
The effects of ozonation on sludge disintegration should be investigated before the application of ozone during biological treatment, in order to minimize excess sludge production. In this study, changes in sludge and supernatant after ozonation of return activated sludge were investigated for seven different ozone doses. The optimum ozone dose to avoid inhibition of ozonation and high ozone cost was determined in terms of disintegration degree as 0.05 g O3/gTS. Suspended solid and volatile suspended solid concentrations of sludge decreased by 77.8% and 71.6%, respectively, at the optimum ozone dose. Ozonation significantly decomposed sludge flocs. The release of cell contents was proved by the increase of supernatant total nitrogen (TN) and phosphorus (TP). While TN increased from 7 mg/L to 151 mg/L, TP increased from 8.8 to 33 mg/L at the optimum ozone dose. The dewaterability and filterability characteristics of the ozonated sludge were also examined. Capillary suction time increased with increasing ozone dosage, but specific resistance to filtration increased to a specific value and then decreased dramatically. The particle size distribution changed significantly as a result of floc disruption at an optimum dose of 0.05 gO3/gTS.
Peeters, Bart; Dewil, Raf; Vernimmen, Luc; Van den Bogaert, Benno; Smets, Ilse Y
2013-07-01
This paper presents a new application of polyaluminiumchloride (PACl) as a conditioner for waste activated sludge prior its dewatering and drying. It is demonstrated at lab scale with a shear test-based protocol that a dose ranging from 50 to 150 g PACl/kg MLSS (mixed liquor suspended solids) mitigates the stickiness of partially dried sludge with a dry solids content between 25 and 60 %DS (dry solids). E.g., at a solids dryness of 46% DS the shear stress required to have the pre-consolidated sludge slip over a steel surface is reduced with 35%. The salient feature of PACl is further supported by torque data from a full scale decanter centrifuge used to dewater waste sludge. The maximal torque developed by the screw conveyor inside the decanter centrifuge is substantially reduced with 20% in the case the sludge feed is conditioned with PACl. The beneficial effect of waste sludge conditioning with PACl is proposed to be the result of the bound water associated with the aluminium polymers in PACl solutions which act as a type of lubrication for the intrinsically sticky sludge solids during the course of drying. It can be anticipated that PACl addition to waste sludge will become a technically feasible and very effective method to avoid worldwide fouling problems in direct sludge dryers, and to reduce torque issues in indirect sludge dryers as well as in sludge decanter centrifuges. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kinetic model of excess activated sludge thermohydrolysis.
Imbierowicz, Mirosław; Chacuk, Andrzej
2012-11-01
Thermal hydrolysis of excess activated sludge suspensions was carried at temperatures ranging from 423 K to 523 K and under pressure 0.2-4.0 MPa. Changes of total organic carbon (TOC) concentration in a solid and liquid phase were measured during these studies. At the temperature 423 K, after 2 h of the process, TOC concentration in the reaction mixture decreased by 15-18% of the initial value. At 473 K total organic carbon removal from activated sludge suspension increased to 30%. It was also found that the solubilisation of particulate organic matter strongly depended on the process temperature. At 423 K the transfer of TOC from solid particles into liquid phase after 1 h of the process reached 25% of the initial value, however, at the temperature of 523 K the conversion degree of 'solid' TOC attained 50% just after 15 min of the process. In the article a lumped kinetic model of the process of activated sludge thermohydrolysis has been proposed. It was assumed that during heating of the activated sludge suspension to a temperature in the range of 423-523 K two parallel reactions occurred. One, connected with thermal destruction of activated sludge particles, caused solubilisation of organic carbon and an increase of dissolved organic carbon concentration in the liquid phase (hydrolysate). The parallel reaction led to a new kind of unsolvable solid phase, which was further decomposed into gaseous products (CO(2)). The collected experimental data were used to identify unknown parameters of the model, i.e. activation energies and pre-exponential factors of elementary reactions. The mathematical model of activated sludge thermohydrolysis appropriately describes the kinetics of reactions occurring in the studied system. Copyright © 2012 Elsevier Ltd. All rights reserved.
Flocculation of high purity wheat straw soda lignin
USDA-ARS?s Scientific Manuscript database
Flocculant action on lignocellulose mixtures has been studied, but flocculant action on purified sulfur-free lignin has not been reported. In the last step of the industrial process, the purified lignin solution is acidified with sulfuric acid which causes the lignin to become insoluble. The feasi...
NASA Astrophysics Data System (ADS)
Kupchishin, A. I.; Niyazov, M. N.; Taipova, B. G.; Voronova, N. A.; Khodarina, N. N.
2018-01-01
Complex experimental studies on the effect of electron irradiation on the deposition rate of active sludge in aqueous systems by the optical method have been carried out. The obtained dependences of density (ρ) on time (t) are of the same nature for different radiation sources. The experimental curves of the dependence of the active sludge density on time are satisfactorily described by an exponential model.
Zhou, Xu; Wang, Qilin; Jiang, Guangming; Liu, Peng; Yuan, Zhiguo
2015-06-01
Improvement of sludge dewaterability is crucial for reducing the costs of sludge disposal in wastewater treatment plants. This study presents a novel conditioning method for improving waste activated sludge dewaterability by combination of persulfate and zero-valent iron. The combination of zero-valent iron (0-30g/L) and persulfate (0-6g/L) under neutral pH substantially enhanced the sludge dewaterability due to the advanced oxidization reactions. The highest enhancement of sludge dewaterability was achieved at 4g persulfate/L and 15g zero-valent iron/L, with which the capillary suction time was reduced by over 50%. The release of soluble chemical oxygen demand during the conditioning process implied the decomposition of sludge structure and microorganisms, which facilitated the improvement of dewaterability due to the release of bound water that was included in sludge structure and microorganism. Economic analysis showed that the proposed conditioning process with persulfate and ZVI is more economically favorable for improving WAS dewaterability than classical Fenton reagent. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pei, Jin; Yao, Hong; Wang, Hui; Shan, Dan; Jiang, Yichen; Ma, Lanqianya; Yu, Xiaohua
2015-09-01
Ultrasonic and ozone pre-treatment technologies were employed in this study to improve the anaerobic digestion efficiency of pharmaceutical waste activated sludge. The sludge solubilisation achieved 30.01% (150,000 kJ/kg TS) and 28.10% (0.1g O3/g TS) after ultrasonic treatment and ozone treatment. The anaerobic biodegradability after ultrasonic treatment was higher compared to ozonation due to the higher cumulative methane volume observed after 6 days (249 ml vs 190 ml). The ozonated sludge released the highest concentration of Cu(2+) into the liquid phase (6.640 mg L(-1)) compared to 0.530 mg/L for untreated sludge and 0.991 mg/L for sonicated sludge. The acute toxicity test measured by luminescent bacteria showed that anaerobic digestion could degrade toxic compounds and result in a reduction in toxicity. The main mechanism of action led to some differences in the treated sludge exhibiting higher potential for methane production from pharmaceutical waste sludge with ultrasonic treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of activated sludge culture conditions on Waxberry wastewater
NASA Astrophysics Data System (ADS)
Shi, Liang; He, Lingfeng; Zhang, Yongli
2018-03-01
Treated activated sludge is suitable for the treatment of wastewater. Biochemical method is used to treat the wastewater, and the influence of time on the COD index is investigated. The results showed that time had a significant effect on COD, and then affected the performance of activated sludge. Under different time, according to the order of time from short to long, COD decreases in turn. Under the action of activated sludge, the degradation of myrica rubra wastewater samples, after 25 h aeration for 96 h, the effect is better. Under this condition, the COD value was reduced at 72 mg/L, and the COD removal efficiency of myrica rubra wastewater was up to 93.39 %, and reached the two level discharge standard of municipal wastewater treatment.
Li, Xuesong; Ma, Hongzhi; Wang, Qunhui; Matsumoto, Shoichiro; Maeda, Toshinari; Ogawa, Hiroaki I
2009-05-01
A strain of sludge-lysing bacteria was isolated from waste activated sludge (WAS) in this study. The result of 16S rRNA gene analysis demonstrated that it was a species of new genus Brevibacillus (named Brevibacillus sp. KH3). The strain could release the protease with molecule weight of about 40 kDa which could enhance the efficiency of sludge thermophilic aerobic digestion. During the sterilized sludge digestion experiment inoculated with Brevibacillus sp. KH3, the maximum protease activity was 0.41 U/ml at pH 8 and 50 degrees C, and maximum TSS removal ratio achieved 32.8% after 120 h digestion at pH 8 and 50 degrees C. In the case of un-sterilized sludge digestion inoculated with Brevibacillus sp. KH3, TSS removal ratio in inoculated-group was 54.8%, increasing at 11.86% compared with un-inoculation (46.2%). The result demonstrated that inoculation of Brevibacillus sp. KH3 could help to degrade the EPS and promote the collapse of cells and inhibit the growth of certain kinds of microorganisms. It indicated that Brevibacillus sp. KH3 strain had a high potential to enhance WAS-degradation efficiency in thermophilic aerobic digestion.
Kamei-Ishikawa, Nao; Ito, Ayumi; Umita, Teruyuki
2013-09-15
Radionuclides were widely released into the environment due to the nuclear accident at the Fukushima Daiichi Nuclear Power Plant. Some of these radionuclides have flowed into municipal sewage treatment plants through sewer systems. We have observed the fate of stable Sr in the sewage treatment process as a means to predict the fate of radiostrontium. Concentrations of stable Sr were determined in sewage influent, effluent, dewatered sludge, and incinerated sewage sludge ash collected from a sewage treatment plant once a month from July to December 2011. In the mass balance of Sr in the sewage treatment plant, 76% of the Sr entering the plant was discharged to the receiving water on average. Additionally, 14% of the Sr flowing through the plant was transferred to the sewage sludge and then concentrated in the sludge ash without being released to the atmosphere. We also investigated Sr sorption by activated sludge in a batch experiment. Measurements at 3 and 6h after the contact showed Sr was sorbed in the activated sludge; however, the measurements indicated Sr desorption from activated sludge occurred 48 h after the contact. Copyright © 2013 Elsevier B.V. All rights reserved.
Stabilization of chromium-bearing electroplating sludge with MSWI fly ash-based Friedel matrices.
Qian, Guangren; Yang, Xiaoyan; Dong, Shixiang; Zhou, Jizhi; Sun, Ying; Xu, Yunfeng; Liu, Qiang
2009-06-15
This work investigated the feasibility and effectiveness of MSWI fly ash-based Friedel matrices on stabilizing/solidifying industrial chromium-bearing electroplating sludge using MSWI fly ash as the main raw material with a small addition of active aluminum. The compressive strength, leaching behavior and chemical speciation of heavy metals and hydration phases of matrices were characterized by TCLP, XRD, FTIR and other experimental methods. The results revealed that MSWI fly ash-based Friedel matrices could effectively stabilize chromium-bearing electroplating sludge, the formed ettringite and Friedel phases played a significant role in the fixation of heavy metals in electroplating sludge. The co-disposal of chromium-bearing electroplating sludge and MSWI fly ash-based Friedel matrices with a small addition of active aluminum is promising to be an effective way of stabilizing chromium-bearing electroplating sludge.
Disintegration of excess activated sludge--evaluation and experience of full-scale applications.
Zábranská, J; Dohányos, M; Jenícek, P; Kutil, J
2006-01-01
Anaerobic digestion of sewage sludge can be improved by introducing a disintegration of excess activated sludge as a pretreatment process. The disintegration brings a deeper degradation of organic matter and less amount of output sludge for disposal, a higher production of biogas and consequently energy yield, in some cases suppression of digesters foaming and better dewaterability. The full-scale application of disintegration by a lysate-thickening centrifuge was monitored long term in three different WWTPs. The evaluation of contribution of disintegration to biogas production and digested sludge quality was assessed and operational experience is discussed. Increment of specific biogas production was evaluated in the range of 15-26%, organic matter in digested sludge significantly decreased to 48-49%. Results proved that the installation of a disintegrating centrifuge in WWTPs of different sizes and conditions would be useful and beneficial.
Baawain, Mahad S; Al-Jabri, Mohsin; Choudri, B S
2015-11-01
Domestic and industrial wastewaters are mostly treated by biological process such as activated sludge, aerobic pond, and anaerobic treatment. This study focuses on characterizing the quality of sewage sludge in the Sultanate of Oman chosen from three industrial sewage treatment plants (STPs): Rusayl Industrial Estate (RSL.IE); Sohar Industrial Estate (SIE); and Raysut Industrial Estate (RIE). Samples of recycled activated sludge (RAS) and wasted activated sludge (WAS) were collected over a period of 12 months across above mentioned STPs. Parameters analyzed are electrical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content (VC). The obtained values for pH and EC were low for both RAS and WAS samples, except EC values of RIE that was more than 1000 μS/cm. The range of VC percentages in RAS and WAS samples were 44 to 86% and 41 to 77%, respectively. The measured values for chloride, sulfate, nitrate and phosphate were higher than the other anions. The average values of the cations in RAS and WAS samples were within the Omani Standards, suitable for the re-use of sludge in agriculture except for Cd in RSL.IE. The study recommends that a regular maintenance should be performed at the studied STPs to prevent any accumulation of some harmful substances, which may affect the sludge quality, and the sludge drying beds should be large enough to handle the produced sludge for better management.
BAAWAIN, Mahad S.; AL-JABRI, Mohsin; CHOUDRI, B.S.
2015-01-01
Background: Domestic and industrial wastewaters are mostly treated by biological process such as activated sludge, aerobic pond, and anaerobic treatment. This study focuses on characterizing the quality of sewage sludge in the Sultanate of Oman chosen from three industrial sewage treatment plants (STPs): Rusayl Industrial Estate (RSL.IE); Sohar Industrial Estate (SIE); and Raysut Industrial Estate (RIE). Methods: Samples of recycled activated sludge (RAS) and wasted activated sludge (WAS) were collected over a period of 12 months across above mentioned STPs. Parameters analyzed are electrical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content (VC). Results: The obtained values for pH and EC were low for both RAS and WAS samples, except EC values of RIE that was more than 1000 μS/cm. The range of VC percentages in RAS and WAS samples were 44 to 86% and 41 to 77%, respectively. The measured values for chloride, sulfate, nitrate and phosphate were higher than the other anions. Conclusion: The average values of the cations in RAS and WAS samples were within the Omani Standards, suitable for the re-use of sludge in agriculture except for Cd in RSL.IE. The study recommends that a regular maintenance should be performed at the studied STPs to prevent any accumulation of some harmful substances, which may affect the sludge quality, and the sludge drying beds should be large enough to handle the produced sludge for better management. PMID:26744704
Al-Jaseem, Q Kh; Almasoud, Fahad I; Ababneh, Anas M; Al-Hobaib, A S
2016-09-01
There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23Bq/L, which exceeds the international limit of 0.185Bq/L (5pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750Bq/kg, respectively, which exceed the national limit of 1000Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2-18Bq/m(3) and 70-1000nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3mSv which is below the 1mSv limit. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Zhenyu; Zheng, Guanyu; Zhou, Lixiang
2015-09-01
Mechanisms responsible for the sludge dewaterability enhanced by filamentous fungi during fungal treatment of sludge were investigated in the present study. The filamentous fungus Mucor sp. GY-1, isolated from waste activated sludge, enhanced sludge dewaterability by 82.1% to achieve the lowest value of normalized sludge specific resistance to filtration (SRF), 8.18 × 10(10) m · L/kg · g-TSS. During the fungal treatment of sludge, 57.8% of slime extracellular polymeric substances (EPS) and 51.1% of polysaccharide in slime EPS were degraded, respectively, by Mucor sp. GY-1, contributing to the improvement of sludge dewaterability. Slime EPS is much more available for Mucor sp. GY-1 than either LB-EPS or TB-EPS that bound with microbial cells. In addition, filamentous fungus Mucor sp. GY-1 entrapped small sludge particles and inhibited the destruction of sludge flocs larger than 100 μm, thus enhancing sludge dewaterability, during fungal treatment of sludge using Mucor sp. GY-1. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Influence of accessories mixing ratio on sludge biophysical co-drying].
Yang, Jin-Long; Du, Qiong; Li, Dong; Han, Rong; Zhao, Yan; Wang, Hong-Tao
2011-08-01
Parameters (temperature, water content and so on) in the process of sludge biophysical co-drying were studied in self-made biophysical co-drying reactor. The sludge: tree bark: recycled sludge was set as 7: 3: 0.5, 9: 3: 0.5, 12: 3: 0.5 respectively. The results suggested that sludge temperature first increased then decreased along with drying time, water content decreased in the first 96 h, then had no obvious variability. While sludge: tree bark: recycled sludge was 9: 3: 0.5, the temperature of sludge spiraling, received to max 67 degrees C at 48 h under three different accessories mixture ratio, and was kept for 72 h above 55 degrees C, then spiraling, the final water content of sludge decreased from 74.1% to 61.8%, received the optimal water content removing rate 43.5%. Accessories mixing ratio had important influence on the process of sludge biophysical co-drying, sludge with proper mixing ratio can modify the structure of sludge, improve sludge permeability, arouse and keep microorganic activity, which will enhance sludge temperature and strengthen water content removal rate.
EVALUATION OF ACTIVATED BIOFILTRATION AND ACTIVATED BIOFILTRATION/ACTIVATED SLUDGE TECHNOLOGIES
The paper presents the results of a review and investigation of the activated biofilter (ABF) and activated biofilter/activated sludge (ABF/AS) technologies and a review of operating records of several municipal plants in the U.S. using these technologies. The overall objective o...
Andrianisa, Harinaivo Anderson; Ito, Ayumi; Sasaki, Atsushi; Aizawa, Jiro; Umita, Teruyuki
2008-12-01
The potential of activated sludge to catalyse bio-oxidation of arsenite [As(III)] to arsenate [As(V)] and bio-reduction of As(V) to As(III) was investigated. In batch experiments (pH 7, 25 degrees C) using activated sludge taken from a treatment plant receiving municipal wastewater non-contaminated with As, As(III) and As(V) were rapidly biotransformed to As(V) under aerobic condition and As(III) under anaerobic one without acclimatisation, respectively. Sub-culture of the activated sludge using a minimal liquid medium containing 100mg As(III)/L and no organic carbon source showed that aerobic arsenic-resistant bacteria were present in the activated sludge and one of the isolated bacteria was able to chemoautotrophically oxidise As(III) to As(V). Analysis of arsenic species in a full-scale oxidation ditch plant receiving As-contaminated wastewater revealed that both As(III) and As(V) were present in the influent, As(III) was almost completely oxidised to As(V) after supply of oxygen by the aerator in the oxidation ditch, As(V) oxidised was reduced to As(III) in the anaerobic zone in the ditch and in the return sludge pipe, and As(V) was the dominant species in the effluent. Furthermore, co-precipitation of As(V) bio-oxidised by activated sludge in the plant with ferric hydroxide was assessed by jar tests. It was shown that the addition of ferric chloride to mixed liquor as well as effluent achieved high removal efficiencies (>95%) of As and could decrease the residual total As concentrations in the supernatant from about 200 microg/L to less than 5 microg/L. It was concluded that a treatment process combining bio-oxidation with activated sludge and coagulation with ferric chloride could be applied as an alternative technology to treat As-contaminated wastewater.
Beach, Evan S; Eckelman, Matthew J; Cui, Zheng; Brentner, Laura; Zimmerman, Julie B
2012-10-01
Dewatering of the green algae Neochloris oleoabundans by flocculation was investigated for chitosan biopolymer, ferric sulfate, and alum. Chitosan was found to be most effective flocculant, with an optimum dose of 100mg/L algae broth. Zeta potential measurements suggest the mechanism involves both adsorption and charge neutralization processes. Life cycle assessment (LCA) was used to compare the chitosan method to other flocculation methods as well as centrifugation and filtration/chamber press processes. LCA showed that among these techniques, flocculation by chitosan is the least energy intensive and had the lowest impacts across all other categories of environmental impacts. The results are discussed in the overall context of biofuel production from algal biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wan, Chun; Alam, Md Asraful; Zhao, Xin-Qing; Zhang, Xiao-Yue; Guo, Suo-Lian; Ho, Shih-Hsin; Chang, Jo-Shu; Bai, Feng-Wu
2015-05-01
Microalgae have been extensively studied for the production of various valuable products. Application of microalgae for the production of renewable energy has also received increasing attention in recent years. However, high cost of microalgal biomass harvesting is one of the bottlenecks for commercialization of microalgae-based industrial processes. Considering harvesting efficiency, operation economics and technological feasibility, flocculation is a superior method to harvest microalgae from mass culture. In this article, the latest progress of various microalgal cell harvesting methods via flocculation is reviewed with the emphasis on the current progress and prospect in environmentally friendly bio-based flocculation. Harvesting microalgae through bio-based flocculation is a promising component of the low-cost microalgal biomass production technology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Flocculation and antimicrobial properties of a cationized starch.
Liu, Zhouzhou; Huang, Mu; Li, Aimin; Yang, Hu
2017-08-01
In this study, a series of cationized starch-based flocculants (starch-3-chloro-2-hydroxypropyl triethyl ammonium chloride, St-CTA) containing various quaternary ammonium salt groups on the starch backbone were prepared using a simple etherification reaction. All of the prepared starch-based flocculants show effective performance for the flocculation of kaolin suspension, two bacterial (Escherichia coli and Staphylococcus aureus) suspensions, and two contaminant mixtures (kaolin and each bacterium) under most pH conditions. St-CTA with a high substitution degree of CTA demonstrates improved contaminant removal efficiency because of the strong cationic nature of the grafted quaternary ammonium salt groups and the charge naturalization flocculation effect. The antibacterial effects of St-CTA were also evaluated, considering that many quaternary ammonium salt compounds elicit bactericidal effects. Three-dimensional excitation-emission matrix spectra and direct cell morphological observation under scanning electron microscopy reveal that the starch-based flocculants exhibit better antibacterial effects on the Gram-negative bacterium E. coli than on the Gram-positive bacterium S. aureus. The thicker cell wall due to the presence of abundant peptidoglycan and teichoic acids of S. aureus than E. coli explains the uneasy breakage of S. aureus cell wall after being attacked by the cationized starch-based flocculants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Preston, Kelsey; Lantagne, Daniele; Kotlarz, Nadine; Jellison, Kristen
2010-03-01
Over 1.1 billion people in the world lack access to improved drinking water. Diarrhoeal and other waterborne diseases cause an estimated 1.87 million deaths per year. The Safe Water System (SWS) is a household water treatment intervention that reduces diarrhoeal disease incidence among users in developing countries. Turbid waters pose a particular challenge to implementation of SWS programmes; although research shows that a 3.75 mg l(-1) sodium hypochlorite dose effectively treats turbid waters, users sometimes object to the strong chlorine taste and prefer to drink water that is more aesthetically pleasing. This study investigated the efficacy of two locally available chemical water treatments-alum and Moringa oleifera flocculation-to reduce turbidity and chlorine demand at turbidities of 10, 30, 70, 100 and 300 NTU. Both treatments effectively reduced turbidity (alum flocculation 23.0-91.4%; moringa flocculation 14.2-96.2%). Alum flocculation effectively reduced chlorine demand compared with controls at 30, 70, 100 and 300 NTU (p=0.01-0.06). Moringa flocculation increased chlorine demand to the point where adequate free chlorine residual was not maintained for 24 hours after treatment. Alum pretreatment is recommended in waters>or=30 NTU for optimum water disinfection. Moringa flocculation is not recommended before chlorination.
Furukawa, Yoko; Reed, Allen H; Zhang, Guoping
2014-01-03
Riverine particles undergo a rapid transformation when they reach estuaries. The rapid succession of hydrodynamic and biogeochemical regimes forces the particles to flocculate, settle and enter the sediment pool. The rates and magnitudes of flocculation depend on the nature of the particles which are primarily affected by the types and quantities of organic matter (OM). Meanwhile, the OM characteristics vary widely between environments, as well as within a single environment due to seasonal climate and land use variability. We investigated the effect of the OM types and quantities through laboratory experiments using natural estuarine particles from the Mississippi Sound and Atchafalaya Bay as well as model mixtures of montmorillonite and organic molecules (i.e., biopolymers (guar/xanthan gums) and humic acid). Biopolymers promote flocculation but the magnitude depends on the types and quantities. Nonionic guar gum yields much larger flocs than anionic xanthan gum, while both of them exhibit a nonlinear behavior in which the flocculation is the most pronounced at the intermediate OM loading. Moreover, the effect of guar gum is independent of salinity whereas the effect of xanthan gum is pronounced at higher salinity. Meanwhile, humic acid does not affect flocculation at all salinity values tested in this study. These results are echoed in the laboratory manipulation of the natural estuarine particles. Flocculation of the humic acid-rich Mississippi Sound particles is unaffected by the OM, whereas that of biopolymer-rich Atchafalaya Bay particles is enhanced by the OM. Flocculation is positively influenced by the presence of biopolymers that are produced as the result of marine primary production. Meanwhile, humic acid, which is abundant in the rivers that drain the agricultural soils of Southeastern United States, has little influence on flocculation. Thus, it is expected that humic acid-poor riverine particles (e.g., Mississippi River, and Atchafalaya River, to a lesser degree) may be prone to rapid flocculation and settling in the immediate vicinity of the river mouths when mixed with biopolymer-rich coastal waters. It is also expected that humic acid-rich riverine particles (e.g., Pearl River) may resist immediate flocculation and be transported further away from the river mouth.
2014-01-01
Background Riverine particles undergo a rapid transformation when they reach estuaries. The rapid succession of hydrodynamic and biogeochemical regimes forces the particles to flocculate, settle and enter the sediment pool. The rates and magnitudes of flocculation depend on the nature of the particles which are primarily affected by the types and quantities of organic matter (OM). Meanwhile, the OM characteristics vary widely between environments, as well as within a single environment due to seasonal climate and land use variability. We investigated the effect of the OM types and quantities through laboratory experiments using natural estuarine particles from the Mississippi Sound and Atchafalaya Bay as well as model mixtures of montmorillonite and organic molecules (i.e., biopolymers (guar/xanthan gums) and humic acid). Results Biopolymers promote flocculation but the magnitude depends on the types and quantities. Nonionic guar gum yields much larger flocs than anionic xanthan gum, while both of them exhibit a nonlinear behavior in which the flocculation is the most pronounced at the intermediate OM loading. Moreover, the effect of guar gum is independent of salinity whereas the effect of xanthan gum is pronounced at higher salinity. Meanwhile, humic acid does not affect flocculation at all salinity values tested in this study. These results are echoed in the laboratory manipulation of the natural estuarine particles. Flocculation of the humic acid-rich Mississippi Sound particles is unaffected by the OM, whereas that of biopolymer-rich Atchafalaya Bay particles is enhanced by the OM. Conclusions Flocculation is positively influenced by the presence of biopolymers that are produced as the result of marine primary production. Meanwhile, humic acid, which is abundant in the rivers that drain the agricultural soils of Southeastern United States, has little influence on flocculation. Thus, it is expected that humic acid-poor riverine particles (e.g., Mississippi River, and Atchafalaya River, to a lesser degree) may be prone to rapid flocculation and settling in the immediate vicinity of the river mouths when mixed with biopolymer-rich coastal waters. It is also expected that humic acid-rich riverine particles (e.g., Pearl River) may resist immediate flocculation and be transported further away from the river mouth. PMID:24386944
Liu, Kun; Chen, Yinguang; Xiao, Naidong; Zheng, Xiong; Li, Mu
2015-04-21
Recently, the use of waste activated sludge to bioproduce short-chain fatty acids (SCFA) has attracted much attention as the sludge-derived SCFA can be used as a preferred carbon source to drive biological nutrient removal or biopolymer (polyhydroxyalkanoates) synthesis. Although large number of humic acid (HA) has been reported in sludge, the influence of HA on SCFA production has never been documented. This study investigated the effects on sludge-derived SCFA production of two commercially available humic acids (referred to as SHHA and SAHA purchased respectively from Shanghai Reagent Company and Sigma-Aldrich) that differ in chemical structure, hydrophobicity, surfactant properties, and degree of aromaticity. It was found that SHHA remarkably enhanced SCFA production (1.7-3.5 folds), while SAHA had no obvious effect. Mechanisms study revealed that all four steps (solubilization, hydrolysis, acidification, and methanogenesis) involved in sludge fermentation were unaffected by SAHA. However, SHHA remarkably improved the solubilization of sludge protein and carbohydrate and the activity of hydrolysis enzymes (protease and α-glucosidase) owing to its greater hydrophobicity and protection of enzyme activity. SHHA also enhanced the acidification step by accelerating the bioreactions of glyceradehyde-3P → d-glycerate 1,3-diphosphate, and pyruvate → acetyl-CoA due to its abundant quinone groups which served as electron acceptor. Further investigation showed that SHHA negatively influenced the activity of acetoclastic methanogens for its competition for electrons and inhibition on the reaction of acetyl-CoA → 5-methyl-THMPT, which caused less SCFA being consumed. All these observations were in correspondence with SHHA significantly enhancing the production of sludge derived SCFA.
Xin, Xiao-Dong; He, Jun-Guo; Qiu, Wei; Tang, Jian; Liu, Tian-Tian
2015-01-01
Waste activated sludge from a lab-scale sequencing batch reactor was used to investigate the potential relation of microbial community with lysozyme digestion process for sludge solubilization. The results showed the microbial community shifted conspicuously as sludge suffered lysozyme digestion. Soluble protein and polysaccharide kept an increasing trend in solution followed with succession of microbial community. The rise of lysozyme dosage augmented the dissimilarity among communities in various digested sludge. A negative relationship presented between community diversity and lysozyme digestion process under various lysozyme/TS from 0 to 240min (correlation coefficient R(2) exceeded 0.9). Pareto-Lorenz curves demonstrated that microbial community tended to be even with sludge disintegration process by lysozyme. Finally, with diversity (H) decrease and community distribution getting even, the SCOD/TCOD increased steadily in solution which suggested the sludge with high community diversity and uneven population distribution might have tremendous potential for improving their biodegradability by lysozyme digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Keating, C; Cysneiros, D; Mahony, T; O'Flaherty, V
2013-01-01
In this study, the ability of various sludges to digest a diverse range of cellulose and cellulose-derived substrates was assessed at different temperatures to elucidate the factors affecting hydrolysis. For this purpose, the biogas production was monitored and the specific biogas activity (SBA) of the sludges was employed to compare the performance of three anaerobic sludges on the degradation of a variety of complex cellulose sources, across a range of temperatures. The sludge with the highest performance on complex substrates was derived from a full-scale bioreactor treating sewage at 37 °C. Hydrolysis was the rate-limiting step during the degradation of complex substrates. No activity was recorded for the synthetic cellulose compound carboxymethylcellulose (CMC) using any of the sludges tested. Increased temperature led to an increase in hydrolysis rates and thus SBA values. The non-granular nature of the mesophilic sludge played a positive role in the hydrolysis of solid substrates, while the granular sludges proved more effective on the degradation of soluble compounds.
Sato, K; Ochi, S; Mizuochi, M
2001-01-01
Sewage treatment plants in Japan are subjected to advanced treatment to remove nutrients and hence control eutrophication problems in lakes and bays. This paper discusses the advantages and disadvantages of the separate digestion treatment mode for sludge generated from advanced wastewater treatment. In the separate digestion only primary sludge is digested and the excess activated sludge is directly dewatered. Separate digestion can reduce the return load of nutrients to approximately one third, and has major potential for the beneficial use of sludge.
Falås, P; Longrée, P; la Cour Jansen, J; Siegrist, H; Hollender, J; Joss, A
2013-09-01
Removal of organic micropollutants in a hybrid biofilm-activated sludge process was investigated through batch experiments, modeling, and full-scale measurements. Batch experiments with carriers and activated sludge from the same full-scale reactor were performed to assess the micropollutant removal rates of the carrier biofilm under oxic conditions and the sludge under oxic and anoxic conditions. Clear differences in the micropollutant removal kinetics of the attached and suspended growth were demonstrated, often with considerably higher removal rates for the biofilm compared to the sludge. For several micropollutants, the removal rates were also affected by the redox conditions, i.e. oxic and anoxic. Removal rates obtained from the batch experiments were used to model the micropollutant removal in the full-scale process. The results from the model and plant measurements showed that the removal efficiency of the process can be predicted with acceptable accuracy (± 25%) for most of the modeled micropollutants. Furthermore, the model estimations indicate that the attached growth in hybrid biofilm-activated sludge processes can contribute significantly to the removal of individual compounds, such as diclofenac. Copyright © 2013 Elsevier Ltd. All rights reserved.
Protists as bioindicators in activated sludge: Identification, ecology and future needs.
Foissner, Wilhelm
2016-08-01
When the activated sludge process was developed, operators and scientists soon recognized protists as valuable indicators. However, only when Curds et al. (1968) showed with a few photographs the need of ciliates for a clear plant effluent, sewage protistology began to bloom but was limited by the need of species identification. Still, this is a major problem although several good guides are available. Thus, molecular kits should be developed for identification. Protists are indicators in two stages of wastewater treatment, viz., in the activated sludge and in the environmental water receiving the plant effluent. Continuous control of the protist and bacterial communities can prevent biological sludge foaming and bulking and may greatly save money for sludge oxygenation because several protist species are excellent indicators for the amount of oxygen present. The investigation of the effluent-receiving rivers gives a solid indication about the long term function of sewage works. The literature on protist bioindication in activated sludge is widely distributed. Thus, I compiled the data in a simple Table, showing which communities and species indicate good, mediocre, or poor plant performance. Further, many details on indication are provided, such as sludge loading and nitrifying conditions. Such specific features should be improved by appropriate statistics and more reliable identification of species. Then, protistologists have a fair chance to become important in wastewater works. Activated sludge is a unique habitat for particular species, often poorly or even undescribed. As an example, I present two new species. The first is a minute (∼30μm) Metacystis that makes an up to 300μm-sized mucous envelope mimicking a sludge floc. The second is a Phialina that is unique in having the contractile vacuole slightly posterior to mid-body. Finally, I provide a list of species which have the type locality in sewage plants. Copyright © 2016 Elsevier GmbH. All rights reserved.
Sivrioğlu, Özge; Yonar, Taner
2015-04-01
In this study, the acute toxicities of raw, physicochemical pre-treated, ozonated, and Fenton reagent applied samples of dairy wastewater toward activated sludge microorganisms, evaluated using the International Organization for Standardization's respiration inhibition test (ISO 8192), are presented. Five-day biological oxygen demand (BOD5) was measured to determine the biodegradability of physicochemical treatment, ozonation, Fenton oxidation or no treatment (raw samples) of dairy wastewater. Chemical pretreatment positively affected biodegradability, and the inhibition exhibited by activated sludge was removed to a considerable degree. Ozonation and the Fenton process exhibited good chemical oxygen demand removal (61%) and removal of toxins. Low sludge production was observed for the Fenton process applied to dairy effluents. We did not determine the inhibitory effect of the Fenton-process on the activated sludge mixture. The pollutant-removal efficiencies of the applied processes and their associated operating costs were determined. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks.
Ibarbalz, Federico M; Figuerola, Eva L M; Erijman, Leonardo
2013-07-01
Biological degradation of domestic and industrial wastewater by activated sludge depends on a common process of separation of the diverse self-assembled and self-sustained microbial flocs from the treated wastewater. Previous surveys of bacterial communities indicated the presence of a common core of bacterial phyla in municipal activated sludge, an observation consistent with the concept of ecological coherence of high taxonomic ranks. The aim of this work was to test whether this critical feature brings about a common pattern of abundance distribution of high bacterial taxa in industrial and domestic activated sludge, and to relate the bacterial community structure of industrial activated sludge with relevant operational parameters. We have applied 454 pyrosequencing of 16S rRNA genes to evaluate bacterial communities in full-scale biological wastewater treatment plants sampled at different times, including seven systems treating wastewater from different industries and one plant that treats domestic wastewater, and compared our datasets with the data from municipal wastewater treatment plants obtained by three different laboratories. We observed that each industrial activated sludge system exhibited a unique bacterial community composition, which is clearly distinct from the common profile of bacterial phyla or classes observed in municipal plants. The influence of process parameters on the bacterial community structure was evaluated using constrained analysis of principal coordinates (CAP). Part of the differences in the bacterial community structure between industrial wastewater treatment systems were explained by dissolved oxygen and pH. Despite the ecological relevance of floc formation for the assembly of bacterial communities in activated sludge, the wastewater characteristics are likely to be the major determinant that drives bacterial composition at high taxonomic ranks. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rosso, Diego; Lothman, Sarah E; Jeung, Matthew K; Pitt, Paul; Gellner, W James; Stone, Alan L; Howard, Don
2011-11-15
Integrated fixed-film activated sludge (IFAS) processes are becoming more popular for both secondary and sidestream treatment in wastewater facilities. These processes are a combination of biofilm reactors and activated sludge processes, achieved by introducing and retaining biofilm carrier media in activated sludge reactors. A full-scale train of three IFAS reactors equipped with AnoxKaldnes media and coarse-bubble aeration was tested using off-gas analysis. This was operated independently in parallel to an existing full-scale activated sludge process. Both processes achieved the same percent removal of COD and ammonia, despite the double oxygen demand on the IFAS reactors. In order to prevent kinetic limitations associated with DO diffusional gradients through the IFAS biofilm, this systems was operated at an elevated dissolved oxygen concentration, in line with the manufacturer's recommendation. Also, to avoid media coalescence on the reactor surface and promote biofilm contact with the substrate, high mixing requirements are specified. Therefore, the air flux in the IFAS reactors was much higher than that of the parallel activated sludge reactors. However, the standardized oxygen transfer efficiency in process water was almost same for both processes. In theory, when the oxygen transfer efficiency is the same, the air used per unit load removed should be the same. However, due to the high DO and mixing requirements, the IFAS reactors were characterized by elevated air flux and air use per unit load treated. This directly reflected in the relative energy footprint for aeration, which in this case was much higher for the IFAS system than activated sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.
Improvement of activated sludge dewaterability by humus soil induced bioflocculation.
Choi, Young-Gyun; Kim, Seong-Hong; Kim, Hee-Jun; Kim, Gyu Dong; Chung, Tai-Hak
2004-01-01
Effects of humus soil particles on the dewaterability of activated sludge were investigated. Cations leaching increased proportionally with the dosage of humus soil, and the leaching was not significant after 2 h. Divalent cations, Ca2+ and Mg2+, leaching from the humus soil played an important role in improving dewaterability of the biological sludge. On the contrary, dewaterability was not affected or slightly deteriorated by the monovalent cations, K+ and Na+ leached from the humus soil. Improvement in dewaterability of the sludge by addition of humus soil was higher than that of equivalent cations mixture. It seemed that the decrease of supracolloidal bio-particles (1 to 100 microm in diameter) resulted in diminishing of the blinding effect on cake and filter medium. SRF (specific resistance to filtration) of the humus soil added sludge varied in parallel with the M/D (monovalent to divalent cation) ratio, and the M/D ratio could be utilized as a useful tool for evaluation of the sludge dewatering characteristics. Long-term effects of humus soil on the improvement of activated sludge dewaterability were clearly identified by continuous operation results of a bench-scale MLE (Modified Ludzack Ettinger) system combined with a humus soil contactor. On the other hand, dewaterability of the control sludge was only slightly improved by a decrease in M/D ratio of the wastewater influent.
Effect of humic acid in leachate on specific methanogenic activity of anaerobic granular sludge.
Guo, Mengfei; Xian, Ping; Yang, Longhui; Liu, Xi; Zhan, Longhui; Bu, Guanghui
2015-01-01
In order to find out the effects of humic acid (HA) in anaerobic-treated landfill leachate on granular sludge, the anaerobic biodegradability of HA as well as the influences of HA on the total cumulative methane production, the anaerobic methanization process and the specific methanogenic activity (SMA) of granular sludge are studied in this paper. Experimental results show that as a non-biodegradable organic pollutant, HA is also difficult to be decomposed by microbes in the anaerobic reaction process. Presence of HA and changes in the concentration have no significant influences on the total cumulative methane production and the anaerobic methanization process of granular sludge. Besides, the total cumulative methane production cannot reflect the inhibition of toxics on the methanogenic activity of granular sludge on the premise of sufficient reaction time. Results also show that HA plays a promoting role on SMA of granular sludge. Without buffering agent the SMA value increased by 19.2% on average due to the buffering and regulating ability of HA, while with buffering agent the SMA value increased by 5.4% on average due to the retaining effect of HA on the morphology of the sludge particles. However, in the presence of leachate the SMA value decreased by 27.6% on average, because the toxic effect of the toxics in the leachate on granular sludge is much larger than the promoting effect of HA.
Yang, Chao; Zhang, Wei; Liu, Ruihua; Zhang, Chi; Gong, Ting; Li, Qiang; Wang, Shufang; Song, Cunjiang
2013-09-01
Activated sludge is an alternative to pure cultures for polyhydroxyalkanoate (PHA) production due to the presence of many PHA-producing bacteria in activated sludge community. In this study, activated sludge was submitted to aerobic dynamic feeding in a sequencing batch reactor. During domestication, the changes of bacterial community structure were observed by terminal restriction fragment length polymorphism analysis. Furthermore, some potential PHA-producing bacteria, such as Thauera, Acinetobacter and Pseudomonas, were identified by denaturing gradient gel electrophoresis analysis. The constructed PHA synthase gene library was analyzed by DNA sequencing. Of the 80 phaC genes obtained, 76 belonged to the Class I PHA synthase, and four to the Class II PHA synthase. Gas chromatography-mass spectrometry analysis showed that PHA produced by activated sludge was composed of three types of monomers: 3-hydroxybutyrate, 3-hydroxyvalerate and 3-hydroxydodecanoate (3HDD). This is the first report of production of medium-chain-length PHAs (PHAMCL ) containing 3HDD by activated sludge. Further studies suggested that a Pseudomonas strain may play an important role in the production of PHAMCL containing 3HDD. Moreover, a Class II PHA synthase was found to have a correlation with the production of 3HDD-containing PHAMCL . © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondala, Andro; Hernandez, Rafael; French, Todd
2012-01-01
The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2%more » w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.« less
[Treatment of carbonization effluent by the ultrasonic radiation and activated sludge process].
Ning, Ping; Xu, Jinqiu; Huang, Dongbin; Ma, Xiaoli; Xu, Xiaojun; Li, Ziyan
2003-05-01
The paper deals with the degradation of organic pollutants by the ultrasonic irradiation-activated sludge process. The treatment of the real coking wastewater of Kunming coke making-gas plant was studied with the water quality model. Using the ultrasonic irradiation-activated sludge process the organic pollutants in the real coking wastewater can be degraded effectively. The influence factors of the ultrasonic degradation effect such as initial concentration, aerated gas and ultrasonic density were investigated and mechanism was explored. The result shows that the ultrasonic degradation effect was high with the decrease of initial concentration of the CODCr, the presence of aerated gas and the increase of ultrasonic density. At the initial CODCr concentration of 807 mg/L, when air acted as aerated gas and only air itself (no ultrasound) was exerted on the wastewater, the degradation rate of the CODCr will be 4.5%. However, when the ultrasound of the intensity of 119.4 kW/m2 was exerted on the wastewater, the degradation rate of the CODCr will be 65%. Compared with the activated sludge process alone, the combination of the ultrasonic irradiation and activated sludge process can increase the degradation rate of the CODCr from 45% to 81%. The oxygen consumption rate of the carbonization effluent obviously decreased in the presence of the activated sludge. This shows the carbonization effluent is not biotoxic behind the ultrasonic irradiation.
Shao, Linlin; Jiang, Wenbo; Feng, Li; Zhang, Liqiu
2014-06-01
This study explored the amount and composition of pyrolysis gas and oil derived from wet material or dried material during the preparation of sludge-corncob activated carbon, and evaluated the physicochemical and surface properties of the obtained two types of sludge-corncob-activated carbons. For wet material, owing to the presence of water, the yields of sludge-corncob activated carbon and the oil fraction slightly decreased while the yield of gases increased. The main pyrolysis gas compounds were H2 and CO2, and more H2 was released from wet material than dried material, whereas the opposite holds for CO2 Heterocyclics, nitriles, organic acids, and steroids were the major components of pyrolysis oil. Furthermore, the presence of water in wet material reduced the yield of polycyclic aromatic hydrocarbons from 6.76% to 5.43%. The yield of furfural, one of heterocyclics, increased sharply from 3.51% to 21.4%, which could be explained by the enhanced hydrolysis of corncob. In addition, the surface or chemical properties of the two sludge-corncob activated carbons were almost not affected by the moisture content of the raw material, although their mesopore volume and diameter were different. In addition, the adsorption capacities of the two sludge-corncob activated carbons towards Pb and nitrobenzene were nearly identical. © The Author(s) 2014.
Retrofitting activated sludge systems to intermittent aeration for nitrogen removal.
Hanhan, O; Artan, N; Orhon, D
2002-01-01
The paper provides the basis and the conceptual approach of applying process kinetics and modelling to the design of alternating activated sludge systems for retrofitting existing activated sludge plants to intermittent aeration for nitrogen removal. It shows the significant role of the two specific parameters, namely, the aerated fraction and the cycle time ratio on process performance through model simulations and proposes a way to incorporate them into a design procedure using process stoichiometry and mass balance. It illustrates the effect of these parameters, together with the sludge age, in establishing the balance between the denitrification potential and the available nitrogen created in the anoxic/aerobic sequences of system operation.
Evaluation of activated sludge for biodegradation of propylene glycol as an aircraft deicing fluid.
Delorit, Justin D; Racz, LeeAnn
2014-04-01
Aircraft deicing fluid used at airport facilities is often collected for treatment or disposal in order to prevent serious ecological threats to nearby surface waters. This study investigated lab scale degradation of propylene glycol, the active ingredient in a common aircraft deicing fluid, by way of a laboratory-scale sequencing batch reactor containing municipal waste water treatment facility activated sludge performing simultaneous organic carbon oxidation and nitrification. The ability of activated sludge to remove propylene glycol was evaluated by studying the biodegradation and sorption characteristics of propylene glycol in an activated sludge medium. The results indicate sorption may play a role in the fate of propylene glycol in AS, and the heterotrophic bacteria readily degrade this compound. Therefore, a field deployable bioreactor may be appropriate for use in flight line applications.
NASA Astrophysics Data System (ADS)
Snoalv, J.; Groeneveld, M.; Quine, T. A.; Tranvik, L.
2017-12-01
Flocculation of dissolved organic carbon (DOC) in streams and rivers is a process that contributes to the pool of particulate organic carbon (POC) in the aquatic system. In low-energy waters the increased sedimentation rates of this higher-density fraction of organic carbon (OC) makes POC important in allocating organic carbon into limnic storage, which subsequently influences emissions of greenhouse gases from the continental environment to the atmosphere. Allochthonous OC, derived from the terrestrial environment by soil erosion and litterfall, import both mineral aggregate-bound and free OC into freshwaters, which comprise carbon species of different quality and recalcitrance than autochthonous in-stream produced OC, such as from biofilms, aquatic plants and algae. Increased soil erosion due to land use change (e.g. agriculture, deforestation etc.) influences the input of allochthonous OC, which can lead to increased POC formation and sedimentation of terrestrial OC at flocculation boundaries in the landscape, i.e. where coagulation and flocculation processes are prone to occur in the water column. This study investigates the seasonal variation in POC content and flocculation capacity with respect to water quality (elemental composition) in eight river systems (four agricultural and four wooded streams) with headwaters in Exmoor, UK, that drain managed and non-managed land into Bristol Channel. Through flocculation experiments the samples were allowed to flocculate by treatments with added clay and salt standards that simulate the flocculation processes by 1) increased input of sediment into streams, and 2) saline mixing at the estuarine boundary, in order to quantify floc production and investigate POC quality by each process respectively. The results show how floc production, carbon quality and incorporation (e.g. complexation) of metals and rare earth elements (REE) in produced POC and remaining DOC in solution vary in water samples over the season and how these are related to different flocculation processes and affected by land use. This study improves our understanding on OC flocculation dynamics on a local catchment scale and how POC fate is affected by changed water quality in streams perturbed by land use change.
Rossouw, Debra; Bagheri, Bahareh; Setati, Mathabatha Evodia; Bauer, Florian Franz
2015-01-01
Flocculation has primarily been studied as an important technological property of Saccharomyces cerevisiae yeast strains in fermentation processes such as brewing and winemaking. These studies have led to the identification of a group of closely related genes, referred to as the FLO gene family, which controls the flocculation phenotype. All naturally occurring S. cerevisiae strains assessed thus far possess at least four independent copies of structurally similar FLO genes, namely FLO1, FLO5, FLO9 and FLO10. The genes appear to differ primarily by the degree of flocculation induced by their expression. However, the reason for the existence of a large family of very similar genes, all involved in the same phenotype, has remained unclear. In natural ecosystems, and in wine production, S. cerevisiae growth together and competes with a large number of other Saccharomyces and many more non-Saccharomyces yeast species. Our data show that many strains of such wine-related non-Saccharomyces species, some of which have recently attracted significant biotechnological interest as they contribute positively to fermentation and wine character, were able to flocculate efficiently. The data also show that both flocculent and non-flocculent S. cerevisiae strains formed mixed species flocs (a process hereafter referred to as co-flocculation) with some of these non-Saccharomyces yeasts. This ability of yeast strains to impact flocculation behaviour of other species in mixed inocula has not been described previously. Further investigation into the genetic regulation of co-flocculation revealed that different FLO genes impact differently on such adhesion phenotypes, favouring adhesion with some species while excluding other species from such mixed flocs. The data therefore strongly suggest that FLO genes govern the selective association of S. cerevisiae with specific species of non-Saccharomyces yeasts, and may therefore be drivers of ecosystem organisational patterns. Our data provide, for the first time, insights into the role of the FLO gene family beyond intraspecies cellular association, and suggest a wider evolutionary role for the FLO genes. Such a role would explain the evolutionary persistence of a large multigene family of genes with apparently similar function. PMID:26317200
Xie, Guo-Jun; Liu, Bing-Feng; Wang, Qilin; Ding, Jie; Ren, Nan-Qi
2016-04-15
Waste activated sludge is a valuable resource containing multiple nutrients, but is currently treated and disposed of as an important source of pollution. In this work, waste activated sludge after ultrasound pretreatment was reused as multiple nutrients for biofuel production. The nutrients trapped in sludge floc were transferred into liquid medium by ultrasonic disintegration during first 30 min, while further increase of pretreatment time only resulted in slight increase of nutrients release. Hydrogen production by Ethanoligenens harbinense B49 from glucose significantly increased with the concentration of ultrasonic sludge, and reached maximum yield of 1.97 mol H2/mol glucose at sludge concentration of 7.75 g volatile suspended solids/l. Without addition of any other chemicals, waste molasses rich in carbohydrate was efficiently turned into hydrogen with yield of 189.34 ml H2/g total sugar by E. harbinense B49 using ultrasonic sludge as nutrients. The results also showed that hydrogen production using pretreated sludge as multiple nutrients was higher than those using standard nutrients. Acetic acid produced by E. harbinense B49 together with the residual nutrients in the liquid medium were further converted into hydrogen (271.36 ml H2/g total sugar) by Rhodopseudomonas faecalis RLD-53 through photo fermentation, while ethanol was the sole end product with yield of 220.26 mg/g total sugar. Thus, pretreated sludge was an efficient nutrients source for biofuel production, which could replace the standard nutrients. This research provided a novel strategy to achieve environmental friendly sludge disposal and simultaneous efficient biofuel recovery from organic waste. Copyright © 2016 Elsevier Ltd. All rights reserved.
Buyel, Johannes F; Fischer, Rainer
2014-02-01
Flocculation is a cost-effective method that is used to improve the efficiency of clarification by causing dispersed particles to clump together, allowing their removal by sedimentation, centrifugation or filtration. The efficacy of flocculation for any given process depends on the nature and concentration of the particulates in the feed stream, the concentration, charge density and length of the flocculant polymer, the shear rate, the properties of the feed stream (e.g. pH and ionic strength) and the properties of the target products. We tested a range of flocculants and process conditions using a design of experiments approach to identify the most suitable polymers for the clarification step during the production of a HIV-neutralizing monoclonal antibody (2G12) and a fluorescent marker protein (DsRed) expressed in transgenic tobacco leaves. Among the 23 different flocculants we tested, the greatest reduction in turbidity was achieved with Polymin P, a branched, cationic polyethylenimine with a charge density of 13.0 meq/g. This flocculant reduced turbidity by more than 90% under a wide range of process conditions. We developed a model that predicted its performance under different process conditions, and this enabled us to increase the depth filter capacity three-sevenfold depending on the process scale, depth filter type and plant species. The costs of filter consumables were reduced by more than 50% compared with a process without flocculant, and there was no loss of recovery for either 2G12 or DsRed. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Baawain, Mahad S; Al-Jabri, Mohsin; Choudri, B S
2014-02-01
There are more than 350 wastewater treatment plants distributed across different parts of Oman. Some of them produce large quantities of domestic sewage sludge, particularly this study focused on characterizing domestic sludge of six treatment plants that may contain various pollutants, therefore the proper management of domestic sewage sludge is essential. Samples of domestic sewage sludge were collected for each month over a period of one year in 2010. Samples of retained/recycled activated sludge (RAS) and waste activated sludge (WAS) were analyzed for elec-trical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content. All tests were conducted according to the Standard Method for the Examination of Water and Wastewater. Monitoring ofelectrical conductivity, nitrite and nitrate, the presence of chloride, sulfate and phosphate were higher than the other anions, the phosphate was found very high in all domestic STPs. The average obtained values of the cations in both domestic RAS and WAS samples were within the Omani Standards. The study showed the very high concentration of phosphate, it might be worth to further investigate on the sources of phosphate. Cations in both domestic RAS and WAS samples were low and suggest that the domestic sludge can be re used in agriculture. A regular maintenance should be performed to prevent any accumulation of some harmful substances which may affect the sludge quality and the sludge drying beds should be large enough to handle the produced sludge for better management.
Lv, Xiao-Mei; Song, Ju-Sheng; Li, Ji; Zhai, Kun
2017-08-01
In the present study, quick-lime-based thermal-alkaline sludge disintegration (SD) under low temperature was combined with cryptic growth to investigate the excess sludge reduction efficiency in the sequencing batch reactor (SBR). The optimized condition of SD was as follows: T = 80℃, pH = 11, t = 180 min, and the SD rate was about 42.1%. With 65.6% of excess sludge disintegrated and returned to the SBR, the system achieved sludge reduction rate of about 40.1%. The lysis-cryptic growth still obtained satisfactory sludge reduction efficiency despite the comparative low SD rate, which suggested that disintegration rate might not be the decisive factor for cryptic-growth-based sludge reduction. Lysis-cryptic growth did not impact the effluent quality, yet the phosphorus removal performance was enhanced, with effluent total phosphorus concentration decreased by 0.3 mg/L (33%). Crystal compounds of calcium phosphate precipitate were detected in the system by Fourier transform infrared spectroscopy and X-ray diffraction, which indicated the phosphorus removal potential of SD using lime. Moreover, endogenous dehydrogenase activity of activated sludge in the lysis-cryptic system was enhanced, which was beneficial for sludge reduction. SD and cryptic growth in the present study demonstrates an economical and effective approach for sludge reduction.
Enhancement of waste activated sludge aerobic digestion by electrochemical pre-treatment.
Song, Li-Jie; Zhu, Nan-Wen; Yuan, Hai-Ping; Hong, Ying; Ding, Jin
2010-08-01
Electrochemical technology with a pair of RuO(2)/Ti mesh plate electrode is first applied to pre-treat Waste Activated Sludge (WAS) prior to aerobic digestion in this study. The effects of various operating conditions were investigated including electrolysis time, electric power, current density, initial pH of sludge and sludge concentration. The study showed that the sludge reduction increased with the electrolysis time, electric power or current density, while decreased with the sludge concentration. Additionally, higher or lower pH than 7.0 was propitious to remove organic matters. The electrochemical pre-treatment removed volatile solids (VS) and volatile suspended solids (VSS) by 2.75% and 7.87%, respectively, with a WAS concentration of 12.9 g/L, electrolysis time of 30 min, electric power of 5 W and initial sludge pH of 10. In the subsequent aerobic digestion, the sludge reductions for VS and VSS after solids retention time (SRT) of 17.5 days were 34.25% and 39.59%, respectively. However, a SRT of 23.5 days was necessary to achieve equivalent reductions without electrochemical pre-treatment. Sludge analysis by Scanning Electron Microscope (SEM) images and infrared (IR) spectra indicated that electrochemical pre-treatment can rupture sludge cells, remove and solubilize intracellular substances, especially protein and polysaccharide, and consequently enhance the aerobic digestion. (c) 2010 Elsevier Ltd. All rights reserved.
Belhaj, Dalel; Elloumi, Nada; Jerbi, Bouthaina; Zouari, Mohamed; Abdallah, Ferjani Ben; Ayadi, Habib; Kallel, Monem
2016-10-01
Use of sewage sludge, a biological residue produced from sewage treatment processes in agriculture, is an alternative disposal technique of waste. To study the usefulness of sewage sludge amendment for Helianthus annuus, a pot experiment was conducted by mixing sewage sludge at 2.5, 5, and 7.5 % (w/w) amendment ratios to the agricultural soil. Soil pH decreased whereas electrical conductivity, organic matter, total N, available P, and exchangeable Na, K, and Ca increased in soil amended with sewage sludge in comparison to unamended soil. Sewage sludge amendment led to significant increase in Pb, Ni, Cu, Cr, and Zn concentrations of soil. The increased concentration of heavy metals in soil due to sewage sludge amendment led to increases in shoot and root concentrations of Cr, Cu, Ni, and Zn in plant as compared to those grown on unamended soil. Accumulation was more in roots than shoots for most of the heavy metals. Moreover, high metal removal for the harvestable parts of the crops was recorded. Sewage sludge amendment increased root and shoot length, leaves number, biomass, and antioxidant activities of sunflower. Significant increases in the activities of antioxidant enzymes and in the glutathione, proline, and soluble sugar content in response to amendment with sewage sludge may be defense mechanisms induced in response to heavy metal stress. Graphical abstract Origin, fate and behavior of sewage sludge fertilizer.
NASA Astrophysics Data System (ADS)
Fleit, E.; Melicz, Z.; Sándor, D.; Zrínyi, M.; Filipcsei, G.; László, K.; Dékány, I.; Király, Z.
Performance of biological wastewater treatment depends to a large extent on mechanical strength, size distribution, permeability and other textural properties of the activated sludge flocs. A novel approach was developed in applying synthetic polymer materials to organize floc architecture instead of spontaneously formed activated sludge floc. Developed microcarrier polymer materials were used in our experiments to mitigate technological goals. Preliminary results suggest that the PVA-PAA (polyvinyl alcohol-polyacrylic acid copolymer) is a feasible choice for skeleton material replacing "traditional" activated sludge floc. Use of PVA-PAA hydrogel material as microreactors and methods for biofilm formation of wastewater bacteria on the carrier material are described. Laboratory scale experimental results with microscopic size bioreactors and their potential application for simultaneous nitrification and denitrification are presented.
Virus elimination in activated sludge systems: from batch tests to mathematical modeling.
Haun, Emma; Ulbricht, Katharina; Nogueira, Regina; Rosenwinkel, Karl-Heinz
2014-01-01
A virus tool based on Activated Sludge Model No. 3 for modeling virus elimination in activated sludge systems was developed and calibrated with the results from laboratory-scale batch tests and from measurements in a municipal wastewater treatment plant (WWTP). The somatic coliphages were used as an indicator for human pathogenic enteric viruses. The extended model was used to simulate the virus concentration in batch tests and in a municipal full-scale WWTP under steady-state and dynamic conditions. The experimental and modeling results suggest that both adsorption and inactivation processes, modeled as reversible first-order reactions, contribute to virus elimination in activated sludge systems. The model should be a useful tool to estimate the number of viruses entering water bodies from the discharge of treated effluents.
Adsorption mechanisms and impact factors of oxytetracycline on activated sludge
NASA Astrophysics Data System (ADS)
Xiancai, Song; Dongfang, Liu; Lejun, Zhao
2017-03-01
The adsorption mechanisms and the effect of Oxytetracycline (OTC) onto activated sludge were studied. The results show that the adsorption of Oxytetracycline (OTC) onto activated sludge was coincident with the Pseudo-second-order kinetic model which suggested that chemical adsorption mechanism was dominant. The influences including pH and metal ions on the OTC were examined. It was demonstrated that the adsorption process was highly pH-dependant, which indicate that cationic exchange mechanisms may play an important role in the adsorption process. Na+, K+, Ca2+, Mg2+ and Cd2+ ions more or less inhibited the adsorption of OTC on activated sludge while Cu2+ enhanced the adsorption ability. The phenomenon may reflect the result that a surface complexation mechanism could involved in the adsorption.
USDA-ARS?s Scientific Manuscript database
Non-sulfonated lignin, a byproduct of biomass conversion to fuel ethanol, is finding increasing applications and can be converted to chemical substances which replace those obtained from petrochemicals. To date, most studies of flocculant function on non-sulfonated lignin have used mixtures of lign...
Araujo, Moacir Messias de; Lermontov, André; Araujo, Philippe Lopes da Silva; Zaiat, Marcelo
2013-09-01
An innovative biomass carrier (Biobob®) was tested for municipal wastewater treatment in an activated sludge system to evaluate the pollutant removal performance and the sludge generation for different carrier volumes. The experiment was carried out in a pilot-scale cyclic activated sludge system (CASS®) built with three cylindrical tanks in a series: an anoxic selector (2.1 m(3)), an aerobic selector (2.5 m(3)) and the main aerobic reactor (25.1 m(3)). The results showed that by adding the Biobob® carrier decreased the MLVSS concentration, which consequently reduced the waste sludge production of the system. Having 7% and 18% (v/v) support material in the aerobic reactor, the observed biomass yield decreased 18% and 36%, respectively, relative to the reactor operated with suspended biomass. The addition of media did not affect the system's performance for COD and TSS removal. However, TKN and TN removal were improved by 24% and 14%, respectively, using 18% (v/v) carrier. Copyright © 2013 Elsevier Ltd. All rights reserved.
Huang, Cheng; Lai, Jia; Sun, Xiuyun; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Wang, Lianjun
2016-11-01
In this study, the combination treatment of NaOH and Mg(OH)2 was applied to anaerobic digestion of waste activated sludge (WAS) for simultaneously enhancement of volatile fatty acids (VFAs) production, nutrients removal and sludge dewaterability. The maximum VFAs production (461mg COD/g VSS) was obtained at the NaOH/Mg(OH)2 ratio of 75:25, which was much higher than that of the blank or sole NaOH. Moreover, nutrients removal and sludge dewaterability were improved by the combined using of NaOH and Mg(OH)2. Mechanism investigations revealed that the presence of Mg(OH)2 could maintain alkaline environment, which contributed to inhibit the activity of methanogens. Also, the bridging between Mg(2+) and extracellular polymeric substances (EPS) plays an important role in the solubilization and dewatering of sludge. High-throughput sequencing analysis demonstrated that the abundance of bacteria involved in sludge hydrolysis and VFAs accumulation was greatly enriched with the mixtures of NaOH and Mg(OH)2. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yin, Bo; Liu, Hongbo; Wang, Yuanyuan; Bai, Jie; Liu, He; Fu, Bo
2016-03-01
The real cause to the low yield of volatile fatty acids (VFAs), from inhibition or low biodegradation, is uncertain in sludge anaerobic fermentation. In this study, poor biodegradability of proteins and fast decrease of the indigenous hydrolase activity in the residual post-fermented sludge were found to be the major reasons. With the addition of trypsin or alkaline protease in residual post-fermented sludge after primary alkaline fermentation, degradation efficiency of refractory protein increased by 33.6% and 34.8%, respectively. Accordingly, the VFAs yields were improved by 69.7% and 106.1%, respectively. Furthermore, the activities of added trypsin and alkaline protease could maintain at 13.52 U/mL and 19.11 U/mL in the alkaline fermentation process. This study demonstrated that exploiting the refractory proteins in residual post-fermented sludge by protease addition seems to be a very promising way for improving VFAs yield of conventional alkaline fermentations with waste activated sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bengtsson, Simon; de Blois, Mark; Wilén, Britt-Marie; Gustavsson, David
2018-03-20
The aerobic granular sludge (AGS) technology is growing towards becoming a mature option for new municipal wastewater treatment plants and capacity extensions. A process based on AGS was compared to conventional activated sludge processes (with and without enhanced biological phosphorus removal), an integrated fixed-film activated sludge (IFAS) process and a membrane bioreactor (MBR) by estimating the land area demand (footprint), electricity demand and chemicals' consumption. The process alternatives compared included pre-settling, sludge digestion and necessary post-treatment to achieve effluent concentrations of 8 mg/L nitrogen and 0.2 mg/L phosphorus at 7°C. The alternative based on AGS was estimated to have a 40-50% smaller footprint and 23% less electricity requirement than conventional activated sludge. In relation to the other compact treatment options IFAS and MBR, the AGS process had an estimated electricity usage that was 35-70% lower. This suggests a favourable potential for processes based on AGS although more available experience of AGS operation and performance at full scale is desired.
Zhang, Weijun; Song, Rongna; Cao, Bingdi; Yang, Xiaofang; Wang, Dongsheng; Fu, Xingmin; Song, Yao
2018-05-01
The work evaluated the algae cells removal efficiency using titanium salt coagulants with different degree of polymerization (PTCs), and the algae cells aggregates and extracellular organic matter (EOM) under chemical flocculation were investigated. The results indicated that PTCs performed well in algae cells flocculation and separation. The main mechanism using PTCs of low alkalisation degree for algae flocculation was associated with charge neutralization, while adsorption bridging and sweep flocculation was mainly responsible for algae removal by PTCs of high alkalisation degree treatment. In addition, the flocs formed by PTC 1.0 showed the best filtration property, and EOM reached the minimum at this time, indicating the flocs formed by PTC 1.0 were more compact than other PTCs, which can be confirmed by SEM analysis. Three-dimensional excitation emission matrix fluorescence (3D-EEM) and high performance size exclusion chromatography (HPSEC) revealed that the EOMs were removed under PTCs flocculation, which improved floc filterability. Copyright © 2018 Elsevier Ltd. All rights reserved.
Revisiting Coiled Flocculator Performance for Particle Aggregation.
2017-09-08
This work summarizes recent studies evaluating the torsion and curvature parameters in the flocculation efficiency using a hydraulic plug-flow flocculator named as Flocs Generator Reactor (FGR). Colloidal Fe(OH)3 and coal particles were used as suspension models and a cationic polyacrylamide was used for the flocculation. The effectiveness of the aggregation process (in the distinct curvature and torsion parameters and hydrodynamic conditions) was evaluated by the settling rate of the Fe(OH)3 flocs and flocs size by photographic analysis. Due to curvature, a secondary flow is induced and the profiles of the flow quantities differ from those for a straight pipe. Results showed that the difference in the flocculator design influences the Fe(OH)3 flocs size and settling rates, reaching values about 13 and 4 mh-1, for the coiled and straight pipes respectively. Coal flocs generation also showed to be dependent on the flocculator design and shear rate. Results showed that turbulent kinetic energy increases due to curvature when the torsion parameter is kept constant (pitch close to zero) enhancing the flocs formation.
Ye, Caihong; Yuan, Haiping; Dai, Xiaohu; Lou, Ziyang; Zhu, Nanwen
2016-11-01
Waste activated sludge (WAS) requires a long digestion time because of a rate-limiting hydrolysis step - the first phase of anaerobic digestion (AD). Pretreatment can be used prior to AD to facilitate the hydrolysis step and improve the efficiency of WAS digestion. This study evaluated a novel application of electrochemical (EC) technology employed as the pretreatment method prior to AD of WAS, focusing on the effect of process conditions on sludge disintegration and subsequent AD process. A superior process condition of EC pretreatment was obtained by reaction time of 30 min, electrolysis voltage of 20 V, and electrode distance of 5 cm, under which the disintegration degree of WAS ranged between 9.02% and 9.72%. In the subsequent batch AD tests, 206 mL/g volatile solid (VS) methane production in EC pretreated sludge was obtained, which was 20.47% higher than that of unpretreated sludge. The AD time was 19 days shorter for EC pretreated sludge compared to the unpretreated sludge. Additionally, the EC + AD reactor achieved 41.84% of VS removal at the end of AD. The analysis of energy consumption showed that EC pretreatment could be effective in enhancing sludge AD with reduced energy consumption when compared to other pretreatment methods.
An examination of the treatment of iron-dosed waste activated sludge by anaerobic digestion.
Johnson, D K; Carliell-Marquet, C M; Forster, C F
2003-08-01
Anaerobic digestion is an important sludge treatment process enabling stabilisation of the organic fraction of sewage sludge prior to land application. Any practice which might retard the anaerobic digestion process will jeopardize the stability of the resulting digested sludge. This paper reports on an investigation into the relative digestibility of iron-dosed waste activated sludge (WAS) from a sewage treatment works (STW) with chemical phosphorus removal (CPR), in comparison to WAS from a works without phosphorus removal. Two laboratory scale anaerobic digesters (51) were fed initially with non iron-dosed WAS (Works M) at a solids retention time of 19 days. After 2 months the iron-dosed CPR sludge (Works R) was introduced into the second digester, resulting in a 32% decrease in biogas production and an increase in the methane content of the biogas from an average of 74% to 81%. Pre-treatment of the CPR sludge with sodium sulphide and shear, both alone and in combination, caused the gas production to deteriorate further. Pre-acidification and pre-treatment with EDTA did result in an enhanced gas production but it was still not comparable with that of the digester being fed with non-iron-dosed sludge. The daily gas production was found to be linearly related to the amount of bound iron in the sludge.
Luiz, Marguti André; Sidney Seckler, Ferreira Filho; Passos, Piveli Roque
2018-06-01
An emerging practice for water treatment plant (WTP) sludge is its disposal in wastewater treatment plants (WWTP), an alternative that does not require the installation of sludge treatment facilities in the WTP. This practice can cause both positive and negative impacts in the WWTP processes since the WTP sludge does not have the same characteristics as domestic wastewater. This issue gives plenty of information in laboratory and pilot scales, but lacks data from full-scale studies. The main purpose of this paper is to study the impact of disposing sludge from the Rio Grande conventional WTP into the ABC WWTP, an activated sludge process facility. Both plants are located in São Paulo, Brazil, and are full-scale facilities. The WTP volumetric flow rate (4.5 m³/s) is almost three times that of WWTP (1.6 m³/s). The data used in this study came from monitoring the processes at both plants. The WWTP liquid phase treatment analysis included the variables BOD, COD, TSS, VSS, ammonia, total nitrogen, phosphorus and iron, measured at the inlet, primary effluent, mixed liquor, and effluent. For the WWTP solids treatment, the parameters tested were total and volatile solids. The performance of the WWTP process was analyzed with and without sludge addition: 'without sludge' in years 2005 and 2006 and 'with sludge' from January 2007 to March 2008. During the second period, the WTP sludge addition increased the WWTP removal efficiencies for solids (93%-96%), organic matter (92%-94% for BOD) and phosphorus (52%-88%), when compared to the period 'without sludge'. These improvements can be explained by higher feed concentrations combined to same or lower effluent concentrations in the 'with sludge' period. No critical negative impacts occurred in the sludge treatment facilities, since the treatment units absorbed the extra solids load from the WTP sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.
Philips, Patrick J.; Stinson, Beverley; Zaugg, Steven D.; Furlong, Edward T.; Kolpin, Dana W.; Esposito, Kathleen; Bodniewicz, B.; Pape, R.; Anderson, J.
2005-01-01
The second phase of the study focused on one of the most common wastewater treatment processes operated in the United States, the Activated Sludge process. Using four controlled parallel activated sludge pilots, a more detailed assessment of the impact of Sludge Retention Time (SRT) on the reduction or removal of ECs was performed.
Lei, Guo-Yuan; Ding, Cui-Ping; Yang, Jia-Xuan
2011-09-01
An excellent strain (designated as T-3) which produces bio-flocculants was isolated from soil samples, and identified as Klebsiella sp. species based on the analysis of morphology, physiology and biochemistry and 16S rDNA sequences measurement. The effects of culture conditions such as pH values, temperature, carbon sources and nitrogen sources on bio-flocculants production by T-3 strain were studied. The experiment results show that T-3 strain has better adaptability to carbon sources and nitrogen sources, and higher capacity of bio-flocculants was obtained when the initial pH value of culture and temperature were 9 and 25 degrees C respectively. Based on the colorimetric reactions of proteins and polysaccharide substance, ultraviolet scanning analysis and Fourier Transform Infrared Spectroscopy analysis, it is found that the bio-flocculants produced by T-3 strain contains -OH and -COO(-) groups and belongs to anionic type flocculant. Moreover, the main component is polysaccharides. The treatment of oily cold-rolling wastewater by the bio-flocculant was investigated and the better result was obtained. When the dosages of CaCl2, bio-flocculants and poly aluminium chloride were 4 g x L(-1), 10% (volume fraction) and 1 g x L(-1) respectively, and the pH value was 7.0, the oil concentration, COD and turbidity were decreased to 10 mg x L(-1), 218.4 mg x L(-1) and 1.36 from 4 819 mg x L(-1), 28 456.8 mg x L(-1) and 3 950 with the removal efficiencies of 99.79%, 92.32% and 99.97% respectively. The interaction between flocculant and oily droplets is achieved by the interaction of Van der Waals force, hydrogen bond and the bridged coordination of Ca2+, in which the bridged coordination of Ca2+ is the dominant.
Schramm, Andreas; Santegoeds, Cecilia M.; Nielsen, Helle K.; Ploug, Helle; Wagner, Michael; Pribyl, Milan; Wanner, Jiri; Amann, Rudolf; de Beer, Dirk
1999-01-01
A combination of different methods was applied to investigate the occurrence of anaerobic processes in aerated activated sludge. Microsensor measurements (O2, NO2−, NO3−, and H2S) were performed on single sludge flocs to detect anoxic niches, nitrate reduction, or sulfate reduction on a microscale. Incubations of activated sludge with 15NO3− and 35SO42− were used to determine denitrification and sulfate reduction rates on a batch scale. In four of six investigated sludges, no anoxic zones developed during aeration, and consequently denitrification rates were very low. However, in two sludges anoxia in flocs coincided with significant denitrification rates. Sulfate reduction could not be detected in any sludge in either the microsensor or the batch investigation, not even under short-term anoxic conditions. In contrast, the presence of sulfate-reducing bacteria was shown by fluorescence in situ hybridization with 16S rRNA-targeted oligonucleotide probes and by PCR-based detection of genes coding for the dissimilatory sulfite reductase. A possible explanation for the absence of anoxia even in most of the larger flocs might be that oxygen transport is not only diffusional but enhanced by advection, i.e., facilitated by flow through pores and channels. This possibility is suggested by the irregularity of some oxygen profiles and by confocal laser scanning microscopy of the three-dimensional floc structures, which showed that flocs from the two sludges in which anoxic zones were found were apparently denser than flocs from the other sludges. PMID:10473433
NASA Astrophysics Data System (ADS)
Ye, Leiping; Parsons, Daniel; Manning, Andrew
2016-04-01
There remains a lack of process-based knowledge of sediment dynamics within flows over bedforms generated in complex mixtures of cohesionless sand and biologically-active cohesive muds in natural estuarine flow systems. The work to be presented forms a part of the UK NERC "COHesive BEDforms (COHBED)" project which aims to fill this gap in knowledge. Herein results from a field survey in sub-tidal zone of Dee estuary (NW, England) and a set of large-scale laboratory experiments, conducted using mixtures of non-cohesive sands, cohesive muds and Xanthan gum (as a proxy for the biological stickiness of Extracellular Polymeric Substances (EPS)) will be presented. The results indicate the significance of biological-active cohesive sediments in controlling winnowing rates and flocculation dynamics, which contributes significantly to rates of bedform evolution.
Potential of activated sludge disintegration.
Boehler, M; Siegrist, H
2006-01-01
The disposal of sewage sludge and the agricultural use of stabilised sludge are decreasing due to more stringent regulations in Europe. An increasing fraction of sewage sludge must therefore be dewatered, dried, incinerated and the ashes disposed of in landfills. These processes are cost-intensive and also lead to the loss of valuable phosphate resources incorporated in the sludge ash. The implementation of processes that could reduce excess sludge production and recycle phosphate is therefore recommended. Disintegration of biological sludge by mechanical, thermal and physical methods could significantly reduce excess sludge production, improve the settling properties of the sludge and reduce bulking and scumming. The solubilised COD could also improve denitrification if the treated sludge is recycled to the anoxic zone. However, disintegration partly inhibits and kills nitrifiers and could therefore shorten their effective solid retention time, thus reducing the safety of the nitrification. This paper discusses the potential of disintegration on sludge reduction, the operating stability of nitrification, the improvement of denitrification and also presents an energy and cost evaluation.
Activated-Sludge Nitrification in the Presence of Linear and Branched-Chain Alkyl Benzene Sulfonates
Baillod, Charles R.; Boyle, W. C.
1968-01-01
The effects of biodegradable linear alkyl benzene sulfonate and branched-chain alkyl benzene sulfonate detergents on activated-sludge nitrification were investigated by administering a synthetic waste containing up to 23 mg of each detergent per liter to eight bench-scale, batch, activated-sludge units. It was found that both detergents tended to promote complete oxidation of ammonia to nitrate, whereas control units produced approximately equal amounts of nitrite and nitrate. Various hypotheses are offered to explain the phenomenon. PMID:5636474
Li, Shuyan; Li, Jijin; Yuan, Jing; Li, Guoxue; Zang, Bing; Li, Yangyang
2017-07-01
The aim of this study was to investigate the influence of inoculants on compost stability, maturity and enzyme activities during composting of chicken manure and cornstalk. Two microbial inoculants (originated from aerobic municipal sludge and municipal solid waste, respectively) were used in composting at the rate of 0.3% of initial raw materials (wet weight). No microbial inoculums were added to the control. The experiment was conducted under aerobic conditions for 53 days. The results show that enzyme activity is an important index to comprehensively evaluate the composting stability and maturity. Microbes originated from sludge works best in terms of composting stability and maturity (C:N ratio decreased from 15.5 to 10, and germination index increased to 109%). Microbial inoculums originated from sludge and municipal solid waste extended the time of thermophilic phase for 11 and 7 days, respectively. Microbial inoculums originated from sludge and MSW significantly increased the average of catalase activity (by 15.0% and 12.1%, respectively), urease activity (by 21.5% and 12.2%, respectively) and cellulase activity (by 32.1% and 26.1%, respectively) during composting.
Molecular Basis for Strain Variation in the Saccharomyces cerevisiae Adhesin Flo11p
Li, Li; Lipke, Peter N.; Dranginis, Anne M.
2016-01-01
ABSTRACT FLO11 encodes a yeast cell wall flocculin that mediates a variety of adhesive phenotypes in Saccharomyces cerevisiae. Flo11p is implicated in many developmental processes, including flocculation, formation of pseudohyphae, agar invasion, and formation of microbial mats and biofilms. However, Flo11p mediates different processes in different yeast strains. To investigate the mechanisms by which FLO11 determines these differences in colony morphology, flocculation, and invasion, we studied gene structure, function, and expression levels. Nonflocculent Saccharomyces cerevisiae Σ1278b cells exhibited significantly higher FLO11 mRNA expression, especially in the stationary phase, than highly flocculent S. cerevisiae var. diastaticus. The two strains varied in cell surface hydrophobicity, and Flo11p contributed significantly to surface hydrophobicity in S. cerevisiae var. diastaticus but not in strain Σ1278b. Sequencing of the FLO11 gene in S. cerevisiae var. diastaticus revealed strain-specific differences, including a 15-amino-acid insertion in the adhesion domain. Flo11p adhesion domains from strain Σ1278b and S. cerevisiae var. diastaticus were expressed and used to coat magnetic beads. The adhesion domain from each strain bound preferentially to homologous cells, and the preferences were independent of the cells in which the adhesion domains were produced. These results are consistent with the idea that strain-specific variations in the amino acid sequences in the adhesion domains cause different Flo11p flocculation activities. The results also imply that strain-specific differences in expression levels, posttranslational modifications, and allelic differences outside the adhesion domains have little effect on flocculation. IMPORTANCE As a nonmotile organism, Saccharomyces cerevisiae employs the cell surface flocculin Flo11/Muc1 as an important means of adapting to environmental change. However, there is a great deal of strain variation in the expression of Flo11-dependent phenotypes, including flocculation. In this study, we investigated the molecular basis of this strain-specific phenotypic variability. Our data indicate that strain-specific differences in the level of flocculation result from significant sequence differences in the FLO11 alleles and do not depend on quantitative differences in FLO11 expression or on surface hydrophobicity. We further have shown that beads coated with amino-terminal domain peptide bind preferentially to homologous cells. These data show that variability in the structure of the Flo11 adhesion domain may thus be an important determinant of membership in microbial communities and hence may drive selection and evolution. PMID:27547826
Energy-producing electro-flocculation for harvest of Dunaliella salina.
Liu, Qing; Zhang, Meng; Lv, Tao; Chen, Hongjun; Chika, Anthony Okonkwo; Xiang, Changli; Guo, Minxue; Wu, Minghui; Li, Jianjun; Jia, Lishan
2017-10-01
In this study, an efficient electro-flocculation process for Dunaliella salina with energy production by aluminum-air battery has been successfully applied. The formed aluminum hydroxide hydrates during discharging of battery were positively charged, which have a great potential for microalgae flocculation. The precipitation of aluminum hydroxide hydrates by algae also could improve the performance of aluminum-air battery. The harvesting efficiency could reach 97% in 20mins with energy production of 0.11kWh/kg. This discharging electro-flocculation (DEF) technology provides a new energy producing process to effectively harvest microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nikolaeva, L. A.; Khusaenova, A. Z.
2014-05-01
A method for utilizing production wastes is considered, and a process circuit arrangement is proposed for utilizing a mixture of activated silt and sludge from chemical water treatment by incinerating it with possible heat recovery. The sorption capacity of the products from combusting a mixture of activated silt and sludge with respect to gaseous emissions is experimentally determined. A periodic-duty adsorber charged with a fixed bed of sludge is calculated, and the heat-recovery boiler efficiency is estimated together with the technical-economic indicators of the proposed utilization process circuit arrangement.
Qualitative changes of riverine dissolved organic matter at low salinities due to flocculation
NASA Astrophysics Data System (ADS)
Asmala, Eero; Bowers, David G.; Autio, Riitta; Kaartokallio, Hermanni; Thomas, David N.
2014-10-01
The flocculation of dissolved organic matter (DOM) was studied along transects through three boreal estuaries. Besides the bulk concentration parameters, a suite of DOM quality parameters were investigated, including colored DOM (CDOM), fluorescent DOM, and the molecular weight of DOM as well as associated dissolved iron concentrations. We observed significant deviations from conservative mixing at low salinities (<2) in the estuarine samples of dissolved organic carbon (DOC), UV absorption (a(CDOM254)), and humic-like fluorescence. The maximum deviation from conservative mixing for DOC concentration was -16%, at salinities between 1 and 2. An associated laboratory experiment was conducted where an artificial salinity gradient between 0 and 6 was created. The experiment confirmed the findings from the estuarine transects, since part of the DOC and dissolved iron pools were transformed to particulate fraction (>0.2 µm) and thereby removing them from the dissolved phase. We also measured flocculation of CDOM, especially in the UV region of the absorption spectrum. Protein-like fluorescence of DOM decreased, while humic-like fluorescence increased because of salt-induced flocculation. Additionally, there was a decrease in molecular weight of DOM. Consequently, the quantity and quality of the remaining DOM pool was significantly changed after influenced to flocculation. Based on these results, we constructed a mechanistic, two-component flocculation model. Our findings underline the importance of the coastal filter, where riverine organic matter is flocculated and exported to the sediments.
Zhu, Zhongfan; Xiong, Xiangzhong; Liang, Chaohuang; Zhao, Ming
2018-05-01
It remains unclear how the primary particle concentration and salinity conditions influence the flocculation and settling characteristics of water-sediment suspensions. In this study, two sets of experiments were performed to examine the flocculation and settling properties of low- and high-concentration sediment suspensions. In low-concentration suspensions, the sediment concentration undergoes a rapid initial decrease followed by a slow decrease until it approaches zero with increasing flocculation time. Increases in salinity or the valence of cations from the saline solution added to the suspension lead to a more rapidly decreasing sediment concentration with flocculation time. The valence of cations from the saline solution has a larger influence on the flocculation-settling behaviours of the suspension than the salinity. In high-concentration sediment suspensions, the height of the clear water-turbid water interface in the water-sediment suspension experiences an initial, rapidly decreasing phase followed by a slowly decreasing phase with increasing flocculation time. Increasing the primary particle concentration, salinity or valence of cations from the saline solution added to the suspension causes the height reduction of the clear water-turbid water interface to become gentler. Finally, the valence of cations from the saline solution has a greater influence on the settling characteristics of the high-concentration water-sediment suspension than the salinity.
[Preparation and structural analysis of diatomite-supported SPFS flocculant].
Zheng, Huai-li; Fang, Hui-li; Jiang, Shao-jie; Yang, Chun; Ma, Jiang-ya; Zhang, Zhao-qing
2011-07-01
In the presetn study, polymerized ferric sulphate (PFS) flocculant was prepared and tested. In the preparation of PFS flocculant, industrial by-product ferrous sulfate heptahydrate (FeSO4.7H2O) was reused as the main material. By composition with diatomite and drying up at certain temperature in vacuum drying oven, solid PFS flocculant was produced. Structural characteristics of the new flocculant product were examined through infrared spectroscopy and scanning electron microscopy (SEM), which showed that by compositing with diatomite, new group bridging emerged in the structure of PFS, which made the bond of groups stronger. In addition, part of the metalic contents in diatomite was polymerized with PFS, the product of which was polymerized ferric complex. Furthermore, the absorbing and agglomerating capacity of the diatomite carrier was significant. Considering the factors listed above, the new solid polymerized ferric sulphate (SPFS) flocculant was characterized with a larger molecule structure and enhanced absorbing, bridging and rolling sweep capacities. Through orthogonal experiment, optimum conditions of synthesis were as follows: the ratio of FeSO4.7H2O/diatomite in weight was 43/1, the reaction time is 1 h and the reaction temperature is 55 degrees C. By wastewater treatment experiment, it was found that the synthetic products showed good flocculation performance in the treatment of domestic sewage, the removal of COD was 80.00% and the removal of turbidity was 99.98%.
Carrère, Hélène; Bougrier, Claire; Castets, Delphine; Delgenès, Jean Philippe
2008-11-01
Thermal treatments with temperature ranging from 60 to 210 degrees C were applied to 6 waste-activated sludge samples originating from high or medium load, extended aeration wastewater treatment processes that treated different wastewaters (urban, urban and industrial or slaughterhouse). COD sludge solubilisation was linearly correlated with the treatment temperature on the whole temperature range and independently of the sludge samples. Sludge batch mesophilic biodegradability increased with treatment temperature up to 190 degrees C. In this temperature range, biodegradability enhancement or methane production increase by thermal hydrolysis was shown to be a function of sludge COD solubilisation but also of sludge initial biodegradability. The lower the initial biodegradability means the higher efficiency of thermal treatment.
Yang, Sheng-Fu; Lin, Cheng-Fang; Lin, Angela Yu-Chen; Hong, Pui-Kwan Andy
2011-05-01
This study investigated the adsorption, desorption, and biodegradation characteristics of sulfonamide antibiotics in the presence of activated sludge with and without being subjected to NaN(3) biocide. Batch experiments were conducted and the relative contributions of adsorption and biodegradation to the observed removal of sulfonamide antibiotics were determined. Three sulfonamide antibiotics including sulfamethoxazole (SMX), sulfadimethoxine (SDM), and sulfamonomethoxine (SMM), which had been detected in the influent and the activated sludge of wastewater treatment plants (WWTP) in Taiwan, were selected for this study. Experimental results showed that the antibiotic compounds were removed via sorption and biodegradation by the activated sludge, though biodegradation was inhibited in the first 12 h possibly due to competitive inhibition of xenobiotic oxidation by readily biodegradable substances. The affinity of sulfonamides to sterilized sludge was in the order of SDM > SMM > SMX. The sulfonamides existed predominantly as anions at the study pH of 6.8, which resulted in a low level of adsorption to the activated sludge. The adsorption/desorption isotherms were of a linear form, as well described by the Freundlich isotherm with the n value approximating unity. The linear distribution coefficients (K(d)) were determined from batch equilibrium experiments with values of 28.6 ± 1.9, 55.7 ± 2.2, and 110.0 ± 4.6 mL/g for SMX, SMM, and SDM, respectively. SMX, SMM, and SDM desorb reversibly from the activated sludge leaving behind on the solids 0.9%, 1.6%, and 5.2% of the original sorption dose of 100 μg/L. The sorbed antibiotics can be introduced into the environment if no further treatments were employed to remove them from the biomass. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cokgor, Emine Ubay; Aydinli, Ebru; Tas, Didem Okutman; Zengin, Gulsum Emel; Orhon, Derin
2014-01-01
The efficiency of aerobic stabilization on the treatment sludge generated from the leather industry was investigated to meet the expected characteristics and conditions of sludge prior to landfill. The sludge types subjected to aerobic stabilization were chemical treatment sludge, biological excess sludge, and the mixture of both chemical and biological sludges. At the end of 23 days of stabilization, suspended solids, volatile suspended solids and total organic carbon removal efficiencies were determined as 17%, 19% and 23% for biological sludge 31%, 35% and 54% for chemical sludge, and 32%, 34% and 63% for the mixture of both chemical and biological sludges, respectively. Model simulations of the respirometric oxygen uptake rate measurements showed that the ratio of active biomass remained the same at the end of the stabilization for all the sludge samples. Although mixing the chemical and biological sludges resulted in a relatively effective organic carbon and solids removal, the level of stabilization achieved remained clearly below the required level of organic carbon content for landfill. These findings indicate the potential risk of setting numerical restrictions without referring to proper scientific support.
Pan, Aifei; Wang, Wenjun; Mei, Xuesong; Wang, Kedian; Yang, Xianbin
2017-09-26
We report on the formation of rutile TiO 2 flocculent laser-induced periodic surface structures (LIPSSs) with high antireflectivity and superhydrophobicity on the surface of titanium under 10 ns 1064 nm laser irradiation without focusing. The center part of the Gaussian laser beam is used to deposit flocculent structure and the edge part used to produce LIPSSs. The melt and modification thresholds of titanium were determined first, and then, the melt and modification spot-overlap numbers, several responsible for the formation of flocculent structure and LIPSSs, were introduced. It is found that both the melt and modification spot-overlap numbers increase with an increase in laser fluence and spot-overlap number, contributing to the production of flocculent LIPSSs. LIPSSs are obtained with the modification spot-overlap number above 300, and the amount of flocculent structures increases with an increase in the peak laser fluence and spot-overlap number. Then, considering that the fine adjustment of the melt and modification spot-overlop numbers in one-time line scanning is quite difficult, the composite structure, of which both LIPSSs and flocculent structures are distinct, was optimized using laser line scanning twice. On this basis, a characterization test shows the sample full of the flocculent LIPSSs represents best antireflectivity with the value around 10% in the waveband between 260 and 2600 nm (advance 5 times in infrared wavelengths compared to the initial titanium surface), and shows the no-stick hydrophobicity with the contact angle of 160° and roll-off angle of 25° because of the pure rutile phase of TiO 2 .
Micropollutant removal from black water and grey water sludge in a UASB-GAC reactor.
Butkovskyi, A; Sevenou, L; Meulepas, R J W; Hernandez Leal, L; Zeeman, G; Rijnaarts, H H M
2018-02-01
The effect of granular activated carbon (GAC) addition on the removal of diclofenac, ibuprofen, metoprolol, galaxolide and triclosan in a up-flow anaerobic sludge blanket (UASB) reactor was studied. Prior to the reactor studies, batch experiments indicated that addition of activated carbon to UASB sludge can decrease micropollutant concentrations in both liquid phase and sludge. In continuous experiments, two UASB reactors were operated for 260 days at an HRT of 20 days, using a mixture of source separated black water and sludge from aerobic grey water treatment as influent. GAC (5.7 g per liter of reactor volume) was added to one of the reactors on day 138. No significant difference in COD removal and biogas production between reactors with and without GAC addition was observed. In the presence of GAC, fewer micropollutants were washed out with the effluent and a lower accumulation of micropollutants in sludge and particulate organic matter occurred, which is an advantage in micropollutant emission reduction from wastewater. However, the removal of micropollutants by adding GAC to a UASB reactor would require more activated carbon compared to effluent post-treatment. Additional research is needed to estimate the effect of bioregeneration on the lifetime of activated carbon in a UASB-GAC reactor.
Li, Zheng; Qi, Rong; Wang, Bo; Zou, Zhe; Wei, Guohong; Yang, Min
2013-01-01
A full-scale oxidation ditch process for treating sewage was simulated with the ASM2d model and optimized for minimal cost with acceptable performance in terms of ammonium and phosphorus removal. A unified index was introduced by integrating operational costs (aeration energy and sludge production) with effluent violations for performance evaluation. Scenario analysis showed that, in comparison with the baseline (all of the 9 aerators activated), the strategy of activating 5 aerators could save aeration energy significantly with an ammonium violation below 10%. Sludge discharge scenario analysis showed that a sludge discharge flow of 250-300 m3/day (solid retention time (SRT), 13-15 days) was appropriate for the enhancement of phosphorus removal without excessive sludge production. The proposed optimal control strategy was: activating 5 rotating disks operated with a mode of "111100100" ("1" represents activation and "0" represents inactivation) for aeration and sludge discharge flow of 200 m3/day (SRT, 19 days). Compared with the baseline, this strategy could achieve ammonium violation below 10% and TP violation below 30% with substantial reduction of aeration energy cost (46%) and minimal increment of sludge production (< 2%). This study provides a useful approach for the optimization of process operation and control.
Hurst, C J; Farrah, S R; Gerba, C P; Melnick, J L
1978-01-01
The development and evaluation of methods for the quantitative recovery of enteroviruses from sewage sludge are reported. Activated sewage sludge solids were collected by centrifugation, and elution of the solid-associated virus was accomplished by mechanical agitation in glycine buffer at pH 11.0. Eluted viruses were concentrated either onto an aluminum hydroxide floc or by association with a floc which formed de novo upon adjustment of the glycine eluate to pH 3.5. Viruses which remained in the liquid phase after lowering the pH of glycine eluate were concentrated by adsorption to and elution from membrane filters. The method of choice included high pH glycine elution and subsequent low pH concentration; it yielded an efficiency of recovery from activated sludge of 80% for poliovirus type 1, 68% for echovirus type 7, and 75% for coxsackievirus B3. This method was used to study the survival of naturally occurring virus in sludge at a sewage treatment plant and after subsequent land disposal of the solids after aerobic digestion. Reduction of enterovirus titers per gram (dry weight) of solids were modest during sludge activation but increased to a rate of 2 log 10/week after land disposal. PMID:29559
Hurst, C J; Farrah, S R; Gerba, C P; Melnick, J L
1978-07-01
The development and evaluation of methods for the quantitative recovery of enteroviruses from sewage sludge are reported. Activated sewage sludge solids were collected by centrifugation, and elution of the solid-associated virus was accomplished by mechanical agitation in glycine buffer at pH 11.0. Eluted viruses were concentrated either onto an aluminum hydroxide floc or by association with a floc which formed de novo upon adjustment of the glycine eluate to pH 3.5. Viruses which remained in the liquid phase after lowering the pH of glycine eluate were concentrated by adsorption to and elution from membrane filters. The method of choice included high pH glycine elution and subsequent low pH concentration; it yielded an efficiency of recovery from activated sludge of 80% for poliovirus type 1, 68% for echovirus type 7, and 75% for coxsackievirus B3. This method was used to study the survival of naturally occurring virus in sludge at a sewage treatment plant and after subsequent land disposal of the solids after aerobic digestion. Reduction of enterovirus titers per gram (dry weight) of solids were modest during sludge activation but increased to a rate of 2 log 10/week after land disposal.
Subha, B.; Muthukumar, M.
2012-01-01
Sago industries effluent containing large amounts of organic content produced excess sludge which is a serious problem in wastewater treatment. In this study ozonation has been employed for the reduction of excess sludge production in activated sludge process. Central composite design is used to study the effect of ozone treatment for the reduction of excess sludge production in sago effluent and to optimise the variables such as pH, ozonation time, and retention time. ANOVA showed that the coefficient determination value (R 2) of VSS and COD reduction were 0.9689 and 0.8838, respectively. VSS reduction (81%) was achieved at acidic pH 6.9, 12 minutes ozonation, and retention time of 10 days. COD reduction (87%) was achieved at acidic pH 6.7, 8 minutes of ozonation time, and retention time of 6 days. Low ozonation time and high retention time influence maximum sludge reduction, whereas low ozonation time with low retention time was effective for COD reduction. PMID:22593666
Oleszczuk, Patryk; Rycaj, Marcin; Lehmann, Johannes; Cornelissen, Gerard
2012-06-01
The goal of the research was to determine the phytotoxicity (using Lepidium sativum) of two activated carbon/biochar-amended sewage sludges. Apart from the impact of the AC/biochar dose, the influence of biochar particle diameter (<300, 300-500 and >500 μm) and the influence of the contact time (7, 60, 90 days) between AC/biochar and sewage sludges on their phytotoxicity was also assessed. No negative impact of sewage sludges on seed germination was observed (P>0.05). The application of AC or biochar to the sludges positively affected root growth by reducing the harmful effect by 7.8 to 42% depending on the material used. Furthermore, the reduction range clearly depended on the type of sewage sludge. No differences were observed in the inhibition of the toxic effect between both biochar types used and the biochar particle size. The extension of the contact time between AC/biochar and sewage sludges had a negative impact on root growth. Copyright © 2012 Elsevier Inc. All rights reserved.
Extracellular polymers of ozonized waste activated sludge.
Liu, J C; Lee, C H; Lai, J Y; Wang, K C; Hsu, Y C; Chang, B V
2001-01-01
Effect of ozonation on characteristics of waste activated sludge was investigated in the current study. Concentrations of cell-bound extracellular polymers (washed ECPs) did not change much upon ozonation, whereas the sum of cell-bound and soluble extracellular polymers (unwashed ECPs) increased with increasing ozone dose. Washed ECPs in original sludge as divided by molecular weight distribution was 39% < 1,000 Da (low MW), 30% from 1,000 to 10,000 Da (medium MW), and 31% > 10,000 Da (high MW). It was observed that the low-MW fraction decreased, and the high-MW fraction increased in ozonized sludge. The unwashed ECPs were characterized as 44% in low MW, 30% in medium MW, and 26% in high MW. Both low-MW and medium-MW fractions of unwashed ECPs decreased while high-MW fraction increased in ozonized sludge. The dewaterability of ozonized sludge, assessed by capillary suction time (CST) and specific resistance to filtration (SRF), deteriorated with ozone dose. The optimal dose of cationic polyelectrolyte increased with increasing ozone dose. The production rate and the accumulated amount of methane gas of ozonized sludge were also higher.
A novel method to harvest Chlorella sp. by co-flocculation/air flotation.
Zhang, Haiyang; Lin, Zhe; Tan, Daoyong; Liu, Chunhua; Kuang, Yali; Li, Zhu
2017-01-01
To develop a more effective dissolved air flotation process for harvesting microalgae biomass, a co-flocculation/air flotation (CAF) system was developed that uses an ejector followed by a helix tube flocculation reactor (HTFR) as a co-flocculation device to harvest Chlorella sp. 64.01. The optimal size distribution of micro-bubbles and an air release efficiency of 96 % were obtained when the flow ratio of inlet fluid (raw water) to motive fluid (saturated water) of the ejector was 0.14. With a reaction time of 24 s in the HTFR, microalgae cells and micro-bubbles were well flocculated, and these aerated flocs caused a fast rising velocity (96 m/h) and high harvesting efficiency (94 %). In a CAF process, micro-bubbles can be encapsulated into microalgae flocs, which makes aerated flocs more stable. CAF is an effective approach to harvesting microalgae.
Toxicities of triclosan, phenol, and copper sulfate in activated sludge.
Neumegen, Rosalind A; Fernández-Alba, Amadeo R; Chisti, Yusuf
2005-04-01
The effect of toxicants on the BOD degradation rate constant was used to quantitatively establish the toxicity of triclosan, phenol, and copper (II) against activated sludge microorganisms. Toxicities were tested over the following ranges of concentrations: 0-450 mg/L for phenol, 0-2 mg/L for triclosan, and 0-35 mg/L for copper sulfate (pentahydrate). According to the EC(50) values, triclosan was the most toxic compound tested (EC(50) = 1.82 +/- 0.1 mg/L), copper (II) had intermediate toxicity (EC(50) = 18.3 +/- 0.37 mg/L), and phenol was the least toxic (EC(50) = 270 +/- 0.26 mg/L). The presence of 0.2% DMSO had no toxic effect on the activated sludge. The toxicity evaluation method used was simple, reproducible, and directly relevant to activated sludge wastewater treatment processes.
BAAWAIN, Mahad S.; AL-JABRI, Mohsin; CHOUDRI, B.S.
2014-01-01
Abstract Background There are more than 350 wastewater treatment plants distributed across different parts of Oman. Some of them produce large quantities of domestic sewage sludge, particularly this study focused on characterizing domestic sludge of six treatment plants that may contain various pollutants, therefore the proper management of domestic sewage sludge is essential. Methods Samples of domestic sewage sludge were collected for each month over a period of one year in 2010. Samples of retained/recycled activated sludge (RAS) and waste activated sludge (WAS) were analyzed for elec-trical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content. All tests were conducted according to the Standard Method for the Examination of Water and Wastewater. Results Monitoring ofelectrical conductivity, nitrite and nitrate, the presence of chloride, sulfate and phosphate were higher than the other anions, the phosphate was found very high in all domestic STPs. The average obtained values of the cations in both domestic RAS and WAS samples were within the Omani Standards. Conclusion The study showed the very high concentration of phosphate, it might be worth to further investigate on the sources of phosphate. Cations in both domestic RAS and WAS samples were low and suggest that the domestic sludge can be re used in agriculture. A regular maintenance should be performed to prevent any accumulation of some harmful substances which may affect the sludge quality and the sludge drying beds should be large enough to handle the produced sludge for better management. PMID:26060740
Zhou, Yiqi; Zha, Jinmiao; Wang, Zijian
2012-11-01
Concern over steroid estrogens has increased rapidly in recent years due to their adverse health effects. Effluent discharge from wastewater treatment plants (WWTPs) is the main pollutant source for environmental water. To understand the pollutant level and fate of steroid estrogens in WWTPs, the occurrence of estrone (E1), 17-β-estradiol (E2), estriol (E3), and 17-β-ethinylestradiol (EE2) was investigated in the Gaobeidian WWTP in Beijing, China. Water samples from influent as well as effluent from second sedimentation tanks and advanced treatment processes were taken monthly during 2006 to 2007. In influent, steroid estrogen concentrations varied from 11.6 to 1.1 × 10(2) ng/l, 3.7 to 1.4 × 10(2) ng/l, no detection (nd) to 7.6×10(2) ng/l and nd to 3.3 × 10(2) ng/l for E1, E2, E3, and EE2, respectively. Compared with documented values, the higher steroid estrogen concentrations in the WWTP influent may be due to higher population density, higher birthrate, less dilution, and different sampling time. Results revealed that a municipal WWTP with an activated sludge system incorporating anaerobic, anoxic, and aerobic processes could eliminate natural and synthetic estrogens effectively. The mean elimination efficiencies were 83.2%, 96.4%, 98.8%, and 93.0% for E1, E2, E3, and EE2, respectively. The major removal mechanism for natural estrogens and synthetic estrogen EE2 were biodegradation and sorption on the basis of mass balance in water, suspension particles, and sludge. In the WWTP effluent, however, the highest concentrations of E1, E2, E3, and EE2 attained were 74.2, 3.9, 5.1, and 4.6 ng/l, respectively. This is concerning as residual steroid estrogens in WWTP effluent could lead to pollution of the receiving water. Advanced flocculation treatment was applied in the WWTP and transformed the residual estrogen conjugates to free species, which were reduced further by filtration with removal shifting from 32% to 57% for natural estrogen, although no EE2 was removed.
Kiełbasa, Anna; Walczyńska, Aleksandra; Fiałkowska, Edyta; Pajdak-Stós, Agnieszka; Kozłowski, Jan
2014-12-01
Temperature-Size Rule (TSR) is a phenotypic body size response of ectotherms to changing temperature. It is known from the laboratory studies, but seasonal patterns in the field were not studied so far. We examined the body size changes in time of rotifers inhabiting activated sludge. We hypothesize that temperature is the most influencing parameter in sludge environment, leading sludge rotifers to seasonally change their body size according to TSR, and that oxygen content also induces the size response. The presence of TSR in Lecane inermis rotifer was tested in a laboratory study with two temperature and two food-type treatments. The effect of interaction between temperature and food was significant; L. inermis followed TSR in one food type only. The seasonal variability in the body sizes of the rotifers L. inermis and Cephalodella gracilis was estimated by monthly sampling and analyzed by multiple regression, in relation to the sludge parameters selected as the most influential by multivariate analysis, and predicted to alter rotifer body size (temperature and oxygen). L. inermis varied significantly in size throughout the year, and this variability is explained by temperature as predicted by the TSR, but not by oxygen availability. C. gracilis also varied in size, though this variability was explained by both temperature and oxygen. We suggest that sludge age acts as a mortality factor in activated sludge. It may have a seasonal effect on the body size of L. inermis and modify a possible effect of oxygen. Activated sludge habitat is driven by both biological processes and human regulation, yet its resident organisms follow general evolutionary rule as they do in other biological systems. The interspecific response patterns differ, revealing the importance of taking species-specific properties into account. Our findings are applicable to sludge properties enhancement through optimizing the conditions for its biological component.
Azari, Mohammad; Walter, Uwe; Rekers, Volker; Gu, Ji-Dong; Denecke, Martin
2017-05-01
The performance of biological treatment for high ammonium removal from landfill leachate has been demonstrated. The plant was upgraded combining the activated sludge process followed by activated carbon reactor. Based on a long-term analysis of data collected from 2006 to 2015, the average total nitrogen removal efficiency of 94% was achieved for wastewaters with a C: N ratio varying from 1 to 5 kg-COD kg-TN -1 . But without the presence of activated carbon reactor, the average of biological removal efficiency for total nitrogen was only 82% ± 6% for the activated sludge stage. It means that up to 20% of the nitrogen in the influent can only be eliminated by microorganisms attached to granular activated carbon. After upgrades of the plant, the energy efficiency showed a reduction in the specific energy demand from 1.6 to less than 0.2 kWh m -3 . Methanol consumption and sludge production was reduced by 91% and 96%, respectively. Fluorescent in situ Hybridization was used for microbial diversity analysis on floccular sludge and granular biofilm samples. Anaerobic ammonium oxidation (anammox) bacteria and nitrifiers were detected and Candidatus Scalindua was found in two forms of flocs and biofilms. Due to stochastic risk assessment based on the long-term data analysis given in this research, the treatment criteria were achieved and the combination of granular activated carbon biofilm process and activated sludge can be a novel and sought approach to better enrich anammox biomass for full-scale treatment applications to reduce operating costs and promote nutrient removal stability and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
Microbially induced flotation and flocculation of pyrite and sphalerite.
Patra, Partha; Natarajan, K A
2004-07-15
Cells of Paenibacillus polymyxa and their metabolite products were successfully utilized to achieve selective separation of sphalerite from pyrite, through microbially induced flocculation and flotation. Adsorption studies and electrokinetic investigations were carried out to understand the changes in the surface chemistry of bacterial cells and the minerals after mutual interaction. Possible mechanisms in microbially induced flotation and flocculation are outlined.
USDA-ARS?s Scientific Manuscript database
Flocculation can be used to separate non-sulfonated lignin from base hydrolyzed biomass. In the industrial process, the lignin is isolated by filtration and washed with water. Some of the lignin is lost in the wash water, and flocculation can be used to recover this lignin. Several ways of enhanc...
NASA Astrophysics Data System (ADS)
Hu, Xuebing; Yu, Yun; Wang, Yongqing; Zhou, Jianer; Song, Lixin
2015-02-01
In the modified Hummers method for preparing graphene oxide, the yellow slurry can be obtained. After filtering through a quantitative filter paper, the strong-acid filtrate containing the unprecipitated nano graphene oxide was gained. The corresponding filtrate was added gradually with an alkaline (NaOH or KOH) solution at room temperature. The unprecipitated nano graphene oxide could undergo fast aggregation when the pH value of the filtrate was about 1.7 and formed the stable floccules. X-ray diffraction analysis shows the dominant peak of the floccules is about 11°, which accords to the peak of graphene oxide. Spectra of X-ray photoelectron spectroscopy confirm the presence in the floccules of an abundance of oxygen functional groups and the purified graphene oxide floccules can be obtained. Atomic force microscopy measurement shows the graphene oxide floccules consists of sheet-like objects, mostly containing only a few layers (about 5 layers). Zeta potential analysis demonstrates the surface charge of the graphene oxide is pH-sensitive and its isoelectric point is ∼1.7. The flocculation mechanism of graphene oxide ascribes to the acid-base interaction with the surface functional groups of the carbon layers.
Zhu, Hangcheng; Zhang, Yong; Yang, Xiaogang; Shao, Lan; Zhang, Xiumei; Yao, Juming
2016-01-01
The discharge of effluents from surfactant manufacturers is giving rise to increasingly serious environmental problems. In order to develop the eco-friendly flocculation materials to achieve effective removal of pollutants from the surfactant effluents, the bamboo pulp cellulose from Phyllostachys heterocycla is employed as the skeleton material to synthesize an eco-friendly bamboo pulp cellulose-g-polyacrylamide (BPC-g-PAM) for flocculation. The BPC-g-PAM is used with the metal ions as the coagulant to treat the effluent from a surfactant manufacturer. The response surface methodology coupled with Box-behnken design is employed to optimize the key factors of coagulation-flocculation. The results show that the combination of Fe(3+) with BPC-g-PAM achieves the best coagulation-flocculation performance like, the fast treatment time, minimum coagulant and BPC-g-PAM dosages compared with the other two combinations of Al(3+) with BPC-g-PAM and Ca(2+) with BPC-g-PAM. Therefore, the combination of Fe(3+) with BPC-g-PAM is expected to promote its application for the pollution control in the surfactant manufacturers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effective flocculation of Chlorella vulgaris using chitosan with zeta potential measurement
NASA Astrophysics Data System (ADS)
Low, Y. J.; Lau, S. W.
2017-06-01
Microalgae are considered as one promising source of third-generation biofuels due to their fast growth rates, potentially higher yield rates and wide ranges of growth conditions. However, the extremely low biomass concentration in microalgae cultures presents a great challenge to the harvesting of microalgae because a large volume of water needs to be removed to obtain dry microalgal cells for the subsequent oil extraction process. In this study, the fresh water microalgae Chlorella vulgaris (C. vulgaris) was effectively harvested using both low molecular weight (MW) and high MW chitosan flocculants. The flocculation efficiency was evaluated by physical appearance, supernatant absorbance, zeta potential and solids content after centrifugal dewatering. High flocculation efficiency of 98.0-99.0% was achieved at the optimal dosage of 30-40 mg/g with formation of large microalgae flocs. This study suggests that the polymer bridging mechanism was governing the flocculation behaviour of C. vulgaris using high MW chitosan. Besides, charge patch neutralisation mechanism prevailed at low MW chitosan where lower dosage was sufficient to reach near-zero zeta potential compared with the high MW chitosan. The amount of chitosan polymer present in the culture may also affect the mechanism of flocculation.
Extraction, characterization and application of malva nut gum in water treatment.
Ho, Y C; Norli, I; Alkarkhi, Abbas F M; Morad, N
2015-06-01
In view of green developments in water treatment, plant-based flocculants have become the focus due to their safety, degradation and renewable properties. In addition, cost and energy-saving processes are preferable. In this study, malva nut gum (MNG), a new plant-based flocculant, and its composite with Fe in water treatment using single mode mixing are demonstrated. The result presents a simplified extraction of the MNG process. MNG has a high molecular weight of 2.3 × 10⁵ kDa and a high negative charge of -58.7 mV. From the results, it is a strong anionic flocculant. Moreover, it is observed to have a branch-like surface structure. Therefore, it conforms to the surface of particles well and exhibits good performance in water treatment. In water treatment, the Fe-MNG composite treats water at pH 3.01 and requires a low concentration of Fe and MNG of 0.08 and 0.06 mg/L, respectively, when added to the system. It is concluded that for a single-stage flocculation process, physico-chemical properties such as molecular weight, charge of polymer, surface morphology, pH, concentration of cation and concentration of biopolymeric flocculant affect the flocculating performance.
The flocculation mechanism and treatment of oily wastewater by flocculation.
Zhang, Zhenchao
2017-11-01
In the present study, the performance of compound flocculants composed of different concentrations of polyaluminum chloride (PAC) and cationic polyacrylamide (CPAM), the influencing mechanism of the flocculation process and the effects of temperature, settling time, and speed and time of stirring were investigated. The results show that the poor water quality with high concentrations of oil, suspended solids (SS) and polymer greatly increases the oily wastewater emulsion stability and the difficulty of the flocculation treatment process. The compound flocculant in oily wastewater treatment can achieve best results at optimum conditions of temperature 45 °C, settling time 60 min, and two stirring stages, 250 r·min -1 for 3 min followed by 100 r·min -1 for 7 min. At the PAC dosage of 80 mg·L -1 and the CPAM dosage of 0.8 mg·L -1 , the turbidity of oily wastewater is reduced from 153.8 NTU to 11.2 NTU, and the turbidity removal rate reaches 92.69%. Through further measurements, oil content and SS content are less than 10 mg·L -1 , which meets the requirement of the Daqing oilfield re-injection standard.
Ternes, T A; Kreckel, P; Mueller, J
1999-01-12
Aerobic batch experiments containing a diluted slurry of activated sludge from a real sewage treatment plant (STP) near Frankfurt/Main were undertaken, in order to investigate the persistence of natural estrogens and contraceptives under aerobic conditions. The batch experiments showed that while in contact with activated sludge the natural estrogen 17 beta-estradiol was oxidized to estrone, which was further eliminated in the batch experiments in an approximate linear time dependence. Further degradation products of estrone were not observed. 16 alpha-hydroxyestrone was rapidly eliminated, again without detection of further degradation products. The contraceptive 17 alpha-ethinylestradiol was principally persistent under the selected aerobic conditions, whereas mestranol was rapidly eliminated and small portions of 17 alpha-ethinylestradiol were formed by demethylation. Additionally, two glucuronides of 17 beta-estradiol (17 beta-estradiol-17-glucuronide and 17 beta-estradiol-3-glucuronide) were cleaved in contact with the diluted activated sludge solution and thus 17 beta-estradiol was released. The glucuronidase activity of the activated sludge was further confirmed by the cleavage of 4-methylumbelliferyl-beta-D-glucuronide (MUF-beta-glucuronide) in a solution of a activated sludge slurry and Milli-Q-water (1:100, v/v). The turnover rate obtained was approximately steady state, with a turnover rate of 0.1 mumol/l for the released MUF. Hence, it is very likely that the glucuronic acid moiety of 17 beta-estradiol glucuronides and other estrogen glucuronides become cleaved in a real municipal STP, so that the concentrations of the free estrogens increase.
Nguyen, Vivi L; He, Xia; de Los Reyes, Francis L
2016-11-01
If the in situ growth rate of filamentous bacteria in activated sludge can be quantified, researchers can more accurately assess the effect of operating conditions on the growth of filaments and improve the mathematical modeling of filamentous bulking. We developed a method to quantify the in situ specific growth rate of Sphaerotilus natans (a model filament) in activated sludge using the species-specific 16S rRNA:rDNA ratio. Primers targeting the 16S rRNA of S. natans were designed, and real-time PCR and RT-PCR were used to quantify DNA and RNA levels of S. natans, respectively. A positive linear relationship was found between the rRNA:rDNA ratio (from 440 to 4500) and the specific growth rate of S. natans (from 0.036 to 0.172 h -1 ) using chemostat experiments. The in situ growth rates of S. natans in activated sludge samples from three water reclamation facilities were quantified, illustrating how the approach can be applied in a complex environment such as activated sludge. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Wang, Lu; Chen, Xiu-rong; Yan, Long; He, Yi-xuan; Shi, Zhen-dong
2015-04-01
Using different rations of sludge extracts and supernate from 4-Chlorophenol (4-CP) simulated wastewater's excess sludge after centrifugation to cultivate the Chlorella vulgaris to achieve the goal of excess sludge utilization together with chlorella cultivating. The experiments were performed in 500 mL flasks with different rations of sludge extracts & BG-11 and supernate & BG-11 in a light growth chamber respectively. Number of algal cells, Chlorophyll, enzyme activity, oil and water total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), toxicity index were investigated. Result showed that the nutrition supplies and toxicity in the excess sludge were removed efficiently via Chlorella vulgaris, the removal rates of TN and TP were at least 40% and 90% respectively; After 10 days cultivation, the density growth of 50% sludge extracts was 20 times higher of the beginning while its chlorophyll content was lower than that of the blank group. Sludge extracts could promote the proliferation of algae, but were not conducive to the synthesis of chlorophyll. The quantity of SOD in per cell showed Chlorella vulgaris gave a positive response via stimulation from toxicant in sludge extracts and supernate. The best time for collecting chlorella vulgaris was the fifth day of cultivation, taking neutral oil accumulation as the evaluating indicator for its utilization combined with the removal of supplies and toxicity.
Evaluation of Control Parameters for the Activated Sludge Process
ERIC Educational Resources Information Center
Stall, T. Ray; Sherrard, Josephy H.
1978-01-01
An evaluation of the use of the parameters currently being used to design and operate the activated sludge process is presented. The advantages and disadvantages for the use of each parameter are discussed. (MR)
Predicting the degradability of waste activated sludge.
Jones, Richard; Parker, Wayne; Zhu, Henry; Houweling, Dwight; Murthy, Sudhir
2009-08-01
The objective of this study was to identify methods for estimating anaerobic digestibility of waste activated sludge (WAS). The WAS streams were generated in three sequencing batch reactors (SBRs) treating municipal wastewater. The wastewater and WAS properties were initially determined through simulation of SBR operation with BioWin (EnviroSim Associates Ltd., Flamborough, Ontario, Canada). Samples of WAS from the SBRs were subsequently characterized through respirometry and batch anaerobic digestion. Respirometry was an effective tool for characterizing the active fraction of WAS and could be a suitable technique for determining sludge composition for input to anaerobic models. Anaerobic digestion of the WAS revealed decreasing methane production and lower chemical oxygen demand removals as the SRT of the sludge increased. BioWin was capable of accurately describing the digestion of the WAS samples for typical digester SRTs. For extended digestion times (i.e., greater than 30 days), some degradation of the endogenous decay products was assumed to achieve accurate simulations for all sludge SRTs.
The thermal behaviour of the co-combustion between paper sludge and rice straw.
Xie, Zeqiong; Ma, Xiaoqian
2013-10-01
The thermal characteristics and kinetics of paper sludge, rice straw and their blends were evaluated under combustion condition. The paper sludge was blended with rice straw in the range of 10-95 wt.% to investigate their co-combustion behaviour. There was significant interaction between rice straw and paper sludge in high temperature. The combustion of paper sludge and rice straw could be divided into two stages. The value of the activation energy obtained by the Friedman and the Ozawa-Flynn-Wall (OFW) first decreased and then increased with the conversion degree rising. The average activation energy did not monotonically decrease with increasing the percentage of rice straw in the blends. When the percentage of rice straw in the blends was 80%, the value of the average activation energy was the smallest, which was 139 kJ/mol obtained by OFW and 132 kJ/mol obtained by Friedman, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ince, Orhan; Kolukirik, Mustafa; Cetecioglu, Zeynep; Eyice, Ozge; Inceoglu, Ozgul; Ince, Bahar
2009-12-01
The aim of this study was to determine the effect of toluene on an anaerobic sludge taken from a full-scale upflow anaerobic sludge blanket (UASB) reactor in terms of potential activity and composition of acetoclastic methanogens. Specific methanogenic activity (SMA) test results showed that 5%, 9.5%, 14%, 24%, 29%, 38% and 62% inhibition occurred in the potential methane production (PMP) rate of the sludge at toluene concentrations of 0.1 mM, 0.2 mM, 0.3 mM, 0.4 mM, 0.5 mM, 0.6 mM and 1 mM, respectively. Fluorescence in situ hybridization (FISH) results showed that relative abundance of archaeal cells was approx. 19% throughout the SMA tests. The anaerobic sludge was dominated by acetoclastic genus Methanosaeta which were slightly affected by increasing toluene concentrations do not have any effect on relative abundance of Methanosaeta spp., which was between 73% +/- 1.6 and 68% +/- 2.1 of the archaeal population.
Phyto-dewatering of sewage sludge using Panicum repens L.
El-Gendy, A S; El-Kassas, H I; Razek, T M A; Abdel-Latif, H
2017-04-01
Experiments in the field environment have been conducted to study the growth of Panicum repens L., an aquatic plant, in the sewage sludge matrix. The experiments were also carried out to investigate the ability of this plant to dewater sewage sludge to increase the capacity of conventional drying beds. In addition, the ability of Panicum repens L. to reduce the sludge contents of certain elements (copper (Cu), Iron (Fe), Sodium (Na), lead (Pb), and Zinc (Zn)) was also investigated. All experiments were carried out in batch reactors. Different plant coverage densities were tested (0.00 to 27.3 kg/m 2 ). The liquid sewage sludge was collected from a wastewater treatment plant in Helwan city, Cairo Governorate, Egypt. The collected sludge represents a mixture of the primary sludge and waste activated sludge before discharging into drying beds.
Force Sensitivity in Saccharomyces cerevisiae Flocculins.
Chan, Cho X J; El-Kirat-Chatel, Sofiane; Joseph, Ivor G; Jackson, Desmond N; Ramsook, Caleen B; Dufrêne, Yves F; Lipke, Peter N
2016-01-01
Many fungal adhesins have short, β-aggregation-prone sequences that play important functional roles, and in the Candida albicans adhesin Als5p, these sequences cluster the adhesins after exposure to shear force. Here, we report that Saccharomyces cerevisiae flocculins Flo11p and Flo1p have similar β-aggregation-prone sequences and are similarly stimulated by shear force, despite being nonhomologous. Shear from vortex mixing induced the formation of small flocs in cells expressing either adhesin. After the addition of Ca(2+), yeast cells from vortex-sheared populations showed greatly enhanced flocculation and displayed more pronounced thioflavin-bright surface nanodomains. At high concentrations, amyloidophilic dyes inhibited Flo1p- and Flo11p-mediated agar invasion and the shear-induced increase in flocculation. Consistent with these results, atomic force microscopy of Flo11p showed successive force-distance peaks characteristic of sequentially unfolding tandem repeat domains, like Flo1p and Als5p. Flo11p-expressing cells bound together through homophilic interactions with adhesion forces of up to 700 pN and rupture lengths of up to 600 nm. These results are consistent with the potentiation of yeast flocculation by shear-induced formation of high-avidity domains of clustered adhesins at the cell surface, similar to the activation of Candida albicans adhesin Als5p. Thus, yeast adhesins from three independent gene families use similar force-dependent interactions to drive cell adhesion. IMPORTANCE The Saccharomyces cerevisiae flocculins mediate the formation of cellular aggregates and biofilm-like mats, useful in clearing yeast from fermentations. An important property of fungal adhesion proteins, including flocculins, is the ability to form catch bonds, i.e., bonds that strengthen under tension. This strengthening is based, at least in part, on increased avidity of binding due to clustering of adhesins in cell surface nanodomains. This clustering depends on amyloid-like β-aggregation of short amino acid sequences in the adhesins. In Candida albicans adhesin Als5, shear stress from vortex mixing can unfold part of the protein to expose aggregation-prone sequences, and then adhesins aggregate into nanodomains. We therefore tested whether shear stress from mixing can increase flocculation activity by potentiating similar protein remodeling and aggregation in the flocculins. The results demonstrate the applicability of the Als adhesin model and provide a rational framework for the enhancement or inhibition of flocculation in industrial applications.
Merrylin, J; Kaliappan, S; Kumar, S Adish; Yeom, Ick-Tae; Banu, J Rajesh
2014-01-01
A protease-secreting bacteria was used to pretreat municipal sewage sludge to enhance aerobic digestion. To enhance the accessibility of the sludge to the enzyme, extracellular polymeric substances were removed using citric acid thereby removing the flocs in the sludge. The conditions for the bacterial pretreatment were optimized using response surface methodology. The results of the bacterial pretreatment indicated that the suspended solids reduction was 18% in sludge treated with citric acid and 10% in sludge not treated with citric acid whereas in raw sludge, suspended solids reduction was 5.3%. Solubilization was 10.9% in the sludge with extracellular polymeric substances removed in contrast to that of the sludge with extracellular polymeric substances, which was 7.2%, and that of the raw sludge, which was just 4.8%. The suspended solids reduction in the aerobic reactor containing pretreated sludge was 52.4% whereas that in the control reactor was 15.3%. Thus, pretreatment with the protease-secreting bacteria after the removal of extracellular polymeric substances is a cost-effective and environmentally friendly method.
2013-09-01
after anaerobic digestion at thermophilic conditions (60- 70C). Application of biofilm covered activated carbon particles as a microbial inoculum...Sludge Thickener; Sludge = Sludge after anaerobic digestion at thermophilic conditions (60- 70C). C3. Microscopic evaluation of dechlorinating...associated enzymes are capable of opening the biphenyl ring structure and transform the molecule into a linear structure, this changed structure was not
Mosaddeghi, Mohammad Reza; Pajoum Shariati, Farshid; Vaziri Yazdi, Seyed Ali; Nabi Bidhendi, Gholamreza
2018-06-21
The wastewater produced in a pulp and paper industry is one of the most polluted industrial wastewaters, and therefore its treatment requires complex processes. One of the simple and feasible processes in pulp and paper wastewater treatment is coagulation and flocculation. Overusing a chemical coagulant can produce a large volume of sludge and increase costs and health concerns. Therefore, the use of natural and plant-based coagulants has been recently attracted the attention of researchers. One of the advantages of using Ocimum basilicum as a coagulant is a reduction in the amount of chemical coagulant required. In this study, the effect of basil mucilage has been investigated as a plant-based coagulant together with alum for treatment of paper recycling wastewater. Response surface methodology (RSM) was used to optimize the process of chemical coagulation based on a central composite rotatable design (CCRD). Quadratic models for colour reduction and TSS removal with coefficients of determination of R 2 >96 were obtained using the analysis of variance. Under optimal conditions, removal efficiencies of colour and total suspended solids (TSS) were 85% and 82%, respectively.
Zayas Pérez, Teresa; Geissler, Gunther; Hernandez, Fernando
2007-01-01
The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H2O2, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater.
Experimental Evolution Reveals Favored Adaptive Routes to Cell Aggregation in Yeast.
Hope, Elyse A; Amorosi, Clara J; Miller, Aaron W; Dang, Kolena; Heil, Caiti Smukowski; Dunham, Maitreya J
2017-06-01
Yeast flocculation is a community-building cell aggregation trait that is an important mechanism of stress resistance and a useful phenotype for brewers; however, it is also a nuisance in many industrial processes, in clinical settings, and in the laboratory. Chemostat-based evolution experiments are impaired by inadvertent selection for aggregation, which we observe in 35% of populations. These populations provide a testing ground for understanding the breadth of genetic mechanisms Saccharomyces cerevisiae uses to flocculate, and which of those mechanisms provide the biggest adaptive advantages. In this study, we employed experimental evolution as a tool to ask whether one or many routes to flocculation are favored, and to engineer a strain with reduced flocculation potential. Using a combination of whole genome sequencing and bulk segregant analysis, we identified causal mutations in 23 independent clones that had evolved cell aggregation during hundreds of generations of chemostat growth. In 12 of those clones, we identified a transposable element insertion in the promoter region of known flocculation gene FLO1 , and, in an additional five clones, we recovered loss-of-function mutations in transcriptional repressor TUP1 , which regulates FLO1 and other related genes. Other causal mutations were found in genes that have not been previously connected to flocculation. Evolving a flo1 deletion strain revealed that this single deletion reduces flocculation occurrences to 3%, and demonstrated the efficacy of using experimental evolution as a tool to identify and eliminate the primary adaptive routes for undesirable traits. Copyright © 2017 Hope et al.
Experimental Evolution Reveals Favored Adaptive Routes to Cell Aggregation in Yeast
Hope, Elyse A.; Amorosi, Clara J.; Miller, Aaron W.; Dang, Kolena; Heil, Caiti Smukowski; Dunham, Maitreya J.
2017-01-01
Yeast flocculation is a community-building cell aggregation trait that is an important mechanism of stress resistance and a useful phenotype for brewers; however, it is also a nuisance in many industrial processes, in clinical settings, and in the laboratory. Chemostat-based evolution experiments are impaired by inadvertent selection for aggregation, which we observe in 35% of populations. These populations provide a testing ground for understanding the breadth of genetic mechanisms Saccharomyces cerevisiae uses to flocculate, and which of those mechanisms provide the biggest adaptive advantages. In this study, we employed experimental evolution as a tool to ask whether one or many routes to flocculation are favored, and to engineer a strain with reduced flocculation potential. Using a combination of whole genome sequencing and bulk segregant analysis, we identified causal mutations in 23 independent clones that had evolved cell aggregation during hundreds of generations of chemostat growth. In 12 of those clones, we identified a transposable element insertion in the promoter region of known flocculation gene FLO1, and, in an additional five clones, we recovered loss-of-function mutations in transcriptional repressor TUP1, which regulates FLO1 and other related genes. Other causal mutations were found in genes that have not been previously connected to flocculation. Evolving a flo1 deletion strain revealed that this single deletion reduces flocculation occurrences to 3%, and demonstrated the efficacy of using experimental evolution as a tool to identify and eliminate the primary adaptive routes for undesirable traits. PMID:28450459
The nature of hematite depression with corn starch in the reverse flotation of iron ore.
Shrimali, Kaustubh; Atluri, Venkata; Wang, Yan; Bacchuwar, Sanket; Wang, Xuming; Miller, Jan D
2018-08-15
The function of corn starch and the significance of the order of addition of corn starch and mono ether amine in the reverse flotation of iron ore has been investigated. Understanding hematite depression with starch and the corresponding hydrophilic state involves consideration of adsorption with amine as well as flocculation of fine hematite. Captive bubble contact angle and micro-flotation experiments indicated that amine has an affinity towards both hematite and quartz, and that the role of starch is to hinder the adsorption of amine at the hematite surface so that flotation is inhibited. Micro-flotation results confirmed that quartz does not have affinity towards starch at pH 10.5. In addition to competitive adsorption, flocculation of fine hematite occurs and images from high resolution X-ray computed tomography (HRXCT) and cryo-SEM reveal further detail regarding floc structure. These results provide substantial evidence that the fine hematite particles are flocculated in the presence of corn starch, and flocculation is dependent on the particle size of hematite, with greater flocculation for finer particles. Thus, starch is playing a dual role in the reverse flotation of iron ore, acting as a depressant by hindering amine adsorption at the hematite surface in order to maintain the hydrophilic surface state of hematite, and acting as a flocculant to aggregate fine hematite particles, which if not flocculated, could diminish the flotation separation efficiency by being transported to the froth phase during reverse flotation. Copyright © 2018 Elsevier Inc. All rights reserved.
Microwave pyrolysis of oily sludge with activated carbon.
Chen, Yi-Rong
2016-12-01
The aim of this study is to explore catalytic microwave pyrolysis of crude oil storage tank sludge for fuels using granular activated carbon (GAC) as a catalyst. The effect of GAC loading on the yield of pyrolysis products was also investigated. Heating rate of oily sludge and yield of microwave pyrolysis products such as oil and fuel gas was found to depend on the ratio of GAC to oily sludge. The optimal GAC loading was found to be 10%, while much smaller and larger feed sizes adversely influenced production. During oily sludge pyrolysis, a maximum oil yield of 77.5% was achieved. Pyrolytic oils with high concentrations of diesel oil and gasoline (about 70 wt% in the pyrolytic oil) were obtained. The leaching of heavy metals, such as Cr, As and Pb, was also suppressed in the solid residue after pyrolysis. This technique provides advantages such as harmless treatment of oily sludge and substantial reduction in the consumption of energy, time and cost.
Roles of magnetite and granular activated carbon in improvement of anaerobic sludge digestion.
Peng, Hong; Zhang, Yaobin; Tan, Dongmei; Zhao, Zhiqiang; Zhao, Huimin; Quan, Xie
2018-02-01
Granular activated carbon (GAC) or magnetite could promote methane production from organic wastes, but their roles in enhancing anaerobic sludge digestion have not been clarified. GAC, magnetite and their combination were complemented into sludge digesters, respectively. Experimental results showed that average methane production increased by 7.3% for magnetite, 13.1% for GAC, and 20% for the combination of magnetite and GAC, and the effluent TCOD of the control, magnetite, GAC and magnetite-GAC digesters on day 56 were 53.2, 49.6, 48.0 and 46.6 g/L, respectively. Scanning electron microscope (SEM), nitrogen adsorption, Fourier transform infrared spectroscopy (FTIR) and microbial analysis indicated that magnetite enriched iron-reducing bacteria responsible for sludge hydrolysis while GAC enhanced syntrophic metabolism between iron-reducing bacteria and methanogens due to its high electrical conductivity and large surface area. Supplementing magnetite and GAC together into an anaerobic digester simultaneously accelerated sludge hydrolysis and methane production, resulting in better sludge digestion performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stabilization of waste-activated sludge through the anoxic-aerobic digestion process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, S.; Fujita, M.; Terai, K.
1982-08-01
During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludgemore » continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q /SUB r/ /Q /SUB s/ ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q /SUB r/ /Q /SUB s/ ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.« less
Li, J; Garny, K; Neu, T; He, M; Lindenblatt, C; Horn, H
2007-01-01
Physical, chemical and biological characteristics were investigated for aerobic granules and sludge flocs from three laboratory-scale sequencing batch reactors (SBRs). One reactor was operated as normal SBR (N-SBR) and two reactors were operated as granular SBRs (G-SBR1 and G-SBR2). G-SBR1 was inoculated with activated sludge and G-SBR2 with granules from the municipal wastewater plant in Garching (Germany). The following major parameters and functions were measured and compared between the three reactors: morphology, settling velocity, specific gravity (SG), sludge volume index (SVI), specific oxygen uptake rate (SOUR), distribution of the volume fraction of extracellular polymeric substances (EPS) and bacteria, organic carbon and nitrogen removal. Compared with sludge flocs, granular sludge had excellent settling properties, good solid-liquid separation, high biomass concentration, simultaneous nitrification and denitrification. Aerobic granular sludge does not have a higher microbial activity and there are some problems including higher effluent suspended solids, lower ratio of VSS/SS and no nitrification at the beginning of cultivation. Measurement with CLSM and additional image analysis showed that EPS glycoconjugates build one main fraction inside the granules. The aerobic granules from G-SBR1 prove to be heavier, smaller and have a higher microbial activity compared with G-SBR2. Furthermore, the granules were more compact, with lower SVI and less filamentous bacteria.
Rakotonimaro, Tsiverihasina V; Neculita, Carmen Mihaela; Bussière, Bruno; Benzaazoua, Mostafa; Zagury, Gérald J
2017-01-01
The treatment of mine drainage-impacted waters generates considerable amounts of sludge, which raises several concerns, such as storage and disposal, stability, and potential social and environmental impacts. To alleviate the storage and management costs, as well as to give the mine sludge a second life, recovery and reuse have recently become interesting options. In this review, different recovery and reuse options of sludge originating from active and passive treatment of mine drainage are identified and thoroughly discussed, based on available laboratory and field studies. The most valuable products presently recovered from the mine sludge are the iron oxy-hydroxides (ochre). Other by-products include metals, elemental sulfur, and calcium carbonate. Mine sludge reuse includes the removal of contaminants, such as As, P, dye, and rare earth elements. Mine sludge can also be reused as stabilizer for contaminated soil, as fertilizer in agriculture/horticulture, as substitute material in construction, as cover over tailings for acid mine drainage prevention and control, as material to sequester carbon dioxide, and in cement and pigment industries. The review also stresses out some of the current challenges and research needs. Finally, in order to move forward, studies are needed to better estimate the contribution of sludge recovery/reuse to the overall costs of mine water treatment.
Yan, S; Tyagi, R D; Surampalli, R Y
2006-01-01
Activated sludge from different full-scale wastewater treatment plants (municipal, pulp and paper industry, starch manufacturing and cheese manufacturing wastewaters) was used as a source of microorganisms to produce biodegradable plastics in shake flask experiments. Acetate, glucose and different wastewaters were used as carbon sources. Pulp and paper wastewater sludge was found to accumulate maximum concentration (43% of dry weight of suspended solids) of polyhydroxy alkanoates (PHA) with acetate as carbon source. Among the different wastewaters tested as a source of carbon, pulp and paper industry and starch industry wastewaters were found to be the best source of carbon while employing pulp and paper activated sludge for maximum accumulation of PHA. High concentration of volatile fatty acids in these wastewaters was the probable reason.
Conventional Treatment Options for HABs Impacted Waters
This presentation discusses (1) the removal of cyanobacterial cells through coagulation, flocculation, sedimentation and filtration, (2) the control of cyanobacterial toxins by powdered activated carbon, (3) the control of cyanobacterial toxins by chlorine, UV, ozone, chlorine di...
The use of waste mussel shells for the adsorption of dyes and heavy metals
NASA Astrophysics Data System (ADS)
Papadimitriou, Chrysi A.; Krey, Grigorios; Stamatis, Nikolaos; Kallaniotis, Argyris
2016-04-01
Mussel culture is very important sector of the Greek agricultural economy. The majority of mussel culture activities take place in the area of Central Macedonia, Greece, 60% of total mussel production in Greece producing almost 12 tons of waste mussels shells on a daily basis. Currently there is no legislation concerning the disposal of mussel shells. In the present study the waste shells were used for the removal of dyes and heavy metals from aqueous solutions while powdered mussel shells were added in activated sludge processes for the removal of hexavalent chromium. Mussel shells were cleaned, dried and then crushed in order to form a powder. Powdered mussels shells were used in standard adsorption experiments for the removal of methylene blue and methyl red as well as for the removal of Cr (VI), Cd and Cu. Moreover the powdered mussel shells were added in laboratory scale activated sludge reactors treating synthetic wastewater with hexavalent chromium, in order investigate the effects in activated sludge processes and their potential attribution to the removal of hexavalent chromium. Adsorption experiments indicated almost 100% color removal, while adsorption was directly proportional to the amount of powdered mussel shells added in each case. The isotherms calculated for the case of methylene blue indicated similar adsorption capacity and properties to those of the commercially available activated carbon SAE 2, Norit. High removal efficiencies were observed for the metals, especially in the case of chromium and copper. The addition of powdered mussel shells in the activated sludge processes enhanced the removal of chromium and phosphorus, while enabled the formation of heavier activated sludge flocs and thus enhanced the settling properties of the activated sludge.
Treatment of old landfill leachate with high ammonium content using aerobic granular sludge.
Ren, Yanan; Ferraz, Fernanda; Kang, Abbass Jafari; Yuan, Qiuyan
2017-01-01
Aerobic granular sludge has become an attractive alternative to the conventional activated sludge due to its high settling velocity, compact structure, and higher tolerance to toxic substances and adverse conditions. Aerobic granular sludge process has been studied intensively in the treatment of municipal and industrial wastewater. However, information on leachate treatment using aerobic granular sludge is very limited. This study investigated the treatment performance of old landfill leachate with different levels of ammonium using two aerobic sequencing batch reactors (SBR): an activated sludge SBR (ASBR) and a granular sludge SBR (GSBR). Aerobic granules were successfully developed using old leachate with low ammonium concentration (136 mg L -1 NH 4 + -N). The GSBR obtained a stable chemical oxygen demand (COD) removal of 70% after 15 days of operation; while the ASBR required a start-up of at least 30 days and obtained unstable COD removal varying from 38 to 70%. Ammonium concentration was gradually increased in both reactors. Increasing influent ammonium concentration to 225 mg L -1 N, the GSBR removed 73 ± 8% of COD; while COD removal of the ASBR was 59 ± 9%. The GSBR was also more efficient than the ASBR for nitrogen removal. The granular sludge could adapt to the increasing concentrations of ammonium, achieving 95 ± 7% removal efficiency at a maximum influent concentration of 465 mg L -1 N. Ammonium removal of 96 ± 5% was obtained by the ASBR when it was fed with a maximum of 217 mg L -1 NH 4 + -N. However, the ASBR was partially inhibited by free-ammonia and nitrite accumulation rate increased up to 85%. Free-nitrous acid and the low biodegradability of organic carbon were likely the main factors affecting phosphorus removal. The results from this research suggested that aerobic granular sludge have advantage over activated sludge in leachate treatment.
Kim, Dong-Jin; Lee, Jonghak
2012-01-01
Hydrolysis of waste activated sludge (WAS) has been regarded as the rate limiting step of anaerobic sludge digestion. Therefore, in this study, the effect of ultrasound and hydraulic residence time during sludge hydrolysis was investigated with the goal of enhancing methane production from anaerobic digestion (AD). WAS was ultrasonically disintegrated for hydrolysis, and it was semi-continuously fed to an anaerobic digesters at various hydraulic retention times (HRTs). The results of these experiments showed that the solids and chemical oxygen demand (COD) removal efficiencies when using ultrasonically disintegrated sludge were higher during AD than the control sludge. The longer the HRT, the higher the removal efficiencies of solids and COD, while methane production increased with lower HRT. Sludge with 30% hydrolysis produced 7 × more methane production than the control sludge. The highest methane yields were 0.350 m(3)/kg volatile solids (VS)(add) and 0.301 m(3)/kg COD(con) for 16 and 30% hydrolyzed sludge, respectively. In addition, we found that excess ultrasound irradiation may inhibit AD since the 50% hydrolyzed sludge produced lower methane yields than 16 and 30% hydrolyzed sludge.
Suresh Kumar, M; Mudliar, S N; Reddy, K M K; Chakrabarti, T
2004-12-01
Most of the excess sludge from a wastewater treatment plant (60%) is disposed by landfill. As a resource utilization of excess sludge, the production of biodegradable plastics using the sludge has been proposed. Storage polymers in bacterial cells can be extracted and used as biodegradable plastics. However, widespread applications have been limited by high production cost. In the present study, activated sludge bacteria in a conventional wastewater treatment system were induced, by controlling the carbon: nitrogen ratio to accumulate storage polymers. Polymer yield increased to a maximum 33% of biomass (w/w) when the C/N ratio was increased from 24 to 144, where as specific growth yield decreased with increasing C/N ratio. The conditions which are required for the maximum polymer accumulation were optimized and are discussed.
Löwenberg, Jonas; Zenker, Armin; Krahnstöver, Thérèse; Boehler, Marc; Baggenstos, Martin; Koch, Gerhard; Wintgens, Thomas
2016-05-01
The removal of micropollutants from drinking and wastewater by powdered activated carbon (PAC) adsorption has received considerable attention in research over the past decade with various separation options having been investigated. With Switzerland as the first country in the world having adopted a new legislation, which forces about 100 wastewater treatment plants to be upgraded for the removal of organic micropollutants from municipal wastewater, the topic has reached practical relevance. In this study, the process combination of powdered activated carbon (PAC) adsorption and deep bed filtration (DBF) for advanced municipal wastewater treatment was investigated over an extended period exceeding one year of operation in technical scale. The study aimed to determine optimum process conditions to achieve sufficient micropollutant removal in agreement with the new Swiss Water Ordinance under most economic process design. It was shown that the addition of PAC and Fe(3+) as combined coagulation and flocculation agent improved effluent water quality with respect to dissolved organic pollutants as well as total suspended solids (TSS), turbidity and PO4-P concentration in comparison to a DBF operated without the addition of PAC and Fe(3+). Sufficient micropollutant (MP) removal of around 80% was achieved at PAC dosages of 10 mg/L revealing that PAC retained in the filter bed maintained considerable adsorption capacity. In the investigated process combination the contact reactor serves for adsorption as well as for flocculation and allowed for small hydraulic retention times of minimum 10 min while maintaining sufficient MP removal. The flocculation of two different PAC types was shown to be fully concluded after 10-15 min, which determined the flocculation reactor size while both PAC types proved suitable for the application in combination with DBF and showed no significant differences in MP removal. Finally, the capping of PAC dosage during rain water periods, which resulted in lower dosage concentrations, was efficient in limiting PAC consumption during these events without suffering from negative effects on process performance or effluent quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nonoxidative removal of organics in the activated sludge process
Modin, Oskar; Persson, Frank; Wilén, Britt-Marie; Hermansson, Malte
2016-01-01
ABSTRACT The activated sludge process is commonly used to treat wastewater by aerobic oxidation of organic pollutants into carbon dioxide and water. However, several nonoxidative mechanisms can also contribute to removal of organics. Sorption onto activated sludge can remove a large fraction of the colloidal and particulate wastewater organics. Intracellular storage of, e.g., polyhydroxyalkanoates (PHA), triacylglycerides (TAG), or wax esters can convert wastewater organics into precursors for high-value products. Recently, several environmental, economic, and technological drivers have stimulated research on nonoxidative removal of organics for wastewater treatment. In this paper, we review these nonoxidative removal mechanisms as well as the existing and emerging process configurations that make use of them for wastewater treatment. Better utilization of nonoxidative processes in activated sludge could reduce the wasteful aerobic oxidation of organic compounds and lead to more resource-efficient wastewater treatment plants. PMID:27453679
New insights into co-digestion of activated sludge and food waste: Biogas versus biofertilizer.
Ma, Yingqun; Yin, Yao; Liu, Yu
2017-10-01
This study explored two holistic approaches for co-digestion of activated sludge and food waste. In Approach 1, mixed activated sludge and food waste were first hydrolyzed with fungal mash, and produced hydrolysate without separation was directly subject to anaerobic digestion. In Approach 2, solid generated after hydrolysis of food waste by fungal mash was directly converted to biofertilizer, while separated liquid with high soluble COD concentration was further co-digested with activated sludge for biomethane production. Although the potential energy produced from Approach 1 was about 1.8-time higher than that from Approach 2, the total economic revenue generated from Approach 2 was about 1.9-fold of that from Approach 1 due to high market value of biofertilizer. It is expected that this study may lead to a paradigm shift in biosolid management towards environmental and economic sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.