Sample records for activated sludge removing

  1. Sludge Retention Time as a Suitable Operational Parameter to Remove Both Estrogen and Nutrients in an Anaerobic–Anoxic–Aerobic Activated Sludge System

    PubMed Central

    Zeng, Qingling; Li, Yongmei; Yang, Shijia

    2013-01-01

    Abstract Estrogen in wastewater are responsible for a significant part of the endocrine-disrupting effects observed in the aquatic environment. The effect of sludge retention time (SRT) on the removal and fate of 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) in an anaerobic–anoxic–oxic activated sludge system designed for nutrient removal was investigated by laboratory-scale experiments using synthetic wastewater. With a hydraulic retention time of 8 h, when SRT ranged 10–25 days, E2 was almost completely removed from water, and EE2 removal efficiency was 65%–81%. Both estrogens were easily sorbed onto activated sludge. Distribution coefficients (Kd) of estrogens on anaerobic sludge were greater than those on anoxic and aerobic sludges. Mass balance calculation indicated that 99% of influent E2 was degraded by the activated sludge process, and 1% remained in excess sludge; of influent EE2, 62.0%–80.1% was biodegraded; 18.9%–34.7% was released in effluent; and 0.88%–3.31% remained in excess sludge. Optimal SRT was 20 days for both estrogen and nutrient removal. E2 was almost completely degraded, and EE2 was only partly degraded in the activated sludge process. Residual estrogen on excess sludge must be considered in the sludge treatment and disposal processes. The originality of the work is that removal of nutrients and estrogens were linked, and optimal SRT for both estrogen and nutrient removal in an enhanced biological phosphorus removal system was determined. This has an important implication for the design and operation of full-scale wastewater treatment plants. PMID:23633892

  2. Removal of endocrine-disrupting chemicals and conventional pollutants in a continuous-operating activated sludge process integrated with ozonation for excess sludge reduction.

    PubMed

    Nie, Yafeng; Qiang, Zhimin; Ben, Weiwei; Liu, Junxin

    2014-06-01

    Sludge ozonation is considered as a promising technology to achieve a complete reduction of excess sludge, but as yet its effects on the removal of endocrine-disrupting chemicals (EDCs) and conventional pollutants (i.e., COD, N and P) in the activated sludge process are still unclear. In this study, two lab-scale continuous-operating activated sludge treatment systems were established: one was operated in conjunction with ozonation for excess sludge reduction, and the other was operated under normal conditions as control. The results indicate that an ozone dose of 100 mg O₃ g(-1)SS led to a zero yield of excess sludge in the sludge-reduction system during a continuous-operating period of 45d. Although ozonation gave a relatively lower specific oxygen uptake rate of activated sludge, it had little effect on the system's removal performance of COD and nitrogen substances. As a plus, sludge ozonation contributed a little more removal of target EDCs (estrone, 17β-estrodiol, estriol, 17α-ethinylestradiol, bisphenol A, and 4-nonylphenol). However, the total phosphorus removal declined notably due to its accumulation in the sludge-reduction system, which necessitates phosphorus recovery for the activated sludge process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals.

    PubMed

    Falås, P; Baillon-Dhumez, A; Andersen, H R; Ledin, A; la Cour Jansen, J

    2012-03-15

    Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct difference between nitrifying activated sludge and suspended biofilm carrier removal of several pharmaceuticals was demonstrated. Biofilm carriers from full-scale nitrifying wastewater treatment plants, demonstrated considerably higher removal rates per unit biomass (i.e. suspended solids for the sludges and attached solids for the carriers) of diclofenac, ketoprofen, gemfibrozil, clofibric acid and mefenamic acid compared to the sludges. Among the target pharmaceuticals, only ibuprofen and naproxen showed similar removal rates per unit biomass for the sludges and biofilm carriers. In contrast to the pharmaceutical removal, the nitrification capacity per unit biomass was lower for the carriers than the sludges, which suggests that neither the nitrite nor the ammonia oxidizing bacteria are primarily responsible for the observed differences in pharmaceutical removal. The low ability of ammonia oxidizing bacteria to degrade or transform the target pharmaceuticals was further demonstrated by the limited pharmaceutical removal in an experiment with continuous nitritation and biofilm carriers from a partial nitritation/anammox sludge liquor treatment process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Integrated fixed-biofilm activated sludge reactor as a powerful tool to enrich anammox biofilm and granular sludge.

    PubMed

    Zhang, Liang; Liu, Miaomiao; Zhang, Shujun; Yang, Yandong; Peng, Yongzhen

    2015-12-01

    A pilot-scale activated sludge bioreactor was filled with immobile carrier to treat high ammonium wastewater. Autotrophic nitrogen elimination occurred rapidly by inoculating nitrifying activated sludge and anammox biofilm. As the ammonium loading rate increased, nitrogen removal rate of 1.2kgNm(-3)d(-1) was obtained with the removal efficiency of 80%. Activated sludge diameter distribution profiles presented two peak values, indicating simultaneous existence of flocculent and granular sludge. Red granular sludge was observed in the reactor. Furthermore, the results of morphological and molecular analysis showed that the characteristics of granular sludge were similar to that of biofilm, while much different from the flocculent sludge. It was assumed granular sludge was formed through the continuous growth and detachment of anammox biofilm. The mechanism of granular sludge formation was discussed and the procedure model was proposed. According to the experimental results, the integrated fixed-biofilm activated sludge reactor provided an alternative to nitrogen removal based on anammox. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The influence of SRT on phosphorus removal and sludge characteristics in the HA-A/A-MCO sludge reduction process

    NASA Astrophysics Data System (ADS)

    Zuo, N.; Ji, F. Y.

    2013-02-01

    By researching the influence of sludge age (SRT) on phosphorous removal and sludge characteristics in the HA-A/A-MCO (hydrolysis-acidification-anaerobic/anoxic-multistep continuous oxic tank) process, which has the effect of simultaneous phosphorous and nitrogen removal and sludge reduction, it is found that extended SRT is helpful for improving the ability of anaerobic phosphorous release and chemical recovery of phosphate, but the hosphorous removal efficiency is not affected. Extended SRT causes the system to have even more active sludge; it can also lead to the system having a powerful ability of biochemical reaction by using superiority of concentration. Meanwhile, extended SRT can still reduce sludge yield. Extended SRT cannot make soluble metabolic product (SMP) accumulate in the reactor, so that the pollutant removal power is reduced; it also cannot affect the activity of the sludge. However, extended SRT is able to make the coagulation of the sludge hard, and cause the sludge volume index value increase, but cannot cause sludge bulking.

  6. Micropollutant removal by attached and suspended growth in a hybrid biofilm-activated sludge process.

    PubMed

    Falås, P; Longrée, P; la Cour Jansen, J; Siegrist, H; Hollender, J; Joss, A

    2013-09-01

    Removal of organic micropollutants in a hybrid biofilm-activated sludge process was investigated through batch experiments, modeling, and full-scale measurements. Batch experiments with carriers and activated sludge from the same full-scale reactor were performed to assess the micropollutant removal rates of the carrier biofilm under oxic conditions and the sludge under oxic and anoxic conditions. Clear differences in the micropollutant removal kinetics of the attached and suspended growth were demonstrated, often with considerably higher removal rates for the biofilm compared to the sludge. For several micropollutants, the removal rates were also affected by the redox conditions, i.e. oxic and anoxic. Removal rates obtained from the batch experiments were used to model the micropollutant removal in the full-scale process. The results from the model and plant measurements showed that the removal efficiency of the process can be predicted with acceptable accuracy (± 25%) for most of the modeled micropollutants. Furthermore, the model estimations indicate that the attached growth in hybrid biofilm-activated sludge processes can contribute significantly to the removal of individual compounds, such as diclofenac. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Combined System of Activated Sludge and Ozonation for the Treatment of Kraft E1 Effluent

    PubMed Central

    Assalin, Marcia Regina; dos Santos Almeida, Edna; Durán, Nelson

    2009-01-01

    The treatment of paper mill effluent for COD, TOC, total phenols and color removal was investigated using combined activated sludge-ozonation processes and single processes. The combined activated sludge-O3/pH 10 treatment was able to remove around 80% of COD, TOC and color from Kraft E1 effluent. For the total phenols, the efficiency removal was around 70%. The ozonation post treatment carried out at pH 8.3 also showed better results than the single process. The COD, TOC, color and total phenols removal efficiency obtained were 75.5, 59.1, 77 and 52.3%, respectively. The difference in the concentrations of free radical produced by activated sludge-O3/pH 10 and activated sludge-O3/pH 8.3 affected mainly the TOC and total phenol removal values. PMID:19440438

  8. Effect of enzyme secreting bacterial pretreatment on enhancement of aerobic digestion potential of waste activated sludge interceded through EDTA.

    PubMed

    Kavitha, S; Adish Kumar, S; Yogalakshmi, K N; Kaliappan, S; Rajesh Banu, J

    2013-12-01

    In this study, the effect of Ethylene diamine tetra acetic acid (EDTA) on Extracellular polymeric substance (EPS) removal tailed with bacterial enzymatic pretreatment on aerobic digestion of activated sludge was studied. In order to enhance the accessibility of sludge to the enzyme secreting bacteria; the extracellular polymeric substances were removed using EDTA. EDTA efficiently removed the EPS with limited cell lysis and enhanced the sludge enzyme activity at its lower concentration of 0.2 g/g SS. The sludge was then subjected to bacterial pretreatment to enhance the aerobic digestion. In aerobic digestion the best results in terms of Suspended solids (SS) reduction (48.5%) and COD (Chemical oxygen demand) solubilization (47.3%) was obtained in experimental reactor than in control. These results imply that aerobic digestion can be enhanced efficiently through bacterial pretreatment of EPS removed sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Identification of Some of the Major Groups of Bacteria in Efficient and Nonefficient Biological Phosphorus Removal Activated Sludge Systems

    PubMed Central

    Bond, Philip L.; Erhart, Robert; Wagner, Michael; Keller, Jürg; Blackall, Linda L.

    1999-01-01

    To investigate the bacteria that are important to phosphorus (P) removal in activated sludge, microbial populations were analyzed during the operation of a laboratory-scale reactor with various P removal performances. The bacterial population structure, analyzed by fluorescence in situ hybridization (FISH) with oligonucleotides probes complementary to regions of the 16S and 23S rRNAs, was associated with the P removal performance of the reactor. At one stage of the reactor operation, chemical characterization revealed that extremely poor P removal was occurring. However, like in typical P-removing sludges, complete anaerobic uptake of the carbon substrate occurred. Bacteria inhibiting P removal overwhelmed the reactor, and according to FISH, bacteria of the β subclass of the class Proteobacteria other than β-1 or β-2 were dominant in the sludge (58% of the population). Changes made to the operation of the reactor led to the development of a biomass population with an extremely good P removal capacity. The biochemical transformations observed in this sludge were characteristic of typical P-removing activated sludge. The microbial population analysis of the P-removing sludge indicated that bacteria of the β-2 subclass of the class Proteobacteria and actinobacteria were dominant (55 and 35%, respectively), therefore implicating bacteria from these groups in high-performance P removal. The changes in operation that led to the improved performance of the reactor included allowing the pH to rise during the anaerobic period, which promoted anaerobic phosphate release and possibly caused selection against non-phosphate-removing bacteria. PMID:10473419

  10. Preparation of thiol-functionalized activated carbon from sewage sludge with coal blending for heavy metal removal from contaminated water.

    PubMed

    Li, Juan; Xing, Xing; Li, Jiao; Shi, Mei; Lin, Aijun; Xu, Congbin; Zheng, Jianzhong; Li, Ronghua

    2018-03-01

    Sewage sludge produced from wastewater treatment is a pressing environmental issue. Mismanagement of the massive amount of sewage sludge would threat our valuble surface and shallow ground water resources. Use of activated carbon prepared from carbonization of these sludges for heavy metal removal can not only minimize and stabilize these hazardous materials but also realize resources reuse. In this study, thiol-functionalized activated carbon was synthesized from coal-blended sewage sludge, and its capacity was examined for removing Cu(II), Pb(II), Cd(II) and Ni(II) from water. Pyrolysis conditions to prepare activated carbons from the sludge and coal mixture were examined, and the synthesized material was found to achieve the highest BET surface area of 1094 m 2 /g under 500 °C and 30 min. Batch equilibrium tests indicated that the thiol-functionalized activated carbon had a maximum sorption capacity of 238.1, 96.2, 87.7 and 52.4 mg/g for Pb(II), Cd(II), Cu(II) and Ni(II) removal from water, respectively. Findings of this study suggest that thiol-functionalized activated carbon prepared from coal-blended sewage sludge would be a promising sorbent material for heavy metal removal from waters contaminated with Cu(II), Pb(II), Cd(II) and Ni(II). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Elimination of Cu(II) toxicity by powdered waste sludge (PWS) addition to an activated sludge unit treating Cu(II) containing synthetic wastewater.

    PubMed

    Pamukoglu, M Yunus; Kargi, Fikret

    2007-09-05

    Copper(II) ion toxicity onto activated sludge organisms was eliminated by addition of powdered waste sludge (PWS) to the feed wastewater for removal of Cu(II) ions by biosorption before biological treatment. The synthetic feed wastewater containing 14 or 22 mgl(-1) Cu(II) was mixed with PWS in a mixing tank where Cu(II) ions were adsorbed onto PWS and the mixture was fed to a sedimentation tank to separate Cu(II) containing PWS from the feed wastewater. The activated sludge unit fed with the effluent of the sedimentation tank was operated at a hydraulic residence time (HRT) of 10h and sludge age (SRT) of 10 days. To investigate Cu(II), COD and toxicity removal performance of the activated sludge unit at different PWS loadings, the system was operated at different PWS loading rates (0.1-1 gPWSh(-1)) while the Cu(II) loading rate was constant throughout the operation. Percent copper, COD and toxicity removals increased with increasing PWS loading rate due to increased adsorption of Cu(II) onto PWS yielding low Cu(II) contents in the feed. Biomass concentration in the aeration tank increased and the sludge volume index (SVI) decreased with increasing PWS loading rate due to elimination of Cu(II) from the feed wastewater by PWS addition. PWS addition to the Cu(II) containing wastewater was proven to be effective for removal of Cu(II) by biosorption before biological treatment. Approximately, 1 gPWSh(-1) should be added for 28 mgCuh(-1) loading rate for complete removal of Cu(II) from the feed wastewater to obtain high COD removals in the activated sludge unit.

  12. Reduction of excess sludge production using mechanical disintegration devices.

    PubMed

    Strünkmann, G W; Müller, J A; Albert, F; Schwedes, J

    2006-01-01

    The usability of mechanical disintegration techniques for the reduction of excess sludge production in the activated sludge process was investigated. Using three different disintegration devices (ultrasonic homogeniser, stirred media mill, high pressure homogeniser) and different operational parameters of the disintegration, the effect of mechanical disintegration on the excess sludge production and on the effluent quality was studied within a continuously operated, laboratory scale wastewater treatment system with pre-denitrification. Depending on the operational conditions and the disintegration device used, a reduction of excess sludge production of up to 70% was achieved. A combination of mechanical disintegration with a membrane bioreactor process with high sludge age is more energy effective concerning reduction of sludge production than with a conventional activated sludge process at lower sludge ages. Depending on the disintegration parameters, the disintegration has no, or only minor, negative effect on the soluble effluent COD and on the COD-removal capacity of the activated sludge process. Nitrogen-removal was slightly deteriorated by the disintegration, whereas the system used was not optimised for nitrogen removal before disintegration was implemented.

  13. Reduction of selenite to elemental selenium nanoparticles by activated sludge.

    PubMed

    Jain, Rohan; Matassa, Silvio; Singh, Satyendra; van Hullebusch, Eric D; Esposito, Giovanni; Lens, Piet N L

    2016-01-01

    Total selenium removal by the activated sludge process, where selenite is reduced to colloidal elemental selenium nanoparticles (BioSeNPs) that remain entrapped in the activated sludge flocs, was studied. Total selenium removal efficiencies with glucose as electron donor (2.0 g chemical oxygen demand (COD) L(-1)) at neutral pH and 30 °C gave 2.9 and 6.8 times higher removal efficiencies as compared to the electron donors lactate and acetate, respectively. Total selenium removal efficiencies of 79 (±3) and 86 (±1) % were achieved in shake flasks and fed batch reactors, respectively, at dissolved oxygen (DO) concentrations above 4.0 mg L(-1) and 30 °C when fed with 172 mg L(-1) (1 mM) Na2SeO3 and 2.0 g L(-1) COD of glucose. Continuously operated reactors operating at neutral pH, 30 °C and a DO >3 mg L(-1) removed 33.98 and 36.65 mg of total selenium per gram of total suspended solids (TSS) at TSS concentrations of 1.3 and 3.0 g L(-1), respectively. However, selenite toxicity to the activated sludge led to failure of a continuously operating activated sludge reactor at the applied loading rates. This suggests that a higher hydraulic retention time (HRT) or different reactor configurations need to be applied for selenium-removing activated sludge processes. Graphical Abstract Scheme representing the possible mechanisms of selenite reduction at high and low DO levels in the activated sludge process.

  14. Ion Trapping of Amines in Protozoa: A Novel Removal Mechanism for Micropollutants in Activated Sludge.

    PubMed

    Gulde, Rebekka; Anliker, Sabine; Kohler, Hans-Peter E; Fenner, Kathrin

    2018-01-02

    To optimize removal of organic micropollutants from the water cycle, understanding the processes during activated sludge treatment is essential. In this study, we hypothesize that aliphatic amines, which are highly abundant among organic micropollutants, are partly removed from the water phase in activated sludge through ion trapping in protozoa. In ion trapping, which has been extensively investigated in medical research, the neutral species of amine-containing compounds diffuse through the cell membrane and further into acidic vesicles present in eukaryotic cells such as protozoa. There they become trapped because diffusion of the positively charged species formed in the acidic vesicles is strongly hindered. We tested our hypothesis with two experiments. First, we studied the distribution of the fluorescent amine acridine orange in activated sludge by confocal fluorescence imaging. We observed intense fluorescence in distinct compartments of the protozoa, but not in the bacterial biomass. Second, we investigated the distribution of 12 amine-containing and eight control micropollutants in both regular activated sludge and sludge where the protozoa had been inactivated. In contrast to most control compounds, the amine-containing micropollutants displayed a distinctly different behavior in the noninhibited sludge compared to the inhibited one: (i) more removal from the liquid phase; (ii) deviation from first-order kinetics for the removal from the liquid phase; and (iii) higher amounts in the solid phase. These results provide strong evidence that ion trapping in protozoa occurs and that it is an important removal mechanism for amine-containing micropollutants in batch experiments with activated sludge that has so far gone unnoticed. We expect that our findings will trigger further investigations on the importance of this process in full-scale wastewater treatment systems, including its relevance for accumulation of ammonium.

  15. Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge.

    PubMed

    Nguyen, Minh Tuan; Mohd Yasin, Nazlina Haiza; Miyazaki, Toshiki; Maeda, Toshinari

    2014-12-01

    The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 μmol g(-1) dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The use of waste mussel shells for the adsorption of dyes and heavy metals

    NASA Astrophysics Data System (ADS)

    Papadimitriou, Chrysi A.; Krey, Grigorios; Stamatis, Nikolaos; Kallaniotis, Argyris

    2016-04-01

    Mussel culture is very important sector of the Greek agricultural economy. The majority of mussel culture activities take place in the area of Central Macedonia, Greece, 60% of total mussel production in Greece producing almost 12 tons of waste mussels shells on a daily basis. Currently there is no legislation concerning the disposal of mussel shells. In the present study the waste shells were used for the removal of dyes and heavy metals from aqueous solutions while powdered mussel shells were added in activated sludge processes for the removal of hexavalent chromium. Mussel shells were cleaned, dried and then crushed in order to form a powder. Powdered mussels shells were used in standard adsorption experiments for the removal of methylene blue and methyl red as well as for the removal of Cr (VI), Cd and Cu. Moreover the powdered mussel shells were added in laboratory scale activated sludge reactors treating synthetic wastewater with hexavalent chromium, in order investigate the effects in activated sludge processes and their potential attribution to the removal of hexavalent chromium. Adsorption experiments indicated almost 100% color removal, while adsorption was directly proportional to the amount of powdered mussel shells added in each case. The isotherms calculated for the case of methylene blue indicated similar adsorption capacity and properties to those of the commercially available activated carbon SAE 2, Norit. High removal efficiencies were observed for the metals, especially in the case of chromium and copper. The addition of powdered mussel shells in the activated sludge processes enhanced the removal of chromium and phosphorus, while enabled the formation of heavier activated sludge flocs and thus enhanced the settling properties of the activated sludge.

  17. Nonoxidative removal of organics in the activated sludge process

    PubMed Central

    Modin, Oskar; Persson, Frank; Wilén, Britt-Marie; Hermansson, Malte

    2016-01-01

    ABSTRACT The activated sludge process is commonly used to treat wastewater by aerobic oxidation of organic pollutants into carbon dioxide and water. However, several nonoxidative mechanisms can also contribute to removal of organics. Sorption onto activated sludge can remove a large fraction of the colloidal and particulate wastewater organics. Intracellular storage of, e.g., polyhydroxyalkanoates (PHA), triacylglycerides (TAG), or wax esters can convert wastewater organics into precursors for high-value products. Recently, several environmental, economic, and technological drivers have stimulated research on nonoxidative removal of organics for wastewater treatment. In this paper, we review these nonoxidative removal mechanisms as well as the existing and emerging process configurations that make use of them for wastewater treatment. Better utilization of nonoxidative processes in activated sludge could reduce the wasteful aerobic oxidation of organic compounds and lead to more resource-efficient wastewater treatment plants. PMID:27453679

  18. Treatment of old landfill leachate with high ammonium content using aerobic granular sludge.

    PubMed

    Ren, Yanan; Ferraz, Fernanda; Kang, Abbass Jafari; Yuan, Qiuyan

    2017-01-01

    Aerobic granular sludge has become an attractive alternative to the conventional activated sludge due to its high settling velocity, compact structure, and higher tolerance to toxic substances and adverse conditions. Aerobic granular sludge process has been studied intensively in the treatment of municipal and industrial wastewater. However, information on leachate treatment using aerobic granular sludge is very limited. This study investigated the treatment performance of old landfill leachate with different levels of ammonium using two aerobic sequencing batch reactors (SBR): an activated sludge SBR (ASBR) and a granular sludge SBR (GSBR). Aerobic granules were successfully developed using old leachate with low ammonium concentration (136 mg L -1  NH 4 + -N). The GSBR obtained a stable chemical oxygen demand (COD) removal of 70% after 15 days of operation; while the ASBR required a start-up of at least 30 days and obtained unstable COD removal varying from 38 to 70%. Ammonium concentration was gradually increased in both reactors. Increasing influent ammonium concentration to 225 mg L -1  N, the GSBR removed 73 ± 8% of COD; while COD removal of the ASBR was 59 ± 9%. The GSBR was also more efficient than the ASBR for nitrogen removal. The granular sludge could adapt to the increasing concentrations of ammonium, achieving 95 ± 7% removal efficiency at a maximum influent concentration of 465 mg L -1  N. Ammonium removal of 96 ± 5% was obtained by the ASBR when it was fed with a maximum of 217 mg L -1  NH 4 + -N. However, the ASBR was partially inhibited by free-ammonia and nitrite accumulation rate increased up to 85%. Free-nitrous acid and the low biodegradability of organic carbon were likely the main factors affecting phosphorus removal. The results from this research suggested that aerobic granular sludge have advantage over activated sludge in leachate treatment.

  19. Determination of the acute toxicities of physicochemical pretreatment and advanced oxidation processes applied to dairy effluents on activated sludge.

    PubMed

    Sivrioğlu, Özge; Yonar, Taner

    2015-04-01

    In this study, the acute toxicities of raw, physicochemical pre-treated, ozonated, and Fenton reagent applied samples of dairy wastewater toward activated sludge microorganisms, evaluated using the International Organization for Standardization's respiration inhibition test (ISO 8192), are presented. Five-day biological oxygen demand (BOD5) was measured to determine the biodegradability of physicochemical treatment, ozonation, Fenton oxidation or no treatment (raw samples) of dairy wastewater. Chemical pretreatment positively affected biodegradability, and the inhibition exhibited by activated sludge was removed to a considerable degree. Ozonation and the Fenton process exhibited good chemical oxygen demand removal (61%) and removal of toxins. Low sludge production was observed for the Fenton process applied to dairy effluents. We did not determine the inhibitory effect of the Fenton-process on the activated sludge mixture. The pollutant-removal efficiencies of the applied processes and their associated operating costs were determined. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Enhancing aerobic digestion potential of municipal waste-activated sludge through removal of extracellular polymeric substance.

    PubMed

    Merrylin, J; Kaliappan, S; Kumar, S Adish; Yeom, Ick-Tae; Banu, J Rajesh

    2014-01-01

    A protease-secreting bacteria was used to pretreat municipal sewage sludge to enhance aerobic digestion. To enhance the accessibility of the sludge to the enzyme, extracellular polymeric substances were removed using citric acid thereby removing the flocs in the sludge. The conditions for the bacterial pretreatment were optimized using response surface methodology. The results of the bacterial pretreatment indicated that the suspended solids reduction was 18% in sludge treated with citric acid and 10% in sludge not treated with citric acid whereas in raw sludge, suspended solids reduction was 5.3%. Solubilization was 10.9% in the sludge with extracellular polymeric substances removed in contrast to that of the sludge with extracellular polymeric substances, which was 7.2%, and that of the raw sludge, which was just 4.8%. The suspended solids reduction in the aerobic reactor containing pretreated sludge was 52.4% whereas that in the control reactor was 15.3%. Thus, pretreatment with the protease-secreting bacteria after the removal of extracellular polymeric substances is a cost-effective and environmentally friendly method.

  1. The role and control of sludge age in biological nutrient removal activated sludge systems.

    PubMed

    Ekama, G A

    2010-01-01

    The sludge age is the most fundamental and important parameter in the design, operation and control of biological nutrient removal (BNR) activated sludge (AS) systems. Generally, the better the effluent and waste sludge quality required from the system, the longer the sludge age, the larger the biological reactor and the more wastewater characteristics need to be known. Controlling the reactor concentration does not control sludge age, only the mass of sludge in the system. When nitrification is a requirement, sludge age control becomes a requirement and the secondary settling tanks can no longer serve the dual purpose of clarifier and waste activated sludge thickeners. The easiest and most practical way to control sludge age is with hydraulic control by wasting a defined proportion of the reactor volume daily. In AS plants with reactor concentration control, nitrification fails first. With hydraulic control of sludge age, nitrification will not fail, rather the plant fails by shedding solids over the secondary settling tank effluent weirs.

  2. Fate of personal care and household products in source separated sanitation.

    PubMed

    Butkovskyi, A; Rijnaarts, H H M; Zeeman, G; Hernandez Leal, L

    2016-12-15

    Removal of twelve micropollutants, namely biocides, fragrances, ultraviolet (UV)-filters and preservatives in source separated grey and black water treatment systems was studied. All compounds were present in influent grey water in μg/l range. Seven compounds were found in influent black water. Their removal in an aerobic activated sludge system treating grey water ranged from 59% for avobenzone to >99% for hexylcinnamaldehyde. High concentrations of hydrophobic micropollutants in sludge of aerobic activated sludge system indicated the importance of sorption for their removal. Six micropollutants were found in sludge of an Up-flow anaerobic sludge blanket (UASB) reactor treating black water, with four of them being present at significantly higher concentrations after addition of grey water sludge to the reactor. Hence, addition of grey water sludge to the UASB reactor is likely to increase micropollutant content in UASB sludge. This approach should not be followed when excess UASB sludge is designed to be reused as soil amendment. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. [Research on the treatment of wastewater containing PVA by ozonation-activated sludge process].

    PubMed

    Xing, Xiao-Qiong; Huang, Cheng-Lan; Liu, Min; Chen, Ying

    2012-11-01

    The wastewater containing polyvinyl alcohol (PVA) was characterized with poor biodegradability, and was difficult to remove. In order to find an economically reasonable and practical technology, the research on the removal efficiency of different concentration wastewater containing PVA by ozonation-activated sludge process was studied, and the result was compared with the traditional activated sludge process. The results showed that the ozonation-activated sludge process was not suitable for treating influent with COD below 500 mg x L(-1) and the wastewater PVA concentration was 10-30 mg x L(-1). When the influent COD was between 500-800 mg x L(-1) and the PVA concentration was 15-60 mg x L(-1), the system had advantages on dealing with this kind of wastewater, and the average removal efficiency of COD and PVA were 92.8% and 57.4%, which were better than the traditional activated sludge process 4.1% and 15.2% respectively. In addition, the effluent concentrations of COD could keep between 30-60 mg x L(-1). When the influent COD was 1 000-1 200 mg x L(-1) and the PVA concentration was 20-70 mg x L(-1), the average removal efficiencies of COD and PVA were 90.9% and 45.3%, which were better than the traditional activated sludge process 12.8% and 12.1% respectively, but the effluent should to be further treated. Compared with the traditional activated sludge process, ozonation-activated sludge process had high treatment efficiency, stable running effect, and effectively in dealing with industrial wastewater containing PVA.

  4. Degradation of typical N-nitrosodimethylamine (NDMA) precursors and its formation potential in anoxic-aerobic (AO) activated sludge system.

    PubMed

    Wang, Lin; Li, Yongmei; He, Guodong

    2014-01-01

    N-nitrosodimethylamine (NDMA) is an emerging disinfection byproduct. Removal of its potential precursors is considered as an effective method to control NDMA. In this study, four typical NDMA precursors (dimethylamine (DMA), trimethylamine (TMA), dimethylformamide (DMFA) and dimethylaminobenzene (DMAB)) were selected, and their removal capacities by activated sludge were investigated. Batch experiments indicated that removal of NDMA precursors was better under aerobic condition than anoxic condition; and their specific degradation rates follow the order of DMA > TMA > DMFA > DMAB. In anoxic-aerobic (AO) activated sludge system, the optimal hydraulic retention time and sludge retention time were 10 h and 20 d, respectively, for the removal of both NDMA precursors (four selected NDMA precursors and NDMA formation potential (NDMA FP)) and nutrients. Our results also suggested that there was a positive correlation between NDMA FP and dissolved organic nitrogen (DON) in wastewater. The removal efficiency of NDMA FP was in the range of 46.8-72.5% in the four surveyed wastewater treatment plants except the one which adopted chemically enhanced primary process. The results revealed that the AO system had the advantage of removing NDMA FP. Our results are helpful for the knowledge of the removals of NDMA precursors during activated sludge treatment processes.

  5. Full scale implementation of the nutrient limited BAS process at Södra Cell Värö.

    PubMed

    Malmqvist, A; Berggren, B; Sjölin, C; Welander, T; Heuts, L; Fransén, A; Ling, D

    2004-01-01

    A combination of the suspended carrier biofilm process and the activated sludge process (biofilm-activated sludge--BAS) has been shown to be very successful for the treatment of different types of pulp and paper mill effluents. The robust biofilm pre-treatment in combination with activated sludge results in a stable, compact and highly efficient process. Recent findings have shown that nutrient limited operation of the biofilm process greatly improves the sludge characteristics in the following activated sludge stage, while minimising sludge production and effluent discharge of nutrients. The nutrient limited BAS process was implemented at full scale at the Södra Cell Värö kraft mill and taken into operation in July 2002. After start-up and optimisation over about 5 months, the process meets all effluent discharge limits. The removal of COD is close to 70% and the removal of EDTA greater than 90%. Typical effluent concentrations of suspended solids and nutrients during stable operations have been 20-30 mg/L TSS, 0.3-0.5 mg/L phosphorus and 3-5 mg/L nitrogen. The sludge production was 0.09 kgSS/kg COD removed and the sludge volume index was 50-100 mL/g.

  6. Stabilization of waste-activated sludge through the anoxic-aerobic digestion process.

    PubMed

    Hashimoto, S; Fujita, M; Terai, K

    1982-08-01

    During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludge continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q(r)/Q(s) ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q(r)/Q(s) ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.

  7. Biological Uptake of Phosphorus by Activated Sludge 1

    PubMed Central

    Yall, Irving; Boughton, William H.; Knudsen, Richard C.; Sinclair, Norval A.

    1970-01-01

    The ability of activated sludge to remove phosphates was studied by adding carrier-free 32P to raw sewage and measuring incorporation of the radioactivity into the cells over a period of time. Radioisotope determinations indicated that 48% of the 32P radioactivity was removed by 12 hr. However, chemical methods indicated that only 30% of the orthophosphate apparently disappeared from the sewage during this period. Experiments with sludge prelabeled with 32P indicated that considerable phosphate turnover occurred. The cells released large amounts of radioactivity as they were incorporating fresh phosphates. Starvation in isotonic saline for 18 hr caused the sludge to dump phosphate. When introduced into fresh sewage containing 32P, the starved sludge removed about 60% of the radioactivity in 6 hr with little phosphate turnover. The ability of sludge to remove 32P was inhibited approximately 83% by 10−3m 2,4-dinitrophenol. This inhibition was at the expense of the cell fraction that contained ribonucleic acid and deoxyribonucleic acid. The sludge cells released orthophosphate when exposed to the chemical agent. Experiments using 45Ca indicated that calcium phosphate precipitation plays a minor role in phosphate removal under our experimental conditions. PMID:5456935

  8. Biological uptake of phosphorus by activated sludge.

    PubMed

    Yall, I; Boughton, W H; Knudsen, R C; Sinclair, N A

    1970-07-01

    The ability of activated sludge to remove phosphates was studied by adding carrier-free (32)P to raw sewage and measuring incorporation of the radioactivity into the cells over a period of time. Radioisotope determinations indicated that 48% of the (32)P radioactivity was removed by 12 hr. However, chemical methods indicated that only 30% of the orthophosphate apparently disappeared from the sewage during this period. Experiments with sludge prelabeled with (32)P indicated that considerable phosphate turnover occurred. The cells released large amounts of radioactivity as they were incorporating fresh phosphates. Starvation in isotonic saline for 18 hr caused the sludge to dump phosphate. When introduced into fresh sewage containing (32)P, the starved sludge removed about 60% of the radioactivity in 6 hr with little phosphate turnover. The ability of sludge to remove (32)P was inhibited approximately 83% by 10(-3)m 2,4-dinitrophenol. This inhibition was at the expense of the cell fraction that contained ribonucleic acid and deoxyribonucleic acid. The sludge cells released orthophosphate when exposed to the chemical agent. Experiments using (45)Ca indicated that calcium phosphate precipitation plays a minor role in phosphate removal under our experimental conditions.

  9. Carbon, nitrogen and phosphorus removal mechanisms of aerobic granules.

    PubMed

    Sarma, Saurabh Jyoti; Tay, Joo-Hwa

    2018-04-10

    Aerobic granules are the potential tools to develop modern wastewater treatment technologies with improved nutrient removal efficiency. These granules have several promising advantages over conventional activated sludge-based wastewater treatment processes. This technology has the potential of reducing the infrastructure and operation costs of wastewater treatment by 25%, energy requirement by 30%, and space requirement by 75%. The nutrient removal mechanisms of aerobic granules are slightly different from that of the activated sludge. For instance, unlike activated sludge process, according to some reports, as high as 70% of the total phosphorus removed by aerobic granules were attributed to precipitation within the granules. Similarly, aerobic granule-based technology reduces the total amount of sludge produced during wastewater treatment. However, the reason behind this observation is unknown and it needs further explanations based on carbon and nitrogen removal mechanisms. Thus, as a part of the present review, a set of new hypotheses have been proposed to explain the peculiar nutrient removal mechanisms of the aerobic granules.

  10. A multi-disciplinary approach to the removal of emerging contaminants in municipal wastewater treatment plans in New York State, 2003-2004

    USGS Publications Warehouse

    Philips, Patrick J.; Stinson, Beverley; Zaugg, Steven D.; Furlong, Edward T.; Kolpin, Dana W.; Esposito, Kathleen; Bodniewicz, B.; Pape, R.; Anderson, J.

    2005-01-01

    The second phase of the study focused on one of the most common wastewater treatment processes operated in the United States, the Activated Sludge process. Using four controlled parallel activated sludge pilots, a more detailed assessment of the impact of Sludge Retention Time (SRT) on the reduction or removal of ECs was performed.

  11. Solubilization of municipal sewage waste activated sludge by novel lytic bacterial strains.

    PubMed

    Lakshmi, M Veera; Merrylin, J; Kavitha, S; Kumar, S Adish; Banu, J Rajesh; Yeom, Ick-Tae

    2014-02-01

    Extracellular polymeric substances (EPS) are an extracellular matrix found in sludge which plays a crucial role in flocculation by interacting with the organic solids. Therefore, to enhance pretreatment of sludge, EPS have to be removed. In this study, EPS were removed with a chemical extractant, NaOH, to enhance the bacterial pretreatment. A lysozyme secreting bacterial consortium was isolated from the waste activated sludge (WAS). The result of density gradient gel electrophoresis (DGGE) analysis revealed that the isolated consortium consists of two strains. The two novel strains isolated were named as Jerish03 (NCBI accession number KC597266) and Jerish 04 (NCBI accession number KC597267) and they belong to the genus Bacillus. Pretreatment with these novel strains enhances the efficiency of the aerobic digestion of sludge. Sludge treated with the lysozyme secreting bacterial consortium produced 29 % and 28.5 % increase in suspended solids (SS) reduction and chemical oxygen demand (COD) removal compared to the raw activated sludge (without pretreatment) during aerobic digestion. It is specified that these two novel strains had a high potential to enhance WAS degradation efficiency in aerobic digestion.

  12. Comparison of laboratory-scale thermophilic biofilm and activated sludge processes integrated with a mesophilic activated sludge process.

    PubMed

    Suvilampi, J; Lehtomäki, A; Rintala, J

    2003-07-01

    A combined thermophilic-mesophilic wastewater treatment was studied using a laboratory-scale thermophilic activated sludge process (ASP) followed by mesophilic ASP or a thermophilic suspended carrier biofilm process (SCBP) followed by mesophilic ASP, both systems treating diluted molasses (dilution factor 1:500 corresponding GF/A-filtered COD (COD(filt)) of 1900+/-190 mgl(-1)). With hydraulic retention times (HRTs) of 12-18 h the thermophilic ASP and thermophilic SCBP removed 60+/-13% and 62+/-7% of COD(filt), respectively, with HRT of 8 h the removals were 48+/-1% and 69+/-4%. The sludge volume index (SVI) was notably lower in the thermophilic SCBP (measured from suspended sludge) than in the thermophilic ASP. Under the lowest HRT the mesophilic ASP gave better performance (as SVI, COD(filt), and COD(tot) removals) after the thermophilic SCBP than after the thermophilic ASP. Measured sludge yields were low (less than 0.1 kg suspended solids (SS) kg COD(filt removed)(-1)) in all processes. Both thermophilic treatments removed 80-85% of soluble COD (COD(sol)) whereas suspended COD (COD(susp)) and colloidal COD (COD(col)) were increased. Both mesophilic post-treatments removed all COD(col) and most of the COD(susp) from the thermophilic effluents. In conclusion, combined thermophilic-mesophilic treatment appeared to be easily operable and produced high effluent quality.

  13. Micropollutant removal from black water and grey water sludge in a UASB-GAC reactor.

    PubMed

    Butkovskyi, A; Sevenou, L; Meulepas, R J W; Hernandez Leal, L; Zeeman, G; Rijnaarts, H H M

    2018-02-01

    The effect of granular activated carbon (GAC) addition on the removal of diclofenac, ibuprofen, metoprolol, galaxolide and triclosan in a up-flow anaerobic sludge blanket (UASB) reactor was studied. Prior to the reactor studies, batch experiments indicated that addition of activated carbon to UASB sludge can decrease micropollutant concentrations in both liquid phase and sludge. In continuous experiments, two UASB reactors were operated for 260 days at an HRT of 20 days, using a mixture of source separated black water and sludge from aerobic grey water treatment as influent. GAC (5.7 g per liter of reactor volume) was added to one of the reactors on day 138. No significant difference in COD removal and biogas production between reactors with and without GAC addition was observed. In the presence of GAC, fewer micropollutants were washed out with the effluent and a lower accumulation of micropollutants in sludge and particulate organic matter occurred, which is an advantage in micropollutant emission reduction from wastewater. However, the removal of micropollutants by adding GAC to a UASB reactor would require more activated carbon compared to effluent post-treatment. Additional research is needed to estimate the effect of bioregeneration on the lifetime of activated carbon in a UASB-GAC reactor.

  14. Assessing the removal of pharmaceuticals and personal care products in a full-scale activated sludge plant.

    PubMed

    Salgado, R; Marques, R; Noronha, J P; Carvalho, G; Oehmen, A; Reis, M A M

    2012-06-01

    This study aimed to investigate the removal mechanisms of pharmaceutical active compounds (PhACs) and musks in a wastewater treatment plant (WWTP). Biological removal and adsorption in the activated sludge tank as well as the effect of UV radiation used for disinfection purposes were considered when performing a mass balance on the WWTP throughout a 2-week sampling campaign. Solid-phase extraction (SPE) was carried out to analyse the PhACs in the influent and effluent samples. Ultrasonic solvent extraction was used before SPE for PhACs analysis in sludge samples. PhAC extracts were analysed by LC-MS. Solid-phase microextraction of liquid and sludge samples was used for the analysis of musks, which were detected by GC-MS. The fluxes of the most abundant compounds (13 PhACs and 5 musks) out of 79 compounds studied were used to perform the mass balance on the WWTP. Results show that incomplete removal of diclofenac, the compound that was found in the highest abundance, was observed via biodegradation and adsorption, and that UV photolysis was the main removal mechanism for this compound. The effect of adsorption to the secondary sludge was often negligible for the PhACs, with the exceptions of diclofenac, etofenamate, hydroxyzine and indapamide. However, the musks showed a high level of adsorption to the sludge. UV radiation had an important role in reducing the concentration of some of the target compounds (e.g. diclofenac, ibuprofen, clorazepate, indapamide, enalapril and atenolol) not removed in the activated sludge tank. The main removal mechanism of PhACs and musks studied in the WWTP was most often biological (45%), followed by adsorption (33%) and by UV radiation (22%). In the majority of the cases, the WWTP achieved >75% removal of the most detected PhACs and musks, with the exception of diclofenac.

  15. Investigation of organic nitrogen and carbon removal in the aerobic digestion of various sludges.

    PubMed

    Genç, Nevim; Yonsel, Sems; Dağaşan, Levent; Onar, A N

    2002-11-01

    Nitrification and carbon removal are investigated in aerobic batch digestion of various sludges. The experiments are carried out with activated sludge (Test 1) and with a mixture of activated and primary settling sludge (Test 2). The nitrification rate was monitored, measuring the NO2- concentration. At the 3rd day of the digestion 40.7 mgNO2-N/l and 3.89 mgNO2-N/l were found in Tests 1 and 2 respectively. In a digestion process, the degradation of biomass indicates the beginning of the endogenous phase. Our measure for biomass content of the sludge was protein analysis. In Test 1, the first day values of 50.93 mgTOC/ g(dry) matter/day and 138.53 mg(protein)-C/g(dry) matter/day for specific TOC and protein-C removal rates showed, that the digestion process began in the endogenous phase. For Test 2, since the endogenous phase began after removal of raw organic matter in primary settling sludge, specific TOC and protein-C removal rates were observed to be 60.12 mgTOC/g(dry) matter/day and 26.72 mg(protein-C/g(dry)matter/day, respectively.

  16. [Method for Simultaneous Determination of 11 Veterinary Antibiotics in Piggery Wastewater and Sludge and Its Application in Biological Treatment].

    PubMed

    Ding, Jia-li; Liu, Rui; Zheng, Wei; Yu, Wei-juan; Ye, Zhao-xia; Chen, Lu-jun; Zhang, Yong-ming

    2015-10-01

    In order to determine eleven commonly used veterinary antibiotics (including four tetracyclines, two sulfonamides, three quinolones and two macrolides) in piggery wastewater and activated sludge in the Yangtze River Delta region, the conditions of solid phase extraction and high performance liquid chromatography-tandem mass spectrometry were optimized. The recovery rate and relative standard deviations of the method were confirmed as 73% - 105.2%, 3.1% - 10.2% for piggery wastewater (n = 3) and 57.4% - 104.6%, 1.9% - 10.9% (n = 3) respectively for the activated sludge. Removal of antibiotics was then studied in a membrane bioreactor. The results showed that antibiotics of both tetracycline and sulfonamide species took a large portion in the wastewater, while tetracycline species were the dominant in the sludge. Tetracycline species in the wastewater were removed by 85.2%, mainly through biodegradation (51.9%) and secondly by sludge adsorption (33.2%). By comparison, sulfonamide species was removed by 95.8%, almost all through biodegradation while little by sludge adsorption. Flask tests suggested that the accumulated antibiotics in the sludge give no significant influence on the microbial removal of organics and ammonium.

  17. Reduction of sludge generation by the addition of support material in a cyclic activated sludge system for municipal wastewater treatment.

    PubMed

    Araujo, Moacir Messias de; Lermontov, André; Araujo, Philippe Lopes da Silva; Zaiat, Marcelo

    2013-09-01

    An innovative biomass carrier (Biobob®) was tested for municipal wastewater treatment in an activated sludge system to evaluate the pollutant removal performance and the sludge generation for different carrier volumes. The experiment was carried out in a pilot-scale cyclic activated sludge system (CASS®) built with three cylindrical tanks in a series: an anoxic selector (2.1 m(3)), an aerobic selector (2.5 m(3)) and the main aerobic reactor (25.1 m(3)). The results showed that by adding the Biobob® carrier decreased the MLVSS concentration, which consequently reduced the waste sludge production of the system. Having 7% and 18% (v/v) support material in the aerobic reactor, the observed biomass yield decreased 18% and 36%, respectively, relative to the reactor operated with suspended biomass. The addition of media did not affect the system's performance for COD and TSS removal. However, TKN and TN removal were improved by 24% and 14%, respectively, using 18% (v/v) carrier. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Improving the amenability of municipal waste activated sludge for biological pretreatment by phase-separated sludge disintegration method.

    PubMed

    Kavitha, S; Adish Kumar, S; Kaliappan, S; Yeom, Ick Tae; Rajesh Banu, J

    2014-10-01

    The significance of citric acid, a cation binding agent, was investigated for the exclusion of extracellular polymeric substance (EPS) from waste activated sludge (WAS) and anaerobic biodegradability following enzymatic bacterial pretreatment. EPS was removed with 0.05 g/g SS of citric acid. The results of pretreatment found that the suspended solids reduction and chemical oxygen demand solubilisation were 21.4% and 16.2% for deflocculated-bacterially pretreated sludge, 14.28% and 10.0% for flocculated sludge (without EPS removal and bacterially pretreated) and 8.5% and 6.5% for control sludge (raw sludge), respectively. Further assessing anaerobic biodegradability, the biogas yield potential of deflocculated and bacterially pretreated, flocculated, and control sludges were found to be 0.455 L/(g VS), 0.343 L/(g VS), and 0.209 L/(g VS), respectively. Thus, phase-separated disintegration enhanced anaerobic biodegradability efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Stabilization of waste-activated sludge through the anoxic-aerobic digestion process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, S.; Fujita, M.; Terai, K.

    1982-08-01

    During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludgemore » continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q /SUB r/ /Q /SUB s/ ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q /SUB r/ /Q /SUB s/ ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.« less

  20. Performance of calcium peroxide for removal of endocrine-disrupting compounds in waste activated sludge and promotion of sludge solubilization.

    PubMed

    Zhang, Ai; Wang, Jie; Li, Yongmei

    2015-03-15

    Removal of six phenolic endocrine disrupting compounds (EDCs) (estrone, 17β-estradiol, 17α-ethinylestradiol, estriol, bisphenol A, and 4-nonylphenols) from waste activated sludge (WAS) was investigated using calcium peroxide (CaO2) oxidation. Effects of initial pH and CaO2 dosage were investigated. The impacts of CaO2 treatment on sludge solubilization and anaerobic digestion were also evaluated. Specifically, the role of reactive oxygen species (ROS) in EDC degradation during CaO2 oxidation was tested. Effects of 6 metal ions contained in the sludge matrix on EDC degradation were also evaluated. The results showed that CaO2 treatment can be a promising technology for EDC removal and facilitating sludge reuse. The EDC removal efficiencies increased with the increase in CaO2 dosage. At CaO2 doses of more than 0.34 g per gram of total solid (g g(-1) TS), more than 50% of EDCs were removed in a wide pH range of 2-12. Higher removal efficiencies were achieved at initial pH values of 12 and 2. The products of EDCs during CaO2 oxidation had less estrogenic activity than the originals. Under the conditions of neutral pH and CaO2 dosage = 0.34 g g(-1) TS, the sludge solubilization can be improved by increasing the soluble total organic carbon (STOC) and volatile suspended solids (VSS) reduction by 25% and 27% in 7 d, respectively; the volatile fatty acid (VFA) production was enhanced by 96% in the 15 d following anaerobic digestion. The ROS released by CaO2 are the main factors contributing to EDC removal, among which, hydroxyl radicals (OH) play the most important role. Metal ions contained in the sludge matrix also affected EDC removal. For most cases, Fe, Cu, and Zn had positive effects; Mn and Ag had negative effects; and Mg had an insignificant effect on EDC removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Technologies for reducing sludge production in wastewater treatment plants: State of the art.

    PubMed

    Wang, Qilin; Wei, Wei; Gong, Yanyan; Yu, Qiming; Li, Qin; Sun, Jing; Yuan, Zhiguo

    2017-06-01

    This review presents the state-of-the-art sludge reduction technologies applied in both wastewater and sludge treatment lines. They include chemical, mechanical, thermal, electrical treatment, addition of chemical un-coupler, and predation of protozoa/metazoa in wastewater treatment line, and physical, chemical and biological pretreatment in sludge treatment line. Emphasis was put on their effect on sludge reduction performance, with 10% sludge reduction to zero sludge production in wastewater treatment line and enhanced TS (total solids) or volatile solids removal of 5-40% in sludge treatment line. Free nitrous acid (FNA) technology seems good in wastewater treatment line but it is only under the lab-scale trial. In sludge treatment line, thermal, ultrasonic (<4400kJ/kg TS), FNA pretreatment and temperature-phased anaerobic digestion (TPAD) are promising if pathogen inactivation is not a concern. However, thermal pretreatment and TPAD are superior to other pretreatment technologies when pathogen inactivation is required. The new wastewater treatment processes including SANI®, high-rate activated sludge coupled autotrophic nitrogen removal and anaerobic membrane bioreactor coupled autotrophic nitrogen removal also have a great potential to reduce sludge production. In the future, an effort should be put on the effect of sludge reduction technologies on the removal of organic micropollutants and heavy metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The enhancement of anaerobic biodegradability of waste activated sludge by surfactant mediated biological pretreatment.

    PubMed

    Kavitha, S; Jayashree, C; Adish Kumar, S; Yeom, Ick Tae; Rajesh Banu, J

    2014-09-01

    In this study, the role of sodium dodecyl sulfate (SDS) was explored for the removal of extracellular polymeric substance (EPS) from waste activated sludge (WAS) followed by enzymatic bacterial pretreatment, which enhanced the subsequent anaerobic biodegradability. EPS was removed with 0.02 g/g SS of SDS. In the results of pretreatment, the suspended solids reduction and chemical oxygen demand solubilization were found to be 25.7% and 19.79% for deflocculated and bacterially pretreated sludge, whereas they were found to be 15.7% and 11% for flocculated sludge (without EPS removal and bacterially pretreated) and 7.85% and 6% for control sludge (raw sludge), respectively. Upon examining the anaerobic biodegradability, the biogas yield potential of deflocculated and bacterially pretreated, flocculated, deflocculated alone, and control sludges were found to be 0.467 L/(g VS), 0.355 L/(g VS), 0.315 L/(g VS), and 0.212 L/(g VS), respectively. Thus, the deflocculation and bacterial pretreatment improved the anaerobic biodegradability efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Biotransformation and adsorption of pharmaceutical and personal care products by activated sludge after correcting matrix effects.

    PubMed

    Deng, Yu; Li, Bing; Yu, Ke; Zhang, Tong

    2016-02-15

    This study reported significant suppressive matrix effects in analyses of six pharmaceutical and personal care products (PPCPs) in activated sludge, sterilized activated sludge and untreated sewage by ultra-performance liquid chromatography-tandem mass spectrometry. Quantitative matrix evaluation on selected PPCPs supplemented the limited quantification data of matrix effects on mass spectrometric determination of PPCPs in complex environment samples. The observed matrix effects were chemical-specific and matrix-dependent, with the most pronounced average effect (-55%) was found on sulfadiazine in sterilized activated sludge. After correcting the matrix effects by post-spiking known amount of PPCPs, the removal mechanisms and biotransformation kinetics of selected PPCPs in activated sludge system were revealed by batch experiment. Experimental data elucidated that the removal of target PPCPs in the activated sludge process was mainly by biotransformation while contributions of adsorption, hydrolysis and volatilization could be neglected. High biotransformation efficiency (52%) was observed on diclofenac while other three compounds (sulfadiazine, sulfamethoxazole and roxithromycin) were partially biotransformed by ~40%. The other two compounds, trimethoprim and carbamazepine, showed recalcitrant to biotransformation of the activated sludge. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. 40 CFR Appendix G to Part 403 - Pollutants Eligible for a Removal Credit

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and leachate collection system. I—firing of sewage sludge in a sewage sludge incinerator. 1 The... Trichloroethylene 3 10 9500 3 10 Zinc 4500 4500 4500 1 Active sewage sludge unit without a liner and leachate collection system. 2 Active sewage sludge unit with a liner and leachate collection system. 3 Value expressed...

  5. 40 CFR Appendix G to Part 403 - Pollutants Eligible for a Removal Credit

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and leachate collection system. I—firing of sewage sludge in a sewage sludge incinerator. 1 The... Trichloroethylene 3 10 9500 3 10 Zinc 4500 4500 4500 1 Active sewage sludge unit without a liner and leachate collection system. 2 Active sewage sludge unit with a liner and leachate collection system. 3 Value expressed...

  6. 40 CFR Appendix G to Part 403 - Pollutants Eligible for a Removal Credit

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and leachate collection system. I—firing of sewage sludge in a sewage sludge incinerator. 1 The... Trichloroethylene 3 10 9500 3 10 Zinc 4500 4500 4500 1 Active sewage sludge unit without a liner and leachate collection system. 2 Active sewage sludge unit with a liner and leachate collection system. 3 Value expressed...

  7. Retrofitting activated sludge systems to intermittent aeration for nitrogen removal.

    PubMed

    Hanhan, O; Artan, N; Orhon, D

    2002-01-01

    The paper provides the basis and the conceptual approach of applying process kinetics and modelling to the design of alternating activated sludge systems for retrofitting existing activated sludge plants to intermittent aeration for nitrogen removal. It shows the significant role of the two specific parameters, namely, the aerated fraction and the cycle time ratio on process performance through model simulations and proposes a way to incorporate them into a design procedure using process stoichiometry and mass balance. It illustrates the effect of these parameters, together with the sludge age, in establishing the balance between the denitrification potential and the available nitrogen created in the anoxic/aerobic sequences of system operation.

  8. Overall effect of carbon production and nutrient release in sludge holding tank on mainstream biological nutrient removal efficiency.

    PubMed

    Jabari, Pouria; Yuan, Qiuyan; Oleszkiewicz, Jan A

    2017-09-11

    The potential of hydrolysis/fermentation of activated sludge in sludge holding tank (SHT) to produce additional carbon for the biological nutrient removal (BNR) process was investigated. The study was conducted in anaerobic batch tests using the BNR sludge (from a full-scale Westside process) and the mixture of BNR sludge with conventional non-BNR activated sludge (to have higher biodegradable particulate chemical oxygen demand (bpCOD) in sludge). The BioWin 4.1 was used to simulate the anaerobic batch test of the BNR sludge. Also, the overall effect of FCOD production and nutrient release on BNR efficiency of the Westside process was estimated. The experimental results showed that the phosphorous uptake of sludge increased during hydrolysis/ fermentation condition up to the point when poly-P was completely utilized; afterwards, it decreased significantly. The BioWin simulation could not predict the loss of aerobic phosphorous uptake after poly-P was depleted. The results showed that in the case of activated sludge with relatively higher bpCOD (originating from plants with short sludge retention time or without primary sedimentation), beneficial effect of SHT on BNR performance is feasible. In order to increase the potential of SHT to enhance BNR efficiency, a relatively low retention time and high sludge load is recommended.

  9. Influence of operating parameters on the biodegradation of steroid estrogens and nonylphenolic compounds during biological wastewater treatment processes.

    PubMed

    Koh, Yoong K K; Chiu, Tze Y; Boobis, Alan R; Scrimshaw, Mark D; Bagnall, John P; Soares, Ana; Pollard, Simon; Cartmell, Elise; Lester, John N

    2009-09-01

    This study investigated operational factors influencing the removal of steroid estrogens and nonylphenolic compounds in two sewage treatment works, one a nitrifying/denitrifying activated sludge plant and the other a nitrifying/denitrifying activated sludge plant with phosphorus removal. Removal efficiencies of >90% for steroid estrogens and for longer chain nonylphenol ethoxylates (NP4-12EO) were observed at both works, which had equal sludge ages of 13 days. However, the biological activity in terms of milligrams of estrogen removed per day per tonne of biomass was found to be 50-60% more efficient in the nitrifying/denitrifying activated sludge works compared to the works which additionallyincorporated phosphorusremoval. A temperature reduction of 6 degrees C had no impact on the removal of free estrogens, but removal of the conjugated estrone-3-sulfate was reduced by 20%. The apparent biomass sorption (LogKp) values were greater in the nitrifying/denitrifying works than those in the nitrifying/denitrifying works with phosphorus removal for both steroid estrogens and honylphenolic compounds possibly indicating a different cell surface structure and therefore microbial population. The difference in biological activity (mg tonne(-1) d(-1)) identified in this study, of up to seven times, suggests thatthere is the potential for enhancing the removal of estrogens and nonylphenols if more detailed knowledge of the factors responsible for these differences can be identified and maximized, thus potentially improving the quality of receiving waters.

  10. More than a decade of experience of landfill leachate treatment with a full-scale anammox plant combining activated sludge and activated carbon biofilm.

    PubMed

    Azari, Mohammad; Walter, Uwe; Rekers, Volker; Gu, Ji-Dong; Denecke, Martin

    2017-05-01

    The performance of biological treatment for high ammonium removal from landfill leachate has been demonstrated. The plant was upgraded combining the activated sludge process followed by activated carbon reactor. Based on a long-term analysis of data collected from 2006 to 2015, the average total nitrogen removal efficiency of 94% was achieved for wastewaters with a C: N ratio varying from 1 to 5 kg-COD kg-TN -1 . But without the presence of activated carbon reactor, the average of biological removal efficiency for total nitrogen was only 82% ± 6% for the activated sludge stage. It means that up to 20% of the nitrogen in the influent can only be eliminated by microorganisms attached to granular activated carbon. After upgrades of the plant, the energy efficiency showed a reduction in the specific energy demand from 1.6 to less than 0.2 kWh m -3 . Methanol consumption and sludge production was reduced by 91% and 96%, respectively. Fluorescent in situ Hybridization was used for microbial diversity analysis on floccular sludge and granular biofilm samples. Anaerobic ammonium oxidation (anammox) bacteria and nitrifiers were detected and Candidatus Scalindua was found in two forms of flocs and biofilms. Due to stochastic risk assessment based on the long-term data analysis given in this research, the treatment criteria were achieved and the combination of granular activated carbon biofilm process and activated sludge can be a novel and sought approach to better enrich anammox biomass for full-scale treatment applications to reduce operating costs and promote nutrient removal stability and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Mesophilic and thermophilic activated sludge post-treatment of paper mill process water.

    PubMed

    Vogelaar, J C T; Bouwhuis, E; Klapwijk, A; Spanjers, H; van Lier, J B

    2002-04-01

    Increasing system closure in paper mills and higher process water temperatures make the applicability of thermophilic treatment systems increasingly important. The use of activated sludge as a suitable thermophilic post-treatment system for anaerobically pre-treated paper process water from a paper mill using recycled wastepaper was studied. Two lab-scale plug flow activated sludge reactors were run in parallel for 6 months; a thermophilic reactor at 55 degrees C and a reference reactor at 30 degrees C. Both reactors were operated simultaneously at 20, 15 and 10 days SRT. The effects of temperature and SRT on sludge settleability and chemical oxygen demand (COD) removal efficiencies of different fractions were studied. Total COD removal percentages over the whole experimental period were 58+/-5% at 30 degrees C and 48 +/- 10% at 55 degrees C. The effect of the SRT on the total COD removal was negligible. Differences in total COD removal between both systems were due to a lesser removal of soluble and colloidal COD at 55 degrees C compared to the reference system. At 30 degrees C, colloidal COD removal percentages were 65+/-25%, 75+/-17% and 86+/-22% at 20, 15 and 10 days SRT, respectively. At 55 degrees C, these percentages were 48+/-34%, 40+/-28% and 70+/-25%, respectively. The effluent concentrations of colloidal COD in both systems were related to the influent concentration of colloidal material. The thermophilic sludge was not able to retain influent colloidal material as well as the mesophilic sludge causing a higher thermophilic effluent turbidity. Sludge settling properties were excellent in both reactor systems. These were neither temperature nor SRT dependent but were rather caused by extensive calcium precipitation in the aeration tanks creating a very dense sludge. For application in the board industry, a thermophilic in line treatment system seems feasible. The higher effluent turbidity is most likely offset by the energy gains of treatment under thermophilic conditions.

  12. Long-term effects of nickel oxide nanoparticles on performance, microbial enzymatic activity, and microbial community of a sequencing batch reactor.

    PubMed

    Wang, Sen; Li, Zhiwei; Gao, Mengchun; She, Zonglian; Guo, Liang; Zheng, Dong; Zhao, Yangguo; Ma, Bingrui; Gao, Feng; Wang, Xuejiao

    2017-02-01

    The nitrogen and phosphorus removal, microbial enzymatic activity, and microbial community of a sequencing batch reactor (SBR) were evaluated under long-term exposure to nickel oxide nanoparticles (NiO NPs). High NiO NP concentration (over 5 mg L -1 ) affected the removal of chemical oxygen demand, nitrogen, and phosphorus. The presence of NiO NP inhibited the microbial enzymatic activities and reduced the nitrogen and phosphorus removal rates of activated sludge. The microbial enzymatic activities of the activated sludge showed a similar variation trend to the nitrogen and phosphorus removal rates with the increase in NiO NP concentration from 0 to 60 mg L -1 . The Ni content in the effluent and activated sludge showed an increasing trend with the increase in NiO NP concentration. Some NiO NPs were absorbed on the sludge surface or penetrate the cell membrane into the interior of microbial cells in the activated sludge. NiO NP facilitated the increase in reactive oxygen species by disturbing the balance between the oxidation and anti-oxidation processes, and the variation in lactate dehydrogenase demonstrated that NiO NP could destroy the cytomembrane and cause variations in the microbial morphology and physiological function. High-throughput sequencing demonstrated that the microbial community of SBR had some obvious changes at 0-60 mg L -1 NiO NPs at the phyla, class and genus levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Enhancement of waste activated sludge aerobic digestion by electrochemical pre-treatment.

    PubMed

    Song, Li-Jie; Zhu, Nan-Wen; Yuan, Hai-Ping; Hong, Ying; Ding, Jin

    2010-08-01

    Electrochemical technology with a pair of RuO(2)/Ti mesh plate electrode is first applied to pre-treat Waste Activated Sludge (WAS) prior to aerobic digestion in this study. The effects of various operating conditions were investigated including electrolysis time, electric power, current density, initial pH of sludge and sludge concentration. The study showed that the sludge reduction increased with the electrolysis time, electric power or current density, while decreased with the sludge concentration. Additionally, higher or lower pH than 7.0 was propitious to remove organic matters. The electrochemical pre-treatment removed volatile solids (VS) and volatile suspended solids (VSS) by 2.75% and 7.87%, respectively, with a WAS concentration of 12.9 g/L, electrolysis time of 30 min, electric power of 5 W and initial sludge pH of 10. In the subsequent aerobic digestion, the sludge reductions for VS and VSS after solids retention time (SRT) of 17.5 days were 34.25% and 39.59%, respectively. However, a SRT of 23.5 days was necessary to achieve equivalent reductions without electrochemical pre-treatment. Sludge analysis by Scanning Electron Microscope (SEM) images and infrared (IR) spectra indicated that electrochemical pre-treatment can rupture sludge cells, remove and solubilize intracellular substances, especially protein and polysaccharide, and consequently enhance the aerobic digestion. (c) 2010 Elsevier Ltd. All rights reserved.

  14. Cost-performance analysis of nutrient removal in a full-scale oxidation ditch process based on kinetic modeling.

    PubMed

    Li, Zheng; Qi, Rong; Wang, Bo; Zou, Zhe; Wei, Guohong; Yang, Min

    2013-01-01

    A full-scale oxidation ditch process for treating sewage was simulated with the ASM2d model and optimized for minimal cost with acceptable performance in terms of ammonium and phosphorus removal. A unified index was introduced by integrating operational costs (aeration energy and sludge production) with effluent violations for performance evaluation. Scenario analysis showed that, in comparison with the baseline (all of the 9 aerators activated), the strategy of activating 5 aerators could save aeration energy significantly with an ammonium violation below 10%. Sludge discharge scenario analysis showed that a sludge discharge flow of 250-300 m3/day (solid retention time (SRT), 13-15 days) was appropriate for the enhancement of phosphorus removal without excessive sludge production. The proposed optimal control strategy was: activating 5 rotating disks operated with a mode of "111100100" ("1" represents activation and "0" represents inactivation) for aeration and sludge discharge flow of 200 m3/day (SRT, 19 days). Compared with the baseline, this strategy could achieve ammonium violation below 10% and TP violation below 30% with substantial reduction of aeration energy cost (46%) and minimal increment of sludge production (< 2%). This study provides a useful approach for the optimization of process operation and control.

  15. [Inhibition of Denitrification by Total Phenol Load of Coal Gasification Wastewater].

    PubMed

    Zhang, Yu-ying; Chen, Xiu-rong; Wang, Lu; Li, Jia-hui; Xu, Yan; Zhuang, You-jun; Yu, Ze-ya

    2016-03-15

    High loaded phenolic pollutants, refractory and high toxic, which existed in coal gasification wastewater, could cause the inhibition of sludge activity. In biological denitrification process of activated sludge treatment system, people tend to focus on the phenol inhibition on the efficiency and activity of nitrifying bacteria while there are few researches on the denitrification process. In order to investigate the inhibition of phenolic compounds from coal gasification wastewater on the denitrification and sludge activity, we used anoxic denitrification system to indentify the influence of different phenol load on denitrification efficiency (removal efficiency of NO₃⁻-N and NO₂⁻-N) as well as the stress and degradation activity of sludge. The results showed that when the concentration of total phenol was changed from 50 mg · L⁻¹ to 200 mg · L⁻¹, the removal rates of NO₃⁻-N and NO₂⁻-N were changed from 55% and 25% to 83% and 83% respectively. In the process of sludge domestication, the characteristics of denitrifying sludge were influenced to a certain degree.

  16. High-rate activated sludge system for carbon management--Evaluation of crucial process mechanisms and design parameters.

    PubMed

    Jimenez, Jose; Miller, Mark; Bott, Charles; Murthy, Sudhir; De Clippeleir, Haydee; Wett, Bernhard

    2015-12-15

    The high-rate activated sludge (HRAS) process is a technology suitable for the removal and redirection of organics from wastewater to energy generating processes in an efficient manner. A HRAS pilot plant was operated under controlled conditions resulting in concentrating the influent particulate, colloidal, and soluble COD to a waste solids stream with minimal energy input by maximizing sludge production, bacterial storage, and bioflocculation. The impact of important process parameters such as solids retention time (SRT), hydraulic residence time (HRT) and dissolved oxygen (DO) levels on the performance of a HRAS system was demonstrated in a pilot study. The results showed that maximum removal efficiencies of soluble COD were reached at a DO > 0.3 mg O2/L, SRT > 0.5 days and HRT > 15 min which indicates that minimizing the oxidation of the soluble COD in the high-rate activated sludge process is difficult. The study of DO, SRT and HRT exhibited high degree of impact on the colloidal and particulate COD removal. Thus, more attention should be focused on controlling the removal of these COD fractions. Colloidal COD removal plateaued at a DO > 0.7 mg O2/L, SRT > 1.5 days and HRT > 30 min, similar to particulate COD removal. Concurrent increase in extracellular polymers (EPS) production in the reactor and the association of particulate and colloidal material into sludge flocs (bioflocculation) indicated carbon capture by biomass. The SRT impacted the overall mass and energy balance of the high-rate process indicating that at low SRT conditions, lower COD mineralization or loss of COD content occurred. In addition, the lower SRT conditions resulted in higher sludge yields and higher COD content in the WAS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Removal of antibiotics in wastewater: Effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process.

    PubMed

    Kim, Sungpyo; Eichhorn, Peter; Jensen, James N; Weber, A Scott; Aga, Diana S

    2005-08-01

    A study was conducted to examine the influence of hydraulic retention time (HRT) and solid retention time (SRT) on the removal of tetracycline in the activated sludge processes. Two lab-scale sequencing batch reactors (SBRs) were operated to simulate the activated sludge process. One SBR was spiked with 250 microg/L tetracycline, while the other SBR was evaluated at tetracycline concentrations found in the influent of the wastewater treatment plant (WWTP) where the activated sludge was obtained. The concentrations of tetracyclines in the influent of the WWTP ranged from 0.1 to 0.6 microg/L. Three different operating conditions were applied during the study (phase 1-HRT: 24 h and SRT: 10 days; phase 2-HRT: 7.4 h and SRT: 10 days; and phase 3-HRT: 7.4 h and SRT: 3 days). The removal efficiency of tetracycline in phase 3 (78.4 +/- 7.1%) was significantly lower than that observed in phase 1 (86.4 +/- 8.7%) and phase 2 (85.1 +/- 5.4%) at the 95% confidence level. The reduction of SRT in phase 3 while maintaining a constant HRT decreased tetracycline removal efficiency. Sorption kinetics reached equilibrium within 24 h. Batch equilibrium experiments yielded an adsorption coefficient (Kads) of 8400 +/- 500 mL/g and a desorption coefficient (Kdes) of 22 600 +/- 2200 mL/g. No evidence of biodegradation for tetracycline was observed during the biodegradability test, and sorption was found to be the principal removal mechanism of tetracycline in activated sludge.

  18. [Using Excess Activated Sludge Treated 4-Chlorophenol Contained Waste Water to Cultivate Chlorella vulgaris].

    PubMed

    Wang, Lu; Chen, Xiu-rong; Yan, Long; He, Yi-xuan; Shi, Zhen-dong

    2015-04-01

    Using different rations of sludge extracts and supernate from 4-Chlorophenol (4-CP) simulated wastewater's excess sludge after centrifugation to cultivate the Chlorella vulgaris to achieve the goal of excess sludge utilization together with chlorella cultivating. The experiments were performed in 500 mL flasks with different rations of sludge extracts & BG-11 and supernate & BG-11 in a light growth chamber respectively. Number of algal cells, Chlorophyll, enzyme activity, oil and water total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), toxicity index were investigated. Result showed that the nutrition supplies and toxicity in the excess sludge were removed efficiently via Chlorella vulgaris, the removal rates of TN and TP were at least 40% and 90% respectively; After 10 days cultivation, the density growth of 50% sludge extracts was 20 times higher of the beginning while its chlorophyll content was lower than that of the blank group. Sludge extracts could promote the proliferation of algae, but were not conducive to the synthesis of chlorophyll. The quantity of SOD in per cell showed Chlorella vulgaris gave a positive response via stimulation from toxicant in sludge extracts and supernate. The best time for collecting chlorella vulgaris was the fifth day of cultivation, taking neutral oil accumulation as the evaluating indicator for its utilization combined with the removal of supplies and toxicity.

  19. First-order hydrothermal oxidation kinetics of digested sludge compared with raw sludge.

    PubMed

    Shanableh, A; Imteaz, M

    2008-09-01

    This article presents an assessment of the first-order hydrothermal oxidation kinetics of a selected digested sludge at subcritical (< 374 degrees C) and supercritical (> 374 degrees C) temperatures in the range of 250-460 degrees C. Furthermore, the results were compared with reported oxidation kinetics of raw sludge treated under identical experimental conditions. In the assessment, oxidation was considered to proceed in two steps: (1) decomposition of the particulate, or non-filterable, chemical oxygen demand (PCOD); followed by (2) ultimate oxidation and removal of the total, particulate and soluble, COD. The accumulation and removal of soluble COD (SCOD) was determined from the difference between the rates of sludge decomposition and ultimate oxidation. Using results from batch and continuous-flow hydrothermal treatment experiments, the reacting organic ingredients were separated into groups according to the ease or difficulty at which they were decomposed or removed, with Arrhenius-type activation energy levels assigned to the different groups. The analysis confirmed that within the treatment range of 75% to more than 97% COD removal, the oxidation kinetics of the digested and raw sludges were nearly identical despite differences in the proportions of their original organic ingredients. The original organic ingredients were mostly removed above 75% COD removal, and the oxidation kinetics appeared to be dominated by the removal of acetic acid, an intermediate by-product which constituted 50% to more than 80% of the remaining COD. Furthermore, the oxidation kinetics of both sludge types were consistent with reported first-order oxidation kinetics of pure acetic acid solutions. The resulting kinetic models adequately represented hydrothermal oxidation of digested sludge, in terms of COD and PCOD removals, as well as accumulation and removal of the soluble SCOD.

  20. Decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process.

    PubMed

    Mohd Nasir, Norlirubayah; Teo Ming, Ting; Ahmadun, Fakhru'l-Razi; Sobri, Shafreeza

    2010-01-01

    The research conducted a study on decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process. The purposes of this research are to remove pollutant through decomposition and to enhance the biodegradability of textile wastewater. The wastewater is treated using electron beam irradiation as a pre-treatment before undergo an activated sludge process. As a result, for non-irradiated wastewater, the COD removal was achieved to be between 70% and 79% after activated sludge process. The improvement of COD removal efficiency increased to 94% after irradiation of treated effluent at the dose of 50 kGy. Meanwhile, the BOD(5) removal efficiencies of non-irradiated and irradiated textile wastewater were reported to be between 80 and 87%, and 82 and 99.2%, respectively. The maximum BOD(5) removal efficiency was achieved at day 1 (HRT 5 days) of the process of an irradiated textile wastewater which is 99.2%. The biodegradability ratio of non-irradiated wastewater was reported to be between 0.34 and 0.61, while the value of biodegradability ratio of an irradiated wastewater increased to be between 0.87 and 0.96. The biodegradability enhancement of textile wastewater is increased with increasing the doses. Therefore, an electron beam radiation holds a greatest application of removing pollutants and also on enhancing the biodegradability of textile wastewater.

  1. The effect of malathion on the activity, performance, and microbial ecology of activated sludge

    PubMed Central

    Rauglas, Erik; Martin, Seth; Bailey, Kandace; Magnuson, Matthew; Phillips, Rebecca; Harper, Willie F.

    2018-01-01

    This study evaluated the effect of a VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) surrogate (malathion) on the activity, performance, and ecology of activated sludge bioreactors. In the presence of malathion, the maximum observed respiration rates varied between 43 and 53 μg/O2 min, generally similar to the 49 μg O2/min rates observed in controls. Malathion did not alter the respiration ratio of O2 consumed-to-CO2 produced nor did it impact the shape of the oxygen consumption curves during respirometry. Shorter term (12 h) batch tests showed that both chemical oxygen demand (COD) and ammonia removal were not negatively impacted by the presence of 0.1–3 mg/L malathion. Longer term continuous addition (i.e. 40 days) of 0.1 mg/L of malathion also had no effect on COD and ammonia removal. In contrast to shorter term exposures, longer term continuous addition of 3 mg/L of malathion negatively impacted both COD and nitrogen removal and was associated with shifts in the abundance of species that are common to activated sludge. These results illustrate the impact that chemicals like malathion may have on COD removal, and nitrification, as well as the robustness of activated sludge microbial communities. PMID:27594690

  2. Dynamic modeling of nitrogen removal for a three-stage integrated fixed-film activated sludge process treating municipal wastewater.

    PubMed

    Moretti, Paul; Choubert, Jean-Marc; Canler, Jean-Pierre; Buffière, Pierre; Pétrimaux, Olivier; Lessard, Paul

    2018-02-01

    The integrated fixed-film activated sludge (IFAS) process is being increasingly used to enhance nitrogen removal for former activated sludge systems. The aim of this work is to evaluate a numerical model of a new nitrifying/denitrifying IFAS configuration. It consists of two carrier-free reactors (anoxic and aerobic) and one IFAS reactor with a filling ratio of 43% of carriers, followed by a clarifier. Simulations were carried out with GPS-X involving the nitrification reaction combined with a 1D heterogeneous biofilm model, including attachment/detachment processes. An original iterative calibration protocol was created comprising four steps and nine actions. Experimental campaigns were carried out to collect data on the pilot in operation, specifically for modelling purpose. The model used was able to predict properly the variations of the activated sludge (bulk) and the biofilm masses, the nitrification rates of both the activated sludge and the biofilm, and the nitrogen concentration in the effluent for short (4-10 days) and long (300 days) simulation runs. A calibrated parameter set is proposed (biokinetics, detachment, diffusion) related to the activated sludge, the biofilm and the effluent variables to enhance the model prediction on hourly and daily data sets.

  3. Oxygen transfer and uptake, nutrient removal, and energy footprint of parallel full-scale IFAS and activated sludge processes.

    PubMed

    Rosso, Diego; Lothman, Sarah E; Jeung, Matthew K; Pitt, Paul; Gellner, W James; Stone, Alan L; Howard, Don

    2011-11-15

    Integrated fixed-film activated sludge (IFAS) processes are becoming more popular for both secondary and sidestream treatment in wastewater facilities. These processes are a combination of biofilm reactors and activated sludge processes, achieved by introducing and retaining biofilm carrier media in activated sludge reactors. A full-scale train of three IFAS reactors equipped with AnoxKaldnes media and coarse-bubble aeration was tested using off-gas analysis. This was operated independently in parallel to an existing full-scale activated sludge process. Both processes achieved the same percent removal of COD and ammonia, despite the double oxygen demand on the IFAS reactors. In order to prevent kinetic limitations associated with DO diffusional gradients through the IFAS biofilm, this systems was operated at an elevated dissolved oxygen concentration, in line with the manufacturer's recommendation. Also, to avoid media coalescence on the reactor surface and promote biofilm contact with the substrate, high mixing requirements are specified. Therefore, the air flux in the IFAS reactors was much higher than that of the parallel activated sludge reactors. However, the standardized oxygen transfer efficiency in process water was almost same for both processes. In theory, when the oxygen transfer efficiency is the same, the air used per unit load removed should be the same. However, due to the high DO and mixing requirements, the IFAS reactors were characterized by elevated air flux and air use per unit load treated. This directly reflected in the relative energy footprint for aeration, which in this case was much higher for the IFAS system than activated sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria

    NASA Astrophysics Data System (ADS)

    Bestawy, Ebtesam El.; Helmy, Shacker; Hussien, Hany; Fahmy, Mohamed; Amer, Ranya

    2013-03-01

    Removal of heavy metals from contaminated domestic-industrial effluent using eight resistant indigenous bacteria isolated from acclimatized activated sludge was investigated. Molecular identification using 16S rDNA amplification revealed that all strains were Gram-negative among which two were resistant to each of copper, cadmium and cobalt while one was resistant to each of chromium and the heavy metal mixture. They were identified as Enterobacter sp. (Cu1), Enterobacter sp. (Cu2), Stenotrophomonas sp. (Cd1), Providencia sp. (Cd2), Chryseobacterium sp. (Co1), Comamonas sp. (Co2), Ochrobactrum sp. (Cr) and Delftia sp. (M1) according to their resistance pattern. Strains Cu1, Cd1, Co2 and Cr were able to resist 275 mg Cu/l, 320 mg Cd/l, 140 mg Co/l and 29 mg Cr/l respectively. The four resistant strains were used as a mixture to remove heavy metals (elevated concentrations) and reduce the organic load of wastewater effluent. Results revealed that using the proposed activated sludge with the resistant bacterial mixture was more efficient for heavy metal removal compared to the activated sludge alone. It is therefore recommended that the proposed activated sludge system augmented with the acclimatized strains is the best choice to ensure high treatment efficiency and performance under metal stresses especially when industrial effluents are involved.

  5. Influence of powdered activated carbon addition on water quality, sludge properties, and microbial characteristics in the biological treatment of commingled industrial wastewater.

    PubMed

    Hu, Qing-Yuan; Li, Meng; Wang, Can; Ji, Min

    2015-09-15

    A powdered activated carbon-activated sludge (PAC-AS) system, a traditional activated sludge (AS) system, and a powdered activated carbon (PAC) system were operated to examine the insights into the influence of PAC addition on biological treatment. The average COD removal efficiencies of the PAC-AS system (39%) were nearly double that of the AS system (20%). Compared with the average efficiencies of the PAC system (7%), COD removal by biodegradation in the PAC-AS system was remarkably higher than that in the AS system. The analysis of the influence of PAC on water quality and sludge properties showed that PAC facilitated the removal of hydrophobic matter and metabolic acidic products, and also enhanced the biomass accumulation, sludge settleability, and specific oxygen uptake rate inside the biological system. The microbial community structures in the PAC-AS and AS systems were monitored. The results showed that the average well color development in the PAC-AS system was higher than that in the AS system. The utilization of various substrates by microorganisms in the two systems did not differ. The dissimilarity index was far less than one; thus, showing that the microbial community structures of the two systems were the same. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Co-fermentation of sewage sludge with ryegrass for enhancing hydrogen production: Performance evaluation and kinetic analysis.

    PubMed

    Yang, Guang; Wang, Jianlong

    2017-11-01

    The low C/N ratio and low carbohydrate content of sewage sludge limit its application for fermentative hydrogen production. In this study, perennial ryegrass was added as the co-substrate into sludge hydrogen fermentation with different mixing ratios for enhancing hydrogen production. The results showed that the highest hydrogen yield of 60mL/g-volatile solids (VS) added was achieved when sludge/perennial ryegrass ratio was 30:70, which was 5 times higher than that from sole sludge. The highest VS removal of 21.8% was also achieved when sludge/perennial ryegrass ratio was 30:70, whereas VS removal from sole sludge was only 0.7%. Meanwhile, the co-fermentation system simultaneously improved hydrogen production efficiency and organics utilization of ryegrass. Kinetic analysis showed that the Cone model fitted hydrogen evolution better than the modified Gompertz model. Furthermore, hydrogen yield and VS removal increased with the increase of dehydrogenase activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Performance evaluation of a large sewage treatment plant in Brazil, consisting of an upflow anaerobic sludge blanket reactor followed by activated sludge.

    PubMed

    Saliba, Pollyane Diniz; von Sperling, Marcos

    2017-10-01

    The objective of this study was to evaluate the behaviour of a system comprising an upflow anaerobic sludge blanket reactor followed by activated sludge to treat domestic sewage. The Betim Central sewage treatment plant, Brazil, was designed to treat a mean influent flow of 514 L/s. The study consisted of statistical treatment of monitoring data from the treatment plant covering a period of 4 years. This work presents the concentrations and removal efficiencies of the main constituents in each stage of the treatment process, and a mass balance of chemical oxygen demand (COD) and nitrogen. The results highlight the good overall performance of the system, with high mean removal efficiencies: BOD (biochemical oxygen demand) (94%), COD (91%), ammonia (72%) and total suspended solids (92%). As expected, this system was not effective for the removal of nutrients, since it was not designed for this purpose. The removal of Escherichia coli (99.83%) was higher than expected. There was no apparent influence of operational and design parameters on the effluent quality in terms of organic matter removal, with the exceptions of the BOD load upstream of the aeration tank and the sludge age in the unit. Results suggest that this system is well suited for the treatment of domestic sewage.

  8. Removal of pharmaceuticals in conventionally treated wastewater by a polishing moving bed biofilm reactor (MBBR) with intermittent feeding.

    PubMed

    Tang, Kai; Ooi, Gordon T H; Litty, Klaus; Sundmark, Kim; Kaarsholm, Kamilla M S; Sund, Christina; Kragelund, Caroline; Christensson, Magnus; Bester, Kai; Andersen, Henrik R

    2017-07-01

    Previous studies have demonstrated that aerobic moving bed biofilm reactors (MBBRs) remove pharmaceuticals better than activated sludge. Thus we used a MBBR system to polish the effluent of an activated sludge wastewater treatment plant. To overcome that effluent contains insufficient organic matter to sustain enough biomass, the biofilm was intermittently fed with raw wastewater. The capacity of pharmaceutical degradation was investigated by spiking pharmaceuticals. Actual removal during treatment was assessed by sampling the inlets and outlets of reactors. The removal of the majority of pharmaceuticals was enhanced through the intermittent feeding of the MBBR. First-order rate constants for pharmaceutical removal, normalised to biomass, were significantly higher compared to other studies on activated sludge and suspended biofilms, especially for diclofenac, metoprolol and atenolol. Due to the intermittently feeding, degradation of diclofenac occurred with a half-life of only 2.1h and was thus much faster than any hitherto described wastewater bioreactor treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology.

    PubMed

    Lares, Mirka; Ncibi, Mohamed Chaker; Sillanpää, Markus; Sillanpää, Mika

    2018-04-15

    Wastewater treatment plants (WWTPs) are acting as routes of microplastics (MPs) to the environment, hence the urgent need to examine MPs in wastewaters and different types of sludge through sampling campaigns covering extended periods of time. In this study, the efficiency of a municipal WWTP to remove MPs from wastewater was studied by collecting wastewater and sludge samples once in every two weeks during a 3-month sampling campaign. The WWTP was operated based on the conventional activated sludge (CAS) process and a pilot-scale membrane bioreactor (MBR). The microplastic particles and fibers from both water and sludge samples were identified by using an optical microscope, Fourier Transform Infrared (FTIR) microscope and Raman microscope. Overall, the retention capacity of microplastics in the studied WWTP was found to be 98.3%. Most of the MP fraction was removed before the activated sludge process. The efficiency of an advanced membrane bioreactor (MBR) technology was also examined. The main related finding is that MBR permeate contained 0.4 MP/L in comparison with the final effluent of the CAS process (1.0 MP/L). According to this study, both microplastic fibers and particles are discharged from the WWTP to the aquatic environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Metaproteomics Provides Functional Insight into Activated Sludge Wastewater Treatment

    PubMed Central

    Wilmes, Paul; Wexler, Margaret; Bond, Philip L.

    2008-01-01

    Background Through identification of highly expressed proteins from a mixed culture activated sludge system this study provides functional evidence of microbial transformations important for enhanced biological phosphorus removal (EBPR). Methodology/Principal Findings A laboratory-scale sequencing batch reactor was successfully operated for different levels of EBPR, removing around 25, 40 and 55 mg/l P. The microbial communities were dominated by the uncultured polyphosphate-accumulating organism “Candidatus Accumulibacter phosphatis”. When EBPR failed, the sludge was dominated by tetrad-forming α-Proteobacteria. Representative and reproducible 2D gel protein separations were obtained for all sludge samples. 638 protein spots were matched across gels generated from the phosphate removing sludges. 111 of these were excised and 46 proteins were identified using recently available sludge metagenomic sequences. Many of these closely match proteins from “Candidatus Accumulibacter phosphatis” and could be directly linked to the EBPR process. They included enzymes involved in energy generation, polyhydroxyalkanoate synthesis, glycolysis, gluconeogenesis, glycogen synthesis, glyoxylate/TCA cycle, fatty acid β oxidation, fatty acid synthesis and phosphate transport. Several proteins involved in cellular stress response were detected. Conclusions/Significance Importantly, this study provides direct evidence linking the metabolic activities of “Accumulibacter” to the chemical transformations observed in EBPR. Finally, the results are discussed in relation to current EBPR metabolic models. PMID:18392150

  11. Effects of titanium dioxide mediated dairy waste activated sludge deflocculation on the efficiency of bacterial disintegration and cost of sludge management.

    PubMed

    Godvin Sharmila, V; Kavitha, S; Rajashankar, K; Yeom, Ick Tae; Rajesh Banu, J

    2015-12-01

    This investigation explores the influence of titanium dioxide (TiO2) in deflocculating (removal of extracellular polymeric substance - EPS) the sludge and subsequent biomass disintegration by bacterial pretreatment. The EPS removed at an optimized TiO2 dosage of 0.03g/g of SS of TiO2 and a solar radiation exposure time of 15min to enhance the subsequent bacterial disintegration. The outcomes of the bacterial pretreatment reveal SS reduction and COD solubilization for the deflocculated (EPS removed and bacterially pretreated) sludge was observed to be 22.8% and 22.9% which was comparatively greater than flocculated (raw sludge inoculated with bacteria) and control (raw) sludge. The higher methane production potential of about 0.43(gCOD/gVSS) was obtained in deflocculated sludge than the flocculated (0.20gCOD/gVSS) and control (0.073gCOD/gVSS). Economic assessment of this study provides a net profit of about 131.9USD/Ton in deflocculated sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Sorption and biodegradation of sulfonamide antibiotics by activated sludge: experimental assessment using batch data obtained under aerobic conditions.

    PubMed

    Yang, Sheng-Fu; Lin, Cheng-Fang; Lin, Angela Yu-Chen; Hong, Pui-Kwan Andy

    2011-05-01

    This study investigated the adsorption, desorption, and biodegradation characteristics of sulfonamide antibiotics in the presence of activated sludge with and without being subjected to NaN(3) biocide. Batch experiments were conducted and the relative contributions of adsorption and biodegradation to the observed removal of sulfonamide antibiotics were determined. Three sulfonamide antibiotics including sulfamethoxazole (SMX), sulfadimethoxine (SDM), and sulfamonomethoxine (SMM), which had been detected in the influent and the activated sludge of wastewater treatment plants (WWTP) in Taiwan, were selected for this study. Experimental results showed that the antibiotic compounds were removed via sorption and biodegradation by the activated sludge, though biodegradation was inhibited in the first 12 h possibly due to competitive inhibition of xenobiotic oxidation by readily biodegradable substances. The affinity of sulfonamides to sterilized sludge was in the order of SDM > SMM > SMX. The sulfonamides existed predominantly as anions at the study pH of 6.8, which resulted in a low level of adsorption to the activated sludge. The adsorption/desorption isotherms were of a linear form, as well described by the Freundlich isotherm with the n value approximating unity. The linear distribution coefficients (K(d)) were determined from batch equilibrium experiments with values of 28.6 ± 1.9, 55.7 ± 2.2, and 110.0 ± 4.6 mL/g for SMX, SMM, and SDM, respectively. SMX, SMM, and SDM desorb reversibly from the activated sludge leaving behind on the solids 0.9%, 1.6%, and 5.2% of the original sorption dose of 100 μg/L. The sorbed antibiotics can be introduced into the environment if no further treatments were employed to remove them from the biomass. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge.

    PubMed

    Mujtaba, Ghulam; Lee, Kisay

    2017-09-01

    The use of algal-bacterial symbiotic association establishes a sustainable and cost-effective strategy in wastewater treatment. Using municipal wastewater, the removal performances of inorganic nutrients (nitrogen and phosphorus) and organic pollutants were investigated by the co-culture system having different inoculum ratios (R) of suspended activated sludge to alginate-immobilized microalgae Chlorella vulgaris. The co-culture reactors with lower R ratios obtained more removal of nitrogen than in pure culture of C. vulgaris. The reactor with R = 0.5 (sludge/microalgae) showed the highest performance representing 66% removal after 24 h and 95% removal after 84 h. Phosphorus was completely eliminated (100%) in the co-culture system with inoculum ratios of 0.5 and 1.0 after 24 h and in the pure C. vulgaris culture after 36 h. The COD level was greatly reduced in the activated sludge reactor, while, it was increasing in pure C. vulgaris culture after 24 h of incubation. However, COD was almost stabilized after 24 h in the reactors with high R ratios such as 2.0, 5.0, and 10 due to the higher concentration of activated sludge. The growth of C. vulgaris was promoted from 0.03 g/L/d to 0.05 g/L/d in the co-culture of low inoculum ratios such as R = 0.5, implying that there exist an optimum inoculum ratio in the co-culture system in order to achieve efficient removal of nutrients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. [Influence of accessories mixing ratio on sludge biophysical co-drying].

    PubMed

    Yang, Jin-Long; Du, Qiong; Li, Dong; Han, Rong; Zhao, Yan; Wang, Hong-Tao

    2011-08-01

    Parameters (temperature, water content and so on) in the process of sludge biophysical co-drying were studied in self-made biophysical co-drying reactor. The sludge: tree bark: recycled sludge was set as 7: 3: 0.5, 9: 3: 0.5, 12: 3: 0.5 respectively. The results suggested that sludge temperature first increased then decreased along with drying time, water content decreased in the first 96 h, then had no obvious variability. While sludge: tree bark: recycled sludge was 9: 3: 0.5, the temperature of sludge spiraling, received to max 67 degrees C at 48 h under three different accessories mixture ratio, and was kept for 72 h above 55 degrees C, then spiraling, the final water content of sludge decreased from 74.1% to 61.8%, received the optimal water content removing rate 43.5%. Accessories mixing ratio had important influence on the process of sludge biophysical co-drying, sludge with proper mixing ratio can modify the structure of sludge, improve sludge permeability, arouse and keep microorganic activity, which will enhance sludge temperature and strengthen water content removal rate.

  15. Inhibitory effect of high calcium concentration on municipal solid waste leachate treatment by the activated sludge process.

    PubMed

    Xia, Yi; He, Pin Jing; Pu, Hong Xia; Lü, Fan; Shao, Li Ming; Zhang, Hua

    2017-05-01

    This research focused on the inhibitory effects of Ca on the aerobic biological treatment of landfill leachate containing extremely high Ca concentrations. When the Ca concentration in leachate to be treated was more than 4500 mg l -1 , the total organic carbon removal rate was significantly reduced and the processing time to achieve the same removal efficiency was 1.4 times that in the control treatment without added Ca. In contrast, the total nitrogen and ammonia nitrogen (NH 4 + -N) removal efficiencies were positively related to the Ca concentration, increasing from 65.2% to 81.2% and from 69.2% to 83.7%, respectively, when the dosage of added Ca increased from zero to 8000 mg l -1 . During aerobic treatment, the reductions of solution Ca concentration were in the range of 1003-2274 mg l -1 and were matched with increases in the Ca content in the residual sludge. The inhibition threshold of Ca in the leachate treated by the activated sludge process appeared to be 4500 mg l -1 , which could be realized by controlling the influent Ca concentration and using an appropriate sludge return ratio in the activated sludge process.

  16. Comparative study on kinetic adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solutions using activated sludge and dried sludge

    NASA Astrophysics Data System (ADS)

    Ong, Soon-An; Toorisaka, Eiichi; Hirata, Makoto; Hano, Tadashi

    2013-03-01

    The adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solutions by activated sludge and dried sludge was investigated under laboratory conditions to assess its potential in removing metal ions. The adsorption behavior of metal ions onto activated sludge and dried sludge was analyzed with Weber-Morris intra-particle diffusion model, Lagergren first-order model and pseudo second-order model. The rate constant of intra-particle diffusion on activated sludge and dried sludge increased in the sequence of Cu(II) > Ni(II) > Cd(II). According to the regression coefficients, it was observed that the kinetic adsorption data can fit better by the pseudo second-order model compared to the first-order Lagergren model with R 2 > 0.997. The adsorption capacities of metal ions onto activated sludge and dried sludge followed the sequence Ni(II) ≈ Cu(II) > Cd(II) and Cu(II) > Ni(II) > Cd(II).

  17. Sequential anaerobic/aerobic digestion for enhanced sludge stabilization: comparison of the process performance for mixed and waste sludge [corrected].

    PubMed

    Tomei, M Concetta; Carozza, Nicola Antonello

    2015-05-01

    Sequential anaerobic-aerobic digestion has been demonstrated as a promising alternative for enhanced sludge stabilization. In this paper, a feasibility study of the sequential digestion applied to real waste activated sludge (WAS) and mixed sludge is presented. Process performance is evaluated in terms of total solid (TS) and volatile solid (VS) removal, biogas production, and dewaterability trend in the anaerobic and double-stage digested sludge. In the proposed digestion lay out, the aerobic stage was operated with intermittent aeration to reduce the nitrogen load recycled to the wastewater treatment plant (WWTP). Experimental results showed a very good performance of the sequential digestion process for both waste and mixed sludge, even if, given its better digestibility, higher efficiencies are observed for mixed sludge. VS removal efficiencies in the anaerobic stage were 48 and 50% for waste and mixed sludge, respectively, while a significant additional improvement of the VS removal of 25% for WAS and 45% for mixed sludge has been obtained in the aerobic stage. The post-aerobic stage, operated with intermittent aeration, was also efficient in nitrogen removal, providing a significant decrease of the nitrogen content in the supernatant: nitrification efficiencies of 90 and 97% and denitrification efficiencies of 62 and 70% have been obtained for secondary and mixed sludges, respectively. A positive effect due to the aerobic stage was also observed on the sludge dewaterability in both cases. Biogas production, expressed as Nm(3)/(kgVSdestroyed), was 0.54 for waste and 0.82 for mixed sludge and is in the range of values reported in the literature in spite of the low anaerobic sludge retention time of 15 days.

  18. A pilot-scale study on PVA gel beads based integrated fixed film activated sludge (IFAS) plant for municipal wastewater treatment.

    PubMed

    Kumar Singh, Nitin; Singh, Jasdeep; Bhatia, Aakansha; Kazmi, A A

    2016-01-01

    In the present study, a pilot-scale reactor incorporating polyvinyl alcohol gel beads as biomass carrier and operating in biological activated sludge mode (a combination of moving bed biofilm reactor (MBBR) and activated sludge) was investigated for the treatment of actual municipal wastewater. The results, during a monitoring period of 4 months, showed effective removal of chemical oxygen demand (COD), biological oxygen demand (BOD) and NH3-N at optimum conditions with 91%, ∼92% and ∼90% removal efficiencies, respectively. Sludge volume index (SVI) values of activated sludge varied in the range of 25-72 mL/g, indicating appreciable settling characteristics. Furthermore, soluble COD and BOD in the effluent of the pilot plant were reduced to levels well below discharge limits of the Punjab Pollution Control Board, India. A culture dependent method was used to enrich and isolate abundant heterotrophic bacteria in activated sludge. In addition to this, 16S rRNA genes analysis was performed to identify diverse dominant bacterial species in suspended and attached biomass. Results revealed that Escherichia coli, Pseudomonas sp. and Nitrosomonas communis played a significant role in biomass carrier, while Acinetobactor sp. were dominant in activated sludge of the pilot plant. Identification of ciliated protozoa populations rendered six species of ciliates in the plant, among which Vorticella was the most dominant.

  19. Sorption and Release of Organics by Primary, Anaerobic, and Aerobic Activated Sludge Mixed with Raw Municipal Wastewater

    PubMed Central

    Modin, Oskar; Saheb Alam, Soroush; Persson, Frank; Wilén, Britt-Marie

    2015-01-01

    New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC) per g volatile suspend solids (VSS) for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215–230 nm were also rapidly removed. PMID:25768429

  20. Enhancing anaerobic digestion of waste activated sludge by the combined use of NaOH and Mg(OH)2: Performance evaluation and mechanism study.

    PubMed

    Huang, Cheng; Lai, Jia; Sun, Xiuyun; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Wang, Lianjun

    2016-11-01

    In this study, the combination treatment of NaOH and Mg(OH)2 was applied to anaerobic digestion of waste activated sludge (WAS) for simultaneously enhancement of volatile fatty acids (VFAs) production, nutrients removal and sludge dewaterability. The maximum VFAs production (461mg COD/g VSS) was obtained at the NaOH/Mg(OH)2 ratio of 75:25, which was much higher than that of the blank or sole NaOH. Moreover, nutrients removal and sludge dewaterability were improved by the combined using of NaOH and Mg(OH)2. Mechanism investigations revealed that the presence of Mg(OH)2 could maintain alkaline environment, which contributed to inhibit the activity of methanogens. Also, the bridging between Mg(2+) and extracellular polymeric substances (EPS) plays an important role in the solubilization and dewatering of sludge. High-throughput sequencing analysis demonstrated that the abundance of bacteria involved in sludge hydrolysis and VFAs accumulation was greatly enriched with the mixtures of NaOH and Mg(OH)2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Isolation, identification of sludge-lysing strain and its utilization in thermophilic aerobic digestion for waste activated sludge.

    PubMed

    Li, Xuesong; Ma, Hongzhi; Wang, Qunhui; Matsumoto, Shoichiro; Maeda, Toshinari; Ogawa, Hiroaki I

    2009-05-01

    A strain of sludge-lysing bacteria was isolated from waste activated sludge (WAS) in this study. The result of 16S rRNA gene analysis demonstrated that it was a species of new genus Brevibacillus (named Brevibacillus sp. KH3). The strain could release the protease with molecule weight of about 40 kDa which could enhance the efficiency of sludge thermophilic aerobic digestion. During the sterilized sludge digestion experiment inoculated with Brevibacillus sp. KH3, the maximum protease activity was 0.41 U/ml at pH 8 and 50 degrees C, and maximum TSS removal ratio achieved 32.8% after 120 h digestion at pH 8 and 50 degrees C. In the case of un-sterilized sludge digestion inoculated with Brevibacillus sp. KH3, TSS removal ratio in inoculated-group was 54.8%, increasing at 11.86% compared with un-inoculation (46.2%). The result demonstrated that inoculation of Brevibacillus sp. KH3 could help to degrade the EPS and promote the collapse of cells and inhibit the growth of certain kinds of microorganisms. It indicated that Brevibacillus sp. KH3 strain had a high potential to enhance WAS-degradation efficiency in thermophilic aerobic digestion.

  2. Improvement of primary settling performance with activated sludge.

    PubMed

    Yetis, U; Tarlan, E

    2002-04-01

    In biological treatment plants employing activated sludge processes, it is possible to recirculate some portion of the waste activated sludge that is not sent to the aeration basin, to the inlet of the primary sedimentation tanks. But in the literature there is no detailed information about the conditions, ratios and the characteristics of the waste sludge that can be recirculated back. However, depending on its settling characteristics, the addition of waste activated sludge to raw wastewater may improve primary settling. Settling tests have shown that the effect of waste activated sludge on primary settling is strongly dependent on the mean cell residence time (or sludge age), theta(c), of the waste activated sludge and also on the suspended solids concentration. Different sludge ages of 4, 6, 8, 10, 14, 20 and 26 days, and for each sludge age at least five different initial suspended solids concentrations were studied. A sludge age of 8-10 days achieved the optimum efficiency in terms of the remaining suspended solids concentration as well as percent-suspended solids removal. Also, the settled sludge volumes were measured throughout the experiments; so, the comparison was made between settled sludge volumes, initial suspended solids (SS) concentrations and theta(c).

  3. Enhanced treatment of waste frying oil in an activated sludge system by addition of crude rhamnolipid solution.

    PubMed

    Zhang, Hongzi; Xiang, Hai; Zhang, Guoliang; Cao, Xia; Meng, Qing

    2009-08-15

    The presence of high-strength oil and grease (O&G) in wastewater poses serious challenges for environment. Addition of surfactant into the activated sludge bioreactor is feasible in reducing high concentrations of O&G via enhancing its bioavailability. In this paper, an aqueous biosurfactant solution of rhamnolipid as a cell-free culture broth of Pseudomonas aeruginosa zju.um1 was added into a batch of aerobic activated sludge system for treatment of the waste frying oil. This treatment was conducted on both bench and pilot-scales, whereas the removal efficiency of frying oil was determined by analyzing the residue concentration of O&G and chemical oxygen demand (COD). In the presence of varying concentrations of rhamnolipid from 22.5 mg/L to 90 mg/L, aerobic treatment for 30 h was enough to remove over 93% of O&G while this biodegradability was only 10% in the control system with the absence of rhamnolipids. The equivalent biodegradability was similarly obtained on COD under addition of rhamnolipid. Compared with bench studies, a higher treatment efficiency with the presence of rhamnolipids was achieved on a pilot-scale of activated sludge system, in which a short time of 12h was required for removing approximately 95% of O&G while the control treatment attained a low efficiency of 17%. Finally, foaming and biodegradability of rhamnolipids in activated sludge system were further examined in the whole treatment process. It seems that the addition of rhamnolipid-containing culture broth showed great potential for treatment of oily wastewater by activated sludge.

  4. The effect of malathion on the activity, performance, and microbial ecology of activated sludge.

    PubMed

    Rauglas, Erik; Martin, Seth; Bailey, Kandace; Magnuson, Matthew; Phillips, Rebecca; Harper, Willie F

    2016-12-01

    This study evaluated the effect of a VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) surrogate (malathion) on the activity, performance, and ecology of activated sludge bioreactors. In the presence of malathion, the maximum observed respiration rates varied between 43 and 53 μg/O2 min, generally similar to the 49 μg O2/min rates observed in controls. Malathion did not alter the respiration ratio of O2 consumed-to-CO2 produced nor did it impact the shape of the oxygen consumption curves during respirometry. Shorter term (12 h) batch tests showed that both chemical oxygen demand (COD) and ammonia removal were not negatively impacted by the presence of 0.1-3 mg/L malathion. Longer term continuous addition (i.e. 40 days) of 0.1 mg/L of malathion also had no effect on COD and ammonia removal. In contrast to shorter term exposures, longer term continuous addition of 3 mg/L of malathion negatively impacted both COD and nitrogen removal and was associated with shifts in the abundance of species that are common to activated sludge. These results illustrate the impact that chemicals like malathion may have on COD removal, and nitrification, as well as the robustness of activated sludge microbial communities. Published by Elsevier Ltd.

  5. Activated Sludge.

    ERIC Educational Resources Information Center

    Saunders, F. Michael

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) activated sludge process; (2) process control; (3) oxygen uptake and transfer; (4) phosphorus removal; (5) nitrification; (6) industrial wastewater; and (7) aerobic digestion. A list of 136 references is also presented. (HM)

  6. Evaluation of acute ecotoxicity removal from industrial wastewater using a battery of rapid bioassays.

    PubMed

    Dries, Jan; Daens, Dominique; Geuens, Luc; Blust, Ronny

    2014-01-01

    The present study compares conventional wastewater treatment technologies (coagulation-flocculation and activated sludge) and powdered activated carbon (PAC) treatment for the removal of acute ecotoxicity from wastewater generated by tank truck cleaning (TTC) processes. Ecotoxicity was assessed with a battery of four commercially available rapid biological toxicity testing systems, verified by the US Environmental Protection Agency. Chemical coagulation-flocculation of raw TTC wastewater had no impact on the inhibition of the bioluminescence by Vibrio fischeri (BioTox assay). Subsequent biological treatment with activated sludge without PAC resulted in BioTox inhibition-free effluent (<10% inhibition). In contrast, activated sludge treatment without PAC produced an effluent that significantly inhibited (>50%) (i) the bioluminescence by Photobacterium leiognathi (ToxScreen³ test kit), (ii) the photosynthesis by the green algae Chlorella vulgaris (LuminoTox SAPS test kit), and (iii) the particle ingestion by the crustacean Thamnocephalus platyurus (Rapidtoxkit test kit). The lowest inhibition was measured after activated sludge treatment with the highest PAC dose (400 mg/L), demonstrating the effectiveness of PAC treatment for ecotoxicity removal from TTC wastewater. In conclusion, the combination of bioassays applied in the present study represents a promising test battery for rapid ecotoxicty assessment in wastewater treatment.

  7. Effect of magnesium oxide nanoparticles on microbial diversity and removal performance of sequencing batch reactor.

    PubMed

    Ma, Bingrui; Yu, Naling; Han, Yuetong; Gao, Mengchun; Wang, Sen; Li, Shanshan; Guo, Liang; She, Zonglian; Zhao, Yangguo; Jin, Chunji; Gao, Feng

    2018-06-13

    The performance, microbial enzymatic activity and microbial community of a sequencing batch reactor (SBR) have been explored under magnesium oxide nanoparticles (MgO NPs) stress. The NH 4 + -N removal efficiency kept relatively stable during the whole operational process. The MgO NPs at 30-60 mg/L slightly restrained the removal of chemical oxygen demand (COD), and the presence of MgO NPs also affected the denitrification and phosphorus removal. The specific oxygen uptake rate, nitrifying and denitrifying rates, phosphorus removal rate, and microbial enzymatic activities distinctly varied with the increase of MgO NPs concentration. The appearance of MgO NPs promoted more reactive oxygen species generation and lactate dehydrogenase leakage from activated sludge, suggesting that MgO NPs had obvious toxicity to activated sludge in the SBR. The protein and polysaccharide contents of extracellular polymeric substances from activated sludge increased with the increase of MgO NPs concentration. The microbial richness and diversity at different MgO NPs concentrations obviously varied at the phylum, class and genus levels due to the biological toxicity of MgO NPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Detection and Molecular Characterization of Hepatitis A Virus from Tunisian Wastewater Treatment Plants with Different Secondary Treatments

    PubMed Central

    Ouardani, Imen; Turki, Syrine; Aouni, Mahjoub

    2016-01-01

    ABSTRACT Hepatitis A virus (HAV) is the main causative agent of hepatitis infection associated with waterborne outbreaks worldwide. In Tunisia, there is no specific surveillance system for HAV and current secondary wastewater treatment processes are unable to remove viral particles, which present a potential public health problem. Qualitative and quantitative analysis of HAV in 271 raw and treated wastewater samples from five sewage treatment plants (STPs) during 13 months was performed. Moreover, the efficiency of three secondary wastewater treatment processes (conventional activated sludge, extended aeration, and oxidation ditch activated sludge) was evaluated. Data obtained demonstrated that HAV is endemic in Tunisia and circulates with high prevalence in both raw (66.9%) and treated (40.7%) wastewater. HAV circulates throughout the year in the coastal areas, with the highest rates found during summer and autumn, whereas in central Tunisia, high levels were shown in autumn and winter. Total virus removal was not achieved, since no difference in mean HAV loads was observed in effluents (6.0 × 103 genome copies [GC]/ml) and influents (2.7 × 103 GC/ml). The comparison of the HAV removal values of the three different wastewater treatment methods indicates that extended aeration and oxidation ditch activated sludge had better efficiency in removing viruses than conventional activated sludge did. Molecular characterization revealed that the vast majority of HAV strains belonged to subgenotype IA, with the cocirculation of subgenotype IB in wastewater treatment plants that collect tourism wastewater. IMPORTANCE This report provides important data on the incidence, behavior, seasonality, and genotype distribution of HAV in the environment in Tunisia, as well as the risk of infection derived from its occurrence in effluents due to inadequate wastewater treatment. In addition, these findings seem to confirm that the prevalence of HAV depends on socioeconomic level, sanitary conditions in the communities, sewage facilities, the locality, and the climate. The wide dispersion of HAV in effluents proves the inefficacity of the current wastewater treatment processes used in Tunisia to remove virus; therefore, establishment of tertiary treatment processes or replacement of the medium-charge activated sludge (conventional activated sludge) by the low-charge version (oxidation ditch activated sludge) is absolutely needed. Rapid detection of the HAV genome in wastewater may provide a timely warning sign to health authorities to implement population protection measures. PMID:27107113

  9. Rapid startup and high rate nitrogen removal from anaerobic sludge digester liquor using a SNAP process.

    PubMed

    Qiao, Sen; Nishiyama, Takashi; Fujii, Tatsuo; Bhatti, Zafar; Furukawa, Kenji

    2012-02-01

    In this study, a single-stage autotrophic nitrogen removal reactor, packed with a novel acrylic fiber biomass carrier material (Biofix), was applied for nitrogen removal from sludge digester liquor. For rapid start-up, conventional activated sludge was added to the reactor soon after the attachment of anammox biomass on the Biofix carriers, which allowed conventional activated sludge to form a protective layer of biofilm around the anammox biomass. The Nitrogen removal efficiency reached 75% within 1 week at a nitrogen loading rate of 0.46 kg-N/m(3)/day for synthetic wastewater treatment. By the end of the synthetic wastewater treatment period, the maximum nitrogen removal rate had increased to 0.92 kg-N/m(3)/day at a nitrogen loading rate of 1.0 kg-N/m(3)/day. High nitrogen removal rate was also achieved during the actual raw digester liquor treatment with the highest nitrogen removal rate being 0.83 kg-N/m(3)/day at a nitrogen loading rate of 0.93 kg-N/m(3)/day. The thick biofilm on Biofix carriers allowed anammox bacteria to survive under high DO concentration of 5-6 mg/l resulting in stable and high nitrogen removal performance. FISH and CLSM analysis demonstrated that anammox bacteria coexisted and surrounded by ammonium oxidizing bacteria.

  10. Treatment of winery wastewater in a conventional municipal activated sludge process: five years of experience.

    PubMed

    Bolzonella, D; Zanette, M; Battistoni, P; Cecchi, F

    2007-01-01

    A full-scale wastewater treatment plant where municipal and winery wastewaters were co-treated was studied for five years. The experimental results showed that suspended solids, COD, nitrogen and phosphorous were effectively removed both during the treatment of municipal wastewater and the cotreatment of municipal and winery wastewater. The sludge production increase from 4 tons to 5.5 tons per day during the harvesting and wine making period. In any case the specific sludge production was 0.2 kgMLVSS per kgCOD(removed) despite the organic loading increasing. About 70% of the COD was removed through respiration. Also the energy demand increased from 6,000 to 7,000 kWh per day. The estimated costs for the treatment of the winery wastewater was 0.2-0.3 Euros per m3 of treated wastewater. With reference to the process efficiency, the nitrogen removal was just 20%. The co-treatment of municipal and winery wastewater in conventional activated sludge processes can be a feasible solution for the treatment of these streams at relatively low costs.

  11. Impact of aerobic stabilization on the characteristics of treatment sludge in the leather tanning industry.

    PubMed

    Cokgor, Emine Ubay; Aydinli, Ebru; Tas, Didem Okutman; Zengin, Gulsum Emel; Orhon, Derin

    2014-01-01

    The efficiency of aerobic stabilization on the treatment sludge generated from the leather industry was investigated to meet the expected characteristics and conditions of sludge prior to landfill. The sludge types subjected to aerobic stabilization were chemical treatment sludge, biological excess sludge, and the mixture of both chemical and biological sludges. At the end of 23 days of stabilization, suspended solids, volatile suspended solids and total organic carbon removal efficiencies were determined as 17%, 19% and 23% for biological sludge 31%, 35% and 54% for chemical sludge, and 32%, 34% and 63% for the mixture of both chemical and biological sludges, respectively. Model simulations of the respirometric oxygen uptake rate measurements showed that the ratio of active biomass remained the same at the end of the stabilization for all the sludge samples. Although mixing the chemical and biological sludges resulted in a relatively effective organic carbon and solids removal, the level of stabilization achieved remained clearly below the required level of organic carbon content for landfill. These findings indicate the potential risk of setting numerical restrictions without referring to proper scientific support.

  12. Degradation of PPCPs in activated sludge from different WWTPs in Denmark.

    PubMed

    Chen, Xijuan; Vollertsen, Jes; Nielsen, Jeppe Lund; Dall, Agnieszka Gieraltowska; Bester, Kai

    2015-12-01

    Pharmaceuticals and Personal care products (PPCPs) are often found in effluents from wastewater treatment plants (WWTPs) due to insufficient removal during wastewater treatment processes. To understand the factors affecting the removal of PPCPs in classical activated sludge WWTPs, the present study was performed to assess the removal of frequently occurring pharmaceuticals (Naproxen, Fenoprofen, Ketoprofen, Dichlofenac, Carbamazepine) and the biocide Triclosan in activated sludge from four different Danish WWTPs. The respective degradation constants were compared to operational parameters previous shown to be of importance for degradation of micropollutants such as biomass concentration, and sludge retention time (SRT). The most rapid degradation, was observed for NSAID pharmaceuticals (55-90% for Fenoprofen, 77-94% for Ketoprofen and 46-90% for Naproxen), followed by Triclosan (61-91%), while Dichlofenac and Carbamazepine were found to be persistent in the systems. Degradation rate constants were calculated as 0.0026-0.0407 for NSAID pharmaceuticals and 0.0022-0.0065 for triclosan. No relationships were observed between degradation rates and biomass concentrations in the diverse sludges. However, for the investigated PPCPs, the optimal SRT was within 14-20 days (for these values degradation of these PPCPs was the most efficient). Though all of these parameters influence the degradation rate, none of them seems to be overall decisive. These observations indicate that the biological composition of the sludge is more important than the design parameters of the respective treatment plant.

  13. Biotransformation and sorption of trace organic compounds in biological nutrient removal treatment systems.

    PubMed

    Lakshminarasimman, Narasimman; Quiñones, Oscar; Vanderford, Brett J; Campo-Moreno, Pablo; Dickenson, Eric V; McAvoy, Drew C

    2018-05-28

    This study determined biotransformation rates (k bio ) and sorption-distribution coefficients (K d ) for a select group of trace organic compounds (TOrCs) in anaerobic, anoxic, and aerobic activated sludge collected from two different biological nutrient removal (BNR) treatment systems located in Nevada (NV) and Ohio (OH) in the United States (US). The NV and OH facilities operated at solids retention times (SRTs) of 8 and 23 days, respectively. Using microwave-assisted extraction, the biotransformation rates of the chosen TOrCs were measured in the total mixed liquor. Sulfamethoxazole, trimethoprim, and atenolol biotransformed in all three redox regimes irrespective of the activated sludge source. The biotransformation of N, N-diethyl-3-methylbenzamide (DEET), triclosan, and benzotriazole was observed in aerobic activated sludge from both treatment plants; however, anoxic biotransformation of these three compounds was seen only in anoxic activated sludge from NV. Carbamazepine was recalcitrant in all three redox regimes and both sources of activated sludge. Atenolol and DEET had greater biotransformation rates in activated sludge with a higher SRT (23 days), while trimethoprim had a higher biotransformation rate in activated sludge with a lower SRT (8 days). The remaining compounds did not show any dependence on SRT. Lyophilized, heat inactivated sludge solids were used to determine the sorption-distribution coefficients. Triclosan was the most sorptive compound followed by carbamazepine, sulfamethoxazole, DEET, and benzotriazole. The sorption-distribution coefficients were similar across redox conditions and sludge sources. The biotransformation rates and sorption-distribution coefficients determined in this study can be used to improve fate prediction of the target TOrCs in BNR treatment systems. Copyright © 2018. Published by Elsevier B.V.

  14. Enhancing total nitrogen removal from wastewater of a science and industrial park using entrapped biomass.

    PubMed

    Chao, Yeong-Nan; Ng, Kok-Kwang; Wu, Chung-Hsin; Hong, Pui-Kwan Andy; Lin, Cheng-Fang

    2014-01-01

    This study employed entrapped biomass technology to augment the conventional activated sludge process with anoxic-oxic (AO)/anaerobic-anoxic-oxic (A20) functions for the removal of total nitrogen (TN) from wastewater of a science and industrial park in Taiwan. The entrapped biomass unit was fabricated in the format of carrier plates on which microbial cells were entrapped. Due to mass transport limitations, anoxic and anaerobic conditions were created within the bioplates that enabled denitrification to occur. The treatment basin incorporated an equivalent amount of 1300-2400mg MLSS/L of activated sludge on the bioplates at packing ratios of 10-30% (volume ratio ofbioplates to basin) operating with the addition of sodium carbonate for alkalinity and methanol for the electron donor. The results showed nearly 90% of ammonia nitrogen being converted to nitrate and 63% of TN removal, in comparison with typically 10% of TN removal in traditional activated sludge process of domestic wastewater plants.

  15. ENHANCED BIODEGRADATION OF IOPROMIDE AND TRIMETHOPRIM IN NITRIFYING ACTIVATED SLUDGE

    EPA Science Inventory

    Iopromide and trimethoprim are frequently detected pharmaceuticals in effluents of wastewater treatment plants and in surface waters due to their persistence and high usage. Laboratory scale experiments showed that a significantly higher removal rate in nutrifying activated sludg...

  16. The application of Biological-Hydraulic coupled model for Tubificidae-microorganism interaction system

    NASA Astrophysics Data System (ADS)

    Zhong, Xiao; Sun, Peide; Song, Yingqi; Wang, Ruyi; Fang, Zhiguo

    2010-11-01

    Based on the fully coupled activated sludge model (FCASM), the novel model Tubificidae -Fully Coupled Activated Sludge Model-hydraulic (T-FCASM-Hydro), has been developed in our previous work. T-FCASM-Hydro not only describe the interactive system between Tubificidae and functional microorganisms for the sludge reduction and nutrient removal simultaneously, but also considere the interaction between biological and hydraulic field, After calibration and validation of T-FCASM-Hydro at Zhuji Feida-hongyu Wastewater treatment plant (WWTP) in Zhejiang province, T-FCASM-Hydro was applied for determining optimal operating condition in the WWTP. Simulation results showed that nitrogen and phosphorus could be removed efficiently, and the efficiency of NH4+-N removal enhanced with increase of DO concentration. At a certain low level of DO concentration in the aerobic stage, shortcut nitrification-denitrification dominated in the process of denitrification in the novel system. However, overhigh agitation (>6 mgṡL-1) could result in the unfavorable feeding behavior of Tubificidae because of the strong flow disturbance, which might lead to low rate of sludge reduction. High sludge reduction rate and high removal rate of nitrogen and phosphorus could be obtained in the new-style oxidation ditch when DO concentration at the aerobic stage with Tubificidae was maintained at 3.6 gṡm-3.

  17. Application of electrochemical peroxidation (ECP) process for waste-activated sludge stabilization and system optimization using response surface methodology (RSM).

    PubMed

    Gholikandi, Gagik Badalians; Kazemirad, Khashayar

    2018-03-01

    In this study, the performance of the electrochemical peroxidation (ECP) process for removing the volatile suspended solids (VSS) content of waste-activated sludge was evaluated. The Fe 2+ ions required by the process were obtained directly from iron electrodes in the system. The performance of the ECP process was investigated in various operational conditions employing a laboratory-scale pilot setup and optimized by response surface methodology (RSM). According to the results, the ECP process showed its best performance when the pH value, current density, H 2 O 2 concentration and the retention time were 3, 3.2 mA/cm 2 , 1,535 mg/L and 240 min, respectively. In these conditions, the introduced Fe 2+ concentration was approximately 500 (mg/L) and the VSS removal efficiency about 74%. Moreover, the results of the microbial characteristics of the raw and the stabilized sludge demonstrated that the ECP process is able to remove close to 99.9% of the coliforms in the raw sludge during the stabilization process. The energy consumption evaluation showed that the required energy of the ECP reactor (about 1.8-2.5 kWh (kg VSS removed) -1 ) is considerably lower than for aerobic digestion, the conventional waste-activated sludge stabilization method (about 2-3 kWh (kg VSS removed) -1 ). The RSM optimization process showed that the best operational conditions of the ECP process comply with the experimental results, and the actual and the predicted results are in good conformity with each other. This feature makes it possible to predict the introduced Fe 2+ concentrations into the system and the VSS removal efficiency of the process precisely.

  18. pH-dependent biotransformation of ionizable organic micropollutants in activated sludge.

    PubMed

    Gulde, Rebekka; Helbling, Damian E; Scheidegger, Andreas; Fenner, Kathrin

    2014-12-02

    Removal of micropollutants (MPs) during activated sludge treatment can mainly be attributed to biotransformation and sorption to sludge flocs, whereby the latter process is known to be of minor importance for polar organic micropollutants. In this work, we investigated the influence of pH on the biotransformation of MPs with cationic-neutral speciation in an activated sludge microbial community. We performed batch biotransformation, sorption control, and abiotic control experiments for 15 MPs with cationic-neutral speciation, one control MP with neutral-anionic speciation, and two neutral MPs at pHs 6, 7, and 8. Biotransformation rate constants corrected for sorption and abiotic processes were estimated from measured concentration time series with Bayesian inference. We found that biotransformation is pH-dependent and correlates qualitatively with the neutral fraction of the ionizable MPs. However, a simple speciation model based on the assumption that only the neutral species is efficiently taken up and biotransformed by the cells tends to overpredict the effect of speciation. Therefore, additional mechanisms such as uptake of the ionic species and other more complex attenutation mechanisms are discussed. Finally, we observed that the sorption coefficients derived from our control experiments were small and showed no notable pH-dependence. From this we conclude that pH-dependent removal of polar, ionizable organic MPs in activated sludge systems is less likely an effect of pH-dependent sorption but rather of pH-dependent biotransformation. The latter has the potential to cause marked differences in the removal of polar, ionizable MPs at different operational pHs during activated sludge treatment.

  19. Partial nitritation of raw anaerobic sludge digester liquor by swim-bed and swim-bed activated sludge processes and comparison of their sludge characteristics.

    PubMed

    Qiao, Sen; Kawakubo, Yuki; Koyama, Toichiro; Furukawa, Kenji

    2008-11-01

    This study evaluated performance of swim-bed (SB) reactors packed with a novel acrylic fiber carrier (BF) and swim-bed activated sludge (SBAS) reactor for partial nitritation of anaerobic sludge digester liquor from a municipal wastewater treatment plant. Comparison of characteristics of sludge obtained from both the reactors was also made. The average conversion rates of ammonium to nitrite were 52.3% and 40.0% under relatively high nitrogen loading rates over 3.0 kg-N/m(3)/d, respectively in two reactors. The average BOD(5) removal efficiencies were 74.3% and 64.4%, respectively in the two reactors. The size of the sludge pellets taken from SB and SBAS reactors was found to be approximately three times (229 mum versus 88 mum) of that of the seed sludge. This sludge also had relatively high extracellular proteins levels indicating better sludge settling capability as compared to the sludge taken from SBAS reactor. Although the effluent nitrite/ammonium ratios had fluctuated in both reactor in some extent, the low dissolved oxygen concentration (average of 2.5 versus 0.35 mg/l), low suspended solids (average of 33.3 versus 33.5 mg/l), and about 50% ammonium conversion to nitrite demonstrated the application potential of anammox process for nitrogen removal.

  20. Influence of operational parameters on nitrogen removal efficiency and microbial communities in a full-scale activated sludge process.

    PubMed

    Kim, Young Mo; Cho, Hyun Uk; Lee, Dae Sung; Park, Donghee; Park, Jong Moon

    2011-11-01

    To improve the efficiency of total nitrogen (TN) removal, solid retention time (SRT) and internal recycling ratio controls were selected as operating parameters in a full-scale activated sludge process treating high strength industrial wastewater. Increased biomass concentration via SRT control enhanced TN removal. Also, decreasing the internal recycling ratio restored the nitrification process, which had been inhibited by phenol shock loading. Therefore, physiological alteration of the bacterial populations by application of specific operational strategies may stabilize the activated sludge process. Additionally, two dominant ammonia oxidizing bacteria (AOB) populations, Nitrosomonas europaea and Nitrosomonas nitrosa, were observed in all samples with no change in the community composition of AOB. In a nitrification tank, it was observed that the Nitrobacter populations consistently exceeded those of the Nitrospira within the nitrite oxidizing bacteria (NOB) community. Through using quantitative real-time PCR (qPCR), nirS, the nitrite reducing functional gene, was observed to predominate in the activated sludge of an anoxic tank, whereas there was the least amount of the narG gene, the nitrate reducing functional gene. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. An examination of the treatment of iron-dosed waste activated sludge by anaerobic digestion.

    PubMed

    Johnson, D K; Carliell-Marquet, C M; Forster, C F

    2003-08-01

    Anaerobic digestion is an important sludge treatment process enabling stabilisation of the organic fraction of sewage sludge prior to land application. Any practice which might retard the anaerobic digestion process will jeopardize the stability of the resulting digested sludge. This paper reports on an investigation into the relative digestibility of iron-dosed waste activated sludge (WAS) from a sewage treatment works (STW) with chemical phosphorus removal (CPR), in comparison to WAS from a works without phosphorus removal. Two laboratory scale anaerobic digesters (51) were fed initially with non iron-dosed WAS (Works M) at a solids retention time of 19 days. After 2 months the iron-dosed CPR sludge (Works R) was introduced into the second digester, resulting in a 32% decrease in biogas production and an increase in the methane content of the biogas from an average of 74% to 81%. Pre-treatment of the CPR sludge with sodium sulphide and shear, both alone and in combination, caused the gas production to deteriorate further. Pre-acidification and pre-treatment with EDTA did result in an enhanced gas production but it was still not comparable with that of the digester being fed with non-iron-dosed sludge. The daily gas production was found to be linearly related to the amount of bound iron in the sludge.

  2. Study on Adsorption of Chromium (VI) by Activated Carbon from Cassava Sludge

    NASA Astrophysics Data System (ADS)

    Yang, Jinhui; Li, Chuanshu; Yang, Bin; Kang, Sijun; Zhang, Zhen

    2018-03-01

    In this paper, a new type of adsorbent prepared by waste sludge from alcohol production industry was used to adsorb Cr (VI) in activated carbon from cassava sludge. A series of static adsorption experiments were carried out on the initial concentration of solution Cr (VI), pH value of solution, adsorption time and dosage of adsorbent. The results of single factor experiments show that the removal rate of Cr (VI) increases with the initial concentration of Cr(VI), while the adsorption amount is opposite. When the pH value of the solution is low, the adsorption effect of activated carbon is better.The adsorption time should be controlled within 40-60min. When the activated carbon dosage is increased, the removal rate increases but the adsorption capacity decreases.

  3. Treatment of azo dye Acid Orange 52 using ozonation and completed-mixed activated sludge process

    NASA Astrophysics Data System (ADS)

    Abidin, C. Z. A.; Fahmi; Ong, S. A.; Ahmad, R.; Sabri, S. N.

    2017-06-01

    In this study, the characteristic of colour and COD removal of azo dye Acid Orange 52 (AO52) by ozonation, in combination with complete-mixed activated sludge process (CMAS) was evaluated. The experimentation was arranged in two phases: during the first one, only ozonation was performed, while, during the second phase, it was integrated with CMAS. The performance of colour and COD concentration of AO52 with and without CMAS treatment, is compared and evaluated. From the results, it is obvious that high decolourization from the start of CMAS was contributed from the pre-treatments. The colour removal was due to the fact that ozonation able to cleave the azo bonds that represent colour. Thus, CMAS without pre-treatment are unable to decolourize the dyes sufficiently. 59.6% COD was removed from the first-stage, while merely 9.8% COD fraction removed from the subsequence second-stage CMAS. It is suggested that the rapid COD removal without ozonation are due to activated sludge adsorption processes. The decreased of mixed liquor suspended solids (MLSS) affected the CMAS performances, as the biomass decreased due to lack of nutrient for activated sludge microorganisms to multiply. Results from pre-ozonation alone contributed more than 50% of total COD removal, which indicated that at higher ozone dosage, tend to mineralize azo dye. Thus, ozonation not oxidized the dye though complete mineralization that produce carbon dioxide and water. However, it is a potential process for enhancing colour removal and biodegradability of dye-containing wastewater, once the appropriate ozonation time is determined. Therefore, the role of ozonation seems to break down the dye molecules and created ozonation by-product that is easily biodegraded in the subsequent biological treatment.

  4. Removal of triclosan in nitrifying activated sludge: effects of ammonia amendment and bioaugmentation.

    PubMed

    Lee, Do Gyun; Cho, Kun-Ching; Chu, Kung-Hui

    2015-04-01

    This study investigated two possible strategies, increasing ammonia oxidation activity and bioaugmenting with triclosan-degrader Sphingopyxis strain KCY1, to enhance triclosan removal in nitrifying activated sludge (NAS). Triclosan (2 mg L(-1)) was removed within 96-h in NAS bioreactors amended with 5, 25 and 75 mg L(-1) of ammonium (NH4-N). The fastest triclosan removal was observed in 25 mg NH4-NL(-1) amended-bioreactors where high ammonia oxidation occurred. Inhibition of ammonia oxidation and slower triclosan removal were observed in 75 mg NH4-NL(-1) amended-bioreactors. Triclosan removal was correlated to the molar ratio of the amount of nitrate produced to the amount of ammonium removed. Bioaugmentation with strain KCY1 did not enhance triclosan removal in the bioreactors with active ammonia oxidation. Approximately 36-42% and 59% of triclosan added were removed within 24-h by ammonia-oxidizing bacteria and unknown triclosan-degrading heterotrophs, respectively. The results suggested that increasing ammonia oxidation activity can be an effective strategy to enhance triclosan removal in NAS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Cultivation of activated sludge using sea mud as seed to treat industrial phenolic wastewater with high salinity.

    PubMed

    Tan, Songwen; Cui, Chunzhi; Hou, Yang; Chen, Xuncai; Xu, Aiqin; Li, Weiguo; You, Hong

    2017-01-30

    A technique is proposed to treat saline hazardous wastewater by using marine activated sludge, cultivated with sea mud as seed. Since the developed marine activated sludge had phenol-tolerant microorganisms (MAS-1, MAS-2 and MAS-3) which originated from the ocean, it was envisaged that these bacteria could survive and breakdown phenol in saline environments. In this work, typical phenol-tolerant microorganisms were isolated from the marine activated sludge and identified. After a hierarchical acclimation process, the marine activated sludge was used to treat the industrial phenolic wastewater with high salinity. The marine activated sludge was able to break down phenol and other organic components effectively and efficiently in treating the wastewater with salinity of 5.7% w/v. The results showed a high removal of phenol (99%), COD (80%) and NH 3 -N (68%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Investigating the fate of activated sludge extracellular proteins in sludge digestion using sodium dodecyl sulfate polyacrylamide gel electrophoresis.

    PubMed

    Park, Chul; Helm, Richard F; Novak, John T

    2008-12-01

    The fate of activated sludge extracellular proteins in sludge digestion was investigated using three different cation-associated extraction methods and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Extraction methods used were the cation exchange resin (CER) method for extracting calcium (Ca2+) and magnesium (Mg2+), sulfide extraction for removing iron, and base treatment (pH 10.5) for dissolving aluminum. Extracellular polymeric substances extracted were then subjected to SDS-PAGE, and the resultant protein profiles were examined before and after sludge digestion. The SDS-PAGE results showed that three methods led to different SDS-PAGE profiles for both undigested and digested sludges. The results further revealed that CER-extracted proteins remained mainly undegraded in anaerobic digestion, but were degraded in aerobic digestion. While the fate of sulfide- and base-extracted proteins was not clear for aerobic digestion, their changes in anaerobic digestion were elucidated. Most sulfide-extracted proteins were removed by anaerobic digestion, while the increase in protein band intensity and diversity was observed for base-extracted proteins. These results suggest that activated sludge flocs contain different fractions of proteins that are distinguishable by their association with certain cations and that each fraction undergoes different fates in anaerobic and aerobic digestion. The proteins that were resistant to degradation and generated during anaerobic digestion were identified by liquid chromatography tandem mass spectrometry. Protein identification results and their putative roles in activated sludge and anaerobic digestion are discussed in this study.

  7. Rapid adaptation of activated sludge bacteria into a glycogen accumulating biofilm enabling anaerobic BOD uptake.

    PubMed

    Hossain, Md Iqbal; Paparini, Andrea; Cord-Ruwisch, Ralf

    2017-03-01

    Glycogen accumulating organisms (GAO) are known to allow anaerobic uptake of biological oxygen demand (BOD) in activated sludge wastewater treatment systems. In this study, we report a rapid transition of suspended activated sludge biomass to a GAO dominated biofilm by selective enrichment using sequences of anaerobic loading followed by aerobic exposure of the biofilm to air. The study showed that within eight weeks, a fully operational, GAO dominated biofilm had developed, enabling complete anaerobic BOD uptake at a rate of 256mg/L/h. The oxygen uptake by the biofilm directly from the atmosphere had been calculated to provide significant energy savings. This study suggests that wastewater treatment plant operators can convert activated sludge systems readily into a "passive aeration" biofilm that avoids costly oxygen transfer to bulk wastewater solution. The described energy efficient BOD removal system provides an opportunity to be coupled with novel nitrogen removal processes such as anammox. Copyright © 2016. Published by Elsevier Ltd.

  8. Xenobiotic benzotriazoles--biodegradation under meso- and oligotrophic conditions as well as denitrifying, sulfate-reducing, and anaerobic conditions.

    PubMed

    Herzog, Bastian; Lemmer, Hilde; Huber, Bettina; Horn, Harald; Müller, Elisabeth

    2014-02-01

    The intensive use of benzotriazoles as corrosion inhibitors for various applications and their application in dishwasher detergents result in an almost omnipresence of benzotriazole (BTri), 4-methyl- and 5-methyl-benzotriazole (4-TTri and 5-TTri, respectively) in aquatic systems. This study aims on the evaluation of the biodegradation potential of activated sludge communities (ASCs) toward the three benzotriazoles regarding aerobic, anoxic, and anaerobic conditions and different nutrients. ASCs were taken from three wastewater treatment plants with different technologies, namely, a membrane bioreactor (MBR-MH), a conventional activated sludge plant CAS-E (intermittent nitrification/denitrification), and CAS-M (two-stage activated sludge treatment) and used for inoculation of biodegradation setups. All ASCs eliminated up to 30 mg L(-1) 5-TTri and BTri under aerobic conditions within 2-7 and 21-49 days, respectively, but not under anoxic or anaerobic conditions. 4-TTri was refractory at all conditions tested. Significant differences were observed for BTri biodegradation with non-acclimated ASCs from MBR-MH with 21 days, CAS-E with 41 days, and CAS-M with 49 days. Acclimated ASCs removed BTri within 7 days. Furthermore, different carbon and nitrogen concentrations revealed that nitrogen was implicitly required for biodegradation while carbon showed no such effect. The fastest biodegradation occurred for 5-TTri with no need for acclimatization, followed by BTri. BTri showed sludge-specific biodegradation patterns, but, after sludge acclimation, was removed with the same pattern, regardless of the sludge used. Under anaerobic conditions in the presence of different electron acceptors, none of the three compounds showed biological removal. Thus, presumably, aerobic biodegradation is the major removal mechanism in aquatic systems.

  9. Enhancement of anaerobic digestibility of waste activated sludge using photo-Fenton pretreatment.

    PubMed

    Heng, Gan Chin; Isa, Mohamed Hasnain; Lim, Jun-Wei; Ho, Yeek-Chia; Zinatizadeh, Ali Akbar Lorestani

    2017-12-01

    Biological treatments, such as activated sludge process, are common methods to treat municipal and industrial wastewaters. However, they produce huge amounts of waste activated sludge (WAS). The excess sludge treatment and disposal are a challenge for wastewater treatment plants due to economic, environmental, and regulatory factors. In this study, photo-Fenton pretreatment (oxidation using hydrogen peroxide and iron catalyst aided with UV light) was optimized using response surface methodology (RSM) and central composite design (CCD) to determine the effects of three operating parameters (H 2 O 2 dosage, H 2 O 2 /Fe 2+ molar ratio, and irradiation time) on disintegration and dewaterability of WAS. MLVSS removal, capillary suction time (CST) reduction, sCOD, and EPS were obtained as 70%, 25%, 12,000 mg/L, and 500 mg/L, respectively, at the optimal conditions, i.e., 725 g H 2 O 2 /kg TS, H 2 O 2 /Fe 2+ molar ratio 80, and irradiation time 40 min. Two batch-fed completely mixed mesophilic anaerobic digesters were then operated at 15-day solid retention time (SRT) and 37 ± 0.5 °C to compare the digestibility of untreated and photo-Fenton pretreated sludge in terms of volatile solids (VS) reduction, COD removal, and biogas production at steady-state operations. Photo-Fenton pretreatment followed by anaerobic digestion of WAS was very effective and yielded 75.7% total VS reduction, 81.5% COD removal, and 0.29-0.31 m 3 /kg VS fed ·d biogas production rate, compared to 40.7% total VS solid reduction, 54.7% COD removal, and 0.12-0.17 m 3 /kg VS fed ·d biogas production rate for control. Thus, photo-Fenton can be a useful pretreatment step in sludge management.

  10. Sewage sludge treatment system

    NASA Technical Reports Server (NTRS)

    Kalvinskas, John J. (Inventor); Mueller, William A. (Inventor)

    1976-01-01

    Raw sewage may be presently treated by mixing screened raw sewage with activated carbon. The mixture is then allowed to stand in a first tank for a period required to settle the suspended matter to the bottom of the tank as a sludge. Thereafter, the remaining liquid is again mixed with activated carbon and the mixture is transferred to a secondary settling tank, where it is permitted to stand for a period required for the remaining floating material to settle as sludge and for adsorption of sewage carbon as well as other impurities to take place. The sludge from the bottom of both tanks is removed and pyrolyzed to form activated carbon and ash, which is mixed with the incoming raw sewage and also mixed with the liquid being transferred from the primary to the secondary settling tank. It has been found that the output obtained by the pyrolysis process contains an excess amount of ash. Removal of this excess amount of ash usually also results in removing an excess amount of carbon thereby requiring adding carbon to maintain the treatment process. By separately pyrolyzing the respective sludges from the first and second settling tanks, and returning the separately obtained pyrolyzed material to the respective first and second tanks from which they came, it has been found that the adverse effects of the excessive ash buildup is minimized, the carbon yield is increased, and the sludge from the secondary tank can be pyrolyzed into activated carbon to be used as indicated many more times than was done before exhaustion occurs.

  11. Ultrasonic sludge disintegration for enhanced methane production in anaerobic digestion: effects of sludge hydrolysis efficiency and hydraulic retention time.

    PubMed

    Kim, Dong-Jin; Lee, Jonghak

    2012-01-01

    Hydrolysis of waste activated sludge (WAS) has been regarded as the rate limiting step of anaerobic sludge digestion. Therefore, in this study, the effect of ultrasound and hydraulic residence time during sludge hydrolysis was investigated with the goal of enhancing methane production from anaerobic digestion (AD). WAS was ultrasonically disintegrated for hydrolysis, and it was semi-continuously fed to an anaerobic digesters at various hydraulic retention times (HRTs). The results of these experiments showed that the solids and chemical oxygen demand (COD) removal efficiencies when using ultrasonically disintegrated sludge were higher during AD than the control sludge. The longer the HRT, the higher the removal efficiencies of solids and COD, while methane production increased with lower HRT. Sludge with 30% hydrolysis produced 7 × more methane production than the control sludge. The highest methane yields were 0.350 m(3)/kg volatile solids (VS)(add) and 0.301 m(3)/kg COD(con) for 16 and 30% hydrolyzed sludge, respectively. In addition, we found that excess ultrasound irradiation may inhibit AD since the 50% hydrolyzed sludge produced lower methane yields than 16 and 30% hydrolyzed sludge.

  12. Reduction of excess sludge in a sequencing batch reactor by lysis-cryptic growth using quick lime for disintegration under low temperature.

    PubMed

    Lv, Xiao-Mei; Song, Ju-Sheng; Li, Ji; Zhai, Kun

    2017-08-01

    In the present study, quick-lime-based thermal-alkaline sludge disintegration (SD) under low temperature was combined with cryptic growth to investigate the excess sludge reduction efficiency in the sequencing batch reactor (SBR). The optimized condition of SD was as follows: T = 80℃, pH = 11, t = 180 min, and the SD rate was about 42.1%. With 65.6% of excess sludge disintegrated and returned to the SBR, the system achieved sludge reduction rate of about 40.1%. The lysis-cryptic growth still obtained satisfactory sludge reduction efficiency despite the comparative low SD rate, which suggested that disintegration rate might not be the decisive factor for cryptic-growth-based sludge reduction. Lysis-cryptic growth did not impact the effluent quality, yet the phosphorus removal performance was enhanced, with effluent total phosphorus concentration decreased by 0.3 mg/L (33%). Crystal compounds of calcium phosphate precipitate were detected in the system by Fourier transform infrared spectroscopy and X-ray diffraction, which indicated the phosphorus removal potential of SD using lime. Moreover, endogenous dehydrogenase activity of activated sludge in the lysis-cryptic system was enhanced, which was beneficial for sludge reduction. SD and cryptic growth in the present study demonstrates an economical and effective approach for sludge reduction.

  13. Removal of lead (II) from metal plating effluents using sludge based activated carbon as adsorbent.

    PubMed

    Raju, P; Saseetharan, M K

    2010-01-01

    A novel adsorbent was prepared from waste sludge obtained from a sugar mill for removing heavy metals from industrial wastewater. The adsorption studies were carried out in batch and continuous modes for both sugar mill sludge based carbon and commercial carbon. In batch studies, experiments were conducted at ambient temperature to assess the influence of the parameters such as pH, adsorbent dose, contact time and equilibrium concentration. Adsorption data for the prepared carbon was found to satisfy both the Freundlich and Langmuir isotherms. Column studies were carried out to delineate the effect of varying depth of carbon at constant flow rate. The breakthrough curves were drawn to establish the mechanism. The result shows that the sludge based activated carbon can be used as an alternative for commercial carbon.

  14. 40 CFR 503.21 - Special definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... strata on the other side. (g) Final cover is the last layer of soil or other material placed on a sewage... soil or other material used to cover sewage sludge placed on an active sewage sludge unit. (e... collect and remove leachate from a sewage sludge unit. (j) Liner is soil or synthetic material that has a...

  15. 40 CFR 503.21 - Special definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... strata on the other side. (g) Final cover is the last layer of soil or other material placed on a sewage... soil or other material used to cover sewage sludge placed on an active sewage sludge unit. (e... collect and remove leachate from a sewage sludge unit. (j) Liner is soil or synthetic material that has a...

  16. 40 CFR 503.21 - Special definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... strata on the other side. (g) Final cover is the last layer of soil or other material placed on a sewage... soil or other material used to cover sewage sludge placed on an active sewage sludge unit. (e... collect and remove leachate from a sewage sludge unit. (j) Liner is soil or synthetic material that has a...

  17. 40 CFR 503.21 - Special definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... strata on the other side. (g) Final cover is the last layer of soil or other material placed on a sewage... soil or other material used to cover sewage sludge placed on an active sewage sludge unit. (e... collect and remove leachate from a sewage sludge unit. (j) Liner is soil or synthetic material that has a...

  18. 40 CFR 503.21 - Special definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... strata on the other side. (g) Final cover is the last layer of soil or other material placed on a sewage... soil or other material used to cover sewage sludge placed on an active sewage sludge unit. (e... collect and remove leachate from a sewage sludge unit. (j) Liner is soil or synthetic material that has a...

  19. [Characteristic of the removal of 2,4-dichlorophenol by biological activated carbon].

    PubMed

    Liu, Hong; Li, An-jie; Quan, Xiang-chun; Kong, Xiang-hui; Yun, Ying

    2004-11-01

    The adsorption characteristics and kinetics of 2,4-Dichlorophenol (2,4-DCP) by biological activated carbon (BAC) was studied through contrast experiments with conventional activated sludge alone or quartz as the carrier. The advantage and disadvantage of removing 2,4-DCP using BAC and the mechanism of this process were investigated. The results show that the method of removing 2,4-DCP by BAC is applicable in practices, and the process of BAC demonstrates high removal rate than the process of suspended activated sludge and biofilm with quartz as the carrier. In addition, the BAC process showed high resistance to shock loadings, therefore, it is suitable to be utilized at high organic loading and under long-term operation. In BAC-system, activated carbon could not only adsorb 2,4-DCP but also oxidized 2,4-DCP.

  20. Detection and Molecular Characterization of Hepatitis A Virus from Tunisian Wastewater Treatment Plants with Different Secondary Treatments.

    PubMed

    Ouardani, Imen; Turki, Syrine; Aouni, Mahjoub; Romalde, Jesús L

    2016-07-01

    Hepatitis A virus (HAV) is the main causative agent of hepatitis infection associated with waterborne outbreaks worldwide. In Tunisia, there is no specific surveillance system for HAV and current secondary wastewater treatment processes are unable to remove viral particles, which present a potential public health problem. Qualitative and quantitative analysis of HAV in 271 raw and treated wastewater samples from five sewage treatment plants (STPs) during 13 months was performed. Moreover, the efficiency of three secondary wastewater treatment processes (conventional activated sludge, extended aeration, and oxidation ditch activated sludge) was evaluated. Data obtained demonstrated that HAV is endemic in Tunisia and circulates with high prevalence in both raw (66.9%) and treated (40.7%) wastewater. HAV circulates throughout the year in the coastal areas, with the highest rates found during summer and autumn, whereas in central Tunisia, high levels were shown in autumn and winter. Total virus removal was not achieved, since no difference in mean HAV loads was observed in effluents (6.0 × 10(3) genome copies [GC]/ml) and influents (2.7 × 10(3) GC/ml). The comparison of the HAV removal values of the three different wastewater treatment methods indicates that extended aeration and oxidation ditch activated sludge had better efficiency in removing viruses than conventional activated sludge did. Molecular characterization revealed that the vast majority of HAV strains belonged to subgenotype IA, with the cocirculation of subgenotype IB in wastewater treatment plants that collect tourism wastewater. This report provides important data on the incidence, behavior, seasonality, and genotype distribution of HAV in the environment in Tunisia, as well as the risk of infection derived from its occurrence in effluents due to inadequate wastewater treatment. In addition, these findings seem to confirm that the prevalence of HAV depends on socioeconomic level, sanitary conditions in the communities, sewage facilities, the locality, and the climate. The wide dispersion of HAV in effluents proves the inefficacity of the current wastewater treatment processes used in Tunisia to remove virus; therefore, establishment of tertiary treatment processes or replacement of the medium-charge activated sludge (conventional activated sludge) by the low-charge version (oxidation ditch activated sludge) is absolutely needed. Rapid detection of the HAV genome in wastewater may provide a timely warning sign to health authorities to implement population protection measures. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Effect of feed characteristics on the organic matter, nitrogen and phosphorus removal in an activated sludge system treating piggery slurry.

    PubMed

    González, C; García, P A; Muñoz, R

    2009-01-01

    Piggery wastewater is characterized by its high content in nitrogen and phosphorus, as well as by a low C/N ratio. This type of wastewater is traditionally spread to croplands (with its subsequent leaching to groundwater) or rarely discharged into natural water bodies, which ultimately cause severe episodes of eutrophication in aquatic ecosystems. In this context, activated sludge systems constitute a robust and efficient treatment option. The performance of an activated sludge process using a pre-denitrification configuration treating both sieved and flocculated swine slurry at a hydraulic retention time (HRT) of 7.7 days was evaluated. In order to avoid bacterial wash-out, sludge from the settler was recirculated to the anoxic tank to accomplish denitrification. Once the biomass was acclimatized, the reactor was fed with swine slurry containing 19, 2.6, and 0.27 g/L of total chemical oxygen demand (COD), total Kjeldhal nitrogen (TKN), and soluble P, respectively. Nitrogen removal showed a clear dependency on the influent composition. When the influent TKN/total COD and soluble COD/total COD ratios were respectively 0.12-0.15 and 0.7, the reactor exhibited good removal efficiencies (up to 99 and 91 for N-NH(4)(+), TKN, respectively) while PO(4)(3-) was removed up to 65%. However, when the influent TKN/total COD ratio rose to 0.26 and soluble COD/total COD decreased to 0.3, the denitrification process was severely hindered concomitant with and accumulation of nitrite. Nevertheless, organic matter degradation was not affected by influent composition. At the last stage of the experiment, removals of dissolved phosphorus fell to 40% when the redox potential (ORP) profile showed a constant value of -400 mV, likely due to phosphate released from bacterial sludge.

  2. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment.

    PubMed

    Zupanc, Mojca; Kosjek, Tina; Petkovšek, Martin; Dular, Matevž; Kompare, Boris; Širok, Brane; Blažeka, Željko; Heath, Ester

    2013-07-01

    To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation-hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid. Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip™ and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip™ carriers (85%±10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74%±22% and 48%±19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3-70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment resulted in removal efficiencies of >90% for clofibric acid and >98% for carbamazepine and diclofenac, while the remaining compounds were reduced to levels below the LOD. For ibuprofen, naproxen, ketoprofen and diclofenac the highest contribution to overall removal was attributed to biological treatment, for clofibric acid UV treatment was the most efficient, while for carbamazepine hydrodynamic cavitation/hydrogen peroxide process and UV treatment were equally efficient. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Up-to-date modification of the anaerobic sludge digestion process introducing a separate sludge digestion mode.

    PubMed

    Sato, K; Ochi, S; Mizuochi, M

    2001-01-01

    Sewage treatment plants in Japan are subjected to advanced treatment to remove nutrients and hence control eutrophication problems in lakes and bays. This paper discusses the advantages and disadvantages of the separate digestion treatment mode for sludge generated from advanced wastewater treatment. In the separate digestion only primary sludge is digested and the excess activated sludge is directly dewatered. Separate digestion can reduce the return load of nutrients to approximately one third, and has major potential for the beneficial use of sludge.

  4. Phosphorous removal from aqueous solution can be enhanced through the calcination of lime sludge.

    PubMed

    Bal Krishna, K C; Niaz, Mohamed R; Sarker, Dipok C; Jansen, Troy

    2017-09-15

    Water treatment plants generate an enormous amount of the sludge which is normally treated as waste. In the recent past, many investigations have been focused on developing an economical adsorbent using water treatment sludge to remove phosphorous (P) from aqueous solutions. However, the great extents of the studies have been limited in the use of alum- and iron-based sludges. This study, therefore, investigated the P removal performance of the calcined lime sludge. Calcined lime sludge at 700 °C significantly enhanced the P removal efficiency whereas marginal improvement was noted when the sludge calcined at 400 °C was tested. With increase P removal efficiency, final pH values of the solution also significantly increased. P removal efficiency of the calcined sludge decreased with increasing the initial P concentrations. However, the removal efficiency could be improved by increasing the weight of the sludge. Further analysis demonstrated that P removal trend followed both pseudo-second order and diffusion-chemisorption kinetics signifying the P removal is potentially due to a multi-mechanistic reaction in which, the process is controlled by intra-particle diffusion followed by chemisorptions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Efficient selective catalytic reduction of NO by novel carbon-doped metal catalysts made from electroplating sludge.

    PubMed

    Zhang, Jia; Zhang, Jingyi; Xu, Yunfeng; Su, Huimin; Li, Xiaoman; Zhou, Ji Zhi; Qian, Guangren; Li, Li; Xu, Zhi Ping

    2014-10-07

    Electroplating sludges, once regarded as industrial wastes, are precious resources of various transition metals. This research has thus investigated the recycling of an electroplating sludge as a novel carbon-doped metal (Fe, Ni, Mg, Cu, and Zn) catalyst, which was different from a traditional carbon-supported metal catalyst, for effective NO selective catalytic reduction (SCR). This catalyst removed >99.7% NO at a temperature as low as 300 °C. It also removed NO steadily (>99%) with a maximum specific accumulative reduced amount (MSARA) of 3.4 mmol/g. Gas species analyses showed that NO removal was accompanied by evolving N2 and CO2. Moreover, in a wide temperature window, the sludge catalyst showed a higher CO2 selectivity (>99%) than an activated carbon-supported metal catalyst. Structure characterizations revealed that carbon-doped metal was transformed to metal oxide in the sludge catalyst after the catalytic test, with most carbon (2.33 wt %) being consumed. These observations suggest that NO removal over the sludge catalyst is a typical SCR where metals/metal oxides act as the catalytic center and carbon as the reducing reagent. Therefore, our report probably provides an opportunity for high value-added utilizations of heavy-metal wastes in mitigating atmospheric pollutions.

  6. Anaerobic bioremediation of hexavalent uranium in groundwater by reductive precipitation with methanogenic granular sludge.

    PubMed

    Tapia-Rodriguez, Aida; Luna-Velasco, Antonia; Field, Jim A; Sierra-Alvarez, Reyes

    2010-04-01

    Uranium has been responsible for extensive contamination of groundwater due to releases from mill tailings and other uranium processing waste. Past evidence has confirmed that certain bacteria can enzymatically reduce soluble hexavalent uranium (U(VI)) to insoluble tetravalent uranium (U(IV)) under anaerobic conditions in the presence of appropriate electron donors. This paper focuses on the evaluation of anaerobic granular sludge as a source of inoculum for the bioremediation of uranium in water. Batch experiments were performed with several methanogenic anaerobic granular sludge samples and different electron donors. Abiotic controls consisting of heat-killed inoculum and non-inoculated treatments confirmed the biological removal process. In this study, unadapted anaerobic granular sludge immediately reduced U(VI), suggesting an intrinsic capacity of the sludge to support this process. The high biodiversity of anaerobic granular sludge most likely accounts for the presence of specific microorganisms capable of reducing U(VI). Oxidation by O(2) was shown to resolubilize the uranium. This observation combined with X-ray diffraction evidence of uraninite confirmed that the removal during anaerobic treatment was due to reductive precipitation. The anaerobic removal activity could be sustained after several respikes of U(VI). The U(VI) removal was feasible without addition of electron donors, indicating that the decay of endogenous biomass substrates was contributing electron equivalents to the process. Addition of electron donors, such as H(2) stimulated the removal of U(VI) to varying degrees. The stimulation was greater in sludge samples with lower endogenous substrate levels. The present work reveals the potential application of anaerobic granular sludge for continuous bioremediation schemes to treat uranium-contaminated water. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  7. Some properties of a granular activated carbon-sequencing batch reactor (GAC-SBR) system for treatment of textile wastewater containing direct dyes.

    PubMed

    Sirianuntapiboon, Suntud; Sadahiro, Ohmomo; Salee, Paneeta

    2007-10-01

    Resting (living) bio-sludge from a domestic wastewater treatment plant was used as an adsorbent of both direct dyes and organic matter in a sequencing batch reactor (SBR) system. The dye adsorption capacity of the bio-sludge was not increased by acclimatization with direct dyes. The adsorption of Direct Red 23 and Direct Blue 201 onto the bio-sludge was almost the same. The resting bio-sludge showed higher adsorption capacity than the autoclaved bio-sludge. The resting bio-sludge that was acclimatized with synthetic textile wastewater (STWW) without direct dyes showed the highest Direct Blue 201, COD, and BOD(5) removal capacities of 16.1+/-0.4, 453+/-7, and 293+/-9 mg/g of bio-sludge, respectively. After reuse, the dye adsorption ability of deteriorated bio-sludge was recovered by washing with 0.1% sodium dodecyl sulfate (SDS) solution. The direct dyes in the STWW were also easily removed by a GAC-SBR system. The dye removal efficiencies were higher than 80%, even when the system was operated under a high organic loading of 0.36kgBOD(5)/m(3)-d. The GAC-SBR system, however, showed a low direct dye removal efficiency of only 57+/-2.1% with raw textile wastewater (TWW) even though the system was operated with an organic loading of only 0.083kgBOD(5)/m(3)-d. The dyes, COD, BOD(5), and total kjeldalh nitrogen removal efficiencies increased up to 76.0+/-2.8%, 86.2+/-0.5%, 84.2+/-0.7%, and 68.2+/-2.1%, respectively, when 0.89 g/L glucose (organic loading of 0.17kgBOD(5)/m(3)-d) was supplemented into the TWW.

  8. Nitrogen removal from coal gasification wastewater by activated carbon technologies combined with short-cut nitrogen removal process.

    PubMed

    Zhao, Qian; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Fang, Fang

    2014-11-01

    A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%-49.6% to 68.8%-75.8%. However, the TN removal rate decreased with the progressive deterioration of GAC adsorption. After adding activated sludge to the GAC compartment, the granular carbon had a longer service-life and the demand for external carbon resources became lower. Eventually, the TN removal rate in SBNR was almost constant at approx. 43.3%, as compared to approx. 20.0% before seeding with sludge. In addition, the production of some alkalinity during the denitrification resulted in a net savings in alkalinity requirements for the nitrification reaction and refractory chemical oxygen demand (COD) degradation by autotrophic bacteria in SBNR under oxic conditions. PACT showed excellent resilience to increasing organic loadings. The microbial community analysis revealed that the PACT had a greater variety of bacterial taxons and the dominant species associated with the three compartments were in good agreement with the removal of typical pollutants. The study demonstrated that pre-adsorption by the GAC-sludge process could be a technically and economically feasible method to enhance TN removal in coal gasification wastewater (CGW). Copyright © 2014. Published by Elsevier B.V.

  9. Comparison and distribution of copper oxide nanoparticles and copper ions in activated sludge reactors.

    PubMed

    Zhang, Dongqing; Trzcinski, Antoine P; Oh, Hyun-Suk; Chew, Evelyn; Tan, Soon Keat; Ng, Wun Jern; Liu, Yu

    2017-05-12

    Copper oxide nanoparticles (CuO NPs) are being increasingly applied in the industry which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Copper Oxide NPs at concentrations of 0.1, 1, 10 and 50 mg/L and to compare it with its ionic counterpart (CuSO 4 ). It was found that 0.1 mg/L of CuO NPs had negligible effects on Chemical Oxygen Demand (COD) and ammonia removal. However, the presence of 1, 10 and 50 mg/L of CuO NPs decreased COD removal from 78.7% to 77%, 52.1% and 39.2%, respectively (P < 0.05). The corresponding effluent ammonium (NH 4 -N) concentration increased from 14.9 mg/L to 18, 25.1 and 30.8 mg/L, respectively. Under equal Cu concentration, copper ions were more toxic towards microorganisms compared to CuO NPs. CuO NPs were removed effectively (72-93.2%) from wastewater due to a greater biosorption capacity of CuO NPs onto activated sludge, compared to the copper ions (55.1-83.4%). The SEM images clearly showed the accumulation and adsorption of CuO NPs onto activated sludge. The decrease in Live/dead ratio after 5 h of exposure of CuO NPs and Cu 2+ indicated the loss of cell viability in sludge flocs.

  10. Coliforms removal in full-scale activated sludge plants in India.

    PubMed

    Kazmi, A A; Tyagi, V K; Trivedi, R C; Kumar, Arvind

    2008-05-01

    This paper investigates the removal of coliforms in full-scale activated sludge plants (ASP) operating in northern regions of India. Log2.2 and log2.4 removal were observed for total coliforms (TC) and fecal coliforms (FC), respectively. However, the effluent still contained a significant number of TC and FC which was greater than the permissible limit for unrestricted irrigation as prescribed by WHO. The observations also suggest that extended aeration (EA) process operating under high mixed liquor suspended solids (MLSS) and sludge retention time (SRT) is more efficient in the removal of coliforms. Further attempts have been made to establish the relationship between two key wastewater parameters, i.e. biochemical oxygen demand (BOD) and suspended solids (SS) with respect to fecal and TC. The relationships were observed to be linear with a good coefficient of correlation. The interrelationship of BOD and SS with coliforms manifest that improvement of the microbiological quality of wastewater could be linked with the removal of SS. Therefore, SS can serve as a regulatory tool in lieu of an explicit coliforms standard.

  11. Diagnostic investigation of steroid estrogen removal by activated sludge at varying solids retention time.

    PubMed

    Petrie, Bruce; McAdam, Ewan J; Hassard, Francis; Stephenson, Tom; Lester, John N; Cartmell, Elise

    2014-10-01

    The impact of solids retention time (SRT) on estrone (E1), 17β-estradiol (E2), estriol (E3) and 17α-ethinylestradiol (EE2) removal in an activated sludge plant (ASP) was examined using a pilot plant to closely control operation. Exsitu analytical methods were simultaneously used to enable discrimination of the dominant mechanisms governing estrogen removal following transitions in SRT from short (3d) to medium (10d) and long (27d) SRTs which broadly represent those encountered at full-scale. Total estrogen (∑EST, i.e., sum of E1, E2, E3 and EE2) removals which account for aqueous and particulate concentrations were 70±8, 95±1 and 93±2% at 3, 10 and 27d SRTs respectively. The improved removal observed following an SRT increase from 3 to 10d was attributable to the augmented biodegradation of the natural estrogens E1 and E2. Interestingly, estrogen biodegradation per bacterial cell increased with SRT. These were 499, 1361 and 1750ng 10(12) viable cells(-1)d(-1). This indicated an improved efficiency of the same group or the development of a more responsive group of bacteria. In this study no improvement in absolute ∑EST removal was observed in the ASP when SRT increased from 10 to 27d. However, batch studies identified an augmented biomass sorption capacity for the more hydrophobic estrogens E2 and EE2 at 27d, equivalent to an order of magnitude. The lack of influence on estrogen removal during pilot plant operation can be ascribed to their distribution within activated sludge being under equilibrium. Consequently, lower wastage of excess sludge inherent of long SRT operation counteracts any improvement in sorption. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Anaerobic biodegradability and treatment of grey water in upflow anaerobic sludge blanket (UASB) reactor.

    PubMed

    Elmitwalli, Tarek A; Otterpohl, Ralf

    2007-03-01

    Feasibility of grey water treatment in an upflow anaerobic sludge blanket (UASB) reactor operated at different hydraulic retention time (HRT) of 16, 10 and 6h and controlled temperature of 30 degrees C was investigated. Moreover, the maximum anaerobic biodegradability without inoculum addition and maximum removal of chemical oxygen demand (COD) fractions in grey water were determined in batch experiments. High values of maximum anaerobic biodegradability (76%) and maximum COD removal in the UASB reactor (84%) were achieved. The results showed that the colloidal COD had the highest maximum anaerobic biodegradability (86%) and the suspended and dissolved COD had similar maximum anaerobic biodegradability of 70%. Furthermore, the results of the UASB reactor demonstrated that a total COD removal of 52-64% was obtained at HRT between 6 and 16 h. The UASB reactor removed 22-30% and 15-21% of total nitrogen and total phosphorous in the grey water, respectively, mainly due to the removal of particulate nutrients. The characteristics of the sludge in the UASB reactor confirmed that the reactor had a stable performance. The minimum sludge residence time and the maximum specific methanogenic activity of the sludge ranged between 27 and 93 days and 0.18 and 0.28 kg COD/(kg VS d).

  13. Proposal for a screening test to evaluate the fate of organic micropollutants in activated sludge.

    PubMed

    Salvetti, Roberta; Vismara, Renato; Dal Ben, Ilaria; Gorla, Elena; Romele, Laura

    2011-04-01

    The concentrations of organic micropollutants are usually low in wastewaters (order of magnitude of mg L(-1)). However, their emission standards, especially in the case of carcinogenic and bioaccumulating substances, are often much lower (order of magnitude of microg L(-1)). Since these substances, in some cases, can be adsorbable or volatile, their removal via volatilization, biodegradation or sludge adsorption in a wastewater treatment plant (WWTP) becomes a significant feature to include in the usual design process, in order to verify the emission standards in gas and sludge too. In this study a simple screening batch test for the evaluation of the fate of organic micropollutants in water, air and sludge is presented. The test is set up by means of simple laboratory instruments and simulates an activated sludge tank process. In this study the results obtained for four substances with different chemical properties (i.e. toluene, benz(a)anthracene, phenol and benzene) are presented. The screening test proposed can be a useful tool to assess in about one month the fate of organic micropollutants in an activated sludge tank of a WWTP. Moreover, the test can constitute a useful support in the use of mathematical models, since it allows the verification of model results and the calibration of the reactions involved in the removal process.

  14. Pandemic pharmaceutical dosing effects on wastewater treatment: no adaptation of activated sludge bacteria to degrade the antiviral drug oseltamivir (Tamiflu®) and loss of nutrient removal performance.

    PubMed

    Slater, Frances R; Singer, Andrew C; Turner, Susan; Barr, Jeremy J; Bond, Philip L

    2011-02-01

    The 2009-2010 influenza pandemic saw many people treated with antivirals and antibiotics. High proportions of both classes of drugs are excreted and enter wastewater treatment plants (WWTPs) in biologically active forms. To date, there has been no study into the potential for influenza pandemic-scale pharmaceutical use to disrupt WWTP function. Furthermore, there is currently little indication as to whether WWTP microbial consortia can degrade antiviral neuraminidase inhibitors when exposed to pandemic-scale doses. In this study, we exposed an aerobic granular sludge sequencing batch reactor, operated for enhanced biological phosphorus removal (EBPR), to a simulated influenza-pandemic dosing of antibiotics and antivirals for 8 weeks. We monitored the removal of the active form of Tamiflu(®), oseltamivir carboxylate (OC), bacterial community structure, granule structure and changes in EBPR and nitrification performance. There was little removal of OC by sludge and no evidence that the activated sludge community adapted to degrade OC. There was evidence of changes to the bacterial community structure and disruption to EBPR and nitrification during and after high-OC dosing. This work highlights the potential for the antiviral contamination of receiving waters and indicates the risk of destabilizing WWTP microbial consortia as a result of high concentrations of bioactive pharmaceuticals during an influenza pandemic. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study

    PubMed Central

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao

    2016-01-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge. PMID:27905538

  16. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study

    NASA Astrophysics Data System (ADS)

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao

    2016-12-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge.

  17. Inhibition kinetics and granular sludge in an ANAMMOX reactor treating mature landfill leachate.

    PubMed

    Yun, Li; Zhaoming, Zheng; Jun, Li; Baihang, Zhao; Wei, Bian; Yanzhuo, Zhang; Xiujie, Wang

    2016-12-01

    The present study reports the inhibition kinetics and granular sludge in an anaerobic ammonium oxidation (ANAMMOX) - up-flow anaerobic sludge blanket reactor fed with diluted mature landfill leachate. The activity of ANAMMOX bacteria was inhibited by addition of mature landfill leachate, but gradually adapted to the leachate. The system achieved efficient nitrogen removal during 65-75 d and the average removal efficiencies for NH 4 + -N, NO 2 - -N and total nitrogen (TN) were 96%, 95% and 87%, respectively. ANAMMOX was the main pathway of nitrogen removal in the system, and heterotrophic denitrification occurred simultaneously. In addition, aerobic ammonia oxidation and aerobic nitrite oxidation were active in this system. Inhibition kinetic experiments showed that the NH 4 + -N and NO 2 - -N inhibition concentration threshold of ANAMMOX were 489.03 mg/L and 192.36 mg/L, respectively. ANAMMOX was significantly inhibited by mature landfill leachate, and was completely inhibited when the leachate concentration was 1,450.69 mg/L (calculated in chemical oxygen demand). Thus, the inhibition concentration of substrate and landfill leachate should be considered when applying the ANAMMOX process to landfill leachate. The color of granular sludge ANAMMOX changed from brick-red into a reddish-brown. The particle size increased from small to large, with evident granulation of the ANAMMOX sludge.

  18. Bioprocessing for elimination antibiotics and hormones from swine wastewater.

    PubMed

    Cheng, D L; Ngo, H H; Guo, W S; Liu, Y W; Zhou, J L; Chang, S W; Nguyen, D D; Bui, X T; Zhang, X B

    2018-04-15

    Antibiotics and hormones in swine wastewater have become a critical concern worldwide due to the severe threats to human health and the eco-environment. Removal of most detectable antibiotics and hormones, such as sulfonamides (SAs), SMs, tetracyclines (TCs), macrolides, and estrogenic hormones from swine wastewater utilizing various biological processes were summarized and compared. In biological processes, biosorption and biodegradation are the two major removal mechanisms for antibiotics and hormones. The residuals in treated effluents and sludge of conventional activated sludge and anaerobic digestion processes can still pose risks to the surrounding environment, and the anaerobic processes' removal efficiencies were inferior to those of aerobic processes. In contrast, membrane bioreactors (MBRs), constructed wetlands (CWs) and modified processes performed better because of their higher biodegradation of toxicants. Process modification on activated sludge, anaerobic digestion and conventional MBRs could also enhance the performance (e.g. removing up to 98% SMs, 88.9% TCs, and 99.6% hormones from wastewater). The hybrid process combining MBRs with biological or physical technology also led to better removal efficiency. As such, modified conventional biological processes, advanced biological technologies and MBR hybrid systems are considered as a promising technology for removing toxicants from swine wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Achieving mainstream nitrogen removal through simultaneous partial nitrification, anammox and denitrification process in an integrated fixed film activated sludge reactor.

    PubMed

    Wang, Chao; Liu, Sitong; Xu, Xiaochen; Zhang, Chaolei; Wang, Dong; Yang, Fenglin

    2018-07-01

    The anaerobic ammonium oxidation (anammox) is becoming a critical technology for energy neutral in mainstream wastewater treatment. However, the presence of chemical oxygen demanding in influent would result in a poor nitrogen removal efficiency during the deammonification process. In this study, the simultaneous partial nitrification, anammox and denitrification process (SNAD) for mainstream nitrogen removal was investigated in an integrated fixed film activated sludge (IFAS) reactor. SNAD-IFAS process achieved a total nitrogen (TN) removal efficiency of 72 ± 2% and an average COD removal efficiency was 88%. The optimum COD/N ratio for mainstream wastewater treatment was 1.2 ± 0.2. Illumina sequencing analysis and activity tests showed that anammox and denitrifying bacteria were the dominant nitrogen removal microorganism in the biofilm and the high COD/N ratios (≥2.0) leaded to the proliferation of heterotrophic bacteria (Hydrogenophaga) and nitrite-oxidizing bacteria (Nitrospira) in the suspended sludge. Network analysis confirmed that anammox bacteria (Candidatus Kuenenia) could survive in organic matter environment due to that anammox bacteria displayed significant co-occurrence through positive correlations with some heterotrophic bacteria (Limnobacter) which could protect anammox bacteria from hostile environments. Overall, the results of this study provided more comprehensive information regarding the community composition and assemblies in SNAD-IFAS process for mainstream nitrogen removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Effects of Sludge Retention Times on Nutrient Removal and Nitrous Oxide Emission in Biological Nutrient Removal Processes

    PubMed Central

    Li, Bo; Wu, Guangxue

    2014-01-01

    Sludge retention time (SRT) is an important factor affecting not only the performance of the nutrient removal and sludge characteristics, but also the production of secondary pollutants such as nitrous oxide (N2O) in biological nutrient removal (BNR) processes. Four laboratory-scale sequencing batch reactors (SBRs), namely, SBR5, SBR10, SBR20 and SBR40 with the SRT of 5 d, 10 d, 20 d and 40 d, respectively, were operated to examine effects of SRT on nutrient removal, activated sludge characteristics and N2O emissions. The removal of chemical oxygen demand or total phosphorus was similar under SRTs of 5–40 d, SRT mainly affected the nitrogen removal and the optimal SRT for BNR was 20 d. The molecular weight distribution of the effluent organic matters was in the range of 500–3,000 Da under SRTs of 5–40 d. The lowest concentration of the effluent soluble microbial products concentration was obtained at the SRT of 5 d. Nitrifier growth was limited at a short SRT and nitrite existed in the effluent of SBR5. With increasing SRTs, mixed liquor suspended solids concentration increased while the excess sludge production was reduced due to the high endogenous decay rate at high SRTs. Endogenous decay coefficients were 0.020 d−1, 0.036 d−1, 0.037 d−1 and 0.039 d−1 under SRTs of 5–40 d, respectively. In BNR, the N2O emission occurred mainly during the aerobic phase and its emission ratio decreased with increasing SRTs. The ratio between the N2O-N emission and the removed ammonium nitrogen in the aerobic phase was 5%, 3%, 1.8% and 0.8% at the SRT of 5 d, 10 d, 20 d and 40 d, respectively. With low concentrations of dissolved oxygen and high concentrations of oxidized nitrogen, the N2O emission was significantly accelerated due to heterotrophic denitrification activities. PMID:24681555

  1. Analysis of poly-β-hydroxyalkonates (PHA) during the enhanced biological phosphorus removal process using FTIR spectroscopy.

    PubMed

    Li, Wei-hua; Mao, Qin-yan; Liu, Yi-xin; Sheng, Guo-ping; Yu, Han-qing; Huang, Xian-huai; Liu, Shao-geng; Ling, Qi; Yan, Guo-bing

    2014-06-01

    Enhanced biological phosphorus removal (EBPR) is the main phosphorus removal technique for wastewater treatment. During the anaerobic-aerobic alternative process, the activated sludge experienced the anaerobic storage of polyhydroxy-β-alkonates (PHA) and aerobic degradation, corresponding the infrared peak intensity of sludge at 1 740 cm(-1) increased in the aerobic phase and declined in the anaerobic phase. Compared with PHA standard, this peak was indentified to attribute the carbonyl of PHA. The overlapping peaks of PHA, protein I and II bands were separated using Gaussian peak fitting method. The infrared peak area ratios of PHA versus protein I had a good relationship with the PHA contents measured by gas chromatography, and the correlation coefficient was 0.873. Thus, the ratio of the peak area of PHA versus protein I can be considered as the indicator of the PHA content in the sludge. The infrared spectra of 1 480-1 780 cm(-1) was selected, normalized and transferred to the absorption data. Combined with the chromatography analysis of PHA content in the sludge sample, a model between the Fourier-transform infrared spectroscopy (ETIR) spectra of the sludge and PHA content was established, which could be used for the prediction of the PHA content in the unknown sample. The PHA content in the sludge sample could be acquired by the infrared spectra of the sludge sample and the established model, and the values fitted well with the results obtained from chromatograph. The results would provide a novel analysis method for the rapid characterization and quantitative determination of the intracellular PHA content in the activated sludge.

  2. Chlorella vulgaris cultivation in sludge extracts from 2,4,6-TCP wastewater treatment for toxicity removal and utilization.

    PubMed

    Wang, Lu; Chen, Xiurong; Wang, Hualin; Zhang, Yuying; Tang, Qingjie; Li, Jiahui

    2017-02-01

    Chlorella vulgaris was cultivated in different proportions of activated sludge extracts, which was from the treatment of the synthetic wastewater containing 2,4,6-trichlorophenol (2,4,6-TCP). The nutrients, total nitrogen (TN) and total phosphorus (TP), were removed over 45% and 90%, respectively. The maximum reduction amount of ecotoxicity and total organic carbon (TOC) occurred in the 100% sludge group on the 8th day (68%; 86.2 mg L -1 ). The variations of Excitation-emission matrix spectra (EEMs) and TOC indicated that extracellular organic matters (EOM) produced by algae led to TOC increase in the medium. The cell density was close to each other for groups with sludge extract proportion below 50%; sludge extracts (below 75% addition) had a stimulating effect on the accumulation of chlorophyll-a in per unit algal cell. Superoxide dismutase (SOD) variation demonstrated that C. vulgaris response positively to sludge extracts addition. Lipid content in C. vulgaris was up to its maximum value on the 8th day. Considering the performance on nutrients removal, toxicity reduction and algal growth, the optimal cultivation period for C. vulgaris before harvesting was around 8 days with sludge extracts proportion below 50%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Removal of pharmaceutically active compounds in nitrifying-denitrifying plants.

    PubMed

    Suárez, S; Ramil, M; Omil, F; Lema, J M

    2005-01-01

    The behaviour of nine pharmaceutically active compounds (PhACs) of different diagnostic groups is studied during a nitrifying-denitrifying process in an activated sludge system. The compounds selected cover a wide range of frequently used substances such as anti-epileptics (carbamazepine), tranquillisers (diazepam), anti-depressants (fluoxetine and citalopram), anti-inflammatories (ibuprofen, naproxen and diclofenac) and estrogens (estradiol and ethinylestradiol). The main objective of this research is to investigate the effect of acclimation of biomass on the removal rates of these compounds, either by maintaining a high sludge retention time or at long-term operation. The removal rates achieved for nitrogen and carbon in the experimental unit exceed 90% and were not affected by the addition of PhACs. Carbamazepine, diazepam and diclofenac were only removed to a small extent. On the other hand, higher removal rates have been observed for naproxen and ibuprofen (68% and 82%), respectively.

  4. An ecological vegetation-activated sludge process (V-ASP) for decentralized wastewater treatment: system development, treatment performance, and mathematical modeling.

    PubMed

    Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Li, Pu; Zhao, Ke

    2016-05-01

    An environment-friendly decentralized wastewater treatment process that is comprised of activated sludge process (ASP) and wetland vegetation, named as vegetation-activated sludge process (V-ASP), was developed for decentralized wastewater treatment. The long-term experimental results evidenced that the vegetation sequencing batch reactor (V-SBR) process had consistently stable higher removal efficiencies of organic substances and nutrients from domestic wastewater compared with traditional sequencing batch reactor (SBR). The vegetation allocated into V-SBR system could not only remove nutrients through its vegetation transpiration ratio but also provide great surface area for microorganism activity enhancement. This high vegetation transpiration ratio enhanced nutrients removal effectiveness from wastewater mainly by flux enhancement, oxygen and substrate transportation acceleration, and vegetation respiration stimulation. A mathematical model based on ASM2d was successfully established by involving the specific function of vegetation to simulate system performance. The simulation results on the influence of operational parameters on V-ASP treatment effectiveness demonstrated that V-SBR had a high resistance to seasonal temperature fluctuations and influent loading shocking.

  5. Behavior of pharmaceuticals in waste water treatment plant in Japan.

    PubMed

    Matsuo, H; Sakamoto, H; Arizono, K; Shinohara, R

    2011-07-01

    The fate of pharmaceuticals in a wastewater treatment plant (WWTP) in Kumamoto, Japan with activated sludge treatment is reported. Selected pharmaceuticals were detected in influent. Results from the present study confirmed that Acetaminophen, Amoxicillin, Ampicillin and Famotidine were removed at a high rate (>90% efficiency). In contrast, removal efficiency of Ketoprofen, Losartan, Oseltamivir, Carbamazepine, and Diclofenac was relatively low (<50%). The selected pharmaceuticals were also detected in raw sludge. In digestive process, Indomethacin, Atenolol, Famotidine, Trimethoprim and Cyclofosamide were removed at a high (>70% efficiency). On the other hand, removal of Carbamazepine, Ketoprofen and Diclofenac was not efficient (<50%).

  6. Anaerobic on-site treatment of black water and dairy parlour wastewater in UASB-septic tanks at low temperatures.

    PubMed

    Luostarinen, Sari A; Rintala, Jukka A

    2005-01-01

    Anaerobic on-site treatment of synthetic black water (BW) and dairy parlour wastewater (DPWW) was studied in two-phased upflow anaerobic sludge blanket (UASB)-septic tanks at low temperatures (10-20 degrees C). At all temperatures, total chemical oxygen demand (COD(t)) removal was above 90% with BW and above 80% with DPWW and removal of total suspended solids (TSS) above 90% with both wastewaters. Moreover, dissolved COD (COD(dis)) removal was approx. 70% with both wastewaters indicating good biological activity of the sludges. With BW, a single-phased reactor was found sufficient for good COD removals, while with DPWW, a two-phased process was required. Temperature optimum of reactor sludges was still 35 degrees C after long (398d) operation. Most of the nutrients from BW were removed with TSS, while with DPWW nutrient removal was low. In conclusion, UASB-septic tank was found feasible for (pre)treatment of BW and DPWW at low temperatures.

  7. [Dynamics of quickly absorption of the carbon source in wastewater by activated sludge].

    PubMed

    Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang

    2011-09-01

    In this paper, absorption characteristics of organic matter in municipal wastewater by three kinds of activated sludge (carbon-enriching, nitrification and denitrification sludge) were studied, and the absorption kinetic data was checked using three kinds of absorption kinetic equations based on Ritchie rate equation. The objectives of this study were to investigate the absorption mechanism of activated sludge to organic matter in municipal wastewater, and to identify the possibility of reclaiming organic matter by activated sludge. Results indicated that in the early 30 min, absorption process of organic matter by activated sludge was found to be mainly physical adsorption, which could be expressed by the Lagergren single-layer adsorption model. The carbon-enriching sludge had the highest adsorption capacity (COD/SS) which was 60 mg/g but the adsorption rate was lower than that of denitrification sludge. While nitrification sludge had the lowest adsorption rate and higher adsorption capacity compared with denitrification sludge, which was about 35 mg/g. The rates of the fitting index theta(0) of carbon-enriching, nitrification and denitrification sludge were 0.284, 0.777 and 0.923, respectively, which indicated that the sorbed organic matter on the surface of carbon-enriching sludge was the easiest fraction to be washed away. That is, the combination intensity of carbon-enriching sludge and organic matter was the feeblest, which was convenient for carbon-enriching sludge to release sorbed carbon. Furthermore, by fitting with Langmuir model, concentration of organic matter was found to be the key parameter influencing the adsorption capacity of activated sludge, while the influence of temperature was not obvious. The kinetic law of organic matter absorption by activated sludge was developed, which introduces a way to kinetically analyze the removing mechanism of pollutant by activated sludge and provides theoretical base for the reclaiming of nutriments in wastewater by the absorption of activated sludge.

  8. Efficient removal of sulfur hexafluoride (SF6) through reacting with recycled electroplating sludge.

    PubMed

    Zhang, Jia; Zhou, Ji Zhi; Liu, Qiang; Qian, Guangren; Xu, Zhi Ping

    2013-06-18

    This paper reports that recycled electroplating sludge is able to efficiently remove greenhouse gas sulfur hexafluoride (SF6). The removal process involves various reactions of SF6 with the recycled sludge. Remarkably, the sludge completely removed SF6 at a capacity of 1.10 mmol/g (SF6/sludge) at 600 °C. More importantly, the evolved gases were SO2, SiF4, and a limited amount of HF, with no toxic SOF4, SO2F2, or SF4 being detected. These generated gases can be readily captured and removed by NaOH solution. The reacted solids were further found to be various metal fluorides, thus revealing that SF6 removal takes place by reacting with various metal oxides and silicate in the sludge. Moreover, the kinetic investigation revealed that the SF6 reaction with the sludge is a first-order chemically controlled process. This research thus demonstrates that the waste electroplating sludge can be potentially used as an effective removal agent for one of the notorious greenhouse gases, SF6.

  9. Effect of thermal pretreatment on the biogas production and microbial communities balance during anaerobic digestion of urban and industrial waste activated sludge.

    PubMed

    Ennouri, Hajer; Miladi, Baligh; Diaz, Soraya Zahedi; Güelfo, Luis Alberto Fernández; Solera, Rosario; Hamdi, Moktar; Bouallagui, Hassib

    2016-08-01

    The effect of thermal pre-treatment on the microbial populations balance and biogas production was studied during anaerobic digestion of waste activated sludge (WAS) coming from urban (US: urban sludge) and industrial (IS: industrial sludge) wastewater treatment plants (WWTP). The highest biogas yields of 0.42l/gvolatile solid (VS) removed and 0.37l/gVS removed were obtained with urban and industrial sludge pre-treated at 120°C, respectively. Fluorescent in situ hybridization (FISH) was used to quantify the major Bacteria and Archaea groups. Compared to control trails without pretreatment, Archaea content increased from 34% to 86% and from 46% to 83% for pretreated IS and US, respectively. In fact, the thermal pre-treatment of WAS enhanced the growth of hydrogen-using methanogens (HUMs), which consume rapidly the H2 generated to allow the acetogenesis. Therefore, the stable and better performance of digesters was observed involving the balance and syntrophic associations between the different microbial populations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Treatment of swine wastewater using chemically modified zeolite and bioflocculant from activated sludge.

    PubMed

    Guo, Junyuan; Yang, Chunping; Zeng, Guangming

    2013-09-01

    Sterilization, alkaline-thermal and acid-thermal treatments were applied to activated sludge and the pre-treated sludge was used as raw material for Rhodococcus R3 to produce polymeric substances. After 60 h of fermentation, bioflocculant of 2.7 and 4.2 g L(-1) were produced in sterilized and alkaline-thermal treated sludge as compared to that of 0.9 g L(-1) in acid-thermal treated sludge. Response surface methodology (RSM) was employed to optimize the treatment process of swine wastewater using the composite of bioflocculant and zeolite modified by calcining with MgO. The optimal flocculating conditions were bioflocculant of 24 mg L(-1), modified zeolite of 12 g L(-1), CaCl2 of 16 mg L(-1), pH of 8.3 and contact time of 55 min, and the corresponding removal rates of COD, ammonium and turbidity were 87.9%, 86.9%, and 94.8%. The use of the composite by RSM provides a feasible way to improve the pollutant removal efficiencies and recycle high-level of ammonium from wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Reduced temperature hydrolysis at 134 °C before thermophilic anaerobic digestion of waste activated sludge at increasing organic load.

    PubMed

    Gianico, A; Braguglia, C M; Cesarini, R; Mininni, G

    2013-09-01

    The performance of thermophilic digestion of waste activated sludge, either untreated or thermal pretreated, was evaluated through semi-continuous tests carried out at organic loading rates in the range of 1-3.7 kg VS/m(3)d. Although the thermal pretreatment at T=134 °C proved to be effective in solubilizing organic matter, no significant gain in organics degradation was observed. However, the digestion of pretreated sludge showed significant soluble COD removal (more than 55%) whereas no removal occurred in control reactors. The lower the initial sludge biodegradability, the higher the efficiency of thermal pretreated digestion was observed, in particular as regards higher biogas and methane production rates with respect to the parallel untreated sludge digestion. Heat balance of the combined thermal hydrolysis/thermophilic digestion process, applied on full-scale scenarios, showed positive values for direct combustion of methane. In case of combined heat and power generation, attractive electric energy recoveries were obtained, with a positive heat balance at high load. Copyright © 2013. Published by Elsevier Ltd.

  12. Biotransformation of arsenic species by activated sludge and removal of bio-oxidised arsenate from wastewater by coagulation with ferric chloride.

    PubMed

    Andrianisa, Harinaivo Anderson; Ito, Ayumi; Sasaki, Atsushi; Aizawa, Jiro; Umita, Teruyuki

    2008-12-01

    The potential of activated sludge to catalyse bio-oxidation of arsenite [As(III)] to arsenate [As(V)] and bio-reduction of As(V) to As(III) was investigated. In batch experiments (pH 7, 25 degrees C) using activated sludge taken from a treatment plant receiving municipal wastewater non-contaminated with As, As(III) and As(V) were rapidly biotransformed to As(V) under aerobic condition and As(III) under anaerobic one without acclimatisation, respectively. Sub-culture of the activated sludge using a minimal liquid medium containing 100mg As(III)/L and no organic carbon source showed that aerobic arsenic-resistant bacteria were present in the activated sludge and one of the isolated bacteria was able to chemoautotrophically oxidise As(III) to As(V). Analysis of arsenic species in a full-scale oxidation ditch plant receiving As-contaminated wastewater revealed that both As(III) and As(V) were present in the influent, As(III) was almost completely oxidised to As(V) after supply of oxygen by the aerator in the oxidation ditch, As(V) oxidised was reduced to As(III) in the anaerobic zone in the ditch and in the return sludge pipe, and As(V) was the dominant species in the effluent. Furthermore, co-precipitation of As(V) bio-oxidised by activated sludge in the plant with ferric hydroxide was assessed by jar tests. It was shown that the addition of ferric chloride to mixed liquor as well as effluent achieved high removal efficiencies (>95%) of As and could decrease the residual total As concentrations in the supernatant from about 200 microg/L to less than 5 microg/L. It was concluded that a treatment process combining bio-oxidation with activated sludge and coagulation with ferric chloride could be applied as an alternative technology to treat As-contaminated wastewater.

  13. Enhancement of activated sludge disintegration and dewaterability by Fenton process

    NASA Astrophysics Data System (ADS)

    Heng, G. C.; Isa, M. H.

    2016-06-01

    Municipal and industrial wastewater treatment plants produce large amounts of sludge. This excess sludge is an inevitable drawback inherent to the activated sludge process. In this study, the waste activated sludge was obtained from the campus wastewater treatment plant at Universiti Teknologi PETRONAS (UTP), Malaysia. Fenton pretreatment was optimized by using the response surface methodology (RSM) to study the effects of three operating conditions including the dosage of H2O2 (g H2O2/kg TS), the molar ratio of H2O2/Fe2+ and reaction time. The optimum operating variables to achieve MLVSS removal 65%, CST reduction 28%, sCOD 11000 mg/L and EPS 500 mg/L were: 1000 g H2O2/kg TS, H2O2/Fe2+ molar ratio 70 and reaction time 45 min. Fenton process was proved to be able to enhance the sludge disintegration and dewaterability.

  14. Effect of activated sludge culture conditions on Waxberry wastewater

    NASA Astrophysics Data System (ADS)

    Shi, Liang; He, Lingfeng; Zhang, Yongli

    2018-03-01

    Treated activated sludge is suitable for the treatment of wastewater. Biochemical method is used to treat the wastewater, and the influence of time on the COD index is investigated. The results showed that time had a significant effect on COD, and then affected the performance of activated sludge. Under different time, according to the order of time from short to long, COD decreases in turn. Under the action of activated sludge, the degradation of myrica rubra wastewater samples, after 25 h aeration for 96 h, the effect is better. Under this condition, the COD value was reduced at 72 mg/L, and the COD removal efficiency of myrica rubra wastewater was up to 93.39 %, and reached the two level discharge standard of municipal wastewater treatment.

  15. The effect of landfill leachate composition on organics and nitrogen removal in an activated sludge system with bentonite additive.

    PubMed

    Wiszniowski, J; Surmacz-Górska, J; Robert, D; Weber, J-V

    2007-10-01

    A pre-denitrification activated sludge system (AS) without internal recycle was used in lab-scale studies of landfill leachate treatment. A bentonite supplement at a ratio of 1:4 (mineral : biomass) was used to ensure high sludge settling levels and to serve as a micro-organisms carrier. The system was operated within different parameters such as hydraulic retention time (HRT), ammonia loading rate (ALR) or external recycle ratio, which was adapted to treat varying leachate concentrations of COD and ammonia, ranging from 1020 to 2680 mgO(2)l(-1) and 400-890 mgNH(4)-Nl(-1) respectively. The nitrification was complete and ammonia oxidation reached 99%; this was obtained while the ALR did not exceed 0.09 g NH(4)(+)-Ng(-1)MLVSS d(-1) and HRT was not lower than 1 day (in the aeration reactor). The performance of denitrification was successfully improved by controlling the external recycle rate, when the BOD(5)/N ratio in the raw leachate was 4.1. Consequently, N-removal of up to 80% was achieved. A 10-fold decrease in the denitrification rate was obtained at a BOD(5)/N ratio of 0.5. The efficiency of COD removal varied significantly from 36% to 84%. The positive effect of bentonite addition was determined and is discussed based on preliminary studies. The experiments were carried out in fill-and-draw activated sludge with bentonite; the biomass ratio was 1:2. The activated sludge with bentonite was fed with a synthetic high ammonia and organic-free medium.

  16. Model evaluation of temperature dependency for carbon and nitrogen removal in a full-scale activated sludge plant treating leather-tanning wastewater.

    PubMed

    Görgün, Erdem; Insel, Güçlü; Artan, Nazik; Orhon, Derin

    2007-05-01

    Organic carbon and nitrogen removal performance of a full-scale activated sludge plant treating pre-settled leather tanning wastewater was evaluated under dynamic process temperatures. Emphasis was placed upon observed nitrogen removal depicting a highly variable magnitude with changing process temperatures. As the plant was not specifically designed for this purpose, observed nitrogen removal could be largely attributed to simultaneous nitrification and denitrification presumably occurring at increased process temperatures (T>25 degrees C) and resulting low dissolved oxygen levels (DO<0.5 mgO2/L). Model evaluation using long-term data revealed that the yearly performance of activated sludge reactor could be successfully calibrated by means of temperature dependent parameters associated with nitrification, hydrolysis, ammonification and endogenous decay parameters. In this context, the Arrhenius coefficients of (i) for the maximum autotrophic growth rate, [image omitted]A, (ii) maximum hydrolysis rate, khs and (iii) endogenous heterotrophic decay rate, bH were found to be 1.045, 1.070 and 1.035, respectively. The ammonification rate (ka) defining the degradation of soluble organic nitrogen could not be characterized however via an Arrhenius-type equation.

  17. Comparison of bacteriophage and enteric virus removal in pilot scale activated sludge plants.

    PubMed

    Arraj, A; Bohatier, J; Laveran, H; Traore, O

    2005-01-01

    The aim of this experimental study was to determine comparatively the removal of two types of bacteriophages, a somatic coliphage and an F-specific RNA phage and of three types of enteric viruses, hepatitis A virus (HAV), poliovirus and rotavirus during sewage treatment by activated sludge using laboratory pilot plants. The cultivable simian rotavirus SA11, the HAV HM 175/18f cytopathic strain and poliovirus were quantified by cell culture. The bacteriophages were quantified by plaque formation on the host bacterium in agar medium. In each experiment, two pilots simulating full-scale activated sludge plants were inoculated with viruses at known concentrations, and mixed liquor and effluent samples were analysed regularly. In the mixed liquor, liquid and solid fractions were analysed separately. The viral behaviour in both the liquid and solid phases was similar between pilots of each experiment. Viral concentrations decreased rapidly following viral injection in the pilots. Ten minutes after the injections, viral concentrations in the liquid phase had decreased from 1.0 +/- 0.4 log to 2.2 +/- 0.3 log. Poliovirus and HAV were predominantly adsorbed on the solid matters of the mixed liquor while rotavirus was not detectable in the solid phase. In our model, the estimated mean log viral reductions after 3-day experiment were 9.2 +/- 0.4 for rotavirus, 6.6 +/- 2.4 for poliovirus, 5.9 +/- 3.5 for HAV, 3.2 +/- 1.2 for MS2 and 2.3 +/- 0.5 for PhiX174. This study demonstrates that the pilots are useful models to assess the removal of infectious enteric viruses and bacteriophages by activated sludge treatment. Our results show the efficacy of the activated sludge treatment on the five viruses and suggest that coliphages could be an acceptable indicator of viral removal in this treatment system.

  18. A novel membrane bioreactor inoculated with symbiotic sludge bacteria and algae: Performance and microbial community analysis.

    PubMed

    Sun, Li; Tian, Yu; Zhang, Jun; Li, Lipin; Zhang, Jian; Li, Jianzheng

    2018-03-01

    This study combined sludge MBR technology with algae to establish an effective wastewater treatment and low membrane fouling system (ASB-MBR). Compared with control-MBR (C-MBR), the amelioration of microbial activity and the improvement of sludge properties and system environment were achieved after introducing algae resulting in high nutrients removal in the combined system. Further statistical analysis revealed that the symbiosis of algae and sludge displayed more remarkable impacts on nutrients removal than either of them. Additionally, membrane permeability was improved in ASB-MBR with respect to the decreased concentration, the changed of characteristics and the broken particular functional groups of extracellular polymeric substances (EPSs). Moreover, the algae inoculation reduced sludge diversity and shifted sludge community structure. Meantime, the stimulated bacteria selectively excite algal members that would benefit for the formation of algal-bacterial consortia. Consequently, the stimulated or inhibited of some species might be responsible for the performance of ASB-MBR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Biochar Production from Domestic Sludge: A Cost-effective, Recycled Product for Removal of Amoxicillin in Wastewater

    NASA Astrophysics Data System (ADS)

    Arun, Sija; Kothari, Kaushal; Mazumdar, Debayan; Mukhopadhyay, Moitraiyee; Chakraborty, Paromita

    2017-08-01

    Due to the broad spectrum, antimicrobial activity, Amoxicillin is one of the extensively used antibiotics. Amoxicillin ends up in the wastewater stream by direct or indirect disposal pathways which ultimately affect the aquatic ecosystem. Conventional wastewater treatment plant cannot remove it completely. Hence our objective was to produce sludge derived biochar and use it as an adsorbent for removal of amoxicillin. Effective biochar was obtained at 300°C produced from the sludge of the domestic wastewater treatment plant. 100 ppm amoxicillin solution spiked in biochar was kept for 180 mins in an orbital shaker and every 30 minutes the filtrate was checked in UV spectrophotometer. A steady decreasing gradient was obtained for absorbance of amoxicillin after 30 minutes. Further scanning electron microscopy showed significant morphological change in biochar obtained before and after spiking amoxicillin. Our preliminary assessment suggests that biochar can be exploited as an effective treatment technique to remove amoxicillin from wastewater. Moreover, we suggest that utilization of domestic sludge for commercial application in treatment plants can reduce the load of domestic waste in the open dumpsites.

  20. Pollutant removal characteristics of a two-influent-line BNR process performing denitrifying phosphorus removal: role of sludge recycling ratios.

    PubMed

    Liu, Hongbo; Leng, Feng; Chen, Piao; Kueppers, Stephan

    2016-11-01

    This paper studied denitrifying phosphorus removal of a novel two-line biological nutrient removal process treating low strength domestic wastewater under different sludge recycling ratios. Mass balance of intracellular compounds including polyhydroxyvalerate, polyhydroxybutyrate and glycogen was investigated together with total nitrogen (TN) and total phosphorus (TP). Results showed that sludge recycling ratios had a significant influence on the use of organics along bioreactors and 73.6% of the average removal efficiency was obtained when the influent chemical oxygen demand (COD) ranged from 175.9 mgL -1 to 189.9 mgL -1 . The process performed better under a sludge recycling ratio of 100% compared to 25% and 50% in terms of ammonia and COD removal rates. Overall, TN removal efficiency for 50% and 100% sludge recycling ratios were 56.4% and 61.9%, respectively, unlike the big gap for carbon utilization and the TP removal rates, indicating that the effect of sludge recycling ratio on the anaerobic compartments had been counteracted by change in the efficiency of other compartments. The higher ratio of sludge recycling was conducive to the removal of TN, not in favor of TP, and less influence on COD. Thus, 25% was considered to be the optimal sludge recycling ratio.

  1. Denitrification of nitrate-contaminated groundwater using a simple immobilized activated sludge bioreactor.

    PubMed

    Ye, Zhengfang; Wang, Feng; Bi, Haitao; Wang, Zhongyou; Liu, Guo-hua

    2012-01-01

    A simple anaerobic-activated sludge system, in which microorganisms are immobilized by a novel functional carrier, was used for removing nitrate in groundwater. The operating conditions, including hydraulic retention time (HRT), C/N ratio, temperature and NO(3)(-)-N loading concentration were investigated. The NO(3)(-)-N concentration, residual chemical oxygen demand (COD) and nitrite accumulation were used as indicators to assess the water quality of the effluent. The anaerobic biomass loading capacity in the carrier was 12.8 g/L and the denitrifying Pseudomonas sp. and Rhodocyclaceae bacterium were dominant among the immobilized microorganisms in the anaerobic-activated sludge. Under operating conditions of HRT= 1.5 h, C/N= 2-3 and T= 16.8-20 °C, the removal efficiency of NO(3)(-)-N exceeded 93%, corresponding to a relatively high denitrification rate of 0.73 kg NO(3)(-)-N m(-3) d(-1), when the NO(3)(-)-N loading concentration was 50 mg/L. The NO(3)(-)-N concentration of the effluent always met regulatory criteria for drinking water (<10 mg/L) in the main developed and developing countries. The effluent COD was also below 10 mg/L. Although some nitrite accumulated (0-1.77 mg/L) during the operating period, it can be decreased through adjusting the operating pH and HRT. The immobilized activated sludge system may be useful for the removal of nitrate from groundwater.

  2. An integrated AMBBR and IFAS-SBR process for municipal wastewater treatment towards enhanced energy recovery, reduced energy consumption and sludge production.

    PubMed

    Gu, Jun; Xu, Guangjing; Liu, Yu

    2017-03-01

    The conventional activated sludge (CAS) process has been widely employed for wastewater treatment for more than one hundred years. Recently, more and more concerns have been raised on the CAS process due to its high energy consumption and production of huge amount of waste activated sludge, which are inevitably linked to the issue of environmental sustainability and global climate change. Facing to such emerging and challenging situation, this study reported a novel A-B process in which an anaerobic moving bed biofilm reactor (AMBBR) served a lead A-stage for COD capture towards biogas production and an integrated fixed-biofilm and activated sludge sequencing batch reactor (IFAS-SBR) was employed as B-stage for biological nitrogen removal. Results showed that about 85% of wastewater COD was removed in the steady-state AMBBR with a total energy production rate of 0.28 kWh/m 3 wastewater treated, while 85% of N-removal was achieved when the stable nitrite shunt was established in the IFAS-SBR. Moreover, 90% of dissolved methane in the AMBBR effluent could be removed by the proposed flash chamber at the lower energy demand of 0.12 kWh/m 3 which could be offset by the potential energy harvested from produced methane. Compared to the CAS process, the production of waste sludge was reduced by about 75% in the proposed A-B process due to the efficient COD capture at the A-stage, leading to significant energy savings from aeration for COD oxidation and post-treatment of waste sludge at the B-stage. Consequently, this study offers in-depth insights into A-B process which should be considered as an ideal candidate for achieving the energy-neutral or even energy positive operation of a municipal wastewater treatment. Given the complex situation in A-B process, future study is needed to look into the system optimization towards the operational synergy between A- and B-stage in terms of energy recovery and nitrogen removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Carbon mass balance and microbial ecology in a laboratory scale reactor achieving simultaneous sludge reduction and nutrient removal.

    PubMed

    Huang, Pei; Li, Liang; Kotay, Shireen Meher; Goel, Ramesh

    2014-04-15

    Solids reduction in activated sludge processes (ASP) at source using process manipulation has been researched widely over the last two-decades. However, the absence of nutrient removal component, lack of understanding on the organic carbon, and limited information on key microbial community in solids minimizing ASP preclude the widespread acceptance of sludge minimizing processes. In this manuscript, we report simultaneous solids reduction through anaerobiosis along with nitrogen and phosphorus removals. The manuscript also reports carbon mass balance using stable isotope of carbon, microbial ecology of nitrifiers and polyphosphate accumulating organisms (PAOs). Two laboratory scale reactors were operated in anaerobic-aerobic-anoxic (A(2)O) mode. One reactor was run in the standard mode (hereafter called the control-SBR) simulating conventional A(2)O type of activated sludge process and the second reactor was run in the sludge minimizing mode (called the modified-SBR). Unlike other research efforts where the sludge minimizing reactor was maintained at nearly infinite solids retention time (SRT). To sustain the efficient nutrient removal, the modified-SBR in this research was operated at a very small solids yield rather than at infinite SRT. Both reactors showed consistent NH3-N, phosphorus and COD removals over a period of 263 days. Both reactors also showed active denitrification during the anoxic phase even if there was no organic carbon source available during this phase, suggesting the presence of denitrifying PAOs (DNPAOs). The observed solids yield in the modified-SBR was 60% less than the observed solids yield in the control-SBR. Specific oxygen uptake rate (SOUR) for the modified-SBR was almost 44% more than the control-SBR under identical feeding conditions, but was nearly the same for both reactors under fasting conditions. The modified-SBR showed greater diversity of ammonia oxidizing bacteria and PAOs compared to the control-SBR. The diversity of PAOs in the modified-SBR was even more interesting in which case novel clades of Candidatus Accumulibacter phosphatis (CAP), an uncultured but widely found PAOs, were found. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Coagulation efficiency and flocs characteristics of recycling sludge during treatment of low temperature and micro-polluted water.

    PubMed

    Zhou, Zhiwei; Yang, Yanling; Li, Xing; Gao, Wei; Liang, Heng; Li, Guibai

    2012-01-01

    Drinking water treatment sludge, characterized as accumulated suspended solids and organic and inorganic matter, is produced in large quantities during the coagulation process. The proper disposal, regeneration or reuse of sludge is, therefore, a significant environmental issue. Reused sludge at low temperatures is an alternative method to enhance traditional coagulation efficiency. In the present study, the recycling mass of mixed sludge and properties of raw water (such as pH and turbidity) were systematically investigated to optimize coagulation efficiency. We determined that the appropriate dosage of mixed sludge was 60 mL/L, effective initial turbidity ranges were below 45.0 NTU, and optimal pH for DOMs and turbidity removal was 6.5-7.0 and 8.0, respectively. Furthermore, by comparing the flocs characteristics with and without recycling sludge, we found that floc structures with sludge were more irregular with average size growth to 64.7 microm from 48.1 microm. Recycling sludge was a feasible and successful method for enhancing pollutants removal, and the more irregular flocs structure after recycling might be caused by breakage of reused flocs and incorporation of powdered activated carbon into larger flocs structure. Applied during the coagulation process, recycling sludge could be significant for the treatment of low temperature and micro-polluted source water.

  5. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system.

    PubMed

    Kheradmand, S; Karimi-Jashni, A; Sartaj, M

    2010-06-01

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25g COD/L/d and 93% at loading rate of 3.37g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD(rem) for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kheradmand, S.; Karimi-Jashni, A., E-mail: akarimi@shirazu.ac.i; Sartaj, M.

    2010-06-15

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d.more » The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD{sub rem} for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.« less

  7. Effects of dissolved oxygen on performance and microbial community structure in a micro-aerobic hydrolysis sludge in situ reduction process.

    PubMed

    Niu, Tianhao; Zhou, Zhen; Shen, Xuelian; Qiao, Weimin; Jiang, Lu-Man; Pan, Wei; Zhou, Jijun

    2016-03-01

    A sludge process reduction activated sludge (SPRAS), with a sludge process reduction module composed of a micro-aerobic tank and a settler positioned before conventional activated sludge process, showed good performance of pollutant removal and sludge reduction. Two SPRAS systems were operated to investigate effects of micro-aeration on sludge reduction performance and microbial community structure. When dissolved oxygen (DO) concentration in the micro-aerobic tank decreased from 2.5 (SPH) to 0.5 (SPL) mg/L, the sludge reduction efficiency increased from 42.9% to 68.3%. Compared to SPH, activated sludge in SPL showed higher contents of extracellular polymeric substances and dissolved organic matter. Destabilization of floc structure in the settler, and cell lysis in the sludge process reduction module were two major reasons for sludge reduction. Illumina-MiSeq sequencing showed that microbial diversity decreased under high DO concentration. Proteobacteria, Bacteroidetes and Chloroflexi were the most abundant phyla in the SPRAS. Specific comparisons down to the class and genus level showed that fermentative, predatory and slow-growing bacteria in SPL community were more abundant than in SPH. The results revealed that micro-aeration in the SPRAS improved hydrolysis efficiency and enriched fermentative and predatory bacteria responsible for sludge reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effect of chemical treatment on the acute toxicity of two commercial textile dye carriers.

    PubMed

    Arsian-Alaton, I; Iskender, G; Ozerkan, B; Germirli Babuna, F; Okay, O

    2007-01-01

    In the present experimental study, the effect of chemical treatment (coagulation-flocculation) on the acute toxicity exerted by two commercial dye carriers (called Carrier A and B herein) often used in the textile industry was investigated. Two different test organisms were selected to elucidate the situations in activated sludge treatment systems (activated sludge microorganisms) as well as in receiving water bodies (ultimate marine discharge). According to the results of a comprehensive analysis covering COD removal efficiencies, sludge settling characteristics and operating costs involved in coagulation-flocculation, the optimum treatment conditions were defined as follows; application of 750 mg/L ferrous sulphate at a pH of 9.0 for Carrier A; and application of 550 mg/L ferrous sulphate at a pH of 9.0 for Carrier B. The acute toxicities of both dye carriers towards marine microalgea Phaeodactylum tricornutum could be reduced significantly after being subjected to coagulation-flocculation. Fair toxicity removals (towards heterotrophic mixed bacterial culture accommodated in activated sludge treatment) were obtained with coagulation-flocculation for both of the carriers under investigation.

  9. Mass balance analysis of triclosan, diethyltoluamide, crotamiton and carbamazepine in sewage treatment plants.

    PubMed

    Nakada, N; Yasojima, M; Okayasu, Y; Komori, K; Suzuki, Y

    2010-01-01

    The behavior of antibacterial triclosan, insect-repellent diethyltoluamide (DEET), anticonvulsant carbamazepine, and antipruritic crotamiton was investigated at two sewage treatment plants (STPs) to clarify their complete mass balance. Twenty-four-hour flow-proportional composite samples were collected from the influent and effluent of primary and final sedimentation tanks, a biofiltration tank and disinfection tanks. Sludge samples (i.e., activated and excess sludge) and samples of the return flow from the sludge treatment process were collected in the same manner. The analytes in both the dissolved and particulate phases were individually determined by a gas chromatograph equipped with mass spectrometer. Triclosan was dominantly detected in the particulate phase especially in the early stage of treatment (up to 83%) and was efficiently removed (over 90%) in STPs, mainly by sorption to sewage sludge. Limited removal was observed for DEET (55+/-24%), while no significant removal was demonstrated for crotamiton or carbamazepine. The solid-water distribution coefficients (K(d), n=4) for triclosan (log K(d): 3.7-5.1), DEET (1.3-1.9) and crotamiton (1.1-1.6) in the sludge samples are also determined in this study. These findings indicate the limitations of current sewage treatment techniques for the removal of these water-soluble drugs (i.e. DEET, carbamazepine, and crotamiton).

  10. Control of Cryptosporidium with wastewater treatment to prevent its proliferation in the water cycle.

    PubMed

    Suwa, M; Suzuki, Y

    2003-01-01

    The outbreak of Cryptosporidiosis in 1996 in Japan is thought to have been enlarged by the proliferation of Cryptosporidium in the water cycle from wastewater to drinking water through the river system. From this experience, the wastewater system must have functions to remove Cryptosporidium oocysts effectively. Efficiencies of wastewater treatment processes to remove oocysts were investigated using pilot plants receiving municipal wastewater. An activated sludge process and a following sand filter showed removal efficiencies of 2 log and 0.5 log, respectively. Poly-aluminium chloride dosage improved the efficiencies by 3 log for the activated sludge process and by 2 log for the sand filter. Chemical precipitation of raw wastewater with poly-aluminium chloride could achieve 1 to 3 log removal according on the coagulant concentration.

  11. Evaluating the efficiency of carbon utilisation via bioenergetics between biological aerobic and denitrifying phosphorus removal systems

    PubMed Central

    Jin, Zhan; He, Yin; Xu, Xuan; Zheng, Xiang-yong

    2017-01-01

    There are two biological systems available for removing phosphorus from waste water, conventional phosphorus removal (CPR) and denitrifying phosphorus removal (DPR) systems, and each is characterized by the type of sludge used in the process. In this study, we compared the characteristics associated with the efficiency of carbon utilization between CPR and DPR sludge using acetate as a carbon source. For DPR sludge, the heat emitted during the phosphorus release and phosphorus uptake processes were 45.79 kJ/mol e- and 84.09 kJ/mol e-, respectively. These values were about 2 fold higher than the corresponding values obtained for CPR sludge, suggesting that much of the energy obtained from the carbon source was emitted as heat. Further study revealed a smaller microbial mass within the DPR sludge compared to CPR sludge, as shown by a lower sludge yield coefficient (0.05 gVSS/g COD versus 0.36 gVSS/g COD), a result that was due to the lower energy capturing efficiency of DPR sludge according to bioenergetic analysis. Although the efficiency of anoxic phosphorus removal was only 39% the efficiency of aerobic phosphorus removal, the consumption of carbon by DPR sludge was reduced by 27.8% compared to CPR sludge through the coupling of denitrification with dephosphatation. PMID:29065157

  12. Potential for enhancement of aerobic biological removal of recalcitrant organic matter in bleached pulp mill effluents.

    PubMed

    Mounteer, A H; Souza, L C; Silva, C M

    2007-02-01

    Increasingly stringent effluent quality limits for bleached kraft pulp mills pose a great challenge to mill wastewater system managers since these limits can require levels of chemical oxygen demand (COD) removal efficiency rarely reported for biological treatment of these types of effluents. The present study was therefore undertaken to better understand the nature of recalcitrant COD in bleached kraft pulp effluents that persists through the biological treatment system. Bleaching effluents from a Brazilian eucalypt bleached kraft pulp mill were collected and treated in a bench-scale sequencing batch reactor. Organic matter in raw and treated effluents was characterized before and after separation into low and high molecular mass fractions. Biological treatment removed 71% of the COD, with 83% removal of the low molecular mass COD but only 36% removal of the high molecular mass COD. Microorganisms capable of degrading the recalcitrant COD were isolated from enrichment cultures of the original activated sludge fed on fractions of the bleaching effluent that presented low biodegradabilities. Use of a microbial consortium composed of ten of these isolates to treat the biologically treated effluent removed a further 12% of the effluent COD, all from the high molecular mass fraction. Results of this research indicate that microorganisms with potential for degrading recalcitrant COD are present in activated sludge, but that these are not metabolically active during normal activated sludge treatment of mill effluents. The use of biological selectors in the treatment system to promote growth of such microorganisms may enhance removal of recalcitrant organic matter.

  13. Removal of native coliphages and coliform bacteria from municipal wastewater by various wastewater treatment processes: implications to water reuse.

    PubMed

    Zhang, K; Farahbakhsh, K

    2007-06-01

    The efficacy of a conventional activated sludge wastewater treatment process and the membrane bioreactor technology in removing microbial pathogens was investigated. Total and fecal coliforms and somatic and F-specific coliphages were used as indicators of pathogenic bacteria and viruses. Up to 5.7 logs removal of coliforms and 5.5 logs of coliphages were observed in the conventional treatment process with advanced tertiary treatment. Addition of chemical coagulants seemed to improve the efficacy of primary and secondary treatment for microorganism removal. Complete removal of fecal coliforms and up to 5.8 logs removal of coliphages was observed in the MBR system. It was shown that the MBR system was capable of high removal of coliphages despite the variation in feed coliphage concentrations. The results of this study indicated that the MBR system can achieve better microbial removal in far fewer steps than the conventional activated sludge process with advanced tertiary treatment. The final effluent from either treatment processes can be potentially reused.

  14. Fate and occurrence of alkylphenolic compounds in sewage sludges determined by liquid chromatography tandem mass spectrometry.

    PubMed

    Koh, Y K K; Chiu, T Y; Paterakis, N; Boobis, A; Scrimshawe, M D; Lester, J N; Cartmell, E

    2009-12-01

    An analytical method has been developed and applied to determine the concentrations of the nonionic alkylphenol polyethoxylate surfactants and their metabolites, alkylphenoxy carboxylates and alkyphenols, in sewage sludges. The compounds were extracted with methanol/acetone (1:1 v/v) from sludge, and concentrated extracts were cleaned by silica solid-phase extraction prior to determination by liquid chromatography tandem mass spectrometry. The recoveries, determined by spiking sewage sludge at two concentrations, ranged from 51% to 89% with method detection limits from 6 microg kg(-1) to 60 microg kg(-1). The methodology was subsequently applied to sludge samples obtained from a carbonaceous activated sludge plant, a nitrifying/denitrifying activated sludge plant and a nitrifying/ denitrifying activated sludge plant with phosphorus removal. Concentrations of nonylphenolic compounds were two to three times higher than their octyl analogues. Long-chain nonylphenol polyethoxylates (NP3-12EO) ranged from 16 microg kg(-1) to 11754 microg kg(-1). The estrogenic metabolite nonylphenol was present at concentrations ranging from 33 microg kg(-1) to 6696 microg kg(-1).

  15. Evaluation Of Sludge Heel Dissolution Efficiency With Oxalic Acid Cleaning At Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudduth, Christie; Vitali, Jason; Keefer, Mark

    The chemical cleaning process baseline strategy at the Savannah River Site was revised to improve efficiency during future execution of the process based on lessons learned during previous bulk oxalic acid cleaning activities and to account for operational constraints imposed by safety basis requirements. These improvements were also intended to transcend the difficulties that arise from waste removal in higher rheological yield stress sludge tanks. Tank 12 implemented this improved strategy and the bulk oxalic acid cleaning efforts concluded in July 2013. The Tank 12 radiological removal results were similar to previous bulk oxalic acid cleaning campaigns despite the factmore » that Tank 12 contained higher rheological yield stress sludge that would make removal more difficult than the sludge treated in previous cleaning campaigns. No appreciable oxalate precipitation occurred during the cleaning process in Tank 12 compared to previous campaigns, which aided in the net volume reduction of 75-80%. Overall, the controls established for Tank 12 provide a template for an improved cleaning process.« less

  16. K basins sludge removal sludge pretreatment system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, H.L.

    1997-06-12

    The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task formore » this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08.« less

  17. [Formation Mechanism of Aerobic Granular Sludge and Removal Efficiencies in Integrated ABR-CSTR Reactor].

    PubMed

    Wu, Kai-cheng; Wu, Peng; Xu, Yue-zhong; Li, Yue-han; Shen, Yao-liang

    2015-08-01

    Anaerobic Baffled Reactor (ABR) was altered to make an integrated anaerobic-aerobic reactor. The research investigated the mechanism of aerobic sludge granulation, under the condition of continuous-flow. The last two compartments of the ABR were altered into aeration tank and sedimentation tank respectively with seeded sludge of anaerobic granular sludge in anaerobic zone and conventional activated sludge in aerobic zone. The HRT was gradually decreased in sedimentation tank from 2.0 h to 0.75 h and organic loading rate was increased from 1.5 kg x (M3 x d)(-1) to 2.0 kg x (M3 x d)(-1) while the C/N of 2 was controlled in aerobic zone. When the system operated for 110 days, the mature granular sludge in aerobic zone were characterized by compact structure, excellent sedimentation performance (average sedimentation rate was 20.8 m x h(-1)) and slight yellow color. The system performed well in nitrogen and phosphorus removal under the conditions of setting time of 0.75 h and organic loading rate of 2.0 kg (m3 x d)(-1) in aerobic zone, the removal efficiencies of COD, NH4+ -N, TP and TN were 90%, 80%, 65% and 45%, respectively. The results showed that the increasing selection pressure and the high organic loading rate were the main propulsions of the aerobic sludge granulation.

  18. Nitrite addition to acidified sludge significantly improves digestibility, toxic metal removal, dewaterability and pathogen reduction

    NASA Astrophysics Data System (ADS)

    Du, Fangzhou; Keller, Jürg; Yuan, Zhiguo; Batstone, Damien J.; Freguia, Stefano; Pikaar, Ilje

    2016-12-01

    Sludge management is a major issue for water utilities globally. Poor digestibility and dewaterability are the main factors determining the cost for sludge management, whereas pathogen and toxic metal concentrations limit beneficial reuse. In this study, the effects of low level nitrite addition to acidified sludge to simultaneously enhance digestibility, toxic metal removal, dewaterability and pathogen reduction were investigated. Waste activated sludge (WAS) from a full-scale waste water treatment plant was treated at pH 2 with 10 mg NO2--N/L for 5 h. Biochemical methane potential tests showed an increase in the methane production of 28%, corresponding to an improvement from 247 ± 8 L CH4/kg VS to 317 ± 1 L CH4/kg VS. The enhanced removal of toxic metals further increased the methane production by another 18% to 360 ± 6 L CH4/kg VS (a total increase of 46%). The solids content of dewatered sludge increased from 14.6 ± 1.4% in the control to 18.2 ± 0.8%. A 4-log reduction for both total coliforms and E. coli was achieved. Overall, this study highlights the potential of acidification with low level nitrite addition as an effective and simple method achieving multiple improvements in terms of sludge management.

  19. Nitrite addition to acidified sludge significantly improves digestibility, toxic metal removal, dewaterability and pathogen reduction

    PubMed Central

    Du, Fangzhou; Keller, Jürg; Yuan, Zhiguo; Batstone, Damien J.; Freguia, Stefano; Pikaar, Ilje

    2016-01-01

    Sludge management is a major issue for water utilities globally. Poor digestibility and dewaterability are the main factors determining the cost for sludge management, whereas pathogen and toxic metal concentrations limit beneficial reuse. In this study, the effects of low level nitrite addition to acidified sludge to simultaneously enhance digestibility, toxic metal removal, dewaterability and pathogen reduction were investigated. Waste activated sludge (WAS) from a full-scale waste water treatment plant was treated at pH 2 with 10 mg NO2−-N/L for 5 h. Biochemical methane potential tests showed an increase in the methane production of 28%, corresponding to an improvement from 247 ± 8 L CH4/kg VS to 317 ± 1 L CH4/kg VS. The enhanced removal of toxic metals further increased the methane production by another 18% to 360 ± 6 L CH4/kg VS (a total increase of 46%). The solids content of dewatered sludge increased from 14.6 ± 1.4% in the control to 18.2 ± 0.8%. A 4-log reduction for both total coliforms and E. coli was achieved. Overall, this study highlights the potential of acidification with low level nitrite addition as an effective and simple method achieving multiple improvements in terms of sludge management. PMID:28004811

  20. Metabolic Factors Affecting Enhanced Phosphorus Uptake by Activated Sludge

    PubMed Central

    Boughton, William H.; Gottfried, Richard J.; Sinclair, Norval A.; Yall, Irving

    1971-01-01

    Activated sludges obtained from the Rilling Road plant located at San Antonio, Tex., and from the Hyperion treatment plant located at Los Angeles, Calif., have the ability to remove all of the orthophosphate normally present in Tucson sewage within 3 hr after being added to the waste water. Phosphorus removal was independent of externally supplied sources of energy and ions, since orthophosphate and 32P radioactivity were readily removed from tap water, glass-distilled water, and deionized water. Phosphorus uptake by Rilling sludge in the laboratory appears to be wholly biological, as it has an optimum pH range (7.7 to 9.7) and an optimum temperature range (24 to 37 C). It was inhibited by HgCl2, iodoacetic acid, p-chloromercuribenzoic acid, NaN3, and 2, 4-dinitrophenol (compounds that affect bacterial membrane permeability, sulfhydryl enzymes, and adenosine triphosphate synthesis). Uptake was inhibited by 1% NaCl but was not affected by 10−3m ethylenediaminetetraacetic acid disodium salt (a chelating agent for many metallic ions). PMID:5002140

  1. Priority and emerging pollutants in sewage sludge and fate during sludge treatment.

    PubMed

    Mailler, R; Gasperi, J; Chebbo, G; Rocher, V

    2014-07-01

    This paper aims at characterizing the quality of different treated sludges from Paris conurbation in terms of micropollutants and assessing their fate during different sludge treatment processes (STP). To achieve this, a large panel of priority and emerging pollutants (n=117) have been monitored in different STPs from Parisian wastewater treatment plants including anaerobic digestion, thermal drying, centrifugation and a sludge cake production unit. Considering the quality of treated sludges, comparable micropollutant patterns are found for the different sludges investigated (in mg/kg DM - dry matter). 35 compounds were detected in treated sludges. Some compounds (metals, organotins, alkylphenols, DEHP) are found in every kinds of sludge while pesticides or VOCs are never detected. Sludge cake is the most contaminated sludge, resulting from concentration phenomenon during different treatments. As regards treatments, both centrifugation and thermal drying have broadly no important impact on sludge contamination for metals and organic compounds, even if a slight removal seems to be possible with thermal drying for several compounds by abiotic transfers. Three different behaviors can be highlighted in anaerobic digestion: (i) no removal (metals), (ii) removal following dry matter (DM) elimination (organotins and NP) and iii) removal higher than DM (alkylphenols - except NP - BDE 209 and DEHP). Thus, this process allows a clear removal of biodegradable micropollutants which could be potentially significantly improved by increasing DM removal through operational parameters modifications (retention time, temperature, pre-treatment, etc.). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Improvement of sludge dewaterability and removal of sludge-borne metals by bioleaching at optimum pH.

    PubMed

    Liu, Fenwu; Zhou, Lixiang; Zhou, Jun; Song, Xingwei; Wang, Dianzhan

    2012-06-30

    Bio-acidification caused by bio-oxidation of energy substances during bioleaching is widely known to play an important role in improving sludge-borne metals removal. Here we report that bioleaching also drastically enhances sludge dewaterability in a suitable pH level. To obtain the optimum initial concentrations of energy substances and pH values for sludge dewaterability during bioleaching, bio-oxidation of Fe(2+) and S(0) under co-inoculation with Acidithiobacillus thiooxidans TS6 and Acidothiobacillus ferrooxidans LX5 and their effects on sludge dewaterability and metals removal during sludge bioleaching were investigated. Results indicated that the dosage of energy substances with 2g/L S(0) and 2g/L Fe(2+) could obtain bio-oxidation efficiencies of up to 100% for Fe(2+) and 50% for S(0) and were the optimal dosages for sludge bioleaching. The removal efficiencies of sludge-borne Cu and Cr could reach above 85% and 40%, respectively, and capillary suction time (CST) of bioleached sludge decreased to as low as ∼10s from initial 48.9s for fresh sludge when sludge pH declined to ∼2.4 through bioleaching. These results confirm the potential of bioleaching as a novel method for improving sludge dewaterability as well as removal of metals. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Comparison of natural estrogen removal efficiency in the conventional activated sludge process and the oxidation ditch process.

    PubMed

    Hashimoto, T; Onda, K; Nakamura, Y; Tada, K; Miya, A; Murakami, T

    2007-05-01

    The presence of natural estrogens, 17beta-estradiol (E2), estrone (E1) and estriol (E3), as well as estrogenic activity in wastewater influents and secondary effluents were investigated in 20 full-scale wastewater treatment plants in Japan. In all of the influent samples, natural estrogens were detected at concentrations above the minimum limits of detection (0.5ng/L). The concentrations of natural estrogens detected in the effluent of oxidation ditch plants were generally lower than previously reported values. On the other hand, in the conventional activated sludge plants, increments of E1 during biological treatment were frequently observed although E2 and E3 were removed effectively in the process. The removal rates of natural estrogens or estrogenic activity show no observed statistical relationship with the solids retention time (SRT) and the hydraulic retention time (HRT). However, the plants with high SRT or HRT generally showed high and stable removal of both natural estrogens and estrogenic activity.

  4. Carbon source recovery from excess sludge by mechanical disintegration for biological denitrification.

    PubMed

    Zubrowska-Sudol, M

    2018-04-01

    The goal of the study was to evaluate the possibility of carbon source recovery from excess sludge by mechanical disintegration for biological denitrification. The total efficiency of denitrification, unit demand for organic compounds for denitrification, unit volume of disintegrated sludge and unit cost of nitrogen removal as a function of energy density used for excess sludge disintegration (70, 140 and 210 kJ/L) were analyzed. In the study a full-scale disc disintegrator was used (motor power: 30 kWh, motor speed: 2,950 rpm). It was shown that the amounts of organic compounds released from the activated sludge flocs at all tested levels of energy density are high enough to be used to intensify the removal of nitrogen compounds from wastewater. It was also documented that the energy density provided during process of disintegration was an important factor determining the characteristics of organic compounds obtained under the disintegration for their use in order to intensify the process of denitrification. The highest value of total efficiency of denitrification (50.5 ± 3.1 mg N/L) was obtained for carbon source recovery from excess sludge at 70 kJ/L, but the lowest unit cost of nitrogen removal occurred for 140 kJ/L (0.0019 ± 0.0011 EUR/g N).

  5. Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor

    PubMed Central

    Guerrero-Barajas, Claudia; Ordaz, Alberto; García-Solares, Selene Montserrat; Garibay-Orijel, Claudio; Bastida-González, Fernando; Zárate-Segura, Paola Berenice

    2015-01-01

    The importance of microbial sulfate reduction relies on the various applications that it offers in environmental biotechnology. Engineered sulfate reduction is used in industrial wastewater treatment to remove large concentrations of sulfate along with the chemical oxygen demand (COD) and heavy metals. The most common approach to the process is with anaerobic bioreactors in which sulfidogenic sludge is obtained through adaptation of predominantly methanogenic granular sludge to sulfidogenesis. This process may take a long time and does not always eliminate the competition for substrate due to the presence of methanogens in the sludge. In this work, we propose a novel approach to obtain sulfidogenic sludge in which hydrothermal vents sediments are the original source of microorganisms. The microbial community developed in the presence of sulfate and volatile fatty acids is wide enough to sustain sulfate reduction over a long period of time without exhibiting inhibition due to sulfide. This protocol describes the procedure to generate the sludge from the sediments in an upflow anaerobic sludge blanket (UASB) type of reactor. Furthermore, the protocol presents the procedure to demonstrate the capability of the sludge to remove by reductive dechlorination a model of a highly toxic organic pollutant such as trichloroethylene (TCE). The protocol is divided in three stages: (1) the formation of the sludge and the determination of its sulfate reducing activity in the UASB, (2) the experiment to remove the TCE by the sludge, and (3) the identification of microorganisms in the sludge after the TCE reduction. Although in this case the sediments were taken from a site located in Mexico, the generation of a sulfidogenic sludge by using this procedure may work if a different source of sediments is taken since marine sediments are a natural pool of microorganisms that may be enriched in sulfate reducing bacteria. PMID:26555802

  6. Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor.

    PubMed

    Guerrero-Barajas, Claudia; Ordaz, Alberto; García-Solares, Selene Montserrat; Garibay-Orijel, Claudio; Bastida-González, Fernando; Zárate-Segura, Paola Berenice

    2015-10-15

    The importance of microbial sulfate reduction relies on the various applications that it offers in environmental biotechnology. Engineered sulfate reduction is used in industrial wastewater treatment to remove large concentrations of sulfate along with the chemical oxygen demand (COD) and heavy metals. The most common approach to the process is with anaerobic bioreactors in which sulfidogenic sludge is obtained through adaptation of predominantly methanogenic granular sludge to sulfidogenesis. This process may take a long time and does not always eliminate the competition for substrate due to the presence of methanogens in the sludge. In this work, we propose a novel approach to obtain sulfidogenic sludge in which hydrothermal vents sediments are the original source of microorganisms. The microbial community developed in the presence of sulfate and volatile fatty acids is wide enough to sustain sulfate reduction over a long period of time without exhibiting inhibition due to sulfide. This protocol describes the procedure to generate the sludge from the sediments in an upflow anaerobic sludge blanket (UASB) type of reactor. Furthermore, the protocol presents the procedure to demonstrate the capability of the sludge to remove by reductive dechlorination a model of a highly toxic organic pollutant such as trichloroethylene (TCE). The protocol is divided in three stages: (1) the formation of the sludge and the determination of its sulfate reducing activity in the UASB, (2) the experiment to remove the TCE by the sludge, and (3) the identification of microorganisms in the sludge after the TCE reduction. Although in this case the sediments were taken from a site located in Mexico, the generation of a sulfidogenic sludge by using this procedure may work if a different source of sediments is taken since marine sediments are a natural pool of microorganisms that may be enriched in sulfate reducing bacteria.

  7. Degradation of sulfamethazine in sewage sludge mixture by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Chu, Libing; Wang, Jianlong; Liu, Yuankun

    2015-03-01

    The gamma-irradiation-induced degradation of antibiotics sulfamethazine (SMT) in sludge mixture was investigated. The results showed that gamma irradiation was effective in removing SMT from contaminated sludge mixture. With an initial SMT concentration of 10 mg/L, the SMT removal efficiency reached 65% at 1.0 kGy and increased to 98% at 2.5 kGy. The SMT degradation rate was lower in the sludge mixture than that in pure water. The pseudo first-order kinetic constant of SMT degradation in pure water was 2.3 times higher than that in the sludge mixture. Analysis of the SMT concentrations in the supernatant and sludge residue revealed that 93-97% of SMT was observed in the supernatant and the detected SMT in the sludge residue was 168±29, 147±4, and 87±9 μg/g dry weight following irradiation at doses of 0, 1.0 and 2.5 kGy, respectively. The sludge solubilization slowly increased from 1.5% to 3.5% with increasing dose from 1.0 to 5.0 kGy, while the sludge activity decreased by 85-98%. Addition of H2O2 exhibited a synergetic effect on the degradation of SMT, with the pseudo first-order kinetic constant k increasing by around 25%.

  8. Biodegradation of pharmaceuticals in hospital wastewater by a hybrid biofilm and activated sludge system (Hybas).

    PubMed

    Escolà Casas, Mònica; Chhetri, Ravi Kumar; Ooi, Gordon; Hansen, Kamilla M S; Litty, Klaus; Christensson, Magnus; Kragelund, Caroline; Andersen, Henrik R; Bester, Kai

    2015-10-15

    Hospital wastewater contributes a significant input of pharmaceuticals into municipal wastewater. The combination of suspended activated sludge and biofilm processes, as stand-alone or as hybrid process (hybrid biofilm and activated sludge system (Hybas™)) has been suggested as a possible solution for hospital wastewater treatment. To investigate the potential of such a hybrid system for the removal of pharmaceuticals in hospital wastewater a pilot plant consisting of a series of one activated sludge reactor, two Hybas™ reactors and one moving bed biofilm reactor (MBBR) has been established and adapted during 10 months of continuous operation. After this adaption phase batch and continuous experiments were performed for the determination of degradation of pharmaceuticals. Removal of organic matter and nitrification mainly occurred in the first reactor. Most pharmaceuticals were removed significantly. The removal of pharmaceuticals (including X-ray contrast media, β-blockers, analgesics and antibiotics) was fitted to a single first-order kinetics degradation function, giving degradation rate constants from 0 to 1.49 h(-1), from 0 to 7.78 × 10(-1)h(-1), from 0 to 7.86 × 10(-1)h(-1) and from 0 to 1.07 × 10(-1)h(-1) for first, second, third and fourth reactors respectively. Generally, the highest removal rate constants were found in the first and third reactors while the lowest were found in the second one. When the removal rate constants were normalized to biomass amount, the last reactor (biofilm only) appeared to have the most effective biomass in respect to removing pharmaceuticals. In the batch experiment, out of 26 compounds, 16 were assessed to degrade more than 20% of the respective pharmaceutical within the Hybas™ train. In the continuous flow experiments, the measured removals were similar to those estimated from the batch experiments, but the concentrations of a few pharmaceuticals appeared to increase during the first treatment step. Such increase could be attributed to de-conjugation or formation from other metabolites. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Two strategies for phosphorus removal from reject water of municipal wastewater treatment plant using alum sludge.

    PubMed

    Yang, Y; Zhao, Y Q; Babatunde, A O; Kearney, P

    2009-01-01

    In view of the well recognized need of reject water treatment in MWWTP (municipal wastewater treatment plant), this paper outlines two strategies for P removal from reject water using alum sludge, which is produced as by-product in drinking water treatment plant when aluminium sulphate is used for flocculating raw waters. One strategy is the use of the alum sludge in liquid form for co-conditioning and dewatering with the anaerobically digested activated sludge in MWWTP. The other strategy involves the use of the dewatered alum sludge cakes in a fixed bed for P immobilization from the reject water that refers to the mixture of the supernatant of the sludge thickening process and the supernatant of the anaerobically digested sludge. Experimental trials have demonstrated that the alum sludge can efficiently reduce P level in reject water. The co-conditioning strategy could reduce P from 597-675 mg P/L to 0.14-3.20 mg P/L in the supernatant of the sewage sludge while the organic polymer dosage for the conditioning of the mixed sludges would also be significantly reduced. The second strategy of reject water filtration with alum sludge bed has shown a good performance of P reduction. The alum sludge has P-adsorption capacity of 31 mg-P/g-sludge, which was tested under filtration velocity of 1.0 m/h. The two strategies highlight the beneficial utilization of alum sludge in wastewater treatment process in MWWTP, thus converting the alum sludge as a useful material, rather than a waste for landfill.

  10. Similar PAH Fate in Anaerobic Digesters Inoculated with Three Microbial Communities Accumulating Either Volatile Fatty Acids or Methane

    PubMed Central

    Braun, Florence; Hamelin, Jérôme; Bonnafous, Anaïs; Delgenès, Nadine; Steyer, Jean-Philippe; Patureau, Dominique

    2015-01-01

    Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH). Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA) production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR), in community structure (SSCP fingerprinting) and in dominant microbial species (454-pyrosequencing). The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10 % to 30 %, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm that PAH removal depends on the molecule type and on the solid matter removal. But, as PAH elimination is similar whether the solid substrate is degraded into VFA or into methane, it seems that the fermentative communities are responsible for their elimination. PMID:25874750

  11. Similar PAH fate in anaerobic digesters inoculated with three microbial communities accumulating either volatile fatty acids or methane.

    PubMed

    Braun, Florence; Hamelin, Jérôme; Bonnafous, Anaïs; Delgenès, Nadine; Steyer, Jean-Philippe; Patureau, Dominique

    2015-01-01

    Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH). Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA) production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR), in community structure (SSCP fingerprinting) and in dominant microbial species (454-pyrosequencing). The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10% to 30%, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm that PAH removal depends on the molecule type and on the solid matter removal. But, as PAH elimination is similar whether the solid substrate is degraded into VFA or into methane, it seems that the fermentative communities are responsible for their elimination.

  12. Evaluation of activated sludge for biodegradation of propylene glycol as an aircraft deicing fluid.

    PubMed

    Delorit, Justin D; Racz, LeeAnn

    2014-04-01

    Aircraft deicing fluid used at airport facilities is often collected for treatment or disposal in order to prevent serious ecological threats to nearby surface waters. This study investigated lab scale degradation of propylene glycol, the active ingredient in a common aircraft deicing fluid, by way of a laboratory-scale sequencing batch reactor containing municipal waste water treatment facility activated sludge performing simultaneous organic carbon oxidation and nitrification. The ability of activated sludge to remove propylene glycol was evaluated by studying the biodegradation and sorption characteristics of propylene glycol in an activated sludge medium. The results indicate sorption may play a role in the fate of propylene glycol in AS, and the heterotrophic bacteria readily degrade this compound. Therefore, a field deployable bioreactor may be appropriate for use in flight line applications.

  13. Quantifying variability in removal efficiencies of chemicals in activated sludge wastewater treatment plants - a meta-analytical approach.

    PubMed

    Douziech, Mélanie; Conesa, Irene Rosique; Benítez-López, Ana; Franco, Antonio; Huijbregts, Mark; van Zelm, Rosalie

    2018-01-24

    Large variations in removal efficiencies (REs) of chemicals have been reported for monitoring studies of activated sludge wastewater treatment plants (WWTPs). In this work, we conducted a meta-analysis on REs (1539 data points) for a set of 209 chemicals consisting of fragrances, surfactants, and pharmaceuticals in order to assess the drivers of the variability relating to inherent properties of the chemicals and operational parameters of activated sludge WWTPs. For a reduced dataset (n = 542), we developed a mixed-effect model (meta-regression) to explore the observed variability in REs for the chemicals using three chemical specific factors and four WWTP-related parameters. The overall removal efficiency of the set of chemicals was 82.1% (95% CI 75.2-87.1%, N = 1539). Our model accounted for 17% of the total variability in REs, while the process-based model SimpleTreat did not perform better than the average of the measured REs. We identified that, after accounting for other factors potentially influencing RE, readily biodegradable compounds were better removed than non-readily biodegradable ones. Further, we showed that REs increased with increasing sludge retention times (SRTs), especially for non-readily biodegradable compounds. Finally, our model highlighted a decrease in RE with increasing K OC . The counterintuitive relationship to K OC stresses the need for a better understanding of electrochemical interactions influencing the RE of ionisable chemicals. In addition, we highlighted the need to improve the modelling of chemicals that undergo deconjugation when predicting RE. Our meta-analysis represents a first step in better explaining the observed variability in measured REs of chemicals. It can be of particular help to prioritize the improvements required in existing process-based models to predict removal efficiencies of chemicals in WWTPs.

  14. Laser removal of sludge from steam generators

    DOEpatents

    Nachbar, Henry D.

    1990-01-01

    A method of removing unwanted chemical deposits known as sludge from the metal surfaces of steam generators with laser energy is provided. Laser energy of a certain power density, of a critical wavelength and frequency, is intermittently focused on the sludge deposits to vaporize them so that the surfaces are cleaned without affecting the metal surface (sludge substrate). Fiberoptic tubes are utilized for laser beam transmission and beam direction. Fiberoptics are also utilized to monitor laser operation and sludge removal.

  15. A low sludge generated anode by hybrid solar electrocoagulation for the removal of lead

    NASA Astrophysics Data System (ADS)

    Hussin, F.; Aroua, M. K.

    2017-06-01

    In this work, perforated zinc is proposed as a new anode for lead removal by hybrid solar electrocoagulation. The characteristics of the sludge were investigated to understand the behaviour of lead removal during electrocoagulation. Sludge products formed were characterised using X-ray diffraction (XRD), X-ray fluorescence (XRF) and Field Emission Scanning Electron Microscopy (FESEM). In addition, the pH variation during electrocoagulation and effects on the sludge products were examined. At optimum conditions showed that the perforated zinc electrode produced better performance with high removal efficiency, low sludge volume index and less energy consumption.

  16. Removal of polycyclic aromatic hydrocarbons (PAHs) from textile dyeing sludge by ultrasound combined zero-valent iron/EDTA/Air system.

    PubMed

    Man, Xiaoyuan; Ning, Xun-An; Zou, Haiyuan; Liang, Jieying; Sun, Jian; Lu, Xingwen; Sun, Jiekui

    2018-01-01

    This paper proposes a combined ultrasound (US) and zero-valent iron/EDTA/Air (ZEA) system to remove polycyclic aromatic hydrocarbons (PAHs) from textile dyeing sludge. The removal efficiencies of 16 PAHs using ZEA, US/Air (air injected into the US process), and US/ZEA treatments were investigated, together with the effects of various operating parameters. The enhanced mechanisms of US and the role of reactive oxygen species (ROS) in removing PAHs in the US/ZEA system were explored. Results showed that only 42.5% and 32.9% of ∑16 PAHs were removed by ZEA and US/Air treatments respectively, whereas 70.1% were removed by US/ZEA treatment, (with favorable operating conditions of 2.0 mM EDTA, 15 g/L ZVI, and 1.08 w/cm 3 ultrasonic density). The US/ZEA system could be used with a wide pH range. US led to synergistic improvement of PAHs removal in the ZEA system by enhancing sludge disintegration to release PAHs and promoting ZVI corrosion and oxygen activation. In the US/ZEA system, PAHs could be degraded by ROS (namely OH, O 2 - /HO 2 , and Fe(IV)) and adsorbed by ZVI, during which the ROS made the predominant contribution. This study provides important insights into the application of a US/ZEA system to remove PAHs from sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Evaluation of the simultaneous removal of recalcitrant drugs (bezafibrate, gemfibrozil, indomethacin and sulfamethoxazole) and biodegradable organic matter from synthetic wastewater by electro-oxidation coupled with a biological system.

    PubMed

    Rodríguez-Nava, Odín; Ramírez-Saad, Hugo; Loera, Octavio; González, Ignacio

    2016-12-01

    Pharmaceutical degradation in conventional wastewater treatment plants (WWTP) represents a challenge since municipal wastewater and hospital effluents contain pharmaceuticals in low concentrations (recalcitrant and persistent in WWTP) and biodegradable organic matter (BOM) is the main pollutant. This work shows the feasibility of coupling electro-oxidation with a biological system for the simultaneous removal of recalcitrant drugs (bezafibrate, gemfibrozil, indomethacin and sulfamethoxazole (BGIS)) and BOM from wastewater. High removal efficiencies were attained without affecting the performance of activated sludge. BGIS degradation was performed by advanced electrochemical oxidation and the activated sludge process for BOM degradation in a continuous reactor. The selected electrochemical parameters from microelectrolysis tests (1.2 L s(-1) and 1.56 mA cm(-2)) were maintained to operate a filter press laboratory reactor FM01-LC using boron-doped diamond as the anode. The low current density was chosen in order to remove drugs without decreasing BOM and chlorine concentration control, so as to avoid bulking formation in the biological process. The wastewater previously treated by FM01-LC was fed directly (without chemical modification) to the activated sludge reactor to remove 100% of BGIS and 83% of BOM; conversely, the BGIS contained in wastewater without electrochemical pre-treatment were persistent in the biological process and promoted bulking formation.

  18. Enhanced nitrogen removal in the combined activated sludge-biofilter system of the Southpest Wastewater Treatment Plant.

    PubMed

    Jobbágy, A; Tardy, G M; Literáthy, B

    2004-01-01

    In 1999 the existing activated sludge unit of the Southpest Wastewater Treatment Plant was supplemented by a two-stage biofilter system aiming for nitrification and post-denitrification. In this arrangement excess biomass of the filters is wasted through the activated sludge unit, facilitating backseeding, and recirculation of the nitrate-rich effluent of the N-filter serves for decreasing the methanol demand of the DN-filter and for saving aeration energy at the same time. The paper reports on the development of an ASM1-based mathematical model that proved to be adequate for describing the interactions in the combined system and was used to compare the efficiency of different treatment options. Full-scale results verified that backseeding may considerably improve performance. However, nitrification ability of the activated sludge unit depends on the treatment temperature and, if unexpected, can be limited by insufficient oxygen supply. The upgrading possibilities outlined may serve as a new perspective for implementation of combined activated sludge-biofilter systems.

  19. Waste-Activated Sludge Fermentation for Polyacrylamide Biodegradation Improved by Anaerobic Hydrolysis and Key Microorganisms Involved in Biological Polyacrylamide Removal.

    PubMed

    Dai, Xiaohu; Luo, Fan; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dong, Bin

    2015-07-06

    During the anaerobic digestion of dewatered sludge, polyacrylamide (PAM), a chemical conditioner, can usually be consumed as a carbon and nitrogen source along with other organic matter (e.g., proteins and carbohydrates in the sludge). However, a significant accumulation of acrylamide monomers (AMs) was observed during the PAM biodegradation process. To improve the anaerobic hydrolysis of PAM, especially the amide hydrolysis process, and to avoid the generation of the intermediate product AM, a new strategy is reported herein that uses an initial pH of 9, 200 mg COD/L of PAM and a fermentation time of 17 d. First, response surface methodology (RSM) was applied to optimize PAM removal in the anaerobic digestion of the sludge. The biological hydrolysis of PAM reached 86.64% under the optimal conditions obtained from the RSM. Then, the mechanisms for the optimized parameters that significantly improved the biological hydrolysis of PAM were investigated by the synergistic effect of the main organic compounds in the sludge, the floc size distribution, and the enzymatic activities. Finally, semi-continuous-flow experiments for a microbial community study were investigated based on the determination of key microorganisms involved in the biological hydrolysis of PAM.

  20. Removal of phosphorus from wastewater using ferroxysorb sorption media produced from amd sludge

    USGS Publications Warehouse

    Sibrell, P.L.; Tucker, T.W.; Kehler, T.; Fletcher, J.W.

    2008-01-01

    Treatment of acid mine drainage (AMD), whether with lime, limestone, caustic or simple aeration, nearly always results in generation of a metal hydroxide sludge. Disposal of the sludge often constitutes a significant fraction of the operating cost for the AMD treatment plant. Research at the USGS - Leetown Science Center has shown that AMD sludge, with its high content of aluminum and iron oxides, has a high affinity of phosphorus (P). Anthropogenic sources of P are associated with eutrophication and degradation of aquatic environments, resulting in anoxic dead zones in certain sensitive waterways. In this paper, we describe a method of converting the AMD sludge from a liability into an asset - Ferroxysorb P removal media - which can be used to remove excess P from wastewater. Three different Ferroxysorb media samples were produced from differing AMD sources and tested for P removal. Adsorption isotherms confirmed that the media had a high sorption capacity for P, as high as 19,000 mg/kg. The technology was demonstrated at an active fish hatchery, where the media remained in service for over three months without stripping or regeneration. Over that period of time, the calculated P removal was 50%, even at a very low influent P concentration of 60 parts per billion. In summary, use of the AMD-derived Ferroxysorb sorption media will reduce AMD treatment costs while at the same time helping to resolve the pressing environmental issue of eutrophication and degradation of sensitive waterways.

  1. Pilot-scale comparison of thermophilic aerobic suspended carrier biofilm process and activated sludge process in pulp and paper mill effluent treatment.

    PubMed

    Suvilampi, J E; Rintala, J A

    2004-01-01

    Thermophilic aerobic treatment of settled pulp and paper mill effluent was studied under mill premises with two comparative pilot processes; suspended carrier biofilm process (SCBP) and activated sludge process (ASP). Full-scale mesophilic activated sludge process was a reference treatment. During the runs (61 days) hydraulic retention times (HRTs) were kept 13+/-5 h and 16+/-6 h for SCBP and ASP, respectively. Corresponding volumetric loadings rates (VLR) were 2.7+/-0.9 and 2.2+/-1.0 kg CODfilt m(-3)d(-1). Temperatures varied between 46 to 60 degrees C in both processes. Mesophilic ASP was operated with HRT of 36 h, corresponding VLR of 0.7 kg CODfilt m(-3)d(-1). Both SCBP and ASP achieved CODfilt (GF/A filtered) removals up to 85%, while the mesophilic ASP removal was 89+/-2%. NTU values were markedly higher (100-300) in thermophilic effluents than in mesophilic effluent (30). Effluent turbidity was highly dependent on temperature; in batch experiment mesophilic effluent sample had NTU values of 30 and 60 at 35 degrees C and 55 degrees C, respectively. As a conclusion, both thermophilic treatments gave high CODfilt removals, which were close to mesophilic process removal and were achieved with less than half of HRT.

  2. Characterization of tannery sludge activated carbon and its utilization in the removal of azo reactive dye.

    PubMed

    Geethakarthi, A; Phanikumar, B R

    2012-03-01

    The removal of azo Reactive Red 31(RR31) from synthetic dye solution using tannery sludge-developed activated carbon (TSC) was investigated. TSC was prepared from a combination of physical and chemical activation. The developed TSC was characterized by FT-IR, SEM, TG-DTA, specific surface area and zero point charge of pH (pH(zpc)). The isotherm models, kinetic models and thermodynamic parameters were also analysed to describe the adsorptive behaviour of TSC. The effect of contact time, initial dye concentration, carbon dosage, agitation speed, initial pH and temperature were carried out for batch adsorption studies. The isotherm plot of the dye RR31 on TSC fitted better with the Langmuir adsorption isotherm than the Freundlich model. The maximum monolayer adsorption capacity of TSC in the removal of RR31 ranged from 23.15 to 39.37 mg/g. The thermodynamic parameters showed the endothermic and physical nature of the Reactive Red 31 adsorption on TSC. The entropy and enthalpy values were 181.515 J/Kmol and 5.285 kJ/mol, respectively. The developed cationic tannery sludge carbon was found to be an effective adsorbent in the removal of the anionic azo reactive dye RR31.

  3. Biotransformation of macrolide antibiotics using enriched activated sludge culture: Kinetics, transformation routes and ecotoxicological evaluation.

    PubMed

    Terzic, Senka; Udikovic-Kolic, Nikolina; Jurina, Tamara; Krizman-Matasic, Ivona; Senta, Ivan; Mihaljevic, Ivan; Loncar, Jovica; Smital, Tvrtko; Ahel, Marijan

    2018-05-05

    The biotransformation of three prominent macrolide antibiotics (azithromycin, clarithromycin and erythromycin) by an activated sludge culture, which was adapted to high concentrations of azithromycin (10 mg/L) was investigated. The study included determination of removal kinetics of the parent compounds, identification of their major biotransformation products (TPs) and assessment of ecotoxicological effects of biotransformation. The chemical analyses were performed by ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry, which enabled a tentative identification of TPs formed during the experiments. The ecotoxicological evaluation included two end-points, residual antibiotic activity and toxicity to freshwater algae. The enriched activated sludge culture was capable of degrading all studied macrolide compounds with high removal efficiencies (>99%) of the parent compounds at elevated concentrations (10 mg/L). The elimination of all three macrolide antibiotics was associated with the formation of different TPs, including several novel compounds previously unreported in the literature. Some of the TPs were rather abundant and contributed significantly to the overall mass balance at the end of the biodegradation experiments. Biodegradation of all investigated macrolides was associated with a pronounced reduction of the residual antibiotic activity and algal toxicity, indicating a rather positive ecotoxicological outcome of the biotransformation processes achieved by the enriched sludge culture. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. A comparative evaluation of dried activated sludge and mixed dried activated sludge with rice husk silica to remove hydrogen sulfide

    PubMed Central

    2013-01-01

    The aim of this study was to investigate the effectiveness of dried activated sludge (DAS) and mixed dried activated sludge with rice husk silica (DAS & RHS) for removal of hydrogen sulfide (H2S). Two laboratory-scale filter columns (packed one litter) were operated. Both systems were operated under different conditions of two parameters, namely different inlet gas concentrations and different inlet flow rates. The DAS & RHS packed filter showed more than 99.96% removal efficiency (RE) with empty bed residence time (EBRT) of 45 to 90 s and 300 mg/L inlet concentration of H2S. However, the RE decreased to 96.87% with the EBRT of 30 s. In the same condition, the DAS packed filter showed 99.37% RE. Nonetheless, the RE was shown to have dropped to 82.09% with the EBRT of 30 s. The maximum elimination capacity (EC) was obtained in the DAS & RHS packed filter up to 52.32 g/m3h, with the RE of 96.87% and H2S mass loading rate of 54 g/m3h. The maximum EC in the DAS packed filter was obtained up to 44.33 g/m3h with the RE of 82.09% and the H2S mass loading rate of 54 g/m3h. After 53 days of operating time and 54 g/m3h of loading rates, the maximum pressure drop reached to 3.0 and 8.0 (mm H2O) for the DAS & RHS packed and DAS packed filters, respectively. Based on the findings of this study, the DAS & RHS could be considered as a more suitable packing material to remove H2S. PMID:23497048

  5. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    PubMed

    Cristale, Joyce; Ramos, Dayana D; Dantas, Renato F; Machulek Junior, Amilcar; Lacorte, Silvia; Sans, Carme; Esplugas, Santiago

    2016-01-01

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L(-1) to 150 µg L(-1). During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g(-1) dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatment and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H2O2 and O3) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H2O2 and O3. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Excess sludge disruption and pollutant removal from tannery effluent by upgraded activated sludge system.

    PubMed

    Sodhi, Vijay; Bansal, Ajay; Jha, Mithilesh Kumar

    2018-04-30

    This study proposed a maintenance metabolism based upgraded activated sludge as MANODOX system that restricts excess biosludge generation from high strength real tannery effluent. The MANODOX experimental demonstration has been done using a sequenced operational arrangement of a MBBR, anaerobic digester, and oxidation ditch connected to CAS reactor, discussed in detail manner. Experimental trends revealed a prominently lower sludge yield upto 0.271 gVSS/gCOD (72% overall sludge reduction) that corresponds to parallel run CAS (0.92 gVSS/gCOD). MANODOX implementation confirmed high quality treated effluent with prominent COD and suspended solids reduction upto 97.1% and 96% respectively. The biodegradability observation was further supported by anaerobic and aerobic batch digestion analysis. The variation of soluble component turbidity analysis reflects the enriched non-flocculating predatory microbial population appears to may have been responsible for sludge reduction. MANODOX system provided a sustainable practical alternative for under capacity activated sludge based treatment facilities for a variety of wastewater types. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Behavior, fate, and mass loading of short chain chlorinated paraffins in an advanced municipal sewage treatment plant.

    PubMed

    Zeng, Lixi; Li, Huijuan; Wang, Thanh; Gao, Yan; Xiao, Ke; Du, Yuguo; Wang, Yawei; Jiang, Guibin

    2013-01-15

    Sewage treatment plants (STP) are an important source of short chain chlorinated paraffins (SCCPs) to the ambient environment through discharge of effluent and application of sludge. In this work, a field study was conducted to determine the behavior and possible removal of SCCPs during the sewage treatment process in an advanced municipal STP in Beijing, China. SCCPs were detected in all sewage water and sludge samples, and 97% of the initial mass loading in raw sewage was found to be associated with suspended matter. The total concentrations in raw influent, tertiary effluent, and dewatered sludge were 184 ± 19 ng/L, 27 ± 6 ng/L, and 15.6 ± 1.4 μg/g dry weight (d.w.), respectively. The dissolved concentrations of total SCCPs (∑SCCPs) significantly decreased during mechanical, biological, and chemical treatments. SCCP homologue profiles in aqueous phase were distinctly different from those in solid phase. Along the treatment process, the relative abundance of shorter chain and lower chlorinated congeners gradually increased in sewage water, but no obvious variations of homologue profiles were found in sludge. Mass flow analysis indicated, the removal efficiency in aqueous phase for ∑SCCPs was 82.2%, and the congener-specific removal efficiencies were positively related to their solid-water partition coefficients (K(d)). Mass balance results indicated that 0.8% and 72.6% of the initial SCCP mass loading were ultimately found in the effluents and dewatered sludge, respectively, while the remaining 26.6% was lost mainly due to biodegradation/biotransformation. It was suggested that the activated sludge system including basic anaerobic-anoxic-aerobic processes played an effective role in removing SCCPs from the wastewater, while the sorption to sludge by hydrophobic interactions was an important fate of SCCPs during the sewage treatment.

  8. Simultaneous carbon and nitrogen removal from anaerobic effluent of the cassava ethanol industry.

    PubMed

    Yin, Zhixuan; Xie, Li; Zhou, Qi; Bi, Xuejun

    2018-03-01

    This study investigated the simultaneous carbon and nitrogen removal from anaerobic effluent of cassava stillage using a lab-scale integrated system consisting of an upflow anaerobic sludge blanket (UASB) reactor and an activated sludge (AS) process. Simultaneous denitrification and methanogenesis (SDM) was observed in the UASB with nitrate recirculation. Compared with the blank reactor without recirculation, the overall chemical oxygen demand (COD) removal efficiencies in the combined system with nitrate recirculation were similar (80-90%), while the TN removal efficiencies were significantly improved from 4.7% to 71.0%. Additionally, the anaerobic COD removal efficiencies increased from 21% to 40% as the recirculation ratio decreased from 3 to 1. Although the influent nitrate concentrations fluctuated (60-140 mg N/L), the nitrate removal efficiencies could be maintained at about 97% under different recirculation conditions. With the decreasing recirculation ratio from 3 to 1, the CH 4 content in biogas improved from 2% to 40% while the N 2 content reduced from 95.8% to 50.6%. The 16S rDNA sequencing results indicated that bacteria diversity in anaerobic SDM granular sludge was much higher than archaea. The effect of recirculation ratios on the bacterial and archaeal communities in SDM granular sludge could be further confirmed by the relative abundance of denitrifying bacteria. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Effect of Staged Dissolved Oxygen Optimization on In-situ sludge Reduction and Enhanced Nutrient Removal in an A2MMBR-M System

    NASA Astrophysics Data System (ADS)

    Yang, Shan-Shan; Pang, Ji-Wei; Jin, Xiao-Man; Wu, Zhong-Yang; Yang, Xiao-Yin; Guo, Wan-Qian; Zhao, Zhi-Qing; Ren, Nan-Qi

    2018-03-01

    Redundant excess sludge production and considerable non-standard wastewater discharge from existing activated sludge processes are facing more and more challenges. The investigations on lower sludge production and higher sewage treatment efficiency are urgently needed. In this study, an anaerobic/anoxic/micro-aerobic/oxic-MBR combining a micro-aerobic starvation sludge holding tank (A2MMBR-M) system is developed. Batch tests on the optimization of the staged dissolved oxygen (DO) in the micro-aerobic, the first oxic, and the second oxic tanks were carried out by a 3-factor and 3-level Box-Behnken design (BBD). The optimal actual values of X1 , X2 , and X3 were DO1 of 0.3-0.5 mg/L, DO2 of 3.5-4.5 mg/L, and DO3 of 3-4 mg/L. After the optimization tests, continuous-flow experiments of anaerobic/anoxic/oxic (AAO) and A2MMBR-M systems were further conducted. Compared to AAO system, a 37.45% reduction in discharged excess sludge in A2MMBR-M system was achieved. The COD, TN, and TP removal efficiencies in A2MMBR-M system were respective 4.06%, 2.68%, and 4.04% higher than AAO system. The A2MMBR-M system is proved a promising wastewater treatment technology possessing enhanced in-situ sludge reduction and improved effluent quality. The staged optimized DO concentrations are the key controlling parameters for the realization of simultaneous in-situ sludge reduction and nutrient removal.

  10. Organics removal, nitrogen removal and N2O emission in subsurface wastewater infiltration systems amended with/without biochar and sludge.

    PubMed

    Sun, Yafei; Qi, Shiyue; Zheng, Fanping; Huang, Linli; Pan, Jing; Jiang, Yingying; Hou, Wanyuan; Xiao, Lu

    2018-02-01

    Organics removal, nitrogen removal, N 2 O emission and nitrogen removal functional gene abundances in four subsurface wastewater infiltration systems (SWISs), named SWIS A (no intermittent aeration without biochar and sludge), SWIS B (no intermittent aeration with biochar and sludge), SWIS C (intermittent aeration without biochar and sludge), SWIS D (intermittent aeration with biochar and sludge) were investigated. Intermittent aeration enhanced chemical oxygen demand (COD), ammonia nitrogen (NH 4 + -N), total nitrogen (TN) removal and the abundances of nitrogen removal functional genes (amoA, nxrA, napA, narG, nirS, nirK, qnorB and nosZ) compared to non-aerated SWISs. High COD (95.4 ± 0.2%), NH 4 + -N (96.2 ± 0.6%), TN (86.4 ± 0.5%) removal efficiencies and low N 2 O emission rate (18.4 mg/(m 2  d)) were obtained simultaneously in intermittent aerated SWIS amended with biochar and sludge. The results suggested that intermittent aerated SWISs amended with biochar and sludge could be an effective and appropriate method for improving treatment performance and reducing N 2 O emission. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Diversity and degradation mechanism of an anaerobic bacterial community treating phenolic wastewater with sulfate as an electron acceptor.

    PubMed

    Guo, X J; Lu, Z Y; Wang, P; Li, H; Huang, Z Z; Lin, K F; Liu, Y D

    2015-10-01

    Petrochemical wastewater often contains high concentrations of phenol and sulfate that must be properly treated to meet discharge standards. This study acclimated anaerobic-activated sludge to treat saline phenolic wastewater with sulfate reduction and clarified the diversity and degradation mechanism of the microbial community. The active sludge in an upflow anaerobic sludge blanket (UASB) reactor could remove 90 % of phenol and maintain the effluent concentration of SO4 (2-) below 400 mg/L. Cloning and sequencing showed that Clostridium spp. and Desulfotomaculum spp. were major phenol-degrading bacteria. Phenol was probably degraded through the carboxylation pathway and sulfate reduction catalyzed by adenosine-5'-phosphosulfate (APS) reductase and dissimilatory sulfite reductase (DSR). A real-time polymerase chain reaction (RT-PCR) showed that as phenol concentration increased, the quantities of 16S rRNA gene, dsrB, and mcrA in the sludge all decreased. The relative abundance of dsrB dropped to 12.46 %, while that of mcrA increased to 56.18 %. The change in the electron flow ratio suggested that the chemical oxygen demand (COD) was removed mainly by sulfate-reducing bacteria under a phenol concentration of 420 mg/L, whereas it was removed mainly by methanogens above 630 mg/L.

  12. Adsorption behavior of sulfamethazine in an activated sludge process treating swine wastewater.

    PubMed

    Ben, Weiwei; Qiang, Zhimin; Yin, Xiaowei; Qu, Jiuhui; Pan, Xun

    2014-08-01

    Swine wastewater is an important pollution source of antibiotics entering the aquatic environment. In this work, the adsorption behavior of sulfamethazine (SMN), a commonly-used sulfonamide antibiotic, on activated sludge from a sequencing batch reactor treating swine wastewater was investigated. The results show that the adsorption of SMN on activated sludge was an initially rapid process and reached equilibrium after 6hr. The removal efficiency of SMN from the water phase increased with an increasing concentration of mixed liquor suspended solids, while the adsorbed concentration of SMN decreased. Solution pH influenced both the speciation of SMN and the surface properties of activated sludge, thus significantly impacting the adsorption process. A linear partition model could give a good fit for the equilibrium concentrations of SMN at the test temperatures (i.e., 10, 20 and 30°C). The partition coefficient (Kd) was determined to be 100.5L/kg at 20°C, indicating a quite high adsorption capacity for SMN. Thermodynamic analysis revealed that SMN adsorption on activated sludge was an exothermic process. This study could help to clarify the fate and behavior of sulfonamide antibiotics in the activated sludge process and assess consequent environmental risks arising from sludge disposal as well. Copyright © 2014. Published by Elsevier B.V.

  13. In situ identification of nocardioform actinomycetes in activated sludge using fluorescent rRNA-targeted oligonucleotide probes.

    PubMed

    Schuppler, M; Wagner, M; Schön, G; Göbel, U B

    1998-01-01

    Hitherto, few environmental samples have been investigated by a 'full cycle rRNA analysis'. Here the results of in situ hybridization experiments with specific rRNA-targeted oligonucleotide probes developed on the basis of new sequences derived from a previously described comparative 16S rRNA analysis of nocardioform actinomycetes in activated sludge are reported. Application of the specific probes enabled identification and discrimination of the distinct populations of nocardioform actinomycetes in activated sludge. One of the specific probes (DLP) detected rod-shaped bacteria which were found in 13 of the 16 investigated sludge samples from various wastewater treatment plants, suggesting their importance in the wastewater treatment process. Another probe (GLP2) hybridized with typically branched filaments of nocardioforms mainly found in samples from enhanced biological phosphorus removal plants, suggesting that these bacteria are involved in sludge foaming. The combination of in situ hybridization with fluorescently labelled rRNA-targeted oligonucleotide probes and confocal laser scanning microscopy improved the detection of nocardioform actinomycetes, which often showed only weak signals inside the activated-sludge flocs.

  14. [Characteristics of novel wastewater treatment technology by swimming bed combined with aerobic granular sludge].

    PubMed

    Zhang, Yan; Wang, Yong-sheng; Bai, Yu-hua; Chen, Chen; Lü, Jian; Zhang, Jie

    2007-10-01

    Swimming bed combined with aerobic granular sludge as a novel technology for wastewater treatment was developed, which was on the basis of the biofilm process and activated sludge process, and results demonstrated notable performance of high-efficiency treatment capability and sludge reduction. Even when hydraulic retention time (HRT) was only at 3.2 h with average COD volumetric loading of 2.03 kg/(m3 x d) and NH4(+)-N of 0.52 kg/(m3 X d), 90.9% of average COD removal rate and 98.3% of NH4(+)-N removal rate were achieved. Aerobic granular sludge appeared with spherical or rod shape after 16 days operation. Mixed liquor suspended solid (MLSS) concentrations in the reactor reached 5,640 mg/L at the highest during operation period, and the average ratio of mixed liquor volatile suspended solid (MLVSS) to MLSS reached 0.87. Furthermore, microscopic observation of biofilm and aerobic granules revealed much presence of protozoa and metazoa on the biofilm and suspended sludge, and this long food chain can contribute to the sludge reduction. Only 0. 175 5 of sludge yields (MLSS/ CODremoved) was obtained in the experiment, which was only about 50% of the conventional aerobic processes.

  15. Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor.

    PubMed

    Ge, Huoqing; Batstone, Damien; Keller, Jurg

    2016-01-01

    The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.

  16. [Comparison of PAHs distribution in stabilized sludge by sludge drying bed and reed bed].

    PubMed

    Cui, Yu-Bo; Sun, Hong-Jie; Ran, Chun-Qiu; Li, Jin-Feng; Xie, Yao

    2013-03-01

    The difference in the removal efficiencies of polycyclic aromatic hydrocarbons (PAHs) in planted and unplanted sludge drying bed was investigated. Pilot-scale sludge drying bed and reed bed had the same size of 3.0 m x 1.0 m x 1.3 m (L x W x H), and the bed height consisted of a 65 cm media layer and a 65 cm super height. Both beds had a ventilation pipe which was mounted on the drainage pipes. The experiment lasted for three years, and the first two years was the sludge loading period, and the third year was the natural stabilization period. In the first two years, a total thickness of 8.4 m of sludge was loaded and the average sludge loading rate was 41.3 kg x (m2 x a)(-1). After the three-year stabilization, the contents of the sixteen PAHs decreased with time in both the sludge drying bed and the reed bed. The total PAHs contents in the surface, middle and bottom sludge layers in the sludge drying bed were 4.161, 3.543 and 3.118 mg x kg(-1) (DW), corresponding to 26.91%, 37.77% and 45.23% of removal; and the values in the reed bed were 2.722, 1.648 and 1.218 mg x kg(-1) (DW), corresponding to 52.18%, 71.05% and 78.60% of removal. The average PAHs removal in the reed bed was 29.86% higher than that in the sludge drying bed. In the stabilized sludge, the removal of low-molecular-weight PAHs predominated. The results suggested that reed played a positive role in the removal of PAHs.

  17. Is anaerobic digestion effective for the removal of organic micropollutants and biological activities from sewage sludge?

    PubMed

    Gonzalez-Gil, L; Papa, M; Feretti, D; Ceretti, E; Mazzoleni, G; Steimberg, N; Pedrazzani, R; Bertanza, G; Lema, J M; Carballa, M

    2016-10-01

    The occurrence of emerging organic micropollutants (OMPs) in sewage sludge has been widely reported; nevertheless, their fate during sludge treatment remains unclear. The objective of this work was to study the fate of OMPs during mesophilic and thermophilic anaerobic digestion (AD), the most common processes used for sludge stabilization, by using raw sewage sludge without spiking OMPs. Moreover, the results of analytical chemistry were complemented with biological assays in order to verify the possible adverse effects (estrogenic and genotoxic) on the environment and human health in view of an agricultural (re)use of digested sludge. Musk fragrances (AHTN, HHCB), ibuprofen (IBP) and triclosan (TCS) were the most abundant compounds detected in sewage sludge. In general, the efficiency of the AD process was not dependent on operational parameters but compound-specific: some OMPs were highly biotransformed (e.g. sulfamethoxazole and naproxen), while others were only slightly affected (e.g. IBP and TCS) or even unaltered (e.g. AHTN and HHCB). The MCF-7 assay evidenced that estrogenicity removal was driven by temperature. The Ames test did not show point mutation in Salmonella typhimurium while the Comet test exhibited a genotoxic effect on human leukocytes attenuated by AD. This study highlights the importance of combining chemical analysis and biological activities in order to establish appropriate operational strategies for a safer disposal of sewage sludge. Actually, it was demonstrated that temperature has an insignificant effect on the disappearance of the parent compounds while it is crucial to decrease estrogenicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The effect of activated carbon addition on membrane bioreactor processes for wastewater treatment and reclamation - A critical review.

    PubMed

    Skouteris, George; Saroj, Devendra; Melidis, Paraschos; Hai, Faisal I; Ouki, Sabèha

    2015-06-01

    This review concentrates on the effect of activated carbon (AC) addition to membrane bioreactors (MBRs) treating wastewaters. Use of AC-assisted MBRs combines adsorption, biodegradation and membrane filtration. This can lead to advanced removal of recalcitrant pollutants and mitigation of membrane fouling. The relative contribution of adsorption and biodegradation to overall removal achieved by an AC-assisted MBR process can vary, and "biological AC" may not fully develop due to competition of target pollutants with bulk organics in wastewater. Thus periodic replenishment of spent AC is necessary. Sludge retention time (SRT) governs the frequency of spent AC withdrawal and addition of fresh AC, and is an important parameter that significantly influences the performance of AC-assisted MBRs. Of utmost importance is AC dosage because AC overdose may aggravate membrane fouling, increase sludge viscosity, impair mass transfer and reduce sludge dewaterability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal.

    PubMed

    Martín, J; Camacho-Muñoz, D; Santos, J L; Aparicio, I; Alonso, E

    2012-11-15

    The occurrence of sixteen pharmaceutically active compounds in influent and effluent wastewater and in primary, secondary and digested sludge in one-year period has been evaluated. Solid-water partition coefficients (Kd) were calculated to evaluate the efficiency of removal of these compounds from wastewater by sorption onto sludge. The ecotoxicological risk to aquatic and terrestrial ecosystems, due to wastewater discharges to the receiving streams and to the application of digested sludge as fertilizer onto soils, was also evaluated. Twelve of the pharmaceuticals were detected in wastewater at mean concentrations from 0.1 to 32 μg/L. All the compounds found in wastewater were also found in sewage sludge, except diclofenac, at mean concentrations from 8.1 to 2206 μg/kg dm. Ibuprofen, salicylic acid, gemfibrozil and caffeine were the compounds at the highest concentrations. LogKd values were between 1.17 (naproxen) and 3.48 (carbamazepine). The highest ecotoxicological risk in effluent wastewater and digested sludge is due to ibuprofen (risk quotient (RQ): 3.2 and 4.4, respectively), 17α-ethinylestradiol (RQ: 12 and 22, respectively) and 17β-estradiol (RQ: 12 and 359, respectively). Ecotoxicological risk after wastewater discharge and sludge disposal is limited to the presence of 17β-estradiol in digested-sludge amended soil (RQ: 2.7). Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Water Utility Lime Sludge Reuse – An Environmental Sorbent for Power Utilities

    EPA Science Inventory

    Lime sludge can be used as an environmental sorbent to remove sulfur dioxide (SO2) and acid gases, by the ultra-fine CaCO3 particles, and to sequester mercury and other heavy metals, by the Natural Organic Matter and residual activated carbon. The laboratory experimental set up ...

  1. Resuscitation of starved anaerobic ammonium oxidation sludge system: Impacts of repeated short-term starvation.

    PubMed

    Ye, Lihong; Li, Dong; Zhang, Jie; Zeng, Huiping

    2018-05-04

    Starvation of biomass is common during underloading of bioreactors or sludge storage in biological wastewater treatment industries. The aim of this work was to study the impact of starvation modes on the nitrogen removal capacity of anaerobic ammonium oxidation (anammox) process in sequencing batch reactor (SBR). The repeated short-term starvation and reactivation experiments were performed to evaluate the response of anammox sludge system in the condition of 27 ± 1.5 °C and 320 min HRT. Moreover, the nitrogen removal ability of the anammox process was reactivated rapidly in the low substrate condition, then the total nitrogen (TN) removal efficiency reached 82.5%, with the effluent TN of around 14.6 mgNL -1 . The repeated short-term starvation (1 day-4 days) and recovery mode could improve the tolerance and apparent activity of anammox sludge system. The dominant species of general anaerobic ammonium oxidation bacteria (AnAOB) was Candidatus Brocadia, which had better self-adaption to repeated starvation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Performance evaluation of the sulfur-redox-reaction-activated up-flow anaerobic sludge blanket and down-flow hanging sponge anaerobic/anoxic sequencing batch reactor system for municipal sewage treatment.

    PubMed

    Hatamoto, Masashi; Ohtsuki, Kota; Maharjan, Namita; Ono, Shinya; Dehama, Kazuya; Sakamoto, Kenichi; Takahashi, Masanobu; Yamaguchi, Takashi

    2016-03-01

    A sulfur-redox-reaction-activated up-flow anaerobic sludge blanket (UASB) and down-flow hanging sponge (DHS) system, combined with an anaerobic/anoxic sequencing batch reactor (A2SBR), has been used for municipal sewage treatment for over 2 years. The present system achieved a removal rate of 95±14% for BOD, 74±22% for total nitrogen, and 78±25% for total phosphorus, including low water temperature conditions. Sludge conversion rates during the operational period were 0.016 and 0.218 g-VSS g-COD-removed(-1) for the UASB, and DHS, respectively, which are similar to a conventional UASB-DHS system, which is not used of sulfur-redox-reaction, for sewage treatment. Using the sulfur-redox reaction made advanced treatment of municipal wastewater with minimal sludge generation possible, even in winter. Furthermore, the occurrence of a unique phenomenon, known as the anaerobic sulfur oxidation reaction, was confirmed in the UASB reactor under the winter season. Copyright © 2016. Published by Elsevier Ltd.

  3. Occurrences and behaviors of naphthenic acids in a petroleum refinery wastewater treatment plant.

    PubMed

    Wang, Beili; Wan, Yi; Gao, Yingxin; Zheng, Guomao; Yang, Min; Wu, Song; Hu, Jianying

    2015-05-05

    Naphthenic acids (NAs) are one class of compounds in wastewaters from petroleum industries that are known to cause toxic effects, and their removal from oilfield wastewater is an important challenge for remediation of large volumes of petrochemical effluents. The present study investigated occurrences and behaviors of total NAs and aromatic NAs in a refinery wastewater treatment plant, located in north China, which combined physicochemical and biological processes. Concentrations of total NAs were semiquantified to be 113-392 μg/L in wastewater from all the treatment units, and the percentages of aromatic NAs in total NAs was estimated to be 2.1-8.8%. The mass reduction for total NAs and aromatic NAs was 15±16% and 7.5±24% after the physicochemical treatment, respectively. Great mass reduction (total NAs: 65±11%, aromatic NAs: 86±5%) was observed in the biological treatment units, and antiestrogenic activities observed in wastewater from physicochemical treatment units disappeared in the effluent of the activated sludge system. The distributions of mass fractions of NAs demonstrated that biodegradation via activated sludge was the major mechanism for removing alicyclic NAs, aromatic NAs, and related toxicities in the plant, and the polycyclic NA congener classes were relatively recalcitrant to biodegradation, which is a complete contrast to the preferential adsorption of NAs with higher cyclicity (low Z value). Removal efficiencies of total NAs were 73±17% in summer, which were higher than those in winter (53±15%), and the seasonal variation was possibly due to the relatively high microbial biotransformation activities in the activated sludge system in summer (indexed by O3-NAs/NAs). The results of the investigations indicated that biotransformation of NA mixtures by the activated sludge system were largely affected by temperature, and employing an efficient adsorbent together with biodegradation processes would help cost-effectively remove NAs in petroleum effluents.

  4. A study on using fireclay as a biomass carrier in an activated sludge system.

    PubMed

    Tilaki, Ramazan Ali Dianati

    2011-01-01

    By adding a biomass carrier to an activated sludge system, the biomass concentration will increase, and subsequently the organic removal efficiency will be enhanced. In this study, the possibility of using excess sludge from ceramic and tile manufacturing plants as a biomass carrier was investigated. The aim of this study was to determine the effect of using fireclay as a biomass carrier on biomass concentration, organic removal and nitrification efficiency in an activated sludge system. Experiments were conducted by using a bench scale activated sludge system operating in batch and continuous modes. Artificial simulated wastewater was made by using recirculated water in a ceramic manufacturing plant. In the continuous mode, hydraulic detention time in the aeration reactor was 8 and 22 h. In the batch mode, aeration time was 8 and 16 h. Fireclay doses were 500, 1,400 and 2,250 mg l(-1), and were added to the reactors in each experiment separately. The reactor with added fireclay was called a Hybrid Biological Reactor (HBR). A reactor without added fireclay was used as a control. Efficiency parameters such as COD, MLVSS and nitrate were measured in the control and HBR reactors according to standard methods. The average concentration of biomass in the HBR reactor was greater than in the control reactor. The total biomass concentration in the HBR reactor (2.25 g l(-1) fireclay) in the continuous mode was 3,000 mg l(-1) and in the batch mode was 2,400 mg l(-1). The attached biomass concentration in the HBR reactor (2.25 g l(-1) fireclay) in the continuous mode was 1,500 mg l(-1) and in the batch mode was 980 mg l(-1). Efficiency for COD removal in the HBR and control reactor was 95 and 55%, respectively. In the HBR reactor, nitrification was enhanced, and the concentration of nitrate was increased by 80%. By increasing the fireclay dose, total and attached biomass was increased. By adding fireclay as a biomass carrier, the efficiency of an activated sludge system to treat wastewater from ceramic manufacturing plants was increased.

  5. Mechanism and design of intermittent aeration activated sludge process for nitrogen removal.

    PubMed

    Hanhan, Oytun; Insel, Güçlü; Yagci, Nevin Ozgur; Artan, Nazik; Orhon, Derin

    2011-01-01

    The paper provided a comprehensive evaluation of the mechanism and design of intermittent aeration activated sludge process for nitrogen removal. Based on the specific character of the process the total cycle time, (T(C)), the aerated fraction, (AF), and the cycle time ratio, (CTR) were defined as major design parameters, aside from the sludge age of the system. Their impact on system performance was evaluated by means of process simulation. A rational design procedure was developed on the basis of basic stochiometry and mass balance related to the oxidation and removal of nitrogen under aerobic and anoxic conditions, which enabled selected of operation parameters of optimum performance. The simulation results indicated that the total nitrogen level could be reduced to a minimum level by appropriate manipulation of the aerated fraction and cycle time ratio. They also showed that the effluent total nitrogen could be lowered to around 4.0 mgN/L by adjusting the dissolved oxygen set-point to 0.5 mg/L, a level which promotes simultaneous nitrification and denitrification.

  6. Removal of Triclocarban and Triclosan during Municipal Biosolid Production

    PubMed Central

    Ogunyoku, Temitope A.; Young, Thomas M.

    2014-01-01

    The antimicrobial compounds triclosan (TCS) and triclocarban (TCC) accumulate in sludges produced during municipal wastewater treatment and persist through sludge treatment processes into finished biosolids. The objective of this research was to determine the extent to which conventional sludge processing systems such as aerobic digestion, anaerobic digestion, and lime stabilization were able to remove TCC and TCS. Sludge and biosolid samples were collected from 10 municipal wastewater treatment plants in the United States. The concentrations of TCC and TCS in sludge and biosolid samples were determined via heated solvent extraction and analysis with liquid chromatography electrospray ionization mass spectrometry. Dry weight concentrations of TCC and TCS frequently were higher in finished biosolids than in the source sludges because of sludge mass reduction during digestion. The removal of TCC and TCS in municipal biosolid processing systems was determined from the measured concentration change after correcting for reductions in solid mass during sludge treatment. Removal in the digester systems ranged from 15 – 68 % for TCC and 20 – 75 % for TCS. Increased solid retention times during sludge treatment operations were correlated with higher removals of TCC and TCS. Apparent first order degradation rates for TCC ranged from 0.015–0.08 1/d and for TCS were between 0.003–0.15 1/d. PMID:24734467

  7. Monitoring the fate and behavior of TiO2 nanoparticles: Simulated in a WWTP with industrial dye-stuff effluent according to OECD 303A.

    PubMed

    Mahlalela, Lwazi C; Ngila, Jane C; Dlamini, Langelihle N

    2017-07-03

    The use of nanoparticles (NPs) in several consumer products has led to them finding their way into wastewater treatment plants (WWTPs). Some of these NPs have photocatalytic properties, thus providing a possible solution to textile industries to photodegrade dyes from their wastewater. Thus, the interaction of NPs with industrial dye effluents is inevitable. The Organization for Economic Co-operation and development (OECD) guideline for testing of chemical 303A was employed to study the fate and behaviour of TiO 2 NPs in industrial dye-stuff effluent. This was due to the unavailability of NPs' fate and behaviour test protocols. The effect of TiO 2 NPs on the treatment process was ascertained by measuring chemical oxygen demand (COD) and 5-day biological oxygen demand (BOD5). Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to study the fate and behavior of TiO 2 NPs. Acclimatization of bacteria to target pollutants was a crucial factor for the treatment efficiency of activated sludge in a simulated wastewater treatment plant (SWTP). The acclimatization of the activated sludge to the synthetic industrial dye-stuff effluent was successfully achieved. Effect of TiO 2 NPs on the treatment process efficiency was then investigated. Addition of TiO 2 NPs had no effect on the treatment process as chemical oxygen demand (COD) removal remained >80%. Measured total plate count (TPC) affirmed that the addition of TiO 2 NPs had no effect on the treatment process. The removal of total nitrogen (TN) was not efficient as the treatment system was required to have an oxic and anoxic stage for efficient TN removal. Results from X-ray powder diffraction (XRD) confirmed that the anatase phase of the added TiO 2 NPs remained unchanged even after exposure to the treatment plant. Removal of the NPs from the influent was facilitated by biosorption of the NPs on the activated sludge. Nanoparticles received by wastewater treatment plants will therefore reach the environment through sludge waste dumped in landfill. About 90% of TiO 2 was retained in the activated sludge, and 10-11% escaped with the treated effluents. Scanning electron microscope (SEM) mapping micrographs together with an energy dispersive X-ray spectroscopy (EDS) confirmed the presence of Ti in the sludge.

  8. Waste-Activated Sludge Fermentation for Polyacrylamide Biodegradation Improved by Anaerobic Hydrolysis and Key Microorganisms Involved in Biological Polyacrylamide Removal

    PubMed Central

    Dai, Xiaohu; Luo, Fan; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dong, Bin

    2015-01-01

    During the anaerobic digestion of dewatered sludge, polyacrylamide (PAM), a chemical conditioner, can usually be consumed as a carbon and nitrogen source along with other organic matter (e.g., proteins and carbohydrates in the sludge). However, a significant accumulation of acrylamide monomers (AMs) was observed during the PAM biodegradation process. To improve the anaerobic hydrolysis of PAM, especially the amide hydrolysis process, and to avoid the generation of the intermediate product AM, a new strategy is reported herein that uses an initial pH of 9, 200 mg COD/L of PAM and a fermentation time of 17 d. First, response surface methodology (RSM) was applied to optimize PAM removal in the anaerobic digestion of the sludge. The biological hydrolysis of PAM reached 86.64% under the optimal conditions obtained from the RSM. Then, the mechanisms for the optimized parameters that significantly improved the biological hydrolysis of PAM were investigated by the synergistic effect of the main organic compounds in the sludge, the floc size distribution, and the enzymatic activities. Finally, semi-continuous-flow experiments for a microbial community study were investigated based on the determination of key microorganisms involved in the biological hydrolysis of PAM. PMID:26144551

  9. A comparison of aerobic granular sludge with conventional and compact biological treatment technologies.

    PubMed

    Bengtsson, Simon; de Blois, Mark; Wilén, Britt-Marie; Gustavsson, David

    2018-03-20

    The aerobic granular sludge (AGS) technology is growing towards becoming a mature option for new municipal wastewater treatment plants and capacity extensions. A process based on AGS was compared to conventional activated sludge processes (with and without enhanced biological phosphorus removal), an integrated fixed-film activated sludge (IFAS) process and a membrane bioreactor (MBR) by estimating the land area demand (footprint), electricity demand and chemicals' consumption. The process alternatives compared included pre-settling, sludge digestion and necessary post-treatment to achieve effluent concentrations of 8 mg/L nitrogen and 0.2 mg/L phosphorus at 7°C. The alternative based on AGS was estimated to have a 40-50% smaller footprint and 23% less electricity requirement than conventional activated sludge. In relation to the other compact treatment options IFAS and MBR, the AGS process had an estimated electricity usage that was 35-70% lower. This suggests a favourable potential for processes based on AGS although more available experience of AGS operation and performance at full scale is desired.

  10. Effects of sludge concentrations and different sponge configurations on the performance of a sponge-submerged membrane bioreactor.

    PubMed

    Nguyen, Tien Thanh; Ngo, Huu Hao; Guo, Wenshan; Li, Jianxin; Listowski, Andrzej

    2012-07-01

    The performance of a novel sponge-submerged membrane bioreactor (SSMBR) was evaluated to treat primary treated sewage effluent at three different activated sludge concentrations. Polyurethane sponge cubes with size of 1 × 1 × 1 cm were used as attached growth media in the bioreactor. The results indicated the successful removal of organic carbon and phosphorous with the efficiency higher than 98% at all conditions. Acclimatised sponge MBR showed about 5% better ammonia nitrogen removal at 5 and 10 g/L sludge concentration as compared to the new sponge system. The respiration test revealed that the specific oxygen uptake rate was around 1.0-3.5 mgO(2)/gVSS.h and likely more stable at 10 g/L sludge concentration. The sludge volume index of less than 100 mL/g during the operation indicated the good settling property of the sludge. The low mixed liquor suspended solid increase indicated that SSMBR could control the sludge production. This SSMBR was also successful in reducing membrane fouling with significant lower transmembrane pressure (e.g. only 0.5 kPa/day) compared to the conventional MBR system. Further study will be conducted to optimise other operating conditions.

  11. Removal of heavy metal species from industrial sludge with the aid of biodegradable iminodisuccinic acid as the chelating ligand.

    PubMed

    Wu, Qing; Duan, Gaoqi; Cui, Yanrui; Sun, Jianhui

    2015-01-01

    High level of heavy metals in industrial sludge was the obstacle of sludge disposal and resource recycling. In this study, iminodisuccinic acid (IDS), a biodegradable chelating ligand, was used to remove heavy metals from industrial sludge generated from battery industry. The extraction of cadmium, copper, nickel, and zinc from battery sludge with aqueous solution of IDS was studied under various conditions. It was found that removal efficiency greatly depends on pH, chelating agent's concentration, as well as species distribution of metals. The results showed that mildly acidic and neutral systems were not beneficial to remove cadmium. About 68 % of cadmium in the sample was extracted at the molar ratio of IDS to heavy metals 7:1 without pH adjustment (pH 11.5). Copper of 91.3 % and nickel of 90.7 % could be removed by IDS (molar ratio, IDS: metals = 1:1) with 1.2 % phosphoric acid effectively. Removal efficiency of zinc was very low throughout the experiment. Based on the experimental results, IDS could be a potentially useful chelant for heavy metal removal from battery industry sludge.

  12. Evaluation of the Removal of Indicator Bacteria from Domestic Sludge Processed by Autothermal Thermophilic Aerobic Digestion (ATAD)

    PubMed Central

    Piterina, Anna V.; Bartlett, John; Pembroke, Tony J.

    2010-01-01

    The degradation of sludge solids in an insulated reactor during Autothermal Thermophilic Aerobic Digestion (ATAD) processing results in auto-heating, thermal treatment and total solids reduction, however, the ability to eliminate pathogenic organisms has not been analysed under large scale process conditions. We evaluated the ATAD process over a period of one year in a two stage, full scale Irish ATAD plant established in Killarney and treating mixed primary and secondary sludge, by examining the sludge microbiologically at various stages during and following ATAD processing to determine its ability to eliminate indicator organisms. Salmonella spp. (pathogen) and fecal-coliform (indicator) densities were well below the limits used to validate class A biosolids in the final product. Enteric pathogens present at inlet were deactivated during the ATAD process and were not detected in the final product using both traditional microbial culture and molecular phylogenetic techniques. A high DNase activity was detected in the bulk sludge during the thermophilic digestion stage which may be responsible for the rapid turn over of DNA from lysed cells and the removal of mobile DNA. These results offer assurance for the safe use of ATAD sludge as a soil supplement following processing. PMID:20948933

  13. Evaluation of the removal of indicator bacteria from domestic sludge processed by Autothermal Thermophilic Aerobic Digestion (ATAD).

    PubMed

    Piterina, Anna V; Bartlett, John; Pembroke, Tony J

    2010-09-01

    The degradation of sludge solids in an insulated reactor during Autothermal Thermophilic Aerobic Digestion (ATAD) processing results in auto-heating, thermal treatment and total solids reduction, however, the ability to eliminate pathogenic organisms has not been analysed under large scale process conditions. We evaluated the ATAD process over a period of one year in a two stage, full scale Irish ATAD plant established in Killarney and treating mixed primary and secondary sludge, by examining the sludge microbiologically at various stages during and following ATAD processing to determine its ability to eliminate indicator organisms. Salmonella spp. (pathogen) and fecal-coliform (indicator) densities were well below the limits used to validate class A biosolids in the final product. Enteric pathogens present at inlet were deactivated during the ATAD process and were not detected in the final product using both traditional microbial culture and molecular phylogenetic techniques. A high DNase activity was detected in the bulk sludge during the thermophilic digestion stage which may be responsible for the rapid turn over of DNA from lysed cells and the removal of mobile DNA. These results offer assurance for the safe use of ATAD sludge as a soil supplement following processing.

  14. Distribution, partition and removal of polycyclic aromatic hydrocarbons (PAHs) during coking wastewater treatment processes.

    PubMed

    Zhang, Wanhui; Wei, Chaohai; An, Guanfeng

    2015-05-01

    In this study, we report the performance of a full-scale conventional activated sludge (A-O1-O2) treatment in eliminating polycyclic aromatic hydrocarbons (PAHs). Both aqueous and solid phases along with the coking wastewater treatment processes were analyzed for the presence of 18 PAHs. It was found that the target compounds occurred widely in raw coking wastewater, treated effluent and sludge samples. In the coking wastewater treatment system, 4-5 ring PAHs were the dominant compounds, while 4 rings PAHs predominated in the sludge samples. Over 98% of the PAH removal was achieved in the coking wastewater treatment plant (WWTP), with the total concentration of PAHs being 21.3 ± 1.9 μg L(-1) in the final effluent. During the coking wastewater treatment processes, the association of the lower molecular weight PAH with suspended solids was generally less than 60%, while the association of higher molecular weight PAHs was greater than 90%. High distribution efficiencies (Kdp and Kds) were found, suggesting that adsorption was the potential removal pathway of PAHs. Finally, the mass balances of PAHs in various stages of the coking WWTP were obtained, and the results indicated that adsorption to sludge was the main removal pathway for PAHs in the coking wastewater treatment processes.

  15. Feasibility of bioleaching combined with Fenton-like reaction to remove heavy metals from sewage sludge.

    PubMed

    Zhu, Yi; Zeng, Guangming; Zhang, Panyue; Zhang, Chang; Ren, Miaomiao; Zhang, Jiachao; Chen, Ming

    2013-08-01

    Feasibility of bioleaching combining with Fenton-like reaction to remove heavy metals from sewage sludge was investigated. After 5-day bioleaching, the sludge pH decreased from 6.95 to 2.50, which satisfied the acidic conditions for Fenton-like reaction. Meanwhile, more than 50% of sludge-borne heavy metals were dissolved except for Pb. The bioleached sludge was further oxidized with Fenton-like reaction, with an optimal H2O2 dosage of 5 g/L, the Cu, Zn, Pb and Cd removal reached up to 75.3%, 72.6%, 34.5% and 65.4%, respectively, and the residual content of heavy metals in treated sludge meets the requirement of Disposal of Sludge from Municipal Wastewater Treatment Plant - Control Standards for Agricultural Use (CJ/T 309-2009) of China for A grade sludge. Bioleaching combined with Fenton-like reaction was the most effective method for heavy metal removal, compared with 15-day bioleaching and inorganic acid leaching with 10% H2SO4, 10% HCl and 10% HNO3. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Occurrence and fate of pharmaceutically active compounds in the largest municipal wastewater treatment plant in Southwest China: mass balance analysis and consumption back-calculated model.

    PubMed

    Yan, Qing; Gao, Xu; Huang, Lei; Gan, Xiu-Mei; Zhang, Yi-Xin; Chen, You-Peng; Peng, Xu-Ya; Guo, Jin-Song

    2014-03-01

    The occurrence and fate of twenty-one pharmaceutically active compounds (PhACs) were investigated in different steps of the largest wastewater treatment plant (WWTP) in Southwest China. Concentrations of these PhACs were determined in both wastewater and sludge phases by a high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Results showed that 21 target PhACs were present in wastewater and 18 in sludge. The calculated total mass load of PhACs per capita to the influent, the receiving water and sludge were 4.95mgd(-1)person(-1), 889.94μgd(-1)person(-1) and 78.57μgd(-1)person(-1), respectively. The overall removal efficiency of the individual PhACs ranged from "negative removal" to almost complete removal. Mass balance analysis revealed that biodegradation is believed to be the predominant removal mechanism, and sorption onto sludge was a relevant removal pathway for quinolone antibiotics, azithromycin and simvastatin, accounting for 9.35-26.96% of the initial loadings. However, the sorption of the other selected PhACs was negligible. The overall pharmaceutical consumption in Chongqing, China, was back-calculated based on influent concentration by considering the pharmacokinetics of PhACs in humans. The back-estimated usage was in good agreement with usage of ofloxacin (agreement ratio: 72.5%). However, the back-estimated usage of PhACs requires further verification. Generally, the average influent mass loads and back-calculated annual per capita consumption of the selected antibiotics were comparable to or higher than those reported in developed countries, while the case of other target PhACs was opposite. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Predicting the degradability of waste activated sludge.

    PubMed

    Jones, Richard; Parker, Wayne; Zhu, Henry; Houweling, Dwight; Murthy, Sudhir

    2009-08-01

    The objective of this study was to identify methods for estimating anaerobic digestibility of waste activated sludge (WAS). The WAS streams were generated in three sequencing batch reactors (SBRs) treating municipal wastewater. The wastewater and WAS properties were initially determined through simulation of SBR operation with BioWin (EnviroSim Associates Ltd., Flamborough, Ontario, Canada). Samples of WAS from the SBRs were subsequently characterized through respirometry and batch anaerobic digestion. Respirometry was an effective tool for characterizing the active fraction of WAS and could be a suitable technique for determining sludge composition for input to anaerobic models. Anaerobic digestion of the WAS revealed decreasing methane production and lower chemical oxygen demand removals as the SRT of the sludge increased. BioWin was capable of accurately describing the digestion of the WAS samples for typical digester SRTs. For extended digestion times (i.e., greater than 30 days), some degradation of the endogenous decay products was assumed to achieve accurate simulations for all sludge SRTs.

  18. Comparison between ozone and ultrasound disintegration on sludge anaerobic digestion.

    PubMed

    Braguglia, C M; Gianico, A; Mininni, G

    2012-03-01

    This paper deals with the comparison of ultrasound (mechanical) and ozone (chemical) pre-treatment on the performances of excess sludge semi-continuous digestion. Sludge solubilisation has been investigated by varying specific energy input. For each pre-treatment, long anaerobic digestion tests were carried out by two parallel digesters: one reactor, as control unit, was fed with untreated waste activated sludge, and the other one was fed with disintegrated sludge. To evaluate and compare the efficacy of both pre-treatments, the specific energy was maintained approximately the same. The digestion tests were carried out to investigate the feasibility of anaerobic digestion performance (total biogas production, volatile solids removal, sludge dewaterability) and to assess the heat balance. Results obtained from the digestion of sonicated sludge at 4% disintegration degree (≈ 2500 kJ/kg TS) showed that the ultrasound pre-treatment may be effective both in increasing VS destruction (+19%) and cumulative biogas production (+26%). On the contrary, the digestion test with ozonized sludge (ozone dose of 0.05 g O(3)/g TS corresponding to ≈ 2000 kJ/kg TS) did not indicate a significant improvement on the digestion performances. By doubling the ozone dose an improvement in the organics removal and cumulative biogas production was observed. Relevant differences in terms of colloidal charge and filterability were discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Influence of deflocculation on microwave disintegration and anaerobic biodegradability of waste activated sludge.

    PubMed

    Ebenezer, A Vimala; Kaliappan, S; Adish Kumar, S; Yeom, Ick-Tae; Banu, J Rajesh

    2015-06-01

    In the present study, the potential benefits of deflocculation on microwave pretreatment of waste activated sludge were investigated. Deflocculation in the absence of cell lysis was achieved through the removal of extra polymeric substances (EPS) by sodium citrate (0.1g sodium citrate/g suspended solids), and DNA was used as a marker for monitoring cell lysis. Subsequent microwave pretreatment yielded a chemical oxygen demand (COD) solubilisation of 31% and 21%, suspended solids (SS) reduction of 37% and 22%, for deflocculated and flocculated sludge, respectively, with energy input of 14,000kJ/kg TS. When microwave pretreated sludge was subjected to anaerobic fermentation, greater accumulation of volatile fatty acid (860mg/L) was noticed in deflocculated sludge, indicating better hydrolysis. Among the samples subjected to BMP (Biochemical methane potential test), deflocculated microwave pretreated sludge showed better amenability towards anaerobic digestion with high methane production potential of 0.615L (gVS)(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Start-up performance and granular sludge features of an improved external circulating anaerobic reactor for algae-laden water treatment.

    PubMed

    Yu, Yaqin; Lu, Xiwu

    2017-09-01

    The microbial characteristics of granular sludge during the rapid start of an enhanced external circulating anaerobic reactor were studied to improve algae-laden water treatment efficiency. Results showed that algae laden water was effectively removed after about 35 d, and the removal rates of chemical oxygen demand (COD) and algal toxin were around 85% and 92%, respectively. Simultaneously, the gas generation rate was around 380 mL/gCOD. The microbial community structure in the granular sludge of the reactor was complicated, and dominated by coccus and filamentous bacteria. Methanosphaera , Methanolinea , Thermogymnomonas , Methanoregula , Methanomethylovorans , and Methanosaeta were the major microorganisms in the granular sludge. The activities of protease and coenzyme F 420 were high in the granular sludge. The intermittent stirring device and the reverse-flow system were further found to overcome the disadvantage of the floating and crusting of cyanobacteria inside the reactor. Meanwhile, the effect of mass transfer inside the reactor can be accelerated to help give the reactor a rapid start.

  1. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cristale, Joyce; Ramos, Dayana D.; Dantas, Renato F.

    2016-01-15

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L{sup −1} to 150 µg L{sup −1}. During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g{sup −1} dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatmentmore » and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H{sub 2}O{sub 2} and O{sub 3}) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H{sub 2}O{sub 2} and O{sub 3}. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs. - Highlights: • OPFRs were detected in wastewater and sludge of all studied WWTPs. • Alkyl and chloroalkyl phosphates were present in secondary treatment effluents. • TBOEP, TNBP and TIBP were degraded by UV/H{sub 2}O{sub 2} and O{sub 3} treatment. • TCEP, TCIPP and TDCPP were resistant to both secondary and tertiary treatment.« less

  2. Evaluation of electricity generation from ultrasonic and heat/alkaline pretreatment of different sludge types using microbial fuel cells.

    PubMed

    Oh, Sang-Eun; Yoon, Joung Yee; Gurung, Anup; Kim, Dong-Jin

    2014-08-01

    This study investigated the effects of different sludge pretreatment methods (ultrasonic vs. combined heat/alkali) with varied sources of municipal sewage sludge (primary sludge (PS), secondary excess sludge (ES), anaerobic digestion sludge (ADS)) on electricity generation in microbial fuel cells (MFCs). Introduction of ultrasonically pretreated sludge (PS, ES, ADS) to MFCs generated maximum power densities of 13.59, 9.78 and 12.67mW/m(2) and soluble COD (SCOD) removal efficiencies of 87%, 90% and 57%, respectively. The sludge pretreated by combined heat/alkali (0.04N NaOH at 120°C for 1h) produced maximum power densities of 10.03, 5.21 and 12.53mW/m(2) and SCOD removal efficiencies of 83%, 75% and 74% with PS, ES and ADS samples, respectively. Higher SCOD by sludge pretreatment enhanced performance of the MFCs and the electricity generation was linearly proportional to the SCOD removal, especially for ES. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Impact of a static magnetic field on biodegradation of wastewater compounds and bacteria recombination.

    PubMed

    Łebkowska, Maria; Rutkowska-Narożniak, Anna; Pajor, Elżbieta; Tabernacka, Agnieszka; Załęska-Radziwiłł, Monika

    2018-05-29

    The current study presents results concerning the effect of a static magnetic field (SMF) on synthetic wastewater biodegradation by activated sludge and on dehydrogenase activity of microorganisms of activated sludge. The highest process efficiency was obtained for a SMF of 0.0075 T among the tested magnetic flux density values of 0.005-0.14 T. Decrease in COD was 25% higher for the bioreactor exposed to SMF compared with control experiments. The positive effect of SMF 0.0075-0.0080 T was confirmed in experiments on the dehydrogenase activity of activated sludge. It was also shown that a SMF of 0.007 T increased p-nitroaniline removal from wastewater and influenced the recombination frequency in a streptomycin-resistant bacteria strain of Eschercihia coli.

  4. Bacterial Selection during the Formation of Early-Stage Aerobic Granules in Wastewater Treatment Systems Operated Under Wash-Out Dynamics

    PubMed Central

    Weissbrodt, David G.; Lochmatter, Samuel; Ebrahimi, Sirous; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2012-01-01

    Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment plants (WWTP) over start-up periods of maximum 60 days. Five bubble-column sequencing batch reactors were operated with feast-famine regimes consisting of rapid pulse or slow anaerobic feeding followed by aerobic starvation. Slow-settling fluffy granules were formed when an insufficient superficial air velocity (SAV; 1.8 cm s−1) was applied, when the inoculation sludge was taken from a WWTP removing organic matter only, or when reactors were operated at 30°C. Fast-settling dense granules were obtained with 4.0 cm s−1 SAV, or when the inoculation sludge was taken from a WWTP removing all nutrients biologically. However, only carbon was aerobically removed during start-up. Fluffy granules and dense granules were displaying distinct predominant phylotypes, namely filamentous Burkholderiales affiliates and Zoogloea relatives, respectively. The latter were predominant in dense granules independently from the feeding regime. A combination of insufficient solid retention time and of leakage of acetate into the aeration phase during intensive biomass wash-out was the cause for the proliferation of Zoogloea spp. in dense granules, and for the deterioration of BNR performances. It is however not certain that Zoogloea-like organisms are essential in granule formation. Optimal operation conditions should be elucidated for maintaining a balance between organisms with granulation propensity and nutrient removing organisms in order to form granules with BNR activities in short start-up periods. PMID:22993513

  5. Bacterial Selection during the Formation of Early-Stage Aerobic Granules in Wastewater Treatment Systems Operated Under Wash-Out Dynamics.

    PubMed

    Weissbrodt, David G; Lochmatter, Samuel; Ebrahimi, Sirous; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2012-01-01

    Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment plants (WWTP) over start-up periods of maximum 60 days. Five bubble-column sequencing batch reactors were operated with feast-famine regimes consisting of rapid pulse or slow anaerobic feeding followed by aerobic starvation. Slow-settling fluffy granules were formed when an insufficient superficial air velocity (SAV; 1.8 cm s(-1)) was applied, when the inoculation sludge was taken from a WWTP removing organic matter only, or when reactors were operated at 30°C. Fast-settling dense granules were obtained with 4.0 cm s(-1) SAV, or when the inoculation sludge was taken from a WWTP removing all nutrients biologically. However, only carbon was aerobically removed during start-up. Fluffy granules and dense granules were displaying distinct predominant phylotypes, namely filamentous Burkholderiales affiliates and Zoogloea relatives, respectively. The latter were predominant in dense granules independently from the feeding regime. A combination of insufficient solid retention time and of leakage of acetate into the aeration phase during intensive biomass wash-out was the cause for the proliferation of Zoogloea spp. in dense granules, and for the deterioration of BNR performances. It is however not certain that Zoogloea-like organisms are essential in granule formation. Optimal operation conditions should be elucidated for maintaining a balance between organisms with granulation propensity and nutrient removing organisms in order to form granules with BNR activities in short start-up periods.

  6. Impact of wastewater treatment configuration and seasonal conditions on thyroid hormone disruption and stress effects in Rana catesbeiana tailfin.

    PubMed

    Wojnarowicz, Pola; Ogunlaja, Olumuyiwa O; Xia, Chen; Parker, Wayne J; Helbing, Caren C

    2013-12-03

    Improved endocrine disrupting compound (EDC) removal is desirable in municipal wastewater treatment plants (MWWTPs) although increased removal does not always translate into reduced biological activity. Suitable methods for determining reduction in biological activity of effluents are needed. In order to determine which MWWTPs are the most effective at removing EDC activities, we operated three configurations of pilot sized biological reactors (conventional activated sludge, CAS; nitrifying activated sludge, NAS; and biological nutrient removal, BNR) receiving the same influent under simulated winter and summer conditions. As frogs are model organisms for the study of thyroid hormone (TH) action, we used the North American species Rana catesbeiana in a cultured tadpole tailfin (C-fin) assay to compare the effluents. TH-responsive (thyroid hormone receptors alpha (thra) and beta (thrb)) and stress-responsive (superoxide dismutase, catalase, and heat shock protein 30) mRNA transcript levels were examined. Effluents infrequently perturbed stress-responsive transcript abundance but thra/thrb levels were significantly altered. In winter conditions, CAS caused frequent TH perturbations while BNR caused none. In summer conditions, however, BNR caused substantial TH perturbations while CAS caused few. Our findings contrast other studies of seasonal variations of EDC removal and accentuate the importance of utilizing appropriate biological readouts for assessing EDC activities.

  7. Performance and activated sludge characteristics at short solid retention time in a submerged MBR: effects of C/N ratio of wastewater.

    PubMed

    Sari Erkan, Hanife; Onkal Engin, Guleda

    2018-02-22

    This study investigated the effect of carbon to nitrogen (C/N) ratio of influent wastewater on performance and activated sludge properties at a sludge retention time of 5 d in a submerged membrane bioreactor. The chemical oxygen demand and ammonia-Nitrogen (NH 3 -N) removal efficiencies were found to be over 96.3% and 86.9% in the sMBRs having different C/N ratios. It was found that total extracellular polymeric substances and total soluble microbial products increased with an increase in C/N ratio. It was also observed that critical flux, relative hydrophobicity and zeta potential values decreased, and capillary suction time, particle size and viscosity of sludge increased as the C/N ratio increased.

  8. Characteristics and adsorption study of the activated carbon derived from municipal sewage sludge.

    PubMed

    Guo, Tiecheng; Yao, Sicong; Chen, Hengli; Yu, Xin; Wang, Meicheng; Chen, Yao

    2017-10-01

    Sewage sludge-based activated carbon is proved to be an efficient and low-cost adsorbent in treatment of various industrial wastewaters. The produced carbon had a well-developed pore structure and relatively low Brunauer-Emmett-Teller (BET) surface area. Adsorptive capacity of typical pollutants, i.e. copper Cu(II) and methylene blue (MB) on the carbon was studied. Adsorptions were affected by the initial solution pH, contact time and adsorbent dose. Results showed that adsorption of Cu(II) and MB on the produced carbon could reach equilibrium after 240 min. The average removal rate for Cu(II) on the carbon was high, up to 97% in weak acidic conditions (pH = 4-6) and around 98% for MB in a very wide pH range (pH = 2-12). The adsorption kinetics were well fitted by the pseudo-second order model, and both Langmuir and Freundlich isotherm models could well describe the adsorption process at room temperature. The theoretical maximum adsorption capacities of Cu(II) and MB on sewage sludge-based activated carbon were 114.94 mg/g and 125 mg/g, respectively. Compared with commercial carbon, the sewage sludge-based carbon was more suitable for heavy metal ions' removal than dyes'.

  9. Removal of hydrocarbon from refinery tank bottom sludge employing microbial culture.

    PubMed

    Saikia, Rashmi Rekha; Deka, Suresh

    2013-12-01

    Accumulation of oily sludge is becoming a serious environmental threat, and there has not been much work reported for the removal of hydrocarbon from refinery tank bottom sludge. Effort has been made in this study to investigate the removal of hydrocarbon from refinery sludge by isolated biosurfactant-producing Pseudomonas aeruginosa RS29 strain and explore the biosurfactant for its composition and stability. Laboratory investigation was carried out with this strain to observe its efficacy of removing hydrocarbon from refinery sludge employing whole bacterial culture and culture supernatant to various concentrations of sand-sludge mixture. Removal of hydrocarbon was recorded after 20 days. Analysis of the produced biosurfactant was carried out to get the idea about its stability and composition. The strain could remove up to 85 ± 3 and 55 ± 4.5 % of hydrocarbon from refinery sludge when whole bacterial culture and culture supernatant were used, respectively. Maximum surface tension reduction (26.3 mN m(-1)) was achieved with the strain in just 24 h of time. Emulsification index (E24) was recorded as 100 and 80 % with crude oil and n-hexadecane, respectively. The biosurfactant was confirmed as rhamnolipid containing C8 and C10 fatty acid components and having more mono-rhamnolipid congeners than the di-rhamnolipid ones. The biosurfactant was stable up to 121 °C, pH 2-10, and up to a salinity value of 2-10 % w/v. To our knowledge, this is the first report showing the potentiality of a native strain from the northeast region of India for the efficient removal of hydrocarbon from refinery sludge.

  10. Removal of selected non-steroidal anti-inflammatory drugs (NSAIDs), gemfibrozil, carbamazepine, beta-blockers, trimethoprim and triclosan in conventional wastewater treatment plants in five EU countries and their discharge to the aquatic environment.

    PubMed

    Paxéus, N

    2004-01-01

    The removal of commonly used pharmaceuticals (ibuprofen, naproxen, diclofenac, gemfibrozil, carbamazepine, atenolol, metoprolol and trimethoprim) and a biocide (triclosan) in operating wastewater treatment plants in five EU countries has been studied. Under normal operating conditions the acidic drugs and triclosan were partially removed with removal rates varying from ca. 20 to >95%. The highest removal rate was found for ibuprofen and triclosan (>90%) followed by naproxen (80%), gemfibrozil (55%) and diclofenac (39%). Ibuprofen undergoes an oxidative transformation to corresponding hydroxy- and carboxy-metabolites, which contributes to its high removal rate. Disturbances in the activated sludge process resulted in lower removal rates for all acidic drugs, mostly for diclofenac (<10% removed) but also for ibuprofen (<60% removed). The treatment of wastewaters by activated sludge usually did not result in any practical removal (<10%) of neutral carbamazepine or basic atenolol, metoprolol and trimethoprim. The removal rates of the investigated drugs and triclosan are discussed in terms of mechanisms responsible for their removal. Discharges of carbamazepine, diclofenac, gemfibrozil, naproxen, triclosan and trimethoprim from WWTPs to the aquatic environment, expressed as the average concentration in the effluent and the daily discharged quantity per person served by WWTPs were assessed.

  11. Pharmaceutically active compounds in sludge stabilization treatments: anaerobic and aerobic digestion, wastewater stabilization ponds and composting.

    PubMed

    Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2015-01-15

    Sewage sludge disposal onto lands has been stabilized previously but still many pollutants are not efficiently removed. Special interest has been focused on pharmaceutical compounds due to their potential ecotoxicological effects. Nowadays, there is scarce information about their occurrence in different sludge stabilization treatments. In this work, the occurrence of twenty-two pharmaceutically active compounds has been studied in sludge from four sludge stabilization treatments: anaerobic digestion, aerobic digestion, composting and lagooning. The types of sludge evaluated were primary, secondary, anaerobically-digested and dehydrated, composted, mixed, aerobically-digested and dehydrated and lagoon sludge. Nineteen of the twenty-two pharmaceutically active compounds monitored were detected in sewage sludge. The most contaminated samples were primary sludge, secondary sludge and mixed sludge (the average concentrations of studied compounds in these sludges were 179, 310 and 142 μg/kg dm, respectively) while the mean concentrations found in the other types of sewage sludge were 70 μg/kg dm (aerobically-digested sludge), 63 μg/kg dm (lagoon sludge), 12 μg/kg dm (composted sludge) and 8 μg/kg dm (anaerobically-digested sludge). The antibiotics ciprofloxacin and norfloxacin were found at the highest concentration levels in most of the analyzed sludge samples (up to 2660 and 4328 μg/kg dm, respectively). Anaerobic-digestion treatment reduced more considerably the concentration of most of the studied compounds than aerobic-digestion (especially in the case of bezafibrate and fluoroquinolones) and more than anaerobic stabilization ponds (in the case of acetaminophen, atenolol, bezafibrate, carbamazepine, 17α-ethinylestradiol, naproxen and salicylic acid). Ecotoxicological risk assessment, of sludge application onto soils, has also been evaluated. Risk quotients, expressed as the ratio between the predicted environmental concentration and the predicted non-effect concentration, were lower than 1 for all the pharmaceutically active compounds so no significant risks are expected to occur due to the application of sewage sludge onto soils, except for 17α-ethinylestradiol when chronic toxicity was considered. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Fate of pharmaceuticals in full-scale source separated sanitation system.

    PubMed

    Butkovskyi, A; Hernandez Leal, L; Rijnaarts, H H M; Zeeman, G

    2015-11-15

    Removal of 14 pharmaceuticals and 3 of their transformation products was studied in a full-scale source separated sanitation system with separate collection and treatment of black water and grey water. Black water is treated in an up-flow anaerobic sludge blanket (UASB) reactor followed by oxygen-limited autotrophic nitrification-denitrification in a rotating biological contactor and struvite precipitation. Grey water is treated in an aerobic activated sludge process. Concentration of 10 pharmaceuticals and 2 transformation products in black water ranged between low μg/l to low mg/l. Additionally, 5 pharmaceuticals were also present in grey water in low μg/l range. Pharmaceutical influent loads were distributed over two streams, i.e. diclofenac was present for 70% in grey water, while the other compounds were predominantly associated to black water. Removal in the UASB reactor fed with black water exceeded 70% for 9 pharmaceuticals out of the 12 detected, with only two pharmaceuticals removed by sorption to sludge. Ibuprofen and the transformation product of naproxen, desmethylnaproxen, were removed in the rotating biological contactor. In contrast, only paracetamol removal exceeded 90% in the grey water treatment system while removal of other 7 pharmaceuticals was below 40% or even negative. The efficiency of pharmaceutical removal in the source separated sanitation system was compared with removal in the conventional sewage treatment plants. Furthermore, effluent concentrations of black water and grey water treatment systems were compared with predicted no-effect concentrations to assess toxicity of the effluent. Concentrations of diclofenac, ibuprofen and oxazepam in both effluents were higher than predicted no-effect concentrations, indicating the necessity of post-treatment. Ciprofloxacin, metoprolol and propranolol were found in UASB sludge in μg/g range, while pharmaceutical concentrations in struvite did not exceed the detection limits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. [Harvest of the carbon source in wastewater by the adsorption and desorption of activated sludge].

    PubMed

    Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang; Mei, Yi-Jun

    2011-04-01

    The carbon source in municipal wastewater was adsorbed by activated sludge and then harvested through the hydrolysis of activated sludge. Results indicated that activated sludge had high absorbing ability towards organic carbon and phosphorus under continuous operation mode, and the average COD and TP absorption rate reached as high as 63% and 76%, respectively. Moreover, about 50% of the soluble carbon source was outside of the sludge cell and could be released under mild hydrolysis condition. Whereas the absorbed amount of nitrogen was relatively low, and the removal rate of ammonia was only 13% . Furthermore, the releases of organic carbon, nitrogen and phosphorus from the sludge absorbing pollutants in the wastewater were studied. By comparing different hydrolysis conditions of normal (pH 7.5, 20 degrees C), heating (pH 7.5, 60 degrees C) and the alkaline heating (pH 11, 60 degrees C), the last one presented the optimum hydrolysis efficiency. Under which, the release rate of COD could reach 320 mg/g after 24 hours, whereas nitrogen and phosphorus just obtained low release rates of 18 mg/g and 2 mg/g, respectively. Results indicate that the carbon source in wastewater could be harvested by the adsorption and desorption of activated sludge, and the concentrations of nitrogen and phosphorus are low and would not influence the reuse of the harvested carbon source.

  14. Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism.

    PubMed

    Tao, Jia; Qin, Lian; Liu, Xiaoying; Li, Bolin; Chen, Junnan; You, Juan; Shen, Yitian; Chen, Xiaoguo

    2017-07-01

    The granulation of activated sludge and effect of granular activated carbon (GAC) was investigated under the alternative anaerobic and aerobic conditions. The results showed that GAC accelerated the granulation, but had no obvious effect on the bacterial community structure of granules. The whole granulation process could be categorized into three phases, i.e. lag, granulation and granule maturation phase. During lag period GAC provided nuclei for sludge to attach, and thus enhanced the morphological regularization of sludge. During granulation period the granule size increased significantly due to the growth of bacteria in granules. GAC reduced the compression caused by the inter-particle collisions and thus accelerate the granulation. GAC has no negative effect on the performance of SBR, and thus efficient simultaneous removal of COD, nitrogen and phosphorus were obtained during most of the operating time. Copyright © 2017. Published by Elsevier Ltd.

  15. The activated sludge ecosystem contains a core community of abundant organisms

    PubMed Central

    Saunders, Aaron M; Albertsen, Mads; Vollertsen, Jes; Nielsen, Per H

    2016-01-01

    Understanding the microbial ecology of a system requires that the observed population dynamics can be linked to their metabolic functions. However, functional characterization is laborious and the choice of organisms should be prioritized to those that are frequently abundant (core) or transiently abundant, which are therefore putatively make the greatest contribution to carbon turnover in the system. We analyzed the microbial communities in 13 Danish wastewater treatment plants with nutrient removal in consecutive years and a single plant periodically over 6 years, using Illumina sequencing of 16S ribosomal RNA amplicons of the V4 region. The plants contained a core community of 63 abundant genus-level operational taxonomic units (OTUs) that made up 68% of the total reads. A core community consisting of abundant OTUs was also observed within the incoming wastewater to three plants. The net growth rate for individual OTUs was quantified using mass balance, and it was found that 10% of the total reads in the activated sludge were from slow or non-growing OTUs, and that their measured abundance was primarily because of immigration with the wastewater. Transiently abundant organisms were also identified. Among them the genus Nitrotoga (class Betaproteobacteria) was the most abundant putative nitrite oxidizer in a number of activated sludge plants, which challenges previous assumptions that Nitrospira (phylum Nitrospirae) are the primary nitrite-oxidizers in activated sludge systems with nutrient removal. PMID:26262816

  16. Fate of sulfonamide antibiotics in contact with activated sludge--sorption and biodegradation.

    PubMed

    Yang, Sheng-Fu; Lin, Cheng-Fang; Wu, Chien-Ju; Ng, Kok-Kwang; Lin, Angela Yu-Chen; Hong, Pui-Kwan Andy

    2012-03-15

    The sorption and biodegradation of three sulfonamide antibiotics, namely sulfamethoxazole (SMX), sulfadimethoxine (SDM), and sulfamonomethoxine (SMM), in an activated sludge system were investigated. Experiments were carried out by contacting 100 μg/L of each sulfonamide compound individually with 2.56 g/L of MLSS at 25±0.5 °C, pH 7.0, and dissolved oxygen of 3.0±0.1 mg/L in a batch reactor over different periods of 2 d and 14 d. All sulfonamides were removed completely over 11-13 d. Sorptive equilibrium was established well within the first few hours, followed by a lag period of 1-3 days before biodegradation was to deplete the antibiotic compounds linearly in the ensuing 10 days. Apparent zeroth-order rate constants were obtained by regression analysis of measured aqueous concentration vs. time profiles to a kinetic model accounting for sorption and biodegradation; they were 8.1, 7.9, and 7.7 μg/L/d for SDM, SMX, and SMM, respectively, at activated sludge concentration of 2.56 g/L. The measured kinetics implied that with typical hydraulic retention time (e.g. 6 h) provided by WWTP the removal of sulfonamide compounds from the wastewater during the activated sludge process would approximate 2 μg/L. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Pilot scale study on the ex situ electrokinetic removal of heavy metals from municipal wastewater sludges.

    PubMed

    Kim, Soon-Oh; Moon, Seung-Hyeon; Kim, Kyoung-Woong; Yun, Seong-Taek

    2002-11-01

    In order to remove toxic heavy metals from municipal wastewater sludges, the ex situ electrokinetic technique was studied at pilot scale. This study focused on the feasibility of the electrokinetic removal of heavy metals from sludge and the effectiveness of this technique on the variations of abiotic (physicochemical) and biotic (intracellular and extracellular) speciations of heavy metals using several analytical methods. Even though the sludge used was taken from a municipal wastewater treatment plant, the sludge contained relatively high concentrations of target metal contaminants (Cd = 6.8 mg/kg, Cr = 115.6 mg/kg, Cu = 338.7 mg/kg, and Pb = 62.8 mg/kg). The removal efficiencies of heavy metals were significantly dependent on their speciations in the sludge matrices. The electrokinetic removal efficiencies of abiotic heavy metals exceeded 70% for the mobile and weakly bound fractions, such as, the exchangeable and carbonate fractions and were lower than 35% for the strongly bound fractions, such as, the organic/sulfide and residual fractions. In the case of the biotic heavy metals, the removal efficiencies of the extracellular fractions were slightly higher than those of the intracellular fractions.

  18. Effects of mechanical disintegration of activated sludge on the activity of nitrifying and denitrifying bacteria and phosphorus accumulating organisms.

    PubMed

    Zubrowska-Sudol, Monika; Walczak, Justyna

    2014-09-15

    The purpose of the study was to analyse the impact of hydrodynamic disintegration of thickened excess activated sludge, performed at different levels of energy density (70, 140 and 210 kJ/L), on the activity of microorganisms involved in nutrient removal from wastewater, i.e. nitrifiers, denitrifiers and phosphorus accumulating organisms (PAOs). Ammonium and nitrogen utilisation rates and phosphorus release rates for raw and disintegrated sludge were determined using batch tests. The experiment also included: 1) analysis of organic and nutrient compound release from activated sludge flocs, 2) determination of the sludge disintegration degree (DD), and 3) evaluation of respiratory activity of the biomass by using the oxygen uptake rate (OUR) batch test. It was shown that the activity degree of the examined groups of microorganisms depended on energy density and related sludge disintegration degree, and that inactivation of individual groups of microorganisms occurred at different values of DD. Least resistant to the destruction of activated sludge flocs turned out to be phosphorus accumulating organisms, while the most resistant were denitrifiers. A decrease of 20-40% in PAO activity was noted already at DD equal to 3-5%. The threshold values of DD, after crossing which the inactivation of nitrifiers and denitrifiers occurred, were equal to 8% and 10%, respectively. At lesser DD values an increase in the activity of these groups of microorganisms was observed, averaging 20.2-41.7% for nitrifiers and 9.98-36.3% for denitrifiers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Hygienization performances of innovative sludge treatment solutions to assure safe land spreading.

    PubMed

    Levantesi, C; Beimfohr, C; Blanch, A R; Carducci, A; Gianico, A; Lucena, F; Tomei, M C; Mininni, G

    2015-05-01

    The present research aims at the evaluation of the hygienization performances of innovative sludge treatment processes applied for the separated treatment of secondary sludge. Namely, two digestion pretreatments (sonication and thermal hydrolysis) and two sequential biological processes (mesophilic/thermophilic and anaerobic/aerobic digestion) were compared to the mesophilic (MAD) and thermophilic anaerobic digestion (TAD). Microbial indicators (Escherichia coli, somatic coliphages and Clostridium perfringens spores) and pathogens (Salmonella and enteroviruses), which show different resistances to treatment processes, were monitored in untreated and treated sludge. Overall, microbial load in secondary sludge was shown to be similar or lower than previously reported in literature for mixed sludge. Notably, the anaerobic/aerobic digestion process increased the removal of E. coli and somatic coliphages compared to the simple MAD and always achieved the hygienization requirement (2-log-unit removal of E. coli) proposed by EU Commission in the 3rd Working Document on sludge (April 2000) for the use of treated sludges in agriculture with restriction on their application. The microbial quality limits for the unrestricted use of sludge in agriculture (no Salmonella in 50 g wet weight (WW) and E. coli <500 CFU/g) were always met when thermal digestion or pretreatment was applied; however, the required removal level (6-log-unit removal of E. coli) could not be assessed due to the low level of this microorganism in raw sludge. Observed levels of indicator removal showed a higher resistance of viral particles to thermal treatment compared with bacterial cells and confirmed the suitability of somatic coliphages as indicators in thermal treatment processes.

  20. Ultrasonic oil recovery and salt removal from refinery tank bottom sludge.

    PubMed

    Hu, Guangji; Li, Jianbing; Thring, Ronald W; Arocena, Joselito

    2014-01-01

    The oil recovery and salt removal effects of ultrasonic irradiation on oil refinery tank bottom sludge were investigated, together with those of direct heating. Ultrasonic power, treatment duration, sludge-to-water ratio, and initial sludge-water slurry temperature were examined for their impacts on sludge treatment. It was found that the increased initial slurry temperature could enhance the ultrasonic irradiation performance, especially at lower ultrasonic power level (i.e., 21 W), but the application of higher-power ultrasound could rapidly increase the bulk temperature of slurry. Ultrasonic irradiation had a better oil recovery and salt removal performance than direct heating treatment. More than 60% of PHCs in the sludge was recovered at an ultrasonic power of 75 W, a treatment duration of 6 min, an initial slurry temperature of 25°C, and a sludge-to-water ratio of 1:4, while salt content in the recovered oil was reduced to <5 mg L(-1), thereby satisfying the salt requirement in refinery feedstock oil. In general, ultrasonic irradiation could be an effective method in terms of oil recovery and salt removal from refinery oily sludge, but the separated wastewater still contains relatively high concentrations of PHCs and salt which requires proper treatment.

  1. The use of waterworks sludge for the treatment of vegetable oil refinery industry wastewater.

    PubMed

    Basibuyuk, M; Kalat, D G

    2004-03-01

    Water treatment works using coagulation/flocculation in the process stream will generate a waste sludge. This sludge is termed as ferric, alum, or lime sludge based on which coagulant was primarily used. The works in Adana, Turkey uses ferric chloride. The potential for using this sludge for the treatment of vegetable oil refinery industry wastewater by coagulation has been investigated. The sludge acted as a coagulant and excellent oil and grease, COD and TSS removal efficiencies were obtained. The optimum conditions were a pH of 6 and a sludge dose of 1100 mg SS l(-1). The efficiency of sludge was also compared with alum and ferric chloride for the vegetable oil refinery wastewater. At doses of 1300-1900 mg SS l(-1), the sludge was as effective as ferric chloride and alum at removing oil and grease, COD, and TSS. In addition, various combinations of ferric chloride and waterworks sludge were also examined. Under the condition of 12.5 mg l(-1) fresh ferric chloride and 1000 mg SS l(-1) sludge dose, 99% oil and grease 99% TSS and 83% COD removal efficiencies were obtained.

  2. Treatment of industrial effluents by a continuous system: electrocoagulation--activated sludge.

    PubMed

    Moisés, Tejocote-Pérez; Patricia, Balderas-Hernández; Barrera-Díaz, C E; Gabriela, Roa-Morales; Natividad-Rangel, Reyna

    2010-10-01

    A continuous system electrocoagulation--active sludge was designed and built for the treatment of industrial wastewater. The system included an electrochemical reactor with aluminum electrodes, a clarifier and a biological reactor. The electrochemical reactor was tested under different flowrates (50, 100 and 200 mL/min). In the biological reactor, the performance of different cultures of active sludge was assessed: coliform bacterial, ciliate and flagellate protozoa and aquatic fungus. Overall treatment efficiencies of color, turbidity and COD removal were 94%, 92% and 80%, respectively, under optimal conditions of 50 mL/min flowrate and using ciliate and flagellate protozoa. It was concluded that the system was efficient for the treatment of industrial wastewater. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Wastewater treatment--adsorption of organic micropollutants on activated HTC-carbon derived from sewage sludge.

    PubMed

    Kirschhöfer, Frank; Sahin, Olga; Becker, Gero C; Meffert, Florian; Nusser, Michael; Anderer, Gilbert; Kusche, Stepan; Klaeusli, Thomas; Kruse, Andrea; Brenner-Weiss, Gerald

    2016-01-01

    Organic micropollutants (MPs), in particular xenobiotics and their transformation products, have been detected in the aquatic environment and the main sources of these MPs are wastewater treatment plants. Therefore, an additional cleaning step is necessary. The use of activated carbon (AC) is one approach to providing this additional cleaning. Industrial AC derived from different carbonaceous materials is predominantly produced in low-income countries by polluting processes. In contrast, AC derived from sewage sludge by hydrothermal carbonization (HTC) is a regional and sustainable alternative, based on waste material. Our experiments demonstrate that the HTC-AC from sewage sludge was able to remove most of the applied MPs. In fact more than 50% of sulfamethoxazole, diclofenac and bezafibrate were removed from artificial water samples. With the same approach carbamazepine was eliminated to nearly 70% and atrazine more than 80%. In addition a pre-treated (phosphorus-reduced) HTC-AC was able to eliminate 80% of carbamazepine and diclofenac. Atrazine, sulfamethoxazole and bezafibrate were removed to more than 90%. Experiments using real wastewater samples with high organic content (11.1 g m(-3)) succeeded in proving the adsorption capability of phosphorus-reduced HTC-AC.

  4. Identification of selected microorganisms from activated sludge capable of benzothiazole and benzotriazole transformation.

    PubMed

    Kowalska, Katarzyna; Felis, Ewa

    2015-01-01

    Benzothiazole (BT) and benzotriazole (BTA) are present in the environment - especially in urban and industrial areas, usually as anthropogenic micropollutants. BT and BTA have been found in the municipal and industrial wastewater, rivers, soil, groundwater, sediments and sludge. The origins of those substances' presence in the environment are various industry branches (food, chemical, metallurgical, electrical), households and surface runoff from industrial areas. Increasingly strict regulations on water quality and the fact that the discussed compounds are poorly biodegradable, make them a serious problem in the environment. Considering this, it is important to look for environmentally friendly and socially acceptable ways to remove BT and BTA. The aim of this study was to identify microorganisms capable of BT and BTA transformation or/and degradation in aquatic environment. Selected microorganisms were isolated from activated sludge. The identification of microorganisms capable of BT and BTA removal was possible using molecular biology techniques (PCR, DNA sequencing). Among isolated microorganisms of activated sludge are bacteria potentially capable of BT and BTA biotransformation and/or removal. The most common bacteria capable of BT and BTA transformation were Rhodococcus sp., Enterobacter sp., Arthrobacter sp. They can grow in a medium with BT and BTA as the only carbon source. Microorganisms previously adapted to the presence of the studied substances at a concentration of 10 mg/l, showed a greater rate of growth of colonies on media than microorganisms unconditioned to the presence of such compounds. Results of the biodegradation test suggest that BT was degraded to a greater extent than BTA, 98-100% and 11-19%, respectively.

  5. Sequential chemical treatment of radium species in TENORM waste sludge produced from oil and natural gas production.

    PubMed

    El Afifi, E M; Awwad, N S; Hilal, M A

    2009-01-30

    This paper is dedicated to the treatment of sludge occurring in frame of the Egyptian produced from oil and gas production. The activity levels of three radium isotopes: Ra-226 (of U-series), Ra-228 and Ra-224 (of Th-series) in the solid TENORM waste (sludge) were first evaluated and followed by a sequential treatment for all radium species (fractions) presented in TENORM. The sequential treatment was carried out based on two approaches 'A' and 'B' using different chemical solutions. The results obtained indicate that the activity levels of all radium isotopes (Ra-226, Ra-228 and Ra-224) of the environmental interest in the TENORM waste sludge were elevated with regard to exemption levels established by IAEA [International Atomic Energy Agency (IAEA), International basic safety standards for the protection against ionizing radiation and for the safety of radiation sources. GOV/2715/Vienna, 1994]. Each approach of the sequential treatment was performed through four steps using different chemical solutions to reduce the activity concentration of radium in a large extent. Most of the leached radium was found as an oxidizable Ra species. The actual removal % leached using approach B was relatively efficient compared to A. It is observed that the actual removal percentages (%) of Ra-226, Ra-228 and Ra-224 using approach A are 78+/-2.8, 64.8+/-4.1 and 76.4+/-5.2%, respectively. Whereas in approach A, the overall removal % of Ra-226, Ra-228 and Ra-228 was increased to approximately 91+/-3.5, 87+/-4.1 and 90+/-6.2%, respectively.

  6. Fourier transform infrared spectroscopy as a metabolite fingerprinting tool for monitoring the phenotypic changes in complex bacterial communities capable of degrading phenol.

    PubMed

    Wharfe, Emma S; Jarvis, Roger M; Winder, Catherine L; Whiteley, Andrew S; Goodacre, Royston

    2010-12-01

    The coking process produces great volumes of wastewater contaminated with pollutants such as cyanides, sulfides and phenolics. Chemical and physical remediation of this wastewater removes the majority of these pollutants; however, these processes do not remove phenol and thiocyanate. The removal of these compounds has been effected during bioremediation with activated sludge containing a complex microbial community. In this investigation we acquired activated sludge from an industrial bioreactor capable of degrading phenol. The sludge was incubated in our laboratory and monitored for its ability to degrade phenol over a 48 h period. Multiple samples were taken across the time-course and analysed by Fourier transform infrared (FT-IR) spectroscopy. FT-IR was used as a whole-organism fingerprinting approach to monitor biochemical changes in the bacterial cells during the degradation of phenol. We also investigated the ability of the activated sludge to degrade phenol following extended periods (2-131 days) of storage in the absence of phenol. A reduction was observed in the ability of the microbial community to degrade phenol and this was accompanied by a detectable biochemical change in the FT-IR fingerprint related to cellular phenotype of the microbial community. In the absence of phenol a decrease in thiocyanate vibrations was observed, reflecting the ability of these communities to degrade this substrate. Actively degrading communities showed an additional new band in their FT-IR spectra that could be attributed to phenol degradation products from the ortho- and meta-cleavage of the aromatic ring. This study demonstrates that FT-IR spectroscopy when combined with chemometric analysis is a very powerful high throughput screening approach for assessing the metabolic capability of complex microbial communities. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  7. Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications.

    PubMed

    Nancharaiah, Y V; Kiran Kumar Reddy, G

    2018-01-01

    Aerobic granular sludge (AGS) is a novel microbial community which allows simultaneous removal of carbon, nitrogen, phosphorus and other pollutants in a single sludge system. AGS is distinct from activated sludge in physical, chemical and microbiological properties and offers compact and cost-effective treatment for removing oxidized and reduced contaminants from wastewater. AGS sequencing batch reactors have shown their utility in the treatment of abattoir, live-stock, rubber, landfill leachate, dairy, brewery, textile and other effluents. AGS is extensively researched for wide-spread implementation in sewage treatment plants. However, formation of AGS takes relatively much longer time while treating low-strength wastewaters like sewage. Strategies like increased volumetric flow by means of short cycles and mixing of sewage with industrial wastewaters can promote AGS formation while treating low-strength sewage. This article reviewed the state of research on AGS formation mechanisms, bioremediation capabilities and biotechnological applications of AGS technology in domestic and industrial wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Preliminary trial on degradation of waste activated sludge and simultaneous hydrogen production in a newly-developed solar photocatalytic reactor with AgX/TiO2-coated glass tubes.

    PubMed

    Liu, Chunguang; Lei, Zhongfang; Yang, Yingnan; Zhang, Zhenya

    2013-09-15

    A solar fluidized tubular photocatalytic reactor (SFTPR) with simple and efficient light collector was developed to degrade waste activated sludge (WAS) and simultaneously produce hydrogen. The photocatalyst was a TiO2 film doped by silver and silver compounds (AgX). The synthesized photocatalyst, AgX/TiO2, exhibited higher photocatalytic activity than TiO2 (99.5% and 30.6% of methyl orange removal, respectively). The installation of light collector could increase light intensity by 26%. For WAS treatment using the SFTPR, 69.1% of chemical oxygen demand (COD) removal and 7866.7 μmol H2/l-sludge of hydrogen production were achieved after solar photocatalysis for 72 h. The SFTPR could be a promising photocatalysis reactor to effectively degrade WAS with simultaneous hydrogen production. The results can also provide a useful base and reference for the application of photocatalysis on WAS degradation in practice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Dynamic control of nutrient-removal from industrial wastewater in a sequencing batch reactor, using common and low-cost online sensors.

    PubMed

    Dries, Jan

    2016-01-01

    On-line control of the biological treatment process is an innovative tool to cope with variable concentrations of chemical oxygen demand and nutrients in industrial wastewater. In the present study we implemented a simple dynamic control strategy for nutrient-removal in a sequencing batch reactor (SBR) treating variable tank truck cleaning wastewater. The control system was based on derived signals from two low-cost and robust sensors that are very common in activated sludge plants, i.e. oxidation reduction potential (ORP) and dissolved oxygen. The amount of wastewater fed during anoxic filling phases, and the number of filling phases in the SBR cycle, were determined by the appearance of the 'nitrate knee' in the profile of the ORP. The phase length of the subsequent aerobic phases was controlled by the oxygen uptake rate measured online in the reactor. As a result, the sludge loading rate (F/M ratio), the volume exchange rate and the SBR cycle length adapted dynamically to the activity of the activated sludge and the actual characteristics of the wastewater, without affecting the final effluent quality.

  10. Changes in hormone and stress-inducing activities of municipal wastewater in a conventional activated sludge wastewater treatment plant.

    PubMed

    Wojnarowicz, Pola; Yang, Wenbo; Zhou, Hongde; Parker, Wayne J; Helbing, Caren C

    2014-12-01

    Conventional municipal wastewater treatment plants do not efficiently remove contaminants of emerging concern, and so are primary sources for contaminant release into the aquatic environment. Although these contaminants are present in effluents at ng-μg/L concentrations (i.e. microcontaminants), many compounds can act as endocrine disrupting compounds or stress-inducing agents at these levels. Chemical fate analyses indicate that additional levels of wastewater treatment reduce but do not always completely remove all microcontaminants. The removal of microcontaminants from wastewater does not necessarily correspond to a reduction in biological activity, as contaminant metabolites or byproducts may still be biologically active. To evaluate the efficacy of conventional municipal wastewater treatment plants to remove biological activity, we examined the performance of a full scale conventional activated sludge municipal wastewater treatment plant located in Guelph, Ontario, Canada. We assessed reductions in levels of conventional wastewater parameters and thyroid hormone disrupting and stress-inducing activities in wastewater at three phases along the treatment train using a C-fin assay. Wastewater treatment was effective at reducing total suspended solids, chemical and biochemical oxygen demand, and stress-inducing bioactivity. However, only minimal reduction was observed in thyroid hormone disrupting activities. The present study underscores the importance of examining multiple chemical and biological endpoints in evaluating and monitoring the effectiveness of wastewater treatment for removal of microcontaminants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Enhancement of anaerobic sludge digestion by high-pressure homogenization.

    PubMed

    Zhang, Sheng; Zhang, Panyue; Zhang, Guangming; Fan, Jie; Zhang, Yuxuan

    2012-08-01

    To improve anaerobic sludge digestion efficiency, the effects of high-pressure homogenization (HPH) conditions on the anaerobic sludge digestion were investigated. The VS and TCOD were significantly removed with the anaerobic digestion, and the VS removal and TCOD removal increased with increasing the homogenization pressure and homogenization cycle number; correspondingly, the accumulative biogas production also increased with increasing the homogenization pressure and homogenization cycle number. The optimal homogenization pressure was 50 MPa for one homogenization cycle and 40 MPa for two homogenization cycles. The SCOD of the sludge supernatant significantly increased with increasing the homogenization pressure and homogenization cycle number due to the sludge disintegration. The relationship between the biogas production and the sludge disintegration showed that the accumulative biogas and methane production were mainly enhanced by the sludge disintegration, which accelerated the anaerobic digestion process and improved the methane content in the biogas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion.

    PubMed

    Ge, Huoqing; Batstone, Damien J; Keller, Jurg

    2013-11-01

    Conventional abattoir wastewater treatment processes for carbon and nutrient removal are typically designed and operated with a long sludge retention time (SRT) of 10-20 days, with a relatively high energy demand and physical footprint. The process also generates a considerable amount of waste activated sludge that is not easily degradable due to the long SRT. In this study, an innovative high-rate sequencing batch reactor (SBR) based wastewater treatment process with short SRT and hydraulic retention time (HRT) is developed and characterised. The high-rate SBR process was shown to be most effective with SRT of 2-3 days and HRT of 0.5-1 day, achieving >80% reduction in chemical oxygen demand (COD) and phosphorus and approximately 55% nitrogen removal. A majority of carbon removal (70-80%) was achieved by biomass assimilation and/or accumulation, rather than oxidation. Anaerobic degradability of the sludge generated in the high-rate SBR process was strongly linked to SRT, with measured degradability extent being 85% (2 days SRT), 73% (3 days), and 63% (4 days), but it was not influenced by digestion temperature. However, the rate of degradation for 3 and 4 days SRT sludge was increased by 45% at thermophilic conditions compared to mesophilic conditions. Overall, the treatment process provides a very compact and energy efficient treatment option for highly degradable wastewaters such as meat and food processing, with a substantial space reduction by using smaller reactors and a considerable net energy output through the reduced aerobic oxidation and concurrent increased methane production potential through the efficient sludge digestion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Biofiltration vs conventional activated sludge plants: what about priority and emerging pollutants removal?

    PubMed

    Mailler, R; Gasperi, J; Rocher, V; Gilbert-Pawlik, S; Geara-Matta, D; Moilleron, R; Chebbo, G

    2014-04-01

    This paper compares the removal performances of two complete wastewater treatment plants (WWTPs) for all priority substances listed in the Water Framework Directive and additional compounds of interest including flame retardants, surfactants, pesticides, and personal care products (PCPs) (n = 104). First, primary treatments such as physicochemical lamellar settling (PCLS) and primary settling (PS) are compared. Similarly, biofiltration (BF) and conventional activated sludge (CAS) are then examined. Finally, the removal efficiency per unit of nitrogen removed of both WWTPs for micropollutants is discussed, as nitrogenous pollution treatment results in a special design of processes and operational conditions. For primary treatments, hydrophobic pollutants (log K ow > 4) are well removed (>70 %) for both systems despite high variations of removal. PCLS allows an obvious gain of about 20 % regarding pollutant removals, as a result of better suspended solids elimination and possible coagulant impact on soluble compounds. For biological treatments, variations of removal are much weaker, and the majority of pollutants are comparably removed within both systems. Hydrophobic and volatile compounds are well (>60 %) or very well removed (>80 %) by sorption and volatilization. Some readily biodegradable molecules are better removed by CAS, indicating a better biodegradation. A better sorption of pollutants on activated sludge could be also expected considering the differences of characteristics between a biofilm and flocs. Finally, comparison of global processes efficiency using removals of micropollutants load normalized to nitrogen shows that PCLS + BF is as efficient as PS + CAS despite a higher compactness and a shorter hydraulic retention time (HRT). Only some groups of pollutants seem better removed by PS + CAS like alkylphenols, flame retardants, or di-2-ethylhexyl phthalate (DEHP), thanks to better biodegradation and sorption resulting from HRT and biomass characteristics. For both processes, and out of the 68 molecules found in raw water, only half of them are still detected in the water discharged, most of the time close to their detection limit. However, some of them are detected at higher concentrations (>1 μg/L and/or lower than environmental quality standards), which is problematic as they represent a threat for aquatic environment.

  14. Adsorption of mercury by activated carbon prepared from dried sewage sludge in simulated flue gas.

    PubMed

    Park, Jeongmin; Lee, Sang-Sup

    2018-04-25

    Conversion of sewage sludge to activated carbon is attractive as an alternative method to ocean dumping for the disposal of sewage sludge. Injection of activated carbon upstream of particulate matter control devices has been suggested as a method to remove elemental mercury from flue gas. Activated carbon was prepared using various activation temperatures and times and was tested for their mercury adsorption efficiency using lab-scale systems. To understand the effect of the physical property of the activated carbon, its mercury adsorption efficiency was investigated as a function of their Brunauer-Emmett-Teller (BET) surface area. Two simulated flue gas conditions: (1) without hydrogen chloride (HCl) and (2) with 20 ppm HCl, were used to investigate the effect of flue gas composition on the mercury adsorption capacity of activated carbon. Despite very low BET surface area of the prepared sewage sludge activated carbons, their mercury adsorption efficiencies were comparable under both simulated flue gas conditions to those of pinewood and coal activated carbons. After injecting HCl into the simulated flue gas, all sewage sludge activated carbons demonstrated high adsorption efficiencies, i.e., more than 87%, regardless of their BET surface area. IMPLICATIONS We tested activated carbons prepared from dried sewage sludge to investigate the effect of their physical properties on their mercury adsorption efficiency. Using two simulated flue gas conditions, we conducted mercury speciation for the outlet gas. We found that the sewage sludge activated carbon had comparable mercury adsorption efficiency to pinewood and coal activated carbons, and the presence of HCl minimized the effect of physical property of the activated carbon on its mercury adsorption efficiency.

  15. Electrochemical pretreatment of waste activated sludge: effect of process conditions on sludge disintegration degree and methane production.

    PubMed

    Ye, Caihong; Yuan, Haiping; Dai, Xiaohu; Lou, Ziyang; Zhu, Nanwen

    2016-11-01

    Waste activated sludge (WAS) requires a long digestion time because of a rate-limiting hydrolysis step - the first phase of anaerobic digestion (AD). Pretreatment can be used prior to AD to facilitate the hydrolysis step and improve the efficiency of WAS digestion. This study evaluated a novel application of electrochemical (EC) technology employed as the pretreatment method prior to AD of WAS, focusing on the effect of process conditions on sludge disintegration and subsequent AD process. A superior process condition of EC pretreatment was obtained by reaction time of 30 min, electrolysis voltage of 20 V, and electrode distance of 5 cm, under which the disintegration degree of WAS ranged between 9.02% and 9.72%. In the subsequent batch AD tests, 206 mL/g volatile solid (VS) methane production in EC pretreated sludge was obtained, which was 20.47% higher than that of unpretreated sludge. The AD time was 19 days shorter for EC pretreated sludge compared to the unpretreated sludge. Additionally, the EC + AD reactor achieved 41.84% of VS removal at the end of AD. The analysis of energy consumption showed that EC pretreatment could be effective in enhancing sludge AD with reduced energy consumption when compared to other pretreatment methods.

  16. Enhanced microbial adaptation to p-nitrophenol using activated sludge retained in porous carrier particles and simultaneous removal of nitrite released from degradation of p-nitrophenol.

    PubMed

    Xing, X H; Inoue, T; Tanji, Y; Unno, H

    1999-01-01

    In order to examine the microbial degradation of p-nitrophenol (PNP) by a mixed culture system and simultaneous removal of nitrite released via the degradation, an activated sludge retained in porous carrier particles and a suspension culture as a control were acclimated to artificial sewage containing PNP as the sole carbon source. The adaptation of microbes retained in porous carrier particles to PNP was faster than that of suspended microbes by more than 20 d. After microbial adaptation to PNP, it was degraded completely without significant accumulation of intermediate metabolites. The PNP degradation activity of the retained microbes was more than 2 times higher than that of the suspended microbes. By increasing the retained microbial concentration, nitrite released from the degraded PNP was removed by denitrification. This research demonstrates that using microbes retained in porous carrier particles is not only effective for reduction of acclimation time but also enables simultaneous removal of the nitrogen compounds resulting from the degradation of nitroaromatics.

  17. Sustainable pyrolytic sludge-char preparation on improvement of closed-loop sewage sludge treatment: Characterization and combined in-situ application.

    PubMed

    Jin, Zhengyu; Chang, Fengmin; Meng, Fanlin; Wang, Cuiping; Meng, Yao; Liu, Xiaoji; Wu, Jing; Zuo, Jiane; Wang, Kaijun

    2017-10-01

    Aiming at closed-loop sustainable sewage sludge treatment, an optimal and economical pyrolytic temperature was found at 400-450 °C considering its pyrolysis efficiency of 65%, fast cracking of hydrocarbons, proteins and lipids and development of aromatized porous structure. Fourier-transform infrared (FTIR) and X-ray diffraction (XRD) tests demonstrated the development of adsorptive functional groups and crystallographic phases of adsorptive minerals. The optimal sludge-char, with a medium specific surface area of 39.6 m 2  g -1 and an iodine number of 327 mgI 2 g -1 , performed low heavy metals lixiviation. The application of sludge-char in raw sewage could remove 30% of soluble chemical oxygen demand (SCOD), along with an acetic acid adsorption capacity of 18.0 mg g -1 . The developed mesopore and/or macropore structures, containing rich acidic and basic functional groups, led to good biofilm matrices for enhanced microbial activities and improved autotrophic nitrification in anoxic stage of an A/O reactor through adsorbed extra carbon source, and hence achieved the total nitrogen (TN) removal up to 50.3%. It is demonstrated that the closed-loop sewage sludge treatment that incorporates pyrolytic sludge-char into in-situ biological sewage treatment can be a promising sustainable strategy by further optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. When Research Turns to Sludge

    ERIC Educational Resources Information Center

    Wing, Steve

    2010-01-01

    Sewage sludge is composed of residuals removed from wastewater that comes from homes, hospitals, and industries. Wastewater-treatment systems are designed to remove pollutants that could contaminate public waterways. Sludge--called "biosolids" by those who produce it, spread it, and regulate it--includes these pollutants as well as…

  19. Evaluation of a biological wastewater treatment system combining an OSA process with ultrasound for sludge reduction.

    PubMed

    Romero-Pareja, P M; Aragon, C A; Quiroga, J M; Coello, M D

    2017-05-01

    Sludge production is an undesirable by-product of biological wastewater treatment. The oxic-settling-anaerobic (OSA) process constitutes one of the most promising techniques for reducing the sludge produced at the treatment plant without negative consequences for its overall performance. In the present study, the OSA process is applied in combination with ultrasound treatment, a lysis technique, in a lab-scale wastewater treatment plant to assess whether sludge reduction is enhanced as a result of mechanical treatment. Reported sludge reductions of 45.72% and 78.56% were obtained for the two regimes of combined treatment tested in this study during two respective stages: UO1 and UO2. During the UO1 stage, the general performance and nutrient removal improved, obtaining 47.28% TN removal versus 21.95% in the conventional stage. However, the performance of the system was seriously damaged during the UO2 stage. Increases in dehydrogenase and protease activities were observed during both stages. The advantages of the combined process are not necessarily economic, but operational, as US treatment acts as contributing factor in the OSA process, inducing mechanisms that lead to sludge reduction in the OSA process and improving performance parameters. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Ozonation strategies to reduce sludge production of a seafood industry WWTP.

    PubMed

    Campos, J L; Otero, L; Franco, A; Mosquera-Corral, A; Roca, E

    2009-02-01

    In this work, several alternatives related to the application of ozone in different streams of a seafood industry WWTP were evaluated to minimize the production of waste sludge. The WWTP was composed of two coagulation-flocculation units and a biological unit and generated around of 6550 kg/d of sludge. Ozone was applied to sludge coming from flotation units (110 g TSS/L) at doses up to 0.03 g O(3)/g TSS during batch tests, no solids solubilization being observed. Ozone doses ranging from 0.007 to 0.02 g O(3)/g TSS were also applied to the raw wastewater in a bubble column reaching a 6.8% of TSS removal for the highest ozone dose. Finally, the effect of the pre-ozonation (0.05 g O(3)/g TSS) of wastewater coming from the first flotation unit was tested in two activated sludge systems during 70 days. Ozonation caused a reduction of the observed yield coefficient of biomass from 0.14 to 0.07g TSS/g COD(Tremoved) and a slight improvement of COD removal efficiencies. On the basis of the capacity for ozone production available in the industry, a maximum reduction of sludge generated by the WWTP of 7.5% could be expected.

  1. Less-costly activated carbon for sewage treatment

    NASA Technical Reports Server (NTRS)

    Ingham, J. D.; Kalvinskas, J. J.; Mueller, W. A.

    1977-01-01

    Lignite-aided sewage treatment is based on absorption of dissolved pollutants by activated carbon. Settling sludge is removed and dried into cakes that are pyrolyzed with lignites to yield activated carbon. Lignite is less expensive than activated carbon previously used to supplement pyrolysis yield.

  2. Role of nickel in high rate methanol degradation in anaerobic granular sludge bioreactors

    PubMed Central

    Fermoso, Fernando G.; Collins, Gavin; Bartacek, Jan; O’Flaherty, Vincent

    2008-01-01

    The effect of nickel deprivation from the influent of a mesophilic (30°C) methanol fed upflow anaerobic sludge bed (UASB) reactor was investigated by coupling the reactor performance to the evolution of the Methanosarcina population of the bioreactor sludge. The reactor was operated at pH 7.0 and an organic loading rate (OLR) of 5–15 g COD l−1 day−1 for 191 days. A clear limitation of the specific methanogenic activity (SMA) on methanol due to the absence of nickel was observed after 129 days of bioreactor operation: the SMA of the sludge in medium with the complete trace metal solution except nickel amounted to 1.164 (±0.167) g CH4-COD g VSS−1 day−1 compared to 2.027 (±0.111) g CH4-COD g VSS−1 day−1 in a medium with the complete (including nickel) trace metal solution. The methanol removal efficiency during these 129 days was 99%, no volatile fatty acid (VFA) accumulation was observed and the size of the Methanosarcina population increased compared to the seed sludge. Continuation of the UASB reactor operation with the nickel limited sludge lead to incomplete methanol removal, and thus methanol accumulation in the reactor effluent from day 142 onwards. This methanol accumulation subsequently induced an increase of the acetogenic activity in the UASB reactor on day 160. On day 165, 77% of the methanol fed to the system was converted to acetate and the Methanosarcina population size had substantially decreased. Inclusion of 0.5 μM Ni (dosed as NiCl2) to the influent from day 165 onwards lead to the recovery of the methanol removal efficiency to 99% without VFA accumulation within 2 days of bioreactor operation. PMID:18247139

  3. Start-up and stabilization of an Anammox process from a non-acclimatized sludge in CSTR.

    PubMed

    Bagchi, Samik; Biswas, Rima; Nandy, Tapas

    2010-09-01

    Development of an Anammox (anaerobic ammonium oxidation) process using non-acclimatized sludge requires a long start-up period owing to the very slow growth rate of Anammox bacteria. This article addresses the issue of achieving a shorter start-up period for Anammox activity in a well-mixed continuously stirred tank reactor (CSTR) using non-acclimatized anaerobic sludge. Proper selection of enrichment conditions and low stirring speed of 30 +/- 5 rpm resulted in a shorter start-up period (82 days). Activity tests revealed the microbial community structure of Anammox micro-granules. Ammonia-oxidizing bacteria (AOB) were found on the surface and on the outer most layers of granules while nitrite-oxidizing bacteria (NOB) and Anammox bacteria were present inside. Fine-tuning of influent NO2(-)/NH4+ ratio allowed Anammox activity to be maintained when mixed microbial populations were present. The maximum nitrogen removal rate achieved in the system was 0.216 kg N/(m(3) day) with a maximum specific nitrogen removal rate of 0.434 g N/(g VSS day). During the study period, Anammox activity was not inhibited by pH changes and free ammonia toxicity.

  4. A novel integration of three-dimensional electro-Fenton and biological activated carbon and its application in the advanced treatment of biologically pretreated Lurgi coal gasification wastewater.

    PubMed

    Hou, Baolin; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Jia, Shengyong; Li, Kun

    2015-11-01

    A novel integrated process with three-dimensional electro-Fenton (3D EF) and biological activated carbon (BAC) was employed in advanced treatment of biologically pretreated Lurgi coal gasification wastewater. SAC-Fe (sludge deserved activated carbon from sewage and iron sludge) and SAC (sludge deserved activated carbon) were used in 3D EF as catalytic particle electrodes (CPEs) and in BAC as carriers respectively. Results indicated that 3D EF with SAC-Fe as CPEs represented excellent pollutants and COLOR removals as well as biodegradability improvement. The efficiency enhancement attributed to generating more H2O2 and OH. The integrated process exhibited efficient performance of COD, BOD5, total phenols, TOC, TN and COLOR removals at a much shorter retention time, with the corresponding concentrations in effluent of 31.18, 6.69, 4.29, 17.82, 13.88mg/L and <20 times, allowing discharge criteria to be met. The integrated system was efficient, cost-effective and ecological sustainable and could be a promising technology for engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Biomass based activated carbon obtained from sludge and sugarcane bagasse for removing lead ion from wastewater.

    PubMed

    Tao, Hu-Chun; Zhang, He-Ran; Li, Jin-Bo; Ding, Wen-Yi

    2015-09-01

    Sewage sludge and bagasse were used as raw materials to produce cheap and efficient adsorbent with great adsorption capacity of Pb(2+). By pyrolysis at 800 °C for 0.5 h, the largest surface area (806.57 m(2)/g) of the adsorbent was obtained, enriched with organic functional groups. The optimal conditions for production of the adsorbent and adsorption of Pb(2+) were investigated. The results of adsorb-ability fitted the Langmuir isotherm and pseudo-second-order model well. The highest Pb(2+) (at pH = 4.0) adsorption capacity was achieved by treating with 60% (v/v) HNO3. This is a promising approach for metal removal from wastewater, as well as recycling sewage sludge and bagasse to ease their disposal pressure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effects of glucose on the performance of enhanced biological phosphorus removal activated sludge enriched with acetate.

    PubMed

    Gebremariam, Seyoum Yami; Beutel, Marc W; Christian, David; Hess, Thomas F

    2012-10-01

    The effects of glucose on enhanced biological phosphorus removal (EBPR) activated sludge enriched with acetate was investigated using sequencing batch reactors. A glucose/acetate mixture was serially added to the test reactor in ratios of 25/75%, 50/50%, and 75/25% and the EBPR activity was compared to the control reactor fed with 100% acetate. P removal increased at a statistically significant level to a near-complete in the test reactor when the mixture increased to 50/50%. However, EBPR deteriorated when the glucose/acetate mixture increased to 75/25% in the test reactor and when the control reactor abruptly switched to 100% glucose. These results, in contrast to the EBPR conventional wisdom, suggest that the addition of glucose at moderate levels in wastewaters does not impede and may enhance EBPR, and that glucose waste products should be explored as an economical sustainable alternative when COD enhancement of EBPR is needed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Removal and fate of micropollutants in a sponge-based moving bed bioreactor.

    PubMed

    Luo, Yunlong; Guo, Wenshan; Ngo, Huu Hao; Nghiem, Long Duc; Hai, Faisal Ibney; Kang, Jinguo; Xia, Siqing; Zhang, Zhiqiang; Price, William Evan

    2014-05-01

    This study investigated the removal of micropollutants using polyurethane sponge as attached-growth carrier. Batch experiments demonstrated that micropollutants could adsorb to non-acclimatized sponge cubes to varying extents. Acclimatized sponge showed significantly enhanced removal of some less hydrophobic compounds (log D<2.5), such as ibuprofen, acetaminophen, naproxen, and estriol, as compared with non-acclimatized sponge. The results for bench-scale sponge-based moving bed bioreactor (MBBR) system elucidated compound-specific variation in removal, ranging from 25.9% (carbamazepine) to 96.8% (β-Estradiol 17-acetate) on average. In the MBBR system, biodegradation served as a major removal pathway for most compounds. However, sorption to sludge phase was also a notable removal mechanism of some persistent micropollutants. Particularly, carbamazepine, ketoprofen and pentachlorophenol were found at high concentrations (7.87, 6.05 and 5.55 μg/g, respectively) on suspended biosolids. As a whole, the effectiveness of MBBR for micropollutant removal was comparable with those of activated sludge processes and MBRs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effect of oxygen dosing point and mixing on the microaerobic removal of hydrogen sulphide in sludge digesters.

    PubMed

    Díaz, I; Pérez, S I; Ferrero, E M; Fdz-Polanco, M

    2011-02-01

    Limited oxygen supply to anaerobic sludge digesters to remove hydrogen sulphide from biogas was studied. Micro-oxygenation showed competitive performance to reduce considerably the additional equipment necessary to perform biogas desulphurization. Two pilot-plant digesters with an HRT of ∼ 20 d were micro-oxygenated at a rate of 0.25 NL per L of feed sludge with a removal efficiency higher than 98%. The way of mixing (sludge or biogas recirculation) and the point of oxygen supply (headspace or liquid phase) played an important role on hydrogen sulphide oxidation. While micro-oxygenation with sludge recirculation removed only hydrogen sulphide from the biogas, dissolved sulphide was removed if micro-oxygenation was performed with biogas recirculation. Dosage in the headspace resulted in a more stable operation. The result of the hydrogen sulphide oxidation was mostly elemental sulphur, partially accumulated in the headspace of the digester, where different sulphide-oxidising bacteria were found. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Effects of sewage sludge fertilizer on heavy metal accumulation and consequent responses of sunflower (Helianthus annuus).

    PubMed

    Belhaj, Dalel; Elloumi, Nada; Jerbi, Bouthaina; Zouari, Mohamed; Abdallah, Ferjani Ben; Ayadi, Habib; Kallel, Monem

    2016-10-01

    Use of sewage sludge, a biological residue produced from sewage treatment processes in agriculture, is an alternative disposal technique of waste. To study the usefulness of sewage sludge amendment for Helianthus annuus, a pot experiment was conducted by mixing sewage sludge at 2.5, 5, and 7.5 % (w/w) amendment ratios to the agricultural soil. Soil pH decreased whereas electrical conductivity, organic matter, total N, available P, and exchangeable Na, K, and Ca increased in soil amended with sewage sludge in comparison to unamended soil. Sewage sludge amendment led to significant increase in Pb, Ni, Cu, Cr, and Zn concentrations of soil. The increased concentration of heavy metals in soil due to sewage sludge amendment led to increases in shoot and root concentrations of Cr, Cu, Ni, and Zn in plant as compared to those grown on unamended soil. Accumulation was more in roots than shoots for most of the heavy metals. Moreover, high metal removal for the harvestable parts of the crops was recorded. Sewage sludge amendment increased root and shoot length, leaves number, biomass, and antioxidant activities of sunflower. Significant increases in the activities of antioxidant enzymes and in the glutathione, proline, and soluble sugar content in response to amendment with sewage sludge may be defense mechanisms induced in response to heavy metal stress. Graphical abstract Origin, fate and behavior of sewage sludge fertilizer.

  10. Microbial release of 226Ra2+ from (Ba,Ra)SO4 sludges from uranium mine wastes.

    PubMed Central

    Fedorak, P M; Westlake, D W; Anders, C; Kratochvil, B; Motkosky, N; Anderson, W B; Huck, P M

    1986-01-01

    226Ra2+ is removed from uranium mine effluents by coprecipitation with BaSO4. (Ba,Ra)SO4 sludge samples from two Canadian mine sites were found to contain active heterotrophic populations of aerobic, anaerobic, denitrifying, and sulfate-reducing bacteria. Under laboratory conditions, sulfate reduction occurred in batch cultures when carbon sources such as acetate, glucose, glycollate, lactate, or pyruvate were added to samples of (Ba,Ra)SO4 sludge. No external sources of nitrogen or phosphate were required for this activity. Further studies with lactate supplementation showed that once the soluble SO4(2-) in the overlying water was depleted, Ba2+ and 226Ra2+ were dissolved from the (Ba,Ra)SO4 sludge, with the concurrent production of S2-. Levels of dissolved 226Ra2+ reached approximately 400 Bq/liter after 10 weeks of incubation. Results suggest that the ultimate disposal of these sludges must maintain conditions to minimize the activity of the indigenous sulfate-reducing bacteria to ensure that unacceptably high levels of 226Ra2+ are not released to the environment. PMID:3752993

  11. Autoclaved sludge as the ideal seed to culture anammox bacteria: Reactor performance and microbial community diversity.

    PubMed

    Wang, Yu; Bu, Cui-Na; Kang, Qi; Ahmad, Hafiz Adeel; Zhang, Jian; Gao, Baoyu; Ni, Shou-Qing

    2017-11-01

    Reducing activity of commensal bacteria in inocula may enhance anammox bacteria proliferation and realization of anammox process. Fast start-up of anammox process in an UASB reactor was successfully achieved by using autoclaved sludge (anaerobic granular sludge pretreated by autoclaving) and 0.3% active anammox sludge as inoculum. Continuous experiments indicated that R2 (autoclaved sludge addition) could shorten the start-up period from 72days to 63days. The first 50days anammox population specific growth rates (μ) of R1 (the control) and R2 were determined to be 0.014d -1 and 0.045d -1 using q-PCR assays. Analysis of coefficient of variations of nitrogen removal performance during days 96-225 indicated that R2 was more stable than R1. The Illumina MiSeq sequencing showed that autoclaving could decrease microbial diversity of sludge and enhance the abundance of anammox bacteria. Furthermore, PICRUSt community functions forecast and c-di-GMP measure illuminated the result of higher stability in R2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Decreasing effect and mechanism of moisture content of sludge biomass by granulation process.

    PubMed

    Zhao, Xia; Xu, Hao; Shen, Jimin; Yu, Bo; Wang, Xiaochun

    2016-01-01

    Disposal of a high volume of sludge significantly raises water treatment costs. A method for cultivating aerobic granules in a sequencing batch airlift bioreactor to significantly produce lower moisture content is described. Results indicate that optimization of settling time and control of the shear stresses acted on the granules. The diameter of the granule was within the range of 1.0-4.0 mm, and its sludge volume index was stabilized at 40-50 mL g(-1). Its specific gravity was increased by a factor of 0.0392, and specific oxygen uptake rate reached 60.126 mg h(-1) g(-1). Moreover, the percentage of its moisture content in the reactor ranged from 96.73% to 97.67%, and sludge volume was reduced to approximately 60%, greatly due to the presence of extracellular polymeric substances in the granules, as well as changes in their hydrophobic protein content. The removal rate of chemical oxygen demand and [Formula: see text] reaches up to 92.6% and 98%, respectively. The removal rates of total phosphorus is over 85%. Therefore, aerobic granular sludge process illustrates a good biological activity.

  13. SUPERFUND TREATABILITY CLEARINGHOUSE: INPUT/OUTPUT DATA FOR SEVERAL TREATMENT TECHNOLOGIES

    EPA Science Inventory

    This treatability study is a pilot-scale evaluation of a thin-film evaporator (TFE) for volatile organics (VO) removal from oily sludges such as refinery sludges. TFEs were studied to evaluate their use to remove and recover VO from these sludges prior to land treatment. This w...

  14. Enhanced deodorization and sludge reduction in situ by a humus soil cooperated anaerobic/anoxic/oxic (A2O) wastewater treatment system.

    PubMed

    Yan, Xing; Li, Biqing; Lei, Fang; Feng, Xin; Pang, Bo

    2016-08-01

    Simultaneous sludge reduction and malodor abatement in humus soil cooperated an anaerobic/anoxic/oxic (A2O) wastewater treatment were investigated in this study. The HSR-A2O was composed of a humus soil reactor (HSR) and a conventional A2O (designated as C-A2O).The results showed that adding HSR did not deteriorate the chemical oxygen demand (COD) removal, while total phosphorus (TP) removal efficiency in HSR-A2O was improved by 18 % in comparison with that in the C-A2O. Both processes had good performance on total nitrogen (TN) removal, and there was no significant difference between them (76.8 and 77.1 %, respectively). However, NH4 (+)-N and NO3 (-)-N were reduced to 0.3 and 6.7 mg/L in HSR-A2O compared to 1.5 and 4.5 mg/L. Moreover, adding HSR induced the sludge reduction, and the sludge production rate was lower than that in the C-A2O. The observed sludge yield was estimated to be 0.32 kg MLSS/day in HSR-A2O, which represent a 33.5 % reduction compared to a C-A2O process. Activated sludge underwent humification and produced more humic acid in HSR-A2O, which is beneficial to sludge reduction. Odor abatement was achieved in HSR-A2O, ammonium (NH3), and sulfuretted hydrogen (H2S) emission decreased from 1.34 and 1.33 to 0.06 mg/m(3), 0.025 mg/m(3) in anaerobic area, with the corresponding reduction efficiency of 95.5 and 98.1 %. Microbial community analysis revealed that the relevant microorganism enrichment explained the reduction effect of humus soil on NH3 and H2S emission. The whole study demonstrated that humus soil enhanced odor abatement and sludge reduction in situ.

  15. Electrokinetic transport of aerobic microorganisms under low-strength electric fields.

    PubMed

    Maillacheruvu, Krishnanand Y; Chinchoud, Preethi R

    2011-01-01

    To investigate the feasibility of utilizing low strength electric fields to transport commonly available mixed cultures such as those from an activated sludge process, bench scale batch reactor studies were conducted in sand and sandy loam soils. A readily biodegradable substrate, dextrose, was used to test the activity of the transported microorganisms. Electric field strengths of 7V, 10.5V, and 14V were used. Results from this investigation showed that an electric field strength of 0.46 Volts per cm was sufficient to transport activated sludge microorganisms across a sandy loam soil across a distance of about 8 cm in 72 h. More importantly, the electrokinetically transported microbial culture remained active and viable after the transport process and was biodegrade 44% of the dextrose in the soil medium. Electrokinetic treatment without microorganisms resulted in removal of 37% and the absence of any treatment yielded a removal of about 15%.

  16. Upgrading the hydrolytic potential of immobilized bacterial pretreatment to boost biogas production.

    PubMed

    Ushani, U; Kavitha, S; Johnson, M; Yeom, Ick Tae; Banu, J Rajesh

    2017-01-01

    In this study, surfactant dioctyl sodium sulphosuccinate (DOSS)-mediated immobilized bacterial pretreatment of waste activated sludge (WAS) was experimentally proved to be an efficient and economically feasible process for enhancing the biodegradability of WAS. The maximal floc disruption with negligible cell cleavage was achieved at surfactant dosage of 0.009 g/g SS. Results of the outcome of bacterial pretreatment of sludge biomass revealed that chemical oxygen demand (COD) solubilization for deflocculated (EPS removed-bacterially pretreated) sludge was 20 %, which was higher than that of flocculated (14 %) or control (5 %). The pretreatment was swift in deflocculated sludge with a rate constant of about 0.064 h -1 . Biochemical methane potential (BMP) assay resulted in significant methane yield at 0.24 gCOD/gCOD for deflocculated sludge. Economic assessment of the proposed method showed a net profit of about 57.39 USD/ton of sludge.

  17. Excess sludge reduction using pilot-scale lysis-cryptic growth system integrated ultrasonic/alkaline disintegration and hydrolysis/acidogenesis pretreatment.

    PubMed

    Ma, Huaji; Zhang, Shuting; Lu, Xuebin; Xi, Bo; Guo, Xingli; Wang, Han; Duan, Jingxiao

    2012-07-01

    A pilot-scale lysis-cryptic growth system was built and operated continuously for excess sludge reduction. Combined ultrasonic/alkaline disintegration and hydrolysis/acidogenesis were integrated into its sludge pretreatment system. Continuous operation showed that the observed biomass yield and the sludge reduction efficiency of the lysis-cryptic growth system were 0.27 kg VSS/kg COD consumed and 56.5%, respectively. The water quality of its effluent was satisfactory. The sludge pretreatment system performed well and its TCOD removal efficiency was 7.9% which contributed a sludge reduction efficiency of 2.1%. The SCOD, VFA, TN, NH(4)(+)-N, TP and pH in the supernatant of pretreated sludge were 1790 mg/L, 1530 mg COD/L, 261.1mg/L, 114.0mg/L, 93.1mg/L and 8.69, respectively. The total operation cost of the lysis-cryptic growth system was $ 0.186/m(3) wastewater, which was 11.4% less than that of conventional activated sludge (CAS) system without excess sludge pretreatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Recovery and reuse of sludge from active and passive treatment of mine drainage-impacted waters: a review.

    PubMed

    Rakotonimaro, Tsiverihasina V; Neculita, Carmen Mihaela; Bussière, Bruno; Benzaazoua, Mostafa; Zagury, Gérald J

    2017-01-01

    The treatment of mine drainage-impacted waters generates considerable amounts of sludge, which raises several concerns, such as storage and disposal, stability, and potential social and environmental impacts. To alleviate the storage and management costs, as well as to give the mine sludge a second life, recovery and reuse have recently become interesting options. In this review, different recovery and reuse options of sludge originating from active and passive treatment of mine drainage are identified and thoroughly discussed, based on available laboratory and field studies. The most valuable products presently recovered from the mine sludge are the iron oxy-hydroxides (ochre). Other by-products include metals, elemental sulfur, and calcium carbonate. Mine sludge reuse includes the removal of contaminants, such as As, P, dye, and rare earth elements. Mine sludge can also be reused as stabilizer for contaminated soil, as fertilizer in agriculture/horticulture, as substitute material in construction, as cover over tailings for acid mine drainage prevention and control, as material to sequester carbon dioxide, and in cement and pigment industries. The review also stresses out some of the current challenges and research needs. Finally, in order to move forward, studies are needed to better estimate the contribution of sludge recovery/reuse to the overall costs of mine water treatment.

  19. Removal of synthetic dyes from wastewaters: a review.

    PubMed

    Forgacs, Esther; Cserháti, Tibor; Oros, Gyula

    2004-09-01

    The more recent methods for the removal of synthetic dyes from waters and wastewater are complied. The various methods of removal such as adsorption on various sorbents, chemical decomposition by oxidation, photodegradation, and microbiological decoloration, employing activated sludge, pure cultures and microbe consortiums are described. The advantages and disadvantages of the various methods are discussed and their efficacies are compared.

  20. Treatment of swine wastewater in continuous activated sludge systems under different dissolved oxygen conditions: Reactor operation and evaluation using modelling.

    PubMed

    Waki, Miyoko; Yasuda, Tomoko; Fukumoto, Yasuyuki; Béline, Fabrice; Magrí, Albert

    2018-02-01

    Swine wastewater was treated in two continuously aerated activated sludge (AS) systems at high (AS1: 1.7-2.6 mg/L) and low (AS2: 0.04-0.08 mg/L) dissolved oxygen (DO), and at three temperatures (10, 20, and 30 °C). Biochemical oxygen demand (BOD) removal was >94.8%. Meanwhile, total nitrogen (N) removal was significantly higher in AS2, at 64, 89, and 88%, than in AS1, at 12, 24, and 46%, for 10, 20, and 30 °C, respectively. The experimental data were considered in a simulation study using an AS model for BOD and N removal, which also included nitrite, free ammonia, free nitrous acid, and temperature. Simulations at high-DO showed that ammonium was partly oxidized into nitrate but not removed, whereas at low-DO ammonium was removed mainly through the nitrite shortcut in simultaneous nitrification-denitrification. This study demonstrates that treatment at low-DO is an effective method for removing N, and modelling a helpful tool for its optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Process of simultaneous hydrogen sulfide removal from biogas and nitrogen removal from swine wastewater.

    PubMed

    Deng, Liangwei; Chen, Huijuan; Chen, Ziai; Liu, Yi; Pu, Xiaodong; Song, Li

    2009-12-01

    The feasibility of a new flowchart describing simultaneous hydrogen sulfide removal from biogas and nitrogen removal from wastewater was investigated. It took 30 days for the reactor inoculated with aerobic sludge to attain a removal rate of 60% for H(2)S and NO(x)-N simultaneously. It took 34 and 48 days to attain the same removal rate for the reactor without inoculated sludge and the reactor inoculated with anaerobic sludge respectively. The reactor without inoculated sludge still operated successfully, despite requiring a slightly longer startup time. The packing material was capable of enhancing the removal efficiency of reactors. Based on the concentration of NO(x)-N and H(2)S in the effluent, the loading rate and the ability of the system to resist shock loading, the performance of the reactor filled with hollow plastic balls was greater than that of the reactor filled with elastic packing and the reactor filled with Pall rings.

  2. Removal of metals in leachate from sewage sludge using electrochemical technology.

    PubMed

    Meunier, N; Drogui, P; Gourvenec, C; Mercier, G; Hausler, R; Blais, J F

    2004-02-01

    Heavy metals in acidic leachates from sewage sludge are usually removed by chemical precipitation, which often requires high concentration of chemicals and induces high metallic sludge production. Electrochemical technique has been explored as an alternative method in a laboratory pilot scale reactor for heavy metals (Cu and Zn) removal from sludge leachate. Three electrolytic cell arrangements using different electrodes materials were tested: mild steel or aluminium bipolar electrode (EC cell), Graphite/stainless steel monopolar electrodes (ER cell) and iron-monopolar electrodes (EC-ER cell). Results showed that the best performances of metal removal were obtained with EC and EC-ER cells using mild steel electrodes operated respectively at current intensities of 0.8 and 2.0 A through 30 and 60 min of treatment. The yields of Cu and Zn removal from leachate varied respectively from 92.4 to 98.9% and from 69.8 to 76.6%. The amounts of 55 and 44 kg tds(-1) of metallic sludge were respectively produced using EC and EC-ER cells. EC and EC-ER systems involved respectively a total cost of 21.2 and 13.1 CAN dollars per ton of dry sludge treated including only energy consumption and metallic sludge disposal. The treatment using EC-ER system was found to be effective and more economical than the traditional metal precipitation using either Ca(OH)2 and/or NaOH.

  3. Effect of EDTA and Fe-EDTA complex concentration on TCF Kraft mill effluent degradability. Batch and continuous treatments.

    PubMed

    Diez, M C; Pouleurs, D; Navia, R; Vidal, G

    2005-09-01

    The effect of ethylenediaminetetracetic acid (EDTA) and Fe-EDTA complex on synthetic totally chlorine-free (TCF) effluent degradability in batch and continuously operating reactors was evaluated. Under batch treatment, the addition of EDTA and Fe-EDTA complex was studied in the range of 80 to 320 mg l(-1). Under continuously operated reactors, the Fe-EDTA complex concentration varied from 20 to 80 mg l(-1), and the hydraulic retention time (HRT) varied from 48 to 24 h. Sludge oxygen uptake rate (OUR) and chemical oxygen demand (COD) removal decreased when EDTA concentration increased in the influent under batch treatment; however, this inhibitory effect was reduced by the addition of Fe-EDTA complex. Without the addition of EDTA, COD removal decreased from 71% to 8%. The most efficient EDTA removal treatment (almost 10%) was the treatment of 80 mg l(-1) Fe-EDTA. Under continuously operated reactors, COD removal was greater than 57% in the synthetic TCF effluent with a Fe-EDTA concentration that varied from 20 to 80 mg l(-1); however, EDTA removal was lower than 25% in all cases. Synthetic TCF effluent with a Fe -EDTA concentration higher than 80 mg l(-1) could not be treated by the activated sludge treatment due to EDTA's inhibitory effect on the sludge.

  4. Start-up period investigation of pilot-scale submerged membrane electro-bioreactor (SMEBR) treating raw municipal wastewater.

    PubMed

    Hasan, Shadi W; Elektorowicz, Maria; Oleszkiewicz, Jan A

    2014-02-01

    Submerged membrane electro-bioreactor (SMEBR) is a new hybrid technology for wastewater treatment employing electrical field and microfiltration in a nutrient-removing activated sludge process. A pilot SMEBR system was located at the wastewater treatment plant in the City of l'Assomption (Quebec, Canada) with the objective of investigating the start-up period performance under variable organic loadings and environmental conditions with respect to effluent quality, membrane fouling, and sludge properties. The pilot SMEBR facility was fed with the raw de-gritted municipal wastewater. At steady state operation, the removal efficiencies of ammonia (as NH3(+)-N), phosphorus (as PO4(3-)-P), and COD were 99%, 99%, and 92%, respectively. No substantial increase in the monitored transmembrane pressure as 0.02kPad(-1) was reported. The time necessary to filter 100mL of the sludge sample has decreased by 78% after treatment whilst the sludge volume index averaged 119mLg(-1). Energy requirements were in the range of 1.1-1.6kWhm(-3) of wastewater. It was concluded that the SMEBR is a very competitive technology when compared to conventional membrane systems as it can enhance treatment performance to an appreciable extent, remove phosphorus and reduce fouling. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  5. Multi-scale individual-based model of microbial and bioconversion dynamics in aerobic granular sludge.

    PubMed

    Xavier, Joao B; De Kreuk, Merle K; Picioreanu, Cristian; Van Loosdrecht, Mark C M

    2007-09-15

    Aerobic granular sludge is a novel compact biological wastewater treatment technology for integrated removal of COD (chemical oxygen demand), nitrogen, and phosphate charges. We present here a multiscale model of aerobic granular sludge sequencing batch reactors (GSBR) describing the complex dynamics of populations and nutrient removal. The macro scale describes bulk concentrations and effluent composition in six solutes (oxygen, acetate, ammonium, nitrite, nitrate, and phosphate). A finer scale, the scale of one granule (1.1 mm of diameter), describes the two-dimensional spatial arrangement of four bacterial groups--heterotrophs, ammonium oxidizers, nitrite oxidizers, and phosphate accumulating organisms (PAO)--using individual based modeling (IbM) with species-specific kinetic models. The model for PAO includes three internal storage compounds: polyhydroxyalkanoates (PHA), poly phosphate, and glycogen. Simulations of long-term reactor operation show how the microbial population and activity depends on the operating conditions. Short-term dynamics of solute bulk concentrations are also generated with results comparable to experimental data from lab scale reactors. Our results suggest that N-removal in GSBR occurs mostly via alternating nitrification/denitrification rather than simultaneous nitrification/denitrification, supporting an alternative strategy to improve N-removal in this promising wastewater treatment process.

  6. Isolation, identification and utilization of thermophilic strains in aerobic digestion of sewage sludge.

    PubMed

    Liu, Shugen; Zhu, Nanwen; Li, Loretta Y; Yuan, Haiping

    2011-11-15

    Two representative thermophilic bacterial strains (T1 and T2) were isolated from a one-stage autothermal thermophilic aerobic digestion pilot-scale reactor. 16S rRNA gene analysis indicated that they were Hydrogenophilaceae and Xanthomonodaceae. These isolated strains were inoculated separately and/or jointly in sewage sludge, to investigate their effects on sludge stabilization under thermophilic aerobic digestion condition. Four digestion conditions were tested for 480 h. Digestion without inoculation and inoculation with strain T2, as well as joint- inoculation with strains T1 and T2, achieved 32.6%, 43.0%, and 38.2% volatile solids (VS) removal, respectively. Removal in a digester inoculated with stain T1 only reached 27.2%. For the first 144 h, the three inoculated digesters all experienced higher VS removal than the digester without inoculations. Both specific thermophilic strains and micro-environment significantly affected the VS removal. DGGE profiles revealed that the isolated strains T1 and T2 can successfully establish in the thermophilic digesters. Other viable bacteria (including anaerobic or facultative microbes) also appeared in the digestion system, enhancing the microbial activity. Copyright © 2011. Published by Elsevier Ltd.

  7. Biotransformation of pharmaceuticals under nitrification, nitratation and heterotrophic conditions.

    PubMed

    Fernandez-Fontaina, E; Gomes, I B; Aga, D S; Omil, F; Lema, J M; Carballa, M

    2016-01-15

    The effect of nitrification, nitratation and heterotrophic conditions on the biotransformation of several pharmaceuticals in a highly enriched nitrifying activated sludge was evaluated in this study by selective activation of ammonia oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and heterotrophic bacteria. Nitrifiers displayed a noticeable capacity to process ibuprofen due to hydroxylation by ammonia monooxygenase (AMO) to produce 2-hydroxy-ibuprofen. Naproxen was also biotransformed under nitrifying conditions. On the other hand, heterotrophic bacteria present in the nitrifying activated sludge (NAS) biotransformed sulfamethoxazole. In contrast, both nitrifying and heterotrophic activities were ineffective against diclofenac, diazepam, carbamazepine and trimethoprim. Similar biotransformation rates of erythromycin, roxithromycin and fluoxetine were observed under all conditions tested. Overall, results from this study give more evidence on the role of the different microbial communities present in activated sludge reactors on the biological removal of pharmaceuticals. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Improving municipal wastewater nitrogen and phosphorous removal by feeding sludge fermentation products to sequencing batch reactor (SBR).

    PubMed

    Yuan, Yue; Liu, Jinjin; Ma, Bin; Liu, Ye; Wang, Bo; Peng, Yongzhen

    2016-12-01

    This study presents a novel strategy to improve the removal efficiency of nitrogen and phosphorus from municipal wastewater by feeding sequencing batch reactor (SBR) with sludge alkaline fermentation products as carbon sources. The performances of two SBRs treating municipal wastewater (one was fed with sludge fermentation products; F-SBR, and the other without sludge fermentation products; B-SBR) were compared. The removal efficiencies of total nitrogen (TN) and phosphorus (PO 4 3- -P) were found to be 82.9% and 96.0% in F-SBR, while the corresponding values in B-SBR were 55.9% (TN) and -6.1% (PO 4 3- -P). Illumina MiSeq sequencing indicated that ammonium-oxidizing bacteria (Nitrosomonadaceae and Nitrosomonas) and denitrifying polyphosphate accumulating organisms (Dechloromonas) were enriched in F-SBR, which resulted in NO 2 - -N accumulation and denitrifying phosphorus removal via nitrite (DPRN). Moreover, feeding of sludge fermentation products reduced 862.1mg VSS/d of sludge in the F-SBR system (volume: 10L). Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Reduction in excess sludge production in a dairy wastewater treatment plant via nozzle-cavitation treatment: case study of an on-farm wastewater treatment plant.

    PubMed

    Hirooka, Kayako; Asano, Ryoki; Yokoyama, Atsushi; Okazaki, Masao; Sakamoto, Akira; Nakai, Yutaka

    2009-06-01

    Nozzle-cavitation treatment was used to reduce excess sludge production in a dairy wastewater treatment plant. During the 450-d pilot-scale membrane bioreactor (MBR) operation, when 300 l of the sludge mixed liquor (1/10 of the MBR volume) was disintegrated per day by the nozzle-cavitation treatment with the addition of sodium hydrate (final concentration: 0.01% W/W) and returned to the MBR, the amount of excess sludge produced was reduced by 80% compared with that when sludge was not disintegrated. On the basis of the efficiency of CODCr removal and the ammonia oxidation reaction, it was concluded that the nozzle-cavitation treatment did not have a negative impact on the performance of the MBR. The estimation of the inorganic material balance showed that when the mass of the excess sludge was decreased, the inorganic content of the activated sludge increased and some part of the inorganic material was simultaneously solubilized in the effluent.

  10. Application of Novel Amino-Functionalized NZVI@SiO2 Nanoparticles to Enhance Anaerobic Granular Sludge Removal of 2,4,6-Trichlorophenol.

    PubMed

    Guan, Zeyu; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Shu, Yajie

    2015-01-01

    A novel amino-functionalized silica-coated nanoscale zerovalent iron (NZVI@SiO2-NH2) was successfully synthesized by using one-step liquid-phase method with the surface functionalization of nanoscale zerovalent iron (NZVI) to enhance degradation of chlorinated organic contaminants from anaerobic microbial system. NZVI@SiO2-NH2 nanoparticles were synthesized under optimal conditions with the uniform core-shell structure (80-100 nm), high loading of amino functionality (~0.9 wt%), and relatively large specific surface area (126.3 m(2)/g). The result demonstrated that well-dispersed NZVI@SiO2-NH2 nanoparticle with nFe(0)-core and amino-functional silicon shell can effectively remove 2,4,6-trichlorophenol (2,4,6-TCP) in the neutral condition, much higher than that of NZVI. Besides, the surface-modified nanoparticles (NZVI@SiO2-NH2) in anaerobic granule sludge system also showed a positive effect to promote anaerobic biodechlorination system. More than 94.6% of 2,4,6-TCP was removed from the combined NZVI@SiO2-NH2-anaerobic granular sludge system during the anaerobic dechlorination processes. Moreover, adding the appropriate concentration of NZVI@SiO2-NH2 in anaerobic granular sludge treatment system can decrease the toxicity of 2,4,6-TCP to anaerobic microorganisms and improved the cumulative amount of methane production and electron transport system activity. The results from this study clearly demonstrated that the NZVI@SiO2-NH2/anaerobic granular sludge system could become an effective and promising technology for the removal of chlorophenols in industrial wastewater.

  11. Application of Novel Amino-Functionalized NZVI@SiO2 Nanoparticles to Enhance Anaerobic Granular Sludge Removal of 2,4,6-Trichlorophenol

    PubMed Central

    Guan, Zeyu; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Shu, Yajie

    2015-01-01

    A novel amino-functionalized silica-coated nanoscale zerovalent iron (NZVI@SiO2-NH2) was successfully synthesized by using one-step liquid-phase method with the surface functionalization of nanoscale zerovalent iron (NZVI) to enhance degradation of chlorinated organic contaminants from anaerobic microbial system. NZVI@SiO2-NH2 nanoparticles were synthesized under optimal conditions with the uniform core-shell structure (80–100 nm), high loading of amino functionality (~0.9 wt%), and relatively large specific surface area (126.3 m2/g). The result demonstrated that well-dispersed NZVI@SiO2-NH2 nanoparticle with nFe0-core and amino-functional silicon shell can effectively remove 2,4,6-trichlorophenol (2,4,6-TCP) in the neutral condition, much higher than that of NZVI. Besides, the surface-modified nanoparticles (NZVI@SiO2-NH2) in anaerobic granule sludge system also showed a positive effect to promote anaerobic biodechlorination system. More than 94.6% of 2,4,6-TCP was removed from the combined NZVI@SiO2-NH2-anaerobic granular sludge system during the anaerobic dechlorination processes. Moreover, adding the appropriate concentration of NZVI@SiO2-NH2 in anaerobic granular sludge treatment system can decrease the toxicity of 2,4,6-TCP to anaerobic microorganisms and improved the cumulative amount of methane production and electron transport system activity. The results from this study clearly demonstrated that the NZVI@SiO2-NH2/anaerobic granular sludge system could become an effective and promising technology for the removal of chlorophenols in industrial wastewater. PMID:26060427

  12. A comparative study of occurrence and fate of endocrine disruptors: diethyl phthalate and dibutyl phthalate in ASP- and SBR-based wastewater treatment plants.

    PubMed

    Saini, Gita; Pant, Shalini; Singh, Shri Om; Kazmi, A A; Alam, Tanveer

    2016-11-01

    Phthalates are endocrine-disrupting chemicals which affect endocrine system by bio-accumulation in aquatic organisms and produce adverse health effects in aquatic organisms as well as human beings, when come in contact. Present study focuses on occurrence and removal of two phthalates: diethylphthalate (DEP) and dibutylphthalate (DBP) in two full-scale wastewater treatment plants (WWTPs) i.e. sewage treatment plants (STPs) based on well-adopted technologies, activated sludge process (ASP) and sequencing batch reactor (SBR).Gas chromatography-mass spectrometry (GC-MS) analysis was performed for both wastewater and sludge sample for determination and identification of the concentration of these compounds in both STPs by monitoring the STPs for 9 months. It was observed that the concentration of DEP was less than DBP in the influent of ASP and SBR. Average concentrations of DEP and DBP in sludge sample of ASP were found to be 2.15 and 2.08 ng/g, whereas in SBR plant, these values were observed as 1.71 and 2.01 ng/g, respectively. Concerning the removal efficiency of DEP, SBR and ASP plants were found effective with removal efficiency of 91.51 and 91.03 %, respectively. However, in the case of DBP, SBR showed lower removal efficiency (85.42 %) as compared to ASP (92.67 %). Comparative study of both plants proposed that in ASP plant, DBP reduction was higher than the SBR. Fourier transformation infrared (FTIR) analysis also confirmed the same result of sludge analysis for both STPs. Sludge disposal studied with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and thermo-gravimetric analysis (TGA) techniques confirmed that sludge of both STPs have high calorific value and can be used as fuel to make fuel-briquettes and bottom ash to make firebricks.

  13. Kinetic model of excess activated sludge thermohydrolysis.

    PubMed

    Imbierowicz, Mirosław; Chacuk, Andrzej

    2012-11-01

    Thermal hydrolysis of excess activated sludge suspensions was carried at temperatures ranging from 423 K to 523 K and under pressure 0.2-4.0 MPa. Changes of total organic carbon (TOC) concentration in a solid and liquid phase were measured during these studies. At the temperature 423 K, after 2 h of the process, TOC concentration in the reaction mixture decreased by 15-18% of the initial value. At 473 K total organic carbon removal from activated sludge suspension increased to 30%. It was also found that the solubilisation of particulate organic matter strongly depended on the process temperature. At 423 K the transfer of TOC from solid particles into liquid phase after 1 h of the process reached 25% of the initial value, however, at the temperature of 523 K the conversion degree of 'solid' TOC attained 50% just after 15 min of the process. In the article a lumped kinetic model of the process of activated sludge thermohydrolysis has been proposed. It was assumed that during heating of the activated sludge suspension to a temperature in the range of 423-523 K two parallel reactions occurred. One, connected with thermal destruction of activated sludge particles, caused solubilisation of organic carbon and an increase of dissolved organic carbon concentration in the liquid phase (hydrolysate). The parallel reaction led to a new kind of unsolvable solid phase, which was further decomposed into gaseous products (CO(2)). The collected experimental data were used to identify unknown parameters of the model, i.e. activation energies and pre-exponential factors of elementary reactions. The mathematical model of activated sludge thermohydrolysis appropriately describes the kinetics of reactions occurring in the studied system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Helminth eggs inactivation efficiency by faecal sludge dewatering and co-composting in tropical climates.

    PubMed

    Koné, Doulaye; Cofie, Olufunke; Zurbrügg, Christian; Gallizzi, Katharina; Moser, Daya; Drescher, Silke; Strauss, Martin

    2007-11-01

    This study investigates helminth eggs removal and inactivation efficiency in a treatment process combining faecal sludge (FS) dewatering and subsequent co-composting with organic solid waste as a function of windrow turning frequency. Fresh public toilet sludge and septage mixed at a 1:2 ratio were dewatered on a drying bed. Biosolids with initial loads of 25-83 helminth eggs/g total solids (TS) were mixed with solid waste as bulking material for co-composting at a 1:2 volume ratio. Two replicate sets of compost heaps were mounted in parallel and turned at different frequencies during the active composting period: (i) once every 3 days and (ii) once every 10 days. Turning frequency had no effect on helminth eggs removal efficiency. In both setups, helminth eggs were reduced to <1 viable egg/g TS, thereby complying with the WHO guidelines 2006 for the safe reuse of FS.

  15. Nitrogen removal from the saline sludge liquor by electrochemical denitrification.

    PubMed

    Xie, Z M; Li, X Y; Chan, K Y

    2006-01-01

    Sludge liquor from the sludge dewatering process has a high ammonia content. In the present study, a lab-scale electrochemical (EC) system with a pair of Ti electrode plates was used for treating the sludge centrate liquor of digested wastewater sludge with a NH4(+) - N content of around 500 mg/L. The sludge liquor had a high salinity due to seawater being used for toilet flushing in Hong Kong. The results show that the EC process is highly effective for denitrification of the saline sludge liquor. Complete nitrogen removal could be achieved within 1 hr or so. The rate of EC denitrification increased with the current intensity applied. The best current efficiency for nitrogen removal was obtained for a gap distance between the electrodes at 8 mm. Electro-chlorination was considered to be the major mechanism of EC denitrification. The formation of chlorination by-products (CBPs) appeared to be minimal with the total trihalomethanes (THM) detected at a level of 300 microg/L or lower. The power consumption for EC denitrification was around 23 kWh/kg N. Additional electro-flocculation with a pair of iron needle electrodes could enhance the flocculation and subsequent sedimentation of colloidal organics in the sludge liquor, increasing the organic removal from less than 30% to more than 70%. Therefore, the EC process including both electro-denitrification and electro-flocculation can be developed as the most cost-effective method for treatment of the saline sludge liquor.

  16. Sorption of Perfluorinated Compounds onto different types of sewage sludge and assessment of its importance during wastewater treatment.

    PubMed

    Arvaniti, Olga S; Andersen, Henrik R; Thomaidis, Nikolaos S; Stasinakis, Athanasios S

    2014-09-01

    The distribution coefficient (Kd) and the organic carbon distribution coefficient (KOC) were determined for four Perfluorinated Compounds (PFCs) to three different types of sludge taken from a conventional Sewage Treatment Plant (STP). Batch experiments were performed in six different environmental relevant concentrations (200ngL(-1)to 5μgL(-1)) containing 1gL(-1) sludge. Kd values ranged from 330 to 6015, 329 to 17432 and 162 to 11770Lkg(-1) for primary, secondary and digested sludge, respectively. The effects of solution's pH, ionic strength and cation types on PFCs sorption were also evaluated. Sorption capacities of PFCs significantly decreased with increased pH values from 6 to 8. Furthermore, the divalent cation (Ca(2+)) enhanced PFCs sorption to a higher degree in comparison with the monovalent cation (Na(+)) at the same ionic strength. The obtained Kd values were applied to estimate the sorbed fractions of each PFC in different stages of a typical STP and to calculate their removal through treated wastewater and sludge. In primary settling tank, the predicted sorbed fractions ranged from 3% for Perfluorooctanoic Acid (PFOA) to 55% for Perfluoroundecanoic acid (PFUdA), while in activated sludge tank and anaerobic digester sorption was more than 50% for all target compounds. Almost 86% of initial PFOA load is expected to be detected in treated wastewater; while Perfluorodecanoic acid (PFDA), PFUdA and Perfluorooctanesulfonate (PFOS) can be significantly removed (>49%) via sorption to primary and excess secondary sludge. In anaerobic digester, the major part (>76%) of target PFCs is expected to be sorbed to sludge, while almost 3% of initial PFOA load will be detected in sludge leachates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Improving bioelectricity generation and COD removal of sewage sludge in microbial desalination cell.

    PubMed

    Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Darzi, Ghasem Najafpour

    2018-05-01

    Improving wastewater treatment process and water desalination are two important solutions for increasing the available supply of fresh water. Microbial desalination cells (MDCs) with common electrolytes display relatively low organic matter removal and high cost. In this study, sewage sludge was used as the substrate in the Microbial desalination cell (MDC) under three different initial salt concentrations (5, 20 and 35 g.L -1 ) and the maximum salt removal rates of 50.6%, 64% and 69.6% were obtained under batch condition, respectively. The MDC also produced the maximum power density of 47.1 W m -3 and the averaged chemical oxygen demand (COD) removal of 58.2 ± 0.89% when the initial COD was 6610 ± 83 mg L -1 . Employing treated sludge as catholyte enhanced COD removal and power density to 87.3% and 54.4 W m -3 , respectively, with counterbalancing pH variation in treated effluent. These promising results showed, for the first time, that the excess sewage sludge obtained from biological wastewater treatment plants could be successfully used as anolyte and catholyte in MDC, achieving organic matter biodegradation along with salt removal and energy production. In addition, using treated sludge as catholyte will improve the performance of MDC and introduce a more effective method for both sludge treatment and desalination.

  18. Comparison of some characteristics of aerobic granules and sludge flocs from sequencing batch reactors.

    PubMed

    Li, J; Garny, K; Neu, T; He, M; Lindenblatt, C; Horn, H

    2007-01-01

    Physical, chemical and biological characteristics were investigated for aerobic granules and sludge flocs from three laboratory-scale sequencing batch reactors (SBRs). One reactor was operated as normal SBR (N-SBR) and two reactors were operated as granular SBRs (G-SBR1 and G-SBR2). G-SBR1 was inoculated with activated sludge and G-SBR2 with granules from the municipal wastewater plant in Garching (Germany). The following major parameters and functions were measured and compared between the three reactors: morphology, settling velocity, specific gravity (SG), sludge volume index (SVI), specific oxygen uptake rate (SOUR), distribution of the volume fraction of extracellular polymeric substances (EPS) and bacteria, organic carbon and nitrogen removal. Compared with sludge flocs, granular sludge had excellent settling properties, good solid-liquid separation, high biomass concentration, simultaneous nitrification and denitrification. Aerobic granular sludge does not have a higher microbial activity and there are some problems including higher effluent suspended solids, lower ratio of VSS/SS and no nitrification at the beginning of cultivation. Measurement with CLSM and additional image analysis showed that EPS glycoconjugates build one main fraction inside the granules. The aerobic granules from G-SBR1 prove to be heavier, smaller and have a higher microbial activity compared with G-SBR2. Furthermore, the granules were more compact, with lower SVI and less filamentous bacteria.

  19. Removal of aluminum from drinking water treatment sludge using vacuum electrokinetic technology.

    PubMed

    Xu, Hang; Ding, Mingmei; Shen, Kunlun; Cui, Jianfeng; Chen, Wei

    2017-04-01

    A vacuum electrokinetic apparatus was operated at a municipal water supply plant in Wuxi, China to study the removal of aluminum from the plant's drinking water treatment sludge, high in trivalent aluminum content. The effect of several experimental variables (initial pH, potential gradient, and zone in the sludge tank) and the trivalent aluminum removal mechanism were analyzed. The speciation of trivalent aluminum mainly depends on the initial pH of drinking water treatment sludge, and more fractions of trivalent aluminum were migrated at pH 4 than at higher or lower pH. The application of high voltage can enhance the removal efficiency of aluminum. A three-dimensional electric field analysis explained the difference in the removal efficiency at different zones in the sludge tank. In view of energy consumption, when the initial pH was 4 and a potential gradient of 2 V cm -1 was applied, achieving a final aluminum concentration of 30 g kg -1 after 120 h. The specific energy consumption was 11.7 kWh kg -1 of Al removed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The Microbial Database for Danish wastewater treatment plants with nutrient removal (MiDas-DK) - a tool for understanding activated sludge population dynamics and community stability.

    PubMed

    Mielczarek, A T; Saunders, A M; Larsen, P; Albertsen, M; Stevenson, M; Nielsen, J L; Nielsen, P H

    2013-01-01

    Since 2006 more than 50 Danish full-scale wastewater treatment plants with nutrient removal have been investigated in a project called 'The Microbial Database for Danish Activated Sludge Wastewater Treatment Plants with Nutrient Removal (MiDas-DK)'. Comprehensive sets of samples have been collected, analyzed and associated with extensive operational data from the plants. The community composition was analyzed by quantitative fluorescence in situ hybridization (FISH) supported by 16S rRNA amplicon sequencing and deep metagenomics. MiDas-DK has been a powerful tool to study the complex activated sludge ecosystems, and, besides many scientific articles on fundamental issues on mixed communities encompassing nitrifiers, denitrifiers, bacteria involved in P-removal, hydrolysis, fermentation, and foaming, the project has provided results that can be used to optimize the operation of full-scale plants and carry out trouble-shooting. A core microbial community has been defined comprising the majority of microorganisms present in the plants. Time series have been established, providing an overview of temporal variations in the different plants. Interestingly, although most microorganisms were present in all plants, there seemed to be plant-specific factors that controlled the population composition thereby keeping it unique in each plant over time. Statistical analyses of FISH and operational data revealed some correlations, but less than expected. MiDas-DK (www.midasdk.dk) will continue over the next years and we hope the approach can inspire others to make similar projects in other parts of the world to get a more comprehensive understanding of microbial communities in wastewater engineering.

  1. Biodegradation of the artificial sweetener acesulfame in biological wastewater treatment and sandfilters.

    PubMed

    Castronovo, Sandro; Wick, Arne; Scheurer, Marco; Nödler, Karsten; Schulz, Manoj; Ternes, Thomas A

    2017-03-01

    A considerable removal of the artificial sweetener acesulfame (ACE) was observed during activated sludge processes at 13 wastewater treatment plants (WWTPs) as well as in a full-scale sand filter of a water works. A long-term sampling campaign over a period of almost two years revealed that ACE removal in WWTPs can be highly variable over time. Nitrifying/denitrifying sequencing batch reactors (SBR) as well as aerobic batch experiments with activated sludge and filter sand from a water works confirmed that both activated sludge as well as filter sand can efficiently remove ACE and that the removal can be attributed to biologically mediated degradation processes. The lab results strongly indicated that varying ACE removal in WWTPs is not associated with nitrification processes. Neither an enhancement of the nitrification rate nor the availability of ammonium or the inhibition of ammonium monooxygenase by N-allylthiourea (ATU) affected the degradation. Moreover, ACE was found to be also degradable by activated sludge under denitrifying conditions, while being persistent in the absence of both dissolved oxygen and nitrate. Using ion chromatography coupled with high resolution mass spectrometry, sulfamic acid (SA) was identified as the predominant transformation product (TP). Quantitative analysis of ACE and SA revealed a closed mass balance during the entire test period and confirmed that ACE was quantitatively transformed to SA. Measurements of dissolved organic carbon (DOC) revealed an almost complete removal of the carbon originating from ACE, thereby further confirming that SA is the only relevant final TP in the assumed degradation pathway of ACE. A first analysis of SA in three municipal WWTP revealed similar concentrations in influents and effluents with maximum concentrations of up to 2.3 mg/L. The high concentrations of SA in wastewater are in accordance with the extensive use of SA in acid cleaners, while the degradation of ACE in WWTPs adds only a very small portion of the total load of SA discharged into surface waters. No removal of SA was observed by the biological treatment applied at these WWTPs. Moreover, SA was also stable in the aerobic batch experiments conducted with the filter sand from a water works. Hence, SA might be a more appropriate wastewater tracer than ACE due to its chemical and microbiological persistence, the negligible sorbing affinity (high negative charge density) and its elevated concentrations in WWTP effluents. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Impact of mild alkali dosage on immobilized Exiguobacterium spp. mediated cost and energy efficient sludge disintegration.

    PubMed

    Rajesh Banu, J; Ushani, U; Rajkumar, M; Naresh Kumar, R; Parthiba Karthikeyan, O

    2017-12-01

    Approaches to (extracellular polymeric substance) EPS removal were studied with major aim to enhance the biodegradability and sludge solubilization. In this study, a novel approach of entrapment of bacterial strain was carried out to achieve long term activity of protease secreting bacteria Exiguobacterium sp. A mild treatment of potassium hydroxide (KOH) was applied to remove EPS which was followed by entrapment under the biological pretreatment. The efficiency of Exiguobacterium was predicted through dissolvable organic and suspended solids (SS) reduction. The maximum dissolvable organic matter released was 2300mg/L with the solubilization of 23% which was obtained for sludge without EPS (SWOE). For dissolvable organic release, SWOE showed higher final methane production of 232mL/g COD at the production rate of 16.2mL/g COD.d. The SWOE pretreatment was found to be cost effective and less energy intensive beneficial in terms of energy and cost (43.9KWh and -8.2USD) when compared to sludge with EPS (SWE) pretreatment (-177.6KWh and -91.23USD). Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effect of humic acids with different characteristics on fermentative short-chain fatty acids production from waste activated sludge.

    PubMed

    Liu, Kun; Chen, Yinguang; Xiao, Naidong; Zheng, Xiong; Li, Mu

    2015-04-21

    Recently, the use of waste activated sludge to bioproduce short-chain fatty acids (SCFA) has attracted much attention as the sludge-derived SCFA can be used as a preferred carbon source to drive biological nutrient removal or biopolymer (polyhydroxyalkanoates) synthesis. Although large number of humic acid (HA) has been reported in sludge, the influence of HA on SCFA production has never been documented. This study investigated the effects on sludge-derived SCFA production of two commercially available humic acids (referred to as SHHA and SAHA purchased respectively from Shanghai Reagent Company and Sigma-Aldrich) that differ in chemical structure, hydrophobicity, surfactant properties, and degree of aromaticity. It was found that SHHA remarkably enhanced SCFA production (1.7-3.5 folds), while SAHA had no obvious effect. Mechanisms study revealed that all four steps (solubilization, hydrolysis, acidification, and methanogenesis) involved in sludge fermentation were unaffected by SAHA. However, SHHA remarkably improved the solubilization of sludge protein and carbohydrate and the activity of hydrolysis enzymes (protease and α-glucosidase) owing to its greater hydrophobicity and protection of enzyme activity. SHHA also enhanced the acidification step by accelerating the bioreactions of glyceradehyde-3P → d-glycerate 1,3-diphosphate, and pyruvate → acetyl-CoA due to its abundant quinone groups which served as electron acceptor. Further investigation showed that SHHA negatively influenced the activity of acetoclastic methanogens for its competition for electrons and inhibition on the reaction of acetyl-CoA → 5-methyl-THMPT, which caused less SCFA being consumed. All these observations were in correspondence with SHHA significantly enhancing the production of sludge derived SCFA.

  4. Application of a membrane bioreactor for winery wastewater treatment.

    PubMed

    Bolzonella, D; Fatone, F; Pavan, P; Cecchi, F

    2010-01-01

    Winery wastewaters are variable in nature and are hard to treat by means of the conventional activated sludge process because of the high organic loading associated with their production, especially during vintage. To face this situation, recently, membrane bioreactors have been widely applied to treat winery wastewaters. In this study, a full-scale membrane bioreactor treated some 110 m(3)/d of wastewater and organic loadings up to 1,600 kg COD per day. The average removal efficiency was 95% while the corresponding sludge yield was only 0.1 kg MLVSS per kg COD removed, as usual for these wastewaters. A detailed analysis of energy consumption showed specific energy demands of 2.0-3.6 kWh/m(3) of treated wastewater or 1 kWh per kg of COD removed.

  5. Improving the performance of membrane bioreactors by powdered activated carbon dosing with cost considerations.

    PubMed

    Yang, W; Paetkau, M; Cicek, N

    2010-01-01

    Effects of powdered activated carbon (PAC) dosing on the overall performance of membrane bioreactors (MBR) were investigated in two bench-scale submerged MBRs. Positive impacts of PAC dosing on membrane fouling and the removal of 17beta-estradiol (E2) and 17alpha-ethyinylestradiol (EE2) were demonstrated over a six-month stable operational period. PAC dosing in the MBR increased the removal rates of E2 and EE2 by 3.4% and 15.8%, respectively. The average soluble extracellular polymeric substances (EPS) and colloidal total organic carbon (TOC) concentrations in the PAC-MBR sludge was 60.1% and 61.8% lower than the control MBR sludge, respectively. Lower soluble EPS and colloidal TOC concentrations in the PAC-MBR sludge resulted in a slower rate of trans-membrane pressure (TMP) increase during MBRs operation, which could prolong the lifespan of membranes. Cost assessment showed that PAC dosing could reduce the operating cost for membrane cleaning and/or membrane replacement by about 25%. The operating cost for PAC dosing could be offset by the benefit from its reducing the cost for membrane maintenance.

  6. Aerobic co-treatment of landfill leachate and domestic wastewater - are slowly biodegradable organics removed or simply diluted?

    PubMed

    Campos, R; Ferraz, F M; Vieira, E M; Povinelli, J

    2014-01-01

    This study investigated the co-treatment of landfill leachate/domestic wastewater in bench-scale activated sludge (AS) reactors to determine whether the slowly biodegradable organic matter (SBOM) was removed rather than diluted. The AS reactors were loaded with mixtures of raw leachate and leachate that was pretreated by air stripping. The tested volumetric ratios were 0%, 0.2%, 2% and 5%. For all of the tested conditions, the reactors performed better when pretreated leachate was used rather than raw leachate, and the best volumetric ratio was 2%. The following removals were obtained: 97% for the biochemical oxygen demand (BOD5,20), 79% for total suspended solids, 77% for dissolved organic carbon and 84% for soluble chemical oxygen demand. Most of the pretreated leachate SBOM (65%) was removed rather than diluted or adsorbed into the sludge, as confirmed by Fourier transform infrared (FTIR) spectroscopy analyses.

  7. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment.

    PubMed

    Jelic, Aleksandra; Fatone, Francesco; Di Fabio, Silvia; Petrovic, Mira; Cecchi, Franco; Barcelo, Damia

    2012-09-01

    The occurrence and removal of 42 pharmaceuticals, belonging to different therapeutic groups (analgesics and anti-inflammatory drugs, anti-ulcer agent, psychiatric drugs, antiepileptic drug, antibiotics, ß-blockers, diuretics, lipid regulator and cholesterol lowering statin drugs and anti-histamines), were studied in the wastewater and sewage sludge trains of a full scale integrated treatment plant. The plant employs a biological nutrient removal (BNR) process for the treatment of municipal wastewater, and a single-stage mesophilic anaerobic co-digestion for the treatment of wasted activated sludge mixed with the organic fraction of municipal solid waste (OFMSW), followed by a short-cut nitrification-denitrification of the anaerobic supernatant in a sequential batch reactor. Influent and effluent wastewater, as well as thickened, digested and treated sludge were sampled and analyzed for the selected pharmaceuticals in order to study their presence and fate during the treatment. Twenty three compounds were detected in influent and effluent wastewater and eleven in sludge. Infiltration of groundwater in the sewer system led to a dilution of raw sewage, resulting in lower concentrations in wastewater (up to 0.7 μg/L in influent) and sludge (70 ng/g d.w.). Due to the dilution, overall risk quotient for the mixture of pharmaceuticals detected in effluent wastewater was less than one, indicating no direct risk for the aquatic environment. A wide range of removal efficiencies during the treatment was observed, i.e. <20% to 90%. The influent concentrations of the target pharmaceuticals, as polar compounds, were undoubtedly mostly affected by BNR process in the wastewater train, and less by anaerobic-co-digestion. Mass balance calculations showed that less than 2% of the total mass load of the studied pharmaceuticals was removed by sorption. Experimentally estimated distribution coefficients (<500 L/kg) also indicated that the selected pharmaceuticals preferably remain in the aqueous phase, and that biodegradation/transformation is the primary removal mechanism for these compounds during wastewater treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Start-up of the ananmmox process from the conventional activated sludge in a hybrid bioreactor.

    PubMed

    Duan, Xiumei; Zhou, Jiti; Qiao, Sen; Yin, Xin; Tian, Tian; Xu, Fangdi

    2012-01-01

    The anaerobic ammonium oxidation (anammox) process was successfully started up from conventional activated sludge using a hybrid bioreactor within 2 months. The average removal efficiencies of ammonia and nitrite were both over 80%, and the maximum total nitrogen removal rate of 1.85 kg N/(m3 x day) was obtained on day 362 with the initial sludge concentration of 0.7 g mixed liquor suspended solids (MLSS)/L. Scanning electron microscope (SEM) observation of the granular sludge in the hybrid reactor clearly showed a high degree of compactness and cell sphericity, and the cell size was quite uniform. Transmission electron microscope photos showed that cells were round or oval, the cellular diameter was 0.6-1.0 microm, and the percentage of the anammoxosome compartment was 51%-85% of the whole cell volume. Fluorescence in situ hybridization analysis (FISH) indicated that anammox bacteria became the dominant population in the community (accounting for more than 51% of total bacteria on day 250). Seven planctomycete 16S rRNA gene sequences were present in the 16S rRNA gene clone library generated from the biomass and affiliated to Candidatus Kuenenia stuttgartiensis and Candidatus Brocadia sp., a new anammox species. In addition, the average effluent suspended solid (MLSS) concentrations of outlets I (above the non-woven carrier) and II (below the non-woven carrier) were 0.0009 and 0.0035 g/L, respectively. This showed that the non-woven carrier could catch the biomass effectively, which increased biomass and improved the nitrogen removal rate in the reactor.

  9. Fluorochemical Mass Flows in a Municipal Wastewater Treatment Facility

    PubMed Central

    Schultz, Melissa M.; Higgins, Christopher P.; Huset, Carin A.; Luthy, Richard G.; Barofsky, Douglas F.; Field, Jennifer A.

    2008-01-01

    Fluorochemicals have widespread applications and are released into municipal wastewater treatment plants via domestic wastewater. A field study was conducted at a full-scale municipal wastewater treatment plant to determine the mass flows of selected fluorochemicals. Flow-proportional, 24-h samples of raw influent, primary effluent, trickling filter effluent, secondary effluent, and final effluent and grab samples of primary, thickened, activated, and anaerobically-digested sludge were collected over ten days and analyzed by liquid chromatography electrospray-ionization tandem mass spectrometry. Significant decreases in the mass flows of perfluorohexane sulfonate and perfluorodecanoate occurred during trickling filtration and primary clarification, while activated sludge treatment decreased the mass flow of perfluorohexanoate. Mass flows of the 6:2 fluorotelomer sulfonate and perfluorooctanoate were unchanged as a result of wastewater treatment, which indicates that conventional wastewater treatment is not effective for removal of these compounds. A net increase in the mass flows for perfluorooctane and perfluorodecane sulfonates occurred from trickling filtration and activated sludge treatment. Mass flows for perfluoroalkylsulfonamides and perfluorononanoate also increased during activated sludge treatment and are attributed to degradation of precursor molecules. PMID:17180988

  10. Simulation and optimization of ammonia removal at low temperature for a double channel oxidation ditch based on fully coupled activated sludge model (FCASM): a full-scale study.

    PubMed

    Yang, Min; Sun, Peide; Wang, Ruyi; Han, Jingyi; Wang, Jianqiao; Song, Yingqi; Cai, Jing; Tang, Xiudi

    2013-09-01

    An optimal operating condition for ammonia removal at low temperature, based on fully coupled activated sludge model (FCASM), was determined in a full-scale oxidation ditch process wastewater treatment plant (WWTP). The FCASM-based mechanisms model was calibrated and validated with the data measured on site. Several important kinetic parameters of the modified model were tested through respirometry experiment. Validated model was used to evaluate the relationship between ammonia removal and operating parameters, such as temperature (T), dissolved oxygen (DO), solid retention time (SRT) and hydraulic retention time of oxidation ditch (HRT). The simulated results showed that low temperature have a negative effect on the ammonia removal. Through orthogonal simulation tests of the last three factors and combination with the analysis of variance, the optimal operating mode acquired of DO, SRT, HRT for the WWTP at low temperature were 3.5 mg L(-1), 15 d and 14 h, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. A comparison of BNR activated sludge systems with membrane and settling tank solid-liquid separation.

    PubMed

    Ramphao, M C; Wentzel, M C; Ekama, G A; Alexander, W V

    2006-01-01

    Installing membranes for solid-liquid separation into biological nutrient removal (BNR) activated sludge (AS) systems makes a profound difference not only to the design of the membrane bio-reactor (MBR) BNR system itself, but also to the design approach for the whole wastewater treatment plant (WWTP). In multi-zone BNR systems with membranes in the aerobic reactor and fixed volumes for the anaerobic, anoxic and aerobic zones (i.e. fixed volume fractions), the mass fractions can be controlled (within a range) with the inter-reactor recycle ratios. This zone mass fraction flexibility is a significant advantage of MBR BNR systems over BNR systems with secondary settling tanks (SSTs), because it allows changing the mass fractions to optimise biological N and P removal in conformity with influent wastewater characteristics and the effluent N and P concentrations required. For PWWF/ADWF ratios (fq) in the upper range (fq approximately 2.0), aerobic mass fractions in the lower range (f(maer) < 0.60) and high (usually raw) wastewater strengths, the indicated mode of operation of MBR BNR systems is as extended aeration WWTPs (no primary settling and long sludge age). However, the volume reduction compared with equivalent BNR systems with SSTs will not be large (40-60%), but the cost of the membranes can be offset against sludge thickening and stabilisation costs. Moving from a flow unbalanced raw wastewater system to a flow balanced (fq = 1) low (usually settled) wastewater strength system can double the ADWF capacity of the biological reactor, but the design approach of the WWTP changes away from extended aeration to include primary sludge stabilisation. The cost of primary sludge treatment then has to be offset against the savings of the increased WWTP capacity.

  12. The San Francisco Bay - Delta Wastewater and Residual Solids Management Study. Volume III. Technical Appendix. Wastewater Residual Solids Management Study

    DTIC Science & Technology

    1972-08-01

    of public health hazards and may alter reuse approaches to de -emphasize the fertilizer uses of these sludges because of the heavy metals involved...materials are removed with organic sludges, or lime sludges where that process is used. Toxic solids would typically include phenols and heavy metals , 80...solids would typically include phenols and heavy metals , 80 percent and 40 percent respectively being removable with the organic sludges. - 8

  13. Bioleaching of heavy metals from sewage sludge by indigenous iron-oxidizing microorganisms using ammonium ferrous sulfate and ferrous sulfate as energy sources: a comparative study.

    PubMed

    Pathak, Ashish; Dastidar, M G; Sreekrishnan, T R

    2009-11-15

    The potential of indigenous iron-oxidizing microorganisms enriched at initial neutral pH of the sewage sludge for bioleaching of heavy metals was investigated at initial neutral pH of the sludge using ammonium ferrous sulfate (FAS) and ferrous sulfate (FS) as an energy sources in two different sets of experiments. After 16 days of bioleaching, 56% Cu, 48% Ni, 68% Zn and 42% C were removed from the sludge using ammonium ferrous sulfate as an energy source. On the other hand, 64% Cu, 58% Ni, 76% Zn and 52% Cr were removed using ferrous sulfate. Further, 32% nitrogen and 24% phosphorus were leached from the sludge using ferrous sulfate, whereas only 22% nitrogen and 17% phosphorus were removed using ammonium ferrous sulfate. The BCR sequential extraction study on speciation of metals showed that using ammonium ferrous sulfate and ferrous sulfate, all the metals remained in bioleached sludge as stable form (F4 fraction). The results of the present study indicate that the bioleached sludge would be safer for land application. Also, the fertilizing property was largely conserved in the bioleached sludge using both the substrates.

  14. Community composition of known and uncultured archaeal lineages in anaerobic or anoxic wastewater treatment sludge.

    PubMed

    Kuroda, Kyohei; Hatamoto, Masashi; Nakahara, Nozomi; Abe, Kenichi; Takahashi, Masanobu; Araki, Nobuo; Yamaguchi, Takashi

    2015-04-01

    Microbial systems are widely used to treat different types of wastewater from domestic, agricultural, and industrial sources. Community composition is an important factor in determining the successful performance of microbial treatment systems; however, a variety of uncultured and unknown lineages exist in sludge that requires identification and characterization. The present study examined the archaeal community composition in methanogenic, denitrifying, and nitrogen-/phosphate-removing wastewater treatment sludge by Archaea-specific 16S rRNA gene sequencing analysis using Illumina sequencing technology. Phylotypes belonging to Euryarchaeota, including methanogens, were most abundant in all samples except for nitrogen-/phosphate-removing wastewater treatment sludge. High levels of Deep Sea Hydrothermal Vent Group 6 (DHVEG-6), WSA2, Terrestrial Miscellaneous Euryarchaeotal Group, and Miscellaneous Crenarchaeotic Group were also detected. Interestingly, DHVEG-6 was dominant in nitrogen-/phosphate-removing wastewater treatment sludge, indicating that unclear lineages of Archaea still exist in the anaerobic wastewater treatment sludges. These results reveal a previously unknown diversity of Archaea in sludge that can potentially be exploited for the development of more efficient wastewater treatment strategies.

  15. Simultaneous addition of zero-valent iron and activated carbon on enhanced mesophilic anaerobic digestion of waste-activated sludge.

    PubMed

    Wang, Tongyu; Qin, Yujie; Cao, Yan; Han, Bin; Ren, Junyi

    2017-10-01

    The performance of biogas generation and sludge degradation was studied under different zero-valent iron/activated carbon (ZVI/AC) ratios in detail in mesophilic anaerobic digestion of sludge. A good enhancement of methane production was obtained at the 10:1 ZVI/AC ratio, and the cumulative methane production was 132.1 mL/g VS, 37.6% higher than the blank. The methane content at the 10:1 ZVI/AC ratio reached 68.8%, which was higher than the blank (55.2%) and the sludge-added AC alone (59.6%). For sludge degradation, the removal efficiencies of total chemical oxygen demand (TCOD), proteins, and polysaccharides were all the highest at the 10:1 ZVI/AC ratio. The concentration of available phosphorus (AP) decreased after anaerobic digestion process. On the other hand, the concentrations of available nitrogen (AN) and available potassium (AK) increased after the anaerobic digestion process and showed a gradually decreasing trend with increasing ZVI/AC ratio. The concentrations of AN and AK were 2303.1-4200.3 and 274.7-388.3 mg/kg, showing a potential for land utilization.

  16. Visible light photocatalytic disintegration of waste activated sludge for enhancing biogas production.

    PubMed

    Anjum, Muzammil; Al-Talhi, Hasan A; Mohamed, Saleh A; Kumar, Rajeev; Barakat, M A

    2018-06-15

    Biogas production using waste activated sludge (WAS) is one of the most demanding technologies for sludge treatment and generating energy in sustainable manner. The present study deals with the photocatalytic pretreatment of WAS using ZnO-ZnS@polyaniline (ZnO-ZnS@PANI) nanocomposite as means for increasing its degradability for improved biogas production by anaerobic digestion (AD). Photocatalysis accelerated the hydrolysis of WAS and increased the sCOD by 6.7 folds after 6 h and transform tCOD into bioavailable sCOD. After the AD of WAS, a removal of organic matter (60.6%) and tCOD (69.3%) was achieved in photocatalytic pretreated sludge. The biogas production was 1.6 folds higher in photocatalytic sludge with accumulative biogas up to 1645.1 ml L -1 vs after 45 days compared with the raw sludge (1022.4 ml L -1 VS ). Moreover, the photocatalysis decrease the onset of methanogenesis from 25 to 12 days while achieve the maximum conversion rate of reducing sugars into organic acids at that time. These results suggested that photocatalysis is an efficient pretreatment method and ZnO-ZnS@PANI can degrade sludge efficiently for enhance biogas production in anaerobic digestion process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Application of acclimated sewage sludge as a bio-augmentation/bio-stimulation strategy for remediating chlorpyrifos contamination in soil with/without cadmium.

    PubMed

    Wang, Can; Zhou, Zhiren; Liu, Hongdan; Li, Junjie; Wang, Ying; Xu, Heng

    2017-02-01

    This experiment was performed to investigate the effects of acclimated sewage sludge (ASS) and sterilized ASS on the fates of chlorpyrifos (CP) in soil with or without cadmium (Cd), as well as the improvement of soil biochemical properties. Results showed that both ASS and sterilized ASS could significantly promote CP dissipation, and the groups with ASS had the highest efficiency on CP removal, whose degradation rates reached 71.3%-85.9% at the 30th day (40.4%-50.2% higher than non-sludge groups). Besides, the degradation rate of CP was not severely influenced by the existence of Cd, and the population of soil microorganism dramatically increased after adding sludge. The soil enzyme activities (dehydrogenase, acid phosphatase and FDA hydrolase activities) ranked from high to low were as follows: groups with sterilized ASS>groups with ASS>groups without sludge. Simultaneously, 16S rRNA gene sequencing revealed that ASS changed bacterial community structure and diversity in soil. In addition, alkali-hydrolyzable nitrogen and Olsen- phosphorus increased after application of sludge, indicating that the addition of ASS (or sterilized ASS) could effectively improve soil fertility. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Biotreatment of oily wastewater by rhamnolipids in aerated active sludge system*

    PubMed Central

    Zhang, Hong-zi; Long, Xu-wei; Sha, Ru-yi; Zhang, Guo-liang; Meng, Qin

    2009-01-01

    Oily wastewater generated by various industries creates a major ecological problem throughout the world. The traditional methods for the oily wastewater treatment are inefficient and costly. Surfactants can promote the biodegradation of petroleum hydrocarbons by dispersing oil into aqueous environment. In the present study, we applied rhamnolipid-containing cell-free culture broth to enhance the biodegradation of crude oil and lubricating oil in a conventional aerobically-activated sludge system. At 20 °C, rhamnolipids (11.2 mg/L) increased the removal efficiency of crude oil from 17.7% (in the absence of rhamnolipids) to 63%. At 25 °C, the removal efficiency of crude oil was over 80% with the presence of rhamnolipids compared with 22.3% in the absence of rhamnolipids. Similarly, rhamnolipid treatment (22.5 mg/L) for 24 h at 20 °C significantly increased the removal rate of lubricating oil to 92% compared with 24% in the absence of rhamnolipids. The enhanced removal of hydrocarbons was mainly attributed to the improved solubility and the reduced interfacial tension by rhamnolipids. We conclude that a direct application of the crude rhamnolipid solution from cell culture is effective and economic in removing oily contaminants from wastewater. PMID:19882761

  19. Biomass production and nutrient removal by Chlorella sp. as affected by sludge liquor concentration.

    PubMed

    Åkerström, Anette M; Mortensen, Leiv M; Rusten, Bjørn; Gislerød, Hans Ragnar

    2014-11-01

    The use of microalgae for biomass production and nutrient removal from the reject water produced in the dewatering process of anaerobically digested sludge, sludge liquor, was investigated. The sludge liquor was characterized by a high content of total suspended solids (1590 mg L(-1)), a high nitrogen concentration (1210 mg L(-1)), and a low phosphorus concentration (28 mg L(-1)). Chlorella sp. was grown in sludge liquor diluted with wastewater treatment plant effluent water to different concentrations (12, 25, 40, 50, 70, and 100%) using batch mode. The environmental conditions were 25 °C, a continuous lightning of 115 μmol m(-2) s(-1), and a CO2 concentration of 3.0%. The highest biomass production (0.42-0.45 g dry weight L(-1) Day(-1)) was achieved at 40-50% sludge liquor, which was comparable to the production of the control culture grown with an artificial fertilizer. The biomass production was 0.12 and 0.26 g dry weight L(-1) Day(-1) at 12% and 100% sludge liquor, respectively. The percentage of nitrogen in the algal biomass increased from 3.6% in 12% sludge liquor and reached a saturation of ∼10% in concentrations with 50% sludge liquor and higher. The phosphorus content in the biomass increased linearly from 0.2 to 1.5% with increasing sludge liquor concentrations. The highest nitrogen removal rates by algal biosynthesis were 33.6-42.6 mg TN L(-1) Day(-1) at 40-70% sludge liquor, while the highest phosphorus removal rates were 3.1-4.1 mg TP L(-1) Day(-1) at 50-100% sludge liquor. Published by Elsevier Ltd.

  20. Reuse of acid coagulant-recovered drinking waterworks sludge residual to remove phosphorus from wastewater

    NASA Astrophysics Data System (ADS)

    Yang, Lan; Wei, Jie; Zhang, Yumei; Wang, Jianli; Wang, Dongtian

    2014-06-01

    Acid coagulant-recovered drinking waterworks sludge residual (DWSR) is a waste product from drinking waterworks sludge (DWS) treatment with acid for coagulant recovery. In this study, we evaluated DWSR as a potential phosphorus (P) removing material in wastewater treatment by conducting a series of batch and semi-continuous tests. Batch tests were carried out to study the effects of pH, initial concentration, and sludge dose on P removal. Batch test results showed that the P removal efficiency of DWSR was highly dependent on pH. Calcinated DWSR (C-DWSR) performed better in P removal than DWSR due to its higher pH. At an optimum initial pH value of 5-6 and a sludge dose of 10 g/L, the P removal rates of DWSR and DWS decreased from 99% and 93% to 84% and 14%, respectively, and the specific P uptake of DWSR and DWS increased from 0.19 and 0.19 mg P/g to 33.60 and 5.72 mg P/g, respectively, when the initial concentration was increased from 2 to 400 mg/L. The effective minimum sludge doses of DWSR and DWS were 0.5 g/L and 10 g/L, respectively, when the P removal rates of 90% were obtained at an initial concentration of 10 mg/L. Results from semi-continuous test indicated that P removal rates over 99% were quickly achieved for both synthetic and actual wastewater (lake water and domestic sewage). These rates could be maintained over a certain time under a certain operational conditions including sludge dose, feed flow, and initial concentration. The physicochemical properties analysis results showed that the contents of aluminum (Al) and iron (Fe) in DWSR were reduced by 50% and 70%, respectively, compared with DWS. The insoluble Al and Fe hydroxide in DWS converted into soluble Al and Fe in DWSR. Metal leaching test results revealed that little soluble Al and Fe remained in effluent when DWSR was used for P removal. We deduced that chemical precipitation might be the major action for P removal by DWSR and that adsorption played only a marginal role.

  1. Electricity production and sludge reduction by integrating microbial fuel cells in anoxic-oxic process.

    PubMed

    Xiao, Benyi; Luo, Meng; Wang, Xiao; Li, Zuoxing; Chen, Hong; Liu, Junxin; Guo, Xuesong

    2017-11-01

    To produce energy and reduce sludge production from the treatment of municipal wastewater, four identical microbial fuel cells (MFCs) were constructed in an anoxic-oxic (A/O) process (MFCs-A/O system). Experimental results indicated that this system enhance the removals of chemical oxygen demand (COD) and total nitrogen (TN). The electricity produced by each MFC were ranged from 0.371 to 0.477V (voltage) and from 138 to 227mW/m 3 (power density) at the stable stage, when the external resistance was fixed at 1000Ω. The coulombic efficiency of the MFCs-A/O system ranged from 0.31% to 1.68% (mean=0.72%) at the stable stage, respectively. The removals of COD and TN in the MFCs-A/O system were slightly higher than those in the control system. Compared with the control system, the MFCs-A/O system can reduce waste activated sludge production and sludge yield by 24.0% and 24.2%, respectively. The experimental results indicated that the MFC constructed in A/O system improves wastewater treatment and the MFCs-A/O system can produce electricity while reducing sludge production and increasing wastewater treatment efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Fate of emerging and priority micropollutants during the sewage sludge treatment: Case study of Paris conurbation. Part 1: Contamination of the different types of sewage sludge.

    PubMed

    Mailler, R; Gasperi, J; Patureau, D; Vulliet, E; Delgenes, N; Danel, A; Deshayes, S; Eudes, V; Guerin, S; Moilleron, R; Chebbo, G; Rocher, V

    2017-01-01

    This article provides data on the contamination of different kinds of sludge (raw, centrifuged, digested, thermally dried sludge and sludge cake) from Paris conurbation by 71 various pollutants including pharmaceutical products (PHPs), hormones, perfluorinated acids (PFAs), linear alkylbenzene sulfonate (LAS), alkylphenols (APs), phthalates (PAEs), polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs). Very high contents of LAS (0.1-10g/kg dry matter - DM) compared to other compounds were found in all types of sludge followed by DEHP (10-100mg/kg DM) and fluoroquinolones (1-100mg/kg DM). APs were measured at intermediary contents in Parisian sludge, lying in the 2-20mg/kg DM range. Finally, hormones, PAHs, PCBs, PAEs, PFAs and the remaining PHPs were all found at contents lower than 1mg/kg DM. For most compounds (PHPs, PFOS, DEHP, PAHs), no significant differences in the micropollutant contents were found for similar types of sludge from different WWTP in Paris, highlighting the homogeneity of sludge contamination in downstream Paris catchment. The variability of concentration is rather high (coefficient of variation >100%) for several PHPs, PFAs or PCBs while it is moderate (<100%) or low (<50%) for fluoroquinolones, hormones, PAHs, APs or LAS. In addition, digestion seems to have a buffer effect as variabilities are lower in digested sludge for PHPs, PFAs, APs and PCBs. During sludge treatment (centrifugation, digestion, thermal drying, sludge conditioning+press filtration), the hormones, LAS, APs, PAHs, DEHP and PCBs concentrations increased, while those of PHPs and PFAs decreased. In the case of digestion, the increase of content can be explained by no pollutant removal or a lower removal than DM removal (concentration phenomenon) whereas the decrease underlines that the compound is more removed than the DM. In any case, these concentration variations presuppose the mechanisms of dissipation that could be attributed to volatilization, biotic or abiotic transformation (complete or with metabolites production), bound residues formation. In addition, data on sludge liquors - centrifuged (CW) and condensed (TDW) waters - from respectively centrifugation and thermal drying were collected. Several hormones, PHPs, PFAs, LAS, PAEs, APs, PCBs and PAHs were quantified in CW and TDW, displaying a transfer through the water removal. The concentrations observed are rather comparable to those found in wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. [Effect of sludge bulking on membrane fouling of MBR under low temperature].

    PubMed

    Ren, Nan-qi; Liu, Jiao; Wang, Xiu-heng

    2009-01-01

    The performance and membrane fouling of submerged membrane bioreactor were studied in the case of active sludge bulking under low temperature. The factors contributing to membrane fouling were discussed from the microorganism aspect. The results showed that COD removal efficiencies of supernatant and permeate were 85% and 92% respectively and filamentous sludge bulking had little impact on them. The sludge settleability became bad and the filament index (FI) increased from 2 to 5 during the formation of filamentous sludge bulking under low temperature. The filamentous bacteria extending from the sludge flocs formed net structure. Membrane fouling changed with time in linear under low temperature and the operation period of MBR was 15 d. However, membrane fouling was more serious in the condition of filamentous sludge bulking at low temperature, shortening the operation period of MBR to 7 d. The extracellular polymeric substances (EPS) content of bulking sludge was three times as that of normal sludge and the relative hydrophobicity (RH) of sludge flocs was decreased as FI increased. The increase of EPS and RH may cause more materials to deposit on the membrane surface, thus the membrane fouling rate improved and the operation period of MBR became short. Further analysis indicated that the mixed liquid viscosity, Zeta potential and sludge floc structure were all important factors of membrane fouling.

  4. Achieve efficient nitrogen removal from real sewage in a plug-flow integrated fixed-film activated sludge (IFAS) reactor via partial nitritation/anammox pathway.

    PubMed

    Yang, Yandong; Zhang, Liang; Cheng, Jun; Zhang, Shujun; Li, Baikun; Peng, Yongzhen

    2017-09-01

    This study tested the feasibility of plug-flow integrated fixed-film activated sludge (IFAS) reactor in applying sewage partial nitritation/anammox (PN/A) process. The IFAS reactor was fed with real pre-treated sewage (C/N ratio=1.3) and operated for 200days. High nitrogen removal efficiency of 82% was achieved with nitrogen removal rates of 0.097±0.019kgN/(m 3 ·d). Therefore, plug-flow IFAS reactor could be an alternative to applying sewage PN/A process. Besides, it was found that the stability of sewage PN/A process was significantly affected by residual ammonium. Nitrate accumulated in effluent and PN/A performance deteriorated when residual ammonium was below 1mg/L. On the contrary, long-term stable PN/A operation was achieved when residual ammonium was over 3mg/L. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Bioremediation of steel plant wastewater and enhanced electricity generation in microbial desalination cell.

    PubMed

    Shinde, Omkar A; Bansal, Ankita; Banerjee, Angela; Sarkar, Supriya

    2018-05-01

    Microbial desalination cell (MDC) is a propitious technology towards water desalination by utilizing wastewater as an energy source. In this study, a multi-chambered MDC was used to bioremediate steel plant wastewater using the same wastewater as a fuel for anodic bacteria. A pure culture of Pseudomonas putida MTCC 1194 was isolated and inoculated to remove toxic phenol. Three different inoculum conditions, namely P. putida (INC-A), a mixture of P. putida and activated sludge (INC-B), and activated sludge alone (INC-C) were employed in an anodic chamber to mainly compare the electricity generation and phenol degradation in MDCs. The study revealed the maximum phenol removal of 82 ± 2.4%, total dissolved solids (TDS) removal of 68 ± 1.5%, and power generation of 10.2 mW/m 2 using INC-B. The synergistic interactions between microorganisms, can enhance the toxic phenol degradation and also electricity generation in MDC for onsite wastewater application.

  6. Inhibition of boric acid and sodium borate on the biological activity of microorganisms in an aerobic biofilter.

    PubMed

    Güneş, Y

    2013-01-01

    The aim of this work was to study the inhibition effect of boric acid and sodium borate on the treatment of boron containing synthetic wastewater by a down flow aerobic fixed bed biofilm reactor at various chemical oxygen demand (COD)/boron ratios (0.47-20.54). The inhibitory effect of boron on activated sludge was evaluated on the basis of COD removal during the experimental period. The biofilter (effective volume = 2.5 L) was filled with a ring of plastic material inoculated with acclimated activated sludge. The synthetic wastewater composed of glucose, urea, KH2PO4, MgSO4, Fe2 SO4, ZnSO4 x 7H20, KCl, CaCl2, and di-sodium tetraborate decahydrate or boric acid (B = 100-2000 mg L(-1)). The biological treatment of boron containing wastewater resulted in a low treatment removal rate due to the reduced microbial activity as a result of toxic effects of high boron concentrations. The decrease in the COD removal rate by the presence of either boric acid or sodium borate was practically indistinguishable. It was observed from the experiments that about 90-95% of COD removal was possible at high COD/boron ratios.

  7. Long-term operation of a novel pilot-scale six tanks alternately operating activated sludge process in treating domestic wastewater.

    PubMed

    Mohammed, R N; Abu-Alhail, S; Xi-Wu, L

    2014-08-01

    The performance of a new pilot-scale six tanks activated sludge process has been evaluated for 303 d, receiving real domestic wastewater with a flow rate of 15-24.4 L/h. Partial nitrification via nitrite and microbial community structure were investigated in this system. The result shows that the nitrite accumulation rate was achieved successfully over 94% in the last aerobic compartment through a combination of short hydraulic retention time and low dissolved oxygen (DO) level. Fluorescence in situ hybridization analysis was used to correlate ammonia-oxidizing bacteria (AOB) numbers with nutrient removal via nitrite. It was shown that in response to complete and partial nitrification modes, the numbers of AOB population were 7.7 x 10(7) cells/g mixed liquor suspended solids (MLSS) and 5.31 x 10(8) cells/g MLSS, respectively. The morphology of the sludge indicated that there is a small rod-shaped and spherical cluster which was mainly dominantly bacterial according to scanning electron microscope. Higher pollutant removal efficiencies of 86.2%, 98%, and 96.1%, for total nitrogen, NH4+ - N, and total phosphorus, respectively, were achieved by a long-term operation of the six tanks activated sludge process at a low DO concentration and low chemical oxygen demand to nitrogen ratio which were approximately equal to the complete nitrification-ldenitrification with the addition of an external carbon source at a concentration of 1.5-2.5 mg/L.

  8. Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants: Removal efficiency and exposure risk.

    PubMed

    Pan, Chang-Gui; Liu, You-Sheng; Ying, Guang-Guo

    2016-12-01

    Perfluoroalkyl substances (PFASs) are a group of chemicals with wide industrial and commercial applications, and have been received great attentions due to their persistence in the environment. The information about their presence in urban water cycle is still limited. This study aimed to investigate the occurrence and removal efficiency of eighteen PFASs in wastewater treatment plants (WWTPs) and drinking water plants (DWTPs) with different treatment processes. The results showed that both perfluorobutane sulfonic acid (PFBS) and perfluorooctane sulfonic acid (PFOS) were the predominant compounds in the water phase of WWTPs and DWTPs, while PFOS was dominant in dewatered sludge of WWTPs. The average total PFASs concentrations in the three selected WWTPs were 19.6-232 ng/L in influents, 15.5-234 ng/L in effluents, and 31.5-49.1 ng/g dry weight in sludge. The distribution pattern of PFASs differed between the wastewater and sludge samples, indicating strong partition of PFASs with long carbon chains to sludge. In the WWTPs, most PFASs were not eliminated efficiently in conventional activated sludge treatment, while the membrane bio-reactor (MBR) and Unitank removed approximately 50% of long chain (C ≥ 8) perfluorocarboxylic acids (PFCAs). The daily mass loads of total PFASs in WWTPs were in the range of 1956-24773 mg in influent and 1548-25085 mg in effluent. PFASs were found at higher concentrations in the wastewater from plant A with some industrial wastewater input than from the other two plants (plant B and plant C) with mainly domestic wastewater sources. Meanwhile, the average total PFASs concentrations in the two selected DWTPs were detected at 4.74-14.3 ng/L in the influent and 3.34-13.9 ng/L in the effluent. In DWTPs, only granular activated carbon (GAC) and powder activated carbon (PAC) showed significant removal of PFASs. The PFASs detected in the tap water would not pose immediate health risks in the short term exposure. The findings from this study showed that effective treatment technology should be applied to eliminate this group of chemicals in the urban water cycle based on the precautionary principle. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Utilization and Conversion of Sewage Sludge as Metal Sorbent

    NASA Astrophysics Data System (ADS)

    Gong, Xu Dong; Li, Loretta Y.

    2013-04-01

    Most biosolids are disposed on land. With improvements in wastewater treatment processes and upgrading of treatment plants across Canada, biosolids generation will increase dramatically. These biosolids will need to be dealt with because they contain various contaminants, including heavy metals and several classes of emerging contaminants. A number of researchers have recently focused on preparation of sewage sludge-based adsorbents by carbonation, physical activation and chemical activation for decontamination of air and wastewater. These previous studies have indicated that sludge-based activated carbon can have good adsorption performance for organic substances in dye wastewater. The overall results suggest that activated carbon from sewage sludge can produce a useful adsorbent, while also reducing the amount of sewage sludge to be disposed. However, sludge-derived activated carbon has not been extensively studied, especially for adsorption of heavy metal ions in wastewater and for its capacity to remove emerging contaminants, such as poly-fluorinated compounds (PFCs). Previous research has indicated that commercial activated carbons adsorb organic compounds more efficiently than heavy metal ions. 45 Activated carbon can be modified to enhance its adsorption capacity for special heavy metal ions,46 e.g. by addition of inorganic and organic reagents. The modifications which are successful for commercial activated carbon should also be effective for sludge-derived activated carbon, but this needs to be confirmed. Our research focuses on (a) investigation of techniques for converting sewage sludge (SS) to activated carbon (AC) as sorbents; (b) exploration of possible modification of the activated carbon (MAC) to improve its sorption capacity; (c) examination of the chemical stability of the activated carbon and the leachability of contaminants from activated carbon,; (d) comparison of adsorptivity with that of other sorbents. Based on XRD and FT-IR, we successfully converted SS to AC and further modified it to improve absorption. SSMAC has large specific surface areas based on the BET technique. Batch adsorption results indicate that metal adsorption for SSMAC > SSAC, with adsorption occurring within the first 5 minutes of contact. Comparison of the adsorptivity of various sorbents such as commercial activated carbon (CAC), mineral sorbents such as perlite, clinoptilolite and illite indicates that SSMAC × CAC × clinoptilolite > kaolite.

  10. Two-stage anaerobic and post-aerobic mesophilic digestion of sewage sludge: Analysis of process performance and hygienization potential.

    PubMed

    Tomei, M Concetta; Mosca Angelucci, Domenica; Levantesi, Caterina

    2016-03-01

    Sequential anaerobic-aerobic digestion has been demonstrated to be effective for enhanced sludge stabilization, in terms of increased solid reduction and improvement of sludge dewaterability. In this study, we propose a modified version of the sequential anaerobic-aerobic digestion process by operating the aerobic step under mesophilic conditions (T=37 °C), in order to improve the aerobic degradation kinetics of soluble and particulate chemical oxygen demand (COD). Process performance has been assessed in terms of "classical parameters" such as volatile solids (VS) removal, biogas production, COD removal, nitrogen species, and polysaccharide and protein fate. The aerobic step was operated under intermittent aeration to achieve nitrogen removal. Aerobic mesophilic conditions consistently increased VS removal, providing 32% additional removal vs. 20% at 20 °C. Similar results were obtained for nitrogen removal, increasing from 64% up to 99% at the higher temperature. Improved sludge dewaterability was also observed with a capillary suction time decrease of ~50% during the mesophilic aerobic step. This finding may be attributable to the decreased protein content in the aerobic digested sludge. The post-aerobic digestion exerted a positive effect on the reduction of microbial indicators while no consistent improvement of hygienization related to the increased temperature was observed. The techno-economic analysis of the proposed digestion layout showed a net cost saving for sludge disposal estimated in the range of 28-35% in comparison to the single-phase anaerobic digestion. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. New insight into sludge reduction induced by different substrate allocation strategy between oxygen and nitrate/nitrite as terminal electron acceptor.

    PubMed

    Yan, Peng; Guo, Jin-Song; Xu, Yu-Feng; Chen, You-Peng; Wang, Jing; Liu, Zhi-Ping; Fang, Fang

    2018-06-01

    Sludge reduction based on regulating substrate allocation between catabolism and anabolism as a strategy is proposed to reduce energy and chemicals consumption during wastewater treatment. The results indicated that a sludge reduction of 14.8% and excellent nutrient removal were simultaneously achieved in the low dissolved oxygen (LDO) activated sludge system with a hydraulic retention time of 24 h at 25 °C. Denitrifiers comprised nearly 1/4 of all microorganisms in the system. These denitrifiers converted NO x - to N 2 obtaining a lower biomass yield. The oxidoreductase activity proteins in the LDO sample was more than twice that of the normal DO sample, indicating that catabolism was stimulated by NO x - when replacing O 2 as electron acceptor. Less substrate was used for cell synthesis in the LDO system. Stable sludge reduction without extra energy and chemicals inputs was achieved by regulating the substrate allocation by inducing the bacteria to utilize NO x - instead of O 2 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Comparison of the effects and distribution of zinc oxide nanoparticles and zinc ions in activated sludge reactors.

    PubMed

    Zhang, Dongqing; Trzcinski, Antoine P; Oh, Hyun-Suk; Chew, Evelyn; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern

    2017-09-19

    Zinc Oxide nanoparticles (ZnO NPs) are being increasingly applied in the industry, which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Zinc Oxide NPs and to compare it with its ionic counterpart (as ZnSO 4 ). It was found that even 1 mg/L of ZnO NPs could have a small impact on COD and ammonia removal. Under 1, 10 and 50 mg/L of ZnO NP exposure, the Chemical Oxygen Demand (COD) removal efficiencies decreased from 79.8% to 78.9%, 72.7% and 65.7%, respectively. The corresponding ammonium (NH 4 + N) concentration in the effluent significantly (P < 0.05) increased from 11.9 mg/L (control) to 15.3, 20.9 and 28.5 mg/L, respectively. Under equal Zn concentration, zinc ions were more toxic towards microorganisms compared to ZnO NPs. Under 50 mg/L exposure, the effluent Zn level was 5.69 mg/L, implying that ZnO NPs have a strong affinity for activated sludge. The capacity for adsorption of ZnO NPs onto activated sludge was found to be 2.3, 6.3, and 13.9 mg/g MLSS at influent ZnO NP concentrations of 1.0, 10 and 50 mg/L respectively, which were 1.74-, 2.13- and 2.05-fold more than under Zn ion exposure.

  13. Occurrence of illicit drugs in water and wastewater and their removal during wastewater treatment.

    PubMed

    Yadav, Meena K; Short, Michael D; Aryal, Rupak; Gerber, Cobus; van den Akker, Ben; Saint, Christopher P

    2017-11-01

    This review critically evaluates the types and concentrations of key illicit drugs (cocaine, amphetamines, cannabinoids, opioids and their metabolites) found in wastewater, surface water and drinking water sources worldwide and what is known on the effectiveness of wastewater treatment in removing such compounds. It is also important to amass information on the trends in specific drug use as well as the sources of such compounds that enter the environment and we review current international knowledge on this. There are regional differences in the types and quantities of illicit drug consumption and this is reflected in the quantities detected in water. Generally, the levels of illicit drugs in wastewater effluents are lower than in raw influent, indicating that the majority of compounds can be at least partially removed by conventional treatment processes such as activated sludge or trickling filters. However, the literature also indicates that it is too simplistic to assume non-detection equates to drug removal and/or mitigation of associated risks, as there is evidence that some compounds may avoid detection via inadequate sampling and/or analysis protocols, or through conversion to transformation products. Partitioning of drugs from the water to the solids fraction (sludge/biosolids) may also simply shift the potential risk burden to a different environmental compartment and the review found no information on drug stability and persistence in biosolids. Generally speaking, activated sludge-type processes appear to offer better removal efficacy across a range of substances, but the lack of detail in many studies makes it difficult to comment on the most effective process configurations and operations. There is also a paucity of information on the removal effectiveness of alternative treatment processes. Research is also required on natural removal processes in both water and sediments that may over time facilitate further removal of these compounds in receiving environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Bioleaching in batch tests for improving sludge dewaterability and metal removal using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans after cold acclimation.

    PubMed

    Zhou, Qingyang; Gao, Jingqing; Li, Yonghong; Zhu, Songfeng; He, Lulu; Nie, Wei; Zhang, Ruiqin

    2017-09-01

    Bioleaching is a promising technology for removal of metals from sludge and improvement of its dewaterability. Most of the previous studies of bioleaching were focused on removal of metals; bioleaching in cold environments has not been studied extensively. In this study, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans were acclimated at 15 °C and co-inoculated to explore the optimal conditions for improvement of sludge dewaterability and removal of metals by the sequencing batch reactors. The data show after 6 days of bioleaching at 15 °C, 89.6% of Zn, 72.8% of Cu and 39.4% of Pb were removed and the specific resistance to filtration (SRF) was reduced to ∼12%. In addition, the best conditions for bioleaching are an initial pH of 6, a 15% (v/v) inoculum concentration, and A. thiooxidans and A. ferrooxidans mixed in a ratio of 4:1. We found that bioleaching of heavy metals is closely related to final pH, while the sludge SRF is dominated by other factors. Bioleaching can be completed in 6 days, and the sludge dewaterability and removal of metals at 15 °C meet the requirements of most sewage treatment plants.

  15. Electricity generation and in situ phosphate recovery from enhanced biological phosphorus removal sludge by electrodialysis membrane bioreactor.

    PubMed

    Geng, Yi-Kun; Wang, Yunkun; Pan, Xin-Rong; Sheng, Guo-Ping

    2018-01-01

    In this study, a novel electrodialysis membrane bioreactor was used for EBPR sludge treatment for energy and phosphorus resource recovery simultaneously. After 30days stable voltage outputting, the maximum power density reached 0.32W/m 3 . Over 90% of phosphorus in EBPR sludge was released while about 50% of phosphorus was concentrated to 4mmol/L as relatively pure phosphate solution. Nitrogen could be removed from EBPR sludge by desalination and denitrification processes. This study provides an optimized way treating sludge for energy production and in situ phosphorus recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Sampling and analysis plan for sludge located on the floor and in the pits of the 105-K basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAKER, R.B.

    1998-11-20

    This Sampling and Analysis Plan (SAP) provides direction for the sampling of the sludge found on the floor and in the remote pits of the 105-K Basins to provide: (1) basic data for the sludges that have not been characterized to-date and (2) representative Sludge material for process tests to be made by the SNF Project/K Basins sludge treatment process subproject. The sampling equipment developed will remove representative samples of the radioactive sludge from underwater at the K Basins, depositing them in shielded containers for transport to the Hanford Site laboratories. Included in the present document is the basic backgroundmore » logic for selection of the samples to meet the requirements established in the Data Quality Objectives (DQO), HNF-2033, for this sampling activity. The present document also includes the laboratory analyses, methods, procedures, and reporting that will be required to meet the DQO.« less

  17. Advanced phosphorus recovery using a novel SBR system with granular sludge in simultaneous nitrification, denitrification and phosphorus removal process.

    PubMed

    Lu, Yong-Ze; Wang, Hou-Feng; Kotsopoulos, Thomas A; Zeng, Raymond J

    2016-05-01

    In this study, a novel process for phosphorus (P) recovery without excess sludge production from granular sludge in simultaneous nitrification-denitrification and P removal (SNDPR) system is presented. Aerobic microbial granules were successfully cultivated in an alternating aerobic-anaerobic sequencing batch reactor (SBR) for removing P and nitrogen (N). Dense and stable granular sludge was created, and the SBR system showed good performance in terms of P and N removal. The removal efficiency was approximately 65.22 % for N, and P was completely removed under stable operating conditions. Afterward, new operating conditions were applied in order to enhance P recovering without excess sludge production. The initial SBR system was equipped with a batch reactor and a non-woven cloth filter, and 1.37 g of CH3COONa·3H2O was added to the batch reactor after mixing it with 1 L of sludge derived from the SBR reactor to enhance P release in the liquid fraction, this comprises the new system configuration. Under the new operating conditions, 93.19 % of the P contained in wastewater was released in the liquid fraction as concentrated orthophosphate from part of granular sludge. This amount of P could be efficiently recovered in the form of struvite. Meanwhile, a deterioration of the denitrification efficiency was observed and the granules were disintegrated into smaller particles. The biomass concentration in the system increased firstly and then maintained at 4.0 ± 0.15 gVSS/L afterward. These results indicate that this P recovery operating (PRO) mode is a promising method to recover P in a SNDPR system with granular sludge. In addition, new insights into the granule transformation when confronted with high chemical oxygen demand (COD) load were provided.

  18. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge.

    PubMed

    Sun, Jing; Pikaar, Ilje; Sharma, Keshab Raj; Keller, Jürg; Yuan, Zhiguo

    2015-03-15

    Dosage of iron salt is the most commonly used method for sulfide control in sewer networks but incurs high chemical costs. In this study, we experimentally investigate the feasibility of using iron rich drinking water treatment sludge for sulfide control in sewers. A lab-scale rising main sewer biofilm reactor was used. The sulfide concentration in the effluent decreased from 15.5 to 19.8 mgS/L (without dosing) to below 0.7-2.3 mgS/L at a sludge dosing rate achieving an iron to total dissolved inorganic sulfur molar ratio (Fe:S) of 1:1, with further removal of sulfide possible by prolonging the reaction time. In fact, batch tests revealed an Fe consumption to sulfide removal ratio of 0.5 ± 0.02 (mole:mole), suggesting the possible occurrence of other reactions involving the removal of sulfide. Modelling revealed that the reaction between iron in sludge and sulfide has reaction orders of 0.65 ± 0.01 and 0.77 ± 0.02 with respect to the Fe and sulfide concentrations, respectively. The addition of sludge slightly increased the total chemical oxidation demand (tCOD) concentration (by approximately 12%) as expected, but decreased the soluble chemical oxidation demand (sCOD) concentration and methane formation by 7% and 20%, respectively. Some phosphate removal (13%) was also observed at the sludge dosing rate of 1:1 (Fe:S), which is beneficial to nutrient removal from the wastewater. Overall, this study suggests that dosing iron-rich drinking water sludge to sewers could be an effective strategy for sulfide removal in sewer systems, which would also reduce the sludge disposal costs for drinking water treatment works. However, its potential side-effects on sewer sedimentation and on the wastewater treatment plant effluent remain to be investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment.

    PubMed

    Radjenović, Jelena; Petrović, Mira; Barceló, Damià

    2009-02-01

    In this paper we report on the performances of full-scale conventional activated sludge (CAS) treatment and two pilot-scale membrane bioreactors (MBRs) in eliminating various pharmaceutically active compounds (PhACs) belonging to different therapeutic groups and with diverse physico-chemical properties. Both aqueous and solid phases were analysed for the presence of 31 pharmaceuticals included in the analytical method. The most ubiquitous contaminants in the sewage water were analgesics and anti-inflammatory drugs ibuprofen (14.6-31.3 microg/L) and acetaminophen (7.1-11.4 microg/L), antibiotic ofloxacin (0.89-31.7 microg/L), lipid regulators gemfibrozil (2.0-5.9 microg/L) and bezafibrate (1.9-29.8 microg/L), beta-blocker atenolol (0.84-2.8 microg/L), hypoglycaemic agent glibenclamide (0.12-15.9 microg/L) and a diuretic hydrochlorothiazide (2.3-4.8 microg/L). Also, several pharmaceuticals such as ibuprofen, ketoprofen, diclofenac, ofloxacin and azithromycin were detected in sewage sludge at concentrations up to 741.1, 336.3, 380.7, 454.7 and 299.6 ng/g dry weight. Two pilot-scale MBRs exhibited enhanced elimination of several pharmaceutical residues poorly removed by the CAS treatment (e.g., mefenamic acid, indomethacin, diclofenac, propyphenazone, pravastatin, gemfibrozil), whereas in some cases more stable operation of one of the MBR reactors at prolonged SRT proved to be detrimental for the elimination of some compounds (e.g., beta-blockers, ranitidine, famotidine, erythromycin). Moreover, the anti-epileptic drug carbamazepine and diuretic hydrochlorothiazide by-passed all three treatments investigated. Furthermore, sorption to sewage sludge in the MBRs as well as in the entire treatment line of a full-scale WWTP is discussed for the encountered analytes. Among the pharmaceuticals encountered in sewage sludge, sorption to sludge could be a relevant removal pathway only for several compounds (i.e., mefenamic acid, propranolol, and loratidine). Especially in the case of loratidine the experimentally determined sorption coefficients (Kds) were in the range 2214-3321 L/kg (mean). The results obtained for the solid phase indicated that MBR wastewater treatment yielding higher biodegradation rate could reduce the load of pollutants in the sludge. Also, the overall output load in the aqueous and solid phase of the investigated WWTP was calculated, indicating that none of the residual pharmaceuticals initially detected in the sewage sludge were degraded during the anaerobic digestion. Out of the 26 pharmaceutical residues passing through the WWTP, 20 were ultimately detected in the treated sludge that is further applied on farmland.

  20. Effects of Lead and Mercury on Sulfate-Reducing Bacterial Activity in a Biological Process for Flue Gas Desulfurization Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Lin, Xiaojuan; Wang, Jinting; Jiang, Feng; Wei, Li; Chen, Guanghao; Hao, Xiaodi

    2016-07-01

    Biological sulfate-reducing bacteria (SRB) may be effective in removing toxic lead and mercury ions (Pb(II) and Hg(II)) from wet flue gas desulfurization (FGD) wastewater through anaerobic sulfite reduction. To confirm this hypothesis, a sulfite-reducing up-flow anaerobic sludge blanket reactor was set up to treat FGD wastewater at metal loading rates of 9.2 g/m3-d Pb(II) and 2.6 g/m3-d Hg(II) for 50 days. The reactor removed 72.5 ± 7% of sulfite and greater than 99.5% of both Hg(II) and Pb(II). Most of the removed lead and mercury were deposited in the sludge as HgS and PbS. The contribution of cell adsorption and organic binding to Pb(II) and Hg(II) removal was 20.0 ± 0.1% and 1.8 ± 1.0%, respectively. The different bioavailable concentration levels of lead and mercury resulted in different levels of lethal toxicity. Cell viability analysis revealed that Hg(II) was less toxic than Pb(II) to the sludge microorganisms. In the batch tests, increasing the Hg(II) feeding concentration increased sulfite reduction rates. In conclusion, a sulfite-reducing reactor can efficiently remove sulfite, Pb(II) and Hg(II) from FGD wastewater.

  1. Effects of Lead and Mercury on Sulfate-Reducing Bacterial Activity in a Biological Process for Flue Gas Desulfurization Wastewater Treatment

    PubMed Central

    Zhang, Liang; Lin, Xiaojuan; Wang, Jinting; Jiang, Feng; Wei, Li; Chen, Guanghao; Hao, Xiaodi

    2016-01-01

    Biological sulfate-reducing bacteria (SRB) may be effective in removing toxic lead and mercury ions (Pb(II) and Hg(II)) from wet flue gas desulfurization (FGD) wastewater through anaerobic sulfite reduction. To confirm this hypothesis, a sulfite-reducing up-flow anaerobic sludge blanket reactor was set up to treat FGD wastewater at metal loading rates of 9.2 g/m3-d Pb(II) and 2.6 g/m3-d Hg(II) for 50 days. The reactor removed 72.5 ± 7% of sulfite and greater than 99.5% of both Hg(II) and Pb(II). Most of the removed lead and mercury were deposited in the sludge as HgS and PbS. The contribution of cell adsorption and organic binding to Pb(II) and Hg(II) removal was 20.0 ± 0.1% and 1.8 ± 1.0%, respectively. The different bioavailable concentration levels of lead and mercury resulted in different levels of lethal toxicity. Cell viability analysis revealed that Hg(II) was less toxic than Pb(II) to the sludge microorganisms. In the batch tests, increasing the Hg(II) feeding concentration increased sulfite reduction rates. In conclusion, a sulfite-reducing reactor can efficiently remove sulfite, Pb(II) and Hg(II) from FGD wastewater. PMID:27455890

  2. FERRATE TREATMENT FOR REMOVING CHROMIUM FROM HIGH-LEVEL RADIOACTIVE TANK WASTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylvester, Paul; Rutherford, Andy; Gonzalez-Martin, Anuncia

    2000-12-01

    A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(III) molar ratio, but the chromium removal tends to level out for Fe(VI)/Cr(III) greater than 10.more » Increasing temperature leads to better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be handled as low-activity waste.« less

  3. Removal of Antibiotics in Biological Wastewater Treatment Systems-A Critical Assessment Using the Activated Sludge Modeling Framework for Xenobiotics (ASM-X).

    PubMed

    Polesel, Fabio; Andersen, Henrik R; Trapp, Stefan; Plósz, Benedek Gy

    2016-10-04

    Many scientific studies present removal efficiencies for pharmaceuticals in laboratory-, pilot-, and full-scale wastewater treatment plants, based on observations that may be impacted by theoretical and methodological approaches used. In this Critical Review, we evaluated factors influencing observed removal efficiencies of three antibiotics (sulfamethoxazole, ciprofloxacin, tetracycline) in pilot- and full-scale biological treatment systems. Factors assessed include (i) retransformation to parent pharmaceuticals from e.g., conjugated metabolites and analogues, (ii) solid retention time (SRT), (iii) fractions sorbed onto solids, and (iv) dynamics in influent and effluent loading. A recently developed methodology was used, relying on the comparison of removal efficiency predictions (obtained with the Activated Sludge Model for Xenobiotics (ASM-X)) with representative measured data from literature. By applying this methodology, we demonstrated that (a) the elimination of sulfamethoxazole may be significantly underestimated when not considering retransformation from conjugated metabolites, depending on the type (urban or hospital) and size of upstream catchments; (b) operation at extended SRT may enhance antibiotic removal, as shown for sulfamethoxazole; (c) not accounting for fractions sorbed in influent and effluent solids may cause slight underestimation of ciprofloxacin removal efficiency. Using tetracycline as example substance, we ultimately evaluated implications of effluent dynamics and retransformation on environmental exposure and risk prediction.

  4. Benchmarking nitrogen removal suspended-carrier biofilm systems using dynamic simulation.

    PubMed

    Vanhooren, H; Yuan, Z; Vanrolleghem, P A

    2002-01-01

    We are witnessing an enormous growth in biological nitrogen removal from wastewater. It presents specific challenges beyond traditional COD (carbon) removal. A possibility for optimised process design is the use of biomass-supporting media. In this paper, attached growth processes (AGP) are evaluated using dynamic simulations. The advantages of these systems that were qualitatively described elsewhere, are validated quantitatively based on a simulation benchmark for activated sludge treatment systems. This simulation benchmark is extended with a biofilm model that allows for fast and accurate simulation of the conversion of different substrates in a biofilm. The economic feasibility of this system is evaluated using the data generated with the benchmark simulations. Capital savings due to volume reduction and reduced sludge production are weighed out against increased aeration costs. In this evaluation, effluent quality is integrated as well.

  5. Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal.

    PubMed

    Yang, Shuai; Yang, Fenglin; Fu, Zhimin; Lei, Ruibo

    2009-04-01

    A membrane bioreactor filled with carriers instead of activated sludge named a moving bed membrane bioreactor (MBMBR) was investigated for simultaneously removing organic carbon and nitrogen in wastewater. Its performance was compared with a conventional membrane bioreactor (CMBR) at various influent COD/TN ratios of 8.9-22.1. The operational parameters were optimized to increase the treatment efficiency. COD removal efficiency averaged at 95.6% and 96.2%, respectively, for MBMBR and CMBR during the 4 months experimental period. The MBMBR system demonstrated good performance on nitrogen removal at different COD/TN ratios. When COD/TN was 8.9 and the total nitrogen (TN) load was 7.58 mg/l h, the TN and ammonium nitrogen removal efficiencies of the MBMBR were maintained over 70.0% and 80.0%, respectively, and the removed total nitrogen (TN) load reached to 5.31 mg/l h. Multifunctional microbial reactions in the carrier, such as simultaneous nitrification and denitrification (SND), play important roles in nitrogen removal. In comparison, the CMBR did not perform so well. Its TN removal was not stable, and the removed total nitrogen (TN) load was only 1.02 mg/l h at COD/TN ratio 8.9. The specific oxygen utilization rate (SOUR) showed that the biofilm has a better microbial activity than an activated sludge. Nevertheless, the membrane fouling behavior was more severe in the MBMBR than in the CMBR due to a thick and dense cake layer formed on the membrane surface, which was speculated to be caused by the filamentous bacteria in the MBMBR.

  6. Comparison of NOx Removal Efficiencies in Compost Based Biofilters Using Four Different Compost Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacey, Jeffrey Alan; Lee, Brady Douglas; Apel, William Arnold

    2001-06-01

    In 1998, 3.6 trillion kilowatt-hours of electricity were generated in the United States. Over half of this was from coal-fired power plants, resulting in more than 8.3 million tons of nitrogen oxide (NOx) compounds being released into the environment. Over 95% of the NOx compounds produced during coal combustion are in the form of nitric oxide (NO). NOx emission regulations are becoming increasingly stringent, leading to the need for new, cost effective NOx treatment technologies. Biofiltration is such a technology. NO removal efficiencies were compared in compost based biofilters using four different composts. In previous experiments, removal efficiencies were typicallymore » highest at the beginning of the experiment, and decreased as the experiments proceeded. This work tested different types of compost in an effort to find a compost that could maintain NO removal efficiencies comparable to those seen early in the previous experiments. One of the composts was wood based with manure, two were wood based with high nitrogen content sludge, and one was dairy compost. The wood based with manure and one of the wood based with sludge composts were taken directly from an active compost pile while the other two composts were received in retail packaging which had been out of active piles for an indeterminate amount of time. A high temperature (55-60°C) off-gas stream was treated in biofilters operated under denitrifying conditions. Biofilters were operated at an empty bed residence time of 13 seconds with target inlet NO concentrations of 500 ppmv. Lactate was the carbon and energy source. Compost was sampled at 10-day intervals to determine aerobic and anaerobic microbial densities. Compost was mixed at a 1:1 ratio with lava rock and calcite was added at 100g/kg of compost. In each compost tested, the highest removal efficiencies occurred within the first 10 days of the experiment. The wood based with manure peaked at day 3 (77.14%), the dairy compost at day 1 (80.74%), the active wood based with sludge at day 5 (68.15%) and the inactive wood based with sludge at day 9 (63.64%, this compost was frozen when received). These levels gradually decreased throughout the remainder of the experiment until they fell between 40% and 60%. Decreasing removal efficiency was characteristic of all the composts tested, regardless of their makeup or activity state prior to testing. Although microbial densities and composition between composts may have differed, there was little change in densities within each experiment.« less

  7. Biological Nitrogen Removal through Nitritation Coupled with Thiosulfate-Driven Denitritation

    PubMed Central

    Qian, Jin; Zhou, Junmei; Zhang, Zhen; Liu, Rulong; Wang, Qilin

    2016-01-01

    A novel biological nitrogen removal system based on nitritation coupled with thiosulfate-driven denitritation (Nitritation-TDD) was developed to achieve a high nitrogen removal rate and low sludge production. A nitritation sequential batch reactor (nitritation SBR) and an anoxic up-flow sludge bed (AnUSB) reactor were applied for effective nitritation and denitritation, respectively. Above 75% nitrite was accumulated in the nitritation SBR with an influent ammonia loading rate of 0.43 kg N/d/m3. During Nitritation-TDD operation, particle sizes (d50) of the sludge decreased from 406 to 225 um in nitritation SBR and from 327–183 um in AnUSB reactor. Pyrosequencing tests revealed that ammonium-oxidizing bacteria (AOB) population was stabilized at approximately 7.0% (calculated as population of AOB-related genus divided by the total microbial population) in the nitritation SBR. In contrast, nitrite-oxidizing bacteria (NOB) population decreased from 6.5–0.6% over the same time, indicating the effective nitrite accumulation in the nitritation SBR. Thiobacillus, accounting for 34.2% in the AnUSB reactor, was mainly responsible for nitrogen removal via autotrophic denitritation, using an external source of thiosulfate as electron donor. Also, it was found that free nitrous acid could directly affect the denitritation activity. PMID:27272192

  8. Exploring the effect of bisphenol S on sludge hydrolysis and mechanism of the interaction between bisphenol S and α-Amylase through spectrophotometric methods.

    PubMed

    Yang, Hang; Hou, Guangying; Zhang, Li; Ju, Lei; Liu, Chunguang

    2017-02-01

    Sewage sludge, as a very significant sources of BPS (up to 523mg/kg dw) introduction into the environment, must be handled properly. Therefore, it is important to access BPS removal and its effect on sludge treatment with the biological treatment. However, it is unclear for its effect on the hydrolysis of sludge. In this research, impact of BPS on sludge hydrolysis by α-Amylase is studied from the respect of component of soluble organic matter in sludge using three-dimensional fluorescence spectra. Enzyme activity assay suggests that sludge hydrolysis is inhibited due to the denaturation of α-Amylase with BPS exposure. In order to illuminate the interaction mechanism between BPS and α-Amylase, UV-vis, steady-state fluorescence, circular dichroism, synchronous fluorescence, light scattering spectra, enzyme activity assay and molecule docking techniques are applied. Results show that BPS interacts with α-Amylase by hydrophobic bond in the activity region of α-Amylase. This interaction not only causes an unfolding skeleton structure of α-Amylase and a less hydrophobic microenvironment of tyrosine and tryptophan residues, but also leads to a specific fluorophore quenching involving static and dynamic type. This work provides direct evidence about enzyme toxicity of BPS and establishes a new strategy to investigate the interaction between protein and BPS at a molecular level, which is helpful for clarifying the bioactivities of BPS. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Widespread Microbial Adaptation to l-Glutamate-N,N-diacetate (L-GLDA) Following Its Market Introduction in a Consumer Cleaning Product.

    PubMed

    Itrich, Nina R; McDonough, Kathleen M; van Ginkel, Cornelis G; Bisinger, Ed C; LePage, Jim N; Schaefer, Edward C; Menzies, Jennifer Z; Casteel, Kenneth D; Federle, Thomas W

    2015-11-17

    l-Glutamate-N,N-diacetate (L-GLDA) was recently introduced in the United States (U.S.) market as a phosphate replacement in automatic dishwashing detergents (ADW). Prior to introduction, L-GLDA exhibited poor biodegradation in OECD 301B Ready Biodegradation Tests inoculated with sludge from U.S. wastewater treatment plants (WWTPs). However, OECD 303A Activated Sludge WWTP Simulation studies showed that with a lag period to allow for growth (40-50 days) and a solids retention time (SRT) that allows establishment of L-GLDA degraders (>15 days), significant biodegradation (>80% dissolved organic carbon removal) would occur. Corresponding to the ADW market launch, a study was undertaken to monitor changes in the ready biodegradability of L-GLDA using activated sludge samples from various U.S. WWTPs. Initially all sludge inocula showed limited biodegradation ability, but as market introduction progressed, both the rate and extent of degradation increased significantly. Within 22 months, L-GLDA was ready biodegradable using inocula from 12 WWTPs. In an OECD 303A study repeated 18 months post launch, significant and sustained carbon removal (>94%) was observed after a 29-day acclimation period. This study systematically documented field adaptation of a new consumer product chemical across a large geographic region and confirmed the ability of laboratory simulation studies to predict field adaptation.

  10. Evaluation of TCDD biodegradability under different redox conditions.

    PubMed

    Kao, C M; Chen, S C; Liu, J K; Wu, M J

    2001-09-01

    Polychlorinated dibenzo-p-dioxins have been generated as unwanted by-products in many industrial processes. Although their widespread distribution in different environmental compartments has been recognized, little is known about their fate in the ultimate environment sinks. The highly stable dioxin isomer 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been called the most toxic compound known to man. In this laboratory microcosm study, TCDD bioavailability was evaluated under five reduction/oxidation (redox) conditions including aerobic biodegradation, aerobic cometabolism, methanogenesis, iron reduction, and reductive dechlorination. Activated sludge and aquifer sediments from a TCDD and a pentachlorophenol (PCP) contaminated site were used as the inocula. Acetate, sludge cake, and cane molasses were used as the primary substrates (carbon sources) in cometabolism and reductive dechlorination microcosms. After a 90-day incubation period, microcosms constructed under reductive dechlorination conditions were the only treatment showing promising remediation results. The highest TCDD degradation rate [up to 86% of TCDD removal (with an initial concentration of 96 microg/kg of soil)] was observed in the microcosms with anaerobic activated sludge as the microbial inocula and sludge cakes as the primary substrates. Except for reductive dechlorination microcosms, no significant TCDD removal was observed in the microcosms prepared under other conditions. Thus, application of an effective primary substrate to enhance the reductive dechlorination process is a feasible method for TCDD bioremediation. Bioremediation expense can be significantly reduced by the supplement of some less expensive alternative substrates (e.g., sludge cakes, cane molasses). Results would be useful in designing a scale-up in situ or on-site bioremediation system such as bioslurry reactor for field application.

  11. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor.

    PubMed

    Holloway, Ryan W; Regnery, Julia; Nghiem, Long D; Cath, Tzahi Y

    2014-09-16

    A hybrid ultrafiltration-osmotic membrane bioreactor (UFO-MBR) was investigated for over 35 days for nutrient and trace organic chemical (TOrC) removal from municipal wastewater. The UFO-MBR system uses both ultrafiltration (UF) and forward osmosis (FO) membranes in parallel to simultaneously extract clean water from an activated sludge reactor for nonpotable (or environmental discharge) and potable reuse, respectively. In the FO stream, water is drawn by osmosis from activated sludge through an FO membrane into a draw solution (DS), which becomes diluted during the process. A reverse osmosis (RO) system is then used to reconcentrate the diluted DS and produce clean water suitable for direct potable reuse. The UF membrane extracts water, dissolved salts, and some nutrients from the system to prevent their accumulation in the activated sludge of the osmotic MBR. The UF permeate can be used for nonpotable reuse purposes (e.g., irrigation and toilet flushing). Results from UFO-MBR investigation illustrated that the chemical oxygen demand, total nitrogen, and total phosphorus removals were greater than 99%, 82%, and 99%, respectively. Twenty TOrCs were detected in the municipal wastewater that was used as feed to the UFO-MBR system. Among these 20 TOrCs, 15 were removed by the hybrid UFO-MBR system to below the detection limit. High FO membrane rejection was observed for all ionic and nonionic hydrophilic TOrCs and lower rejection was observed for nonionic hydrophobic TOrCs. With the exceptions of bisphenol A and DEET, all TOrCs that were detected in the DS were well rejected by the RO membrane. Overall, the UFO-MBR can operate sustainably and has the potential to be utilized for direct potable reuse applications.

  12. Simultaneous effective carbon and nitrogen removals and phosphorus recovery in an intermittently aerated membrane bioreactor integrated system

    PubMed Central

    Wang, Yun-Kun; Pan, Xin-Rong; Geng, Yi-Kun; Sheng, Guo-Ping

    2015-01-01

    Recovering nutrients, especially phosphate resource, from wastewater have attracted increasing interest recently. Herein, an intermittently aerated membrane bioreactor (MBR) with a mesh filter was developed for simultaneous chemical oxygen demand (COD), total nitrogen (TN) and phosphorous removal, followed by phosphorus recovery from the phosphorus-rich sludge. This integrated system showed enhanced performances in nitrification and denitrification and phosphorous removal without excess sludge discharged. The removal of COD, TN and total phosphorus (TP) in a modified MBR were averaged at 94.4 ± 2.5%, 94.2 ± 5.7% and 53.3 ± 29.7%, respectively. The removed TP was stored in biomass, and 68.7% of the stored phosphorous in the sludge could be recovered as concentrated phosphate solution with a concentration of phosphate above 350 mg/L. The sludge after phosphorus release could be returned back to the MBR for phosphorus uptake, and 83.8% of its capacity could be recovered. PMID:26541793

  13. Fuel Pond Sludge - Lessons Learned from Initial De-sludging of Sellafield's Pile Fuel Storage Pond - 12066

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlisle, Derek; Adamson, Kate

    2012-07-01

    The Pile Fuel Storage Pond (PFSP) at Sellafield was built and commissioned between the late 1940's and early 1950's as a storage and cooling facility for irradiated fuel and isotopes from the two Windscale Pile reactors. The pond was linked via submerged water ducts to each reactor, where fuel and isotopes were discharged into skips for transfer along the duct to the pond. In the pond the fuel was cooled then de-canned underwater prior to export for reprocessing. The plant operated successfully until it was taken out of operation in 1962 when the First Magnox Fuel Storage Pond took overmore » fuel storage and de-canning operations on the site. The pond was then used for storage of miscellaneous Intermediate Level Waste (ILW) and fuel from the UK's Nuclear Programme for which no defined disposal route was available. By the mid 1970's the import of waste ceased and the plant, with its inventory, was placed into a passive care and maintenance regime. By the mid 1990s, driven by the age of the facility and concern over the potential challenge to dispose of the various wastes and fuels being stored, the plant operator initiated a programme of work to remediate the facility. This programme is split into a number of key phases targeted at sustained reduction in the hazard associated with the pond, these include: - Pond Preparation: Before any remediation work could start the condition of the pond had to be transformed from a passive store to a plant capable of complex retrieval operations. This work included plant and equipment upgrades, removal of redundant structures and the provision of a effluent treatment plant for removing particulate and dissolved activity from the pond water. - Canned Fuel Retrieval: Removal of canned fuel, including oxide and carbide fuels, is the highest priority within the programme. Handling and export equipment required to remove the canned fuel from the pond has been provided and treatment routes developed utilising existing site facilities to allow the fuel to be reprocessed or conditioned for long term storage. - Sludge Retrieval: In excess of 300 m{sup 3} of sludge has accumulated in the pond over many years and is made up of debris arising from fuel and metallic corrosion, wind blown debris and bio-organic materials. The Sludge Retrieval Project has provided the equipment necessary to retrieve the sludge, including skip washer and tipper machines for clearing sludge from the pond skips, equipment for clearing sludge from the pond floor and bays, along with an 'in pond' corral for interim storage of retrieved sludge. Two further projects are providing new plant processing routes, which will initially store and eventually passivate the sludge. - Metal Fuel Retrieval: Metal Fuel from early Windscale Pile operations and various other sources is stored within the pond; the fuel varies considerably in both form and condition. A retrieval project is planned which will provide fuel handling, conditioning, sentencing and export equipment required to remove the metal fuel from the pond for export to on site facilities for interim storage and disposal. - Solid Waste Retrieval: A final retrieval project will provide methods for handling, retrieval, packaging and export of the remaining solid Intermediate Level Waste within the pond. This includes residual metal fuel pieces, fuel cladding (Magnox, aluminium and zircaloy), isotope cartridges, reactor furniture, and miscellaneous activated and contaminated items. Each of the waste streams requires conditioning to allow it to be and disposed of via one of the site treatment plants. - Pond Dewatering and Dismantling: Delivery of the above projects will allow operations to progressively remove the radiological inventory, thereby reducing the hazard/risk posed by the plant. This will then allow subsequent dewatering of the pond and dismantling of the structure. (authors)« less

  14. Full-scale effects of addition of sludge from water treatment stations into processes of sewage treatment by conventional activated sludge.

    PubMed

    Luiz, Marguti André; Sidney Seckler, Ferreira Filho; Passos, Piveli Roque

    2018-06-01

    An emerging practice for water treatment plant (WTP) sludge is its disposal in wastewater treatment plants (WWTP), an alternative that does not require the installation of sludge treatment facilities in the WTP. This practice can cause both positive and negative impacts in the WWTP processes since the WTP sludge does not have the same characteristics as domestic wastewater. This issue gives plenty of information in laboratory and pilot scales, but lacks data from full-scale studies. The main purpose of this paper is to study the impact of disposing sludge from the Rio Grande conventional WTP into the ABC WWTP, an activated sludge process facility. Both plants are located in São Paulo, Brazil, and are full-scale facilities. The WTP volumetric flow rate (4.5 m³/s) is almost three times that of WWTP (1.6 m³/s). The data used in this study came from monitoring the processes at both plants. The WWTP liquid phase treatment analysis included the variables BOD, COD, TSS, VSS, ammonia, total nitrogen, phosphorus and iron, measured at the inlet, primary effluent, mixed liquor, and effluent. For the WWTP solids treatment, the parameters tested were total and volatile solids. The performance of the WWTP process was analyzed with and without sludge addition: 'without sludge' in years 2005 and 2006 and 'with sludge' from January 2007 to March 2008. During the second period, the WTP sludge addition increased the WWTP removal efficiencies for solids (93%-96%), organic matter (92%-94% for BOD) and phosphorus (52%-88%), when compared to the period 'without sludge'. These improvements can be explained by higher feed concentrations combined to same or lower effluent concentrations in the 'with sludge' period. No critical negative impacts occurred in the sludge treatment facilities, since the treatment units absorbed the extra solids load from the WTP sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. ANAMMOX-like performances for nitrogen removal from ammonium-sulfate-rich wastewater in an anaerobic sequencing batch reactor.

    PubMed

    Prachakittikul, Pensiri; Wantawin, Chalermraj; Noophan, Pongsak Lek; Boonapatcharoen, Nimaradee

    2016-01-01

    Ammonium removal by the ANaerobic AMonium OXidation (ANAMMOX) process was observed through the Sulfate-Reducing Ammonium Oxidation (SRAO) process. The same concentration of ammonium (100 mg N L(-1)) was applied to two anaerobic sequencing batch reactors (AnSBRs) that were inoculated with the same activated sludge from the Vermicelli wastewater treatment process, while nitrite was fed in ANAMMOX and sulfate in SRAO reactors. In SRAO-AnSBR, in substrates that were fed with a ratio of NH4(+)/SO4(2-) at 1:0.4 ± 0.03, a hydraulic retention time (HRT) of 48 h and without sludge draining, the Ammonium Removal Rate (ARR) was 0.02 ± 0.01 kg N m(-3).d(-1). Adding specific ANAMMOX substrates to SRAO-AnSBR sludge in batch tests results in specific ammonium and nitrite removal rates of 0.198 and 0.139 g N g(-1) VSS.d, respectively, indicating that the ANAMMOX activity contributes to the removal of ammonium in the SRAO process using the nitrite that is produced from SRAO. Nevertheless, the inability of ANAMMOX to utilize sulfate to oxidize ammonium was also investigated in batch tests by augmenting enriched ANAMMOX culture in SRAO-AnSBR sludge and without nitrite supply. The time course of sulfate in a 24-hour cycle of SRAO-AnSBR showed an increase in sulfate after 6 h. For enriched SRAO culture, the uptake molar ratio of NH4(+)/SO4(2-) at 8 hours in a batch test was 1:0.82 lower than the value of 1:0.20 ± 0.09 as obtained in an SRAO-AnSBR effluent, while the stoichiometric ratio of 1:0.5 that includes the ANAMMOX reaction was in this range. After a longer operation of more than 2 years without sludge draining, the accumulation of sulfate and the reduction of ammonium removal were observed, probably due to the gradual increase in the sulfur denitrification rate and the competitive use of nitrite with ANAMMOX. The 16S rRNA gene PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) and PCR cloning analyses resulted in the detection of the ANAMMOX bacterium (Candidatus Brocadia sinica JPN1) Desulfacinum subterraneum belonging to the genus Desulfacinum and bacteria that are involved in sulfur metabolism (Pseudomonas aeruginosa strain SBTPe-001 and Paracoccus denitrificans strain IAM12479) in SRAO-AnSBR.

  16. Rain events and their effect on effluent quality studied at a full scale activated sludge treatment plant.

    PubMed

    Wilén, B M; Lumley, D; Mattsson, A; Mino, T

    2006-01-01

    The effect of rain events on effluent quality dynamics was studied at a full scale activated sludge wastewater treatment plant which has a process solution incorporating pre-denitrification in activated sludge with post-nitrification in trickling filters. The incoming wastewater flow varies significantly due to a combined sewer system. Changed flow conditions have an impact on the whole treatment process since the recirculation to the trickling filters is set by the hydraulic limitations of the secondary settlers. Apart from causing different hydraulic conditions in the plant, increased flow due to rain or snow-melting, changes the properties of the incoming wastewater which affects process performance and effluent quality, especially the particle removal efficiency. A comprehensive set of on-line and laboratory data were collected and analysed to assess the impact of rain events on the plant performance.

  17. Changes at an activated sludge sewage treatment plant alter the numbers of airborne aerobic microorganisms.

    PubMed

    Fernando, Nadeesha L; Fedorak, Phillip M

    2005-11-01

    In 1976, the activated sludge sewage treatment plant in Edmonton, Canada, was surveyed to determine the numbers of culturable airborne microorganisms. Many changes have been made at the plant to reduce odors and improve treatment efficiency, so in 2004 another survey was done to determine if these changes had reduced the bioaerosols. Covering the grit tanks and primary settling tanks greatly reduced the numbers of airborne microbes. Changing the design and operation of indoor automated sampling taps and sinks also reduced bioaerosols. The secondary was expanded and converted from a conventional activated sludge process using coarse bubble aeration to a biological nutrient removal system using fine bubble aeration. Although the surface area of the secondary more than doubled, the average number of airborne microorganisms in this part of the plant in 2004 was about 1% of that in 1976.

  18. Assessment of microbial viability in municipal sludge following ultrasound and microwave pretreatments and resulting impacts on the efficiency of anaerobic sludge digestion.

    PubMed

    Cella, Monica Angela; Akgul, Deniz; Eskicioglu, Cigdem

    2016-03-01

    A range of ultrasonication (US) and microwave irradiation (MW) sludge pretreatments were compared to determine the extent of cellular destruction in micro-organisms within secondary sludge and how this cellular destruction translated to anaerobic digestion (AD). Cellular lysis/inactivation was measured using two microbial viability assays, (1) Syto 16® Green and Sytox® Orange counter-assay to discern the integrity of cellular membranes and (2) a fluorescein diacetate assay to understand relative enzymatic activity. A range of MW intensities (2.17-6.48 kJ/g total solids or TS, coinciding temperatures of 60-160 °C) were selected for comparison via viability assays; a range of corresponding US intensities (2.37-27.71 kJ/g TS, coinciding sonication times of 10-60 min at different amplitudes) were also compared to this MW range. The MW pretreatment of thickened waste activated sludge (tWAS) caused fourfold to fivefold greater cell death than non-pretreated and US-pretreated tWAS. The greatest microbial destruction occurred at MW intensities greater than 2.62 kJ/g TS of sludge, after which increased energy input via MW did not appear to cause greater microbial death. In addition, the optimal MW pretreatment (80 °C, 2.62 kJ/g TS) and corresponding US pretreatment (10 min, 60 % amplitude, 2.37 kJ/g TS) were administered to the tWAS of a mixed sludge and fed to anaerobic digesters over sludge retention times (SRTs) of 20, 14, and 7 days to compare effects of feed pretreatment on AD efficiency. The digester utilizing MW-pretreated tWAS (80 °C, 2.62 kJ/g TS) had the greatest fecal coliform removal (73.4 and 69.8 % reduction, respectively), greatest solids removal (44.2 % TS reduction), and highest overall methane production (248.2 L CH4/kg volatile solids) at 14- and 7-day SRTs. However, despite the fourfold to fivefold increases in cell death upon pretreatment, improvements from the digester fed MW-pretreated sludge were marginal (i.e., increases in efficiency of less than 3-10 %) and likely due to a smaller proportion of cells (10-20 %) in the polymeric network and mixed sludge fed to digesters.

  19. Removal of naproxen and bezafibrate by activated sludge under aerobic conditions: kinetics and effect of substrates.

    PubMed

    Tang, Ying; Li, Xiao-Ming; Xu, Zhen-Cheng; Guo, Qing-Wei; Hong, Cheng-Yang; Bing, Yong-Xin

    2014-01-01

    Naproxen and bezafibrate fall into the category of pharmaceuticals that have been widely detected in the aquatic environment, and one of the major sources is the effluent discharge from wastewater treatment plants. This study investigated the sorption and degradation kinetics of naproxen and bezafibrate in the presence of activated sludge under aerobic conditions. Experimental results indicated that the adsorption of pharmaceuticals by activated sludge was rapid, and the relative adsorbabilities of the two-target compounds were based on their log Kow and pKa values. The adsorption data could be well interpreted by the pseudo-second-order kinetic model. The degradation process could be described by the pseudo-first-order kinetic model, whereas the pseudo-second-order kinetics were also well suited to describe the degradation process of the selected compounds at low concentrations. Bezafibrate was more easily degraded by activated sludge compared with naproxen. The spiked concentration of the two-target compounds was negatively correlated with k1 and k2s , indicating that the substrate inhibition effect occurred at the range of studied concentrations. Chemical oxygen demand (COD) did not associate with naproxen degradation; thus, COD is not an alternative method that could be applied to investigate natural organic matter's impact on degradation of pharmaceuticals by activated sludge. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  20. Resilience of sulfate-reducing granular sludge against temperature, pH, oxygen, nitrite, and free nitrous acid.

    PubMed

    Hao, Tianwei; Mackey, Hamish R; Guo, Gang; Liu, Rulong; Chen, Guanghao

    2016-10-01

    Sulfate-reducing granular sludge has recently been developed and characterized in detail as part of the development of the sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process. However, information regarding temperature of granules to environmental fluctuation is lacking, an aspect that is important in dealing with real wastewater. A comprehensive assessment of sulfate-reducing granular sludge performance under various environmental conditions was thus conducted in this study, including temperature, pH, oxygen, nitrite, and free nitrous acid (FNA) as possible encountering conditions in the removal of organics and/or nitrate. Specific chemical oxygen demand removal rate of the granules was determined to be reduced by 65 % when the temperature varied between 10-15 °C, reduced by 70 % when dissolved oxygen (DO) was 0.5 mg/L or greater, and at least, reduced by 75 % when nitrite was 30 mg N/L or above. Nevertheless, the sludge activity recovered by 82, 100, and 86 % from exposure to high oxygen and nitrite and low temperature levels, respectively. Combined inhibition of nitrite and FNA on the sludge is strong and complex, while FNA alone reduced cell viability from 60 to 40 % when its concentration increased to 2.3 mg N/L. The present study demonstrates that sulfate-reducing bacteria (SRB) granules possess high resilience against varying environmental conditions, showing the high application potential of sulfate-reducing granular sludge in dealing with brackish and saline industrial or domestic wastewaters.

  1. Sequential anaerobic/aerobic digestion of waste activated sludge: analysis of the process performance and kinetic study.

    PubMed

    Tomei, M Concetta; Rita, Sara; Mininni, Giuseppe

    2011-12-15

    Sequential anaerobic-aerobic digestion was applied to waste activated sludge (WAS) of a full scale wastewater treatment plant. The study was performed with the objective of testing the sequential digestion process on WAS, which is characterized by worse digestibility in comparison with the mixed sludge. Process performance was evaluated in terms of biogas production, volatile solids (VS) and COD reduction, and patterns of biopolymers (proteins and polysaccharides) in the subsequent digestion stages. VS removal efficiency of 40%, in the anaerobic phase, and an additional removal of 26%, in the aerobic one, were observed. For total COD removal efficiencies of 35% and 25% for anaerobic and aerobic stage respectively, were obtained. Kinetics of VS degradation process was analyzed by assuming a first order equation with respect to VS concentration. Evaluated kinetic parameters were 0.44 ± 0.20 d(-1) and 0.25 ± 0.15 d(-1) for the anaerobic stage and aerobic stage, respectively. With regard to biopolymers, in the anaerobic phase the content of proteins and polysaccharides increased to 50% and 69%, respectively, whereas in the subsequent aerobic phase, a decrease of 71% for proteins and 67% for polysaccharides was observed. The average specific biogas production 0.74 m(3)/(kg VS destroyed), was in the range of values reported in the specialized literature for conventional anaerobic mesophilic WAS digestion. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Influence of four antimicrobials on methane-producing archaea and sulfate-reducing bacteria in anaerobic granular sludge.

    PubMed

    Du, Jingru; Hu, Yong; Qi, Weikang; Zhang, Yanlong; Jing, Zhaoqian; Norton, Michael; Li, Yu-You

    2015-12-01

    The influence of Cephalexin (CLX), Tetracycline (TC), Erythromycin (ERY) and Sulfathiazole (ST) on methane-producing archaea (MPA) and sulfate-reducing bacteria (SRB) in anaerobic sludge was investigated using acetate or ethanol as substrate. With antimicrobial concentrations below 400mgL(-1), the relative specific methanogenic activity (SMA) was above 50%, so that the antimicrobials exerted slight effects on archaea. However ERY and ST at 400mgL(-1) caused a 74.5% and 57.6% inhibition to specific sulfidogenic activity (SSA) when the sludge granules were disrupted and ethanol used as substrate. After disruption, microbial tolerance to antimicrobials decreased, but the rate at which MPA utilized acetate and ethanol increased from 0.95gCOD·(gVSS⋅d)(-1) to 1.45gCOD·(gVSS⋅d)(-1) and 0.90gCOD·(gVSS⋅d)(-1) to 1.15gCOD·(gVSS⋅d)(-1) respectively. The ethanol utilization rate for SRB also increased after disruption from 0.35gCOD·(gVSS⋅d)(-1) to 0.46gCOD·(gVSS⋅d)(-1). Removal rates for CLX approaching 20.0% and 25.0% were obtained used acetate and ethanol respectively. The disintegration of granules improved the CLX removal rate to 65% and 78%, but ST was not removed during this process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Development of a Novel Process Integrating the Treatment of Sludge Reject Water and the Production of Polyhydroxyalkanoates (PHAs).

    PubMed

    Frison, Nicola; Katsou, Evina; Malamis, Simos; Oehmen, Adrian; Fatone, Francesco

    2015-09-15

    Polyhydroxyalkanoates (PHAs) from activated sludge and renewable organic material can become an alternative product to traditional plastics since they are biodegradable and are produced from renewable sources. In this work, the selection of PHA storing bacteria was integrated with the side stream treatment of nitrogen removal via nitrite from sewage sludge reject water. A novel process was developed and applied where the alternation of aerobic-feast and anoxic-famine conditions accomplished the selection of PHA storing biomass and nitrogen removal via nitrite. Two configurations were examined: in configuration 1 the ammonium conversion to nitrite occurred in the same reactor in which the PHA selection process occurred, while in configuration 2 two separate reactors were used. The results showed that the selection of PHA storing biomass was successful in both configurations, while the nitrogen removal efficiency was much higher (almost 90%) in configuration 2. The PHA selection degree was evaluated by the volatile fatty acid (VFA) uptake rate (-qVFAs) and the PHA production rate (qPHA), which were 239 ± 74 and 89 ± 7 mg of COD per gram of active biomass (Xa) per hour, respectively. The characterization of the biopolymer recovered after the accumulation step, showed that it was composed of 3-hydroxybutyrate (3HB) (60%) and 3-hydroxyvalerate (3HV) (40%). The properties associated with the produced PHA suggest that they are suitable for thermoplastic processing.

  4. Integrated aerobic biological-chemical treatment of winery wastewater diluted with urban wastewater. LED-based photocatalysis in the presence of monoperoxysulfate.

    PubMed

    Solís, Rafael R; Rivas, Francisco Javier; Ferreira, Leonor C; Pirra, Antonio; Peres, José A

    2018-01-28

    The oxidation of Winery Wastewater (WW) by conventional aerobic biological treatment usually leads to inefficient results due to the presence of organic substances, which are recalcitrant or toxic in conventional procedures. This study explores the combination of biological and chemical processes in order to complete the oxidation of biodegradable and non-biodegradable compounds in two sequential steps. Thus, a biological oxidation of a diluted WW is carried out by using the activated sludge process. Activated sludge was gradually acclimated to the Diluted Winery Wastewater (DWW). Some aspects concerning the biological process were evaluated (kinetics of the oxidation and sedimentation of the sludge produced). The biological treatment of the DWW led to a 40-50% of Chemical Oxygen Demand (COD) removal in 8 h, being necessary the application of an additional process. Different chemical processes combining UVA-LEDs radiation, monoperoxysulfate (MPS) and photocatalysts were applied in order to complete the COD depletion and efficient removal of polyphenols content, poorly oxidized in the previous biological step. From the options tested, the combination of UVA, MPS and a novel LaCoO 3 -TiO 2 composite, with double route of MPS decomposition through heterogeneous catalysis and photocatalysis, led to the best results (95% of polyphenol degradation, and additional 60% of COD removal). Initial MPS concentration and pH effect in this process were assessed.

  5. Practical experience with full-scale structured sheet media (SSM) integrated fixed-film activated sludge (IFAS) systems for nitrification.

    PubMed

    Li, Hua; Zhu, Jia; Flamming, James J; O'Connell, Jack; Shrader, Michael

    2015-01-01

    Many wastewater treatment plants in the USA, which were originally designed as secondary treatment systems with no or partial nitrification requirements, are facing increased flows, loads, and more stringent ammonia discharge limits. Plant expansion is often not cost-effective due to either high construction costs or lack of land. Under these circumstances, integrated fixed-film activated sludge (IFAS) systems using both suspended growth and biofilms that grow attached to a fixed plastic structured sheet media are found to be a viable solution for solving the challenges. Multiple plants have been retrofitted with such IFAS systems in the past few years. The system has proven to be efficient and reliable in achieving not only consistent nitrification, but also enhanced bio-chemical oxygen demand removal and sludge settling characteristics. This paper presents long-term practical experiences with the IFAS system design, operation and maintenance, and performance for three full-scale plants with distinct processes; that is, a trickling filter/solids contact process, a conventional plug flow activated sludge process and an extended aeration process.

  6. [Effect of polymeric aluminum-iron on EPS and bio-flocculation in A2/O system].

    PubMed

    Wen, Qin-Xue; Liu, Ai-Cui; Chen, Zhi-Qiang; Shi, Han-Chang; Lü, Bing-Nan

    2012-04-01

    Polymeric aluminum-iron (PAFC) was added at the end of aeration tank to enhance phosphorus removal, so that the phosphorus concentration in the effluent could meet the calss A standard in municipal sewage treatment plant pollutant discharge standard (GB 18918-2002). The characteristics of extracellular polymer substances (EPS) and bio-flocculation for the activated sludge in the A2/O system were analyzed in the experiment. The results showed that, the gross of EPS varied little with the increase in PAFC dosage, while, the ratio of albumen to polysaccharide declined from 3.30 to 2.30. When the PAFC dosage increased, the concentration of Al3+ in EPS increased during the whole anaerobic-anoxic-aerobic cycle. The flocs of activated sludge became larger after PAFC addition, Zeta potential of the effluent dropped significantly from - 15.83 mV to -21.20 mV and sludge yield increased. Therefore, bio-flocculation of the activated sludge in the A2/O system improved when a proper amount of PAFC was added, subsequently improve the water quality of the effluent.

  7. Adsorbent materials from paper industry waste materials and their use in Cu(II) removal from water.

    PubMed

    Méndez, A; Barriga, S; Fidalgo, J M; Gascó, G

    2009-06-15

    This paper deals with the removal of Cu(2+) from water using adsorbent materials prepared from paper industry waste materials (one de-inking paper sludge and other sludge from virgin pulp mill). Experimental results showed that de-inking paper sludge leads to mesoporous materials (V(mic)/V(T)=0.13 and 0.14), whereas the sludge from virgin pulp mill produces high microporous adsorbents (V(mic)/V(T)=0.39 and 0.41). Adsorbent materials were then used for Cu(2+) removal from water at acid pH. During water treatment, heavy metals lixiviation from adsorbent materials was not produced. However, important Ca and Mg leaching was observed. Final pH significantly increases after treatment of water with adsorbent materials probably due to their elevated CaCO(3) content. In general, highest Cu(2+) removal was obtained using adsorbent materials from de-inking paper sludge. This result could be due to their higher content in oxygenated surface groups, high average pore diameter, elevated superficial charge density, high CaCO(3) amount and high Ca and Mg exchange content.

  8. Moringa oleifera-mediated coagulation of textile wastewater and its biodegradation using novel consortium-BBA grown on agricultural waste substratum.

    PubMed

    Bedekar, Priyanka A; Bhalkar, Bhumika N; Patil, Swapnil M; Govindwar, Sanjay P

    2016-10-01

    Generation of secondary sludge is a major concern of textile dye removal by coagulation process. Combinatorial coagulation-biodegradation treatment system has been found efficient in degradation of coagulated textile dye sludge. Moringa oleifera seed powder (700 mg L -1 ) was able to coagulate textile dyestuff from real textile wastewater with 98 % color removal. Novel consortium-BBA was found to decolorize coagulated dye sludge. Parameters that significantly affect coagulation process were optimized using response surface methodology. The bench-scale stirred tank reactor (50-L capacity) designed with optimized parameters for coagulation process could efficiently remove 98, 89, 78, and 67 % of American Dye Manufacturer's Institute (ADMI) in four repetitive cycles, respectively. Solid-state fermentation composting reactor designed to treat coagulated dye sludge showed 96 % removal of dye within 10 days. Coagulation of dyes from textile wastewater and degradation of coagulated dye sludge were confirmed by Fourier transform infrared spectroscopy (FTIR) analysis. Cell morphology assay, comet assay, and phytotoxicity confirmed the formation of less toxic products after coagulation and degradation mechanism.

  9. Enhanced biodegradation of hydrocarbons in petroleum tank bottom oil sludge and characterization of biocatalysts and biosurfactants.

    PubMed

    Suganthi, S Hepziba; Murshid, Shabnam; Sriram, Sriswarna; Ramani, K

    2018-08-15

    Petroleum hydrocarbon removal from tank bottom oil sludge is a major issue due to its properties. Conventional physicochemical treatment techniques are less effective. Though the bioremediation is considered for the hydrocarbon removal from tank bottom oil sludge, the efficiency is low and time taking due to the low yield of biocatalysts and biosurfactants. The focal theme of the present investigation is to modify the process by introducing the intermittent inoculation for the enhanced biodegradation of hydrocarbons in the tank bottom oil sludge by maintaining a constant level of biocatalysts such as oxidoreductase, catalase, and lipase as well as biosurfactants. In addition, the heavy metal removal was also addressed. The microbial consortia comprising Shewanalla chilikensis, Bacillus firmus, and Halomonas hamiltonii was used for the biodegradation of oil sludge. One variable at a time approach was used for the optimum of culture conditions. The bacterial consortia degraded the oil sludge by producing biocatalysts such as lipase (80 U/ml), catalase (46 U/ml), oxidoreductase (68 U/ml) along with the production of lipoprotein biosurfactant (152 mg/g of oil sludge) constantly and achieved 96% reduction of total petroleum hydrocarbon. The crude enzymes were characterized by FT-IR and the biosurfactant was characterized by surface tension reduction, emulsification index, FT-IR, TLC, and SDS-PAGE. GC-MS and NMR also revealed that the hydrocarbons present in the oil sludge were effectively degraded by the microbial consortia. The ICP-OES result indicated that the microbial consortium is also effective in removing the heavy metals. Hence, bioremediation using the hydrocarbonoclastic microbial consortium can be considered as an environmentally friendly process for disposal of tank bottom oil sludge from petroleum oil refining industry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems.

    PubMed

    Wang, Liang; Liu, Jinli; Zhao, Quanyu; Wei, Wei; Sun, Yuhan

    2016-07-01

    Algal-bacterial synergistic cultivation could be an optional wastewater treatment technology in temperate areas. In this study, a locally screened vigorous Chlorella strain was characterized and then it was used in a comparative study of wastewater treatment and nutrient recycle assessment via activated sludge (AS), microalgae and their combination systems. Chlorella sp. cultured with AS in light showed the best performance, in which case the removal efficiencies of COD, NH3-N and TP were 87.3%, 99.2% and 83.9%, respectively, within a short period of 1day. Algal-bacterial combination in light had the best settleability. Chlorella sp. contained biomass, could be processed to feed, fertilizer or fuel due to the improved quality (higher C/H/N) compared with sludge. PCR-DGGE analysis shows that two types of rhizobacteria, namely, Pseudomonas putida and Flavobacterium hauense were enriched in sludge when cultured with algae in light, serving as the basics for artificial consortium construction for improved wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Accelerated anaerobic release of K, Mg and P from surplus activated sludge for element recovery and struvite formation inhibition.

    PubMed

    Ito, A; Kawakami, H; Ishikawa, N; Ito, M; Oikawa, T; Sato, A; Umita, T

    2017-05-01

    Accelerated release of potassium (K), magnesium (Mg) and phosphorus (P) from surplus activated sludge (SAS) was investigated to develop a new system for the recovery of the elements. Anaerobic cultivation of SAS during 24 h released 78% of K and about 50% of Mg and P from SAS more effectively compared to aerobic cultivation (K: 40%, Mg: 15%, P: 15%). Furthermore, the addition of sodium acetate as an organic carbon source remarkably accelerated the release of K, Mg and P from SAS under anaerobic condition. However, no increase in the maximum release efficiencies was observed. The elements released from SAS could be transferred to separate liquid with the existing mechanical thickener and be recovered as MgKPO 4 by some additional process. Furthermore, the removal of the elements from SAS would inhibit the formation of struvite causing the blockage of sludge transport pipe after anaerobic digestion process of thickened sludge.

  12. Anionic surfactants in treated sewage and sludges: risk assessment to aquatic and terrestrial environments.

    PubMed

    Mungray, Arvind Kumar; Kumar, Pradeep

    2008-05-01

    Compared to low concentrations of anionic surfactants (AS) in activated sludge process effluents (ASP) (<0.2 mg/L), upflow anaerobic sludge blanket-polishing pond (UASB-PP) effluents were found to contain very high concentrations of AS (>3.5 mg/L). AS (or linear alkylbenzen sulfonate, LAS) removals >99% have been found for ASP while in case of UASB-PP it was found to be < or = 30%. AS concentrations averaged 7347 and 1452 mg/kg dry wt. in wet UASB and dried sludges, respectively. Treated sewage from UASB based sewage treatment plants (STPs) when discharged to aquatic ecosystems are likely to generate substantial risk. Post-treatment using 1-1.6d detention, anaerobic, non-algal polishing ponds was found ineffective. Need of utilizing an aerobic method of post-treatment of UASB effluent in place of an anaerobic one has been emphasized. Natural drying of UASB sludges on sludge drying beds (SDBs) under aerobic conditions results in reduction of adsorbed AS by around 80%. Application of UASB sludges on SDBs was found simple, economical and effective. While disposal of treated UASB effluent may cause risk to aquatic ecosystems, use of dried UASB sludges is not likely to cause risk to terrestrial ecosystems.

  13. Municipal wastewater spiramycin removal by conventional treatments and heterogeneous photocatalysis.

    PubMed

    Lofrano, G; Libralato, G; Casaburi, A; Siciliano, A; Iannece, P; Guida, M; Pucci, L; Dentice, E F; Carotenuto, M

    2018-05-15

    This study assessed the effects and removal options of the macrolide spiramycin, currently used for both in human and veterinary medicine- with a special focus on advanced oxidation processes based on heterogeneous TiO 2 _ assisted photocatalysis. Spiramycin real concentrations were investigated on a seasonal basis in a municipal wastewater treatment plant (up to 35μgL -1 ), while its removal kinetics were studied considering both aqueous solutions and real wastewater samples, including by-products toxicity assessment. High variability of spiramycin removal by activated sludge treatments (from 9% (wintertime) to >99.9% (summertime)) was observed on a seasonal basis. Preliminary results showed that a total spiramycin removal (>99.9%) is achieved with 0.1gL -1 of TiO 2 in aqueous solution after 80min. Integrated toxicity showed residual slight acute effects in the photocatalytic treated solutions, independently from the amount of TiO 2 used, and could be linked to the presence of intermediate compounds. Photolysis of wastewater samples collected after activated sludge treatment during summer season (SPY 5μgL -1 ) allowed a full SPY removal after 80min. When photocatalysis with 0.1gL -1 of TiO 2 was carried out in wastewater samples collected in winter season (SPY 30μgL -1 ) after AS treatment, SPY removal was up to 91% after 80min. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Forage and tree seedling growth in a soil with an encased swine sludge layer.

    PubMed

    Penn, Chad J; Will, Rodney; Fultz, Lisa; Hamilton, Doug

    2013-10-15

    The closure of swine farms requires decommissioning of lagoons that contain large amounts of swine solids (sludge). Sludge is typically transported and land applied to soils. However, in some cases this process could be economically prohibitive and/or unpractical. An alternative idea is to encase sludge with lagoon soil berms after removing overlying effluent, followed by establishment of forages or short-rotation woody crops on the encased sludge. The objective of this study was to investigate growth potential for several forages and tree species into a pure layer of swine sludge. Alfalfa (Meticago sativa), bermudagrass (Cynodon dactylon), switchgrass (Panicum virgatum), green ash (Fraxinus pennsylvanica), black locust (Robinia pseudoacacia), and sycamore (Platanus occidentalis) were established in 40 cm deep pots consisting of a lagoon berm soil overlaying a sludge layer for 12 w followed by analysis of aboveground and belowground biomass production. "New" and "old" sludge was collected from an active 10 year old lagoon and decommissioned 50 year old lagoon, respectively. A control (soil only) was used. Encased sludge treatments increased forage biomass production. Sycamore and green ash were sensitive to new sludge but not old sludge as these species had less biomass production in new sludge than control and showed tissue trace nutrient deficiencies. While both sludge materials contained adequate nutrients, the new sludge had a salt concentration 1.8 times higher than old sludge as indicated by electrical conductivity (12.4 mS). Thus, the forage crops and black locust were able to thrive in new sludge due to their salt tolerance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Oil removal from petroleum sludge using bacterial culture with molasses substrate at temperature variation

    NASA Astrophysics Data System (ADS)

    Ni'matuzahroh, Puspitasari, Alvin Oktaviana; Pratiwi, Intan Ayu; Fatimah, Sumarsih, Sri; Surtiningsih, Tini; Salamun

    2016-03-01

    The study aims to reveal the potency of biosurfactant-producing bacterial culture with molasses as substrate growth in releasing oil from the petroleum sludge at temperature variations. Bacteria used consisted of (Acinetobacter sp. P2(1), Pseudomonas putida T1(8), Bacillus subtilis 3KP and Micrococcus sp. L II 61). The treatments were tested at 40°C, 50°C and 60 °C for 7 days of incubation. Synthetic surfactant (Tween 20) was used as a positive control and molasses as a negative control. Release of petroleum hydrocarbons from oil sludge was expressed in percentage of oil removal from oil sludge (%). Data were analyzed statistically using the Analysis of Variance (α = 0.05) and continued with Games-Howell test. The kinds of bacterial cultures, incubation temperature and combination of both affected the percentage of oil removal. The abilities of Bacillus subtilis 3KP and Micrococcus sp. LII 61cultures in oil removal from oil sludge at the temperature exposure of 60°C were higher than Tween 20. Both of bacterial cultures grown on molasses can be proposed as a replacement for synthetic surfactant to clean up the accumulation of oil sludge in a bottom of oil refinery tank.

  16. Degradation of triclosan by environmental microbial consortia and by axenic cultures of microorganisms with concerns to wastewater treatment.

    PubMed

    Chen, Xijuan; Zhuang, Jie; Bester, Kai

    2018-05-07

    Triclosan is an antimicrobial agent, which is widely used in personal care products including toothpaste, soaps, deodorants, plastics, and cosmetics. Widespread use of triclosan has resulted in its release into wastewater, surface water, and soils and has received considerable attention in the recent years. It has been reported that triclosan is detected in various environmental compartments. Toxicity studies have suggested its potential environmental impacts, especially to aquatic ecosystems. To date, removal of triclosan has attracted rising attention and biodegradation of triclosan in different systems, such as axenic cultures of microorganisms, full-scale WWTPs, activated sludge, sludge treatment systems, sludge-amended soils, and sediments has been described. In this study, an extensive literature survey was undertaken, to present the current knowledge of the biodegradation behavior of triclosan and highlights the removal and transformation processes to help understand and predict the environmental fate of triclosan. Experiments at from lab-scale to full-scale field studies are shown and discussed.

  17. A new recycling technique for the waste tires reuse.

    PubMed

    Derakhshan, Zahra; Ghaneian, Mohammad Taghi; Mahvi, Amir Hossein; Oliveri Conti, Gea; Faramarzian, Mohammad; Dehghani, Mansooreh; Ferrante, Margherita

    2017-10-01

    In this series of laboratory experiments, the feasibility of using fixed bed biofilm carriers (FBBC) manufactured from existing reclaimed waste tires (RWTs) for wastewater treatment was evaluated. To assess polyamide yarn waste tires as a media, the fixed bed sequence batch reactor (FBSBR) was evaluated under different organic loading rate (OLRs). An experimental model was used to study the kinetics of substrate consumption in biofilm. Removal efficiency of soluble chemical oxygen demand (SCOD) ranged by 76-98% for the FBSBR compared to 71-96% in a sequencing batch reactor (SBR). Removal efficiency of FBBC was significantly increased by inoculating these RWTs carriers. The results revealed that the sludge production yield (Y obs ) was significantly less in the FBSBR compared to the SBR (p < 0.01). It also produced less sludge and recorded a lower stabilization ratio (VSS/TSS). The findings show that the Stover-Kincannon model was the best fit (R 2 > 99%) in a FBSBR. Results from this study suggest that RWTs to support biological activity for a variety of wastewater treatment applications as a biofilm carrier have high potential that better performance as COD and TSS removal and sludge settling properties and effluent quality supported these findings. Copyright © 2017. Published by Elsevier Inc.

  18. Evaluation of hybrid processes for nitrification by comparing MBBR/AS and IFAS configurations.

    PubMed

    Germain, E; Bancroft, L; Dawson, A; Hinrichs, C; Fricker, L; Pearce, P

    2007-01-01

    An integrated fixed-film activated sludge (IFAS) pilot plant and a moving bed biofilm reactor coupled with an activated sludge process (MBBR/AS) were operated under different temperatures, carbon loadings and solids retention times (SRTs). These two types of hybrid systems were compared, focusing on the nitrification capacity and the nitrifiers population of the media and suspended biomass alongside other process performances such as carbonaceous and total nitrogen (TN) removal rates. At high temperatures and loadings rates, both processes were fully nitrifying and achieved similarly high carbonaceous removal rates. However, under these conditions, the IFAS configuration performed better in terms of TN removal. Lower temperatures and carbon loadings led to lower carbonaceous removal rates for the MBBR/AS configuration, whereas the IFAS configuration was not affected. However, the nitrification capacity of the IFAS process decreased significantly under these conditions and the MBBR/AS process was more robust in terms of nitrification. Ammonia oxidising bacteria (AOB) and nitrite oxidising bacteria (NOB) population counts accurately reflected the changes in nitrification capacity. However, significantly less NOBs than AOBs were observed, without noticeable nitrite accumulation, suggesting that the characterisation method used was not as sensitive for NOBs and/or that the NOBs had a higher activity than the AOBs.

  19. Efficacy of two wastewater treatment plants in removing genotoxins.

    PubMed

    Jolibois, B; Guerbet, M

    2005-04-01

    The genotoxic potential of influents and effluents of two different wastewater treatment plants (WTP-A and WTP-B) located in the Rouen, France, area was evaluated by the SOS chromotest without metabolic activation (on Escherichia coli PQ37) and the Ames fluctuation test (on Salmonella typhimurium strains TA 98, 100, TA 102) with and without metabolic activation. The wastewater samples were taken during two 1-week periods in January and April 2003. The simultaneous use of the SOS chromotest and Ames fluctuation test allowed us to evaluate the efficacy of the wastewater treatment plants at removing genotoxins. Genotoxins were detected with the Ames test but not with the SOS chromotest. Out of a total of 24 influents tested (14 for WTP-A and 10 for WTP-B), almost all were genotoxic in at least one Ames test strain (71% for WTP-A and 100% for WTP-B). In contrast, all of the tested effluents were nongenotoxic. This work showed that the treatment process used in the 2 wastewater treatment plants studied (activated sludge) was able to remove the genotoxins detected in their influents. Nevertheless, studies could be undertaken to determine which step of the treatment process removes genotoxins and whether WTP sludge use could be a source of genotoxic contamination for humans and the environment.

  20. Research on the enhancement of biological nitrogen removal at low temperatures from ammonium-rich wastewater by the bio-electrocoagulation technology in lab-scale systems, pilot-scale systems and a full-scale industrial wastewater treatment plant.

    PubMed

    Li, Liang; Qian, Guangsheng; Ye, Linlin; Hu, Xiaomin; Yu, Xin; Lyu, Weijian

    2018-09-01

    In cold areas, nitrogen removal performance of wastewater treatment plants (WWTP) declines greatly in winter. This paper systematically describes the enhancement effect of a periodic reverse electrocoagulation technology on biological nitrogen removal at low temperatures. The study showed that in the lab-scale systems, the electrocoagulation technology improved the biomass amount, enzyme activity and the amount of nitrogen removal bacteria (Nitrosomonas, Nitrobacter, Paracoccus, Thauera and Enterobacter). This enhanced nitrification and denitrification of activated sludge at low temperatures. In the pilot-scale systems, the electrocoagulation technology increased the relative abundance of cold-adapted microorganisms (Luteimonas and Trueperaceae) at low temperatures. In a full-scale industrial WWTP, comparison of data from winter 2015 and winter 2016 showed that effluent chemical oxygen demand (COD), NH 4 + -N, and NO 3 - -N reduced by 10.37, 3.84, and 136.43 t, respectively, throughout the winter, after installation of electrocoagulation devices. These results suggest that the electrocoagulation technology is able to improve the performance of activated sludge under low-temperature conditions. This technology provides a new way for upgrading of the performance of WWTPs in cold areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Fate of antibiotics in activated sludge followed by ultrafiltration (CAS-UF) and in a membrane bioreactor (MBR).

    PubMed

    Sahar, Eyal; Messalem, Rami; Cikurel, Haim; Aharoni, Avi; Brenner, Asher; Godehardt, Manuel; Jekel, Martin; Ernst, Mathias

    2011-10-15

    The fates of several macrolide, sulphonamide, and trimethoprim antibiotics contained in the raw sewage of the Tel-Aviv wastewater treatment plant (WWTP) were investigated after the sewage was treated using either a full-scale conventional activated sludge (CAS) system coupled with a subsequent ultrafiltration (UF) step or a pilot membrane bioreactor (MBR) system. Antibiotics removal in the MBR system, once it achieved stable operation, was 15-42% higher than that of the CAS system. This advantage was reduced to a maximum of 20% when a UF was added to the CAS. It was hypothesized that the contribution of membrane separation (in both systems) to antibiotics removal was due either to sorption to biomass (rather than improvement in biodegradation) or to enmeshment in the membrane biofilm (since UF membrane pores are significantly larger than the contaminant molecules). Batch experiments with MBR biomass showed a markedly high potential for sorption of the tested antibiotics onto the biomass. Moreover, methanol extraction of MBR biomass released significant amounts of sorbed antibiotics. This finding implies that more attention must be devoted to the management of excess sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Chitosan use in chemical conditioning for dewatering municipal-activated sludge.

    PubMed

    Zemmouri, H; Mameri, N; Lounici, H

    2015-01-01

    This work aims to evaluate the potential use of chitosan as an eco-friendly flocculant in chemical conditioning of municipal-activated sludge. Chitosan effectiveness was compared with synthetic cationic polyelectrolyte Sedipur CF802 (Sed CF802) and ferric chloride (FeCl₃). In this context, raw sludge samples from Beni-Messous wastewater treatment plant (WWTP) were tested. The classic jar test method was used to condition sludge samples. Capillary suction time (CST), specific resistance to filtration (SRF), cakes dry solid content and filtrate turbidity were analyzed to determine filterability, dewatering capacity of conditioned sludge and the optimum dose of each conditioner. Data exhibit that chitosan, FeCl₃and Sed CF802 improve sludge dewatering. Optimum dosages of chitosan, Sed CF802 and FeCl₃allowing CST values of 6, 5 and 9 s, were found, respectively, between 2-3, 1.5-3 and 6 kg/t ds. Both polymers have shown faster water removal with more permeable sludge. SRF values were 0.634 × 10¹², 0.932 × 10¹² and 2 × 10¹² m/kg for Sed CF802, chitosan and FeCl₃respectively. A reduction of 94.68 and 87.85% of the filtrate turbidity was obtained with optimal dosage of chitosan and Sed CF802, respectively. In contrast, 54.18% of turbidity abatement has been obtained using optimal dosage of FeCl₃.

  3. Molecular and ionic-scale chemical mechanisms behind the role of nitrocyl group in the electrochemical removal of heavy metals from sludge

    PubMed Central

    Hasan, S. W.; Ahmed, I.; Housani, A. A.; Giwa, A.

    2016-01-01

    The chemical basis for improved removal rates of toxic heavy metals such as Zn and Cu from wastewater secondary sludge has been demonstrated in this study. Instead of using excess corrosive chemicals as the source of free nitrous acid (FNA) for improved solubility of heavy metals in the sludge (in order to enhance electrokinetics), an optimized use of aqua regia has been proposed as an alternative. Fragments of nitrocyl group originated from aqua regia are responsible for the disruption of biogenic mixed liquor volatile suspended solids (MLVSS) and this disruption resulted in enhanced removal of exposed and oxidized metal ions. A diversity of nitric oxide (NO), peroxy nitrous acid, and peroxy nitroso group are expected to be introduced in the mixed liquor by the aqua regia for enhanced electrochemical treatment. The effects of pectin as a post treatment on the Zn removal from sludge were also presented for the first time. Results revealed 63.6% Cu and 93.7% Zn removal efficiencies, as compared to 49% Cu and 74% Zn removal efficiencies reported in a recent study. Also, 93.3% reduction of time-to-filter (TTF), and 95 mL/g of sludge volume index (SVI) were reported. The total operating cost obtained was USD 1.972/wet ton. PMID:27550724

  4. Migration of polycyclic aromatic hydrocarbons (PAHs) in urban treatment sludge to the air during PAH removal applications.

    PubMed

    Karaca, Gizem; Cindoruk, S Siddik; Tasdemir, Yücel

    2014-05-01

    In the present study, the amounts of polycylic aromatic hydrocarbons (PAHs) penetrating into air during PAH removal applications from the urban treatment sludge were investigated. The effects of the temperature, photocatalyst type, and dose on the PAH removal efficiencies and PAH evaporation were explained. The sludge samples were taken from an urban wastewater treatment plant located in the city of Bursa, with 585,000 equivalent population. The ultraviolet C (UV-C) light of 254 nm wavelength was used within the UV applications performed on a specially designed setup. Internal air of the setup was vacuumed through polyurethane foam (PUF) columns in order to collect the evaporated PAHs from the sludge during the PAH removal applications. All experiments were performed with three repetitions. The PAH concentrations were measured by gas chromatography-mass spectrometry (GC-MS). It was observed that the amounts of PAHs penetrating into the air were increased with increase of temperature, and more than 80% of PAHs migrated to the air consisted of 3-ring compounds during the UV and UV-diethylamine (DEA) experiments at 38 and 53 degrees C. It was determined that 40% decrease was ensured in sigma12 (total of 12) PAH amounts with UV application and 13% of PAHs in sludge penetrated into the air. In the UV-TiO2 applications, a maximum 80% of sigma12 PAH removal was obtained by adding 0.5% TiO2 of dry weight of sludge. The quantity of PAH penetrating into air did not exceed 15%. UV-TiO2 applications ensured high levels of PAH removal in the sludge and also reduced the quantity of PAH penetrating into the air. Within the scope of the samples added with DEA, there was no increase in PAH removal efficiencies and the penetration of PAHs into air was not decreased. In light of these data, it was concluded that UV-TiO2 application is the most suitable PAH removal alternative that restricts the convection of PAH pollution.

  5. Determination of optimal conditions for 5-methyl-benzotriazole biodegradation with activated sludge communities by dilution of the inoculum.

    PubMed

    Yuan, Heyang; Herzog, Bastian; Helmreich, Brigitte; Lemmer, Hilde; Müller, Elisabeth

    2014-07-15

    The aerobic biodegradation of 5-methyl-benzotriazole (5-TTri) was optimized using lab-scale setups and activated sludge communities (ASC) collected from three wastewater treatment plants (WWTP) MBR-MH, CAS-E and CAS-M being different in their treatment technologies. ASC inocula were diluted to rule out non-biodegrading species and incubated under two nutrient conditions: A) mineral salt media (MSM) and B) carbon and nitrogen supplied MSM giving MSM-CN. 5-TTri removal with the ASC ranged from 60% to 100% in only 10 days. 100 μL suspended biomass from the biodegrading setups was subsequently plated on solid media to eliminate possible activated sludge remnants. After growth occurred, mixed colonies were harvested and inoculated in fresh liquid MSM containing 20 mg L(-1) 5-TTri. These bacterial consortia showed good 5-TTri removal in MSM-CN rather than in MSM, indicating nutrient supply being required for efficient biodegradation. In addition, experiments with high 5-TTri concentrations ranging from 20 to 1,000 mg L(-1) were conducted in both, MSM and MSM-CN and the maximal 5-TTri removal capacity of the ASC evaluated. 50 mg L(-1) 5-TTri was still removed in both media whereas 100 mg L(-1) was solely removed in MSM-CN. 5-TTri biodegradation patterns also indicated that 5-TTri might be co-metabolized by microbial consortia. Furthermore, experiments with gradient-solid-media-plates showed 5-TTri to be inhibitory for the ASC in concentrations above 50 mg L(-1) and revealed the optimal conditions regarding carbon and nitrogen concentration and pH value for effective 5-TTri biodegradation by ASC. Nitrogen proved a crucial factor for enhancing organisms' biodegradation capacity with an optimal pH around 7 while carbon showed no such effect. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. 40 CFR Appendix G to Part 403 - Pollutants Eligible for a Removal Credit

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-tetrachlorodibenzo-p-dioxin, 1,1,2,2,-tetrachloroethane, Tetrachloroethylene, Toluene, Toxaphene, Trichloroethylene... Trichloroethylene 3 10 9500 3 10 Zinc 4500 4500 4500 1 Active sewage sludge unit without a liner and leachate...

  7. Effect of chemical and biological surfactants on activated sludge of MBR system: microscopic analysis and foam test.

    PubMed

    Capodici, Marco; Di Bella, Gaetano; Nicosia, Salvatore; Torregrossa, Michele

    2015-02-01

    A bench-scale MBR unit was operated, under stressing condition, with the aim of stimulating the onset of foaming in the activated sludge. Possible synergies between synthetic surfactants in the wastewater and biological surfactants (Extra-Cellular Polymeric Substances, EPSs) were investigated by changing C/N ratio. The growth of filamentous bacteria was also discussed. The MBR unit provided satisfactory overall carbon removal overall efficiencies: in particular, synthetic surfactants were removed with efficiency higher than 90% and 95% for non-ionic and ionic surfactants, respectively. Lab investigation suggested also the importance to reduce synthetic surfactants presence entering into mixed liquor: otherwise, their presence can significantly worsen the natural foaming caused by biological surfactants (EPSs) produced by bacteria. Finally, a new analytic method based on "ink test" has been proposed as a useful tool to achieve a valuation of EPSs bound fraction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Isolation of aluminum-tolerant bacteria capable of nitrogen removal in activated sludge.

    PubMed

    Ji, Bin; Chen, Wei; Zhu, Lei; Yang, Kai

    2016-05-15

    Four strains of bacteria capable of withstanding 20mM concentration of aluminum were isolated from activated sludge in a bioreactor. 16S rRNA identification and morphological characteristics indicated that these strains were Chryseobacterium sp. B1, Brevundimonas diminuta B3, Hydrogenophaga sp. B4, and Bacillus cereus B5. Phylogenetic analysis revealed the position and interrelationships of these bacteria. B. diminuta B3 and Hydrogenophaga sp. B4 could achieve nitrate nitrogen removal of 94.0% and 76.8% within 36h of its initial concentration of 148.8 and 151.7mg/L, respectively. Meanwhile, B3 and B4 could degrade ammonia with little nitrite accumulation. Results of this study provide more information about aluminum-resistant bacteria and laid the foundation for aluminum salt when it is simultaneously used for chemical precipitation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The significance of denitrifying polyphosphate accumulating organisms in biological nutrient removal activated sludge systems.

    PubMed

    Hu, Z R; Wentzel, M C; Ekama, G A

    2002-01-01

    In this paper the advantages and disadvantages of denitrifying PAOs (polyphosphate accumulating organisms) in conventional BNRAS (biological nutrient removal activated sludge) and external nitrification BNRAS (ENBNRAS) systems are evaluated, with experimental data exhibiting a range of anoxic P uptake from low (<10%) to very high (>60%). The results indicate that the specific denitrification rate of the PAOs on internally stored PHB COD is about 1/5th of that of the "ordinary" heterotrophic organisms on SBCOD, and the PAOs contribute little (maximum 20%) to the denitrification in BNRAS systems even when the anoxic P uptake is high (60% of the total P uptake). Considering the unpredictable nature of anoxic P uptake and the reduction in BEPR it causes compared with aerobic P uptake BEPR, it is concluded that anoxic P uptake does not add a significant advantage to the BNR system.

  10. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment.

    PubMed

    Tong, Juan; Chen, Yinguang

    2009-07-01

    In previous publications we reported that by controlling the pH at 10.0 the accumulation of short-chain fatty acids (SCFA) during waste activated sludge (WAS) fermentation was remarkably improved [Yuan, H., Chen, Y., Zhang, H., Jiang, S., Zhou, Q., Gu, G., 2006. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environ. Sci. Technol. 40, 2025-2029], but significant ammonium nitrogen (NH(4)-N) and soluble ortho-phosphorus (SOP) were released [Chen, Y., Jiang, S., Yuan, H., Zhou, Q., Gu, G., 2007. Hydrolysis and acidification of waste activated sludge at different pHs. Water Res. 41, 683-689]. This paper investigated the simultaneous recovery of NH(4)-N and SOP from WAS alkaline fermentation liquid and the application of the fermentation liquid as an additional carbon source for municipal wastewater biological nitrogen and phosphorus removal. The central composite design (CCD) of the response surface methodology (RSM) was employed to optimize and model the simultaneous NH(4)-N and SOP recovery from WAS alkaline fermentation liquid. Under the optimum conditions, the predicted and experimental recovery efficiency was respectively 73.4 and 75.7% with NH(4)-N, and 82.0 and 83.2% with SOP, which suggested that the developed models described the experiments well. After NH(4)-N and SOP recovery, the alkaline fermentation liquid was added to municipal wastewater, and the influence of volume ratio of fermentation liquid to municipal wastewater (FL/MW) on biological nitrogen and phosphorus removal was investigated. The addition of fermentation liquid didn't significantly affect nitrification. Both SOP and total nitrogen (TN) removal were increased with fermentation liquid, but there was no significant increase at FL/MW greater than 1/35. Compared to the blank test, the removal efficiency of SOP and TN at FL/MW=1/35 was improved from 44.0 to 92.9%, and 63.3 to 83.2%, respectively. The enhancement of phosphorus and nitrogen removal was mainly attributed to the increase of influent SCFA, or rather, the increase of intracellular polyhydroxyalkanoates (PHA) which served as the carbon and energy sources for denitrification and phosphorus uptake. The addition of alkaline fermentation liquid to municipal wastewater, however, increased the effluent COD, which was caused mainly by the increase of influent humic acid, not protein or carbohydrate.

  11. Influence of cations on the partition behavior of perfluoroheptanoate (PFHpA) and perfluorohexanesulfonate (PFHxS) on wastewater sludge.

    PubMed

    Wang, Fei; Shih, Kaimin; Ma, Ruowei; Li, Xiao-yan

    2015-07-01

    The effects of different cations on the sorption behavior of PFHpA and PFHxS on two types of sludge were investigated in this study. The sodium and potassium ions did not significantly affect PFHpA and PFHxS sorption on different sludge. For calcium and magnesium, the sorption amount of PFAS increased with calcium and magnesium concentration increasing from 1 to 30 mM and then decreased with those increasing from 30 to 100 mM. The sorption level of PFHxS or PFHpA greatly increased with increasing Al3+ and Fe3+ cation concentrations due to the strong sorption and coagulation effects by the formation of aluminum hydroxide (or ferric hydroxide) colloids or precipitates. After the organics in sludge has been removed by thermal treatment, the PFAS sorption on sludge was greatly reduced. Such finding indicated that sorption to organic matter is more important for anionic PFASs than adsorption to mineral surfaces. However, due to the higher content of biological organics, a secondary activated sludge has higher affinity toward PFAS species than chemically enhanced primary treatment sludge. It indicated that the organic types in sludge were also crucial to the sorption levels of PFASs by sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Low-cost adsorbent prepared from sewage sludge and corn stalk for the removal of COD in leachate.

    PubMed

    He, Ying; Liao, Xiaofeng; Liao, Li; Shu, Wei

    2014-01-01

    Sewage sludge (SS) with corn stalk (CS) was used to prepare SS-based activated carbon (SAC) by pyrolysis with ZnCl2. The effects of mixing ratio on surface area and pore size distribution, elemental composition, surface chemistry, and morphology were investigated. The results demonstrated that the addition of CS into SS samples improved the surface area (from 92 to 902 m(2)/g) and the microporosity (from 1.2 to 4.1%) of the adsorbents and, therefore, enhancing the adsorption performance. The removal of leachate chemical oxygen demand (COD) was also determined. It was found that the COD removal rate reached 85% at pH 4 with the SAC (90 wt% CS) dosage of 2% (g/mL) and an adsorption time of 40 min. The adsorption experimental data were fitted by both Langmuir and Freundlich adsorption isotherms. Long-chain alkanes and refractory organics were found in raw leachate, but could be removed by SAC largely.

  13. Characterization, modeling and application of aerobic granular sludge for wastewater treatment.

    PubMed

    Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping

    2009-01-01

    Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

  14. Characterization, Modeling and Application of Aerobic Granular Sludge for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping

    Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

  15. Ferrate treatment for removing chromium from high-level radioactive tank waste.

    PubMed

    Sylvester, P; Rutherford, L A; Gonzalez-Martin, A; Kim, J; Rapko, B M; Lumetta, G J

    2001-01-01

    A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. This method could be generally applicable to removing chromium from chromium-contaminated solids, when coupled with a subsequent reduction of the separated chromate back to chromium(III). The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(II) molar ratio, but the chromium removal tends to level out for Fe(VI)/ Cr(III) greaterthan 10. Increasingtemperature leadsto better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be disposed as low-activity waste.

  16. Disturbance and temporal partitioning of the activated sludge metacommunity

    PubMed Central

    Vuono, David C; Benecke, Jan; Henkel, Jochen; Navidi, William C; Cath, Tzahi Y; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2015-01-01

    The resilience of microbial communities to press disturbances and whether ecosystem function is governed by microbial composition or by the environment have not been empirically tested. To address these issues, a whole-ecosystem manipulation was performed in a full-scale activated sludge wastewater treatment plant. The parameter solids retention time (SRT) was used to manipulate microbial composition, which started at 30 days, then decreased to 12 and 3 days, before operation was restored to starting conditions (30-day SRT). Activated sludge samples were collected throughout the 313-day time series in parallel with bioreactor performance (‘ecosystem function'). Bacterial small subunit (SSU) rRNA genes were surveyed from sludge samples resulting in a sequence library of >417 000 SSU rRNA genes. A shift in community composition was observed for 12- and 3-day SRTs. The composition was altered such that r-strategists were enriched in the system during the 3-day SRT, whereas K-strategists were only present at SRTs⩾12 days. This shift corresponded to loss of ecosystem functions (nitrification, denitrification and biological phosphorus removal) for SRTs⩽12 days. Upon return to a 30-day SRT, complete recovery of the bioreactor performance was observed after 54 days despite an incomplete recovery of bacterial diversity. In addition, a different, yet phylogenetically related, community with fewer of its original rare members displaced the pre-disturbance community. Our results support the hypothesis that microbial ecosystems harbor functionally redundant phylotypes with regard to general ecosystem functions (carbon oxidation, nitrification, denitrification and phosphorus accumulation). However, the impacts of decreased rare phylotype membership on ecosystem stability and micropollutant removal remain unknown. PMID:25126758

  17. Dynamic modelling of solids in a full-scale activated sludge plant preceded by CEPT as a preliminary step for micropollutant removal modelling.

    PubMed

    Baalbaki, Zeina; Torfs, Elena; Maere, Thomas; Yargeau, Viviane; Vanrolleghem, Peter A

    2017-04-01

    The presence of micropollutants in the environment has triggered research on quantifying and predicting their fate in wastewater treatment plants (WWTPs). Since the removal of micropollutants is highly related to conventional pollutant removal and affected by hydraulics, aeration, biomass composition and solids concentration, the fate of these conventional pollutants and characteristics must be well predicted before tackling models to predict the fate of micropollutants. In light of this, the current paper presents the dynamic modelling of conventional pollutants undergoing activated sludge treatment using a limited set of additional daily composite data besides the routine data collected at a WWTP over one year. Results showed that as a basis for modelling, the removal of micropollutants, the Bürger-Diehl settler model was found to capture the actual effluent total suspended solids (TSS) concentrations more efficiently than the Takács model by explicitly modelling the overflow boundary. Results also demonstrated that particular attention must be given to characterizing incoming TSS to obtain a representative solids balance in the presence of a chemically enhanced primary treatment, which is key to predict the fate of micropollutants.

  18. ENHANCED COD (CHEMICAL OXYGEN DEMAND) REMOVAL FROM PHARMACEUTICAL WASTEWATER USING POWDERED ACTIVATED CARBON ADDITION TO AN ACTIVATED SLUDGE SYSTEM

    EPA Science Inventory

    Wastewater generated by the pharmaceutical manufacturing point source Sub-categories A (Fermentation Products) and C (Chemical Synthesis Products) are characterized by high COD concentrations (10,000 mg/l and higher). Plants in these subcategories typically employ secondary treat...

  19. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts.

    PubMed

    Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2014-08-01

    Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl₂ as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Environmental biodegradation of halophenols by activated sludge from two different sewage treatment plants.

    PubMed

    Smułek, Wojciech; Zdarta, Agata; Kwiczak, Joanna; Zgoła-Grześkowiak, Agnieszka; Cybulski, Zefiryn; Kaczorek, Ewa

    2017-11-10

    Halophenols make a group of aromatic compounds that are resistible to biodegradation by environmental microorganisms. In this study, the biodegradation of 4-bromo-, 4-chloro- and 4-fluorophenols was studied with two types of activated sludges (from a small rural plant and from a bigger municipal plant) as an inoculum. Because of their wide use, surfactants are present in the wastewater and inhibitors enhance the biodegradation of different pollutants; the influence of natural surfactants on halophenols' biodegradation was also tested. Both types of activated sludge contained bacterial strains which were active in the halophenols' biodegradation process. The coexistence of surfactants and halophenols in the wastewater does not prevent microorganisms from effective halophenols' biodegradation. Moreover, surfactants can enhance the effectiveness of halophenols' removal from the environment. Different cell surface modifications of two isolated bacterial strains were observed in the same system of halophenols with or without surfactants. Halophenols and surfactants may also induce changes in bacteria cell surface properties.

  1. Biodegradation of sulfamethoxazole by individual and mixed bacteria.

    PubMed

    Larcher, Simone; Yargeau, Viviane

    2011-07-01

    Antibiotic compounds, like sulfamethoxazole (SMX), have become a concern in the aquatic environment due to the potential development of antibacterial resistances. Due to excretion and disposal, SMX has been frequently detected in wastewaters and surface waters. SMX removal in conventional wastewater treatment plants (WWTPs) ranges from 0% to 90%, and there are opposing results regarding its biodegradability at lab scale. The objective of this research was to determine the ability of pure cultures of individual and mixed consortia of bacteria (Bacillus subtilis, Pseudomonas aeruginosa, Pseudomonas putida, Rhodococcus equi, Rhodococcus erythropolis, Rhodococcus rhodocrous, and Rhodococcus zopfii) known to exist in WWTP activated sludge to remove SMX. Results showed that R. equi alone had the greatest ability to remove SMX leading to 29% removal (with glucose) and the formation of a metabolite. Degradation pathways and metabolite structures have been proposed based on the potential enzymes produced by R. equi. When R. equi was mixed with other microorganisms, a positive synergistic effect was not observed and the maximum SMX removal achieved was 5%. This indicates that pure culture results cannot be extrapolated to mixed culture conditions, and the methodology developed here to study the biodegradability of compounds under controlled mixed culture conditions offers an alternative to conventional studies using pure bacterial cultures or inocula from activated sludge sources consisting of unknown and variable microbial populations.

  2. Central Composite Design (CCD) applied for statistical optimization of glucose and sucrose binary carbon mixture in enhancing the denitrification process

    NASA Astrophysics Data System (ADS)

    Lim, Jun-Wei; Beh, Hoe-Guan; Ching, Dennis Ling Chuan; Ho, Yeek-Chia; Baloo, Lavania; Bashir, Mohammed J. K.; Wee, Seng-Kew

    2017-11-01

    The present study provides an insight into the optimization of a glucose and sucrose mixture to enhance the denitrification process. Central Composite Design was applied to design the batch experiments with the factors of glucose and sucrose measured as carbon-to-nitrogen (C:N) ratio each and the response of percentage removal of nitrate-nitrogen (NO3 --N). Results showed that the polynomial regression model of NO3 --N removal had been successfully derived, capable of describing the interactive relationships of glucose and sucrose mixture that influenced the denitrification process. Furthermore, the presence of glucose was noticed to have more consequential effect on NO3 --N removal as opposed to sucrose. The optimum carbon sources mixture to achieve complete removal of NO3 --N required lesser glucose (C:N ratio of 1.0:1.0) than sucrose (C:N ratio of 2.4:1.0). At the optimum glucose and sucrose mixture, the activated sludge showed faster acclimation towards glucose used to perform the denitrification process. Later upon the acclimation with sucrose, the glucose uptake rate by the activated sludge abated. Therefore, it is vital to optimize the added carbon sources mixture to ensure the rapid and complete removal of NO3 --N via the denitrification process.

  3. A novel approach to realize SANI process in freshwater sewage treatment--Use of wet flue gas desulfurization waste streams as sulfur source.

    PubMed

    Jiang, Feng; Zhang, Liang; Peng, Guo-Liang; Liang, Si-Yun; Qian, Jin; Wei, Li; Chen, Guang-Hao

    2013-10-01

    SANI (Sulfate reduction, Autotrophic denitrification and Nitrification Integrated) process has been approved to be a sludge-minimized sewage treatment process in warm and coastal cities with seawater supply. In order to apply this sulfur-based process in inland cold areas, wet flue gas desulfurization (FGD) can be simplified and integrated with SANI process, to provide sulfite as electron carrier for sulfur cycle in sewage treatment. In this study, a lab-scale system of the proposed novel process was developed and run for over 200 days while temperature varied between 30 and 5 °C, fed with synthetic FGD wastewaters and sewage. The sulfite-reducing upflow anaerobic sludge bed (SrUASB) reactor, as the major bioreactor of the system, removed 86.9% of organics while the whole system removed 94% of organics even when water temperature decreased to around 10 °C. The bactericidal effect of sulfite was not observed in the SrUASB reactor, while thiosulfate was found accumulated under psychrophilic conditions. The sludge yield of the SrUASB reactor was determined to be 0.095 kg VSS/kg COD, higher than of sulfate reduction process but still much lower than of conventional activated sludge processes. The dominant microbes in the SrUASB reactor were determined as Lactococcus spp. rather than sulfate-reducing bacteria, but sulfite reduction still contributed 85.5% to the organic carbon mineralization in this reactor. Ammonia and nitrate were effectively removed in the aerobic and anoxic filters, respectively. This study confirms the proposed process was promising to achieve sludge-minimized sewage treatment integrating with flue gas desulfurization in inland and cold areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. High-rate treatment of molasses wastewater by combination of an acidification reactor and a USSB reactor.

    PubMed

    Onodera, Takashi; Sase, Shinya; Choeisai, Pairaya; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Yamaguchi, Takashi; Ebie, Yoshitaka; Xu, Kaiqin; Tomioka, Noriko; Syutsubo, Kazuaki

    2011-01-01

    A combination of an acidification reactor and an up-flow staged sludge bed (USSB) reactor was applied for treatment of molasses wastewater containing a large amount of organic compounds and sulfate. The USSB reactor had three gas-solid separators (GSS) along the height of the reactor. The combined system was continuously operated at mesophilic temperature over 400 days. In the acidification reactor, acid formation and sulfate reduction were effectively carried out. The sugars contained in the influent wastewater were mostly acidified into acetate, propionate, and n-butyrate. In addition, 10-30% of influent sulfur was removed from the acidification reactor by means of sulfate reduction followed by stripping of hydrogen sulfide. The USSB achieved a high organic loading rate (OLR) of 30 kgCOD m(-3) day(-1) with 82% COD removal. Vigorous biogas production was observed at a rate of 15 Nm(3) biogas m(-3) reactor day(-1). The produced biogas, including hydrogen sulfide, was removed from the wastewater mostly via the GSS. The GSS provided a moderate superficial biogas flux and low sulfide concentration in the sludge bed, resulting in the prevention of sludge washout and sulfide inhibition of methanogens. By advantages of this feature, the USSB may have been responsible for achieving sufficient retention (approximately 60 gVSS L(-1)) of the granular sludge with high methanogenic activity (0.88 gCOD gVSS(-1) day(-1) for acetate and as high as 2.6 gCOD gVSS(-1) day(-1) for H(2)/CO(2)). Analysis of the microbial community revealed that sugar-degrading acid-forming bacteria proliferated in the sludge of the USSB as well as the acidification reactor at high OLR conditions.

  5. Removal of veterinary antibiotics from anaerobically digested swine wastewater using an intermittently aerated sequencing batch reactor.

    PubMed

    Zheng, Wei; Zhang, Zhenya; Liu, Rui; Lei, Zhongfang

    2018-03-01

    A lab-scale intermittently aerated sequencing batch reactor (IASBR) was applied to treat anaerobically digested swine wastewater (ADSW) to explore the removal characteristics of veterinary antibiotics. The removal rates of 11 veterinary antibiotics in the reactor were investigated under different chemical organic demand (COD) volumetric loadings, solid retention times (SRT) and ratios of COD to total nitrogen (TN) or COD/TN. Both sludge sorption and biodegradation were found to be the major contributors to the removal of veterinary antibiotics. Mass balance analysis revealed that greater than 60% of antibiotics in the influent were biodegraded in the IASBR, whereas averagely 24% were adsorbed by sludge under the condition that sludge sorption gradually reached its equilibrium. Results showed that the removal of antibiotics was greatly influenced by chemical oxygen demand (COD) volumetric loadings, which could achieve up to 85.1%±1.4% at 0.17±0.041kgCOD/m -3 /day, while dropped to 75.9%±1.3% and 49.3%±12.1% when COD volumetric loading increased to 0.65±0.032 and 1.07±0.073kgCOD/m -3 /day, respectively. Tetracyclines, the dominant antibiotics in ADSW, were removed by 87.9% in total at the lowest COD loading, of which 30.4% were contributed by sludge sorption and 57.5% by biodegradation, respectively. In contrast, sulfonamides were removed about 96.2%, almost by biodegradation. Long SRT seemed to have little obvious impact on antibiotics removal, while a shorter SRT of 30-40day could reduce the accumulated amount of antibiotics and the balanced antibiotics sorption capacity of sludge. Influent COD/TN ratio was found not a key impact factor for veterinary antibiotics removal in this work. Copyright © 2017. Published by Elsevier B.V.

  6. Inhibition of Anaerobic Phosphate Release by Nitric Oxide in Activated Sludge

    PubMed Central

    Van Niel, E. W. J.; Appeldoorn, K. J.; Zehnder, A. J. B.; Kortstee, G. J. J.

    1998-01-01

    Activated sludge not containing significant numbers of denitrifying, polyphosphate [poly(P)]-accumulating bacteria was grown in a fill-and-draw system and exposed to alternating anaerobic and aerobic periods. During the aerobic period, poly(P) accumulated up to 100 mg of P · g of (dry) weight. When portions of the sludge were incubated anaerobically in the presence of acetate, 80 to 90% of the intracellular poly(P) was degraded and released as orthophosphate. Degradation of poly(P) was mainly catalyzed by the concerted action of polyphosphate:AMP phosphotransferase and adenylate kinase, resulting in ATP formation. In the presence of 0.3 mM nitric oxide (NO) in the liquid-phase release of phosphate, uptake of acetate, formation of poly-β-hydroxybutyrate, utilization of glycogen, and formation of ATP were severely inhibited or completely abolished. In cell extracts of the sludge, adenylate kinase activity was completely inhibited by 0.15 mM NO. The nature of this inhibition was probably noncompetitive, similar to that with hog adenylate kinase. Activated sludge polyphosphate glucokinase was also completely inhibited by 0.15 mM NO. It is concluded that the inhibitory effect of NO on acetate-mediated phosphate release by the sludge used in this study is due to the inhibition of adenylate kinase in the phosphate-releasing organisms. The inhibitory effect of nitrate and nitrite on phosphate release is probably due to their conversion to NO. The lack of any inhibitory effect of NO on adenylate kinase of the poly(P)-accumulating Acinetobacter johnsonii 210A suggests that this type of organism is not involved in the enhanced biological phosphate removal by the sludges used. PMID:9687452

  7. The effect of bioleaching on sewage sludge pyrolysis.

    PubMed

    Chen, Zhihua; Hu, Mian; Cui, Baihui; Liu, Shiming; Guo, Dabin; Xiao, Bo

    2016-02-01

    The effects of bioleaching on sewage sludge pyrolysis were studied. Sewage sludge was treated by bioleaching with solid concentrations of 6% (w/v), 8% (w/v), 10% (w/v). Results showed that bioleaching treatment could modify the physicochemical properties of sewage sludge and enhance the metals removal. The optimum removal efficiencies of heavy metals were achieved with solid concentration of 6% (w/v) bioleaching treatment: Cu, 73.08%; Zn, 78.67%; Pb, 24.65%; Cd, 79.46%. The characterization results of thermogravimetric analysis (TGA) showed that the bioleached sewage sludge with a 6% (w/v) solid concentration treatment was the easiest to decompose. Pyrolytic experiments of bioleached sewage sludge were performed in a laboratory-scale fixed bed reactor. Results indicated that bioleaching treatment greatly influenced the product yields and gas composition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Utilization of AMD sludges from the anthracite region of Pennsylvania for removal of phosphorus from wastewater

    USGS Publications Warehouse

    Sibrell, P.L.; Cravotta, C.A.; Lehman, W.G.; Reichert, W.

    2010-01-01

    Excess phosphorus (P) inputs from human sewage, animal feeding operations, and nonpoint source discharges to the environment have resulted in the eutrophication of sensitive receiving bodies of water such as the Great Lakes and Chesapeake Bay. Phosphorus loads in wastewater discharged from such sources can be decreased by conventional treatment with iron and aluminum salts but these chemical reagents are expensive or impractical for many applications. Acid mine drainage (AMD) sludges are an inexpensive source of iron and aluminum hydrous oxides that could offer an attractive alternative to chemical reagent dosing for the removal of P from local wastewater. Previous investigations have focused on AMD sludges generated in the bituminous coal region of western Pennsylvania, and confirmed that some of those sludges are good sorbents for P over a wide range of operating conditions. In this study, we sampled sludges produced by AMD treatment at six different sites in the anthracite region of Pennsylvania for potential use as P sequestration sorbents. Sludge samples were dried, characterized, and then tested for P removal from water. In addition, the concentrations of acid-extractable metals and other impurities were investigated. Test results revealed that sludges from four of the sites showed good P sorption and were unlikely to add contaminants to treated water. These results indicate that AMD sludges could be beneficially used to sequester P from the environment, while at the same time decreasing the expense of sludge disposal.

  9. Enhanced phenol removal in an innovative lignite activated coke-assisted biological process.

    PubMed

    Zhang, Chen; Li, Jianfeng; Cheng, Fangqin; Liu, Yu

    2018-07-01

    In this study, a lignite activated coke (LAC)-assisted activated sludge (AS) process was developed for enhancing biodegradation of phenol, while the effects of LAC on sludge properties and microbial community structure were investigated. It was found that more than 90% of phenol was removed within 1 h in the LAC/AS, which was 3 times higher than the conventional AS process. Moreover, the floc size and settleability were also significantly improved in the LAC/AS. These results suggested that LAC could serve as the nucleating agent to promote the formation of compact floc, which was beneficial for toxicity mitigation and system stability. The microbial community analysis by 16S high-throughput pyrosequencing technology further revealed a more abundant bacterial richness and diversity in the LAC/AS process loaded with phenol, while some phenol degraders, such as Propionibacteriaceae were enriched. Engineering implications further suggests the LAC-assisted AS process is technically sound and economically viable. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Design, experimentation, and modeling of a novel continuous biodrying process

    NASA Astrophysics Data System (ADS)

    Navaee-Ardeh, Shahram

    Massive production of sludge in the pulp and paper industry has made the effective sludge management increasingly a critical issue for the industry due to high landfill and transportation costs, and complex regulatory frameworks for options such as sludge landspreading and composting. Sludge dewatering challenges are exacerbated at many mills due to improved in-plant fiber recovery coupled with increased production of secondary sludge, leading to a mixed sludge with a high proportion of biological matter which is difficult to dewater. In this thesis, a novel continuous biodrying reactor was designed and developed for drying pulp and paper mixed sludge to economic dry solids level so that the dried sludge can be economically and safely combusted in a biomass boiler for energy recovery. In all experimental runs the economic dry solids level was achieved, proving the process successful. In the biodrying process, in addition to the forced aeration, the drying rates are enhanced by biological heat generated through the microbial activity of mesophilic and thermophilic microorganisms naturally present in the porous matrix of mixed sludge. This makes the biodrying process more attractive compared to the conventional drying techniques because the reactor is a self-heating process. The reactor is divided into four nominal compartments and the mixed sludge dries as it moves downward in the reactor. The residence times were 4-8 days, which are 2-3 times shorter than the residence times achieved in a batch biodrying reactor previously studied by our research group for mixed sludge drying. A process variable analysis was performed to determine the key variable(s) in the continuous biodrying reactor. Several variables were investigated, namely: type of biomass feed, pH of biomass, nutrition level (C/N ratio), residence times, recycle ratio of biodried sludge, and outlet relative humidity profile along the reactor height. The key variables that were identified in the continuous biodrying reactor were the type of biomass feed and the outlet relative humidity profiles. The biomass feed is mill specific and since one mill was studied for this study, the nutrition level of the biomass feed was found adequate for the microbial activity, and hence the type of biomass is a fixed parameter. The influence of outlet relative humidity profile was investigated on the overall performance and the complexity index of the continuous biodrying reactor. The best biodrying efficiency was achieved at an outlet relative humidity profile which controls the removal of unbound water at the wet-bulb temperature in the 1st and 2nd compartments of the reactor, and the removal of bound water at the dry-bulb temperature in the 3rd and 4th compartments. Through a systematic modeling approach, a 2-D model was developed to describe the transport phenomena in the continuous biodrying reactor. The results of the 2-D model were in satisfactory agreement with the experimental data. It was found that about 30% w/w of the total water removal (drying rate) takes place in the 1st and 2nd compartments mainly under a convection dominated mechanism, whereas about 70% w/w of the total water removal takes place in the 3rd and 4th compartments where a bioheat-diffusion dominated mechanism controls the transport phenomena. The 2-D model was found to be an appropriate tool for the estimation of the total water removal rate (drying rate) in the continuous biodrying reactor when compared to the 1-D model. A dimensionless analysis was performed on the 2-D model and established the preliminary criteria for the scale-up of the continuous biodrying process. Finally, a techno-economic assessment of the continuous biodrying process revealed that there is great potential for the implementation of the biodrying process in Canadian pulp and paper mills. The techno-economic results were compared to the other competitive existing drying technologies. It was proven that the continuous biodrying process results in significant economic benefits and has great potential to address the current industrial problems associated with sludge management.

  11. System evaluation and microbial analysis of a sulfur cycle-based wastewater treatment process for Co-treatment of simple wet flue gas desulfurization wastes with freshwater sewage.

    PubMed

    Qian, Jin; Liu, Rulong; Wei, Li; Lu, Hui; Chen, Guang-Hao

    2015-09-01

    A sulfur cycle-based wastewater treatment process, namely the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated process (SANI(®) process) has been recently developed for organics and nitrogen removal with 90% sludge minimization and 35% energy reduction in the biological treatment of saline sewage from seawater toilet flushing practice in Hong Kong. In this study, sulfate- and sulfite-rich wastes from simple wet flue gas desulfurization (WFGD) were considered as a potential low-cost sulfur source to achieve beneficial co-treatment with non-saline (freshwater) sewage in continental areas, through a Mixed Denitrification (MD)-SANI process trialed with synthetic mixture of simple WFGD wastes and freshwater sewage. The system showed 80% COD removal efficiency (specific COD removal rate of 0.26 kg COD/kg VSS/d) at an optimal pH of 7.5 and complete denitrification through MD (specific nitrogen removal rate of 0.33 kg N/kg VSS/d). Among the electron donors in MD, organics and thiosulfate could induce a much higher denitrifying activity than sulfide in terms of both NO3(-) reduction and NO2(-) reduction, suggesting a much higher nitrogen removal rate in organics-, thiosulfate- and sulfide-based MD in MD-SANI compared to sulfide alone-based autotrophic denitrification in conventional SANI(®). Diverse sulfate/sulfite-reducing bacteria (SRB) genera dominated in the bacterial community of sulfate/sulfite-reducing up-flow sludge bed (SRUSB) sludge without methane producing bacteria detected. Desulfomicrobium-like species possibly for sulfite reduction and Desulfobulbus-like species possibly for sulfate reduction are the two dominant groups with respective abundance of 24.03 and 14.91% in the SRB genera. Diverse denitrifying genera were identified in the bacterial community of anoxic up-flow sludge bed (AnUSB) sludge and the Thauera- and Thiobacillus-like species were the major taxa. These results well explained the successful operation of the lab-scale MD-SANI process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Bacterial communities and enzymatic activities in the vegetation-activated sludge process (V-ASP) and related advantages by comparison with conventional constructed wetland.

    PubMed

    Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Zhao, Ke; Du, Changhang; Shao, Yunxian

    2016-11-01

    A new-developed vegetation-activated sludge process (V-ASP) was implemented for decentralized domestic wastewater treatment, and studied in lab-scale and full-scale. The main purpose of this work was the investigation of biomass activities and microbial communities in V-ASP by comparison with conventional constructed wetland (CW), to unveil the causations of its consistently higher pollutants removal efficiencies. Compared with CWs, V-ASP has greater vegetation nitrogen and phosphorus uptake rates, higher biomass and enzymatic activities, and more bacteria community diversity. The microbial community structure was comprehensively analyzed by using high-throughput sequencing. It was observed that Proteobacteria was dominated in both CWs and V-ASPs, while their subdivisions distribution was rather different. V-ASPs contained a higher nitrite-oxidizing bacteria (Nitrospira) abundances that resulted in a consistently better nitrogen removal efficiency. Hence, a long-term experiment of full-scale V-ASP displayed stably excellent capability in resistance of influent loading shocks and seasonal temperature effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Stack Gas Scrubber Makes the Grade

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1975

    1975-01-01

    Describes a year long test of successful sulfur dioxide removal from stack gas with a calcium oxide slurry. Sludge disposal problems are discussed. Cost is estimated at 0.6 mill per kwh not including sludge removal. A flow diagram and equations are included. (GH)

  14. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms.

    PubMed

    Kishida, Naohiro; Kim, Juhyun; Tsuneda, Satoshi; Sudo, Ryuichi

    2006-07-01

    In a biological nutrient removal (BNR) process, the utilization of denitrifying polyphosphate-accumulating organisms (DNPAOs) has many advantages such as effective use of organic carbon substrates and low sludge production. As a suitable process for the utilization of DNPAOs in BNR, an anaerobic/oxic/anoxic granular sludge (AOAGS) process was proposed in this study. In spite of performing aeration for nitrifying bacteria, the AOAGS process can create anaerobic/anoxic conditions suitable for the cultivation of DNPAOs because anoxic zones exist inside the granular sludge in the oxic phase. Thus, DNPAOs can coexist with nitrifying bacteria in a single reactor. In addition, the usability of DNPAOs in the reactor can be improved by adding the anoxic phase after the oxic phase. These characteristics enable the AOAGS process to attain effective removal of both nitrogen and phosphorus. When acetate-based synthetic wastewater (COD: 600 mg/L, NH4-N: 60 mg/L, PO(4)-P: 10 mg/L) was supplied to a laboratory-scale sequencing batch reactor under the operation of anaerobic/oxic/anoxic cycles, granular sludge with a diameter of 500 microm was successfully formed within 1 month. Although the removal of both nitrogen and phosphorus was almost complete at the end of the oxic phase, a short anoxic period subsequent to the oxic phase was necessary for further removal of nitrogen and phosphorus. As a result, effluent concentrations of NH(4)-N, NO(x)-N and PO(4)-P were always lower than 1 mg/L. It was found that penetration depth of oxygen inside the granular sludge was approximately 100 microm by microsensor measurements. In addition, from the microbiological analysis by fluorescence in situ hybridization, existence depth of polyphosphate-accumulating organisms was further than the maximum oxygen penetration depth. The water quality data, oxygen profiles and microbial community structure demonstrated that DNPAOs inside the granular sludge may be responsible for denitrification in the oxic phase, which enables effective nutrient removal in the AOAGS process.

  15. Comparison of two treatments for the removal of selected organic micropollutants and bulk organic matter: conventional activated sludge followed by ultrafiltration versus membrane bioreactor.

    PubMed

    Sahar, E; Ernst, M; Godehardt, M; Hein, A; Herr, J; Kazner, C; Melin, T; Cikurel, H; Aharoni, A; Messalem, R; Brenner, A; Jekel, M

    2011-01-01

    The potential of membrane bioreactor (MBR) systems to remove organic micropollutants was investigated at different scales, operational conditions, and locations. The effluent quality of the MBR system was compared with that of a plant combining conventional activated sludge (CAS) followed by ultrafiltration (UF). The MBR and CAS-UF systems were operated and tested in parallel. An MBR pilot plant in Israel was operated for over a year at a mixed liquor suspended solids (MLSS) range of 2.8-10.6 g/L. The MBR achieved removal rates comparable to those of a CAS-UF plant at the Tel-Aviv wastewater treatment plant (WWTP) for macrolide antibiotics such as roxythromycin, clarithromycin, and erythromycin and slightly higher removal rates than the CAS-UF for sulfonamides. A laboratory scale MBR unit in Berlin - at an MLSS of 6-9 g/L - showed better removal rates for macrolide antibiotics, trimethoprim, and 5-tolyltriazole compared to the CAS process of the Ruhleben sewage treatment plant (STP) in Berlin when both were fed with identical quality raw wastewater. The Berlin CAS exhibited significantly better benzotriazole removal and slightly better sulfamethoxazole and 4-tolyltriazole removal than its MBR counterpart. Pilot MBR tests (MLSS of 12 g/L) in Aachen, Germany, showed that operating flux significantly affected the resulting membrane fouling rate, but the removal rates of dissolved organic matter and of bisphenol A were not affected.

  16. Hydrolysis and volatile fatty acids accumulation of waste activated sludge enhanced by the combined use of nitrite and alkaline pH.

    PubMed

    Huang, Cheng; Liu, Congcong; Sun, Xiuyun; Sun, Yinglu; Li, Rui; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Liu, Xiaodong; Wang, Lianjun

    2015-12-01

    Volatile fatty acids (VFAs) production from anaerobic digestion of waste activated sludge (WAS) is often limited by the slow hydrolysis and/or poor substrate availability. Increased attention has been given to enhance the hydrolysis and acidification of WAS recently. This study presented an efficient and green strategy based on the combined use of nitrite pretreatment and alkaline pH to stimulate hydrolysis and VFA accumulation from WAS. Results showed that both proteins and polysaccharides increased in the presence of nitrite, indicating the enhancement of sludge solubilization and hydrolysis processes. Mechanism investigations showed that nitrite pretreatment could disintegrate the sludge particle and disperse extracellular polymeric substances (EPS). Then, anaerobic digestion tests demonstrated VFA production increased with nitrite treatment. The maximal VFA accumulation was achieved with 0.1 g N/L nitrite dosage and pH 10.0 at a sludge retention time (SRT) of 7 days, which was much higher VFA production in comparison with the blank, sole nitrite pretreatment, or sole pH 10. The potential analysis suggested that the combined nitrite pretreatment and alkaline pH is capable of enhancing WAS digestion with a great benefit for biological nutrient removal (BNR).

  17. Structure modification and extracellular polymeric substances conversion during sewage sludge biodrying process.

    PubMed

    Cai, Lu; Krafft, Thomas; Chen, Tong-Bin; Gao, Ding; Wang, Li

    2016-09-01

    Biodrying, an economical and energy-saving biomass waste treatment, removes water from waste using the biological heat generated by organic matter degradation. Technical limitations associated with dewatering complicate the biodrying of sewage sludge. This study investigated the sludge alteration associated with its water removal, focusing on sludge form, extracellular polymeric substances, and free water release. An auto-feedback control technology was used for the biodrying; a scanning electron microscope was used to record the morphological change; three-dimensional excitation-emission matrix fluorescence spectroscopy was used to analyze extracellular polymeric substances (EPS) variation, and time domain reflectometry was used to assess the free water release. Over the 20-day biodrying, there was a 62% water removal rate during the first thermophilic phase. Biodrying created a hollow and stratified sludge structure. Aromatic proteins and soluble microbial byproducts in the EPS were significantly degraded. The thermophilic phase was the phase resulting in the greatest free water release. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Simultaneous Cr(VI) bio-reduction and methane production by anaerobic granular sludge.

    PubMed

    Hu, Qian; Sun, Jiaji; Sun, Dezhi; Tian, Lan; Ji, Yanan; Qiu, Bin

    2018-08-01

    Wastewater containing toxic hexavalent chromium (Cr(VI)) were treated with well-organized anaerobic granular sludge in this study. Results showed that the anaerobic granular sludge rapidly removed Cr(VI), and 2000 µg·L -1 Cr(VI) was completely eliminated within 6 min, which was much faster than the reported duration of removal by reported artificial materials. Sucrose added as a carbon source acted as an initial electron donor to reduce Cr(VI) to Cr(III). This process was considered as the main mechanism of Cr(VI) removal. Methane production by anaerobic granular sludge was improved by the addition of Cr(VI) at a concentration lower than 500 µg·L -1 . Anaerobic granular sludge had a well-organized structure, which presented good resistance against toxic Cr(VI). Trichoccus accelerated the degradation of organic substances to generate acetates with a low Cr(VI) concentration, thereby enhancing methane production by acetotrophic methanogens. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Phosphorus recovery from anaerobic swine lagoon sludge using the quick wash process

    USDA-ARS?s Scientific Manuscript database

    Long term accumulation of sludge in anaerobic swine lagoons reduces its storage volume and ability to treat waste. Usually, excess accumulation of lagoon sludge is removed using pumping dredges. The dredged sludge is then land applied at agronomic rates according to its nutrient content. The accumul...

  20. Phosphorus recovery from anaerobic swine lagoon sludge using the quick wash process

    USDA-ARS?s Scientific Manuscript database

    Long term and significant accumulation of sludge in anaerobic swine lagoons reduces its storage volume and ability to treat waste. Usually, excess accumulation of lagoon sludge is removed by dredging. The dredged sludge is then land applied at agronomic rates according to its nutrient content. Becau...

  1. Effects of soluble and particulate substrate on the carbon and energy footprint of wastewater treatment processes.

    PubMed

    Gori, Riccardo; Jiang, Lu-Man; Sobhani, Reza; Rosso, Diego

    2011-11-15

    Most wastewater treatment plants monitor routinely carbonaceous and nitrogenous load parameters in influent and effluent streams, and often in the intermediate steps. COD fractionation discriminates the selective removal of VSS components in different operations, allowing accurate quantification of the energy requirements and mass flows for secondary treatment, sludge digestion, and sedimentation. We analysed the different effects of COD fractions on carbon and energy footprint in a wastewater treatment plant with activated sludge in nutrient removal mode and anaerobic digestion of the sludge with biogas energy recovery. After presenting a simple rational procedure for COD and solids fractions quantification, we use our carbon and energy footprint models to quantify the effects of varying fractions on carbon equivalent flows, process energy demand and recovery. A full-scale real process was modelled with this procedure and the results are reported in terms of energy and carbon footprint. For a given process, the increase of the ratio sCOD/COD increases the energy demand on the aeration reactors, the associated CO(2) direct emission from respiration, and the indirect emission for power generation. Even though it appears as if enhanced primary sedimentation is a carbon and energy footprint mitigation practice, care must be used since the nutrient removal process downstream may suffer from an excessive bCOD removal and an increased mean cell retention time for nutrient removal may be required. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Evaluation of waste tank 16 using a field mercury analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, B.; Cook, J.R.

    1988-05-12

    Liquid radioactive wastes from the chemical processing of nuclear materials at the Savannah River Plant (SRP) are stored in large tanks buried near the ground surface. Each tank has multiple containment barriers designed to prevent leakage to the surrounding soil and groundwater. The only incident in which waste leaked through the multiple containment of a waste tank at SRP occurred at Tank 16 on September 8, 1960 (Poe, 1974; Prendergast, 1982). Tank 16 was built in 1955 and has a capacity of approximately one million gallons. Tank 16 consists of a steel primary containment vessel resting in a shallow steelmore » pan. A massive concrete encasement surrounds the tank and pan. After the leak in 1960, the tank was removed from service until 1967; at that time it was placed into service for lower activity wastes. In 1972 the tank was removed from service. Subsequently, all of the waste except a sludge heel of 67,000 gallons was removed from the tank. In 1980, this sludge was removed. Following the sludge removal, the tank was exhaustively cleaned and rinsed. Concentrations of radioactivity in the rinsewater suggested that the cleaning of the tank was effective (West and Morris, 1980). Recently, there has been concern about residual nonradioactive constituents, such as mercury, in the tank. To assist in evaluating the potential for residual mercury contamination, a survey method was developed and a survey of several tanks was conducted. 3 refs., 1 tab.« less

  3. ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.; Fink, S.

    2011-03-07

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of themore » chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, and 37 kg of mercury. (4) Most of the radioactivity remaining in the residual material is beta emitters and {sup 90}Sr. (5) The chemical cleaning removed more than {approx} 90% of the uranium isotopes and {sup 137}Cs. (6) The chemical cleaning removed {approx} 70% of the neptunium, {approx} 83% of the {sup 90}Sr, and {approx} 21% of the {sup 60}Co. (7) The chemical cleaning removed less than 10% of the plutonium, americium, and curium isotopes. (8) The chemical cleaning removed more than 90% of the aluminium, calcium, and sodium from the tank. (9) The cleaning operations removed 61% of lithium, 88% of non-radioactive strontium, and 65% of zirconium. The {sup 90}Sr and non-radioactive strontium were measured by different methods, and the differences in the fraction removed are not statistically significant. (10) Chemical cleaning removed 10-50% of the barium, chromium, iron, magnesium, manganese, and silicon. (11) Chemical cleaning removed only {approx}1% of the nickel.« less

  4. Ultrasonic and Thermal Pretreatments on Anaerobic Digestion of Petrochemical Sludge: Dewaterability and Degradation of PAHs

    PubMed Central

    Zhou, Jun; Xu, Weizhong; Wong, Jonathan W. C.; Yong, Xiaoyu; Yan, Binghua; Zhang, Xueying; Jia, Honghua

    2015-01-01

    Effects of different pretreatment methods on sludge dewaterability and polycyclic aromatic hydrocarbons (PAHs) degradation during petrochemical sludge anaerobic digestion were studied. Results showed that the total biogas production volume in the thermal pretreatment system was 4 and 5 times higher than that in the ultrasound pretreatment and in the control system, and the corresponding volatile solid removal efficiencies reached 28%, 15%, and 8%. Phenanthrene, paranaphthalene, fluoranthene, benzofluoranthene, and benzopyrene removal rates reached 43.3%, 55.5%, 30.6%, 42.9%, and 41.7%, respectively, in the thermal pretreatment system, which were much higher than those in the ultrasound pretreatment and in the control system. Moreover, capillary suction time (CST) of sludge increased after pretreatment, and then reduced after 20 days of anaerobic digestion, indicating that sludge dewaterability was greatly improved after anaerobic digestion. The decrease of protein and polysaccharide in the sludge could improve sludge dewaterability during petrochemical sludge anaerobic digestion. This study suggested that thermal pretreatment might be a promising enhancement method for petrochemical sludge solubilization, thus contributing to degradation of the PAHs, biogas production, and improvement of dewaterability during petrochemical sludge anaerobic digestion. PMID:26327510

  5. Review on the fate of organic micropollutants in wastewater treatment and water reuse with membranes.

    PubMed

    Siegrist, H; Joss, A

    2012-01-01

    A brief review of the fate of micropollutants in membrane-based wastewater treatment due to sorption, stripping, biological degradation/transformation and membrane separation is discussed, to give an overview of these technologies due to the growing importance for water reuse purposes. Compared with conventional activated sludge treatment (CAS) micropollutant removal in membrane bioreactor (MBR) is slightly improved due to complete suspended solids removal and increased sludge age. For discharge to sensitive receiving waters advanced treatment, such as post-ozonation or activated carbon adsorption, is recommended. In water reuse plants nanofiltration (NF) and reverse osmosis (RO) efficiently reject micropollutants due to size exclusions as well as electrostatic and hydrophobic effects reaching potable quality. To remove micropollutants fully, additionally post-ozone or the addition of powdered activated carbon (PAC) have to be applied, which in parallel also reduce NDMA precursors. The concentrate has to be treated if disposed to sensitive receiving waters due to its high micropollutant concentration and ecotoxicity potential. The present review summarizes principles and capabilities for the most important membrane-based applications for wastewater treatment, i.e. porous membranes in MBRs (micro- or ultrafiltration) and dense membrane applications (NF and RO) for water reuse.

  6. Biotransformation of trace organic compounds by activated sludge from a biological nutrient removal treatment system.

    PubMed

    Inyang, Mandu; Flowers, Riley; McAvoy, Drew; Dickenson, Eric

    2016-09-01

    The removal of trace organic compounds (TOrCs) and their biotransformation rates, kb (LgSS(-)(1)h(-)(1)) was investigated across different redox zones in a biological nutrient removal (BNR) system using an OECD batch test. Biodegradation kinetics of fourteen TOrCs with initial concentration of 1-36μgL(-)(1) in activated sludge were monitored over the course of 24h. Degradation kinetic behavior for the TOrCs fell into four groupings: Group 1 (atenolol) was biotransformed (0.018-0.22LgSS(-)(1)h(-)(1)) under anaerobic, anoxic, and aerobic conditions. Group 2 (meprobamate and trimethoprim) biotransformed (0.01-0.21LgSS(-)(1)h(-)(1)) under anoxic and aerobic conditions, Group 3 (DEET, gemfibrozil and triclosan) only biotransformed (0.034-0.26LgSS(-)(1)h(-)(1)) under aerobic conditions, and Group 4 (carbamazepine, primidone, sucralose and TCEP) exhibited little to no biotransformation (<0.001LgSS(-)(1)h(-)(1)) under any redox conditions. BNR treatment did not provide a barrier against Group 4 compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Removal of Cr(VI) ions by sewage sludge compost biomass from aqueous solutions: Reduction to Cr(III) and biosorption

    NASA Astrophysics Data System (ADS)

    Chen, Huixia; Dou, Junfeng; Xu, Hongbin

    2017-12-01

    Sewage sludge compost biomass was used as a novel biosorbent to remove hexavalent chromium from water. Surface area analysis, scanning electron microscopy, fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and point zero charge was applied to study the microstructure, compositions and chemical bonding states of the biomass adsorbent. Effects of contact time, biomass dosage, agitation speed, pH, the initial concentration of Cr(VI) and Cr(Ⅲ) on its adsorption removal were also performed in the batch experiments. A model describing adsorption, desorption and reduction phenomena during the sorption process has been referenced to model Cr(VI) sorption onto sewage sludge compost biomass. The result of characterization test shows that adsorption of Cr(VI) onto sewage sludge compost biomass followed by the partial reduction to Cr(Ⅲ) by biomass groups such as hydroxyl, carboxyl, and amino groups. The absorption kinetics model in the description of adsorption-coupled reduction of Cr(VI) fits successfully the kinetic data obtained at different temperatures and describes the kinetics profile of total, hexavalent and trivalent chromium. The study shows that sewage sludge compost biomass could be used as a potential biosorbent for removal of hexavalent chromium from wastewaters.

  8. Comparison of thermophilic bacteria and alkyl polyglucose pretreatment on two-stage anaerobic digestion with waste sludge: Biogas production potential and substrate metabolism process.

    PubMed

    Guo, Liang; Zhang, Zengshuai; Gao, Mengchun; She, Zonglian; Zhao, Yangguo; Guo, Yiding; Sun, Jian

    2018-02-01

    To gain a better understanding of the influence on two-stage anaerobic digestion of waste sludge with thermophilic bacteria (TB) and alkyl polyglucose (APG) pretreatment, changing of soluble chemical oxygen demand (SCOD), carbohydrate and protein in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) were analyzed. The excitation-emission matrix (EEM) with fluorescence regional integration (FRI) was also used to investigate compositional and structural characteristics of DOM. The highest hydrogen and methane yield of TB pretreated sludge was 12.2 ml/g VS (volatile suspended solid) and 124.7 ml/g VS, and that of APG pretreated sludge was 28.3 ml/g VS and 19.9 ml/g VS. The VS removal of TB pretreated sludge (36.7%) was higher than APG pretreated sludge (27.1%) in the two-stage anaerobic digestion. The APG pretreatment could inhibit the activity of methanogens and the substrate (such as volatile fatty acids (VFAs), protein and soluble microbial materials) was accumulated compared with TB pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Treating an aged pentachlorophenol- (PCP-) contaminated soil through three sludge handling processes, anaerobic sludge digestion, post-sludge digestion and sludge land application.

    PubMed

    Chen, S T; Berthouex, P M

    2001-01-01

    The extensive pentachlorophenol (PCP) contamination and its increasing treatment costs motivate the search for a more competitive treatment alternative. In a municipal wastewater treatment plant, anaerobic sludge-handling processes comprises three bio-processes, namely the anaerobic sludge digestion, post-sludge digestion and sludge land application, which reduce sludge organic content and make sludge a good fertilizer for land application. Availability and effectiveness make the anaerobic sludge handling processes potential technologies to treat PCP-contaminated soil. The technical feasibility of using anaerobic sludge bioprocesses was studied by treating PCP soil in two pilot digesters to simulate the primary sludge digestion, in serum bottles to mimic the post-sludge digestion, and in glass pans to represent the on-site sludge application. For primary digestion, the results showed that up to 0.98 and 0.6 mM of chemical and soil PCP, respectively, were treated at nearly 100% and 97.5% efficiencies. The PCP was transformed 95% to 3-MCP, 4.5% to 3,4-DCP, and 0.5% to 3,5-DCP. For post-digestion, 100% pure chemical PCP and greater than 95% soil PCP were removed in less than 6 months with no chlorophenol residues of any kind. Complete removal of PCP by-products makes this process a good soil cleanup method. For on-site treatment, PCP was efficiently treated by multiple sludge application; however, the PCP residue was observed due to the high initial PCP content in soil. Overall, more mass PCP per unit sludge per day was processed using the primary sludge digestion than the on-site soil treatment or post-sludge digestion. And, sludge acclimation resulted in better PCP treatment efficiencies with all three processes.

  10. Mechanism of Phosphorus Removal from Hanford Tank Sludge by Caustic Leaching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, Gregg J.

    Two experiments were conducted to explore the mechanism by which phosphorus is removed from Hanford tank sludge by caustic leaching. In the first experiment, a series of phosphate salts were treated with 3 M NaOH under conditions prototypic of the actual leaching process to be performed in the Waste Treatment and Immobilization Plant (WTP). The phosphates used were aluminum phosphate, bismuth phosphate, chromium(III) phosphate, and β-tri-calcium phosphate; all of these phases have previously been determined to exist in Hanford tank sludge. The leachate solution was sampled at selected time intervals and analyzed for the specific metal ion involved (Al, Bi,more » Ca, or Cr) and for P (total and as phosphate). The solids remaining after completion of the caustic leaching step were analyzed to determine the reaction product. In the second experiment, the dependence of P removal from bismuth phosphate was examined as a function of the hydroxide ion concentration. It was anticipated that a plot of log[phosphate] versus log[hydroxide] would provide insight into the phosphorus-removal mechanism. This report describes the test activities outlined in Section 6.3.2.1, Preliminary Investigation of Phosphate Dissolution, in Test Plan TP-RPP-WTP-467, Rev.1. The objectives, success criteria, and test conditions of Section 6.3.2.1 are summarized here.« less

  11. Distribution and characterization of anammox in a swine wastewater activated sludge facility.

    PubMed

    Yamagishi, Takao; Takeuchi, Mio; Wakiya, Yuichiro; Waki, Miyoko

    2013-01-01

    Anaerobic ammonium oxidation (anammox) is a novel biological nitrogen removal process that oxidizes NH4(+) to N2 with NO2(-) as an electron acceptor. The purpose of this study was to examine the potential activity and characteristics of anammox in a conventional swine wastewater treatment facility, which uses an activated sludge system consisting of three cascade aeration tanks equipped with ceramic support material. Anammox activity was estimated by a (15)N tracer assay method and was detected in all the sludge and biofilm samples in each aeration tank. Biofilm taken from the third aeration tank, in which the dissolved oxygen concentration was 7.5 mg/L and the wastewater included a high concentration of NO3(-), showed by far the highest anammox activity. A clone library analysis showed the existence of anammox bacteria closely related to 'Candidatus Jettenia asiatica' and 'Ca. Brocadia caroliniensis'. The optimum conditions for anammox activity were a pH of 6.7-7.2, a temperature of 35 °C, a NO2(-) concentration of 10 mmol/L or less, and an NH4(+) concentration of 32 mmol/L or less.

  12. Comparison between disintegrated and fermented sewage sludge for production of a carbon source suitable for biological nutrient removal.

    PubMed

    Soares, Ana; Kampas, Pantelis; Maillard, Sarah; Wood, Elizabeth; Brigg, Jon; Tillotson, Martin; Parsons, Simon A; Cartmell, Elise

    2010-03-15

    There is a need to investigate processes that enable sludge re-use while enhancing sewage treatment efficiency. Mechanically disintegrated thickened surplus activated sludge (SAS) and fermented primary sludge were compared for their capacity to produce a carbon source suitable for BNR by completing nutrient removal predictive tests. Mechanically disintegration of SAS using a deflaker enhanced volatile fatty acids (VFAs) content from 92 to 374 mg l(-1) (4.1-fold increase). In comparison, primary sludge fermentation increased the VFAs content from 3.5 g l(-1) to a final concentration of 8.7 g l(-1) (2.5-fold increase). The carbon source obtained from disintegration and fermentation treatments improved phosphate (PO(4)-P) release and denitrification by up to 0.04 mg NO(3)-Ng(-1)VSS min(-1) and 0.031 mg PO(4)-Pg(-1)VSS min(-1), respectively, in comparison to acetate (0.023 mg NO(3)-Ng(-1)VSS min(-1)and 0.010 mg PO(4)-Pg(-1)VSS min(-1)). Overall, both types of sludge were suitable for BNR but disintegrated SAS displayed lower carbon to nutrient ratios of 8 for SCOD:PO(4)-P and 9 for SCOD:NO(3)-N. On the other hand, SAS increased the concentration of PO(4)-P in the settled sewage by a further 0.97 g PO(4)-P kg(-1)SCOD indicating its potential negative impact towards nutrient recycling in the BNR process. (c) 2009 Elsevier B.V. All rights reserved.

  13. Optimization and modeling of reduction of wastewater sludge water content and turbidity removal using magnetic iron oxide nanoparticles (MION).

    PubMed

    Hwang, Jeong-Ha; Han, Dong-Woo

    2015-01-01

    Economic and rapid reduction of sludge water content in sewage wastewater is difficult and requires special advanced treatment technologies. This study focused on optimizing and modeling decreased sludge water content (Y1) and removing turbidity (Y2) with magnetic iron oxide nanoparticles (Fe3O4, MION) using a central composite design (CCD) and response surface methodology (RSM). CCD and RSM were applied to evaluate and optimize the interactive effects of mixing time (X1) and MION concentration (X2) on chemical flocculent performance. The results show that the optimum conditions were 14.1 min and 22.1 mg L(-1) for response Y1 and 16.8 min and 8.85 mg L(-1) for response Y2, respectively. The two responses were obtained experimentally under this optimal scheme and fit the model predictions well (R(2) = 97.2% for Y1 and R(2) = 96.9% for Y2). A 90.8% decrease in sludge water content and turbidity removal of 29.4% were demonstrated. These results confirm that the statistical models were reliable, and that the magnetic flocculation conditions for decreasing sludge water content and removing turbidity from sewage wastewater were appropriate. The results reveal that MION are efficient for rapid separation and are a suitable alterative to sediment sludge during the wastewater treatment process.

  14. Effect of volumetric organic loading on the nitrogen removal rate by immobilised activated sludge.

    PubMed

    Zielinska, M; Wojnowska-Baryla, I

    2006-05-01

    Activated sludge was immobilised in a porous ceramic carrier to create a stationary core of a bio-reactor. Municipal wastewater was treated in this reactor under varied conditions of volumetric organic loading rate (expressed by chemical oxygen demand (COD)) that were the following: 6.5, 8.0, 20.8, 48.8 g COD l(-1) d(-1). The rate constants of ammonification, nitrification and denitrification under aerobic conditions were determined. All rate constants increased with a growth in volumetric loading rate, but the highest loading value of 48.8 g COD l(-1) d(-1) limited the ammonification and nitrification rates.

  15. Formaldehyde removal from air by a biodegradation system.

    PubMed

    Xu, Zhongjun; Hou, Haiping

    2010-07-01

    A biodegradation system was used for the treatment of formaldehyde-polluted air. Air pressure dropped 12 mm water in the trickling biofilter during the experiment of about 4 months. In the range 20-300 mg m(-3) influent formaldehyde, this biodegradation system obtained 4.0-40.0 mg h(-1) degradation capacity, with 100%-66.7% degradation efficiency. The amount of formaldehyde degraded by the trickling biofilter was more than that by the activated sludge bioreactor below 200 mg m(-3) influent gaseous formaldehyde while the amount by the trickling biofilter was less than that by the activated sludge bioreactor over 200 mg m(-3) influent gaseous formaldehyde.

  16. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge

    USGS Publications Warehouse

    Sibrell, Philip L.; Montgomery, Gary A.; Ritenour, Kelsey L.; Tucker, Travis W.

    2009-01-01

    Excess phosphorus in wastewaters promotes eutrophication in receiving waterways. A??cost-effective method for the removal of phosphorus from water would significantly reduce the impact of such wastewaters on the environment. Acid mine drainage sludge is a waste product produced by the neutralization of acid mine drainage, and consists mainly of the same metal hydroxides used in traditional wastewater treatment for the removal of phosphorus. In this paper, we describe a method for the drying and pelletization of acid mine drainage sludge that results in a particulate media, which we have termed Ferroxysorb, for the removal of phosphorus from wastewater in an efficient packed bed contactor. Adsorption capacities are high, and kinetics rapid, such that a contact time of less than 5 min is sufficient for removal of 60-90% of the phosphorus, depending on the feed concentration and time in service. In addition, the adsorption capacity of the Ferroxysorb media was increased dramatically by using two columns in an alternating sequence so that each sludge bed receives alternating rest and adsorption cycles. A stripping procedure based on treatment with dilute sodium hydroxide was also developed that allows for recovery of the P from the media, with the possibility of generating a marketable fertilizer product. These results indicate that acid mine drainage sludges - hitherto thought of as undesirable wastes - can be used to remove phosphorus from wastewater, thus offsetting a portion of acid mine drainage treatment costs while at the same time improving water quality in sensitive watersheds.

  17. Degradation of pharmaceuticals from membrane biological reactor sludge with Trametes versicolor.

    PubMed

    Llorens-Blanch, Guillem; Badia-Fabregat, Marina; Lucas, Daniel; Rodriguez-Mozaz, Sara; Barceló, Damià; Pennanen, Taina; Caminal, Gloria; Blánquez, Paqui

    2015-02-01

    Emerging contaminants are a wide group of chemical products that are found at low concentrations in the environment. These contaminants can be either natural, e.g., estrogens, or synthetics, such as pesticides and pharmaceuticals, which can enter the environment through the water and sludge from wastewater treatment plants (WWTP). The growth of Trametes versicolor on membrane biological reactor (MBR) sludge in bioslurry systems at the Erlenmeyer scale was assessed and its capacity for removing pharmaceutical and personal care products (PPCPs) was evaluated. The ability of the fungus to remove hydrochlorothiazide (HZT) from liquid media cultures was initially assessed. Consequently, different bioslurry media (complete nutrient, glucose and no-nutrient addition) and conditions (sterile and non-sterile) were tested, and the removal of spiked HZT was monitored under each condition. The highest spiked HZT removal was assessed under non-sterile conditions without nutrient addition (93.2%). Finally, the removal assessment of a broad set of pharmaceuticals was performed in non-spiked bioslurry. Under non-sterile conditions, the fungus was able to completely degrade 12 out of the 28 drugs initially detected in the MBR sludge, achieving an overall degradation of 66.9%. Subsequent microbial analysis showed that the microbial diversity increased after 15 days of treatment, but there was still some T. versicolor in the bioslurry. Results showed that T. versicolor can be used to remove PPCPs in bioslurry systems under non-sterile conditions, without extra nutrients in the media, and in matrices as complex as an MBR sludge.

  18. Innovative sludge pretreatment technology for impurity separation using micromesh.

    PubMed

    Mei, Xiaojie; Han, Xiaomeng; Zang, Lili; Wu, Zhichao

    2018-05-23

    In order to reduce the impacts on sludge treatment facilities caused by impurities such as fibers, hairs, plastic debris, and coarse sand, an innovative primary sludge pretreatment technology, sludge impurity separator (SIS), was proposed in this study. Non-woven micromesh with pore size of 0.40 mm was used to remove the impurities from primary sludge. Results of lab-scale tests showed that impurity concentration, aeration intensity, and channel gap were the key operation parameters, of which the optimized values were below 25 g/L, 0.8 m 3 /(m 2  min), and 2.5 cm, respectively. In the full-scale SIS with treatment capacity of 300 m 3 /day, over 88% of impurities could be removed from influent and the cleaning cycle of micromesh was more than 16 days. Economic analysis revealed that the average energy consumption was 1.06 kWh/m 3 treated sludge and operation cost was 0.6 yuan/m 3 treated sludge.

  19. Vermistabilization of sewage sludge (biosolids) by earthworms: converting a potential biohazard destined for landfill disposal into a pathogen-free, nutritive and safe biofertilizer for farms.

    PubMed

    Sinha, Rajiv K; Herat, Sunil; Bharambe, Gokul; Brahambhatt, Ashish

    2010-10-01

    Earthworms feed readily upon sludge components, rapidly converting them into vermicompost, reduce the pathogens to safe levels and ingest the heavy metals. Volume is significantly reduced from 1 m³ of wet sludge (80% moisture) to 0.5 m³ of vermicompost (30% moisture). Earthworms have real potential both to increase the rate of aerobic decomposition and composting of organic matter and also to stabilize the organic residues in the sludge--removing the harmful pathogens (by devouring them and also by discharge of antibacterial coelomic fluid) and heavy metals (by bio-accumulation). They also mineralize the essential nutrients nitrogen, phosphorus and potassium from the sludge. It may not be possible to remove toxic substances completely, but at least change the 'chemical make-up' of the sludge to make it harmless to the soil and enable its use as a nutritive organic fertilizer. This method has been found to comply with grade A standards for sludge stabilization.

  20. Biodegradation of a Real Dye Wastewater Containing High Concentration of Total Dissolved Inorganic Salts (TDIS) in a Lab-Scale Activated Sludge Unit

    NASA Astrophysics Data System (ADS)

    Patel, Upendra D.; Ruparelia, Jayesh; Patel, Margi

    2017-11-01

    Biodegradation studies on Dye wastewater (DW) are normally conducted on simulated wastewaters or aqueous dyes solutions supported by growth medium, and often, an easy carbon source such as glucose. This rarely resembles actual DW which is characterized by the presence of complex organic compounds, and a high concentration of Total Dissolved Inorganic Salts (TDIS). Biodegradation of real Direct Dyes Wastewater (DDW), and a mixed-waste stream (MWS) consisting of equal volumes of Direct and Acid dyes wastewaters, was carried out using a lab-scale activated sludge unit. The DDW and MWS had TDIS and COD concentrations of 105 and 4.5 g/L, and 54 and 4.1 g/L, respectively. After acclimatization process of 70 days, 67% COD removal was achieved at influent TDIS and COD concentrations of 79.6 g/L and 4320 mg/L, respectively, for the DDW at HRT of 3 days and MLVSS concentration of 2000 mg/L. Although no sludge wastage was done, initially increased concentration of MLVSS ( 2400 mg/L) decreased to 1700 mg/L with increase in TDIS. Using the biomass acclimatized for DDW for treatment of MWS, consistent COD removal of 70% was achieved at HRT of 4.3 days and an MLVSS concentration of 1600 mg/L. Results suggest that significant COD removal can be achieved in real DW if biomass is gradually acclimatized to increasing TDIS concentrations.

  1. Mass flows of perfluorinated compounds (PFCs) in central wastewater treatment plants of industrial zones in Thailand.

    PubMed

    Kunacheva, Chinagarn; Tanaka, Shuhei; Fujii, Shigeo; Boontanon, Suwanna Kitpati; Musirat, Chanatip; Wongwattana, Thana; Shivakoti, Binaya Raj

    2011-04-01

    Perfluorinated compounds (PFCs) are fully fluorinated organic compounds, which have been used in many industrial processes and have been detected in wastewater and sludge from municipal wastewater treatment plants (WWTPs) around the world. This study focused on the occurrences of PFCs and PFCs mass flows in the industrial wastewater treatment plants, which reported to be the important sources of PFCs. Surveys were conducted in central wastewater treatment plant in two industrial zones in Thailand. Samples were collected from influent, aeration tank, secondary clarifier effluent, effluent and sludge. The major purpose of this field study was to identify PFCs occurrences and mass flow during industrial WWTP. Solid-phase extraction (SPE) coupled with HPLC-ESI-MS/MS were used for the analysis. Total 10 PFCs including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluoropropanoic acid (PFPA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorohexane sulfonate (PFHxS), perfluoronanoic acid (PFNA), perfluordecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorododecanoic acid (PFDoA) were measured to identify their occurrences. PFCs were detected in both liquid and solid phase in most samples. The exceptionally high level of PFCs was detected in the treatment plant of IZ1 and IZ2 ranging between 662-847ngL(-1) and 674-1383ngL(-1), respectively, which greater than PFCs found in most domestic wastewater. Due to PFCs non-biodegradable property, both WWTPs were found ineffective in removing PFCs using activated sludge processes. Bio-accumulation in sludge could be the major removal mechanism of PFCs in the process. The increasing amount of PFCs after activated sludge processes were identified which could be due to the degradation of PFCs precursors. PFCs concentration found in the effluent were very high comparing to those in river water of the area. Industrial activity could be the one of major sources of PFCs contamination in the water environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Microalgae-activated sludge treatment of molasses wastewater in sequencing batch photo-bioreactor.

    PubMed

    Tsioptsias, Costas; Lionta, Gesthimani; Samaras, Petros

    2017-05-01

    The aim of this work was the examination of the treatment potential of molasses wastewater, by the utilization of activated sludge and microalgae. The systems used included a sequencing batch bioreactor and a similar photo-bioreactor, favoring microalgae growth. The microalgae treatment of molasses wastewater mixture resulted in a considerable reduction in the total nitrogen content. A reduction in the ammonium and nitrate content was observed in the photo-bioreactor, while the effluent's total nitrogen consisted mainly of 50% organic nitrogen. The transformation of the nitrogen forms in the photo-bioreactor was attributed to microalgae activity, resulting in the production of a better quality effluent. Lower COD removal was observed for the photo-bioreactor than the control, which however increased, by the replacement of the anoxic phase by a long aeration period. The mechanism of nitrogen removal included both the denitrification process during the anoxic stage and the microalgae activities, as the replacement of the anoxic stage resulted in low total nitrogen removal capacities. A decrease in the photobioreactor performance was observed after 35 days of operation due to biofilm formation on the light tube surface, while the operation at higher temperature accelerated microalgae growth, resulting thus in the early failure of the photoreactor.

  3. Critical operational parameters for zero sludge production in biological wastewater treatment processes combined with sludge disintegration.

    PubMed

    Yoon, Seong-Hoon; Lee, Sangho

    2005-09-01

    Mathematical models were developed to elucidate the relationships among process control parameters and the effect of these parameters on the performance of anoxic/oxic biological wastewater processes combined with sludge disintegrators (A/O-SD). The model equations were also applied for analyses of activated sludge processes hybrid with sludge disintegrators (AS-SD). Solubilization ratio of sludge in the sludge disintegrator, alpha, hardly affected sludge reduction efficiencies if the biomass was completely destructed to smaller particulates. On the other hand, conversion efficiency of non-biodegradable particulates to biodegradable particulates, beta, significantly affected sludge reduction efficiencies because beta was directly related to the accumulation of non-biodegradable particulates in bioreactors. When 30% of sludge in the oxic tank was disintegrated everyday and beta was 0.5, sludge reduction was expected to be 78% and 69% for the A/O-SD and AS-SD processes, respectively. Under this condition, the sludge disintegration number (SDN), which is the amount of sludge disintegrated divided by the reduced sludge, was calculated to be around 4. Due to the sludge disintegration, live biomass concentration decreased while other non-biodegradable particulates concentration increased. As a consequence, the real F/M ratio was expected to be much higher than the apparent F/M. The effluent COD was maintained almost constant for the range of sludge disintegration rate considered in this study. Nitrogen removal efficiencies of the A/O-SD process was hardly affected by the sludge disintegration until daily sludge disintegration reaches 40% of sludge in the oxic tank. Above this level of sludge disintegration, autotrophic biomass concentration decreases overly and TKN in the effluent increases abruptly in both the A/O-SD and AS-SD processes. Overall, the trends of sludge reduction and effluent quality according to operation parameters matched well with experimental results found in literatures.

  4. Removal of 226Ra and 228Ra from TENORM sludge waste using surfactants solutions.

    PubMed

    Attallah, M F; Hamed, Mostafa M; El Afifi, E M; Aly, H F

    2015-01-01

    The feasibility of using surfactants as extracting agent for the removal of radium species from TENORM sludge produced from petroleum industry is evaluated. In this investigation cationic and nonionic surfactants were used as extracting agents for the removal of radium radionuclides from the sludge waste. Two surfactants namely cetyltrimethylammonium bromide (CTAB) and Triton X-100 (TX100) were investigated as the extracting agents. Different parameters affecting the removal of both (226)Ra and (228)Ra by the two surfactants as well as their admixture were studied by the batch technique. These parameters include effect of shaking time, surfactants concentration and temperature as well as the effect of surfactants admixture. It was found that, higher solution temperature improves the removal efficiency of radium species. Combined extraction of nonionic and cationic surfactants produces synergistic effect in removal both (226)Ra and (228)Ra, where the removals reached 84% and 80% for (226)Ra and (228)Ra, respectively, were obtained using surfactants admixture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. [Feasibility and Economic Analysis of Denitrification of Photovoltaic Wastewater Containing High Fluorine].

    PubMed

    Li, Xiang; Zhu, Liang; Huang, Yong; Yang, Peng-bing; Cui, Jian-hong; Ma, Hang

    2016-04-15

    In order to reduce acid and alkali dosing in wastewater treatment process of polycrystalline silicon by using denitrification after fluoride removal. This experiment studied the feasibility of first removing nitrogen using the denitrification process by start-up denitrifying reactor before fluoride removal. The results showed that the F⁻ concentration in the waste water to had a certain influence on the denitrification. When the concentration of F⁻ was controlled to about 750 mg · L⁻¹, the activity of denitrifying bacteria was not significantly influenced; when the concentration of F⁻ continued to increase, the denitrification efficiency of denitrifying sludge gradually reduced. In wastewater treatment of polycrystalline silicon, if the concentration of F⁻ was kept below 800 mg · L⁻¹, the denitrification performance of denitrifying sludge was not obviously affected. After 93 d operation, the total nitrogen in effluent was stabilized below 50 mg · L⁻¹, the total nitrogen removal efficiency reached 90%, and the removal rate reached 5 kg · (m³ · d)⁻¹. The calculation result showed, compared with the conventional denitrification process after fluoride removal, the proposed process could save about 70% of acid and 100% of alkali dosing, greatly reducing the cost of wastewater treatment.

  6. Effect of acclimation and nutrient supply on 5-tolyltriazole biodegradation with activated sludge communities.

    PubMed

    Herzog, Bastian; Yuan, Heyang; Lemmer, Hilde; Horn, Harald; Müller, Elisabeth

    2014-07-01

    The corrosion inhibitor 5-tolyltriazole (5-TTri) can have a detrimental impact on aquatic systems thus implying an acute need to reduce the effluent concentrations of 5-TTri. In this study, 5-TTri biodegradation was enhanced through acclimation and nutrient supply. Activated sludge communities (ASC) were setup in nine subsequent ASC generations. While generation two showed a lag phase of five days without biodegradation, generations four to nine utilized 5-TTri right after inoculation, with biodegradation rates from 3.3 to 5.2 mg L(-1)d(-1). Additionally, centrifuged AS supernatant was used to simulate the nutrient conditions in wastewater. This sludge supernatant (SS) significantly enhanced biodegradation, resulting in removal rates ranging from 3.2 to 5.0 mg L(-1)d(-1) without acclimation while the control groups without SS observed lower rates of ⩽ 2.2 mg L(-1)d(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Water quality management library. 2. edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckenfelder, W.W.; Malina, J.F.; Patterson, J.W.

    1998-12-31

    A series of ten books offered in conjunction with Water Quality International, the Biennial Conference and Exposition of the International Association on Water Pollution Research and Control (IAWPRC). Volume 1, Activated Sludge Process, Design and Control, 2nd edition, 1998: Volume 2, Upgrading Wastewater Treatment Plants, 2nd edition, 1998: Volume 3, Toxicity Reduction, 2nd edition, 1998: Volume 4, Municipal Sewage Sludge Management, 2nd edition, 1998: Volume 5, Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal, 1st edition, 1992: Volume 6, Dynamics and Control of the Activated Sludge Process, 2nd edition, 1998: Volume 7: Design of Anaerobic Processes formore » the Treatment of Industrial and Municipal Wastes, 1st edition, 1992: Volume 8, Groundwater Remediation, 1st edition, 1992: Volume 9, Nonpoint Pollution and Urban Stormwater Management, 1st edition, 1995: Volume 10, Wastewater Reclamation and Reuse, 1st edition, 1998.« less

  8. Treatment of natural rubber processing wastewater using a combination system of a two-stage up-flow anaerobic sludge blanket and down-flow hanging sponge system.

    PubMed

    Tanikawa, D; Syutsubo, K; Hatamoto, M; Fukuda, M; Takahashi, M; Choeisai, P K; Yamaguchi, T

    2016-01-01

    A pilot-scale experiment of natural rubber processing wastewater treatment was conducted using a combination system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactor for more than 10 months. The system achieved a chemical oxygen demand (COD) removal efficiency of 95.7% ± 1.3% at an organic loading rate of 0.8 kg COD/(m(3).d). Bacterial activity measurement of retained sludge from the UASB showed that sulfate-reducing bacteria (SRB), especially hydrogen-utilizing SRB, possessed high activity compared with methane-producing bacteria (MPB). Conversely, the acetate-utilizing activity of MPB was superior to SRB in the second stage of the reactor. The two-stage UASB-DHS system can reduce power consumption by 95% and excess sludge by 98%. In addition, it is possible to prevent emissions of greenhouse gases (GHG), such as methane, using this system. Furthermore, recovered methane from the two-stage UASB can completely cover the electricity needs for the operation of the two-stage UASB-DHS system, accounting for approximately 15% of the electricity used in the natural rubber manufacturing process.

  9. Concentrations and inactivation of Ascaris eggs and pathogen indicator organisms in wastewater stabilization pond sludge.

    PubMed

    Nelson, K L

    2003-01-01

    During treatment in wastewater stabilization ponds (WSPs) many pathogens, in particular helminth eggs, are concentrated in the sludge layer. Because periodic removal of the sludge is often required, information is needed on the concentrations and inactivation of pathogens in the sludge layer to evaluate the public health risk they pose upon removal of the sludge. In this paper, previous reports on the sludge concentrations of various pathogen indicator organisms and helminth eggs are reviewed and results from our own recent experiments are reported. The advantages and disadvantages of several methods for studying inactivation in the sludge layer are discussed, as well as implications for the management of WSP sludge. In our recent experiments, which were conducted at three WSPs in central Mexico, sludge cores, dialysis chambers, and batch experiments were used to measure the inactivation rates of fecal coliform bacteria, fecal enterococci, F+ coliphage, somatic coliphage, and Ascaris eggs. The first-order inactivation rate constants were found to be approximately 0.1, 0.1, 0.01, 0.001, and 0.001 d(-1), respectively. The concentrations of all the organisms were found to vary both vertically and horizontally in the sludge layer; therefore, to determine the maximum and average concentration of organisms in the sludge layer of a WSP, complete sludge cores must be collected from representative locations throughout the pond.

  10. Evaluating the effects of activated carbon on methane generation and the fate of antibiotic resistant genes and class I integrons during anaerobic digestion of solid organic wastes.

    PubMed

    Zhang, Jingxin; Mao, Feijian; Loh, Kai-Chee; Gin, Karina Yew-Hoong; Dai, Yanjun; Tong, Yen Wah

    2018-02-01

    The effects of activated carbon (AC) on methane production and the fate of antibiotic resistance genes (ARGs) were evaluated through comparing the anaerobic digestion performance and transformation of ARGs among anaerobic mono-digestion of food waste, co-digestion of food waste and chicken manure, and co-digestion of food waste and waste activated sludge. Results showed that adding AC in anaerobic digesters improved methane yield by at least double through the enrichment of bacteria and archaea. Conventional digestion process showed ability in removing certain types of ARGs, such as tetA, tetX, sul1, sul2, cmlA, floR, and intl1. Supplementing AC in anaerobic digester enhanced the removal of most of the ARGs in mono-digestion of food waste. The effects tended to be minimal in co-digestion of co-substrates such as chicken manure and waste activated sludge, both of which contain a certain amount of antibiotics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Particle size effects on uptake of heavy metals from sewage sludge compost using natural zeolite clinoptilolite.

    PubMed

    Zorpas, Antonis A; Vassilis, Inglezakis; Loizidou, Maria; Grigoropoulou, Helen

    2002-06-01

    Land application of sewage sludge may be the least energy consuming and the most cost-effective means of sludge disposal or utilization. However, the major technical problem with land application of sludge concerns the high concentrations of heavy metals. These metals may be leached and enter the ecosystem, the food chain, and eventually the human population. This paper deals with the removal of heavy metals from sewage sludge compost using natural zeolite clinoptilolite, in respect to the particle size. The final results indicate that heavy metals can be sufficiently removed by using 25% w/w of zeolite with particle size of 3.3-4.0 mm. Pore clogging and structural damage in smaller particle sizes is probably the reason for lower uptake of metals by the latter.

  12. The effect of hydraulic retention time in onsite wastewater treatment and removal of pharmaceuticals, hormones and phenolic utility substances.

    PubMed

    Ejhed, H; Fång, J; Hansen, K; Graae, L; Rahmberg, M; Magnér, J; Dorgeloh, E; Plaza, G

    2018-03-15

    Micropollutants such as pharmaceuticals, hormones and phenolic utility chemicals in sewage water are considered to be an emerging problem because of increased use and observed adverse effects in the environment. The study provides knowledge on the removal efficiency of micropollutants with a range of physical and chemical properties in three commercially available onsite wastewater treatment facilities (OWTFs), tested on influent wastewater collected from 2500 person equivalents in Bildchen, Germany. A longer hydraulic retention time would in theory be expected to have a positive effect, and this study presents results for three different OWTFs in full-scale comparable tests under natural conditions. A range of 24 different pharmaceuticals, five phenols and three hormones were analyzed. Flow-proportional consecutive sampling was performed in order to determine the removal efficiency. Twenty-eight substances were detected in the effluent wastewater out of 32 substances included. Average effluent concentrations of Simvastatin, Estrone, Estradiol and Ethinylestradiol were above the indicative critical-effect concentration of pharmacological effect on fish in all facilities. Average effluent concentrations of both Diclofenac and Estradiol were higher than the Environmental Quality Standards applied in Sweden (190-240 times and 9-35 times respectively). The removal efficiency of micropollutants was high for substances with high logK ow , which enhance the adsorption and removal with sludge. Low removal was observed for substances with low logK ow and acidic characteristics, and for substances with stabilizing elements of the chemical structure. Facilities that use activated sludge processes removed hormones more efficiently than facilities using trickling filter treatment technique. Moreover, longer hydraulic retention time increased the removal of pharmaceuticals, hormones, turbidity and total nitrogen. Removal of Caffeine, Ibuprofen, Estrone, Naproxen and Estradiol, was strongly correlated to the sludge and particles removal. Thus, the efficiency of the tested OWTFs could be improved by adjusting the technical methods and increasing the hydraulic retention time. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Occurrence and fate of androgens, estrogens, glucocorticoids and progestagens in two different types of municipal wastewater treatment plants.

    PubMed

    Liu, Shan; Ying, Guang-Guo; Zhao, Jian-Liang; Zhou, Li-Jun; Yang, Bin; Chen, Zhi-Feng; Lai, Hua-Jie

    2012-02-01

    The occurrence and fate of fourteen androgens, four estrogens, five glucocorticoids and five progestagens were investigated in two different types of wastewater treatment plants (Plant A: activated sludge with chlorination, and Plant B: oxidation ditch with UV) of Guangdong province, China. 14, 14, and 10 of 28 target compounds were detected in the influent, effluent and dewatered sludge samples with the concentrations ranging from below 1.2 ± 0.0 ng L(-1) (stanozolol) to 1368 ± 283 ng L(-1) (epi-androsterone), below 1.0 ± 0.0 ng L(-1) (progesterone) to 23.1 ± 1.0 ng L(-1) (5α-dihydrotestosterone), 1.0 ± 0.1 ng g(-1) (estrone) to 460 ± 4.4 ng g(-1) (5α-dihydrotestosterone), respectively. The concentrations of total androgens (1554-1778 ng L(-1) in influent, 13.3-47.8 ng L(-1) in effluent, 377-923 ng g(-1) in dewatered sludge) were much higher than those of total estrogens (41.5-60.2 ng L(-1) in influent, 5.6-13.5 ng L(-1) in effluent, 13.9-57.8 ng g(-1) in dewatered sludge), glucocorticoids (171-192 ng L(-1) in influent, 2.2-6.3 ng L(-1) in effluent, N.D.-4.4 ng g(-1) in dewatered sludge), and progestagens (39.6-40.5 ng L(-1) in influent, 6.9-12.1 ng L(-1) in effluent, N.D. in dewatered sludge) in these two WWTPs. According to mass balance analysis, the removal rates of most target steroids in Plant A had exceeded 90%, while those in Plant B for nearly half of detected target steroids were lower than 80%. It is obvious that the treatment capacity of the activated sludge system (Plant A) is superior to the oxidation ditch (Plant B) in the degradation of steroids in sewage treatment systems. Androgens, estrogens and progestagens were mainly removed by sorption and degradation, while the reduction of glucocorticoids was primarily due to degradation.

  14. Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.

    PubMed

    Lotito, Adriana Maria; De Sanctis, Marco; Di Iaconi, Claudio; Bergna, Giovanni

    2014-05-01

    Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Elucidation of major contributors involved in nitrogen removal and transcription level of nitrogen-cycling genes in activated sludge from WWTPs

    NASA Astrophysics Data System (ADS)

    Che, You; Liang, Peixin; Gong, Ting; Cao, Xiangyu; Zhao, Ying; Yang, Chao; Song, Cunjiang

    2017-03-01

    We investigated nitrogen-cycle bacterial communities in activated sludge from 8 municipal wastewater treatment plants (WWTPs). Redundancy analyses (RDA) showed that temperature was the most significant driving force in shaping microbial community structure, followed by influent NH4+ and total nitrogen (TN). The diversity of ammonia oxidizing and nitrite reducing bacteria were investigated by the construction of amoA, nirS and nirK gene clone libraries. Phylogenetic analysis indicated that Thauera and Mesorhizobium were the predominant nitrite reducing bacteria, and Nitrosomonas was the only detected ammonia oxidizing bacteria in all samples. Quantification of transcription level of nirS and nirK genes indicated that nirS-type nitrite reducing bacteria played the dominant roles in nitrite reduction process. Transcription level of nirS gene positively correlated with influent NH4+ and TN significantly, whereas inversely linked with hydraulic retention time. Temperature had a strong positive correlation to transcription level of amoA gene. Overall, this study deepened our understanding of the major types of ammonia oxidizing and nitrite reducing bacteria in activated sludge of municipal WWTPs. The relationship between transcription level of nitrogen-cycle genes and operational or environmental variables of WWTPs revealed in this work could provide guidance for optimization of operating parameters and improving the performance of nitrogen removal.

  16. Effect of chemo-mechanical disintegration on sludge anaerobic digestion for enhanced biogas production.

    PubMed

    Kavitha, S; Pray, S Saji; Yogalakshmi, K N; Kumar, S Adish; Yeom, Ick-Tae; Banu, J Rajesh

    2016-02-01

    The effect of combined surfactant-dispersion pretreatment on dairy waste activated sludge (WAS) reduction in anaerobic digesters was investigated. The experiments were performed with surfactant, Sodium dodecyl sulfate (SDS) in the range of 0.01 to 0.1 g/g suspended solids (SS) and disperser with rpm of 5000-25,000. The COD (chemical oxygen demand) solubilization, suspended solids reduction, and biogas generation increased for an energy input of 7377 kJ/kg total solids (TS) (12,000 rpm, 0.04 g/g SS, and 30 min) and were found to be 38, 32, and 75 %, higher than that of control. The pretreated sludge improved the performance of semicontinuous anaerobic digesters of 4 L working volume operated at four different SRTs (sludge retention time). SRT of 15 days was found to be appropriate showing 49 and 51 % reduction in SS and volatile solids (VS), respectively. The methane yield of the pretreated sample was observed to be 50 mL/g VS removed which was observed to be comparatively higher than the control (12 mL/g VS removed) at optimal SRT of 15 days. To the best of the authors' knowledge, this study is the first to be reported and not yet been documented in literature.

  17. Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor

    PubMed Central

    Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang

    2015-01-01

    Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3−-N could be removed or reduced, some amount of NO2−-N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy. PMID:26257096

  18. Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor.

    PubMed

    Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang

    2015-08-10

    Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3(-)-N could be removed or reduced, some amount of NO2(-)-N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy.

  19. Nitrogen removal from sludge digester liquids by nitrification/denitrification or partial nitritation/anammox: environmental and economical considerations.

    PubMed

    Fux, C; Siegrist, H

    2004-01-01

    In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this "achievement" turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.

  20. Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang

    2015-08-01

    Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3--N could be removed or reduced, some amount of NO2--N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy.

  1. Filamentous Bacterium Eikelboom Type 0092 in Activated Sludge Plants in Australia Is a Member of the Phylum Chloroflexi▿

    PubMed Central

    Speirs, Lachlan; Nittami, Tadashi; McIlroy, Simon; Schroeder, Sarah; Seviour, Robert J.

    2009-01-01

    Molecular data show that the filamentous bacterium Eikelboom type 0092, frequently seen in Australian activated sludge plants, is a member of the phylum Chloroflexi. Fluorescence in situ hybridization (FISH) probes designed against cloned 16S rRNA sequences from a full-scale enhanced biological phosphate removal-activated sludge plant community, where this was a dominant filament morphotype, suggest that it can exist as two variants, differing in their trichome diameter. When applied to samples from several treatment plants in eastern Australia, each FISH probe targeted only the type 0092 filament morphotype against which it was designed. The patterns of FISH signals generated with both were consistent with the ribosomes not being evenly distributed but arranged as intracellular aggregates. The FISH survey data showed that these two variants appeared together in most but not all of the plants examined. None stained positively for intracellular presence of either poly-β-hydroxyalkanoates or polyphosphate. PMID:19218415

  2. Effect of dewatering and composting on helminth eggs removal from lagooning sludge under semi-arid climate.

    PubMed

    El Hayany, Bouchra; El Glaoui, Ghizlen El Mezouari; Rihanni, Mohammed; Ezzariai, Amine; El Faiz, Abdelouahed; El Gharous, Mohamed; Hafidi, Mohamed; El Fels, Loubna

    2018-04-01

    In this work, we assessed the drying and composting effectiveness of helminth eggs removal from sewage sludge of a lagoon wastewater treatment plant located in Chichaoua city. The composting was run after mixing sludge with green waste in different proportions: M1 (½ sludge + ½ green waste), M2 ([Formula: see text] sludge + [Formula: see text] green waste), and M3 ([Formula: see text] sludge + [Formula: see text] green waste) for 105 days. The analysis of the dewatered sewage sludge showed a load of 8-24 helminth eggs/g of fresh matter identified as Ascaris spp. eggs (5-19 eggs/g) followed by Toxocara spp. (0.2 to 2.4 eggs/g); Hookworm spp. and Capillaria spp. (0.4-1 egg/g); Trichuris spp., Taenia spp., and Shistosoma spp. (< 1 egg/g) in the untreated sludge. After 105 days of treatment by composting, we noted a total reduction of helminth eggs in the order of 97.5, 97.83, and 98.37% for mixtures M1, M2, and M3, respectively. The Ascaris spp. eggs were reduced by 98% for M1 and M3 treatments and by 97% for M 2 Treatment. Toxocara spp., Hookworm spp., Trichuris spp., Capillaria spp., and Shistosoma spp. eggs were totally eliminated (100% decrease) and the Taenia spp. was absent from the first stage of composting. These results confirm the effectiveness of both dehydrating and composting processes on the removal of helminth eggs.

  3. Pilot-scale studies on biological treatment of hypersaline wastewater at low temperature.

    PubMed

    Peng, Y Z; Zhu, G B; Wang, S Y; Yu, D S; Cui, Y W; Meng, X S

    2005-01-01

    In order to investigate the feasibility of biological treatment of hypersaline wastewater produced from toilet flushing with seawater at low temperature, pilot-scale studies were established with plug-flow activated sludge process at low temperature (5-9 degrees C) based on bench-scale experiments. The critical salinity concentration of 30 g/L, which resulted from the cooperation results of the non-halophilic bacteria and the halophilic bacteria, was drawn in bench-scale experiments. Pilot-scale studies showed that high COD removal efficiency, higher than 80%, was obtained at low temperature when 30 percent seawater was introduced. The salinity improved the settleability of activated sludge, and average sludge value dropped down from 38% to 22.5% after adding seawater. Seawater salinity had a strong negative effect on notronomonas and nitrobacter growth, but much more on the nitrobacter. The nitrification action was mainly accomplished by nitrosomonas. Bench-scale experiments using two SBRs were carried out for further investigation under different conditions of salinities, ammonia loadings and temperatures. Biological nitrogen removal via nitrite pathway from wastewater containing 30 percent seawater was achieved, but the ammonia removal efficiency was strongly related not only to the influent ammonia loading at different salinities but also to temperature. When the ratio of seawater to wastewater was 30 percent, and the ammonia loading was below the critical value of 0.15 kgNH4+-N/(kgMLSS.d), the ammonia removal efficiency via nitrite pathway was above 90%. The critical level of ammonia loading was 0.15, 0.08 and 0.03 kgNH4+-N/(kgMLSS.d) respectively at the different temperature 30 degrees C, 25 degrees C and 20 degrees C when the influent ammonia concentration was 60-80 mg/L and pH was 7.5-8.0.

  4. A feasibility study on biological nitrogen removal (BNR) via integrated thiosulfate-driven denitratation with anammox.

    PubMed

    Qian, Jin; Zhang, Mingkuan; Wu, Yaoguo; Niu, Juntao; Chang, Xing; Yao, Hairui; Hu, Sihai; Pei, Xiangjun

    2018-06-12

    To exploit the advantages of less electron donor consumptions in partial-denitrification (denitratation, NO 3 - → NO 2 - ) as well as less sludge production in autotrophic denitrification (AD) and anammox, a novel biological nitrogen removal (BNR) process through combined anammox and thiosulfate-driven denitratation was proposed here. In this study, the ratio of S 2 O 3 2- -S/NO 3 - -N and pH are confirmed to be two key factors affecting the thiosulfate-driven denitratation activity and nitrite accumulation. Simultaneous high denitratation activity and substantial nitrite accumulation were observed at initial S 2 O 3 2- -S/NO 3 - -N ratio of 1.5:1 and pH of 8.0. The optimal pH for the anammox reaction is determined to be 8.0. A sequential batch reactor (SBR) and an up-flow anaerobic sludge blanket (UASB) reactor were established to proceed the anammox and the high-rate thiosulfate-driven denitratation, respectively. Under the ambient temperature of 35 °C, the total nitrogen removal efficiency and capacity are 73% and 0.35 kg N/day/m 3 in the anammox-SBR. At HRT of 30 min, the NO 3 - removal efficiency could achieve above 90% with the nitrate-to-nitrite transformation ratio of 0.8, implying the great potential to apply the thiosulfate-driven denitratation & anammox system for BNR with minimal sludge production. Without the occurrence of denitritation (NO 2 - → N 2 O → N 2 ), theoretically no N 2 O could be emitted from this BNR system. This study could shed light on how to operate a high rate BNR system targeting to electron donor and energy savings as well as biowastes minimization and greenhouse gas reductions. Copyright © 2018. Published by Elsevier Ltd.

  5. Partition and fate analysis of fluoroquinolones in sewage sludge during anaerobic digestion with thermal hydrolysis pretreatment.

    PubMed

    Li, Ning; Liu, Huajie; Xue, Yonggang; Wang, Hongyang; Dai, Xiaohu

    2017-03-01

    Fluoroquinolones (FQs) are broad-spectrum synthetic antibiotics that play an important role in the treatment of serious bacterial infections. FQs can reach wastewater treatment plants from different routes, and eventually accumulate in activated sludge. In this study, a solid-phase extraction (SPE) with HPLC-FLD detection method was utilized to investigate the partition and fate of FQs in digested sludge when thermal hydrolysis was used as pretreatment. As a result, thermal hydrolysis showed minor effects on the fate of FQs in batch anaerobic digestion processes, while anaerobic digestion alone removed >60% FQs and finally assisted in the mitigation of the inhibitory effects to microbial communities. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Biotransformation of RDX and HMX by Anaerobic Granular Sludge with Enriched Sulfate and Nitrate.

    PubMed

    An, Chunjiang; Shi, Yarong; He, Yanling; Huang, Guohe; Liu, Yonghong; Yang, Shucheng

    2017-05-01

      RDX and HMX are widely used energetic materials and they are recognized as environmental contaminants at numerous locations. The present study investigated the biotransformation of RDX and HMX by anaerobic granular sludge under sulfate- and nitrate-enriched conditions. The results showed that RDX and HMX could be transformed by anaerobic granular sludge when nitrate was present. However, the biotransformation of RDX and HMX was negatively influenced, especially with high nitrate concentrations. Sulfate-enriched conditions were more favorable for the removal of ammunition compounds by anaerobic granular sludge than nitrate-enriched conditions. The removal of RDX and HMX under both nitrate- and sulfate-enriched conditions was facilitated by the use of glucose as additional substrate. This knowledge may help identify factors required for rapid removal of RDX and HMX in high-rate bioreactors. These results can also be applied to devise an appropriate and practical biological treatment strategy for explosive contaminated wastewater.

  7. Effects of multi-metal toxicity on the performance of sewage treatment system during the festival of colors (Holi) in India.

    PubMed

    Tyagi, Vinay Kumar; Bhatia, Akanksha; Gaur, Rubia Zahid; Khan, Abid Ali; Ali, Muntajir; Khursheed, Anwar; Kazmi, Absar Ahmad

    2012-12-01

    The present study investigated the effects of heavy metals (Ni, Zn, Cd, Cu, and Pb) toxicity on the performance of 18 MLD activated sludge process-based sewage treatment plant (STP) during celebration of Holi (festival of colors in India). The composite sampling (n = 32) was carried out during the entire study period. The findings show a significant decrease in chemical oxygen demand removal efficiency (20%) of activated sludge system, after receiving the heavy metals laden wastewater. A significant reduction of 40% and 60% were observed in MLVSS/MLSS ratio and specific oxygen uptake rate, which eventually led to a substantial decrease in biomass growth yield (from 0.54 to 0.17). The toxic effect of metals ions was also observed on protozoan population. Out of the 12 mixed liquor species recorded, only two ciliates species of Vorticella and Epistylis exhibited the greater tolerance against heavy metals toxicity. Furthermore, activated sludge shows the highest metal adsorption affinity for Cu, followed by Zn, Pb, Ni, and Cd (Cu > Zn > Pb > Ni > Cd). Finally, this study proves the robustness of activated sludge system against the sudden increase in heavy metal toxicity since it recovered the earlier good quality performance within 5 days.

  8. Inhibition of the nitrification process in activated sludge by trivalent and hexavalent chromium, and partitioning of hexavalent chromium between sludge compartments.

    PubMed

    Novotnik, Breda; Zuliani, Tea; Ščančar, Janez; Milačič, Radmila

    2014-06-01

    The input of wastewater treatment plants (WWTPs) may contain high concentrations of Cr(III) and Cr(VI), which can affect nitrogen removal. In the present study the influence of different Cr(III) and Cr(VI) concentrations towards activated sludge nitrification was studied. To better understand the mechanisms of Cr(VI) toxicity, its reduction, adsorption and uptake in activated sludge was investigated in a batch growth system. Quantification of Cr(VI) was performed by speciated isotope dilution inductively coupled plasma mass spectrometry. It was found that Cr(VI) concentrations above 1.0 mg L(-1) and Cr(III) concentrations higher than 50 mg L(-1) negatively affected nitrification. Speciation studies indicated almost complete reduction of Cr(VI) after 24h of incubation when Cr(VI) concentrations were lower than 2.5 mg L(-1), whereas for Cr(VI) added to 5 mg L(-1) around 40% remained unreduced. The study of the partitioning of Cr in the activated sludge was performed by the addition of Cr(VI) in concentrations of 2.5 and 5.0 mg L(-1). Results revealed that Cr was allocated mainly within the intercellular compartments, whereas intracellular and adsorbed Cr represented less than 0.1% of the Cr sludge concentrations. Cr(VI) was reduced in all compartments, the most efficiently (about 94%) within the intracellular and intercellular fractions. The extent of reduction of adsorbed Cr was 92% and 80% for 2.5 and 5.0mg of Cr(VI) L(-1), respectively. The results of present investigation provide a new insight into the toxicity of Cr species towards activated sludge nitrification, which is of significant importance for the management of WWTPs in order to prevent them from inflows containing harmful Cr(VI) concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Treating Sludges

    ERIC Educational Resources Information Center

    Josephson, Julian

    1978-01-01

    Discussed are some of the ways to handle municipal and industrial wastewater treatment sludge presented at the 1978 American Chemical Society meeting. Suggestions include removing toxic materials, recovering metals, and disposing treated sewage sludge onto farm land. Arguments for and against land use are also given. (MA)

  10. Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater.

    PubMed

    Liu, He; Han, Peng; Liu, Hongbo; Zhou, Guangjie; Fu, Bo; Zheng, Zhiyong

    2018-07-01

    A full-scale project of thermal-alkaline pretreatment and alkaline fermentation of sewage sludge was built to produce volatile fatty acids (VFAs) which was then used as external carbon source for improving biological nitrogen and phosphorus removals (BNPR) in wastewater plant. Results showed this project had efficient and stable performances in VFA production, sludge reduce and BNPR. Hydrolysis rate in pretreatment, VFAs yield in fermentation and total VS reduction reached 68.7%, 261.32 mg COD/g VSS and 54.19%, respectively. Moreover, fermentation liquid with VFA presented similar efficiency as acetic acid in enhancing BNPR, obtaining removal efficiencies of nitrogen and phosphorus up to 72.39% and 89.65%, respectively. Finally, the project also presented greater economic advantage than traditional processes, and the net profits for VFAs and biogas productions are 9.12 and 3.71 USD/m 3 sludge, respectively. Long-term operation indicated that anaerobic alkaline fermentation for VFAs production is technically and economically feasible for sludge carbon recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Enhanced biodegradation of antibiotic combinations via the sequential treatment of the sludge resulting from pharmaceutical wastewater treatment using white-rot fungi Trametes versicolor and Bjerkandera adusta.

    PubMed

    Aydin, Sevcan

    2016-07-01

    While anaerobic treatment is capable of treating pharmaceutical wastewater and removing antibiotics in liquid phases, solid phases may still contain significant amounts of antibiotics following this treatment. The main goal of this study was to evaluate the use of white-rot fungi to remove erythromycin, sulfamethoxazole, and tetracycline combinations from biosolids. The degradation potential of Trametes versicolor and Bjerkandera adusta was evaluated via the sequential treatment of anaerobic sludge. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analyses were used to identify competition between the autochthonous microbial communities and white-rot fungi. Solid-phase treatment using white-rot fungi substantially reduced antibiotic concentrations and toxicity in sludge. According to PCR-DGGE results, there is an association between species of fungus and antibiotic type as a result of the different transformation pathways of fungal strains. Fungal post-treatment of sludge represents a promising method of removing antibiotic combinations, therefore holding a significant promise as an environmentally friendly means of degrading the antibiotics present in sludge.

  12. Preparation and performance of arsenate (V) adsorbents derived from concrete wastes.

    PubMed

    Sasaki, Takeshi; Iizuka, Atsushi; Watanabe, Masayuki; Hongo, Teruhisa; Yamasaki, Akihiro

    2014-10-01

    Solid adsorbent materials, prepared from waste cement powder and concrete sludge were assessed for removal of arsenic in the form of arsenic (As(V)) from water. All the materials exhibited arsenic removal capacity when added to distilled water containing 10-700 mg/L arsenic. The arsenic removal isotherms were expressed by the Langmuir type equations, and the highest removal capacity was observed for the adsorbent prepared from concrete sludge with heat treatment at 105°C, the maximum removal capacity being 175 mg-As(V)/g. Based on changes in arsenic and calcium ion concentrations, and solution pH, the removal mechanism for arsenic was considered to involve the precipitation of calcium arsenate, Ca3(AsO4)2. The enhanced removal of arsenic for the adsorbent prepared from concrete sludge with heat treatment was thought to reflect ion exchange by ettringite. The prepared adsorbents, derived from waste cement and concrete using simple procedures, may offer a cost effective approach for arsenic removal and clean-up of contaminated waters, especially in developing countries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Removal of polycyclic aromatic hydrocarbons (PAHs) from industrial sludges in the ambient air conditions: automotive industry.

    PubMed

    Karaca, Gizem; Tasdemir, Yucel

    2013-01-01

    Removal of polycyclic aromatic hydrocarbons (PAHs) existed in automotive industry treatment sludge was examined by considering the effects of temperature, UV, titanium dioxide (TiO2) and diethyl amine (DEA) in different dosages (i.e., 5% and 20%) in this study. Application of TiO2 and DEA to the sludge samples in ambient environment was studied. Ten PAH (Σ10 PAH) compounds were targeted and their average value in the sludge was found to be 4480 ± 1450 ng/g dry matter (DM). Total PAH content of the sludge was reduced by 25% in the ambient air environment. Meteorological conditions, atmospheric deposition, evaporation and sunlight irradiation played an effective role in the variations in PAH levels during the tests carried out in ambient air environment. Moreover, it was observed that when the ring numbers of PAHs increased, their removal rates also increased. Total PAH level did not change with the addition of 5% DEA and only 10% decreased with 5% TiO2 addition. PAH removal ratios were 8% and 32% when DEA (20%) and TiO2 (20%) were added, respectively. It was concluded that DEA was a weak photo-sensitizer yet TiO2 was effective only at 20% dosage.

  14. Influence of carbon source on nutrient removal performance and physical-chemical characteristics of aerobic granular sludge.

    PubMed

    Lashkarizadeh, Monireh; Yuan, Qiuyan; Oleszkiewicz, Jan A

    2015-01-01

    The impact of carbon source variation on the physical and chemical characteristics of aerobic granular sludge and its biological nutrient (nitrogen and phosphorus) removal performance was investigated. Two identical sequencing batch reactors, R1 and R2, were set up. Granular biomass was cultivated to maturity using acetate-based synthetic wastewater. After mature granules in both reactors with simultaneous chemical oxygen demand (COD), ammonium and phosphorus removal capability were achieved, the feed of R2 was changed to municipal wastewater and R1 was continued on synthetic feed as control. Biological phosphorus removal was completely inhibited in R2 due to lack of readily biodegradable COD; however, the biomass maintained high ammonium and COD removal efficiencies. The disintegration of the granules in R2 occurred during the first two weeks after the change of feed, but it did not have significant impacts on settling properties of the sludge. Re-granulation of the biomass in R2 was then observed within 30 d after granules' disintegration when the biomass acclimated to the new substrate. The granular biomass in R1 and R2 maintained a Sludge Volume Index close to 60 and 47 mL g(-1), respectively, during the experimental period. It was concluded that changing the carbon source from readily biodegradable acetate to the more complex ones present in municipal wastewater did not have significant impacts on aerobic granular sludge characteristics; it particularly did not affect its settling properties. However, sufficient readily biodegradable carbon would have to be provided to maintain simultaneous biological nitrate and phosphorus removal.

  15. [Enhanced nitrogen and phosphorus removal of wastewater by using sludge anaerobic fermentation liquid as carbon source in a pilot-scale system].

    PubMed

    Luo, Zhe; Zhou, Guang-Jie; Liu, Hong-Bo; Nie, Xin-Yu; Chen, Yu; Zhai, Li-Qin; Liu, He

    2015-03-01

    In order to explore the possibility of enhanced nitrogen and phosphorus removal in wastewater using sludge anaerobic fermentation liquid as external carbon source, the present study proposed an A2/O reactor system with a total effective volume of 4 660 L and real municipal wastewater for treatment. The results showed that under the conditions of the influent COD at 243.7 mg x L(-1), NH4(+) -N at 30. 9 mg x L(-1), TN at 42.9 mg'L- , TP at 2.8 mg x L(-1), the backflow ratio of nitrification liquid at 200% and recycle ratio of sludge at 100%, the addition of acetic acid into anoxic tank could enhance the removal efficiency of nitrogen and phosphorus, and the optimal influent quantity and SCOD incremental of carbon were 7 500 L x d(-1) and 50 mg L(-1), respectively. When the sludge fermentation liquid was used as external carbon source and the average effluent COD, NH4(+) -N, TN, TP removal efficiency were 81.60%, 88.91%, 64.86% and 87.61%, the effluent concentrations were 42.18, 2.77, 11.92 and 0.19 mg x L(-1), respectively, which met China's first Class (A) criteria specified in the Discharge Standard Urban Sewage Treatment Plant Pollutant (GB 18918-2002). The results of the present study demonstrated that the addition of sludge anaerobic fermented liquid as external carbon source was a feasible way to enhance the removal of nitrogen and phosphorous in municipal wastewater, providing a new feasible strategy for the reuse and recycle of sewage sludge in China.

  16. Kinetics and capacities of phosphorus sorption to tertiary stage wastewater alum solids, and process implications for achieving low-level phosphorus effluents.

    PubMed

    Maher, Chris; Neethling, J B; Murthy, Sudhir; Pagilla, Krishna

    2015-11-15

    The role of adsorption and/or complexation in removal of reactive or unreactive effluent phosphorus by already formed chemical precipitates or complexes has been investigated. Potential operational efficiency gains resulting from age of chemically precipitated tertiary alum sludge and the recycle of sludge to the process stream was undertaken at the Iowa Hill Water Reclamation Facility which employs the DensaDeg(®) process (IDI, Richmond, VA) for tertiary chemical P removal to achieve a filtered final effluent total phosphorus concentration of <30 μg/L. The effect of sludge solids age was found to be insignificant over the solids retention time (SRT) of 2-8 days, indicating that the solids were unaffected by the aging effects of decreasing porosity and surface acidity. The bulk of solids inventory was retained in the clarifier blanket, providing no advantage in P removal from increased solids inventory at higher SRTs. When solids recycle was redirected from the traditional location of the flocculation reactor to a point just prior to chemical addition in the chemical mixing reactor, lower effluent soluble P concentrations at lower molar doses of aluminum were achieved. At laboratory scale, the "spent" or "waste" chemical alum sludge from P removal showed high capacity and rapid kinetics for P sorption from real wastewater effluents. Saturation concentrations were in the range of 8-29 mg soluble reactive P/g solids. Higher saturation concentrations were found at higher temperatures. Alum sludge produced without a coagulant aid polymer had a much higher capacity for P sorption than polymer containing alum sludge. The adsorption reaction reached equilibrium in less than 10 min with 50% or greater removal within the first minute. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Membrane bio-reactor for textile wastewater treatment plant upgrading.

    PubMed

    Lubello, C; Gori, R

    2005-01-01

    Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge + clariflocculation + ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.

  18. Improving alachlor biodegradability by ferrate oxidation.

    PubMed

    Zhu, Jian-Hang; Yan, Xi-Luan; Liu, Ye; Zhang, Bao

    2006-07-31

    Alachlor can be recalcitrant when present at high concentrations in wastewater. Ferrate oxidation was used as a pretreatment to improve its biodegradability and was evaluated by monitoring alachlor elimination and removal of COD(Cr) (chemical oxygen demand determined by potassium dichromate) during the oxidation process up to a value compatible with biological treatment. Ferrate oxidation resulted in elimination of alachlor followed by degradation of its intermediates. High pH suppressed alachlor removal and COD(Cr) removal due to the low redox potential of ferrate ions. Although alachlor can be totally eliminated within 10 min under optimized conditions (alachlor, 40 mg l(-1); ferrate:alachlor molar ratio, 2; and pH 7.0), its complete mineralization cannot be achieved by ferrate oxidation alone. Alachlor solution treated by ferrate for 10 min inhibited an up-flow biotreatment with activated sludge. The biodegradability of ferrate-pretreated solution improved when the treatment was increased to 20 min, at the point of which BOD(5)/COD(Cr) ratio of the treated solution was increased to 0.87 from 0.35 after 10 min treatment. Under optimized conditions, ferrate oxidation for 20 min resulted in total elimination of alachlor, partial removal of COD(Cr) and the ferrate-treated solution could be effectively treated by the up-flow activated sludge process.

  19. Inhibitory effect of high NH4(+)-N concentration on anaerobic biotreatment of fresh leachate from a municipal solid waste incineration plant.

    PubMed

    Liu, Zhao; Dang, Yan; Li, Caihua; Sun, Dezhi

    2015-09-01

    Fresh leachate from municipal solid waste (MSW) incineration plants generally contains extremely high NH4(+)-N concentration which could inhibit the bioactivity of microorganisms. The inhibitory effect of high NH4(+)-N concentration on anaerobic biotreatment of fresh leachate from a MSW incineration plant in China has been investigated in this study. The inhibition processes was studied by both static tests and a laboratory-scale expanded granular sludge bed (EGSB) reactor. The specific methanogenic activity (SMA) of the microorganisms in anaerobic granular sludge was inhibited with the NH4(+)-N concentration increasing to 1000mg/L in static tests. As well the chemical oxygen demand (COD) removal efficiency and the methane yield decreased in the EGSB reactor, while the volatile fatty acids (VFAs) accumulated and extracellular polymeric substances (EPS) of the anaerobic granular sludge increased with NH4(+)-N concentration rising to 1000mg/L, without any rebounding during 30days of operation. Decreasing NH4(+)-N concentration to 500mg/L in influent, the COD removal efficiency recovered to about 85% after 26days. 1000mg/L of NH4(+)-N in leachate was suggested to be the inhibition threshold in EGSB reactor. High-throughput sequencing results showed little changes in microbial communities of the sludge for a high NH4(+)-N concentration, indicating that the survival of most microorganisms was not affected under such a condition. It inhibited the bioactivity of the microorganisms, resulting in decrease of the COD removal efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Model-based evaluation of two BNR processes--UCT and A2N.

    PubMed

    Hao, X; Van Loosdrecht, M C; Meijer, S C; Qian, Y

    2001-08-01

    The activity of denitrifying P-accumulating bacteria (DPB) has been verified to exist in most WWTPs with biological nutrient removal (BNR). The modified UCT process has a high content of DPB. A new BNR process with a two-sludge system named A2N was especially developed to exploit denitrifying dephosphatation. With the identical inflow and effluent standards, an existing full-scale UCT-type WWTP and a designed A2N process were evaluated by simulation. The used model is based on the Delft metabolical model for bio-P removal and ASM2d model for COD and N removal. Both processes accommodate denitrifying dephosphatation, but the A2N process has a more stable performance in N removal. Although excess sludge is increased by 6%, the A2N process leads to savings of 35, 85 and 30% in aeration energy, mixed liquor internal recirculation and land occupation respectively, as compared to the UCT process. Low temperature has a negative effect on growth of poly-P bacteria, which becomes to especially appear in the A2N process.

Top