Science.gov

Sample records for activated sludge production

  1. Production of carboxylates from high rate activated sludge through fermentation.

    PubMed

    Cagnetta, C; Coma, M; Vlaeminck, S E; Rabaey, K

    2016-10-01

    The aim of this work was to study the key parameters affecting fermentation of high rate activated A-sludge to carboxylates, including pH, temperature, inoculum, sludge composition and iron content. The maximum volatile fatty acids production was 141mgCg(-1) VSSfed, at pH 7. Subsequently the potential for carboxylate and methane production for A-sludge from four different plants at pH 7 and 35°C were compared. Initial BOD of the sludge appeared to be key determining carboxylate yield from A-sludge. Whereas methanogenesis could be correlated linearly to the quantity of ferric used for coagulation, fermentation did not show a dependency on iron presence. This difference may enable a strategy whereby A-stage sludge is separated to achieve fermentation, and iron dosing for phosphate removal is only implemented at the B-stage.

  2. Polyhydroxyalkanoate production potential of heterotrophic bacteria in activated sludge.

    PubMed

    Inoue, Daisuke; Suzuki, Yuta; Uchida, Takahiro; Morohoshi, Jota; Sei, Kazunari

    2016-01-01

    This study was conducted to evaluate the polyhydroxyalkanoate (PHA) production potential of cultivable heterotrophic bacteria in activated sludge by genotypic and phenotypic characterizations. A total of 114 bacterial strains were isolated from four activated sludge samples taken from a lab-scale sequencing batch reactor and three wastewater treatment processes of two municipal wastewater treatment plants. PCR detection of the phaC genes encoding class I and II PHA synthase revealed that 15% of the total isolates possessed phaC genes, all of which had the closest similarities to known phaC genes of α- and β-Proteobacteria and Actinobacteria. PHA production experiments under aerobic and nitrogen-limited conditions showed that 68% of the total isolates were capable of producing PHA from at least one of the six substrates used (acetate, propionate, lactate, butyrate, glucose and glycerol). Genotypic and phenotypic characterizations revealed that 75% of the activated sludge bacteria had PHA production potential. Our results also indicated that short-chain fatty acids would be the preferable substrates for PHA production by activated sludge bacteria, and that there might be a variety of unidentified phaC genes in activated sludge.

  3. Reduction by sonication of excess sludge production in a conventional activated sludge system: continuous flow and lab-scale reactor.

    PubMed

    Vaxelaire, S; Gonze, E; Merlin, G; Gonthier, Y

    2008-12-01

    Conventional activated sludge wastewater treatment plants currently produce a large quantity of excess sludge. To reduce this sludge production and to improve sludge characteristics in view of their subsequent elimination, an ultrasonic cell disintegration process was studied. In a lab-scale continuous flow pilot plant, part of the return sludge was sonicated by low-frequency and high-powered ultrasound and then recycled to the aeration tank. Two parallel lines were used: one as a control and the other as an assay with ultrasonic treatment. The reactors were continuously fed with synthetic domestic wastewater with a COD (chemical oxygen demand) of approximately 0.5 g l(-) corresponding to a daily load of 0.35-0.50 kg COD kg(-1) TS d(-1). Removal efficiencies (carbon, particles), excess sludge production and sludge characteristics (particle size distribution, mineralization, respiration rate, biological component) were measured every day during the 56-day experiment. This study showed that whilst organic removal efficiency did not deteriorate, excess sludge production was decreased by about 25-30% by an ultrasonic treatment. Several hypotheses are advanced: (i) the treatment made a part of the organic matter soluble as a consequence of the floc disintegration, and optimised the conversion of the carbonaceous pollutants into carbon dioxide and (ii) the treatment modified the physical characteristics of sludge by a mechanical effect: floc size was reduced, increasing the exchange surface and sludge activity. The originality of this study is that experiments were conducted in a continuous-flow activated sludge reactor rather than in a batch reactor.

  4. Fractionating soluble microbial products in the activated sludge process.

    PubMed

    Ni, Bing-Jie; Zeng, Raymond J; Fang, Fang; Xie, Wen-Ming; Sheng, Guo-Ping; Yu, Han-Qing

    2010-04-01

    Soluble microbial products (SMP) are the pool of organic compounds originating from microbial growth and decay, and are usually the major component of the soluble organic matters in effluents from biological treatment processes. In this work, SMP in activated sludge were characterized, fractionized, and quantified using integrated chemical analysis and mathematical approach. The utilization-associated products (UAP) in SMP, produced in the substrate-utilization process, were found to be carbonaceous compounds with a molecular weight (MW) lower than 290 kDa which were quantified separately from biomass-associated products (BAP). The BAP were mainly cellular macromolecules with an MW in a range of 290-5000 kDa, and for the first time were further classified into the growth-associated BAP (GBAP) with an MW of 1000 kDa, which were produced in the microbial growth phase, and the endogeny-associated BAP (EBAP) with an MW of 4500 kDa, which were generated in the endogenous phase. Experimental and modeling results reveal that the UAP could be utilized by the activated sludge and that the BAP would accumulate in the system. The GBAP and EBAP had different formation rates from the hydrolysis of extracellular polymeric substances and distinct biodegradation kinetics. This study provides better understanding of SMP formation mechanisms and becomes useful for subsequent effluent treatment.

  5. Viscous Product from Activated Sludge by Methanol Fermentation

    PubMed Central

    Davis, Edwin N.; Wallen, Lowell L.

    1976-01-01

    Aeration of activated sludge with 3 to 4% added methanol for 5 to 7 days yields an odorless, highly viscous (5,000 to 10,000 centipoise), black, pudding-like product containing glycan(s) linked other than α-1-4 or β-1-3. Backseeding gives maximum thickening in 3 to 4 days. Incomplete acid hydrolysis of the black product gives a 0.27% solution of reducing sugars (75% glucose) which is an 11.4% yield from the added methanol. Backseeding into either centrifuge supernatant or 0.1% yeast extract in tap water gives a light-colored polymer. Viscosity decreases during extended sterile cold storage. A 5% salt addition lowers viscosity one-half. From 6 to 12 colony types appear on plating backseeded media, but none of these isolates is a reliable polymer former. PMID:16345172

  6. Activated Sludge.

    ERIC Educational Resources Information Center

    Saunders, F. Michael

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) activated sludge process; (2) process control; (3) oxygen uptake and transfer; (4) phosphorus removal; (5) nitrification; (6) industrial wastewater; and (7) aerobic digestion. A list of 136 references is also presented. (HM)

  7. Aerobic activated sludge transformation of methotrexate: identification of biotransformation products.

    PubMed

    Kosjek, Tina; Negreira, Noelia; de Alda, Miren López; Barceló, Damià

    2015-01-01

    This study describes the biotransformation of cytostatic and immunosuppressive pharmaceutical methotrexate. Its susceptibility to microbiological breakdown was studied in a batch biotransformation system, in presence or absence of carbon source and at two activated sludge concentrations. The primary focus of the present study are methotrexate biotransformation products, which were tentatively identified by the ultra-high performance liquid chromatography-quadrupole--Orbitrap-MS. Data-dependent experiments, combining full-scan MS data with product ion spectra were acquired, in order to identify the molecular ions of methotrexate transformation products, to propose the molecular formulae and to elucidate their chemical structures. Among the identified transformation products 2,4-diamino-N10-methyl-pteroic acid is most abundant and persistent. Other biotransformation reactions involve demethylation, oxidative cleavage of amine, cleavage of C-N bond, aldehyde to carboxylate transformation and hydroxylation. Finally, a breakdown pathway is proposed, which shows that most of methotrexate breakdown products retain the diaminopteridine structural segment. In total we propose nine transformation products, among them eight are described as methotrexate transformation products for the first time.

  8. Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production

    NASA Astrophysics Data System (ADS)

    Yin, Yanan; Wang, Jianlong

    2016-04-01

    In this paper, gamma irradiation was applied for the disintegration and dissolution of waste activated sludge produced during the biological wastewater treatment, and the solubilized sludge was used as substrate for bio-hydrogen production. The experimental results showed that the solubilization of waste activated sludge was 53.7% at 20 kGy and pH=12, and the SCOD, polysaccharides, protein, TN and TP contents in the irradiated sludge solutions was 3789.6 mg/L, 268.3 mg/L, 1881.5 mg/L, 132.3 mg/L and 80.4 mg/L, respectively. The irradiated sludge was used for fermentative hydrogen production, and the hydrogen yield was 10.5±0.7 mL/g SCODconsumed. It can be concluded that the irradiated waste activated sludge could be used as a low-cost substrate for fermentative hydrogen production.

  9. Effect of microwave pre-treatment of thickened waste activated sludge on biogas production from co-digestion of organic fraction of municipal solid waste, thickened waste activated sludge and municipal sludge.

    PubMed

    Ara, E; Sartaj, M; Kennedy, K

    2014-12-01

    Anaerobic co-digestion of organic fraction of municipal solid waste, with thickened waste activated sludge and primary sludge has the potential to enhance biodegradation of solid waste, increase longevity of existing landfills and lead to more sustainable development by improving waste to energy production. This study reports on mesophilic batch and continuous studies using different concentrations and combinations (ratios) of organic fraction of municipal solid waste, thickened waste activated sludge (microwave pre-treated and untreated) and primary sludge to assess the potential for improved biodegradability and specific biogas production. Improvements in specific biogas production for batch assays, with concomitant improvements in total chemical oxygen demand and volatile solid removal, were obtained with organic fraction of municipal solid waste:thickened waste activated sludge:primary sludge mixtures at a ratio of 50:25:25 (with and without thickened waste activated sludge microwave pre-treatment). This combination was used for continuous digester studies. At 15 d hydraulic retention times, the co-digestion of organic fraction of municipal solid waste:organic fraction of municipal solid waste:primary sludge and organic fraction of municipal solid waste:thickened waste activated sludge microwave:primary sludge resulted in a 1.38- and 1.46-fold increase in biogas production and concomitant waste stabilisation when compared with thickened waste activated sludge:primary sludge (50:50) and thickened waste activated sludge microwave:primary sludge (50:50) digestion at the same hydraulic retention times and volumetric volatile solid loading rate, respectively. The digestion of organic fraction of municipal solid waste with primary sludge and thickened waste activated sludge provides beneficial effects that could be implemented at municipal wastewater treatment plants that are operating at loading rates of less than design capacity.

  10. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge.

    PubMed

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-05-11

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them.

  11. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    PubMed Central

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-01-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them. PMID:27166174

  12. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-05-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them.

  13. Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production.

    PubMed

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Qilin; Ding, Jie; Ren, Nan-Qi

    2016-04-15

    Waste activated sludge is a valuable resource containing multiple nutrients, but is currently treated and disposed of as an important source of pollution. In this work, waste activated sludge after ultrasound pretreatment was reused as multiple nutrients for biofuel production. The nutrients trapped in sludge floc were transferred into liquid medium by ultrasonic disintegration during first 30 min, while further increase of pretreatment time only resulted in slight increase of nutrients release. Hydrogen production by Ethanoligenens harbinense B49 from glucose significantly increased with the concentration of ultrasonic sludge, and reached maximum yield of 1.97 mol H2/mol glucose at sludge concentration of 7.75 g volatile suspended solids/l. Without addition of any other chemicals, waste molasses rich in carbohydrate was efficiently turned into hydrogen with yield of 189.34 ml H2/g total sugar by E. harbinense B49 using ultrasonic sludge as nutrients. The results also showed that hydrogen production using pretreated sludge as multiple nutrients was higher than those using standard nutrients. Acetic acid produced by E. harbinense B49 together with the residual nutrients in the liquid medium were further converted into hydrogen (271.36 ml H2/g total sugar) by Rhodopseudomonas faecalis RLD-53 through photo fermentation, while ethanol was the sole end product with yield of 220.26 mg/g total sugar. Thus, pretreated sludge was an efficient nutrients source for biofuel production, which could replace the standard nutrients. This research provided a novel strategy to achieve environmental friendly sludge disposal and simultaneous efficient biofuel recovery from organic waste.

  14. Production of polyhydroxyalcanoates (PHAs) using milk whey and dairy wastewater activated sludge production of bioplastics using dairy residues.

    PubMed

    Bosco, Francesca; Chiampo, Fulvia

    2010-04-01

    The production of polyhydroxyalcanoates (PHAs), which are biodegradable plastics, was studied using milk whey and dairy wastewater activated sludge to define a suitable C/N ratio, the pre-treatments required to reduce the protein content, and the effect of pH correction. The results show good production of PHAs at a C/N=50 and without pH correction. The use of dairy wastewater activated sludge has the advantage of not requiring aseptic conditions.

  15. Production of biodegradable plastics from activated sludge generated from a food processing industrial wastewater treatment plant.

    PubMed

    Suresh Kumar, M; Mudliar, S N; Reddy, K M K; Chakrabarti, T

    2004-12-01

    Most of the excess sludge from a wastewater treatment plant (60%) is disposed by landfill. As a resource utilization of excess sludge, the production of biodegradable plastics using the sludge has been proposed. Storage polymers in bacterial cells can be extracted and used as biodegradable plastics. However, widespread applications have been limited by high production cost. In the present study, activated sludge bacteria in a conventional wastewater treatment system were induced, by controlling the carbon: nitrogen ratio to accumulate storage polymers. Polymer yield increased to a maximum 33% of biomass (w/w) when the C/N ratio was increased from 24 to 144, where as specific growth yield decreased with increasing C/N ratio. The conditions which are required for the maximum polymer accumulation were optimized and are discussed.

  16. Biotransformation and adsorption of pharmaceutical and personal care products by activated sludge after correcting matrix effects.

    PubMed

    Deng, Yu; Li, Bing; Yu, Ke; Zhang, Tong

    2016-02-15

    This study reported significant suppressive matrix effects in analyses of six pharmaceutical and personal care products (PPCPs) in activated sludge, sterilized activated sludge and untreated sewage by ultra-performance liquid chromatography-tandem mass spectrometry. Quantitative matrix evaluation on selected PPCPs supplemented the limited quantification data of matrix effects on mass spectrometric determination of PPCPs in complex environment samples. The observed matrix effects were chemical-specific and matrix-dependent, with the most pronounced average effect (-55%) was found on sulfadiazine in sterilized activated sludge. After correcting the matrix effects by post-spiking known amount of PPCPs, the removal mechanisms and biotransformation kinetics of selected PPCPs in activated sludge system were revealed by batch experiment. Experimental data elucidated that the removal of target PPCPs in the activated sludge process was mainly by biotransformation while contributions of adsorption, hydrolysis and volatilization could be neglected. High biotransformation efficiency (52%) was observed on diclofenac while other three compounds (sulfadiazine, sulfamethoxazole and roxithromycin) were partially biotransformed by ~40%. The other two compounds, trimethoprim and carbamazepine, showed recalcitrant to biotransformation of the activated sludge.

  17. Identification of Triclosan-O-Sulfate and other transformation products of Triclosan formed by activated sludge.

    PubMed

    Chen, Xijuan; Casas, Mònica Escolà; Nielsen, Jeppe Lund; Wimmer, Reinhard; Bester, Kai

    2015-02-01

    Aerobic degradation experiments of Triclosan were performed in activated sludge to identify possible transformation products for this compound. During 7 days, the formation of biotransformation products such as 2,4-Dichlorophenol, 4-Chlorocatechol, 5-Hydroxy-Triclosan and other Monohydroxy-Triclosan derivatives as well as Dihydroxy-Triclosan-derivatives were observed. The structure of 5-Hydroxy-Triclosan was elucidated by NMR data for the first time in sludge degradation experiments. Additionally the production of a hitherto unknown transformation product in sludge, i.e., Triclosan-O-Sulfate was detected. During the incubations, the concentrations of this transformation product changed from zero to 330 μg L(-1). Based on the analysis of the biodegradation products, three types of reactions were identified: 1) chemical scission of ether bond to form phenols and catechols, 2) addition of OH moieties to the aromatic ring, and 3) adding of methyl or sulfate groups to the original hydroxyl group.

  18. Studies on the effect of inoculation of activated sludge with bacteria actively degrading hydrocarbons on the biodegradation of petroleum products.

    PubMed

    Bieszkiewicz, Ewa; Boszczyk-Maleszak, Hanka; Włodarczyk, Anna; Horoch, Maciej

    2002-01-01

    Eighteen strains of bacteria were isolated from activated sludge purifying petroleum-refining wastewaters. These strains were plated on solidified mineral medium supplemented with oil fraction in concentration 1000 mg/l. Four of the strains that grew best in the presence of oil were selected for further studies. The strains were identified based on Bonde's scheme and microscopic observations. Three of them belonged to the genus Arthrobacter and one to the genus Micrococcus. Stationary cultures of single strains and their mixtures were set up in mineral medium containing oil (sterile and non-sterile) as sole carbon source in concentration 1000 mg/l. The oils were found to be removed the most efficiently by a mixture of the strains. After 14 days of culture the amount of oil was utilized by from 63 to 95%. In the next stage of the studies the bacteria were used to inoculate activated sludge. Stationary cultures of the activated sludge were set up in mineral medium with oil. The utilisation of petroleum products by non-inoculated activated sludge (control), activated sludge inoculated with a single strain or a mixture of all four strains was examined. In both inoculated activated sludge cultures approximately 80% of the oils were removed, compared to 60% in the control activated sludge. Therefore, inoculated activated sludge showed 20% higher effectiveness of removal of petroleum derivatives.

  19. Effect of polyhydroxyalkanoates on dark fermentative hydrogen production from waste activated sludge.

    PubMed

    Wang, Dongbo; Zeng, Guangming; Chen, Yinguang; Li, Xiaoming

    2015-04-15

    Polyhydroxyalkanoates (PHA), an intracellular energy and carbon storage polymer, can be accumulated in activated sludge in substantial quantities under wastewater dynamic treatment (i.e., substrate feast-famine) conditions. However, its influence on hydrogen production has never been investigated before. This study therefore evaluated the influences of PHA level and composition in waste activated sludge (WAS) on hydrogen production. The results showed that with the increase of sludge PHA content from 25 to 178 mg per gram volatile suspended solids (VSS) hydrogen production from WAS alkaline anaerobic fermentation increased from 26.5 to 58.7 mL/g VSS. The composition of PHA was also found to affect hydrogen production. When the dominant composition shifted from polyhydroxybutyrate (PHB) to polyhydroxyvalerate (PHV), the amount of generated hydrogen decreased from 51.2 to 41.1 mL/g VSS even under the same PHA level (around 130 mg/g VSS). The mechanism studies exhibited that the increased PHA content accelerated both the cell solubilization and the hydrolysis process of solubilized substrates. Compared with the PHB-dominant sludge, the increased PHV fraction not only slowed the hydrolysis process but also caused more propionic acid production, with less theoretical hydrogen generation in this fermentation type. It was also found that the increased PHA content enhanced the soluble protein conversion of non-PHA biomass. Further investigations with enzyme analyses showed that both the key hydrolytic enzyme activities and hydrogen-forming enzyme activities were in the sequence of the PHB-dominant sludge > the PHV-dominant sludge > the low PHA sludge, which was in accord with the observed order of hydrogen yield.

  20. Effect of process variables on the production of Polyhydroxyalkanoates by activated sludge

    PubMed Central

    2012-01-01

    Polyhydroxyalkanoates are known to be temporarily stored by microorganisms in activated sludge, especially in anaerobic-aerobic processes. Due to the problems resulted from the disposals of plastic wastes and excess sludge of wastewater treatment plants, the production of polyhydroxyalkanoates by treating activated sludge and determining the effect of process variables were the main issues of this paper. In this research, an anaerobic-aerobic sequencing batch reactor was used to make microorganism adapted and a batch aerobic reactor was used for enriching them. The variables affecting polyhydroxyalkanoates production including aeration time, sludge retention time, and volatile fatty acids concentration of the influent in sequencing batch reactor, and also carbon to nitrogen ratio and cultivation time in polymer production reactor, were investigated using Taguchi statistical approach to determine optimum conditions. The maximum polymer production of 29% was achieved at sludge retention time of 5–10 days, aeration time of 2 hours, supplementation of 40% of volatile fatty acids in the influent and increasing of carbon to nitrogen ratio of polymer production reactor to above 25 g/g. Based on the results, in optimum conditions, the volatile fatty acids concentration which increased the production of polyhydroxyalkanoates up to 49% was the most effective variable. Carbon to nitrogen ratio, sludge retention time and aeration time were ranked as the next affecting parameters. Although the polyhydroxyalkanoates content achieved in present study is much lower than that by pure culture, but the proposed method may still serve well as an environmental friendly means to convert waste into valuable product. PMID:23369512

  1. Enhanced Lipid and Biodiesel Production from Glucose-Fed Activated Sludge: Kinetics an Microbial Community Analysis

    EPA Science Inventory

    An innovative approach to increase biofuel feedstock lipid yields from municipal sewage sludge via manipulation of carbon:nitrogen (C:N) ratio and glucose loading in activated sludge bioreactors was investigated. Sludge lipid and fatty acid methyl ester (biodiesel) yields (% cel...

  2. Utilization of molasses spentwash for production of bioplastics by waste activated sludge

    SciTech Connect

    Khardenavis, Anshuman A. Vaidya, Atul N.; Kumar, M. Suresh; Chakrabarti, Tapan

    2009-09-15

    Present study describes the treatment of molasses spentwash and its use as a potential low cost substrate for production of biopolymer polyhydroxybutyrate (PHB) by waste activated sludge. Fluorescence microscopy revealed the presence of PHB granules in sludge biomass which was further confirmed by fourier transform-infra-red spectroscopy (FT-IR) and {sup 13}C nuclear magnetic resonance (NMR). The processing of molasses spentwash was carried out for attaining different ratios of carbon and nitrogen (C:N). Highest chemical oxygen demand (COD) removal and PHB accumulation of 60% and 31% respectively was achieved with raw molasses spentwash containing inorganic nitrogen (C:N ratio = 28) followed by COD removal of 52% and PHB accumulation of 28% for filtered molasses containing inorganic nitrogen (C:N ratio = 29). PHB production yield (Y{sub p/s}) was highest (0.184 g g{sup -1} COD consumed) for deproteinized spentwash supplemented with nitrogen. In contrast, the substrate consumption and product formation were higher in case of raw spentwash. Though COD removal was lowest from deproteinized spentwash, evaluation of kinetic parameters suggested higher rates of conversion of available carbon to biomass and PHB. Thus the process provided dual benefit of conversion of two wastes viz. waste activated sludge and molasses spentwash into value-added product-PHB.

  3. Utilization of molasses spentwash for production of bioplastics by waste activated sludge.

    PubMed

    Khardenavis, Anshuman A; Vaidya, Atul N; Kumar, M Suresh; Chakrabarti, Tapan

    2009-09-01

    Present study describes the treatment of molasses spentwash and its use as a potential low cost substrate for production of biopolymer polyhydroxybutyrate (PHB) by waste activated sludge. Fluorescence microscopy revealed the presence of PHB granules in sludge biomass which was further confirmed by fourier transform-infra-red spectroscopy (FT-IR) and (13)C nuclear magnetic resonance (NMR). The processing of molasses spentwash was carried out for attaining different ratios of carbon and nitrogen (C:N). Highest chemical oxygen demand (COD) removal and PHB accumulation of 60% and 31% respectively was achieved with raw molasses spentwash containing inorganic nitrogen (C:N ratio=28) followed by COD removal of 52% and PHB accumulation of 28% for filtered molasses containing inorganic nitrogen (C:N ratio=29). PHB production yield (Y(p/s)) was highest (0.184 g g(-1) COD consumed) for deproteinized spentwash supplemented with nitrogen. In contrast, the substrate consumption and product formation were higher in case of raw spentwash. Though COD removal was lowest from deproteinized spentwash, evaluation of kinetic parameters suggested higher rates of conversion of available carbon to biomass and PHB. Thus the process provided dual benefit of conversion of two wastes viz. waste activated sludge and molasses spentwash into value-added product-PHB.

  4. Microbial Community Dynamics and Activity Link to Indigo Production from Indole in Bioaugmented Activated Sludge Systems

    PubMed Central

    Deng, Jie; Deng, Ye; Van Nostrand, Joy D.; Wu, Liyou; He, Zhili; Qin, Yujia; Zhou, Jiti; Zhou, Jizhong

    2015-01-01

    Biosynthesis of the popular dyestuff indigo from indole has been comprehensively studied using pure cultures, but less has been done to characterize the indigo production by microbial communities. In our previous studies, a wild strain Comamonas sp. MQ was isolated from activated sludge and the recombinant Escherichia coli nagAc carrying the naphthalene dioxygenase gene (nag) from strain MQ was constructed, both of which were capable of producing indigo from indole. Herein, three activated sludge systems, G1 (non-augmented control), G2 (augmented with Comamonas sp. MQ), and G3 (augmented with recombinant E. coli nagAc), were constructed to investigate indigo production. After 132-day operation, G3 produced the highest yields of indigo (99.5 ± 3.0 mg/l), followed by G2 (27.3 ± 1.3 mg/l) and G1 (19.2 ± 1.2 mg/l). The microbial community dynamics and activities associated with indigo production were analyzed by Illumina Miseq sequencing of 16S rRNA gene amplicons. The inoculated strain MQ survived for at least 30 days, whereas E. coli nagAc was undetectable shortly after inoculation. Quantitative real-time PCR analysis suggested the abundance of naphthalene dioxygenase gene (nagAc) from both inoculated strains was strongly correlated with indigo yields in early stages (0–30 days) (P < 0.001) but not in later stages (30–132 days) (P > 0.10) of operation. Based on detrended correspondence analysis (DCA) and dissimilarity test results, the communities underwent a noticeable shift during the operation. Among the four major genera (> 1% on average), the commonly reported indigo-producing populations Comamonas and Pseudomonas showed no positive relationship with indigo yields (P > 0.05) based on Pearson correlation test, while Alcaligenes and Aquamicrobium, rarely reported for indigo production, were positively correlated with indigo yields (P < 0.05). This study should provide new insights into our understanding of indigo bio-production by microbial communities

  5. Organics removal from landfill leachate and activated sludge production in SBR reactors

    SciTech Connect

    Klimiuk, Ewa; Kulikowska, Dorota . E-mail: dorotak@uwm.edu.pl

    2006-07-01

    This study is aimed at estimating organic compounds removal and sludge production in SBR during treatment of landfill leachate. Four series were performed. At each series, experiments were carried out at the hydraulic retention time (HRT) of 12, 6, 3 and 2 d. The series varied in SBR filling strategies, duration of the mixing and aeration phases, and the sludge age. In series 1 and 2 (a short filling period, mixing and aeration phases in the operating cycle), the relationship between organics concentration (COD) in the leachate treated and HRT was pseudo-first-order kinetics. In series 3 (with mixing and aeration phases) and series 4 (only aeration phase) with leachate supplied by means of a peristaltic pump for 4 h of the cycle (filling during reaction period) - this relationship was zero-order kinetics. Activated sludge production expressed as the observed coefficient of biomass production (Y {sub obs}) decreased correspondingly with increasing HRT. The smallest differences between reactors were observed in series 3 in which Y {sub obs} was almost stable (0.55-0.6 mg VSS/mg COD). The elimination of the mixing phase in the cycle (series 4) caused the Y {sub obs} to decrease significantly from 0.32 mg VSS/mg COD at HRT 2 d to 0.04 mg VSS/mg COD at HRT 12 d. The theoretical yield coefficient Y accounted for 0.534 mg VSS/mg COD (series 1) and 0.583 mg VSS/mg COD (series 2). In series 3 and 4, it was almost stable (0.628 mg VSS/mg COD and 0.616 mg VSS/mg COD, respectively). After the elimination of the mixing phase in the operating cycle, the specific biomass decay rate increased from 0.006 d{sup -1} (series 3) to 0.032 d{sup -1} (series 4). The operating conditions employing mixing/aeration or only aeration phases enable regulation of the sludge production. The SBRs operated under aerobic conditions are more favourable at a short hydraulic retention time. At long hydraulic retention time, it can lead to a decrease in biomass concentration in the SBR as a result of

  6. Enzymatic and metabolic activities of four anaerobic sludges and their impact on methane production from ensiled sorghum forage.

    PubMed

    Sambusiti, C; Rollini, M; Ficara, E; Musatti, A; Manzoni, M; Malpei, F

    2014-03-01

    Biochemical methane potential (BMP) tests were run on ensiled sorghum forage using four inocula (urban, agricultural, mixture of agricultural and urban, granular) and differences on their metabolic and enzymatic activities were also discussed. Results indicate that no significant differences were observed in terms of BMP values (258±14NmLCH4g(-1)VS) with a slightly higher value when agricultural sludge was used as inoculum. Significant differences can be observed among different inocula, in terms of methane production rate. In particular the fastest biomethanization occurred when using the urban sludge (hydrolytic kinetic constant kh=0.146d(-1)) while the slowest one was obtained from the agricultural sludge (kh=0.049d(-1)). Interestingly, positive correlations between the overall enzymatic activities and methane production rates were observed for all sludges, showing that a high enzymatic activity may favour the hydrolysis of complex substrate and accelerate the methanization process of sorghum.

  7. Treatment of saline wastewaters from marine-products processing factories by activated sludge reactor.

    PubMed

    Khannous, L; Souissi, N; Ghorbel, B; Jarboui, R; Kallel, M; Nasri, M; Gharsallah, N

    2003-10-01

    An activated sludge reactor, operated at room temperature (20-30 degrees C) was used to treat saline wastewaters generated by marine-products industries. The system was operated continuously and the influence of the organic loading rates (OLRs), varying from 250 to 1000 mg COD l(-1) day(-1), on chemical oxygen demand (COD) removal was investigated. The system, inoculated with NaCl-acclimated culture, removed up to 98% and 88% of the influent COD concentrations at OLRs of 250 and 1000 mg COD L(-1) day(-1), respectively. Since the organic pollution is essentially composed of proteins, microorganisms, which produced proteolytic enzymes, were isolated from the activated sludge culture. One bacterium with the highest protease activity, identified as Bacillus cereus, was chosen for protease production in fishery wastewaters of different concentrations containing combined heads and viscera powder. Protease synthesis was strongly enhanced when cells were cultivated in two times diluted fishery wastewaters. The enhancement of protease synthesis could have been due to the presence in effluent of organic matters or salts, which stimulated the growth of the strain and protease production.

  8. Activated sludge is a potential source for production of biodegradable plastics from wastewater.

    PubMed

    Khardenavis, A; Guha, P K; Kumar, M S; Mudliar, S N; Chakrabarti, T

    2005-05-01

    Increased utilization of synthetic plastics caused severe environmental pollution due to their non-biodegradable nature. In the search for environmentally friendly materials to substitute for conventional plastics, different biodegradable plastics have been developed by microbial fermentations. However, limitations of these materials still exist due to high cost. This study aims at minimization of cost for the production of biodegradable plastics P(3HB) and minimization of environmental pollution. The waste biological sludge generated at wastewater treatment plants is used for the production of P(3HB) and wastewater is used as carbon source. Activated sludge was induced by controlling the carbon: nitrogen ratio to accumulate storage polymer. Initially polymer accumulation was studied by using different carbon and nitrogen sources. Maximum accumulation of polymer was observed with carbon source acetic acid and diammonium hydrogen phosphate (DAHP) as nitrogen source. Further studies were carried out to optimize the carbon: nitrogen ratios using acetic acid and DAHP. A maximum of 65.84% (w/w) P(3HB) production was obtained at C/N ratio of 50 within 96 hours of incubation.

  9. Sorption of biodegradation end products of nonylphenol polyethoxylates onto activated sludge.

    PubMed

    Hung, Nguyen Viet; Tateda, Masafumi; Ike, Michihiko; Fujita, Masanori; Tsunoi, Shinji; Tanaka, Minoru

    2004-01-01

    Nonylphenol(NP), nonylphenoxy acetic acid (NP1EC), nonylphenol monoethoxy acetic acid (NP2EC), nonylphenol monoethoxylate (NP1EO) and nonylphenol diethoxylate (NP2EO) are biodegradation end products (BEPs) of nonionic surfactant nonylphenolpolyethoxylates (NPnEO). In this research, sorption of these compounds onto model activated sludge was characterized. Sorption equilibrium experiments showed that NP, NP1EO and NP2EO reached equilibrium in about 12 h, while equilibrium of NP1EC and NP2EC were reached earlier, in about 4 h. In sorption isotherm experiments, obtained equilibrium data at 28 degrees C fitted well to Freundlich sorption model for all investigated compounds. For NP1EC, in addition to Freundlich, equilibrium data also fitted well to Langmuir model. Linear sorption model was also tried, and equilibrium data of all NP, NP1EO, NP2EO and NP2EC except NP1EC fitted well to this model. Calculated Freundlich coefficient (K(F)) and linear sorption coefficient (K(D)) showed that sorption capacity of the investigated compounds were in order NP > NP2EO > NP1EO > NP1EC approximately NP2EC. For NP, NP1EO and NP2EO, high values of calculated K(F) and K(D) indicated an easy uptake of these compounds from aqueous phase onto activated sludge. Whereas, NP1EC and NP2EC with low values of K(F) and K(D) absorbed weakly to activated sludge and tended to preferably remain in aqueous phase.

  10. Anaerobic treatment of activated sludge from Swedish pulp and paper mills--biogas production potential and limitations.

    PubMed

    Karlsson, Anna; Truong, Xu-Bin; Gustavsson, Jenny; Svensson, Bo H; Nilsson, Fredrik; Ejlertsson, Jörgen

    2011-10-01

    The methane potential of activated sludge from six Swedish pulp and paper mills was evaluated. The methane production potential of sludge samples ranged from 100-200 NmL CH4 g(-1) volatile solids (VS) and for four of the six sludge samples the potential exceeded 170 NmL CH4 g(-1) VS. The effects of sludge age and dewatering on the methane production potential were evaluated. The effects of enzymatic and ultrasonic pre-treatment on the digestibility of sludge were also investigated, but energy or enzyme inputs in viable ranges did not exert a detectable, positive effect. Long-term, semi-continuous trials with sludge from two of the mills were also conducted in attempts to develop stable biogas production at loading rates up to 4 g VS L(-1). Cobalt addition (0.5 mg L(-1)) was here found to positively affect the turnover of acetate. High viscosity was a problem in all the experimental reactors and this limited the organic loading rate.

  11. A modified oxic-settling-anaerobic activated sludge process using gravity thickening for excess sludge reduction

    PubMed Central

    Wang, Jun; Li, Shi-Yu; Jiang, Feng; Wu, Ke; Liu, Guang-Li; Lu, Hui; Chen, Guang-Hao

    2015-01-01

    Oxic-settling-anaerobic process (OSA) was known as a cost-effective way to reduce the excess sludge production with simple upgrade of conventional activated sludge process (CAS). A low oxidation-reduction potential (ORP) level was the key factor to sludge decay and lysis in the sludge holding tank of the OSA process. However, the ORP control with nitrogen purge or chemical dosing in the OSA process would induce extra expense and complicate the operation. Hence, in this study, a sludge holding tank using gravity thickening was applied to OSA process to reduce the excess sludge production without any ORP control. Results showed that the modified OSA process not only reduced the excess sludge production effectively but also improved the sludge settleability without affected the treatment capacity. The reduction of the excess sludge production in the modified OSA process resulted from interactions among lots of factors. The key element of the process was the gravity thickening sludge holding tank. PMID:26350761

  12. A modified oxic-settling-anaerobic activated sludge process using gravity thickening for excess sludge reduction

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Li, Shi-Yu; Jiang, Feng; Wu, Ke; Liu, Guang-Li; Lu, Hui; Chen, Guang-Hao

    2015-09-01

    Oxic-settling-anaerobic process (OSA) was known as a cost-effective way to reduce the excess sludge production with simple upgrade of conventional activated sludge process (CAS). A low oxidation-reduction potential (ORP) level was the key factor to sludge decay and lysis in the sludge holding tank of the OSA process. However, the ORP control with nitrogen purge or chemical dosing in the OSA process would induce extra expense and complicate the operation. Hence, in this study, a sludge holding tank using gravity thickening was applied to OSA process to reduce the excess sludge production without any ORP control. Results showed that the modified OSA process not only reduced the excess sludge production effectively but also improved the sludge settleability without affected the treatment capacity. The reduction of the excess sludge production in the modified OSA process resulted from interactions among lots of factors. The key element of the process was the gravity thickening sludge holding tank.

  13. Thermo-alkaline pretreatment of waste activated sludge at low-temperatures: effects on sludge disintegration, methane production, and methanogen community structure.

    PubMed

    Kim, Jaai; Yu, Youngseob; Lee, Changsoo

    2013-09-01

    Low-temperature thermo-alkaline pretreatment of waste activated sludge (WAS) was studied, within the region of 0-0.2 M NaOH and 60-90°C, for the effects of NaOH concentration and temperature on sludge degradability in anaerobic digestion (AD). Significant disintegration of sludge solids (up to 75.6%) and an increase in methane production (up to 70.6%) were observed in the pretreatment trials. Two quadratic models were successfully generated by response surface analysis (R(2)>0.9, p<0.05) to approximate how the degree of sludge disintegration (SD) and methane production (MP) respond to changes in the pretreatment conditions. The maximum responses of SD (77.8%) and MP (73.9% increase over the control) were shown at [0.16 M NaOH, 90°C] and [0.10 M NaOH, 73.7°C], respectively. NaOH addition showed a significant influence on the evolution of methanogen community structure during AD, whereas temperature did not. Aceticlastic Methanosaeta and Methanosarcina speceies were likely the major methanogens.

  14. Combined thermo-chemo-sonic disintegration of waste activated sludge for biogas production.

    PubMed

    Kavitha, S; Yukesh Kannah, R; Yeom, Ick Tae; Do, Khac-Uan; Banu, J Rajesh

    2015-12-01

    In the present study, there was an investigation about the impact of a new combined thermo-chemo-sonic disintegration of waste activated sludge (WAS) on biodegradability. The outcome of sludge disintegration reveals that maximum Suspended Solids (SS) reduction and Chemical Oxygen Demand (COD) solubilization effectuated at a specific energy input of 5290.5kJ/kgTS, and was found to be 20%, 16.4%, 15% and 27%, 22%, and 20%, respectively for the three alkalis (NaOH, KOH, and Ca(OH)2). The conversion coefficient of the Volatile Suspended Solids (VSS) to product Soluble COD (SCOD), calculated by nonlinear regression modeling, was found to be 0.5530gSCOD/gVSS, 0.4587gSCOD/gVSS, and 0.4195gSCOD/gVSS for NaOH, KOH, and Ca(OH)2, respectively. In the biodegradability studies, the parameter evaluation provides an estimate of parameter uncertainty and correlation, and elucidates that there is no significant difference in biodegradability (0.413gCOD/gCOD, 0.367gCOD/gCOD, and 0.342gCOD/gCOD) for three alkalis (NaOH, KOH, and Ca(OH)2).

  15. Soluble microbial products (SMPs) release in activated sludge systems: a review

    PubMed Central

    2012-01-01

    This review discusses the characterization, production and implications of soluble microbial products (SMPs) in biological wastewater treatment. The precise definition of SMPs is open to talk about, but is currently regarded as “the pool of organic compounds that are released into solution from substrate metabolism and biomass decay”'. Some of the SMPs have been identified as humic acids, polysaccharides, proteins, amino acids, antibiotics, extracellular enzymes and structural components of cells and products of energy metabolism. They adversely affect the kinetic activity, flocculating and settling properties of sludge. This review outlines some important findings with regard to biodegradability and treatability of SMPs and also the effect of process parameters on their production. As SMPs are produced during biological treatment process, their trace amounts normally remain in the effluent that defines the highest COD removal efficiency. Their presence in effluent represents a high potential risk of toxic by-product formation during chlorine disinfection. Studies have indicated that among all wastewater post-treatment processes, the adsorption by granular activated carbon combined with biologically induced degradation is the most effective method for removal of SMPs. However, it may be concludes that the knowledge regarding SMPs is still under progress and more work is required to fully understand their contribution to the treatment process. PMID:23369231

  16. Soluble microbial products (SMPs) release in activated sludge systems: a review.

    PubMed

    Azami, Hamed; Sarrafzadeh, Mohammad Hossein; Mehrnia, Mohammad Reza

    2012-12-18

    This review discusses the characterization, production and implications of soluble microbial products (SMPs) in biological wastewater treatment. The precise definition of SMPs is open to talk about, but is currently regarded as "the pool of organic compounds that are released into solution from substrate metabolism and biomass decay"'. Some of the SMPs have been identified as humic acids, polysaccharides, proteins, amino acids, antibiotics, extracellular enzymes and structural components of cells and products of energy metabolism. They adversely affect the kinetic activity, flocculating and settling properties of sludge. This review outlines some important findings with regard to biodegradability and treatability of SMPs and also the effect of process parameters on their production. As SMPs are produced during biological treatment process, their trace amounts normally remain in the effluent that defines the highest COD removal efficiency. Their presence in effluent represents a high potential risk of toxic by-product formation during chlorine disinfection. Studies have indicated that among all wastewater post-treatment processes, the adsorption by granular activated carbon combined with biologically induced degradation is the most effective method for removal of SMPs. However, it may be concludes that the knowledge regarding SMPs is still under progress and more work is required to fully understand their contribution to the treatment process.

  17. Continuous volatile fatty acid production from waste activated sludge hydrolyzed at pH 12.

    PubMed

    Yang, Xue; Wan, Chunli; Lee, Duu-Jong; Du, Maoan; Pan, Xiangliang; Wan, Fang

    2014-09-01

    This study adopted rapid alkaline treatment at pH 12 to hydrolyze 66% of total chemical oxygen demands. Then the hydrolyzed liquor was fermented in a continuous-flow stirred reactor to produce volatile fatty acids (VFAs) at 8-h hydraulic retention time and at 35 °C. The maximum VFA productivity reached 365 mg VFAs g(-1) volatile suspended solids in a 45-d operation, with most produced VFAs being acetate and propionate, principally produced by protein degradation. The Bacteroidia, ε-proteobacteria and the Clostridia were identified to be the classes correlating with the fermentation processes. The fermented liquor was applied to denitrifying phosphorus removal process as alternative carbon source after excess phosphorus and nitrogen being recycled via struvite precipitation. Fermented liquors from alkaline hydrolysis-acid fermentation on waste activated sludge are a potential renewable resource for applications that need organic carbons.

  18. Optimization of polyhydroxybutyrate (PHB) production by excess activated sludge and microbial community analysis.

    PubMed

    Liu, Zhenggui; Wang, Yuanpeng; He, Ning; Huang, Jiale; Zhu, Kang; Shao, Wenyao; Wang, Haitao; Yuan, Weilong; Li, Qingbiao

    2011-01-15

    In this study, a high value-added and biodegradable thermoplastic, polyhydroxybutyrate (PHB), was produced by excess activated sludge. The effects of the nutritional condition, aeration mode, sodium acetate concentration and initial pH value on PHB accumulation in the activated sludge were investigated. The maximum PHB content and PHB yield of 67.0% (dry cell weight) and 0.740gCODgCOD(-1) (COD: chemical oxygen demand), respectively, were attained by the sludge in the presence of 6.0gL(-1) sodium acetate, with an initial pH value of 7.0 and intermittent aeration. The analysis of the polymerase chain reaction (PCR)-denaturing gradient-gel-electrophoresis (DGGE) sequencing indicated that the microbial community of the sludge was significantly different during the process of PHB accumulation. Three PHB-accumulating microorganisms, which were affiliated with the Thauera, Dechloromonas and Competibacter lineages, were found in the excess activated sludge under different operating conditions for PHB accumulation.

  19. Characterization of autotrophic and heterotrophic soluble microbial product (SMP) fractions from activated sludge.

    PubMed

    Xie, Wen-Ming; Ni, Bing-Jie; Seviour, Thomas; Sheng, Guo-Ping; Yu, Han-Qing

    2012-12-01

    Soluble microbial products (SMP) generated by microbial populations can adversely affect the efficiency of biological wastewater treatment systems and secondary effluent quality. In this work, both experimental and modeling approaches were used to investigate the formation of SMP by both heterotrophic and autotrophic bacteria. Strategies to control and reduce SMP in activated sludge systems were thus evaluated. SMP produced by heterotrophs were found to account for more than 92% of total SMP. The SMP produced by autotrophs contributed to less than 8% of the total SMP, with 5% attributable to the ammonia-oxidizing bacteria (AOB) and 3% to the nitrite-oxidizing bacteria (NOB). When external organic substrate was present, the utilization-associated products (UAP) were the main component of SMP. When external organic substrate was completely consumed, biomass-associated products (BAP) from the hydrolysis of extracellular polymeric substances (EPS) dominated the SMP. The model developed in this study described the fractions and dynamics of UAP and BAP produced by heterotrophs, AOB and NOB. Solids retention time of the reactor had a significant effect on SMP production, while the effect of the hydraulic retention time was only minor. Decreasing the solids retention time from 15 to 0.5 d reduced SMP production in the reactor by 62%.

  20. Improved methane production from waste activated sludge with low organic content by alkaline pretreatment at pH 10.

    PubMed

    Feng, L Y; Yang, L Q; Zhang, L X; Chen, H L; Chen, J

    2013-01-01

    Sludge with low organic content always results in an unsatisfactory performance, even failure of anaerobic digestion. The alkaline pretreatment effect on anaerobic digestion of sludge with low organic content has seldom been studied although it gives many benefits for sludge with high organic content. In this study the influence of alkaline pretreatment (pH 10, an effective alkaline pH) on the solubilization and methane production from waste activated sludge (WAS) with low organic content was investigated. Results from biochemical methane potential (BMP) experiments showed that anaerobic biodegradability of WAS was greatly improved by alkaline pretreatment at pH 10. Methane production from the current WAS under conditions of pretreatment time 4 h and digestion time 15 d was 139.6 mL/g VS (volatile solids), much higher than that from the unpretreated WAS with digestion time of 20 d (75.2 mL/g VS). Also, the solubilization of WAS was significantly accelerated by alkaline pretreatment. Mechanism exploration indicated that the general activities of anaerobic microorganisms, specific activities of key enzymes and the amounts of methanogens were enhanced by alkaline pretreatment at pH 10, showing good agreement with methane production.

  1. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate

    NASA Astrophysics Data System (ADS)

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d‑1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.

  2. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate.

    PubMed

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-21

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d(-1)) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.

  3. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate

    PubMed Central

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d−1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery. PMID:26791952

  4. Polyhydroxybutyrate production by direct use of waste activated sludge in phosphorus-limited fed-batch culture.

    PubMed

    Cavaillé, Laëtitia; Grousseau, Estelle; Pocquet, Mathieu; Lepeuple, Anne-Sophie; Uribelarrea, Jean-Louis; Hernandez-Raquet, Guillermina; Paul, Etienne

    2013-12-01

    Polyhydroxybutyrate (PHB) production directly by waste activated sludge (WAS) was investigated in aerobic fed-batch conditions using acetic acid as substrate. PHB production was induced by phosphorus limitation. WAS of different origin were tested with various degrees of phosphorus limitation and PHB contents of up to 70% (gCOD PHB/gCOD particulate) were obtained. This strategy showed the importance of maintaining cell growth for PHB production in order to increase PHB concentration and that the degree of phosphorus limitation has a direct impact on the quantity of PHB produced. Pyrosequencing of 16S rRNA transcripts showed changes in the active bacteria of the WAS microbial community as well as the acclimation of populations depending on sludge origin. The monitoring of the process appeared as the key factor for optimal PHB production by WAS. Different strategies are discussed and compared in terms of carbon yield and PHB content with the feast and famine selection process.

  5. Biohydrogen production from xylose by fresh and digested activated sludge at 37, 55 and 70 °C.

    PubMed

    Dessì, Paolo; Lakaniemi, Aino-Maija; Lens, Piet N L

    2017-02-28

    Two heat-treated inocula, fresh and digested activated sludge from the same municipal wastewater treatment plant, were compared for their H2 production via dark fermentation at mesophilic (37 °C), thermophilic (55 °C) and hyperthermophilic (70 °C) conditions using xylose as the substrate. At both 37 and 55 °C, the fresh activated sludge yielded more H2 than the digested sludge, whereas at 70 °C, neither of the inocula produced H2 effectively. A maximum yield of 1.85 mol H2 per mol of xylose consumed was obtained at 55 °C. H2 production was linked to acetate and butyrate production, and there was a linear correlation (R(2) = 0.96) between the butyrate and H2 yield for the fresh activated sludge inoculum at 55 °C. Approximately 2.4 mol H2 per mol of butyrate produced were obtained against a theoretical maximum of 2.0, suggesting that H2 was produced via the acetate pathway prior to switching to the butyrate pathway due to the increased H2 partial pressure. Clostridia sp. were the prevalent species at both 37 and 55 °C, irrespectively of the inoculum type. Although the two inocula originated from the same plant, different thermophilic microorganisms were detected at 55 °C. Thermoanaerobacter sp., detected only in the fresh activated sludge cultures, may have contributed to the high H2 yield obtained with such an inoculum.

  6. Stimulating short-chain fatty acids production from waste activated sludge by nano zero-valent iron.

    PubMed

    Luo, Jingyang; Feng, Leiyu; Chen, Yinguang; Li, Xiang; Chen, Hong; Xiao, Naidong; Wang, Dongbo

    2014-10-10

    An efficient and green strategy, i.e. adding nano zero-valent iron into anaerobic fermentation systems to remarkably stimulate the accumulation of short-chain fatty acids from waste activated sludge via accelerating the solubilization and hydrolysis processes has been developed. In the presence of nano zero-valent iron, not only the short-chain fatty acids production was significantly improved, but also the fermentation time for maximal short-chain fatty acids was shortened compared with those in the absence of nano zero-valent iron. Mechanism investigations showed that the solubilization of sludge, hydrolysis of solubilized substances and acidification of hydrolyzed products were all enhanced by addition of nano zero-valent iron. Also, the general microbial activity of anaerobes and relative activities of key enzymes with hydrolysis and acidification of organic matters were improved than those in the control. 454 high-throughput pyrosequencing analysis suggested that the abundance of bacteria responsible for waste activated sludge hydrolysis and short-chain fatty acids production was greatly enhanced due to nano zero-valent iron addition.

  7. How Does Poly(hydroxyalkanoate) Affect Methane Production from the Anaerobic Digestion of Waste-Activated Sludge?

    PubMed

    Wang, Dongbo; Zhao, Jianwei; Zeng, Guangming; Chen, Yinguang; Bond, Philip L; Li, Xiaoming

    2015-10-20

    Recent studies demonstrate that, besides being used for production of biodegradable plastics, poly(hydroxyalkanoate) (PHA) that is accumulated in heterotrophic microorganisms during wastewater treatment has another novel application direction, i.e., being utilized for enhancing methane yield during the anaerobic digestion of waste-activated sludge (WAS). To date, however, the underlying mechanism of how PHA affects methane production remains largely unknown, and this limits optimization and application of the strategy. This study therefore aims to fill this knowledge gap. Experimental results showed that with the increase of sludge PHA levels from 21 to 184 mg/g of volatile suspended solids (VSS) the methane yield linearly increased from 168.0 to 246.1 mL/g of VSS (R(2) = 0.9834). Compared with protein and carbohydrate (the main components of a cell), PHA exhibited a higher biochemical methane potential on a unit VSS basis. It was also found that the increased PHA not only enhanced cell disruption of PHA cells but also benefited the soluble protein conversion of both PHA- and non-PHA cells. Moreover, the reactor fed with higher PHA sludge showed greater sludge hydrolysis and acidification than those fed with the lower PHA sludges. Further investigations using fluorescence in situ hybridization and enzyme analysis revealed that the increased PHA enhanced the abundance of methanogenic Archaea and increased the activities of protease, acetate kinase, and coenzyme F420, which were consistent with the observed methane yield. This work provides insights into PHA-involved WAS digestion systems and may have important implications for future operation of wastewater treatment plants.

  8. Co-digestion of molasses or kitchen waste with high-rate activated sludge results in a diverse microbial community with stable methane production.

    PubMed

    De Vrieze, Jo; Plovie, Kristof; Verstraete, Willy; Boon, Nico

    2015-04-01

    Kitchen waste and molasses are organic waste streams with high organic content, and therefore are interesting substrates for renewable energy production by means of anaerobic digestion. Both substrates, however, often cause inhibition of the anaerobic digestion process, when treated separately, hence, co-digestion with other substrates is required to ensure stable methane production. In this research, A-sludge (sludge harvested from a high rate activated sludge system) was used to stabilize co-digestion with kitchen waste or molasses. Lab-scale digesters were fed with A-sludge and kitchen waste or molasses for a total period of 105 days. Increased methane production values revealed a stabilizing effect of concentrated A-sludge on kitchen waste digestion. Co-digestion of molasses with A-sludge also resulted in a higher methane production. Volumetric methane production rates up to 1.53 L L(-1) d(-1) for kitchen waste and 1.01 L L(-1) d(-1) for molasses were obtained by co-digestion with A-sludge. The stabilizing effect of A-sludge was attributed to its capacity to supplement various nutrients. Microbial community results demonstrated that both reactor conditions and substrate composition determined the nature of the bacterial community, although there was no direct influence of micro-organisms in the substrate itself, while the methanogenic community profile remained constant as long as optimal conditions were maintained.

  9. Enhancing methane production from waste activated sludge using a novel indigenous iron activated peroxidation pre-treatment process.

    PubMed

    Zhou, Xu; Wang, Qilin; Jiang, Guangming

    2015-04-01

    Methane production from anaerobic digestion of waste activated sludge (WAS) is limited by the slow hydrolysis rate and/or poor methane potential of WAS. This study presents a novel pre-treatment strategy based on indigenous iron (in WAS) activated peroxidation to enhance methane production from WAS. Pre-treatment of WAS for 30 min at 50mg H2O2/g total solids (dry weight) and pH 2.0 (iron concentration in WAS was 7 mg/g TS) substantially enhanced WAS solubilization. Biochemical methane potential tests demonstrated that methane production was improved by 10% at a digestion time of 16d after incorporating the indigenous iron activated peroxidation pre-treatment. Model-based analysis indicated that indigenous iron activated peroxidation pre-treatment improved the methane potential by 13%, whereas the hydrolysis rate was not significantly affected. The economic analysis showed that the proposed pre-treatment method can save the cost by $112,000 per year in a treatment plant with a population equivalent of 300,000.

  10. Use of lysis and recycle to control excess sludge production in activated sludge treatment: bench scale study and effect of chlorinated organic compounds.

    PubMed

    Nolasco, M A; Campos, A L O; Springer, A M; Pires, E C

    2002-01-01

    The most widely used treatment system in the pulp and paper industry--the activated sludge--produces high quantities of sludge which need proper disposal. In this paper a modified activated sludge process is presented. A synthetic wastewater, prepared to simulate the effluent of bleached and unbleached pulp and paper plant wastewater, was submitted to treatment in a bench scale aerobic reactor. The excess sludge was lysed in a mechanical mill--Kaddy mill--and totally recycled to the aeration tank. In the first phase the synthetic wastewater, without the chlorinated compounds, was fed to the reactor. In the second phase increasing dosages of the chlorinated compounds were used. Total recycle of excess sludge after disintegration did not produce adverse effects. During the first phase average COD removal efficiency was 65% for the control unit, which operated in a conventional way, and 63% for the treatment unit, which operated with total recycle. During the second phase the COD removal efficiency increased to 77% in the control unit and 75% in the treatment unit. Chlorinated organics removal was 85% in the treatment unit and 86% for the control unit. These differences are not significant.

  11. Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment

    PubMed Central

    2013-01-01

    Background Understanding the effects of pretreatment on anaerobic digestion of sludge waste from wastewater treatment plants is becoming increasingly important, as impetus moves towards the utilization of sludge for renewable energy production. Although the field of sludge pretreatment has progressed significantly over the past decade, critical questions concerning the underlying microbial interactions remain unanswered. In this study, a metagenomic approach was adopted to investigate the microbial composition and gene content contributing to enhanced biogas production from sludge subjected to a novel pretreatment method (maintaining pH at 10 for 8 days) compared to other documented methods (ultrasonic, thermal and thermal-alkaline). Results Our results showed that pretreated sludge attained a maximum methane yield approximately 4-fold higher than that of the blank un-pretreated sludge set-up at day 17. Both the microbial and metabolic consortium shifted extensively towards enhanced biodegradation subsequent to pretreatment, providing insight for the enhanced methane yield. The prevalence of Methanosaeta thermophila and Methanothermobacter thermautotrophicus, together with the functional affiliation of enzymes-encoding genes suggested an acetoclastic and hydrogenotrophic methanogenesis pathway. Additionally, an alternative enzymology in Methanosaeta was observed. Conclusions This study is the first to provide a microbiological understanding of improved biogas production subsequent to a novel waste sludge pretreatment method. The knowledge garnered will assist the design of more efficient pretreatment methods for biogas production in the future. PMID:23506434

  12. Improving the biogas production performance of municipal waste activated sludge via disperser induced microwave disintegration.

    PubMed

    Kavitha, S; Rajesh Banu, J; Vinoth Kumar, J; Rajkumar, M

    2016-10-01

    In this study, the influence of disperser induced microwave pretreatment was investigated to analyze the proficiency of floc disruption on subsequent disintegration and biodegradability process. Initially, the flocs in the sludge was disrupted through disperser at a specific energy input of 25.3kJ/kgTS. The upshot of the microwave disintegration presents that the solids reduction and solubilization of floc disrupted (disperser induced microwave pretreated) sludge was found to be 17.33% and 22% relatively greater than that achieved in microwave pretreated (9.3% and 16%) sludge alone. The biodegradability analysis, affords an evaluation of parameter confidence and correlation determination. The eventual biodegradability of microwave pretreated, and floc disrupted sludges were computed to be 0.15(gCOD/gCOD) and 0.28(gCOD/gCOD), respectively. An economic assessment of this study offers a positive net profit of about 104.8USD/ton of sludge in floc disrupted sample.

  13. Polycyclic Aromatic Hydrocarbon Affects Acetic Acid Production during Anaerobic Fermentation of Waste Activated Sludge by Altering Activity and Viability of Acetogen.

    PubMed

    Luo, Jingyang; Chen, Yinguang; Feng, Leiyu

    2016-07-05

    Till now, almost all the studies on anaerobic fermentation of waste activated sludge (WAS) for bioproducts generation focused on the influences of operating conditions, pretreatment methods and sludge characteristics, and few considered those of widespread persistent organic pollutants (POPs) in sludge, for example, polycyclic aromatic hydrocarbons (PAHs). Herein, phenanthrene, which was a typical PAH and widespread in WAS, was selected as a model compound to investigate its effect on WAS anaerobic fermentation for short-chain fatty acids (SCFAs) accumulation. Experimental results showed that the concentration of SCFAs derived from WAS was increased in the presence of phenanthrene during anaerobic fermentation. The yield of acetic acid which was the predominant SCFA in the fermentation reactor with the concentration of 100 mg/kg dry sludge was 1.8 fold of that in the control. Mechanism exploration revealed that the present phenanthrene mainly affected the acidification process of anaerobic fermentation and caused the shift of the microbial community to benefit the accumulation of acetic acid. Further investigation showed that both the activities of key enzymes (phosphotransacetylase and acetate kinase) involved in acetic acid production and the quantities of their corresponding encoding genes were enhanced in the presence of phenanthrene. Viability tests by determining the adenosine 5'-triphosphate content and membrane potential confirmed that the acetogens were more viable in anaerobic fermentation systems with phenanthrene, which resulted in the increased production of acetic acid.

  14. Microbial community dynamics linked to enhanced substrate availability and biogas production of electrokinetically pre-treated waste activated sludge.

    PubMed

    Westerholm, Maria; Crauwels, Sam; Houtmeyers, Sofie; Meerbergen, Ken; Van Geel, Maarten; Lievens, Bart; Appels, Lise

    2016-10-01

    The restricted hydrolytic degradation rate of complex organic matter presents a considerable challenge in anaerobic digestion of waste activated sludge (WAS). Within this context, application of pre-treatment of digester substrate has potential for improved waste management and enhanced biogas production. Anaerobic degradation of untreated or electrokinetically pre-treated WAS was performed in two pilot-scale digesters for 132days. WAS electrokinetically pre-treated with energy input 0.066kJ/kg sludge was used in a first phase of operation and WAS pre-treated with energy input 0.091kJ/kg sludge was used in a second phase (each phase lasted at least three hydraulic retention times). Substrate characteristics before and after pre-treatment and effects on biogas digester performance were comprehensively analysed. To gain insights into influences of altered substrate characteristics on microbial communities, the dynamics within the bacterial and archaeal communities in the two digesters were investigated using 16S rRNA gene sequencing (pyrosequencing) and quantitative PCR (qPCR). Specific primers targeting dominant operation taxonomic units (OTUs) and members of the candidate phylum Cloacimonetes were designed to further evaluate their abundance and dynamics in the digesters. Electrokinetic pre-treatment significantly improved chemical oxygen demand (COD) and carbohydrate solubility and increased biogas production by 10-11% compared with untreated sludge. Compositional similarity of the bacterial community during initial operation and diversification during later operation indicated gradual adaptation of the community to the higher solubility of organic material in the pre-treated substrate. Further analyses revealed positive correlations between gene abundance of dominant OTUs related to Clostridia and Cloacimonetes and increased substrate availability and biogas production. Among the methanogens, the genus Methanosaeta dominated in both digesters. Overall, the

  15. Progress and perspectives of sludge ozonation as a powerful pretreatment method for minimization of excess sludge production.

    PubMed

    Chu, Libing; Yan, Sangtian; Xing, Xin-Hui; Sun, Xulin; Jurcik, Benjamin

    2009-04-01

    The treatment and disposal of excess sludge represents a bottleneck in wastewater treatment plants (WWTP) worldwide, due to environmental, economic, social and legal factors. The ideal solution to the problem of sludge disposal is to combine sludge reduction with the removal of pollution at the source. This paper presents an overview of the potential of ozonation in sludge reduction. The full-scale application of ozonation in excess sludge reduction is presented. Improvements in the biodegradability of the ozonated sludge were confirmed. The introduction of ozonation into activated sludge did not significantly influence effluent quality but improved the settling properties of the sludge. An operation with a suitable sludge wasting ratio seems to be necessary to prevent accumulation of inorganic and inert particles for long-term operation. Sludge ozonation to reduce excess sludge production may be economical in WWTP which have high sludge disposal costs and operational problems such as sludge foaming and bulking. The recommended ozone dose ranges from 0.03 to 0.05 g O(3)/g TSS, which is appropriate to achieve a balance between sludge reduction efficiency and cost. An effort to design and optimize an economic sludge reduction process is necessary.

  16. Production of thermostable protease enzyme in wastewater sludge using thermophilic bacterial strains isolated from sludge.

    PubMed

    Chenel, J P; Tyagi, R D; Surampalli, R Y

    2008-01-01

    The volume of sludge produced annually is very high and poses serious disposal problems. The traditional methods of sludge disposal produce secondary pollutants. Therefore, the alternate or suitable solution is reuse of sludge in an ecofriendly approach. Biotechnology is an interesting tool to add value to the processes involved in wastewater and wastewater sludge disposal/reuse. In this context, a study was carried out on thermophilic bacterial strains that produce thermostable proteases. The bacterial strains were first isolated from municipal wastewater sludge. In contrast to the conventional strains used in industries, like Bacillus sp., the new strains were Gram-Negative type. In semi-synthetic medium, a maximal protease activity of 5.25 IU/ml (International Unit per ml) was obtained at a pH of 8.2 and at a temperature of 60 degrees C, which is higher than the stability temperature of 37 degrees C for a similar protease obtained from the conventional producer Bacillus licheniformis. Moreover, growth and protease activity of the strains were tested in wastewater sludge. It is expected that the complexity of sludge could stimulate/enhance the protease production and their characteristics. In conclusion, reuse of wastewater sludge will help to reduce their quantity as well as the value-added products produced will replace chemical products used in industries.

  17. Extracellular polymers of ozonized waste activated sludge.

    PubMed

    Liu, J C; Lee, C H; Lai, J Y; Wang, K C; Hsu, Y C; Chang, B V

    2001-01-01

    Effect of ozonation on characteristics of waste activated sludge was investigated in the current study. Concentrations of cell-bound extracellular polymers (washed ECPs) did not change much upon ozonation, whereas the sum of cell-bound and soluble extracellular polymers (unwashed ECPs) increased with increasing ozone dose. Washed ECPs in original sludge as divided by molecular weight distribution was 39% < 1,000 Da (low MW), 30% from 1,000 to 10,000 Da (medium MW), and 31% > 10,000 Da (high MW). It was observed that the low-MW fraction decreased, and the high-MW fraction increased in ozonized sludge. The unwashed ECPs were characterized as 44% in low MW, 30% in medium MW, and 26% in high MW. Both low-MW and medium-MW fractions of unwashed ECPs decreased while high-MW fraction increased in ozonized sludge. The dewaterability of ozonized sludge, assessed by capillary suction time (CST) and specific resistance to filtration (SRF), deteriorated with ozone dose. The optimal dose of cationic polyelectrolyte increased with increasing ozone dose. The production rate and the accumulated amount of methane gas of ozonized sludge were also higher.

  18. Evaluating the impact of operational parameters on the formation of soluble microbial products (SMP) by activated sludge.

    PubMed

    Xie, Wen-Ming; Ni, Bing-Jie; Seviour, Thomas; Yu, Han-Qing

    2013-03-01

    Soluble microbial products (SMP) are the major component of the residual organic fraction in biological wastewater treatment effluent. The impact of process parameters on SMP production by specific groups of bacteria is currently unknown. In this work, SMP production by activated sludge at different substrate concentrations, dissolved oxygen (DO) levels and temperatures, was evaluated by experimental and modeling approaches. The results showed that among the three parameters, SMP production was most sensitive to substrate concentration. Total SMP production was increased 70.5% by a threefold increase in substrate concentration, with SMP produced from heterotrophs, ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) increasing by 61.2%, 580.0% and 410.0%, respectively. The effect of temperature on SMP was less pronounced. Decreasing the temperature from 20 °C to 10 °C decreased total SMP by 17.2%, with SMP production from heterotrophs decreasing by 20.0%, and from the AOB and NOB increasing by 180.0% and 140.0%. DO concentration had nearly no effect on total and heterotrophic SMP production, while it did have a significant positive effect on autotrophic SMP production. SMP production from AOB and NOB decreased by 24.3% and 47.8%, respectively following a decrease in DO concentration from 8.7 to 1.5 mg/L. However, the net effect of DO on total SMP production was negligible.

  19. Impact of thermo-chemo-sonic pretreatment in solubilizing waste activated sludge for biogas production: Energetic analysis and economic assessment.

    PubMed

    Kavitha, S; Rajesh Banu, J; Subitha, G; Ushani, U; Yeom, Ick Tae

    2016-11-01

    The objective of this study was to determine the impact of solubilization during thermo-chemo-sonic pretreatment of waste activated sludge (WAS) on anaerobic biodegradability and cost for biogas production. The results revealed that it was possible to achieve 40-50% of solubilization of WAS when ultrasonic energy input was doubled (11,520-27,000kJ/kgTS). The cost to achieve 30-35% of solubilization of WAS was calculated to be 0.22-0.24USD/L, which was relatively lower than the cost of 0.53-0.8USD/L when 40-50% of solubilisation of WAS was achieved. There was no significant difference in biodegradability (0.60-0.64gCOD/gCOD) for samples with solubilization efficiency of 35-50%. Comparing energetic balance and economic assessment of samples with different solubilization percentages, the results showed that samples with 30-35% of solubilization had lower net cost (7.98-2.33USD/Ton of sludge) and negative energy balance compared to samples with other percentages of solubilization.

  20. Impact of different antibiotics on methane production using waste-activated sludge: mechanisms and microbial community dynamics.

    PubMed

    Mustapha, Nurul Asyifah; Sakai, Kenji; Shirai, Yoshihito; Maeda, Toshinari

    2016-11-01

    Anaerobic digestion is an effective method for reducing the by-product of waste-activated sludge (WAS) from wastewater treatment plants and for producing bioenergy from WAS. However, only a limited number of studies have attempted to improve anaerobic digestion by targeting the microbial interactions in WAS. In this study, we examined whether different antibiotics positively, negatively, or neutrally influence methane fermentation by evaluating changes in the microbial community and functions in WAS. Addition of azithromycin promoted the microbial communities related to the acidogenic and acetogenic stages, and a high concentration of soluble proteins and a high activity of methanogens were detected. Chloramphenicol inhibited methane production but did not affect the bacteria that contribute to the hydrolysis, acidogenesis, and acetogenesis digestion stages. The addition of kanamycin, which exhibits the same methane productivity as a control (antibiotic-free WAS), did not affect all of the microbial communities during anaerobic digestion. This study demonstrates the simultaneous functions and interactions of diverse bacteria and methanogenic Archaea in different stages of the anaerobic digestion of WAS. The ratio of Caldilinea, Methanosarcina, and Clostridium may correspond closely to the trend of methane production in each antibiotic. The changes in microbial activities and function by antibiotics facilitate a better understanding of bioenergy production.

  1. Kinetic model of excess activated sludge thermohydrolysis.

    PubMed

    Imbierowicz, Mirosław; Chacuk, Andrzej

    2012-11-01

    Thermal hydrolysis of excess activated sludge suspensions was carried at temperatures ranging from 423 K to 523 K and under pressure 0.2-4.0 MPa. Changes of total organic carbon (TOC) concentration in a solid and liquid phase were measured during these studies. At the temperature 423 K, after 2 h of the process, TOC concentration in the reaction mixture decreased by 15-18% of the initial value. At 473 K total organic carbon removal from activated sludge suspension increased to 30%. It was also found that the solubilisation of particulate organic matter strongly depended on the process temperature. At 423 K the transfer of TOC from solid particles into liquid phase after 1 h of the process reached 25% of the initial value, however, at the temperature of 523 K the conversion degree of 'solid' TOC attained 50% just after 15 min of the process. In the article a lumped kinetic model of the process of activated sludge thermohydrolysis has been proposed. It was assumed that during heating of the activated sludge suspension to a temperature in the range of 423-523 K two parallel reactions occurred. One, connected with thermal destruction of activated sludge particles, caused solubilisation of organic carbon and an increase of dissolved organic carbon concentration in the liquid phase (hydrolysate). The parallel reaction led to a new kind of unsolvable solid phase, which was further decomposed into gaseous products (CO(2)). The collected experimental data were used to identify unknown parameters of the model, i.e. activation energies and pre-exponential factors of elementary reactions. The mathematical model of activated sludge thermohydrolysis appropriately describes the kinetics of reactions occurring in the studied system.

  2. Enhancing methane production from waste activated sludge using combined free nitrous acid and heat pre-treatment.

    PubMed

    Wang, Qilin; Jiang, Guangming; Ye, Liu; Yuan, Zhiguo

    2014-10-15

    Methane production from anaerobic digestion of waste activated sludge (WAS) is often limited by the slow degradation and poor substrate availability of WAS. Our previous study revealed that WAS pre-treatment using free nitrous acid (FNA, i.e. HNO2) is an economically feasible and environmentally friendly method for promoting methane production. In order to further improve methane production from WAS, this study presents a novel strategy based on combined FNA and heat pre-treatment. WAS from a full-scale plant was treated for 24 h with FNA alone (0.52-1.43 mg N/L at 25 °C), heat alone (35, 55 and 70 °C), and FNA (0.52-1.11 mg N/L) combined with heat (35, 55 and 70 °C). The pre-treated WAS was then used for biochemical methane potential tests. Compared to the control (no FNA or heat pre-treatment of WAS), biochemical methane potential of the pre-treated WAS was increased by 12-16%, 0-6%, 17-26%, respectively; hydrolysis rate was improved by 15-25%, 10-25%, 20-25%, respectively, for the three types of pre-treatment. Heat pre-treatment at 55 and 70 °C, independent of the presence or absence of FNA, achieved approximately 4.5 log inactivation of pathogens (in comparison to ∼1 log inactivation with FNA treatment alone), thus capable of producing Class A biosolids. The combined FNA and heat pre-treatment is an economically and environmentally attractive technology for the pre-treatment of WAS prior to anaerobic digestion, particularly considering that both FNA and heat can be produced as by-products of anaerobic sludge digestion.

  3. Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate

    NASA Astrophysics Data System (ADS)

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-02-01

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.

  4. Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate

    PubMed Central

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-01-01

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system. PMID:25652244

  5. Zero valent iron significantly enhances methane production from waste activated sludge by improving biochemical methane potential rather than hydrolysis rate.

    PubMed

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-02-05

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.

  6. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?

    PubMed

    Ma, Huijun; Chen, Xingchun; Liu, He; Liu, Hongbo; Fu, Bo

    2016-02-01

    In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process.

  7. Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in full-scale thermal hydrolysis plants.

    PubMed

    Morgan-Sagastume, F; Pratt, S; Karlsson, A; Cirne, D; Lant, P; Werker, A

    2011-02-01

    This work focuses on fermentation of pre-treated waste activated sludge (WAS) to generate volatile fatty acids (VFAs). Pre-treatment by high-pressure thermal hydrolysis (HPTH) was shown to aid WAS fermentation. Compared to fermentation of raw WAS, pre-treatment enabled a 2-5x increase in VFA yield (gVFA(COD)gTCOD(-1)) and 4-6x increase in VFA production rate (gVFA(COD) L(-1) d(-1)). Three sludges, pre-treated in full-scale HPTH plants, were fermented. One was from a plant processing a mix of primary sludge and WAS and the other two from plants processing solely WAS. The HPTH plants solubilised suspended matter, evidenced by a 20-30% decrease in suspended solids and an increase of soluble COD : total COD from 0.04 to 0.4. Fermentation of the three sludges yielded similar VFA concentrations (15-20gVFA(COD) L(-1)). The yields were largely independent of retention time (1 d-6 d) and temperature (42°C, 55°C). Also, the product spectrum depended mostly on the composition of the sludge rather than on operating conditions.

  8. Enhancing the functional and economical efficiency of a novel combined thermo chemical disperser disintegration of waste activated sludge for biogas production.

    PubMed

    Kavitha, S; Jayashree, C; Kumar, S Adish; Kaliappan, S; Banu, J Rajesh

    2014-12-01

    In this investigation, an effort was made to pretreat surplus waste activated sludge (WAS) inexpensively by a novel combined process involving thermo chemical disperser pretreatment. This pretreatment was found to be efficient at a specific energy (SE) consumption of 3360.94 kJ/kg TS, with the chemical oxygen demand (COD) solubilization of 20%. This was comparatively higher than thermo chemically treated sludge where the solubilization was found to be 15.5% at a specific energy consumption of 10,330 kJ/kg TS respectively. Higher production of volatile fatty acids (VFA) (675 mg/L) in anaerobic fermentation of pretreated WAS indicates better hydrolysis performance. The biogas production potential of sludge pretreated through this combined technique was found to be 0.455 (L/gVS) and comparatively higher than thermo chemically pretreated sludge. Economic investigation provides 90% net energy savings in this combined pretreatment. Therefore, this combined process was considered to be potentially effective and economical in sludge disintegration.

  9. Sludge.

    ERIC Educational Resources Information Center

    Tenenbaum, David

    1992-01-01

    Cites a recycling success story involving sludge production from wastewater and transformation into an effective plant fertilizer. Discusses related concerns such as dealing with pollutants like heavy metals and PCBs often found in sludge. Provides an example of an application of sludge produced in Chicago to an area reclamation site. (MCO)

  10. Predicting the degradability of waste activated sludge.

    PubMed

    Jones, Richard; Parker, Wayne; Zhu, Henry; Houweling, Dwight; Murthy, Sudhir

    2009-08-01

    The objective of this study was to identify methods for estimating anaerobic digestibility of waste activated sludge (WAS). The WAS streams were generated in three sequencing batch reactors (SBRs) treating municipal wastewater. The wastewater and WAS properties were initially determined through simulation of SBR operation with BioWin (EnviroSim Associates Ltd., Flamborough, Ontario, Canada). Samples of WAS from the SBRs were subsequently characterized through respirometry and batch anaerobic digestion. Respirometry was an effective tool for characterizing the active fraction of WAS and could be a suitable technique for determining sludge composition for input to anaerobic models. Anaerobic digestion of the WAS revealed decreasing methane production and lower chemical oxygen demand removals as the SRT of the sludge increased. BioWin was capable of accurately describing the digestion of the WAS samples for typical digester SRTs. For extended digestion times (i.e., greater than 30 days), some degradation of the endogenous decay products was assumed to achieve accurate simulations for all sludge SRTs.

  11. Valuation of OSA process and folic acid addition as excess sludge minimization alternatives applied in the activated sludge process.

    PubMed

    Martins, C L; Velho, V F; Ramos, S R A; Pires, A S C D; Duarte, E C N F A; Costa, R H R

    2016-01-01

    The aim of this study was to investigate the ability of the oxic-settling-anaerobic (OSA)-process and the folic acid addition applied in the activated sludge process to reduce the excess sludge production. The study was monitored during two distinct periods: activated sludge system with OSA-process, and activated sludge system with folic acid addition. The observed sludge yields (Yobs) were 0.30 and 0.08 kgTSS kg(-1) chemical oxygen demand (COD), control phase and OSA-process (period 1); 0.33 and 0.18 kgTSS kg(-1) COD, control phase and folic acid addition (period 2). The Yobs decreased by 73 and 45% in phases with the OSA-process and folic acid addition, respectively, compared with the control phases. The sludge minimization alternatives result in a decrease in excess sludge production, without negatively affecting the performance of the effluent treatment.

  12. Inoculation and alkali coeffect in volatile fatty acids production and microbial community shift in the anaerobic fermentation of waste activated sludge.

    PubMed

    Huang, Long; Chen, Ben; Pistolozzi, Marco; Wu, Zhenqiang; Wang, Jufang

    2014-02-01

    Batch fermentations of waste activated sludge (WAS) at alkaline pH with different inocula were performed. Paper mill anaerobic granular sludge (PAS) and dyeing mill anaerobic sludge (DAS) were used as inocula. At pH 10 the inoculation did not increase the volatile fatty acids (VFAs) production compared to the non-inoculated samples fermented in the same conditions, and the maximal VFAs yield of non-inoculated WAS was higher than inoculated WAS. However, at pH 9 the inoculation with PAS increased the sludge hydrolysis and VFAs production was 1.7-fold higher than that in non-inoculated WAS (yield 52.40mg/g of volatile solid). Denaturing gradient gel electrophoresis analysis revealed that 3 bacterial species, identified as Proteocatella, Tepidibacter, and Clostridium, disappeared when inoculated with PAS at pH 9 or at pH⩾10. The results showed that the inoculation with PAS can be helpful to achieve a relatively high VFAs production from WAS in a moderate alkaline environment.

  13. Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells.

    PubMed

    Lu, Lu; Xing, Defeng; Liu, Bingfeng; Ren, Nanqi

    2012-03-15

    Fermentative hydrogen production from waste activated sludge (WAS) has low H2 yield because WAS contains limited amounts of carbohydrate suitable for use by hydrogen-producing bacteria. Here, augmentation of hydrogen production from WAS by microbial electrolysis cells (MECs) was implemented. H2 yields of 3.89±0.39 mg-H2/g-DS (5.67±0.61 mg-H2/g-VSS) from raw WAS and 6.78±0.94 mg-H2/g-DS (15.08±1.41 mg-H2/g-VSS) from alkaline-pretreated WAS were obtained in the two-chamber MECs (TMECs). This was several times higher than yields obtained previously by fermentation. Single-chamber MECs (SMECs) with low internal resistance showed a H2 production rate that 13 times that of TMECs with similar H2 yield when alkaline-pretreated WAS was used. However, methanogenesis was detected after several batch cycles. A yield balance calculation revealed that carbohydrates were not the only substrates for electrohydrogenesis. Protein and its acidification products, such as volatile fatty acids are also responsible for a portion of H2 generation in MEC. Characterization of WAS in TMECs by three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy with parallel factor analysis indicated that electrohydrogenesis reacted on the extracellular polymeric substances and intracellular substances of WAS. Cascade utilization of organic matter in MECs increased hydrogen production from WAS. MECs showed high hydrogen yield from WAS, fewer H2 sinks, and insensitivity to temperature. Optimizing MEC configurations and operation conditions and improving the pretreatment processes of WAS are necessary before practical application can take place on a large scale.

  14. Utilizing waste activated sludge for animal feeding

    SciTech Connect

    Beszedits, S.

    1981-01-01

    Activated sludge has a high protein content and is a good source of B-group vitamins and generally also of minerals (Ca, Mg, Fe and K). Propionibacterium freudenreichii can be readily incorporated into the activated sludge to synthesize vitamin B12, particularly high vitamin yields being obtained with sewage mixed with dairy waste. Numerous examples of successful use of activated sludge in animal feeding are given.

  15. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge.

    PubMed

    Lu, Lu; Xing, Defeng; Ren, Nanqi

    2012-05-01

    Renewable H(2) production from a plentiful biomass, waste activated sludge (WAS), can be achieved by fermentation, but the yields are low. The use of a microbial electrolysis cell (MEC) can increase the H(2) production yields to several times that of fermentation. We have proved that the enhancement of H(2) production was due to the ability of MECs to use a wider range of organic matter in WAS than in fermentation. To support this result strongly, we here investigated the microbial community structures of WAS and anode biofilms in WAS-fed MECs. A pyrosequencing analysis based on the bacterial 16S rRNA gene showed that dominant populations in MECs were more diverse than those in WAS (inoculum and substrate) after enrichment, and there was a clear distinction between MECs and WAS in microbial community structure. Diverse acid-producing bacteria and exoelectrogens (predominance of Geobacter) were detected in MECs but they were only rarely found in WAS. It has been reported that these acid-producing bacteria can ferment various sugars and amines with acetate, propionate, and butyrate as their major by-products. This was consistent with our chemical analyses. Detected exoelectrogens are known to use these organic acids (mainly acetate) and certain sugars to directly produce current for H(2) generation at the cathodes in the MECs. Using quantitative real-time PCR, we demonstrated that a consistent feed of alkaline-pretreated WAS containing large amounts of acetate led to a predominance of acetoclastic methanogens, while hydrogenotrophic methanogens were abundant in MECs fed both raw and alkaline-pretreated WAS. Syntrophic interactions between phylogenetically diverse microbial populations in anodophilic biofilms were found to drive the efficient cascade utilization of organic matter in WAS.

  16. Biological pretreatment of non-flocculated sludge augments the biogas production in the anaerobic digestion of the pretreated waste activated sludge.

    PubMed

    Merrylin, J; Kumar, S Adish; Kaliappan, S; Yeom, Ick-Tae; Banu, J Rajesh

    2013-01-01

    High-efficiency resource recovery from municipal solid waste (MSW) has been a focus of attention. The objective of this research is to develop a bio-pretreatment process for application prior to the anaerobic digestion of MSW to improve methane productivity. Bacillus licheniformis was used for pretreating MSW (non-flocculated with 0.07% citric acid), followed by anaerobic digestion. Laboratory-scale experiments were carried out in semi-continuous bioreactors, with a total volume of 5 L and working volume of 3 L. Among the nine organic loading rates (OLRs) investigated, the OLR of 0.84 kg SS m(-3) reactor day(-1) was found to be the most appropriate for economic operation of the reactor. Pretreatment of MSW prior to anaerobic digestion led to 55% and 64% increase of suspended solids (SS) and volatile solids reduction, respectively, with an improvement of 57% in biogas production. The results indicate that the pretreatment of non-flocculated sludge with Bacillus licheniformis which consumes less energy compared to other pretreatment techniques could be a cost-effective and environmentally sound method for producing methane from MSW.

  17. Effect of thermal pretreatment on the biogas production and microbial communities balance during anaerobic digestion of urban and industrial waste activated sludge.

    PubMed

    Ennouri, Hajer; Miladi, Baligh; Diaz, Soraya Zahedi; Güelfo, Luis Alberto Fernández; Solera, Rosario; Hamdi, Moktar; Bouallagui, Hassib

    2016-08-01

    The effect of thermal pre-treatment on the microbial populations balance and biogas production was studied during anaerobic digestion of waste activated sludge (WAS) coming from urban (US: urban sludge) and industrial (IS: industrial sludge) wastewater treatment plants (WWTP). The highest biogas yields of 0.42l/gvolatile solid (VS) removed and 0.37l/gVS removed were obtained with urban and industrial sludge pre-treated at 120°C, respectively. Fluorescent in situ hybridization (FISH) was used to quantify the major Bacteria and Archaea groups. Compared to control trails without pretreatment, Archaea content increased from 34% to 86% and from 46% to 83% for pretreated IS and US, respectively. In fact, the thermal pre-treatment of WAS enhanced the growth of hydrogen-using methanogens (HUMs), which consume rapidly the H2 generated to allow the acetogenesis. Therefore, the stable and better performance of digesters was observed involving the balance and syntrophic associations between the different microbial populations.

  18. A grit separation module for inorganic matter removal from activated sludge: investigation on characteristics of split sludge from the module.

    PubMed

    Chen, You-Peng; Guo, Jin-Song; Wang, Jing; Yan, Peng; Ji, Fang-Ying; Fang, Fang; Dong, Yang

    2016-12-01

    A grit separation module was developed to prevent the accumulation of inorganic solids in activated sludge systems, and it achieved effective separation of organic matter and inorganic solids. To provide technical and theoretical support for further comprehensive utilization of split sludge (underflow and overflow sludge from the separation module), the characteristics of split sludge were investigated. The settling and dewatering properties of the underflow sludge were excellent, and it had high inorganic matter content, whereas the overflow sludge had higher organic matter content. The most abundant inorganic constituent was SiO2 (59.34%), and SiO2, Al2O3, and Fe2O3 together accounted for 79.53% of the inorganic matter in the underflow sludge. The mass ratio of Fe2O3, CaO, and MgO to SiO2 and Al2O3 was 0.245 in the inorganic component of the underflow sludge. The underflow sludge had the beneficial characteristics of simple treatment and disposal, and it was suitable for use as a base raw material for ceramsite production. The overflow sludge with higher organic matter content was constantly returned from the separation module to the wastewater treatment system, gradually improving the volatile suspended solid/total suspended solid ratio of the activated sludge in the wastewater treatment system.

  19. Biodiesel production from municipal secondary sludge.

    PubMed

    Kumar, Manish; Ghosh, Pooja; Khosla, Khushboo; Thakur, Indu Shekhar

    2016-09-01

    In the present study, feasibility of biodiesel production from freeze dried sewage sludge was studied and its yield was enhanced by optimization of the in situ transesterification conditions (temperature, catalyst and concentration of sludge solids). Optimized conditions (45°C, 5% catalyst and 0.16g/mL sludge solids) resulted in a 20.76±0.04% biodiesel yield. The purity of biodiesel was ascertained by GC-MS, FT-IR and NMR ((1)H and (13)C) spectroscopy. The biodiesel profile obtained revealed the predominance of methyl esters of fatty acids such as oleic, palmitic, myristic, stearic, lauric, palmitoleic and linoleic acids indicating potential use of sludge as a biodiesel feedstock.

  20. Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge.

    PubMed

    Zhao, Jianwei; Wang, Dongbo; Li, Xiaoming; Yang, Qi; Chen, Hongbo; Zhong, Yu; Zeng, Guangming

    2015-07-01

    Alkaline condition (especially pH 10) has been demonstrated to be a promising method for short-chain fatty acid (SCFA) production from waste activated sludge anaerobic fermentation, because it can effectively inhibit the activities of methanogens. However, due to the limit of sludge solubilization rate, long fermentation time is required but SCFA yield is still limited. This paper reports a new pretreatment method for alkaline fermentation, i.e., using free nitrous acid (FNA) to pretreat sludge for 2 d, by which the fermentation time is remarkably shortened and meanwhile the SCFA production is significantly enhanced. Experimental results showed the highest SCFA production of 370.1 mg COD/g VSS (volatile suspended solids) was achieved at 1.54 mg FNA/L pretreatment integration with 2 d of pH 10 fermentation, which was 4.7- and 1.5-fold of that in the blank (uncontrolled) and sole pH 10 systems, respectively. The total time of this integration system was only 4 d, whereas the corresponding time was 15 d in the blank and 8 d in the sole pH 10 systems. The mechanism study showed that compared with pH 10, FNA pretreatment accelerated disruption of both extracellular polymeric substances and cell envelope. After FNA pretreatment, pH 10 treatment (1 d) caused 38.0% higher substrate solubilization than the sole FNA, which indicated that FNA integration with pH 10 could cause positive synergy on sludge solubilization. It was also observed that this integration method benefited hydrolysis and acidification processes. Therefore, more SCFA was produced, but less fermentation time was required in the integrated system.

  1. Hydrogen and methane production by co-digestion of waste activated sludge and food waste in the two-stage fermentation process: substrate conversion and energy yield.

    PubMed

    Liu, Xinyuan; Li, Ruying; Ji, Min; Han, Li

    2013-10-01

    Batch experiments were conducted to produce hydrogen and methane from waste activated sludge and food waste by two-stage mesophilic fermentation. Hydrogen and methane production, energy yield, soluble organic matters, volatile solid removal efficiency and carbon footprint were investigated during two-stage digestion at various food waste proportions. The highest energy yield reached 14.0 kJ/g-VS at the food waste proportion of 85%, with hydrogen and methane yields of 106.4 ml-H2/g-VS and 353.5 ml-CH4/g-VS respectively. The dominant VFA composition was butyrate for co-digestion and sole food waste fermentation, whereas acetate was dominate in VFA for sole waste activated sludge fermentation. The VS removal efficiencies of co-digestion were 10-77% higher than that of waste activated sludge fermentation. Only 0.1-3.2% of the COD in feedstock was converted into hydrogen, and 14.1-40.9% to methane, with the highest value of 40.9% in methane achieved at food waste proportion of 85%.

  2. An attempt to use selected strains of bacteria adapted to high concentrations of petroleum oil to increase the effective removal of petroleum products in excess activated sludge in laboratory conditions.

    PubMed

    Bieszkiewicz, E; Horoch, M; Boszczyk-Maleszak, H; Mycielski, R

    1998-01-01

    Forty two strains of bacteria were isolated from excess activated sludge from petroleum wastewater treatment plant. The strains were identified and classified to the following groups: Enterobacteriaceae (7 strains), Anitratum (3 strains), Pseudomonas (13 strains), Micrococcus (12 strains), Comamonas (2 strains), Xanthomonas (2 strains), Achromobacter (1 strain) and Vibrio-Aeromonas (1 strain). One of the isolates was found to be a yeast strain. Following preliminary selection ten strains, showing the best growth in medium with oil fraction as sole carbon source, were chosen for further studies. The selected strains belong to Pseudomonas (6 strains), Xanthomonas (2 strains), Micrococcus (1 strain) and Saccharomyces (1 strain). The strains were adapted to high oil concentration (500-2000 mg/L) and an attempt to use them to intensify removal of petroleum products from excess activated sludge was made. The sludge was inoculated with a mixture of the isolated strains. The experiment was carried out three times, each time with a fresh sample of the excess sludge. The obtained results show that the inoculation of activated sludge with the strains active against oil reduced the petroleum products content by 20% in 14 days. The greatest reduction of oil was observed in sludge with the lowest dry weight, that is with the greatest degree of hydration. The dry weight of the excess sludge did not significantly decrease during the course of the experiment, after having been inoculated with the mixture of strains.

  3. Metals distributions in activated sludge systems

    SciTech Connect

    Patterson, J.W.; Kodukula, P.S.

    1984-05-01

    Despite extensive laboratory and field studies over the past 25 years, little advance has been made in prediction of metals distribution and removal in activated sludge treatment systems. This paper reports the results of carefully controlled pilot studies, from which empirical metals distribution models were developed. The models accurately predict the distribution of process stream metals at each point in the activated sludge process between the soluble and solids phases. The distribution models together with data on primary and secondary clarifier suspended solids removal efficiencies, are easily applied to predict the removals of influent metals in activated sludge systems. 36 references, 2 figures.

  4. Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells.

    PubMed

    Sun, Rui; Zhou, Aijuan; Jia, Jianna; Liang, Qing; Liu, Qian; Xing, Defeng; Ren, Nanqi

    2015-01-01

    Microbial electrolysis cell (MECs) were investigated as a promising technology to manage waste activated sludge (WAS) reduction and bio-methane generation. The effect of WAS concentration on the MECs performance was discussed. At the optimal concentration of 15gCOD/L, maximum methane yield of MECs fed with alkaline pretreated WAS (A-WAS) were achieved with the value of 77.13±2.52LCH4/kg-COD on Day 3, which had been improved by 1.5-fold compared with MECs fed with raw WAS (R-WAS), while that was negligible in open circuit controls. Efficient sludge reduction was also obtained in terms of TCOD, total protein, TSS and VSS removal. Pyrosequencing revealed the dominance of exoelectrogen Geobacter and hydrogen-producing bacteria Petrimonas in MECs fed with WAS. Methanocorpusculum with the capacity of methane generation using CO2 and H2 also showed overwhelming dominance (96.01%). The large proportions of Petrimonas and Methanocorpusculum indicated the occurrence of hydrogenotrophic methanogenesis in our methane-producing MECs.

  5. An efficient and green pretreatment to stimulate short-chain fatty acids production from waste activated sludge anaerobic fermentation using free nitrous acid.

    PubMed

    Li, Xiaoming; Zhao, Jianwei; Wang, Dongbo; Yang, Qi; Xu, Qiuxiang; Deng, Yongchao; Yang, Weiqiang; Zeng, Guangming

    2016-02-01

    Short-chain fatty acid (SCFA) production from waste activated sludge (WAS) anaerobic fermentation is often limited by the slow hydrolysis rate and poor substrate availability, thus a long fermentation time is required. This paper reports a new pretreatment approach, i.e., using free nitrous acid (FNA) to pretreat sludge, for significantly enhanced SCFA production. Experimental results showed the highest SCFA production occurred at 1.8 mg FNA/L with time of day 6, which was 3.7-fold of the blank at fermentation time of day 12. Mechanism studies revealed that FNA pretreatment accelerated disruption of both extracellular polymeric substances and cell envelope. It was also found that FNA pretreatment benefited hydrolysis and acidification processes but inhibited the activities of methanogens, thereby promoting the yield of SCFA. In addition, the FNA pretreatment substantially stimulated the activities of key enzymes responsible for hydrolysis and acidification, which were consistent with the improvement of solubilization, hydrolysis and acidification of WAS anaerobic fermentation.

  6. Activated Sludge. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Boe, Owen K.; Klopping, Paul H.

    This student manual contains the textual material for a seven-lesson unit on activated sludge. Topic areas addressed in the lessons include: (1) activated sludge concepts and components (including aeration tanks, aeration systems, clarifiers, and sludge pumping systems); (2) activated sludge variations and modes; (3) biological nature of activated…

  7. Genome-scale metabolic modeling to provide insight into the production of storage compounds during feast-famine cycles of activated sludge.

    PubMed

    Tajparast, Mohammad; Frigon, Dominic

    2013-01-01

    Studying storage metabolism during feast-famine cycles of activated sludge treatment systems provides profound insight in terms of both operational issues (e.g., foaming and bulking) and process optimization for the production of value added by-products (e.g., bioplastics). We examined the storage metabolism (including poly-β-hydroxybutyrate [PHB], glycogen, and triacylglycerols [TAGs]) during feast-famine cycles using two genome-scale metabolic models: Rhodococcus jostii RHA1 (iMT1174) and Escherichia coli K-12 (iAF1260) for growth on glucose, acetate, and succinate. The goal was to develop the proper objective function (OF) for the prediction of the main storage compound produced in activated sludge for given feast-famine cycle conditions. For the flux balance analysis, combinations of three OFs were tested. For all of them, the main OF was to maximize growth rates. Two additional sub-OFs were used: (1) minimization of biochemical fluxes, and (2) minimization of metabolic adjustments (MoMA) between the feast and famine periods. All (sub-)OFs predicted identical substrate-storage associations for the feast-famine growth of the above-mentioned metabolic models on a given substrate when glucose and acetate were set as sole carbon sources (i.e., glucose-glycogen and acetate-PHB), in agreement with experimental observations. However, in the case of succinate as substrate, the predictions depended on the network structure of the metabolic models such that the E. coli model predicted glycogen accumulation and the R. jostii model predicted PHB accumulation. While the accumulation of both PHB and glycogen was observed experimentally, PHB showed higher dynamics during an activated sludge feast-famine growth cycle with succinate as substrate. These results suggest that new modeling insights between metabolic predictions and population ecology will be necessary to properly predict metabolisms likely to emerge within the niches of activated sludge communities. Nonetheless

  8. Treatability Studies of Tributyltin in Activated Sludge

    DTIC Science & Technology

    1989-12-01

    tributyltin and its degradation produts. We found that tributyltin degraded to dibutyltin and monobutyltin in activated sludge at the bench scale... Dibutyltin dichloride GC-FPD Gas chromatography-flame photometric detection L/day Liters per day L/min Liters per minute MBT Monobutyltin trichloride m3...that tributyltin degraded to dibutyltin and monobutyltin in activated sludge at the bench scale. Tributyltin also degrades under anaerobic conditions

  9. Bacillus licheniformis proteases as high value added products from fermentation of wastewater sludge: pre-treatment of sludge to increase the performance of the process.

    PubMed

    Drouin, M; Lai, C K; Tyagi, R D; Surampalli, R Y

    2008-01-01

    Wastewater sludge is a complex raw material that can support growth and protease production by Bacillus licheniformis. In this study, sludge was treated by different thermo-alkaline pre-treatment methods and subjected to Bacillus licheniformis fermentation in bench scale fermentors under controlled conditions. Thermo-alkaline treatment was found to be an effective pre-treatment process in order to enhance the proteolytic activity. Among the different pre-treated sludges tested, a mixture of raw and hydrolysed sludge caused an increase of 15% in the protease activity, as compared to the untreated sludge. The benefit of hydrolysis has been attributed to a better oxygen transfer due to decrease in media viscosity and to an increase in nutrient availability. Foam formation was a major concern during fermentation with hydrolysed sludge. The studies showed that addition of a chemical anti-foaming agent (polypropylene glycol) during fermentation to control foam could negatively influence the protease production by increasing the viscosity of sludge.

  10. Anaerobic central metabolic pathways active during polyhydroxyalkanoate production in uncultured cluster 1 Defluviicoccus enriched in activated sludge communities.

    PubMed

    Burow, Luke C; Mabbett, Amanda N; Borrás, Luis; Blackall, Linda L

    2009-09-01

    A glycogen nonpolyphosphate-accumulating organism (GAO) enrichment culture dominated by the Alphaproteobacteria cluster 1 Defluviicoccus was investigated to determine the metabolic pathways involved in the anaerobic formation of polyhydroxyalkanoates, carbon storage polymers important for the proliferation of microorganisms in enhanced biological phosphorus removal processes. FISH-microautoradiography and post-FISH fluorescent chemical staining confirmed acetate assimilation as polyhydroxyalkanoates in cluster 1 Defluviicoccus under anaerobic conditions. Chemical inhibition of glycolysis using iodoacetate, and of isocitrate lyase by 3-nitropropionate and itaconate, indicated that carbon is likely to be channelled through both glycolysis and the glyoxylate cycle in cluster 1 Defluviicoccus. The effect of metabolic inhibitors of aconitase (monofluoroacetate) and succinate dehydrogenase (malonate) suggested that aconitase, but not succinate dehydrogenase, was active, providing further support for the role of the glyoxylate cycle in these GAOs. Metabolic inhibition of fumarate reductase using oxantel decreased polyhydroxyalkanoate production. This indicated reduction of fumarate to succinate and the operation of the reductive branch of the tricarboxylic acid cycle, which is possibly important in the production of the polyhydroxyvalerate component of polyhydroxyalkanoates observed in cluster 1 Defluviicoccus enrichment cultures. These findings were integrated with previous metabolic models for GAOs and enabled an anaerobic central metabolic pathway model for polyhydroxyalkanoate formation in cluster 1 Defluviicoccus to be proposed.

  11. Production of bacterial cellulose and enzyme from waste fiber sludge

    PubMed Central

    2013-01-01

    Background Bacterial cellulose (BC) is a highly crystalline and mechanically stable nanopolymer, which has excellent potential as a material in many novel applications, especially if it can be produced in large amounts from an inexpensive feedstock. Waste fiber sludge, a residue with little or no value, originates from pulp mills and lignocellulosic biorefineries. A high cellulose and low lignin content contributes to making the fiber sludge suitable for bioconversion, even without a thermochemical pretreatment step. In this study, the possibility to combine production of BC and hydrolytic enzymes from fiber sludge was investigated. The BC was characterized using field-emission scanning electron microscopy and X-ray diffraction analysis, and its mechanical properties were investigated. Results Bacterial cellulose and enzymes were produced through sequential fermentations with the bacterium Gluconacetobacter xylinus and the filamentous fungus Trichoderma reesei. Fiber sludges from sulfate (SAFS) and sulfite (SIFS) processes were hydrolyzed enzymatically without prior thermochemical pretreatment and the resulting hydrolysates were used for BC production. The highest volumetric yields of BC from SAFS and SIFS were 11 and 10 g/L (DW), respectively. The BC yield on initial sugar in hydrolysate-based medium reached 0.3 g/g after seven days of cultivation. The tensile strength of wet BC from hydrolysate medium was about 0.04 MPa compared to about 0.03 MPa for BC from a glucose-based reference medium, while the crystallinity was slightly lower for BC from hydrolysate cultures. The spent hydrolysates were used for production of cellulase with T. reesei. The cellulase activity (CMCase activity) in spent SAFS and SIFS hydrolysates reached 5.2 U/mL (87 nkat/mL), which was similar to the activity level obtained in a reference medium containing equal amounts of reducing sugar. Conclusions It was shown that waste fiber sludge is a suitable raw material for production of

  12. Dynamics of microbiological parameters, enzymatic activities and worm biomass production during vermicomposting of effluent treatment plant sludge of bakery industry.

    PubMed

    Yadav, Anoop; Suthar, S; Garg, V K

    2015-10-01

    This paper reports the changes in microbial parameters and enzymatic activities during vermicomposting of effluent treatment plant sludge (ETPS) of bakery industry spiked with cow dung (CD) by Eisenia fetida. Six vermibins containing different ratios of ETPS and CD were maintained under controlled laboratory conditions for 15 weeks. Total bacterial and total fungal count increased upto 7th week and declined afterward in all the bins. Maximum bacterial and fungal count was 31.6 CFU × 10(6) g(-1) and 31 CFU × 10(4) g(-1) in 7th week. Maximum dehydrogenase activity was 1921 μg TPF g(-1) h(-1) in 9th week in 100 % CD containing vermibin, whereas maximum urease activity was 1208 μg NH4 (-)N g(-1) h(-1) in 3rd week in 100 % CD containing vermibin. The enzyme activity and microbial counts were lesser in ETPS containing vermibins than control (100 % CD). The growth and fecundity of the worms in different vermibins were also investigated. The results showed that initially biomass and fecundity of the worms increased but decreased at the later stages due to non-availability of the palatable feed. This showed that quality and palatability of food directly affect biological parameters of the system.

  13. Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms.

    PubMed

    Fischer, Klaus; Majewsky, Marius

    2014-08-01

    Municipal wastewaters contain a multitude of organic trace pollutants. Often, their biodegradability by activated sludge microorganisms is decisive for their elimination during wastewater treatment. Since the amounts of micropollutants seem too low to serve as growth substrate, cometabolism is supposed to be the dominating biodegradation process. Nevertheless, as many biodegradation studies were performed without the intention to discriminate between metabolic and cometabolic processes, the specific contribution of the latter to substance transformations is often not clarified. This minireview summarizes current knowledge about the cometabolic degradation of organic trace pollutants by activated sludge and sludge-inherent microorganisms. Due to their relevance for communal wastewater contamination, the focus is laid on pharmaceuticals, personal care products, antibiotics, estrogens, and nonylphenols. Wherever possible, reference is made to the molecular process level, i.e., cometabolic pathways, involved enzymes, and formed transformation products. Particular cometabolic capabilities of different activated sludge consortia and various microbial species are highlighted. Process conditions favoring cometabolic activities are emphasized. Finally, knowledge gaps are identified, and research perspectives are outlined.

  14. Combined Effect of Free Nitrous Acid Pretreatment and Sodium Dodecylbenzene Sulfonate on Short-Chain Fatty Acid Production from Waste Activated Sludge

    PubMed Central

    Zhao, Jianwei; Liu, Yiwen; Ni, Bingjie; Wang, Qilin; Wang, Dongbo; Yang, Qi; Sun, Yingjie; Zeng, Guangming; Li, Xiaoming

    2016-01-01

    Free nitrous acid (FNA) serving as a pretreatment is an effective approach to accelerate sludge disintegration. Also, sodium dodecylbenzene sulfonate (SDBS), a type of surfactants, has been determined at significant levels in sewage sludge, which thereby affects the characteristics of sludge. Both FNA pretreatment and sludge SDBS levels can affect short-chain fatty acid (SCFA) generation from sludge anaerobic fermentation. To date, however, the combined effect of FNA pretreatment and SDBS presence on SCFA production as well as the corresponding mechanisms have never been documented. This work therefore aims to provide such support. Experimental results showed that the combination of FNA and SDBS treatment not only improved SCFA accumulation but also shortened the fermentation time. The maximal SCFA accumulation of 334.5 mg chemical oxygen demand (COD)/g volatile suspended solids (VSS) was achieved at 1.54 mg FNA/L treatment and 0.02 g/g dry sludge, which was respectively 1.79-fold and 1.41-fold of that from FNA treatment and sludge containing SDBS alone. Mechanism investigations revealed that the combined FNA pretreatment and SDBS accelerated solubilization, hydrolysis, and acidification steps but inhibited the methanogenesis. All those observations were in agreement with SCFA enhancement. PMID:26868898

  15. Filterability of membrane bioreactor (MBR) sludge: impacts of polyelectrolytes and mixing with conventional activated sludge.

    PubMed

    Yigit, Nevzat O; Civelekoglu, Gokhan; Cinar, Ozer; Kitis, Mehmet

    2010-01-01

    The main objective of this work was to investigate the filterability of MBR sludge and its mixture with conventional activated sludge (CAS). In addition, the impacts of type and dose of various polyelectrolytes, filter type and sludge properties on the filterability of both MBR and Mixed sludges were determined. Specific cake resistance (SCR) measured by the Buchner funnel filtration test apparatus and the solids content of the resulting sludge cake were used to assess the dewaterability of tested sludges. The type of filter paper used in Buchner tests affected the results of filterability for MBR, CAS and Mixed sludges. SCR values and optimum polyelectrolyte doses increased with increasing MLSS concentrations in the MBR, which suggested that increase in MLSS concentrations accompanied by increases in EPS and SMP concentrations and a shift toward smaller particles caused poorer dewaterability of the MBR sludge. The significant differences observed among the filterability of CAS and MBR sludges suggested that MLSS alone is not a good predictor of sludge dewaterability. Combining CAS and MBR sludges at different proportions generally improved their dewaterability. Combining MBR sludges having typically high MLSS and EPS concentrations with CAS having much lower MLSS concentrations may be an option for full-scale treatment plants experiencing sludge dewaterability problems. Better filterability and higher cake dry solids were achieved with cationic polyelectrolytes compared to anionic and non-ionic ones for all sludge types tested.

  16. The presence and role of bacterial quorum sensing in activated sludge

    PubMed Central

    Chong, Grace; Kimyon, Onder; Rice, Scott A.; Kjelleberg, Staffan; Manefield, Mike

    2012-01-01

    Summary Activated sludge used for wastewater treatment globally is composed of a high‐density microbial community of great biotechnological significance. In this study the presence and purpose of quorum sensing via N‐acylated‐l‐homoserine lactones (AHLs) in activated sludge was explored. The presence of N‐heptanoyl‐l‐homoserine lactone in organic extracts of sludge was demonstrated along with activation of a LuxR‐based AHL monitor strain deployed in sludge, indicating AHL‐mediated gene expression is active in sludge flocculates but not in the bulk aqueous phase. Bacterial isolates from activated sludge were screened for AHL production and expression of phenotypes commonly but not exclusively regulated by AHL‐mediated gene transcription. N‐acylated‐l‐homoserine lactone and exoenzyme production were frequently observed among the isolates. N‐acylated‐l‐homoserine lactone addition to sludge upregulated chitinase activity and an AHL‐ and chitinase‐producing isolate closely related to Aeromonas hydrophila was shown to respond to AHL addition with upregulation of chitinase activity. N‐acylated‐l‐homoserine lactones produced by this strain were identified and genes ahyI/R and chiA, encoding AHL production and response and chitinase activity respectively, were sequenced. These experiments provide insight into the relationship between AHL‐mediated gene expression and exoenzyme activity in activated sludge and may ultimately create opportunities to improve sludge performance. PMID:22583685

  17. Nonoxidative removal of organics in the activated sludge process

    PubMed Central

    Modin, Oskar; Persson, Frank; Wilén, Britt-Marie; Hermansson, Malte

    2016-01-01

    ABSTRACT The activated sludge process is commonly used to treat wastewater by aerobic oxidation of organic pollutants into carbon dioxide and water. However, several nonoxidative mechanisms can also contribute to removal of organics. Sorption onto activated sludge can remove a large fraction of the colloidal and particulate wastewater organics. Intracellular storage of, e.g., polyhydroxyalkanoates (PHA), triacylglycerides (TAG), or wax esters can convert wastewater organics into precursors for high-value products. Recently, several environmental, economic, and technological drivers have stimulated research on nonoxidative removal of organics for wastewater treatment. In this paper, we review these nonoxidative removal mechanisms as well as the existing and emerging process configurations that make use of them for wastewater treatment. Better utilization of nonoxidative processes in activated sludge could reduce the wasteful aerobic oxidation of organic compounds and lead to more resource-efficient wastewater treatment plants. PMID:27453679

  18. Production and characterization of PHB from two novel strains of Bacillus spp. isolated from soil and activated sludge.

    PubMed

    Thirumala, M; Reddy, Sultanpuram Vishnuvardhan; Mahmood, S K

    2010-03-01

    The present study reports two bacteria, designated 87I and 112A, which were isolated from soil and activated sludge samples from Hyderabad, India, and that are capable of producing poly-3-hydroxybutyrate (PHB). Based on phenotypical features and genotypic investigations, these microorganisms were identified as Bacillus spp. Their optimal growth occurred between 28 degrees C and 30 degrees C and pH 7. Bacillus sp. 87I yielded a maximum of 70.04% dry cell weight (DCW) PHB in medium containing glucose as carbon source, followed by 55.5% DCW PHB in lactose-containing medium, whereas Bacillus sp. 112A produced a maximum of 67.73% PHB from glucose, 58.5% PHB from sucrose, followed by 50.5% PHB from starch as carbon substrates. The viscosity average molecular mass (M (v)) of the polymers from Bacillus sp. 87I was 513 kDa and from Bacillus sp. 112A was 521 kDa. All the properties of the biopolymers produced by the two strains 87I and 112A were characterized.

  19. Microwave pyrolysis of oily sludge with activated carbon.

    PubMed

    Chen, Yi-Rong

    2016-12-01

    The aim of this study is to explore catalytic microwave pyrolysis of crude oil storage tank sludge for fuels using granular activated carbon (GAC) as a catalyst. The effect of GAC loading on the yield of pyrolysis products was also investigated. Heating rate of oily sludge and yield of microwave pyrolysis products such as oil and fuel gas was found to depend on the ratio of GAC to oily sludge. The optimal GAC loading was found to be 10%, while much smaller and larger feed sizes adversely influenced production. During oily sludge pyrolysis, a maximum oil yield of 77.5% was achieved. Pyrolytic oils with high concentrations of diesel oil and gasoline (about 70 wt% in the pyrolytic oil) were obtained. The leaching of heavy metals, such as Cr, As and Pb, was also suppressed in the solid residue after pyrolysis. This technique provides advantages such as harmless treatment of oily sludge and substantial reduction in the consumption of energy, time and cost.

  20. Thermo-Oxidization of Municipal Wastewater Treatment Plant Sludge for Production of Class A Biosolids

    EPA Science Inventory

    Bench-scale reactors were used to test a novel thermo-oxidation process on municipal wastewater treatment plant (WWTP) waste activated sludge (WAS) using hydrogen peroxide (H2O2) to achieve a Class A sludge product appropriate for land application. Reactor ...

  1. Co-production of activated carbon, fuel-gas, and oil from the pyrolysis of corncob mixtures with wet and dried sewage sludge.

    PubMed

    Shao, Linlin; Jiang, Wenbo; Feng, Li; Zhang, Liqiu

    2014-06-01

    This study explored the amount and composition of pyrolysis gas and oil derived from wet material or dried material during the preparation of sludge-corncob activated carbon, and evaluated the physicochemical and surface properties of the obtained two types of sludge-corncob-activated carbons. For wet material, owing to the presence of water, the yields of sludge-corncob activated carbon and the oil fraction slightly decreased while the yield of gases increased. The main pyrolysis gas compounds were H2 and CO2, and more H2 was released from wet material than dried material, whereas the opposite holds for CO2 Heterocyclics, nitriles, organic acids, and steroids were the major components of pyrolysis oil. Furthermore, the presence of water in wet material reduced the yield of polycyclic aromatic hydrocarbons from 6.76% to 5.43%. The yield of furfural, one of heterocyclics, increased sharply from 3.51% to 21.4%, which could be explained by the enhanced hydrolysis of corncob. In addition, the surface or chemical properties of the two sludge-corncob activated carbons were almost not affected by the moisture content of the raw material, although their mesopore volume and diameter were different. In addition, the adsorption capacities of the two sludge-corncob activated carbons towards Pb and nitrobenzene were nearly identical.

  2. Eliminating methanogenic activity in hydrogen reactor to improve biogas production in a two-stage anaerobic digestion process co-digesting municipal food waste and sewage sludge.

    PubMed

    Zhu, Heguang; Parker, Wayne; Conidi, Daniela; Basnar, Robert; Seto, Peter

    2011-07-01

    Laboratory scale two-stage anaerobic digestion process model was operated for 280 days to investigate the feasibility to produce both hydrogen and methane from a mixture feedstock (1:1 (v/v)) of municipal food waste and sewage sludge. The maximum hydrogen and methane yields obtained in the two stages were 0.93 and 9.5 mL/mL feedstock. To eliminate methanogenic activity and obtain substantial hydrogen production in the hydrogen reactor, both feedstock and mixed liquor required treatment. The heat treatment (100°C, 10 min) for feedstock and a periodical treatment (every 2-5 weeks, either heating, removal of biomass particles or flushing with air) for mixed liquor were effective in different extent. The methane production in the second stage was significantly improved by the hydrogen production in the first stage. The maximum methane production obtained in the period of high hydrogen production was more than 2-fold of that observed in the low hydrogen production period.

  3. Improving products of anaerobic sludge digestion by microaeration.

    PubMed

    Jenicek, P; Celis, C A; Krayzelova, L; Anferova, N; Pokorna, D

    2014-01-01

    Biogas, digested sludge and sludge liquor are the main products of anaerobic sludge digestion. Each of the products is influenced significantly by specific conditions of the digestion process. Therefore, any upgrade of the digestion technology must be considered with regard to quality changes in all products. Microaeration is one of the methods used for the improvement of biogas quality. Recently, microaeration has been proved to be a relatively simple and highly efficient biological method of sulfide removal in the anaerobic digestion of biosolids, but little attention has been paid to comparing the quality of digested sludge and sludge liquor in the anaerobic and microaerobic digestion and that is why this paper primarily deals with this area of research. The results of the long-term monitoring of digested sludge quality and sludge liquor quality in the anaerobic and microaerobic digesters suggest that products of both technologies are comparable. However, there are several parameters in which the 'microaerobic' products have a significantly better quality such as: sulfide (68% lower) and soluble chemical oxygen demand (COD) (33% lower) concentrations in the sludge liquor and the lower foaming potential of the digested sludge.

  4. Alkyl polyglucose enhancing propionic acid enriched short-chain fatty acids production during anaerobic treatment of waste activated sludge and mechanisms.

    PubMed

    Luo, Jingyang; Feng, Leiyu; Chen, Yinguang; Sun, Han; Shen, Qiuting; Li, Xiang; Chen, Hong

    2015-04-15

    Adding alkyl polyglucose (APG) into an anaerobic treatment system of waste activated sludge (WAS) was reported to remarkably improve the production of short-chain fatty acids (SCFAs), especially propionic acid via simultaneously accelerating solubilization and hydrolysis, enhancing acidification, inhibiting methanogenesis and balancing carbon to nitrogen (C/N) ratio of substrate. Not only the production of SCFAs, especially propionic acid, was significantly improved by APG, but also the feasible operation time was shortened. The SCFAs yield at 0.3 g APG per gram of total suspended solids (TSS) within 4 d was 2988 ± 60 mg chemical oxygen demand (COD) per liter, much higher than that those from sole WAS or sole WAS plus sole APG. The corresponding yield of propionic acid was 1312 ± 25 mg COD/L, 7.9-fold of sole WAS. Mechanism investigation showed that during anaerobic treatment of WAS in the presence of APG both the solubilization and hydrolysis were accelerated and the acidification was enhanced, while the methanogenesis was inhibited. Moreover, the activities of key enzymes involved in WAS hydrolysis and acidification were improved through the adjustment of C/N ratio of substrates with APG. The abundance of microorganisms responsible for organic compounds hydrolysis and SCFAs production was also observed to be greatly enhanced with APG via 454 high-throughput pyrosequencing analysis.

  5. Production of high optical purity l-lactic acid from waste activated sludge by supplementing carbohydrate: effect of temperature and pretreatment time.

    PubMed

    Jian, Qiwei; Li, Xiang; Chen, Yinguang; Liu, Yanan; Pan, Yin

    2016-10-01

    It has been widely accepted that the most environmentally beneficial way to treat waste activated sludge (WAS), the byproduct of municipal wastewater treatment plant, is to recover the valuable organic acid. However, the bio-conversion of lactic acid, one of the high added-value chemical, is seldom reported from WAS fermentation. In this paper, l-lactic acid was observed dominant in the WAS fermentation liquid with carbohydrate addition at ambient temperature. Furthermore, the effect of temperature on l-lactic acid and d-lactic acid production was fully discussed: two isomers were rapidly produced and consumed up in one day at mesophilic condition; and almost optically pure l-lactic acid was generated at thermophilic condition, yet time-consuming with yield of l-lactic acid enhancing by 52.9% compared to that at ambient temperature. The study mechanism showed that mesophilic condition was optimal for both production and consumption of l-lactic acid and d-lactic acid, while consumption of l-lactic acid and production of d-lactic acid were severely inhibited at thermophilic condition. Therefore, by maintaining thermophilic for 4 h in advance and subsequently fermenting mesophilic for 34 h, the concentration of l-lactic acid with optical activity of 98.3% was improved to 16.6 ± 0.5 g COD/L at a high specific efficiency of 0.6097/d.

  6. Production and flocculating performance of sludge bioflocculant from biological sludge.

    PubMed

    Zhang, Xiuhong; Sun, Jie; Liu, Xiuxiu; Zhou, Jiti

    2013-10-01

    Excess biological sludge was utilized to prepared bioflocculant with hydrochloric acid. The prepared crude bioflocculant was purified and fractionally precipitated to attain four purified sludge bioflocculant defined as PSB1-4. The PSB-2 has higher flocculating rate for kaolin suspension than others. When the pH of the flocculation system ranged from 4.0 to 11.0 the flocculating rates of PSB-2 were over 96.0%. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectra showed that amino and hydroxyl groups were present in the bioflocculant molecules. More amine group existed in the bioflocculant PSB-2 relatively. The amino group was believed to play an important role in flocculation. The experiment of zeta potential measuring indicated that the charge neutralization contributed to flocculation process. Flocculating mechanism investigation reveals that the sludge bioflocculant caused kaolin suspension instability by means of charge neutralization firstly and then promoted the aggregation of suspension particles by adsorption and bridge.

  7. Additional paper waste in pulping sludge for biohydrogen production by heat-shocked sludge.

    PubMed

    Chairattanamanokorn, Prapaipid; Tapananont, Supachok; Detjaroen, Siriporn; Sangkhatim, Juthatip; Anurakpongsatorn, Patana; Sirirote, Pramote

    2012-01-01

    Dark anaerobic fermentation is an interesting alternative method for producing biohydrogen (H(2)) as a renewable fuel because of its low cost and various usable organic substrates. Pulping sludge from wastewater treatment containing plentiful cellulosic substrate could be feasibly utilized for H(2) production by dark fermentation. The objective of this study was to investigate the optimal proportion of pulping sludge to paper waste, the optimal initial pH, and the optimal ratio of carbon and nitrogen (C/N) for H(2) production by anaerobic seed sludge pretreated with heat. The pulping sludge was pretreated with NaOH solution at high temperature and further hydrolyzed with crude cellulase. Pretreatment of the pulping sludge with 3% NaOH solution under autoclave at 121 °C for 2 h, hydrolysis with 5 FPU crude cellulase at 50 °C, and pH 4.8 for 24 h provided the highest reducing sugar production yield (229.68 ± 2.09 mg/g(TVS)). An initial pH of 6 and a C/N ratio of 40 were optimal conditions for H(2) production. Moreover, the supplement of paper waste in the pulping sludge enhanced the cumulative H(2) production yield. The continuous hydrogen production was further conducted in a glass reactor with nylon pieces as supporting media and the maximum hydrogen production yield was 151.70 ml/g(TVS).

  8. Production of cellulase from kraft paper mill sludge by Trichoderma reesei rut C-30.

    PubMed

    Wang, Wei; Kang, Li; Lee, Yoon Y

    2010-05-01

    Paper mill sludge is a solid waste material generated from pulping and papermaking operations. Because of high glucan content and its well-dispersed structure, paper mill sludges are well suited for bioconversion into value-added products. It also has high ash content originated from inorganic additives used in papermaking, which causes hindrance to bioconversion. In this study, paper mill sludges from Kraft process were de-ashed by a centrifugal cleaner and successive treatment by sulfuric acid and sodium hydroxide, and used as a substrate for cellulase production. The treated sludge was the only carbon source for cellulase production, and predominantly inorganic nutrients were used as the nitrogen source for this bioprocess. The cellulase enzyme produced from the de-ashed sludge exhibited cellulase activity of 8 filter paper unit (FPU)/mL, close to that obtainable from pure cellulosic substrates. The yield of cellulase enzyme was 307 FPU/g glucan of de-ashed sludge. Specific activity was 8.0 FPU/mg protein. In activity tests conducted against the corn stover and alpha-cellulose, the xylanse activity was found to be higher than that of a commercial cellulase. Relatively high xylan content in the sludge appears to have induced high xylanase production. Simultaneous saccharification and fermentation (SSF) was performed using partially de-ashed sludge as the feedstock for ethanol production using Sacharomyces cerevisiae and the cellulase produced in-house from the sludge. With 6% (w/v) glucan feed, ethanol yield of 72% of theoretical maximum and 24.4 g/L ethanol concentration were achieved. These results were identical to those of the SSF using commercial cellulases.

  9. A Combined Activated Sludge Anaerobic Digestion Model (CASADM) to understand the role of anaerobic sludge recycling in wastewater treatment plant performance.

    PubMed

    Young, Michelle N; Marcus, Andrew K; Rittmann, Bruce E

    2013-05-01

    The Combined Activated Sludge-Anaerobic Digestion Model (CASADM) quantifies the effects of recycling anaerobic-digester (AD) sludge on the performance of a hybrid activated sludge (AS)-AD system. The model includes nitrification, denitrification, hydrolysis, fermentation, methanogenesis, and production/utilization of soluble microbial products and extracellular polymeric substances (EPS). A CASADM example shows that, while effluent COD and N are not changed much by hybrid operation, the hybrid system gives increased methane production in the AD and decreased sludge wasting, both caused mainly by a negative actual solids retention time in the hybrid AD. Increased retention of biomass and EPS allows for more hydrolysis and conversion to methane in the hybrid AD. However, fermenters and methanogens survive in the AS, allowing significant methane production in the settler and thickener of both systems, and AD sludge recycle makes methane formation greater in the hybrid system.

  10. A new process for efficiently producing methane from waste activated sludge: alkaline pretreatment of sludge followed by treatment of fermentation liquid in an EGSB reactor.

    PubMed

    Zhang, Dong; Chen, Yinguang; Zhao, Yuxiao; Ye, Zhengxiang

    2011-01-15

    In the literature the production of methane from waste activated sludge (WAS) was usually conducted in a continuous stirred tank reactor (CSTR) after sludge was pretreated. It was reported in our previous publication that compared with other pretreatment methods the methane production in CSTR could be significantly enhanced when sludge was pretreated by NaOH at pH 10 for 8 days. In order to further improve methane production, this study reported a new process for efficiently producing methane from sludge, that is, sludge was fermented at pH 10 for 8 days, which was adjusted by Ca(OH)(2), and then the fermentation liquid was treated in an expanded granular sludge bed (EGSB) for methane generation. First, for comparing the methane production observed in this study with that reported in the literature, the conventional operational model was applied to produce methane from the pH 10 pretreated sludge, that is, directly using the pH 10 pretreated sludge to produce methane in a CSTR. It was observed that the maximal methane production was only 0.61 m(3)CH(4)/m(3)-reactor/day. Then, the use of fermentation liquid of pH 10 pretreated sludge to produce methane in the reactors of up-flow anaerobic sludge bed (UASB), anaerobic sequencing batch reactor (ASBR) and EGSB was compared. The maximal methane production in UASB, ASBR, and EGSB reached 1.41, 3.01, and 12.43 m(3)CH(4)/m(3)-reactor/day, respectively. Finally, the mechanisms for EGSB exhibiting remarkably higher methane production were investigated by enzyme, adenosine-triphosphate (ATP), scanning electron microscope (SEM) and fluorescence in situ hybridization (FISH) analyses. It was found that the granular sludge in EGSB had the highest conversion efficiency of acetic acid to methane, and the greatest activity of hydrolysis and acidification enzymes and general physiology with much more Methanosarcinaceae.

  11. Role of Nocardia in Activated Sludge

    PubMed Central

    Bafghi, Mehdi Fatahi; Yousefi, Nader

    2016-01-01

    Activated sludge process is a biological process that is widely used in the domestic and industrial wastewater treatment in over the world. The foam formation is often reported in wastewater treatment plants which are related to this process. Some operational problems can be created by foaming, such as effluent quality deteriorates, the creation of malodorous, increased time requirements in order to plant maintenance, and in extreme cases, hazardous working conditions resulting from foam spilling out of the aeration basin and as well as increased in operational costs. There are different ways to overcome this problem, such as reduce air flows into the aeration basin, reduction in the grease and oil content of the wastewater, surface and return activated sludge (RAS) chlorination, anoxic and anaerobic selectors, solid retention time (SRT) control and antifoams and organic polymer addition. On the other hand, rapid and accurate identification of the foam causes is in the first step to control bulking and foaming. Foam problem is often created by filamentous bacteria, such as Nocardia and Gordonia species. This bacterium has a role important in activated sludge. PMID:27418874

  12. Role of Nocardia in Activated Sludge.

    PubMed

    Bafghi, Mehdi Fatahi; Yousefi, Nader

    2016-05-01

    Activated sludge process is a biological process that is widely used in the domestic and industrial wastewater treatment in over the world. The foam formation is often reported in wastewater treatment plants which are related to this process. Some operational problems can be created by foaming, such as effluent quality deteriorates, the creation of malodorous, increased time requirements in order to plant maintenance, and in extreme cases, hazardous working conditions resulting from foam spilling out of the aeration basin and as well as increased in operational costs. There are different ways to overcome this problem, such as reduce air flows into the aeration basin, reduction in the grease and oil content of the wastewater, surface and return activated sludge (RAS) chlorination, anoxic and anaerobic selectors, solid retention time (SRT) control and antifoams and organic polymer addition. On the other hand, rapid and accurate identification of the foam causes is in the first step to control bulking and foaming. Foam problem is often created by filamentous bacteria, such as Nocardia and Gordonia species. This bacterium has a role important in activated sludge.

  13. A study of boron adsorption onto activated sludge.

    PubMed

    Fujita, Yuichiro; Hata, Takayosi; Nakamaru, Makoto; Iyo, Toru; Yoshino, Tsuneo; Shimamura, Tadashi

    2005-08-01

    Boron adsorption onto activated sludge was investigated using bench-scale reactors under simulated wastewater treatment conditions. Two experiments, continuous flow and batch, were performed. Boron concentrations were determined by means of inductively coupled plasma mass spectrometry. The results of the continuous-flow experiment indicated that a small amount of boron accumulated on the activated sludge and its concentration in the sludge depended on the nature of the biota in the sludge. Freundlich and Langmuir isotherm plots generated using the data from the batch experiment indicated that boron was adsorbed onto rather than absorbed into the sludge. The Freundlich constants, k and 1/n, were determined to be 26 mg/kg and 0.87. These values indicate that activated sludge has a limited capacity for boron adsorption and thus utilization of the excess sludge for farmland may not be toxic to plant at least boron concern.

  14. Anaerobic co-digestion of waste activated sludge and greasy sludge from flotation process: batch versus CSTR experiments to investigate optimal design.

    PubMed

    Girault, R; Bridoux, G; Nauleau, F; Poullain, C; Buffet, J; Peu, P; Sadowski, A G; Béline, F

    2012-02-01

    In this study, the maximum ratio of greasy sludge to incorporate with waste activated sludge was investigated in batch and CSTR experiments. In batch experiments, inhibition occurred with a greasy sludge ratio of more than 20-30% of the feed COD. In CSTR experiments, the optimal greasy sludge ratio was 60% of the feed COD and inhibition occurred above a ratio of 80%. Hence, batch experiments can predict the CSTR yield when the degradation phenomenon are additive but cannot be used to determine the maximum ratio to be used in a CSTR configuration. Additionally, when the ratio of greasy sludge increased from 0% to 60% of the feed COD, CSTR methane production increased by more than 60%. When the greasy sludge ratio increased from 60% to 90% of the feed COD, the reactor yield decreased by 75%.

  15. An activated sludge model based on activated sludge model number 3 for full-scale wastewater treatment plant simulation.

    PubMed

    Fan, Ji; Lu, Shu-Guang; Qiu, Zhao-fu; Wang, Xiao-Xia; Li, Wen-Zhen

    2009-06-01

    A modified model based on the activated sludge model no. 3 was established to simulate a full-scale municipal wastewater treatment plant in Shanghai, China. The activated sludge model no. 3 was modified to describe the simultaneous storage and growth processes occurring in activated sludge systems under aerobic and anoxic conditions. The mechanism of soluble microbial product formation and degradation by microorganisms was considered in this proposed model. Three months simulation was conducted including soluble chemical oxygen demand, NH4(+)-N, NO(X)(-)-N and T-N parameters, and compared with measured data from the Quyang wastewater treatment plant. Results indicated that the calculated effluent chemical oxygen demand and NH4(+)-N using this proposed model were in good agreement with the measured data. Results also showed that besides inert soluble organic matter contributing to the effluent chemical oxygen demand, soluble microbial products played an important part in the effluent chemical oxygen demand and, therefore, demonstrated that these products composed an important portion of effluent soluble chemical oxygen demand in wastewater treatment plants and should not be neglected.

  16. Modelling carbon oxidation in pulp mill activated sludge systems: calibration of Activated Sludge Model No 3.

    PubMed

    Barañao, P A; Hall, E R

    2004-01-01

    Activated Sludge Model No 3 (ASM3) was chosen to model an activated sludge system treating effluents from a mechanical pulp and paper mill. The high COD concentration and the high content of readily biodegradable substrates of the wastewater make this model appropriate for this system. ASM3 was calibrated based on batch respirometric tests using fresh wastewater and sludge from the treatment plant, and on analytical measurements of COD, TSS and VSS. The model, developed for municipal wastewater, was found suitable for fitting a variety of respirometric batch tests, performed at different temperatures and food to microorganism ratios (F/M). Therefore, a set of calibrated parameters, as well as the wastewater COD fractions, was estimated for this industrial wastewater. The majority of the calibrated parameters were in the range of those found in the literature.

  17. Improvement of activated sludge bacteria growth by low intensity ultrasound

    NASA Astrophysics Data System (ADS)

    Yan, Y. X.; Ding, J. Y.; Gao, J. L.

    2016-08-01

    Influence of low intensity ultrasound (US) on growth rate of bacteria separated from aerobic activated sludge was studied. In order to reveal the optimal ultrasonic conditions,specific oxygen uptake rate (SOUR) of activated sludge was first detected and results showed that the maximum SOUR was obtained (increased by 40%) at US intensity of 3 Wcm-2 and irradiation time of 10min. Under the optimal conditions, 2 species of bacteria isolated from activated sludge were sonicated and then cultivated for 36h, and increment of 6% and 10% of growth rate were detected for the 2 species of bacteria, respectively, indicating US irradiation of suitable parameters effectively improved activated sludge bacteria growth.

  18. Digital image processing and analysis for activated sludge wastewater treatment.

    PubMed

    Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed

    2015-01-01

    Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.

  19. Use of activated sludge biomass as an agent for advanced primary separation.

    PubMed

    Araneda, Michael; Pavez, Javier; Luza, Benjamín; Jeison, David

    2017-05-01

    Conventional primary settling is a physical process of solid-liquid separation, normally presenting low removal efficiencies. Improvement of this separation process would result in energetic advantages: lower aeration requirements and higher biogas production form primary and secondary sludges. Secondary sludge has been proposed as a potential agent promoting an increase in primary separation efficiency. Few processes have been proposed, based on the cultivation of sludge under special conditions. However, one can speculate that regular sludge may have a similar effect. The aim of this research was to study that possibility. Sludges from different activated sludge reactors were tested. Results showed that COD removals were up to 55%, 2 times higher than that for simple settling. Under that condition, COD balances showed that aeration requirements would reduce 40%, and biogas production from primary and secondary sludges would increase 50%. It is inferred then that the application of activated sludge as an external agent represents an interesting alternative that have the potential to significantly improve energetic efficiency of sewage treatment plants.

  20. Application of forward osmosis (FO) under ultrasonication on sludge thickening of waste activated sludge.

    PubMed

    Nguyen, Nguyen Cong; Nguyen, Hau Thi; Chen, Shiao-Shing; Nguyen, Nhat Thien; Li, Chi-Wang

    2015-01-01

    Forward osmosis (FO) is an emerging process for dewatering solid-liquid stream which has the potential to be innovative and sustainable. However, the applications have still been hindered by low water flux and membrane fouling when activated sludge is used as the feed solution due to bound water from microbial cells. Hence, a novel strategy was designed to increase sludge thickening and reduce membrane fouling in the FO process under ultrasonic condition. The results from the ultrasound/FO hybrid system showed that the sludge concentration reached up to 20,400 and 28,400 mg/L from initial sludge concentrations of 3000 and 8000 mg/L with frequency of 40 kHz after 22 hours, while the system without ultrasound had to spend 26 hours to achieve the same sludge concentration. This identifies that the presence of ultrasound strongly affected sludge structure as well as sludge thickening of the FO process. Furthermore, the ultrasound/FO hybrid system could achieve NH4+-N removal efficiency of 96%, PO4(3-)-P of 98% and dissolved organic carbon (DOC) of 99%. The overall performance demonstrates that the proposed ultrasound/FO system using seawater as a draw solution is promising for sludge thickening application.

  1. Preparation of the sludge activated carbon with domestic sludge mixed agricultural straw

    NASA Astrophysics Data System (ADS)

    Wang, Laifu; Wang, Yan; Lian, Jingyan

    2017-01-01

    Urban sewage sludge with complicated composition produce largely each year, pollution problem and resource utilization has increasingly become the focus of attention. Sewage sludge is utilized to prepare adsorbent that is a new type method. Agricultural stalks was added to material (urban sewage sludge) and activator (ZnCl2), calcined under the condition of no inert gas, and obtained domestic sludge activated carbon. The properties were measured by iodine adsorption value and BET, discussed influence factors of sludge activated carbon preparation, including activator concentration, solid-liquid ratio, calcific temperature and calcific time. The best process condition of orthogonal experiment had explored that activated time is 10 minutes, calcific temperature is 350°C, the activator concentration ZnCl2 is 3 mol/L and the mixing ratio of raw materials and activator is approximately 1:5. The iodine adsorption value and the optimal BET of as-obtained domestic sludge activated carbon is 445.06 mg/g, 525.31m2/g, respectively.

  2. Microbiology of coke-plant activated sludge

    SciTech Connect

    Owens, J.R.

    1983-01-01

    The biological treatment of coke-plant wastewater represents the most economical means of detoxification and contaminant removal, but little is known about the microbial ecology of this system. Research was therefore undertaken to determine the kinds of microorganisms that survive and function in this environment and to examine the growth patterns that influence treatment efficiency. The microbial flora of coke-plant activated sludge is predominated by populations of aerobic gram negative rods. The principle genera identified were Pseudomonas, Alcaligenes, Flavobacterium and Acinetobacter. The genera Bacillus, Nocardia and Micrococcus were also present at low levels. A single type of rotifer was present along with various protozoans. The ability of microorganisms in coke wastewater to grow on various organic compounds as their sole source of carbon and energy is more restrictive when compared with that of isolates obtained from activated sludge processes treating municipal wastes. The phenol degrading bacteria can be maintained in a continuous culture system with a hydraulic retention time (HRT) of as long as 14 days. Under conditions of increasing HRT the average cell size decreased and the number of cells per milliter increased. As the HRT increased cell yields decreased. At long HRT's (7 to 14 days) cell yields remained constant.

  3. Effect of humic acid in leachate on specific methanogenic activity of anaerobic granular sludge.

    PubMed

    Guo, Mengfei; Xian, Ping; Yang, Longhui; Liu, Xi; Zhan, Longhui; Bu, Guanghui

    2015-01-01

    In order to find out the effects of humic acid (HA) in anaerobic-treated landfill leachate on granular sludge, the anaerobic biodegradability of HA as well as the influences of HA on the total cumulative methane production, the anaerobic methanization process and the specific methanogenic activity (SMA) of granular sludge are studied in this paper. Experimental results show that as a non-biodegradable organic pollutant, HA is also difficult to be decomposed by microbes in the anaerobic reaction process. Presence of HA and changes in the concentration have no significant influences on the total cumulative methane production and the anaerobic methanization process of granular sludge. Besides, the total cumulative methane production cannot reflect the inhibition of toxics on the methanogenic activity of granular sludge on the premise of sufficient reaction time. Results also show that HA plays a promoting role on SMA of granular sludge. Without buffering agent the SMA value increased by 19.2% on average due to the buffering and regulating ability of HA, while with buffering agent the SMA value increased by 5.4% on average due to the retaining effect of HA on the morphology of the sludge particles. However, in the presence of leachate the SMA value decreased by 27.6% on average, because the toxic effect of the toxics in the leachate on granular sludge is much larger than the promoting effect of HA.

  4. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron.

    PubMed

    Feng, Yinghong; Zhang, Yaobin; Quan, Xie; Chen, Suo

    2014-04-01

    Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidification process. Considering that, ZVI was added into an anaerobic sludge digestion system to accelerate the sludge digestion in this study. The results indicated that ZVI effectively enhanced the decomposition of protein and cellulose, the two main components of the sludge. Compared to the control test without ZVI, the degradation of protein increased 21.9% and the volatile fatty acids production increased 37.3% with adding ZVI. More acetate and less propionate are found during the hydrolysis-acidification with ZVI. The activities of several key enzymes in the hydrolysis and acidification increased 0.6-1 time. ZVI made the methane production raise 43.5% and sludge reduction ratio increase 12.2 percent points. Fluorescence in situ hybridization analysis showed that the abundances of hydrogen-consuming microorganisms including homoacetogens and hydrogenotrophic methanogens with ZVI were higher than the control, which reduced the H2 accumulation to create a beneficial condition for the sludge digestion in thermodynamics.

  5. Influence of Copper Nanoparticles on the Physical-Chemical Properties of Activated Sludge

    PubMed Central

    Chen, Hong; Zheng, Xiong; Chen, Yinguang; Li, Mu; Liu, Kun; Li, Xiang

    2014-01-01

    The physical-chemical properties of activated sludge, such as flocculating ability, hydrophobicity, surface charge, settleability, dewaterability and bacteria extracellular polymer substances (EPS), play vital roles in the normal operation of wastewater treatment plants (WWTPs). The nanoparticles released from commercial products will enter WWTPs and can induce potential adverse effects on activated sludge. This paper focused on the effects of copper nanoparticles (CuNPs) on these specific physical-chemical properties of activated sludge. It was found that most of these properties were unaffected by the exposure to lower CuNPs concentration (5 ppm), but different observation were made at higher CuNPs concentrations (30 and 50 ppm). At the higher CuNPs concentrations, the sludge surface charge increased and the hydrophobicity decreased, which were attributed to more Cu2+ ions released from the CuNPs. The carbohydrate content of EPS was enhanced to defense the toxicity of CuNPs. The flocculating ability was found to be deteriorated due to the increased cell surface charge, the decreased hydrophobicity, and the damaged cell membrane. The worsened flocculating ability made the sludge flocs more dispersed, which further increased the toxicity of the CuNPs by increasing the availability of the CuNPs to the bacteria present in the sludge. Further investigation indicated that the phosphorus removal efficiency decreased at higher CuNPs concentrations, which was consistent with the deteriorated physical-chemical properties of activated sludge. It seems that the physical-chemical properties can be used as an indicator for determining CuNPs toxicity to the bacteria in activated sludge. This work is important because bacteria toxicity effects to the activated sludge caused by nanoparticles may lead to the deteriorated treatment efficiency of wastewater treatment, and it is therefore necessary to find an easy way to indicate this toxicity. PMID:24663333

  6. Influence of copper nanoparticles on the physical-chemical properties of activated sludge.

    PubMed

    Chen, Hong; Zheng, Xiong; Chen, Yinguang; Li, Mu; Liu, Kun; Li, Xiang

    2014-01-01

    The physical-chemical properties of activated sludge, such as flocculating ability, hydrophobicity, surface charge, settleability, dewaterability and bacteria extracellular polymer substances (EPS), play vital roles in the normal operation of wastewater treatment plants (WWTPs). The nanoparticles released from commercial products will enter WWTPs and can induce potential adverse effects on activated sludge. This paper focused on the effects of copper nanoparticles (CuNPs) on these specific physical-chemical properties of activated sludge. It was found that most of these properties were unaffected by the exposure to lower CuNPs concentration (5 ppm), but different observation were made at higher CuNPs concentrations (30 and 50 ppm). At the higher CuNPs concentrations, the sludge surface charge increased and the hydrophobicity decreased, which were attributed to more Cu2+ ions released from the CuNPs. The carbohydrate content of EPS was enhanced to defense the toxicity of CuNPs. The flocculating ability was found to be deteriorated due to the increased cell surface charge, the decreased hydrophobicity, and the damaged cell membrane. The worsened flocculating ability made the sludge flocs more dispersed, which further increased the toxicity of the CuNPs by increasing the availability of the CuNPs to the bacteria present in the sludge. Further investigation indicated that the phosphorus removal efficiency decreased at higher CuNPs concentrations, which was consistent with the deteriorated physical-chemical properties of activated sludge. It seems that the physical-chemical properties can be used as an indicator for determining CuNPs toxicity to the bacteria in activated sludge. This work is important because bacteria toxicity effects to the activated sludge caused by nanoparticles may lead to the deteriorated treatment efficiency of wastewater treatment, and it is therefore necessary to find an easy way to indicate this toxicity.

  7. Chemical inhibition of nitrification in activated sludge.

    PubMed

    Kelly, R T; Henriques, I D S; Love, N G

    2004-03-20

    Conventional aerobic nitrification was adversely affected by single pulse inputs of six different classes of industrially relevant chemical toxins: an electrophilic solvent (1-chloro-2,4-dinitrobenzene, CDNB), a heavy metal (cadmium), a hydrophobic chemical (1-octanol), an uncoupling agent (2,4-dinitrophenol, DNP), alkaline pH, and cyanide in its weak metal complexed form. The concentrations of each chemical source that caused 1 5, 25, and 50% respiratory inhibition of a nitrifying mixed liquor during a short-term assay were used to shock sequencing batch reactors containing nitrifying conventional activated sludge. The reactors were monitored for recovery over a period of 30 days or less. All shock conditions inhibited nitrification, but to different degrees. The nitrate generation rate (NGR) of the shocked reactors recovered overtime to control reactor levels and showed that it was a more sensitive indicator of nitrification inhibition than both initial respirometric tests conducted on unexposed biomass and effluent nitrogen species analyses. CDNB had the most severe impact on nitrification, followed by alkaline pH 11, cadmium, cyanide, octanol, and DNP. Based on effluent data, cadmium and octanol primarily inhibited ammonia-oxidizing bacteria (AOB) while CDNB, pH 11,and cyanide inhibited both AOB and nitrite-oxidizing bacteria (NOB). DNP initially inhibited nitrification but quickly increased the NGR relative to the control and stimulated nitrification after several days in a manner reflective of oxidative uncoupling. The shocked mixed liquor showed trends toward recovery from inhibition for all chemicals tested, but in some cases this reversion was slow. These results contribute to our broader effort to identify relationships between chemical sources and the process effects they induce in activated sludge treatment systems.

  8. Improved sustainability of feedstock production with sludge and interacting mycorrhiza.

    PubMed

    Seleiman, Mahmoud F; Santanen, Arja; Kleemola, Jouko; Stoddard, Frederick L; Mäkelä, Pirjo S A

    2013-05-01

    Recycling nutrients saves energy and improves agricultural sustainability. Sewage sludge contains 2.6% P and 3.1% N, so the availability of these nutrients was investigated using four crops grown in either soil or sand. Further attention was paid to the role of mycorrhiza in improvement of nutrient availability. The content of heavy metals and metalloids in the feedstock was analyzed. Sewage sludge application resulted in greater biomass accumulation in ryegrass than comparable single applications of either synthetic fertilizer or digested sludge. Sewage sludge application resulted in more numerous mycorrhizal spores in soil and increased root colonization in comparison to synthetic fertilizer. All plants studied had mycorrhizal colonized roots, with the highest colonization rate in maize, followed by hemp. Sewage sludge application resulted in the highest P uptake in all soil-grown plants. In conclusion, sewage sludge application increased feedstock yield, provided beneficial use for organic wastes, and contributed to the sustainability of bioenergy feedstock production systems. It also improves the soil conditions and plant nutrition through colonization by mycorrhizal fungi as well as reducing leaching and need of synthetic fertilizers.

  9. Enhancement of activated sludge disintegration and dewaterability by Fenton process

    NASA Astrophysics Data System (ADS)

    Heng, G. C.; Isa, M. H.

    2016-06-01

    Municipal and industrial wastewater treatment plants produce large amounts of sludge. This excess sludge is an inevitable drawback inherent to the activated sludge process. In this study, the waste activated sludge was obtained from the campus wastewater treatment plant at Universiti Teknologi PETRONAS (UTP), Malaysia. Fenton pretreatment was optimized by using the response surface methodology (RSM) to study the effects of three operating conditions including the dosage of H2O2 (g H2O2/kg TS), the molar ratio of H2O2/Fe2+ and reaction time. The optimum operating variables to achieve MLVSS removal 65%, CST reduction 28%, sCOD 11000 mg/L and EPS 500 mg/L were: 1000 g H2O2/kg TS, H2O2/Fe2+ molar ratio 70 and reaction time 45 min. Fenton process was proved to be able to enhance the sludge disintegration and dewaterability.

  10. Gas production and transport in artificial sludge depots.

    PubMed

    van Kessel, T; van Kesteren, W G M

    2002-01-01

    This paper presents a study to determine the impact of gas production in dredging sludge on the storage capacity of artificial sludge depots. Gas is produced as a result of the decomposition of organic material present in dredging spoil. This process, in which methane and carbon dioxide are formed, may lead to expansion of sludge layers, partly or even completely counterbalancing consolidation. The study shows that, even with a very conservative estimation of the rate of gas production, accumulation of gas occurs as convective and diffusive transport proceed very slowly. Nucleation of gas bubbles occurs already at a limited oversaturation of pore water. During their growth, bubbles push aside the surrounding grain matrix. Resulting stresses may initiate cracks around bubbles. If these cracks join, they may form channels stretching out to the depot surface and along which gas may escape. However, channels are only stable to a limited depth below which bubble accumulation may continue. The gas content at which sufficient cracks and channels are formed to balance the rate of gas production with the rate of outflow strongly depends on the constitutive properties of the dredging sludge considered. In sludge with a high shear strength (> 10 kPa), stable channels are created already at low deformations. However, a large expansion may occur in sludge with a low strength. The present study shows that accumulation of gas may continue until a bulk density less than that of water is attained. This is equivalent to a gas fraction of about 25-37%, depending on the initial water content of the sludge. Only then can gas escape as a result of instabilities in the sediment matrix. This should be well taken into account during the design and management of artificial depots.

  11. Biorefining of wood: combined production of ethanol and xylanase from waste fiber sludge.

    PubMed

    Cavka, Adnan; Alriksson, Björn; Rose, Shaunita H; van Zyl, Willem H; Jönsson, Leif J

    2011-08-01

    The possibility to utilize fiber sludge, waste fibers from pulp mills and lignocellulose-based biorefineries, for combined production of liquid biofuel and biocatalysts was investigated. Without pretreatment, fiber sludge was hydrolyzed enzymatically to monosaccharides, mainly glucose and xylose. In the first of two sequential fermentation steps, the fiber sludge hydrolysate was fermented to cellulosic ethanol with the yeast Saccharomyces cerevisiae. Although the final ethanol yields were similar, the ethanol productivity after 9.5 h was 3.3 g/l/h for the fiber sludge hydrolysate compared with only 2.2 g/l/h for a reference fermentation with similar sugar content. In the second fermentation step, the spent fiber sludge hydrolysate (the stillage obtained after distillation) was used as growth medium for recombinant Aspergillus niger expressing the xylanase-encoding Trichoderma reesei (Hypocrea jecorina) xyn2 gene. The xylanase activity obtained with the spent fiber sludge hydrolysate (8,500 nkat/ml) was higher than that obtained in a standard medium with similar monosaccharide content (1,400 nkat/ml). Analyses based on deglycosylation with N-glycosidase F suggest that the main part of the recombinant xylanase was unglycosylated and had molecular mass of 20.7 kDa, while a minor part had N-linked glycosylation and molecular mass of 23.6 kDa. Chemical analyses of the growth medium showed that important carbon sources in the spent fiber sludge hydrolysate included xylose, small aliphatic acids, and oligosaccharides. The results show the potential of converting waste fiber sludge to liquid biofuel and enzymes as coproducts in lignocellulose-based biorefineries.

  12. Study of the pyrolysis of sludge and sludge/disposal filter cake mix for the production of value added products.

    PubMed

    Velghe, Inge; Carleer, Robert; Yperman, Jan; Schreurs, Sonja

    2013-04-01

    Slow and fast pyrolysis of sludge and sludge/disposal filter cake (FC) mix are performed to investigate the liquid and solid products for their use as value added products. The obtained slow pyrolysis liquid products separate in an oil, a water rich fraction and a valuable crystalline solid 5,5-dimethyl hydantoin. During fast pyrolysis, mainly an oil fraction is formed. Aliphatic acids and amides present in the water rich fractions can be considered as value added products and could be purified. The oil fractions have properties which make them promising as fuel (25-35 MJ/kg, 14-20 wt% water content, 0.2-0.6 O/C value), but upgrading is necessary. Sludge/FC oils have a lower calorific value, due to evaporation of alcohols present in FC. ICP-AES analyses reveal that almost none of the metals present in sludge or sludge/FC are transferred towards the liquid fractions. The metals are enriched in the solid fractions.

  13. Polyphosphate Kinase from Activated Sludge Performing Enhanced Biological Phosphorus Removal†

    PubMed Central

    McMahon, Katherine D.; Dojka, Michael A.; Pace, Norman R.; Jenkins, David; Keasling, Jay D.

    2002-01-01

    A novel polyphosphate kinase (PPK) was retrieved from an uncultivated organism in activated sludge carrying out enhanced biological phosphorus removal (EBPR). Acetate-fed laboratory-scale sequencing batch reactors were used to maintain sludge with a high phosphorus content (approximately 11% of the biomass). PCR-based clone libraries of small subunit rRNA genes and fluorescent in situ hybridization (FISH) were used to verify that the sludge was enriched in Rhodocyclus-like β-Proteobacteria known to be associated with sludges carrying out EBPR. These organisms comprised approximately 80% of total bacteria in the sludge, as assessed by FISH. Degenerate PCR primers were designed to retrieve fragments of putative ppk genes from a pure culture of Rhodocyclus tenuis and from organisms in the sludge. Four novel ppk homologs were found in the sludge, and two of these (types I and II) shared a high degree of amino acid similarity with R. tenuis PPK (86 and 87% similarity, respectively). Dot blot analysis of total RNA extracted from sludge demonstrated that the Type I ppk mRNA was present, indicating that this gene is expressed during EBPR. Inverse PCR was used to obtain the full Type I sequence from sludge DNA, and a full-length PPK was cloned, overexpressed, and purified to near homogeneity. The purified PPK has a specific activity comparable to that of other PPKs, has a requirement for Mg2+, and does not appear to operate in reverse. PPK activity was found mainly in the particulate fraction of lysed sludge microorganisms. PMID:12324346

  14. Microbial processes associated to the decontamination and detoxification of a polluted activated sludge during its anaerobic stabilization.

    PubMed

    Bertin, Lorenzo; Capodicasa, Serena; Occulti, Fabio; Girotti, Stefano; Marchetti, Leonardo; Fava, Fabio

    2007-06-01

    Xenobiotic compounds accumulate in activated sludge resulting from wastewater treatment plants serving both civil and industrial areas. The opportunity to use anaerobic digestion for the decontamination and beneficial disposal of a contaminated activated sludge was investigated in mesophilic and thermophilic microcosms monitored through an integrated chemical, microbiological and ecotoxicological procedure. The 10 months anaerobic sludge incubation at 35 degrees C resulted in an extensive production of a methane-rich biogas, a marked reduction of pathogenic cultivable bacteria and, importantly, a marked biodegradation of the sludge-carried organic pollutants, including some polychlorinated biphenyls and polycyclic aromatic hydrocarbons, along with a relevant sludge detoxification. The sludge decontamination seemed to occur mostly under methanogenic conditions and was not significantly affected by the addition of yeast extract or molasses. Lower bioremediation and biomethanization yields were observed under thermophilic conditions.

  15. [Quickly enrichment of carbon in wastewater by activated sludge].

    PubMed

    Liu, Hong-Bo; Zhao, Fang; Wen, Xiang-Hua

    2011-10-01

    Pilot tests were carried out to investigate the absorption characteristics of the carbon source in urban wastewater by activated sludge and to analyze the carbon release from the carbon absorbed activated sludge in the settling process. The results indicated that carbon in wastewater could be quickly enriched by activated sludge. The absorption process of indissolvable organic matter could be finished as shortly as less than 10 min, while the absorption process of the dissolved organic matter was relatively slow and should consume up about 30 min. Moreover, carbon release was observed in the settling process of enriched sludge. In the period of 30-100 min, the release amount of total COD (TCOD) was 11.44 mg x g(-1), while in the period of 60-150 min, the release amount of dissolved COD (SCOD) was 6.24 mg x g(-1). Furthermore, based on the results of the bench-scale tests, a pilot-scale plant was built to investigate the absorption of carbon, nitrogen and phosphorus by activated sludge and the settleability of enriched sludge. The results indicated that under continuously operation mode, 60% of COD, 75% of TP and 10% of TN in the wastewater could be removed by the absorption of activated sludge, and the enriched sludge with SVI of 34.2 mL x g(-1) presented good settleability. Carbon enrichment by activated sludge could not only reclaim the carbon source in wastewater, but also reduce the loading of organic matter and give low C/N for the following nitrification unit and improving the nitrification efficiency.

  16. Physiological adaptation of growth kinetics in activated sludge.

    PubMed

    Friedrich, M; Takács, I; Tränckner, J

    2015-11-15

    Physiological adaptation as it occurs in bacterial cells at variable environmental conditions influences characteristic properties of growth kinetics significantly. However, physiological adaptation to growth related parameters in activated sludge modelling is not yet recognised. Consequently these parameters are regarded to be constant. To investigate physiological adaptation in activated sludge the endogenous respiration in an aerobic degradation batch experiment and simultaneous to that the maximum possible respiration in an aerobic growth batch experiment was measured. The activated sludge samples were taken from full scale wastewater treatment plants with different sludge retention times (SRTs). It could be shown that the low SRT sludge adapts by growth optimisation (high maximum growth rate and high decay rate) to its particular environment where a high SRT sludge adapts by survival optimization (low maximum growth rate and low decay rate). Thereby, both the maximum specific growth rate and the decay rate vary in the same pattern and are strongly correlated to each other. To describe the physiological state of mixed cultures like activated sludge quantitatively a physiological state factor (PSF) is proposed as the ratio of the maximum specific growth rate and the decay rate. The PSF can be expressed as an exponential function with respect to the SRT.

  17. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    SciTech Connect

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  18. Effects of the incorporation of drinking water sludge on the anaerobic digestion of domestic wastewater sludge for methane production.

    PubMed

    Torres-Lozada, Patricia; Díaz-Granados, José Sánchez; Parra-Orobio, Brayan Alexis

    2015-01-01

    Water purification and wastewater treatment generate sludge, which must be adequately handled to prevent detrimental effects to the environment and public health. In this study, we examined the influence of the application of settled sludge from a drinking water treatment plant (S(DWTP)) on the anaerobic digestion (AD) of the thickened primary sludge from a municipal wastewater treatment plant (S(WWTP)) which uses chemically assisted primary treatment (CAPT). On both plants the primary coagulant is ferric chloride. The study was performed at laboratory scale using specific methanogenic activity (SMA) tests, in which mixtures of S(WWTP)-S(DWTP) with the ratios 100:00, 80:20, 75:25, 70:30 and 00:100 were evaluated. Methane detection was also performed by gas chromatography for a period of 30 days. Our results show that all evaluated ratios that incorporate S(DWTP), produce an inhibitory effect on the production of methane. The reduction in methane production ranged from 26% for the smallest concentration of S(DWTP) (20%) to more than 70% for concentrations higher than 25%. The results indicated that the hydrolytic stage was significantly affected, with the hydrolysis constant Kh also reduced by approximately 70% (0.24-0.26 day(-1) for the different ratios compared with 0.34 day(-1) for the S(WWTP) alone). This finding demonstrates that the best mixtures to be considered for anaerobic co-digestion must contain a fraction of S(DWTP) below 20%.

  19. ENHANCED BIODEGRADATION OF IOPROMIDE AND TRIMETHOPRIM IN NITRIFYING ACTIVATED SLUDGE

    EPA Science Inventory

    Iopromide and trimethoprim are frequently detected pharmaceuticals in effluents of wastewater treatment plants and in surface waters due to their persistence and high usage. Laboratory scale experiments showed that a significantly higher removal rate in nutrifying activated sludg...

  20. Evaluation of Control Parameters for the Activated Sludge Process

    ERIC Educational Resources Information Center

    Stall, T. Ray; Sherrard, Josephy H.

    1978-01-01

    An evaluation of the use of the parameters currently being used to design and operate the activated sludge process is presented. The advantages and disadvantages for the use of each parameter are discussed. (MR)

  1. Correlation of EPS content in activated sludge at different sludge retention times with membrane fouling phenomena.

    PubMed

    Al-Halbouni, Djamila; Traber, Jacqueline; Lyko, Sven; Wintgens, Thomas; Melin, Thomas; Tacke, Daniela; Janot, Andreas; Dott, Wolfgang; Hollender, Juliane

    2008-03-01

    In this study, activated sludge characteristics were studied with regard to membrane fouling in membrane bioreactors (MBRs) for two pilot plants and one full-scale plant treating municipal wastewater. For the full-scale MBR, concentrations of extracellular polymeric substances (EPS) bound to sludge flocs were shown to have seasonal variations from as low as 17mgg(-1) dry matter (DM) in summer up to 51mg(gDM)(-1) in winter, which correlated with an increased occurrence of filamentous bacteria in the colder season. Therefore, it was investigated at pilot-scale MBRs with different sludge retention times (SRTs) whether different EPS contents and corresponding sludge properties influence membrane fouling. Activated sludge from the pilot MBR with low SRT (23d) was found to have worse filterability, settleability and dewaterability. Photometric analysis of EPS extracts as well as LC-OCD measurements showed that it contained significantly higher concentrations of floc-bound EPS than sludge at higher SRT (40d) The formation of fouling layers on the membranes, characterised by SEM-EDX as well as photometric analysis of EPS extracts, was more distinct at lower SRT where concentrations of deposited EPS were 40-fold higher for proteins and 5-fold higher for carbohydrates compared with the membrane at higher SRT. Floc-bound EPS and metals were suggested to play a role in the fouling process at the full-scale MBR and this was confirmed by the pilot-scale study. However, despite the different sludge properties, the permeability of membranes was found to be similar.

  2. Experimental evaluation of starch utilization mechanism by activated sludge.

    PubMed

    Karahan, Ozlem; Martins, António; Orhon, Derin; van Loosdrecht, Mark C M

    2006-04-05

    The study aimed to explore the conversion processes of hydrolysable substrates by activated sludge. Experimental data were collected from a sequencing batch reactor (SBR) and from batch tests using activated sludge acclimated to native potato starch (NPS). Parallel batch tests were run with NPS (particulate), soluble starch (SolS), maltose, and glucose for comparative evaluation. The fate of organic carbon in the reactor was followed directly by measuring substrate, poly-glucose, and oxygen uptake rate. Results indicated that adsorption was the dominant mechanism for starch removal with subsequent enzymatic hydrolysis inside the flocs. The role of bulk liquid enzyme activity was minimal. Starch was observed to hydrolyze to maltose rather than glucose. The behavior of NPS and SolS was quite similar to maltose in terms of poly-glucose formation and oxygen uptake. Since the simplest hydrolysis product was maltose, the biomass was not acclimated to glucose and thus, glucose exhibited a significantly different removal and storage pattern. The study also showed that differentiation of readily biodegradable and slowly biodegradable COD should better be based on the kinetics of their utilization rather than simple physical characterization.

  3. Aerobic Heterotrophic Bacterial Populations of Sewage and Activated Sludge

    PubMed Central

    Prakasam, T. B. S.; Dondero, N. C.

    1970-01-01

    Two procedures, the confidence interval method and Mountford's index, were tested in analyses of the microbial populations of 11 laboratory activated sludges acclimated to aromatic compounds. The two methods gave somewhat different results but indicated that the populations were quite dissimilar. The activity of seven of the sludges correlated well with the population structure. Some considerations in analysis of microbial population structure are discussed. PMID:5418947

  4. Biogasification of water hyacinth and sludge for methane production

    SciTech Connect

    Chynoweth, D.P.; Biljetina, R.; Srivastava, V.J.; Hayes, T.D.

    1985-01-01

    Research is in progress to determine the technical and economic feasibility of treatment of domestic sewage using primary settling and water hyacinth ponds and conversion of the organic products of this treatment (primary sludge and hyacinth) to substitute natural gas. This paper describes the status of the conversion component of this program which is centered on anaerobic digestion of hyacinth/sludge blends to methane. The results of several experiments conducted successfully in a large-scale experimental test unit located at the hyacinth treatment facility at Walt Disney are presented. 11 refs., 5 figs., 4 tabs.

  5. Starvation Improves Survival of Bacteria Introduced into Activated Sludge

    PubMed Central

    Watanabe, Kazuya; Miyashita, Mariko; Harayama, Shigeaki

    2000-01-01

    A phenol-degrading bacterium, Ralstonia eutropha E2, was grown in Luria-Bertani (LB) medium or in an inorganic medium (called MP) supplemented with phenol and harvested at the late-exponential-growth phase. Phenol-acclimated activated sludge was inoculated with the E2 cells immediately after harvest or after starvation in MP for 2 or 7 days. The densities of the E2 populations in the activated sludge were then monitored by quantitative PCR. The E2 cells grown on phenol and starved for 2 days (P-2 cells) survived in the activated sludge better than those treated differently: the population density of the P-2 cells 7 days after their inoculation was 50 to 100 times higher than the population density of E2 cells without starvation or that with 7-day starvation. LB medium-grown cells either starved or nonstarved were rapidly eliminated from the sludge. The P-2 cells showed a high cell surface hydrophobicity and retained metabolic activities. Cells otherwise prepared did not have one of these two features. From these observations, it is assumed that hydrophobic cell surface and metabolic activities higher than certain levels were required for the inoculated bacteria to survive in the activated sludge. Reverse transcriptase PCR analyses showed that the P-2 cells initiated the expression of phenol hydroxylase within 1 day of their inoculation into the sludge. These results suggest the utility of a short starvation treatment for improving the efficacy of bioaugumentation. PMID:10966407

  6. SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE

    SciTech Connect

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-11-16

    projected noble metals content for SB7b. Characterization was performed on the Tank 51 SB7b samples and SRNL performed DWPF simulations using the Tank 40 SB7b material. This report documents: (1) The preparation and characterization of the Tank 51 SB7b and Tank 40 SB7b samples. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the SB7b Tank 40 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a nonradioactive simulant. (3) Vitrification of a portion of the SME product and characterization and durability testing (as measured by the Product Consistency Test (PCT)) of the resulting glass. (4) Rheology measurements of the SRAT receipt, SRAT product, and SME product. This program was controlled by a Task Technical and Quality Assurance Plan (TTQAP), and analyses were guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF. It should be noted that much of the data in this document has been published in interoffice memoranda. The intent of this technical report is bring all of the SB7b related data together in a single permanent record and to discuss the overall aspects of SB7b processing.

  7. Pyrolysis of activated sludge: energy analysis and its technical feasibility.

    PubMed

    Agarwal, Manu; Tardio, James; Venkata Mohan, S

    2015-02-01

    A comprehensive study on the potential of pyrolysis of activated sludge to generate substances that can be used to produce energy was evaluated for its technical and environmental viability. The products of the process viz., pyrolysis gas, pyrolysis oil and char can readily be used by the major energy consumers viz., electricity and transportation. Based on the results obtained it is estimated that a 1 ton capacity process for pyrolysis of activated sludge can serve the electrical needs of a maximum of 239, 95 and 47 Indian houses per day, considering lower middle class, middle class and upper middle class, respectively. In addition the process would also produce the daily methane (CNG) requirement of 128 public transport buses. The process was determined to be technically feasible at low and medium temperatures for both, pyrolysis gas and electrical energy. The gas generated could be utilized as fuel directly while the oil generated would require pretreatment before its potential application. The process is potentially sustainable when commercialized and can self-sustain in continuous mode of operation in biorefinery context.

  8. [Biodiversity and Function Analyses of BIOLAK Activated Sludge Metagenome].

    PubMed

    Tian, Mei; Liu, Han-hu; Shen, Xin; Zhao, Fang-qing; Chen, Shuai; Yao, Yong-jia

    2015-05-01

    The BIOLAK is a multi-stage activated sludge process, which has been successfully promoted worldwide. However, the biological community and function of the BIOLAK activated sludge ( the core component in the process) have not been reported so far. In this study, taking Lianyungang Dapu Industrial Zone WWTP as an example, a large-scale metagenomic data (428 588 high-quality DNA sequences) of the BIOLAK activated sludge were obtained by means of a new generation of high-throughput sequencing technology. Amazing biodiversity was revealed in the BIOLAK activated sludge, which included 47 phyla, 872 genera and 1351 species. There were 33 phyla identified in the Bacteria domain (289 933 sequences). Proteohacteria was the most abundant phylum (62.54%), followed by Bacteroidetes (11.29%), Nitrospirae ( 5. 65%) and Planctomycetes (4.79%), suggesting that these groups played a key role in the BIOLAK wastewater treatment system. Among the 748 bacterial genera, Nitrospira (5.60%) was the most prevalent genus, which was a key group in the nitrogen cycle. Followed by Gemmatimonas (2.45%), which was an important genus in the biological phosphorus removal process. In Archaea domain (1019 sequences), three phyla and 39 genera were detected. In Eukaryota domain (1055 sequences), 60 genera and 10 phyla were identified, among which Ciliophora was the largest phylum (257 sequences). Meanwhile, 448 viral sequences were detected in the BIOLAK sludge metagenome, which were dominated by bacteriophages. The proportions of nitrogen, aromatic compounds and phosphorus metabolism in the BIOLAK sludge were 2.50%, 2.28% and 1.56%, respectively, which were higher than those in the sludge of United States and Australia. Among four processes of nitrogen metabolism, denitrification-related genes were most abundant (80.81%), followed by ammonification (12.78%), nitrification,(4.38%) and nitrogen fixation (2.04%). In conclusion, the BIOLAK activated sludge had amazing biodiversity, meanwhile

  9. [Comparison of sludge filtration characteristics between a membrane bioreactor and a conventional activated sludge process].

    PubMed

    Sun, Bao-sheng; Zhang, Hai-feng; Qi, Geng-shen

    2006-02-01

    According to the filtration characteristics of sludge, a comparison between a membrane bioreactor (MBR) and a conventional activated sludge process(CAS) was carried out under similar conditions. Experiment results show that the filtration resistance in MBR was 2 to approximately 3 times of that in CAS. The contribution of supernatant resistance to filtration resistance was about 90% both in CAS and in MBR. The test on resistance distribution showed the cake resistance made up 87.30% and 94.18% of total resistance in CAS and MBR, respectively.

  10. Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: The effects of pH and C/N ratio.

    PubMed

    Dai, Xiaohu; Li, Xiaoshuai; Zhang, Dong; Chen, Yinguang; Dai, Lingling

    2016-09-01

    It is necessary to find an appropriate strategy to simultaneously enhance the methane production and methane content in biogas from waste activated sludge (WAS) and grass co-digestion. In this study an efficient strategy, i.e., adjusting the initial pH 12 and C/N ratio 17/1, for simultaneous enhancement of methane production and methane content in biogas from WAS and perennial ryegrass co-digestion was reported. Experimental results indicated that the maximal methane production was 310mL/gVSadd at the optimum conditions after 30-d anaerobic digestion, which was, respectively, about 1.5- and 3.8-fold of the sole WAS and sole perennial ryegrass anaerobic digestion. Meanwhile, the methane content in biogas was about 74%, which was much higher than that of sole WAS (64%) or sole perennial ryegrass (54%) anaerobic digestion.

  11. Long-term effects of the ozonation of the sludge recycling stream on excess sludge reduction and biomass activity at full-scale.

    PubMed

    Gardoni, D; Ficara, E; Fornarelli, R; Parolini, M; Canziani, R

    2011-01-01

    This paper presents a full-scale experience of sludge minimization by means of short contact time ozonation in a wastewater treatment plant (WWTP) mainly fed on textile wastewater. The WWTP performance over a 3-year operational data series was analysed and compared with a two-year operation with sludge ozonation. Lab-scale respirometric tests were also performed to characterize biomass activity upstream and downstream of the ozone contact reactor. Results suggest that sludge ozonation: (1) is capable of decreasing excess sludge production by 17%; (2) partially decreases both N removal, by lowering the denitrification capacity, and P removal, by reducing biomass synthesis; (3) increases the decay rate from the typical value of 0.62 d(-1) to 1.3 d(-1); (4) decreases the heterotrophic growth yield from the typical value of 0.67 to 0.58 gCOD/gCOD.

  12. Performance of calcium peroxide for removal of endocrine-disrupting compounds in waste activated sludge and promotion of sludge solubilization.

    PubMed

    Zhang, Ai; Wang, Jie; Li, Yongmei

    2015-03-15

    Removal of six phenolic endocrine disrupting compounds (EDCs) (estrone, 17β-estradiol, 17α-ethinylestradiol, estriol, bisphenol A, and 4-nonylphenols) from waste activated sludge (WAS) was investigated using calcium peroxide (CaO2) oxidation. Effects of initial pH and CaO2 dosage were investigated. The impacts of CaO2 treatment on sludge solubilization and anaerobic digestion were also evaluated. Specifically, the role of reactive oxygen species (ROS) in EDC degradation during CaO2 oxidation was tested. Effects of 6 metal ions contained in the sludge matrix on EDC degradation were also evaluated. The results showed that CaO2 treatment can be a promising technology for EDC removal and facilitating sludge reuse. The EDC removal efficiencies increased with the increase in CaO2 dosage. At CaO2 doses of more than 0.34 g per gram of total solid (g g(-1) TS), more than 50% of EDCs were removed in a wide pH range of 2-12. Higher removal efficiencies were achieved at initial pH values of 12 and 2. The products of EDCs during CaO2 oxidation had less estrogenic activity than the originals. Under the conditions of neutral pH and CaO2 dosage = 0.34 g g(-1) TS, the sludge solubilization can be improved by increasing the soluble total organic carbon (STOC) and volatile suspended solids (VSS) reduction by 25% and 27% in 7 d, respectively; the volatile fatty acid (VFA) production was enhanced by 96% in the 15 d following anaerobic digestion. The ROS released by CaO2 are the main factors contributing to EDC removal, among which, hydroxyl radicals (OH) play the most important role. Metal ions contained in the sludge matrix also affected EDC removal. For most cases, Fe, Cu, and Zn had positive effects; Mn and Ag had negative effects; and Mg had an insignificant effect on EDC removal.

  13. Characterization of mesoporous activated carbons prepared by pyrolysis of sewage sludge with pyrolusite.

    PubMed

    Liu, Chen; Tang, Zhengguang; Chen, Yao; Su, Shijun; Jiang, Wenju

    2010-02-01

    Activated carbons were prepared from sewage sludge by chemical activation. Pyrolusite was added as a catalyst during activation and carbonization. The influence of the mineral addition on the properties of the activated carbons produced was evaluated. The results show that activated carbons from pyrolusite-supplemented sewage sludge had up to a 75% higher BET surface area and up to a 66% increase in mesoporosity over ordinary sludge-based activated carbons. Batch adsorption experiments applying the prepared adsorbents to synthetic dye wastewater treatment yielded adsorption data well fitted to the Langmuir isotherm. The adsorbents from pyrolusite-supplemented sludges performed better in dye removal than those without mineral addition, with the carbon from pyrolusite-augmented sludge T2 presenting a significant increase in maximum adsorption capacity of 50mg/g. The properties of the adsorbents were improved during pyrolusite-catalyzed pyrolysis via enhancement of mesopore production, thus the mesopore channels may provide fast mass transfer for large molecules like dyes.

  14. Free nitrous acid pretreatment of wasted activated sludge to exploit internal carbon source for enhanced denitrification.

    PubMed

    Ma, Bin; Peng, Yongzhen; Wei, Yan; Li, Baikun; Bao, Peng; Wang, Yayi

    2015-03-01

    Using internal carbon source contained in waste activated sludge (WAS) is beneficial for nitrogen removal from wastewater with low carbon/nitrogen ratio, but it is usually limited by sludge disintegration. This study presented a novel strategy based on free nitrous acid (FNA) pretreatment to intensify the release of organic matters from WAS for enhanced denitrification. During FNA pretreatment, soluble chemical oxygen demand (SCOD) production kept increasing when FNA increased from 0 to 2.04 mg HNO2-N/L. Compared with untreated WAS, the internal carbon source production increased by 50% in a simultaneous fermentation and denitrification reactor fed with WAS pretreated by FNA for 24 h at 2.04 mg HNO2-N/L. This also increased denitrification efficiency by 76% and sludge reduction by 87.5%. More importantly, greenhouse gas nitrous oxide production in denitrification was alleviated since more electrons could be provided by FNA pretreated WAS.

  15. Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant.

    PubMed

    Luostarinen, S; Luste, S; Sillanpää, M

    2009-01-01

    The feasibility of co-digesting grease trap sludge from a meat-processing plant and sewage sludge was studied in batch and reactor experiments at 35 degrees C. Grease trap sludge had high methane production potential (918 m(3)/tVS(added)), but methane production started slowly. When mixed with sewage sludge, methane production started immediately and the potential increased with increasing grease trap sludge content. Semi-continuous co-digestion of the two materials was found feasible up to grease trap sludge addition of 46% of feed volatile solids (hydraulic retention time 16d; maximum organic loading rate 3.46 kgVS/m(3)d). Methane production was significantly higher and no effect on the characteristics of the digested material was noticed as compared to digesting sewage sludge alone. At higher grease trap sludge additions (55% and 71% of feed volatile solids), degradation was not complete and methane production either remained the same or decreased.

  16. Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment.

    PubMed

    Zhang, Yaobin; Feng, Yinghong; Quan, Xie

    2015-04-01

    Heat or alkali pretreatment is the effective method to improve hydrolysis of waste sludge and then enhance anaerobic sludge digestion. However the pretreatment may inactivate the methanogens in the sludge. In the present work, zero-valent iron (ZVI) was used to enhance the methanogenic activity in anaerobic sludge digester under two methanogens-suppressing conditions, i.e. heat-pretreatment and alkali condition respectively. With the addition of ZVI, the lag time of methane production was shortened, and the methane yield increased by 91.5% compared to the control group. The consumption of VFA was accelerated by ZVI, especially for acetate, indicating that the acetoclastic methanogenesis was enhanced. In the alkali-condition experiment, the hydrogen produced decreased from 27.6 to 18.8 mL when increasing the ZVI dosage from 0 to 10 g/L. Correspondingly, the methane yield increased from 1.9 to 32.2 mL, which meant that the H2-utilizing methanogenes was enriched. These results suggested that the addition of ZVI into anaerobic digestion of sludge after pretreated by the heat or alkali process could efficiently recover the methanogenic activity and increase the methane production and sludge reduction.

  17. Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids.

    PubMed

    Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-01-01

    In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production.

  18. Denitrification kinetics in anoxic/aerobic activated sludge systems

    SciTech Connect

    Horne, G.M.

    1998-12-11

    Nitrogen removal needs at municipal wastewater treatment plants (WWTPs) have increased due to greater concerns about eutrophication and increased interest in reuse of treated municipal effluents. Biological processes are the most cost-effective method for nitrogen removal. Biological nitrogen removal is accomplished in two distinctly different processes by the conversion of nitrogen in the wastewater from organic nitrogen and ammonia to nitrate, followed by reduction of the nitrate to nitrogen gas. Nitrate production occurs in an aerobic activated sludge treatment zone during a process called nitrification. The nitrate is then converted through a series of intermediate steps to nitrogen gas in an anoxic zone (an anaerobic condition with nitrate present) during a process called denitrification, effectively removing the nitrogen from the wastewater. Many different WWTP designs have been developed to incorporate these two conditions for nitrogen removal.

  19. Continuous biohydrogen production from waste bread by anaerobic sludge.

    PubMed

    Han, Wei; Huang, Jingang; Zhao, Hongting; Li, Yongfeng

    2016-07-01

    In this study, continuous biohydrogen production from waste bread by anaerobic sludge was performed. The waste bread was first hydrolyzed by the crude enzymes which were generated by Aspergillus awamori and Aspergillus oryzae via solid-state fermentation. It was observed that 49.78g/L glucose and 284.12mg/L free amino nitrogen could be produced with waste bread mass ratio of 15% (w/v). The waste bread hydrolysate was then used for biohydrogen production by anaerobic sludge in a continuous stirred tank reactor (CSTR). The optimal hydrogen production rate of 7.4L/(Ld) was achieved at chemical oxygen demand (COD) of 6000mg/L. According to the results obtained from this study, 1g waste bread could generate 0.332g glucose which could be further utilized to produce 109.5mL hydrogen. This is the first study which reports continuous biohydrogen production from waste bread by anaerobic sludge.

  20. Influence of different anoxic time exposures on active biomass, protozoa and filamentous bacteria in activated sludge.

    PubMed

    Rodriguez-Perez, S; Fermoso, F G; Arnaiz, C

    Medium-sized wastewater treatment plants are considered too small to implement anaerobic digestion technologies and too large for extensive treatments. A promising option as a sewage sludge reduction method is the inclusion of anoxic time exposures. In the present study, three different anoxic time exposures of 12, 6 and 4 hours have been studied to reduce sewage sludge production. The best anoxic time exposure was observed under anoxic/oxic cycles of 6 hours, which reduced 29.63% of the biomass production compared with the oxic control conditions. The sludge under different anoxic time exposures, even with a lower active biomass concentration than the oxic control conditions, showed a much higher metabolic activity than the oxic control conditions. Microbiological results suggested that both protozoa density and abundance of filamentous bacteria decrease under anoxic time exposures compared to oxic control conditions. The anoxic time exposures 6/6 showed the highest reduction in both protozoa density, 37.5%, and abundance of filamentous bacteria, 41.1%, in comparison to the oxic control conditions. The groups of crawling ciliates, carnivorous ciliates and filamentous bacteria were highly influenced by the anoxic time exposures. Protozoa density and abundance of filamentous bacteria have been shown as promising bioindicators of biomass production reduction.

  1. Anaerobic bioleaching of metals from waste activated sludge.

    PubMed

    Meulepas, Roel J W; Gonzalez-Gil, Graciela; Teshager, Fitfety Melese; Witharana, Ayoma; Saikaly, Pascal E; Lens, Piet N L

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g(-1) of copper, 487 μg g(-1) of lead, 793 μg g(-1) of zinc, 27 μg g(-1) of nickel and 2.3 μg g(-1) of cadmium. During the anaerobic acidification of 3 gdry weight L(-1) waste activated sludge, 80-85% of the copper, 66-69% of the lead, 87% of the zinc, 94-99% of the nickel and 73-83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead.

  2. Phosphate removal using sludge from fuller's earth production.

    PubMed

    Moon, Yong Hee; Kim, Jae Gon; Ahn, Joo Sung; Lee, Gyoo Ho; Moon, Hi-Soo

    2007-05-08

    This study assesses the phosphate removal capacity and mechanism of precipitation or adsorption from aqueous solutions in batch experiments by an industrial sludge containing gypsum (CaSO(4).2H(2)O) obtained as a by-product from a fuller's earth process. The potential capacity for phosphate removal was tested using various solution concentrations, pH values, reaction times, and amount of sludge. The maximum phosphate adsorption capacity calculated using the Langmuir equation was 2.0 g kg(-1). The pH for the maximum adsorption by the sludge was neutral to alkaline (pH 7-12). Over 99% of phosphate was removed from a phosphate solution of 30 mg L(-1) using 0.15 g of sludge in a 9-h reaction. Sulfate (SO(4)(2-)) concentration increased with increasing initial phosphate concentration, possibly because of dissolution of gypsum and adsorption of both sulfate and phosphate. At high phosphate concentration (>1000 mg L(-1)), relative constant concentration of Ca(2+) was not consistent with adsorption of the most important phosphate removal mechanism. Results suggest that precipitation of calcium phosphate is principally responsible for phosphate removal under its high concentration. Agglomerated precipitate in the reaction sludge was observed by SEM and identified as brushite (CaHPO(4).2H(2)O) by XRD, FT-IR, and DTA. Based on thermodynamic considerations, it is suggested that the brushite will readily transform to more stable phases, such as hydroxyapatite (Ca(5)(PO(4))(3).OH).

  3. Co-digestion of municipal sludge and external organic wastes for enhanced biogas production under realistic plant constraints.

    PubMed

    Tandukar, Madan; Pavlostathis, Spyros G

    2015-12-15

    A bench-scale investigation was conducted to select external organic wastes and mixing ratios for co-digestion with municipal sludge at the F. Wayne Hill Water Resources Center (FWHWRC), Gwinnett County, GA, USA to support a combined heat and power (CHP) project. External wastes were chosen and used subject to two constraints: a) digester retention time no lower than 15 d; and b) total biogas (methane) production not to exceed a specific target level based on air permit constraints on CO2 emissions. Primary sludge (PS), thickened waste activated sludge (TWAS) and digested sludge collected at the FWHWRC, industrial liquid waste obtained from a chewing gum manufacturing plant (GW) and dewatered fat-oil-grease (FOG) were used. All sludge and waste samples were characterized and their ultimate digestibility was assessed at 35 °C. The ultimate COD to methane conversion of PS, TWAS, municipal sludge (PS + TWAS; 40:60 w/w TS basis), GW and FOG was 49.2, 35.2, 40.3, 72.7, and 81.1%, respectively. Co-digestion of municipal sludge with GW, FOG or both, was evaluated using four bench-scale, mesophilic (35 °C) digesters. Biogas production increased significantly and additional degradation of the municipal sludge between 1.1 and 30.7% was observed. Biogas and methane production was very close to the target levels necessary to close the energy deficit at the FWHWRC. Co-digestion resulted in an effluent quality similar to that of the control digester fed only with the municipal sludge, indicating that co-digestion had no adverse effects. Study results prove that high methane production is achievable with the addition of concentrated external organic wastes to municipal digesters, at acceptable higher digester organic loadings and lower retention times, allowing the effective implementation of CHP programs at municipal wastewater treatment plants, with significant cost savings.

  4. Effect of Malathion on the Microbial Ecology of Activated Sludge

    DTIC Science & Technology

    2015-03-26

    EFFECT OF MALATHION ON THE MICROBIAL ECOLOGY OF ACTIVATED SLUDGE THESIS Seth K. Martin, Senior Master Sergeant, USAF AFIT-ENV-MS-15-M-095 DEPARTMENT...Government and is not subject to copyright protection in the United States. AFIT-ENV-MS-15-M-095 EFFECT OF MALATHION ON THE MICROBIAL ECOLOGY OF ACTIVATED...UNLIMITED. AFIT-ENV-MS-15-M-095 EFFECT OF MALATHION ON THE MICROBIAL ECOLOGY OF ACTIVATED SLUDGE THESIS Seth K. Martin, B.S. Senior Master Sergeant

  5. Comparison between ozonation and the OSA process: analysis of excess sludge reduction and biomass activity in two different pilot plants.

    PubMed

    Torregrossa, Michele; Di Bella, Gaetano; Di Trapani, Daniele

    2012-01-01

    The excess biomass produced during biological treatment of municipal wastewater represents a major issue worldwide, as its disposal implies environmental, economic and social impacts. Therefore, there has been a growing interest in developing technologies to reduce sludge production. The main proposed strategies can be categorized according to the place inside the wastewater treatment plant (WWTP) where the reduction takes place. In particular, sludge minimization can be achieved in the wastewater line as well as in the sludge line. This paper presents the results of two pilot scale systems, to evaluate their feasibility for sludge reduction and to understand their effect on biomass activity: (1) a pilot plant with an ozone contactor in the return activated sludge (RAS) stream for the exposition of sludge to a low ozone dosage; and (2) an oxic-settling-anaerobic (OSA) process with high retention time in the anaerobic sludge holding tank have been studied. The results showed that both technologies enabled significant excess sludge reduction but produced a slight decrease of biomass respiratory activity.

  6. FATE OF WATER SOLUBLE AZO DYES IN THE ACTIVATED SLUDGE PROCESS

    EPA Science Inventory

    The objective of this study was to determine the partitioning of water soluble azo dyes in the activated sludge process (ASP). Azo dyes are of concern because some of the dyes, dye precursors , and/or their degradation products such as aromatic amines (which are also dye precurso...

  7. Anammox biofilm in activated sludge swine wastewater treatment plants.

    PubMed

    Suto, Ryu; Ishimoto, Chikako; Chikyu, Mikio; Aihara, Yoshito; Matsumoto, Toshimi; Uenishi, Hirohide; Yasuda, Tomoko; Fukumoto, Yasuyuki; Waki, Miyoko

    2017-01-01

    We investigated anammox with a focus on biofilm in 10 wastewater treatment plants (WWTPs) that use activated sludge treatment of swine wastewater. In three plants, we found red biofilms in aeration tanks or final sedimentation tanks. The biofilm had higher anammox 16S rRNA gene copy numbers (up to 1.35 × 10(12) copies/g-VSS) and higher anammox activity (up to 295 μmoL/g-ignition loss/h) than suspended solids in the same tank. Pyrosequencing analysis revealed that Planctomycetes accounted for up to 17.7% of total reads in the biofilm. Most of them were related to Candidatus Brocadia or Ca. Jettenia. The highest copy number and the highest proportion of Planctomycetes were comparable to those of enriched anammox sludge. Thus, swine WWTPs that use activated sludge treatment can fortuitously acquire anammox biofilm. Thus, concentrated anammox can be detected by focusing on red biofilm.

  8. Oxygen transfer dynamics and activated sludge floc structure under different sludge retention times at low dissolved oxygen concentrations.

    PubMed

    Fan, Haitao; Liu, Xiuhong; Wang, Hao; Han, Yunping; Qi, Lu; Wang, Hongchen

    2017-02-01

    In activated sludge systems, the aeration process consumes the most energy. The energy cost can be dramatically reduced by decreasing the operating dissolved oxygen (DO) concentration. However, low DO may lead to incomplete nitrification and poor settling performance of activated sludge flocs (ASFs). This study investigates oxygen transfer dynamics and settling performances of activated sludge under different sludge retention times (SRTs) and DO conditions using microelectrodes and microscopic techniques. Our experimental results showed that with longer SRTs, treatment capacity and settling performances of activated sludge improved due to smaller floc size and less extracellular polymeric substances (EPS). Long-term low DO conditions produced larger flocs and more EPS per unit sludge, which produced a more extensive anoxic area and led to low oxygen diffusion performance in flocs. Long SRTs mitigated the adverse effects of low DO. According to the microelectrode analysis and fractal dimension determination, smaller floc size and less EPS in the long SRT system led to high oxygen diffusion property and more compact floc structure that caused a drop in the sludge volume index (SVI). In summary, our results suggested that long SRTs of activated sludge can improve the operating performance under low DO conditions.

  9. Reduction of selenite to elemental selenium nanoparticles by activated sludge.

    PubMed

    Jain, Rohan; Matassa, Silvio; Singh, Satyendra; van Hullebusch, Eric D; Esposito, Giovanni; Lens, Piet N L

    2016-01-01

    Total selenium removal by the activated sludge process, where selenite is reduced to colloidal elemental selenium nanoparticles (BioSeNPs) that remain entrapped in the activated sludge flocs, was studied. Total selenium removal efficiencies with glucose as electron donor (2.0 g chemical oxygen demand (COD) L(-1)) at neutral pH and 30 °C gave 2.9 and 6.8 times higher removal efficiencies as compared to the electron donors lactate and acetate, respectively. Total selenium removal efficiencies of 79 (±3) and 86 (±1) % were achieved in shake flasks and fed batch reactors, respectively, at dissolved oxygen (DO) concentrations above 4.0 mg L(-1) and 30 °C when fed with 172 mg L(-1) (1 mM) Na2SeO3 and 2.0 g L(-1) COD of glucose. Continuously operated reactors operating at neutral pH, 30 °C and a DO >3 mg L(-1) removed 33.98 and 36.65 mg of total selenium per gram of total suspended solids (TSS) at TSS concentrations of 1.3 and 3.0 g L(-1), respectively. However, selenite toxicity to the activated sludge led to failure of a continuously operating activated sludge reactor at the applied loading rates. This suggests that a higher hydraulic retention time (HRT) or different reactor configurations need to be applied for selenium-removing activated sludge processes. Graphical Abstract Scheme representing the possible mechanisms of selenite reduction at high and low DO levels in the activated sludge process.

  10. Integrated treatment of municipal sewage sludge by deep dewatering and anaerobic fermentation for biohydrogen production.

    PubMed

    Yu, Li; Yu, Yang; Jiang, Wentian; Wei, Huangzhao; Sun, Chenglin

    2015-02-01

    The increasing sludge generated in wastewater treatment plants poses a threat to the environment. Based on the traditional processes, sludge dewatered by usual methods was further dewatered by hydraulic compression and the filtrate released was treated by anaerobic fermentation. The difficulties in sludge dewatering were associated with the existence of sludge flocs or colloidal materials. A suitable CaO dosage of 125 mg/g dry sludge (DS) could further decrease the moisture content of sludge from 82.4 to 50.9 %. The filtrate from the dewatering procedure was a potential substrate for biohydrogen production. Adding zero-valent iron (ZVI) into the anaerobic system improved the biohydrogen yield by 20 %, and the COD removal rate was lifted by 10 % as well. Meanwhile, the sludge morphology and microbial community were altered. The novel method could greatly reduce the sludge volume and successfully treated filtrate along with the conversion of organics into biohydrogen.

  11. Waste activated sludge hydrolysis and acidification: A comparison between sodium hydroxide and steel slag addition.

    PubMed

    Zhang, Ying; Zhang, Chaojie; Zhang, Xuan; Feng, Leiyu; Li, Yongmei; Zhou, Qi

    2016-10-01

    Alkaline treatment with steel slag and NaOH addition were investigated under different pH conditions for the fermentation of waste activated sludge. Better performance was achieved in steel slag addition scenarios for both sludge hydrolysis and acidification. More solubilization of organic matters and much production of higher VFA (volatile fatty acid) in a shorter time can be achieved at pH10 when adjusted by steel slag. Higher enzyme activities were also observed in steel slag addition scenarios under the same pH conditions. Phosphorus concentration in the supernatant increased with fermentation time and pH in NaOH addition scenarios, while in contrast most phosphorus was released and captured by steel slag simultaneously in steel slag addition scenarios. These results suggest that steel slag can be used as a substitute for NaOH in sludge alkaline treatment.

  12. Metaproteomics Provides Functional Insight into Activated Sludge Wastewater Treatment

    PubMed Central

    Wilmes, Paul; Wexler, Margaret; Bond, Philip L.

    2008-01-01

    Background Through identification of highly expressed proteins from a mixed culture activated sludge system this study provides functional evidence of microbial transformations important for enhanced biological phosphorus removal (EBPR). Methodology/Principal Findings A laboratory-scale sequencing batch reactor was successfully operated for different levels of EBPR, removing around 25, 40 and 55 mg/l P. The microbial communities were dominated by the uncultured polyphosphate-accumulating organism “Candidatus Accumulibacter phosphatis”. When EBPR failed, the sludge was dominated by tetrad-forming α-Proteobacteria. Representative and reproducible 2D gel protein separations were obtained for all sludge samples. 638 protein spots were matched across gels generated from the phosphate removing sludges. 111 of these were excised and 46 proteins were identified using recently available sludge metagenomic sequences. Many of these closely match proteins from “Candidatus Accumulibacter phosphatis” and could be directly linked to the EBPR process. They included enzymes involved in energy generation, polyhydroxyalkanoate synthesis, glycolysis, gluconeogenesis, glycogen synthesis, glyoxylate/TCA cycle, fatty acid β oxidation, fatty acid synthesis and phosphate transport. Several proteins involved in cellular stress response were detected. Conclusions/Significance Importantly, this study provides direct evidence linking the metabolic activities of “Accumulibacter” to the chemical transformations observed in EBPR. Finally, the results are discussed in relation to current EBPR metabolic models. PMID:18392150

  13. Studies on the production of B. thuringiensis based biopesticides using wastewater sludge as a raw material.

    PubMed

    Vidyarthi, A S; Tyagi, R D; Valero, J R; Surampalli, R Y

    2002-11-01

    Growth and delta-endotoxin yield of Bacillus thuringiensis (Bt) subsp kurstaki in tryptic soy yeast extract (TSY) medium, soybean meal based commercial medium and wastewater sludge medium were studied. The viable spores (VS) count in sludge medium was comparable to that obtained in laboratory and commercial media. The entomotoxicity of the fermentation liquid (Bt grown sludge) against Choristoneura fumiferana was comparable to the concentrated commercial Bt formulation available in the market (Foray 48B). A higher entomotoxicity was observed in a sludge medium than in the TSY or soybean meal media. The secondary and mixed (mixture of primary and secondary) sludges from various wastewater treatment plants were also evaluated for spore formation and entomotoxicity yield. The VS count was higher in a mixed sludge compared to the secondary sludge at a similar sludge solids concentration. Both VS count and entomotoxicity yield was found to be a function of sludge solids concentration in the medium. The optimum value of solids concentration for Bt production was found to be 25 g (-1) (dry weight basis). Beyond this concentration, a drop in VS count and entomotoxicity yield was observed. A low C:N ratio in the secondary sludge and a high C:N ratio in the mixed sludge resulted in a higher entomotoxicity. The optimum value of C:N ratio in combined sludge for Bt production was found to be 7.9-9.9. Relationships between entomotoxicity and maximum specific growth as well as with specific sporulation rate were developed.

  14. Effect of thermal pre-treatment on co-digestion of duckweed (Lemna gibba) and waste activated sludge on biogas production.

    PubMed

    Gaur, Rubia Zahid; Khan, Abid Ali; Suthar, Surindra

    2017-05-01

    The duckweeds (DW) are considered as a major problem in tropical aquatic system as they grow very fast and produce enormous rich-biomass, which can be harvested for renewable energy operations. But complex lignocellulosic compounds limit their utility in process like anaerobic digestion. This batch study aimed to analyse characteristics (proximate, ultimate and physico-chemical) and possible utility of DW for anaerobic co-digestion with waste activated sludge (WAS) under mesophilic conditions for 35 d. Two sets of experiment were tested: substrate with and without thermal pre-treatment. Five combinations of DW: WAS (70:20, 60:20, 50:20, 40:20 and 30:20%) were established and biomethanation along with changes in pH, volatile solids (VS), volatile fatty acids (VFAs), and soluble chemical oxygen demand (sCOD) of digestate were recorded. The total CH4 yield (mL CH4 g(-1) VS) ranged between 60 and 468 for pre-treated, and 9 and 76 for non-pre-treated. The maximum CH4 yield was 468 mL CH4g(-1) VS in DW: WAS (50:20). Thermally treated setups, showed about 13-, 24.1-, 21.1-, 1.4-, and 2.3-fold higher CH4 than non-treated setups. The treated mixtures showed high reduction of SCOD (>41-96) and VS (>59-98%) in co-digesters. The high degree of Gompertz curve fitting (R(2) > 0.99) has suggested pre-treatment of substrate for optimal outputs of co-digester. Based on results obtained, it is suggested that DW (50-60% in digester) can be used as renewable energy resource for biomethanation process after thermal pre-treatment.

  15. Fate of linear alkylbenzene sulfonate (LAS) in activated sludge plants.

    PubMed

    Temmink, H; Klapwijk, Bram

    2004-02-01

    Monitoring data were collected in a pilot-scale municipal activated sludge plant to assess the fate of the C12-homologue of linear alkyl benzene sulfonate (LAS-C12). The pilot-plant was operated at influent LAS-C12 concentrations between 2 and 12 mg l(-1) and at sludge retention times of 10 and 27 days. Effluent and waste sludge concentrations varied between 5 and 10 microg l(-1) and between 37 and 69 microg g(-1) VSS, respectively. In the sludge samples only 2-8% was present as dissolved LAS-C12, whereas the remaining 92-98% was found to be adsorbed to the sludge. In spite of this high degree of sorption, more than 99% of the LAS-C12 load was removed by biodegradation, showing that not only the soluble fraction but also the adsorbed fraction of LAS-C12 is readily available for biodegradation. Sorption and biodegradation of LAS-C12 were also investigated separately. Sorption was an extremely fast and reversible process and could be described by a linear isotherm with a partition coefficient of 3.2 l g(-1) volatile suspended solids. From the results of biodegradation kinetic tests it was concluded that primary biodegradation of LAS-C12 cannot be described by a (growth) Monod model, but a secondary utilisation model should be used instead. The apparent affinity of the sludge to biodegrade LAS-C12 increased when the sludge was loaded with higher influent concentrations of LAS-C12.

  16. Separation of flue-gas scrubber sludge into marketable products

    SciTech Connect

    Kawatra, S.K.; Eisele, T.C.

    1997-08-31

    A tremendous amount of wet flue-gas desulfurization scrubber sludge (estimated 20 million metric tons per year in the US) is currently being landfilled at a huge cost to utility companies. Scrubber sludge is the solid precipitate produced during desulfurization of flue-gas from burning high sulfur coal. The amount of this sludge is expected to increase in the near future due to ever increasing governmental regulation concerning the amount of sulfur emissions. Scrubber sludge is a fine, grey colored powder that contains calcium sulfite hemihydrate (CaSO{sub 3} {center_dot} 1/2H{sub 2}), calcium sulfate dihydrate (CaSO{sub 4} {center_dot} 2H{sub 2}O), limestone (CaCO{sub 3}), silicates, and iron oxides. This material can continue to be landfilled at a steadily increasing cost, or an alternative for utilizing this material can be developed. This study explores the characteristics of a naturally oxidized wet flue-gas desulfurization scrubber sludge and uses these characteristics to develop alternatives for recycling this material. In order for scrubber sludge to be used as a feed material for various markets, it was necessary to process it to meet the specifications of these markets. A physical separation process was therefore needed to separate the components of this sludge into useful products at a low cost. There are several physical separation techniques available to separate fine particulates. These techniques can be divided into four major groups: magnetic separation, electrostatic separation, physico-chemical separation, and density-based separation. The properties of this material indicated that two methods of separation were feasible: water-only cycloning (density-based separation), and froth flotation (physico-chemical separation). These processes could be used either separately, or in combination. The goal of this study was to reduce the limestone impurity in this scrubber sludge from 5.6% by weight to below 2.0% by weight. The resulting clean calcium

  17. Comparison of different thickening methods for active biomass recycle for anaerobic digestion of wastewater sludge.

    PubMed

    Vanyushina, A Ya; Agarev, A M; Moyzhes, S I; Nikolaev, Yu A; Kevbrina, M V; Kozlov, M N

    2012-01-01

    The effect of returning solids to the digester, after one of three thickening processes, on volatile solids reduction (VSR) and gas production was investigated. Three different thickening methods were compared: centrifugation, flotation and gravitational sedimentation. The amount and activity of retained biomass in thickened recycled sludge affected the efficiency of digestion. Semi-continuous laboratory digesters were used to study the influence of thickening processes on thermophilic sludge digestion efficiency. Centrifugation was the most effective method used and caused an increase of VSR from 43% (control) up to 70% and gas generation from 0.40 to 0.44 L g(-1) VS. Flotation and gravitational sedimentation ways of thickening appeared to be less effective if compared with centrifugation. These methods increased VSR only by up to 65 and 51%, respectively and showed no significant increase of gas production. The dewatering capacity of digested sludge, as measured by its specific resistance to filtration, was essentially better for the sludge digested in the reactors with centrifugated and settled recycle. The VS concentration of recycle (g L(-1)), as reflecting the amount of retained biomass, appeared to be one of the most important factors influencing the efficiency of sludge digestion in the recycling technology.

  18. Testing the toxicity of influents to activated sludge plants with the Vibrio fischeri bioassay utilising a sludge matrix.

    PubMed

    Hoffmann, C; Christofi, N

    2001-10-01

    To protect the bioceonosis within activated sludge, a method of predicting the toxic effect of influents to the biological treatment stage of waste water treatment plants, based on DIN method 38412 L 34, has been developed. A population of the luminescent marine bacterium Vibrio fischeri was incorporated into a sludge testing matrix derived from a model laboratory and real activated sludge plants. The sludge was challenged with different concentrations of pure toxicants and complex aqueous samples, and light output by V. fischeri monitored. The results were compared to toxicant testing in the absence of sludge (standard test). The modified method was found to be less sensitive for some toxicants tested than the standard DIN and other bioluminescent tests, but considered more realistic as it provides buffering and takes into account sorption which can affect the sensitivity of the test towards some compounds. The method is comparable in terms of ease of use, speed, reproducibility and cost effectiveness to standard V. fischeri luminescence methods.

  19. The sludge loading rate regulates the growth and release of heterotrophic bacteria resistant to six types of antibiotics in wastewater activated sludge.

    PubMed

    Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian

    2015-01-01

    Wastewater treatment plants are considered as hot reservoirs of antimicrobial resistance. However, the fates of antibiotic-resistant bacteria during biological treatment processes and relevant influencing factors have not been fully understood. This study evaluated the effects of the sludge loading rate on the growth and release of six kinds of antibiotic-resistant bacteria in an activated sludge system. The results indicated that higher sludge loading rates amplified the growth of all six types of antibiotic resistant bacteria. The release of most antibiotic-resistant bacteria through both the effluent and biosolids was amplified with increased sludge loading rate. Biosolids were the main pattern for all antibiotic-resistant bacteria release in an activated sludge system, which was determined primarily by their growth in the activated sludge. A higher sludge loading rate reactor tended to retain more antibiotic resistance. An activated sludge system with lower sludge loading rates was considered more conducive to the control of antibiotic resistance.

  20. Microbial evaluation of activated sludge and filamentous population at eight Czech nutrient removal activated sludge plants during year 2000.

    PubMed

    Krhutková, O; Ruzicková, I; Wanner, J

    2002-01-01

    The long-term project on the survey of filamentous microorganisms, which started in 1996, was finished in 2000 by the survey of eight Czech activated sludge plants with biological nutrient removal (BNR) systems. At all plants with enhanced biological nutrient removal, specific microbial population (mostly from the point of view of filaments occurrence), operational problems (presence of biological foaming, bulking) and plant operation were observed periodically and longer than 1 year. In our paper the relationship between the composition of activated sludge (especially filaments) consortia and modification of the process with nutrient removal is discussed. At the surveyed plants Type 0092 and Microthrix parvicella were identified as dominant Eikelboom filamentous types.

  1. Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion.

    PubMed

    Mu, Hui; Chen, Yinguang

    2011-11-01

    The increasing use of zinc oxide nanoparticles (ZnO NPs) raises concerns about their environmental impacts, but the potential effect of ZnO NPs on sludge anaerobic digestion remains unknown. In this paper, long-term exposure experiments were carried out to investigate the influence of ZnO NPs on methane production during waste activated sludge (WAS) anaerobic digestion. The presence of 1 mg/g-TSS of ZnO NPs did not affect methane production, but 30 and 150 mg/g-TSS of ZnO NPs induced 18.3% and 75.1% of inhibition respectively, which showed that the impact of ZnO NPs on methane production was dosage dependant. Then, the mechanisms of ZnO NPs affecting sludge anaerobic digestion were investigated. It was found that the toxic effect of ZnO NPs on methane production was mainly due to the release of Zn(2+) from ZnO NPs, which may cause the inhibitory effects on the hydrolysis and methanation steps of sludge anaerobic digestion. Further investigations with enzyme and fluorescence in situ hybridization (FISH) assays indicated that higher concentration of ZnO NPs decreased the activities of protease and coenzyme F(420), and the abundance of methanogenesis Archaea.

  2. Optimization of co-digestion of various industrial sludges for biogas production and sludge treatment: methane production potential experiments and modeling.

    PubMed

    Mahanty, Biswanath; Zafar, Mohd; Han, Man Jae; Park, Hung-Suck

    2014-06-01

    Optimal biogas production and sludge treatment were studied by co-digestion experiments and modeling using five different wastewater sludges generated from paper, chemical, petrochemical, automobile, and food processing industries situated in Ulsan Industrial Complex, Ulsan, South Korea. The biomethane production potential test was conducted in simplex-centroid mixture design, fitted to regression equation, and some optimal co-digestion scenarios were given by combined desirability function based multi-objective optimization technique for both methane yield and the quantity of sludge digested. The co-digestion model incorporating main and interaction effects among sludges were utilized to predict the maximum possible methane yield. The optimization routine for methane production with different industrial sludges in batches were repeated with the left-over sludge of earlier cycle, till all sludges have been completely treated. Among the possible scenarios, a maximum methane yield of 1161.53 m(3) is anticipated in three batches followed by 1130.33 m(3) and 1045.65 m(3) in five and two batches, respectively. This study shows a scientific approach to find a practical solution to utilize diverse industrial sludges in both treatment and biogas production perspectives.

  3. Separation of Flue-Gas Scrubber Sludge into Marketable Products

    SciTech Connect

    1998-02-28

    The reduction of sulfur oxides from high sulfur coal burning utility companies has resulted in the production of huge quantities of wet flue-gas desulfurization scrubber sludge. A typical 400 MW power station burning a coal containing 3.5% sulfur by weight and using a limestone absorbent would produce approximately 177,000 tons (dry weight) of scrubber sludge per year. This brownish colored, finely divided material contains calcium sulfite (CaSO{sub 3} {center_dot} 1/2 H{sub 2}O), calcium sulfate (CaSO{sub 4} {center_dot} 2H{sub 2}O), unreacted limestone (CaCO{sub 3}), and various other impurities such as fly-ash and iron oxide particles. The physical separation of the components of scrubber sludge would result in the re-use of this material. The primary use would be conversion to a highly pure synthetic gypsum. This technical report concentrates on the effect of baffle configuration on the separation of calcium sulfite/sulfate from limestone. The position of the baffles as they related to the feed inlet, and the quantity of the baffles were examined. A clean calcium sulfite/sulfate (less than 2.0% limestone by weight) was achieved with the combination of water-only cyclone and horizontally baffled column.

  4. [Dynamics of quickly absorption of the carbon source in wastewater by activated sludge].

    PubMed

    Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang

    2011-09-01

    In this paper, absorption characteristics of organic matter in municipal wastewater by three kinds of activated sludge (carbon-enriching, nitrification and denitrification sludge) were studied, and the absorption kinetic data was checked using three kinds of absorption kinetic equations based on Ritchie rate equation. The objectives of this study were to investigate the absorption mechanism of activated sludge to organic matter in municipal wastewater, and to identify the possibility of reclaiming organic matter by activated sludge. Results indicated that in the early 30 min, absorption process of organic matter by activated sludge was found to be mainly physical adsorption, which could be expressed by the Lagergren single-layer adsorption model. The carbon-enriching sludge had the highest adsorption capacity (COD/SS) which was 60 mg/g but the adsorption rate was lower than that of denitrification sludge. While nitrification sludge had the lowest adsorption rate and higher adsorption capacity compared with denitrification sludge, which was about 35 mg/g. The rates of the fitting index theta(0) of carbon-enriching, nitrification and denitrification sludge were 0.284, 0.777 and 0.923, respectively, which indicated that the sorbed organic matter on the surface of carbon-enriching sludge was the easiest fraction to be washed away. That is, the combination intensity of carbon-enriching sludge and organic matter was the feeblest, which was convenient for carbon-enriching sludge to release sorbed carbon. Furthermore, by fitting with Langmuir model, concentration of organic matter was found to be the key parameter influencing the adsorption capacity of activated sludge, while the influence of temperature was not obvious. The kinetic law of organic matter absorption by activated sludge was developed, which introduces a way to kinetically analyze the removing mechanism of pollutant by activated sludge and provides theoretical base for the reclaiming of nutriments in

  5. Wastewater treatment sludge as a raw material for the production of Bacillus thuringiensis based biopesticides.

    PubMed

    Montiel, M D; Tyagi, R D; Valero, J R

    2001-11-01

    Seven wastewater sludges of different origins and types were used as an alternate culture medium for producing Bacillus thuringiensis variety kurstaki HD-1. The sludge samples were used under three different preparations: without pre-treatment, with acid treatment (hydrolysed sludge) and the supernatant obtained after centrifugation of the hydrolysed sludge. The sludge composition varied widely with origin and the type of sludge. Growth and sporulation were evaluated by the total viable cell count and spore count of the preparations. Growth, sporulation and endotoxin production were affected by the sludge origin. Hydrolysed sludge gave the highest viable cell and spore counts while the liquid phase (supernatant) gave the lowest. Non-hydrolysed primary sludge from Valcartier was unable to sustain bacterial growth because of its low pH. Bioassays were conducted against larvae of spruce budworm to evaluate entomotoxic potential of the preparations obtained. In general, sludge hydrolysis increased the entomotoxicity yields. Similar entomotoxicity was observed in Black Lake secondary sludge (4100 IU/microL) as that obtained in the reference soya medium (3800 IU/microL). The use of the sludge supernatant (liquid phase) was not recommended due to the low entomotoxic potential obtained.

  6. Transformation products and human metabolites of triclocarban and tricllosan in sewage sludge across the United States

    USGS Publications Warehouse

    Pycke, Benny F.G.; Roll, Isaac B.; Brownawell, Bruce J.; Kinney, Chad A.; Furlong, Edward T.; Kolpin, Dana W.; Halden, Rolf U.

    2014-01-01

    Removal of triclocarban (TCC) and triclosan (TCS) from wastewater is a function of adsorption, abiotic degradation, and microbial mineralization or transformation, reactions that are not currently controlled or optimized in the pollution control infrastructure of standard wastewater treatment. Here, we report on the levels of eight transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in raw and treated sewage sludge. Two sample sets were studied: samples collected once from 14 wastewater treatment plants (WWTPs) representing nine states, and multiple samples collected from one WWTP monitored for 12 months. Time-course analysis of significant mass fluxes (α = 0.01) indicate that transformation of TCC (dechlorination) and TCS (methylation) occurred during sewage conveyance and treatment. Strong linear correlations were found between TCC and the human metabolite 2′-hydroxy-TCC (r = 0.84), and between the TCC-dechlorination products dichlorocarbanilide (DCC) and monochlorocarbanilide (r = 0.99). Mass ratios of DCC-to-TCC and of methyl-triclosan (MeTCS)-to-TCS, serving as indicators of transformation activity, revealed that transformation was widespread under different treatment regimes across the WWTPs sampled, though the degree of transformation varied significantly among study sites (α = 0.01). The analysis of sludge sampled before and after different unit operation steps (i.e., anaerobic digestion, sludge heat treatment, and sludge drying) yielded insights into the extent and location of TCC and TCS transformation. Results showed anaerobic digestion to be important for MeTCS transformation (37–74%), whereas its contribution to partial TCC dechlorination was limited (0.4–2.1%). This longitudinal and nationwide survey is the first to report the occurrence of transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in sewage sludge.

  7. Transformation products and human metabolites of triclocarban and triclosan in sewage sludge across the United States.

    PubMed

    Pycke, Benny F G; Roll, Isaac B; Brownawell, Bruce J; Kinney, Chad A; Furlong, Edward T; Kolpin, Dana W; Halden, Rolf U

    2014-07-15

    Removal of triclocarban (TCC) and triclosan (TCS) from wastewater is a function of adsorption, abiotic degradation, and microbial mineralization or transformation, reactions that are not currently controlled or optimized in the pollution control infrastructure of standard wastewater treatment. Here, we report on the levels of eight transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in raw and treated sewage sludge. Two sample sets were studied: samples collected once from 14 wastewater treatment plants (WWTPs) representing nine states, and multiple samples collected from one WWTP monitored for 12 months. Time-course analysis of significant mass fluxes (α=0.01) indicate that transformation of TCC (dechlorination) and TCS (methylation) occurred during sewage conveyance and treatment. Strong linear correlations were found between TCC and the human metabolite 2'-hydroxy-TCC (r=0.84), and between the TCC-dechlorination products dichlorocarbanilide (DCC) and monochlorocarbanilide (r=0.99). Mass ratios of DCC-to-TCC and of methyl-triclosan (MeTCS)-to-TCS, serving as indicators of transformation activity, revealed that transformation was widespread under different treatment regimes across the WWTPs sampled, though the degree of transformation varied significantly among study sites (α=0.01). The analysis of sludge sampled before and after different unit operation steps (i.e., anaerobic digestion, sludge heat treatment, and sludge drying) yielded insights into the extent and location of TCC and TCS transformation. Results showed anaerobic digestion to be important for MeTCS transformation (37-74%), whereas its contribution to partial TCC dechlorination was limited (0.4-2.1%). This longitudinal and nationwide survey is the first to report the occurrence of transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in sewage sludge.

  8. Transformation Products and Human Metabolites of Triclocarban and Triclosan in Sewage Sludge Across the United States

    PubMed Central

    2015-01-01

    Removal of triclocarban (TCC) and triclosan (TCS) from wastewater is a function of adsorption, abiotic degradation, and microbial mineralization or transformation, reactions that are not currently controlled or optimized in the pollution control infrastructure of standard wastewater treatment. Here, we report on the levels of eight transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in raw and treated sewage sludge. Two sample sets were studied: samples collected once from 14 wastewater treatment plants (WWTPs) representing nine states, and multiple samples collected from one WWTP monitored for 12 months. Time-course analysis of significant mass fluxes (α = 0.01) indicate that transformation of TCC (dechlorination) and TCS (methylation) occurred during sewage conveyance and treatment. Strong linear correlations were found between TCC and the human metabolite 2′-hydroxy-TCC (r = 0.84), and between the TCC-dechlorination products dichlorocarbanilide (DCC) and monochlorocarbanilide (r = 0.99). Mass ratios of DCC-to-TCC and of methyl-triclosan (MeTCS)-to-TCS, serving as indicators of transformation activity, revealed that transformation was widespread under different treatment regimes across the WWTPs sampled, though the degree of transformation varied significantly among study sites (α = 0.01). The analysis of sludge sampled before and after different unit operation steps (i.e., anaerobic digestion, sludge heat treatment, and sludge drying) yielded insights into the extent and location of TCC and TCS transformation. Results showed anaerobic digestion to be important for MeTCS transformation (37–74%), whereas its contribution to partial TCC dechlorination was limited (0.4–2.1%). This longitudinal and nationwide survey is the first to report the occurrence of transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in sewage sludge. PMID:24932693

  9. Advanced Activated Sludge. Training Module 2.117.4.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with operation of activated sludge wastewater treatment plants. Included are objectives, instructor guides, student handouts and transparency masters. This is the third level of a three module series and considers design and operation…

  10. Activated Sludge. Instructor's Guide. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Boe, Owen K.

    This instructor's guide contains the materials needed to teach a seven-lesson unit on activated sludge. These materials include an overview of the unit, lesson plans, lecture outlines (keyed to slides designed for use with the lessons), student worksheets for each of the seven lessons (with answers), and two copies of a final quiz (with and…

  11. Microscopic Analysis of Plankton, Periphyton, and Activated Sludge. Training Manual.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This manual is intended for professional personnel in the fields of water pollution control, limnology, water supply and waste treatment. Primary emphasis is given to practice in the identification and enumeration of microscopic organisms which may be encountered in water and activated sludge. Methods for the chemical and instrumental evaluation…

  12. Intermediate Activated Sludge. Training Module 2.116.3.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with operation of activated sludge wastewater treatment plants. Included are objectives, instructor guides, student handouts and transparency masters. This is the second level of a three module series and considers aeration devices,…

  13. Basic Activated Sludge. Training Module 2.115.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with operation of activated sludge wastewater treatment plants. Included are objectives, instructor guides, student handouts, and transparency masters. This is the first of a three module series and considers definition of terms, design…

  14. Influence of anaerobic co-digestion of sewage and brewery sludges on biogas production and sludge quality.

    PubMed

    Pecharaply, Athapol; Parkpian, Preeda; Annachhatre, Ajit P; Jugsujinda, Aroon

    2007-06-01

    This research investigated operating parameters and treatment efficiency for the digestion of sewage and brewery sludge. The prime objective of this study was to enhance the quality of treated sludge for use as agriculture fertilizer and to enhance biogas production, a by-product that can be used as an energy source. Three bench-scale completely stirred tank reactor (CSTR) anaerobic digesters were operated at mesophilic condition (36+/-0.2 degrees C). A mixture of sewage and brewery sludge were used as substrates at ratios of 100:0, 75:25, 50:50, 25:75 and 0:100, based on wet weight basis (w/w). For each digester, the solids retention times (SRT) were 20 days. The organic loading and volatile solids loading were between 1.3-2.2 kg chemical oxygen demand (COD)/m3/day and 0.9-1.5 kg/m3/day, respectively. The digester fed with brewery sludge as co-substrate yielded higher treatment efficiency than sewage sludge alone. The removal efficiencies measured in terms of soluble chemical oxygen demand (SCOD) and total chemical oxygen demands (TCOD) ranged from 40% to 75% and 22% to 35%, respectively. Higher SCOD and TCOD removal efficiencies were obtained when higher fractions of brewery sludge was added to the substrate mixture. Removal efficiency was lowest for sewage sludge alone. Measured volatile solid (VS) reduction ranged from 15% to 20%. Adding a higher fraction of brewery sludge to the mixture increased the VS reduction percentage. The biogas production and methane yield also increased with increase in brewery sludge addition to the digester mixture. The methane content present in biogas of each digester exceeded 70% indicating the system was functioning as an anaerobic process. Likewise the ratio of brewery sewage influenced not only the treatment efficiency but also improved quality of treated sludge by lowering number of pathogen (less than 2 MPN/g of dried sludge) and maintaining a high nutrient concentration of nitrogen (N) 3.2-4.2%, phosphorus (P) 1.9-3.2% and

  15. Cultivation of a bacterial consortium with the potential to degrade total petroleum hydrocarbon using waste activated sludge.

    PubMed

    Sivakumar, S; Song, Y C; Kim, S H; Jang, S H

    2015-11-01

    Waste activated sludge was aerobically treated to demonstrate multiple uses such as cultivating an oil degrading bacterial consortium; studying the influence of a bulking agent (peat moss) and total petroleum hydrocarbon concentration on bacterial growth and producing a soil conditioner using waste activated sludge. After 30 days of incubation, the concentration of oil-degrading bacteria was 4.3 x 10(8) CFU g(-1) and 4.5 x 10(8) CFU g(-1) for 5 and 10 g of total petroleum hydrocarbon, respectively, in a mixture of waste activated sludge (1 kg) and peat moss (0.1 kg). This accounts for approximately 88.4 and 91.1%, respectively, of the total heterotrophic bacteria (total-HB). The addition of bulking agent enhanced total-HB population and total petroleum hydrocarbon-degrading bacterial population. Over 90% of total petroleum hydrocarbon degradation was achieved by the mixture of waste activated sludge, bulking agent and total petroleum hydrocarbon. The results of physico-chemical parameters of the compost (waste activated sludge with and without added peat moss compost) and a substantial reduction in E. coli showed that the use of this final product did not exhibit risk when used as soil conditioner. Finally, the present study demonstrated that cultivation of total petroleum hydrocarbon-degrading bacterial consortium and production of compost from waste activated sludge by aerobic treatment was feasible.

  16. Optimization of the preparation conditions of ceramic products using drinking water treatment sludges.

    PubMed

    Zamora, R M Ramirez; Ayala, F Espesel; Garcia, L Chavez; Moreno, A Duran; Schouwenaars, R

    2008-11-01

    The aim of this work is to optimize, via Response Surface Methodology, the values of the main process parameters for the production of ceramic products using sludges obtained from drinking water treatment in order to valorise them. In the first experimental stage, sludges were collected from a drinking water treatment plant for characterization. In the second stage, trials were carried out to elaborate thin cross-section specimens and fired bricks following an orthogonal central composite design of experiments with three factors (sludge composition, grain size and firing temperature) and five levels. The optimization parameters (Y(1)=shrinking by firing (%), Y(2)=water absorption (%), Y(3)=density (g/cm(3)) and Y(4)=compressive strength (kg/cm(2))) were determined according to standardized analytical methods. Two distinct physicochemical processes were active during firing at different conditions in the experimental design, preventing the determination of a full response surface, which would allow direct optimization of production parameters. Nevertheless, the temperature range for the production of classical red brick was closely delimitated by the results; above this temperature, a lightweight ceramic with surprisingly high strength was produced, opening possibilities for the valorisation of a product with considerably higher added value than what was originally envisioned.

  17. Membrane bioreactor (MBR) sludge inoculation in a hybrid process scheme concept to assist overloaded conventional activated sludge (CAS) process operations.

    PubMed

    Fenu, A; Roels, J; Van Damme, S; Wambecq, T; Weemaes, M; Thoeye, C; De Gueldre, G; Van De Steene, B

    2012-01-01

    This study analyzes the effect of inoculating membrane bioreactor (MBR) sludge in a parallel-operated overloaded conventional activated sludge (CAS) system. Modelling studies that showed the beneficial effect of this inoculation were confirmed though full scale tests. Total nitrogen (TN) removal in the CAS increased and higher nitrate formation rates were achieved. During MBR sludge inoculation, the TN removal in the CAS was proven to be dependent on MBR sludge loading. Special attention was given to the effect of inoculation on sludge quality. The MBR flocs, grown without selection pressure, were clearly distinct from the more compact flocs in the CAS system and also contained more filamentous bacteria. After inoculation the MBR flocs did not evolve into good-settling compact flocs, resulting in a decreasing sludge quality. During high flow conditions the effluent CAS contained more suspended solids. Sludge volume index, however, did not increase. Laboratory tests were held to determine the threshold volume of MBR sludge to be seeded into the CAS reactor. Above 16-30%, supernatant turbidity and scum formation increased markedly.

  18. Determination of the acute toxicities of physicochemical pretreatment and advanced oxidation processes applied to dairy effluents on activated sludge.

    PubMed

    Sivrioğlu, Özge; Yonar, Taner

    2015-04-01

    In this study, the acute toxicities of raw, physicochemical pre-treated, ozonated, and Fenton reagent applied samples of dairy wastewater toward activated sludge microorganisms, evaluated using the International Organization for Standardization's respiration inhibition test (ISO 8192), are presented. Five-day biological oxygen demand (BOD5) was measured to determine the biodegradability of physicochemical treatment, ozonation, Fenton oxidation or no treatment (raw samples) of dairy wastewater. Chemical pretreatment positively affected biodegradability, and the inhibition exhibited by activated sludge was removed to a considerable degree. Ozonation and the Fenton process exhibited good chemical oxygen demand removal (61%) and removal of toxins. Low sludge production was observed for the Fenton process applied to dairy effluents. We did not determine the inhibitory effect of the Fenton-process on the activated sludge mixture. The pollutant-removal efficiencies of the applied processes and their associated operating costs were determined.

  19. Heavy metals and adsorbents effects on activated sludge microorganisms.

    PubMed

    Ong, S A; Lim, P E; Seng, C E

    2004-01-01

    The sorption of Cu(II) and Cd(II) from synthetic solution by powdered activated carbon (PAC), biomass, rice husk (RH) and activated rice husk (ARH) were investigate under batch conditions. After activated by concentrated nitric acid for 15 hours at 60-65 degrees C, the adsorption capacity for RH was increased. The adsorbents arranged in the increasing order of adsorption capacities to the Langmuir Q degree parameter were biomass > PAC > ARH > RH. The addition of adsorbents in base mix solution had increased the specific oxygen uptake rate (SOUR) activated sludge microorganisms with and without the presence of metals. The increased of SOUR were due to the ability of PAC and RH in reducing the inhibitory effect of metals on microorganisms and provide a reaction site between activated sludge microorganisms and substrates.

  20. Methane recovery from water hyacinth through anaerobic activated sludge process

    SciTech Connect

    Savaswat, N.; Khana, P.

    1986-02-01

    The concepts of phase separation, anaerobic activated sludge process, and alkali pretreatment have been incorporated in this investigation with the objective of developing rational and cost-effective designs of diphasic anaerobic activated sludge systems, with and without alkali treatment, for methane recovery from water hyacinth (WH). Evaluation of process kinetics and optimization analyses of laboratory data reveal that a diphasic system with alkali treatment could be designed with an alkali pretreatment step (3.6% Na/sub 2/CO/sub 3/ + 2.5% Ca(OH)/sub 2/ (w/w) of WH, 24 h duration) followed by an open acid phase (2.1 days HRT) and closed methane reactor with sludge recycle (5.7 days HRT, 7.7 days MCRT) for gas yield of 50 L/kg WH/d at 35-37/sup 0/C. Likewise, a diphasic system without alkali treatment could be designed with an open acid phase (2 days HRT) followed by closed methane reactor with sludge recycle (3.2 days HRT, 6 days MCRT) for gas yield of 32.5 L/kg WH/d at 35-37/sup 0/C. Detailed economic analyses bring forth greater cost-efficacy of the diphasic system without alkali treatment and reveal that the advantage accrued in terms of higher gas yield is overshadowed by the cost of chemicals in the diphasic system with alkali treatment.

  1. Methane recovery from water hyacinth through anaerobic activated sludge process

    SciTech Connect

    Saraswat, N.; Khanna, P.

    1986-02-01

    The concepts of phase separation, anaerobic activated sludge process, and alkali pretreatment have been incorporated in this investigation with the objective of developing rational and cost-effective designs of diphasic anaerobic activated sludge systems, with and without alkali treatment, for methane recovery from water hyacinth (WH). Evaluation of process kinetics and optimization analyses of laboratory data reveal that a diphasic system with alkali treatment could be designed with an alkali pretreatment step (3.6% Na/sub 2/CO/sub 3/ + 2.5% Ca(OH)/sub 2/ (w/w) of WH, 24 h duration) followed by an open acid phase (2.1 days HRT) and closed methane reactor with sludge recycle (5.7 days HRT, 7.7 days MCRT) for gas yield of 50 l/kg WH/d at 35-37/sup 0/C. Likewise, a diphasic system without alkali treatment could be designed with an open acid phase (2 days HRT) followed by close methane reactor with sludge recycle (3.2 days HRT, 6 days MCRT) for gas yield of 32.5 l.kg WH/d at 35-37/sup 0/C. Detailed economic analyses bring forth greater cost-efficacy of the diphasic system without alkali treatment and reveal that the advantage accrued in terms of higher gas yield is overshadowed by the cost of chemicals in the diphasic system with alkali treatment.

  2. Current state of sludge production, management, treatment and disposal in China.

    PubMed

    Yang, Guang; Zhang, Guangming; Wang, Hongchen

    2015-07-01

    Large amount of sludge has been a great trouble and raised significant concerns in China. This paper reviewed the current situation of sludge production, management, treatment and disposal in China. Total sludge production in China had an average annual growth of 13% from 2007 to 2013, and 6.25 million tons dry solids was produced in 2013. Per Capita sludge production in China is lower than that in developed countries. However, sludge management is poor in China. Administrative agents of sludge are not in accordance with each other. Laws and regulations of sludge management are incomplete and sometimes unrealistic. As to sludge treatment and disposal, many technical routes have been applied in China. Thickening, conditioning, and dewatering are three most used treatment methods, while application ratios of stabilization and drying are low in China. More than 80% of sludge is disposed by improper dumping in China. Regarding proper disposal, sanitary landfill is the commonest, followed by land application, incineration and building materials. According to the overall situation of China, "thickening-anaerobic digestion-dewatering-land application" is the priority technical route of sludge treatment and disposal. Good changes, current challenges and future perspectives of this technical route in China were analyzed and discussed in details.

  3. Improve bio-activity of anaerobic sludge by low energy ultrasound.

    PubMed

    Zhu, Yichun; Li, Xin; Du, Maoan; Liu, Zuwen; Luo, Hui; Zhang, Tao

    2015-01-01

    This research focused on ultrasound-enhanced bio-activity of anaerobic sludge. Low energy ultrasound irradiation can increase the bio-activity of anaerobic sludge. Ultrasonic parameter, characteristics of anaerobic sludge and experimental conditions are important parameters which affect the enhancement effect on anaerobic sludge. In order to assess the effects of characteristics of anaerobic sludge and experimental conditions on ultrasonic irradiation of anaerobic sludge, experiments with different characteristics of anaerobic sludge were carried out and analyzed with the content of coenzyme F420 and dehydrogenase activity (DHA). The results showed that anaerobic sludge bio-activity was impacted by the initial temperature, initial chemical oxygen demand (COD), sludge concentration, and stirring during the ultrasonic process. Optimal performance was achieved when sound frequency, power density, and ultrasonic irradiation period was 20 kHz, 0.1 W/mL, and 10 min, respectively, under which the wastewater COD removal efficiency was increased by 12.9 percentage points. The results indicated that low temperature could affect the anaerobic sludge irradiation effect, while intermittent stirring could enhance the bio-activity of anaerobic sludge irradiation effect and low substrate concentration improved anaerobic sludge activity by ultrasound.

  4. Recovery and reuse of sludge from active and passive treatment of mine drainage-impacted waters: a review.

    PubMed

    Rakotonimaro, Tsiverihasina V; Neculita, Carmen Mihaela; Bussière, Bruno; Benzaazoua, Mostafa; Zagury, Gérald J

    2017-01-01

    The treatment of mine drainage-impacted waters generates considerable amounts of sludge, which raises several concerns, such as storage and disposal, stability, and potential social and environmental impacts. To alleviate the storage and management costs, as well as to give the mine sludge a second life, recovery and reuse have recently become interesting options. In this review, different recovery and reuse options of sludge originating from active and passive treatment of mine drainage are identified and thoroughly discussed, based on available laboratory and field studies. The most valuable products presently recovered from the mine sludge are the iron oxy-hydroxides (ochre). Other by-products include metals, elemental sulfur, and calcium carbonate. Mine sludge reuse includes the removal of contaminants, such as As, P, dye, and rare earth elements. Mine sludge can also be reused as stabilizer for contaminated soil, as fertilizer in agriculture/horticulture, as substitute material in construction, as cover over tailings for acid mine drainage prevention and control, as material to sequester carbon dioxide, and in cement and pigment industries. The review also stresses out some of the current challenges and research needs. Finally, in order to move forward, studies are needed to better estimate the contribution of sludge recovery/reuse to the overall costs of mine water treatment.

  5. Reduction of excess sludge production in sequencing batch reactor (SBR) by lysis-cryptic growth using homogenization disruption.

    PubMed

    Lan, Wangcheng; Li, Yiyong; Bi, Qi; Hu, Yongyou

    2013-04-01

    A lysis-cryptic growth system, which combined high-pressure-homogenization (HPH) for sludge disruption, was proposed to reduce excess sludge production in SBR. Experimental data was analyzed with the aid of response surface models to determine the optimal HPH disruption pressure, which was 70 MPa. By combining a 5.4 m3/d pilot SBR with HPH disruption, the new system achieved a 42.4% sludge reduction rate over a 75 days operation. Based on measurement of oxygen uptake rate and activity of the dehydrogenase, the lysis-cryptic growth system resulted in negligible change of the sludge activity. However, an increase of 0.04 mg/L of total-phosphorus (TP) and 2.40 mg/L suspended-solids (SS) was observed in the effluent due to the process of lysis-cryptic growth. Except for above listed points, the new system demonstrated improved sludge reduction performance while the direct cost of pilot SBR lysis-cryptic growth was only 0.177US dollar per kilogram (dry sludge) according to estimation.

  6. Effectiveness of phosphate removal during anaerobic digestion of waste activated sludge by dosing iron(III).

    PubMed

    Cheng, Xiang; Wang, Jue; Chen, Bing; Wang, Yu; Liu, Jiaqi; Liu, Lubo

    2017-05-15

    Phosphate-Fe(II) precipitation induced by Fe(III) reduction during the anaerobic digestion of excess activated sludge was investigated for the removal of phosphorus and its possible recovery. The experiments were conducted with three Fe(III) sources at 35 °C and 55 °C. The results show that ferrihydrite-Fe(III) was effectively reduced during the anaerobic sludge digestion by 63% and 96% under mesophilic and thermophilic conditions, respectively. Whereas FeCl3-Fe(III) was only mesophilically reducible and the reduction of hematite-Fe(III) was unnoticeable at either temperature. Efficient precipitation of vivianite was not observed although high saturation index values, e.g., >14 (activity reduction not considered), had been reached. This reveals the complexity of vivianite precipitation in anaerobic digestion systems; for example, Fe(II) complexation and organic interference could not be ignored. With ferrihydrite amendments at a Fe/TP of 1.5, methane production from sludge digestion was reduced by 35.1% at 35 °C, and was unaffected when the digestion temperature went up to 55 °C. But, acidic FeCl3 severely inhibited the methane production and consequently the sludge biomass degradation.

  7. Evaluation-of soil enzyme activities as soil quality indicators in sludge-amended soils.

    PubMed

    Dindar, Efsun; Şağban, Fatma Olcay Topaç; Başkaya, Hüseyin Savaş

    2015-07-01

    Soil enzymatic activities are commonly used as biomarkers of soil quality. Several organic and inorganic compounds found in municipal wastewater sludges can possibly be used as fertilizers. Monitoring and evaluating the quality of sludge amended soils with enzyme activities accepted as a beneficial practice with respect to sustainable soil management. In the present study, variation of some enzyme activities (Alkaline phosphatase, dehydrogenase, urease and beta-glucosidase activities) in soils amended with municipal wastewater sludge at different application rates (50, 100 and 200 t ha(-1) dry sludge) was evaluated. Air dried sludge samples were applied to soil pots and sludge-soil mixtures were incubated during a period of three months at 28 degrees C. The results of the study showed that municipal wastewater sludge amendment apparently increased urease, dehydrogenase, alkaline phosphatase and P-glucosidase activities in soil by 48-70%, 14-47%, 33-66% and 9-14%, respectively. The maximum activity was generally observed in sludge amended soil with dose of 200 t ha(-1). Urease activity appeared to be a better indicator of soil enhancement with wastewater sludge, as its activity was more strongly increased by sludge amendment. Accordingly, urease activity is suggested to be soil quality indicator best suited for measuring existing conditions and potential changes in sludge-amended soil.

  8. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    PubMed Central

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-01-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology. PMID:26830464

  9. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community.

    PubMed

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  10. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    NASA Astrophysics Data System (ADS)

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  11. Activated sludge optimization using ATP in pulp and paper industry.

    PubMed

    Bäckman, Göran; Gytel, Ulla

    2015-01-01

    The activated sludge process is an old technology, but still the most commonly used one for treatment of wastewater. Despite the wide spread usage the technology still suffers from instability (Tandoi et al. 2006) and high operating cost. Activated sludge processes often carry a large solids inventory. Managing the total inventory without interference is the key component of the optimization process described in this paper. Use of nutrients is common in pulp and paper effluent treatment. Feeding enough nutrients to support the biomass growth is a delicate balance. Overfeeding or underfeeding of nutrients can result in higher costs. Detrimental substances and toxic components in effluents entering a biological treatment system can cause severe, long lasting disturbances (Hynninen & Ingman 1998; Bergeron & Pelletier 2004). A LumiKem test kit is used to measure biological activity with adenosine triphosphate (ATP) in a pulp and paper mill. ATP data are integrated with other standardized mill parameters. Measurements of active volatile suspended solids based on ATP can be used to quantify the living biomass in the activated sludge process and to ensure that sufficient biomass is present in order to degrade the wastewater constituents entering the process. Information about active biomass will assist in optimizing sludge inventories and feeding of nutrients allowing the living biomass to re-populate to create optimal efficiency. ATP measurements can also be used to alert operators if any components toxic to bacteria are present in wastewater. The bio stress index represents the stress level experienced by the microbiological population. This parameter is very useful in monitoring toxicity in and around bioreactors. Results from the wastewater process optimization and ATP measurements showed that treatment cost could be reduced by approximately 20-30% with fewer disturbances and sustained biological activity compared to the reference period. This was mainly achieved by

  12. Entomotoxicity, protease and chitinase activity of Bacillus thuringiensis fermented wastewater sludge with a high solids content.

    PubMed

    Brar, Satinder K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2009-10-01

    This study investigated the production of biopesticides, protease and chitinase activity by Bacillus thuringiensis grown in raw wastewater sludge at high solids concentration (30 g/L). The rheology of wastewater sludge was modified with addition of Tween-80 (0.2% v/v). This addition resulted in 1.6 and 1.3-fold increase in cell and spore count, respectively. The maximum specific growth rate (micro(max)) augmented from 0.17 to 0.22 h(-1) and entomotoxicity (Tx) increased by 29.7%. Meanwhile, volumetric mass transfer coefficient (k(L)a) showed marked variations during fermentation, and oxygen uptake rate (OUR) increased 2-fold. The proteolytic activity increased while chitinase decreased for Tween amended wastewater sludge, but the entomotoxicity increased. The specific entomotoxicity followed power law when plotted against spore concentration and the relation between Tx and protease activity was linear. The viscosity varied and volume percent of particles increased in Tween-80 amended wastewater sludge and particle size (D(50)) decreased at the end of fermentation. Thus, there was an increase in entomotoxicity at higher suspended solids (30 g/L) as Tween addition improved rheology (viscosity, particle size, surface tension); enhanced maximum growth rate and OUR.

  13. Long-term effects of cupric oxide nanoparticles (CuO NPs) on the performance, microbial community and enzymatic activity of activated sludge in a sequencing batch reactor.

    PubMed

    Wang, Sen; Li, Zhiwei; Gao, Mengchun; She, Zonglian; Ma, Bingrui; Guo, Liang; Zheng, Dong; Zhao, Yangguo; Jin, Chunji; Wang, Xuejiao; Gao, Feng

    2017-02-01

    The long-term effects of cupric oxide nanoparticles (CuO NPs) on the performance, microbial activity and microbial community of activated sludge were investigated in a sequencing batch reactor (SBR). The SBR performance had no evident change at 0-10 mg/L CuO NPs, whereas the CuO NPs concentration at 30-60 mg/L affected the COD, NH4(+)-N and soluble orthophosphate (SOP) removal, nitrogen and phosphorus removal rate and microbial enzymatic activity of activated sludge. Some CuO NPs might be absorbed on the surface of activated sludge or penetrate the microbial cytomembrane into the microbial cell interior of activated sludge. Compared to 0 mg/L CuO NPs, the reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) release increased by 43.6% and 56.4% at 60 mg/L CuO NPs, respectively. The variations of ROS production and LDH release demonstrated that CuO NPs could induce the toxicity towards the microorganisms and destroy the integrity of microbial cytomembrane in the activated sludge. High throughput sequencing of 16S rDNA indicated that CuO NPs could evidently impact on the microbial richness, diversity and composition of activated sludge in the SBR.

  14. Biodegradation of imidazolium ionic liquids by activated sludge microorganisms.

    PubMed

    Liwarska-Bizukojc, Ewa; Maton, Cedric; Stevens, Christian V

    2015-11-01

    Biological properties of ionic liquids (ILs) have been usually tested with the help of standard biodegradation or ecotoxicity tests. So far, several articles on the identification of intermediate metabolites of microbiological decay of ILs have been published. Simultaneously, the number of novel ILs with unrecognized characteristics regarding biodegradability and effect on organisms and environment is still increasing. In this work, seven imidazolium ionic liquids of different chemical structure were studied. Three of them are 1-alkyl-3-methyl-imidazolium bromides, while the other four are tetra- or completely substituted imidazolium iodides. This study focused on the identification of intermediate metabolites of the aforementioned ionic liquids subjected to biodegradation in a laboratory activated sludge system. Both fully substituted ionic liquids and 1-ethyl-3-methyl-imidazolium bromide were barely biodegradable. In the case of two of them, no biotransformation products were detected. The elongation of the alkyl side chain made the IL more susceptible for microbiological decomposition. 1-Decyl-3-methyl-imidazolium bromide was biotransformed most easily. Its primary biodegradation up to 100 % could be achieved. Nevertheless, the cleavage of the imidazolium ring has not been observed.

  15. Environmental behavior of cement-based stabilized foundry sludge products incorporating additives.

    PubMed

    Ruiz, M C; Irabien, A

    2004-06-18

    A series of experiments were conducted to stabilize the inorganic and organic pollutants in a foundry sludge from a cast iron activity using Portland cement as binder and three different types of additives, organophilic bentonite, lime and coal fly ash. Ecotoxicological and chemical behavior of stabilized mixes of foundry sludge were analyzed to assess the feasibility to immobilize both types of contaminants, all determined on the basis of compliance leaching tests. The incorporation of lime reduces the ecotoxicity of stabilized mixes and enhances stabilization of organic pollutants obtaining better results when a 50% of cement is replaced by lime. However, the alkalinity of lime increases slightly the leached zinc up to concentrations above the limit set under neutral conditions by the European regulations. The addition of organophilic bentonite and coal fly ash can immobilize the phenolic compounds but are inefficient to reduce the ecotoxicity and mobility of zinc of final products.

  16. Sono-thermal pre-treatment of waste activated sludge before anaerobic digestion.

    PubMed

    Şahinkaya, Serkan; Sevimli, Mehmet Faik

    2013-01-01

    Sonication and thermalization can be applied successfully to disrupt the complex waste activated sludge (WAS) floc structure and to release extra and intra cellular polymeric substances into soluble phase along with solubilization of particulate organic matters, before sludge digestion. In this study, sonication has been combined with thermalization to improve its disintegration efficiency. It was aimed that rise in temperature occurring during the sonication of sludge was used to be as an advantage for the following thermalization in the combined pre-treatment. Thus, the effects of sonication, thermalization and sono-thermalization on physical and chemical properties of sludge were investigated separately under different pre-treatment conditions. The disintegration efficiencies of these methods were in the following descending order: sono-thermalization > sonication > thermalization. The optimum operating conditions for sono-thermalization were determined as the combination of 1-min sonication at 1.0 W/mL and thermalization at 80 °C for 1h. The influences of sludge pre-treatment on biodegradability of WAS were experienced with biochemical methane potential assay in batch anaerobic reactors. Relative to the control reactor, total methane production in the sono-thermalized reactor increased by 13.6% and it was more than the sum of relative increases achieved in the sonicated and thermalized reactors. Besides, the volatile solids and total chemical oxygen demand reductions in the sono-thermalized reactor were enhanced as well. However, it was determined that sludge pre-treatment techniques applied in this study was not feasible due to their high energy requirements.

  17. Metaproteomics: Evaluation of protein extraction from activated sludge.

    PubMed

    Hansen, Susan Hove; Stensballe, Allan; Nielsen, Per Halkjaer; Herbst, Florian-Alexander

    2014-11-01

    Metaproteomic studies of full-scale activated sludge systems require reproducible protein extraction methods. A systematic evaluation of three different extractions protocols, each in combination with three different methods of cell lysis, and a commercial kit were evaluated. Criteria used for comparison of each method included the extracted protein concentration and the number of identified proteins and peptides as well as their phylogenetic, cell localization and functional distribution and quantitative reproducibility. Furthermore, the advantage of using specific metagenomes and a 2-step database approach was illustrated. The results recommend a protocol for protein extraction from activated sludge based on the protein extraction reagent B-Per and bead beating. The data have been deposited to the ProteomeXchange with identifier PXD000862 (http://proteomecentral.proteomexchange.org/dataset/PXD000862).

  18. Activated sludge systems removal efficiency of veterinary pharmaceuticals from slaughterhouse wastewater.

    PubMed

    Carvalho, Pedro N; Pirra, António; Basto, M Clara P; Almeida, C Marisa R

    2013-12-01

    The knowledge on the efficiency of wastewater treatment plants (WWTPs) from animal food production industry for the removal of both hormones and antibiotics of veterinary application is still very limited. These compounds have already been reported in different environmental compartments at levels that could have potential impacts on the ecosystems. This work aimed to evaluate the role of activated sludge in the removal of commonly used veterinary drugs, enrofloxacin (ENR), tetracycline (TET), and ceftiofur, from wastewater during a conventional treatment process. For that, a series of laboratory-controlled experiments using activated sludge were carried out in batch reactors. Sludge reactors with 100 μg/L initial drug charge presented removal rates of 68 % for ENR and 77 % for TET from the aqueous phase. Results indicated that sorption to sludge and to the wastewater organic matter was responsible for a significant percentage of drugs removal. Nevertheless, these removal rates still result in considerable concentrations in the aqueous phase that will pass through the WWTP to the receiving environment. Measuring only the dissolved fraction of pharmaceuticals in the WWTP effluents may underestimate the loading and risks to the aquatic environment.

  19. Characterization of air pollutants from an activated sludge process

    SciTech Connect

    Scheff, P.A.; Holden, J.A.; Wadden, R.A.

    1981-02-01

    An eight-month monitoring study was conducted to characterize air pollutants near a large activated sludge plant in a Chicago suburb. Air pollutants detected include aerobic bacteria-containing particles, total suspended particulates, nitrogen dioxide, sulfur dioxide, chloride, hydrogen sulfides, and trace elements. The wastewater treatment plant is concluded to be a significant source of total coliforms and atmospheric bacteria-containing particles. (6 maps, 23 references, 6 tables)

  20. Environmental and resource implications of phosphorus recovery from waste activated sludge.

    PubMed

    Sørensen, Birgitte Lilholt; Dall, Ole Leinikka; Habib, Komal

    2015-11-01

    Phosphorus is an essential mineral resource for the growth of crops and thus necessary to feed the ever increasing global population. The essentiality and irreplaceability of phosphorus in food production has raised the concerns regarding the long-term phosphorus availability and the resulting food supply issues in the future. Hence, the recovery of phosphorus from waste activated sludge and other waste streams is getting huge attention as a viable solution to tackle the potential availability issues of phosphorus in the future. This study explores the environmental implications of phosphorus recovery from waste activated sludge in Denmark and further elaborates on the potential availability or scarcity issue of phosphorus today and 2050. Life cycle assessment is used to assess the possibility of phosphorus recovery with little or no environmental impacts compared to the conventional mining. The phosphorus recovery method assessed in this study consists of drying process, and thermal gasification of the waste activated sludge followed by extraction of phosphorus from the ashes. Our results indicate that the environmental impacts of phosphorus recovery in an energy efficient process are comparable to the environmental effects from the re-use of waste activated sludge applied directly on farmland. Moreover, our findings conclude that the general recommendation according to the waste hierarchy, where re-use of the waste sludge on farmland is preferable to material and energy recovery, is wrong in this case. Especially when phosphorus is a critical resource due to its life threatening necessity, lack of substitution options and potential future supply risk originating due to the high level of global supply concentration.

  1. Wet oxidation of activated sludge: transformations and mechanisms.

    PubMed

    Urrea, José Luis; Collado, Sergio; Laca, Amanda; Díaz, Mario

    2014-12-15

    Wet oxidation (WO) is an interesting alternative for the solubilization and mineralization of activated sludge. The effects of different temperatures (160-200 °C) and pressures (4-8 MPa), on the evolution of chemical composition and rheological characteristics of a thickened activated sludge during WO are analyzed in this work. Soluble COD increases initially to a maximum and then diminishes, while the apparent viscosity of the mixture falls continuously throughout the experiment. Based on the experimental evolution of the compositions and rheological characteristics of the sludge, a mechanism consisting of two stages in series is proposed. Initially, the solid organic compounds are solubilized following a pseudo-second order kinetic model with respect to solid COD. After that, the solubilized COD was oxidized, showing a pseudofirst kinetic order, by two parallel pathways: the complete mineralization of the organic matter and the formation of highly refractory COD. Kinetic parameters of the model, including the activation energies are mentioned, with good global fitting to the experiments described.

  2. Preparation of activated carbon from wet sludge by electrochemical-NaClO activation.

    PubMed

    Miao, Chen; Ye, Caihong; Zhu, Tianxing; Lou, Ziyang; Yuan, Haiping; Zhu, Nanwen

    2014-01-01

    Activated carbon (AC) from sludge is one potential solution for sewage sludge disposal, while the drying sludge is cost and time consuming for preparation. AC preparation from the wet sludge with electrochemical-NaClO activation was studied in this work. Three pretreatment processes, i.e. chemical activation, electrolysis and electrochemical-reagent reaction, were introduced to improve the sludge-derived AC properties, and the optimum dosage of reagent was tested from the 0.1:1 to 1:1 (mass rate, reagent:dried sludge). It was shown that the electrochemical-NaClO preparation is the best method under the test conditions, in which AC has the maximum Brunauer, Emmett and Teller area of 436 m²/g at a mass ratio of 0.7. Extracellular polymeric substances in sludge can be disintegrated by electrochemical-NaClO pretreatment, with a disintegration degree of more than 45%. The percentage of carbon decreased from 34.16 to 8.81 after treated by electrochemical-NaClO activation. Fourier transform infrared spectra showed that a strong C-Cl stretching was formed in electrochemical-NaClO prepared AC. The maximum adsorption capacity of AC reaches 109 mg/g on MB adsorption experiment at pH 10 and can be repeated for three times with high removal efficiency after regeneration.

  3. Two step esterification-transesterification process of wet greasy sewage sludge for biodiesel production.

    PubMed

    Urrutia, C; Sangaletti-Gerhard, N; Cea, M; Suazo, A; Aliberti, A; Navia, R

    2016-01-01

    Sewage sludge generated in municipal wastewater treatment plants was used as a feedstock for biodiesel production via esterification/transesterification in a two-step process. In the first esterification step, greasy and secondary sludge were tested using acid and enzymatic catalysts. The results indicate that both catalysts performed the esterification of free fatty acids (FFA) simultaneously with the transesterification of triacylglycerols (TAG). Acid catalyst demonstrated better performance in FFA esterification compared to TAG transesterification, while enzymatic catalyst showed the ability to first hydrolyze TAG in FFA, which were esterified to methyl esters. In addition, FAME concentration using greasy sludge were higher (63.9% and 58.7%), compared with those of secondary sludge (11% and 16%), using acid and enzymatic catalysts, respectively. Therefore, only greasy sludge was used in the second step of alkaline transesterification. The alkaline transesterification of the previously esterified greasy sludge reached a maximum FAME concentration of 65.4% when using acid catalyst.

  4. Micropollutant degradation via extracted native enzymes from activated sludge.

    PubMed

    Krah, Daniel; Ghattas, Ann-Kathrin; Wick, Arne; Bröder, Kathrin; Ternes, Thomas A

    2016-05-15

    A procedure was developed to assess the biodegradation of micropollutants in cell-free lysates produced from activated sludge of a municipal wastewater treatment plant (WWTP). This proof-of-principle provides the basis for further investigations of micropollutant biodegradation via native enzymes in a solution of reduced complexity, facilitating downstream protein analysis. Differently produced lysates, containing a variety of native enzymes, showed significant enzymatic activities of acid phosphatase, β-galactosidase and β-glucuronidase in conventional colorimetric enzyme assays, whereas heat-deactivated controls did not. To determine the enzymatic activity towards micropollutants, 20 compounds were spiked to the cell-free lysates under aerobic conditions and were monitored via LC-ESI-MS/MS. The micropollutants were selected to span a wide range of different biodegradabilities in conventional activated sludge treatment via distinct primary degradation reactions. Of the 20 spiked micropollutants, 18 could be degraded by intact sludge under assay conditions, while six showed reproducible degradation in the lysates compared to the heat-deactivated negative controls: acetaminophen, N-acetyl-sulfamethoxazole (acetyl-SMX), atenolol, bezafibrate, erythromycin and 10,11-dihydro-10-hydroxycarbamazepine (10-OH-CBZ). The primary biotransformation of the first four compounds can be attributed to amide hydrolysis. However, the observed biotransformations in the lysates were differently influenced by experimental parameters such as sludge pre-treatment and the addition of ammonium sulfate or peptidase inhibitors, suggesting that different hydrolase enzymes were involved in the primary degradation, among them possibly peptidases. Furthermore, the transformation of 10-OH-CBZ to 9-CA-ADIN was caused by a biologically-mediated oxidation, which indicates that in addition to hydrolases further enzyme classes (probably oxidoreductases) are present in the native lysates. Although the

  5. Comprehensive utilization of the pyrolysis products from sewage sludge.

    PubMed

    Xu, W Y; Wu, D

    2015-01-01

    Bio-oils were produced from pyrolysis of sewage sludge in a horizontal tubular furnace under the anoxic or anaerobic conditions, by varying operating parameters and moisture content (MC) of the feedstock. Physicochemical properties of the obtained bio-oil (such as density, acid value, kinematical viscosity, high heating value and flash point) were analysed and compared with Chinese fuel standards. Tend, RT and β were found critical to control the yield and physico-chemical properties of bio-oil products. The relative importance of various parameters such as Tend, RT, β and MC was determined and the optimum values for the lowest kinematic viscosity and acid value and the highest yield of the bio-oil were achieved using the orthogonal matrix method. The parameters 550°C, 45 min, 5°C min(-1) and MC of 10% were found effective in producing the bio-oils with most of the desirable physico-chemical properties and yield. Benefit analysis was conducted to further optimize the operating parameters, considering pyrolysis treatment, comprehensive utilization of the pyrolysis products and final disposal of sewage sludge; the results showed the best economy of the pyrolysis parameters 450°C, 75 min, 3°C min(-1) and MC of 10%. The char obtained under this condition may serve as a microporous liquid adsorbent, while the bio-oil may serve as a low grade fuel oil after upgrading it with conventional fuel oil and deacidification. Pyrolysis products may become economically competitive in addition to being environment friendly.

  6. [Factors of effecting hydrogen production from anaerobic fermentation of excess sewage sludge].

    PubMed

    Cai, Mu-lin; Liu, Jun-xin

    2005-03-01

    Large amounts of sewage sludge is produced from the treatment of wastewater by biological processes, which is usually treated by anaerobic digestion to produce methane gas. Acetogenesis and hydrogen are an intermediate phase during the anaerobic digestion. Batch tests of fermentative hydrogen production under different initial pH (3.0 - 12.5) were compared using the raw sludge and alkaline pretreated sludge. The influences of the characteristics and concentration of sludge were also examined thereafter. Results show that the optimal initial pH for biohydrogen production from sewage sludge was around 11.0. Under this optimal condition, the biohydrogen yield of raw sludge was 8.1 mL/g, and it would reach to 16.9 mL/g when the sludge was pretreated by alkali. Furthermore, there is no methane generation during the biohydrogen fermentation of the alkaline pretreatment sludge in 4 days and the hydrogen consumption is also slowed down. In addition, a low VSS/SS rate will reduce the hydrogen yield, while the concentrations of sludge have no obvious compact on it.

  7. Biomass production and nutrient removal by Chlorella sp. as affected by sludge liquor concentration.

    PubMed

    Åkerström, Anette M; Mortensen, Leiv M; Rusten, Bjørn; Gislerød, Hans Ragnar

    2014-11-01

    The use of microalgae for biomass production and nutrient removal from the reject water produced in the dewatering process of anaerobically digested sludge, sludge liquor, was investigated. The sludge liquor was characterized by a high content of total suspended solids (1590 mg L(-1)), a high nitrogen concentration (1210 mg L(-1)), and a low phosphorus concentration (28 mg L(-1)). Chlorella sp. was grown in sludge liquor diluted with wastewater treatment plant effluent water to different concentrations (12, 25, 40, 50, 70, and 100%) using batch mode. The environmental conditions were 25 °C, a continuous lightning of 115 μmol m(-2) s(-1), and a CO2 concentration of 3.0%. The highest biomass production (0.42-0.45 g dry weight L(-1) Day(-1)) was achieved at 40-50% sludge liquor, which was comparable to the production of the control culture grown with an artificial fertilizer. The biomass production was 0.12 and 0.26 g dry weight L(-1) Day(-1) at 12% and 100% sludge liquor, respectively. The percentage of nitrogen in the algal biomass increased from 3.6% in 12% sludge liquor and reached a saturation of ∼10% in concentrations with 50% sludge liquor and higher. The phosphorus content in the biomass increased linearly from 0.2 to 1.5% with increasing sludge liquor concentrations. The highest nitrogen removal rates by algal biosynthesis were 33.6-42.6 mg TN L(-1) Day(-1) at 40-70% sludge liquor, while the highest phosphorus removal rates were 3.1-4.1 mg TP L(-1) Day(-1) at 50-100% sludge liquor.

  8. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    PubMed

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  9. Assessment of a potential agricultural application of Bangkok-digested sewage sludge and finished compost products.

    PubMed

    Sreesai, Siranee; Peapueng, Panadda; Tippayamongkonkun, Taninporn; Sthiannopkao, Suthipong

    2013-09-01

    A study was conducted to investigate the levels of plant nutrients, heavy metals, parasites and fecal coliform bacteria in Bangkok-produced sewage sludge and finished compost products for potential agricultural application, as well as to compare the quality of compost under different composting conditions. The results indicated that digested sewage sludge had high fertilizing values for organic matter (19.01 ± 0.09%), total nitrogen (2.17 ± 0.07%), total phosphorus (2.06 ± 0.06%) and total potassium (1.16 ± 0.22%), but it was contaminated with human pathogens, including fecal coliform bacteria, viable helminthes egg and active forms of parasite cysts. Thus, fresh sewage sludge should not be disposed on land unless it has undergone pathogen reduction. It is proven that the quality of the sludge mixed with grass clippings at a ratio of 6:1 volume/volume after having passed a windrow composting process for 8 weeks can be classified as class A biosolids as the levels of remaining fecal coliforms were < 3 most probable number g(-1) dry solid and all human parasites were destroyed. Concentrations of organic matter, total nitrogen, total phosphorus and total potassium in the finished compost were 16.53 ± 1.25%, 1.39 ± 0.06%, 0.42 ± 0.10% and 1.53 ± 0.05% respectively. The total copper concentration was rather high (2291.31 ± 121.77 mg kg(-1)), but all heavy metal concentrations were also well below the United States Environmental Protection Agency pollutant limits for land application. The finished compost products can be considered as a soil conditioner as they have relatively low essential plant nutrient concentrations. It is recommended to be initially used for gardening and landscaping to ensure safety utilization.

  10. PRODUCTION OF CONSTRUCTION AGGREGATES FROM FLUE GAS DESULFURIZATION SLUDGE

    SciTech Connect

    M.M. Wu; D.C. McCoy; R.O. Scandrol; M.L. Fenger; J.A. Withum; R.M. Statnick

    2000-05-01

    The three main conclusions of this report are: (1) The pilot plant successfully demonstrated the continuous, fully-integrated, long-term process operation, including the mixing, pelletizing, and curing steps for aggregate production. The curing vessel, which was designed for the pilot plant test, was operated in a mass flow mode and performed well during pilot plant operation. (2) The pilot plant test demonstrated process flexibility. The same equipment was used to produce lightweight, medium-weight, and road aggregates. The only change was the mix formulation. Aggregates were produced from a variety of mix designs and from FGD sludge with solids concentrations between 45.0% and 56.7% and moisture contents between 55.0% and 43.3%. (3) The pilot plant provided operating data and experience to design and cost a commercial plant, which was not part of the cooperative agreement.

  11. Self-heating co-pyrolysis of excessive activated sludge with waste biomass: energy balance and sludge reduction.

    PubMed

    Ding, Hong-Sheng; Jiang, Hong

    2013-04-01

    In this work, co-pyrolysis of sludge with sawdust or rice husk was investigated. The results showed that the co-pyrolysis technology could be used to dispose of the excessive activated sludge without external energy input. The results also demonstrated that no obvious synergistic effect occurred except for heat transfer in the co-pyrolysis if the co-feeding biomass and sludge had similar thermogravimetric characteristics. The experimental results combined with calculation showed that adding sawdust accounting for 49.6% of the total feedstock or rice husk accounting for 74.7% could produce bio-oil to keep the energy balance of the co-pyrolysis system and self-heat it. The sludge from solar drying bed can be further reduced by 38.6% and 35.1% by weight when co-pyrolyzed with rice husk and sawdust, respectively. This study indicates that sludge reduction without external heat supply through co-pyrolysis of sludge with waste biomass is practically feasible.

  12. Enhanced dewaterability of waste activated sludge by Fe(II)-activated peroxymonosulfate oxidation.

    PubMed

    Liu, Jun; Yang, Qi; Wang, Dongbo; Li, Xiaoming; Zhong, Yu; Li, Xin; Deng, Yongchao; Wang, Liqun; Yi, Kaixin; Zeng, Guangming

    2016-04-01

    The effect of Fe(II)-activated peroxymonosulfate (Fe(II)-PMS) oxidation on the waste activated sludge (WAS) dewatering and its mechanisms were investigated in this study. The capillary suction time (CST), specific resistance to filterability (SRF) of sludge and water content (WC) of dewatered sludge cake were chosen as the main parameters to evaluate the sludge dewaterability. Experimental results showed that Fe(II)-PMS effectively disintegrated sludge and improved sludge dewaterability. High CST and SRF reduction (90% and 97%) was achieved at the optimal conditions of PMS (HSO5(-)) 0.9 mmol/gVSS, Fe(II) 0.81 mmol/gVSS, and pH 6.8. Extracellular polymeric substances (EPS) and three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy before and after Fe(II)-PMS oxidation were determined to explain the enhanced dewatering mechanism. The release of EPS-bound water induced by the destruction of EPS was the primary reason for the improvement of sludge dewaterability during Fe(II)-PMS oxidation.

  13. [Characterisation of excess sludge reduction in an anoxic + oxic-settling-anaerobic activated sludge process].

    PubMed

    Gao, Xu; Lu, Yan-Hua; Guo, Jin-Song

    2009-05-15

    An energy balance analysis method with auto calorimeter being adopted was introduced to determine calorific values of sludge samples in influent and effluent of uncoupling tank in an anoxic (A) + oxic-settling-anaerobic (OSA) process and a reference system. The affiliation of sludge amount change and its energy content were studied, as well as potential of excess sludge reduction was evaluated through modifying performance of uncoupling tank. The characteristi s and causes of sludge reduction in OSA system were deduced according to energy and matter balance analysis. Results show that when the hydraulic retention time (HRT) of uncoupling tank are 5.56 h, 7.14 h and 9 h, the excess sludge reduction of whole A + OS Asystem are 1.236 g/d, 0.771 g/d and 0.599 g/d respectively. Energy content of sludge flows into and out of the uncoupling tank changes, the specific calorific value of sludge in effluent is inclined to be higher than that in influent with the HRT of the tank increasing: there isn't any significant difference of sludge calorific values between influent and effluent at 5.56 h, while the differences are in 99-113 J/g at 7.14 h, and 191-329 J/g at 9 h. Sludge in uncoupling tank would decay and longer HRT will result in more attenuation. It could be concluded that excess sludge reduction of A + OSA system is caused by both of sludge decay in uncoupling tank and sludge proliferation in AO reaction zone.

  14. New mechanistically based model for predicting reduction of biosolids waste by ozonation of return activated sludge.

    PubMed

    Isazadeh, Siavash; Feng, Min; Urbina Rivas, Luis Enrique; Frigon, Dominic

    2014-04-15

    Two pilot-scale activated sludge reactors were operated for 98 days to provide the necessary data to develop and validate a new mathematical model predicting the reduction of biosolids production by ozonation of the return activated sludge (RAS). Three ozone doses were tested during the study. In addition to the pilot-scale study, laboratory-scale experiments were conducted with mixed liquor suspended solids and with pure cultures to parameterize the biomass inactivation process during exposure to ozone. The experiments revealed that biomass inactivation occurred even at the lowest doses, but that it was not associated with extensive COD solubilization. For validation, the model was used to simulate the temporal dynamics of the pilot-scale operational data. Increasing the description accuracy of the inactivation process improved the precision of the model in predicting the operational data.

  15. In situ biodiesel production from greasy sewage sludge using acid and enzymatic catalysts.

    PubMed

    Sangaletti-Gerhard, Naiane; Cea, Mara; Risco, Vicky; Navia, Rodrigo

    2015-03-01

    This study proposes to select the most appropriate sewage sludge (greasy, primary and secondary) for in situ transesterification and to compare the technical, economic and energetic performance of an enzymatic catalyst (Novozym®435) with sulfuric acid. Greasy sludge was selected as feedstock for biodiesel production due to its high lipid content (44.4%) and low unsaponifiable matter. Maximum methyl esters yield (61%) was reached when processing the wet sludge using sulfuric acid as catalyst and n-hexane, followed by dried-greasy sludge catalyzed by Novozym®435 (57% methyl esters). Considering the economic point of view, the process using acid catalyst was more favorable compared to Novozym®435 catalyst due to the high cost of lipase. In general, greasy sludge (wet or dried) showed high potential to produce biodiesel. However, further technical adjustments are needed to make biodiesel production by in situ transesterification using acid and enzymatic catalyst feasible.

  16. Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell.

    PubMed

    Rashid, Naim; Cui, Yu-Feng; Saif Ur Rehman, Muhammad; Han, Jong-In

    2013-07-01

    Recently, interest is growing to explore low-cost and sustainable means of energy production. In this study, we have exploited the potential of sustainable energy production from wastes. Activated sludge and algae biomass are used as substrates in microbial fuel cell (MFC) to produce electricity. Activated sludge is used at anode as inoculum and nutrient source. Various concentrations (1-5 g/L) of dry algae biomass are tested. Among tested concentrations, 5 g/L (5000 mg COD/L) produced the highest voltage of 0.89 V and power density of 1.78 W/m(2) under 1000 Ω electric resistance. Pre-treated algae biomass and activated sludge are also used at anode. They give low power output than without pre-treatment. Spent algae biomass is tested to replace whole (before oil extraction) algae biomass as a substrate, but it gives low power output. This work has proved the concept of using algae biomass in MFC for high energy output.

  17. Entrapped elemental selenium nanoparticles affect physicochemical properties of selenium fed activated sludge.

    PubMed

    Jain, Rohan; Seder-Colomina, Marina; Jordan, Norbert; Dessi, Paolo; Cosmidis, Julie; van Hullebusch, Eric D; Weiss, Stephan; Farges, François; Lens, Piet N L

    2015-09-15

    Selenite containing wastewaters can be treated in activated sludge systems, where the total selenium is removed from the wastewater by the formation of elemental selenium nanoparticles, which are trapped in the biomass. No studies have been carried out so far on the characterization of selenium fed activated sludge flocs, which is important for the development of this novel selenium removal process. This study showed that more than 94% of the trapped selenium in activated sludge flocs is in the form of elemental selenium, both as amorphous/monoclinic selenium nanospheres and trigonal selenium nanorods. The entrapment of the elemental selenium nanoparticles in the selenium fed activated sludge flocs leads to faster settling rates, higher hydrophilicity and poorer dewaterability compared to the control activated sludge (i.e., not fed with selenite). The selenium fed activated sludge showed a less negative surface charge density as compared to the control activated sludge. The presence of trapped elemental selenium nanoparticles further affected the spatial distribution of Al and Mg in the activated sludge flocs. This study demonstrated that the formation and subsequent trapping of elemental selenium nanoparticles in the activated sludge flocs affects their physicochemical properties.

  18. Effect of gamma-ray irradiation on the dewaterability of waste activated sludge

    NASA Astrophysics Data System (ADS)

    Wu, Yuqi; Jiang, Yinghe; Ke, Guojun; Liu, Yingjiu

    2017-01-01

    The effect of gamma-ray irradiation on waste activated sludge (WAS) dewaterability was investigated with irradiation doses of 0-15 kGy. Time to filter (TTF50), specific resistance of filtration (SRF) and water content of sludge cake were measured to evaluate sludge dewaterability. Soluble chemical oxygen demand (SCOD), soluble extracellular polymeric substances (EPS) concentration and sludge particle size were determined to explain changes in sludge dewaterability. The optimal irradiation dose to obtain the maximum dewaterability characteristics was 1-4 kGy, which generated sludge with optimal disintegration (1.5-4.0%), soluble EPS concentration (590-750 mg/L) and particle size distribution (100-115 μm diameter). The combination of irradiation and cationic polyacrylamide (CPAM) addition exhibited minimal synergistic effect on increasing sludge dewatering rate compared with CPAM conditioning alone.

  19. Phosphatase activity and specific methanogenic activity in an anaerobic reactor treating sludge from a brackish recirculation aquaculture system.

    PubMed

    Zhang, Xuedong; Ferreira, Rui B; Spanjers, Henri; van Lier, Jules B

    2013-01-01

    Anaerobic treatment of high salinity sludge from marine/brackish recirculation aquaculture systems is potentially limited by inhibition of enzymatic activities and cell lysis resulting from high osmotic pressures. To further address these limitations the following investigations were conducted: effect of salinity on phosphatase activity (PA), soluble microbial products (SMP) production, and presence of extracellular polymeric substances (EPS); effect of iron (III) chloride (FeCl3) on PA and specific methanogenic activity (SMA); effect of addition of the compatible solute glycine betaine (GB) and potassium on PA, as well as on SMP and EPS production, all under saline conditions. The results show that salinity has different effects on PA of anaerobes under starvation and feeding conditions. FeCl3 increased the SMA of the sludge by 22.5% at 100 mg FeCl3/L compared with a control group (0 mg FeCl3/L). Furthermore, results of analysis of variance tests show that betaine increased the polysaccharide content of EPS and polypeptide content of SMP. However, addition of 1 mM potassium chloride did not show a significant effect on EPS and SMP composition. In conclusion, anaerobic digestion of salty sludges from a brackish aquaculture recirculation system may not be negatively affected by FeCl3 addition to concentrate waste streams, whereas GB boosts the production of SMP and EPS.

  20. Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor.

    PubMed

    Ge, Huoqing; Batstone, Damien; Keller, Jurg

    2016-01-01

    The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.

  1. Stabilization of tannery sludge by co-treatment with aluminum anodizing sludge and phytotoxicity of end-products.

    PubMed

    Pantazopoulou, E; Zebiliadou, O; Mitrakas, M; Zouboulis, A

    2017-03-01

    A global demand for efficient re-utilization of produced solid wastes, which is based on the principles of re-use and recycling, results to a circular economy, where one industry's waste becomes another's raw material and it can be used in a more efficient and sustainable way. In this study, the influence of a by-product addition, such as aluminum anodizing sludge, on tannery waste (air-dried sludge) stabilization was examined. The chemical characterization of tannery waste leachate, using the EN 12457-2 standard leaching test, reveals that tannery waste cannot be accepted even in landfills for hazardous wastes, according to the EU Decision 2003/33/EC. The stabilization of tannery waste was studied applying different ratios of tannery waste and aluminum anodizing sludge, i.e. 50:50, 60:40, 70:30 and 80:20 ratios respectively. Subsequently, the stabilization rate of the qualified as optimum homogenized mixture of 50:50 ratio was also tested during time (7, 15 and 30days). Moreover, this stabilized product was subjected to phytotoxicity tests using the Lepidium sativum, Sinapis alba and Sorghum saccharatum seeds. The experimental results showed that aluminum anodizing sludge managed to stabilize effectively chromium and organic content of tannery waste, which are the most problematic parameters influencing its subsequent disposal. As a result, tannery waste stabilized with the addition of aluminum anodizing sludge at 50:50 ratio can be accepted in non-hazardous waste landfills, as chromium and dissolved organic carbon concentrations in the respective leachate are below the relevant regulation limits, while the stabilized waste shows decreased phytotoxicity.

  2. A new process for enriching nitrifiers in activated sludge through separate heterotrophic wasting from biofilm carriers.

    PubMed

    Parker, Denny S; Rusten, Bjørn; Wien, Asgeir; Siljudalen, Jon G

    2002-01-01

    A new process, the biofilm-activated sludge innovative nitrification (BASIN) process, consisting of a moving-bed biofilm reactor (MBBR) with separate heterotrophic wasting, followed by an activated-sludge process, has been proposed to reduce the volumetric requirements of the activated-sludge process for nitrification. The basic principle is to remove chemical oxygen demand on the biofilm carriers by heterotrophic organisms and then to waste a portion of the heterotrophic biomass before it can be released into the activated-sludge reactor. By this means, the amount of heterotrophic organisms grown in the activated-sludge reactor is reduced, thereby reducing the volume of that tank needed for nitrification. For nitrification applications, the simplest method for stripping biomass was to use an in-tank technique using high shearing rates with aeration. Bench-scale testing showed sludge yields in the BASIN process were one-half of that in a control activated-sludge process and twice that of a process line with intermediate settling between the MBBR and activated-sludge stage. Critical washout solids retention times for nitrifiers were the same for all three lines, so activated-sludge volumes for the BASIN process could be reduced by 50% compared with the control. Originally conceived process concepts for the BASIN process were confirmed by the experimental work.

  3. Pharmaceutically active compounds in sludge stabilization treatments: anaerobic and aerobic digestion, wastewater stabilization ponds and composting.

    PubMed

    Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2015-01-15

    Sewage sludge disposal onto lands has been stabilized previously but still many pollutants are not efficiently removed. Special interest has been focused on pharmaceutical compounds due to their potential ecotoxicological effects. Nowadays, there is scarce information about their occurrence in different sludge stabilization treatments. In this work, the occurrence of twenty-two pharmaceutically active compounds has been studied in sludge from four sludge stabilization treatments: anaerobic digestion, aerobic digestion, composting and lagooning. The types of sludge evaluated were primary, secondary, anaerobically-digested and dehydrated, composted, mixed, aerobically-digested and dehydrated and lagoon sludge. Nineteen of the twenty-two pharmaceutically active compounds monitored were detected in sewage sludge. The most contaminated samples were primary sludge, secondary sludge and mixed sludge (the average concentrations of studied compounds in these sludges were 179, 310 and 142 μg/kg dm, respectively) while the mean concentrations found in the other types of sewage sludge were 70 μg/kg dm (aerobically-digested sludge), 63 μg/kg dm (lagoon sludge), 12 μg/kg dm (composted sludge) and 8 μg/kg dm (anaerobically-digested sludge). The antibiotics ciprofloxacin and norfloxacin were found at the highest concentration levels in most of the analyzed sludge samples (up to 2660 and 4328 μg/kg dm, respectively). Anaerobic-digestion treatment reduced more considerably the concentration of most of the studied compounds than aerobic-digestion (especially in the case of bezafibrate and fluoroquinolones) and more than anaerobic stabilization ponds (in the case of acetaminophen, atenolol, bezafibrate, carbamazepine, 17α-ethinylestradiol, naproxen and salicylic acid). Ecotoxicological risk assessment, of sludge application onto soils, has also been evaluated. Risk quotients, expressed as the ratio between the predicted environmental concentration and the predicted non

  4. Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge.

    PubMed

    Appels, Lise; Van Assche, Ado; Willems, Kris; Degrève, Jan; Van Impe, Jan; Dewil, Raf

    2011-03-01

    Anaerobic digestion is generally considered to be an economic and environmentally friendly technology for treating waste activated sludge, but has some limitations, such as the time it takes for the sludge to be digested and also the ineffectiveness of degrading the solids. Various pre-treatment technologies have been suggested to overcome these limitations and to improve the biogas production rate by enhancing the hydrolysis of organic matter. This paper studies the use of peracetic acid for disintegrating sludge as a pre-treatment of anaerobic digestion. It has been proved that this treatment effectively leads to a solubilisation of organic material. A maximum increase in biogas production by 21% is achieved. High dosages of PAA lead to a decrease in biogas production. This is due to the inhibition of the anaerobic micro-organisms by the high VFA-concentrations. The evolution of the various VFAs during digestion is studied and the observed trends support this hypothesis.

  5. Scale-up of biopesticide production processes using wastewater sludge as a raw material.

    PubMed

    Yezza, A; Tyagi, R D; Valèro, J R; Surampalli, R Y; Smith, J

    2004-12-01

    Studies were conducted on the production of Bacillus thuringiensis (Bt)-based biopesticides to ascertain the performance of the process in shake flasks, and in two geometrically similar fermentors (15 and 150 l) utilizing wastewater sludge as a raw material. The results showed that it was possible to achieve better oxygen transfer in the larger capacity fermentor. Viable cell counts increased by 38-55% in the bioreactor compared to shake flasks. As for spore counts, an increase of 25% was observed when changing from shake flask to fermentor experiments. Spore counts were unchanged in bench (15 l) and pilot scale (5.3-5.5 e(+08) cfu/ml; 150 l). An improvement of 30% in the entomotoxicity potential was obtained at pilot scale. Protease activity increased by two to four times at bench and pilot scale, respectively, compared to the maximum activity obtained in shake flasks. The maximum protease activity (4.1 IU/ml) was obtained in pilot scale due to better oxygen transfer. The Bt fermentation process using sludge as raw material was successfully scaled up and resulted in high productivity for toxin protein yield and a high protease activity.

  6. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study

    PubMed Central

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao

    2016-01-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge. PMID:27905538

  7. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study

    NASA Astrophysics Data System (ADS)

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao

    2016-12-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge.

  8. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study.

    PubMed

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X; Guo, Shaohui; Chen, Chunmao

    2016-12-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge.

  9. Diversity and dynamics of Archaea in an activated sludge wastewater treatment plant

    PubMed Central

    2012-01-01

    Background The activated sludge process is one of the most widely used methods for treatment of wastewater and the microbial community composition in the sludge is important for the process operation. While the bacterial communities have been characterized in various activated sludge systems little is known about archaeal communities in activated sludge. The diversity and dynamics of the Archaea community in a full-scale activated sludge wastewater treatment plant were investigated by fluorescence in situ hybridization, terminal restriction fragment length polymorphism analysis and cloning and sequencing of 16S rRNA genes. Results The Archaea community was dominated by Methanosaeta-like species. During a 15 month period major changes in the community composition were only observed twice despite seasonal variations in environmental and operating conditions. Water temperature appeared to be the process parameter that affected the community composition the most. Several terminal restriction fragments also showed strong correlations with sludge properties and effluent water properties. The Archaea were estimated to make up 1.6% of total cell numbers in the activated sludge and were present both as single cells and colonies of varying sizes. Conclusions The results presented here show that Archaea can constitute a constant and integral part of the activated sludge and that it can therefore be useful to include Archaea in future studies of microbial communities in activated sludge. PMID:22784022

  10. Effect of thermochemical pretreatment on sewage sludge and its impact on carboxylic acids production.

    PubMed

    Rughoonundun, Hema; Granda, Cesar; Mohee, Romeela; Holtzapple, Mark T

    2010-01-01

    This paper investigates the potential of converting sewage sludge into a useful product, namely carboxylic acids. To potentially enhance acid yields, the effect of pretreatment using 0.3 g lime/g dry biomass and water at 100 degrees C for 10-240 min was studied. The pretreated sludges were anaerobically fermented to mixed-acids using a mixed culture of microorganisms; methanogens were suppressed using iodoform. Batch fermentations were performed at 55 degrees C using ammonium bicarbonate buffer. The first batch experiments compared treated and untreated sludge as the only substrate. The second batch experiments used a mixture of sludge plus lime-treated bagasse (20:80 by weight). Analysis of liquor shows that the pretreatment were effective in solubilizing constituent compounds of sewage sludge. Nitrogen content and carboxylic acids increased with increasing pretreatment time. However, the soluble sugars peaked at 60 min, and then decreased with longer pretreatment time, showing that the solubilised sugars were undergoing intermolecular reactions, such as Maillard reactions. Fermentation experiments were a good indicator of the biodegradability of the pretreated sludges. Results clearly showed that lime-treating sludge, using even the minimum pretreatment time (10 min), negatively impacted acid production. The likely causes of this observation are attributed to the production of recalcitrant complexes and toxic compounds. Batch fermentation of untreated sludge yielded 0.34 g total acids/g VS fed, whereas sludge with 240-min lime pretreatment yielded only 0.20 g total acids/g VS fed. Co-fermentation of untreated sludge with pretreated bagasse gave a yield of 0.23 g total acids/g VS fed.

  11. Anaerobic co-digestion of microalgae Chlorella sp. and waste activated sludge.

    PubMed

    Wang, Meng; Sahu, Ashish K; Rusten, Bjørn; Park, Chul

    2013-08-01

    The study investigated the growth characteristics of environmental algal strain, Chlorella, in the modified Zarrouk medium and its anaerobic co-digestion with waste activated sludge (WAS). Analysis of extracellular polymeric substances (EPS) in algal culture and WAS indicated that Chlorella secreted more EPS into the surrounding liquid than formed floc-associated EPS as in activated sludge. Mesophilic anaerobic digestion of algae alone required extended digestion period to produce methane, with biogas yield at 262 mL/gVSfed after 45 days of digestion. When algae was co-digested with varying amounts of WAS, 59-96% in mass, not only biogas yield of microalgae improved but the gas phase was reached more quickly. The dewaterability of co-digestion products were also better than two controls digesting WAS or algae only. These results suggest that anaerobic co-digestion of algae and sludge improves the digestibility of microalgae and could also bring synergistic effects on the dewaterability of digested products for existing anaerobic digesters.

  12. Improving Settling Characteristics of Pure Oxygen Activated Sludge by Stripping of Carbon Dioxide.

    PubMed

    Kundral, Somshekhar; Mudragada, Ratnaji; Coro, Ernesto; Moncholi, Manny; Mora, Nelson; Laha, Shonali; Tansel, Berrin

    2015-06-01

    Increased microbial activity at high ambient temperatures can be problematic for secondary clarifiers and gravity concentrators due to carbon dioxide (CO2) production. Production of CO2 in gravity concentrators leads to septic conditions and poor solids separation. The CO2 production can also be corrosive for the concrete surfaces. Effectiveness of CO2 stripping to improve solids settling was investigated using the sludge volume index (SVI) as the indicator parameter. Carbon dioxide was stripped by aeration from the sludge samples. Results from the study show that aeration also increased the pH values in the mixed liquor while removing CO2 and improving sludge settling. After 10 minutes of aeration at a rate of 0.37 m3 air/m3 water/min, 90% CO2 stripping was achieved. Based on the 30 min settling tests, the SVI increased by 26±1% after CO2 stripping while the pH increased by 0.8±0.1 pH units.

  13. Physicochemical changes effected in activated sludge by the earthworm Eisenia foetida. [Concentration of heavy metals during sludge catabolism

    SciTech Connect

    Hartenstein, R.; Hartenstein, F.

    1981-09-01

    Measurements were made of some physicochemical changes effected in activated sludge by the earthworm Eisenia foetida following conversion of the sludge into wormcasts. Mineralization was accelerated 1.3-fold and 2% of the minerals were assimilated. The rate at which heavy metals were concentrated during sludge catabolism was also accelerated. Castings stabilized within 2 weeks, as indexed by respirometry. Nucleic acids, which can be used as an index of microbial biomass, were present at a greater concentration in the wormcasts than in the sludge, while the phenolic content, which may potentially serve as an index of humification, was less concentrated. Other changes included a reduction in pH and an increase in oxidation-reduction potential and cation exchange capacity. The major general effect of E. foetida on the physicochemical properties of activated sludge is to convert a material which has a relatively small surface/volume ratio into numerous particles with an overall large S/V ratio, thus accelerating decomposition, mineralization, drying, and preclusion of malodor.

  14. Application of activated sludge to purify urban soils of Baku city from oil contamination

    NASA Astrophysics Data System (ADS)

    Babaev, M. P.; Nadzhafova, S. I.; Ibragimov, A. G.

    2015-07-01

    A biopreparation inducing oil destruction and increasing the biological activity of soils was developed on the basis of activated sludge. Its oxidative activity towards hydrocarbons was studied. The application of this biopreparation to oil-contaminated soil increased the population density of microorganisms, including destroyers of hydrocarbons, and accelerated oil decomposition. The degree of destruction of oil and oil products in the case of a single treatment of the soil with this biopreparation comprised 30 to 50% within 60 days. The presence of cellulose-decomposing microorganisms in this biopreparation also favored an accelerated decomposition of plant substances, including plant litter and sawdust applied to the urban soils as an adsorbent.

  15. [Analysis of hydrolytic enzyme activities on sludge aerobic/anoxic digestion after ultrasonic pretreatment].

    PubMed

    Ye, Yun-di; Sun, Shui-yu; Zheng, Li; Liu, Bao-jian; Xu, Yan-bin; Zhan, Xing-xing; Liu, Jing-yong

    2012-08-01

    In order to evaluate the function of sludge aerobic/anoxic digestibility by ultrasonic pretreatment. The SS, VSS and hydrolytic enzyme activities (amylase, glucosidase, protease, phosphatase) were measured before and after ultrasonic pretreatment (28 kHz, 0.15 kW x L(-1), 10 min). The results showed that the performances of aerobic/anoxic were greatly improved after ultrasonic pretreatment, the removal efficiency of VSS went to 44.3%, 7.8% better than of traditional aerobic/anoxic digestion. The variational trend of sludge hydrolytic enzyme activities increased firstly and then fell off during 13d digestion, the maximum of amylase activity and glucosidase activity in ultrasonic sludge, appeared in the 5 d, amylase activity was 0.104 micromol x g(-1) and glucosidase activity was 0.637 (micromol x g(-1). The maximum of intracellular protease activity and extracellular proteases activity in ultrasonic sludge, appeared in the 7 d, intracellular protease activity was 23.68 micromol x g(-1), higher than extracellular proteases activity, and it was playing a leading role in sludge digestion. The acid phosphatase activity of ultrasonic sludge was higher than the control sludge, and the alkaline phosphatase was sensitive to environment. So the alkaline phosphatase activity reduced when the internal properties of sludge was changed.

  16. Membrane biofouling by extracellular polymeric substances or soluble microbial products from membrane bioreactor sludge.

    PubMed

    Ramesh, A; Lee, D J; Lai, J Y

    2007-03-01

    This study extracted the soluble microbial products and loosely bound and tightly bound extracellular polymeric substances (EPS) from suspended sludge from a membrane bioreactor, original and aerobically/anaerobically digested, and compared their fouling potentials on a microfiltration membrane. The resistance of cake layer accounts for 95-98% of the total filtration resistances when filtering the whole sludges, with anaerobically digested sludge presenting the highest resistance among the three tested sludges. The tightly bound EPS has the highest potential to foul the membrane; however, the loosely bound EPS contribute most of the filtration resistances of the whole sludges. The foulants corresponding to the irreversible fouling have chemical fingerprints similar to those from loosely bound EPS, which have a greater predilection to proteins and humic substances than to polysaccharides.

  17. Ecophysiology of the Actinobacteria in activated sludge systems.

    PubMed

    Seviour, Robert J; Kragelund, Caroline; Kong, Yunhong; Eales, Katherine; Nielsen, Jeppe L; Nielsen, Per H

    2008-06-01

    This review considers what is known about the Actinobacteria in activated sludge systems, their abundance and their functional roles there. Participation in processes leading to the microbiological removal of phosphate and in the operational problems of bulking and foaming are discussed in terms of their ecophysiological traits. We consider critically whether elucidation of their nutritional requirements and other physiological properties allow us to understand better what might affect their survival capabilities in these highly competitive systems. Furthermore, how this information might allow us to improve how these processes work is discussed.

  18. The application of sewage sludge as an expanding agent in the production of lightweight expanded clay aggregate mass.

    PubMed

    Latosińska, J; Zygadło, M

    2011-10-01

    Sewage sludge can be used as an expanding agent in the production of lightweight expanded clay aggregate (LECA) mass. The addition of sewage sludge increases the total porosity and decreases the bulk density of a sinter. The addition of sewage sludge to a raw material used in the production of LECA enabled a decrease in the burning temperature for the maintained operational parameters of a lightweight aggregate. The optimum content of sewage sludge added to a raw material used in LECA production was 5% to 15% of dry mass. The addition of sewage sludge in an amount of 5% and 10% caused an increase in closed porosity.

  19. Submersible microbial fuel cell for electricity production from sewage sludge.

    PubMed

    Zhang, Yifeng; Olias, Lola Gonzalez; Kongjan, Prawit; Angelidaki, Irini

    2011-01-01

    A submersible microbial fuel cell (SMFC) was utilized to treat sewage sludge and simultaneously generate electricity. Stable power generation (145 +/- 5 mW/m2, 470 omega) was produced continuously from raw sewage sludge for 5.5 days. The maximum power density reached 190 +/- 5 mW/m2. The corresponding total chemical oxygen demand (TCOD) removal efficiency was 78.1 +/- 0.2% with initial TCOD of 49.7 g/L. The power generation of SMFC was depended on the sludge concentration, while dilution of the raw sludge resulted in higher power density. The maximum power density was saturated at sludge concentration of 17 g-TCOD/L, where 290 mw/m2 was achieved. When effluents from an anaerobic digester that was fed with raw sludge were used as substrate in the SMFC, a maximum power density of 318 mW/m2, and a final TCOD removal of 71.9 +/- 0.2% were achieved. These results have practical implications for development of an effective system to treat sewage sludge and simultaneously recover energy.

  20. Factors influencing sorption of ciprofloxacin onto activated sludge: experimental assessment and modelling implications.

    PubMed

    Polesel, Fabio; Lehnberg, Kai; Dott, Wolfgang; Trapp, Stefan; Thomas, Kevin V; Plósz, Benedek Gy

    2015-01-01

    Many of the pharmaceuticals and personal care products occurring in municipal sewage are ionizing substances, and their partitioning behaviour is affected by ionic interactions with solid matrices. In activated sludge systems, such interactions have currently not been adequately understood and described, particularly for zwitterionic chemicals. Here we present an assessment of the effects of pH and iron salt dosing on the sorption of ciprofloxacin onto activated sludge using laboratory experiments and full-scale fate modelling. Experimental results were described with Freundlich isotherms and showed that non-linear sorption occurred under all the conditions tested. The greatest sorption potential was measured at pH=7.4, at which ciprofloxacin is speciated mostly as zwitterion. Iron salt dosing increased sorption under aerobic and, to a lesser extent, anoxic conditions, whereas no effect was registered under anaerobic conditions. The activated sludge model for xenobiotics (ASM-X) was extended with Freundlich-based sorption kinetics and used to predict the fate of ciprofloxacin in a wastewater treatment plant (WWTP). Scenario simulations, using experimental Freundlich parameters, were used to identify whether the assessed factors caused a significant increase of aqueous ciprofloxacin concentration in full-scale bioreactors. Simulation results suggest that a pH increase, rather than a reduction in iron salt dosing, could be responsible for a systematic deterioration of sorption of ciprofloxacin in the WWTP.

  1. Biofilms Versus Activated Sludge: Considerations in Metal and Metal Oxide Nanoparticle Removal from Wastewater.

    PubMed

    Walden, Connie; Zhang, Wen

    2016-08-16

    The increasing application of metal and metal oxide nanoparticles [Me(O)NPs] in consumer products has led to a growth in concentration of these nanoparticles in wastewater as emerging contaminants. This may pose a threat to ecological communities (e.g., biological nutrient removal units) within treatment plants and those subject to wastewater effluents. Here, the toxicity, fate, and process implications of Me(O)NPs within wastewater treatment, specifically during activated sludge processing and biofilm systems are reviewed and compared. Research showed activated sludge achieves high removal rate of Me(O)NPs by the formation of aggregates through adsorption. However, recent literature reveals evidence that inhibition is likely for nutrient removal capabilities such as nitrification. Biofilm systems were much less studied, but show potential to resist Me(O)NP inhibition and achieve removal through possible retention by sorption. Implicating factors during bacteria-Me(O)NP interactions such as aggregation, surface functionalization, and the presence of organics are summarized. At current modeled levels, neither activated sludge nor biofilm systems can achieve complete removal of Me(O)NPs, thus allowing for long-term environmental exposure of diverse biological communities to Me(O)NPs in streams receiving wastewater effluents. Future research directions are identified throughout in order to minimize the impact of these nanoparticles released.

  2. Disturbance and temporal partitioning of the activated sludge metacommunity

    PubMed Central

    Vuono, David C; Benecke, Jan; Henkel, Jochen; Navidi, William C; Cath, Tzahi Y; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2015-01-01

    The resilience of microbial communities to press disturbances and whether ecosystem function is governed by microbial composition or by the environment have not been empirically tested. To address these issues, a whole-ecosystem manipulation was performed in a full-scale activated sludge wastewater treatment plant. The parameter solids retention time (SRT) was used to manipulate microbial composition, which started at 30 days, then decreased to 12 and 3 days, before operation was restored to starting conditions (30-day SRT). Activated sludge samples were collected throughout the 313-day time series in parallel with bioreactor performance (‘ecosystem function'). Bacterial small subunit (SSU) rRNA genes were surveyed from sludge samples resulting in a sequence library of >417 000 SSU rRNA genes. A shift in community composition was observed for 12- and 3-day SRTs. The composition was altered such that r-strategists were enriched in the system during the 3-day SRT, whereas K-strategists were only present at SRTs⩾12 days. This shift corresponded to loss of ecosystem functions (nitrification, denitrification and biological phosphorus removal) for SRTs⩽12 days. Upon return to a 30-day SRT, complete recovery of the bioreactor performance was observed after 54 days despite an incomplete recovery of bacterial diversity. In addition, a different, yet phylogenetically related, community with fewer of its original rare members displaced the pre-disturbance community. Our results support the hypothesis that microbial ecosystems harbor functionally redundant phylotypes with regard to general ecosystem functions (carbon oxidation, nitrification, denitrification and phosphorus accumulation). However, the impacts of decreased rare phylotype membership on ecosystem stability and micropollutant removal remain unknown. PMID:25126758

  3. Fate and effects of triclosan in activated sludge.

    PubMed

    Federle, Thomas W; Kaiser, Sandra K; Nuck, Barbara A

    2002-07-01

    Triclosan (TCS; 5-chloro-2-[2,4-dichloro-phenoxy]-phenol) is a widely used antimicrobial agent. To understand its fate during sewage treatment, the biodegradation and removal of TCS were determined in activated sludge. In addition, the effects of TCS on treatment processes were assessed. Fate was determined by examining the biodegradation and removal of TCS radiolabeled with 14C in the 2,4-dichlorphenoxy ring in laboratory batch mineralization experiments and bench-top continuous activated-sludge (CAS) systems. In batch experiments with unacclimated sludge, TCS was mineralized to 14CO2, but the total yield varied as a function of test concentration. Systems that were redosed with TCS exhibited more extensive and faster mineralization, indicating that adaptation was a critical factor determining the rate and extent of biodegradation. In a CAS study in which the influent level of TCS was incrementally increased from 40 microg/L to 2,000 microg/L, removal of the parent compound exceeded 98.5% and removal of total radioactivity (parent and metabolites) exceeded 85%. Between 1.5 and 4.5% of TCS in the influent was sorbed to the wasted solids, whereas >94% underwent primary biodegradation and 81 to 92% was mineralized to CO2 or incorporated in biomass. Increasing levels of TCS in the influent had no major adverse effects on any wastewater treatment process, including chemical oxygen demand, biological oxygen demand, and ammonia removal. In a subsequent experiment, a CAS system, acclimated to TCS at 35 microg/L, received two separate 4-h shock loads of 750 microg/L TCS. Neither removal of TCS nor treatment processes exhibited major adverse effects. An additional CAS study was conducted to examine the removal of a low level (10 microg/L) of TCS. Removal of parent equaled 94.7%, and biodegradation remained the dominant removal mechanism. A subsequent series of CAS experiments examined removal at four influent concentrations (7.5, 11, 20, and 50 microg/L) of TCS and

  4. Short-chain fatty acid production from different biological phosphorus removal sludges: the influences of PHA and Gram-staining bacteria.

    PubMed

    Wang, Dongbo; Chen, Yinguang; Zheng, Xiong; Li, Xiang; Feng, Leiyu

    2013-03-19

    Recently, the reuse of waste activated sludge to produce short-chain fatty acids (SCFA) has attracted much attention. However, the influences of sludge characteristics, especially polyhydroxyalkanoates (PHA) and Gram-staining bacteria, on SCFA production have seldom been investigated. It was found in this study that during sludge anaerobic fermentation not only the fermentation time but also the SCFA production were different between two sludges, which had different PHA contents and Gram-negative bacteria to Gram-positive bacteria (GNB/GPB) ratios and were generated respectively from the anaerobic/oxic (AO) and aerobic/extended-idle (AEI) biological phosphorus removal processes. The optimal fermentation time for the AEI and AO sludges was respectively 4 and 8 d, and the corresponding SCFA production was 304.6 and 231.0 mg COD/g VSS (volatile suspended solids) in the batch test and 143.4 and 103.9 mg COD/g VSS in the semicontinuous experiment. The mechanism investigation showed that the AEI sludge had greater PHA content and GNB/GPB ratio, and the increased PHA content accelerated cell lysis and soluble substrate hydrolysis while the increased GNB/GPB ratio benefited cell lysis. Denaturing gradient gel electrophoresis profiles revealed that the microbial community in the AEI sludge fermentation reactor was dominated by Clostridium sp., which was reported to be SCFA-producing microbes. Further enzyme analyses indicated that the activities of key hydrolytic and acids-forming enzymes in the AEI sludge fermentation reactor were higher than those in the AO one. Thus, less fermentation time was required, but higher SCFA was produced in the AEI sludge fermentation system.

  5. Effects of heat treatment on microbial communities of granular sludge for biological hydrogen production.

    PubMed

    Alibardi, Luca; Favaro, Lorenzo; Lavagnolo, Maria Cristina; Basaglia, Marina; Casella, Sergio

    2012-01-01

    Dark fermentation shares many features with anaerobic digestion with the exception that to maximize hydrogen production, methanogens and hydrogen-consuming bacteria should be inhibited. Heat treatment is widely applied as an inoculum pre-treatment due to its effectiveness in inhibiting methanogenic microflora but it may not exclusively select for hydrogen-producing bacteria. This work evaluated the effects of heat treatment on microbial viability and structure of anaerobic granular sludge. Heat treatment was carried out on granular sludge at 100 °C with four residence times (0.5, 1, 2 and 4 h). Hydrogen production of treated sludges was studied from glucose by means of batch test at different pH values. Results indicated that each heat treatment strongly influenced the granular sludge resulting in microbial communities having different hydrogen productions. The highest hydrogen yields (2.14 moles of hydrogen per mole of glucose) were obtained at pH 5.5 using the sludge treated for 4 h characterized by the lowest CFU concentration (2.3 × 10(3)CFU/g sludge). This study demonstrated that heat treatment should be carefully defined according to the structure of the sludge microbial community, allowing the selection of highly efficient hydrogen-producing microbes.

  6. Potential of biohydrogen production from effluents of citrus processing industry using anaerobic bacteria from sewage sludge.

    PubMed

    Torquato, Lilian D M; Pachiega, Renan; Crespi, Marisa S; Nespeca, Maurílio Gustavo; de Oliveira, José Eduardo; Maintinguer, Sandra I

    2017-01-01

    Citrus crops are among the most abundant crops in the world, which processing is mainly based on juice extraction, generating large amounts of effluents with properties that turn them into potential pollution sources if they are improperly discarded. This study evaluated the potential for bioconversion of effluents from citrus-processing industry (wastewater and vinasse) into hydrogen through the dark fermentation process, by applying anaerobic sewage sludge as inoculum. The inoculum was previously heat treated to eliminate H2-consumers microorganisms and improve its activity. Anaerobic batch reactors were operated in triplicate with increasing proportions (50, 80 and 100%) of each effluent as substrate at 37°C, pH 5.5. Citrus effluents had different effects on inoculum growth and H2 yields, demonstrated by profiles of acetic acid, butyric acid, propionic acid and ethanol, the main by-products generated. It was verified that there was an increase in the production of biogas with the additions of either wastewater (7.3, 33.4 and 85.3mmolL(-1)) or vinasse (8.8, 12.7 and 13.4mmolL(-1)) in substrate. These effluents demonstrated remarkable energetic reuse perspectives: 24.0MJm(-3) and 4.0MJm(-3), respectively. Besides promoting the integrated management and mitigation of anaerobic sludge and effluents from citrus industry, the biohydrogen production may be an alternative for the local energy supply, reducing the operational costs in their own facilities, while enabling a better utilization of the biological potential contained in sewage sludges.

  7. Effects of waste activated sludge and surfactant addition on primary sludge hydrolysis and short-chain fatty acids accumulation.

    PubMed

    Ji, Zhouying; Chen, Guanlan; Chen, Yinguang

    2010-05-01

    This paper focused on the effects of waste activated sludge (WAS) and surfactant sodium dodecylbenzene sulfonate (SDBS) addition on primary sludge (PS) hydrolysis and short-chain fatty acids (SCFA) accumulation in fermentation. The results showed that sludge hydrolysis, SCFA accumulation, NH(4)(+)-N and PO(4)(3-)-P release, and volatile suspended solids (VSS) reduction were increased by WAS addition to PS, which were further increased by the addition of SDBS to the mixture of PS and WAS. Acetic, propionic and valeric acids were the top three SCFA in all experiments. Also, the fermentation liquids of PS, PS+WAS, and PS+WAS+SDBS were added, respectively, to municipal wastewater to examine their effects on biological municipal wastewater treatment, and the enhancement of both wastewater nitrogen and phosphorus removals was observed compared with no fermentation liquid addition.

  8. Optimized production of a novel bioflocculant M-C11 by Klebsiella sp. and its application in sludge dewatering.

    PubMed

    Liu, Jiewei; Ma, Junwei; Liu, Yanzhong; Yang, Ya; Yue, Dongbei; Wang, Hongtao

    2014-10-01

    The optimized production of a novel bioflocculant M-C11 produced by Klebsiella sp. and its application in sludge dewatering were investigated. The optimal medium carbon source, nitrogen source, metal ion, initial pH and culture temperature for the bioflocculant production were glucose, NaNO3, MgSO4, and pH7.0 and 25°C, respectively. A compositional analysis indicated that the purified M-C11 consisted of 91.2% sugar, 4.6% protein and 3.9% nucleic acids (m/m). A Fourier transform infrared spectrum confirmed the presence of carboxyl, hydroxyl, methoxyl and amino groups. The microbial flocculant exhibited excellent pH and thermal stability in a kaolin suspension over a pH range of 4.0 to 8.0 and a temperature range of 20 to 60°C. The optimum bioflocculating activity was observed as 92.37% for 2.56mL M-C11 and 0.37g/L CaCl2 dosages using response surface methodology. The sludge resistance in filtration (SRF) decreased from 11.6×10(12) to 4.7×10(12)m/kg, which indicated that the sludge dewaterability was remarkably enhanced by the bioflocculant conditioning. The sludge dewatering performance conditioned by M-C11 was more efficient than that of inorganic flocculating reagents, such as aluminum sulfate and polymeric aluminum chloride. The bioflocculant has advantages over traditional sludge conditioners due to its lower cost, benign biodegradability and negligible secondary pollution. In addition, the bioflocculant was favorably adapted to the specific sludge pH and salinity.

  9. Scale-up and economic analysis of biodiesel production from municipal primary sewage sludge.

    PubMed

    Olkiewicz, Magdalena; Torres, Carmen M; Jiménez, Laureano; Font, Josep; Bengoa, Christophe

    2016-08-01

    Municipal wastewater sludge is a promising lipid feedstock for biodiesel production, but the need to eliminate the high water content before lipid extraction is the main limitation for scaling up. This study evaluates the economic feasibility of biodiesel production directly from liquid primary sludge based on experimental data at laboratory scale. Computational tools were used for the modelling of the process scale-up and the different configurations of lipid extraction to optimise this step, as it is the most expensive. The operational variables with a major influence in the cost were the extraction time and the amount of solvent. The optimised extraction process had a break-even price of biodiesel of 1232 $/t, being economically competitive with the current cost of fossil diesel. The proposed biodiesel production process from waste sludge eliminates the expensive step of sludge drying, lowering the biodiesel price.

  10. Economical evaluation of sludge reduction and characterization of effluent organic matter in an alternating aeration activated sludge system combining ozone/ultrasound pretreatment.

    PubMed

    Yang, Shan-Shan; Guo, Wan-Qian; Chen, Yi-Di; Wu, Qing-Lian; Luo, Hai-Chao; Peng, Si-Mai; Zheng, He-Shan; Feng, Xiao-Chi; Zhou, Xu; Ren, Nan-Qi

    2015-02-01

    An ozone/ultrasound lysis-cryptic growth technology combining a continuous flow anaerobic-anoxic-microaerobic-aerobic (AAMA+O3/US) system was investigated. Techno-economic evaluation and sludge lyses return ratio (r) optimization of this AAMA+O3/US system were systematically and comprehensively discussed. Economic assessment demonstrated that this AAMA+O3/US system with r of 30% (AAMA+O3/US2# system) was more economically feasible that can give a 14.04% saving of costs. In addition to economic benefits, a 55.08% reduction in sludge production, and respective 21.17% and 5.45% increases in TN and TP removal efficiencies were observed in this AAMA+O3/US2# system. Considering the process performances and economic benefits, r of 30% in AAMA+O3/US2# system was recommended. Excitation-emission matrix and Fourier transform infrared spectra analyses also proved that less refractory soluble microbial products were generated from AAMA+O3/US2# system. Improvement in 2,3,5-triphenyltetrazolium chloride electron transport system (TTC-ETS) activity in AAMA+O3/US2# further indicated that a lower sludge lyses return ratio stimulated the microbial activity.

  11. Effect of low temperature on highly unsaturated fatty acid biosynthesis in activated sludge.

    PubMed

    He, Su; Ding, Li-Li; Xu, Ke; Geng, Jin-Ju; Ren, Hong-Qiang

    2016-07-01

    Low temperature is a limiting factor for the microbial activity of activated sludge for sewage treatment plant in winter. Highly unsaturated fatty acid (UFA) biosynthesis, phospholipid fatty acid (PLFA) constituents and microbial structure in activated sludge at low temperature were investigated. Over 12 gigabases of metagenomic sequence data were generated with the Illumina HiSeq 2000 platform. The result showed 43.11% of phospholipid fatty acid (PLFA) in the activated sludge participated in UFA biosynthesis, and γ-Linolenic could be converted to Arachidonic acid at low temperature. The highly UFA biosynthesis in activated sludge was n-6 highly UFA biosynthesis, rather than n-3 highly UFA biosynthesis. The microbial community structures of activated sludge were analyzed by PLFA and high-throughput sequencing (HiSeq) simultaneously. Acidovorax, Pseudomonas, Flavobacterium and Polaromonas occupied higher percentage at 5°C, and genetic changes of highly UFA biosynthesis derived from microbial community structures change.

  12. Biohydrogen production from food waste hydrolysate using continuous mixed immobilized sludge reactors.

    PubMed

    Han, Wei; Liu, Da Na; Shi, Yi Wen; Tang, Jun Hong; Li, Yong Feng; Ren, Nan Qi

    2015-03-01

    A continuous mixed immobilized sludge reactor (CMISR) using activated carbon as support carrier for dark fermentative hydrogen production from enzymatic hydrolyzed food waste was developed. The effects of immobilized sludge packing ratio (10-20%, v/v) and substrate loading rate (OLR) (8-40kg/m(3)/d) on biohydrogen production were examined, respectively. The hydrogen production rates (HPRs) with packing ratio of 15% were significantly higher than the results obtained from packing ratio of 10% and 20%. The best HPR of 353.9ml/h/L was obtained at the condition of packing ratio=15% and OLR=40kg/m(3)/d. The Minitab was used to elicit the effects of OLR and packing ratio on HPR (Y) which could be expressed as Y=5.31 OLR+296 packing ratio+40.3 (p=0.003). However, the highest hydrogen yield (85.6ml/g food waste) was happened at OLR of 16kg/m(3)/d because of H2 partial pressure and oxidization/reduction of NADH.

  13. Toxic influence of silver and uranium salts on activated sludge of wastewater treatment plants and synthetic activated sludge associates modeled on its pure cultures.

    PubMed

    Tyupa, Dmitry V; Kalenov, Sergei V; Skladnev, Dmitry A; Khokhlachev, Nikolay S; Baurina, Marina M; Kuznetsov, Alexander Ye

    2015-01-01

    Toxic impact of silver and uranium salts on activated sludge of wastewater treatment facilities has been studied. Some dominating cultures (an active nitrogen fixer Agrobacterium tumifaciens (A.t) and micromyces such as Fusarium nivale, Fusarium oxysporum, and Penicillium glabrum) have been isolated and identified as a result of selection of the activated sludge microorganisms being steadiest under stressful conditions. For these cultures, the lethal doses of silver amounted 1, 600, 50, and 300 µg/l and the lethal doses of uranium were 120, 1,500, 1,000, and 1,000 mg/l, respectively. A.tumifaciens is shown to be more sensitive to heavy metals than micromyces. Synthetic granular activated sludge was formed on the basis of three cultures of the isolated micromyces steadiest against stress. Its granules were much more resistant to silver than the whole native activated sludge was. The concentration of silver causing 50 % inhibition of synthetic granular activated sludge growth reached 160-170 μg/l as far as for the native activated sludge it came only to 100-110 μg/l.

  14. Thermal processing of paper sludge and characterisation of its pyrolysis products.

    PubMed

    Strezov, Vladimir; Evans, Tim J

    2009-05-01

    Paper sludge is a waste product from the paper and pulp manufacturing industry that is generally disposed of in landfills. Pyrolysis of paper sludge can potentially provide an option for managing this waste by thermal conversion to higher calorific value fuels, bio-gas, bio-oils and charcoal. This work investigates the properties of paper sludge during pyrolysis and energy required to perform thermal conversion. The products of paper sludge pyrolysis were also investigated to determine their properties and potential energy value. The dominant volatile species of paper sludge pyrolysis at 10 degrees C/min were found to be CO and CO(2), contributing to almost 25% of the paper sludge dry weight loss at 500 degrees C. The hydrocarbons (CH(4), C(2)H(4), C(2)H(6)) and hydrogen contributed to only 1% of the total weight loss. The bio-oils collected at 500 degrees C were primarily comprised of organic acids with the major contribution being linoleic acid, 2,4-decadienal acid and oleic acid. The high acidic content indicates that in order to convert the paper sludge bio-oil to bio-diesel or petrochemicals, further upgrading would be necessary. The charcoal produced at 500 degrees C had a calorific value of 13.3MJ/kg.

  15. Influences of influent carbon source on extracellular polymeric substances (EPS) and physicochemical properties of activated sludge.

    PubMed

    Ye, Fenxia; Peng, Ge; Li, Ying

    2011-08-01

    It is necessary to understand the bioflocculation, settling and dewatering characteristics in the activated sludge process in order to establish more efficient operational strategies. The influences of carbon source on the extracellular polymeric substances (EPS) and flocculation, settling and dewatering properties of the activated sludge were investigated. Laboratory-scale completely mixed activated sludge processes were used to grow the activated sludge with different carbon sources of starch, glucose and sodium acetate. The sludge fed with acetate had highest loosely bound EPS (LB-EPS) and that fed with starch lowest. The amount of tightly bound EPS (TB-EPS), protein content in LB-EPS, polysaccharide content and protein contents in TB-EPS, were independent of the influent carbon source. The polysaccharide content in LB-EPS of the activated sludge fed with sodium acetate was lower slightly than those of starch and glucose. The sludge also had a nearly consistent flocs size and the sludge volume index (SVI) value. ESS content of the sludge fed with sodium acetate was higher initially, although it was similar to those fed with glucose and starch finally. However, the specific resistance to filtration and normalized capillary suction time fluctuated first, but finally were stable at around 5.0×10(8)mkg(-1) and 3.5 s Lg(-1) SS, respectively. Only the protein content in LB-EPS weakly correlated with the flocs size and SVI of the activated sludge. But there was no correlation between any other EPS contents or components and the physicochemical properties of the activated sludge.

  16. Adsorption/desorption of linear alkylbenzenesulfonate (LAS) and azoproteins by/from activated sludge flocs.

    PubMed

    Conrad, A; Cadoret, A; Corteel, P; Leroy, P; Block, J-C

    2006-01-01

    Our study investigated the adsorption/desorption by/from activated sludge flocs, dispersed in river water or in diluted wastewater, of organic compounds (C(11)-LAS, azoalbumin and azocasein) at concentrations relevant to environmental conditions. Activated sludge flocs, used as a model of biological aggregates, are characterized by a very heterogeneous matrix able to sorb the three organic compounds tested at 4 degrees C. The adsorbed amount of C(11)-LAS by activated sludge flocs was higher than that of azocasein or azoalbumin, as shown by the Freundlich parameters (K(ads)=8.6+/-1.7, 1.6+/-0.3 and 0.3+/-0.1 micromol(1-1/n)g(-1)l(1/n) for C(11)-LAS, azocasein and azoalbumin, respectively; n=3 sludges). C(11)-LAS sorption from activated sludge appeared to be partially reversible in river water, while a marked hysteresis phenomenon was observed for azocasein and azoalbumin, implying a low degree of reversibility in their exchange between activated sludge and river water. It has also been displayed that the conductivity variation of bulk water (comprised between 214 and 838 microS cm(-1)) exerted no dramatic effect on the C(11)-LAS desorption from activated sludge flocs, while a little effect of it on azocasein desorption was observed. Thus, biological aggregates as activated sludge flocs can serve as an intermediate carrier for C(11)-LAS, while it represents a sink for proteins.

  17. Production of cellulosic ethanol and enzyme from waste fiber sludge using SSF, recycling of hydrolytic enzymes and yeast, and recombinant cellulase-producing Aspergillus niger.

    PubMed

    Cavka, Adnan; Alriksson, Björn; Rose, Shaunita H; van Zyl, Willem H; Jönsson, Leif J

    2014-08-01

    Bioethanol and enzymes were produced from fiber sludges through sequential microbial cultivations. After a first simultaneous saccharification and fermentation (SSF) with yeast, the bioethanol concentrations of sulfate and sulfite fiber sludges were 45.6 and 64.7 g/L, respectively. The second SSF, which included fresh fiber sludges and recycled yeast and enzymes from the first SSF, resulted in ethanol concentrations of 38.3 g/L for sulfate fiber sludge and 24.4 g/L for sulfite fiber sludge. Aspergillus niger carrying the endoglucanase-encoding Cel7B gene of Trichoderma reesei was grown in the spent fiber sludge hydrolysates. The cellulase activities obtained with spent hydrolysates of sulfate and sulfite fiber sludges were 2,700 and 2,900 nkat/mL, respectively. The high cellulase activities produced by using stillage and the significant ethanol concentrations produced in the second SSF suggest that onsite enzyme production and recycling of enzyme are realistic concepts that warrant further attention.

  18. Effect of wet oxidation on the fingerprints of polymeric substances from an activated sludge.

    PubMed

    Urrea, José Luis; Collado, Sergio; Oulego, Paula; Díaz, Mario

    2016-11-15

    Thermal pre-treatments of activated sludge involve the release of a high amount of polymeric substances into the bulk medium. The molecular size of these polymers will largely define the subsequent biological treatment of the liquid effluent generated. In this work, the effects of wet oxidation treatment (WO) on the fingerprints of the polymeric substances which compose the activated sludge, were analysed. For a better understanding of these transformations, the sludge was separated into its main fractions: soluble microbial products (SMP), loosely bound extracellular polymeric substances (LB-EPS), tightly bound extracellular polymeric substances (TB-EPS) and naked cells, and then each one was subjected to WO separately (190 °C and 65 bar), determining the fingerprints evolution by size exclusion technique. Results revealed a fast degradation of larger molecules (over 500 kDa) during the first minutes of treatment (40 min). WO also increases the absorptive properties of proteins (especially for 30 kDa), which is possibly due to the hydroxylation of phenylalanine amino acids in their structure. WO of naked cells involved the formation of molecules between 23 and 190 kDa, which are related to the release of cytoplasmic polymers, and more hydrophobic polymers, probably from the cell membrane. The results allowed to establish a relationship between the location of polymeric material and its facility to become oxidised; thus, the more internal the polymeric material in the cell, the easier its oxidation. When working directly with the raw sludge, hydrolysis mechanisms played a key role during the starting period. Once a high degree of solubilisation was reached, the molecules were rapidly oxidised into other compounds with refractory characteristics. The final effluent after WO showed almost 90% of low molecular weight solubilised substances (0-35 kDa).

  19. Transformation of diclofenac in hybrid biofilm-activated sludge processes.

    PubMed

    Jewell, Kevin S; Falås, Per; Wick, Arne; Joss, Adriano; Ternes, Thomas A

    2016-11-15

    The biotransformation of diclofenac during wastewater treatment was investigated. Attached growth biomass from a carrier-filled compartment of a hybrid-MBBR at the wastewater treatment plant (WWTP) in Bad Ragaz, Switzerland was used to test the biotransformation. Laboratory-scale incubation experiments were performed with diclofenac and carriers and high-resolution LC-QTof-MS was implemented to monitor the biotransformation. Up to 20 diclofenac transformation products (TPs) were detected. Tentative structures were proposed for 16 of the TPs after characterization by MS(2) fragmentation and/or inferring the structure from the transformation pathway and the molecular formula given by the high resolution ionic mass. The remaining four TPs were unambiguously identified via analytical reference standards. The postulated reactions forming the TPs were: hydroxylation, decarboxylation, oxidation, amide formation, ring-opening and reductive dechlorination. Incubation experiments of individual TPs, those which were available as reference standards, provided a deeper look into the transformation pathways. It was found that the transformation consists of four main pathways but no pathway accounted for a clear majority of the transformation. A 10-day monitoring campaign of the full-scale plant confirmed an 88% removal of diclofenac (from approximately 1.6 μg/L in WWTP influent) and the formation of TPs as found in the laboratory was observed. One of the TPs, N-(2,6-dichlorophenyl)-2-indolinone detected at concentrations of around 0.25 μg/L in WWTP effluent, accounting for 16% of the influent diclofenac concentration. The biotransformation of carriers was compared to a second WWTP not utilising carriers. It was found that in contact with activated sludge, similar hydroxylation and decarboxylation reactions occurred but at much slower rates, whereas some reactions, e.g. reductive dechlorination, were not detected at all. Finally, incubation experiments were performed with

  20. Combined free nitrous acid and hydrogen peroxide pre-treatment of waste activated sludge enhances methane production via organic molecule breakdown

    PubMed Central

    Zhang, Tingting; Wang, Qilin; Ye, Liu; Batstone, Damien; Yuan, Zhiguo

    2015-01-01

    This study presents a novel pre-treatment strategy using combined free nitrous acid (FNA i.e. HNO2) and hydrogen peroxide (H2O2) to enhance methane production from WAS, with the mechanisms investigated bio-molecularly. WAS from a full-scale plant was treated with FNA alone (1.54 mg N/L), H2O2 alone (10–80 mg/g TS), and their combinations followed by biochemical methane potential tests. Combined FNA and H2O2 pre-treatment substantially enhanced methane potential of WAS by 59–83%, compared to 13–23% and 56% with H2O2 pre-treatment alone and FNA pre-treatment alone respectively. Model-based analysis indicated the increased methane potential was mainly associated with up to 163% increase in rapidly biodegradable fraction with combined pre-treatment. The molecular weight distribution and chemical structure analyses revealed the breakdown of soluble macromolecules with the combined pre-treatment caused by the deamination and oxidation of the typical functional groups in proteins, polysaccharides and phosphodiesters. These changes likely improved the biodegradability of WAS. PMID:26565653

  1. Combined free nitrous acid and hydrogen peroxide pre-treatment of waste activated sludge enhances methane production via organic molecule breakdown

    NASA Astrophysics Data System (ADS)

    Zhang, Tingting; Wang, Qilin; Ye, Liu; Batstone, Damien; Yuan, Zhiguo

    2015-11-01

    This study presents a novel pre-treatment strategy using combined free nitrous acid (FNA i.e. HNO2) and hydrogen peroxide (H2O2) to enhance methane production from WAS, with the mechanisms investigated bio-molecularly. WAS from a full-scale plant was treated with FNA alone (1.54 mg N/L), H2O2 alone (10-80 mg/g TS), and their combinations followed by biochemical methane potential tests. Combined FNA and H2O2 pre-treatment substantially enhanced methane potential of WAS by 59-83%, compared to 13-23% and 56% with H2O2 pre-treatment alone and FNA pre-treatment alone respectively. Model-based analysis indicated the increased methane potential was mainly associated with up to 163% increase in rapidly biodegradable fraction with combined pre-treatment. The molecular weight distribution and chemical structure analyses revealed the breakdown of soluble macromolecules with the combined pre-treatment caused by the deamination and oxidation of the typical functional groups in proteins, polysaccharides and phosphodiesters. These changes likely improved the biodegradability of WAS.

  2. Combined free nitrous acid and hydrogen peroxide pre-treatment of waste activated sludge enhances methane production via organic molecule breakdown.

    PubMed

    Zhang, Tingting; Wang, Qilin; Ye, Liu; Batstone, Damien; Yuan, Zhiguo

    2015-11-13

    This study presents a novel pre-treatment strategy using combined free nitrous acid (FNA i.e. HNO2) and hydrogen peroxide (H2O2) to enhance methane production from WAS, with the mechanisms investigated bio-molecularly. WAS from a full-scale plant was treated with FNA alone (1.54 mg N/L), H2O2 alone (10-80 mg/g TS), and their combinations followed by biochemical methane potential tests. Combined FNA and H2O2 pre-treatment substantially enhanced methane potential of WAS by 59-83%, compared to 13-23% and 56% with H2O2 pre-treatment alone and FNA pre-treatment alone respectively. Model-based analysis indicated the increased methane potential was mainly associated with up to 163% increase in rapidly biodegradable fraction with combined pre-treatment. The molecular weight distribution and chemical structure analyses revealed the breakdown of soluble macromolecules with the combined pre-treatment caused by the deamination and oxidation of the typical functional groups in proteins, polysaccharides and phosphodiesters. These changes likely improved the biodegradability of WAS.

  3. High-rate iron-rich activated sludge as stabilizing agent for the anaerobic digestion of kitchen waste.

    PubMed

    De Vrieze, Jo; De Lathouwer, Lars; Verstraete, Willy; Boon, Nico

    2013-07-01

    Anaerobic digestion is a key technology in the bio-based economy and can be applied to convert a wide range of organic substrates into CH4 and CO2. Kitchen waste is a valuable substrate for anaerobic digestion, since it is an abundant source of organic matter. Yet, digestion of single kitchen waste often results in process failure. High-rate activated sludge or A-sludge is produced during the highly loaded first stage of the two-phase 'Adsorptions-Belebungsverfahren' or A/B activated sludge system for municipal wastewater treatment. In this specific case, the A-sludge was amended with FeSO4 to enhance phosphorous removal and coagulation during the water treatment step. This study therefore evaluated whether this Fe-rich A-sludge could be used to obtain stable methanation and higher methane production values during co-digestion with kitchen waste. It was revealed that Fe-rich A-sludge can be a suitable co-substrate for kitchen waste; i.e. methane production rate values of 1.15 ± 0.22 and 1.12 ± 0.28 L L(-1) d(-1) were obtained during mesophilic and thermophilic co-digestion respectively of a feed-mixture consisting of 15% KW and 85% A-sludge. The thermophilic process led to higher residual VFA concentrations, up to 2070 mg COD L(-1), and can therefore be considered less stable. Addition of micro- and macronutrients provided a more stable digestion of single kitchen waste, i.e. a methane production of 0.45 L L(-1) d(-1) was obtained in the micronutrient treatment compared to 0.30 L L(-1) d(-1) in the control treatment on day 61. Yet, methane production during single kitchen waste digestion still decreased toward the end of the experiment, despite the addition of micronutrients. Methane production rates were clearly influenced by the total numbers of archaea in the different reactors. This study showed that Fe-rich A-sludge and kitchen waste are suitable for co-digestion.

  4. Biological pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge.

    PubMed

    Lin Yunqin; Wang Dehan; Wang Lishang

    2010-09-01

    High efficient resource recovery from pulp and paper sludge (PPS) has been the focus of attention. The objective of this research was to develop a bio-pretreatment process prior to anaerobic digestion of PPS to improve the methane productivity. Active and inactive mushroom compost extracts (MCE) were used for pretreating PPS, followed by anaerobic digestion with monosodium glutamate waste liquor (MGWL). Laboratory-scale experiments were carried out in completely mixed bioreactors, 1-L capacity with 700 ml useful capacity. Optimal amount of active MCE for organics' solubilization in the step of pretreatment was 250 A.U./gVS( sludge). Under this condition, the PPS floc structure was well disrupted, resulting in void rate and fibre size diminishment after pretreatment. In addition, SCOD and VS removal were found to be 56% and 43.6%, respectively, after anaerobic digestion, being the peak value of VFA concentration determined as 1198 mg acetic acid L(-1). The anaerobic digestion efficiency of PPS with and without pretreatment was evaluated. The highest methane yield under optimal pretreatment conditions was 0.23 m(3) CH4/kgVS(add), being 134.2% of the control. The results indicated that MCE bio-pretreatment could be a cost-effective and environmentally sound method for producing methane from PPS.

  5. Fate of Malathion in an Activated Sludge Municipal Wastewater Treatment System

    DTIC Science & Technology

    2013-03-01

    1. The degradation of malathion by municipal WWTP AS a) The capacity for AS to degrade malathion b) Degradation kinetics of AS with respect to...abiotically. Sorption kinetics and isotherm experiments resulted in negligible malathion sorption to AS minimizing the potential for sludge...FATE OF MALATHION IN AN ACTIVATED SLUDGE MUNICIPAL WASTEWATER TREATMENT SYSTEM THESIS

  6. SUMMARY REPORT: THE CAUSES AND CONTROL OF ACTIVATED SLUDGE BULKING AND FOAMING

    EPA Science Inventory

    This 92-page Technology Transfer Summary Report provides reference material on the causes and controls of sludge bulking and foaming in activated sludge treatment that can be readily understood, and it includes sufficient detail to help plant operators control their systems. The ...

  7. Dynamic fouling behaviors of submerged nonwoven bioreactor for filtration of activated sludge with different SRT.

    PubMed

    Chuang, Shun-Hsing; Lin, Po-Kuen; Chang, Wei-Chin

    2011-09-01

    The flux variations and resistances accumulated during filtration of activated sludge with sludge retention time (SRT) of 15, 30, and 60 days were analyzed to investigate the dynamic fouling behavior in a submerged nonwoven bioreactor. Different SRT values varied sludge condition and particle size distribution in the supernatants, which caused dissimilar fouling characteristics. Short-term fouling of the nonwoven bioreactor during filtration of activated sludge with SRT of 15 days was fully reversible, and the resistance percentages of solutes, colloids, and suspended solids were 6%, 27%, and 67%, respectively. On the other hand, significant increases of colloid resistance, such as with the filtration of activated sludge with SRT of 30 and 60 days, were related to the occurrence of irreversible fouling. The phenomenon of pore blocking by particles or colloids with size analogous to the pore of nonwoven fabric was a decisive factor leading to irreversible fouling in the large-pore materials.

  8. Fenton peroxidation improves the drying performance of waste activated sludge.

    PubMed

    Dewil, Raf; Baeyens, Jan; Neyens, Elisabeth

    2005-01-31

    Advanced sludge treatment processes (AST) reduce the amount of sludge produced and improve the dewaterability, thus probably also affecting the heat transfer properties and the drying characteristics of the sludge. This paper studies the influence of the Fenton peroxidation on the thermal conductivity of the sludge. Results demonstrate that the Fenton's peroxidation positively influences the sludge cake consistency and hence enhances the mechanical dewaterability and the drying characteristics of the dewatered sludge. For the two sludges used in this study, i.e. obtained from the wastewater treatment plants (WWTP) of Tienen and Sint-Niklaas--the dry solids content of the mechanically dewatered sludge increased from 22.5% to 40.3% and from 18.7% to 35.2%, respectively. The effective thermal conductivity k(e) of the untreated and the peroxidized sludges is measured and used to determine the heat transfer coefficient h(s). An average improvement for k(e) of 16.7% (Tienen) and 5.8% (Sint-Niklaas) was observed. Consequently the value of h(s) increased with 15.6% (Tienen) and 5.0% (Sint-Niklaas). This increased heat transfer coefficient in combination with the increased dewaterability has direct implications on the design of sludge dryers. A plate-to-plate calculation of a multiple hearth dryer illustrates that the number of plates required to dry the peroxidized sludge to 90% DS is less than half the number of plates needed to dry untreated sludge. This results in reduced dryer dimensions or a higher capacity for an existing dryer of given dimensions.

  9. Recycle of valuable products from oily cold rolling mill sludge

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Zhang, Shen-gen; Tian, Jian-jun; Pan, De-an; Liu, Yang; Volinsky, Alex A.

    2013-10-01

    Oily cold rolling mill (CRM) sludge contains lots of iron and alloying elements along with plenty of hazardous organic components, which makes it as an attractive secondary source and an environmental contaminant at the same time. The compound methods of "vacuum distillation + oxidizing roasting" and "vacuum distillation + hydrogen reduction" were employed for the recycle of oily cold rolling mill sludge. First, the sludge was dynamically vacuum distilled in a rotating furnace at 50 r/min and 600°C for 3 h, which removed almost hazardous organic components, obtaining 89.2wt% ferrous resultant. Then, high purity ferric oxide powders (99.2wt%) and reduced iron powders (98.9wt%) were obtained when the distillation residues were oxidized and reduced, respectively. The distillation oil can be used for fuel or chemical feedstock, and the distillation gases can be collected and reused as a fuel.

  10. 6:2 fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants.

    PubMed

    Wang, Ning; Liu, Jinxia; Buck, Robert C; Korzeniowski, Stephen H; Wolstenholme, Barry W; Folsom, Patrick W; Sulecki, Lisa M

    2011-02-01

    The aerobic biotransformation of 6:2 FTS salt [F(CF2)6CH2CH2SO3- K+] was determined in closed bottles for 90d in diluted activated sludge from three waste water treatment plants (WWTPs) to compare its biotransformation potential with that of 6:2 FTOH [F(CF2)6CH2CH2OH]. The 6:2 FTS biotransformation was relatively slow, with 63.7% remaining at day 90 and all observed transformation products together accounting for 6.3% of the initial 6:2 FTS applied. The overall mass balance (6:2 FTS plus observed transformation products) at day 90 in live and sterile treatments averaged 70% and 94%, respectively. At day 90, the stable transformation products observed were 5:3 acid [F(CF2)5CH2CH2COOH, 0.12%], PFBA [F(CF2)3COOH, 0.14%], PFPeA [F(CF2)4COOH, 1.5%], and PFHxA [F(CF2)5COOH 1.1%]. In addition, 5:2 ketone [F(CF2)5C(O)CH3] and 5:2 sFTOH [F(CF2)5CH(OH)CH3] together accounted for 3.4% at day 90. The yield of all the stable transformation products noted above (2.9%) was 19 times lower than that of 6:2 FTOH in aerobic soil. Thus 6:2 FTS is not likely to be a major source of PFCAs and polyfluorinated acids in WWTPs. 6:2 FTOH, 6:2 FTA [F(CF2)6CH2COOH], and PFHpA [F(CF2)6COOH] were not observed during the 90-d incubation. 6:2 FTS primary biotransformation bypassed 6:2 FTOH to form 6:2 FTUA [F(CF2)5CF=CHCOOH], which was subsequently degraded via pathways similar to 6:2 FTOH biotransformation. A substantial fraction of initially dosed 6:2 FTS (24%) may be irreversibly bound to diluted activated sludge catalyzed by microbial enzymes. The relatively slow 6:2 FTS degradation in activated sludge may be due to microbial aerobic de-sulfonation of 6:2 FTS, required for 6:2 FTS further biotransformation, being a rate-limiting step in microorganisms of activated sludge in WWTPs.

  11. [Microbial composition of the activated sludges of the Moscow wastewater treatment plants].

    PubMed

    Kallistova, A Iu; Pimenov, N V; Kozlov, M N; Nikolaev, Iu A; Dorofeev, A G; Aseeva, V G; Grachev, V A; Men'ko, E V; Berestovskaia, Iu Iu; Nozhevnikova, A N; Kevbrina, M V

    2014-01-01

    The contribution of the major technologically important microbial groups (ammonium- and nitrite-oxidizing, phosphate-accumulating, foam-inducing, and anammox bacteria, as well as planctomycetes and methanogenic archaea) was characterized for the aeration tanks of the Moscow wastewater treatment facilities. FISH investigation revealed that aerobic sludges were eubacterial communities; the metabolically active archaea contributed insignificantly. Stage II nitrifying microorganisms and planctomycetes were significant constituents of the bacterial component of activated sludge, with Nitrobacter spp. being the dominant nitrifier. No metabolically active anammox bacteria were revealed in the sludge from aeration tanks. The sludge from the aeration tanks using different wastewater treatment technologies were found to differ in characteristics. Abundance of the nitrifying and phosphate-accumulating bacteria in the sludges generally correlated with microbial activity, in microcosms and with efficiency of nitrogen and phosphorus removal from wastewater. The highest microbial numbers and activity were found in the sludges of the tanks operating according to the technologies developed in the universities of Hanover and Cape Town. The activated sludge from the Novokur yanovo facilities, where abundant growth of filamentous bacteria resulted in foam formation, exhibited the lowest activity The group of foaming bacteria included Gordonia spp. and Acinetobacter spp., utilizing petroleum and motor oils, Sphaerotilus spp. utilizing unsaturated fatty acids, and Candidatus 'Microthrix parvicella'. Thus, the data on abundance and composition of metabolically active microorganisms obtained by FISH may be used for the technological control of wastewater treatment.

  12. Nitrogen removal from wastewater and external waste activated sludge reutilization/reduction by simultaneous sludge fermentation, denitrification and anammox (SFDA).

    PubMed

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Zhao, Mengyue; Wang, Shuying

    2016-08-01

    This work demonstrates the feasibility of simultaneous nitrogen removal and external waste activated sludge (WAS) reutilization/reduction by using the synergy of sludge fermentation, denitrification and anammox processes in up-flow reactors (SFDA). Pre-treated domestic wastewater and synthetic wastewater (containing nitrite ∼20mg/L, ammonium ∼10mg/L in both) were fed to 1# and 2# SFDA, respectively. Long-term operation of 1# SFDA was investigated with achieving the peak ammonium removal rate of 0.021 and nitrite removal rate of 0.081kgN/(m(3)d) as nitrogen loading rate elevated from 0.075 to 0.106kgN/(m(3)d). Negative effect of dissolved oxygen on anammox or fermentation in the 2# SFDA was demonstrated negligible due to rapid depletion by microorganisms. Furthermore, a "net" sludge reduction of 38.8% was obtained due to sludge decay and organics consumption by denitrification. The SFDA process was expected to potentially be used for nitrogen removal and WAS reutilization/reduction in full-scale application.

  13. Sewage sludge pretreatment by microwave irradiation combined with activated carbon fibre at alkaline pH for anaerobic digestion.

    PubMed

    Sun, Dedong; Guo, Sixiao; Ma, Nina; Wang, Guowen; Ma, Chun; Hao, Jun; Xue, Mang; Zhang, Xinxin

    2016-01-01

    This research focuses on the effects of microwave-assisted activated carbon fibre (ACF) (MW-ACF) treatment on sewage sludge at alkaline pH. The disintegration and biodegradability of sewage sludge were studied. It was found that the MW-ACF process at alkaline pH provided a rapid and efficient process to disrupt the microbial cells in the sludge. The results suggested that when irradiated at 800 W MW for 110 s with a dose of 1.0 g ACF/g solid concentration (SS) at pH 10.5, the MW-ACF pretreatment achieved 55% SS disintegration, 23% greater than the value of MW alone (32%). The concentration of total nitrogen, total phosphorus, supernatant soluble chemical oxygen demand, protein, and polysaccharide increased by 60%, 144%, 145%, 74%, and 77%, respectively. An increase in biogas production by 63.7% was achieved after 20 days of anaerobic digestion (AD), compared to the control. The results indicated that the MW-ACF pretreatment process at alkaline pH provides novel sludge management options in disintegration of sewage sludge for further AD.

  14. Selenite bioremediation potential of indigenous microorganisms from industrial activated sludge.

    PubMed

    Garbisu, C; Alkorta, I; Carlson, D E; Leighton, T; Buchanan, B B

    1997-12-01

    Ten bacterial strains were isolated from the activated sludge waste treatment system (BIOX) at the Exxon refinery in Benicia, California. Half of these isolates could be grown in minimal medium. When tested for selenite detoxification capability, these five isolates (members of the genera Bacillus, Pseudomonas, Enterobacter and Aeromonas), were capable of detoxifying selenite with kinetics similar to those of a well characterized Bacillus subtilis strain (168 Trp+) studied previously. The selenite detoxification phenotype of the Exxon isolates was stable to repeated transfer on culture media which did not contain selenium. Microorganisms isolated from the Exxon BIOX reactor were capable of detoxifying selenite. Treatability studies using the whole BIOX microbial community were also carried out to evaluate substrates for their ability to support growth and selenite bioremediation. Under the appropriate conditions, indigenous microbial communities are capable of remediating selenite in situ.

  15. Effects of titanium dioxide and zinc oxide nanoparticles on methane production from anaerobic co-digestion of primary and excess sludge.

    PubMed

    Zheng, Xiong; Wu, Lijuan; Chen, Yinguang; Su, Yinglong; Wan, Rui; Liu, Kun; Huang, Haining

    2015-01-01

    Anaerobic co-digestion of primary and excess sludge is regarded as an efficient way to reuse sludge organic matter to produce methane. In this study, short-term and long-term exposure experiments were conducted to investigate the possible effects of titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs) on methane production from anaerobic co-digestion of primary and excess sludge. The data showed that TiO2 NPs had no measurable impact on methane production, even at a high concentration (150 mg/g total suspended solids (TSS)). However, short-term (8 days) exposure to 30 or 150 mg/g-TSS of ZnO NPs significantly decreased methane production. More importantly, these negative effects of ZnO NPs on anaerobic sludge co-digestion were not alleviated by increasing the adaptation time to 105 days. Further studies indicated that the presence of ZnO NPs substantially decreased the abundance of methanogenic archaea, which reduced methane production. Meanwhile, the activities of some key enzymes involved in methane production, such as protease, acetate kinase, and coenzyme F420, were remarkably inhibited by the presence of ZnO NPs, which was also an important reason for the decreased methane production. These results provide a better understanding of the potential risks of TiO2 and ZnO NPs to methane production from anaerobic sludge co-digestion.

  16. Simultaneous production of biopesticide and alkaline proteases by Bacillus thuringiensis using sewage sludge as a raw material.

    PubMed

    Tyagi, R D; Sikati Foko, V; Barnabe, S; Vidyarthi, A S; Valéro, J R; Surampalli, R Y

    2002-01-01

    The simultaneous production of Bacillus thuringiensis (Bt) based biopesticide and proteases was studied using synthetic medium and wastewater sludge as a raw material. The studies were conducted in shake flask and computer controlled 15-L capacity fermentors. Measuring viable cell and spore counts, entomotoxicity and protease activity monitored the progress of the biopesticide production process. A higher viable cell count and spore count was observed in synthetic Soya medium, however, higher entomotoxicity and protease activity were observed in wastewater sludge medium. Thus, the wastewater sludge is a better raw material than commercial Soya medium for the biopesticides and enzyme production. The maximum entomotoxicity and protease activity observed in the fermentor was 9,332 IU/microL and 4.58 IU/mL, respectively. The proteases produced by Bt were also characterised. Two types of proteases were detected; neutral proteases with pH optimum 7.0 and alkaline proteases with pH optimum 10-11. Further, two types of alkaline proteases were detected; one having a pH and temperature optimum at 10 and 50 degrees C while the other at 11 and 70 degrees C. The protease thermal stability was found to increase in the presence of CaCl2, indicating the proteases were metalloproteases.

  17. Simultaneous biodegradation of bisphenol A and a biogenic substrate in semi-continuous activated sludge reactors.

    PubMed

    Ferro Orozco, A M; Contreras, E M; Zaritzky, N E

    2015-06-01

    In this work, the simultaneous degradation of BPA and cheese whey (CW) in semi-continuous activated sludge reactors was studied. The acclimation process and microbial growth on BPA, CW and BPA + CW were analyzed. In addition, the effect of increasing CW concentration on the BPA degradation by acclimated activated sludge was also studied. In order to reduce the factors involved in the analysis of the simultaneous degradation of BPA and CW, the effect of bisphenol A (BPA) on activated sludge not previously exposed to BPA (native activated sludge) was studied. Results demonstrate that BPA concentrations lower than 40 mg l(-1) had a negligible effect on the growth of native activated sludge. In the semi-continuous reactors, the presence of CW increased the acclimation time to 40 mg l(-1) of BPA. Once the capability of degrading BPA was acquired, the removal of BPA was not affected by the presence of CW. Increasing the CW concentration did not affect the removal of BPA by the acclimated activated sludge. Additionally, the CW consumption was not modified by the presence of BPA. Kinetic and stoichiometric coefficients reported in the present work can be useful in developing mathematical models to describe the simultaneous aerobic biodegradation of a biogenic substrate, such as CW, and BPA by activated sludge.

  18. The degradation of antibiotic amoxicillin in the Fenton-activated sludge combined system.

    PubMed

    Guo, Ruixin; Xie, Xiaodan; Chen, Jianqiu

    2015-01-01

    The present study investigated the removal efficiency of amoxicillin by the Fenton process, individual activated sludge process and Fenton-activated sludge combined system. For the antibiotic at 1 g L(-1), the optimal conditions of the Fenton process included: 4 mL FeSO4·7H2O solution (20.43 g  L(-1)), 6 mL H2O2 solution (3%) and 40°C. Under the optimal conditions, the removal rate of amoxicillin achieved up to 80% in 70 min. In addition, the impact of amoxicillin on microorganism limited the removal capacity of the activated sludge process. When the concentration of amoxicillin was less than 350 mg L(-1), 69.04-88.79% of the antibiotic was removed. However, the antibiotic could not be treated by the activated sludge when the concentration increased up to 650 mg L(-1). On the other hand, ifamoxicillin was pretreated partly by the Fenton process it was then degraded completely by the same activated sludge. Thus, the combined system included two steps: 80% amoxicillin was degraded in step I and was removed completely in the cheaper biological treatment (step II). Our result showed that compared with the individual activated sludge process, the Fenton process improved the removal capacity of the subsequent activated sludge process in the combined system.

  19. Modeling the utilization of starch by activated sludge for simultaneous substrate storage and microbial growth.

    PubMed

    Karahan, Ozlem; van Loosdrecht, Mark C M; Orhon, Derin

    2006-05-05

    This paper presents a mechanistic model incorporating microbial growth on external substrate with simultaneous formation of storage biopolymers (activated sludge model for growth and storage-ASMGS) for the utilization of starch by activated sludge. Model description and calibration utilized experimental data of an SBR fed with particulate native potato starch (NPS) and soluble starch (SolS) selected as model substrates. The fate of starch was monitored in a cycle together with glycogen and oxygen uptake rate (OUR) profiles. In the experiments, glycogen formation was significantly lower than predicted by total conversion of starch to glycogen, justifying the need to account for primary growth on starch. The proposed model basically modified Activated Sludge Model No.3 (ASM3), to include adsorption of starch, its hydrolysis and simultaneous growth and glycogen formation using the hydrolysis products, which was mainly maltose. Model simulations indicated hydrolysis of the adsorbed starch as the rate limiting process. The proposed model calibrated well the fate of all major model components, namely, starch, glycogen, and OUR. Particulate NPS and SolS were hydrolyzed with similar rates; however, primary and secondary growth processes on SolS were more efficient, with higher yields, due to the more easily utilizable products of SolS, both in terms of extracellular hydrolysis and of stored poly-glucose. Modeling with ASM3, assuming starch as either readily or slowly biodegradable, did not provide an equally acceptable fit for the glycogen and OUR curves; supporting the need to consider primary growth together with storage as defined in the proposed model.

  20. [Electricity production from surplus sludge using microbial fuel cells].

    PubMed

    Jia, Bin; Liu, Zhi-Hua; Li, Xiao-Ming; Yang, Yong-Lin; Yang, Qi; Zeng, Guang-Ming; Liu, Yi-Lin; Liu, Qian-Qian; Zheng, Shi-Wen

    2009-04-15

    A single-chamber and membrane-less microbial fuel cells were successfully started up using anaerobic sludge as inoculums without any chemical substance for 20 d. The electricity generation of the microbial fuel cell using surplus sludge as fuel and the change of substrate were investigated. The results showed that the obtained maximum voltage and power density were 495 mV and 44 mW x m(-2) (fixed 1,000 Omega), and the internal resistance was about 300 Omega during steady state. In a cycle, the removal efficiency of SS and VSS were 27.3% and 28.7%, pH was 6.5-8.0. In addition, the COD increased from 617 mg x L(-1) to 1,150 mg x L(-1) and decreased afterwards with time. The change of glucose was similar to that of COD, glucose increased from 47 mg x L(-1) to 60 mg x L(-1) and decreased afterwards with time. Consequently, the microbial fuel cell can transform chemical energy of surplus sludge into the cleanest electrical energy, and it provides a new way of sludge recycling.

  1. Gaseous fuels production from dried sewage sludge via air gasification.

    PubMed

    Werle, Sebastian; Dudziak, Mariusz

    2014-07-01

    Gasification is a perspective alternative method of dried sewage sludge thermal treatment. For the purpose of experimental investigations, a laboratory fixed-bed gasifier installation was designed and built. Two sewage sludge (SS) feedstocks, taken from two typical Polish wastewater treatment systems, were analysed: SS1, from a mechanical-biological wastewater treatment system with anaerobic stabilization (fermentation) and high temperature drying; and (SS2) from a mechanical-biological-chemical wastewater treatment system with fermentation and low temperature drying. The gasification results show that greater oxygen content in sewage sludge has a strong influence on the properties of the produced gas. Increasing the air flow caused a decrease in the heating value of the produced gas. Higher hydrogen content in the sewage sludge (from SS1) affected the produced gas composition, which was characterized by high concentrations of combustible components. In the case of the SS1 gasification, ash, charcoal, and tar were produced as byproducts. In the case of SS2 gasification, only ash and tar were produced. SS1 and solid byproducts from its gasification (ash and charcoal) were characterized by lower toxicity in comparison to SS2. However, in all analysed cases, tar samples were toxic.

  2. Co-digestion of glycerine and sewage sludge to optimise green electricity production.

    PubMed

    Maes, L; Weemaes, M; Hellinck, N; De Gueldre, G; Van De Steene, B

    2013-01-01

    Sewage sludge and crude glycerine were co-digested in the mesophilic digester of Hoogstraten wastewater treatment plant. Additions of up to 1 kg of crude glycerine/(m³ reactor).(day) were done without significant operational problems. At higher dosage, severe digester foaming was observed. Methane production during co-digestion was up to 20% higher than what would be expected based on the digester input. Compared to the period before glycerine dosage, every tonne of added crude glycerine resulted in a surplus methane production of 489 Nm³. The theoretical methane production from the used crude glycerine was 341 Nm³ per tonne. The difference is explained by a higher sewage sludge degradability during co-digestion with glycerine. Glycerine dosage can remedy the lowered specific biogas yield of sewage sludge in Flanders and consequently enhance green electricity production.

  3. Feasibility of a multi-component additive for efficient control of activated sludge filamentous bulking.

    PubMed

    Seka, A M; Van De Wiele, T; Verstraete, W

    2001-08-01

    Instantaneous improvement of the settling of bulking filamentous activated sludge can be achieved by the addition of a polymer or a large amount (up to 100% of the MLSS concentration) of talc powder to the sludge. Long-term improvement relies on repeated additions, as these additives have no adverse effects on the causative filaments. A multi-component additive was compared to the traditional additives in lab-scale activated sludge units using three highly filamentous sludges from different industrial treatment plants. The study demonstrated that the multi-component additive was superior to the traditional remedies. It was shown that, in the case of severe filamentous bulking, a single addition of the new additive immediately improved sludge settling and exerted a destructive effect on the causative filamentous bacteria. Thus, the latter additive also ensured a long-term sludge sedimentation improvement. The traditional additives exhibited an immediate and short-term effect. The novel additive also retarded sludge rising due to denitrification and it improved sludge dewaterability. The study revealed Nostocoido limicola II, with slightly hydrophobic cell wall, to be somewhat resistant to the quaternary ammonium salt present as biocide in the additive.

  4. Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production.

    PubMed

    Thangalazhy-Gopakumar, Suchithra; Al-Nadheri, Wail Mohammed Ahmed; Jegarajan, Dinesh; Sahu, J N; Mubarak, N M; Nizamuddin, S

    2015-02-01

    In this study, pyrolysis technique was utilized for converting palm oil sludge to value added materials: bio-oil (liquid fuel) and bio-char (soil amendment). The bio-oil yield obtained was 27.4±1.7 wt.% having a heating value of 22.2±3.7 MJ/kg and a negligible ash content of 0.23±0.01 wt.%. The pH of bio-oil was in alkaline region. The bio-char yielded 49.9±0.3 wt.%, which was further investigated for sorption efficiency by adsorbing metal (Cd(2+) ions) from water. The removal efficiency of Cd(2+) was 89.4±2%, which was almost similar to the removal efficiency of a commercial activated carbon. The adsorption isotherm was well described by Langmuir model. Therefore, pyrolysis is proved as an efficient tool for palm oil sludge management, where the waste was converted into valuable products.

  5. Removal performance and mechanism of ibuprofen from water by catalytic ozonation using sludge-corncob activated carbon as catalyst.

    PubMed

    Wang, Hongjuan; Zhang, Liqiu; Qi, Fei; Wang, Xue; Li, Lu; Feng, Li

    2014-09-01

    To discover the catalytic activity of sludge-corncob activated carbon in catalytic ozonation of Ibuprofen, the performance of sludge-corncob activated carbon and three selected commercial activated carbons as catalysts in catalytic ozonation was investigated. The observation indicates the degradation rate of Ibuprofen increases significantly in the presence of sludge-corncob activated carbon and the catalytic activity of sludge-corncob activated carbon is much higher than that of the other three commercial activated carbons. Ibuprofen's removal rate follows pseudo-first order kinetics model well. It is also found that the adsorption removal of Ibuprofen by sludge-corncob activated carbon is less than 30% after 40 min. And the removal efficiency of Ibuprofen in the hybrid ozone/sludge-corncob activated carbon system is higher than the sum of sludge-corncob activated carbon adsorption and ozonation alone, which is a supportive evidence for catalytic reaction. In addition, the results of radical scavenger experiments demonstrate that catalytic ozonation of Ibuprofen by sludge-corncob activated carbon follows a hydroxyl radical reaction pathway. During ozonation of Ibuprofen in the presence of activated carbon, ozone could be catalytically decomposed to form hydrogen peroxide, which can promote the formation of hydroxyl radical. The maximum amount of hydrogen peroxide occurs in the presence of sludge-corncob activated carbon, which can explain why sludge-corncob activated carbon has the best catalytic activity among four different activated carbons.

  6. Magnetic Fe3O4 nanoparticles induced effects on performance and microbial community of activated sludge from a sequencing batch reactor under long-term exposure.

    PubMed

    Ma, Bingrui; Wang, Sen; Li, Zhiwei; Gao, Mengchun; Li, Shanshan; Guo, Liang; She, Zonglian; Zhao, Yangguo; Zheng, Dong; Jin, Chunji; Wang, Xuejiao; Gao, Feng

    2017-02-01

    The performance and microbial community of activated sludge from a sequencing batch reactor (SBR) were investigated under long-term exposure of magnetic Fe3O4 nanoparticles (Fe3O4 NPs). The COD removal showed a slight decrease at 5-60mg/L Fe3O4 NPs compared to 0mg/L Fe3O4 NPs, whereas the NH4(+)-N removal had no obvious variation at 0-60mg/L Fe3O4 NPs. It was found that 10-60mg/L Fe3O4 NPs improved the denitrification process and phosphorus removal of activated sludge. The microbial enzymatic activities of activated sludge could be affected by Fe3O4 NPs, which had similar variation trends to the nitrogen and phosphorus removal rates of activated sludge. The reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) release demonstrated that Fe3O4 NPs led to the toxicity to activated sludge and destroyed the integrity of microbial cytomembrane. High throughput sequencing indicated that Fe3O4 NPs could obviously affect the microbial richness and diversity of activated sludge.

  7. Aerobic degradation of sulfanilic acid using activated sludge.

    PubMed

    Chen, Gang; Cheng, Ka Yu; Ginige, Maneesha P; Kaksonen, Anna H

    2012-01-01

    This paper evaluates the aerobic degradation of sulfanilic acid (SA) by an acclimatized activated sludge. The sludge was enriched for over three months with SA (>500 mg/L) as the sole carbon and energy source and dissolved oxygen (DO, >5mg/L) as the primary electron acceptor. Effects of aeration rate (0-1.74 L/min), DO concentration (0-7 mg/L) and initial SA concentration (104-1085 mg/L) on SA biodegradation were quantified. A modified Haldane substrate inhibition model was used to obtain kinetic parameters of SA biodegradation and oxygen uptake rate (OUR). Positive linear correlations were obtained between OUR and SA degradation rate (R(2)≥ 0.91). Over time, the culture consumed more oxygen per SA degraded, signifying a gradual improvement in SA mineralization (mass ratio of O(2): SA at day 30, 60 and 120 were 0.44, 0.51 and 0.78, respectively). The concomitant release of near stoichiometric quantity of sulphate (3.2 mmol SO(4)(2-) released from 3.3 mmol SA) and the high chemical oxygen demand (COD) removal efficacy (97.1%) indicated that the enriched microbial consortia could drive the overall SA oxidation close to a complete mineralization. In contrast to other pure-culture systems, the ammonium released from the SA oxidation was predominately converted into nitrate, revealing the presence of ammonium-oxidizing bacteria (AOB) in the mixed culture. No apparent inhibitory effect of SA on the nitrification was noted. This work also indicates that aerobic SA biodegradation could be monitored by real-time DO measurement.

  8. Activated Sludge. Selected Instructional Activities and References. Instructional Resources Monograph Series.

    ERIC Educational Resources Information Center

    Shepard, Clinton L.; Walasek, James B.

    This monograph contains a variety of selected materials related to wastewater treatment and water quality education and instruction. Part I presents a brief discussion of the activated sludge process in wastewater treatment operations. Part II, Instructional Units, contains selected portions of existing programs which may be utilized in…

  9. Development of an ATP measurement method suitable for xenobiotic treatment activated sludge biomass.

    PubMed

    Nguyen, Lan Huong; Chong, Nyuk-Min

    2015-09-01

    Activated sludge consumes a large amount of energy to degrade a xenobiotic organic compound. By tracking the energy inventory of activated sludge biomass during the sludge's degradation of a xenobiotic, any disadvantageous effect on the sludge's performance caused by energy deficiency can be observed. The purpose of this study was to develop a reliable and accurate method for measuring the ATP contents of activated sludge cells that were to degrade a xenobiotic organic. Cell disruption and cellular ATP extraction were performed by a protocol with which xenobiotic degrading activated sludge biomass was washed with SDS, treated by Tris and TCA, and followed by bead blasting. The suspension of disrupted cells was filtered before the filtrate was injected into HPLC that was set at optimal conditions to measure the ATP concentration therein. This extraction protocol and HPLC measurement of ATP was evaluated for its linearity, limits of detection, and reproducibility. Evaluation test results reported a R(2) of 0.999 of linear fit of ATP concentration versus activated sludge concentration, a LOD=0.00045mg/L, a LOQ=0.0015mg/L for HPLC measurement of ATP, a MDL=0.46mg/g SS for ATP extraction protocol, and a recovery efficiency of 96.4±2%. This method of ATP measurement was simple, rapid, reliable, and was unburdened of some limitations other methods may have.

  10. Improving methane production and phosphorus release in anaerobic digestion of particulate saline sludge from a brackish aquaculture recirculation system.

    PubMed

    Zhang, Xuedong; Ferreira, Rui B; Hu, Jianmei; Spanjers, Henri; van Lier, Jules B

    2014-06-01

    In this study, batch tests were conducted to examine the effects of trehalose and glycine betaine as well as potassium on the specific methanogenic activity (SMA), acid and alkaline phosphatase activity of anaerobic biomass and phosphorus release in anaerobic digestion of saline sludge from a brackish recirculation aquaculture system. The results of ANOVA and Tukey's HSD (honestly significant difference) tests showed that glycine betaine and trehalose enhanced SMA of anaerobic biomass and reactive phosphorus release from the particulate waste. Moreover, SMA tests revealed that methanogenic sludge, which was long-term acclimatized to a salinity level of 17 g/L was severely affected by the increase in salinity to values exceeding 35 g/L. Addition of compatible solutes, such as glycine betaine and trehalose, could be used to enhance the specific methane production rate and phosphorus release in anaerobic digestion from particulate organic waste produced in marine or brackish aquaculture recirculation systems.

  11. Aerobic and anaerobic bioprocessing of activated sludge: floc disintegration by enzymes.

    PubMed

    Ayol, Azize; Filibeli, Ayse; Sir, Diclehan; Kuzyaka, Ersan

    2008-11-01

    Hydrolytic enzymes such as glucosidases, lipases, and proteases have an imperative function at the hydrolysis stage of complex organic structures in the degradation of biodegradable particulate organic matter. As a key factor, extracellular polymeric substances (EPS) control the extracellular hydrolytic enzymes in this degradation mechanism. A flocculated matrix of EPS bridging with bacteria holds back the dewaterability properties of the bioprocessed sludges. Disruption of the flocculated matrix leads to improved solubilization of sludge solids by attacking the hydrolytic enzymes to polymeric substances forming enzyme-substrate complexes. To determine the floc disintegration mechanisms by enzymes during aerobic and anaerobic bioprocessing of sludges, experimental data obtained from three aerobic digesters and three anaerobic digesters were evaluated. As part of a broader project examining the overall fate and effects of hydrolytic enzymes in biological sludge stabilization, this paper compares the performances of aerobic and anaerobic reactors used in this study and reports significant improvements in enzymatic treatment of activated sludge.

  12. Utilization of sludge palm oil as a novel substrate for biosurfactant production.

    PubMed

    Wan Nawawi, Wan Mohd Fazli; Jamal, Parveen; Alam, Md Zahangir

    2010-12-01

    This paper introduces sludge palm oil (SPO) as a novel substrate for biosurfactant production by liquid state fermentation. Potential strains of microorganism were isolated from various hydrocarbon-based sources at palm oil mill and screened for biosurfactant production with the help of drop collapse method and surface tension activity. Out of 22 isolates of microorganism, the strain S02 showed the highest bacterial growth with a surface tension of 36.2 mN/m and was therefore, selected as a potential biosurfactant producing microorganism. Plackett-Burman experimental design was employed to determine the important nutritional requirement for biosurfactant production by the selected strain under controlled conditions. Six out of 11 factors of the production medium were found to significantly affect the biosurfactant production. K(2)HPO(4) had a direct proportional correlation with the biosurfactant production while sucrose, glucose, FeSO(4), MgSO(4), and NaNO(3) showed inversely proportional relationship with biosurfactant production in the selected experimental range.

  13. Biodegradation of an Organophosphate Chemical Warfare Agent Simulant by Activated Sludge with Varying Solid Retention Times

    DTIC Science & Technology

    2013-03-21

    coefficient close to that of VX, which may yield similar sorption kinetics between the two. Walters (2013) found that sorption of malathion to the activated...weapons in the activated sludge or under what conditions this removal is optimal. This study examined the fate of malathion , a surrogate compound for...activated sludge process in wastewater treatment facilities. Results show that a constant influent of malathion will be removed from the effluent

  14. [Using Excess Activated Sludge Treated 4-Chlorophenol Contained Waste Water to Cultivate Chlorella vulgaris].

    PubMed

    Wang, Lu; Chen, Xiu-rong; Yan, Long; He, Yi-xuan; Shi, Zhen-dong

    2015-04-01

    Using different rations of sludge extracts and supernate from 4-Chlorophenol (4-CP) simulated wastewater's excess sludge after centrifugation to cultivate the Chlorella vulgaris to achieve the goal of excess sludge utilization together with chlorella cultivating. The experiments were performed in 500 mL flasks with different rations of sludge extracts & BG-11 and supernate & BG-11 in a light growth chamber respectively. Number of algal cells, Chlorophyll, enzyme activity, oil and water total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), toxicity index were investigated. Result showed that the nutrition supplies and toxicity in the excess sludge were removed efficiently via Chlorella vulgaris, the removal rates of TN and TP were at least 40% and 90% respectively; After 10 days cultivation, the density growth of 50% sludge extracts was 20 times higher of the beginning while its chlorophyll content was lower than that of the blank group. Sludge extracts could promote the proliferation of algae, but were not conducive to the synthesis of chlorophyll. The quantity of SOD in per cell showed Chlorella vulgaris gave a positive response via stimulation from toxicant in sludge extracts and supernate. The best time for collecting chlorella vulgaris was the fifth day of cultivation, taking neutral oil accumulation as the evaluating indicator for its utilization combined with the removal of supplies and toxicity.

  15. Anaerobic waste-activated sludge digestion - A bioconversion mechanism and kinetic model

    SciTech Connect

    Shimizu, Tatsuo; Kudo, Kenzo; Nasu, Yoshikazu )

    1993-05-01

    The anaerobic bioconversion of raw and mechanically lysed waste-activated sludge was kinetically investigated. The hydrolysis of the biopolymers, such as protein, which leaked out from the biological sludge with ultrasonic lysis, was a first-order reaction in anaerobic digestion and the rate constant was much higher than the decay rate constant of the raw waste activated sludge. An anaerobic digestion model that is capable of evaluating the effect of the mechanical sludge lysis on digestive performance was developed. The present model includes four major biological processes - the release of intracellular matter with sludge lysis; hydrolysis of biopolymers to volatile acids; the degradation of various volatile acids to acetate; and the conversion of acetate and hydrogen to methane. Each process was assumed to follow first-order kinetics. The model approximately simulated the overall process performance of the anaerobic digestion of waste-activated sludge. The model suggested that when the lysed waste-activated sludge was fed, the overall digestive performance remarkably increased in the two-phase system consisting of an acid forming process and a methanogenic process, which ensured the symbiotic growth of acetogenic and methanogenic bacteria.

  16. Utilization of spent activated carbon to enhance the combustion efficiency of organic sludge derived fuel.

    PubMed

    Chen, Wei-Sheng; Lin, Chang-Wen; Chang, Fang-Chih; Lee, Wen-Jhy; Wu, Jhong-Lin

    2012-06-01

    This study examines the heating value and combustion efficiency of organic sludge derived fuel, spent activated carbon derived fuel, and derived fuel from a mixture of organic sludge and spent activated carbon. Spent activated carbon was sampled from an air pollution control device of an incinerator and characterized by XRD, XRF, TG/DTA, and SEM. The spent activated carbon was washed with deionized water and solvent (1N sulfuric acid) and then processed by the organic sludge derived fuel manufacturing process. After washing, the salt (chloride) and sulfide content could be reduced to 99% and 97%, respectively; in addition the carbon content and heating value were increased. Different ratios of spent activated carbon have been applied to the organic sludge derived fuel to reduce the NO(x) emission of the combustion.

  17. Anaerobic waste activated sludge co-digestion with olive mill wastewater.

    PubMed

    Athanasoulia, E; Melidis, P; Aivasidis, A

    2012-01-01

    Co-digestion of waste activated sludge (WAS) with agro-industrial organic wastewaters is a technology that is increasingly being applied in order to produce increased gas yield from the biomass. In this study, the effect of olive mill wastewater (OMW) on the performance of a cascade of two anaerobic continuous stirred tank (CSTR) reactors treating thickened WAS at mesophilic conditions was investigated. The objectives of this work were (a) to evaluate the use of OMW as a co-substrate to improve biogas production, (b) to determine the optimum hydraulic retention time that provides an optimised biodegradation rate or methane production, and (c) to study the system stability after OMW addition in sewage sludge. The biogas production rate at steady state conditions reached 0.73, 0.63, 0.56 and 0.46 l(biogas)/l(reactor)/d for hydraulic retention times (HRTs) of 12.3, 14, 16.4 and 19.7 d. The average removal of soluble chemical oxygen demand (sCOD) ranged between 64 and 72% for organic loading rates between 0.49 and 0.75 g sCOD/l/d. Reduction in the volatile suspended solids ranged between 27 and 30%. In terms of biogas selectivity, values of 0.6 l(biogas)/g tCOD removed and 1.1 l(biogas)/g TVS removed were measured.

  18. Valorizing recycled paper sludge by a bioethanol production process with cellulase recycling.

    PubMed

    Gomes, Daniel; Domingues, Lucília; Gama, Miguel

    2016-09-01

    The feasibility of cellulase recycling in the scope of bioethanol production from recycled paper sludge (RPS), an inexpensive byproduct with around 39% of carbohydrates, is analyzed. RPS was easily converted and fermented by enzymes and cells, respectively. Final enzyme partition between solid and liquid phases was investigated, the solid-bound enzymes being efficiently recovered by alkaline washing. RPS hydrolysis and fermentation was conducted over four rounds, recycling the cellulases present in both fractions. A great overall enzyme stability was observed: 71, 64 and 100% of the initial Cel7A, Cel7B and β-glucosidase activities, respectively, were recovered. Even with only 30% of fresh enzymes added on the subsequent rounds, solid conversions of 92, 83 and 71% were achieved for the round 2, 3 and 4, respectively. This strategy enabled an enzyme saving around 53-60%, while can equally contribute to a 40% reduction in RPS disposal costs.

  19. Tar-free fuel gas production from high temperature pyrolysis of sewage sludge

    SciTech Connect

    Zhang, Leguan; Xiao, Bo; Hu, Zhiquan; Liu, Shiming Cheng, Gong; He, Piwen; Sun, Lei

    2014-01-15

    Highlights: • High temperature pyrolysis of sewage sludge was efficient for producing tar-free fuel gas. • Complete tar removal and volatile matter release were at elevated temperature of 1300 °C. • Sewage sludge was converted to residual solid with high ash content. • 72.60% of energy conversion efficiency for gas production in high temperature pyrolysis. • Investment and costing for tar cleaning were reduced. - Abstract: Pyrolysis of sewage sludge was studied in a free-fall reactor at 1000–1400 °C. The results showed that the volatile matter in the sludge could be completely released to gaseous product at 1300 °C. The high temperature was in favor of H{sub 2} and CO in the produced gas. However, the low heating value (LHV) of the gas decreased from 15.68 MJ/N m{sup 3} to 9.10 MJ/N m{sup 3} with temperature increasing from 1000 °C to 1400 °C. The obtained residual solid was characterized by high ash content. The energy balance indicated that the most heating value in the sludge was in the gaseous product.

  20. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    SciTech Connect

    Kheradmand, S.; Karimi-Jashni, A.; Sartaj, M.

    2010-06-15

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD{sub rem} for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

  1. How does the entering of copper nanoparticles into biological wastewater treatment system affect sludge treatment for VFA production.

    PubMed

    Chen, Hong; Chen, Yinguang; Zheng, Xiong; Li, Xiang; Luo, Jingyang

    2014-10-15

    Usually the studies regarding the effect of engineered nanoparticles (NPs), which are released to wastewater treatment plant, on sludge anaerobic treatment in the literature have been conducted by directly adding NPs to sludge treatment system. Actually, NPs must enter into the wastewater treatment facility from influent before sludge being treated. Thus, the documented results can not reflect the real situations. During sludge anaerobic treatment for producing volatile fatty acids (VFA, the preferred carbon source for wastewater biological nutrient removal), it was found in this study that the entering of CuNPs to biological wastewater treatment system had no significant effect on sludge-derived VFA generation, while direct addition of CuNPs to sludge fermentation reactor caused a much lower VFA production, when compared to the control test. Further investigation revealed that the entering of CuNPs into wastewater biological treatment system improved sludge solubilization due to the decline of sludge particle size and the increase of sludge microorganism cells breakage. In addition, there was no obvious influence on hydrolysis, while significant inhibition was observed on acidification, resulting in the final VFA production similar to the control. When CuNPs were directly added to the fermentation system, the solubilization was little influenced, however the hydrolysis and acidification were seriously inhibited, causing the ultimate VFA generation decreased. Therefore, selecting proper method close to the real situation is vital to accurately assess the toxicity of nanoparticles on sludge anaerobic fermentation.

  2. Simultaneous fluorescent gram staining and activity assessment of activated sludge bacteria.

    PubMed

    Forster, Scott; Snape, Jason R; Lappin-Scott, Hilary M; Porter, Jonathan

    2002-10-01

    Wastewater treatment is one of the most important commercial biotechnological processes, and yet the component bacterial populations and their associated metabolic activities are poorly understood. The novel fluorescent dye hexidium iodide allows assessment of Gram status by differential absorption through bacterial cell walls. Differentiation between gram-positive and gram-negative wastewater bacteria was achieved after flow cytometric analysis. This study shows that the relative proportions of gram-positive and gram-negative bacterial cells identified by traditional microscopy and hexidium iodide staining were not significantly different. Dual staining of cells for Gram status and activity proved effective in analyzing mixtures of cultured bacteria and wastewater populations. Levels of highly active organisms at two wastewater treatment plants, both gram positive and gram negative, ranged from 1.5% in activated sludge flocs to 16% in the activated sludge fluid. Gram-positive organisms comprised <5% of the total bacterial numbers but accounted for 19 and 55% of the highly active organisms within flocs at the two plants. Assessment of Gram status and activity within activated sludge samples over a 4-day period showed significant differences over time. This method provides a rapid, quantitative measure of Gram status linked with in situ activity within wastewater systems.

  3. Formation and degradation of valuable intermediate products during wet oxidation of municipal sludge.

    PubMed

    Baroutian, Saeid; Gapes, Daniel J; Sarmah, Ajit K; Farid, Mohammed M; Young, Brent R

    2016-04-01

    The current study investigated the formation of organic acids and alcohols as major intermediate products of wet oxidation of municipal sludge. Municipal sludge was subjected to 60-min wet oxidation at temperatures ranging from 220 to 240°C, with 20bar oxygen partial pressure. Acetic acid was the main intermediate compound produced in this study, followed by propionic, n-butyric, iso-butyric and pentanoic acids and methanol. It was found that the process severity has a significant influence on the formation and degradation of these intermediate products.

  4. Earthworms facilitate the stabilization of pelletized dewatered sludge through shaping microbial biomass and activity and community.

    PubMed

    Fu, Xiaoyong; Cui, Guangyu; Huang, Kui; Chen, Xuemin; Li, Fusheng; Zhang, Xiaoyu; Li, Fei

    2016-03-01

    In this study, the effect of earthworms on microbial features during vermicomposting of pelletized dewatered sludge (PDS) was investigated through comparing two degradation systems with and without earthworm E isenia fetida involvement. After 60 days of experimentation, a relatively stable product with low organic matter and high nitrate and phosphorous was harvested when the earthworms were involved. During the process, earthworms could enhance microbial activity and biomass at the initial stage and thus accelerating the rapid decomposition of PDS. The end products of vermicomposting allowed the lower values of bacterial and eukaryotic densities comparison with those of no earthworm addition. In addition, the presence of earthworms modified the bacterial and fungal diversity, making the disappearances of some pathogens and specific decomposing bacteria of recalcitrant substrates in the vermicomposting process. This study evidences that earthworms can facilitate the stabilization of PDS through modifying microbial activity and number and community during vermicomposting.

  5. Volatile fatty acids produced by co-fermentation of waste activated sludge and henna plant biomass.

    PubMed

    Huang, Jingang; Zhou, Rongbing; Chen, Jianjun; Han, Wei; Chen, Yi; Wen, Yue; Tang, Junhong

    2016-07-01

    Anaerobic co-fermentation of waste activated sludge (WAS) and henna plant biomass (HPB) for the enhanced production of volatile fatty acids (VFAs) was investigated. The results indicated that VFAs was the main constituents of the released organics; the accumulation of VFAs was much higher than that of soluble carbohydrates and proteins. HPB was an advantageous substrate compared to WAS for VFAs production; and the maximum VFAs concentration in an HPB mono-fermentation system was about 2.6-fold that in a WAS mono-fermentation system. In co-fermentation systems, VFAs accumulation was positively related to the proportion of HPB in the mixed substrate, and the accumulated VFAs concentrations doubled when HPB was increased from 25% to 75%. HPB not only adjust the C/N ratio; the associated and/or released lawsone might also have a positive electron-shuttling effect on VFAs production.

  6. Novel insights into enhanced dewaterability of waste activated sludge by Fe(II)-activated persulfate oxidation.

    PubMed

    Zhen, Guangyin; Lu, Xueqin; Li, Yuyou; Zhao, Youcai; Wang, Baoying; Song, Yu; Chai, Xiaoli; Niu, Dongjie; Cao, Xianyan

    2012-09-01

    The potential of Fe(II)-activated persulfate (S(2)O(8)(2-)) oxidation on enhancing the dewaterability of sludge flocs from 3-full scale wastewater treatment plants (WWTPs) were investigated. Normalized capillary suction time (CST) was applied to evaluate sludge dewaterability. Both extracellular polymeric substances (EPS) and metabolic activity of microorganisms were determined to explore the responsible mechanism. Fe(II)-S(2)O(8)(2-) oxidation effectively improved sludge dewaterability. The most important mechanisms were proposed to be the degradation of EPS incorporated in sludge flocs and rupture of microbial cells. Three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy confirmed that the powerful SO(4)(-) from Fe(II)-S(2)O(8)(2-) system destroyed the particular functional groups of fluorescing substances (i.e., aromatic protein-, tryptophan protein-, humic- and fulvic-like substances) in EPS and caused cleavage of linkages in the polymeric backbone and simultaneous destruction of microbial cells, resulting in the release of EPS-bound water, intracellular materials and water of hydration inside cells, and subsequent enhancement of dewaterability.

  7. Combined System of Activated Sludge and Ozonation for the Treatment of Kraft E1 Effluent

    PubMed Central

    Assalin, Marcia Regina; dos Santos Almeida, Edna; Durán, Nelson

    2009-01-01

    The treatment of paper mill effluent for COD, TOC, total phenols and color removal was investigated using combined activated sludge-ozonation processes and single processes. The combined activated sludge-O3/pH 10 treatment was able to remove around 80% of COD, TOC and color from Kraft E1 effluent. For the total phenols, the efficiency removal was around 70%. The ozonation post treatment carried out at pH 8.3 also showed better results than the single process. The COD, TOC, color and total phenols removal efficiency obtained were 75.5, 59.1, 77 and 52.3%, respectively. The difference in the concentrations of free radical produced by activated sludge-O3/pH 10 and activated sludge-O3/pH 8.3 affected mainly the TOC and total phenol removal values. PMID:19440438

  8. Effect of natural zeolite on methane production for anaerobic digestion of ammonium rich organic sludge.

    PubMed

    Tada, Chika; Yang, Yingnan; Hanaoka, Toshiaki; Sonoda, Akinari; Ooi, Kenta; Sawayama, Shigeki

    2005-03-01

    The effect of an inorganic additive on the methane production from NH(4+)-rich organic sludge during anaerobic digestion was investigated using different kinds of inorganic adsorbent zeolites (mordenite, clinoptilolite, zeolite 3A, zeolite 4A), clay mineral (vermiculite), and manganese oxides (hollandite, birnessite). The additions of inorganic materials resulted in significant NH4+ removals from the natural organic sludge ([NH4+]=1, 150 mg N/l), except for the H-type zeolite 3A and birnessite. However, an enhanced methane production was only achieved using natural mordenite. Natural mordenite also enhanced the methane production from the sludge with a markedly high NH4+ concentration (4500 mg N/l) during anaerobic digestion. Chemical analyses of the sludge after the digestion showed considerable increases in the Ca2+ and Mg2+ concentrations in the presence of natural mordenite, but not with synthetic zeolite 3A. The effect of Ca2+ or Mg2+ addition on the methane production was studied using Na(+)-exchanges mordenite and Ca2+ or Mg(2+)-enriched sludge. The simultaneous addition of Ca2+ ions and Na(+)-exchanged mordenite enhanced the methane production; the amount of produced methane was about three times greater than that using only the Na(+)-exchanged mordenite. In addition, comparing the methane production by the addition of natural mordenite or Ca2+ ions, the methane production with natural mordenite was about 1.7 times higher than that with only Ca2+ ions. The addition of 5% and 10% natural mordenite were suitable condition for obtaining a high methane production. These results indicated that the Ca2+ ions, which are released from natural mordenite by a Ca2+/NH4+ exchange, enhanced the methane production of the organic waste at a high NH4+ concentration. Natural mordenite has a synergistic effect on the Ca2+ supply as well on the NH4+ removal during anaerobic digestion, which is effective for the mitigation of NH4+ inhibition against methane production.

  9. Effect of activator on the structure and desulphurization efficiency of sludge-activated carbon.

    PubMed

    Li, Fen; Yan, Bo; Zhang, Yanping; Zhang, Linhuan; Lei, Tao

    2014-01-01

    Sludge-activated carbons (SACs) prepared with excess of activated sludge are used to solve the problems of sludge disposal and odour pollution in a sewage treatment plant. For the preparation, ZnCl2, KOH and H2SO4 are used as activators, respectively. The structure of the SACs are characterized by scanning electron microscope, X-ray photoelectron spectrometer, specific surface area and pore structure technologies, and the adsorption performance of H2S is investigated. Results indicate that the desulphurization activity of SACs, whose activators are ZnCl2 and KOH (SACZ and SACK), is better than that of carbon with H2SO4 as the activator (SACH). The breakthrough time of SACZ and SACK is up to 86 min, the sulphur capacity is 7.7 mg/cm3, and the maximal iodine value is 409.95 mg/g. While the breakthrough time of SACH is only 26 min with the sulphur capacity of 2.3 mg/cm3. A large percentage of pore volume with a diameter of 2-5 nm in the total pore volume is conductive to the desulphurization reaction. The large amount of surface acid functional groups is also helpful to the adsorption of H2S. The desulphurization activity of SACZ and SACK is superior over that of commercial-activated carbon.

  10. Effect of heat-alkaline treatment as a pretreatment method on volatile fatty acid production and protein degradation in excess sludge, pure proteins and pure cultures.

    PubMed

    Tan, Reasmey; Miyanaga, Kazuhiko; Uy, Davin; Tanji, Yasunori

    2012-08-01

    This study investigated the effect of heat-alkaline treatment (HAT) at pH 11 and 60 °C on volatile fatty acid (VFA) production and protein degradation in excess sludge, soluble and insoluble proteins, and pure cultures. In addition, quantification of bacteria present in the sludge was also examined. Experimental results showed that following acid fermentation under pH 7 and 37 °C, HAT enhanced VFA production in excess sludge, albumin, and Gram-negative bacteria, but not in casein or Gram-positive bacteria. Protein solubility was therefore found not to be the main criteria for VFA production. In the protein analysis, it was shown that the outer membrane protein (OmpC) of Escherichia coli K12 was resistant to chemical and enzymatic hydrolysis. Gram staining revealed that Gram-negative bacteria were predominant in the activated sludge used in this study. In addition, the bacteria present in the activated sludge comprised only 10% of mixed liquor suspended solids (MLSS) by quantitative PCR.

  11. Assessment of active methanogenic archaea in a methanol-fed upflow anaerobic sludge blanket reactor.

    PubMed

    Cerrillo, Míriam; Morey, Lluís; Viñas, Marc; Bonmatí, August

    2016-12-01

    Methanogenic archaea enrichment of a granular sludge was undertaken in an upflow anaerobic sludge blanket (UASB) reactor fed with methanol in order to enrich methylotrophic and hydrogenotrophic methanogenic populations. A microbial community assessment, in terms of microbial composition and activity-throughout the different stages of the feeding process with methanol and acetate-was performed using specific methanogenic activity (SMA) assays, quantitative real-time polymerase chain reaction (qPCR), and high-throughput sequencing of 16S ribosomal RNA (rRNA) genes from DNA and complementary DNA (cDNA). Distinct methanogenic enrichment was revealed by qPCR of mcrA gene in the methanol-fed community, being two orders of magnitude higher with respect to the initial inoculum, achieving a final mcrA/16S rRNA ratio of 0.25. High-throughput sequencing analysis revealed that the resulting methanogenic population was mainly composed by methylotrophic archaea (Methanomethylovorans and Methanolobus genus), being also highly active according to the RNA-based assessment. SMA confirmed that the methylotrophic pathway, with a direct conversion of methanol to CH4, was the main step of methanol degradation in the UASB. The biomass from the UASB, enriched in methanogenic archaea, may bear great potential as additional inoculum for bioreactors to carry out biogas production and other related processes.

  12. Potential of predominant activated sludge bacteria as recipients in conjugative plasmid transfer.

    PubMed

    Inoue, Daisuke; Sei, Kazunari; Soda, Satoshi; Ike, Michihiko; Fujita, Masanori

    2005-12-01

    We investigated the possibility of conjugative plasmid transfer to the predominant bacteria in activated sludge and the factors influencing the transfer frequency in the activated sludge process. We performed conjugative transfers of a self-transmissible, broad-host-range plasmid RP4 from Escherichia coli C600 to activated sludge bacteria by broth mating. Most of the activated sludge bacteria tested could acquire plasmid RP4, although the transfer frequencies varied from 8.8 x 10(-7) to 1.3 x 10(-2) transconjugants per recipient. The transfer frequencies in several strains were similar to, or higher than, that in intraspecific transfer to E. coli HB101. Matings under various environmental conditions showed that factors relevant to physiological activity, such as temperature and nutrient conditions, seemed to affect the transfer frequency. In addition, conjugative transfer was detected even in filtered raw and treated wastewaters. Thus, the predominant activated sludge bacteria seem to have sufficient potential as recipients in conjugative plasmid transfer under the conditions likely to occur in the activated sludge process. Transfer frequency was reduced by agitation in the presence of suspended solid. This may suggest that conjugative plasmid transfer is physically inhibited in aeration tanks.

  13. Interference sources in ATP bioluminescence assay of silica nanoparticle toxicity to activated sludge.

    PubMed

    Sibag, Mark; Kim, Seung Hwan; Kim, Choah; Kim, Hee Jun; Cho, Jinwoo

    2015-06-01

    ATP measurement provides an overview of the general state of microbial activity, and thus it has proven useful for the evaluation of nanoparticle toxicity in activated sludge. ATP bioluminescence assay, however, is susceptible to interference by the components of activated sludge other than biomass. This paper presents the interference identified specific to the use of this assay after activated sludge respiration inhibition test of silica nanoparticles (OECD 209). We observed a high degree of interference (90%) in the presence of 100 mg/L silica nanoparticles and a low level of ATP being measured (0.01 μM); and 30% interference by the synthetic medium regardless of silica nanoparticle concentration and ATP level in the samples. ATP measurement in activated sludge with different MLSS concentrations revealed interference of high biomass content. In conclusion, silica nanoparticles, synthetic medium and activated sludge samples themselves interfere with ATP bioluminescence; this will need to be considered in the evaluation of silica nanoparticle toxicity to activated sludge when this type of assay is used.

  14. Life cycle assessment of advanced bioethanol production from pulp and paper sludge.

    PubMed

    Sebastião, Diogo; Gonçalves, Margarida S; Marques, Susana; Fonseca, César; Gírio, Francisco; Oliveira, Ana C; Matos, Cristina T

    2016-05-01

    This work evaluates the environmental performance of using pulp and paper sludge as feedstock for the production of second generation ethanol. An ethanol plant for converting 5400 tons of dry sludge/year was modelled and evaluated using a cradle-to-gate life cycle assessment approach. The sludge is a burden for pulp and paper mills that is mainly disposed in landfilling. The studied system allows for the valorisation of the waste, which due to its high polysaccharide content is a valuable feedstock for bioethanol production. Eleven impact categories were analysed and the results showed that enzymatic hydrolysis and neutralisation of the CaCO3 are the environmental hotspots of the system contributing up to 85% to the overall impacts. Two optimisation scenarios were evaluated: (1) using a reduced HCl amount in the neutralisation stage and (2) co-fermentation of xylose and glucose, for maximal ethanol yield. Both scenarios displayed significant environmental impact improvements.

  15. Biodegradability and methane production from secondary paper and pulp sludge: effect of fly ash and modeling.

    PubMed

    Huiliñir, César; Montalvo, Silvio; Guerrero, Lorna

    2015-01-01

    The effect of fly ash on biodegradability and methane production from secondary paper and pulp sludge, including its modeling, was evaluated. Three tests with fly ash concentrations of 0, 10 and 20 mg/L were evaluated at 32 °C. Methane production was modeled using the modified Gompertz equation. The results show that the doses used produce a statistically significant increase of accumulated methane, giving values greater than 225 mL of CH4 per gram of volatile solids (VS) added, and 135% greater than that obtained in the control assay. Biodegradability of VS increased 143% with respect to the control assays, giving values around 43%. The modified Gompertz model can describe well methane generation from residual sludge of the paper industry water treatment, with parameter values between those reported in the literature. Thus, the addition of fly ash to the process causes a significant increase of accumulated methane and VS removal, improving the biodegradability of paper and pulp sludge.

  16. Analysis of ZVI corrosion products and their functions in the combined ZVI and anaerobic sludge system.

    PubMed

    Zhu, Liang; Gao, Kaituo; Jin, Jie; Lin, Haizhuan; Xu, Xiangyang

    2014-11-01

    The zero-valent iron (ZVI) corrosion products and their functions were investigated in the combined ZVI and anaerobic sludge system. Results showed that ZVI corrosion occurred, and the reductive transformation and dechlorination of p-chloronitrobenzene (p-ClNB) by the anaerobic sludge were enhanced. In the combined systems with different types of ZVIs and mass ratios of anaerobic sludge to ZVI, a considerable amount of suspended iron compounds was produced and coated onto the microbial cells. However, the microbial cellular structure was damaged, and the p-ClNB reductive transformation was affected adversely after the long-term presence of nanoscale ZVI (NZVI) or reduced ZVI (RZVI) with a high concentration of 5 g L(-1). The oxidized products of FeOOH and Fe3O4 were found on the surface of ZVI, which are speculated to act as electron mediators and consequently facilitate the utilization of electron donors by the anaerobic microbes.

  17. Supercritical water gasification of sewage sludge: gas production and phosphorus recovery.

    PubMed

    Acelas, Nancy Y; López, Diana P; Brilman, D W F Wim; Kersten, Sascha R A; Kootstra, A Maarten J

    2014-12-01

    In this study, the feasibility of the gasification of dewatered sewage sludge in supercritical water (SCW) for energy recovery combined with P-recovery from the solid residue generated in this process was investigated. SCWG temperature (400°C, 500°C, 600°C) and residence time (15min, 30min, 60min) were varied to investigate their effects on gas production and the P recovery by acid leaching. The results show that the dry gas composition for this uncatalyzed gasification of sewage sludge in SCW mainly comprised of CO2, CO, CH4, H2, and some C2-C3 compounds. Higher temperatures and longer residence times favored the production of H2 and CH4. After SCWG, more than 95% of the P could be recovered from the solid residue by leaching with acids. SCWG combined with acid leaching seems an effective method for both energy recovery and high P recovery from sewage sludge.

  18. [Activated Sludge Bacteria Transforming Cyanopyridines and Amides of Pyridinecarboxylic Acids].

    PubMed

    Demakov, V A; Vasil'ev, D M; Maksimova, Yu G; Pavlova, Yu A; Ovechkina, G V; Maksimov, A Yu

    2015-01-01

    Species diversity of bacteria from the activated sludge of Perm biological waste treatment facilities capable of transformation of cyanopyridines and amides of pyridinecarboxylic acids was investigated. Enrichment cultures in mineral media with 3-cyanopyridine as the sole carbon and nitrogen source were used to obtain 32 clones of gram-negative heterotrophic bacteria exhibiting moderate growth on solid and liquid media with 3- and 4-cyanopyridine. Sequencing of the 16S rRNA gene fragments revealed that the clones with homology of at least 99% belonged to the genera Acinetobacte, Alcaligenes, Delftia, Ochrobactrum, Pseudomonas, Stenotrophomonas, and Xanthobacter. PCR analysis showed that 13 out of 32 isolates contained the sequences (-1070 bp) homologous to the nitrilase genes reported previously in Alcaligenes faecalis JM3 (GenBank, D13419.1). Nine clones were capable of nitrile and amide transformation in minimal salt medium. Acinetobacter sp. 11 h and Alcaligenes sp. osv transformed 3-cyanopyridine to nicotinamide, while most of the clones possessed amidase activity (0.5 to 46.3 mmol/(g h) for acetamide and 0.1 to 5.6 mmol/(g h) for nicotinamide). Nicotinamide utilization by strain A. faecalis 2 was shown to result in excretion of a secondary metabolite, which was identified as dodecyl acrylate at 91% probability.

  19. Salt stress in a membrane bioreactor: dynamics of sludge properties, membrane fouling and remediation through powdered activated carbon dosing.

    PubMed

    De Temmerman, L; Maere, T; Temmink, H; Zwijnenburg, A; Nopens, I

    2014-10-15

    Membrane bioreactors are a well-established technology for wastewater treatment. However, their efficiency is adversely impacted by membrane fouling, primarily inciting very conservative operations of installations that makes them less appealing from an economic perspective. This fouling propensity of the activated sludge is closely related to system disturbances. Therefore, improved insight into the impact of fouling is crucial towards increased membrane performance. In this work, the disturbance of a salt shock was investigated with respect to sludge composition and filterability in two parallel lab-scale membrane bioreactors. Several key sludge parameters (soluble microbial products, sludge-bound extracellular polymeric substances, supramicron particle size distributions (PSD), submicron particle concentrations) were intensively monitored prior to, during, and after a disturbance to investigate its impact as well as the potential governing mechanism. Upon salt addition, the supramicron PSD immediately shifted to smaller floc sizes, and the total fouling rate increased. Following a certain delay, an increase in submicron particles, supernatant proteins, and polysaccharides was observed as well as an increase in the irreversible membrane fouling rate. Recovery from the disturbance was evidenced with a simultaneous decrease in the above mentioned quantities. A similar experiment introducing powdered activated carbon (PAC) addition used for remediation resulted in either no or less significant changes in the above mentioned quantities, signifying its potential as a mitigation strategy.

  20. Inertisation of galvanic sludge with calcium oxide, activated carbon, and phosphoric acid.

    PubMed

    Oreščanin, Višnja; Lovrenčić Mikelić, Ivanka; Kollar, Robert; Mikulić, Nenad; Medunić, Gordana

    2012-09-01

    In this study we compared three methods for the treatment of electroplating sludge highly loaded with zinc and iron: (1) calcium oxide-based solidification/stabilisation; (2) conversion into inert material by adsorption of organic and inorganic pollutants onto activated carbon; and (3) conversion of mobile waste components into insoluble phosphates. All three methods proved highly efficient in the conversion of hazardous waste into inert material. Under optimum treatment conditions zinc concentration in the leachate of solidified waste was reduced by 99.7 % compared to untreated sludge. Zinc retention efficiency in the waste treated with activated carbon and phosphoric acid was 99.9 % and 98.7 %, respectively. The advantages of electroplating sludge treatment with activated carbon over the other two methods are high sorption capacity, insignificant pH and volume changes of the sludge, and simple use.

  1. Assessing microbial communities for a metabolic profile similar to activated sludge.

    PubMed

    Paixão, S M; Sàágua, M C; Tenreiro, R; Anselmo, A M

    2007-05-01

    To search for reliable testing inocula alternatives to activated sludge cultures, several model microbial consortia were compared with activated sludge populations for their functional diversity. The evaluation of the metabolic potential of these mixed inocula was performed using the Biolog EcoPlates and GN and GP MicroPlates (Biolog, Inc., Hayward, California). The community-level physiological profiles (CLPPs) obtained for model communities and activated sludge samples were analyzed by principal component analysis and hierarchic clustering methods, to evaluate the ability of Biolog plates to distinguish among the different microbial communities. The effect of different inocula preparation methodologies on the community structure was also studied. The CLPPs obtained with EcoPlates and GN MicroPlates showed that EcoPlates are suitable to screen communities with a metabolic profile similar to activated sludge. New, well-defined, standardized, and safe inocula presenting the same metabolic community profile as activated sludge were selected and can be tested as surrogate cultures in activated-sludge-based bioassays.

  2. High-rate activated sludge system for carbon management--Evaluation of crucial process mechanisms and design parameters.

    PubMed

    Jimenez, Jose; Miller, Mark; Bott, Charles; Murthy, Sudhir; De Clippeleir, Haydee; Wett, Bernhard

    2015-12-15

    The high-rate activated sludge (HRAS) process is a technology suitable for the removal and redirection of organics from wastewater to energy generating processes in an efficient manner. A HRAS pilot plant was operated under controlled conditions resulting in concentrating the influent particulate, colloidal, and soluble COD to a waste solids stream with minimal energy input by maximizing sludge production, bacterial storage, and bioflocculation. The impact of important process parameters such as solids retention time (SRT), hydraulic residence time (HRT) and dissolved oxygen (DO) levels on the performance of a HRAS system was demonstrated in a pilot study. The results showed that maximum removal efficiencies of soluble COD were reached at a DO > 0.3 mg O2/L, SRT > 0.5 days and HRT > 15 min which indicates that minimizing the oxidation of the soluble COD in the high-rate activated sludge process is difficult. The study of DO, SRT and HRT exhibited high degree of impact on the colloidal and particulate COD removal. Thus, more attention should be focused on controlling the removal of these COD fractions. Colloidal COD removal plateaued at a DO > 0.7 mg O2/L, SRT > 1.5 days and HRT > 30 min, similar to particulate COD removal. Concurrent increase in extracellular polymers (EPS) production in the reactor and the association of particulate and colloidal material into sludge flocs (bioflocculation) indicated carbon capture by biomass. The SRT impacted the overall mass and energy balance of the high-rate process indicating that at low SRT conditions, lower COD mineralization or loss of COD content occurred. In addition, the lower SRT conditions resulted in higher sludge yields and higher COD content in the WAS.

  3. A new process to improve short-chain fatty acids and bio-methane generation from waste activated sludge.

    PubMed

    Dong, Bin; Gao, Peng; Zhang, Dong; Chen, Yinguang; Dai, Lingling; Dai, Xiaohu

    2016-05-01

    As an important intermediate product, short-chain fatty acids (SCFAs) can be generated after hydrolysis and acidification from waste activated sludge, and then can be transformed to methane during anaerobic digestion process. In order to obtain more SCFA and methane, most studies in literatures were centered on enhancing the hydrolysis of sludge anaerobic digestion which was proved as un-efficient. Though the alkaline pretreatment in our previous study increased both the hydrolysis and acidification processes, it had a vast chemical cost which was considered uneconomical. In this paper, a low energy consumption pretreatment method, i.e. enhanced the whole three stages of the anaerobic fermentation processes at the same time, was reported, by which hydrolysis and acidification were both enhanced, and the SCFA and methane generation can be significantly improved with a small quantity of chemical input. Firstly, the effect of different pretreated temperatures and pretreatment time on sludge hydrolyzation was compared. It was found that sludge pretreated at 100°C for 60min can achieve the maximal hydrolyzation. Further, effects of different initial pHs on acidification of the thermal pretreated sludge were investigated and the highest SCFA was observed at initial pH9.0 with fermentation time of 6d, the production of which was 348.63mg COD/gVSS (6.8 times higher than the blank test) and the acetic acid was dominant acid. Then, the mechanisms for this new pretreatment significantly improving SCFA production were discussed. Finally, the effect of this low energy consumption pretreatment on methane generation was investigated.

  4. Comparative studies of aerobic and anaerobic biodegradation of methylparaben and propylparaben in activated sludge.

    PubMed

    Wu, Yang; Sun, Qian; Wang, Yu-Wen; Deng, Cheng-Xun; Yu, Chang-Ping

    2017-04-01

    The biodegradability of two typical parabens (methylparaben and propylparaben) in activated sludge, at initial concentrations of 1mgL(-1) or 10mgL(-1), was investigated under aerobic and anaerobic conditions. The results showed that microorganisms played a key role in degradation of parabens in WWTPs, especially in aerobic systems. The half-lives of methylparaben and propylparaben under aerobic conditions have been estimated to range between 15.8 and 19.8min, and benzoic acid was found to be one of the major biodegradation products. The calculated biodegradation efficiency of methylparaben and propylparaben in activated sludge under aerobic conditions was significantly higher than that observed under anaerobic (nitrate, sulfate, and Fe (III) reducing) conditions, as methylparaben and propylparaben exhibited comparatively higher persistence in anaerobic systems, with half-lives ≥43.3h and ≥8.6h, respectively. Overall, the results of this study imply that the majority of these parabens can be eliminated by aerobic biodegradation during conventional wastewater treatment processes, whereas minor removal is possible in anaerobic systems if an insufficient hydraulic retention time was maintained.

  5. Simulating a cyclic activated sludge system by employing a modified ASM3 model for wastewater treatment.

    PubMed

    Gao, Feng; Nan, Jun; Zhang, Xinhui

    2017-03-13

    To interpret the biological nutrient removal in a cyclic activated sludge system (CAS), a modified model was developed by combining the process of simultaneous storage and growth, and the kinetics of soluble microbial product (S SMP) and extracellular polymeric substance (X EPS) with activated sludge model no. 3 (ASM3). These most sensitive parameters were initially selected whilst parameters with low sensitivity were given values from literature. The selected parameters were then calibrated on an oxygen uptake rate test and a batch CAS reactor on an operational cycle. The calibrated model was validated using a combination of the measurements from a batch CAS reactor operated for 1 month and the average deviation method. The simulations demonstrated that the modified model was capable of predicting higher effluent concentrations compared to outputs of the ASM3 model. Additionally, it was also shown that the average deviation of effluent S COD, S NH, S SMP and X EPS simulated with the modified model was all less than 1 mg L(-1). In summary, the model could effectively describe biological processes in a CAS reactor and provide a wonderful tool for operation.

  6. Biotransformation of the antiviral drugs acyclovir and penciclovir in activated sludge treatment.

    PubMed

    Prasse, Carsten; Wagner, Manfred; Schulz, Ralf; Ternes, Thomas A

    2011-04-01

    The biotransformation of the two antiviral drugs, acyclovir (ACV) and penciclovir (PCV), was investigated in contact with activated sludge. Biodegradation kinetics were determined, and transformation products (TPs) were identified using Hybrid Linear Ion Trap- FT Mass Spectrometry (LTQ Orbitrap Velos) and 1D (1H NMR, 13C NMR) and 2D (1H,1H-COSY, 1H-(13)C-HSQC) NMR Spectroscopy. ACV and PCV rapidly dissipated in the activated sludge batch systems with half-lives of 5.3 and 3.4 h and first-order rate constants in relation to the amount of suspended solids (SS) of 4.9±0.1 L gss(-1) d(-1) and 7.6±0.3 L gss(-1) d(-1), respectively. For ACV only a single TP was found, whereas eight TPs were identified for PCV. Structural elucidation of TPs exhibited that transformation only took place at the side chain leaving the guanine moiety unaltered. The oxidation of the primary hydroxyl group in ACV resulted in the formation of carboxy-acyclovir (Carboxy-ACV). For PCV, transformation was more diverse with several enzymatic reactions taking place such as the oxidation of terminal hydroxyl groups and β-oxidation followed by acetate cleavage. Analysis of different environmental samples revealed the presence of Carboxy-ACV in surface and drinking water with concentrations up to 3200 ng L(-1) and 40 ng L(-1), respectively.

  7. A hundred years of activated sludge: time for a rethink

    PubMed Central

    Sheik, Abdul R.; Muller, Emilie E. L.; Wilmes, Paul

    2014-01-01

    Biological wastewater treatment plants (BWWTPs) based on the activated sludge (AS) process have dramatically improved worldwide water sanitation despite increased urbanization and industrialization. However, current AS-based operations are considered economically and environmentally unsustainable. In this Perspective, we discuss our current understanding of microbial populations and their metabolic transformations in AS-based BWWTPs in view of developing more sustainable processes in the future. In particular, much has been learned over the course of the past 25 years about specialized microorganisms, which could be more comprehensively leveraged to recover energy and/or nutrients from wastewater streams. To achieve this, we propose a bottom-up design approach, focused around the concept of a “wastewater biorefinery column”, which would rely on the engineering of distinct ecological niches into a BWWTP in order to guarantee the targeted enrichment of specific organismal groups which in turn will allow the harvest of high-value resources from wastewater. This concept could be seen as a possible grand challenge to microbial ecologists and engineers alike at the centenary of the discovery of the AS process. PMID:24624120

  8. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    PubMed

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems.

  9. Biomethane production from vinasse in upflow anaerobic sludge blanket reactors inoculated with granular sludge.

    PubMed

    Barros, Valciney Gomes de; Duda, Rose Maria; Oliveira, Roberto Alves de

    2016-01-01

    The main objective of this study was to evaluate the anaerobic conversion of vinasse into biomethane with gradual increase in organic loading rate (OLR) in two upflow anaerobic sludge blanket (UASB) reactors, R1 and R2, with volumes of 40.5 and 21.5L in the mesophilic temperature range. The UASB reactors were operated for 230 days with a hydraulic detection time (HDT) of 2.8d (R1) and 2.8-1.8d (R2). The OLR values applied in the reactors were 0.2-7.5gtotalCOD (Ld)(-1) in R1 and 0.2-11.5gtotalCOD (Ld)(-1) in R2. The average total chemical oxygen demand (totalCOD) removal efficiencies ranged from 49% to 82% and the average conversion efficiencies of the removed totalCOD into methane were 48-58% in R1 and 39-65% in R2. The effluent recirculation was used for an OLR above 6gtotalCOD (Ld)(-1) in R1 and 8gtotalCOD (Ld)(-1) in R2 and was able to maintain the pH of the influent in R1 and R2 in the range from 6.5 to 6.8. However, this caused a decrease for 53-39% in the conversion efficiency of the removed totalCOD into methane in R2 because of the increase in the recalcitrant COD in the influent. The largest methane yield values were 0.181 and 0.185 (L) CH4 (gtotalCOD removed)(-1) in R1 and R2, respectively. These values were attained after 140 days of operation with an OLR of 5.0-7.5gtotalCOD (Ld)(-1) and totalCOD removal efficiencies around 70 and 80%.

  10. Enhanced dewaterability of sewage sludge in the presence of Fe(II)-activated persulfate oxidation.

    PubMed

    Zhen, Guangyin; Lu, Xueqin; Zhao, Youcai; Chai, Xiaoli; Niu, Dongjie

    2012-07-01

    The potential benefits of Fe(II)-activated persulfate oxidation on sludge dewatering and its mechanisms were investigated in this study. Capillary suction time (CST) was used to evaluate sludge dewaterability. Both extracellular polymeric substances (EPS) and viscosity were determined in an attempt to explain the observed changes in sludge dewaterability. The optimal conditions to give preferable dewaterability characteristics were found to be persulfate (S(2)O(8)(2-)) 1.2 mmol/gVSS, Fe(II) 1.5 mmol/gVSS, and pH 3.0-8.5, which demonstrated a very high CST reduction efficiency (88.8% reduction within 1 min). It was further observed that both soluble EPS and viscosity played relatively negative roles in sludge dewatering, whereas no correlation was established between sludge dewaterability and bound EPS. Three-dimensional excitation-emission matrix (EEM) fluorescence spectra also revealed that soluble EPS of sludge were degraded and sludge flocs were ruptured by persulfate oxidation, which caused the release of water in the intracellular pace and subsequent improvement of its dewaterability.

  11. Is anaerobic digestion effective for the removal of organic micropollutants and biological activities from sewage sludge?

    PubMed

    Gonzalez-Gil, L; Papa, M; Feretti, D; Ceretti, E; Mazzoleni, G; Steimberg, N; Pedrazzani, R; Bertanza, G; Lema, J M; Carballa, M

    2016-10-01

    The occurrence of emerging organic micropollutants (OMPs) in sewage sludge has been widely reported; nevertheless, their fate during sludge treatment remains unclear. The objective of this work was to study the fate of OMPs during mesophilic and thermophilic anaerobic digestion (AD), the most common processes used for sludge stabilization, by using raw sewage sludge without spiking OMPs. Moreover, the results of analytical chemistry were complemented with biological assays in order to verify the possible adverse effects (estrogenic and genotoxic) on the environment and human health in view of an agricultural (re)use of digested sludge. Musk fragrances (AHTN, HHCB), ibuprofen (IBP) and triclosan (TCS) were the most abundant compounds detected in sewage sludge. In general, the efficiency of the AD process was not dependent on operational parameters but compound-specific: some OMPs were highly biotransformed (e.g. sulfamethoxazole and naproxen), while others were only slightly affected (e.g. IBP and TCS) or even unaltered (e.g. AHTN and HHCB). The MCF-7 assay evidenced that estrogenicity removal was driven by temperature. The Ames test did not show point mutation in Salmonella typhimurium while the Comet test exhibited a genotoxic effect on human leukocytes attenuated by AD. This study highlights the importance of combining chemical analysis and biological activities in order to establish appropriate operational strategies for a safer disposal of sewage sludge. Actually, it was demonstrated that temperature has an insignificant effect on the disappearance of the parent compounds while it is crucial to decrease estrogenicity.

  12. Enhancement in hydrogen production by thermophilic anaerobic co-digestion of organic fraction of municipal solid waste and sewage sludge--optimization of treatment conditions.

    PubMed

    Tyagi, Vinay Kumar; Angériz Campoy, Rubén; Álvarez-Gallego, C J; Romero García, L I

    2014-07-01

    Batch dry-thermophilic anaerobic co-digestion (55°C) of organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS) for hydrogen production was studied under several sludge combinations (primary sludge, PS; waste activated sludge, WAS; and mixed sludge, MS), TS concentrations (10-25%) and mixing ratios of OFMSW and SS (1:1, 2.5:1, 5:1, 10:1). The co-digestion of OFMSW and SS showed a 70% improvement in hydrogen production rate over the OFMSW fermentation only. The co-digestion of OFMSW with MS showed 47% and 115% higher hydrogen production potential as compared with OFMSW+PS and OFMSW+WAS, respectively. The maximum hydrogen yield of 51 mL H2/g VS consumed was observed at TS concentration of 20% and OFMSW to MS mixing ratio of 5:1, respectively. The acetic and butyric acids were the main acids in VFAs evolution; however, the higher butyric acid evolution indicated that the H2 fermentation was butyrate type fermentation.

  13. [Diversity of culturable filamentous bacteria in the activated sludge from A2O wastewater treatment process].

    PubMed

    Gao, Sha; Jin, De-Cai; Zhao, Zhi-Rui; Qi, Rong; Peng, Xia-Wei; Bai, Zhi-Hui

    2013-07-01

    The anoxic-anaerobic-oxic (A2O) process is widely used in wastewater treatment plant, however, sludge bulking and foaming are the most frequent operational problems in this process. Activated sludge bulking is caused by the overgrowth of some types of filamentous bacteria, especially Microthrix parvicella. In the study, 17 strains of filamentous bacteria were isolated from the bulking sludge of A2O process using Gause's medium. The 16S rRNA genes of the 17 isolates were sequenced to analyze their diversity. The results showed all of the 17 isolates were Streptomyces. Further analysis of these strains by the repetitive sequence based on polymerase chain reaction (rep-PCR) technology showed that there was a high diversity in these isolated Streptomyces. The physiological properties of them were different from Microthrix parvicella. The settleability of activated sludge was improved when some of the isolates were inoculated.

  14. Chemical and microbiological stability of waste sludge from paper industry intended for brick production.

    PubMed

    Cernec, Franc; Zule, Janja; Moze, Adolf; Ivanus, Alenka

    2005-04-01

    Due to its chemical composition, waste sludge generated in the paper industry may be used as a raw material for brick production. Brick manufacture is limited to the warmer months of the year whereas sludge is produced continuously by different effluent treatment devices. Therefore, it has to be stored until further processing. For this reason, it is essential that it is not subject to significant chemical and microbiological decomposition during storage. In the experiment, sludge from a tissue paper mill was tested for its stability. It was stored for several weeks during winter and summer periods in a pile, 2 m in height, in an open but covered store. Different leachable organic and inorganic compounds indicating possible ongoing deterioration processes, as well as pH value, redox potential, temperature, humidity and dry matter content were evaluated weekly in water extracts of homogenized sludge samples. According to the test results, the material may be considered to be chemically and microbiologically stable as there was practically no emission of odorous and toxic compounds such as H2S, NH3 and butyric acid despite prolonged storage times and elevated environmental temperatures. All the microbial species identified in the sludge during storage belong to the typical microflora of the environment.

  15. Hematite Core Nanoparticles with Carbon Shell: Potential for Environmentally Friendly Production from Iron Mining Sludge

    NASA Astrophysics Data System (ADS)

    Stević, Dragana; Mihajlović, Dijana; Kukobat, Radovan; Hattori, Yoshiyuki; Sagisaka, Kento; Kaneko, Katsumi; Atlagić, Suzana Gotovac

    2016-08-01

    Hematite nanoparticles with amorphous, yet relatively uniform carbon shell, were produced based exclusively on the waste sludge from the iron mine as the raw material. The procedure for acid digestion-based purification of the sludge with the full recovery of acid vapors and the remaining non-toxic rubble is described. Synthesis of the hematite nanoparticles was performed by the arrested precipitation method with cationic surfactant. The particles were thoroughly characterized and the potential of their economical production for the battery industry is indicated.

  16. The influence of hydrolysis induced biopolymers from recycled aerobic sludge on specific methanogenic activity and sludge filterability in an anaerobic membrane bioreactor.

    PubMed

    Buntner, D; Spanjers, H; van Lier, J B

    2014-03-15

    The objective of the present study was to evaluate the impact of excess aerobic sludge on the specific methanogenic activity (SMA), in order to establish the maximum allowable aerobic sludge loading. In batch tests, different ratios of aerobic sludge to anaerobic inoculum were used, i.e. 0.03, 0.05, 0.10 and 0.15, showing that low ratios led to an increased SMA. However, the ratio 0.15 caused more than 20% SMA decrease. In addition to the SMA tests, the potential influence of biopolymers and extracellular substances, that are generated as a result of excess aerobic sludge hydrolysis, on membrane performance was determined by assessing the fouling potential of the liquid broth, taking into account parameters such as specific resistance to filtration (SRF) and supernatant filterability (SF). Addition of aerobic sludge to the anaerobic biomass resulted in a high membrane fouling potential. The increase in biopolymers could be ascribed to aerobic sludge hydrolysis. A clear positive correlation between the concentration of the colloidal fraction of biopolymer clusters (cBPC) and the SRF was observed and a negative correlation between the cBPC and the SF measured at the end of the above described SMA tests. The latter implies that sludge filtration resistance increases when more aerobic sludge is hydrolyzed, and thus more cBPC is released. During AnMBR operation, proteins significantly contributed to sludge filterability decrease expressed as SRF and SF, whereas the carbohydrate fraction of SMP was of less importance due to low concentrations. On the contrary, carbohydrates seemed to improve filterability and diminish SRF of the sludge. Albeit, cBPC increase caused an increase in mean TMP during the AnMBR operation, confirming that cBPC is positively correlated to membrane fouling.

  17. The potential application of activated carbon from sewage sludge to organic dyes removal.

    PubMed

    Graham, N; Chen, X G; Jayaseelan, S

    2001-01-01

    The objective of this research work was to study the potential application of activated carbon from sewage sludge to organic dye removal. Methylene blue and crystal violet were the two dyes investigated in the present study. Three activated carbons were produced from the exclusive sewage sludge (referred to as DS), the sludge with the additive of coconut husk (DC) and sludge with the additive of peanut shell (DP) respectively. They were characterized by their surface area and porosity and their surface chemistry structure. Adsorption studies were performed by the batch technique to obtain kinetic and equilibrium data. The results show that the three sludge-derived activated carbons had a developed porosity and marked content of surface functional groups. They exhibited a rapid three-stage adsorption process for both methylene blue and crystal violet. Their adsorption capacities for the two dyes were high, the carbon DP performed best in the adsorption whereas the carbon DC performed worst. It is therefore concluded that the activated carbons made from sewage sludge and its mixtures are promising for dye removal from aqueous streams.

  18. [Harvest of the carbon source in wastewater by the adsorption and desorption of activated sludge].

    PubMed

    Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang; Mei, Yi-Jun

    2011-04-01

    The carbon source in municipal wastewater was adsorbed by activated sludge and then harvested through the hydrolysis of activated sludge. Results indicated that activated sludge had high absorbing ability towards organic carbon and phosphorus under continuous operation mode, and the average COD and TP absorption rate reached as high as 63% and 76%, respectively. Moreover, about 50% of the soluble carbon source was outside of the sludge cell and could be released under mild hydrolysis condition. Whereas the absorbed amount of nitrogen was relatively low, and the removal rate of ammonia was only 13% . Furthermore, the releases of organic carbon, nitrogen and phosphorus from the sludge absorbing pollutants in the wastewater were studied. By comparing different hydrolysis conditions of normal (pH 7.5, 20 degrees C), heating (pH 7.5, 60 degrees C) and the alkaline heating (pH 11, 60 degrees C), the last one presented the optimum hydrolysis efficiency. Under which, the release rate of COD could reach 320 mg/g after 24 hours, whereas nitrogen and phosphorus just obtained low release rates of 18 mg/g and 2 mg/g, respectively. Results indicate that the carbon source in wastewater could be harvested by the adsorption and desorption of activated sludge, and the concentrations of nitrogen and phosphorus are low and would not influence the reuse of the harvested carbon source.

  19. The effect of electron acceptors on biogas production from tannery sludge of a Mexican wastewater plant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effluents from the leather processing plants generally are discharged into rivers or are used to irrigate farmland. The biogas production from the digestion of sludge produced could be used as alternative sources for energy and power generation. A study was carried out to examine the effects of vari...

  20. Enhanced biogas production using cow manure to stabilize co-digestion of whey and primary sludge.

    PubMed

    Shilton, A; Powell, N; Broughton, A; Pratt, C; Pratt, S; Pepper, C

    2013-01-01

    Increasing biogas production from municipal anaerobic digesters via additional loading with industrial/agricultural wastes offers a low-cost, sustainable energy generation option of significant untapped potential. In this work, bench-top reactors were used to mimic a full-scale primary sludge digester operating at an organic loading rate (OLR) of 2.4 kg COD/m3 d and a 20 d hydraulic retention time (HRT). Co-digestion of whey with primary sludge was sustained at a loading rate of 3.2 kg COD/m3 d (17 d HRT) and boosted gas production to 151% compared to primary sludge digestion alone. Addition of chemical alkalinity enabled co-digestion of whey with primary sludge to be maintained at an elevated OLR of 6.4 kg COD/m3 d (11 d HRT) with gas production increased to 208%. However, when the chemical addition was simply replaced by cow manure, stable operation was maintained at OLRs of 5.2-6.9 kg COD/m3 d (11-14 d HRT) with gas production boosted up to 268%.

  1. Production and characterization of glazed tiles containing incinerated sewage sludge.

    PubMed

    Lin, D F; Chang, W C; Yuan, C; Luo, H L

    2008-01-01

    In this article, glaze with different colorants was applied to tile specimens manufactured by incinerated sewage sludge ash (ISSA) and clay. Improvements using different amounts of colorants, and glaze components and concentrations on tile bodies were investigated. Four different proportions of clay (by weight ratio) were replaced by ISSA. Tiles of size 12 cm x 6 cm x 1 cm were made and left in an electric furnace to make biscuit tiles at 800 degrees C. Afterwards, four colorants, Fe2O3 (red), V2O5 (yellow), CoCO3 (blue), and MnO2 (purple), and four different glaze concentrations were applied on biscuit tile specimens. These specimens were later sintered into glazed tiles at 1050 degrees C. The study shows that replacement of clay by sludge ash had adverse effects on properties of tiles. Water absorption increased and bending strength reduced with increased amounts of ash. However, both water absorption and bending strength improved for glazed ash tiles. Abrasion of grazed tiles reduced noticeably from 0.001 to 0.002 g. This implies glaze can enhance abrasion resistance of tiles. Effects like lightfastness and acid-alkali resistance improved as different glazes were applied on tiles. In general, red glazed tiles showed the most stable performance, followed by blue, yellow, and purple.

  2. Modelling Cr(VI) removal by a combined carbon-activated sludge system.

    PubMed

    Orozco, A Micaela Ferro; Contreras, Edgardo M; Zaritzky, Noemí E

    2008-01-15

    The combined carbon-activated sludge process has been proposed as an alternative to protect the biomass against toxic substances in wastewaters; however, the information about the effect of powdered-activated carbon (PAC) addition in activated sludge reactors for the treatment of wastewaters containing Cr(VI) is limited. The objectives of the present study were: (a) to evaluate the removal of hexavalent chromium by (i) activated sludge microorganisms in aerobic batch reactors, (ii) powdered-activated carbon, and (iii) the combined action of powdered-activated carbon and biomass; (b) to propose mathematical models that interpret the experimental results. Different Cr(VI) removal systems were tested: (S1) biomass (activated sludge), (S2) PAC, and (S3) the combined activated carbon-biomass system. A Monod-based mathematical model was used to describe the kinetics of Cr(VI) removal in the system S1. A first-order kinetics with respect to Cr(VI) and PAC respectively, was proposed to model the removal of Cr(VI) in the system S2. Cr(VI) removal in the combined carbon-biomass system (S3) was faster than both Cr(VI) removal using PAC or activated sludge individually. Results showed that the removal of Cr(VI) using the activated carbon-biomass system (S3) was adequately described by combining the kinetic equations proposed for the systems S1 and S2.

  3. Nitrification and Heavy Metal Removal in the Activated Sludge Treatment Process.

    DTIC Science & Technology

    1976-08-01

    parameters to heavy metal removal in the activated sludge waste treatment process. The heavy metals studied were chromium and silver. Analyses...performed on the influent, mixed liquor, return sludge, and effluent included heavy metal concentration, pH, dissolved oxygen, temperature, suspended solids...related to heavy metal removal. Nitrification is only indirectly related. A theory for the mechanisms contributing to heavy metal removal is developed.

  4. Protists as bioindicators in activated sludge: Identification, ecology and future needs.

    PubMed

    Foissner, Wilhelm

    2016-08-01

    When the activated sludge process was developed, operators and scientists soon recognized protists as valuable indicators. However, only when Curds et al. (1968) showed with a few photographs the need of ciliates for a clear plant effluent, sewage protistology began to bloom but was limited by the need of species identification. Still, this is a major problem although several good guides are available. Thus, molecular kits should be developed for identification. Protists are indicators in two stages of wastewater treatment, viz., in the activated sludge and in the environmental water receiving the plant effluent. Continuous control of the protist and bacterial communities can prevent biological sludge foaming and bulking and may greatly save money for sludge oxygenation because several protist species are excellent indicators for the amount of oxygen present. The investigation of the effluent-receiving rivers gives a solid indication about the long term function of sewage works. The literature on protist bioindication in activated sludge is widely distributed. Thus, I compiled the data in a simple Table, showing which communities and species indicate good, mediocre, or poor plant performance. Further, many details on indication are provided, such as sludge loading and nitrifying conditions. Such specific features should be improved by appropriate statistics and more reliable identification of species. Then, protistologists have a fair chance to become important in wastewater works. Activated sludge is a unique habitat for particular species, often poorly or even undescribed. As an example, I present two new species. The first is a minute (∼30μm) Metacystis that makes an up to 300μm-sized mucous envelope mimicking a sludge floc. The second is a Phialina that is unique in having the contractile vacuole slightly posterior to mid-body. Finally, I provide a list of species which have the type locality in sewage plants.

  5. The effect of malathion on the activity, performance, and microbial ecology of activated sludge.

    PubMed

    Rauglas, Erik; Martin, Seth; Bailey, Kandace; Magnuson, Matthew; Phillips, Rebecca; Harper, Willie F

    2016-12-01

    This study evaluated the effect of a VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) surrogate (malathion) on the activity, performance, and ecology of activated sludge bioreactors. In the presence of malathion, the maximum observed respiration rates varied between 43 and 53 μg/O2 min, generally similar to the 49 μg O2/min rates observed in controls. Malathion did not alter the respiration ratio of O2 consumed-to-CO2 produced nor did it impact the shape of the oxygen consumption curves during respirometry. Shorter term (12 h) batch tests showed that both chemical oxygen demand (COD) and ammonia removal were not negatively impacted by the presence of 0.1-3 mg/L malathion. Longer term continuous addition (i.e. 40 days) of 0.1 mg/L of malathion also had no effect on COD and ammonia removal. In contrast to shorter term exposures, longer term continuous addition of 3 mg/L of malathion negatively impacted both COD and nitrogen removal and was associated with shifts in the abundance of species that are common to activated sludge. These results illustrate the impact that chemicals like malathion may have on COD removal, and nitrification, as well as the robustness of activated sludge microbial communities.

  6. Reduced temperature hydrolysis at 134 °C before thermophilic anaerobic digestion of waste activated sludge at increasing organic load.

    PubMed

    Gianico, A; Braguglia, C M; Cesarini, R; Mininni, G

    2013-09-01

    The performance of thermophilic digestion of waste activated sludge, either untreated or thermal pretreated, was evaluated through semi-continuous tests carried out at organic loading rates in the range of 1-3.7 kg VS/m(3)d. Although the thermal pretreatment at T=134 °C proved to be effective in solubilizing organic matter, no significant gain in organics degradation was observed. However, the digestion of pretreated sludge showed significant soluble COD removal (more than 55%) whereas no removal occurred in control reactors. The lower the initial sludge biodegradability, the higher the efficiency of thermal pretreated digestion was observed, in particular as regards higher biogas and methane production rates with respect to the parallel untreated sludge digestion. Heat balance of the combined thermal hydrolysis/thermophilic digestion process, applied on full-scale scenarios, showed positive values for direct combustion of methane. In case of combined heat and power generation, attractive electric energy recoveries were obtained, with a positive heat balance at high load.

  7. Waste-Activated Sludge Fermentation for Polyacrylamide Biodegradation Improved by Anaerobic Hydrolysis and Key Microorganisms Involved in Biological Polyacrylamide Removal

    PubMed Central

    Dai, Xiaohu; Luo, Fan; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dong, Bin

    2015-01-01

    During the anaerobic digestion of dewatered sludge, polyacrylamide (PAM), a chemical conditioner, can usually be consumed as a carbon and nitrogen source along with other organic matter (e.g., proteins and carbohydrates in the sludge). However, a significant accumulation of acrylamide monomers (AMs) was observed during the PAM biodegradation process. To improve the anaerobic hydrolysis of PAM, especially the amide hydrolysis process, and to avoid the generation of the intermediate product AM, a new strategy is reported herein that uses an initial pH of 9, 200 mg COD/L of PAM and a fermentation time of 17 d. First, response surface methodology (RSM) was applied to optimize PAM removal in the anaerobic digestion of the sludge. The biological hydrolysis of PAM reached 86.64% under the optimal conditions obtained from the RSM. Then, the mechanisms for the optimized parameters that significantly improved the biological hydrolysis of PAM were investigated by the synergistic effect of the main organic compounds in the sludge, the floc size distribution, and the enzymatic activities. Finally, semi-continuous-flow experiments for a microbial community study were investigated based on the determination of key microorganisms involved in the biological hydrolysis of PAM. PMID:26144551

  8. Effects of glucose on the performance of enhanced biological phosphorus removal activated sludge enriched with acetate.

    PubMed

    Gebremariam, Seyoum Yami; Beutel, Marc W; Christian, David; Hess, Thomas F

    2012-10-01

    The effects of glucose on enhanced biological phosphorus removal (EBPR) activated sludge enriched with acetate was investigated using sequencing batch reactors. A glucose/acetate mixture was serially added to the test reactor in ratios of 25/75%, 50/50%, and 75/25% and the EBPR activity was compared to the control reactor fed with 100% acetate. P removal increased at a statistically significant level to a near-complete in the test reactor when the mixture increased to 50/50%. However, EBPR deteriorated when the glucose/acetate mixture increased to 75/25% in the test reactor and when the control reactor abruptly switched to 100% glucose. These results, in contrast to the EBPR conventional wisdom, suggest that the addition of glucose at moderate levels in wastewaters does not impede and may enhance EBPR, and that glucose waste products should be explored as an economical sustainable alternative when COD enhancement of EBPR is needed.

  9. Activated sludge filterability improvement by nitrifying bacteria abundance regulation in an adsorption membrane bioreactor (Ad-MBR).

    PubMed

    Sun, Fei-yun; Lv, Xiao-mei; Li, Ji; Peng, Zhong-yi; Li, Pu; Shao, Ming-fei

    2014-10-01

    Autotrophic nitrifying bacteria have its intrinsic properties including low EPS production, dense colonial structure and slow-growth rate, favoring the sludge filterability improvement. An adsorption-MBR (Ad-MBR) was developed to enrich nitrifier abundance in the MBR chamber by inlet C/N regulation, and its possible positive effect on sludge filterability and underlying mechanisms were investigated. By DNA extraction, PCR amplification and Illumina high-throughput pyrosequencing, the abundance of nitrifying bacteria was accurately quantified. More than 8.29% nitrifier abundance was achieved in Ad-MBR sludge, which was above three times of that in conventional MBR. Regulated C/N ratio and thereafter nitrifier abundance enrichment improved sludge filterability by altering sludge mixture and its supernatant properties, reflected by a good sludge settleability, a low supernatant viscosity and turbidity, a low supernatant organic substances concentration, and a small amount of strong hydrophobic fractional components, thus to profoundly improve sludge filterability and decelerate membrane fouling.

  10. Effects of scrubber by-product-stabilized dairy lagoon sludge on growth and physiological responses of sunflower (Helianthus annuus L.).

    PubMed

    Thomas, Carla N; Bauerle, William L; Chastain, John P; Owino, Tom O; Moore, Kathy P; Klaine, Stephen J

    2006-06-01

    Brick manufacturing industries are challenged to comply with clean air mandates. Dry air scrubbers have been used to remove acid gases from the exhaust air from brick manufacturing plants. The use of dry air scrubbers results in the production of large quantities of an alkaline powder by-product. A greenhouse experiment was conducted to evaluate the potential of using dairy lagoon sludge stabilized with the scrubber by-product as a soil amendment. Lagoon sludge was stabilized with scrubber by-product at an application rate of 20 gl(-1). The sludge-scrubber by-product mixture was applied to a sandy loam soil to provide amendments ranging between 28 and 168 kg of plant available nitrogen (PAN)/ha for the growth of Helianthus annuus (sunflower). Use of the sludge-scrubber by-product mixture as a nitrogen fertilizer did not adversely affect sunflower seedling emergence; however, significantly higher (p<0.05) plant volume indices, leaf area, dry shoot and root masses, and seed yields were obtained for mature plants grown in sludge-treated soil relative to the control or fertilizer treatment. The sludge amendment did not severely impact gas exchange or chlorophyll a fluorescence of the plants and nutrient content of the sunflower tissues was generally within a sufficient range. The increased growth and yield of sunflower plants indicated the potential of the sludge-scrubber by-product mixture as a soil amendment in agricultural crop production.

  11. Effect of ozonation on activated sludge from pulp and paper industry.

    PubMed

    Gupta, S; Chakrabarti, S K; Singh, S

    2010-01-01

    Aerobic biological treatment with activated sludge is the predominant process all over the world for treatment of pulp and paper industry wastewater. 50-70% of the biodegradable organic material is oxidized to CO₂ and the rest is converted to bacterial biomass, typically termed as excess sludge or waste activated sludge (WAS). Handling and disposal of WAS in general and in particular from the pulp and paper industry face different processing difficulties, regulatory stringency due to organochlorine contamination and reluctance of people for reuse. With an objective of reducing the net disposable biomass, ozonation of WAS from a pulp and paper mill and from a laboratory scale batch activated sludge process operated with the wastewater and bacterial seed of the same pulp and paper mill have been carried out. With the mill sludge having predominant filamentous organisms 18% MLSS was reduced at an ozone dosage of 55 mg O₃/g dry MLSS solid (DS) resulting in 2.5 times COD increase. With the laboratory sludge which is well structured and flocculating, only 6% MLSS was reduced at an ozone dosage of 55 mg O₃/g DS. Ozonation mineralizes 26% and 20% AOX compounds embedded in the secondary sludge in the mill and laboratory sludge respectively at an ozone dosage of 55 mg O₃/g DS. During ozonation, absorbed/adsorbed lignin on biomass was released which resulted in increased colour concentration. Ozonation can be a potential oxidative pretreatment process for reducing the WAS and paving the way for cost effective overall treatment of WAS.

  12. Production of pyrolytic liquids from industrial sewage sludges in an induction-heating reactor.

    PubMed

    Tsai, Wen-Tien; Chang, Jeng-Hung; Hsien, Kuo-Jung; Chang, Yuan-Ming

    2009-01-01

    With the application of induction-heating, the pyrolytic experiments have been carried out for three sewage sludges from the food processing factories in an externally heated fixed-bed reactor. The thermochemical characteristics of sludge samples were first analyzed. The results indicated that the calorific value had about 15 MJ/kg on an average, suggesting that it had a potential for biomass energy source. However, its nitrogen concentration was relatively high. From the thermogravimetric analysis (TGA) curves, it showed that the pyrolysis reaction can be almost finished in the temperature range of 450-750 degrees C. The yields of resulting liquid and char products from the pyrolysis of sewage sludge were discussed for examining the effects of pyrolysis temperature (500-800 degrees C), heating rate (200-500 degrees C/min), and holding time (1-8 min). Overall, the variation of yield was not so significant in the experimental conditions for three sewage sludges. All results of the resulting liquid products analyzed by elemental analyzer, pH meter, Karl-Fischer moisture titrator and bomb calorimeter were in consistence with those analyses by FTIR spectroscopy. Furthermore, the pyrolysis liquid products contained large amounts of water (>73% by weight) mostly derived from the bound water in the biosludge feedstocks and the condensation reactions during the pyrolysis reaction, and fewer contents of oxygenated hydrocarbons composing of carbonyl and nitrogen-containing groups, resulting in low pH and low calorific values.

  13. Low temperature thermo-chemical pretreatment of dairy waste activated sludge for anaerobic digestion process.

    PubMed

    Rani, R Uma; Kumar, S Adish; Kaliappan, S; Yeom, Ick-Tae; Banu, J Rajesh

    2012-01-01

    An investigation into the influence of low temperature thermo-chemical pretreatment on sludge reduction in a semi-continuous anaerobic reactor was performed. Firstly, effect of sludge pretreatment was evaluated by COD solubilization, suspended solids reduction and biogas production. At optimized condition (60 °C with pH 12), COD solubilization, suspended solids, reduction and biogas production was 23%, 22% and 51% higher than the control, respectively. Secondly, semi-continuous process performance was studied in a lab-scale semi-continuous anaerobic reactor (5 L), with 4 L working volume. With three operated SRTs, the SRT of 15 days was found to be most appropriate for economic operation of the reactor. Combining pretreatment with anaerobic digestion led to 80.5%, 117% and 90.4% of TS, SS and VS reduction respectively, with an improvement of 103% in biogas production. Thus, low temperature thermo-chemical can play an important role in reducing sludge production.

  14. Short-chain fatty acids production and microbial community in sludge alkaline fermentation: Long-term effect of temperature.

    PubMed

    Yuan, Yue; Liu, Ye; Li, Baikun; Wang, Bo; Wang, Shuying; Peng, Yongzhen

    2016-07-01

    Sludge alkaline fermentation has been reported to achieve efficient short-chain fatty acids (SCFAs) production. Temperature played important role in further improved SCFAs production. Long-term SCFAs production from sludge alkaline fermentation was compared between mesotherm (30±2°C) and microtherm (15±2°C). The study of 90days showed that mesotherm led to 2.2-folds production of SCFAs as microtherm and enhanced the production of acetic acid as major component of SCFAs. Soluble protein and carbohydrate at mesotherm was 2.63-folds as that at microtherm due to higher activities of protease and α-glucosidase, guaranteeing efficient substrates to produce SCFAs. Illumina MiSeq sequencing revealed that microtherm increased the abundance of Corynebacterium, Alkaliflexus, Pseudomonas and Guggenheimella, capable of enhancing hydrolysis. Hydrolytic bacteria, i.e. Alcaligenes, Anaerolinea and Ottowia, were enriched at mesotherm. Meanwhile, acidogenic bacteria showed higher abundance at mesotherm than microtherm. Therefore, enrichment of functional bacteria and higher microbial activities resulted in the improved SCFAs at mesotherm.

  15. Selective release of phosphorus and nitrogen from waste activated sludge with combined thermal and alkali treatment.

    PubMed

    Kim, Minwook; Han, Dong-Woo; Kim, Dong-Jin

    2015-08-01

    Selective release characteristics of phosphorus and nitrogen from waste activated sludge (WAS) were investigated during combined thermal and alkali treatment. Alkali (0.001-1.0N NaOH) treatment and combined thermal-alkali treatment were applied to WAS for releasing total P(T-P) and total nitrogen(T-N). Combined thermal-alkali treatment released 94%, 76%, and 49% of T-P, T-N, and COD, respectively. Release rate was positively associated with NaOH concentration, while temperature gave insignificant effect. The ratio of T-N and COD to T-P that released with alkali treatment ranged 0.74-0.80 and 0.39-0.50, respectively, while combined thermal-alkali treatment gave 0.60-0.90 and 0.20-0.60, respectively. Selective release of T-P and T-N was negatively associated with NaOH. High NaOH concentration created cavities on the surface of WAS, and these cavities accelerated the release rate, but reduced selectivity. Selective release of P and N from sludge has a beneficial effect on nutrient recovery with crystallization processes and it can also enhance methane production.

  16. Extracellular polymeric substances and dewaterability of waste activated sludge during anaerobic digestion.

    PubMed

    Ye, Fenxia; Liu, Xinwen; Li, Ying

    2014-01-01

    Anaerobic digestion of waste activated sludge was conducted to gain insight into the mechanisms underlying change in sludge dewaterability during its anaerobic digestion. Unexpectedly, the results indicated that sludge dewatering properties measured by capillary suction time only deteriorated after 10 days of anaerobic digestion, after which dewaterability recovered and remained stable. The loosely bound extracellular polymeric substance (LB-EPS) content increased three-fold after 20 days of anaerobic digestion, and did not change significantly during the remaining 30 days. The tightly bound EPS (TB-EPS) content reduced slightly after 20 days of anaerobic digestion, and stabilized during the last 30 days. Polysaccharides (PS) and proteins (PN) content in LB-EPS increased after 10 days of anaerobic digestion. However, PS and PN contents in TB-EPS decreased slightly. The relationship analysis showed that only LB-EPS correlated with dewaterability of the sludge during anaerobic digestion.

  17. More than a decade of experience of landfill leachate treatment with a full-scale anammox plant combining activated sludge and activated carbon biofilm.

    PubMed

    Azari, Mohammad; Walter, Uwe; Rekers, Volker; Gu, Ji-Dong; Denecke, Martin

    2017-05-01

    The performance of biological treatment for high ammonium removal from landfill leachate has been demonstrated. The plant was upgraded combining the activated sludge process followed by activated carbon reactor. Based on a long-term analysis of data collected from 2006 to 2015, the average total nitrogen removal efficiency of 94% was achieved for wastewaters with a C: N ratio varying from 1 to 5 kg-COD kg-TN(-1). But without the presence of activated carbon reactor, the average of biological removal efficiency for total nitrogen was only 82% ± 6% for the activated sludge stage. It means that up to 20% of the nitrogen in the influent can only be eliminated by microorganisms attached to granular activated carbon. After upgrades of the plant, the energy efficiency showed a reduction in the specific energy demand from 1.6 to less than 0.2 kWh m(-3). Methanol consumption and sludge production was reduced by 91% and 96%, respectively. Fluorescent in situ Hybridization was used for microbial diversity analysis on floccular sludge and granular biofilm samples. Anaerobic ammonium oxidation (anammox) bacteria and nitrifiers were detected and Candidatus Scalindua was found in two forms of flocs and biofilms. Due to stochastic risk assessment based on the long-term data analysis given in this research, the treatment criteria were achieved and the combination of granular activated carbon biofilm process and activated sludge can be a novel and sought approach to better enrich anammox biomass for full-scale treatment applications to reduce operating costs and promote nutrient removal stability and efficiency.

  18. Hybrid alkali-hydrodynamic disintegration of waste-activated sludge before two-stage anaerobic digestion process.

    PubMed

    Grübel, Klaudiusz; Suschka, Jan

    2015-05-01

    The first step of anaerobic digestion, the hydrolysis, is regarded as the rate-limiting step in the degradation of complex organic compounds, such as waste-activated sludge (WAS). The aim of lab-scale experiments was to pre-hydrolyze the sludge by means of low intensive alkaline sludge conditioning before applying hydrodynamic disintegration, as the pre-treatment procedure. Application of both processes as a hybrid disintegration sludge technology resulted in a higher organic matter release (soluble chemical oxygen demand (SCOD)) to the liquid sludge phase compared with the effects of processes conducted separately. The total SCOD after alkalization at 9 pH (pH in the range of 8.96-9.10, SCOD = 600 mg O2/L) and after hydrodynamic (SCOD = 1450 mg O2/L) disintegration equaled to 2050 mg/L. However, due to the synergistic effect, the obtained SCOD value amounted to 2800 mg/L, which constitutes an additional chemical oxygen demand (COD) dissolution of about 35 %. Similarly, the synergistic effect after alkalization at 10 pH was also obtained. The applied hybrid pre-hydrolysis technology resulted in a disintegration degree of 28-35%. The experiments aimed at selection of the most appropriate procedures in terms of optimal sludge digestion results, including high organic matter degradation (removal) and high biogas production. The analyzed soft hybrid technology influenced the effectiveness of mesophilic/thermophilic anaerobic digestion in a positive way and ensured the sludge minimization. The adopted pre-treatment technology (alkalization + hydrodynamic cavitation) resulted in 22-27% higher biogas production and 13-28% higher biogas yield. After two stages of anaerobic digestion (mesophilic conditions (MAD) + thermophilic anaerobic digestion (TAD)), the highest total solids (TS) reduction amounted to 45.6% and was received for the following sample at 7 days MAD + 17 days TAD. About 7% higher TS reduction was noticed compared with the sample after 9

  19. Processing anaerobic sludge for extended storage as anaerobic digester inoculum.

    PubMed

    Li, Jiajia; Zicari, Steven M; Cui, Zongjun; Zhang, Ruihong

    2014-08-01

    Thermophilic anaerobic sludge was processed to reduce the volume and moisture content in order to reduce costs for storing and transporting the sludge as microbial inoculum for anaerobic digester startup. The moisture content of the sludge was reduced from 98.7% to 82.0% via centrifugation and further to 71.5% via vacuum evaporation. The processed sludge was stored for 2 and 4 months and compared with the fresh sludge for the biogas and methane production using food waste and non-fat dry milk as substrates. It was found that fresh unprocessed sludge had the highest methane yield and the yields of both unprocessed and processed sludges decreased during storage by 1-34%, however processed sludges seemed to regain some activity after 4 months of storage as compared to samples stored for only 2 months. Maximum methane production rates obtained from modified Gompertz model application also increased between the 2-month and 4-month processed samples.

  20. Waste paper and pulp sludge as feedstock for ethanol production

    SciTech Connect

    Sosulski, K.; Swerhone, B.

    1993-12-31

    Samples of newsprint, office, cardboard and magazine paper, paper towels, pulp waste and sludge were evaluated for their cellulose contents and rates of cellulose conversion to glucose. Several pretreatments were evaluated to increase the rate of conversion of newsprint cellulose to glucose. The influence of printers` inks on enzyme hydrolysis and fermentation were determined for printed newsprint and magazine paper and corresponding imprinted controls. Two streams of mixed paper were formed to determine the need for separation of paper prior to processing. A modified, two-stage process was evaluated for hydrolyses of paper samples. The process consisted of sample hydrolysis with one-half of total enzymes for 24 hr, separation of sugars by filtration and hydrolysis of the residue with fresh enzymes for an additional 24 hr. In this way, at the same enzyme loading, the rates of cellulose conversion were increased by 18 to 59%, depending on sample. The maximum cellulose conversion rates were: 62.4% for newsprint, 65.4% for cardboard, 65.7% for office paper, 54.5% for magazine paper and 55.0% for paper towel. Bleached pulp waste was hydrolysed to the level of 62.7%, and the rates of conversion of pulp sludge cellulose were 32.4 to 74.6%, depending on paper waste used for reprocessing by pulp mills. The degrees of saccharification determined for the mixed paper samples were comparable or slightly lower than those calculated based on the best conversion rates for each of the constituents and their contents in mixed sample. Based on the findings of this study, it became apparent that ethanol plants would be able to process all types of paper and pulp wastes blends, at varying ratios, without the need for separation of waste streams. Also, there was no need for other pretreatments than particle size reduction by grinding, prior to enzyme hydrolysis. Printers` inks had no adverse affect on enzyme hydrolysis or yeast fermentation.

  1. Statistical optimization of process conditions for cellulase production by liquid state bioconversion of domestic wastewater sludge.

    PubMed

    Alam, Md Zahangir; Muyibi, Suleyman A; Wahid, Rosmaziah

    2008-07-01

    A two-level fractional factorial design (FFD) was used to determine the effects of six factors, i.e. substrate (domestic wastewater sludge - DWS) and co-substrate concentration (wheat flour - WF), temperature, initial pH, inoculum size and agitation rate on the production of cellulase enzyme by Trichoderma harzianum in liquid state bioconversion. On statistical analysis of the results from the experimental studies, optimum process conditions were found to be temperature 32.5 degrees C, substrate concentration (DWS) 0.75% (w/w), co-substrate (WF) concentration 2% (w/w), initial pH 5, inoculum size 2% (v/w) and agitation 175 rpm. Analysis of variance (ANOVA) showed a high coefficient of determination (R2) of 0.975. Cellulase activity reached 10.2 FPU/ml at day 3 during the fermentation process which indicated about 1.5-fold increase in production compared to the cellulase activity obtained from the results of design of experiment (6.9 FPU/ml). Biodegradation of DWS was also evaluated to verify the efficiency of the bioconversion process as a waste management method.

  2. Detection of enteric viruses in activated sludge by feasible concentration methods.

    PubMed

    Prado, Tatiana; Gaspar, Ana Maria Coimbra; Miagostovich, Marize Pereira

    2014-01-01

    Human enteric viruses are responsible to cause several diseases, including gastroenteritis and hepatitis, and can be present in high amounts in sewage sludge. This study compared virus recovery efficiency of two feasible concentration methods used for detecting human adenovirus (HAdV), rotavirus species A (RV-A), norovirus genogroup II (NoV GII) and hepatitis A virus (HAV) in sewage sludge from an activated sludge process. Twelve sewage sludge samples were collected bi-monthly from January to July, 2011. Ultracentrifugation was compared with a simplified protocol based on beef extract elution for recovering enteric viruses. Viruses were quantified by quantitative real-time PCR assays and virus recovery efficiency and limits of detection were determined. Methods showed mean recovery rates lower than 7.5%, presenting critical limits of detection (higher than 10(2) - 10(3) genome copies - GC L(-1) for all viruses analyzed). Nevertheless, HAdV were detected in 90% of the analyzed sewage sludge samples (range: 1.8 × 10(4) to 1.1 × 10(5) GC L(-1)), followed by RV-A and NoV (both in 50%) and HAV (8%). Results suggesting that activated sludge is contaminated with high viral loads and HAdV are widely disseminated in these samples. The low virus recovery rates achieved, especially for HAV, indicate that other feasible concentration methods could be developed to improve virus recovery efficiency in these environmental matrices.

  3. Modeling organic nitrogen conversions in activated sludge bioreactors.

    PubMed

    Makinia, Jacek; Pagilla, Krishna; Czerwionka, Krzysztof; Stensel, H David

    2011-01-01

    For biological nutrient removal (BNR) systems designed to maximize nitrogen removal, the effluent total nitrogen (TN) concentration may range from 2.0 to 4.0 g N/m(3) with about 25-50% in the form of organic nitrogen (ON). In this study, current approaches to modeling organic N conversions (separate processes vs. constant contents of organic fractions) were compared. A new conceptual model of ON conversions was developed and combined with Activated Sludge Model No. 2d (ASM2d). The model addresses a new insight into the processes of ammonification, biomass decay and hydrolysis of particulate and colloidal ON (PON and CON, respectively). Three major ON fractions incorporated are defined as dissolved (DON) (<0.1 µm), CON (0.1-1.2 µm) and PON (41.2 µm). Each major fraction was further divided into two sub-fractions - biodegradable and non-biodegradable. Experimental data were collected during field measurements and lab experiments conducted at the ''Wschod'' WWTP (570,000 PE) in Gdansk (Poland). The accurate steady-state predictions of DON and CON profiles were possible by varying ammonification and hydrolysis rates under different electron acceptor conditions. With the same model parameter set, the behaviors of both inorganic N forms (NH4-N, NOX-N) and ON forms (DON, CON) in the batch experiments were predicted. The challenges to accurately simulate and predict effluent ON levels from BNR systems are due to analytical methods of direct ON measurement (replacing TKN) and lack of large enough database (in-process measurements, dynamic variations of the ON concentrations) which can be used to determine parameter value ranges.

  4. Ornithinimicrobium pekingense sp. nov., isolated from activated sludge.

    PubMed

    Liu, Xing-Yu; Wang, Bao-Jun; Jiang, Cheng-Ying; Liu, Shuang-Jiang

    2008-01-01

    The bacterial strain LW6(T) was isolated from activated sludge of a wastewater treatment bioreactor. Cells of strain LW6(T) are Gram-positive, irregular, short rods and cocci, 0.5-0.8x1.0-1.6 microm. Colonies are light-yellow, smooth, circular and 0.2-1.0 mm in diameter after 3 days incubation. Strain LW6(T) is aerobic and heterotrophic. It grows at a temperature range of 26-38 degrees C and pH range of 6-9, with optimal growth at 33-37 degrees C and pH 7.8-8.2. The predominant cellular fatty acids of strain LW6(T) are iso-C(15:0) (38.9%) and iso-C(17:1)omega9c (18.8%). Strain LW6(T) has the major respiratory menaquinones MK-8(H(4)) and MK-8(H(2)) and polar lipids phosphatidylinositol, phosphatidylglycerol, diphosphatidylglycerol and unknown glycolipid/phospholipids. The cell wall peptidoglycan of strain LW6(T) contained the amino acids ornithine, lysine, glutamic acid, alanine, glycine and aspartic acid. Its molar DNA G+C content is 69 mol% (T(m)). Analysis of 16S rRNA gene sequences indicated that strain LW6(T) was related phylogenetically to members of the genus Ornithinimicrobium, with similarities ranging from 98.3 to 98.7%. The DNA-DNA relatedness of strain LW6(T) to Ornithinimicrobium humiphilum DSM 12362(T) and Ornithinimicrobium kibberense K22-20(T) was respectively 31.5 and 15.2%. Based on these results, it is concluded that strain LW6(T) represents a novel species of the genus Ornithinimicrobium, for which the name Ornithinimicrobium pekingense sp. nov. is proposed. The type strain is strain LW6(T) (=CGMCC 1.5362(T) =JCM 14001(T)).

  5. Chryseomicrobium aureum sp. nov., a bacterium isolated from activated sludge.

    PubMed

    Deng, Shi-Kai; Ye, Xiao-Mei; Chu, Cui-Wei; Jiang, Jin; He, Jian; Zhang, Jun; Li, Shun-Peng

    2014-08-01

    A Gram-stain-positive, rod-shaped, non-motile, non-spore-forming, aerobic bacterial strain, designated BUT-2(T), was isolated from activated sludge of one herbicide-manufacturing wastewater-treatment facility in Kunshan, Jiangsu province, China, and subjected to polyphasic taxonomic studies. Analysis of the 16S rRNA gene sequence indicated that strain BUT-2(T) shared the highest similarity with Chryseomicrobium amylolyticum (98.98%), followed by Chryseomicrobium imtechense (98.88%), with less than 96% similarlity to members of the genera Paenisporosarcina, Planococcus, Sporosarcina and Planomicrobium. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain BUT-2(T) clustered with C. amylolyticum JC16(T) and C. imtechense MW10(T), occupying a distinct phylogenetic position. The major fatty acid (>10% of total fatty acids) type of strain BUT-2(T) was iso-C(15 : 0). The quinone system comprised menaquinone MK-7 (77.8%), MK-6 (11.9%) and MK-8 (10.3%). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and some unidentified phospholipids. The cell-wall peptidoglycan type of strain BUT-2(T) was L-Orn-D-Glu. The genomic DNA G+C content of strain BUT-2(T) was 48.5 mol%. Furthermore, the DNA-DNA relatedness in hybridization experiments against the reference strain was lower than 70%, confirming that strain BUT-2(T) did not belong to previously described species of the genus Chryseomicrobium. On the basis of its morphological, physiological and chemotaxonomic characteristics as well as phylogenetic analysis, strain BUT-2(T) is considered to represent a novel species of the genus Chryseomicrobium, for which the name Chryseomicrobium aureum sp. nov. is proposed. The type strain is BUT-2(T) ( = CCTCC AB2013082(T) = KACC 17219(T)).

  6. A pilot study of anaerobic membrane digesters for concurrent thickening and digestion of waste activated sludge (WAS).

    PubMed

    Dagnew, Martha; Parker, Wayne J; Seto, Peter

    2010-01-01

    The increased interest in biomass energy provides incentive for the development of efficient and high throughput digesters such as anaerobic membrane bioreactors (AnMBRs) to stabilize waste activated sludge (WAS). This paper presents the results of a pilot and short term filtration study that was conducted to assess the performance of AnMBRs when treating WAS at a 15 day hydraulic retention time (HRT) and 30 day sludge retention time (SRT) in comparison to two conventional digesters running at 15 (BSR-15) and 30 days (BSR-30) HRT/SRT. At steady state, the AnMBR digester showed a slightly higher volatile solids (VS) destruction of 48% in comparison to 44% and 35.3% for BSR-30 and BSR-15, respectively. The corresponding values of specific methane production were 0.32, 0.28 and 0.21 m(3) CH(4)/kg of VS fed. Stable membrane operation at an average flux of 40+/-3.6 LM(-2 )H(-1) (LMH) was observed when the digester was fed with a polymer-dosed thickened waste activated sludge (TWAS) and digester total suspended solids (TSS) concentrations were less than 15 gL(-1). Above this solids concentration a flux decline to 24.1+/-2.0 LM(-2) H(-1) was observed. Short term filtration tests conducted using sludge fractions of a 9.7 and 17.1 gL(-1) TSS sludge indicated 84 and 70% decline in filtration performance to be associated with the supernatant fraction of the sludge. At a higher sludge concentration, the introduction of unique fouling control strategy to tubular membranes, a relaxed mode of operation (i.e. 5 minutes permeation and 1 minute relaxation by) significantly increased the flux from 23.8+/-1.1 to 37.8+/-2.3 LMH for a neutral membrane and from 25.7+/-1.1 to 44.9+/-2.9 LMH for a negatively charged membrane. The study clearly indicates that it is technically feasible to employ AnMBRs to achieve a substantial reduction in digester volumes.

  7. Acetone-butanol-ethanol production from Kraft paper mill sludge by simultaneous saccharification and fermentation.

    PubMed

    Guan, Wenjian; Shi, Suan; Tu, Maobing; Lee, Yoon Y

    2016-01-01

    Paper mill sludge (PS), a solid waste from pulp and paper industry, was investigated as a feedstock for acetone-butanol-ethanol (ABE) production by simultaneous saccharification and fermentation (SSF). ABE fermentation of paper sludge by Clostridium acetobutylicum required partial removal of ash in PS to enhance its enzymatic digestibility. Enzymatic hydrolysis was found to be a rate-limiting step in the SSF. A total of 16.4-18.0g/L of ABE solvents were produced in the SSF of de-ashed PS with solid loading of 6.3-7.4% and enzyme loading of 10-15FPU/g-glucan, and the final solvent yield reached 0.27g/g sugars. No pretreatment and pH control were needed in ABE fermentation of paper sludge, which makes it an attractive feedstock for butanol production. The results suggested utilization of paper sludge should not only consider the benefits of buffering effect of CaCO3 in fermentation, but also take into account its inhibitory effect on enzymatic hydrolysis.

  8. Optimum design and operation of primary sludge fermentation schemes for volatile fatty acids production.

    PubMed

    Chanona, J; Ribes, J; Seco, A; Ferrer, J

    2006-01-01

    This paper presents a model-knowledge based algorithm for optimising the primary sludge fermentation process design and operation. This is a recently used method to obtain the volatile fatty acids (VFA), needed to improve biological nutrient removal processes, directly from the raw wastewater. The proposed algorithm consists in a heuristic reasoning algorithm based on the expert knowledge of the process. Only effluent VFA and the sludge blanket height (SBH) have to be set as design criteria, and the optimisation algorithm obtains the minimum return sludge and waste sludge flow rates which fulfil those design criteria. A pilot plant fed with municipal raw wastewater was operated in order to obtain experimental results supporting the developed algorithm groundwork. The experimental results indicate that when SBH was increased, higher solids retention time was obtained in the settler and VFA production increased. Higher recirculation flow-rates resulted in higher VFA production too. Finally, the developed algorithm has been tested by simulating different design conditions with very good results. It has been able to find the optimal operation conditions in all cases on which preset design conditions could be achieved. Furthermore, this is a general algorithm that can be applied to any fermentation-elutriation scheme with or without fermentation reactor.

  9. WWTP design in warm climates - guideline comparison and parameter adaptation for a full-scale activated sludge plant using mass balancing.

    PubMed

    Walder, C; Lindtner, S; Proesl, A; Klegraf, F; Weissenbacher, N

    2013-01-01

    The ATV-A-131 guideline and the design approach published in 'Wastewater Engineering, Treatment and Reuse (WE)' are widely used for the design of activated sludge plants. They are both based on simplified steady-state assumptions tailored to the boundary conditions of temperate climates. Using design guidelines beyond the designated temperature range may lead to inappropriate results. The objectives of this paper are (1) to summarise temperature relevant differences between ATV-A-131 and WE; (2) to show the related design components; and (3) to demonstrate a procedure for design parameter adaptation for a full-scale activated sludge plant located in a warm climate region. To gain steady-state data required for wastewater treatment plant (WWTP) design according to ATV-A-131 and WE, full-scale plant data were acquired for a period of 6 months as a basis for analyses and adaptation. Mass balances were calculated for the verification of the measurements and for analysing excess sludge production. The two approaches showed relevant temperature related differences. WE default application resulted in lower deviation in the mass balance results for excess sludge production. However, with the adaptation of the heterotrophic decay rates for both approaches and the inert organic and mineral solids fraction additionally for ATV-A-131, a good fit to the observed excess sludge production could be achieved.

  10. Full-scale in-line hydrolysis and simulation for potential energy and resource savings in activated sludge--a case study.

    PubMed

    Hey, Tobias; Jönsson, Karin; Jansen, Jes la Cour

    2012-01-01

    The potential effects of altering primary settlers during biological in-line hydrolysis and converting a nitrifying activated sludge process into a partial pre-denitrification process for the purpose of resource conservation were evaluated. A full-scale primary sludge hydrolysis experiment was performed at a wastewater treatment plant and implemented in a dynamic modelling tool based on ASM2d. The full-scale hydrolysis experiment achieved a volatile fatty acid (VFA) production of 43 g COD(HAc) x m(-3) with no release of ammonium. Additional nitrogen removal of 44 t N x a(-1) was simulated, and the produced hydrolysate was able to replace 50% of the annual ethanol usage. Furthermore, 196 MWh of electricity per annum could be saved through the reduction of ethanol production and the optimization of the operation strategy of the activated sludge tank by operating a different number of anoxic zones.

  11. Production of biosolid fuels from municipal sewage sludge: Technical and economic optimisation.

    PubMed

    Wzorek, Małgorzata; Tańczuk, Mariusz

    2015-08-01

    The article presents the technical and economic analysis of the production of fuels from municipal sewage sludge. The analysis involved the production of two types of fuel compositions: sewage sludge with sawdust (PBT fuel) and sewage sludge with meat and bone meal (PBM fuel). The technology of the production line of these sewage fuels was proposed and analysed. The main objective of the study is to find the optimal production capacity. The optimisation analysis was performed for the adopted technical and economic parameters under Polish conditions. The objective function was set as a maximum of the net present value index and the optimisation procedure was carried out for the fuel production line input capacity from 0.5 to 3 t h(-1), using the search step 0.5 t h(-1). On the basis of technical and economic assumptions, economic efficiency indexes of the investment were determined for the case of optimal line productivity. The results of the optimisation analysis show that under appropriate conditions, such as prices of components and prices of produced fuels, the production of fuels from sewage sludge can be profitable. In the case of PBT fuel, calculated economic indexes show the best profitability for the capacity of a plant over 1.5 t h(-1) output, while production of PBM fuel is beneficial for a plant with the maximum of searched capacities: 3.0 t h(-1). Sensitivity analyses carried out during the investigation show that influence of both technical and economic assessments on the location of maximum of objective function (net present value) is significant.

  12. ACTIVE PEC APPLICATIONS, THE PEC WEBSITE, AND SLUDGE STABILITY RESEARCH

    EPA Science Inventory

    Since it's creation in 1985, the Pathogen Equivalency Committee (PEC) has been reviewing novel sludge disinfection technologies with regards to their abilities to protect human health and the environment. The PEC is charged to make recommendations on whether these novel technolog...

  13. Effect of ultrasound, low-temperature thermal and alkali pre-treatments on waste activated sludge rheology, hygienization and methane potential.

    PubMed

    Ruiz-Hernando, M; Martín-Díaz, J; Labanda, J; Mata-Alvarez, J; Llorens, J; Lucena, F; Astals, S

    2014-09-15

    Waste activated sludge is slower to biodegrade under anaerobic conditions than is primary sludge due to the glycan strands present in microbial cell walls. The use of pre-treatments may help to disrupt cell membranes and improve waste activated sludge biodegradability. In the present study, the effect of ultrasound, low-temperature thermal and alkali pre-treatments on the rheology, hygienization and biodegradability of waste activated sludge was evaluated. The optimum condition of each pre-treatment was selected based on rheological criteria (reduction of steady state viscosity) and hygienization levels (reduction of Escherichia coli, somatic coliphages and spores of sulfite-reducing clostridia). The three pre-treatments were able to reduce the viscosity of the sludge, and this reduction was greater with increasing treatment intensity. However, only the alkali and thermal conditioning allowed the hygienization of the sludge, whereas the ultrasonication did not exhibit any notorious effect on microbial indicators populations. The selected optimum conditions were as follows: 27,000 kJ/kg TS for the ultrasound, 80 °C during 15 min for the thermal and 157 g NaOH/kg TS for the alkali. Afterward, the specific methane production was evaluated through biomethane potential tests at the specified optimum conditions. The alkali pre-treatment exhibited the greatest methane production increase (34%) followed by the ultrasonication (13%), whereas the thermal pre-treatment presented a methane potential similar to the untreated sludge. Finally, an assessment of the different treatment scenarios was conducted considering the results together with an energy balance, which revealed that the ultrasound and alkali treatments entailed higher costs.

  14. Production and characterization of lignocellulosic biomass-derived activated carbon.

    PubMed

    Namazi, A B; Jia, C Q; Allen, D G

    2010-01-01

    The goal of this work is to establish the technical feasibility of producing activated carbon from pulp mill sludges. KOH chemical activation of four lignocellulosic biomass materials, two sludges from pulp mills, one sludge for a linerboard mill, and cow manure, were investigated experimentally, with a focus on the effects of KOH/biomass ratio (1/1, 1.5/1 and 2/1), activation temperature (400-600 °C) and activation time (1 to 2 h) on the development of porosity. The activation products were characterized for their physical and chemical properties using a surface area analyzer, scanning electron microscopy and Fourier transform infrared spectroscopy. Experiments were carried out to establish the effectiveness of the lignocellulosic biomass-derived activated carbon in removing methylene blue (MB), a surrogate of large organic molecules. The results show that the activated carbon are highly porous with specific surface area greater than 500 m²/g. The yield of activated carbon was greater than the percent of fixed carbon in the dry sludge, suggesting that the activation process was able to capture a substantial amount of carbon from the organic matter in the sludge. While 400 °C was too low, 600 °C was high enough to sustain a substantial rate of activation for linerboard sludge. The KOH/biomass ratio, activation temperature and time all play important roles in pore development and yield control, allowing optimization of the activation process. MB adsorption followed a Langmuir isotherm for all four activated carbon, although the adsorption capacity of NK-primary sludge-derived activated carbon was considerably lower than the rest, consistent with its lower specific surface area.

  15. Integral approaches to wastewater treatment plant upgrading for odor prevention: Activated Sludge and Oxidized Ammonium Recycling.

    PubMed

    Estrada, José M; Kraakman, N J R; Lebrero, R; Muñoz, R

    2015-11-01

    Traditional physical/chemical end-of-the-pipe technologies for odor abatement are relatively expensive and present high environmental impacts. On the other hand, biotechnologies have recently emerged as cost-effective and environmentally friendly alternatives but are still limited by their investment costs and land requirements. A more desirable approach to odor control is the prevention of odorant formation before being released to the atmosphere, but limited information is available beyond good design and operational practices of the wastewater treatment process. The present paper reviews two widely applicable and economic alternatives for odor control, Activated Sludge Recycling (ASR) and Oxidized Ammonium Recycling (OAR), by discussing their fundamentals, key operating parameters and experience from the available pilot and field studies. Both technologies present high application potential using readily available plant by-products with a minimum plant upgrading, and low investment and operating costs, contributing to the sustainability and economic efficiency of odor control at wastewater treatment facilities.

  16. MiDAS: the field guide to the microbes of activated sludge

    PubMed Central

    McIlroy, Simon Jon; Saunders, Aaron Marc; Albertsen, Mads; Nierychlo, Marta; McIlroy, Bianca; Hansen, Aviaja Anna; Karst, Søren Michael; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2015-01-01

    The Microbial Database for Activated Sludge (MiDAS) field guide is a freely available online resource linking the identity of abundant and process critical microorganisms in activated sludge wastewater treatment systems to available data related to their functional importance. Phenotypic properties of some of these genera are described, but most are known only from sequence data. The MiDAS taxonomy is a manual curation of the SILVA taxonomy that proposes a name for all genus-level taxa observed to be abundant by large-scale 16 S rRNA gene amplicon sequencing of full-scale activated sludge communities. The taxonomy can be used to classify unknown sequences, and the online MiDAS field guide links the identity to the available information about their morphology, diversity, physiology and distribution. The use of a common taxonomy across the field will provide a solid foundation for the study of microbial ecology of the activated sludge process and related treatment processes. The online MiDAS field guide is a collaborative workspace intended to facilitate a better understanding of the ecology of activated sludge and related treatment processes—knowledge that will be an invaluable resource for the optimal design and operation of these systems. Database URL: http://www.midasfieldguide.org PMID:26120139

  17. Ciliated protozoa community of a combined UASB-activated sludge system in southeastern Brazil.

    PubMed

    Siqueira-Castro, Isabel Cristina Vidal; Greinert-Goulart, Juliane Araújo; Rossetto, Renato; Guimarães, José Roberto; Franco, Regina Maura Bueno

    2016-12-01

    The aims of the present study were (1) to evaluate the abundance and taxonomic composition of ciliated protozoa in the activated sludge of a full-scale combined anaerobic-aerobic system operating in a tropical country and (2) to study the relationship between the effluent quality, the physicochemical variables, and the ciliates present in the operating system. The total ciliate fauna of the activated sludge of the Piçarrão Wastewater Treatment Plant (Piçarrão WWTP) was composed of 36 morphospecies belonging to 33 genera. These included 21 species observed in the activated sludge samples on the day of collection and 15 species found in cultures. The activated sludge of the Piçarrão WWTP contained a diversified ciliate community composed mainly of indicator organisms. The most frequently occurring morphospecies were Aspidisca cicada, Vorticella spp., Gastronauta aloisi, Acineria uncinata, and Epistylis plicatilis complex. These results showed that satisfactory operating conditions prevailed at the Piçarrão WWTP. In the combined UASB-activated sludge system, the presence of Aspidisca cicada suggests the occurrence of denitrification in the process while the presence of Acineria uncinata and G. alosi indicates the removal of carbonaceous organic matter.

  18. Influence of tetracycline on tetracycline-resistant heterotrophs and tet genes in activated sludge process.

    PubMed

    Yu, Jie; Liu, Dongfang; Li, Kexun

    2015-03-01

    The concentrations of tetracycline-intermediate resistant, tetracycline-resistant heterotrophic bacteria, and total heterotrophic bacteria were examined to assess the influence of tetracycline on tetracycline-resistant heterotrophs by the R2A agar cultivation method in the tetracycline fortified activated sludge process and in the natural background. Results showed that the percentages of both tetracycline-intermediate resistant and tetracycline-resistant heterotrophic bacteria in total heterotrophic bacteria were significantly increased, after tetracycline was fed to activated sludge for a 3 months period under four different operating conditions, as compared with the background. In order to investigate the mechanism of activated sludge resistance to tetracycline, polymerase chain reaction experiments were carried out to analyze the existence and evolution of tet genes in the presence of tetracycline. Results revealed that only tet A and tet B genes out of the 11 target tet genes were observed in tetracycline treated activated sludge while no tet gene was detected in background. This indicated that tet A gene could accumulate in activated sludge with slower and continuous influent, while the accumulation of tet B gene could be attributed to shorter hydraulic retention time. Therefore, it was proposed in this study that tetracycline-resistant genes created by efflux pumps spread earlier and quicker to encode resistance to tetracycline, which facilitated the increase in tetracycline-resistance.

  19. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption

    SciTech Connect

    Yamada, Y.; Kawase, Y. . E-mail: bckawase@mail.eng.toyo.ac.jp

    2006-07-01

    In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial composting mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.

  20. Effects of activated sludge on the degradation of chlorate in soils under varying environmental conditions.

    PubMed

    Jiang, Chunxiao; Li, Huashou; Lin, Chuxia

    2009-03-15

    Incubation experiments were conducted to examine the effects of activated sludge on degradation of chlorate in soils. The results show that application of activated sludge could significantly promote the decomposition of soil chlorate though the degradation rate of chlorate did not necessarily increase with increasing application rate of the sludge. The effectiveness of activated sludge on soil chlorate degradation was significantly affected by temperature, moisture content and pH. There is a tendency that the rate of chlorate decomposition increased with increasing temperature and moisture content until optimal values of temperature and moisture content were reached. This can be attributed to the enhanced activity of chlorate-reducing microorganisms in hot and more reducing soil conditions. Soil pH also had important controls on the decomposition of chlorate. The experimental results demonstrate that neutral pH more favoured the degradation of soil chlorate, compared to either acidic or alkaline pH. While soil organic matter content could affect chlorate decomposition, its impact on the effectiveness of activated sludge on chlorate degradation was minor. This study has implications for developing cost-effective techniques for remediating chlorate-contaminated soils, particularly in the longan-producing countries.

  1. MiDAS: the field guide to the microbes of activated sludge.

    PubMed

    McIlroy, Simon Jon; Saunders, Aaron Marc; Albertsen, Mads; Nierychlo, Marta; McIlroy, Bianca; Hansen, Aviaja Anna; Karst, Søren Michael; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2015-01-01

    The Microbial Database for Activated Sludge (MiDAS) field guide is a freely available online resource linking the identity of abundant and process critical microorganisms in activated sludge wastewater treatment systems to available data related to their functional importance. Phenotypic properties of some of these genera are described, but most are known only from sequence data. The MiDAS taxonomy is a manual curation of the SILVA taxonomy that proposes a name for all genus-level taxa observed to be abundant by large-scale 16 S rRNA gene amplicon sequencing of full-scale activated sludge communities. The taxonomy can be used to classify unknown sequences, and the online MiDAS field guide links the identity to the available information about their morphology, diversity, physiology and distribution. The use of a common taxonomy across the field will provide a solid foundation for the study of microbial ecology of the activated sludge process and related treatment processes. The online MiDAS field guide is a collaborative workspace intended to facilitate a better understanding of the ecology of activated sludge and related treatment processes--knowledge that will be an invaluable resource for the optimal design and operation of these systems.

  2. Application of the Fluorescent-Antibody Technique for the Detection of Sphaerotilus natans in Activated Sludge

    PubMed Central

    Howgrave-Graham, Alan R.; Steyn, Pieter L.

    1988-01-01

    Sphaerotilus natans, one of the most widely reported causes of bulking in activated sludge, can exist both within and outside of a sheath. It can easily be confused with similar activated sludge bacteria and thus can be overlooked when present in low numbers. Fluorescent antiserum was successfully prepared against the nonfilamentous form and was shown to be highly specific, showing no reaction with either pure cultures of similar filamentous bacteria or entirely unrelated organisms. It did, however, show a lack of strain specificity since it reacted with S. natans isolates from the Federal Republic of Germany and the United States and with filamentous bacteria in South African activated sludges. Fluorescent antibody is capable of penetrating the filaments of S. natans to stain the cells individually. The use of fluorescent antiserum in the identification of S. natans filaments obscured by activated sludge flocs and other suspended matter was simple since the cells stained brightly and could be observed through the less dense matter, while the use of other microscope techniques would be hampered by these obstructions. The use of fluorescent antibody will facilitate ecological studies of S. natans in activated sludge and other aqueous environments. Images PMID:16347588

  3. Study of kinetics of degradation of cyclohexane carboxylic acid by acclimated activated sludge.

    PubMed

    Wang, Chunhua; Shi, Shuian; Chen, Hongyan

    2016-01-01

    Activated sludge contains complex microorganisms, which are highly effective biodegrading agents. In this study, the kinetics of biodegradation of cyclohexane carboxylic acid (CHCA) by an acclimated aerobic activated sludge were investigated. The results showed that after 180 days of acclimation, the activated sludge could steadily degrade >90% of the CHCA in 120 h. The degradation of CHCA by the acclimated activated sludge could be modeled using a first-order kinetics equation. The equations for the degradation kinetics for different initial CHCA concentrations were also obtained. The kinetics constant, kd, decreased with an increase in the CHCA concentration, indicating that, at high concentrations, CHCA had an inhibiting effect on the microorganisms in the activated sludge. The effects of pH on the degradation kinetics of CHCA were also investigated. The results showed that a pH of 10 afforded the highest degradation rate, indicating that basic conditions significantly promoted the degradation of CHCA. Moreover, it was found that the degradation efficiency for CHCA increased with an increase in temperature and concentration of dissolved oxygen under the experimental conditions.

  4. A comparative adsorption study: 17β-estradiol onto aerobic granular sludge and activated sludge.

    PubMed

    Zheng, Xiao-ying; He, Yu-jie; Chen, Wei; Wang, Ming-yang; Cao, Su-lan; Ni, Ming; Chen, Yu

    2016-01-01

    Adsorption plays a significant role in removing hydrophobic 17β-estradiol (E2) from wastewater. Batch experiments were conducted to compare the adsorption of E2 onto activated aerobic granular sludge (AGS) and activated sludge (AS), and features evaluated included the adsorption kinetics, thermodynamics, and influence of other environmental factors. By using a non-chemical wet-heat technique, both AGS and AS were treated to inactivated status. Then, after loading E2, the adsorption equilibrium capacity of the AGS was found to be greater than that of the AS at the same initial concentration of E2. Moreover, both the adsorption processes corresponded to a pseudo-second-order kinetic model; the adsorption rate constant of AGS was found to be higher and the half-adsorption time was shorter than that of AS. Next, evaluations of adsorption isotherms and thermodynamics indicated that the adsorption process was mainly a physical process. Lower temperatures facilitated a higher equilibrium adsorption capacity. However, the adsorption binding sites of AGS were distributed more uniformly at higher temperature, in contrast to the distribution found for AS. Finally, acidic conditions and an appropriate ionic strength (0.4 mol/L) were found to be particularly conducive to the adsorption process. Overall, the results showed that AGS has the potential to adsorb E2 with significant efficiency, thereby offering a new and more efficient means of treating E2 and trace oestrogens in wastewater.

  5. Evaluation of activated sludge for biodegradation of propylene glycol as an aircraft deicing fluid.

    PubMed

    Delorit, Justin D; Racz, LeeAnn

    2014-04-01

    Aircraft deicing fluid used at airport facilities is often collected for treatment or disposal in order to prevent serious ecological threats to nearby surface waters. This study investigated lab scale degradation of propylene glycol, the active ingredient in a common aircraft deicing fluid, by way of a laboratory-scale sequencing batch reactor containing municipal waste water treatment facility activated sludge performing simultaneous organic carbon oxidation and nitrification. The ability of activated sludge to remove propylene glycol was evaluated by studying the biodegradation and sorption characteristics of propylene glycol in an activated sludge medium. The results indicate sorption may play a role in the fate of propylene glycol in AS, and the heterotrophic bacteria readily degrade this compound. Therefore, a field deployable bioreactor may be appropriate for use in flight line applications.

  6. Evaluation of electricity production from alkaline pretreated sludge using two-chamber microbial fuel cell.

    PubMed

    Xiao, Benyi; Yang, Fang; Liu, Junxin

    2013-06-15

    Electricity production from alkaline pretreated sludge was evaluated using a two-chamber microbial fuel cell (MFC). The electricity production was found to be stable over a long period of time (approximately 17 d) with voltage outputs and power densities of 0.47-0.52 V and 46.80-55.88 mW/m(2), respectively. The anode resistance was the main internal resistance (73.2%) of MFC in the stable stage. Most soluble organic matters (proteins and carbohydrates) in the anode chamber were first degraded and converted into volatile fatty acids (0-15 d), which were then degraded and converted into electricity and methane (15-29 d). The insoluble organics were solubilized thereby decreasing the sludge concentration and reducing the sludge mass. Methane was produced in the anode chamber owing to the growth of methanogens, which did not obviously affect the electricity production. The change in humic-like substances displayed a positive correlation with the electricity production of the MFC. Microbial analysis showed that methanogens and electricity-producing bacteria co-existed mostly on the surface as well as inside the anode. Decreasing the anode resistance and increasing the anode utilization could enhance the electricity production.

  7. The Potential in Bioethanol Production From Waste Fiber Sludges in Pulp Mill-Based Biorefineries

    NASA Astrophysics Data System (ADS)

    Sjöde, Anders; Alriksson, Björn; Jönsson, Leif J.; Nilvebrant, Nils-Olof

    Industrial production of bioethanol from fibers that are unusable for pulp production in pulp mills offers an approach to product diversification and more efficient exploitation of the raw material. In an attempt to utilize fibers flowing to the biological waste treatment, selected fiber sludges from three different pulp mills were collected, chemically analyzed, enzymatically hydrolyzed, and fermented for bioethanol production. Another aim was to produce solid residues with higher heat values than those of the original fiber sludges to gain a better fuel for combustion. The glucan content ranged between 32 and 66% of the dry matter. The lignin content varied considerably (1-25%), as did the content of wood extractives (0.2-5.8%). Hydrolysates obtained using enzymatic hydrolysis were found to be readily fermentable using Saccharomyces cerevisiae. Hydrolysis resulted in improved heat values compared with corresponding untreated fiber sludges. Oligomeric xylan fragments in the solid residue obtained after enzymatic hydrolysis were identified using matrix-assisted laser desorption ionization-time of flight and their potential as a new product of a pulp mill-based biorefinery is discussed.

  8. Molecular characterization of nocardioform actinomycetes in activated sludge by 16S rRNA analysis.

    PubMed

    Schuppler, M; Mertens, F; Schön, G; Göbel, U B

    1995-02-01

    The analysis of complex microbiota present in activated sludge is important for the understanding and possible control of severe separation problems in sewage treatment such as sludge bulking or sludge foaming. Previous studies have shown that nocardioform actinomycetes are responsible for these conditions, which not only affect the efficiency of sewage treatment but also represent a threat to public health due to spread of pathogens. However, isolation and identification of these filamentous, nocardioform actinomycetes is hampered by their fastidious nature. Most species are still uncultivable and their taxonomy is unresolved. To study the ecology of these micro-organisms at the molecular level, we have established a clone library of 16S rRNA gene fragments amplified from bulk sludge DNA. A rough indication of the predominant flora in the sludge was given by sequencing randomly chosen clones, which revealed a great diversity of bacteria from different taxa. Colony hybridization with oligonucleotide probe MNP1 detected 27 clones with 16S rDNA inserts from nocardioform actinomycetes and mycobacteria. The sequence data from these clones together with those from randomly chosen clones were used for comparative 16S rRNA analysis and construction of dendrograms. All sequences differed from those of previously sequenced species in the databases. Phenotypic characterization of isolates of nocardioform actinomycetes and mycobacteria cultivated in parallel from the same activated-sludge sample revealed a large discrepancy between the two approaches. Only one 16S rDNA sequence of a cultured isolate was represented in the clone library, indicating that culture conditions could select species which represent only a small fraction of the organisms in the activated sludge.

  9. Analysis of the pore structure of activated carbons produced from paper mill sludge using small angle neutron scattering data

    SciTech Connect

    Sandi, G.; Khalil, N. R.; Littrell, K.; Thiyagarajan, P.

    1999-12-13

    A novel, cost-effective, and environmentally benign process was developed to produce highly efficient carbon-based adsorbents (CBAs) from paper mill sludge. The production process required chemical activation of sludge using zinc chloride and pyrolysis at 750 C in N{sub 2} gas. The produced CBAs were characterized according to their surface area and pore size distribution using N{sub 2}-BET adsorption isotherm data. Further characterization of the surface and pore structure was conducted using a unified exponential/power law approach applied to small angle neutron scattering (SANS) data. The structural features analyzed by SANS revealed the dependence of porosity with zinc chloride concentration. The presence of inaccessible pores was also determined by contrast-match experiments.

  10. Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production.

    PubMed

    Zheng, Xiong; Su, Yinglong; Li, Xiang; Xiao, Naidong; Wang, Dongbo; Chen, Yinguang

    2013-05-07

    Short-chain fatty acids (SCFAs) have been regarded as the excellent carbon source of wastewater biological nutrient removal, and sludge alkaline (pH 10) fermentation has been reported to achieve highly efficient SCFAs production. In this study, the underlying mechanisms for the improved SCFAs production at pH 10 were investigated by using 454 pyrosequencing and fluorescent in situ hybridization (FISH) to analyze the microbial community structures in sludge fermentation reactors. It was found that sludge fermentation at pH 10 increased the abundances of Pseudomonas sp. and Alcaligenes sp., which were able to excrete extracellular proteases and depolymerases, and thus enhanced the hydrolysis of insoluble sludge protein and polyhydroxyalkanoates (PHA). Meanwhile, the abundance of acid-producing bacteria (such as Clostridium sp.) in the reactor of pH 10 was also higher than that of uncontrolled pH, which benefited the acidification of soluble organic substrates. Further study indicated that sludge fermentation at pH 10 significantly decreased the number of methanogenic archaea, resulting in lower SCFAs consumption and lower methane production. Therefore, anaerobic sludge fermentation under alkaline conditions increased the abundances of bacteria involved in sludge hydrolysis and acidification, and decreased the abundance of methanogenic archaea, which favored the competition of bacteria over methanogens and resulted in the efficient production of SCFAs.

  11. Combined ultrasonication and thermal pre-treatment of sewage sludge for increasing methane production.

    PubMed

    Trzcinski, Antoine Prandota; Tian, Xinbo; Wang, Chong; Lin, Li Leonard; Ng, Wun Jern

    2015-01-01

    This article focuses on the combination of ultrasonic and thermal treatment of sewage sludge (SS). The combination involved ultrasonicating a fraction of the sludge and thermal treatment at various temperatures and this resulted in solubilization of proteins and carbohydrates, and so contributing to increased COD solubilization. During the treatment, SCOD, soluble proteins and carbohydrates increased from 760 mg L(-1) to 10,200 mg L(-1), 110 mg L(-1) to 2,900 mg L(-1) and 60 mg L(-1) to 630 mg L(-1), respectively. It was found ultrasonication of only a fraction of the sludge (>20%) followed by thermal treatment led to significant improvement compared to thermal and ULS treatments applied on their own. At 65°C, the kinetic of solubilization was improved and the hyper-thermophilic treatment time could be reduced to a few hours when ultrasonication was used first. A linear correlation (R(2) = 95%) was found between the SCOD obtained after ultrasonication pre-treatment and anaerobic biodegradability. The combined treatment resulted in 20% increase in biogas production during the anaerobic digestion of the pre-treated sludge.

  12. Structural characterization of metabolites of the X-ray contrast agent iopromide in activated sludge using ion trap mass spectrometry.

    PubMed

    Pérez, Sandra; Eichhorn, Peter; Celiz, Mary Dawn; Aga, Diana S

    2006-03-15

    Identification of degradation products of environmental contaminants is a challenging task because not only are they present in very low concentrations but they are also mixed with complex matrixes that interfere with detection. This work illustrates a simple approach using ion trap mass spectrometry combined with H/D-exchange experiments to elucidate the structures of iopromide metabolites formed during biodegradation in activated sludge. Iopromide is an X-ray contrast agent that has been detected frequently in effluents of wastewater treatment plants and in surface waters due to its persistence and high usage. Three metabolites produced by oxidation of the primary alcohols (forming carboxylates) on the side chains of iopromide were identified in a batch reactor with mixed liquor from a conventional activated sludge. Derivatization of the carboxylic acid to form a methyl ester and interpretation of the MS2 data of this derivative aided in the confirmation of the identities of these metabolites. Furthermore, one metabolite formed by dehydroxylation at the two side chains was identified in a batch reactor with mixed liquor from a nitrifying activated sludge. The MS2 fragmentation pattern of iopromide and its metabolites revealed that the iodinated ring remains intact and that minor transformations in the structure occur during biodegradation of iopromide in biological wastewater treatment plants.

  13. Effects of titanium dioxide mediated dairy waste activated sludge deflocculation on the efficiency of bacterial disintegration and cost of sludge management.

    PubMed

    Godvin Sharmila, V; Kavitha, S; Rajashankar, K; Yeom, Ick Tae; Rajesh Banu, J

    2015-12-01

    This investigation explores the influence of titanium dioxide (TiO2) in deflocculating (removal of extracellular polymeric substance - EPS) the sludge and subsequent biomass disintegration by bacterial pretreatment. The EPS removed at an optimized TiO2 dosage of 0.03g/g of SS of TiO2 and a solar radiation exposure time of 15min to enhance the subsequent bacterial disintegration. The outcomes of the bacterial pretreatment reveal SS reduction and COD solubilization for the deflocculated (EPS removed and bacterially pretreated) sludge was observed to be 22.8% and 22.9% which was comparatively greater than flocculated (raw sludge inoculated with bacteria) and control (raw) sludge. The higher methane production potential of about 0.43(gCOD/gVSS) was obtained in deflocculated sludge than the flocculated (0.20gCOD/gVSS) and control (0.073gCOD/gVSS). Economic assessment of this study provides a net profit of about 131.9USD/Ton in deflocculated sludge.

  14. Effects of sludge retention time, carbon and initial biomass concentrations on selection process: From activated sludge to polyhydroxyalkanoate accumulating cultures.

    PubMed

    Chen, Zhiqiang; Huang, Long; Wen, Qinxue; Zhang, Huichao; Guo, Zirui

    2017-02-01

    Four sequence batch reactors (SBRs) fed by fermented sugar cane wastewater were continuously operated under the aerobic dynamic feeding (ADF) mode with different configurations of sludge retention time (SRT), carbon and initial biomass concentrations to enrich polyhydroxyalkanoate (PHA) accumulating mixed microbial cultures (MMCs) from municipal activated sludge. The stability of SBRs was investigated besides the enrichment performance. The microbial community structures of the enriched MMCs were analyzed using terminal restriction fragment length polymorphism (T-RFLP). The optimum operating conditions for the enrichment process were: SRT of 5days, carbon concentration of 2.52g COD/L and initial biomass concentration of 3.65g/L. The best enrichment performance in terms of both operating stability and PHA storage ability of enriched cultures (with the maximum PHA content and PHA storage yield (YPHA/S) of 61.26% and 0.68mg COD/mg COD, respectively) was achieved under this condition. Effects of the SRT, carbon concentration and initial biomass concentration on the PHA accumulating MMCs selection process were discussed respectively. A new model including the segmentation of the enrichment process and the effects of SRT on each phase was proposed.

  15. Lipid profiling in sewage sludge.

    PubMed

    Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei

    2017-03-20

    High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production.

  16. Utilization of sludge waste from natural rubber manufacturing process as a raw material for clay-ceramic production.

    PubMed

    Vichaphund, S; Intiya, W; Kongkaew, A; Loykulnant, S; Thavorniti, P

    2012-12-01

    The possibility of utilization of the sludge waste obtained from the natural rubber manufacturing process as a raw material for producing clay ceramics was investigated. To prepared clay-based ceramic, the mixtures of traditional clay and sludge waste (10-30 wt%) were milled, uniaxilly pressed and sintered at a temperature between 1000 and 1200 degrees C. The effect of sludge waste on the properties of clay-based ceramic products was examined. The results showed that the amount of sludge waste addition had an effect on both sinterability and properties of the clay ceramics. Up to 30 wt% of sludge waste can be added into the clay ceramics, and the sintered samples showed good properties.

  17. Steady-state analysis of activated sludge processes with a settler model including sludge compression.

    PubMed

    Diehl, S; Zambrano, J; Carlsson, B

    2016-01-01

    A reduced model of a completely stirred-tank bioreactor coupled to a settling tank with recycle is analyzed in its steady states. In the reactor, the concentrations of one dominant particulate biomass and one soluble substrate component are modelled. While the biomass decay rate is assumed to be constant, growth kinetics can depend on both substrate and biomass concentrations, and optionally model substrate inhibition. Compressive and hindered settling phenomena are included using the Bürger-Diehl settler model, which consists of a partial differential equation. Steady-state solutions of this partial differential equation are obtained from an ordinary differential equation, making steady-state analysis of the entire plant difficult. A key result showing that the ordinary differential equation can be replaced with an approximate algebraic equation simplifies model analysis. This algebraic equation takes the location of the sludge-blanket during normal operation into account, allowing for the limiting flux capacity caused by compressive settling to easily be included in the steady-state mass balance equations for the entire plant system. This novel approach grants the possibility of more realistic solutions than other previously published reduced models, comprised of yet simpler settler assumptions. The steady-state concentrations, solids residence time, and the wastage flow ratio are functions of the recycle ratio. Solutions are shown for various growth kinetics; with different values of biomass decay rate, influent volumetric flow, and substrate concentration.

  18. Effect of magnetic nanoparticles on the performance of activated sludge treatment system.

    PubMed

    Ni, Shou-Qing; Ni, Jianyuan; Yang, Ning; Wang, Juan

    2013-09-01

    Both short-term and long-term exposure experiments were carried out to investigate the influence of magnetic nanoparticles (NPs) on activated sludge. The short-term presence of 50-200 mg/L of NPs decreased total nitrogen (TN) removal efficiencies, resulted from the acute toxicity of a shock load of NPs. However, long-term exposure of 50 mg/L magnetic NPs were observed to significantly improve TN removal efficiency, partially due to the self-repair function of activated sludge and magnetic-induced bio-effect. Sludge properties and extracellular polymer substrates secretion were affected. Additional investigations with enzyme and FISH assays indicated that short-term exposure of 50 mg/L magnetic NPs led to the abatement of nitrifying bacteria. However, the activities of the enzyme nitrite oxidoreductase and key denitrifying enzymes were increased after long-term exposure.

  19. Comparison between adsorption of poliovirus and rotavirus by aluminum hydroxide and activated sludge flocs.

    PubMed Central

    Farrah, S R; Goyal, S M; Gerba, C P; Conklin, R H; Smith, E M

    1978-01-01

    Adsorption of poliovirus and rotavirus by aluminum hydroxide and activated sludge flocs was studied. Both aluminum hydroxide and activated sludge flocs adsorbed greater amounts of poliovirus than rotavirus. Aluminum hydroxide flocs reduced the titer of poliovirus in tap water by 3 log10, but they only reduced the titer of a simian rotovirus (SA-11) in tap water by 1 log10 or less and did not noticeably reduce the number of human rotavirus particles present in a dilute stool suspension. Activated sludge flocs reduced the titer of added poliovirus by 0.7 to 1.8 log10 and reduced the titer of SA-11 by 0.5 log10 or less. These studies indicate that a basic difference in the adsorptive behavior of enteroviruses and rotaviruses exists and that water and wastewater treatment processes that are highly effective in removal of enteroviruses may not be as effective in removing other viral groups such as rotaviruses. PMID:205173

  20. IASON - Intelligent Activated Sludge Operated by Nanotechnology - Hydrogel Microcarriers in Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Fleit, E.; Melicz, Z.; Sándor, D.; Zrínyi, M.; Filipcsei, G.; László, K.; Dékány, I.; Király, Z.

    Performance of biological wastewater treatment depends to a large extent on mechanical strength, size distribution, permeability and other textural properties of the activated sludge flocs. A novel approach was developed in applying synthetic polymer materials to organize floc architecture instead of spontaneously formed activated sludge floc. Developed microcarrier polymer materials were used in our experiments to mitigate technological goals. Preliminary results suggest that the PVA-PAA (polyvinyl alcohol-polyacrylic acid copolymer) is a feasible choice for skeleton material replacing "traditional" activated sludge floc. Use of PVA-PAA hydrogel material as microreactors and methods for biofilm formation of wastewater bacteria on the carrier material are described. Laboratory scale experimental results with microscopic size bioreactors and their potential application for simultaneous nitrification and denitrification are presented.

  1. Rapid adaptation of activated sludge bacteria into a glycogen accumulating biofilm enabling anaerobic BOD uptake.

    PubMed

    Hossain, Md Iqbal; Paparini, Andrea; Cord-Ruwisch, Ralf

    2017-03-01

    Glycogen accumulating organisms (GAO) are known to allow anaerobic uptake of biological oxygen demand (BOD) in activated sludge wastewater treatment systems. In this study, we report a rapid transition of suspended activated sludge biomass to a GAO dominated biofilm by selective enrichment using sequences of anaerobic loading followed by aerobic exposure of the biofilm to air. The study showed that within eight weeks, a fully operational, GAO dominated biofilm had developed, enabling complete anaerobic BOD uptake at a rate of 256mg/L/h. The oxygen uptake by the biofilm directly from the atmosphere had been calculated to provide significant energy savings. This study suggests that wastewater treatment plant operators can convert activated sludge systems readily into a "passive aeration" biofilm that avoids costly oxygen transfer to bulk wastewater solution. The described energy efficient BOD removal system provides an opportunity to be coupled with novel nitrogen removal processes such as anammox.

  2. Biological hydrogen production by anaerobic digestion of food waste and sewage sludge treated using various pretreatment technologies.

    PubMed

    Kim, Seungjin; Choi, Kwangkeun; Kim, Jong-Oh; Chung, Jinwook

    2013-11-01

    The purpose of this study was to enhance the efficiency of anaerobic co-digestion with sewage sludge using pretreatment technologies and food waste. We studied the effects of various pretreatment methods (thermal, chemical, ultrasonic, and their combination) on hydrogen production and the characteristics of volatile fatty acids (VFAs) using sewage sludge alone and a mixture of sewage sludge and food waste. The pretreatment combination of alkalization and ultrasonication performed best, effecting a high solubilization rate and high hydrogen production (13.8 mL H2/g VSSconsumed). At a food waste:pretreated sewage sludge ratio of 2:1 in the mixture, the peak hydrogen production value was 5.0 L H2/L/d. As the production of hydrogen increased, propionate levels fell but butyrate concentrations rose gradually.

  3. Effect of activated sludge properties and membrane operation conditions on fouling characteristics in membrane bioreactors.

    PubMed

    Choi, Hyeok; Zhang, Kai; Dionysiou, Dionysios D; Oerther, Daniel B; Sorial, George A

    2006-06-01

    Biofouling control is considered to be a major challenge in operating membrane bioreactors (MBRs) for the treatment of wastewater. This study examined the impact of biological, chemical, and physical properties of activated sludge on membrane filtration performance in laboratory-scale MBRs. Sludges with different microbial communities were produced using pseudo-continuous stirred-tank reactors and pseudo-plug flow reactors treating a synthetic paper mill wastewater. Various filtration resistances were used to investigate membrane fouling characteristics, and molecular biology tools targeting 16S ribosomal DNA gene sequences were used to identify predominant bacterial populations in the sludges or attached to the fouled membranes. Filtration experiments using axenic cultures of Escherichia coli, Acinetobacter calcoaceticus, and Gordonia amarae were also performed to better understand the initiation and development of biofouling. The results showed that the tendency of membranes to biofoul depended upon membrane operating conditions as well as the properties of the activated sludge in the MBR systems. Specific bacterial populations, which were not dominant in the activated sludges, were selectively accumulated on the membrane surface leading to the development of irreversible biofouling.

  4. Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors.

    PubMed

    Liu, Yiwen; Zhang, Yaobin; Ni, Bing-Jie

    2015-05-15

    Zero valent iron (ZVI) packed anaerobic granular sludge reactors have been developed for improved anaerobic wastewater treatment. In this work, a mathematical model is developed to describe the enhanced methane production and sulfate reduction in anaerobic granular sludge reactors with the addition of ZVI. The model is successfully calibrated and validated using long-term experimental data sets from two independent ZVI-enhanced anaerobic granular sludge reactors with different operational conditions. The model satisfactorily describes the chemical oxygen demand (COD) removal, sulfate reduction and methane production data from both systems. Results show ZVI directly promotes propionate degradation and methanogenesis to enhance methane production. Simultaneously, ZVI alleviates the inhibition of un-dissociated H2S on acetogens, methanogens and sulfate reducing bacteria (SRB) through buffering pH (Fe(0) + 2H(+) = Fe(2+) + H2) and iron sulfide precipitation, which improve the sulfate reduction capacity, especially under deterioration conditions. In addition, the enhancement of ZVI on methane production and sulfate reduction occurs mainly at relatively low COD/ [Formula: see text] ratio (e.g., 2-4.5) rather than high COD/ [Formula: see text] ratio (e.g., 16.7) compared to the reactor without ZVI addition. The model proposed in this work is expected to provide support for further development of a more efficient ZVI-based anaerobic granular system.

  5. Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks.

    PubMed

    Ibarbalz, Federico M; Figuerola, Eva L M; Erijman, Leonardo

    2013-07-01

    Biological degradation of domestic and industrial wastewater by activated sludge depends on a common process of separation of the diverse self-assembled and self-sustained microbial flocs from the treated wastewater. Previous surveys of bacterial communities indicated the presence of a common core of bacterial phyla in municipal activated sludge, an observation consistent with the concept of ecological coherence of high taxonomic ranks. The aim of this work was to test whether this critical feature brings about a common pattern of abundance distribution of high bacterial taxa in industrial and domestic activated sludge, and to relate the bacterial community structure of industrial activated sludge with relevant operational parameters. We have applied 454 pyrosequencing of 16S rRNA genes to evaluate bacterial communities in full-scale biological wastewater treatment plants sampled at different times, including seven systems treating wastewater from different industries and one plant that treats domestic wastewater, and compared our datasets with the data from municipal wastewater treatment plants obtained by three different laboratories. We observed that each industrial activated sludge system exhibited a unique bacterial community composition, which is clearly distinct from the common profile of bacterial phyla or classes observed in municipal plants. The influence of process parameters on the bacterial community structure was evaluated using constrained analysis of principal coordinates (CAP). Part of the differences in the bacterial community structure between industrial wastewater treatment systems were explained by dissolved oxygen and pH. Despite the ecological relevance of floc formation for the assembly of bacterial communities in activated sludge, the wastewater characteristics are likely to be the major determinant that drives bacterial composition at high taxonomic ranks.

  6. Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA).

    PubMed

    Donatello, S; Tong, D; Cheeseman, C R

    2010-01-01

    The recovery of phosphorus from sewage sludge ash samples obtained from 7 operating sludge incinerators in the UK using a sulfuric acid washing procedure to produce a technical grade phosphoric acid product has been investigated. The influences of reaction time, sulfuric acid concentration, liquid to solid ratio and source of ISSA on P recovery have been examined. The optimised conditions were the minimum stoichiometric acid requirement, a reaction time of 120 min and a liquid to solid ratio of 20. Under these conditions, average recoveries of between 72% and 91% of total phosphorus were obtained. Product filtrate was purified by passing through a cation exchange column, concentrated to 80% H(3)PO(4) and compared with technical grade H(3)PO(4) specifications. The economics of phosphate recovery by this method are briefly discussed.

  7. RecoPhos: full-scale fertilizer production from sewage sludge ash.

    PubMed

    Weigand, Harald; Bertau, Martin; Hübner, Wilfried; Bohndick, Fred; Bruckert, Axel

    2013-03-01

    The substitution potential of sewage sludge for German primary phosphate imports has been estimated as 40%. Yet, a marketable option for the full scale recovery has been lacking. This study focuses on a full-scale process for the manufacture of a P-fertilizer from sewage sludge ash (SSA) adapted from the production of Triple Superphosphate. Given (i) conformity of the input with phosphate ores mined from sedimentary deposits, (ii) comparability of the product with a commercially available P-fertilizer regarding contaminant levels, P-fractionation and yield effects, and (iii) compliance of the output with the German Fertilizer Ordinance the RecoPhos P 38 fertilizer was discharged from the waste legislation regime. The fertilizer is currently being produced at a rate of 1000 tonnes per month and sold at a competitive price.

  8. Activated-Sludge Nitrification in the Presence of Linear and Branched-Chain Alkyl Benzene Sulfonates

    PubMed Central

    Baillod, Charles R.; Boyle, W. C.

    1968-01-01

    The effects of biodegradable linear alkyl benzene sulfonate and branched-chain alkyl benzene sulfonate detergents on activated-sludge nitrification were investigated by administering a synthetic waste containing up to 23 mg of each detergent per liter to eight bench-scale, batch, activated-sludge units. It was found that both detergents tended to promote complete oxidation of ammonia to nitrate, whereas control units produced approximately equal amounts of nitrite and nitrate. Various hypotheses are offered to explain the phenomenon. PMID:5636474

  9. Control of the aeration volume in an activated sludge process for nitrogen removal.

    PubMed

    Samuelsson, P; Carlsson, B

    2002-01-01

    Biological nitrogen removal in an activated sludge process is obtained by two biological processes; nitrification and denitrification. Nitrifying bacteria need dissolved oxygen and a sufficiently large aeration volume for converting ammonium to nitrate in the wastewater. The objective of this paper is to develop an automatic control strategy for adjusting the aerated volume so that the effluent ammonium level can be kept close to a desired value despite major changes in the influent load. The strategy is based on applying exact linearization of the IAWO Activated Sludge Process Model No 1. Simulation results show that the suggested controller effectively attenuates process disturbances.

  10. Effects of black liquor shocks on activated sludge treatment of bleached kraft pulp mill wastewater.

    PubMed

    Morales, Gabriela; Pesante, Silvana; Vidal, Gladys

    2015-01-01

    Kraft pulp mills use activated sludge systems to remove organic matter from effluents. Process streams may appear as toxic spills in treatment plant effluents, such as black liquor, which is toxic to microorganisms of the activated sludge. The present study evaluates the effects of black liquor shocks in activated sludge systems. Four black liquor shocks from 883 to 3,225 mg chemical oxygen demand-COD L(-1) were applied during 24 hours in a continuously operating lab-scale activated sludge system. Removal efficiencies of COD, color and specific compounds were determined. Moreover, specific oxygen uptake rate (SOUR), sludge volumetric index (SVI) and indicator microorganisms were evaluated. Results show that the addition of black liquor caused an increase in COD removal (76-67%) immediately post shock; followed two days later by a decrease (-19-50%). On the other hand, SOUR ranged between 0.152 and 0.336 mgO2 g(-1) volatile suspended solids-VSS• min(-1) during shocks, but the initial value was reestablished at hour 24. When the COD concentration of the shock was higher than 1,014 mg/L, the abundance of stalked ciliates and rotifers dropped. Finally, no changes in SVI were observed, with values remaining in the range 65.8-40.2 mL g(-1) total suspended solids-TSS during the entire operating process. Based on the results, the principal conclusion is that the activated sludge system with the biomass adapted to the kraft pulp effluent could resist a black liquor shock with 3,225 mgCOD L(-1) of concentration during 24 h, under this study's conditions.

  11. Pilot scale study on retrofitting conventional activated sludge plant for biological nutrient removal.

    PubMed

    Chiang, W W; Qasim, S R; Zhu, G; Crosby, E C

    1999-01-01

    Eutrophication of receiving waters due to the discharge of nitrogen and phosphorus through the wastewater effluent has received much interest in recent years. Numerous techniques have been proposed and aimed at retrofitting the existing conventional activated sludge process for nutrient removal. A pilot-scale research program was conducted to evaluate the effectiveness of a biological nutrient process for this purpose. The results indicated that creating an anoxic/anaerobic zone before aeration basin significantly enhances total phosphorus (TP) and total nitrogen (TN) removal. Without internal cycle, about 80 percent TP and TN removal were respectively achieved under their optimal conditions. However, adverse trends for phosphorus and nitrogen removal were observed when the ratio of return sludge to the influent was varied in the range between 0.5 and 3.0. The total phosphorus removal decreased as the concentration of BOD5 in the mixture of influent and return sludge decreased. Improved sludge settling properties and reduced foaming problems were also observed during the pilot plant operation. Based upon experimental results, the strategies to modify an existing conventional activated sludge plant into a biological nutrient removal (BNR) system are discussed.

  12. Relationship of Species-Specific Filament Levels to Filamentous Bulking in Activated Sludge

    PubMed Central

    Liao, Jiangying; Lou, Inchio; de los Reyes, Francis L.

    2004-01-01

    To examine the relationship between activated-sludge bulking and levels of specific filamentous bacteria, we developed a statistics-based quantification method for estimating the biomass levels of specific filaments using 16S rRNA-targeted fluorescent in situ hybridization (FISH) probes. The results of quantitative FISH for the filament Sphaerotilus natans were similar to the results of quantitative membrane hybridization in a sample from a full-scale wastewater treatment plant. Laboratory-scale reactors were operated under different flow conditions to develop bulking and nonbulking sludge and were bioaugmented with S. natans cells to stimulate bulking. Instead of S. natans, the filament Eikelboom type 1851 became dominant in the reactors. Levels of type 1851 filaments extending out of the flocs correlated strongly with the sludge volume index, and extended filament lengths of approximately 6 × 108 μm ml−1 resulted in bulking in laboratory-scale and full-scale activated-sludge samples. Quantitative FISH showed that high levels of filaments occurred inside the flocs in nonbulking sludge, supporting the “substrate diffusion limitation” hypothesis for bulking. The approach will allow the monitoring of incremental improvements in bulking control methods and the delineation of the operational conditions that lead to bulking due to specific filaments. PMID:15066840

  13. Identification of dimethyl disulfide-forming bacteria isolated from activated sludge.

    PubMed Central

    Tomita, B; Inoue, H; Chaya, K; Nakamura, A; Hamamura, N; Ueno, K; Watanabe, K; Ose, Y

    1987-01-01

    Twenty-four strains with high dimethyl disulfide (DMDS)-forming ability were isolated from activated sludge and identified to the genus level. These bacteria were classified into four groups (A, B, C, and D) by the API ZYM System (API System S.A., Montalieu, France). Group A (three strains) was identified as genus Lactobacillus by the API 20B System, by the method of Cowan and Steel, and by production of lactic acid as confirmed by gas-liquid chromatography. Group B (eight strains) was identified as genus Corynebacterium by API 20B and the Cowan and Steel method. Group C (one strain) was suggested to belong to genus Corynebacterium by the API 20B System. Group D (12 strains) was identified as genus Pseudomonas or Alcaligenes by the API 20B System, as genus Alcaligenes by the Cowan and Steel method, and as Achromobacter group Vd by the API 20NE System. However, on the basis of guanine-plus-cytosine contents in DNA and form of flagella, these strains were identified as genus Pseudomonas. Formation of DMDS from DL-methionine and S-methyl-L-cysteine was tested. DMDS-forming bacteria isolated from activated sludge formed DMDS from both precursors. In genus Pseudomonas, P. aeruginosa could not form DMDS from either precursor, but P. acidovorans, P. alcaligenes, P. pseudoalcaligenes, and P. testosteroni formed DMDS. In genus Alcaligenes, A. denitrificans subsp. xylosoxydans, A. denitrificans subsp. denitrificans, A. faecalis, and A. odorans formed DMDS from both precursors. Achromobacter group Vd formed DMDS from S-methyl-L-cysteine, but could not from DL-methionine. PMID:3662505

  14. Biodegradation of toluene diamine (TDA) in activated sludge acclimated with aniline and TDA.

    PubMed

    Asakura, S; Okazaki, S

    1995-06-01

    The biodegradability of toluene diamine (TDA) which has been regarded as a "recalcitrant compound" was examined in activated sludges. In this study, a microorganic-enzyme system which metabolized TDA was obtained by acclimating the activated sludge with aniline and TDA. In the sludge subject to be 200 days' acclimation, the considerable increase in respiration rate with the addition of TDA, accompanied the sharp decrease in its concentration. This indicated that TDA was metabolized fortuitously. The rate of biodegradation of TDA in the absence of aniline was first order with respect to its concentration when the initial TDA concentration was less than about 5 mg/l. The rate constant in this relation was proportional to mixed liquor suspended solid (MLSS). However, when the initial TDA concentration exceeded 5 mg/l, the plots were deviated from a first order rate equation.

  15. Achieving waste to energy through sewage sludge gasification using hot slags: syngas production

    NASA Astrophysics Data System (ADS)

    Sun, Yongqi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-06-01

    To relieve the environmental issues of sewage sludge (SS) disposal and greenhouse gas (GHG) emission in China, we proposed an integrated method for the first time to simultaneously deal with these two problems. The hot slags below 920 °C could act as a good heat carrier for sludge gasification and the increasing CO2 concentration in CO2/O2 atmospheres enhanced the production of CO and H2 at 400-800 °C. Three stages of syngas release were clearly identified by Gaussian fittings, i.e., volatile release, char transformation and fixed carbon reaction. Additionally, the effect of sulfur retention of slags and the synergy effect of the stabilization of toxic elements in the solid residuals were discovered in this study. Furthermore, a novel prototype of multiple industrial and urban systems was put forward, in which the produced CO + H2 could be utilized for direct reduced iron (DRI) production and the solid residuals of sludge ash and glassy slags would be applied as cementitious materials. For a steel plant with an annual production of crude steel of 10 million tons in China, the total annual energy saving and GHG emission reduction achieved are 3.31*105 tons of standard coal and 1.74*106 tons of CO2, respectively.

  16. Achieving waste to energy through sewage sludge gasification using hot slags: syngas production

    PubMed Central

    Sun, Yongqi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-01-01

    To relieve the environmental issues of sewage sludge (SS) disposal and greenhouse gas (GHG) emission in China, we proposed an integrated method for the first time to simultaneously deal with these two problems. The hot slags below 920 °C could act as a good heat carrier for sludge gasification and the increasing CO2 concentration in CO2/O2 atmospheres enhanced the production of CO and H2 at 400–800 °C. Three stages of syngas release were clearly identified by Gaussian fittings, i.e., volatile release, char transformation and fixed carbon reaction. Additionally, the effect of sulfur retention of slags and the synergy effect of the stabilization of toxic elements in the solid residuals were discovered in this study. Furthermore, a novel prototype of multiple industrial and urban systems was put forward, in which the produced CO + H2 could be utilized for direct reduced iron (DRI) production and the solid residuals of sludge ash and glassy slags would be applied as cementitious materials. For a steel plant with an annual production of crude steel of 10 million tons in China, the total annual energy saving and GHG emission reduction achieved are 3.31*105 tons of standard coal and 1.74*106 tons of CO2, respectively. PMID:26074060

  17. Optimization of microwave pretreatment conditions to maximize methane production and methane yield in mesophilic anaerobic sludge digestion.

    PubMed

    Park, W J; Ahn, J H

    2011-10-01

    The objective of this study was to find optimum microwave pretreatment conditions for methane production and methane yield in anaerobic sludge digestion. The sludge was pretreated using a laboratory-scale industrial microwave unit (2450 MHz frequency). Microwave temperature increase rate (TIR) (2.9-17.1 degrees C/min) and final temperature (FT) (52-108 degrees C) significantly affected solubilization, methane production, and methane yield. Solubilization degree (soluble chemical oxygen demand (COD)/total COD) in the pretreated sludge (3.3-14.7%) was clearly higher than that in the raw sludge (2.6%). Within the design boundaries, the optimum conditions for maximum methane production (2.02 L/L) were TIR = 9.1 degrees C/min and FT = 90 degrees C, and the optimum conditions for maximum methane yield (809 mL/g VS(removed)) were TIR 7.1 degrees C/min and FT = 92 degrees C.

  18. Development of a Novel Process Integrating the Treatment of Sludge Reject Water and the Production of Polyhydroxyalkanoates (PHAs).

    PubMed

    Frison, Nicola; Katsou, Evina; Malamis, Simos; Oehmen, Adrian; Fatone, Francesco

    2015-09-15

    Polyhydroxyalkanoates (PHAs) from activated sludge and renewable organic material can become an alternative product to traditional plastics since they are biodegradable and are produced from renewable sources. In this work, the selection of PHA storing bacteria was integrated with the side stream treatment of nitrogen removal via nitrite from sewage sludge reject water. A novel process was developed and applied where the alternation of aerobic-feast and anoxic-famine conditions accomplished the selection of PHA storing biomass and nitrogen removal via nitrite. Two configurations were examined: in configuration 1 the ammonium conversion to nitrite occurred in the same reactor in which the PHA selection process occurred, while in configuration 2 two separate reactors were used. The results showed that the selection of PHA storing biomass was successful in both configurations, while the nitrogen removal efficiency was much higher (almost 90%) in configuration 2. The PHA selection degree was evaluated by the volatile fatty acid (VFA) uptake rate (-qVFAs) and the PHA production rate (qPHA), which were 239 ± 74 and 89 ± 7 mg of COD per gram of active biomass (Xa) per hour, respectively. The characterization of the biopolymer recovered after the accumulation step, showed that it was composed of 3-hydroxybutyrate (3HB) (60%) and 3-hydroxyvalerate (3HV) (40%). The properties associated with the produced PHA suggest that they are suitable for thermoplastic processing.

  19. Optimization of Fenton oxidation pre-treatment for B. thuringiensis - based production of value added products from wastewater sludge.

    PubMed

    Pham, T T H; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-08-01

    Fenton oxidation pretreatment was investigated for enhancement of biodegradability of wastewater sludge (WWS) which was subsequently used as substrate for the production of value- added products. The Response surface method with fractional factorial and central composite designs was applied to determine the effects of Fenton parameters on solubilization and biodegradability of sludge and the optimization of the Fenton process. Maximum solubilization and biodegradability were obtained as 70% and 74%, respectively at the optimal conditions: 0.01 ml H(2)O(2)/g SS, 150 [H(2)O(2)](0)/[Fe(2+)](0), 25 g/L TS, at 25 degrees C and 60 min duration. Further, these optimal conditions were tested for the production of a value added product, Bacillus thuringiensis (Bt) which is being used as a biopesticide in the agriculture and forestry sector. It was observed that Bt growth using Fenton oxidized sludge as a substrate was improved with a maximum total cell count of 1.63 x 10(9)CFU ml(-1) and 96% sporulation after 48 h of fermentation. The results were also tested against ultrasonication treatment and the total cell count was found to be 4.08 x 10(8)CFU ml(-1) with a sporulation of 90%. Hence, classic Fenton oxidation was demonstrated to be a rather more promising chemical pre-treatment for Bt - based biopesticide production using WWS when compared to ultrasonication as a physical pre-treatment.

  20. Sequential chemical treatment of radium species in TENORM waste sludge produced from oil and natural gas production.

    PubMed

    El Afifi, E M; Awwad, N S; Hilal, M A

    2009-01-30

    This paper is dedicated to the treatment of sludge occurring in frame of the Egyptian produced from oil and gas production. The activity levels of three radium isotopes: Ra-226 (of U-series), Ra-228 and Ra-224 (of Th-series) in the solid TENORM waste (sludge) were first evaluated and followed by a sequential treatment for all radium species (fractions) presented in TENORM. The sequential treatment was carried out based on two approaches 'A' and 'B' using different chemical solutions. The results obtained indicate that the activity levels of all radium isotopes (Ra-226, Ra-228 and Ra-224) of the environmental interest in the TENORM waste sludge were elevated with regard to exemption levels established by IAEA [International Atomic Energy Agency (IAEA), International basic safety standards for the protection against ionizing radiation and for the safety of radiation sources. GOV/2715/Vienna, 1994]. Each approach of the sequential treatment was performed through four steps using different chemical solutions to reduce the activity concentration of radium in a large extent. Most of the leached radium was found as an oxidizable Ra species. The actual removal % leached using approach B was relatively efficient compared to A. It is observed that the actual removal percentages (%) of Ra-226, Ra-228 and Ra-224 using approach A are 78+/-2.8, 64.8+/-4.1 and 76.4+/-5.2%, respectively. Whereas in approach A, the overall removal % of Ra-226, Ra-228 and Ra-228 was increased to approximately 91+/-3.5, 87+/-4.1 and 90+/-6.2%, respectively.

  1. Effect of energy grass on methane production and heavy metal fractionation during anaerobic digestion of sewage sludge.

    PubMed

    Zhang, Min; Yang, Changming; Jing, Yachao; Li, Jianhua

    2016-12-01

    Anaerobic digestion (AD) is one of the most widely used processes to stabilize waste sewage sludge and produce biogas as renewable energy. The relatively low organic matter content and high heavy metal concentrations in sewage sludge have severely restricted the application and development of AD technology in China. In this study, the effect of energy grass (Pennisetum alopecuroides) addition on methane production and heavy metal fractionation during the AD of sewage sludge was evaluated. Methane production was enhanced by 11.2% by the addition of P. alopecuroides. The addition of P. alopecuroides significantly reduced the percentages of the water-soluble and exchangeable fractions of the target heavy metals in the sewage sludge after AD, and the dominant species were concentrated in Fe-Mn oxide-bound and organic- and sulfide-bound fractions of the digested sludge. The addition of P. alopecuroides at a dosage of 0.3kg significantly (P<0.05) decreased the mobility factors (MFs) of the target heavy metals after AD. In particular, the MFs of Cr and Ni were 61% and 32% lower, respectively, relative to the control. The increase in the added dose did not necessarily lead to further decreases in the MFs of the heavy metals. These results demonstrate that an appropriate addition of energy grass could enhance AD, decrease the mobility of heavy metals and promote heavy metal stabilization in sewage sludge during AD, which is beneficial for the subsequent land application of sewage sludge.

  2. Preliminary results of lab-scale investigations of products of incomplete combustion during incineration of primary and mixed digested sludge.

    PubMed

    Braguglia, C M; Bagnuolo, G; Gianico, A; Mininni, G; Pastore, C; Mascolo, G

    2016-03-01

    Separation between primary and secondary sludge treatment could be a valuable solution for sludge management. According to this approach, secondary sludge can be conveniently used in agriculture while primary sludge could be easily dried and incinerated. It follows that some concern may arise from incinerating primary sludge with respect to the current practice to incinerate mixed digested sludge. Incineration of primary and mixed digested municipal sludge was investigated with a lab-scale equipment in terms of emissions of products of incomplete combustion (PICs) during incineration failure modes. PICs can be grouped in three sub-categories, namely aliphatic hydrocarbons (alkanes and alkenes), compounds with a single aromatic ring, and polycyclic aromatic hydrocarbons (PAHs). After-burning temperature was the most important parameter to be controlled in order to minimize emissions of alkanes and alkenes. As for mono-aromatic compounds, benzene and toluene are the most thermally resistant compounds, and in some cases, an after-burning temperature of 1100 °C was not enough to get the complete destruction of benzene leading to a residual emission of 18 mg/kgsludge. PAHs showed an opposite trend with respect to aliphatic and mono-aromatic hydrocarbons being the thermal failure mode the main responsible of PIC emissions. A proper oxygen concentration is more important than elevated temperature thus reflecting the high thermal stability of PAHs. Overall, obtained results, even though obtained under flameless conditions that are different from those of the industrial plants, demonstrated that separation of primary and secondary sludge does not pose any drawbacks or concern regarding primary sludge being disposed of by incineration even though it is more contaminated than mixed digested sludge in terms of organic pollutants.

  3. Gravity drainage of activated sludge: new experimental method and considerations of settling velocity, specific cake resistance and cake compressibility.

    PubMed

    Dominiak, Dominik; Christensen, Morten; Keiding, Kristian; Nielsen, Per Halkjær

    2011-02-01

    A laboratory scale setup was used for characterization of gravitational drainage of waste activated sludge. The aim of the study was to assess how time of drainage and cake dry matter depended on volumetric load, SS content and sludge floc properties. It was demonstrated that activated sludge forms compressible cakes, even at the low pressures found in gravitational drainage. The values of specific cake resistance were two to three orders of magnitude lower than those obtained in pressure filtration. Despite the compressible nature of sludge, key macroscopic parameters such as time of drainage and cake solid content showed simple functional dependency of the volumetric load and SS of a given sludge. This suggests that the proposed method may be applied for design purposes without the use of extensive numerical modeling. The possibilities for application of this new technique are, among others, the estimation of sludge drainability prior to mechanical dewatering on a belt filter, or the application of surplus sludge on reed beds, as well as adjustments of sludge loading, concentration or sludge pre-treatment in order to optimize the drainage process.

  4. Pulp mill effluents: Activated sludge treatment process. (Latest citations from the Paper and Board, Printing, and Packaging Industries Research Associations database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning plant histories, laboratory analyses, field applications, performance evaluations, and cost factors of pulping mill activated sludge treatment facilities. Monitoring techniques of the activated sludge effluent treatment process, and operating problems and solutions are discussed. Computerized simulation of activated sludge plants is included. (Contains a minimum of 75 citations and includes a subject term index and title list.)

  5. Enhanced dewaterability of sewage sludge with zero-valent iron-activated persulfate oxidation system.

    PubMed

    Hu, Lingling; Liao, Yu; He, Chun; Pan, Wenqi; Liu, Shangkun; Yang, Yichang; Li, Shuzhen; Sun, Lianpeng

    2015-01-01

    The potential benefits of zero-valent iron-activated persulfate (Na2S2O8) oxidation in enhanced dewaterability of sludge, along with the associated mechanisms were investigated in this study. The sludge dewaterability was evaluated in terms of specific resistance to filtration (SRF) and water content. Based on these indexes, it was observed that ZVI-S2O8(2) oxidation effectively improved sludge dewaterability. The optimal conditions to give preferable dewaterability were found when the molar ratio of ZVI/S2O8(2-) was 5:1 and pH value was 3.0. The most important mechanism was proposed to be the degradation of extracellular polymeric substances (EPS) incorporated in sludge flocs and rupture of microbial cells. Three-dimensional excitation-emission matrix fluorescence spectra revealed that the powerful SO4- and ·OH generated from ZVI-S2O8(2-) system destroyed the particular functional groups of fluorescing substances (aromatic protein-like and tryptophan protein-like substances), resulting in the release of bound water and the subsequent enhancement of dewaterability. Therefore, ZVI/S2O8(2-) oxidation is an alternative approach showing great potential to be applied in sludge treatment plants.

  6. Impacts of produced water origin on bacterial community structures of activated sludge.

    PubMed

    Wang, Zhenyu; Pan, Feng; Hesham, Abd El-Latif; Gao, Yingxin; Zhang, Yu; Yang, Min

    2015-11-01

    The purpose of this study was to reveal how activated sludge communities respond to influent quality and indigenous communities by treating two produced waters from different origins in a batch reactor in succession. The community shift and compositions were investigated using Polymerase Chain Reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and further 16S ribosomal DNA (rDNA) clone library analysis. The abundance of targeted genes for polycyclic aromatic hydrocarbon (PAH) degradation, nahAc/phnAc and C12O/C23O, was tracked to define the metabolic ability of the in situ microbial community by Most Probable Number (MPN) PCR. The biosystem performed almost the same for treatment of both produced waters in terms of removals of chemical oxygen demand (COD) and PAHs. Sludge communities were closely associated with the respective influent bacterial communities (similarity>60%), while one sludge clone library was dominated by the Betaproteobacteria (38%) and Bacteriodetes (30%) and the other was dominated by Gammaproteobacteria (52%). This suggested that different influent and water quality have an effect on sludge community compositions. In addition, the existence of catabolic genes in sludge was consistent with the potential for degradation of PAHs in the treatment of both produced waters.

  7. Effect of TiO2 nanoparticles on UASB biomass activity and dewatered sludge.

    PubMed

    Yadav, Tushar; Mungray, Alka A; Mungray, Arvind K

    2017-02-01

    The accumulation of the nanowastes in the wastewater treatment plants has raised several concerns; therefore, it is an utmost priority to study the nanoparticle (NP) toxicity in such systems. In this work, the effect of TiO2 NPs on up-flow anaerobic sludge blanket (UASB) microflora and their photocatalytic effect on dewatered sludge were studied. We observed 99.98% removal of TiO2 NPs by sludge biomass within 24 h, though negligible toxicity was found up to 100 mg/L TiO2 concentration on extracellular polymeric substances (EPS), volatile fatty acid and biogas generation. The low toxicity corresponds to the agglomeration of TiO2 NPs in UASB sludge. Alterations in dewatered sludge biochemical composition and increase in cell damage were observed upon exposure to sunlight as evidenced by FTIR and fluorescent microscopy, respectively. Results suggest the negligible toxicity of TiO2 NPs on UASB biomass activity; however, once exposed to open environment and sunlight, they may exert detrimental effects.

  8. Residues of pharmaceutical products in recycled organic manure produced from sewage sludge and solid waste from livestock and relationship to their fermentation level.

    PubMed

    Motoyama, Miki; Nakagawa, Shuhei; Tanoue, Rumi; Sato, Yuri; Nomiyama, Kei; Shinohara, Ryota

    2011-07-01

    In recent years, sludge generated in sewage treatment plants (STPs) and solid waste from livestock being utilized is useful for circulation of nourishment in farmlands as recycled organic manure (ROM). In this study, we determined the residue levels and patterns of 12 pharmaceutical products generated by human activity in the ROMs produced from human waste sludge (HWS), sewage sludge (SS), cattle manure (CM), poultry manure (PM), swine manure (SM) and horse manure (HM). The kind and number of pharmaceutical products detected in ROMs were different. Fluoroquinolones (FQs) were detected at high levels in HWS and SS samples. In addition, the detection frequency and concentration levels of sulfonamides (SAs) in PM and SM were high. Moreover, high concentrations of chlortetracycline (CTC) were found in only SM. These differences reflect specific adherence adsorption of the pharmaceutical products to different livestock and humans. Moreover, it was found that the concentrations of pharmaceutical products and fermentation levels of ROMs had significant positive correlation (r=0.41, p=0.024). When the fermentation test of ROM was conducted in a rotary fermentor in a lab scale test, the residue levels of pharmaceutical products decreased effectively except carbamazepine (CBZ). The rates of decrease were in the case of tetracyclines (TCs): 85-92%, FQs: 81-100%, erythromycine: 67%, SAs: 79-95%, trimethoprim: 86% and CBZ: 37% by 30 d. Pharmaceutical products that can be decomposed by fermentation process at the lowest impact of residual antibiotic activities may therefore be considered as environmentally friendly medicines.

  9. Evaluation of thermal steam-explosion key operation factors to optimize biogas production from biological sludge.

    PubMed

    Pérez-Elvira, S I; Sapkaite, I; Fdz-Polanco, F

    2015-01-01

    Thermal steam-explosion is the most extended hydrolysis pretreatment to enhance anaerobic digestion of sludge. Thermal hydrolysis key parameters are temperature (T) and time (t), and the generally accepted values reported from full-scale information are: 150-230 °C and 20-60 min. This study assesses the influence of different temperature-time-flash combinations (110-180 °C, 5-60 min, 1-3 re-flashing) on the anaerobic degradation of secondary sludge through biochemical methane potential (BMP) tests. All the conditions tested presented higher methane production compared to the untreated sludge, and both solubilization (after the hydrolysis) and degradation (by anaerobic digestion) increased linearly when increasing the severity (T-t) of the pretreatment, reaching 40% solubilization and degradation of the particulate matter at 180° C-60 min. However, for the 180 °C temperature, the treatment time impacted negatively on the lag phase. No influence of re-flashing the pretreated matter was observed. In conclusion, thermal steam-explosion at short operation times (5 min) and moderate temperatures (145 °C) seems to be very attractive from a degradation point of view thus presenting a methane production enhancement similar to the one obtained at 180°C and without negative influence of the lag phase.

  10. Screening transesterifiable lipid accumulating bacteria from sewage sludge for biodiesel production.

    PubMed

    Cea, Mara; Sangaletti-Gerhard, Naiane; Acuña, Pedro; Fuentes, Idi; Jorquera, Milko; Godoy, Karina; Osses, Francisco; Navia, Rodrigo

    2015-12-01

    Sewage sludge was evaluated as high available and low cost microbial oils feedstock for biodiesel production. Samples from four different wastewater treatment plants from La Araucanía Region in Southern Chile presented total lipids content ranging between 7.7 and 12.6%, being Vilcún sewage sludge that with the highest transesterifiable lipids content of about 50% of the total extracted lipids. The most relevant identified bacteria present in sludge samples were Acinetobacter, Pseudomonas and Bacillus, being Bacillus sp. V10 the strain with the highest transesterfiable lipids content of 7.4%. Bacillus sp. V10 was cultured using urban wastewater supplemented with glucose to achieve nitrogen depleted medium and using milk processing wastewater as a low-cost carbon source. Bacillus sp. V10 lipid profile indicates that low degree unsaturated long chain fatty acids such as C18:1 may account for approximately 50% of the lipids content, indicating its suitability to be used as raw material for biodiesel production.

  11. Converting paper mill sludge into neutral lipids by oleaginous yeast Cryptococcus vishniaccii for biodiesel production.

    PubMed

    Deeba, Farha; Pruthi, Vikas; Negi, Yuvraj S

    2016-08-01

    Paper mill sludge (PMS) was assessed as cheap renewable lignocellulosic biomass for lipid production by the oleaginous yeast Cryptococcus vishniaccii (MTCC 232). The sonicated paper mill sludge extract (PMSE) exhibited enhanced lipid yield and lipid content 7.8±0.57g/l, 53.40% in comparison to 5.5±0.8g/l, 40.44% glucose synthetic medium, respectively. The accumulated triglycerides (TAG) inside the lipid droplets (LDs) were converted to biodiesel by transesterification and thoroughly characterized using GC-MS technique. The fatty acid methyl ester (FAME) profile obtained reveals elevated content of oleic acid followed by palmitic acid, linoleic acid and stearic acid with improved oxidative stability related to biodiesel quality.

  12. Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge.

    PubMed

    Uma Rani, R; Adish Kumar, S; Kaliappan, S; Yeom, Icktae; Rajesh Banu, J

    2013-05-01

    Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively.

  13. Sequencing biological acidification of waste-activated sludge aiming to optimize phosphorus dissolution and recovery.

    PubMed

    Guilayn, Felipe; Braak, Etienne; Piveteau, Simon; Daumer, Marie-Line

    2016-09-20

    Phosphorus (P) recovery in wastewater treatment plants (WWTP) as pure crystals such as struvite (MgNH4PO4.6H2O), potassium struvite (KMgPO4.6H2O) and calcium phosphates (e.g. Ca3(PO4)2) is an already feasible technique that permits the production of green and marketable fertilizers and the reduction of operational costs. Commercial crystallizers can recovery more than 90% of soluble P. However, most of the P in WWTP sludge is unavailable for the processes (not dissolved). P solubilization and separation are thus the limiting steps in P-crystallization. With an innovative two-step sequencing acidification strategy, the current study has aimed to improve biological P solubilization on waste-activated sludge (WAS) from a full-scale plant. In the first step (P-release), low charges of organic waste were used as co-substrates of WAS pre-fermentation, seeking to produce volatile fatty acids to feed the P-release by Polyphosphate-accumulating organisms, while keeping its optimal metabolic pH (6-7). In this phase, milk serum, WWTP grease, urban organic waste and collective restaurant waste were individually applied as co-substrates. In the second step (P-dissolution), pH 4 was aimed at as it allows the dissolution of the most common precipitated species of P. Biological acidification was performed by white sugar addition, as a carbohydrate-rich organic waste model, which was compared to chemical acidification by HCl (12M) addition. With short retention times (48-96 h) and without inoculum application, all experiences succeeded on P solubilization (37-55% of soluble P), principally when carbohydrate-rich co-substrates were applied. Concentrations from 270 to 450 mg [Formula: see text] were achieved.

  14. Gas chromatographic analysis of polyhydroxybutyrate in activated sludge: a round-robin test.

    PubMed

    Baetens, D; Aurola, A M; Foglia, A; Dionisi, D; van Loosdrecht, M C M

    2002-01-01

    Polyhydroxyalkanoates (PHA) and poly-beta-hydroxybutyrate (PHB) in particular have become compounds which is routinely investigated in wastewater research. The PHB analysis method has only recently been applied to activated sludge samples where PHA contents might be relatively low. This urges the need to investigate the reproducibility of the gas chromatographic method for PHB analysis. This was evaluated in a round-robin test in 5 European laboratories with samples from lab-scale and full-scale enhanced biological phosphorus removal systems. It was shown that the standard deviation of measurements in each lab and the reproducibility between the labs was very good. Experimental results obtained by different laboratories using this analysis method can be compared. Sludge samples with PHB contents varying between 0.3 and 22.5 mg PHB/mg sludge were analysed. The gas chromatographic method allows for PHV, PH2MB and PH2MV analysis as well.

  15. Removal of concentrated sulfamethazine by acclimatized aerobic sludge and possible metabolic products

    PubMed Central

    Yang, Na; Zhao, Shiju; Wang, Yan

    2015-01-01

    This article examined the biological removal of high concentrated sulfamethazine (SMZ) antibiotics by the acclimatized activated sludge in lab-scale SBRs system. The removal of SMZ was characterized by a quick adsorption and a slow process of biodegradation. The adsorption capacity of activated sludge for SMZ was 44 and 47 µg SMZ/g SS, respectively, with the initial SMZ concentrations of 1 and 2 mg/L. The adsorption process fitted pseudo-second-order kinetic model. In a series of batch studies, with the increase of initial SMZ concentration that were 1, 2, 3, 5, 7 and 9 mg/L, 56.0%, 51.3%, 42.2%, 29.5%, 25.0% and 20.8% of influent SMZ were biodegraded within 24 h of biological reaction, respectively. The Monod equation applied to simulate SMZ biodegradation had a good coefficient of determination (R2 > 0.99). Furthermore, the results of HPLC demonstrated that the SMZ was not completely removed by the acclimatized activated sludge. From the analysis of LC-MS, 4 intermediates of SMZ biodegradation were identified: Sulfanilic Acid, 4-amino-N-(4,6-dimethyl-2 pyrimidin) benzene sulfonamide, N-(4,6-dimethyl-2-pyrimidin)-4-N-(benzene sulfonamide) benzene sulfonamide, N-(4,6-dimethyl-2-pyrimidin)-4-N-(4,6-dimethyl pyrimidine) benzene sulfonamide, and N-(4,6-dimethyl-2-pyrimidin)-4-N-(3-dimethyl-4-N sodium benzene sulfonamide) benzene sulfonamide. PMID:26557437

  16. Optimal operation for timely adaptation of activated sludge plants to changes in the surfactant composition of wastewater.

    PubMed

    Carvalho, G; Novais, J M; Vanrolleghem, P A; Pinheiro, H M

    2002-01-01

    The composition of a textile industry wastewater is highly variable, as the industrial process has to follow fashion and season trends. Surfactants represent one of the largest COD fractions in a typical textile wastewater. Therefore, it was the aim of this paper to model the acclimatisation behaviour of an activated sludge system when subjected to composition variations in the surfactant containing feed. The model was based on data obtained in SBR experiments in which a linear alkyl ethoxylate as sole carbon source in the feed was replaced by another with a longer ethoxylate chain. A previously developed model (Fractionated Degradation Model) was applied to each of the 21 SBR cycles carried out in this study. The resulting best-fit parameters were investigated and sub-models were further developed, to create an acclimatisation model, able to predict the sludge acclimatisation level. Using the information given by this model, it was possible to propose an optimal operation scheme to pre-acclimatise the sludge before a surfactant replacement is made in the textile process. A cost analysis was carried out to compare different scenarios, with and without the application of this operation scheme. It was concluded that the proposed pre-acclimatisation process may be cost effective as compared to other scenarios if a cheap surfactant-containing product was employed.

  17. Simultaneous Biohydrogen and Bioethanol Production from Anaerobic Fermentation with Immobilized Sludge

    PubMed Central

    Han, Wei; Wang, Zhanqing; Chen, Hong; Yao, Xin; Li, Yongfeng

    2011-01-01

    The effects of organic loading rates (OLRs) on fermentative productions of hydrogen and ethanol were investigated in a continuous stirred tank reactor (CSTR) with attached sludge using molasses as substrate. The CSTR reactor with attached sludge was operated under different OLRs, ranging from 8 to 24 kg/m3·d. The H2 and ethanol production rate essentially increased with increasing OLR. The highest H2 production rate (10.74 mmol/h·L) and ethanol production rate (11.72 mmol/h·L) were obtained both operating at OLR = 24 kg/m3·d. Linear regression results show that ethanol production rate (y) and H2 production rate (x) were proportionately correlated and can be expressed as y = 1.5365x − 5.054 (r2 = 0.9751). The best energy generation rate was 19.08 kJ/h·L, which occurred at OLR = 24 kg/m3·d. In addition, the hydrogen yield was affected by the presence of ethanol and acetic acid in the liquid phase, and the maximum hydrogen production rate occurred while the ratio of ethanol to acetic acid was close to 1. PMID:21799660

  18. Effects of pyrite sludge pollution on soil enzyme activities: ecological dose-response model.

    PubMed

    Hinojosa, M Belén; Carreira, José A; Rodríguez-Maroto, José M; García-Ruíz, Roberto

    2008-06-25

    A laboratory study was conducted to evaluate the response of soil enzyme activities (acid and alkaline phosphatase, beta-glucosidase, arylsulfatase, urease and dehydrogenase) to different levels of trace elements pollution in soils representative of the area affected by the pyrite sludge mining spill of Aznalcóllar (Guadiamar basin, SW Spain). Three uncontaminated soils from the study area were mixed with different loads of pyrite sludge to resemble field conditions and criteria applied for reclamation practices following the pollution incident: 0% ("reference" or background level), 1.3% ("attention level", further monitoring required), 4% ("intervention level", further cleaning and liming required) and 13% (ten times the "attention level"). Enzyme activities were analysed 4, 7, 14, 21, 34 and 92 days after pollutant addition and those measured after 92 days were used to calculate the ecological dose value (ED50). Soil enzyme activities and pH decreased after the pyrite sludge addition with respect to the "reference level" (0% pyrite sludge), whereas soil bioavailable (DTPA-extractable) trace elements concentration increased. Arylsulfatase, beta-glucosidase and phosphatase activities were reduced by more than 50% at 1.3% pyrite sludge dose. Arylsulfasate was the most sensitive soil enzyme (in average, ED50=0.99), whereas urease activity showed the lowest inhibition (in average, ED50=7.87) after pyrite sludge addition. Our results showed that the ecological dose concept, applied to enzyme activities, was satisfactory to quantify the effect of a multi-metalic pollutant (pyrite sludge) on soil functionality, and would provide manageable data to establish permissible limits of trace elements in polluted soils. Additionally, we evaluate the recovery of enzyme activities after addition of sugar-beet lime (calcium carbonate) to each experimentally polluted soil. The amount of lime added to each soil was enough to raise the pH to the original value (equal to control soil

  19. Influence of alkyl sulfates on waste activated sludge fermentation at ambient temperature.

    PubMed

    Jiang, Su; Chen, Yinguang; Zhou, Qi

    2007-09-05

    Alkyl sulfates (AS), such as sodium dodecyl sulfate (SDS), are widely used in household and industrial products, and can be found in some wastewater and waste activated sludge (WAS). The effect of SDS on the fermentation of WAS at ambient temperature was investigated in this paper. Experimental results showed that the concentrations of protein and carbohydrate in aqueous phase increased with the amount of SDS. The concentrations of both NH(4)(+)-N and PO(4)(3-)-P in fermentation liquor also increased in the presence of SDS. In addition, it was observed that the fermentative short-chain fatty acids (SCFAs) concentration was affected by SDS. With the increase of SDS dosage, the maximum SCFAs concentration increased, and the fermentation time before reaching the maximum SCFAs concentration also increased. Further investigation showed that the produced SCFAs consisted of acetic, propionic, n-butyric, iso-butyric, n-valeric and iso-valeric acids, and acetic, iso-valeric and propionic acids were the three main products. The influence of SDS on methanogenesis was also investigated, and the inhibitory effect of SDS on methanogens activity was observed.

  20. Production and characterization of a thermostable bioflocculant from Bacillus subtilis F9, isolated from wastewater sludge.

    PubMed

    Giri, Sib Sankar; Harshiny, M; Sen, Shib Sankar; Sukumaran, V; Park, Se Chang

    2015-11-01

    A bacterium isolated from wastewater sludge, identified as Bacillus subtilis F9, was confirmed to produce bioflocculant with excellent flocculation activity. The effects of culture conditions such as initial pH, temperature, carbon source, nitrogen source, and inoculum size on bioflocculant production were studied here. The results indicated that 2.32g/L of purified bioflocculant could be extracted with the following optimized conditions: 20gL(-1) sucrose as the carbon source, 3.5gL(-1) peptone as the nitrogen source, an initial pH of 7.0, and a temperature of 40°C. The purified bioflocculant consisted of 10.1% protein and 88.3% sugar, including 38.4% neutral sugar, 2.86% uronic acid, and 2.1% amino sugar. The neutral sugar consisted of sucrose, glucose, lactose, galactose, and mannose at a molar ratio of 2.7:4.7:3.2:9.1:0.8. Elemental analysis of the purified bioflocculant revealed that the weight fractions of carbon, hydrogen, oxygen, nitrogen, and sulfur were 30.8%, 5.3%, 54.7%, 6.4%, and 2.9%, respectively. Furthermore, the purified bioflocculant was pH tolerant within the range of 2-8 and thermotolerant from 10°C to 100°C, with optimal activity at pH 7.0 and at a temperature of 40°C. The purified bioflocculant showed industrial potential for the treatment of drinking water. Considering these properties, especially its low molecular weight (5.3×10(4)Da), this bioflocculant with excellent solubility and favorable flocculation activity is particularly suited for flocculating small particles.

  1. Mineralisation and primary biodegradation of aromatic organophosphorus flame retardants in activated sludge.

    PubMed

    Jurgens, Sharona S; Helmus, Rick; Waaijers, Susanne L; Uittenbogaard, Dirk; Dunnebier, Dorien; Vleugel, Melissa; Kraak, Michiel H S; de Voogt, Pim; Parsons, John R

    2014-09-01

    Halogen-free flame retardants (HFFRs), such as the aromatic organophosphorus flame retardants (OPFRs) triphenyl phosphate (TPHP), resorcinol bis(diphenylphosphate) (PBDPP) and bisphenol A bis(diphenylphosphate) (BPA-BDPP) have been proposed as potential replacements for brominated flame retardants in polymers and textiles. Although these OPFRs are already marketed, their environmental fate and effects are poorly characterised. The aim of this study was therefore to determine the mineralisation and primary biodegradation of these OPFRs by activated sludge. Mineralisation was monitored by measuring CO2 production by means of GC analysis, whereas primary biodegradation was monitored by LC-MS/MS analysis of the OPFRs and their potential metabolites. TPHP was biodegraded and mineralised most rapidly and achieved the requirement for ready biodegradability (60% of theoretical maximum mineralisation). Primary biodegradation was also rapid for PBDPP, but 60% mineralisation was not achieved within the time of the test, suggesting that transformation products of PBDPP may accumulate. Primary degradation of BPA-BDPP was very slow and very low CO2 production was also observed. Based on these results, TPHP and to a lesser extent PBDPP appear to be suitable replacements for the more environmentally persistent brominated flame retardants.

  2. Operational Control Procedures for the Activated Sludge Process, Part III-A: Calculation Procedures.

    ERIC Educational Resources Information Center

    West, Alfred W.

    This is the second in a series of documents developed by the National Training and Operational Technology Center describing operational control procedures for the activated sludge process used in wastewater treatment. This document deals exclusively with the calculation procedures, including simplified mixing formulas, aeration tank…

  3. Local adaptive approach toward segmentation of microscopic images of activated sludge flocs

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Burhan; Nisar, Humaira; Ng, Choon Aun; Lo, Po Kim; Yap, Vooi Voon

    2015-11-01

    Activated sludge process is a widely used method to treat domestic and industrial effluents. The conditions of activated sludge wastewater treatment plant (AS-WWTP) are related to the morphological properties of flocs (microbial aggregates) and filaments, and are required to be monitored for normal operation of the plant. Image processing and analysis is a potential time-efficient monitoring tool for AS-WWTPs. Local adaptive segmentation algorithms are proposed for bright-field microscopic images of activated sludge flocs. Two basic modules are suggested for Otsu thresholding-based local adaptive algorithms with irregular illumination compensation. The performance of the algorithms has been compared with state-of-the-art local adaptive algorithms of Sauvola, Bradley, Feng, and c-mean. The comparisons are done using a number of region- and nonregion-based metrics at different microscopic magnifications and quantification of flocs. The performance metrics show that the proposed algorithms performed better and, in some cases, were comparable to the state-of the-art algorithms. The performance metrics were also assessed subjectively for their suitability for segmentations of activated sludge images. The region-based metrics such as false negative ratio, sensitivity, and negative predictive value gave inconsistent results as compared to ot