Science.gov

Sample records for activated sludge tank

  1. Activated sludge process performance using a multistage tower aeration tank

    SciTech Connect

    Shimizu, Tatsuo; Kudo, Kenzo; Nasu, Yoshikazu )

    1993-07-01

    This study's objective was to clarify both experimentally and theoretically whether a vertical multistage tower aeration tank system is advantageous as compared with a completely mixed system, particularly with respect to purification efficiency, sludge settleability, and excess sludge production. In comparing the two systems: (1) purification efficiency in the multistage tower aeration system with partial fluid mixing with a large Peclet number was higher than in a corresponding completely mixed system for all applied organic loadings; (2) the multistage tower aeration system had some definite advantages with respect to sludge settleability and excess sludge production; and (3) the activated sludge system's higher performance with partial fluid mixing was shown quantitatively with the axial dispersion model in conjunction with growth kinetics which involved rapid uptake such as biosorption and subsequent oxidative biodegradation processes of organic substances.

  2. FEASIBILITY OF TREATING SEPTIC TANK WASTE BY ACTIVATED SLUDGE

    EPA Science Inventory

    The objective of the study reported herein was to evaluate the impact of household septic tank wastes on municipal activated sludge treatment plants. Septage addition was evaluated on a continuous basis over a four-month period in a 7500 l/day (1980 gpd) pilot plant. The septage ...

  3. SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE

    SciTech Connect

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-11-16

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest

  4. FULL-SCALE DEMONSTRATION OF OPEN TANK OXYGEN ACTIVATED SLUDGE TREATMENT

    EPA Science Inventory

    This report presents an operating summary of a full-scale demonstration of the FMC open tank pure oxygen (FMC O2) activated sludge system, conducted at the facilities of the Metropolitan Denver Sewage Disposal District No. 1 (Metro) in Denver, Colorado. The system was operated ov...

  5. Rheology of Savannah River site tank 42 and tank 51 HLW radioactive sludges

    SciTech Connect

    Ha, B.C.; Bibler, N.E.

    1996-01-19

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site (SRS) is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. The high activity radioactive wastes stored as caustic slurries at SRS result from the neutralization of acid waste generated from production of nuclear defense materials. During storage, the wastes separate into a supernate layer and a sludge layer. In the Defense Waste Processing Facility (DWPF) at SRS, the radionuclides from the sludge and supernate will be immobilized into borosilicate glass for long term storage and eventual disposal. Before transferring the waste from a storage tank to the DWPF, a portion of the aluminum in the waste sludge will be dissolved and the sludge will be extensively washed to remove sodium. Tank 51 and Tank 42 radioactive sludges represent the first batch of HLW sludge to be processed in the DWPF. This paper presents results of rheology measurements of Tank 51 and Tank 42 at various solids concentrations. The rheologies of Tank 51 and Tank 42 radioactive slurries were measured remotely in the Shielded Cells Operations (SCO) at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco RV-12 with an M150 measuring drive unit and TI sensor system. Rheological properties of the Tank 51 and Tank 42 radioactive sludges were measured as a function of weight percent solids. The weight percent solids of Tank 42 sludge was 27, as received. Tank 51 sludge had already been washed. The weight percent solids were adjusted by dilution with water or by concentration through drying. At 12, 15, and 18 weight percent solids, the yield stresses of Tank 51 sludge were 5, 11, and 14 dynes/cm2, respectively. The apparent viscosities were 6, 10, and 12 centipoises at 300 sec-1 shear rate, respectively.

  6. Activated Sludge.

    ERIC Educational Resources Information Center

    Saunders, F. Michael

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) activated sludge process; (2) process control; (3) oxygen uptake and transfer; (4) phosphorus removal; (5) nitrification; (6) industrial wastewater; and (7) aerobic digestion. A list of 136 references is also presented. (HM)

  7. PHASE CHEMISTRY OF TANK SLUDGE RESIDUAL COMPONENTS

    EPA Science Inventory

    It will not be possible to recover all the contaminated sludge from the bottoms of decommissioned waste storage tanks. This research is directed at providing a credible model for the release of radionuclides from residual sludge. Sludge components that are the prime actors in ret...

  8. Enhanced sludge reduction in septic tanks by increasing temperature.

    PubMed

    Pussayanavin, Tatchai; Koottatep, Thammarat; Eamrat, Rawintra; Polprasert, Chongrak

    2015-01-01

    Septic tanks in most developing countries are constructed without drainage trenches or leaching fields to treat toilet wastewater and /or grey water. Due to the short hydraulic retention time, effluents of these septic tanks are still highly polluted, and there is usually high accumulation of septic tank sludge or septage containing high levels of organics and pathogens that requires frequent desludging and subsequent treatment. This study aimed to reduce sludge accumulation in septic tanks by increasing temperatures of the septic tank content. An experimental study employing two laboratory-scale septic tanks fed with diluted septage and operating at temperatures of 40 and 30°C was conducted. At steady-state conditions, there were more methanogenic activities occurring in the sludge layer of the septic tank operating at the temperature of 40°C, resulting in less total volatile solids (TVS) or sludge accumulation and more methane (CH4) production than in the unit operating at 30°C. Molecular analysis found more abundance and diversity of methanogenic microorganisms in the septic tank sludge operating at 40°C than at 30°C. The reduced TVS accumulation in the 40°C septic tank would lengthen the period of septage removal, resulting in a cost-saving in desluging and septage treatment. Cost-benefit analysis of increasing temperatures in septic tanks was discussed. PMID:25438134

  9. K Basins sludge removal temporary sludge storage tank system

    SciTech Connect

    Mclean, M.A.

    1997-06-12

    Shipment of sludge from the K Basins to a disposal site is now targeted for August 2000. The current path forward for sludge disposal is shipment to Tank AW-105 in the Tank Waste Remediation System (TWRS). Significant issues of the feasibility of this path exist primarily due to criticality concerns and the presence of polychlorinated biphenyls (PCBS) in the sludge at levels that trigger regulation under the Toxic Substance Control Act. Introduction of PCBs into the TWRS processes could potentially involve significant design and operational impacts to both the Spent Nuclear Fuel and TWRS projects if technical and regulatory issues related to PCB treatment cannot be satisfactorily resolved. Concerns of meeting the TWRS acceptance criteria have evolved such that new storage tanks for the K Basins sludge may be the best option for storage prior to vitrification of the sludge. A reconunendation for the final disposition of the sludge is scheduled for June 30, 1997. To support this decision process, this project was developed. This project provides a preconceptual design package including preconceptual designs and cost estimates for the temporary sludge storage tanks. Development of cost estimates for the design and construction of sludge storage systems is required to help evaluate a recommendation for the final disposition of the K Basin sludge.

  10. Laboratory stabilization/solidification of tank sludges: maximizing sludge loading.

    PubMed

    Spence, R D; Mattus, A J

    2004-03-01

    Highly radioactive, mixed-waste sludges that have been collected in tanks at Oak Ridge over several decades are being combined for treatment and disposal. Stabilization of the sludges in the different tank sets was tested prior to the proposed combination and treatment. This paper is the third one in a series on the laboratory stabilization/solidification of these tank sludges. It discusses efforts to maximize the sludge loading with no strength criterion for the grout formulation. Grout formulations were tested in the laboratory both with surrogates and with actual samples of tank sludge. Hydrogels eliminated free water generation, even at sludge loadings of >90wt%, albeit strong monoliths did not form at such high loadings. Correlations established the dependence of the chromium and mercury performance in the Toxicity Characteristic Leach Procedure for the surrogates on the slag content of the grout while the lead performance depended on the extract pH. The surrogate sludge loading was limited by the chromate content to about 90wt%, meeting Universal Treatment Standard limits. However, tests with actual sludges at such high loadings revealed problems with lead and silver stabilization that were not experienced with the surrogate testing. PMID:15036695

  11. Phase Chemistry of Tank Sludge Residual Components

    SciTech Connect

    J.L. Krumhansl

    2002-04-02

    The US Department of Energy (DOE) has millions of gallons of high level nuclear waste stored in underground tanks at Hanford, Washington and Savannah River, South Carolina. These tanks will eventually be emptied and decommissioned. This will leave a residue of sludge adhering to the interior tank surfaces that may contaminate nearby groundwaters with radionuclides and RCRA metals. Performance assessment (PA) calculations must be carried out prior to closing the tanks. This requires developing radionuclide release models from the sludges so that the PA calculations can be based on credible source terms. These efforts continued to be hindered by uncertainties regarding the actual nature of the tank contents and the distribution of radionuclides among the various phases. In particular, it is of vital importance to know what radionuclides are associated with solid sludge components. Experimentation on actual tank sludges can be difficult, dangerous and prohibitively expensive. The research funded under this grant for the past three years was intended to provide a cost-effective method for developing the needed radionuclide release models using non-radioactive artificial sludges. Insights gained from this work will also have more immediate applications in understanding the processes responsible for heel development in the tanks and in developing effective technologies for removing wastes from the tanks.

  12. Status Report on Phase Identification in Hanford Tank Sludges

    SciTech Connect

    BM Rapko; GJ Lumetta

    2000-12-18

    The US Department of Energy plans to vitrify Hanford's tank wastes. The vitrified wastes will be divided into low-activity and high-level fractions. There is an effort to reduce the quantity of high-activity wastes by removing nonradioactive components because of the high costs involved in treating high-level waste. Pretreatment options, such as caustic leaching, to selectively remove nonradioactive components are being investigated. The effectiveness of these proposed processes for removing nonradioactive components depends on the chemical phases in the tank sludges. This review summarizes the chemical phases identified to date in Hanford tank sludges.

  13. 33 CFR 157.17 - Oil residue (sludge) tank.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Oil residue (sludge) tank. 157.17...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.17 Oil residue (sludge) tank. (a) A tank vessel of 400...

  14. 33 CFR 157.17 - Oil residue (sludge) tank.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Oil residue (sludge) tank. 157.17...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.17 Oil residue (sludge) tank. (a) A tank vessel of 400...

  15. 33 CFR 157.17 - Oil residue (sludge) tank.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Oil residue (sludge) tank. 157.17...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.17 Oil residue (sludge) tank. (a) A tank vessel of 400...

  16. 33 CFR 157.17 - Oil residue (sludge) tank.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Oil residue (sludge) tank. 157.17...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.17 Oil residue (sludge) tank. (a) A tank vessel of 400...

  17. Activated Sludge. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Boe, Owen K.; Klopping, Paul H.

    This student manual contains the textual material for a seven-lesson unit on activated sludge. Topic areas addressed in the lessons include: (1) activated sludge concepts and components (including aeration tanks, aeration systems, clarifiers, and sludge pumping systems); (2) activated sludge variations and modes; (3) biological nature of activated…

  18. WASTE ACTIVATED SLUDGE PROCESSING

    EPA Science Inventory

    A study was made at pilot scale of a variety of processes for dewatering and stabilization of waste activated sludge from a pure oxygen activated sludge system. Processes evaluated included gravity thickening, dissolved air flotation thickening, basket centrifugation, scroll cent...

  19. A modified oxic-settling-anaerobic activated sludge process using gravity thickening for excess sludge reduction

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Li, Shi-Yu; Jiang, Feng; Wu, Ke; Liu, Guang-Li; Lu, Hui; Chen, Guang-Hao

    2015-09-01

    Oxic-settling-anaerobic process (OSA) was known as a cost-effective way to reduce the excess sludge production with simple upgrade of conventional activated sludge process (CAS). A low oxidation-reduction potential (ORP) level was the key factor to sludge decay and lysis in the sludge holding tank of the OSA process. However, the ORP control with nitrogen purge or chemical dosing in the OSA process would induce extra expense and complicate the operation. Hence, in this study, a sludge holding tank using gravity thickening was applied to OSA process to reduce the excess sludge production without any ORP control. Results showed that the modified OSA process not only reduced the excess sludge production effectively but also improved the sludge settleability without affected the treatment capacity. The reduction of the excess sludge production in the modified OSA process resulted from interactions among lots of factors. The key element of the process was the gravity thickening sludge holding tank.

  20. A modified oxic-settling-anaerobic activated sludge process using gravity thickening for excess sludge reduction

    PubMed Central

    Wang, Jun; Li, Shi-Yu; Jiang, Feng; Wu, Ke; Liu, Guang-Li; Lu, Hui; Chen, Guang-Hao

    2015-01-01

    Oxic-settling-anaerobic process (OSA) was known as a cost-effective way to reduce the excess sludge production with simple upgrade of conventional activated sludge process (CAS). A low oxidation-reduction potential (ORP) level was the key factor to sludge decay and lysis in the sludge holding tank of the OSA process. However, the ORP control with nitrogen purge or chemical dosing in the OSA process would induce extra expense and complicate the operation. Hence, in this study, a sludge holding tank using gravity thickening was applied to OSA process to reduce the excess sludge production without any ORP control. Results showed that the modified OSA process not only reduced the excess sludge production effectively but also improved the sludge settleability without affected the treatment capacity. The reduction of the excess sludge production in the modified OSA process resulted from interactions among lots of factors. The key element of the process was the gravity thickening sludge holding tank. PMID:26350761

  1. Long-term operation of a novel pilot-scale six tanks alternately operating activated sludge process in treating domestic wastewater.

    PubMed

    Mohammed, R N; Abu-Alhail, S; Xi-Wu, L

    2014-08-01

    The performance of a new pilot-scale six tanks activated sludge process has been evaluated for 303 d, receiving real domestic wastewater with a flow rate of 15-24.4 L/h. Partial nitrification via nitrite and microbial community structure were investigated in this system. The result shows that the nitrite accumulation rate was achieved successfully over 94% in the last aerobic compartment through a combination of short hydraulic retention time and low dissolved oxygen (DO) level. Fluorescence in situ hybridization analysis was used to correlate ammonia-oxidizing bacteria (AOB) numbers with nutrient removal via nitrite. It was shown that in response to complete and partial nitrification modes, the numbers of AOB population were 7.7 x 10(7) cells/g mixed liquor suspended solids (MLSS) and 5.31 x 10(8) cells/g MLSS, respectively. The morphology of the sludge indicated that there is a small rod-shaped and spherical cluster which was mainly dominantly bacterial according to scanning electron microscope. Higher pollutant removal efficiencies of 86.2%, 98%, and 96.1%, for total nitrogen, NH4+ - N, and total phosphorus, respectively, were achieved by a long-term operation of the six tanks activated sludge process at a low DO concentration and low chemical oxygen demand to nitrogen ratio which were approximately equal to the complete nitrification-ldenitrification with the addition of an external carbon source at a concentration of 1.5-2.5 mg/L. PMID:24956781

  2. HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT

    SciTech Connect

    Jolly, R; Bruce Martin, B

    2008-01-15

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea

  3. Rheology of Savannah River Site Tank 51 HLW radioactive sludge

    SciTech Connect

    Ha, B.C.

    1993-01-01

    Savannah River Site (SRS) Tank 51 HLW radioactive sludge represents a major portion of the first batch of sludge to be vitrified in the Defense Waste Processing Facility (DWPF) at SRS. The rheological properties of Tank 51 sludge will determine if the waste sludge can be pumped by the current DWPF process cell pump design and the homogeneity of melter feed slurries. The rheological properties of Tank 51 sludge and sludge/frit slurries at various solids concentrations were measured remotely in the Shielded Cells Operations (SCO) at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco viscometer system. Rheological properties of Tank 51 radioactive sludge/Frit 202 slurries increased drastically when the solids content was above 41 wt %. The yield stresses of Tank 51 sludge and sludge/frit slurries fall within the limits of the DWPF equipment design basis. The apparent viscosities also fall within the DWPF design basis for sludge consistency. All the results indicate that Tank 51 waste sludge and sludge/frit slurries are pumpable throughout the DWPF processes based on the current process cell pump design, and should produce homogeneous melter feed slurries.

  4. Tank 241-Z-361 Sludge Retrieval and Treatment Alternatives

    SciTech Connect

    HAMPTON, B.K.

    2000-05-24

    The Plutonium Finishing Plant (PFP) Tank 241-Z-361 (Z-361) contains legacy sludge resulting from waste discharges from past missions at PFP. A sketch of the tank is shown in Figure 1. In this view various risers and penetrations are shown along with the sludge level depicted by the horizontal line halfway up the tank, and the ground level depicted by the horizontal line above the tank. The HEPA filter installed for breathing is also shown on one of the risers.

  5. Caustic Leaching of Hanford Tank S-110 Sludge

    SciTech Connect

    Lumetta, Gregg J.; Carson, Katharine J.; Darnell, Lori P.; Greenwood, Lawrence R.; Hoopes, Francis V.; Sell, Richard L.; Sinkov, Sergey I.; Soderquist, Chuck Z.; Urie, Michael W.; Wagner, John J.

    2001-10-31

    This report describes the Hanford Tank S-110 sludge caustic leaching test conducted in FY 2001 at the Pacific Northwest National Laboratory. The data presented here can be used to develop the baseline and alternative flowsheets for pretreating Hanford tank sludge. The U.S. Department of Energy funded the work through the Efficient Separations and Processing Crosscutting Program (ESP; EM﷓50).

  6. Rheology of Savannah River site tank 42 HLW radioactive sludge

    SciTech Connect

    Ha, B.C.

    1997-11-05

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. At Savannah River Site, Tank 42 sludge represents on of the first HLW radioactive sludges to be vitrified in the Defense Waste Processing Facility. The rheological properties of unwashed Tank 42 sludge slurries at various solids concentrations were measured remotely in the Shielded Cells at the Savannah River Technology Center using a modified Haake Rotovisco viscometer.

  7. Computer modeling of ORNL storage tank sludge mobilization and mixing

    SciTech Connect

    Terrones, G.; Eyler, L.L.

    1993-09-01

    This report presents and analyzes the results of the computer modeling of mixing and mobilization of sludge in horizontal, cylindrical storage tanks using submerged liquid jets. The computer modeling uses the TEMPEST computational fluid dynamics computer program. The horizontal, cylindrical storage tank configuration is similar to the Melton Valley Storage Tanks (MVST) at Oak Ridge National (ORNL). The MVST tank contents exhibit non-homogeneous, non-Newtonian rheology characteristics. The eventual goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents of the tanks.

  8. Caustic Leaching of Sludges from Selected Hanford Tanks

    SciTech Connect

    Chase, C.W.; Egan, B.Z.; Spencer, B.B.

    1998-08-01

    The objective of this project was to measure the caustic dissolution behavior of sludge components from selected Hanford waste tank sludge samples under different conditions. The dissolution of aluminum, chromium, and other constituents of actual sludge samples in aqueous sodium hydroxide solution was evaluated using various values of temperature, sodium hydroxide concentration, volume of caustic solution per unit mass of sludge (liquid:solids ratio), and leaching time.

  9. Stabilization of Mercury in High pH Tank Sludges

    SciTech Connect

    Spence, R.; Barton, J.

    2003-02-24

    DOE complex contains many tank sludges contaminated with mercury. The high pH of these tank sludges typically fails to stabilize the mercury, resulting in these radioactive wastes also being characteristically hazardous or mixed waste. The traditional treatment for soluble inorganic mercury species is precipitation as insoluble mercuric sulfide. Sulfide treatment and a commercial mercury-stabilizing product were tested on surrogate sludges at various alkaline pH values. Neither the sulfide nor the commercial product stabilized the mercury sufficiently at the high pH of the tank sludges to pass the Toxicity Characteristic Leach Procedure (TCLP) treatment standards of the Resource Conservation and Recovery Act (RCRA). The commercial product also failed to stabilize the mercury in samples of the actual tank sludges.

  10. Grout and Glass Performance in Support of Stabilization/Solidification of the MVST Tank Sludges

    SciTech Connect

    Gilliam, T.M.; Spence, R.D.

    1998-11-01

    Wastewater at Oak Ridge National Laboratory (ORNL) is collected, evaporated, and stored in the Melton Valley Storage Tanks (MVST) pending treatment for disposal. The waste separates into two phases: sludge and supematant. Some of the supematant from these tanks has been decanted, solidified into a grout, and stored for disposal as a solid low-level waste. The sludges in the tank bottoms have been accumulating ,for several years. Some of the sludges contain a high amount of gamma activity (e.g., `37CS concentration range of 0.01 3-11 MBq/g) and contain enough transuranic (TRU) radioisotopes to be classified as TRU wastes. Some Resource Conservation and Recovery Act (RCRA) metal concentrations are high enough in the available total constituent analysis for the MVST sludge to be classified as RCRA hazardous; therefore, these sludges are presumed to be mixed TRU waste.

  11. SLUDGE BATCH 7 PREPARATION TANK 4 AND 12 CHARACTERIZATION

    SciTech Connect

    Bannochie, C.; Click, D.; Pareizs, J.

    2010-05-21

    Samples of PUREX sludge from Tank 4 and HM sludge from Tank 12 were characterized in preparation for Sludge Batch 7 (SB7) formulation in Tank 51. SRNL analyses on Tank 4 and Tank 12 were requested in separate Technical Assistance Requests (TAR). The Tank 4 samples were pulled on January 19, 2010 following slurry operations by F-Tank Farm. The Tank 12 samples were pulled on February 9, 2010 following slurry operations by H-Tank Farm. At the Savannah River National Laboratory (SRNL), two 200 mL dip samples of Tank 4 and two 200 mL dip samples of Tank 12 were received in the SRNL Shielded Cells. Each tank's samples were composited into clean 500 mL polyethylene storage bottles and weighed. The composited Tank 4 sample was 428.27 g and the composited Tank 12 sample was 502.15 g. As expected there are distinct compositional differences between Tank 4 and Tank 12 sludges. The Tank 12 slurry is much higher in Al, Hg, Mn, and Th, and much lower in Fe, Ni, S, and U than the Tank 4 slurry. The Tank 4 sludge definitely makes the more significant contribution of S to any sludge batch blend. This S, like that observed during SB6 washing, is best monitored by looking at the total S measured by digesting the sample and analyzing by inductively coupled plasma - atomic emission spectroscopy (ICPAES). Alternatively, one can measure the soluble S by ICP-AES and adjust the value upward by approximately 15% to have a pretty good estimate of the total S in the slurry. Soluble sulfate measurements by ion chromatography (IC) will be biased considerably lower than the actual total S, the difference being due to the non-sulfate soluble S and the undissolved S. Tank 12 sludge is enriched in U-235, and hence samples transferred into SRNL from the Tank Farm will need to be placed on the reportable special nuclear material inventory and tracked for total U per SRNL procedure requirements.

  12. Characterization of the ORNL MVST Waste Tanks After Transfer of Sludge from BVEST, GAAT, and OHF Tanks

    SciTech Connect

    Keller, J.M.

    2001-03-23

    Over the last several years most of the sludge and liquid from the Liquid Low-Level Waste (LLLW) tanks at ORNL has been transferred and consolidated in the Melton Valley Storage Tanks (MVST). The contents of the MVST tanks at the time the sludge samples were collected for this report included the original inventory in the MVSTs along with the sludge and liquid from the Bethel Valley Evaporator Service Tanks (BVEST), Old Hydrofracture (OHF) tanks, and most of the Gunite and Associated Tanks (GAAT). During the spring and summer of 2000 the MVST composite sludge was sampled and characterized to validate the radiochemical content and to ensure regulatory compliance. This report only discusses the analytical characterization of the sludge from the MVST waste tanks (except for W-29 and W-30). The isotopic data presented in this report supports the position that fissile isotopes of uranium ({sup 233}U and {sup 235}U) and plutonium ({sup 239}Pu and {sup 241}Pu) were ''denatured'' as required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). In general, the MVST sludge was found to be hazardous by RCRA characteristics based on total analysis of chromium, mercury, and lead. Also, the alpha activity due to transuranic isotopes was well above the 100 nCi/g limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP.

  13. Characterization of the Radioactive Sludge from the ORNL MVST Waste Tanks

    SciTech Connect

    Keller, J.M.

    2001-10-24

    Over the last several years most of the sludge and liquid from the Liquid Low-Level Waste (LLLW) tanks at ORNL has been transferred and consolidated in the Melton Valley Storage Tanks (MVST). The contents of the MVST tanks at the time the sludge samples were collected for this report included the original inventory in the MVSTs along with the sludge and liquid from the Bethel Valley Evaporator Service Tanks (BVEST), Old Hydrofracture (OHF) tanks, and the Gunite and Associated Tanks (GAAT). During the summer of 2001 full core samples of sludge were collected from the MVST tanks. The purpose of this sampling campaign was to characterize and validate that the current radiochemical and chemical contents of the MVST sludge, which was needed to meet the contract agreements prior to the transfer of the waste to another DOE contractor for processing. This report only discusses the analytical characterization of the sludge from the MVST waste tanks. The isotopic data presented in this report supports the position that fissile isotopes of uranium ({sup 233}U and {sup 235}U) and plutonium ({sup 239}Pu and {sup 241}Pu) were ''denatured'' as required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). In general, the MVST sludge was found to be hazardous by RCRA characteristics based on total analysis of chromium, mercury, and lead. Also, the alpha activity due to transuranic isotopes was well above the 100 nCi/g limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in previous reports and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP. Therefore, the WIPP WAC limits were not evaluated for this set of samples.

  14. STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PROJECT - 9225

    SciTech Connect

    Jolly, R

    2009-01-06

    Chemical Cleaning of Waste Tanks at the Savannah River Site--F Tank Farm Closure Project--Abstract 9114'. To support Tank 5 and Tank 6 cooling coil closure, cooling coil isolation and full scale cooling coil grout testing was completed to develop a strategy for grouting the horizontal and vertical cooling coils. This paper describes in detail the performance of the Mechanical Sludge Removal activities and SMP operational strategies within Tank 5. In addition, it will discuss the current status of Tank 5 & 6 cooling coil isolation activities and the results from the cooling coil grout fill tests.

  15. Tank 42 sludge-only process development for the Defense Waste Processing Facility (DWPF)

    SciTech Connect

    Lambert, D.P.

    2000-03-22

    Defense Waste Processing Facility (DWPF) requested the development of a sludge-only process for Tank 42 sludge since at the current processing rate, the Tank 51 sludge has been projected to be depleted as early as August 1998. Testing was completed using a non-radioactive Tank 42 sludge simulant. The testing was completed under a range of operating conditions, including worst case conditions, to develop the processing conditions for radioactive Tank 42 sludge. The existing Tank 51 sludge-only process is adequate with the exception that 10 percent additional acid is recommended during sludge receipt and adjustment tank (SRAT) processing to ensure adequate destruction of nitrite during the SRAT cycle.

  16. COLLOIDAL AGGLOMERATES IN TANK SLUDGE: IMPACT ON WASTE PROCESSING

    EPA Science Inventory

    During processing of radioactive wastes, insoluble sludges consisting of submicron colloidal particles can clog transfer lines or interfere with solid-liquid separations. The wide range of properties observed for tank wastes can be rationalized by understanding how solution condi...

  17. SLUDGE RETRIEVAL FROM HANFORD K WEST BASIN SETTLER TANKS

    SciTech Connect

    ERPENBECK EG; LESHIKAR GA

    2011-01-13

    In 2010, an innovative, remotely operated retrieval system was deployed to successfully retrieve over 99.7% of the radioactive sludge from ten submerged tanks in Hanford's K-West Basin. As part of K-West Basin cleanup, the accumulated sludge needed to be removed from the 0.5 meter diameter by 5 meter long settler tanks and transferred approximately 45 meters to an underwater container for sampling and waste treatment. The abrasive, dense, non-homogeneous sludge was the product of the washing process of corroded nuclear fuel. It consists of small (less than 600 micron) particles of uranium metal, uranium oxide, and various other constituents, potentially agglomerated or cohesive after 10 years of storage. The Settler Tank Retrieval System (STRS) was developed to access, mobilize and pump out the sludge from each tank using a standardized process of retrieval head insertion, periodic high pressure water spray, retraction, and continuous pumping of the sludge. Blind operations were guided by monitoring flow rate, radiation levels in the sludge stream, and solids concentration. The technology developed and employed in the STRS can potentially be adapted to similar problematic waste tanks or pipes that must be remotely accessed to achieve mobilization and retrieval of the sludge within.

  18. Laboratory stabilizations/solidification of tank sludges: MVST/BVEST.

    PubMed

    Spence, R D; Mattus, A J

    2004-03-01

    Oak Ridge tank sludges that have been collected over several decades are being combined for treatment and disposal. Stabilization of the highly radioactive, mixed-waste sludges in the different tank sets has been evaluated prior to the proposed combination and treatment. This paper documents the testing of a Melton Valley Storage Tank (MVST)/Bethel Valley Evaporator Storage Tank set. Subsequent papers will discuss continued work on other tank sets and efforts to maximize the sludge loading. Grout formulations were tested in the laboratory both with a surrogate and with a sample of an actual mixed waste tank sludge from MVST W-25. Wet-sludge loadings of 50-60wt% resulted in strong wasteforms with no free water and gave a volume increase of about 40-50vol%. Resource Conservation and Recovery Act (RCRA) metals included in the surrogate testing were cadmium, chromium, lead, selenium, thallium, and mercury. The actual sludge sample was only characteristically hazardous for mercury by the Toxic Characteristic Leaching Procedure but exceeded the Universal Treatment Standard (UTS) limit for chromium. The grout formulations stabilized these two RCRA metals within UTS limits. In addition, a grout leachability index of about 9.0-10.0 was measured for both (85)Sr and (137)Cs, meeting the recommended requirement of >6.0. PMID:15036693

  19. FINAL REPORT. PHASE CHEMISTRY OF TANK SLUDGE RESIDUAL COMPONENTS

    EPA Science Inventory

    The US Department of Energy (DOE) has millions of gallons of high level nuclear waste stored in underground tanks at Hanford, Washington and Savannah River, South Carolina. These tanks will eventually be emptied and decommissioned. This will leave a residue of sludge adhering to ...

  20. 33 CFR 157.17 - Oil residue (sludge) tank.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Type of machinery installed on the vessel; and (2) Maximum fuel oil capacity. (c) Each oil residue... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Oil residue (sludge) tank. 157.17...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN...

  1. Phase chemistry and radionuclide retention from simulated tank sludges

    SciTech Connect

    KRUMHANSL,JAMES L.; LIU,J.; ARTHUR,SARA E.; HUTCHERSON,SHEILA K.; QIAN,MORRIS; ANDERSON,HOWARD L.

    2000-05-19

    Decommissioning high level nuclear waste tanks will leave small amounts of residual sludge clinging to the walls and floor of the structures. The permissible amount of material left in the tanks depends on the radionuclide release characteristics of the sludge. At present, no systematic process exists for assessing how much of the remaining inventory will migrate, and which radioisotopes will remain relatively fixed. Working with actual sludges is both dangerous and prohibitively expensive. Consequently, methods were developed for preparing sludge simulants and doping them with nonradioactive surrogates for several radionuclides and RCRA metals of concern in actual sludges. The phase chemistry of these mixes was found to be a reasonable match for the main phases in actual sludges. Preliminary surrogate release characteristics for these sludges were assessed by lowering the ionic strength and pH of the sludges in the manner that would occur if normal groundwater gained access to a decommissioned tank. Most of the Se, Cs and Tc in the sludges will be released into the first pulse of groundwater passing through the sludge. A significant fraction of the other surrogates will be retained indefinitely by the sludges. This prolonged sequestration results from a combination coprecipitated and sorbed into or onto relatively insoluble phases such as apatite, hydrous oxides of Fe, Al, Bi and rare earth oxides and phosphates. The coprecipitated fraction cannot be released until the host phase dissolves or recrystallizes. The sorbed fraction can be released by ion exchange processes as the pore fluid chemistry changes. However, these releases can be predicted based on a knowledge of the fluid composition and the surface chemistry of the solids. In this regard, the behavior of the hydrous iron oxide component of most sludges will probably play a dominant role for many cationic radionuclides while the hydrous aluminum oxides may be more important in governing anion releases.

  2. High-Level Waste Mechanical Sludge Removal at the Savannah River Site - F Tank Farm Closure Project

    SciTech Connect

    Jolly, R.C.Jr.; Martin, B.

    2008-07-01

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intra

  3. Water washes and caustic leaches of sludge from Hanford Tank S-101 and water washes of sludge from Hanford Tank C-103

    SciTech Connect

    Hunt, R.D.; Collins, J.L.; Chase, C.W.

    1998-07-01

    In 1993, the Department of Energy (DOE) selected the enhanced sludge washing (ESW) process as the baseline for pretreatment of Hanford tank sludges. The ESW process uses a series of water washes and caustic leaches to separate nonradioactive components such as aluminum, chromium, and phosphate from the high-level waste sludges. If the ESW process is successful, the volume of immobilized high-level waste will be significantly reduced. The tests on the sludge from Hanford Tank S-101 focused on the effects of process variables such as sodium hydroxide concentration (1 and 3 M), temperature (70 and 95 C), and leaching time (5, 24, 72, and 168 h) on the efficacy of the ESW process with realistic liquid-to-solid ratios. Another goal of this study was to evaluate the effectiveness of water washes on a sludge sample from hanford Tank C-103. The final objective of this study was to test potential process control monitors during the water washes and caustic leaches with actual sludge. Both {sup 137}Cs activity and conductance were measured for each of the water washes and caustic leaches. Experimental procedures, a discussion of results, conclusions and recommendations are included in this report.

  4. Nuclear safety of extended sludge processing on tank 42 and 51 sludge (DWPF sludge feed batch one)

    SciTech Connect

    Clemons, J.S.

    1993-02-26

    The sludge in tanks 42 and 51 is to be washed with inhibited water to remove soluble salts and combined in tank 51 in preparation for feed to DWPF. Since these tanks contain uranium and plutonium, the process of washing must be evaluated to ensure subcriticality is maintained. When the sludge is washed, inhibited water is added, the tank contents are slurried and allowed to settle. The sludge wash water is then decanted to the evaporator feed tank where it is fed to the evaporator to reduce the volume. The resulting evaporator concentrate is sent to a salt tank where it cools and forms crystallized salt cake. This salt cake will later be dissolved, processed in ITP and sent to Z-Area. This report evaluates the supernate and sludge during washing, the impact on the evaporator during concentration of decanted wash water, and the salt tank where the concentrated supernate is deposited. The conclusions generated in this report are specific to the sludge currently contained in tanks 42 and 51.

  5. Assessment of alternative management techniques of tank bottom petroleum sludge in Oman.

    PubMed

    Al-Futaisi, Ahmed; Jamrah, Ahmad; Yaghi, Basma; Taha, Ramzi

    2007-03-22

    This paper investigated several options for environmentally acceptable management techniques of tank bottom oily sludge. In particular, we tested the applicability of managing the sludge by three options: (1) as a fuel supplement; (2) in solidification; (3) as a road material. Environmental testing included determination of heavy metals concentration; toxic organics concentration and radiological properties. The assessment of tank bottom sludge as a fuel supplement included various properties such as proximate analysis, ultimate analysis and energy content. Solidified sludge mixtures and road application sludge mixtures were subjected to leaching using the toxicity characteristic leaching procedure (TCLP). Tank bottom sludge was characterized as having higher concentrations of lead, zinc, and mercury, but lower concentrations of nickel, copper and chromium in comparison with values reported in the literature. Natural occurring radioactive minerals (NORM) activity values obtained on different sludge samples were very low or negligible compared to a NORM standard value of 100Bq/g. The fuel assessment results indicate that the heating values, the carbon content and the ash content of the sludge samples are comparable with bituminous coal, sewage sludge, meat and bone meal and petroleum coke/coal mixture, but lower than those in car tyres and petroleum coke. The nitrogen content is lower than those fuels mentioned above, while the sulfur content seems comparable with bituminous coal, petroleum coke and a petroleum coke/coal mixture. The apparent lack of leachability of metals from solidification and road material sludge applications suggests that toxic metals and organics introduced to these applications are not readily attacked by weak acid solutions and would not be expected to migrate or dissolved into the water. Thus, in-terms of trace metals and organics, the suggested sludge applications would not be considered hazardous as defined by the TCLP leaching procedure

  6. Sludge mobilization with submerged nozzles in horizontal cylindrical tanks

    SciTech Connect

    Hylton, T.D.; Cummins, R.L.; Youngblood, E.L.; Perona, J.J.

    1995-10-01

    The Melton Valley Storage Tanks (MVSTs) and the evaporator service tanks at the Oak Ridge National Laboratory (ORNL) are used for the collection and storage of liquid low-level waste (LLLW). Wastes collected in these tanks are typically acidic when generated and are neutralized with sodium hydroxide to protect the tanks from corrosion; however, the high pH of the solution causes the formation of insoluble compounds that precipitate. These precipitates formed a sludge layer approximately 0.6 to 1.2 m (2 to 4 ft) deep in the bottom of the tanks. The sludge in the MVSTs and the evaporator service tanks will eventually need to be removed from the tanks and treated for final disposal or transferred to another storage facility. The primary options for removing the sludge include single-point sluicing, use of a floating pump, robotic sluicing, and submerged-nozzle sluicing. The objectives of this study were to (1) evaluate the feasibility of submerged-nozzle sluicing in horizontal cylindrical tanks and (2) obtain experimental data to validate the TEMPEST (time-dependent, energy, momentun, pressure, equation solution in three dimensions) computer code.

  7. Tank 40 Final Sludge Batch 8 Chemical Characterization Results

    SciTech Connect

    Bannochie, Christopher J.

    2013-09-19

    A sample of Sludge Batch 8 (SB8) was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB8 WAPS sample was also analyzed for chemical composition, including noble metals, and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is currently being fed to the Defense Waste Processing Facility (DWPF) as SB8. At SRNL, the 3-L Tank 40 SB8 sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 553 g sub-sample was removed. This sub-sample was then utilized for all subsequent slurry sample preparations. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon(r) vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass - 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma - mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB8 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH-/other base, total inorganic carbon/total organic

  8. Laboratory stabilization/solidification of tank sludges: GAAT, OHF, and combined tank sets.

    PubMed

    Spence, R D; Mattus, C H

    2004-03-01

    Highly radioactive, mixed-waste sludges that have been collected at Oak Ridge over several decades are being combined for treatment and disposal. Stabilization of the sludges in the different tank sets was tested prior to the proposed combination and treatment. This paper, which follows a previous article on the Melton Valley Storage Tank/Bethel Valley Evaporator Storage Tank set, documents the testing of the Gunite and Associated Tank and Old Hydrofracture Facility tank sets, as well as the combined sludges of all the Oak Ridge National Laboratory tank sets; the third paper on this subject will discuss efforts to maximize the sludge loading. The grout formulations were tested in the laboratory with surrogates. A wet-sludge loading of 60wt% resulted in strong wasteforms with no free water and gave a volume increase of about 30-40vol%. The Resource Conservation and Recovery Act metals included in the surrogate testing were silver, cadmium, chromium, lead, selenium, thallium, zinc, and mercury. The grout formulations stabilized these metals within the Universal Treatment Standards limits. In addition, a grout leachability index of about 10.0-12.0 was measured for both (85)Sr and (137)Cs, meeting the recommended requirement of >6.0. PMID:15036694

  9. CHEMICAL SLUDGE HEEL REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT 8183

    SciTech Connect

    Thaxton, D; Timothy Baughman, T

    2008-01-16

    Chemical Sludge Removal (CSR) is the final waste removal activity planned for some of the oldest nuclear waste tanks located at the Savannah River Site (SRS) in Aiken, SC. In 2008, CSR will be used to empty two of these waste tanks in preparation for final closure. The two waste tanks chosen to undergo this process have previously leaked small amounts of nuclear waste from the primary tank into an underground secondary containment pan. CSR involves adding aqueous oxalic acid to the waste tank in order to dissolve the remaining sludge heel. The resultant acidic waste solution is then pumped to another waste tank where it will be neutralized and then stored awaiting further processing. The waste tanks to be cleaned have a storage capacity of 2.84E+06 liters (750,000 gallons) and a target sludge heel volume of 1.89E+04 liters (5,000 gallons) or less for the initiation of CSR. The purpose of this paper is to describe the CSR process and to discuss the most significant technical issues associated with the development of CSR.

  10. Feasibility report on criticality issues associated with storage of K Basin sludge in tanks farms

    SciTech Connect

    Vail, T.S.

    1997-05-29

    This feasibility study provides the technical justification for conclusions about K Basin sludge storage options. The conclusions, solely based on criticality safety considerations, depend on the treatment of the sludge. The two primary conclusions are, (1) untreated sludge must be stored in a critically safe storage tank, and (2) treated sludge (dissolution, precipitation and added neutron absorbers) can be stored in a standard Double Contained Receiver Tank (DCRT) or 241-AW-105 without future restrictions on tank operations from a criticality safety perspective.

  11. [Research on change process of nitrosation granular sludge in continuous stirred-tank reactor].

    PubMed

    Yin, Fang-Fang; Liu, Wen-Ru; Wang, Jian-Fang; Wu, Peng; Shen, Yao-Liang

    2014-11-01

    In order to investigate the effect of different types of reactors on the nitrosation granular sludge, a continuous stirred-tank reactor (CSTR) was studied, using mature nitrosation granular sludge cultivated in sequencing batch reactor (SBR) as seed sludge. Results indicated that the change of reactor type and influent mode could induce part of granules to lose stability with gradual decrease in sludge settling ability during the initial period of operation. However, the flocs in CSTR achieved fast granulation in the following reactor operation. In spite of the changes of particle size distribution, e. g. the decreasing number of granules with diameter larger than 2.5 mm and the increasing number of granules with diameter smaller than 0.3 mm, granular sludge held the absolute predominance of sludge morphology in CSTR during the entire experimental period. Moreover, results showed that the change of reactor type and influent mode didn't affect the nitrite accumulation rate which was still kept at about 85% in effluent. Additionally, the average activity of the sludge in CSTR was stronger than that of the seed sludge, because the newly generated small particles in CSTR had higher specific reactive activity than the larger granules. PMID:25639100

  12. Characterization of the SRNL-Washed tank 51 sludge batch 9 qualification sample

    SciTech Connect

    Pareizs, J. M.

    2016-01-01

    Savannah River National Laboratory (SRNL) personnel have been requested to qualify the next sludge batch (Sludge Batch 9 – SB9) for processing at the Defense Waste Processing Facility (DWPF). To accomplish this task, Savannah River Remediation (SRR) sent SRNL a 3-L sample of Tank 51H slurry to be characterized, washed, and then used in a lab-scale demonstration of the DWPF flowsheet (after combining with Tank 40H sludge). SRNL has washed the Tank 51H sample per the Tank Farm washing strategy as of October 20, 2015. A part of the qualification process is extensive radionuclide and chemical characterization of the SRNL-washed Tank 51H slurry. This report documents the chemical characterization of the washed slurry; radiological characterization is in progress and will be documented in a separate report. The analytical results of this characterization are comparable to the Tank Farm projections. Therefore, it is recommended that SRNL use this washed slurry for the ongoing SB9 qualification activities.

  13. Bench-scale enhanced sludge washing and gravity settling of Hanford Tank C-106 Sludge

    SciTech Connect

    Brooks, K.P; Myers, R.L; Rappe, K.G.

    1997-01-01

    This report summarizes the results of a bench-scale sludge pretreatment demonstration of the Hanford baseline flowsheet using liter-quantities of sludge from Hanford Site single-shell tank 241-C-106 (tank C-106). The leached and washed sludge from these tests provided Envelope D material for the contractors supporting Tank Waste Remediation System (TWRS) Privatization. Pretreatment of the sludge included enhanced sludge washing and gravity settling tests and providing scale-up data for both these unit operations. Initial and final solids as well as decanted supernatants from each step of the process were analyzed chemically and radiochemically. The results of this work were compared to those of Lumetta et al. (1996a) who performed a similar experiment with 15 grams of C-106, sludge. A summary of the results are shown in Table S.1. Of the major nonradioactive components, those that were significantly removed with enhanced sludge washing included aluminum (31%), chromium (49%), sodium (57%), and phosphorus (35%). Of the radioactive components, a significant amount of {sup 137}Cs (49%) were removed during the enhanced sludge wash. Only a very small fraction of the remaining radionuclides were removed, including {sup 90}Sr (0.4%) and TRU elements (1.5%). These results are consistent with those of the screening test. All of the supernatants (both individually and as a blend) removed from these washing steps, once vitrified as LLW glasses (at 20 wt% Na{sub 2}O), would be less than NRC Class C in TRU elements and less than NRC Class B in {sup 90}Sr.

  14. Characterization of Settler Tank and KW Container Sludge Simulants

    SciTech Connect

    Burns, Carolyn A.; Luna, Maria; Schmidt, Andrew J.

    2009-05-12

    The Sludge Treatment Project (STP), managed by CH2M Hill Plateau Remediation Company (CHPRC) has specified base formulations for non-radioactive sludge simulants for use in the development and testing of equipment for sludge sampling, retrieval, transport, and processing. In general, the simulant formulations are based on the average or design-basis physical and chemical properties obtained by characterizing sludge samples. The simulants include surrogates for uranium metal, uranium oxides (agglomerates and fine particulate), and the predominant chemical phases (iron and aluminum hydroxides, sand). Specific surrogate components were selected to match the nominal particle-size distribution and particle-density data obtained from sludge sample analysis. Under contract to CHPRC, Pacific Northwest National Laboratory (PNNL) has performed physical and rheological characterization of simulants, and the results are reported here. Two base simulant types (dry) were prepared by STP staff at the Maintenance and Storage Facility and received by PNNL on February 12, 2009: Settler Tank Simulant and KW Container Sludge Simulant. The objectives of this simulant characterization effort were to provide baseline characterization data on simulants being used by STP for process development and equipment testing and provide a high-level comparison of the simulant characteristics to the targets used to formulate the simulants.

  15. Washing and caustic leaching of Hanford Tank C-106 sludge

    SciTech Connect

    Lumetta, G.J.; Wagner, M.J.; Hoopes, F.V.; Steele, R.T.

    1996-10-01

    This report describes the results of a laboratory-scale washing and caustic leaching test performed on sludge from Hanford Tank C-106. The purpose of this test was to determine the behavior of important sludge components when subjected to washing with dilute or concentrated sodium hydroxide solutions. The results of this laboratory-scale test were used to support the design of a bench-scale washing and leaching process used to prepare several hundred grams of high-level waste solids for vitrification tests to be done by private contractors. The laboratory-scale test was conducted at Pacific Northwest Laboratory in FY 1996 as part of the Hanford privatization effort. The work was funded by the US Department of Energy through the Tank Waste Remediation System (TWRS; EM-30).

  16. PILOT-SCALE TESTING OF THE SUSPENSION OF MST, CST, AND SIMULATED SLUDGE SLURRIES IN A SLUDGE TANK

    SciTech Connect

    Poirier, M.; Qureshi, Z.; Restivo, M.; Steeper, T.; Williams, M.; Herman, D.

    2011-08-02

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Following strontium, actinide, and cesium removal, the concentrated solids will be transported to a sludge tank (i.e., monosodium titanate (MST)/sludge solids to Tank 42H or Tank 51H and crystalline silicotitanate (CST) to Tank 40H) for eventual transfer to the Defense Waste Processing Facility (DWPF). Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for mixing MST, CST, and simulated sludge. The purpose of this pilot scale testing is to determine the pump requirements for mixing MST and CST with sludge in a sludge tank and to determine whether segregation of particles occurs during settling. Tank 40H and Tank 51H have four Quad Volute pumps; Tank 42H has four standard pumps. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 40H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 40H. The pump locations correspond to the current locations in Tank 40H (Risers B2, H, B6, and G). The pumps are pilot-scale Quad Volute pumps. Additional settling tests were conducted in a 30 foot tall, 4 inch inner diameter clear column to investigate segregation of MST, CST, and simulated sludge particles during settling.

  17. FINAL REPORT. COLLOIDAL AGGLOMERATES IN TANK SLUDGE: IMPACT ON WASTE PROCESSING

    EPA Science Inventory

    Insoluble colloidal sludges in hazardous waste streams such as tank wastes can pose serious problems for waste processing, interfering with retrieval, transport, separation, andsolidification processes. Properties of sediment layers and sludge suspensions such as slurryviscosit...

  18. Evaluation of the DWPF Cold Chem Dissolution Method with Tank 7 and Tank 51 Radioactive Sludge

    SciTech Connect

    Click, D.R.

    2004-03-11

    Dissolution experiments were conducted on radioactive sludge from Tank 7, before transfer of the contents of Tank 7 to Tank 51, and the subsequent sludge in Tank 51 to evaluate the effectiveness of the DWPF Cold Chem Method. The DWPF Cold Chem Method is a room temperature dissolution method (DWPF Cold Chem Method) used in the DWPF on the Slurry Receipt and Adjustment Tank (SRAT) samples in preparation for instrumental analysis. Four types of dissolutions experiments were carried out, the DWPF Cold Chem Method, hot aqua regia, sodium peroxide fusion and hot HF-HNO3. The hot HF-HNO3 digestion is modified version of the DWPF method that incorporates a heating step. The hot aqua regia and sodium peroxide fusion digestions were included as reference digestions. The resulting solutions from all the sludge digestions were analyzed by ICP-ES (Inductively Coupled Plasma Emission Spectroscopy). Visual observations and ICP-ES results were used to evaluate the effectiveness of the DWPF Cold Chem by comparison to the hot aqua regia, sodium peroxide fusion and the hot HF-HNO3 digestions. The data and experimental observations support the following conclusions: The DWPF Cold Chem Method seemed to be effective at dissolving initial species of radioactive sludge, but concurrent precipitation of insoluble mixed-metal fluoride salts was observed in both the Tank 7 and Tank 51 Cold Chem digestion solutions. Complete dissolution, by visual observation, was achieved with a modified hot HF-HNO3 digestion. This was done as an alternative to the DWPF room-temperature acid dissolution.

  19. Correlation models for waste tank sludges and slurries

    SciTech Connect

    Mahoney, L.A.; Trent, D.S.

    1995-07-01

    This report presents the results of work conducted to support the TEMPEST computer modeling under the Flammable Gas Program (FGP) and to further the comprehension of the physical processes occurring in the Hanford waste tanks. The end products of this task are correlation models (sets of algorithms) that can be added to the TEMPEST computer code to improve the reliability of its simulation of the physical processes that occur in Hanford tanks. The correlation models can be used to augment, not only the TEMPEST code, but other computer codes that can simulate sludge motion and flammable gas retention. This report presents the correlation models, also termed submodels, that have been developed to date. The submodel-development process is an ongoing effort designed to increase our understanding of sludge behavior and improve our ability to realistically simulate the sludge fluid characteristics that have an impact on safety analysis. The effort has employed both literature searches and data correlation to provide an encyclopedia of tank waste properties in forms that are relatively easy to use in modeling waste behavior. These properties submodels will be used in other tasks to simulate waste behavior in the tanks. Density, viscosity, yield strength, surface tension, heat capacity, thermal conductivity, salt solubility, and ammonia and water vapor pressures were compiled for solutions and suspensions of sodium nitrate and other salts (where data were available), and the data were correlated by linear regression. In addition, data for simulated Hanford waste tank supernatant were correlated to provide density, solubility, surface tension, and vapor pressure submodels for multi-component solutions containing sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate.

  20. High-rate anaerobic co-digestion of kraft mill fibre sludge and activated sludge by CSTRs with sludge recirculation.

    PubMed

    Ekstrand, Eva-Maria; Karlsson, Marielle; Truong, Xu-Bin; Björn, Annika; Karlsson, Anna; Svensson, Bo H; Ejlertsson, Jörgen

    2016-10-01

    Kraft fibre sludge from the pulp and paper industry constitutes a new, widely available substrate for the biogas production industry, with high methane potential. In this study, anaerobic digestion of kraft fibre sludge was examined by applying continuously stirred tank reactors (CSTR) with sludge recirculation. Two lab-scale reactors (4L) were run for 800days, one on fibre sludge (R1), and the other on fibre sludge and activated sludge (R2). Additions of Mg, K and S stabilized reactor performance. Furthermore, the Ca:Mg ratio was important, and a stable process was achieved at a ratio below 16:1. Foaming was abated by short but frequent mixing. Co-digestion of fibre sludge and activated sludge resulted in more robust conditions, and high-rate operation at stable conditions was achieved at an organic loading rate of 4g volatile solids (VS)L(-1)day(-1), a hydraulic retention time of 4days and a methane production of 230±10NmL per g VS. PMID:27453288

  1. Rheology of Savannah River Site Tank 51 HLW radioactive sludge. Revision 1

    SciTech Connect

    Ha, B.C.

    1993-03-01

    Savannah River Site (SRS) Tank 51 HLW radioactive sludge represents a major portion of the first batch of sludge to be vitrified in the Defense Waste Processing Facility (DWPF) at SRS. The rheological properties of Tank 51 sludge will determine if the waste sludge can be pumped by the current DWPF process cell pump design and the homogeneity of melter feed slurries. The rheological properties of Tank 51 sludge and sludge/frit slurries at various solids concentrations were measured remotely in the Shielded Cells Operations (SCO) at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco viscometer system. Rheological properties of Tank 51 radioactive sludge/Frit 202 slurries increased drastically when the solids content was above 41 wt %. The yield stresses of Tank 51 sludge and sludge/frit slurries fall within the limits of the DWPF equipment design basis. The apparent viscosities also fall within the DWPF design basis for sludge consistency. All the results indicate that Tank 51 waste sludge and sludge/frit slurries are pumpable throughout the DWPF processes based on the current process cell pump design, and should produce homogeneous melter feed slurries.

  2. Precipitation of nitrate-cancrinite in Hanford Tank Sludge.

    PubMed

    Buck, E C; McNamara, B K

    2004-08-15

    The chemistry of underground storage tanks containing high-level waste at the Hanford Site in Washington State is an area of continued research interest. Thermodynamic models have predicted the formation of analcime and clinoptilolite in Hanford tanks, rather than cancrinite; however, these predictions were based on carbonate-cancrinite. We report the first observation of a nitrate-cancrinite [possibly Na8(K,Cs)(AlSiO4)6(NO3)2 x nH2O] extracted from a Hanford tank 241-AP-101 sample that was evaporated to 6, 8, and 10 M NaOH concentrations. The nitrate-cancrinite phase formed spherical aggregates (4 microm in diameter) that consisted of platy hexagonal crystals (approximately 0.2 microm thick). Cesium-137 was concentrated in these aluminosilicate structures. These phases possessed a morphology identical to that of nitrate-cancrinite synthesized using simulant tests of nonradioactive tank waste, supporting the contention that it is possible to develop nonradioactive artificial sludges. This investigation points to the continued importance of understanding the solubility of NO3-cancrinite and related phases. Knowledge of the detailed structure of actual phases in the tank waste helps with thermodynamic modeling of tank conditions and waste processing. PMID:15382874

  3. Grout and glass performance in support of stabilization/solidification of ORNL tank sludges

    SciTech Connect

    Spence, R.D.; Mattus, C.H.; Mattus, A.J.

    1998-09-01

    Wastewater at Oak Ridge National Laboratory (ORNL) is collected, evaporated, and stored in the Melton Valley Storage Tanks (MVST) and Bethel Valley Evaporator Storage Tanks (BVEST) pending treatment for disposal. In addition, some sludges and supernatants also requiring treatment remain in two inactive tank systems: the gunite and associated tanks (GAAT) and the old hydrofracture (OHF) tank. The waste consists of two phases: sludge and supernatant. The sludges contain a high amount of radioactivity, and some are classified as TRU sludges. Some Resource Conservation and Recovery Act (RCRA) metal concentrations are high enough to be defined as RCRA hazardous; therefore, these sludges are presumed to be mixed TRU waste. Grouting and vitrification are currently two likely stabilization/solidification alternatives for mixed wastes. Grouting has been used to stabilize/solidify hazardous and low-level radioactive waste for decades. Vitrification has been developed as a high-level radioactive alternative for decades and has been under development recently as an alternative disposal technology for mixed waste. The objective of this project is to define an envelope, or operating window, for grout and glass formulations for ORNL tank sludges. Formulations will be defined for the average composition of each of the major tank farms (BVEST/MVST, GAAT, and OHF) and for an overall average composition of all tank farms. This objective is to be accomplished using surrogates of the tank sludges with hot testing of actual tank sludges to check the efficacy of the surrogates.

  4. Radiological assessment of worker doses during sludge mobilization and removal at the Melton Valley storage tanks

    SciTech Connect

    Kerr, G.D.; Coleman, R.L.; Kocher, D.C.; Wynn, C.C.

    1996-12-17

    This report presents an assessment of potential radiation doses to workers during mobilization and removal of contaminated sludges from the Melton Valley Storage Tanks at Oak Ridge National Laboratory. The assessment is based on (1) measurements of radionuclide concentrations in sludge and supernatant liquid samples from the waste storage tanks, (2) measurements of gamma radiation levels in various areas that will be accessed by workers during normal activities, (3) calculations of gamma radiation levels for particular exposure situations, especially when the available measurements are not applicable, and (4) assumed scenarios for worker activities in radiation areas. Only doses from external exposure are estimated in this assessment. Doses from internal exposure are assumed to be controlled by containment of radioactive materials or respiratory protection of workers and are not estimated.

  5. Physical characterization of radioactive sludges in selected Melton Valley and evaporator facility storage tanks

    SciTech Connect

    Ceo, R.N.; Sears, M.B.; Shor, J.T.

    1990-10-01

    Physical measurements were performed on typical radioactive sludge samples from selected Melton Valley Storage Tanks (MVSTs) and evaporator facility storage tanks at ORNL. These measurements included viscosity, particle size, density, sedimentation rate, and solids content. The techniques developed during this project are simple and use inexpensive apparatus to assay the range of physical properties spanned by the sample set. The report provides data in support of the design of the proposed Waste Handling and Packaging Plant, and research and development activities in developing waste management alternatives. 5 refs., 11 figs., 6 tabs.

  6. Sludge accumulation and conversion to methane in a septic tank treating domestic wastewater or black water.

    PubMed

    Elmitwalli, Tarek

    2013-01-01

    Although the septic tank is the most applied on-site system for wastewater pre-treatment, limited research has been performed to determine sludge accumulation and biogas production in the tank. Therefore a dynamic mathematical model based on the Anaerobic Digestion Model No. 1 (ADM1) was developed for anaerobic digestion of the accumulated sludge in a septic tank treating domestic wastewater or black water. The results showed that influent chemical oxygen demand (COD) concentration and hydraulic retention time (HRT) of the tank mainly control the filling time with sludge, while operational temperature governs characteristics of the accumulated sludge and conversion to methane. For obtaining stable sludge and high conversion, the tank needs to be operated for a period more than a year without sludge wasting. Maximum conversion to methane in the tank is about 50 and 60% for domestic wastewater and black water, respectively. The required period for sludge wasting depends on the influent COD concentration and the HRT, while characteristics of the wasted sludge are affected by operational temperature followed by the influent COD concentration and the HRT. Sludge production from the tank ranges between 0.19 to 0.22 and 0.13 to 0.15 L/(person.d), for the domestic wastewater and black water, respectively. PMID:23985530

  7. Plant available nitrogen from anaerobically digested sludge and septic tank sludge applied to crops grown in the tropics.

    PubMed

    Sripanomtanakorn, S; Polprasert, C

    2002-04-01

    Agricultural land is an attractive alternative for the disposal of biosolids since it utilises the recyclable nutrients in the production of crops. In Thailand and other tropical regions, limited field-study information exists on the effect of biosolids management strategies on crop N utilisation and plant available N (PAN) of biosolids. A field study was conducted to quantify the PAN of the applied biosolids, and to evaluate the N uptake rates of some tropical crops. Sunflower (Helianthus annuus) and tomato (Lycopersicon esculentum) were chosen in this study. Two types of biosolids used were: anaerobically digested sludge and septic tank sludge. The soil is acid sulfate and is classified as Sulfic Tropaquepts with heavy clay in texture. The anaerobically digested sludge applied rates were: 0, 156 and 312 kg N ha(-1) for the sunflower plots, and 0, 586, and 1172 kg N ha(-1) for the tomato plots. The septic tank sludge applied rates were: 0, 95 and 190 kg N ha(-1) for the sunflower plots, and 0, 354 and 708 kg N ha(-1) for the tomato plots, respectively. The results indicated the feasibility of applying biosolids to grow tropical crops. The applications of the anaerobically digested sludge and the septic tank sludge resulted in the yields of sunflower seeds and tomato fruits and the plant N uptakes comparable or better than that applied with only the chemical fertiliser. The estimated PAN of the anaerobically digested sludge was about 27-42% of the sludge organic N during the growing season. For the septic tank sludge, the PAN was about 15-58% of the sludge organic N. It is interesting to observe that an increase of the rate of septic tank sludge incorporated into this heavy clay soil under the cropping system resulted in the decrease of N mineralisation rate. This situation could cause the reduction of yield and N uptake of crops. PMID:12058820

  8. Gas Retention and Release from Hanford Site Sludge Waste Tanks

    SciTech Connect

    Meacham, Joseph E.; Follett, Jordan R.; Gauglitz, Phillip A.; Wells, Beric E.; Schonewill, Philip P.

    2015-02-18

    Radioactive wastes from nuclear fuel processing are stored in large underground storage tanks at the Hanford Site. Solid wastes can be divided into saltcake (mostly precipitated soluble sodium nitrate and nitrite salts with some interstitial liquid consisting of concentrated salt solutions) and sludge (mostly low solubility aluminum and iron compounds with relatively dilute interstitial liquid). Waste generates hydrogen through the radiolysis of water and organic compounds, radio-thermolytic decomposition of organic compounds, and corrosion of a tank’s carbon steel walls. Nonflammable gases, such as nitrous oxide and nitrogen, are also produced. Additional flammable gases (e.g., ammonia and methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks.

  9. Precipitation of Nitrate-Cancrinite in Hanford Tank Sludge

    SciTech Connect

    Buck, Edgar C.; McNamara, Bruce K.

    2004-08-15

    The chemistry of underground storage tanks containing high-level waste (HLW) at the Hanford Site in Washington State is an area of continued research interest. Thermodynamic models have predicted the formation of analcime and clinoptilolite in Hanford Tank, rather than cancrinite; however, these predictions were based on carbonate-cancrinite. We report the first observation of a nitrate-cancrinite [possibly Na{sub 8}K(AlSiO{sub 4}){sub 6}(NO{sub 3}){sub 2} {center_dot} nH{sub 2}O] in fully radioactive Hanford Tank waste evaporated to 6M, 8M, and 10M NaOH concentrations. The nitrate-cancrinite phase formed spherical aggregates (4 {micro}m in diameter) that consisted of platy hexagonal crystals ({approx}0.2 {micro}m thick). {sup 137}Cs was concentrated in these silicate structures. These phase possessed identical morphology as nitrate-cancrinite precipitated in Hanford Tank non-radioactive simulant tests supporting the contention that it is possible to develop non-radioactive artificial sludges. This investigation points to the continued importance of understanding the solubility of NO{sub 3}-cancrinite and related phases.

  10. Filamentous sludge bulking control by nano zero-valent iron in activated sludge treatment systems.

    PubMed

    Xu, Shengnan; Sun, Minghao; Zhang, Chiqian; Surampalli, Rao; Hu, Zhiqiang

    2014-12-01

    Sludge bulking causes loss of biomass in the effluent and deterioration of effluent water quality. This study explored the use of nano zero-valent iron (NZVI with an average particle size of 55 ± 11 nm) for sludge bulking control. In two Modified Ludzack-Ettinger (MLE) activated sludge treatment systems, a single dose of NZVI at the final concentration of 100 mg Fe per L in the mixed liquor reduced the number of filamentous bacteria Type 021N by 2-3 log units (a reduction of 99.9 and 96.7% in MLE tank #1 and #2, respectively). The side effect of the use of NZVI depended on sludge bulking conditions and biomass concentration. In the system with sludge bulking and significant sludge loss (average biomass concentration of 1022 ± 159 COD mg per L or at the ratio of 0.098 g Fe per g biomass COD), the use of NZVI increased effluent COD, NH4(+)-N and NO2(-)-N concentrations, as also evident with the loss of nitrifying populations and nitrifying activities resulting in more than 40 days to have the full recovery of the activated sludge system. In contrast, in the system with the early stages of bulking and the biomass concentration of 1799 ± 113 COD mg per L (at the ratio of 0.056 g Fe per g biomass COD), the effluent water quality and overall bioreactor performance were only slightly affected for a few days. PMID:25386669

  11. Characterization and decant of Tank 42H sludge sample ESP-200

    SciTech Connect

    Hay, M.S.

    2000-04-25

    DWPF Engineering requested that the Savannah River Technology Center (SRTC) provide a demonstration of the DWPF flowsheet on sludge from Tank 42H in the Shielded Cell facility. A 5 liter sample of the Tank 42H sludge (ESP-200), obtained with the tank contents fully mixed, arrived at SRTC on January 20, 1998. This report details receipt of the 5 liter sample at SRTC, the decant of the sample, and the characterization of the pre- and post-decant Tank 42H sludge. Evaluation of the measured composition of the supernate indicates Sample ESP-200 became diluted approximately 20 percent by volume prior to receipt. This dilution complicates the relationship of the characterization of Post-Decant ESP-200 to the current contents of Tank 42H. For the purposes of modeling the current tank contents of Tank 42H, this report provides an estimated composition based on analytical data of recent samples from Tank 42H.

  12. Impact of Zeolite Transferred from Tank 19F to Tank 18F on DWPF Vitrification of Sludge Batch 3

    SciTech Connect

    Jantzen, C.M.

    2004-01-07

    The Defense Waste Processing Facility (DWPF) is planning to initiate vitrification of Sludge Batch 3 (SB3) in combination with Sludge Batch 2 (SB2) in the spring of 2004. The contents of Sludge Batch 3 will be a mixture of the heel remaining from Sludge Batch 1B, sludge from Tank 7F (containing coal, sand, and sodium oxalate), and sludge materials from Tank 18F. The sludge materials in Tank 18F contain part of a mound of zeolitic material transferred there from Tank 19F. This mound was physically broken up and transfers were made from Tank 19F to Tank 18F for vitrification into SB3. In addition, excess Pu and Am/Cm materials were transferred to Tank 51H to be processed through the DWPF as part of SB3. Additional Pu material and a Np stream from the Canyons are also planned to be added to SB3 before processing of this batch commences at DWPF. The primary objective of this task was to assess the impacts of the excess zeolite mound material in Tank 19F on the predicted glass and processing properties of interest when the zeolite becomes part of SB3. The two potential impacts of the Tank 19F zeolite mound on DWPF processing relates to (1) the samples taken for determination of the acceptability of a macrobatch of DWPF feed and (2) the achievable waste loading. The potential effects of the large size of the zeolite particles found in the Tank 19F solids, as reported in this study, are considered minimal for processing of SB3 in DWPF. Other findings about the zeolite conversion mechanism via a process of Ostwald ripening are discussed in the text and in the conclusions.

  13. Sampling and analysis of radioactive liquid wastes and sludges in the Melton Valley and evaporator facility storage tanks at ORNL

    SciTech Connect

    Sears, M.B.; Botts, J.L.; Ceo, R.N.; Ferrada, J.J.; Griest, W.H.; Keller, J.M.; Schenley, R.L.

    1990-09-01

    The sampling and analysis of the radioactive liquid wastes and sludges in the Melton Valley Storage Tanks (MVSTs), as well as two of the evaporator service facility storage tanks at ORNL, are described. Aqueous samples of the supernatant liquid and composite samples of the sludges were analyzed for major constituents, radionuclides, total organic carbon, and metals listed as hazardous under the Resource Conservation and Recovery Act (RCRA). Liquid samples from five tanks and sludge samples from three tanks were analyzed for organic compounds on the Environmental Protection Agency (EPA) Target Compound List. Estimates were made of the inventory of liquid and sludge phases in the tanks. Descriptions of the sampling and analytical activities and tabulations of the results are included. The report provides data in support of the design of the proposed Waste Handling and Packaging Plant, the Liquid Low-Level Waste Solidification Project, and research and development activities (R D) activities in developing waste management alternatives. 7 refs., 8 figs., 16 tabs.

  14. Protein extraction from activated sludge.

    PubMed

    Denecke, M

    2006-01-01

    Two methods for the separation of protein originating from activated sludge were compared. In one method, the total protein was isolated out of the activated sludge (crude extract). These samples included all dissolved proteins originating from the bacterial cells and biofilm made up of extracellular polymeric substances (EPS). Every time polyacrylamide gel electrophoresis (PAGE) was done, the protein bands from samples of crude extract were covered by polymeric substances including carbohydrates, uronic acids or humic compounds. Using the immunoblot technique it was possible to demonstrate the presence of the heat shock protein HSP70 in crude extracts of activated sludge. The comparison of protein fingerprints required that clear and distinct bands appear on the PAGE analysis. To this end, a procedure to separates bacterial cells from the EPS was developed. Bacterial cells were separated by incubation with EDTA and subsequent filtration. The isolated cells were directly incubated in a sample buffer. PMID:16898150

  15. Tank 12 Sludge Characterization and Aluminum Dissolution Demonstration

    SciTech Connect

    Reboul, S.; Hay, M.; Zeigler, K; Stone, M.

    2010-05-05

    A 3-L sludge slurry sample from Tank 12 was characterized and then processed through an aluminum dissolution demonstration. The dominant constituent of the sludge was found to be aluminum in the form of boehmite. The iron content was minor, about one-tenth that of the aluminum. The salt content of the supernatant was relatively high, with a sodium concentration of {approx}7 M. Due to these characteristics, the yield stress and plastic viscosity of the unprocessed slurry were relatively high (19 Pa and 27 cP), and the settling rate of the sludge was relatively low ({approx}20% settling over a two and a half week period). Prior to performing aluminum dissolution, plutonium and gadolinium were added to the slurry to simulate receipt of plutonium waste from H-Canyon. Aluminum dissolution was performed over a 26 day period at a temperature of 65 C. Approximately 60% of the insoluble aluminum dissolved during the demonstration, with the rate of dissolution slowing significantly by the end of the demonstration period. In contrast, approximately 20% of the plutonium and less than 1% of the gadolinium partitioned to the liquid phase. However, about a third of the liquid phase plutonium became solubilized prior to the dissolution period, when the H-Canyon plutonium/gadolinium simulant was added to the Tank 12 slurry. Quantification of iron dissolution was less clear, but appeared to be on the order of 1% based on the majority of data (a minor portion of the data suggested iron dissolution could be as high as 10%). The yield stress of the post-dissolution slurry (2.5 Pa) was an order of magnitude lower than the initial slurry, due most likely to the reduced insoluble solids content caused by aluminum dissolution. In contrast, the plastic viscosity remained unchanged (27 cP). The settling rate of the post-dissolution slurry was higher than the initial slurry, but still relatively low compared to settling of typical high iron content/low salt content sludges. Approximately 40

  16. TANK 12 SLUDGE CHARACTERIZATION AND ALUMINUM DISSOLUTION DEMONSTRATION

    SciTech Connect

    Reboul, S; Michael Hay, M; Kristine Zeigler, K; Michael Stone, M

    2009-03-25

    A 3-L sludge slurry sample from Tank 12 was characterized and then processed through an aluminum dissolution demonstration. The dominant constituent of the sludge was found to be aluminum in the form of boehmite. The iron content was minor, about one-tenth that of the aluminum. The salt content of the supernatant was relatively high, with a sodium concentration of {approx}7 M. Due to these characteristics, the yield stress and plastic viscosity of the unprocessed slurry were relatively high (19 Pa and 27 cP), and the settling rate of the sludge was relatively low ({approx}20% settling over a two and a half week period). Prior to performing aluminum dissolution, plutonium and gadolinium were added to the slurry to simulate receipt of plutonium waste from H-Canyon. Aluminum dissolution was performed over a 26 day period at a temperature of 65 C. Approximately 60% of the insoluble aluminum dissolved during the demonstration, with the rate of dissolution slowing significantly by the end of the demonstration period. In contrast, approximately 20% of the plutonium and less than 1% of the gadolinium partitioned to the liquid phase. However, about a third of the liquid phase plutonium became solubilized prior to the dissolution period, when the H-Canyon plutonium/gadolinium simulant was added to the Tank 12 slurry. Quantification of iron dissolution was less clear, but appeared to be on the order of 1% based on the majority of data (a minor portion of the data suggested iron dissolution could be as high as 10%). The yield stress of the post-dissolution slurry (2.5 Pa) was an order of magnitude lower than the initial slurry, due most likely to the reduced insoluble solids content caused by aluminum dissolution. In contrast, the plastic viscosity remained unchanged (27 cP). The settling rate of the post-dissolution slurry was higher than the initial slurry, but still relatively low compared to settling of typical high iron content/low salt content sludges. Approximately 40

  17. Corrosion of radioactive waste tanks containing washed sludge and precipitates

    SciTech Connect

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1988-05-01

    At the US Department of Energy (DOE) Savannah River Plant, the corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Laboratory tests, conducted to determine minimum corrosion inhibitor levels, indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations were conducted to assess the validity of laboratory tests. The in situ results are compared to those of laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species for carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 M nitrite required for reactor fuel reprocessing wastes.

  18. Grout performance in support of in situ stabilization/solidification of the GAAT tank sludges

    SciTech Connect

    Spence, R. D.; Kauschinger, J. L.

    1997-05-01

    The Gunite{trademark} and associated tanks (GAATs) were constructed at ORNL between 1943 and 1951 and were used for many years to collect radioactive and chemical wastes. These tanks are currently inactive. Varying amounts of the sludge were removed and disposed of through the Hydrofracture Program. Thus, some tanks are virtually empty, while others still contain significant amounts of sludge and supernatant. In situ grouting of the sludges in the tanks using multi-point injection (MPI{trademark}), a patented, proprietary technique, is being investigated as a low-cost alternative to (1) moving the sludges to the Melton Valley Storage Tanks (MVSTs) for later solidification and disposal, (2) ex situ grouting of the sludges followed by either disposal back in the tanks or containerizing and disposal elsewhere, and (3) vitrification of the sludges. The paper discusses the chemical characteristics of the GAATs and the type of chemical surrogate that was used during the leachability tests. T his is followed by the experimental work, which, consisted of scope testing and sensitivity testing. The scope testing explored the rheology of the proposed jetting slurries and the settling properties of the proposed grouts using sand-water mixes for the wet sludge. After establishing a jetting slurry and grout with an acceptable rheology and settling properties, the proposed in situ grout formulation was subjected to sensitivity testing for variations in the formulation.

  19. TESTING OF ENHANCED CHEMICAL CLEANING OF SRS ACTUAL WASTE TANK 5F AND TANK 12H SLUDGES

    SciTech Connect

    Martino, C.; King, W.

    2011-08-22

    Forty three of the High Level Waste (HLW) tanks at the Savannah River Site (SRS) have internal structures that hinder removal of the last approximately five thousand gallons of waste sludge solely by mechanical means. Chemical cleaning can be utilized to dissolve the sludge heel with oxalic acid (OA) and pump the material to a separate waste tank in preparation for final disposition. This dissolved sludge material is pH adjusted downstream of the dissolution process, precipitating the sludge components along with sodium oxalate solids. The large quantities of sodium oxalate and other metal oxalates formed impact downstream processes by requiring additional washing during sludge batch preparation and increase the amount of material that must be processed in the tank farm evaporator systems and the Saltstone Processing Facility. Enhanced Chemical Cleaning (ECC) was identified as a potential method for greatly reducing the impact of oxalate additions to the SRS Tank Farms without adding additional components to the waste that would extend processing or increase waste form volumes. In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate an alternative to the baseline 8 wt. % OA chemical cleaning technology for tank sludge heel removal. The baseline OA technology results in the addition of significant volumes of oxalate salts to the SRS tank farm and there is insufficient space to accommodate the neutralized streams resulting from the treatment of the multiple remaining waste tanks requiring closure. ECC is a promising alternative to bulk OA cleaning, which utilizes a more dilute OA (nominally 2 wt. % at a pH of around 2) and an oxalate destruction technology. The technology is being adapted by AREVA from their decontamination technology for Nuclear Power Plant secondary side scale removal. This report contains results from the SRNL small scale testing of the ECC process

  20. Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite

    SciTech Connect

    Fiskum, Sandra K.; Billing, Justin M.; Crum, J. V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

    2009-02-28

    This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing.

  1. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    EPA Science Inventory

    During sludge washing procedures associated with tank waste remediation, actinide ions are expected to remain with the insoluble metal oxide/hydroxide residue as the sludges are scrubbed to remove Cr, P, Al, S, and thus to be transmitted conveniently to the vitrification plant. ...

  2. FRUIT CANNERY WASTE ACTIVATED SLUDGE AS A CATTLE FEED INGREDIENT

    EPA Science Inventory

    The feasibility of sludge disposal, from a fruit processing waste activated sludge treatment system, by dewatering and using the dewatered biological sludge solids as cattle feed was evaluated by Snokist Growers at Yakima, Washington. Dewatering of the biological sludge utilizing...

  3. SLUDGE BATCH 7 ACCEPTANCE EVALUATION: RADIONUCLIDE CONCENTRATIONS IN TANK 51 SB7 QUALIFICATION SAMPLE PREPARED AT SRNL

    SciTech Connect

    Pareizs, J.; Hay, M.

    2011-02-22

    Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch Seven (SB7) for processing in the Defense Waste Processing Facility (DWPF). The SB7 material is currently in Tank 51 being washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40. The sludge slurry in Tank 40 has already been qualified for DWPF and is currently being processed as SB6. The radionuclide concentrations were measured or estimated in the Tank 51 SB7 Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from the three liter qualification sample of Tank 51 sludge slurry (HTF-51-10-125) received on September 18, 2010. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. With consultation from the Liquid Waste Organization, the qualification sample was then modified by several washes and decants, which included addition of Pu from H Canyon and sodium nitrite per the Tank Farm corrosion control program. This final slurry now has a composition expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Tank 40. Determining the radionuclide concentrations in this Tank 51 SB7 Qualification Sample is part of the work requested in Technical Task Request (TTR) No. HLW-DWPF-TTR-2010-0031. The radionuclides included in this report are needed for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria (TSR/WAC) Evaluation, and the DWPF Solid Waste Characterization Program (TTR Task I.2). Radionuclides required to meet the Waste Acceptance Product Specifications (TTR Task III.2.) will be measured at a later date after the slurry from Tank 51 has been transferred to Tank 40. Then a sample of the as-processed SB7 will be taken and transferred to SRNL for measurement of these radionuclides

  4. Fate and toxicity of melamine in activated sludge treatment systems after a long-term sludge adaptation.

    PubMed

    Xu, Shengnan; Zhang, Yanyan; Sims, Atreyee; Bernards, Matthew; Hu, Zhiqiang

    2013-05-01

    Melamine is a nitrogen-rich (67% nitrogen by mass) heterocyclic aromatic compound that could significantly increase effluent total nitrogen concentrations. In this study, we investigated the degradation of melamine and its impact on activated sludge operations by employing two common activated sludge processes, namely the Modified Ludzack-Ettinger (MLE) process and the continuous stirred tank reactor (CSTR) process. Melamine was dosed continuously from day 125 in both activated sludge treatment systems at an influent concentration of 3 mg/L for about 100 days. Even after such a long period of sludge adaptation, melamine appeared not to be easily biodegradable. The average melamine removal efficiencies in the CSTR and MLE systems were 14 ± 10% and 20 ± 15%, respectively. There was no significant difference in melamine removal between the two different activated sludge processes. The long-term input of melamine resulted in a decrease in the nitrifying bacterial activities (by 82 ± 8%) and population in both systems. Short-term microtiter assay results also showed that melamine reduced activated sludge growth by 80% when supplied at a concentration of 75.6 mg/L. These results suggest that sludge adaptation plays a minimal role in melamine degradation, as the enzymes responsible for hydrolytic deamination of melamine in activated sludge are not easily induced. The insignificant biodegradation of melamine is also attributed to bacterial growth inhibition under long-term dosing conditions with melamine, resulting in a significant decrease in effluent water quality. PMID:23466035

  5. [Microbial composition of the activated sludges of the Moscow wastewater treatment plants].

    PubMed

    Kallistova, A Iu; Pimenov, N V; Kozlov, M N; Nikolaev, Iu A; Dorofeev, A G; Aseeva, V G; Grachev, V A; Men'ko, E V; Berestovskaia, Iu Iu; Nozhevnikova, A N; Kevbrina, M V

    2014-01-01

    The contribution of the major technologically important microbial groups (ammonium- and nitrite-oxidizing, phosphate-accumulating, foam-inducing, and anammox bacteria, as well as planctomycetes and methanogenic archaea) was characterized for the aeration tanks of the Moscow wastewater treatment facilities. FISH investigation revealed that aerobic sludges were eubacterial communities; the metabolically active archaea contributed insignificantly. Stage II nitrifying microorganisms and planctomycetes were significant constituents of the bacterial component of activated sludge, with Nitrobacter spp. being the dominant nitrifier. No metabolically active anammox bacteria were revealed in the sludge from aeration tanks. The sludge from the aeration tanks using different wastewater treatment technologies were found to differ in characteristics. Abundance of the nitrifying and phosphate-accumulating bacteria in the sludges generally correlated with microbial activity, in microcosms and with efficiency of nitrogen and phosphorus removal from wastewater. The highest microbial numbers and activity were found in the sludges of the tanks operating according to the technologies developed in the universities of Hanover and Cape Town. The activated sludge from the Novokur yanovo facilities, where abundant growth of filamentous bacteria resulted in foam formation, exhibited the lowest activity The group of foaming bacteria included Gordonia spp. and Acinetobacter spp., utilizing petroleum and motor oils, Sphaerotilus spp. utilizing unsaturated fatty acids, and Candidatus 'Microthrix parvicella'. Thus, the data on abundance and composition of metabolically active microorganisms obtained by FISH may be used for the technological control of wastewater treatment. PMID:25844473

  6. Phase chemistry and radionuclide retention of high level radioactive waste tank sludges

    SciTech Connect

    KRUMHANSL,JAMES L.; BRADY,PATRICK V.; ZHANG,PENGCHU; ARTHUR,SARA E.; HUTCHERSON,SHEILA K.; LIU,J.; QIAN,M.; ANDERSON,HOWARD L.

    2000-05-19

    The US Department of Energy (DOE) has millions of gallons of high level nuclear waste stored in underground tanks at Hanford, Washington and Savannah River, South Carolina. These tanks will eventually be emptied and decommissioned. This will leave a residue of sludge adhering to the interior tank surfaces that may contaminate groundwaters with radionuclides and RCRA metals. Experimentation on such sludges is both dangerous and prohibitively expensive so there is a great advantage to developing artificial sludges. The US DOE Environmental Management Science Program (EMSP) has funded a program to investigate the feasibility of developing such materials. The following text reports on the success of this program, and suggests that much of the radioisotope inventory left in a tank will not move out into the surrounding environment. Ultimately, such studies may play a significant role in developing safe and cost effective tank closure strategies.

  7. SLUDGE BATCH 6/TANK 51 SIMULANT CHEMICAL PROCESS CELL SIMULATIONS

    SciTech Connect

    Koopman, David; Best, David

    2010-04-28

    Qualification simulant testing was completed to determine appropriate processing conditions and assumptions for the Sludge Batch 6 (SB6) Shielded Cells demonstration of the DWPF flowsheet using the qualification sample from Tank 51 for SB6 after SRNL washing. It was found that an acid addition window of 105-139% of the DWPF acid equation (100-133% of the Koopman minimum acid equation) gave acceptable Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) results for nitrite destruction and hydrogen generation. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 117%, 133%, and 150% stoichiometry (Koopman) were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 42 hours of boiling in the SRAT. The 150% acid run reached 110% of the DWPF SRAT limit of 0.65 lb H{sub 2}/hr, and the 133% acid run reached 75% of the DWPF SME limit of 0.223 lb H{sub 2}/hr. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 25 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two other processing issues were noted. First, incomplete mercury suspension impacted mercury stripping from the SRAT slurry. This led to higher SRAT product mercury concentrations than targeted (>0.45 wt% in the total solids). Associated with this issue was a general difficulty in quantifying the mass of mercury in the SRAT vessel as a function of time, especially as acid stoichiometry increased. About ten times more mercury was found after drying the 150% acid SME product to powder than was indicated by the SME product sample results. Significantly more mercury was also found in the 133% acid SME product samples than was found during the SRAT cycle sampling. It appears that mercury is segregating from the bulk slurry in the SRAT vessel, as mercury amalgam deposits for example, and is not being resuspended by the agitators. The second processing issue

  8. MOBILIZATION, POISONING, AND FILTRATION OF F-CANYON TANK 804 SLUDGE

    SciTech Connect

    Poirier, M; Thomas Peters, T; Samuel Fink, S

    2006-05-04

    The Savannah River Site (SRS) Deactivation and Decommissioning (SDD) Organization is evaluating options to disposition the F-Canyon 800 series underground tanks (including removal of the sludge heels from these tanks) and requested assistance from Savannah River National Laboratory (SRNL) personnel to develop methods to effectively mobilize the sludge from these tanks (i.e., Tanks 804, 808, and 809). Because of the high plutonium content in Tank 804 (estimated to be as much as 1500 g), SDD needs to add a neutron poison to the sludge. They considered manganese and boron as potential poisons. Because of the large amount of manganese needed and the very slow filtration rate of the sludge/manganese slurry, SDD requested that SRNL investigate the impact of using boron rather than manganese as the poison. SRNL performed a series of experiments to help determine the disposal pathway of the material currently located in Tank 804. The objectives of this work are: (1) Determine the mobility of Tank 804 sludge when mixed with 10-15 parts sodium hydroxide as a function of pH between 10 and 14. (2) Determine the solubility of boron in sodium hydroxide solution with a free hydroxide concentration between 1 x 10{sup -4} and 2.0 M. (3) Recommend a filter pore size for SDD such that the filtrate contains no visible solids. (4) Determine whether a precipitate forms when the filtrate pH is adjusted to 12, 7, or 2 with nitric acid.

  9. Hanford Tanks 241-AY-102 and 241-BX-101: Sludge Composition and Contaminant Release Data

    SciTech Connect

    Krupka, Kenneth M.; Deutsch, William J.; Lindberg, Michael J.; Cantrell, Kirk J.; Hess, Nancy J.; Schaef, Herbert T.; Arey, Bruce W.

    2004-05-01

    This report describes the results of testing sludge samples from Hanford tanks 241-AY-102 (AY-102) and 241-BX-101 (BX-101). These tests were conducted to characterize the sludge and assess the water leachability of contaminants from the solids. This work is being conducted to support the tank closure risk assessments being performed by CH2M HILL Hanford Group, Inc. for the U.S. Department of Energy. This is the first report of testing of BX-101 sludge and the second report of testing of AY-102. Lindberg and Deutsch (2003) described the first phase of testing on AY-102 material.

  10. DETERMINATION OF THE FRACTION OF GIBBSITE AND BOEHMITE FORMS OF ALUMINUM IN TANK 51H SLUDGE

    SciTech Connect

    Hay, M; Kofi Adu-Wusu, K; Daniel McCabe, D

    2008-08-31

    The Savannah River National Laboratory (SRNL) was tasked with developing a test to determine the fraction of the gibbsite and boehmite forms of aluminum in the sludge solids. Knowledge of the fractions of gibbsite and boehmite in the sludge contained in various waste tanks would facilitate better sludge mass reduction estimates and allow better planning/scheduling for sludge batch preparation. The composite sludge sample prepared for use in the test from several small samples remaining from the original 3-L sample appears to be representative of the original sample based on the characterization data. A Gibbsite/Boehmite Test was developed that uses 8 M NaOH and a temperature of 65 C to dissolve aluminum. The soluble aluminum concentration data collected during the test indicates that, for the three standards containing gibbsite, all of the gibbsite dissolved in approximately 2 hours. Under the test conditions boehmite dissolved at more than an order of magnitude more slowly than gibbsite. An estimate based on the soluble aluminum concentration from the sludge sample at two hours into the test indicates the sludge solids contain a form of aluminum that dissolves at a rate similar to the 100% Boehmite standard. Combined with the XRD data from the original 3-L sample, these results provide substantial evidence that the boehmite form of aluminum predominates in the sludge. A calculation from the results of the Gibbsite/Boehmite test indicates the sludge contains {approx}3% gibbsite and {approx}97% boehmite. The sludge waste in Tank 51H was recently treated under Low Temperature Aluminum Dissolution (LTAD) conditions and a substantial fraction of aluminum (i.e., sludge mass) was removed, avoiding production of over 100 glass canisters in Defense Waste Processing Facility (DWPF). Results of the Gibbsite/Boehmite test indicate that the aluminum in this sludge was in the form of the more difficult to dissolve boehmite form of aluminum. Since boehmite may be the dominant

  11. Effect of recycling thermophilic sludge on the activated-sludge process. Report for October 1984-June 1989

    SciTech Connect

    Prakasam, T.B.S.; Soszynski, S.; Zenz, D.R.; Lue-Hing, C.; Blyth, L.

    1990-01-01

    A full-scale investigation was undertaken at Chicago's Hanover Park Water Reclamation Plant (WRP) to study whether the net sludge production from the WRP could be reduced by implementing a scheme developed by W. Torpey et al. (1984). In this process, sludge is withdrawn from a thermophilic digester operated in series with a mesophilic digester and partially recycled into the aeration tanks of the activated sludge system. The Hanover Park WRP, which has a design flow capacity of 45,420 million cu m per day (12 mgd), was split into a control section and an experimental section. The two sections were operated similarly except the thermophilic drawoff was recycled into the aeration tanks of the experimental section from a digester system consisting of mesophilic and thermophilic digesters operated in series. A reduction in net sludge production of about 10 percent was achieved at 40 percent recycle of thermophilic sludge into the aeration tanks at the Hanover Park WRP. This was a much smaller reduction than obtained by Torpey et al. Sludge dewatering properties were not improved. The recycling produced no adverse effects on quality of the treated wastewater.

  12. Aluminum Leaching of ''Archived'' Sludge from Tanks 8F, 11H, and 12H

    SciTech Connect

    FONDEUR, FERNANDOF.

    2004-03-12

    Aluminum can promote formation or dissolution of networks in hydroxide solid solutions. When present in large amounts it will act as a network former increasing both the viscosity and the surface tension of melts. This translates into poor free flow properties that affect pour rate of glass production in the Defense Waste Processing Facility (DWPF). To mitigate this situation, DWPF operations limit the amount of aluminum contained in sludge. This study investigated the leaching of aluminum compounds from archived sludge samples. The conclusions found boehmite present as the predominant aluminum compound in sludge from two tanks. We did not identify an aluminum compound in sludge from the third tank. We did not detect any amorphous aluminum hydroxide in the samples. The amount of goethite measured 4.2 percentage weight while hematite measured 3.7 percentage weight in Tank 11H sludge. The recommended recipe for removing gibbsite in sludge proved inefficient for digesting boehmite, removing less than 50 per cent of the compound within 48 hours. The recipe did remove boehmite when the test ran for 10 days (i.e., 7 more days than the recommended baseline leaching period). Additions of fluoride and phosphate to Tank 12H archived sludge did not improve the aluminum leaching efficiency of the baseline recipe.

  13. Washing and caustic leaching of Hanford tank sludge: Results of FY 1997 studies

    SciTech Connect

    Lumetta, G.J.; Burgeson, I.E.; Wagner, M.J.; Liu, J.; Chen, Y.L.

    1997-08-01

    The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The tank wastes will be partitioned into high-level and low-level fractions. The HLW will be immobilized in a borosilicate glass matrix; the resulting glass canisters will then be disposed of in a geologic repository. Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be implemented to reduce the volume of immobilized high-level waste (IHLW). Caustic leaching (sometimes referred to as enhanced sludge washing or ESW) represents the baseline method for pretreating Hanford tank sludges. Caustic leaching is expected to remove a large fraction of the Al, which is present in large quantities in Hanford tank sludges. A significant portion of the P is also expected to be removed from the sludge by metathesis of water-insoluble metal phosphates to insoluble hydroxides and soluble Na{sub 3}PO{sub 4}. Similar metathesis reactions can occur for insoluble sulfate salts, allowing the removal of sulfate from the HLW stream. This report describes the sludge washing and caustic leaching tests performed at the Pacific Northwest National Laboratory in FY 1996. The sludges used in this study were taken from Hanford tanks AN-104, BY-108, S-101, and S-111.

  14. SLUDGE PARTICLE SEPAPATION EFFICIENCIES DURING SETTLER TANK RETRIEVAL INTO SCS-CON-230

    SciTech Connect

    DEARING JI; EPSTEIN M; PLYS MG

    2009-07-16

    The purpose of this document is to release, into the Hanford Document Control System, FA1/0991, Sludge Particle Separation Efficiencies for the Rectangular SCS-CON-230 Container, by M. Epstein and M. G. Plys, Fauske & Associates, LLC, June 2009. The Sludge Treatment Project (STP) will retrieve sludge from the 105-K West Integrated Water Treatment System (IWTS) Settler Tanks and transfer it to container SCS-CON-230 using the Settler Tank Retrieval System (STRS). The sludge will enter the container through two distributors. The container will have a filtration system that is designed to minimize the overflow of sludge fines from the container to the basin. FAI/09-91 was performed to quantify the effect of the STRS on sludge distribution inside of and overflow out of SCS-CON-230. Selected results of the analysis and a system description are discussed. The principal result of the analysis is that the STRS filtration system reduces the overflow of sludge from SCS-CON-230 to the basin by roughly a factor of 10. Some turbidity can be expected in the center bay where the container is located. The exact amount of overflow and subsequent turbidity is dependent on the density of the sludge (which will vary with location in the Settler Tanks) and the thermal gradient between the SCS-CON-230 and the basin. Attachment A presents the full analytical results. These results are applicable specifically to SCS-CON-230 and the STRS filtration system's expected operating duty cycles.

  15. Characterization and leaching study of sludge from Melton Valley Storage Tank W-25

    SciTech Connect

    Collins, J.L.; Egan, B.Z.; Beahm, E.C.; Chase, C.W.; Anderson, K.K.

    1997-08-01

    One of the greatest challenges facing the Department of Energy (DOE) is the remediation of the 100 million gallons of high-level and low-level radioactive waste in the underground storage tanks at its Hanford, Savannah River, Oak Ridge, Idaho, and Fernald sites. Bench-scale batch tests have been conducted with sludge from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation processes for use in a comprehensive sludge-processing flow sheet for concentrating the radionuclides and reducing the volumes of storage tanks wastes for final disposal. This report discusses the hot cell apparatus, the characterization of the sludge, and the results obtained from a variety of basic and acidic leaching tests of samples of sludge. Approximately 5 L of sludge/supernate from MVST W-25 was retrieved and transferred to a stainless steel tank for mixing and storage in a hot cell. Samples were centrifuged to separate the sludge liquid and the sludge solids. Air-dried samples of sludge were analyzed to determine the concentrations of radionuclides, other metals, and anions. Based upon the air-dried weight, about 41% of the centrifuged, wet sludge solids was water. The major alpha-, gamma-, and beta-emitting radionuclides in the centrifuged, wet sludge solids were {sup 137}Cs, {sup 60}Co, {sup 154}Eu, {sup 241}Am, {sup 244}Cm, {sup 90}Sr, Pu, U, and Th. The other major metals (in addition to the U and Th) and the anions were Na, Ca, Al, K, Mg, NO{sub 3}{sup {minus}}, CO{sub 3}{sup 2{minus}}, OH{sup {minus}}, and O{sub 2{minus}}. The organic carbon content was 3.0 {+-} 1.0%. The pH was 13.

  16. Evaluation of the ACT*DE*CON{sup SM} process for treating gunite tank sludge

    SciTech Connect

    Spencer, B.B.; Chase, C.W.; Egan, B.Z.

    1996-05-01

    A test was conducted to evaluate this process for selectively removing actinides from Gunite tank sludge. Mixed waste sludge from Gunite tank W-6 was subjected to the ACT*DE*CON selective leaching process. (Nearly all the TRU content was attributed to Pu.) The sludge sample was first washed with 0.01M NaOH to remove excess sodium and nitrate in the interstitial liquid supernatant. The washed wet solids were treated with the ACT*DE*CON solvent (aqueous carbonate solution containing a chelating agent and an oxidant), using a ratio of 20 ml solvent per gram wet solids. Sludge and solvent were separated by centrifugation, and the ACT*DE*CON treatment was repeated twice. Analyses showed that 71% of the solids in the sludge were dissolved while 80% of the TRU-waste components dissolved. Low separation of the TRU-waste components from other components of the sludge mixture is indicated. Almost all the U and Ca were removed from the sludge. For sludges where most of the TRU content is Pu, the ACT*DE*CON process as tested is not effective in rendering the sludge a non-TRU waste. It is recommended that ACT*DE*CON be optimized for this specific application and that other processes using different chelating and oxidizing agents be tested. Also, the ACT*DE*CON process should be tested on TRU mixed waste in which most of the TRU elements are not Pu.

  17. Mechanism of Phosphorus Removal from Hanford Tank Sludge by Caustic Leaching

    SciTech Connect

    Lumetta, Gregg J.

    2008-03-05

    Two experiments were conducted to explore the mechanism by which phosphorus is removed from Hanford tank sludge by caustic leaching. In the first experiment, a series of phosphate salts were treated with 3 M NaOH under conditions prototypic of the actual leaching process to be performed in the Waste Treatment and Immobilization Plant (WTP). The phosphates used were aluminum phosphate, bismuth phosphate, chromium(III) phosphate, and β-tri-calcium phosphate; all of these phases have previously been determined to exist in Hanford tank sludge. The leachate solution was sampled at selected time intervals and analyzed for the specific metal ion involved (Al, Bi, Ca, or Cr) and for P (total and as phosphate). The solids remaining after completion of the caustic leaching step were analyzed to determine the reaction product. In the second experiment, the dependence of P removal from bismuth phosphate was examined as a function of the hydroxide ion concentration. It was anticipated that a plot of log[phosphate] versus log[hydroxide] would provide insight into the phosphorus-removal mechanism. This report describes the test activities outlined in Section 6.3.2.1, Preliminary Investigation of Phosphate Dissolution, in Test Plan TP-RPP-WTP-467, Rev.1. The objectives, success criteria, and test conditions of Section 6.3.2.1 are summarized here.

  18. Underground tank vitrification: A pilot-scale in situ vitrification test of a tank containing a simulated mixed waste sludge

    SciTech Connect

    Thompson, L.E.; Powell, T.D.; Tixier, J.S.; Miller, M.C.; Owczarski, P.C.

    1993-09-01

    This report documents research on sludge vitrification. The first pilot scale in-situ vitrification test of a simulated underground tank was successfully completed by researchers at Pacific Northwest Laboratory. The vitrification process effectively immobilized the vast majority of radionuclides simulants and toxic metals were retained in the melt and uniformly distributed throughout the monolith.

  19. SLUDGE BATCH 6/TANK 40 SIMULANT CHEMICAL PROCESS CELL SIMULATIONS

    SciTech Connect

    Koopman, David

    2010-04-28

    Phase III simulant flowsheet testing was completed using the latest composition estimates for SB6/Tank 40 feed to DWPF. The goals of the testing were to determine reasonable operating conditions and assumptions for the startup of SB6 processing in the DWPF. Testing covered the region from 102-159% of the current DWPF stoichiometric acid equation. Nitrite ion concentration was reduced to 90 mg/kg in the SRAT product of the lowest acid run. The 159% acid run reached 60% of the DWPF Sludge Receipt and Adjustment Tank (SRAT) limit of 0.65 lb H2/hr, and then sporadically exceeded the DWPF Slurry Mix Evaporator (SME) limit of 0.223 lb H2/hr. Hydrogen generation rates peaked at 112% of the SME limit, but higher than targeted wt% total solids levels may have been partially responsible for rates seen. A stoichiometric factor of 120% met both objectives. A processing window for SB6 exists from 102% to something close to 159% based on the simulant results. An initial recommendation for SB6 processing is at 115-120% of the current DWPF stoichiometric acid equation. The addition of simulated Actinide Removal Process (ARP) and Modular Caustic Side Solvent Extraction Unit (MCU) streams to the SRAT cycle had no apparent impact on the preferred stoichiometric factor. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 120%, 118.4% with ARP/MCU, and 159% stoichiometry were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 36 hours of boiling in the SRAT. The 120% acid run reached 23% of the SRAT limit and 37% of the SME limit. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 29 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two processing issues, identified during SB6 Phase II flowsheet testing and qualification simulant testing, were monitored during Phase III. Mercury material balance closure was impacted by acid stoichiometry

  20. Grout and vitrification formula development for immobilization of hazardous radioactive tank sludges at ORNL

    SciTech Connect

    Gilliam, T.M.; Spence, R.D.

    1997-12-31

    Stabilization/solidification (S/S) has been identified as the preferred treatment option for hazardous radioactive sludges, and currently grouting and vitrification are considered the leading candidate S/S technologies. Consequently, a project was initiated at Oak Ridge National Laboratory (ORNL) to define composition envelopes, or operating windows, for acceptable grout and glass formulations containing Melton Valley Storage Tank (MVST) sludges. The resulting data are intended to be used as guidance for the eventual treatment of the MVST sludges by the government and/or private sector. Wastewater at ORNL is collected, evaporated, and stored in the MVSTs pending treatment for disposal. The waste separates into two phases: sludge and supernate. The sludges in the tank bottoms have been accumulating for several years and contain a high amount of radioactivity, with some classified as transuranic (TRU) sludges. The available total constituent analysis for the MVST sludge indicates that the Resource and Conservation Recovery Act (RCRA) metal concentrations are high enough to be potentially RCRA hazardous; therefore, these sludges have the potential to be designated as mixed TRU waste. S/S treatment must be performed to remove free liquids and reduce the leach rate of RCRA metals. This paper focuses on initial results for the development of the operating window for vitrification. However, sufficient data on grouting are presented to allow a comparison of the two options.

  1. Grout performance in support of in situ grouting of the TH4 tank sludge

    SciTech Connect

    Hunt, R.D.; Kauschinger, J.L.; Spence, R.D.

    1999-04-01

    The cold demonstration test proved that less water was required to pump the in situ grout formulation than had been previously tested in the laboratory. The previous in situ grout formulation was restandardized with the same relative amounts of dry blend ingredients, albeit adding a fluidized admixture, but specifying less water for the slurry mix that must by pumped through the nozzles at high pressure. Also, the target GAAT tank for demonstrating this is situ grouting technique has been shifted to Tank TH4. A chemical surrogate sludge for TH4 was developed and tested in the laboratory, meeting expectations for leach resistance and strenght at 35 wt % sludge loading. It addition, a sample of hot TH4 sludge was also tested at 35 wt % sludge loading and proved to have superior strength and leach resistance compared with the surrogate test.

  2. Development of Alkaline Oxidative Dissolution Methods for Chromium (III) Compounds Present in Hanford Site Tank Sludges

    SciTech Connect

    NN Krot; VP Shilov; AM Fedoseev; NA Budantseva; MV Nikonov; AB Yusov; AYu Garnov; IA Charushnikova; VP Perminov; LN Astafurova; TS Lapitskaya; VI Makarenkov

    1999-07-02

    The high-level radioactive waste sludge in the underground storage tanks at the Hanford Site contains various chromium(III)solid phases. Dissolution and removal of chromium from tank waste sludges is desirable prior to high-level waste vitrification because increased volume is required to incorporate the residual chromium. Unfortunately, dissolution of chromium from the sludge to form Cr(OH){sub 4}{sup {minus}} through treatment with heated NaOH solution (also used to dissolve aluminum phases and metathesize phosphates to sodium salts) generally has been unsuccessful in tests with both simulated and genuine Hanford waste sludges. Oxidative dissolution of the Cr(III) compounds to form soluble chromate has been proposed as an alternative chromium solid phase dissolution method and results of limited prior testing have been reported.

  3. Washing and Caustic Leaching of Hanford Tank Sludge: Results of FY 1998 Studies

    SciTech Connect

    GJ Lumetta; BM Rapko; J Liu; DJ Temer; RD Hunt

    1998-12-11

    Sludge washing and parametric caustic leaching tests were performed on sludge samples tiom five Hanford tanks: B-101, BX-1 10, BX-112, C-102, and S-101. These studies examined the effects of both dilute hydroxide washing and caustic leaching on the composition of the residual sludge solids. ` Dilute hydroxide washing removed from <1 to 25% of the Al, -20 to 45% of the Cr, -25 to 97% of the P, and 63 to 99% of the Na from the Hdord tank sludge samples examined. The partial removal of these elements was likely due to the presence of water-soluble sodium salts of aluminate, chromate, hydroxide, nitrate, nitrite, and phosphate, either in the interstitial liquid or as dried salts.

  4. Decision analysis for mobilizing and retrieving sludge from double-shell tanks

    SciTech Connect

    Brothers, A.J.; Williams, N.C.; Dukelow, J.S.; Hansen, R.I.

    1997-09-01

    This decision analysis evaluates alternative technologies for the initial mobilization and retrieval of sludges in double-shell tanks (DSTs). The analysis is from the perspective of the need to move sludges from one DST to another for interim retrieval. It supports the more general decision of which technologies to use to retreive various types of DST waste. The initial analysis is from the perspective of a typical DST with 2 ft of sludge to mobilize. During the course of the analysis, it became clear that it was important to also consider sludge mobilization in support of the high-level waste (HLW) vitrification demonstration plant, and in particular the risks associated with failing to meeting the minimum order requirements for the vendor, as well as the cost of mobilization and retrieval from the HLW vitrification source tanks.

  5. The chemistry of sludge washing and caustic leaching processes for selected Hanford tank wastes

    SciTech Connect

    Rapko, B.M.; Blanchard, D.L.; Colton, N.G.; Felmy, A.R.; Liu, J.; Lumetta, G.J.

    1996-03-01

    A broad-based study on washing and caustic leaching of Hanford tank sludges was performed in FY 1995 to gain a better understanding of the basic chemical processes that underlie this process. This approach involved testing of the baseline sludge washing and caustic leaching method on several Hanford tank sludges, and characterization of the solids both before and after testing by electron microscopy, X-ray diffraction, and X-ray absorption spectroscopy. A thermodynamically based model was employed to help understand the factors involved in individual specie distribution in the various stages of the sludge washing and caustic leaching treatment. The behavior of the important chemical and radiochemical components throughout the testing is summarized and reviewed in this report.

  6. REMOVING SLUDGE HEELS FROM SAVANNAH RIVER SITE WASTE TANKS BY OXALIC ACID DISSOLUTION

    SciTech Connect

    Poirier, M; David Herman, D; Fernando Fondeur, F; John Pareizs, J; Michael Hay, M; Bruce Wiersma, B; Kim Crapse, K; Thomas Peters, T; Samuel Fink, S; Donald Thaxton, D

    2009-03-01

    The Savannah River Site (SRS) will remove sludge as part of waste tank closure operations. Typically the bulk sludge is removed by mixing it with supernate to produce a slurry, and transporting the slurry to a downstream tank for processing. Experience shows that a residual heel may remain in the tank that cannot be removed by this conventional technique. In the past, SRS used oxalic acid solutions to disperse or dissolve the sludge heel to complete the waste removal. To better understand the actual conditions of oxalic acid cleaning of waste from carbon steel tanks, the authors developed and conducted an experimental program to determine its effectiveness in dissolving sludge, the hydrogen generation rate, the generation rate of other gases, the carbon steel corrosion rate, the impact of mixing on chemical cleaning, the impact of temperature, and the types of precipitates formed during the neutralization process. The test samples included actual SRS sludge and simulated SRS sludge. The authors performed the simulated waste tests at 25, 50, and 75 C by adding 8 wt % oxalic acid to the sludge over seven days. They conducted the actual waste tests at 50 and 75 C by adding 8 wt % oxalic acid to the sludge as a single batch. Following the testing, SRS conducted chemical cleaning with oxalic acid in two waste tanks. In Tank 5F, the oxalic acid (8 wt %) addition occurred over seven days, followed by inhibited water to ensure the tank contained enough liquid to operate the mixer pumps. The tank temperature during oxalic acid addition and dissolution was approximately 45 C. The authors analyzed samples from the chemical cleaning process and compared it with test data. The conclusions from the work are: (1) Oxalic acid addition proved effective in dissolving sludge heels in the simulant demonstration, the actual waste demonstration, and in SRS Tank 5F. (2) The oxalic acid dissolved {approx} 100% of the uranium, {approx} 100% of the iron, and {approx} 40% of the manganese

  7. Development of Alkaline Oxidative Dissolution Methods for Chromium (III) Compounds Present in Hanford Site Tank Sludges

    SciTech Connect

    Delegard, Calvin H.; Krot, N N.; Shilov, V P.; Fedoseev, A M.; Budantseva, N A.; Nikonov, M V.; Yusov, A B.; Garnov, A Y.; Charushnikova, I A.; Perminov, V P.; Astafurova, L N.; Lapitskaya, T S.; Makarenkov, V I.

    1999-07-02

    dissolved oxygen was found to increase linearly with oxygen partial pressure and NaOH concentration. The rate also increased with temperature at low activation energy, 26-36 kJ/mol, reflecting the opposing influences of decreasing oxygen volubility and increasing underlying chemical reaction rate. The reaction apparently proceeds by way of dissolved Cr(III) species, is catalyzed by Ni(II), and is slower for the hydrothermally aged materials. Dissolution rates ranged from about 7 x 10{sup -5} to 2.4 x 10{sup -4} moles Cr(III)/liter-hour in 80 C, 3-M NaOH with one atmosphere pure oxygen for the various Cr(III) compounds tested. These low dissolution rates commend the use of oxygen reagent to waste tank processing where extended residence times maybe practical. Oxidative dissolution of Cr(III) compounds by hydrogen peroxide was hampered in the presence of greater than 0.5 g Fe(III)/liter and other catalysts for H{sub 2}O{sub 2} decomposition and was less effective for materials that had undergone prolonged aging at high temperatures. Leaching was optimized at low excess NaOH and high temperatures (activation energy of {approx}82 kJ/mol). To prevent excessive loss of H{sub 2}O{sub 2} to catalytic decomposition, the peroxide reagent must be added slowly and with intense stirring. Treatment of waste solids with H{sub 2}O{sub 2} may only be attractive for freshly formed Cr(III) hydroxides [formed, for example, by alkaline metathesis of Cr(III)-bearing sludges] in the absence of decomposition catalysts such as Fe(III).

  8. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    SciTech Connect

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be

  9. SLUDGE BATCH 6 ACCEPTANCE EVALUATION: RADIONUCLIDE CONCENTRATIONS IN TANK 51 SB6 QUALIFICATION SAMPLE PREPARED AT SRNL

    SciTech Connect

    Bannochie, C.; Bibler, N.; Diprete, D.

    2010-05-21

    to SRNL for measurement of these radionuclides. The results presented in this report are those necessary for DWPF to assess if the Tank 51 SB6 sample prepared at SRNL meets the requirements for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria evaluation, and the DWPF Solid Waste Characterization Program. The sample is the same as that on which the chemical composition was reported. Concentrations are given for thirty-four radionuclides along with total alpha and beta activity. Values for total gamma and total gamma plus beta activities are also calculated. Results also indicate that 99% of the Tc-99 and at least 90% of the I-129 that could have been in this sludge batch have been removed by chemical processing steps in the SRS Canyons or Tank Farm.

  10. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    SciTech Connect

    Nash, Kenneth L; Rao, Linfeng

    2005-06-01

    Removal of waste-limiting components of sludge (Al, Cr, S, P) in underground tanks at Hanford by treatment with concentrated alkali has proven less efficacious for Al and Cr removal than had been hoped. More aggressive treatments of sludges, for example, contact with oxidants targeting Cr(III), have been tested in a limited number of samples and found to improve leaching efficiency for Cr. Oxidative alkaline leaching can be expected to have at best a secondary influence on the mobilization of Al. Our earlier explorations of Al leaching from sludge simulants indicated acidic and complexometric leaching can improve Al dissolution.

  11. Cone Penetrometer Shear Strength Measurements of Sludge Waste in Tanks 241-AN-101 and 241-AN-106

    SciTech Connect

    Follett, Jordan R.

    2014-03-06

    This document presents the resulting shear strength profiles for sludge waste in Tanks 241-AN-101 and 241-AN-106, as determined with a full-flow cone penetrometer. Full-flow penetrometer measurements indicate shear strength profiles that increase roughly uniformly with depth. For Tank 241-AN-101, the undrained shear strength was calculated to range from 500 Pa near the sludge surface to roughly 3,300 Pa at 15 inches above the tank bottom. For 241-AN-106, the undrained shear strength was calculated to range from 500 Pa near the sludge surface to roughly 5,000 Pa at 15 inches above the tank bottom.

  12. Co-conditioning and dewatering of alum sludge and waste activated sludge.

    PubMed

    Lai, J Y; Liu, J C

    2004-01-01

    Co-conditioning and dewatering behaviors of alum sludge and waste activated sludge were investigated. Two different sludges were mixed at various ratios (2:1; 1:1; 1:2; 1:4) for study. Capillary suction time (CST) and specific resistance to filtration (SRF) were utilized to assess sludge dewaterability. Relatively speaking, waste activated sludge, though of higher solid content, was more difficult to be dewatered than alum sludge. It was found that sludge dewaterability and settlability became better with increasing fraction of alum sludge in the mixed sludge. Dosage required of the cationic polyelectrolyte (KP-201C) for dewatering was reduced as well. It is proposed that alum sludge acts as skeleton builder in the mixed sludge, and renders the mixed sludge more incompressible which is beneficial for sludge dewatering. Implications of the results of the study to the sludge management plan for Taipei City that generates both alum sludge and waste activated sludge at significant amount are also discussed. The current sludge treatment and disposal plan in Metropolitan Taipei could be made more cost-effective. PMID:15580993

  13. Washing and caustic leaching of Hanford tank sludges: results of FY 1996 studies. Revision

    SciTech Connect

    Lumetta, G.J.; Rapko, B.M.; Wagner, M.J.; Liu, J.; Chen, Y.L.

    1996-08-01

    During the past few years, the primary mission at the US Department of Energy`s Hanford Site has changed from producing plutonium to restoring the environment. Large volumes of high-level radioactive wastes (HLW), generated during past Pu production and other operations, are stored in underground tanks on site. The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The HLW will be immobilized in a borosilicate glass matrix and then disposed of in a geologic repository. Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be implemented to reduce the volume of borosilicate glass produced in disposing of the tank wastes. On this basis, a pretreatment plan is being developed. This report describes the sludge washing and caustic leaching test conducted to create a Hanford tank sludge pretreatment flowsheet.

  14. ACTIVELY CONTROLLED VORTEX DISPOSAL SYSTEM FOR SLUDGE WASTES

    EPA Science Inventory

    The development of an advanced sludge treatment concept is under way for applications to sludge wastes. The concept integrates primary treatment of sludge in an advanced vortex containment combustor (VCC) with subsequent post treatment in an actively controlled acoustic afterburn...

  15. ACTIVELY CONTROLLED VORTEX DISPOSAL SYSTEM FOR SLUDGE WASTES

    EPA Science Inventory

    The development of an advanced sludge treatment concept is underway for applications to sludge wastes. The concept integrates primary treatment of sludge in an advanced vortex containment combustor (VCC) with subsequent post treatment in an actively controlled acoustic afterburne...

  16. Effect of Antifoam Agent on Oxidative Leaching of Hanford Tank Sludge Simulants

    SciTech Connect

    Rapko, Brian M.; Jones, Susan A.; Lumetta, Gregg J.; Peterson, Reid A.

    2010-02-26

    Oxidative leaching of simulant tank waste containing an antifoam agent (AFA) to reduce the chromium content of the sludge was tested using permanganate as the oxidant in 0.25 M NaOH solutions. AFA is added to the waste treatment process to prevent foaming. The AFA, Dow Corning Q2-3183A, is a surface-active polymer that consists of polypropylene glycol, polydimethylsiloxane, octylphenoxy polyethoxy ethanol, treated silica, and polyether polyol. Some of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste slurries contain high concentrations of undissolved solids that would exhibit undesirable behavior without AFA addition. These tests were conducted to determine the effect of the AFA on oxidative leaching of Cr(III) in waste by permanganate. It has not previously been determined what effect AFA has on the permanganate reaction. This study was conducted to determine the effect AFA has on the oxidation of the chromium, plus plutonium and other criticality-related elements, specifically Fe, Ni and Mn. During the oxidative leaching process, Mn is added as liquid permanganate solution and is converted to an insoluble solid that precipitates as MnO2 and becomes part of the solid waste. Caustic leaching was performed followed by an oxidative leach at either 25°C or 45°C. Samples of the leachate and solids were collected at each step of the process. Initially, Battelle-Pacific Northwest Division (PNWD) was contracted by Bechtel National, Inc. to perform these further scoping studies on oxidative alkaline leaching. The data obtained from the testing will be used by the WTP operations to develop procedures for permanganate dosing of Hanford tank sludge solids during oxidative leaching. Work was initially conducted under contract number 24590-101-TSA-W000-00004. In February 2007, the contract mechanism was switched to Pacific Northwest National Laboratory (PNNL) operating Contract DE-AC05-76RL01830. In summary, this report describes work focused on

  17. Washing and caustic leaching of Hanford tank sludges: Results of FY 1995 studies

    SciTech Connect

    Rapko, B.M.; Lumetta, G.J.; Wagner, M.J.

    1995-08-11

    During the past few years, the primary mission at the US Department of Energy`s Hanford Site has changed from producing plutonium to environmental restoration. Large volumes of high-level radioactive wastes (HLW), generated during past Pu production and other operations, are stored in underground tanks on site. The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The HLW will be immobilized in a borosilicate glass matrix; the resulting glass canisters will then be disposed of in a geologic repository. Because of the expected high cost of HLW immobilization and disposal, pretreatment processes will be implemented to reduce the volume of borosilicate glass produced in processing the tank wastes. This document describes sludge washing and caustic leaching tests conducted in FY 1995 at the Pacific Northwest Laboratory (PNL) at the request of Westinghouse Hanford Company. These tests were performed using sludges from seven Hanford waste tanks -- B-111, BX-107, C-103, S-104, SY-103, T-104, and T-111. The primary and secondary types of waste stored in each of these tanks are given in Table 1. 1. The data collected in this effort will be used to support the March 1998 Tri-Party Agreement decision on the extent of pretreatment to be performed on the Hanford tank sludges (Ecology, EPA, and DOE 1994).

  18. Technology study of Gunite tank sludge mobilization at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    DeVore, J.R.; Herrick, T.J.; Lott, K.E.

    1994-12-01

    The Oak Ridge National Laboratory (ORNL) Gunite Tank Sludge Mobilization Technology Study was initiated to support the Gunite Tank Treatability Study effort. The technology study surveyed the methods and technologies available for tank cleaning and sludge mobilization in a radioactive environment. Technologies were identified and considered for applicability to the Gunite and Associated Tanks (GAAT) problems. These were then either accepted for further study or rejected as not applicable. Technologies deemed applicable to the GAAT sludge removal project were grouped for evaluation according to (1) deployment method, (2) types of remotely operated end effector equipment applicable to removal of sludge, (3) methods for removing wastes from the tanks, and (4) methods for concrete removal. There were three major groups of deployment technologies: ``past practice`` technologies, mechanical arm-based technologies, and vehicle-based technologies. The different technologies were then combined into logical sequences of deployment platform, problem, end effector, conveyance, post-removal treatment required (if any), and disposition of the waste. Many waste removal options are available, but the best technology in one set of circumstances at one site might not be the best type to use at a different site. No single technology is capable of treating the entire spectrum of wastes that will be encountered in GAAT. None of the systems used in other industries appears to be suitable, primarily because of the nature of the sludges in the GAAT Operable Unit (OU), their radiation levels, and tank geometries. Other commercial technologies were investigated but rejected because the authors did not believe them to be applicable.

  19. Screening wastewater for toxicity to activated sludge

    SciTech Connect

    Schneider, C.G.

    1987-01-01

    Several toxicity tests were compared to define their utility for prediction of toxicity to activated sludge. The tests included: (1) oxygen uptake rates in batch tests with activated sludge, (2) adenosine triphosphate (ATP) measurements in the same batch tests, (3) Warburg respirometer studies with activated sludge, and (4) a luminescent bacteria test (Microtox/sup TM/). An evaluation of the toxicity tests was made with several toxicants; nickel (II), mercury (II), 2,4-dichlorophenol (DCP) and 4,6-dinitro-o-cresol (DNOC). Because of differences in toxic mechanism, some of the toxicants produced greater toxic effects in some tests than in other tests. The ATP levels decreased significant when uncouplers of oxidative phosphorylation were studied (DCP and DNOC). Several procedures for measuring ATP were investigated and were found to be unsatisfactory when applied to activated sludge. A new method for extraction of ATP, which incorporated a sonic bath and trichloroacetic acid, was developed. The improved ATP method was used in the toxicity tests and for the additional studies. Current practice in environmental engineering relies on volatile suspended solids (VSS) as a measure of active biomass in activated sludge. After an improved ATP procedure was developed, ATP was investigated for estimation of active biomass. The fate of DCP in the toxicity tests was studied and an adsorptive mechanism was proposed that was based on membrane solubility. This mechanism explained the fate of DCP in the toxicity tests and is useful for understanding the fate of DCP in activated sludge.

  20. HYDRAULIC CHARACTERISTICS OF ACTIVATED SLUDGE SECONDARY CLARIFIERS

    EPA Science Inventory

    This study documented the hydraulic characteristics of typical activated sludge clarifiers. Modifications to the clarifier structures were made in an attempt to improve clarifier hydraulic characteristics and performance. Innovative fluorometric dye tracer studies were used to ob...

  1. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACH SOLUTIONS

    EPA Science Inventory

    The expectation that solubility of actinide ions will be low during alkaline sludge washing to remediate DOE's underground waste tanks is based on minimal experimental evidence, and the application of thermodynamic models of dubious validity to systems that may well be under kine...

  2. Activated Sludge and other Aerobic Suspended Culture Processes.

    PubMed

    Li, Chunying; Wei, Li; Chang, Chein-Chi; Zhang, Yuhua; Wei, Dong

    2016-10-01

    This is a literature review for the year 2015 and contains information specifically associated with suspended growth processes including activated sludge, upflow anaerobic sludge blanket, and sequencing batch reactors. The review encompasses modeling and kinetics, nutrient removal, system design and operation. Compared to past reviews, many topics show increase in activity in 2015. These include, fate and effect of xenobiotics, industrial wastes treatment with sludge, and pretreatment for the activated sludge. These topics are referred to the degradation of constituents in activated sludge. Other sections include population dynamics, process microbiology give an insight into the activated sludge. The subsection in industrial wastes: converting sewage sludge into biogases was also mentioned. PMID:27620082

  3. Comparison of Sludge Digestion Methods for High Organic Hanford Tank 241-C-204

    SciTech Connect

    Lindberg, Michael J.; Deutsch, William J.

    2006-12-01

    This report presents the results of an investigation into methods for digesting sludge in tank 241-C-204 at the Hanford Site in south-central Washington State. The objective of this study was to compare the recovery of uranium, neptunium, and plutonium using three digestion methods: EPA Method 3052, EPA Method 3050B, and alkaline fusion. Results show that EPA Method 3052, microwave assisted acid digestion, is the most efficient digestion method with higher recoveries for both uranium and plutonium. This may also be the case for neptunium; however, the analytical results are uncertain for this element. The microwave digestion method also has the added benefits of being quicker and producing less waste, which lowers the overall cost per sample. Further testing with samples from other tanks will confirm that microwave assisted digestion is a viable method of digesting Hanford tank sludges (including those with a high organic content) for chemical analysis.

  4. Characterization of Actinides in Simulated Alkaline Tank Waste Sludges and Leachates

    SciTech Connect

    Nash, Kenneth L.

    2005-06-01

    Removal of waste-limiting components of sludge (Al, Cr, S, P) in underground tanks at Hanford by treatment with concentrated alkali has proven less efficacious for Al and Cr removal than had been hoped. More aggressive treatments of sludges, for example, contact with oxidants targeting Cr(III), have been tested in a limited number of samples and found to improve leaching efficiency for Cr. Oxidative alkaline leaching can be expected to have at best a secondary influence on the mobilization of Al. Our earlier explorations of Al leaching from sludge simulants indicated acidic and complexometric leaching can improve Al dissolution. Unfortunately, treatments of sludge samples with oxidative alkaline, acidic or complexing leachates produce conditions under which normally insoluble actinide ions (e.g., Am3+, Pu4+, Np4+) can be mobilized to the solution phase. Few experimental or meaningful theoretical studies of actinide chemistry in strongly alkaline, strongly oxidizing solutions have been completed. Unfortunately, extrapolation of the more abundant acid phase thermodynamic data to these radically different conditions provides limited reliable guidance for predicting actinide speciation in highly salted alkaline solutions. In this project, we are investigating the fundamental chemistry of actinides and important sludge components in sludge simulants and supernatants under representative oxidative leaching conditions. We are examining the potential impact of acidic or complexometric leaching with concurrent secondary separations on Al removal from sludges. Finally, a portion of our research is directed at the control of polyvalent anions (SO4=, CrO4=, PO43-) in waste streams destined for vitrification. Our primary objective is to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop. We expect to identify those components of sludges that are likely to be problematic in the

  5. C-tank transfers: Transuranic sludge removal from the C-1, C-2, and W-23 waste storage tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Dahl, T.L.; Lay, A.C.; Taylor, S.A.; Moore, J.W.

    1999-05-01

    Two fluidic pulse jet mixing systems were used to successfully mobilize remote-handled transuranic sludge for retrieval from three 50,000-gal horizontal waste storage tanks at Oak Ridge National Laboratory (ORNL). The results of this operation indicate that the pulse jet system should be considered for mixing and bulk retrieval of sludges in other vertical and horizontal waste tanks at ORNL and at other U.S. Department of Energy sites.

  6. WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS USING POST ALUMINUM DISSOLUTION TANK 51 SLUDGE SLURRY

    SciTech Connect

    Pareizs, J; Cj Bannochie, C; Damon Click, D; Erich Hansen, E; Dan Lambert, D; Michael Stone, M

    2008-04-28

    The remaining contents of Tank 51 from Sludge Batch 4 will be blended with Purex sludge from Tank 7 to constitute Sludge Batch 5 (SB5). The Savannah River Site (SRS) Liquid Waste Organization (LWO) has completed caustic addition to Tank 51 to perform low temperature Al dissolution on the H-Modified (HM) sludge material to reduce the total mass of sludge solids and Al being fed to the Defense Waste Processing Facility (DWPF). The Savannah River National Lab (SRNL) has also completed aluminum dissolution tests using a 3-L sample of Tank 51 sludge slurry through funding by DOE EM-21. This report documents assessment of downstream impacts of the aluminum dissolved sludge, which were investigated so technical issues could be identified before the start of SB5 processing. This assessment included washing the aluminum dissolved sludge to a Tank Farm projected sodium concentration and weight percent insoluble solids content and DWPF Chemical Process Cell (CPC) processing using the washed sludge. Based on the limited testing, the impact of aluminum dissolution on sludge settling is not clear. Settling was not predictable for the 3-L sample. Compared to the post aluminum dissolution sample, settling after the first wash was slower, but settling after the second wash was faster. For example, post aluminum dissolution sludge took six days to settle to 60% of the original sludge slurry height, while Wash 1 took nearly eight days, and Wash 2 only took two days. Aluminum dissolution did impact sludge rheology. A comparison between the as-received, post aluminum dissolution and washed samples indicate that the downstream materials were more viscous and the concentration of insoluble solids less than that of the starting material. This increase in viscosity may impact Tank 51 transfers to Tank 40. The impact of aluminum dissolution on DWPF CPC processing cannot be determined because acid addition for the Sludge Receipt and Adjustment Tank (SRAT) cycle was under-calculated and thus

  7. Characterization of Settler Tank, KW Container and KE Container Sludge Simulants

    SciTech Connect

    Burns, Carolyn A.; Luna, Maria L.; Schmidt, Andrew J.

    2011-04-01

    The Sludge Treatment Project (STP), managed by CH2M Hill Plateau Remediation Company (CHPRC) has specified base formulations for non-radioactive sludge simulants for use in the development and testing of equipment for sludge sampling, retrieval, transport, and processing. In general, the simulant formulations are based on the average or design-basis physical and chemical properties obtained by characterizing sludge samples. The simulants include surrogates for uranium metal, uranium oxides (agglomerates and fine particulate), and the predominant chemical phases (iron and aluminum hydroxides, sand). Specific surrogate components were selected to match the nominal particle-size distribution and particle-density data obtained from sludge sample analysis. Under contract to CHPRC, Pacific Northwest National Laboratory (PNNL) has performed physical and rheological characterization of simulants, and the results are reported here. Two base simulant types (dry) were prepared by STP staff at the Maintenance and Storage Facility and received by PNNL in February 2009: Settler Tank Simulant and KW Container Sludge Simulant. A third simulant, KE Container Sludge Simulant was received by PNNL in December 2010. The objectives of this simulant characterization effort were to provide baseline characterization data on simulants being used by STP for process development and equipment testing and provide a high-level comparison of the simulant characteristics to the targets used to formulate the simulants.

  8. Ultrasonic oil recovery and salt removal from refinery tank bottom sludge.

    PubMed

    Hu, Guangji; Li, Jianbing; Thring, Ronald W; Arocena, Joselito

    2014-01-01

    The oil recovery and salt removal effects of ultrasonic irradiation on oil refinery tank bottom sludge were investigated, together with those of direct heating. Ultrasonic power, treatment duration, sludge-to-water ratio, and initial sludge-water slurry temperature were examined for their impacts on sludge treatment. It was found that the increased initial slurry temperature could enhance the ultrasonic irradiation performance, especially at lower ultrasonic power level (i.e., 21 W), but the application of higher-power ultrasound could rapidly increase the bulk temperature of slurry. Ultrasonic irradiation had a better oil recovery and salt removal performance than direct heating treatment. More than 60% of PHCs in the sludge was recovered at an ultrasonic power of 75 W, a treatment duration of 6 min, an initial slurry temperature of 25°C, and a sludge-to-water ratio of 1:4, while salt content in the recovered oil was reduced to <5 mg L(-1), thereby satisfying the salt requirement in refinery feedstock oil. In general, ultrasonic irradiation could be an effective method in terms of oil recovery and salt removal from refinery oily sludge, but the separated wastewater still contains relatively high concentrations of PHCs and salt which requires proper treatment. PMID:25072775

  9. Measurement of glutathione in activated sludges.

    PubMed

    Dziurla, M A; Leroy, P; Strünkmann, G W; Salhi, M; Lee, D U; Camacho, P; Heinz, V; Müller, J A; Paul, E; Ginestet, Ph; Audic, J M; Block, J C

    2004-01-01

    Thermal, electric, mechanical or oxidative stress seem a promising way to reduce the production of excess activated sludge during biological wastewater treatment. However, the adaptation and the resistance of the sludge microbial ecosystem to stress conditions is a major question as it may definitively limit the effect of some treatments. Defence mechanisms developed by aerobic organisms, in particular, in response to oxidative stress involve various antioxidant activities and compounds such as glutathione. An HPLC method was developed for measuring reduced and total glutathione (GSH and GSHt) in perchloric acid sludge extracts. The method was sensitive, highly specific and validated for linearity, precision and recovery. Considering the extraction yield and the oxidation of GSH during extract storage, the measured GSH concentration was estimated to represent 60% of the GSH content from activated sludges. GSHt ranged from 0.32 to 3.34micromolg(-1) volatile solids and the GSH/GSHt ratio ranged from 32% to 91%. Measurements performed on sludges stressed in precise conditions selected to reach a reduction of sludge production showed a decrease of GSH and GSHt concentrations with thermal, mechanical, electric and ozone stress. PMID:14630122

  10. Complete solids retention activated sludge process.

    PubMed

    Amanatidou, E; Samiotis, G; Trikoilidou, E; Pekridis, G; Tsikritzis, L

    2016-01-01

    In a slaughterhouse's full-scale extended aeration activated sludge wastewater treatment plant (WWTP), operating under complete solids retention time, the evolution of mixed liquor suspended solids (MLSS) and mixed liquor volatile suspended solids (MLVSS) concentration, food to micro-organisms ratio (F/M) and substrate utilization rate (SUR) were studied for over a year. Biomass growth phases in correlation to sludge biological and morphological characteristics were studied. Three distinguished growth phases were observed during the 425 days of monitoring. The imposed operational conditions led the process to extended biomass starvation conditions, minimum F/M, minimum SUR and predator species growth. MLSS and MLVSS reached a stabilization phase (plateau phase) where almost zero sludge accumulation was observed. The concept of degradation of the considered non-biodegradable particulate compounds in influent and in biomass (cell debris) was also studied. Comparison of evolution of observed sludge yields (Yobs) in the WWTP with Yobs predictions by activated sludge models verified the degradation concept for the considered non-biodegradable compounds. Control of the sedimentation process was achieved, by predicting the solids loading rate critical point using state point analysis and stirred/unstirred settling velocity tests and by applying a high return activated sludge rate. The nitrogen gas related sedimentation problems were taken into consideration. PMID:27003077

  11. Selective Leaching of Chromium from Hanford Tank Sludge 241-U-108

    SciTech Connect

    Rapko, Brian M.; Vienna, John D.

    2002-09-09

    This study evaluated the oxidants permanganate, MnO4-, and peroxynitrite, ONOO-, as selective chromium-leaching agents from washed 241-U-108 tank sludge under varying conditions of hydroxide concentration, temperature, and time. The mass changes and final sludge compositions were evaluated using glass-property models to ascertain the relative impacts of the various oxidative alkaline leach conditions on the amount of borosilicate glass required to immobilize a given amount of washed 241-U-108 Hanford tank sludge. Only permanganate leaching removes sufficient chromium to make the chromium concentration in the oxidatively alkaline leached solids non-limiting. In the absence of added oxidants, continued washing or caustic leaching have no beneficial effects. Peroxynitrite addition reduces the amount of glass required to immobilize a given amount of washed 241-U-108 tank sludge by approximately a factor of two. Depending on the leach conditions and the exact chromium concentration limits, contact with alkaline permanganate solutions reduces the amount of immobilized high-level waste glass by a factor of 10 to 30.

  12. INVESTIGATING SUSPENSION OF MST, CST, AND SIMULATED SLUDGE SLURRIES IN A PILOT-SCALE WASTE TANK

    SciTech Connect

    Poirier, M.; Qureshi, Z.; Restivo, M.; Steeper, T.; Williams, M.

    2011-05-24

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending and resuspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is for the pumps to resuspend the MST, CST, and simulated sludge particles so that they can be removed from the tank, and to suspend the MST so it can contact strontium and actinides. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5, B3, and B1). Previous testing showed that three Submersible Mixer Pumps (SMPs) will provide sufficient power to initially suspend MST in an SRS waste tank, and to resuspend MST that has settled in a waste tank at nominal 45 C for four weeks. The conclusions from this analysis are: (1) Three SMPs will be able to resuspend more than 99.9% of the MST and CST that has settled for four weeks at nominal 45 C. The testing shows the required pump discharge velocity is 84% of the maximum discharge velocity of the pump. (2) Three SMPs will be able to resuspend more than 99.9% of the MST, CST, and simulated sludge that has settled for four weeks at nominal 45 C. The testing shows the required pump discharge velocity is 82% of the maximum discharge velocity of the pump. (3) A contact time of 6-12 hours is needed for strontium sorption by MST in a jet mixed tank with cooling coils, which is consistent with bench-scale testing and actinide removal process (ARP) operation.

  13. Transuranic Waste Processing Center (TWPC) Legacy Tank RH-TRU Sludge Processing and Compliance Strategy - 13255

    SciTech Connect

    Rogers, Ben C.; Heacker, Fred K.; Shannon, Christopher; and others

    2013-07-01

    The U.S. Department of Energy (DOE) needs to safely and efficiently treat its 'legacy' transuranic (TRU) waste and mixed low-level waste (LLW) from past research and defense activities at the Oak Ridge National Laboratory (ORNL) so that the waste is prepared for safe and secure disposal. The TWPC operates an Environmental Management (EM) waste processing facility on the Oak Ridge Reservation (ORR). The TWPC is classified as a Hazard Category 2, non-reactor nuclear facility. This facility receives, treats, and packages low-level waste and TRU waste stored at various facilities on the ORR for eventual off-site disposal at various DOE sites and commercial facilities. The Remote Handled TRU Waste Sludge held in the Melton Valley Storage Tanks (MVSTs) was produced as a result of the collection, treatment, and storage of liquid radioactive waste originating from the ORNL radiochemical processing and radioisotope production programs. The MVSTs contain most of the associated waste from the Gunite and Associated Tanks (GAAT) in the ORNL's Tank Farms in Bethel Valley and the sludge (SL) and associated waste from the Old Hydro-fracture Facility tanks and other Federal Facility Agreement (FFA) tanks. The SL Processing Facility Build-outs (SL-PFB) Project is integral to the EM cleanup mission at ORNL and is being accelerated by DOE to meet updated regulatory commitments in the Site Treatment Plan. To meet these commitments a Baseline (BL) Change Proposal (BCP) is being submitted to provide continued spending authority as the project re-initiation extends across fiscal year 2012 (FY2012) into fiscal year 2013. Future waste from the ORNL Building 3019 U-233 Disposition project, in the form of U-233 dissolved in nitric acid and water, down-blended with depleted uranyl nitrate solution is also expected to be transferred to the 7856 MVST Annex Facility (formally the Capacity Increase Project (CIP) Tanks) for co-processing with the SL. The SL-PFB project will construct and install

  14. Research on jet mixing of settled sludges in nuclear waste tanks at Hanford and other DOE sites: A historical perspective

    SciTech Connect

    Powell, M.R.; Onishi, Y.; Shekarriz, R.

    1997-09-01

    Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0.

  15. Increased CPC batch size study for Tank 42 sludge in the Defense Waste Processing Facility

    SciTech Connect

    Daniel, W.E.

    2000-01-06

    A series of experiments have been completed at TNX for the sludge-only REDOX adjusted flowsheet using Tank 42 sludge simulant in response to the Technical Task Request HLW/DWPT/TTR-980013 to increase CPC batch sizes. By increasing the initial SRAT batch size, a melter feed batch at greater waste solids concentration can be prepared and thus increase melter output per batch by about one canister. The increased throughput would allow DWPF to dispose of more waste in a given time period thus shortening the overall campaign.

  16. Modeling water retention of sludge simulants and actual saltcake tank wastes

    SciTech Connect

    Simmons, C.S.

    1996-07-01

    The Ferrocyanide Tanks Safety Program managed by Westinghouse hanford Company has been concerned with the potential combustion hazard of dry tank wastes containing ferrocyanide chemical in combination with nitrate salts. Pervious studies have shown that tank waste containing greater than 20 percent of weight as water could not be accidentally ignited. Moreover, a sustained combustion could not be propagated in such a wet waste even if it contained enough ferrocyanide to burn. Because moisture content is a key critical factor determining the safety of ferrocyanide-containing tank wastes, physical modeling was performed by Pacific Northwest National laboratory to evaluate the moisture-retaining behavior of typical tank wastes. The physical modeling reported here has quantified the mechanisms by which two main types of tank waste, sludge and saltcake, retain moisture in a tank profile under static conditions. Static conditions usually prevail after a tank profile has been stabilized by pumping out any excess interstitial liquid, which is not naturally retained by the waste as a result of physical forces such as capillarity.

  17. Restoring a sludge holding tank at a wastewater treatment plant using high-performance coatings

    SciTech Connect

    O'Dea, V.

    2005-11-01

    Faced with a serious hydrogen sulfide (H{sub 2}S) corrosion problem in two sludge holding tanks in 1993, the city of Concord, New Hampshire, repaired the deteriorating substrate by using a conventional acrylic-modified cementitious resurfacer and a coal tar epoxy (CTE) coating system. CTE failure occurred within 2 years, leading to more severe coating delamination. Restoration was delayed for 10 years, which caused extensive chemical attack on the concrete substrate-upwards of 2 in. (50 mm) of concrete loss. This article explains how one of these tanks was restored and prepared for another 15+ years of service.

  18. Final report for Tank 100 Sump sludge (KON332) for polychlorinated biphenyl`s (PCB)

    SciTech Connect

    Fuller, R.K.

    1998-07-30

    Final Report for Tank 100 Sump Sludge (KON332) for Polychlorinated Biphenyl`s (PCB) Sample Receipt Sample KON332 was received from Tank 100-Sump (WESF) on May 18, 1998. The laboratory number issued for this sample is S98BOO0207 as shown on the Request for Sample Analysis (RSA) form (Attachment 4). The sample breakdown diagram (Attachment 3) provides a cross-reference of customer sample identification to the laboratory identification number. Attachment 4 provides copies of the Request for Sample Analysis (RSA) and Chain of Custody (COC) forms. The sample was received in the laboratory in a 125-ml polybottle. Breakdown and subsampling was performed on June 6, 1998. PCB analysis was performed on the wet sludge. A discussion of the results is presented in Attachment 2. The 222-S extraction bench sheets are presented in Attachment 5. The PCB raw data are presented in Attachment 6.

  19. Pathogen reduction in septic tank sludge through vermicomposting using Eisenia fetida.

    PubMed

    Rodríguez-Canché, L G; Cardoso Vigueros, L; Maldonado-Montiel, T; Martínez-Sanmiguel, M

    2010-05-01

    This study evaluated the potential of earthworms (Eisenia fetida) to remove pathogens from the sludge from septic tanks. Three earthworm population densities, equivalent to 1, 2, and 2.5kgm(-2), were tested for pathogen removal from sludge. The experimental phase lasted 60days, starting from the initial earthworm inoculation. After 60days, it was found that earthworms reduced concentrations of fecal coliforms, Salmonella spp., and helminth ova to permissible levels (<1000MPN/g, <3MPN/g, and <1viable ova/g on a dry weight basis, respectively) in accordance with Official Mexican Standard of environmental protection (NOM-004-SEMARNAT-2002) (SEMARNAT, 2002). Thus, sludge treatment with earthworms generated Class A biosolids, useful for forest, agricultural, and soil improvement. PMID:20093021

  20. Process Development for Permanganate Addition During Oxidative Leaching of Hanford Tanks Sludges

    SciTech Connect

    Rapko, Brian M.; Lumetta, Gregg J.; Deschane, Jaquetta R.; Peterson, Reid A.; Blanchard, David L.

    2007-10-30

    Previous Bechtel National, Incorporated (BNI)-sponsored studies have targeted optimizing sodium permanganate for the selective oxidation of chromium from washed Hanford tank sludges (Rapko et al. 2004; Rapko et al. 2005). The recommendation from previous work was that contact with sodium permanganate in a minimally caustic solution, i.e., 0.1 to 0.25 M [OH-] initially, provided maximum Cr dissolution while minimizing concomitant Pu dissolution. At the request of BNI, further work on oxidative alkaline leaching was performed.

  1. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    SciTech Connect

    Nash, Kenneth L.

    2008-11-20

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  2. Caustic leaching of composite AZ-101/AZ-102 Hanford tank sludge

    SciTech Connect

    Rapko, B.M.; Wagner, M.J.

    1997-07-01

    To reduce the quantity (and hence the cost) of glass canisters needed for disposing of high-level radioactive wastes from the Hanford tank farms, pretreatment processes are needed to remove as much nonradioactive material as possible. This report describes the results of a laboratory-scale caustic leaching test performed on a composite derived from a combination of 241-AZ-101 and 241-AZ-102 Hanford Tank sludges. The goals of this FY 1996 test were to evaluate the effectiveness of caustic leaching on removing key components from the sludge and to evaluate the effectiveness of varying the free-hydroxide concentrations by incrementally increasing the free hydroxide concentration of the leach steps up to 3 {und M} free hydroxide. Particle-size analysis of the treated and untreated sludge indicated that the size and range of the sludge particles remained essentially unchanged by the caustic leaching treatment. Both before and after caustic leaching, a particle range of 0.2 {micro}m to 50 {micro}m was observed, with mean particle diameters of 8.5 to 9 {micro}m based on the volume distribution and mean particle diameters of 0.3 to 0.4 {micro}m based on the number distribution.

  3. Basic and Acidic Leaching of Sludge from Melton Valley Storage Tank W-25

    SciTech Connect

    Collins, J.L., Egan, B.Z., Beahm, E.C., Chase, C.W., Anderson, K.K.

    1997-10-01

    Bench-scale leaching tests were conducted with samples of tank waste sludge from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation technology processes for use in concentrating the radionuclides and reducing the volume of waste for final disposal. This paper discusses the hot cell apparatus, the characterization of the sludge, the leaching methodology, and the results obtained from a variety of basic and acidic leaching tests of samples of sludge at ambient temperature. Basic leaching tests were also conducted at 75 and 95 deg C. The major alpha-,gamma., and beta-emitting radionuclides in the centrifuged, wet sludge solids were {sup 137}Cs, {sup 60}Co, {sup 154}Eu, {sup 241}Am, {sup 244}Cm {sup 90}Sr, Pu, U, and Th. The other major metals (in addition to the U and Th) and anions were Na, Ca, Al, K, Mg, NO{sub 3}{sup -},CO{sub 3}{sup 2-}, OH{sup -}, and O{sup 2-} organic carbon content was 3.0 +/- 1.0%. The pH was 13. A surprising result was that about 93% of the {sup 137}Cs in the centrifuged, wet sludge solids was bound in the solids and could not be solubilized by basic leaching at ambient temperature and 75 deg C. However, the solubility of the {sup 137}Cs was enhanced by heating the sludge to 95 deg C. In one of the tests,about 42% of the {sup 137}Cs was removed by leaching with 6.3 M NaOH at 95 deg C.Removing {sup 137}Cs from the W-25 sludge with nitric acid was a slow process. About 13% of the {sup 137}Cs was removed in 16 h with 3.0 M HNO{sub 3}. Only 22% of the {sup 137}Cs was removed in 117 h usi 6.0 M HNO{sub 3}. Successive leaching of sludge solids with 0.5 M, 3.0 M, 3.0 M; and 6.0 M HNO{sub 3} for a total mixing time of 558 h removed 84% of the {sup 137}Cs. The use of caustic leaching prior to HNO{sub 3} leaching, and the use of HF with HNO{sub 3} in acidic leaching, increased the rate of {sup 137}Cs dissolution. Gel formation proved to be one of the biggest problems associated with HNO{sub 3

  4. Enhancement of polyether biodegradation in activated sludge

    SciTech Connect

    Christopher, L.J.

    1993-01-01

    Previous studies in this laboratory showed that pretreatment with Petroleum Chemical Extinguisher[reg sign] (PCE), a C[sub 18] unsaturated fatty acid diester of polyethylene glycol (PEG), enhanced the biodegradation of PEG 1,000 and PEG 1,450 in soil. In this study the ability of PCE and other PEG-fatty acid diesters to enhance biodegradation of PEGs in activated sludge was investigated. Additionally, polyether-fatty acid esters similar to PCE were synthesized and tested to determine how they affected biodegradation of PEGs and other polyethers. Attempts were made to understand the mechanism for enhancement of biodegradation. Carbon-dioxide evolution and thin-layer chromatographic analysis indicated degradation of PEG 1,000, PEG 1,450, and PEG 3,350 in sludge samples which were previously exposed to PCE. Those samples which were not pre-treated with PCE showed no detectable PEG degradation during the two-week study. Preexposure to PCE did not enhance subsequent degradation of PEG 8,000, nor polypropylene glycol (PPG) 1,025. However, pretreatment of sludge with a PPG 1,025-di oleic acid ester promoted PPG 1,205 degradation. Interestingly, microbial populations do not seem to be gaining much biomass or energy from the degradation of PEG-di fatty acid esters or PEGs. When PCE-pretreated sludge samples were given [sup 14]C-PEG 3,350 as substrate, evolution of [sup 14]CO[sub 2] occurred and little (<5%) of the [sup 14]C was assimilated by the microorganisms in the sludge. Futhermore, determinations of ATP content and esterase activity of sludge samples suggested that there was not a substantial increase in biomass as a result of degradation of either PCE or PEGs. PCE preexposure effected an increase in PEG dehydrogenase activity. This increase may be due to induction of enzymes responsible for PEG biodegradation or selection for organisms in the microbial population which are PEG degraders.

  5. STRESS CORROSION CRACKING SUSCEPTIBILITY OF HIGH LEVEL WASTE TANKS DURING SLUDGE MASS REDUCTION

    SciTech Connect

    Subramanian, K

    2007-10-18

    Aluminum is a principal element in alkaline nuclear sludge waste stored in high level waste (HLW) tanks at the Savannah River Site. The mass of sludge in a HLW tank can be reduced through the caustic leaching of aluminum, i.e. converting aluminum oxides (gibbsite) and oxide-hydroxides (boehmite) into soluble hydroxides through reaction with a hot caustic solution. The temperature limits outlined by the chemistry control program for HLW tanks to prevent caustic stress corrosion cracking (CSCC) in concentrated hydroxide solutions will potentially be exceeded during the sludge mass reduction (SMR) campaign. Corrosion testing was performed to determine the potential for CSCC under expected conditions. The experimental test program, developed based upon previous test results and expected conditions during the current SMR campaign, consisted of electrochemical and mechanical testing to determine the susceptibility of ASTM A516 carbon steel to CSCC in the relevant environment. Anodic polarization test results indicated that anodic inhibition at the temperatures and concentrations of interest for SMR is not a viable, consistent technical basis for preventing CSCC. However, the mechanical testing concluded that CSCC will not occur under conditions expected during SMR for a minimum of 35 days. In addition, the stress relief for the Type III/IIIA tanks adds a level of conservatism to the estimates. The envelope for corrosion control is recommended during the SMR campaign is shown in Table 1. The underlying assumption is that solution time-in-tank is limited to the SMR campaign. The envelope recommends nitrate/aluminate intervals for discrete intervals of hydroxide concentrations, although it is recognized that a continuous interval may be developed. The limits also sets temperature limits.

  6. Design of nutrient removal activated sludge systems.

    PubMed

    Manga, J; Ferrer, J; Seco, A; Garcia-Usach, F

    2003-01-01

    A mechanistic mathematical model for nutrient and organic matter removal was used to describe the behavior of a nitrification denitrification enhanced biological phosphorus removal (NDEBPR) system. This model was implemented in a user-friendly software DESASS (design and simulation of activated sludge systems). A 484-L pilot plant was operated to verify the model results. The pilot plant was operated for three years over three different sludge ages. The validity of the model was confirmed with data from the pilot plant. Also, the utility of DESASS as a valuable tool for designing NDEBPR systems was confirmed. PMID:12906279

  7. HLW flowsheet material balance for DWPF rad operation with Tank 51 sludge and ITP Cycle 1 precipitate

    SciTech Connect

    Choi, A.S.

    1995-04-19

    This document presents the details of the Savannah River Plant Flowsheet for the Rad Operation with Tank Sludge and ITP Cycle 1 Precipitate. Topics discussed include: material balance; radiolysis chemistry of tank precipitates; algorithm for ESP washing; chemistry of hydrogen and ammonia generation in CPC; batch sizes for processing feed; and total throughput of a streams during one cycle of operation.

  8. DOWNFLOW GRANULAR FILTRATION OF ACTIVATED SLUDGE EFFLUENTS

    EPA Science Inventory

    The performance of downflow granular filters subjected to effluents from activated sludge processes was investigated at the EPA-DC Pilot Plant in Washington, D.C. Several media combinations were investigated, including both single anthracite and dual anthracite-sand configuration...

  9. DENSITY CURRENTS IN ACTIVATED SLUDGE SECONDARY CLARIFIERS

    EPA Science Inventory

    Density currents form in activated sludge secondary clarifiers because the mixed liquor has a density greater than the treated wastewater in the clarifier. This causes the mixed liquor to plunge to the bottom of the clarifier establishing relatively high velocity currents within ...

  10. METALS DISTRIBUTIONS IN ACTIVATED SLUDGE SYSTEMS

    EPA Science Inventory

    This project developed models to predict the distribution of metals in activated sludge system process streams. The data used to develop the models were obtained through extended pilot studies from a previous project. The objectives of the study were to evaluate the effects of wa...

  11. An Assessment of Technologies to Provide Extended Sludge Retrieval from Underground Storage Tanks at the Hanford Site

    SciTech Connect

    JA Bamberger

    2000-08-02

    The purpose of this study was to identify sludge mobilization technologies that can be readily installed in double-shell tanks along with mixer pumps to augment mixer pump operation when mixer pumps do not adequately mobilize waste. The supplementary technologies will mobilize sludge that may accumulate in tank locations out-of-reach of the mixer-pump jet and move the sludge into the mixer-pump range of operation. The identified technologies will be evaluated to determine if their performances and configurations are adequate to meet requirements developed for enhanced sludge removal systems. The study proceeded in three parallel paths to identify technologies that: (1) have been previously deployed or demonstrated in radioactive waste tanks, (2) have been specifically evaluated for their ability to mobilize or dislodge waste simulants with physical and theological properties similar to those anticipated during waste retrieval, and (3) have been used in similar industrial conditions, bu t not specifically evaluated for radioactive waste retrieval.

  12. CONTINUOSLY STIRRED TANK REACTOR PARAMETERS THAT AFFECT SLUDGE BATCH 6 SIMULANT PROPERTIES

    SciTech Connect

    Newell, J.; Lambert, D.; Stone, M.; Fernandez, A.

    2010-05-28

    The High Level Radioactive Waste (HLW) Sludge in Savannah River Site (SRS) waste tanks was produced over a period of over 60 years by neutralizing the acidic waste produced in the F and H Separations Canyons with sodium hydroxide. The HLW slurries have been stored at free hydroxide concentrations above 1 M to minimize the corrosion of the carbon steel waste tanks. Sodium nitrite is periodically added as a corrosion inhibitor. The resulting waste has been subjected to supernate evaporation to minimize the volume of the stored waste. In addition, some of the waste tanks experienced high temperatures so some of the waste has been at elevated temperatures. Because the waste is radioactive, the waste is transforming through the decay of shorter lived radioactive species and the radiation damage that the decay releases. The goal of the Savannah River National Laboratory (SRNL) simulant development program is to develop a method to produce a sludge simulant that matches both the chemical and physical characteristics of the HLW without the time, temperature profile, chemical or radiation exposure of that of the real waste. Several different approaches have been taken historically toward preparing simulated waste slurries. All of the approaches used in the past dozen years involve some precipitation of the species using similar chemistry to that which formed the radioactive waste solids in the tank farm. All of the approaches add certain chemical species as commercially available insoluble solid compounds. The number of species introduced in this manner, however, has varied widely. All of the simulant preparation approaches make the simulated aqueous phase by adding the appropriate ratios of various sodium salts. The simulant preparation sequence generally starts with an acidic pH and ends up with a caustic pH (typically in the 10-12 range). The current method for making sludge simulant involves the use of a temperature controlled continuously stirred tank reactor (CSTR

  13. Biodegradability of activated sludge organics under anaerobic conditions.

    PubMed

    Ekama, G A; Sötemann, S W; Wentzel, M C

    2007-01-01

    From an experimental and theoretical investigation of the continuity of activated sludge organic (COD) compounds along the link between the fully aerobic or N removal activated sludge and anaerobic digestion unit operations, it was found that the unbiodegradable particulate organics (i) originating from the influent wastewater and (ii) generated by the activated sludge endogenous process, as determined from response of the activated sludge system, are also unbiodegradable under anaerobic digestion conditions. This means that the activated sludge biodegradable organics that can be anaerobically digested can be calculated from the active fraction of the waste activated sludge based on the widely accepted ordinary heterotrophic organism (OHO) endogenous respiration/death regeneration rates and unbiodegradable fraction. This research shows that the mass balances based steady state and dynamic simulation activated sludge, aerobic digestion and anaerobic digestion models provide internally consistent and externally compatible elements that can be coupled to produce plant wide steady state and dynamic simulation WWTP models. PMID:17045327

  14. Activated Sludge and other Aerobic Suspended Culture Processes.

    PubMed

    Wei, Li; Wei, Chao; Chang, Chein-Chi; You, Shao-Hong

    2015-10-01

    This is a literature review for the year 2014 and contains information specifically associated with suspended growth processes including activated sludge and sequencing batch reactors. This review is a subsection of the treatment systems section of the annual literature review. The review encompasses modeling and kinetics, nutrient removal, system design and operation. Compared to past reviews, many topics show increase in activity in 2014. These include, nitrogen and phosphorus control, fate and effect of xenobiotics, industrial wastes treatment, and some new method for the determination of activated sludge. These topics are referred to the degradation of constituents in activated sludge. Other sections include population dynamics, process microbiology of activated sludge, modeling and kinetics. Many of the subsections in the industrial wastes: converting sewage sludge into fuel gases, thermos-alkali hydrolysis of Waste Activated Sludge (WAS), sludge used as H2 S adsorbents were also mentioned in this review. PMID:26420077

  15. Composition and Flow Behavior of F-Canyon Tank 804 Sludge following Manganese Addition and pH Adjustment

    SciTech Connect

    Poirier, M. R.; Stallings, M. E.; Burket, P.R.; Fink, S. D.

    2005-11-30

    The Site Deactivation and Decommissioning (SDD) Organization is evaluating options to disposition the 800 underground tanks (including removal of the sludge heels from these tanks). To support this effort, SDD requested assistance from Savannah River National Laboratory (SRNL) personnel to examine the composition and flow characteristics of the Tank 804 sludge slurry after diluting it 10:1 with water, adding manganese nitrate to produce a slurry containing 5.5 wt % manganese (40:1 ratio of Mn:Pu), and adding sufficient 8 M caustic to raise the pH to 7, 10, and 14. Researchers prepared slurries containing one part Tank 804 sludge and 10 parts water. The water contained 5.5 wt % manganese (which SDD will add to poison the plutonium in Tank 804) and was pH adjusted to 3, 7, 10, or 14. They hand mixed (i.e., shook) these slurries and allowed them to sit overnight. With the pH 3, 7, and 10 slurries, much of the sludge remained stuck to the container wall. With the pH 14 slurry, most of the sludge appeared to be suspended in the slurry. They collected samples from the top and bottom of each container, which were analyzed for plutonium, manganese, and organic constituents. Following sampling, they placed the remaining material into a viscometer and measured the relationship between applied shear stress and shear rate. The pH 14 slurry was placed in a spiral ''race track'' apparatus and allowed to gravity drain.

  16. Reduction of sludge generation by the addition of support material in a cyclic activated sludge system for municipal wastewater treatment.

    PubMed

    Araujo, Moacir Messias de; Lermontov, André; Araujo, Philippe Lopes da Silva; Zaiat, Marcelo

    2013-09-01

    An innovative biomass carrier (Biobob®) was tested for municipal wastewater treatment in an activated sludge system to evaluate the pollutant removal performance and the sludge generation for different carrier volumes. The experiment was carried out in a pilot-scale cyclic activated sludge system (CASS®) built with three cylindrical tanks in a series: an anoxic selector (2.1 m(3)), an aerobic selector (2.5 m(3)) and the main aerobic reactor (25.1 m(3)). The results showed that by adding the Biobob® carrier decreased the MLVSS concentration, which consequently reduced the waste sludge production of the system. Having 7% and 18% (v/v) support material in the aerobic reactor, the observed biomass yield decreased 18% and 36%, respectively, relative to the reactor operated with suspended biomass. The addition of media did not affect the system's performance for COD and TSS removal. However, TKN and TN removal were improved by 24% and 14%, respectively, using 18% (v/v) carrier. PMID:23831747

  17. Degradation of corticosteroids during activated sludge processing.

    PubMed

    Miyamoto, Aoi; Kitaichi, Yuko; Uchikura, Kazuo

    2014-01-01

    Laboratory tests of the decomposition of corticosteroids during activated sludge processing were investigated. Corticosteroid standards were added to activated sludge, and aliquots were regularly taken for analysis. The corticosteroids were extracted from the samples using a solid-phase extraction method and analyzed LC-MS. Ten types of corticosteroids were measured and roughly classified into three groups: 1) prednisolone, triamcinolone, betamethasone, prednisolone acetate, and hydrocortisone acetate, which decomposed within 4 h; 2) flunisolide, betamethasone valerate, and budesonide of which more than 50% remained after 4 h, but almost all of which decomposed within 24 h; and 3) triamcinolone acetonide, and fluocinolone acetonide of which more than 50% remained after 24 h. The decomposed ratio was correlated with each corticosteroid's Log P, especially groups 2) and 3). PMID:24390495

  18. Activated sludge degradation of adipic acid esters.

    PubMed Central

    Saeger, V W; Kalley, R G; Hicks, O; Tucker, E S; Mieure, J P

    1976-01-01

    The biodegradability of three aliphatic adipic acid diesters and a 1,3-butylene glycol adipic acid polyester was determined in acclimated, activated sludge systems. Rapid primary biodegradation from 67 to 99+% was observed at 3- and 13-mg/liter feed levels for di-n-hexyl adipate, di(2-ethylhexyl) adipate, and di(heptyl, nonyl) adipate in 24 h. When acclimated, activated sludge microorganisms were employed as the seed for two carbon dioxide evolution procedures, greater than 75% of the theoretical carbon dioxide was evolved for the three diesters and the polyester in a 35-day test period. The essentially complete biodegradation observed in these studies suggests that these esters would not persist when exposed to similar mixed microbial populations in the environment. PMID:1275494

  19. Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal.

    PubMed

    Yang, Xin; Xu, Guoren; Yu, Huarong; Zhang, Zhao

    2016-07-01

    Ferric activation was novelly used to produce sludge-based adsorbent (SBA) from biological sludge through pyrolysis, and the adsorbents were applied to remove tetracycline from aqueous solution. The pyrolysis temperature and mass ratio (activator/dried sludge) greatly influenced the surface area and pore characteristics of SBA. Ferric activation could promote the porous structure development of adsorbents, and the optimum preparation conditions were pyrolysis temperature 750°C and mass ratio (activator/dried sludge) 0.5. In batch experiments, ferric-activated SBA showed a higher adsorption capacity for tetracycline than non-activated SBA, because the enhanced mesoporous structure favored the diffusion of tetracycline into the pores, the iron oxides and oxygen-containing functional groups in the adsorbents captured tetracycline by surface complexation. The results indicate that ferric activation is an effective approach for preparing adsorbents from biological sludge to remove tetracycline, providing a potential option for waste resource recovery. PMID:27038265

  20. Role of Nocardia in Activated Sludge

    PubMed Central

    Bafghi, Mehdi Fatahi; Yousefi, Nader

    2016-01-01

    Activated sludge process is a biological process that is widely used in the domestic and industrial wastewater treatment in over the world. The foam formation is often reported in wastewater treatment plants which are related to this process. Some operational problems can be created by foaming, such as effluent quality deteriorates, the creation of malodorous, increased time requirements in order to plant maintenance, and in extreme cases, hazardous working conditions resulting from foam spilling out of the aeration basin and as well as increased in operational costs. There are different ways to overcome this problem, such as reduce air flows into the aeration basin, reduction in the grease and oil content of the wastewater, surface and return activated sludge (RAS) chlorination, anoxic and anaerobic selectors, solid retention time (SRT) control and antifoams and organic polymer addition. On the other hand, rapid and accurate identification of the foam causes is in the first step to control bulking and foaming. Foam problem is often created by filamentous bacteria, such as Nocardia and Gordonia species. This bacterium has a role important in activated sludge. PMID:27418874

  1. Role of Nocardia in Activated Sludge.

    PubMed

    Bafghi, Mehdi Fatahi; Yousefi, Nader

    2016-05-01

    Activated sludge process is a biological process that is widely used in the domestic and industrial wastewater treatment in over the world. The foam formation is often reported in wastewater treatment plants which are related to this process. Some operational problems can be created by foaming, such as effluent quality deteriorates, the creation of malodorous, increased time requirements in order to plant maintenance, and in extreme cases, hazardous working conditions resulting from foam spilling out of the aeration basin and as well as increased in operational costs. There are different ways to overcome this problem, such as reduce air flows into the aeration basin, reduction in the grease and oil content of the wastewater, surface and return activated sludge (RAS) chlorination, anoxic and anaerobic selectors, solid retention time (SRT) control and antifoams and organic polymer addition. On the other hand, rapid and accurate identification of the foam causes is in the first step to control bulking and foaming. Foam problem is often created by filamentous bacteria, such as Nocardia and Gordonia species. This bacterium has a role important in activated sludge. PMID:27418874

  2. Proposal for a screening test to evaluate the fate of organic micropollutants in activated sludge.

    PubMed

    Salvetti, Roberta; Vismara, Renato; Dal Ben, Ilaria; Gorla, Elena; Romele, Laura

    2011-04-01

    The concentrations of organic micropollutants are usually low in wastewaters (order of magnitude of mg L(-1)). However, their emission standards, especially in the case of carcinogenic and bioaccumulating substances, are often much lower (order of magnitude of microg L(-1)). Since these substances, in some cases, can be adsorbable or volatile, their removal via volatilization, biodegradation or sludge adsorption in a wastewater treatment plant (WWTP) becomes a significant feature to include in the usual design process, in order to verify the emission standards in gas and sludge too. In this study a simple screening batch test for the evaluation of the fate of organic micropollutants in water, air and sludge is presented. The test is set up by means of simple laboratory instruments and simulates an activated sludge tank process. In this study the results obtained for four substances with different chemical properties (i.e. toluene, benz(a)anthracene, phenol and benzene) are presented. The screening test proposed can be a useful tool to assess in about one month the fate of organic micropollutants in an activated sludge tank of a WWTP. Moreover, the test can constitute a useful support in the use of mathematical models, since it allows the verification of model results and the calibration of the reactions involved in the removal process. PMID:21877546

  3. Evaluating sedimentation problems in activated sludge treatment plants operating at complete sludge retention time.

    PubMed

    Amanatidou, Elisavet; Samiotis, Georgios; Trikoilidou, Eleni; Pekridis, George; Taousanidis, Nikolaos

    2015-02-01

    Zero net sludge growth can be achieved by complete retention of solids in activated sludge wastewater treatment, especially in high strength and biodegradable wastewaters. When increasing the solids retention time, MLSS and MLVSS concentrations reach a plateau phase and observed growth yields values tend to zero (Yobs ≈ 0). In this work, in order to evaluate sedimentation problems arised due to high MLSS concentrations and complete sludge retention operational conditions, two identical innovative slaughterhouse wastewater treatment plants were studied. Measurements of wastewaters' quality characteristics, treatment plant's operational conditions, sludge microscopic analysis and state point analysis were conducted. Results have shown that low COD/Nitrogen ratios increase sludge bulking and flotation phenomena due to accidental denitrification in clarifiers. High return activated sludge rate is essential in complete retention systems as it reduces sludge condensation and hydraulic retention time in the clarifiers. Under certain operational conditions sludge loading rates can greatly exceed literature limit values. The presented methodology is a useful tool for estimation of sedimentation problems encountered in activated sludge wastewater treatment plants with complete retention time. PMID:25463928

  4. Development of an in situ method to define the rheological properties of slurries and sludges stored in underground tanks

    SciTech Connect

    Heath, W.O.

    1987-04-01

    A method for measuring the in situ flow properties of high-level radioactive waste (HLW) sludges has been developed at Pacific Northwest Laboratory, along with a preconceptual design for a shear vane device that can be installed in underground HLW storage tanks and used to make those measurements remotely. The data obtained with this device will assist in the design of mixing equipment used to resuspend and remove HLW sludges from their storage tanks for downstream processing. This method is also suitable for remotely characterizing other types of waste sludges and slurries. Commonly available viscometric methods were adapted to allow characterization of sludge samples in the laboratory such that the laboratory and in-tank data can be directly compared (scaled up). Procedures for conducting measurements and analyzing the results in terms of useful mathematical models describing both start-up and steady-state flow behavior are presented, as is a brief tutorial on the types of flow behavior that can be exhibited by tank sludges. 30 refs., 36 figs., 14 tabs.

  5. Bioaugmentation to improve nitrification in activated sludge treatment.

    PubMed

    Leu, Shao-Yuan; Stenstrom, Michael K

    2010-06-01

    Bioaugmentation is a proposed technique to improve nutrient removal in municipal wastewater treatment. Compared with commonly used nitrification/denitrification (NDN) processes, bioaugmentation may be able to reduce tankage or land requirements. Many approaches for bioaugmentation have been developed, but few studies have compared the benefits among different approaches. This paper quantifies the effectiveness of bioaugmentation processes and investigates three major "onsite" bioaugmentation alternatives: 1) the parallel-plants approach, which uses acclimated biomass grown in a nitrifying "long-SRT" (sludge retention time) plant to augment a low-SRT treatment plant; 2) the enricher-reactor approach, which uses an offline reactor to produce the augmentation cultures; and 3) the enricher-reactor/return activated sludge (ER-RAS) approach, which grows enrichment culture in a reaeration reactor that receives a portion of the recycle activated sludge. Kinetic models were developed to simulate each approach, and the benefits of various approaches are presented on the same basis with controllable parameters, such as bioaugmentation levels, aeration tank volume, and temperatures. Examples were given to illustrate the potential benefits of bioaugmentation by upgrading a "carbon-only" wastewater treatment plant to nitrification. Simulation results suggested that all bioaugmentation approaches can decrease the minimum SRT for nitrification. The parallel-plants approach creates the highest concentration of biomass but may fail at too low temperature. The ER-RAS approach likely would be more useful at lower temperature and required less reactor volume; enricher-reactor approach would likely be more advantageous in the presence of inhibitory compound(s). PMID:20572460

  6. Exploratory tests of washing radioactive sludge samples from the Melton Valley and evaporator facility storage tanks at ORNL

    SciTech Connect

    Sears, M.B.; Botts, J.L.; Keller, J.M.

    1991-09-01

    Exploratory tests were initiated to wash radioactive sludge samples from the waste storage tanks at the Oak Ridge National Laboratory (ORNL). The purpose was to provide preliminary information about (1) the anions in the sludge phase that are soluble in water or dilute acid (e.g., the anions in the interstitial liquid) and (2) the solubilities of sludge constituents in water under process conditions. The experiments were terminated before completion due to changing priorities by the Department of Energy (DOE). This memorandum was prepared primarily for documentation purposes and presents the incomplete data. 3 refs., 13 tabs.

  7. SELECTIVE LEACHING OF CHROMIUM FROM WASHED 241-S-110 HANFORD TANK SLUDGE

    SciTech Connect

    Rapko, Brian M.); Vienna, John D.)

    2003-08-30

    This report describes our continuing studies directed at enhancing the dissolution of Cr(III) from Hanford tank sludges by treatment with oxidants under alkaline conditions. This study evaluates the use of ferrate, FeO42-, permanganate, MnO4-, and persulfate, S2O82-, at selectively removing chromium from washed Hanford Tank 241-S-110 sludge. Variables examined include the initial hydroxide concentration, time, and temperature. It was found that all oxidants enhanced both the rate and extent of chromium dissolution, with > 90% of the total chromium being dissolved under optimum conditions after 48-h contact times. The dissolved chromium was determined to be present as chromate, CrO42-. Elevated transuranic (TRU) element concentrations in the leach solutions were observed, attributed to enhanced Pu dissolution, but in all cases an immobilized form of the leach solutions would be considered a low-level waste, not a TRU waste. Evaluation of the immobilized high level waste (IHLW) that would be generated following oxidative alkaline leaching indicates that both extensive Al and Cr removal are needed to maximize the benefit of pretreatment. The amount of IHLW waste would be reduced by 20% by the almost quantitative Al removal documented to be possible through an extended caustic leach. Oxidative leaching of chromium sufficient to remove 95% of the remaining Cr provides for a further reduction of almost 50% in the amount of glass produced for a total of roughly 70% volume reduction in glass over that produced from untreated waste.

  8. Examination of sludge accumulation rates and sludge characteristics for a decentralized community wastewater treatment systems with individual primary clarifier tanks located in Wardsville (Ontario, Canada).

    PubMed

    Lossing, Heather; Champagne, Pascale; McLellan, P James

    2010-01-01

    In conventional septic systems, settling and partial treatment via anaerobic digestion occurs in the septic tank. One of the byproducts of solids separation in the septic tank is a semi-liquid material known as septage, which must be periodically pumped out. Septage includes the liquid portion within the tank, as well as the sludge that settles at the bottom of the tank and the scum that floats to the surface of the liquid layer. A number of factors can influence septage characteristics, as well as the sludge and scum accumulation rates within the tank. This paper presents the results of a 2007 field sampling study conducted in Wardsville (Ontario, Canada). The field study examined 29 individual residential two-chamber septic tanks in a community serviced by a decentralized wastewater treatment system in operation for approximately 7 years without septage removal. The field investigation provided a comprehensive data set that allowed for statistical analysis of the data to assess the more critical factors influencing solids accumulation rates within each of the clarifier chambers. With this data, a number of predictive models were developed using water usage data for each residence as an explanatory variable. PMID:21123926

  9. Ammonium adsorption in aerobic granular sludge, activated sludge and anammox granules.

    PubMed

    Bassin, J P; Pronk, M; Kraan, R; Kleerebezem, R; van Loosdrecht, M C M

    2011-10-15

    The ammonium adsorption properties of aerobic granular sludge, activated sludge and anammox granules have been investigated. During operation of a pilot-scale aerobic granular sludge reactor, a positive relation between the influent ammonium concentration and the ammonium adsorbed was observed. Aerobic granular sludge exhibited much higher adsorption capacity compared to activated sludge and anammox granules. At an equilibrium ammonium concentration of 30 mg N/L, adsorption obtained with activated sludge and anammox granules was around 0.2 mg NH4-N/g VSS, while aerobic granular sludge from lab- and pilot-scale exhibited an adsorption of 1.7 and 0.9 mg NH4-N/g VSS, respectively. No difference in the ammonium adsorption was observed in lab-scale reactors operated at different temperatures (20 and 30 °C). In a lab-scale reactor fed with saline wastewater, we observed that the amount of ammonium adsorbed considerably decreased when the salt concentration increased. The results indicate that adsorption or better ion exchange of ammonium should be incorporated into models for nitrification/denitrification, certainly when aerobic granular sludge is used. PMID:21840028

  10. Characterization of Radionuclides in Purex Waste Sludges from the F-Area High Level Waste Tanks (U)

    SciTech Connect

    Obryant, R

    2005-06-13

    Sludge-contaminated waste consists of waste contaminated with both insoluble species (the sludge fraction) and entrained supernate. The WCS is based on the assumption that approximately 70% of the weight of what is commonly referred to as sludge is interstitial supernate; the remaining approximately 30% consists of the insoluble species (Reference 1). Development of a method for characterization of sludge-contaminated waste must consider both fractions. Separate waste cuts may contain sludge and supernate fractions in varying proportions due to the nature of the job generating the waste and the variability in waste handling techniques. Development of a distribution representative of all sludge-contaminated waste cuts must allow for varying fractions of sludge and supernate contamination. This document will develop a radionuclide distribution in accordance with the methodology outlined in WSRC 1S SRS Waste Acceptance Criteria Manual, Procedure 2.02, Revision 8 for the sludge fraction of sludge-contaminated waste generated in the F-Area Tank Farm This distribution was based on the assumption that sludge-contaminated waste from F-Area Tank Farm Waste Tanks could be co-mingled, and the actual contamination present on waste in a series of containers from these tanks will be representative of the mean radionuclide distribution. The original characterization was based primarily on process knowledge and fill histories (Reference 6). A single, comprehensive characterization for supernate has been developed previously (Reference 9). This document also describes the methodology for application of radionuclide distributions representative of the sludge and supernate fractions of sludge-contaminated waste to individual waste packages. Most of the waste contaminated with sludge from the F-Area Tank Farm will be categorized as Low Level Waste (LLW) and disposed of in the E-area trenches. The waste does, however, have the potential to be categorized as TRU and/or mixed waste

  11. A new activated primary tank developed for recovering carbon source and its application.

    PubMed

    Jin, Pengkang; Wang, Xianbao; Zhang, Qionghua; Wang, Xiaochang; Ngo, Huu Hao; Yang, Lei

    2016-01-01

    A novel activated primary tank process (APT) was developed for recovering carbon source by fermentation and elutriation of primary sludge. The effects of solids retention time (SRT), elutriation intensity (G) and return sludge ratio (RSR) on this recovery were evaluated in a pilot scale reactor. Results indicated that SRT significantly influenced carbon source recovery, and mechanical elutriation could promote soluble COD (SCOD) and VFA yields. The optimal conditions of APT were SRT=5d, G=152s(-1) and RSR=10%, SCOD and VFA production were 57.0mg/L and 21.7mg/L. Particulate organic matter in sludge was converted into SCOD and VFAs as fermentative bacteria were significantly enriched in APT. Moreover, the APT process was applied in a wastewater treatment plant to solve the problem of insufficient carbon source. The outcomes demonstrated that influent SCOD of biological tank increased by 31.1%, which improved the efficiency of removing nitrogen and phosphorus. PMID:26562688

  12. Low-pressure, single-point grout injection for tank heel sludge mixing and in-situ immobilization

    SciTech Connect

    Whyatt, G.A.; Hymas, C.R.

    1998-09-01

    This report describes tests conducted in an approximately 9-ft diameter test tank situated outside the 336 building in Hanford`s 300 area. The tests were performed to measure the ability of jets of grout slurry to mobilize and mix simulated tank sludge. The technique is intended for in situ immobilization of tank waste heels. The current approach uses a single, rotated, larger-diameter nozzle driven at lower pressure. Due to the larger diameter, the potential for plugging is reduced and the effective radius around an injection point over which the jet is effective in mobilizing sludge from the tank bottom can be made larger. A total of three grout injection tests were conducted in a 9-ft diameter tank. In each case, a 2-in. layer of kaolin clay paste was placed on a dry tank floor to simulate a sludge heel. The clay was covered with 4 inches of water. The grout slurry, consisting of Portland cement, class F fly ash, and eater, was prepared and delivered by an offsite vendor. In the third test, the sludge in half of the tank was replaced by a layer of 20x50 mesh zeolite, and bentonite clay was added to the grout formulation. After injection, the grout was allowed to set and then the entire grout monolith was manually broken up and excavated using a jack hammer. Intact pieces of clay were visually apparent due to a sharp color contrast between the grout and clay. Remaining clay deposits were collected and weighed and suspended clay pieces within the monolith were photographed. The mobilization performance of the grout jets exceeded expectations.

  13. Method of using an aqueous chemical system to recover hydrocarbon and minimize wastes from sludge deposits in oil storage tanks

    SciTech Connect

    Goss, M.L.

    1992-02-04

    This patent describes a process for separating and removing a hydrocarbon, water and solid components of sludge deposited in an oil storage tank. It comprises: introducing a sufficient amount of a nonionic surfactant in an aqueous solution to form a layer of the solution above the sludge layer; the nonionic surfactant comprising: C{sub 8}-C{sub 12} alkylphenol-ethylene oxide adducts of about 55%-75% by weight ethylene oxide, and at least one castor oil-ethylene oxide adduct of about 55%-75% by weight ethylene oxide; the nonionic surfactant being present in a quantity sufficient to separate hydrocarbon component from the sludge without forming an emulsion, adding a diluent, immiscible with the aqueous layer, for extracting the hydrocarbons, and separately draining the diluent layer and aqueous layer from the tank.

  14. Microbial diversity differences within aerobic granular sludge and activated sludge flocs.

    PubMed

    Winkler, M-K H; Kleerebezem, R; de Bruin, L M M; Verheijen, P J T; Abbas, B; Habermacher, J; van Loosdrecht, M C M

    2013-08-01

    In this study, we investigated during 400 days the microbial community variations as observed from 16S DNA gene DGGE banding patterns from an aerobic granular sludge pilot plant as well as the from a full-scale activated sludge treatment plant in Epe, the Netherlands. Both plants obtained the same wastewater and had the same relative hydraulic variations and run stable over time. For the total bacterial population, a similarity analysis was conducted showing that the community composition of both sludge types was very dissimilar. Despite this difference, general bacterial population of both systems had on average comparable species richness, entropy, and evenness, suggesting that different bacteria were sharing the same functionality. Moreover, multi-dimensional scaling analysis revealed that the microbial populations of the flocculent sludge system moved closely around the initial population, whereas the bacterial population in the aerobic granular sludge moved away from its initial population representing a permanent change. In addition, the ammonium-oxidizing community of both sludge systems was studied in detail showing more unevenness than the general bacterial community. Nitrosomonas was the dominant AOB in flocculent sludge, whereas in granular sludge, Nitrosomonas and Nitrosospira were present in equal amounts. A correlation analysis of process data and microbial data from DGGE gels showed that the microbial diversity shift in ammonium-oxidizing bacteria clearly correlated with fluctuations in temperature. PMID:23064482

  15. Application of forward osmosis (FO) under ultrasonication on sludge thickening of waste activated sludge.

    PubMed

    Nguyen, Nguyen Cong; Nguyen, Hau Thi; Chen, Shiao-Shing; Nguyen, Nhat Thien; Li, Chi-Wang

    2015-01-01

    Forward osmosis (FO) is an emerging process for dewatering solid-liquid stream which has the potential to be innovative and sustainable. However, the applications have still been hindered by low water flux and membrane fouling when activated sludge is used as the feed solution due to bound water from microbial cells. Hence, a novel strategy was designed to increase sludge thickening and reduce membrane fouling in the FO process under ultrasonic condition. The results from the ultrasound/FO hybrid system showed that the sludge concentration reached up to 20,400 and 28,400 mg/L from initial sludge concentrations of 3000 and 8000 mg/L with frequency of 40 kHz after 22 hours, while the system without ultrasound had to spend 26 hours to achieve the same sludge concentration. This identifies that the presence of ultrasound strongly affected sludge structure as well as sludge thickening of the FO process. Furthermore, the ultrasound/FO hybrid system could achieve NH4+-N removal efficiency of 96%, PO4(3-)-P of 98% and dissolved organic carbon (DOC) of 99%. The overall performance demonstrates that the proposed ultrasound/FO system using seawater as a draw solution is promising for sludge thickening application. PMID:26465299

  16. Adsorption of heavy metals on sonicated activated sludge.

    PubMed

    Commenges-Bernole, N; Marguerie, J

    2009-01-01

    The objective of this work is to assess heavy metals fixation capacity on sonicated activated sludge. Ultrasonic treatment of sludge has lead to its desintegration and changes physico-chemical characteristics such as soluble chemical oxygen demand, proteins or particle size distribution. This study has shown that these modifications have improved significantly the capacity of sludge to fix heavy metals. Indeed, after a sonication of 15 min and storage of three days after irradiation, the equilibrium capacity is increased about 45%. The restructuration of sludge during the storage seems to increase the accessibility to active binding sites. PMID:18599337

  17. Microbiology of coke-plant activated sludge

    SciTech Connect

    Owens, J.R.

    1983-01-01

    The biological treatment of coke-plant wastewater represents the most economical means of detoxification and contaminant removal, but little is known about the microbial ecology of this system. Research was therefore undertaken to determine the kinds of microorganisms that survive and function in this environment and to examine the growth patterns that influence treatment efficiency. The microbial flora of coke-plant activated sludge is predominated by populations of aerobic gram negative rods. The principle genera identified were Pseudomonas, Alcaligenes, Flavobacterium and Acinetobacter. The genera Bacillus, Nocardia and Micrococcus were also present at low levels. A single type of rotifer was present along with various protozoans. The ability of microorganisms in coke wastewater to grow on various organic compounds as their sole source of carbon and energy is more restrictive when compared with that of isolates obtained from activated sludge processes treating municipal wastes. The phenol degrading bacteria can be maintained in a continuous culture system with a hydraulic retention time (HRT) of as long as 14 days. Under conditions of increasing HRT the average cell size decreased and the number of cells per milliter increased. As the HRT increased cell yields decreased. At long HRT's (7 to 14 days) cell yields remained constant.

  18. OXYGEN UTILIZATION IN ACTIVATED SLUDGE PLANTS: SIMULATION AND MODEL CALIBRATION

    EPA Science Inventory

    The objective of the research described in the report is to apply recent advances in activated sludge process modeling to the simulation of oxygen utilization rates in full scale activated sludge treatment plants. This is accomplished by calibrating the International Association ...

  19. PARALLEL EVALUATION OF AIR- AND OXYGEN-ACTIVATED SLUDGE

    EPA Science Inventory

    To provide data on the relative merits of air and oxygen in the activated sludge process, two 1900-cu m/day (0.5-mgd) activated sludge pilot plant, one air and one oxygen system, were operated side-by-side at the Joint Water Pollution Control Plant, Carson, California. Both of th...

  20. An ecosystem analysis of the activated sludge microbial community.

    PubMed

    Yiannakopoulou, Trissevyene V

    2010-01-01

    This study was undertaken (i) to investigate the interactions of the activated sludge microbial community in a chemostat with the "environment", such as the substrate composition and variations, (ii) to investigate how these interactions affect the quality of the treated effluent and (iii) to determine the limits or applicability conditions to the indicators and to the prediction potential of the treated effluent quality. This work presents (a) the experimental results obtained from a reactor fed municipal wastewater (Data Set2-DS2) concerning the reactor's operating conditions and the microbial community of the sludge (b) comparisons between DS2 and an older Data Set (DS1) obtained when the reactor was fed synthetic substrate, all other experimental conditions being identical, and (c) simulation results and sensitivity analyses of two model runs (R1 and R2, corresponding to DS1 and DS2). The first trophic level (P(1)) of the DS2 microbial community consisted of bacteria, the second trophic level (P(2)) of bacteria-eating protozoa, rotifers and nematodes and the third trophic level (P(3)) of carnivorous protozoa and arthropods. Rotifers were an important constituent of the DS2 microbial community. The DS1 and DS1 communities differed in total size, trophic level sizes and species composition. Correlations between the major microbial groups of DS2 community and either loading rates or effluent quality attributes were generally low, but the correlation of bacteria with SVI and ammonia in the effluent was better. Also, the ratio of rotifers to protozoa in P(2) was correlated to BOD in the effluent. The results of this work indicate that predictions of the treated effluent quality based only on protozoa may not be safe. Sensitivity analysis of R2 run indicate that, when variation in Y and K(d) biokinetic coefficients of the sludge are combined with fluctuations in composition and quality of municipal wastewater entering the reactor, then sufficient significant

  1. Caustic Leaching of SRS Tank 12H Sludge With and Without Chelating Agents

    SciTech Connect

    Spencer, B.B.

    2003-04-30

    The primary objective of this study was to measure the effect of adding triethanolamine (TEA) to caustic leaching solutions to improve the solubility of aluminum in actual tank-waste sludge. High-level radioactive waste sludge that had a high aluminum assay was used for the tests. This waste, which originated with the processing of aluminum-clad/aluminum-alloy fuels, generates high levels of heat because of the high {sup 90}Sr concentration and contains hard-to-dissolve boehmite phases. In concept, a chelating agent, such as TEA, can both improve the dissolution rate and increase the concentration in the liquid phase. For this reason, TEA could also increase the solubility of other sludge components that are potentially problematic to downstream processing. Tests were conducted to determine if this were the case. Because of its relatively high vapor pressure, process design should include methods to minimize losses of the TEA. Sludge was retrieved from tank 12H at the Savannah River Site by on-site personnel, and then shipped to Oak Ridge National Laboratory for the study. The sludge contained a small quantity of rocky debris. One slate-like flat piece, which had approximate dimensions of 1 1/4 x 1/2 x 1/8 in., was recovered. Additional gravel-like fragments with approximate diameters ranging from 1/8 to 1/4 in. were also recovered by sieving the sludge slurry through a 1.4-mm square-pitch stainless steel mesh. These particles ranged from a yellow quartz-like material to grey-colored gravel. Of the 32.50 g of sludge received, the mass of the debris was only 0.89 g, and the finely divided sludge comprised {approx}97% of the mass. The sludge was successfully subdivided into uniform aliquots during hot-cell operations. Analytical measurements confirmed the uniformity of the samples. The smaller sludge samples were then used as needed for leaching experiments conducted in a glove box. Six tests were performed with leachate concentrations ranging from 0.1 to 3.0 m Na

  2. Sludge.

    ERIC Educational Resources Information Center

    Tenenbaum, David

    1992-01-01

    Cites a recycling success story involving sludge production from wastewater and transformation into an effective plant fertilizer. Discusses related concerns such as dealing with pollutants like heavy metals and PCBs often found in sludge. Provides an example of an application of sludge produced in Chicago to an area reclamation site. (MCO)

  3. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering.

    PubMed

    Neyens, Elisabeth; Baeyens, Jan; Dewil, Raf; De heyder, Bart

    2004-01-30

    The management of wastewater sludge, now often referred to as biosolids, accounts for a major portion of the cost of the wastewater treatment process and represents significant technical challenges. In many wastewater treatment facilities, the bottleneck of the sludge handling system is the dewatering operation. Advanced sludge treatment (AST) processes have been developed in order to improve sludge dewatering and to facilitate handling and ultimate disposal. The authors have extensively reported lab-scale, semi-pilot and pilot investigations on either thermal and thermochemical processes, or chemical oxidation using hydrogen peroxide. To understand the action of these advanced sludge technologies, the essential role played by extracellular polymeric substances (EPS) needs to be understood. EPS form a highly hydrated biofilm matrix, in which the micro-organisms are embedded. Hence they are of considerable importance in the removal of pollutants from wastewater, in bioflocculation, in settling and in dewatering of activated sludge. The present paper reviews the characteristics of EPS and the influence of thermochemical and oxidation mechanisms on degradation and flocculation of EPS. Experimental investigations on waste activated sludge are conducted by the authors to evaluate the various literature findings. From the experiments, it is concluded that AST methods enhance cake dewaterability in two ways: (i) they degrade EPS proteins and polysaccharides reducing the EPS water retention properties; and (ii) they promote flocculation which reduces the amount of fine flocs. PMID:15177096

  4. Production of carboxylates from high rate activated sludge through fermentation.

    PubMed

    Cagnetta, C; Coma, M; Vlaeminck, S E; Rabaey, K

    2016-10-01

    The aim of this work was to study the key parameters affecting fermentation of high rate activated A-sludge to carboxylates, including pH, temperature, inoculum, sludge composition and iron content. The maximum volatile fatty acids production was 141mgCg(-1) VSSfed, at pH 7. Subsequently the potential for carboxylate and methane production for A-sludge from four different plants at pH 7 and 35°C were compared. Initial BOD of the sludge appeared to be key determining carboxylate yield from A-sludge. Whereas methanogenesis could be correlated linearly to the quantity of ferric used for coagulation, fermentation did not show a dependency on iron presence. This difference may enable a strategy whereby A-stage sludge is separated to achieve fermentation, and iron dosing for phosphate removal is only implemented at the B-stage. PMID:27020399

  5. Stepwise calibration of the activated sludge model no. 1 at a partially denitrifying large wastewater treatment plant.

    PubMed

    Fall, C; Espinosa-Rodriguez, M A; Flores-Alamo, N; van Loosdrecht, M C M; Hooijmans, C M

    2011-11-01

    Activated sludge modeling technology is maturing; however, currently, there exists a great need to increase its use in daily engineering practice worldwide. A good way for building the capacities of the practitioners is to promote good modeling practices and standardize the protocols. In this study, a systematic procedure was proposed to calibrate the Activated Sludge Model No. 1 (ASM1) at a large wastewater treatment plant, by which the model adequately predicted the quality of the effluent and the sludge quantities. A hydraulics model was set up and validated through a tracer test. The Vesilind settling constants were measured and combined with the default value of the flocculent zone settling parameter, to calibrate the clarifiers. A virtual anoxic tank was installed in the return activated sludge to mimic the denitrification occurring in the settlers. In ASM1, the calibrated parameters were only two influent chemical oxygen demand fractions and one kinetic constant (oxygen half-saturation coefficient). PMID:22195426

  6. The effect of different aeration conditions in activated sludge--Side-stream system on sludge production, sludge degradation rates, active biomass and extracellular polymeric substances.

    PubMed

    Habermacher, Jonathan; Benetti, Antonio Domingues; Derlon, Nicolas; Morgenroth, Eberhard

    2015-11-15

    On-site minimization of excess sludge production is a relevant strategy for the operation of small-scale and decentralized wastewater treatment plants. In the study, we evaluated the potential of activated sludge systems equipped with side-stream reactors (SSRs). This study especially focused on how the sequential exposure of sludge to different aeration conditions in the side-stream reactors influences the overall degradation of sludge and of its specific fractions (active biomass, extracellular polymeric substances (EPS), EPS proteins, EPS carbohydrates). We found that increasing the solid retention time from 25 to 40 and 80 days enhanced sludge degradation for all aeration conditions tested in the side-stream reactor. Also, the highest specific degradation rate and in turn the lowest sludge production were achieved when maintaining aerobic conditions in the side-stream reactors. The different sludge fractions in terms of active biomass (quantified based on adenosine tri-phosphate (ATP) measurements), EPS proteins and EPS carbohydrates were quantified before and after passage through the SSR. The relative amounts of active biomass and EPS to volatile suspended solids (VSS) did not changed when exposed to different aeration conditions in the SSRs, which indicates that long SRT and starvation in the SSRs did not promote the degradation of a specific sludge fraction. Overall, our study helps to better understand mechanisms of enhanced sludge degradation in systems operated at long SRTs. PMID:26295938

  7. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization.

    PubMed

    Tiehm, A; Nickel, K; Zellhorn, M; Neis, U

    2001-06-01

    The pretreatment of waste activated sludge by ultrasonic disintegration was studied in order to improve the anaerobic sludge stabilization. The ultrasound frequency was varied within a range from 41 to 3217 kHz. The impact of different ultrasound intensities and treatment times was examined. Sludge disintegration was most significant at low frequencies. Low-frequency ultrasound creates large cavitation bubbles which upon collapse initiate powerful jet streams exerting strong shear forces in the liquid. The decreasing sludge disintegration efficiency observed at higher frequencies was attributed to smaller cavitation bubbles which do not allow the initiation of such strong shear forces. Short sonication times resulted in sludge floc deagglomeration without the destruction of bacteria cells. Longer sonication brought about the break-up of cell walls, the sludge solids were distintegrated and dissolved organic compounds were released. The anaerobic digestion of waste activated sludge following ultrasonic pretreatment causing microbial cell lysis was significantly improved. There was an increase in the volatile solids degradation as well as an increase in the biogas production. The increase in digestion efficiency was proportional to the degree of sludge disintegration. To a lesser degree the deagglomeration of sludge flocs also augmented the anaerobic volatile solids degradation. PMID:11337847

  8. CHEMICAL DIFFERENCES BETWEEN SLUDGE SOLIDS AT THE F AND H AREA TANK FARMS

    SciTech Connect

    Reboul, S.

    2012-08-29

    and HTF samples indicated that the primary crystalline compounds of iron in sludge solids are Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, and FeO(OH), and the primary crystalline compounds of aluminum are Al(OH){sub 3} and AlO(OH). Also identified were carbonate compounds of calcium, magnesium, and sodium; a nitrated sodium aluminosilicate; and various uranium compounds. Consistent with expectations, oxalate compounds were identified in solids associated with oxalic acid cleaning operations. The most likely oxidation states and chemical forms of technetium are assessed in the context of solubility, since technetium-99 is a key risk driver from an environmental fate and transport perspective. The primary oxidation state of technetium in SRS sludge solids is expected to be Tc(IV). In salt waste, the primary oxidation state is expected to be Tc(VII). The primary form of technetium in sludge is expected to be a hydrated technetium dioxide, TcO{sub 2} {center_dot} xH{sub 2}O, which is relatively insoluble and likely co-precipitated with iron. In salt waste solutions, the primary form of technetium is expected to be the very soluble pertechnetate anion, TcO{sub 4}{sup -}. The relative differences between the F and H Tank Farm waste provide a basis for anticipating differences that will occur as constituents of FTF and HTF waste residue enter the environment over the long-term future. If a constituent is significantly more dominant in one of the Tank Farms, its long-term environmental contribution will likely be commensurately higher, assuming the environmental transport conditions of the two Tank Farms share some commonality. It is in this vein that the information cited in this document is provided - for use during the generation, assessment, and validation of Performance Assessment modeling results.

  9. A STUDY OF NITRATE RESPIRATION IN THE ACTIVATED SLUDGE PROCESS

    EPA Science Inventory

    In an experimental, 570-cum/day (0.15-mgd) activated sludge plant treating domestic wastewater from a correctional facility, 76 to 87 percent nitrogen removal was obtained via sludge synthesis and biological denitrification using endogenous H-donors in a compartmentalized reactor...

  10. CFD-aided modelling of activated sludge systems - A critical review.

    PubMed

    Karpinska, Anna M; Bridgeman, John

    2016-01-01

    Nowadays, one of the major challenges in the wastewater sector is the successful design and reliable operation of treatment processes, which guarantee high treatment efficiencies to comply with effluent quality criteria, while keeping the investment and operating cost as low as possible. Although conceptual design and process control of activated sludge plants are key to ensuring these goals, they are still based on general empirical guidelines and operators' experience, dominated often by rule of thumb. This review paper discusses the rationale behind the use of Computational Fluid Dynamics (CFD) to model aeration, facilitating enhancement of treatment efficiency and reduction of energy input. Several single- and multiphase approaches commonly used in CFD studies of aeration tank operation, are comprehensively described, whilst the shortcomings of the modelling assumptions imposed to evaluate mixing and mass transfer in AS tanks are identified and discussed. Examples and methods of coupling of CFD data with biokinetics, accounting for the actual flow field and its impact on the oxygen mass transfer and yield of the biological processes occurring in the aeration tanks, are also critically discussed. Finally, modelling issues, which remain unaddressed, (e.g. coupling of the AS tank with secondary clarifier and the use of population balance models to simulate bubbly flow or flocculation of the activated sludge), are also identified and discussed. PMID:26615385

  11. Can aquatic worms enhance methane production from waste activated sludge?

    PubMed

    Serrano, Antonio; Hendrickx, Tim L G; Elissen, Hellen H J; Laarhoven, Bob; Buisman, Cees J N; Temmink, Hardy

    2016-07-01

    Although literature suggests that aquatic worms can help to enhance the methane production from excess activated sludge, clear evidence for this is missing. Therefore, anaerobic digestion tests were performed at 20 and at 30°C with sludge from a high-loaded membrane bioreactor, the aquatic worm Lumbriculus variegatus, feces from these worms and with mixtures of these substrates. A significant synergistic effect of the worms or their feces on methane production from the high-loaded sludge or on its digestion rate was not observed. However, a positive effect on low-loaded activated sludge, which generally has a lower anaerobic biodegradability, cannot be excluded. The results furthermore showed that the high-loaded sludge provides an excellent feed for L. variegatus, which is promising for concepts where worm biomass is considered a resource for technical grade products such as coatings and glues. PMID:26998797

  12. Enhancement of activated sludge disintegration and dewaterability by Fenton process

    NASA Astrophysics Data System (ADS)

    Heng, G. C.; Isa, M. H.

    2016-06-01

    Municipal and industrial wastewater treatment plants produce large amounts of sludge. This excess sludge is an inevitable drawback inherent to the activated sludge process. In this study, the waste activated sludge was obtained from the campus wastewater treatment plant at Universiti Teknologi PETRONAS (UTP), Malaysia. Fenton pretreatment was optimized by using the response surface methodology (RSM) to study the effects of three operating conditions including the dosage of H2O2 (g H2O2/kg TS), the molar ratio of H2O2/Fe2+ and reaction time. The optimum operating variables to achieve MLVSS removal 65%, CST reduction 28%, sCOD 11000 mg/L and EPS 500 mg/L were: 1000 g H2O2/kg TS, H2O2/Fe2+ molar ratio 70 and reaction time 45 min. Fenton process was proved to be able to enhance the sludge disintegration and dewaterability.

  13. Making classifying selectors work for foam elimination in the activated-sludge process.

    PubMed

    Parker, Denny; Geary, Steve; Jones, Garr; McIntyre, Lori; Oppenheim, Stuart; Pedregon, Vick; Pope, Rod; Richards, Tyler; Voigt, Christine; Volpe, Gary; Willis, John; Witzgall, Robert

    2003-01-01

    Classifying selectors are used to control the population of foam-causing organisms in activated-sludge plants to prevent the development of nuisance foams. The term, classifying selector, refers to the physical mechanism by which these organisms are selected against; foam-causing organisms are enriched into the solids in the foam and their rapid removal controls their population at low levels in the mixed liquor. Foam-causing organisms are wasted "first" rather than accumulating on the surface of tanks and thereby being wasted "last", which is typical of the process. This concept originated in South Africa, where pilot studies showed that placement of a flotation tank for foam removal prior to secondary clarifiers would eliminate foam-causing organisms. It was later simplified in the United States by using the aeration in aeration tanks or aerated channels coupled with simple baffling and adjustable weirs to make continuous separation of nuisance organisms from the mixed liquor. PMID:12683467

  14. Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge.

    PubMed

    Nguyen, Minh Tuan; Mohd Yasin, Nazlina Haiza; Miyazaki, Toshiki; Maeda, Toshinari

    2014-12-01

    The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 μmol g(-1) dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production. PMID:25277968

  15. Prediction of Peak Hydrogen Concentrations for Deep Sludge Retrieval in Tanks AN-101 and AN-106 from Historical Data of Spontaneous Gas Release Events

    SciTech Connect

    Wells, Beric E.; Cooley, Scott K.; Meacham, Joseph E.

    2013-10-21

    Radioactive and chemical wastes from nuclear fuel processing are stored in large underground storage tanks at the Hanford Site. The Tank Operations Contractor is continuing a program of moving solid wastes from single-shell tanks (SSTs) to double-shell tanks (DSTs) and preparing for waste feed delivery (WFD). A new mechanism for a large spontaneous gas release event (GRE) in deep sludge sediments has been postulated. The creation of this potential new GRE hazard, deep sludge gas release events (DSGREs), is the retrieval of sludge waste into a single DST that results in a sediment depth greater than operating experience has demonstrated is safe. The Tank Operations Contractor program of moving solid wastes from SSTs to DSTs and preparing for WFD is being negatively impacted by this sediment depth limit.

  16. Active heterotrophic biomass and sludge retention time (SRT) as determining factors for biodegradation kinetics of pharmaceuticals in activated sludge.

    PubMed

    Majewsky, Marius; Gallé, Tom; Yargeau, Viviane; Fischer, Klaus

    2011-08-01

    The present study investigates the biodegradation of pharmaceutically active compounds (PhACs) by active biomass in activated sludge. Active heterotrophs (X(bh)) which are known to govern COD removal are suggested as a determining factor for biological PhAC removal as well. Biodegradation kinetics of five polar PhACs were determined in activated sludge of two wastewater treatment plants which differed in size, layout and sludge retention time (SRT). Results showed that active fractions of the total suspended solids (TSS) differed significantly between the two sludges, indicating that TSS does not reveal information about heterotrophic activity. Furthermore, PhAC removal was significantly faster in the presence of high numbers of heterotrophs and a low SRT. Pseudo first-order kinetics were modified to include X(bh) and used to describe decreasing PhAC elimination with increasing SRT. PMID:21652206

  17. Assessment of denitrifying bacterial composition in activated sludge.

    PubMed

    Srinandan, C S; Shah, Mrinal; Patel, Bhavita; Nerurkar, Anuradha S

    2011-10-01

    The abundance and structure of denitrifying bacterial community in different activated sludge samples were assessed, where the abundance of denitrifying functional genes showed nirS in the range of 10(4)-10(5), nosZ with 10(4)-10(6) and 16S rRNA gene in the range 10(9)-10(10) copy number per ml of sludge. The culturable approach revealed Pseudomonas sp. and Alcaligenes sp. to be numerically high, whereas culture independent method showed betaproteobacteria to dominate the sludge samples. Comamonas sp. and Pseudomonas fluorescens isolates showed efficient denitrification, while Pseudomonas mendocina, Pseudomonas stutzeri and Brevundimonas diminuta accumulated nitrite during denitrification. Numerically dominant RFLP OTUs of the nosZ gene from the fertilizer factory sludge samples clustered with the known isolates of betaproteobacteria. The data also suggests the presence of different truncated denitrifiers with high numbers in sludge habitat. PMID:21868215

  18. Performance of a system with full- and pilot-scale sludge drying reed bed units treating septic tank sludge in Brazil.

    PubMed

    Calderón-Vallejo, Luisa Fernanda; Andrade, Cynthia Franco; Manjate, Elias Sete; Madera-Parra, Carlos Arturo; von Sperling, Marcos

    2015-01-01

    This study investigated the performance of sludge drying reed beds (SDRB) at full- and pilot-scale treating sludge from septic tanks in the city of Belo Horizonte, Brazil. The treatment units, planted with Cynodon spp., were based on an adaptation of the first-stage of the French vertical-flow constructed wetland, originally developed for treating sewage. Two different operational phases were investigated; in the first one, the full-scale unit was used together with six pilot-scale columns in order to test different feeding strategies. For the second phase, only the full-scale unit was used, including a recirculation of the filtered effluent (percolate) to one of the units of the French vertical wetland. Sludge application was done once a week emptying a full truck, during 25 weeks. The sludge was predominantly diluted, leading to low solids loading rates (median values of 18 kgTS m(-2) year(-1)). Chemical oxygen demand removal efficiency in the full-scale unit was reasonable (median of 71%), but the total solids removal was only moderate (median of 44%) in the full-scale unit without recirculation. Recirculation did not bring substantial improvements in the overall performance. The other loading conditions implemented in the pilot columns also did not show statistically different performances. PMID:26067493

  19. Retrofitting activated sludge systems to intermittent aeration for nitrogen removal.

    PubMed

    Hanhan, O; Artan, N; Orhon, D

    2002-01-01

    The paper provides the basis and the conceptual approach of applying process kinetics and modelling to the design of alternating activated sludge systems for retrofitting existing activated sludge plants to intermittent aeration for nitrogen removal. It shows the significant role of the two specific parameters, namely, the aerated fraction and the cycle time ratio on process performance through model simulations and proposes a way to incorporate them into a design procedure using process stoichiometry and mass balance. It illustrates the effect of these parameters, together with the sludge age, in establishing the balance between the denitrification potential and the available nitrogen created in the anoxic/aerobic sequences of system operation. PMID:12420968

  20. Valuation of OSA process and folic acid addition as excess sludge minimization alternatives applied in the activated sludge process.

    PubMed

    Martins, C L; Velho, V F; Ramos, S R A; Pires, A S C D; Duarte, E C N F A; Costa, R H R

    2016-01-01

    The aim of this study was to investigate the ability of the oxic-settling-anaerobic (OSA)-process and the folic acid addition applied in the activated sludge process to reduce the excess sludge production. The study was monitored during two distinct periods: activated sludge system with OSA-process, and activated sludge system with folic acid addition. The observed sludge yields (Yobs) were 0.30 and 0.08 kgTSS kg(-1) chemical oxygen demand (COD), control phase and OSA-process (period 1); 0.33 and 0.18 kgTSS kg(-1) COD, control phase and folic acid addition (period 2). The Yobs decreased by 73 and 45% in phases with the OSA-process and folic acid addition, respectively, compared with the control phases. The sludge minimization alternatives result in a decrease in excess sludge production, without negatively affecting the performance of the effluent treatment. PMID:26901714

  1. SLUDGE COMBUSTOR USING SWIRL AND ACTIVE COMBUSTION CONTROL

    EPA Science Inventory

    A research program directed at developing technology for compact shipboard incinerators for sludges is described. The concept utilizes previously developed Vortex Containment Combustor (VCC) as a primary unit with an active combustion control afterburner (AB). The overall power s...

  2. DESIGN HANDBOOK FOR AUTOMATION OF ACTIVATED SLUDGE WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    This report is a systems engineering handbook for the automation of activated sludge wastewater treatment processes. Process control theory and application are discussed to acquaint the reader with terminology and fundamentals. Successful unit process control strategies currently...

  3. DESIGN PROCEDURES FOR DISSOLVED OXYGEN CONTROL OF ACTIVATED SLUDGE PROCESSES

    EPA Science Inventory

    This report presents design procedures and guidelines for the selection of aeration equipment and dissolved (DO) control systems for activated sludge treatment plants. Aeration methods, equipment and application techniques are examined and selection procedures offered. Various DO...

  4. ENHANCED BIODEGRADATION OF IOPROMIDE AND TRIMETHOPRIM IN NITRIFYING ACTIVATED SLUDGE

    EPA Science Inventory

    Iopromide and trimethoprim are frequently detected pharmaceuticals in effluents of wastewater treatment plants and in surface waters due to their persistence and high usage. Laboratory scale experiments showed that a significantly higher removal rate in nutrifying activated sludg...

  5. Ferrocyanide Safety Program: Waste tank sludge rheology within a hot spot or during draining. Homogeneous flow versus flow through a porous medium

    SciTech Connect

    Fauske, H.K.; Cash, R.J.

    1993-11-01

    The conditions under which ferrocyanide waste sludge flows as a homogeneous non-Newtonian two-phase (solid precipitate-liquid) mixture rather than as a liquid through a porous medium (of stationary precipitate) are examined theoretically, based on the notion that the preferred rheological behavior of the sludge is the one which imposes the least resistance to the sludge flow. The homogeneous two-phase mixture is modeled as a power-law fluid and simple criteria are derived that show that the homogeneous power-law sludge-flow is a much more likely flow situation than the porous medium model of sludge flow. The implication of this finding is that the formation of a hot spot or the drainage of sludge from a waste tank are not likely to result in the uncovering (drying) and subsequent potential overheating of the reactive-solid component of the sludge.

  6. Caustic leaching of high-level radioactive tank sludge: A critical literature review

    SciTech Connect

    McGinnis, C.P.; Welch, T.D.; Hunt, R.D.

    1998-08-01

    The Department of Energy (DOE) must treat and safely dispose of its radioactive tank contents, which can be separated into high-level waste (HLW) and low-level waste (LLW) fractions. Since the unit costs of treatment and disposal are much higher for HLW than for LLW, technologies to reduce the amount of HLW are being developed. A key process currently being studied to reduce the volume of HLW sludges is called enhanced sludge washing (ESW). This process removes, by water washes, soluble constituents such as sodium salts, and the washed sludge is then leached with 2--3 M NaOH at 60--100 C to remove nonradioactive metals such as aluminum. The remaining solids are considered to be HLW while the solutions are LLW after radionuclides such as {sup 137}Cs have been removed. Results of bench-scale tests have shown that the ESW will probably remove the required amounts of inert constituents. While both experimental and theoretical results have shown that leaching efficiency increases as the time and temperature of the leach are increased, increases in the caustic concentration above 2--3 M will only marginally improve the leach factors. However, these tests were not designed to validate the assumption that the caustic used in the ESW process will generate only a small increase (10 Mkg) in the amount of LLW; instead the test conditions were selected to maximize leaching in a short period and used more water and caustic than is planned during full-scale operations. Even though calculations indicate that the estimate for the amount of LLW generated by the ESW process appears to be reasonable, a detailed study of the amount of LLW from the ESW process is still required. If the LLW analysis indicates that sodium management is critical, then a more comprehensive evaluation of the clean salt process or caustic recycle would be needed. Finally, experimental and theoretical studies have clearly demonstrated the need for the control of solids formation during and after leaching.

  7. Occurrence of Listeria sp and L monocytogenes in sewage sludge used for land application: effect of dewatering, liming and storage in tank on survival of Listeria species.

    PubMed

    Garrec, N; Picard-Bonnaud, F; Pourcher, A M

    2003-04-01

    The application of sewage sludge to agricultural land is widely used in France. To determine the impact of sludge treatments, concentrations of Listeria sp., Listeria monocytogenes and faecal indicators were monitored in five types of sludge from three sewage treatment plants in Angers (France) and its suburbs over a 1-year period. On the whole, bacteria were reduced in numbers through sludge treatments. Apart from liming, which leads to reduced levels of bacteria below detection limits, other sludge treatments did not eliminate Listeria sp. and faecal indicators. Listeria sp. and L. monocytogenes were found respectively in 87% and 73% of dewatered sludges and in 96% and 80% of sludges stored in tanks. Concentrations of L. monocytogenes, ranging from 0.15 to 20 MPN g(-1) dry matter in dewatered sludge and from 1 to 240 MPN g(-1) dry matter in sludge stored in tanks, did not show seasonal variations. Spreading of sanitised sludge onto agricultural land results in the addition of 10(6)-10(8) L. monocytogenes per hectare per year, which may contribute to the increase in the dissemination of this pathogenic species in the environment. PMID:12648847

  8. The digestibility of waste activated sludges.

    PubMed

    Park, Chul; Abu-Orf, Mohammad M; Novak, John T

    2006-01-01

    Laboratory digestion studies using waste activated sludges (WAS) were conducted to compare the digestion performance between anaerobic and aerobic processes. Nine samples of WAS from seven wastewater treatment plants were collected and batch-digested under both anaerobic and aerobic conditions for 30 days at 25 degrees C. The cation content of wastewater (both floc and solution phases) and solution biopolymer (protein and polysaccharide) was measured before and after digestion and compared with volatile solids destruction data. The study revealed that each digestion process was associated with a distinct biopolymer fraction, which accounted for differences in volatile solids reduction under anaerobic and aerobic conditions. The anaerobic digestion data showed strong correlations between soluble protein generation, ammonium production, percent volatile solids reduction, and floc iron (Fe). These data suggest that the amount of volatile solids destroyed by anaerobic digestion depends on the Fe content of floc. In aerobic digestion, polysaccharide accumulated in solution along with calcium and magnesium. For aerobic digestion, correlations between divalent cation release and the production of inorganic nitrogen were found. This implies that divalent cation-bound biopolymer, thought to be lectin-like protein, was the primary organic fraction degraded under aerobic conditions. The results of the study show that the cation content in wastewater is an important indicator of the material that will digest under anaerobic or aerobic conditions and that some of the volatile solids will digest only under either anaerobic or aerobic conditions. PMID:16553167

  9. Sewage sludge treatment system

    NASA Technical Reports Server (NTRS)

    Kalvinskas, John J. (Inventor); Mueller, William A. (Inventor)

    1976-01-01

    Raw sewage may be presently treated by mixing screened raw sewage with activated carbon. The mixture is then allowed to stand in a first tank for a period required to settle the suspended matter to the bottom of the tank as a sludge. Thereafter, the remaining liquid is again mixed with activated carbon and the mixture is transferred to a secondary settling tank, where it is permitted to stand for a period required for the remaining floating material to settle as sludge and for adsorption of sewage carbon as well as other impurities to take place. The sludge from the bottom of both tanks is removed and pyrolyzed to form activated carbon and ash, which is mixed with the incoming raw sewage and also mixed with the liquid being transferred from the primary to the secondary settling tank. It has been found that the output obtained by the pyrolysis process contains an excess amount of ash. Removal of this excess amount of ash usually also results in removing an excess amount of carbon thereby requiring adding carbon to maintain the treatment process. By separately pyrolyzing the respective sludges from the first and second settling tanks, and returning the separately obtained pyrolyzed material to the respective first and second tanks from which they came, it has been found that the adverse effects of the excessive ash buildup is minimized, the carbon yield is increased, and the sludge from the secondary tank can be pyrolyzed into activated carbon to be used as indicated many more times than was done before exhaustion occurs.

  10. Effects of metabolic uncouplers on excess sludge reduction and microbial products of activated sludge.

    PubMed

    Fang, Fang; Hu, Hai-Lan; Qin, Min-Min; Xue, Zhao-Xia; Cao, Jia-Shun; Hu, Zhi-Rong

    2015-06-01

    The present study investigated the influences of three metabolic uncouplers (pCP, oCP and oNP) on excess activated sludge reduction and microbial products of extracellular polymeric substances (EPS) and intracellular storage product (polyhydroxybutyrate, PHB) in short-term tests. Results showed sludge was reduced 58.2%, 59.8% and 80.8%, respectively, at pCP, oCP and oNP concentrations of 20mg/L. The dosage of three uncouplers had no obviously influences on COD removal and sludge settleability, but had significant inhibition effect on ammonia removal, especially for oNP. Low concentration of pCP and oNP (5mg/L) dosing resulted in protein and polysaccharide content increased in EPS, however, they were decreased at high pCP and oNP concentrations (>5mg/L). To oCP, the protein content in EPS was increased linearly with oCP concentration. Furthermore, metabolic uncouplers addition stimulated the production of PHB. Among three uncouplers, oCP could be an alternative uncoupler for sludge reduction in activated sludge process. PMID:25746471

  11. Overview of the Tank Focus Area HLW Tank Retrieval Activities (Remote Operations)

    SciTech Connect

    GIBBONS, P.W.

    2001-01-01

    Several U.S. Department of Energy (DOE) sites are currently retrieving or preparing to retrieve radioactive waste from underground storage tanks with technical assistance from the Tanks Focus Area. The Tanks Focus Area is a national program that provides information and technologies to safely and effectively remediate radioactive waste stored in DOE's underground tanks. Funding for the Tanks Focus Area is provided by the DOE Offices of Science and Technology, Environmental Restoration, and Waste Management. This paper provides an overview of recent remote waste retrieval activities as well as recent successes sponsored by the Tanks Focus Area.

  12. Examination of Uranium(VI) Leaching During Ligand Promoted Dissolution of Waste Tank Sludge Surrogates

    SciTech Connect

    Powell, Brian; Powell, Brian A.; Rao, Linfeng; Nash, Kenneth. L.

    2008-06-10

    The dissolution of synthetic boehmite (?-AlOOH) by 1-hydroxyethane-1,1-diphosphonic acid (HEDPA) was examined in a series of batch adsorption/dissolution experiments. Additionally, the leaching behavior of {sup 233}U(VI) from boehmite was examined as a function of pH and HEDPA concentration. The results are discussed in terms of sludge washing procedures that may be utilized during underground tank waste remediation. In the pH range 4 to 10, complexation of Al(III) by HEDPA significantly enhanced dissolution of boehmite. This phenomenon was especially pronounced in the neutral pH region where the solubility of aluminum, in the absence of complexants, is limited by the formation of sparsely soluble aluminum hydroxides. At pH higher than 10, dissolution of synthetic boehmite was inhibited by HEDPA, likely due to sorption of Al(III):HEDPA complexes. Addition of HEDPA to equilibrated U(VI)-synthetic boehmite suspensions yielded an increase in the aqueous phase uranium concentration. Partitioning of uranium between the solid and aqueous phase is described in terms of U(VI):HEDPA speciation and dissolution of the boehmite solid phase.

  13. [Biodiversity and Function Analyses of BIOLAK Activated Sludge Metagenome].

    PubMed

    Tian, Mei; Liu, Han-hu; Shen, Xin; Zhao, Fang-qing; Chen, Shuai; Yao, Yong-jia

    2015-05-01

    The BIOLAK is a multi-stage activated sludge process, which has been successfully promoted worldwide. However, the biological community and function of the BIOLAK activated sludge ( the core component in the process) have not been reported so far. In this study, taking Lianyungang Dapu Industrial Zone WWTP as an example, a large-scale metagenomic data (428 588 high-quality DNA sequences) of the BIOLAK activated sludge were obtained by means of a new generation of high-throughput sequencing technology. Amazing biodiversity was revealed in the BIOLAK activated sludge, which included 47 phyla, 872 genera and 1351 species. There were 33 phyla identified in the Bacteria domain (289 933 sequences). Proteohacteria was the most abundant phylum (62.54%), followed by Bacteroidetes (11.29%), Nitrospirae ( 5. 65%) and Planctomycetes (4.79%), suggesting that these groups played a key role in the BIOLAK wastewater treatment system. Among the 748 bacterial genera, Nitrospira (5.60%) was the most prevalent genus, which was a key group in the nitrogen cycle. Followed by Gemmatimonas (2.45%), which was an important genus in the biological phosphorus removal process. In Archaea domain (1019 sequences), three phyla and 39 genera were detected. In Eukaryota domain (1055 sequences), 60 genera and 10 phyla were identified, among which Ciliophora was the largest phylum (257 sequences). Meanwhile, 448 viral sequences were detected in the BIOLAK sludge metagenome, which were dominated by bacteriophages. The proportions of nitrogen, aromatic compounds and phosphorus metabolism in the BIOLAK sludge were 2.50%, 2.28% and 1.56%, respectively, which were higher than those in the sludge of United States and Australia. Among four processes of nitrogen metabolism, denitrification-related genes were most abundant (80.81%), followed by ammonification (12.78%), nitrification,(4.38%) and nitrogen fixation (2.04%). In conclusion, the BIOLAK activated sludge had amazing biodiversity, meanwhile

  14. Sorption and degradation of bisphenol A by aerobic activated sludge.

    PubMed

    Zhao, Junming; Li, Yongmei; Zhang, Chaojie; Zeng, Qingling; Zhou, Qi

    2008-06-30

    Laboratory-scale batch experiments were conducted to investigate the sorption and degradation of bisphenol A (BPA) at microg/L range in an aerobic activated sludge system. The sorption isotherms and thermodynamics indicated that the sorption of BPA on sludge was mainly a physical process in which partitioning played a dominating role. The values of sorption coefficient Koc were between 621 and 736 L/kg in the temperature range of 10-30 degrees C. Both mixed liquor suspended solid (MLSS) and temperature influenced BPA sorption on sludge. The degradation of BPA by acclimated activated sludge could be described by first-order reaction equation with the first-order degradation rate constant of 0.80 h(-1) at 20 degrees C. The decrease of initial COD concentration and the increase of MLSS concentration and temperature enhanced BPA degradation rate. The removal of BPA in the activated sludge system was characterized by a quick sorption on the activated sludge and subsequent biodegradation. PMID:18179868

  15. Integrated fixed-biofilm activated sludge reactor as a powerful tool to enrich anammox biofilm and granular sludge.

    PubMed

    Zhang, Liang; Liu, Miaomiao; Zhang, Shujun; Yang, Yandong; Peng, Yongzhen

    2015-12-01

    A pilot-scale activated sludge bioreactor was filled with immobile carrier to treat high ammonium wastewater. Autotrophic nitrogen elimination occurred rapidly by inoculating nitrifying activated sludge and anammox biofilm. As the ammonium loading rate increased, nitrogen removal rate of 1.2kgNm(-3)d(-1) was obtained with the removal efficiency of 80%. Activated sludge diameter distribution profiles presented two peak values, indicating simultaneous existence of flocculent and granular sludge. Red granular sludge was observed in the reactor. Furthermore, the results of morphological and molecular analysis showed that the characteristics of granular sludge were similar to that of biofilm, while much different from the flocculent sludge. It was assumed granular sludge was formed through the continuous growth and detachment of anammox biofilm. The mechanism of granular sludge formation was discussed and the procedure model was proposed. According to the experimental results, the integrated fixed-biofilm activated sludge reactor provided an alternative to nitrogen removal based on anammox. PMID:25842299

  16. Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms.

    PubMed

    Fischer, Klaus; Majewsky, Marius

    2014-08-01

    Municipal wastewaters contain a multitude of organic trace pollutants. Often, their biodegradability by activated sludge microorganisms is decisive for their elimination during wastewater treatment. Since the amounts of micropollutants seem too low to serve as growth substrate, cometabolism is supposed to be the dominating biodegradation process. Nevertheless, as many biodegradation studies were performed without the intention to discriminate between metabolic and cometabolic processes, the specific contribution of the latter to substance transformations is often not clarified. This minireview summarizes current knowledge about the cometabolic degradation of organic trace pollutants by activated sludge and sludge-inherent microorganisms. Due to their relevance for communal wastewater contamination, the focus is laid on pharmaceuticals, personal care products, antibiotics, estrogens, and nonylphenols. Wherever possible, reference is made to the molecular process level, i.e., cometabolic pathways, involved enzymes, and formed transformation products. Particular cometabolic capabilities of different activated sludge consortia and various microbial species are highlighted. Process conditions favoring cometabolic activities are emphasized. Finally, knowledge gaps are identified, and research perspectives are outlined. PMID:24866947

  17. Ozonation effects for excess sludge reduction on bacterial communities composition in a full-scale activated sludge plant for domestic wastewater treatment.

    PubMed

    Chiellini, C; Gori, R; Tiezzi, A; Brusetti, L; Pucciarelli, S; D'Amato, E; Chiavola, A; Sirini, P; Lubello, C; Petroni, G

    2014-01-01

    Activated sludge process is the most widely diffused system to treat wastewater to control the discharge of pollutants into the environment. Microorganisms are responsible for the removal of organic matter, nitrogen, phosphorous and other emerging contaminants. The environmental conditions of biological reactors significantly affects the ecology of the microbial community and, therefore, the performance of the treatment process. In the last years, ozone has been used to reduce excess sludge production by wastewater treatment plants (WWTPs), whose disposal represents one of the most relevant operational costs. The ozonation process has demonstrated to be a viable method to allow a consistent reduction in excess sludge. This study was carried out in a full-scale plant treating municipal wastewater in two parallel lines, one ozonated in the digestion tank and another used as a control. Bacterial communities of samples collected from both lines of digestion thanks were then compared to assess differences related to the ozonation treatment. Data were then analysed with terminal restriction fragment length polymorphism (T-RFLP) analysis on 16S rRNA gene. Differences between bacterial communities of both treated and untreated line appeared 2 weeks after the beginning of the treatment. Results demonstrated that ozonation treatment significantly affected the activated sludge in WWTP. PMID:24701944

  18. Polyhydroxyalkanoate production potential of heterotrophic bacteria in activated sludge.

    PubMed

    Inoue, Daisuke; Suzuki, Yuta; Uchida, Takahiro; Morohoshi, Jota; Sei, Kazunari

    2016-01-01

    This study was conducted to evaluate the polyhydroxyalkanoate (PHA) production potential of cultivable heterotrophic bacteria in activated sludge by genotypic and phenotypic characterizations. A total of 114 bacterial strains were isolated from four activated sludge samples taken from a lab-scale sequencing batch reactor and three wastewater treatment processes of two municipal wastewater treatment plants. PCR detection of the phaC genes encoding class I and II PHA synthase revealed that 15% of the total isolates possessed phaC genes, all of which had the closest similarities to known phaC genes of α- and β-Proteobacteria and Actinobacteria. PHA production experiments under aerobic and nitrogen-limited conditions showed that 68% of the total isolates were capable of producing PHA from at least one of the six substrates used (acetate, propionate, lactate, butyrate, glucose and glycerol). Genotypic and phenotypic characterizations revealed that 75% of the activated sludge bacteria had PHA production potential. Our results also indicated that short-chain fatty acids would be the preferable substrates for PHA production by activated sludge bacteria, and that there might be a variety of unidentified phaC genes in activated sludge. PMID:26071670

  19. Tank 11H Analytical Results as Input to DWPF Sludge Batch 4

    SciTech Connect

    CHRISTOPHER, BANNOCHIE

    2004-09-01

    SRNL was requested by DWPF to conduct analyses on dissolved samples of Tank 11H material in preparation for DWPF processing. Two separate samples of Tank 11H were pulled during Tank Farm slurry and transfer operations. These samples have been designated Tank 11 - Sample 1 and Tank 11 - Sample 2. Aliquots of each slurry sample were digested in HNO3/HF and analyzed by inductively coupled plasma - atomic emission spectroscopy, inductively coupled plasma - mass spectrometry, and cold vapor - atomic absorption spectroscopy.

  20. Anaerobic bioleaching of metals from waste activated sludge.

    PubMed

    Meulepas, Roel J W; Gonzalez-Gil, Graciela; Teshager, Fitfety Melese; Witharana, Ayoma; Saikaly, Pascal E; Lens, Piet N L

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g(-1) of copper, 487 μg g(-1) of lead, 793 μg g(-1) of zinc, 27 μg g(-1) of nickel and 2.3 μg g(-1) of cadmium. During the anaerobic acidification of 3 gdry weight L(-1) waste activated sludge, 80-85% of the copper, 66-69% of the lead, 87% of the zinc, 94-99% of the nickel and 73-83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. PMID:25659306

  1. Tank Vapor Sampling and Analysis Data Package for Tank 241-Z-361 Sampled 09/22/1999 and 09/271999 During Sludge Core Removal

    SciTech Connect

    VISWANATH, R.S.

    1999-12-29

    This data package presents sampling data and analytical results from the September 22 and 27, 1999, headspace vapor sampling of Hanford Site Tank 241-2-361 during sludge core removal. The Lockheed Martin Hanford Corporation (LMHC) sampling team collected the samples and Waste Management Laboratory (WML) analyzed the samples in accordance with the requirements specified in the 241-2361 Sludge Characterization Sampling and Analysis Plan, (SAP), HNF-4371, Rev. 1, (Babcock and Wilcox Hanford Corporation, 1999). Six SUMMA{trademark} canister samples were collected on each day (1 ambient field blank and 5 tank vapor samples collected when each core segment was removed). The samples were radiologically released on September 28 and October 4, 1999, and received at the laboratory on September 29 and October 6, 1999. Target analytes were not detected at concentrations greater than their notification limits as specified in the SAP. Analytical results for the target analytes and tentatively identified compounds (TICs) are presented in Section 2.2.2 starting on page 2B-7. Three compounds identified for analysis in the SAP were analyzed as TICs. The discussion of this modification is presented in Section 2.2.1.2.

  2. Treatment of coke-oven wastewater with the powdered activated carbon-contact stabilization activated sludge process. Final report

    SciTech Connect

    Suidan, M.T.; Deady, M.A.; Gee, C.S.

    1983-11-01

    The objective of the study was to determine optimum parameters for the operation of an innovative process train used in the treatment of coke-over wastewater. The treatment process train consisted of a contact-stabilization activated sludge system with powdered activated carbon (PAC) addition, followed by activated sludge nitrification, followed by denitrification in an anoxic filter. The control and operating parameters evaluated during the study were: (a) the average mixed-liquor PAC concentration maintained in the contact-stabilization system, (b) the solids retention time practiced in the contact-stabilization system, and (c) the hydraulic detention time maintained in the contact aeration tank. Three identical treatement process trains were constructed and employed in this study. The coke-oven wastewater used for this investigation was fed to the treatment units at 30% strength. The first part of the study was devoted to determining the interactions between the mixed liquor PAC concentration and the solids retention time in the contact-stabilization tanks. Results showed that optimum overall system performance is attainable when the highest sludge age (30 day) and highest mixed liquor PAC concentration were practiced. During the second phase of the study, all three systems were operated at a 30 day solids retention time while different detention times of 1, 2/3 and 1/3 day were evaluated in the contact tank. PAC addition rates were maintained at the former levels and, consequently, reduced contact times entailed higher mixed liquor carbon concentrations. Once again, the system receiving the highest PAC addition rate of PAC exhibited the best overall performance. This system exhibited no deterioration in process performance as a result of decreased contact detention time. 72 references, 41 figures, 24 tables.

  3. Nonoxidative removal of organics in the activated sludge process

    PubMed Central

    Modin, Oskar; Persson, Frank; Wilén, Britt-Marie; Hermansson, Malte

    2016-01-01

    ABSTRACT The activated sludge process is commonly used to treat wastewater by aerobic oxidation of organic pollutants into carbon dioxide and water. However, several nonoxidative mechanisms can also contribute to removal of organics. Sorption onto activated sludge can remove a large fraction of the colloidal and particulate wastewater organics. Intracellular storage of, e.g., polyhydroxyalkanoates (PHA), triacylglycerides (TAG), or wax esters can convert wastewater organics into precursors for high-value products. Recently, several environmental, economic, and technological drivers have stimulated research on nonoxidative removal of organics for wastewater treatment. In this paper, we review these nonoxidative removal mechanisms as well as the existing and emerging process configurations that make use of them for wastewater treatment. Better utilization of nonoxidative processes in activated sludge could reduce the wasteful aerobic oxidation of organic compounds and lead to more resource-efficient wastewater treatment plants. PMID:27453679

  4. Degradation of mono-fluorophenols by an acclimated activated sludge.

    PubMed

    Chaojie, Zhang; Qi, Zhou; Ling, Chen; Yuan, Yuan; Hui, Yu

    2007-02-01

    Acclimated activated sludge was examined for its ability to degrade mono-fluorophenols as the sole carbon source in aerobic batch cultures. The acclimated activated sludge degraded fluorophenol efficiently. It degraded 100 mg/l 3-fluoropheno and 4-fluorophenol in 16 h with, respectively, 99.85% and 99.91% fluoride anion release and it degraded 50 mg/l 2-fluorophenol in 15 h with 99.26% fluoride anion release. The aerobic biodegradability of the mono-fluorophenols decreased in the order: 4-fluorophenol > 3-fluorophenol > 2-fluorophenol, resulting mainly from a different octanol/water partition coefficient and different steric parameter of the fluorophenols. The mechanism study revealed that the initial step in the aerobic biodegradation of mono-fluorophenols by the activated sludge was their transformation to fluorocatechol. Following transformation of the fluorophenol to fluorocatechol, ring cleavage by catechol 1, 2-dioxygenases proceeded via an ortho-cleavage pathway, then defluorination occurred. PMID:16819592

  5. Biodegradability of wastewater and activated sludge organics in anaerobic digestion.

    PubMed

    Ikumi, D S; Harding, T H; Ekama, G A

    2014-06-01

    The investigation provides experimental evidence that the unbiodegradable particulate organics fractions of primary sludge and waste activated sludge calculated from activated sludge models remain essentially unbiodegradable in anaerobic digestion. This was tested by feeding the waste activated sludge (WAS) from three different laboratory activated sludge (AS) systems to three separate anaerobic digesters (AD). Two of the AS systems were Modified Ludzack - Ettinger (MLE) nitrification-denitrification (ND) systems and the third was a membrane University of Cape Town (UCT) ND and enhanced biological P removal system. One of the MLE systems and the UCT system were fed the same real settled wastewater. The other MLE system was fed raw wastewater which was made by adding a measured constant flux (gCOD/d) of macerated primary sludge (PS) to the real settled wastewater. This PS was also fed to a fourth AD and a blend of PS and WAS from settled wastewater MLE system was fed to a fifth AD. The five ADs were each operated at five different sludge ages (10-60d). From the measured performance results of the AS systems, the unbiodegradable particulate organic (UPO) COD fractions of the raw and settled wastewaters, the PS and the WAS from the three AS systems were calculated with AS models. These AS model based UPO fractions of the PS and WAS were compared with the UPO fractions calculated from the performance results of the ADs fed these sludges. For the PS, the UPO fraction calculated from the AS and AD models matched closely, i.e. 0.30 and 0.31. Provided the UPO of heterotrophic (OHO, fE_OHO) and phosphorus accumulating (PAO, fE_PAO) biomass were accepted to be those associated with the death regeneration model of organism "decay", the UPO of the WAS calculated from the AS and AD models also matched well - if the steady state AS model fE_OHO = 0.20 and fE_PAO = 0.25 values were used, then the UPO fraction of the WAS calculated from the AS models deviated significantly

  6. Steady-state analysis of activated sludge processes with a settler model including sludge compression.

    PubMed

    Diehl, S; Zambrano, J; Carlsson, B

    2016-01-01

    A reduced model of a completely stirred-tank bioreactor coupled to a settling tank with recycle is analyzed in its steady states. In the reactor, the concentrations of one dominant particulate biomass and one soluble substrate component are modelled. While the biomass decay rate is assumed to be constant, growth kinetics can depend on both substrate and biomass concentrations, and optionally model substrate inhibition. Compressive and hindered settling phenomena are included using the Bürger-Diehl settler model, which consists of a partial differential equation. Steady-state solutions of this partial differential equation are obtained from an ordinary differential equation, making steady-state analysis of the entire plant difficult. A key result showing that the ordinary differential equation can be replaced with an approximate algebraic equation simplifies model analysis. This algebraic equation takes the location of the sludge-blanket during normal operation into account, allowing for the limiting flux capacity caused by compressive settling to easily be included in the steady-state mass balance equations for the entire plant system. This novel approach grants the possibility of more realistic solutions than other previously published reduced models, comprised of yet simpler settler assumptions. The steady-state concentrations, solids residence time, and the wastage flow ratio are functions of the recycle ratio. Solutions are shown for various growth kinetics; with different values of biomass decay rate, influent volumetric flow, and substrate concentration. PMID:26476681

  7. Activated sludge acclimatisation kinetics to non-ionic surfactants.

    PubMed

    Carvalho, G; Novais, J M; Pinheiro, H M

    2003-01-01

    The biodegradation of surfactants is a frequent and complex problem in domestic and industrial wastewater treatment processes. In addition to the resulting metabolites being sometimes refractory, the complete biodegradation of many of the most employed non-ionic surfactants requires long hydraulic retention times and the presence of specialised bacterial consortia. Preliminary acclimatisation tests highlighted the importance of the sludge acclimatisation state to a specific surfactant substrate for biotreatment efficiency. This paper reports on studies aimed at quantifying activated sludge acclimatisation and memory retention levels when subjected to changes in the type of surfactant included in the feed. Several transitions were tested, namely from an alkylphenol ethoxylate to a linear alkyl ethoxylate and the reverse, and between alkyl ethoxylates with different hydrophobic and hydrophilic molecular chain lengths. The kinetic results showed that sludge activation and memory loss were more dynamic for primary biodegradation It was found that the sludge was harder to adapt to alkylphenol ethoxylate than to alkyl ethoxylate. The former also apparently introduced an inhibitory effect, resulting in very slow degradation kinetics when imposed to alkyl ethoxylate acclimatised sludge. When replacing an alkyl ethoxylate with another surfactant of the same family, a longer ethoxylate chain reduced the degradation rates. This effect was further enhanced by simultaneously increasing the hydrophobic chain length of the substrate. The acclimatisation kinetic after the replacement of an alkyl ethoxylate by a longer counterpart was slower than the reverse case, and memory was also more easily lost. PMID:12641258

  8. Landfill leachate characterization for simulation of biological treatment with Activated Sludge Model No. 1 and Activated Sludge Model No. 3.

    PubMed

    Galleguillos, Marcelo; Vasel, Jean-Luc

    2011-01-01

    Landfill leachates can be characterized correctly in terms of Activated Sludge Model No. 1 (ASM1) and Activated Sludge Model No. 3 (ASM3) variables. The wastewater characterization of leachate from a Luxembourg landfill was based on a physical-chemical method combined with a BOD analysis for the COD fractions and on standard analysis for forms of nitrogen. The results show important differences compared with municipal wastewater. High amounts of organic matter with low biodegradability were found, as well as a high concentration of ammonium nitrogen. Based on average values, a generic ASM characterization is proposed for landfill leachates. It can be directly employed in the early stages of the simulation of landfill leachate treatment with activated sludge models. PMID:21970168

  9. Basic Study on Sludge Concentration and Dehydration with Ultrasonic Exposure

    NASA Astrophysics Data System (ADS)

    Sawada, Yuta; Nagashima, Satoshi; Uchida, Takeyoshi; Kawashima, Norimichi; Takeuchi, Shinichi; Akita, Masashi; Nagaoka, Hiroshi

    2005-06-01

    We study the condensation of sludge and the improvement of the dehydration efficiency of sludge by acoustic cavitation for efficiency improvement and cost reduction in water treatment. An ultrasound wave was irradiated into activated sludge in the water tank of our ultrasound exposure system and a standing wave acoustic field was formed using a vibrating disk driven by a Langevin-type transducer. The vibrating disk was mounted on the bottom of the water tank. Acoustic cavitation was generated in the activated sludge suspension and the sludge was floated to the water surface by ultrasound exposure with this system. We observed B-mode ultrasound images of the activated sludge suspension before ultrasound exposure and that of the floated sludge and treated water after ultrasound exposure. The ultrasound diagnostic equipment was used for the observation of the B-mode ultrasound images of the sludge. It was found that the sludge floated to the water surface because of adhesion of microbubbles generated by acoustic cavitation to the sludge particles, which decreased the sludge density. It can be expected that the drifting sludge in water can be recovered by the flotation thickening method of sludge as an application of the results of this study. It is difficult to recover the drifting sludge in water by the conventional gravity thickening method.

  10. THE EFFECT OF POWERED ACTIVATED CARBON IN A PETROLEUM REFINERY ACTIVATED SLUDGE TREATMENT SYSTEM

    EPA Science Inventory

    The purpose of this research program was to determine the effect of the addition of powdered activated carbon (PAC) to refinery activated sludge systems. Bench-scale and full-scale tests were performed. A wide range of PAC concentrations and sludge ages were evaluated. Bench-scal...

  11. EVALUATION OF FULL SCALE ACTIVATED SLUDGE SYSTEMS UTILIZING POWDERED ACTIVATED CARBON ADDITION WITH WET AIR REGENERATION

    EPA Science Inventory

    The addition of powdered activated carbon (PAC) to activated sludge systems is a proven method of wastewater treatment. Of eleven POTWs in the U.S. that were designed for PAC use, ten included wet air regeneration (WAR) for the destruction of secondary sludge solids and recovery ...

  12. Nitrogen Removal in a Full-Scale Domestic Wastewater Treatment Plant with Activated Sludge and Trickling Filter

    PubMed Central

    Nourmohammadi, Davood; Esmaeeli, Mir-Bager; Akbarian, Hossein; Ghasemian, Mohammad

    2013-01-01

    During the last decade, more stringent effluent requirements concerning the nutrients effluent values have been imposed by legislation and social concern. In this study, efficiency of total nitrogen removal in activated sludge and trickling filter processes (AS/TF) was investigated in Tehran North wastewater treatment plant. Biological system in this site was included, anoxic selector tank, aeration tank, final sedimentation, and trickling filter. A part of treated wastewater before chlorination was mixed with supernatant of dewatered sludge and fed to the trickling filter. Supernatant of dewatered sludge with high concentration of NH4-N was diluted by treated wastewater to provide complete nitrification in trickling filter Produced nitrate in trickling filter was arrived to the anoxic tank and converted to nitrogen gas by denitrification. According to the study result, low concentration of organic carbone and high concentration of NH4-N led to nitrification in TF, then nitrate denitrification to nitrogen gas occurred in selector area. NH4-N concentration decreased from 26.8 mg/L to 0.29 mg/L in TF, and NO3-N concentration increased from 8.8 mg/L to 27 mg/L in TF. Consequently, the total nitrogen decreased approximately to 50% in biological process. This efficiency has been observed in returned flow around 24% from final sedimentation into TF. It was concluded that, in comparison with biological nutrient removal processes, this process is very efficient and simple. PMID:23710197

  13. Nitrogen removal in a full-scale domestic wastewater treatment plant with activated sludge and trickling filter.

    PubMed

    Nourmohammadi, Davood; Esmaeeli, Mir-Bager; Akbarian, Hossein; Ghasemian, Mohammad

    2013-01-01

    During the last decade, more stringent effluent requirements concerning the nutrients effluent values have been imposed by legislation and social concern. In this study, efficiency of total nitrogen removal in activated sludge and trickling filter processes (AS/TF) was investigated in Tehran North wastewater treatment plant. Biological system in this site was included, anoxic selector tank, aeration tank, final sedimentation, and trickling filter. A part of treated wastewater before chlorination was mixed with supernatant of dewatered sludge and fed to the trickling filter. Supernatant of dewatered sludge with high concentration of NH4-N was diluted by treated wastewater to provide complete nitrification in trickling filter Produced nitrate in trickling filter was arrived to the anoxic tank and converted to nitrogen gas by denitrification. According to the study result, low concentration of organic carbone and high concentration of NH4-N led to nitrification in TF, then nitrate denitrification to nitrogen gas occurred in selector area. NH4-N concentration decreased from 26.8 mg/L to 0.29 mg/L in TF, and NO3-N concentration increased from 8.8 mg/L to 27 mg/L in TF. Consequently, the total nitrogen decreased approximately to 50% in biological process. This efficiency has been observed in returned flow around 24% from final sedimentation into TF. It was concluded that, in comparison with biological nutrient removal processes, this process is very efficient and simple. PMID:23710197

  14. Microscopic Analysis of Plankton, Periphyton, and Activated Sludge. Training Manual.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This manual is intended for professional personnel in the fields of water pollution control, limnology, water supply and waste treatment. Primary emphasis is given to practice in the identification and enumeration of microscopic organisms which may be encountered in water and activated sludge. Methods for the chemical and instrumental evaluation…

  15. Basic Activated Sludge. Training Module 2.115.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with operation of activated sludge wastewater treatment plants. Included are objectives, instructor guides, student handouts, and transparency masters. This is the first of a three module series and considers definition of terms, design…

  16. Intermediate Activated Sludge. Training Module 2.116.3.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with operation of activated sludge wastewater treatment plants. Included are objectives, instructor guides, student handouts and transparency masters. This is the second level of a three module series and considers aeration devices,…

  17. TOP-FEED VACUUM FILTRATION OF WASTE-ACTIVATED SLUDGE

    EPA Science Inventory

    A side-by-side comparison of a conventional bottom-feed vacuum filter and a prototype top-feed vacuum filter was conducted. Thickened, waste-activated sludge at approximately 1.8 percent feed solids concentration and conditioned with ferric chloride was dewatered on two filters 1...

  18. SAFETY ASPECTS OF OXYGEN AERATION ACTIVATED SLUDGE SYSTEMS

    EPA Science Inventory

    This project was carried out to assess the impact of the use of oxygen and oxygen-enriched air for aeration of activated sludge systems on the safety of municipal waste-water treatment plants and their personnel. The tasks included (1) determination of oxygen combustion hazards f...

  19. ACTIVATED SLUDGE CLARIFIERS: DESIGN REQUIREMENTS AND RESEARCH PRIORITIES

    EPA Science Inventory

    The literature review of 320 references was conducted in an EPA-funded project to identify the needs for further research on activated sludge clarifier design and performance. The findings were summarized in a report and used as a basis of a 3-day research needs symposium. The pr...

  20. EVALUATION OF AN ACTIVATED SLUDGE SECONDARY CLARIFIER DISTRIBUTED INLET

    EPA Science Inventory

    Secondary clarifiers are crucial to the overall performance of the activated sludge process. Research over the last 40 years indicates that density currents are factors which degrade clarifier performance when not considered in design. However, present designs of most center-feed...

  1. Fate and effects of methylene chloride in activated sludge.

    PubMed

    Klecka, G M

    1982-09-01

    Activated sludge obtained from a municipal wastewater treatment plant was acclimated to methylene chloride at concentrations between 1 and 100 mg/liter by continuous exposure to the compound for 9 to 11 days. Acclimated cultures were shown to mineralize methylene chloride to carbon dioxide and chloride. Rates of methylene chloride degradation were 0.14, 2.3, and 7.4 mg of CH2Cl2 consumed per h per g of mixed-liquor suspended solids for cultures incubated in the presence of 1, 10, and 100 mg/liter, respectively. Concentrations of methylene chloride between 10 and 1,000 mg/liter had no significant effect on O2 consumption or glucose metabolism by activated sludge. A hypothetical model was developed to examine the significance of volatilization and biodegradation for the removal of methylene chloride from an activated sludge reactor. Application of the model indicated that the rate of biodegradation was approximately 12 times greater than the rate of volatilization. Thus, biodegradation may be the predominant process determining the fate of methylene chloride in activated sludge systems continuously exposed to the compound. PMID:7138008

  2. Operational Control Procedures for the Activated Sludge Process: Appendix.

    ERIC Educational Resources Information Center

    West, Alfred W.

    This document is the appendix for a series of documents developed by the National Training and Operational Technology Center describing operational control procedures for the activated sludge process used in wastewater treatment. Categories discussed include: control test data, trend charts, moving averages, semi-logarithmic plots, probability…

  3. Advanced Activated Sludge. Training Module 2.117.4.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with operation of activated sludge wastewater treatment plants. Included are objectives, instructor guides, student handouts and transparency masters. This is the third level of a three module series and considers design and operation…

  4. Activated Sludge. Instructor's Guide. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Boe, Owen K.

    This instructor's guide contains the materials needed to teach a seven-lesson unit on activated sludge. These materials include an overview of the unit, lesson plans, lecture outlines (keyed to slides designed for use with the lessons), student worksheets for each of the seven lessons (with answers), and two copies of a final quiz (with and…

  5. Fate and effects of methylene chloride in activated sludge.

    PubMed Central

    Klecka, G M

    1982-01-01

    Activated sludge obtained from a municipal wastewater treatment plant was acclimated to methylene chloride at concentrations between 1 and 100 mg/liter by continuous exposure to the compound for 9 to 11 days. Acclimated cultures were shown to mineralize methylene chloride to carbon dioxide and chloride. Rates of methylene chloride degradation were 0.14, 2.3, and 7.4 mg of CH2Cl2 consumed per h per g of mixed-liquor suspended solids for cultures incubated in the presence of 1, 10, and 100 mg/liter, respectively. Concentrations of methylene chloride between 10 and 1,000 mg/liter had no significant effect on O2 consumption or glucose metabolism by activated sludge. A hypothetical model was developed to examine the significance of volatilization and biodegradation for the removal of methylene chloride from an activated sludge reactor. Application of the model indicated that the rate of biodegradation was approximately 12 times greater than the rate of volatilization. Thus, biodegradation may be the predominant process determining the fate of methylene chloride in activated sludge systems continuously exposed to the compound. PMID:7138008

  6. PILOT PLANT EVALUATION OF ALTERNATIVE ACTIVATED SLUDGE SYSTEMS

    EPA Science Inventory

    Step feed, plug flow and complete mix activated sludge systems were compared on a pilot plant scale under similar operating conditions with the same municipal wastewater. The process loading to each system was varied over a wide range during the course of the investigation. Exten...

  7. BIOLOGICALLY ENHANCED OXYGEN TRANSFER IN THE ACTIVATED SLUDGE PROCESS (JOURNAL)

    EPA Science Inventory

    Biologically enhanced oxgyen transfer has been a hypothesis to explain observed oxygen transfer rates in activated sludge systems that were well above that predicted from aerator clean-water testing. The enhanced oxygen transfer rates were based on tests using BOD bottle oxygen ...

  8. Sewage sludge additive

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Mueller, W. A.; Ingham, J. D. (Inventor)

    1980-01-01

    The additive is for a raw sewage treatment process of the type where settling tanks are used for the purpose of permitting the suspended matter in the raw sewage to be settled as well as to permit adsorption of the dissolved contaminants in the water of the sewage. The sludge, which settles down to the bottom of the settling tank is extracted, pyrolyzed and activated to form activated carbon and ash which is mixed with the sewage prior to its introduction into the settling tank. The sludge does not provide all of the activated carbon and ash required for adequate treatment of the raw sewage. It is necessary to add carbon to the process and instead of expensive commercial carbon, coal is used to provide the carbon supplement.

  9. Heavy metals and adsorbents effects on activated sludge microorganisms.

    PubMed

    Ong, S A; Lim, P E; Seng, C E

    2004-01-01

    The sorption of Cu(II) and Cd(II) from synthetic solution by powdered activated carbon (PAC), biomass, rice husk (RH) and activated rice husk (ARH) were investigate under batch conditions. After activated by concentrated nitric acid for 15 hours at 60-65 degrees C, the adsorption capacity for RH was increased. The adsorbents arranged in the increasing order of adsorption capacities to the Langmuir Q degree parameter were biomass > PAC > ARH > RH. The addition of adsorbents in base mix solution had increased the specific oxygen uptake rate (SOUR) activated sludge microorganisms with and without the presence of metals. The increased of SOUR were due to the ability of PAC and RH in reducing the inhibitory effect of metals on microorganisms and provide a reaction site between activated sludge microorganisms and substrates. PMID:15141467

  10. The shift of the microbial community in activated sludge with calcium treatment and its implication to sludge settleability.

    PubMed

    Ye, Chengchen; Yang, Xinping; Zhao, Fang-Jie; Ren, Lifei

    2016-05-01

    The sludge settleability is of prime importance for the activated sludge process. The effect of calcium ion on the biological performance of sludge was investigated in a lab-scale activated sludge system with varying Ca(2+) concentration. Results indicated that addition of 150mg/L Ca(2+) to the influent significantly improved the settling characteristics and metabolic reactivity of activated sludge in the bioreactors. Analyses using denaturing gradient gel electrophoresis (DGGE) and 16S rRNA sequencing showed that a significant difference in the presence of certain bacterial groups between the sludge systems with 150mg/L Ca(2+) and those with 0-100mg/L Ca(2+) addition. Ca(2+) also increased the production of the extracellular polymeric substance (EPS) and facilitated the development of microbial cluster in the bioreactor. Study showed that an addition of 150mg/L Ca(2+) to the influent provides a simple approach to improve the settling properties of activated sludge and maintain high pollutant removal efficiency. PMID:26868150

  11. EVALUATION OF ACTIVATED BIOFILTRATION AND ACTIVATED BIOFILTRATION/ACTIVATED SLUDGE TECHNOLOGIES

    EPA Science Inventory

    The paper presents the results of a review and investigation of the activated biofilter (ABF) and activated biofilter/activated sludge (ABF/AS) technologies and a review of operating records of several municipal plants in the U.S. using these technologies. The overall objective o...

  12. Improve bio-activity of anaerobic sludge by low energy ultrasound.

    PubMed

    Zhu, Yichun; Li, Xin; Du, Maoan; Liu, Zuwen; Luo, Hui; Zhang, Tao

    2015-01-01

    This research focused on ultrasound-enhanced bio-activity of anaerobic sludge. Low energy ultrasound irradiation can increase the bio-activity of anaerobic sludge. Ultrasonic parameter, characteristics of anaerobic sludge and experimental conditions are important parameters which affect the enhancement effect on anaerobic sludge. In order to assess the effects of characteristics of anaerobic sludge and experimental conditions on ultrasonic irradiation of anaerobic sludge, experiments with different characteristics of anaerobic sludge were carried out and analyzed with the content of coenzyme F420 and dehydrogenase activity (DHA). The results showed that anaerobic sludge bio-activity was impacted by the initial temperature, initial chemical oxygen demand (COD), sludge concentration, and stirring during the ultrasonic process. Optimal performance was achieved when sound frequency, power density, and ultrasonic irradiation period was 20 kHz, 0.1 W/mL, and 10 min, respectively, under which the wastewater COD removal efficiency was increased by 12.9 percentage points. The results indicated that low temperature could affect the anaerobic sludge irradiation effect, while intermittent stirring could enhance the bio-activity of anaerobic sludge irradiation effect and low substrate concentration improved anaerobic sludge activity by ultrasound. PMID:26676010

  13. Suitability of Sludge Biotic Index (SBI), Sludge Index (SI) and filamentous bacteria analysis for assessing activated sludge process performance: the case of piggery slaughterhouse wastewater.

    PubMed

    Pedrazzani, Roberta; Menoni, Laura; Nembrini, Stefano; Manili, Livia; Bertanza, Giorgio

    2016-07-01

    Piggery slaughterhouse wastewater poses serious issues in terms of disposal feasibility and environmental impact, due to its huge organic load and variability. It is commonly treated by means of activated sludge processes, whose performance, in case of municipal wastewater, can be monitored by means of specific analyses, such as Sludge Biotic Index (SBI), Sludge Index (SI) and floc and filamentous bacteria observation. Therefore, this paper was aimed at assessing the applicability of these techniques to piggery slaughterhouse sewage. A plant located in Northern Italy was monitored for 1 year. Physical, chemical and operation parameters were measured; the activated sludge community (ciliates, flagellates, amoebae and small metazoa) was analysed for calculating SBI and SI. Floc and filamentous bacteria were examined and described accordingly with internationally adopted criteria. The results showed the full applicability of the studied techniques for optimizing the operation of a piggery slaughterhouse wastewater treatment plant. PMID:27072565

  14. Activated sludge optimization using ATP in pulp and paper industry.

    PubMed

    Bäckman, Göran; Gytel, Ulla

    2015-01-01

    The activated sludge process is an old technology, but still the most commonly used one for treatment of wastewater. Despite the wide spread usage the technology still suffers from instability (Tandoi et al. 2006) and high operating cost. Activated sludge processes often carry a large solids inventory. Managing the total inventory without interference is the key component of the optimization process described in this paper. Use of nutrients is common in pulp and paper effluent treatment. Feeding enough nutrients to support the biomass growth is a delicate balance. Overfeeding or underfeeding of nutrients can result in higher costs. Detrimental substances and toxic components in effluents entering a biological treatment system can cause severe, long lasting disturbances (Hynninen & Ingman 1998; Bergeron & Pelletier 2004). A LumiKem test kit is used to measure biological activity with adenosine triphosphate (ATP) in a pulp and paper mill. ATP data are integrated with other standardized mill parameters. Measurements of active volatile suspended solids based on ATP can be used to quantify the living biomass in the activated sludge process and to ensure that sufficient biomass is present in order to degrade the wastewater constituents entering the process. Information about active biomass will assist in optimizing sludge inventories and feeding of nutrients allowing the living biomass to re-populate to create optimal efficiency. ATP measurements can also be used to alert operators if any components toxic to bacteria are present in wastewater. The bio stress index represents the stress level experienced by the microbiological population. This parameter is very useful in monitoring toxicity in and around bioreactors. Results from the wastewater process optimization and ATP measurements showed that treatment cost could be reduced by approximately 20-30% with fewer disturbances and sustained biological activity compared to the reference period. This was mainly achieved by

  15. DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS USING ARP PRODUCT SIMULANT AND SB4 TANK 40 SLUDGE SLURRY

    SciTech Connect

    Lambert, D; John Pareizs, J; Bradley Pickenheim, B; Cj Bannochie, C; Michael Stone, M; Damon Click, D; Erich Hansen, E; Kim Crapse, K; David Hobbs, D

    2008-05-14

    The radioactive startup of two new SRS processing facilities, the Actinide Removal Process (ARP) and the Modular Caustic-Side-Solvent-Extraction Unit (MCU) will add two new waste streams to the Defense Waste Processing Facility (DWPF). The ARP will remove actinides from the 5.6 M salt solution resulting in a sludge-like product that is roughly half monosodium titanate (MST) insoluble solids and half sludge insoluble solids. The ARP product will be added to the Sludge Receipt and Adjustment Tank (SRAT) at boiling and dewatered prior to pulling a SRAT receipt sample. The cesium rich MCU stream will be added to the SRAT at boiling after both formic and nitric acid have been added and the SRAT contents concentrated to the appropriate endpoint. A concern was raised by an external hydrogen review panel that the actinide loaded MST could act as a catalyst for hydrogen generation (Mar 15, 2007 report, Recommendation 9). Hydrogen generation, and it's potential to form a flammable mixture in the off-gas, under SRAT and Slurry Mix Evaporator (SME) processing conditions has been a concern since the discovery that noble metals catalyze the decomposition of formic acid. Radiolysis of water also generates hydrogen, but the radiolysis rate is orders of magnitude lower than the noble metal catalyzed generation. As a result of the concern raised by the external hydrogen review panel, hydrogen generation was a prime consideration in this experiment. Testing was designed to determine whether the presence of the irradiated ARP simulant containing MST caused uncontrolled or unexpected hydrogen production during experiments simulating the DWPF Chemical Process Cell (CPC) due to activation of titanium. A Shielded Cells experiment, SC-5, was completed using SB4 sludge from Tank 405 combined with an ARP product produced from simulants by SRNL researchers. The blend of sludge and MST was designed to be prototypic of planned DWPF SRAT and SME cycles. As glass quality was not an objective in

  16. Actual-Waste Tests of Enhanced Chemical Cleaning for Retrieval of SRS HLW Sludge Tank Heels and Decomposition of Oxalic Acid - 12256

    SciTech Connect

    Martino, Christopher J.; King, William D.; Ketusky, Edward T.

    2012-07-01

    Savannah River National Laboratory conducted a series of tests on the Enhanced Chemical Cleaning (ECC) process using actual Savannah River Site waste material from Tanks 5F and 12H. Testing involved sludge dissolution with 2 wt% oxalic acid, the decomposition of the oxalates by ozonolysis (with and without the aid of ultraviolet light), the evaporation of water from the product, and tracking the concentrations of key components throughout the process. During ECC actual waste testing, the process was successful in decomposing oxalate to below the target levels without causing substantial physical or chemical changes in the product sludge. During ECC actual waste testing, the introduction of ozone was successful in decomposing oxalate to below the target levels. This testing did not identify physical or chemical changes in the ECC product sludge that would impact downstream processing. The results from these tests confirm observations made by AREVA NP during larger scale testing with waste simulants. This testing, however, had a decreased utilization of ozone, requiring approximately 5 moles of ozone per mole of oxalate decomposed. Decomposition of oxalates in sludge dissolved in 2 wt% OA to levels near 100 ppm oxalate using ECC process conditions required 8 to 12.5 hours without the aid of UV light and 4.5 to 8 hours with the aid of UV light. The pH and ORP were tracked during decomposition testing. Sludge components were tracked during OA decomposition, showing that most components have the highest soluble levels in the initial dissolved sludge and early decomposition samples and exhibit lower soluble levels as OA decomposition progresses. The Deposition Tank storage conditions that included pH adjustment to approximately 1 M free hydroxide tended to bring the soluble concentrations in the ECC product to nearly the same level for each test regardless of storage time, storage temperature, and contact with other tank sludge material. (authors)

  17. Evaluation-of soil enzyme activities as soil quality indicators in sludge-amended soils.

    PubMed

    Dindar, Efsun; Şağban, Fatma Olcay Topaç; Başkaya, Hüseyin Savaş

    2015-07-01

    Soil enzymatic activities are commonly used as biomarkers of soil quality. Several organic and inorganic compounds found in municipal wastewater sludges can possibly be used as fertilizers. Monitoring and evaluating the quality of sludge amended soils with enzyme activities accepted as a beneficial practice with respect to sustainable soil management. In the present study, variation of some enzyme activities (Alkaline phosphatase, dehydrogenase, urease and beta-glucosidase activities) in soils amended with municipal wastewater sludge at different application rates (50, 100 and 200 t ha(-1) dry sludge) was evaluated. Air dried sludge samples were applied to soil pots and sludge-soil mixtures were incubated during a period of three months at 28 degrees C. The results of the study showed that municipal wastewater sludge amendment apparently increased urease, dehydrogenase, alkaline phosphatase and P-glucosidase activities in soil by 48-70%, 14-47%, 33-66% and 9-14%, respectively. The maximum activity was generally observed in sludge amended soil with dose of 200 t ha(-1). Urease activity appeared to be a better indicator of soil enhancement with wastewater sludge, as its activity was more strongly increased by sludge amendment. Accordingly, urease activity is suggested to be soil quality indicator best suited for measuring existing conditions and potential changes in sludge-amended soil. PMID:26364470

  18. Enhanced Lipid and Biodiesel Production from Glucose-Fed Activated Sludge: Kinetics an Microbial Community Analysis

    EPA Science Inventory

    An innovative approach to increase biofuel feedstock lipid yields from municipal sewage sludge via manipulation of carbon:nitrogen (C:N) ratio and glucose loading in activated sludge bioreactors was investigated. Sludge lipid and fatty acid methyl ester (biodiesel) yields (% cel...

  19. Method for Adenosine 5′-Triphosphate Measurement on Coke Waste Activated Sludge

    PubMed Central

    Russell, James; Gauthier, Joseph J.

    1978-01-01

    Measurement of adenosine 5′-triphosphate (ATP) in coke waste activated sludge can provide a simple method for estimating the levels of viable microbes in the sludge. However, the presence of inhibitors such as phenol in the sludge interferes when the luciferin-luciferase method is used to measure ATP. These inhibiting substances can be removed from the sludge before extraction of ATP by washing the cells with dilute sodium dodecyl sulfate. PMID:16345281

  20. Proteomics reliability for micropollutants degradation insight into activated sludge systems.

    PubMed

    Buttiglieri, Gianluigi; Collado, Neus; Casas, Nuria; Comas, Joaquim; Rodriguez-Roda, Ignasi

    2015-01-01

    Little information is available on pharmaceutical trace compounds degradation pathways in wastewater. The potential of the proteomics approach has been evaluated to extract information on activated sludge microbial metabolism in degrading a trace concentration of a pharmaceutical compound (ibuprofen). Ibuprofen is one of the most consumed pharmaceuticals, measured in wastewater at very high concentrations and, despite its high removal rates, found in different environmental compartments. Aerated and completely mixed activated sludge batch tests were spiked with ibuprofen at 10 and 1,000 μg L(-1). Ibuprofen concentrations were determined in the liquid phase: 100% removal was observed and the kinetics were estimated. The solid phase was sampled for proteomics purposes. The first objective was to apply proteomics to evaluate protein profile variations in a complex matrix such as activated sludge. The second objective was to determine, at different ibuprofen concentrations, which proteins followed pre-defined trends. No newly expressed proteins were found. Nonetheless, the obtained results suggest that proteomics itself is a promising methodology to be applied in this field. Statistical and comparative studies analyses provided, in fact, useful information on biological reproducibility and permitted us to detect 62 proteins following coherent and plausible expected trends in terms of presence and intensity change. PMID:26360747

  1. Micropollutant degradation via extracted native enzymes from activated sludge.

    PubMed

    Krah, Daniel; Ghattas, Ann-Kathrin; Wick, Arne; Bröder, Kathrin; Ternes, Thomas A

    2016-05-15

    A procedure was developed to assess the biodegradation of micropollutants in cell-free lysates produced from activated sludge of a municipal wastewater treatment plant (WWTP). This proof-of-principle provides the basis for further investigations of micropollutant biodegradation via native enzymes in a solution of reduced complexity, facilitating downstream protein analysis. Differently produced lysates, containing a variety of native enzymes, showed significant enzymatic activities of acid phosphatase, β-galactosidase and β-glucuronidase in conventional colorimetric enzyme assays, whereas heat-deactivated controls did not. To determine the enzymatic activity towards micropollutants, 20 compounds were spiked to the cell-free lysates under aerobic conditions and were monitored via LC-ESI-MS/MS. The micropollutants were selected to span a wide range of different biodegradabilities in conventional activated sludge treatment via distinct primary degradation reactions. Of the 20 spiked micropollutants, 18 could be degraded by intact sludge under assay conditions, while six showed reproducible degradation in the lysates compared to the heat-deactivated negative controls: acetaminophen, N-acetyl-sulfamethoxazole (acetyl-SMX), atenolol, bezafibrate, erythromycin and 10,11-dihydro-10-hydroxycarbamazepine (10-OH-CBZ). The primary biotransformation of the first four compounds can be attributed to amide hydrolysis. However, the observed biotransformations in the lysates were differently influenced by experimental parameters such as sludge pre-treatment and the addition of ammonium sulfate or peptidase inhibitors, suggesting that different hydrolase enzymes were involved in the primary degradation, among them possibly peptidases. Furthermore, the transformation of 10-OH-CBZ to 9-CA-ADIN was caused by a biologically-mediated oxidation, which indicates that in addition to hydrolases further enzyme classes (probably oxidoreductases) are present in the native lysates. Although the

  2. Preparation of activated carbon from wet sludge by electrochemical-NaClO activation.

    PubMed

    Miao, Chen; Ye, Caihong; Zhu, Tianxing; Lou, Ziyang; Yuan, Haiping; Zhu, Nanwen

    2014-01-01

    Activated carbon (AC) from sludge is one potential solution for sewage sludge disposal, while the drying sludge is cost and time consuming for preparation. AC preparation from the wet sludge with electrochemical-NaClO activation was studied in this work. Three pretreatment processes, i.e. chemical activation, electrolysis and electrochemical-reagent reaction, were introduced to improve the sludge-derived AC properties, and the optimum dosage of reagent was tested from the 0.1:1 to 1:1 (mass rate, reagent:dried sludge). It was shown that the electrochemical-NaClO preparation is the best method under the test conditions, in which AC has the maximum Brunauer, Emmett and Teller area of 436 m²/g at a mass ratio of 0.7. Extracellular polymeric substances in sludge can be disintegrated by electrochemical-NaClO pretreatment, with a disintegration degree of more than 45%. The percentage of carbon decreased from 34.16 to 8.81 after treated by electrochemical-NaClO activation. Fourier transform infrared spectra showed that a strong C-Cl stretching was formed in electrochemical-NaClO prepared AC. The maximum adsorption capacity of AC reaches 109 mg/g on MB adsorption experiment at pH 10 and can be repeated for three times with high removal efficiency after regeneration. PMID:25176302

  3. Substrate consumption and excess sludge reduction of activated sludge in the presence of uncouplers: a modeling approach.

    PubMed

    Xie, Wen-Ming; Ni, Bing-Jie; Sheng, Guo-Ping; Yu, Han-Qing; Yang, Min

    2010-02-01

    A mathematical model with a consideration of energy spilling is developed to describe the activated sludge in the presence of different levels of metabolic uncouplers. The consumption of substrate and oxygen via energy spilling process is modeled with a Monod term, which is dependent on substrate and inhibitor. The sensitivity of the developed model is analyzed. Three parameters, maximum specific growth rate (micro(max)), energy spilling coefficient (q(max)), and sludge yield coefficient (Y(H)) are estimated with experimental data of different studies. The values of micro(max), q(max), and Y(H) are found to be 6.72 day(-1), 5.52 day(-1), and 0.60 mg COD mg(-1) COD for 2, 4-dinitrophenol and 7.20 day(-1), 1.58 day(-1), and 0.62 mg COD mg(-1) COD for 2, 4-dichlorophenol. Substrate degradation and sludge yield could be predicted with this model. The activated sludge process in the presence of uncouplers that is described more reasonably by the new model with a consideration of energy spilling. The effects of uncouplers on substrate consumption inhibition and excess sludge reduction in activated sludge are quantified with this model. PMID:19898844

  4. Investigating the fate of activated sludge extracellular proteins in sludge digestion using sodium dodecyl sulfate polyacrylamide gel electrophoresis.

    PubMed

    Park, Chul; Helm, Richard F; Novak, John T

    2008-12-01

    The fate of activated sludge extracellular proteins in sludge digestion was investigated using three different cation-associated extraction methods and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Extraction methods used were the cation exchange resin (CER) method for extracting calcium (Ca2+) and magnesium (Mg2+), sulfide extraction for removing iron, and base treatment (pH 10.5) for dissolving aluminum. Extracellular polymeric substances extracted were then subjected to SDS-PAGE, and the resultant protein profiles were examined before and after sludge digestion. The SDS-PAGE results showed that three methods led to different SDS-PAGE profiles for both undigested and digested sludges. The results further revealed that CER-extracted proteins remained mainly undegraded in anaerobic digestion, but were degraded in aerobic digestion. While the fate of sulfide- and base-extracted proteins was not clear for aerobic digestion, their changes in anaerobic digestion were elucidated. Most sulfide-extracted proteins were removed by anaerobic digestion, while the increase in protein band intensity and diversity was observed for base-extracted proteins. These results suggest that activated sludge flocs contain different fractions of proteins that are distinguishable by their association with certain cations and that each fraction undergoes different fates in anaerobic and aerobic digestion. The proteins that were resistant to degradation and generated during anaerobic digestion were identified by liquid chromatography tandem mass spectrometry. Protein identification results and their putative roles in activated sludge and anaerobic digestion are discussed in this study. PMID:19146099

  5. Effects of total solids content on waste activated sludge thermophilic anaerobic digestion and its sludge dewaterability.

    PubMed

    Wang, Tianfeng; Chen, Jie; Shen, Honglang; An, Dong

    2016-10-01

    The role of total solids content on sludge thermophilic anaerobic digestion was investigated in batch reactors. A range of total solids content from 2% to 10% was evaluated with two replicates. The lowest inhibitory concentration for free ammonia and total ammonia of sludge thermophilic anaerobic digestion was 110.9-171.4mg/L and 1313.1-1806.7mg/L, respectively. The volumetric biogas production rate increased with increasing of total solids content, but the corresponding biogas yield per gram volatile solid decreased. The result of normalized capillary suction time indicated that the dewaterability of digested sludge at high total solids content was poor, while solid content of sediment obtained by centrifuging sludge at 2000g for 10min increased with increasing of total solids content of sludge. The results suggest that thickened sludge mixed with dewatered sludge at an appropriate ratio could get high organic loading rate, high biogas yield and adequate dewatering effort. PMID:26897469

  6. Application of Activated Sludge Model No. 1 to biological treatment of pure winery effluents: case studies.

    PubMed

    Stricker, A E; Racault, Y

    2005-01-01

    The practical applicability of computer simulation of aerobic biological treatment systems for winery effluents was investigated to enhance traditional on-site evaluation of new processes. As there is no existing modelling tool for pure winery effluent, a model widely used for municipal activated sludge (ASM1) was used. The calibration and validation steps were performed on extended on-site data. The global soluble COD, DO and OUR were properly reproduced. Possible causes for the remaining discrepancies between measured and simulated data were identified and suggestions for improvement directions were made to adapt ASM1 to winery effluents. The calibrated model was then used to simulate scenarios to evaluate the plant behaviour for different operation or design. In combination with on-site observations, it allowed us to establish useful and justified improvement suggestions for aeration tank and aeration device design as well as feed, draw and aeration operation. PMID:15771107

  7. Enhancement of As(V) adsorption onto activated sludge by methylation treatment.

    PubMed

    Kang, So-Young; Kim, Dong-Wook; Kim, Kyoung-Woong

    2007-08-01

    Biosorption properties of arsenate [As(V)] onto activated sludge were investigated in batch systems. The adsorption of As(V) onto sludge increased from 23 to 266 microg/g dry weight through the methylation of the activated sludge. This increase resulted from neutralization of carboxylic groups via the methylation process. The pH effect of As(V) uptake was also investigated and As(V) adsorption by methylated sludge decreased significantly at high pH (pH > 11) due to competition between As(V) and OH(-) ions for binding sites distributed on sludge surfaces. In contrast, low pH favored As(V) adsorption by methylated sludge because of the elevated quantities of positively charged functional groups. The results suggest that methylated activated sludge may provide promising applications for the simultaneous removal and separation of As(V) from aqueous effluents. PMID:17505894

  8. Effect of dissolved organic material and cations on freeze-thaw conditioning of activated and alum sludges.

    PubMed

    Ormeci, B; Vesilind, P A

    2001-12-01

    Freeze-thaw conditioning effectively dewaters alum and activated sludges, but it works better on alum sludge than it does on activated sludge. The main difference between alum sludge and activated sludge is that activated sludge has high concentrations of both dissolved organic material and ions. Dissolved organic material and ions may possibly alter the freezing process and decrease the effectiveness of freeze-thaw conditioning on activated sludge. The objective of this study is to investigate the effect of dissolved organic material and cations on freeze-thaw conditioning of sludges, and to improve the effectiveness of freeze-thaw conditioning on activated sludge. The results of this study show that although protein, carbohydrate and cation concentrations in activated sludge supernatant are initially high, they dramatically increase after freeze-thaw conditioning. The increase is likely to come from the release of extracellular and intracellular material to sludge supernatant. The observed increase in the DNA concentration in activated sludge supernatant after freeze-thaw conditioning indicates that freeze-thaw causes cell disruption. Alum sludge supernatant, on the other hand, initially contains low concentrations of proteins, carbohydrates and cations which do not noticeably change after freeze-thaw conditioning. When ECPs (extracellular polymers) and cations are extracted from activated sludge before freeze-thaw conditioning. the sludge settles and dewaters better after the freeze-thaw. The resulting aggregates are smaller and denser resembling the "coffee ground" aggregates of alum sludge. PMID:11763031

  9. An activated sludge model based on activated sludge model number 3 for full-scale wastewater treatment plant simulation.

    PubMed

    Fan, Ji; Lu, Shu-Guang; Qiu, Zhao-fu; Wang, Xiao-Xia; Li, Wen-Zhen

    2009-06-01

    A modified model based on the activated sludge model no. 3 was established to simulate a full-scale municipal wastewater treatment plant in Shanghai, China. The activated sludge model no. 3 was modified to describe the simultaneous storage and growth processes occurring in activated sludge systems under aerobic and anoxic conditions. The mechanism of soluble microbial product formation and degradation by microorganisms was considered in this proposed model. Three months simulation was conducted including soluble chemical oxygen demand, NH4(+)-N, NO(X)(-)-N and T-N parameters, and compared with measured data from the Quyang wastewater treatment plant. Results indicated that the calculated effluent chemical oxygen demand and NH4(+)-N using this proposed model were in good agreement with the measured data. Results also showed that besides inert soluble organic matter contributing to the effluent chemical oxygen demand, soluble microbial products played an important part in the effluent chemical oxygen demand and, therefore, demonstrated that these products composed an important portion of effluent soluble chemical oxygen demand in wastewater treatment plants and should not be neglected. PMID:19705601

  10. ACTUAL-WASTE TESTS OF ENHANCED CHEMICAL CLEANING FOR RETRIEVAL OF SRS HLW SLUDGE TANK HEELS AND DECOMPOSITION OF OXALIC ACID

    SciTech Connect

    Martino, C.; King, W.; Ketusky, E.

    2012-01-12

    Savannah River National Laboratory conducted a series of tests on the Enhanced Chemical Cleaning (ECC) process using actual Savannah River Site waste material from Tanks 5F and 12H. Testing involved sludge dissolution with 2 wt% oxalic acid, the decomposition of the oxalates by ozonolysis (with and without the aid of ultraviolet light), the evaporation of water from the product, and tracking the concentrations of key components throughout the process. During ECC actual waste testing, the process was successful in decomposing oxalate to below the target levels without causing substantial physical or chemical changes in the product sludge.

  11. Enhanced dewaterability of waste activated sludge by Fe(II)-activated peroxymonosulfate oxidation.

    PubMed

    Liu, Jun; Yang, Qi; Wang, Dongbo; Li, Xiaoming; Zhong, Yu; Li, Xin; Deng, Yongchao; Wang, Liqun; Yi, Kaixin; Zeng, Guangming

    2016-04-01

    The effect of Fe(II)-activated peroxymonosulfate (Fe(II)-PMS) oxidation on the waste activated sludge (WAS) dewatering and its mechanisms were investigated in this study. The capillary suction time (CST), specific resistance to filterability (SRF) of sludge and water content (WC) of dewatered sludge cake were chosen as the main parameters to evaluate the sludge dewaterability. Experimental results showed that Fe(II)-PMS effectively disintegrated sludge and improved sludge dewaterability. High CST and SRF reduction (90% and 97%) was achieved at the optimal conditions of PMS (HSO5(-)) 0.9mmol/gVSS, Fe(II) 0.81mmol/gVSS, and pH 6.8. Extracellular polymeric substances (EPS) and three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy before and after Fe(II)-PMS oxidation were determined to explain the enhanced dewatering mechanism. The release of EPS-bound water induced by the destruction of EPS was the primary reason for the improvement of sludge dewaterability during Fe(II)-PMS oxidation. PMID:26851897

  12. A comparison of the physical, chemical, and biological properties of sludges from a complete-mix activated sludge reactor and a submerged membrane bioreactor.

    PubMed

    Merlo, Rion P; Trussell, R Shane; Hermanowicz, Slawomir W; Jenkins, David

    2007-03-01

    The properties of sludges from a pilot-scale submerged membrane bioreactor (SMBR) and two bench-scale complete-mix, activated sludge (CMAS) reactors treating municipal primary effluent were determined. Compared with the CMAS sludges, the SMBR sludge contained a higher amount of soluble microbial products (SMP) and colloidal material attributed to the use of a membrane for solid-liquid separation; a higher amount nocardioform bacteria, resulting from efficient foam trapping; and a lower amount of extracellular polymeric substances (EPS), possibly because there was no selective pressure for the sludge to settle. High aeration rates in both the CMAS and SMBR reactors produced sludges with higher numbers of smaller particles. Normalized capillary suction time values for the SMBR sludge were lower than for the CMAS sludges, possibly because of its lower EPS content. PMID:17469664

  13. The presence and role of bacterial quorum sensing in activated sludge

    PubMed Central

    Chong, Grace; Kimyon, Onder; Rice, Scott A.; Kjelleberg, Staffan; Manefield, Mike

    2012-01-01

    Summary Activated sludge used for wastewater treatment globally is composed of a high‐density microbial community of great biotechnological significance. In this study the presence and purpose of quorum sensing via N‐acylated‐l‐homoserine lactones (AHLs) in activated sludge was explored. The presence of N‐heptanoyl‐l‐homoserine lactone in organic extracts of sludge was demonstrated along with activation of a LuxR‐based AHL monitor strain deployed in sludge, indicating AHL‐mediated gene expression is active in sludge flocculates but not in the bulk aqueous phase. Bacterial isolates from activated sludge were screened for AHL production and expression of phenotypes commonly but not exclusively regulated by AHL‐mediated gene transcription. N‐acylated‐l‐homoserine lactone and exoenzyme production were frequently observed among the isolates. N‐acylated‐l‐homoserine lactone addition to sludge upregulated chitinase activity and an AHL‐ and chitinase‐producing isolate closely related to Aeromonas hydrophila was shown to respond to AHL addition with upregulation of chitinase activity. N‐acylated‐l‐homoserine lactones produced by this strain were identified and genes ahyI/R and chiA, encoding AHL production and response and chitinase activity respectively, were sequenced. These experiments provide insight into the relationship between AHL‐mediated gene expression and exoenzyme activity in activated sludge and may ultimately create opportunities to improve sludge performance. PMID:22583685

  14. [Synergistic effects of nano-sized magnetic particles and uncoupler to the characteristics of activated sludge].

    PubMed

    Gao, Li-ying; Tang, Bing; Liang, Ling-yan; Huang, Shao-song; Fu, Feng-lian; Luo, Jian-zhong

    2012-08-01

    For improving the performance and sludge settling property of an activated sludge reduction process with uncoupler, in this investigation, uncoupler and nano-sized magnetic particles were added simultaneously to a sequencing batch reactor for exploring their synergistic effects to the characteristics of activated sludge. The results showed that the volume reduction of sludge reached 41% with single 2,4,5-Trichlorophenol (TCP) Comparing with the control experiment, the biodegradability and settling properties of the activated sludge decreased. Under the actions of TCP combined with nano-sized magnetic particles, the volume reduction of sludge reached 34%, the removal efficiencies of COD, nitrogen, and phosphorus as well as the sludge settling property were not significantly influenced. After 31 d's operation, the dehydrogenase activity was improved by 10%-18% and exhibited an accumulative effect over time. It was observed with an optical microscope that the species and amounts of protozoon and metazoan increased and a compact structure of sludge floc was formed. The results also indicated that using nano-sized magnetic particles and uncoupler could restrict the yield of excess sludge and improve the performance of an activated sludge system. PMID:23213903

  15. Variations of respiratory activity and glutathione in activated sludges exposed to low ozone doses.

    PubMed

    Dziurla, M A; Salhi, M; Leroy, P; Paul, E; Ginestet, Ph; Block, J C

    2005-07-01

    Ozonation is one of the most effective treatments for reducing the production of activated sludges in wastewater treatment plants. However, because microorganisms are present in the form of microcolonies, some bacteria may be exposed to sub-lethal ozone doses that could lead to adaptation and resistance to further exposition to oxidative treatment. This represents a major question as it may limit the effect of the treatment, especially when low ozone doses are applied. The critical ozone dosage, defined as the lowest specific transferred ozone concentration leading to a decrease in the maximum oxygen uptake rate was estimated to range between 0.9 and 13.6mg O(3)g(-1) COD(sludges), according to the sludges tested. The lowest ozone dosage leading to the decrease of GSH and GSHt concentrations could be estimated to be lower than 10mg O(3)g(-1) COD(sludges) for GSH, and close to 10mg O(3)g(-1) COD(sludges) for GSHt. After sludge exposure to low ozone doses, no higher amounts of glutathione were synthesized, suggesting that no development of resistance to ozonation occurred after sludge treatment with low ozone doses. PMID:15972223

  16. Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor.

    PubMed

    Ge, Huoqing; Batstone, Damien; Keller, Jurg

    2016-01-01

    The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity. PMID:26942526

  17. Pharmaceutically active compounds in sludge stabilization treatments: anaerobic and aerobic digestion, wastewater stabilization ponds and composting.

    PubMed

    Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2015-01-15

    Sewage sludge disposal onto lands has been stabilized previously but still many pollutants are not efficiently removed. Special interest has been focused on pharmaceutical compounds due to their potential ecotoxicological effects. Nowadays, there is scarce information about their occurrence in different sludge stabilization treatments. In this work, the occurrence of twenty-two pharmaceutically active compounds has been studied in sludge from four sludge stabilization treatments: anaerobic digestion, aerobic digestion, composting and lagooning. The types of sludge evaluated were primary, secondary, anaerobically-digested and dehydrated, composted, mixed, aerobically-digested and dehydrated and lagoon sludge. Nineteen of the twenty-two pharmaceutically active compounds monitored were detected in sewage sludge. The most contaminated samples were primary sludge, secondary sludge and mixed sludge (the average concentrations of studied compounds in these sludges were 179, 310 and 142 μg/kg dm, respectively) while the mean concentrations found in the other types of sewage sludge were 70 μg/kg dm (aerobically-digested sludge), 63 μg/kg dm (lagoon sludge), 12 μg/kg dm (composted sludge) and 8 μg/kg dm (anaerobically-digested sludge). The antibiotics ciprofloxacin and norfloxacin were found at the highest concentration levels in most of the analyzed sludge samples (up to 2660 and 4328 μg/kg dm, respectively). Anaerobic-digestion treatment reduced more considerably the concentration of most of the studied compounds than aerobic-digestion (especially in the case of bezafibrate and fluoroquinolones) and more than anaerobic stabilization ponds (in the case of acetaminophen, atenolol, bezafibrate, carbamazepine, 17α-ethinylestradiol, naproxen and salicylic acid). Ecotoxicological risk assessment, of sludge application onto soils, has also been evaluated. Risk quotients, expressed as the ratio between the predicted environmental concentration and the predicted non

  18. EFFECT OF RECYCLING THERMOPHILICALLY DIGESTED SLUDGE ON THE ACTIVATED SLUDGE PROCESS

    EPA Science Inventory

    A full-scale investigation was undertaken at Chicago's Hanover Park Water Reclamation Plant (WRP) to study whether the net sludge production from the WRP could be reduced by implementing a scheme developed by W. Torpey et al. (1984). n this process, sludge is withdrawn from a the...

  19. Candidate Reagents for Dissolution of Hanford Site Tank Sludges-Scoping Studies with Simulants Using Single Reagents and Their Mixtures

    SciTech Connect

    Sinkov, Serguei I.

    2003-08-25

    Chemical agents were investigated for their efficacies in dissolving metal compound phases known to be present in Hanford tank waste sludges. The phases included Fe(OH)3, Cr(OH)3, Al(OH)3, MnO2, and Na2U2O7. In conjunction with laboratory testing, a survey of the technical literature also was performed to identify candidate reagents. The tests were conducted in three campaigns. First, scoping tests investigated individual agents identified in the literature review along with other candidate agents. Based on the scoping test results, follow-up testing was performed to investigate the efficacies of mixed citric/oxalic acids (CITROX) and mixed nitric/oxalic acids (NITROX). Overall, oxalic acid is the most effective single reagent, dissolving all of the solid phases to some extent. However, for MnO2 and Na2U2O7, reprecipitation soon followed dissolution. The MnO2 also oxidized at least two of organic acids tested, oxalic acid and citric acid, as shown by the evolution of gas during the tests with these reagents. The CITROX and NITROX tests failed to show beneficial synergistic effects in dissolving sludge phases. Instead, the findings suggest that the sequential addition of individual pure reagents (e.g., first citric acid to dissolve MnO2 and Na2U2O7 and removal of the solution followed by oxalic acid to dissolve the Fe, Cr, and Al hydroxides) may be more effective than individual or blended reagents.

  20. Diversity and dynamics of Archaea in an activated sludge wastewater treatment plant

    PubMed Central

    2012-01-01

    Background The activated sludge process is one of the most widely used methods for treatment of wastewater and the microbial community composition in the sludge is important for the process operation. While the bacterial communities have been characterized in various activated sludge systems little is known about archaeal communities in activated sludge. The diversity and dynamics of the Archaea community in a full-scale activated sludge wastewater treatment plant were investigated by fluorescence in situ hybridization, terminal restriction fragment length polymorphism analysis and cloning and sequencing of 16S rRNA genes. Results The Archaea community was dominated by Methanosaeta-like species. During a 15 month period major changes in the community composition were only observed twice despite seasonal variations in environmental and operating conditions. Water temperature appeared to be the process parameter that affected the community composition the most. Several terminal restriction fragments also showed strong correlations with sludge properties and effluent water properties. The Archaea were estimated to make up 1.6% of total cell numbers in the activated sludge and were present both as single cells and colonies of varying sizes. Conclusions The results presented here show that Archaea can constitute a constant and integral part of the activated sludge and that it can therefore be useful to include Archaea in future studies of microbial communities in activated sludge. PMID:22784022

  1. Bifurcation and chaotic in a model for activated sludge reactors

    NASA Astrophysics Data System (ADS)

    El-Marouf, S. A. A.; Bahaa, G. M.

    2015-04-01

    A dynamical model of an activated sludge process system is considered and analyzed. Numerical techniques are used to show when the system exhibits chaos. Three choices of bifurcation parameters produce different pictures of solution behavior in the form of limit cycles, two-torus and chaotic behavior. For some range of the reactor residence time the model exhibits chaotic behavior as well. Practical criteria are also derived for the effects of feed conditions and purge fraction on the dynamic characteristics of the bioreactor model.

  2. Concentrations and environmental fate of Ra in cation-exchange regeneration brine waste disposed to septic tanks and accumulation in sludge, New Jersey Coastal Plain, USA

    USGS Publications Warehouse

    Szabo, Z.; Jacobsen, E.; Kraemer, T.F.; Parsa, B.

    2008-01-01

    Concentrations of Ra in liquid and solid wastes generated from 15 softeners treating domestic well waters from New Jersey Coastal Plain aquifers (where combined Ra (226Ra plus 228Ra) concentrations commonly exceed 0.185 Bq L-1) were determined. Softeners, when maintained, reduced combined Ra about 10-fold (<0.024 Bq L-1). Combined Ra exceeded 0.185 Bq L-1 at 1 non-maintained system. Combined Ra was enriched in regeneration brine waste (maximum, 81.2 Bq L-1), but concentrations in septic-tank effluents receiving brine waste were less than in the untreated ground waters. The maximum combined Ra concentration in aquifer sands (40.7 Bq kg-1 dry weight) was less than that in sludge from the septic tanks (range, 84-363 Bq kg-1), indicating Ra accumulation in sludge from effluent. The combined Ra concentration in sludge from the homeowners' septic systems falls within the range reported for sludge samples from publicly owned treatment works within the region.

  3. Physicochemical changes effected in activated sludge by the earthworm Eisenia foetida. [Concentration of heavy metals during sludge catabolism

    SciTech Connect

    Hartenstein, R.; Hartenstein, F.

    1981-09-01

    Measurements were made of some physicochemical changes effected in activated sludge by the earthworm Eisenia foetida following conversion of the sludge into wormcasts. Mineralization was accelerated 1.3-fold and 2% of the minerals were assimilated. The rate at which heavy metals were concentrated during sludge catabolism was also accelerated. Castings stabilized within 2 weeks, as indexed by respirometry. Nucleic acids, which can be used as an index of microbial biomass, were present at a greater concentration in the wormcasts than in the sludge, while the phenolic content, which may potentially serve as an index of humification, was less concentrated. Other changes included a reduction in pH and an increase in oxidation-reduction potential and cation exchange capacity. The major general effect of E. foetida on the physicochemical properties of activated sludge is to convert a material which has a relatively small surface/volume ratio into numerous particles with an overall large S/V ratio, thus accelerating decomposition, mineralization, drying, and preclusion of malodor.

  4. Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production

    NASA Astrophysics Data System (ADS)

    Yin, Yanan; Wang, Jianlong

    2016-04-01

    In this paper, gamma irradiation was applied for the disintegration and dissolution of waste activated sludge produced during the biological wastewater treatment, and the solubilized sludge was used as substrate for bio-hydrogen production. The experimental results showed that the solubilization of waste activated sludge was 53.7% at 20 kGy and pH=12, and the SCOD, polysaccharides, protein, TN and TP contents in the irradiated sludge solutions was 3789.6 mg/L, 268.3 mg/L, 1881.5 mg/L, 132.3 mg/L and 80.4 mg/L, respectively. The irradiated sludge was used for fermentative hydrogen production, and the hydrogen yield was 10.5±0.7 mL/g SCODconsumed. It can be concluded that the irradiated waste activated sludge could be used as a low-cost substrate for fermentative hydrogen production.

  5. Tank 241-AZ-101 criticality assessment resulting from pump jet mixing: Sludge mixing simulation

    SciTech Connect

    Onishi, Y.; Recknagle, K.

    1997-04-01

    Tank 241-AZ-101 (AZ-101) is one of 28 double-shell tanks located in the AZ farm in the Hanford Site`s 200 East Area. The tank contains a significant quantity of fissile materials, including an estimated 9.782 kg of plutonium. Before beginning jet pump mixing for mitigative purposes, the operations must be evaluated to demonstrate that they will be subcritical under both normal and credible abnormal conditions. The main objective of this study was to address a concern about whether two 300-hp pumps with four rotating 18.3-m/s (60-ft/s) jets can concentrate plutonium in their pump housings during mixer pump operation and cause a criticality. The three-dimensional simulation was performed with the time-varying TEMPEST code to determine how much the pump jet mixing of Tank AZ-101 will concentrate plutonium in the pump housing. The AZ-101 model predicted that the total amount of plutonium within the pump housing peaks at 75 g at 10 simulation seconds and decreases to less than 10 g at four minutes. The plutonium concentration in the entire pump housing peaks at 0.60 g/L at 10 simulation seconds and is reduced to below 0.1 g/L after four minutes. Since the minimum critical concentration of plutonium is 2.6 g/L, and the minimum critical plutonium mass under idealized plutonium-water conditions is 520 g, these predicted maximums in the pump housing are much lower than the minimum plutonium conditions needed to reach a criticality level. The initial plutonium maximum of 1.88 g/L still results in safety factor of 4.3 in the pump housing during the pump jet mixing operation.

  6. Disturbance and temporal partitioning of the activated sludge metacommunity.

    PubMed

    Vuono, David C; Benecke, Jan; Henkel, Jochen; Navidi, William C; Cath, Tzahi Y; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2015-02-01

    The resilience of microbial communities to press disturbances and whether ecosystem function is governed by microbial composition or by the environment have not been empirically tested. To address these issues, a whole-ecosystem manipulation was performed in a full-scale activated sludge wastewater treatment plant. The parameter solids retention time (SRT) was used to manipulate microbial composition, which started at 30 days, then decreased to 12 and 3 days, before operation was restored to starting conditions (30-day SRT). Activated sludge samples were collected throughout the 313-day time series in parallel with bioreactor performance ('ecosystem function'). Bacterial small subunit (SSU) rRNA genes were surveyed from sludge samples resulting in a sequence library of >417,000 SSU rRNA genes. A shift in community composition was observed for 12- and 3-day SRTs. The composition was altered such that r-strategists were enriched in the system during the 3-day SRT, whereas K-strategists were only present at SRTs⩾12 days. This shift corresponded to loss of ecosystem functions (nitrification, denitrification and biological phosphorus removal) for SRTs⩽12 days. Upon return to a 30-day SRT, complete recovery of the bioreactor performance was observed after 54 days despite an incomplete recovery of bacterial diversity. In addition, a different, yet phylogenetically related, community with fewer of its original rare members displaced the pre-disturbance community. Our results support the hypothesis that microbial ecosystems harbor functionally redundant phylotypes with regard to general ecosystem functions (carbon oxidation, nitrification, denitrification and phosphorus accumulation). However, the impacts of decreased rare phylotype membership on ecosystem stability and micropollutant removal remain unknown. PMID:25126758

  7. Disturbance and temporal partitioning of the activated sludge metacommunity

    PubMed Central

    Vuono, David C; Benecke, Jan; Henkel, Jochen; Navidi, William C; Cath, Tzahi Y; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2015-01-01

    The resilience of microbial communities to press disturbances and whether ecosystem function is governed by microbial composition or by the environment have not been empirically tested. To address these issues, a whole-ecosystem manipulation was performed in a full-scale activated sludge wastewater treatment plant. The parameter solids retention time (SRT) was used to manipulate microbial composition, which started at 30 days, then decreased to 12 and 3 days, before operation was restored to starting conditions (30-day SRT). Activated sludge samples were collected throughout the 313-day time series in parallel with bioreactor performance (‘ecosystem function'). Bacterial small subunit (SSU) rRNA genes were surveyed from sludge samples resulting in a sequence library of >417 000 SSU rRNA genes. A shift in community composition was observed for 12- and 3-day SRTs. The composition was altered such that r-strategists were enriched in the system during the 3-day SRT, whereas K-strategists were only present at SRTs⩾12 days. This shift corresponded to loss of ecosystem functions (nitrification, denitrification and biological phosphorus removal) for SRTs⩽12 days. Upon return to a 30-day SRT, complete recovery of the bioreactor performance was observed after 54 days despite an incomplete recovery of bacterial diversity. In addition, a different, yet phylogenetically related, community with fewer of its original rare members displaced the pre-disturbance community. Our results support the hypothesis that microbial ecosystems harbor functionally redundant phylotypes with regard to general ecosystem functions (carbon oxidation, nitrification, denitrification and phosphorus accumulation). However, the impacts of decreased rare phylotype membership on ecosystem stability and micropollutant removal remain unknown. PMID:25126758

  8. [Influence of the Application of Activated Persulfate on Municipal Sludge Conditioning].

    PubMed

    Xu, Xin; Pu, Wen-hong; Shi, Ya-fei; Yu, Wen-bo; Zhang, Shi-nan; Song, Jian; Zhang, Hao; He, Shu; Yang, Chang-zhu; Yang, Jia-kuan

    2015-11-01

    The water content of dewatered sewage sludge can decrease at about 80% by traditional sludge dewatering technologies. High water content has negative impacts on the sequent sludge disposal with a stricter standard. The sulfate free radical SO4(*-), generated by activated persulfate, is a powerful oxidant. This article found that it could improve sludge dewatering properties by using the Fe2+ activated sodium persulfate (SPS). The results showed that when using Fe2+ 25.88 mg x g(-1) (based on dry sludge solid) and S2 O8(2-) 80 mg x g(-1) (the mole ratio of Fe2+ to S2 O8(2-) was 1.1 : 1) for sludge conditioning, it could reduce the capillary suction time (CST) and specific resistance to filtration (RSF) of sludge, increased the protein and ploysaccharide as well as the COD concentration in the filtrate. The further research showed that this method could change the zeta potential of sludge, increased the sludge particle specific surface area, and made flocs become a loose layered structure from dense clusters, which was beneficial to improve the sludge dewaterability. PMID:26911010

  9. Comparison of bioleaching of heavy metals from municipal sludge using indigenous sulfur and iron-oxidizing microorganisms: continuous stirred tank reactor studies.

    PubMed

    Pathak, Ashish; Kothari, Richa; Dastidar, M G; Sreekrishnan, T R; Kim, Dong J

    2014-01-01

    A comparative study was undertaken using indigenous sulfur-oxidizing microorganisms and iron-oxidizing microorganisms in separate 12 litre continuous stirred tank reactors (CSTRs) for solubilization of heavy metals from anaerobically digested sewage sludge. The CSTRs were operated at hydraulic retention times (HRTs) ranging from 4 to 10 days using sewage sludge feed having near neutral pH. The pH, oxidation-reduction potential (ORP) and solubilization efficiency of metals were found to be highly dependent on HRT and an increase in HRT led to higher solubilization of metals in both the CSTRs. In both the CSTRs, the CSTR operated with sulfur-oxidizing microorganisms at an HRT of 8 days was found to be optimum in solubilizing 58% Cu, 52% Ni, 72% Zn and 43% Cu from the sludge. The nutrient value, nitrogen and phosphorus of bioleached sludge was also conserved (<20% loss) at 8 days HRT. The metals fractionation study conducted using BCR sequential extraction procedure suggested that most of the metals remaining in the bioleached sludge were in the more stable fractions (F3 and F4) and, therefore, can be safely apply as a fertilizer on land. PMID:24117088

  10. Purification of total DNA extracted from activated sludge.

    PubMed

    Shan, Guobin; Jin, Wenbiao; Lam, Edward K H; Xing, Xinhui

    2008-01-01

    Purification of the total DNA extracted from activated sludge samples was studied. The effects of extraction buffers and lysis treatments (lysozyme, sodium dodecyl sulfate (SDS), sonication, mechanical mill and thermal shock) on yield and purity of the total DNA extracted from activated sludge were investigated. It was found that SDS and mechanical mill were the most effective ways for cell lysis, and both gave the highest DNA yields, while by SDS and thermal shock, the purest DNA extract could be obtained. The combination of SDS with other lysis treatment, such as sonication and thermal shock, could apparently increase the DNA yields but also result in severe shearing. For the purification of the crude DNA extract, polyvinyl polypyrrolidone was used for the removal of humic contaminants. Cetyltrimethyl ammonium bromide, potassium acetate and phenol/chloroform were used to remove proteins and polysaccharides from crude DNA. Crude DNA was further purified by isopropanol precipitation. Thus, a suitable protocol was proposed for DNA extraction, yielding about 49.9 mg (total DNA)/g volatile suspended solids, and the DNA extracts were successfully used in PCR amplifications for 16S rDNA and 16S rDNA V3 region. The PCR products of 16S rDNA V3 region allowed the DGGE analysis (denatured gradient gel electrophoresis) to be possible. PMID:18572527

  11. Grazing by protozoa as selection factor for activated sludge bacteria.

    PubMed

    Güde, H

    1979-09-01

    In continuous culture enrichments that were inoculated with activated sludge and were fed with polymeric substrates, freely dispersed single-celled bacteria belonging to theCytophaga group dominated among the initial populations, irrespective of the activated sludge source. These populations were grazed by flagellated protozoa which after several days reached high cell densities. Other morphologic bacterial groups such as spiral-shaped or filamentous bacteria then became dominant. In defined mixed culture experiments with bacterial isolates from the enrichment cultures, it was shown that a "grazing-resistant"Microcyclus strain outgrew aCytophaga strain in the presence of grazing protozoa. In contrast, theCytophaga strain competed successfully with theMicrocyclus strain and with other "grazing-resistant" strains under protozoa-free conditions. Furthermore, it was demonstrated that assumed grazing resistance factors such as floccing or filamentous growth were lost by some of the strains when they were grown for several generations in continuous culture under the same conditions, but in the absence of protozoa. PMID:24232496

  12. Pyrolysis of activated sludge: energy analysis and its technical feasibility.

    PubMed

    Agarwal, Manu; Tardio, James; Venkata Mohan, S

    2015-02-01

    A comprehensive study on the potential of pyrolysis of activated sludge to generate substances that can be used to produce energy was evaluated for its technical and environmental viability. The products of the process viz., pyrolysis gas, pyrolysis oil and char can readily be used by the major energy consumers viz., electricity and transportation. Based on the results obtained it is estimated that a 1 ton capacity process for pyrolysis of activated sludge can serve the electrical needs of a maximum of 239, 95 and 47 Indian houses per day, considering lower middle class, middle class and upper middle class, respectively. In addition the process would also produce the daily methane (CNG) requirement of 128 public transport buses. The process was determined to be technically feasible at low and medium temperatures for both, pyrolysis gas and electrical energy. The gas generated could be utilized as fuel directly while the oil generated would require pretreatment before its potential application. The process is potentially sustainable when commercialized and can self-sustain in continuous mode of operation in biorefinery context. PMID:25451771

  13. Effects of waste activated sludge and surfactant addition on primary sludge hydrolysis and short-chain fatty acids accumulation.

    PubMed

    Ji, Zhouying; Chen, Guanlan; Chen, Yinguang

    2010-05-01

    This paper focused on the effects of waste activated sludge (WAS) and surfactant sodium dodecylbenzene sulfonate (SDBS) addition on primary sludge (PS) hydrolysis and short-chain fatty acids (SCFA) accumulation in fermentation. The results showed that sludge hydrolysis, SCFA accumulation, NH(4)(+)-N and PO(4)(3-)-P release, and volatile suspended solids (VSS) reduction were increased by WAS addition to PS, which were further increased by the addition of SDBS to the mixture of PS and WAS. Acetic, propionic and valeric acids were the top three SCFA in all experiments. Also, the fermentation liquids of PS, PS+WAS, and PS+WAS+SDBS were added, respectively, to municipal wastewater to examine their effects on biological municipal wastewater treatment, and the enhancement of both wastewater nitrogen and phosphorus removals was observed compared with no fermentation liquid addition. PMID:20096564

  14. Effect of low temperature on highly unsaturated fatty acid biosynthesis in activated sludge.

    PubMed

    He, Su; Ding, Li-Li; Xu, Ke; Geng, Jin-Ju; Ren, Hong-Qiang

    2016-07-01

    Low temperature is a limiting factor for the microbial activity of activated sludge for sewage treatment plant in winter. Highly unsaturated fatty acid (UFA) biosynthesis, phospholipid fatty acid (PLFA) constituents and microbial structure in activated sludge at low temperature were investigated. Over 12 gigabases of metagenomic sequence data were generated with the Illumina HiSeq 2000 platform. The result showed 43.11% of phospholipid fatty acid (PLFA) in the activated sludge participated in UFA biosynthesis, and γ-Linolenic could be converted to Arachidonic acid at low temperature. The highly UFA biosynthesis in activated sludge was n-6 highly UFA biosynthesis, rather than n-3 highly UFA biosynthesis. The microbial community structures of activated sludge were analyzed by PLFA and high-throughput sequencing (HiSeq) simultaneously. Acidovorax, Pseudomonas, Flavobacterium and Polaromonas occupied higher percentage at 5°C, and genetic changes of highly UFA biosynthesis derived from microbial community structures change. PMID:27035483

  15. Toxic influence of silver and uranium salts on activated sludge of wastewater treatment plants and synthetic activated sludge associates modeled on its pure cultures.

    PubMed

    Tyupa, Dmitry V; Kalenov, Sergei V; Skladnev, Dmitry A; Khokhlachev, Nikolay S; Baurina, Marina M; Kuznetsov, Alexander Ye

    2015-01-01

    Toxic impact of silver and uranium salts on activated sludge of wastewater treatment facilities has been studied. Some dominating cultures (an active nitrogen fixer Agrobacterium tumifaciens (A.t) and micromyces such as Fusarium nivale, Fusarium oxysporum, and Penicillium glabrum) have been isolated and identified as a result of selection of the activated sludge microorganisms being steadiest under stressful conditions. For these cultures, the lethal doses of silver amounted 1, 600, 50, and 300 µg/l and the lethal doses of uranium were 120, 1,500, 1,000, and 1,000 mg/l, respectively. A.tumifaciens is shown to be more sensitive to heavy metals than micromyces. Synthetic granular activated sludge was formed on the basis of three cultures of the isolated micromyces steadiest against stress. Its granules were much more resistant to silver than the whole native activated sludge was. The concentration of silver causing 50 % inhibition of synthetic granular activated sludge growth reached 160-170 μg/l as far as for the native activated sludge it came only to 100-110 μg/l. PMID:25027236

  16. Influence of influent wastewater communities on temporal variation of activated sludge communities.

    PubMed

    Lee, Sang-Hoon; Kang, Hyun-Jin; Park, Hee-Deung

    2015-04-15

    Continuously feeding influent wastewater containing diverse bacterial species to a wastewater treatment activated sludge bioreactor may influence the activated sludge bacterial community temporal dynamics. To explore this possibility, this study tracked influent wastewater and activated sludge bacterial communities by pyrosequencing 16S rRNA genes from four full-scale wastewater treatment plants over a 9-month period. The activated sludge communities showed significantly higher richness and evenness than the influent wastewater communities. Furthermore, the two communities were different in composition and temporal dynamics. These results demonstrate that the impact of the influent wastewater communities on the activated sludge communities was weak. Nevertheless, 4.3-9.3% of the operational taxonomic units (OTUs) detected in the activated sludge were shared with the influent wastewater, implying contribution from influent wastewater communities to some extent. However, the relative OTU abundance of the influent wastewater was not maintained in the activated sludge communities (i.e., weak neutral assembly). In addition, the variability of the communities of the shared OTUs was moderately correlated with abiotic factors imposed to the bioreactors. Taken together, temporal dynamics of activated sludge communities appear to be predominantly explained by species sorting processes in response to influent wastewater communities. PMID:25655320

  17. K basins sludge removal sludge pretreatment system

    SciTech Connect

    Chang, H.L.

    1997-06-12

    The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task for this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08.

  18. Solids Control in Sludge Pretreatment

    SciTech Connect

    Beahm, E.C., Weber, C.F., Hunt, R.D., Dillow, T.A.

    1997-12-31

    Sludge pretreatment will likely involve washing, followed by caustic or acidic leaching and washing of sludge residues after leaching. The principal goal of pretreatment is to obtain a low-volume high-activity waste stream and a high-volume low-activity waste stream. Also, some waste constituents such as chromium and phosphate can be included in glass formulations only at very low concentrations; therefore, it is desirable to remove them from high-level waste streams. Two aspects of sludge treatment and subsequent separations should be well delineated and predictable: (1) the distribution of chemical species between aqueous solutions and solids and (2) potential problems due to chemical interactions that could result in process difficulties or safety concerns.Before any treatment technology is adopted, it must be demonstrated that the process can be carried out as planned. Three pretreatment methods were considered in the Tri-Party (Washington State Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy) negotiations: (1) sludge washing with corrosion- inhibiting water, (2) Enhanced Sludge Washing, and (3)acidic dissolution with separations processes. Enhanced Sludge Washing is the baseline process. In Enhanced Sludge Washing, sludge is first washed with corrosion-inhibiting water; it is then leached with caustic (sodium hydroxide solution) and washed again with corrosion- inhibiting water. The initial concern is whether a pretreatment technique is effective in separating sludge components. This can be evaluated by bench-scale tests with sludge specimens from underground storage tanks. The results give data on the distribution of important species such as aluminum, phosphate, and radionuclides between wash and leach solutions and solid sludge residues.

  19. TANK 32 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect

    Tamburello, D; Richard Dimenna, R; Si Lee, S

    2009-01-27

    The transfer of liquid salt solution from Tank 32 to an evaporator is to be accomplished by activating the evaporator feed pump, with the supernate surface at a minimum height of approximately 74.4 inches above the sludge layer, while simultaneously turning on the downcomer with a flow rate of 110 gpm. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics (CFD) methods to determine the amount of entrained sludge solids pumped out of the tank toward the evaporator with the downcomer turned on. The analysis results shows that, for the minimum tank liquid level of 105 inches above the tank bottom (which corresponds to a liquid depth of 74.4 inches above the sludge layer), the evaporator feed pump will contain less than 0.1 wt% sludge solids in the discharge stream, which is an order of magnitude less than the 1.0 wt% undissolved solids (UDS) loading criteria to feed the evaporator. Lower liquid levels with respect to the sludge layer will result in higher amounts of sludge entrainment due to the increased plunging jet velocity from the downcomer disturbing the sludge layer.

  20. Effect of petrochemical sludge concentrations of changes in mutagenic activity during soil bioremediation process.

    PubMed

    Morelli, I S; Vecchioli, G I; Del Panno, M T; Painceira, M T

    2001-10-01

    The present study was performed to assess the effect of the petrochemical sludge application rate on the mutagenic activity (Ames test) of soil and the persistence of mutagenic activity during laboratory soil bioremediation process. Sludge-soil systems were prepared at four different sludge application rates (1.25, 2.5, 5, and 10% w/w). Unamended soil was used as a control. Immediately following sludge application, in the absence or presence of S9, a linear correlation between sludge application rates and mutagenicity was found but differed significantly (p < 0.05) from the control system only at higher application rates (5 and 10% w/w). The direct mutagenicity of all systems decreases during the bioremediation process, and after a year of treatment only the 10% system induced a mutagenic response that was significantly different from the control system. On the other hand, an initial increase of the indirect mutagenicity was observed at all application rates. The time required for observing this increase was inversely proportional to the initial sludge concentration. After a year of treatment, the indirect mutagenicity of all sludge-amended soils was not significantly different but was significantly different from the unamended soils. The persistence of the direct mutagenic activity of the sludge-amended soils was related to the sludge concentration, whereas the indirect mutagenic persistence was related to the relationship between easily degradable hydrocarbons and polynuclear aromatic hydrocarbons concentration and independent from the initial application rate. PMID:11596747

  1. Effects of oxidation reduction potential in the bypass micro-aerobic sludge zone on sludge reduction for a modified oxic-settling-anaerobic process.

    PubMed

    Li, Kexun; Wang, Yi; Zhang, Zhongpin; Liu, Dongfang

    2014-01-01

    Batch experiments were conducted to determine the effect of oxidation reduction potential (ORP) on sludge reduction in a bypass micro-aerobic sludge reduction system. The system was composed of a modified oxic-settling-anaerobic process with a sludge holding tank in the sludge recycle loop. The ORPs in the micro-aerobic tanks were set at approximately +350, -90, -150, -200 and -250 mV, by varying the length of aeration time for the tanks. The results show that lower ORP result in greater sludge volume reduction, and the sludge production was reduced by 60% at the lowest ORP. In addition, low ORP caused extracellular polymer substances dissociation and slightly reduced sludge activity. Comparing the sludge backflow characteristics of the micro-aerobic tank's ORP controlled at -250 mV with that of +350 mV, the average soluble chemical oxygen (SCOD), TN and TP increased by 7, 0.4 and 2 times, median particle diameter decreased by 8.5 μm and the specific oxygen uptake rate (SOUR) decreased by 0.0043 milligram O2 per gram suspended solids per minute. For the effluent, SCOD and TN and TP fluctuated around 30, 8.7 and 0.66 mg/L, respectively. Therefore, the effective assignment of ORP in the micro-aerobic tank can remarkably reduce sludge volume and does not affect final effluent quality. PMID:24845332

  2. Thermal hydrolysis of waste activated sludge at Hengelo Wastewater Treatment Plant, the Netherlands.

    PubMed

    Oosterhuis, Mathijs; Ringoot, Davy; Hendriks, Alexander; Roeleveld, Paul

    2014-01-01

    The thermal hydrolysis process (THP) is a sludge treatment technique which affects anaerobic biodegradability, viscosity and dewaterability of waste activated sludge (WAS). In 2011 a THP-pilot plant was operated, connected to laboratory-scale digesters, at the water board Regge en Dinkel and in cooperation with Cambi A.S. and MWH Global. Thermal hydrolysis of WAS resulted in a 62% greater volatile solids (VS) reduction compared to non-hydrolysed sludge. Furthermore, the pilot digesters could be operated at a 2.3 times higher solids loading rate compared to conventional sludge digesters. By application of thermal sludge hydrolysis, the overall efficiency of the sludge treatment process can be improved. PMID:25026572

  3. FY 1999 cold demonstration of the Multi-Point Injection (MPI) process for stabilizing contaminated sludge in buried horizontal tanks with limited access at the Oak Ridge National Laboratory

    SciTech Connect

    Kauschinger, J.L.; Lewis, B.E.; Spence, R.D.

    2000-01-01

    A major problem faced by the U.S. Department of Energy is the remediation of buried tank waste. Exhumation of the sludge is currently the preferred remediation method. However, exhumation does not typically remove all the contaminated material from the tank. The best management practices for in-tank treatment of wastes require an integrated approach to develop appropriate treatment agents that can be safely delivered and uniformly mixed with the sludge. Ground Environmental Services, Inc., has developed and demonstrated a remotely controlled, high-velocity, jet-delivery system, which is termed Multi-Point-Injection (MPI{trademark}). This robust jet-delivery system has been used to create homogeneous monoliths containing shallow-buried miscellaneous waste in trenches [fiscal year (FY) 1995] and surrogate sludge in a cylindrical test tank (FY 1998). During the FY 1998 demonstration, the MPI process was able to successfully form a 32-ton uniform monolith in about 8 min. Analytical data indicated that 10 tons of a zeolite-type physical surrogate were uniformly mixed within the 40-inch-thick monolith without lifting the MPI jetting tools off the tank floor. Over 1,000 lb of cohesive surrogates, with consistencies of Gunite and Associated Tanks (GAATs) TH-4 and Hanford tank sludges, were easily mixed into the monolith without exceeding a core temperature of 100 F during curing.

  4. Activity, life time and effect of hydrolytic enzymes for enhanced biogas production from sludge anaerobic digestion.

    PubMed

    Odnell, Anna; Recktenwald, Michael; Stensén, Katarina; Jonsson, Bengt-Harald; Karlsson, Martin

    2016-10-15

    As an alternative to energy intensive physical methods, enzymatic treatment of sludge produced at wastewater treatment plants for increased hydrolysis and biogas production was investigated. Several hydrolytic enzymes were assessed with a focus on how enzyme activity and life time was influenced by sludge environments. It could be concluded that the activity life time of added enzymes was limited (<24 h) in both waste activated sludge and anaerobic digester sludge environments and that this was, for the majority of enzymes, due to endogenous protease activity. In biogas in situ experiments, subtilisin at a 1% mixture on basis of volatile solids, was the only enzyme providing a significantly increased biomethane production of 37%. However, even at this high concentration, subtilisin could not hydrolyze all available substrate within the life time of the enzyme. Thus, for large scale implementation, enzymes better suited to the sludge environments are needed. PMID:27498254

  5. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge.

    PubMed

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-01-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them. PMID:27166174

  6. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-05-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them.

  7. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    PubMed Central

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-01-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them. PMID:27166174

  8. Enrichment and activity of methanotrophic microorganisms from municipal wastewater sludge.

    PubMed

    Siniscalchi, Luciene Alves Batista; Vale, Isabel Campante; Dell'Isola, Jéssica; Chernicharo, Carlos Augusto; Calabria Araujo, Juliana

    2015-01-01

    In this study, methanotrophic microorganisms were enriched from a municipal wastewater sludge taken from an Upflow Anaerobic Sludge Blanket reactor. The enrichment was performed in a sequencing batch reactor (SBR) with an autotrophic medium containing nitrite and nitrate. The microbial community composition of the inoculum and of the enrichment culture after 100 days of SBR operation was investigated and compared with the help of data obtained from 454 pyrosequencing analyses. The nitrite and nitrate removal efficiencies were 68% and 53%, respectively, probably due to heterotrophic denitrification. Archaeal cells of the anaerobic methanotrophic Archaic (ANME)-I and ANME-II groups were detected by polymerase chain reaction throughout the whole cultivation period. Pyrosequencing analysis showed that community composition was different among the two samples analysed. The dominant phyla found in the inoculum were Synergistestes, Firmicutes and Euryarchaeota, while Planctomycetes, Verrucomicrobia, Chloroflexi and Proteobacteria prevailed in the enriched biomass. The cultivation conditions decreased Methanobacterium abundance from 8% to 1%, and enriched for methanotrophic bacteria such as Methylocaldum, Methylocistis and Methylosinus. Sequences of Methylocaldum sp. accounted for 2.5% of the total reads. The presence and high predominance of Verrucomicrobia in the enriched biomass suggested that other unknown methanotrophic species related to that phylum might also have occurred in the reactor. Anaerobic methane oxidation activity was measured for both samples, and showed that the activity of the enrichment culture was nearly three times higher than the activity of the inoculum. Taken together, these results showed that the inoculum type and cultivation conditions were properly suited for methanotrophic enrichment. PMID:25495866

  9. Fenton peroxidation improves the drying performance of waste activated sludge.

    PubMed

    Dewil, Raf; Baeyens, Jan; Neyens, Elisabeth

    2005-01-31

    Advanced sludge treatment processes (AST) reduce the amount of sludge produced and improve the dewaterability, thus probably also affecting the heat transfer properties and the drying characteristics of the sludge. This paper studies the influence of the Fenton peroxidation on the thermal conductivity of the sludge. Results demonstrate that the Fenton's peroxidation positively influences the sludge cake consistency and hence enhances the mechanical dewaterability and the drying characteristics of the dewatered sludge. For the two sludges used in this study, i.e. obtained from the wastewater treatment plants (WWTP) of Tienen and Sint-Niklaas--the dry solids content of the mechanically dewatered sludge increased from 22.5% to 40.3% and from 18.7% to 35.2%, respectively. The effective thermal conductivity k(e) of the untreated and the peroxidized sludges is measured and used to determine the heat transfer coefficient h(s). An average improvement for k(e) of 16.7% (Tienen) and 5.8% (Sint-Niklaas) was observed. Consequently the value of h(s) increased with 15.6% (Tienen) and 5.0% (Sint-Niklaas). This increased heat transfer coefficient in combination with the increased dewaterability has direct implications on the design of sludge dryers. A plate-to-plate calculation of a multiple hearth dryer illustrates that the number of plates required to dry the peroxidized sludge to 90% DS is less than half the number of plates needed to dry untreated sludge. This results in reduced dryer dimensions or a higher capacity for an existing dryer of given dimensions. PMID:15629575

  10. SUMMARY REPORT: THE CAUSES AND CONTROL OF ACTIVATED SLUDGE BULKING AND FOAMING

    EPA Science Inventory

    This 92-page Technology Transfer Summary Report provides reference material on the causes and controls of sludge bulking and foaming in activated sludge treatment that can be readily understood, and it includes sufficient detail to help plant operators control their systems. The ...

  11. Denitrification kinetics in anoxic/aerobic activated sludge systems

    SciTech Connect

    Horne, G.M.

    1998-12-11

    Nitrogen removal needs at municipal wastewater treatment plants (WWTPs) have increased due to greater concerns about eutrophication and increased interest in reuse of treated municipal effluents. Biological processes are the most cost-effective method for nitrogen removal. Biological nitrogen removal is accomplished in two distinctly different processes by the conversion of nitrogen in the wastewater from organic nitrogen and ammonia to nitrate, followed by reduction of the nitrate to nitrogen gas. Nitrate production occurs in an aerobic activated sludge treatment zone during a process called nitrification. The nitrate is then converted through a series of intermediate steps to nitrogen gas in an anoxic zone (an anaerobic condition with nitrate present) during a process called denitrification, effectively removing the nitrogen from the wastewater. Many different WWTP designs have been developed to incorporate these two conditions for nitrogen removal.

  12. Assessing the Nonbiodegradable Fraction of the Thickened Waste Activated Sludge.

    PubMed

    Elbeshbishy, Elsayed; Dhar, Bipro Ranjan; Nakhla, George

    2015-08-01

    In this study, the feasibility of using three methods to estimate the nonbiodegradable fraction of five thickened waste activated sludge (TWAS) samples was evaluated using long-term biochemical methane potential tests at four substrate to biomass ratios. The nonbiodegradable fraction was calculated based on the remaining volatile suspended solids (VSS), remaining total chemical oxygen demand (TCOD), and remaining total organic carbon (TOC). It was evident that the nonbiodegradable fraction of TWAS ranged from 12 to 27%. The average nonbiodegradable fractions of TWAS were 21, 18, and 23% based on remaining VSS, TCOD, and TOC, respectively. The proposed method can be potentially used to characterize biosolids for design and modeling anaerobic treatment processes. PMID:26237686

  13. Apparatus for stabilizing sludge

    SciTech Connect

    Krofta, M.

    1991-05-07

    This patent describes a stabilizer for sludge having a solid content in the range of approximately 3% to 8% dry solid content. It comprises: at least one hollow reactor tank having an inlet and an outlet for the sludge, means for controlling the flow of sludge through the tank so that the tank is substantially filled with the sludge at a hyperbaric pressure, means for introducing microscopic bubble of oxygen and/or ozone gas directly into the sludge within the tank, a mixer mounted within the tank to work the gas bubbles into contact with the sludge, means for driving the mixer. This patent also describes a system for stabilizing sludge such as that produced by a municipal waste water treatment plant. It comprises: a first mixer, a reducer, a second mixer, at least one reactor tank, a metering pump, means for introducing microscopic bubbles of {sub 2} and/or O, means for mechanically mixing the sludge and bubbles, means for controlling the flow of sludge and thickening means.

  14. Nitrogen removal from wastewater and external waste activated sludge reutilization/reduction by simultaneous sludge fermentation, denitrification and anammox (SFDA).

    PubMed

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Zhao, Mengyue; Wang, Shuying

    2016-08-01

    This work demonstrates the feasibility of simultaneous nitrogen removal and external waste activated sludge (WAS) reutilization/reduction by using the synergy of sludge fermentation, denitrification and anammox processes in up-flow reactors (SFDA). Pre-treated domestic wastewater and synthetic wastewater (containing nitrite ∼20mg/L, ammonium ∼10mg/L in both) were fed to 1# and 2# SFDA, respectively. Long-term operation of 1# SFDA was investigated with achieving the peak ammonium removal rate of 0.021 and nitrite removal rate of 0.081kgN/(m(3)d) as nitrogen loading rate elevated from 0.075 to 0.106kgN/(m(3)d). Negative effect of dissolved oxygen on anammox or fermentation in the 2# SFDA was demonstrated negligible due to rapid depletion by microorganisms. Furthermore, a "net" sludge reduction of 38.8% was obtained due to sludge decay and organics consumption by denitrification. The SFDA process was expected to potentially be used for nitrogen removal and WAS reutilization/reduction in full-scale application. PMID:27140818

  15. Activated sludge process: Waste treatment. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    1996-01-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  16. Activated sludge process: Waste treatment. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 250 citations and includes a subject term index and title list.)

  17. Activated sludge process: Waste treatment. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 250 citations and includes a subject term index and title list.)

  18. EVALUATION OF WASTE CITRUS ACTIVATED SLUDGE IN POULTRY FEEDS

    EPA Science Inventory

    Experiments were conducted on chick broilers and hens to determine the metabolizable energy of citrus sludge. A determination of metabolizable energy values showed that the values decreased as the level of citrus sludge in the diet increased. A series of protein levels were fed t...

  19. Activated Sludge. Selected Instructional Activities and References. Instructional Resources Monograph Series.

    ERIC Educational Resources Information Center

    Shepard, Clinton L.; Walasek, James B.

    This monograph contains a variety of selected materials related to wastewater treatment and water quality education and instruction. Part I presents a brief discussion of the activated sludge process in wastewater treatment operations. Part II, Instructional Units, contains selected portions of existing programs which may be utilized in…

  20. On the occurrence of anoxic microniches, denitrification, and sulfate reduction in aerated activated sludge

    SciTech Connect

    Schramm, A.; Santegoeds, C.M.; Nielsen, H.K.; Ploug, H.; Wagner, M.; Pribyl, M.; Wanner, J.; Amann, R.; De Beer, D.

    1999-09-01

    A combination of different methods was applied to investigate the occurrence of anaerobic processes in aerated activated sludge. Microsensor measurements (O{sub 2}, NO{sub 2}{sup {minus}}, NO{sub 3}{sup {minus}}, and H{sub 2}S) were performed on single sludge flocs to detect anoxic niches, nitrate reduction, or sulfate reduction on a microscale. Incubations of activated sludge with {sup 15}NO{sub 3}{sup {minus}} and {sup 35}SO{sub 4}{sup 2{minus}} were used to determine denitrification and sulfate reduction rates on a batch scale. In four of six investigated sludges, no anoxic zones developed during aeration, and consequently denitrification rates were very low. However, in two sludges anoxia in flocs coincided with significant denitrification rates. Sulfate reduction could not be detected in any sludge in either the microsensor or the batch investigation, not even under short-term anoxic conditions. In contrast, the presence of sulfate-reducing bacteria was shown by fluorescence in situ hybridization with 16S rRNA-targeted oligonucleotide probes and by PCR-based detection of genes coding for the dissimilatory sulfite reductase. A possible explanation for the absence of advection, i.e., facilitated by flow through pores and channels. This possibility is suggested by the irregularity of some oxygen profiles and by confocal laser scanning microscopy of the three-dimensional floc structures, which showed that flocs from the two sludges in which anoxic zones were found were apparently denser than flocs from the other sludges.

  1. A comparative evaluation of dried activated sludge and mixed dried activated sludge with rice husk silica to remove hydrogen sulfide

    PubMed Central

    2013-01-01

    The aim of this study was to investigate the effectiveness of dried activated sludge (DAS) and mixed dried activated sludge with rice husk silica (DAS & RHS) for removal of hydrogen sulfide (H2S). Two laboratory-scale filter columns (packed one litter) were operated. Both systems were operated under different conditions of two parameters, namely different inlet gas concentrations and different inlet flow rates. The DAS & RHS packed filter showed more than 99.96% removal efficiency (RE) with empty bed residence time (EBRT) of 45 to 90 s and 300 mg/L inlet concentration of H2S. However, the RE decreased to 96.87% with the EBRT of 30 s. In the same condition, the DAS packed filter showed 99.37% RE. Nonetheless, the RE was shown to have dropped to 82.09% with the EBRT of 30 s. The maximum elimination capacity (EC) was obtained in the DAS & RHS packed filter up to 52.32 g/m3h, with the RE of 96.87% and H2S mass loading rate of 54 g/m3h. The maximum EC in the DAS packed filter was obtained up to 44.33 g/m3h with the RE of 82.09% and the H2S mass loading rate of 54 g/m3h. After 53 days of operating time and 54 g/m3h of loading rates, the maximum pressure drop reached to 3.0 and 8.0 (mm H2O) for the DAS & RHS packed and DAS packed filters, respectively. Based on the findings of this study, the DAS & RHS could be considered as a more suitable packing material to remove H2S. PMID:23497048

  2. Sludge Retention Time as a Suitable Operational Parameter to Remove Both Estrogen and Nutrients in an Anaerobic–Anoxic–Aerobic Activated Sludge System

    PubMed Central

    Zeng, Qingling; Li, Yongmei; Yang, Shijia

    2013-01-01

    Abstract Estrogen in wastewater are responsible for a significant part of the endocrine-disrupting effects observed in the aquatic environment. The effect of sludge retention time (SRT) on the removal and fate of 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) in an anaerobic–anoxic–oxic activated sludge system designed for nutrient removal was investigated by laboratory-scale experiments using synthetic wastewater. With a hydraulic retention time of 8 h, when SRT ranged 10–25 days, E2 was almost completely removed from water, and EE2 removal efficiency was 65%–81%. Both estrogens were easily sorbed onto activated sludge. Distribution coefficients (Kd) of estrogens on anaerobic sludge were greater than those on anoxic and aerobic sludges. Mass balance calculation indicated that 99% of influent E2 was degraded by the activated sludge process, and 1% remained in excess sludge; of influent EE2, 62.0%–80.1% was biodegraded; 18.9%–34.7% was released in effluent; and 0.88%–3.31% remained in excess sludge. Optimal SRT was 20 days for both estrogen and nutrient removal. E2 was almost completely degraded, and EE2 was only partly degraded in the activated sludge process. Residual estrogen on excess sludge must be considered in the sludge treatment and disposal processes. The originality of the work is that removal of nutrients and estrogens were linked, and optimal SRT for both estrogen and nutrient removal in an enhanced biological phosphorus removal system was determined. This has an important implication for the design and operation of full-scale wastewater treatment plants. PMID:23633892

  3. Sludge Retention Time as a Suitable Operational Parameter to Remove Both Estrogen and Nutrients in an Anaerobic-Anoxic-Aerobic Activated Sludge System.

    PubMed

    Zeng, Qingling; Li, Yongmei; Yang, Shijia

    2013-04-01

    Estrogen in wastewater are responsible for a significant part of the endocrine-disrupting effects observed in the aquatic environment. The effect of sludge retention time (SRT) on the removal and fate of 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) in an anaerobic-anoxic-oxic activated sludge system designed for nutrient removal was investigated by laboratory-scale experiments using synthetic wastewater. With a hydraulic retention time of 8 h, when SRT ranged 10-25 days, E2 was almost completely removed from water, and EE2 removal efficiency was 65%-81%. Both estrogens were easily sorbed onto activated sludge. Distribution coefficients (K d) of estrogens on anaerobic sludge were greater than those on anoxic and aerobic sludges. Mass balance calculation indicated that 99% of influent E2 was degraded by the activated sludge process, and 1% remained in excess sludge; of influent EE2, 62.0%-80.1% was biodegraded; 18.9%-34.7% was released in effluent; and 0.88%-3.31% remained in excess sludge. Optimal SRT was 20 days for both estrogen and nutrient removal. E2 was almost completely degraded, and EE2 was only partly degraded in the activated sludge process. Residual estrogen on excess sludge must be considered in the sludge treatment and disposal processes. The originality of the work is that removal of nutrients and estrogens were linked, and optimal SRT for both estrogen and nutrient removal in an enhanced biological phosphorus removal system was determined. This has an important implication for the design and operation of full-scale wastewater treatment plants. PMID:23633892

  4. [Detection of anaerobic processes and microorganisms in immobilized activated sludge of a wastewater treatment plant with intense aeration].

    PubMed

    Litti, Iu V; Nekrasova, V K; Kulikov, N I; Siman'kova, M V; Nozhevnikova, A N

    2013-01-01

    Attached activated sludge from the Krasnaya Polyana (Sochi) wastewater treatment plant was studied after the reconstruction by increased aeration and water recycle, as well as by the installation of a bristle carrier for activated sludge immobilization. The activated sludge biofilms developing under conditions of intense aeration were shown to contain both aerobic and anaerobic microorganisms. Activity of a strictly anaerobic methanogenic community was revealed, which degraded organic compounds to methane, further oxidized by aerobic methanotrophs. Volatile fatty acids, the intermediates of anaerobic degradation of complex organic compounds, were used by both aerobic and anaerobic microorganisms. Anaerobic oxidation of ammonium with nitrite (anammox) and the presence of obligate anammox bacteria were revealed in attached activated sludge biofilms. Simultaneous aerobic and anaerobic degradation of organic contaminants by attached activated sludge provides for high rates of water treatment, stability of the activated sludge under variable environmental conditions, and decreased excess sludge formation. PMID:25509405

  5. Development of an ATP measurement method suitable for xenobiotic treatment activated sludge biomass.

    PubMed

    Nguyen, Lan Huong; Chong, Nyuk-Min

    2015-09-01

    Activated sludge consumes a large amount of energy to degrade a xenobiotic organic compound. By tracking the energy inventory of activated sludge biomass during the sludge's degradation of a xenobiotic, any disadvantageous effect on the sludge's performance caused by energy deficiency can be observed. The purpose of this study was to develop a reliable and accurate method for measuring the ATP contents of activated sludge cells that were to degrade a xenobiotic organic. Cell disruption and cellular ATP extraction were performed by a protocol with which xenobiotic degrading activated sludge biomass was washed with SDS, treated by Tris and TCA, and followed by bead blasting. The suspension of disrupted cells was filtered before the filtrate was injected into HPLC that was set at optimal conditions to measure the ATP concentration therein. This extraction protocol and HPLC measurement of ATP was evaluated for its linearity, limits of detection, and reproducibility. Evaluation test results reported a R(2) of 0.999 of linear fit of ATP concentration versus activated sludge concentration, a LOD=0.00045mg/L, a LOQ=0.0015mg/L for HPLC measurement of ATP, a MDL=0.46mg/g SS for ATP extraction protocol, and a recovery efficiency of 96.4±2%. This method of ATP measurement was simple, rapid, reliable, and was unburdened of some limitations other methods may have. PMID:26210584

  6. TANK 26 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect

    Tamburello, D; Si Lee, S; Richard Dimenna, R

    2008-09-30

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.05 and 0.1 wt% sludge solids weight fraction into the eductor, respectively. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth.

  7. Tank 26 Evaporator Feed Pump Transfer Analysis

    SciTech Connect

    Tamburello, David; Dimenna, Richard; Lee, Si

    2009-02-11

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.03 and 0.1 wt% sludge undissolved solids weight fraction into the eductor, respectively, and therefore are an order of magnitude less than the 1.0 wt% undissolved solids loading criteria to feed the evaporator. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth. Revision 1 clarifies the analysis presented in Revision 0 and corrects a mathematical error in the calculations for Table 4.1 in Revision 0. However, the conclusions and recommendations of the analysis do not change for Revision 1.

  8. Bioproduction of volatile fatty acid from the fermentation of waste activated sludge for in situ denitritation.

    PubMed

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Wang, Shuying

    2016-04-01

    Waste activated sludge (WAS) fermentation integrated with denitritation (the reduction of nitrite to dinitrogen gas) at different pHs was investigated in batch-mode reactors over a 24-day period. The results showed that in comparison with controlled pHs, the volatile fatty acid (VFA) bioproduction for in situ denitritation was significantly improved at uncontrolled pH. VFA fermented from WAS was quickly consumed by denitritation at uncontrolled pH, which accelerated sludge degradation. On the other hand, sludge digestion was benefited from the alkalinity produced from denitritation, while methanogenesis was prohibited by alkalinity and nitrite. The integrated sludge fermentation and denitritation can be cost-effectively applied to wastewater treatment plants, so that organic substrates (e.g., VFAs) are produced for denitritation via simultaneous sludge fermentation, which enables WAS reutilization and enhances nitrogen removal efficiency without the need of external carbon sources. PMID:26475401

  9. Influence of Copper Nanoparticles on the Physical-Chemical Properties of Activated Sludge

    PubMed Central

    Chen, Hong; Zheng, Xiong; Chen, Yinguang; Li, Mu; Liu, Kun; Li, Xiang

    2014-01-01

    The physical-chemical properties of activated sludge, such as flocculating ability, hydrophobicity, surface charge, settleability, dewaterability and bacteria extracellular polymer substances (EPS), play vital roles in the normal operation of wastewater treatment plants (WWTPs). The nanoparticles released from commercial products will enter WWTPs and can induce potential adverse effects on activated sludge. This paper focused on the effects of copper nanoparticles (CuNPs) on these specific physical-chemical properties of activated sludge. It was found that most of these properties were unaffected by the exposure to lower CuNPs concentration (5 ppm), but different observation were made at higher CuNPs concentrations (30 and 50 ppm). At the higher CuNPs concentrations, the sludge surface charge increased and the hydrophobicity decreased, which were attributed to more Cu2+ ions released from the CuNPs. The carbohydrate content of EPS was enhanced to defense the toxicity of CuNPs. The flocculating ability was found to be deteriorated due to the increased cell surface charge, the decreased hydrophobicity, and the damaged cell membrane. The worsened flocculating ability made the sludge flocs more dispersed, which further increased the toxicity of the CuNPs by increasing the availability of the CuNPs to the bacteria present in the sludge. Further investigation indicated that the phosphorus removal efficiency decreased at higher CuNPs concentrations, which was consistent with the deteriorated physical-chemical properties of activated sludge. It seems that the physical-chemical properties can be used as an indicator for determining CuNPs toxicity to the bacteria in activated sludge. This work is important because bacteria toxicity effects to the activated sludge caused by nanoparticles may lead to the deteriorated treatment efficiency of wastewater treatment, and it is therefore necessary to find an easy way to indicate this toxicity. PMID:24663333

  10. Sludge Batch 2 (Macrobatch 3) Rheology Studies with Simulants

    SciTech Connect

    Koopman, D.C.

    2001-05-02

    Non-radioactive sludge-only process simulations of the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) cycles were conducted for a 50:50 blend of Tank 8 and Tank 40 washed sludge and Tank 40 washed sludge by itself. Rheological characterization of the sludge, SRAT product, and SME product material was requested as part of the simulant program.

  11. Molecularly imprinted polymer microspheres enhanced biodegradation of bisphenol A by acclimated activated sludge.

    PubMed

    Xie, Ya-ting; Li, Hai-bin; Wang, Ling; Liu, Qian; Shi, Yun; Zheng, Hai-yan; Zhang, Meng; Wu, Ya-ting; Lu, Bin

    2011-01-01

    The impacts of bisphenol A- imprinted polymeric microspheres (MIPMs) on the biodegradation of bisphenol A by acclimated activated sludge were studied. Due to the selective adsorption of MIPMs to bisphenol A (BPA) and its analogues, addition of MIPMs to activated sludge increased levels of BPA and its metabolites, which were also the substrates of biodegradation. Higher substrates (BPA and its metabolites) level promoted biodegradation efficiencies of activated sludge via accelerating removal speed of BPA and its metabolites, increasing degradation rate and decreasing half-lives of biodegradation. The enhancement of MIPMs in degradation efficiencies was more significant in environmental water containing low-level of pollutants, and water containing interferences such as heavy metals and humic acid. Furthermore, MIPMs were more suitable than non-selective sorbents such as active carbon to be used as enhancer for BPA biodegradation. MIPMs combined with activated sludge are simple, effective, environmental-friendly processes to biodegrade low-level pollutants in environmental water. PMID:21131017

  12. [Using Excess Activated Sludge Treated 4-Chlorophenol Contained Waste Water to Cultivate Chlorella vulgaris].

    PubMed

    Wang, Lu; Chen, Xiu-rong; Yan, Long; He, Yi-xuan; Shi, Zhen-dong

    2015-04-01

    Using different rations of sludge extracts and supernate from 4-Chlorophenol (4-CP) simulated wastewater's excess sludge after centrifugation to cultivate the Chlorella vulgaris to achieve the goal of excess sludge utilization together with chlorella cultivating. The experiments were performed in 500 mL flasks with different rations of sludge extracts & BG-11 and supernate & BG-11 in a light growth chamber respectively. Number of algal cells, Chlorophyll, enzyme activity, oil and water total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), toxicity index were investigated. Result showed that the nutrition supplies and toxicity in the excess sludge were removed efficiently via Chlorella vulgaris, the removal rates of TN and TP were at least 40% and 90% respectively; After 10 days cultivation, the density growth of 50% sludge extracts was 20 times higher of the beginning while its chlorophyll content was lower than that of the blank group. Sludge extracts could promote the proliferation of algae, but were not conducive to the synthesis of chlorophyll. The quantity of SOD in per cell showed Chlorella vulgaris gave a positive response via stimulation from toxicant in sludge extracts and supernate. The best time for collecting chlorella vulgaris was the fifth day of cultivation, taking neutral oil accumulation as the evaluating indicator for its utilization combined with the removal of supplies and toxicity. PMID:26164919

  13. Performance of calcium peroxide for removal of endocrine-disrupting compounds in waste activated sludge and promotion of sludge solubilization.

    PubMed

    Zhang, Ai; Wang, Jie; Li, Yongmei

    2015-03-15

    Removal of six phenolic endocrine disrupting compounds (EDCs) (estrone, 17β-estradiol, 17α-ethinylestradiol, estriol, bisphenol A, and 4-nonylphenols) from waste activated sludge (WAS) was investigated using calcium peroxide (CaO2) oxidation. Effects of initial pH and CaO2 dosage were investigated. The impacts of CaO2 treatment on sludge solubilization and anaerobic digestion were also evaluated. Specifically, the role of reactive oxygen species (ROS) in EDC degradation during CaO2 oxidation was tested. Effects of 6 metal ions contained in the sludge matrix on EDC degradation were also evaluated. The results showed that CaO2 treatment can be a promising technology for EDC removal and facilitating sludge reuse. The EDC removal efficiencies increased with the increase in CaO2 dosage. At CaO2 doses of more than 0.34 g per gram of total solid (g g(-1) TS), more than 50% of EDCs were removed in a wide pH range of 2-12. Higher removal efficiencies were achieved at initial pH values of 12 and 2. The products of EDCs during CaO2 oxidation had less estrogenic activity than the originals. Under the conditions of neutral pH and CaO2 dosage = 0.34 g g(-1) TS, the sludge solubilization can be improved by increasing the soluble total organic carbon (STOC) and volatile suspended solids (VSS) reduction by 25% and 27% in 7 d, respectively; the volatile fatty acid (VFA) production was enhanced by 96% in the 15 d following anaerobic digestion. The ROS released by CaO2 are the main factors contributing to EDC removal, among which, hydroxyl radicals (OH) play the most important role. Metal ions contained in the sludge matrix also affected EDC removal. For most cases, Fe, Cu, and Zn had positive effects; Mn and Ag had negative effects; and Mg had an insignificant effect on EDC removal. PMID:25613412

  14. SOLIDIFICATION OF THE HANFORD LAW WASTE STREAM PRODUCED AS A RESULT OF NEAR-TANK CONTINUOUS SLUDGE LEACHING AND SODIUM HYDROXIDE RECOVERY

    SciTech Connect

    Reigel, M.; Johnson, F.; Crawford, C.; Jantzen, C.

    2011-09-20

    The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge can be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than the

  15. Incorporation of hydrophobized mineral particles in activated sludge flocs: a way to assess ballasting efficiency.

    PubMed

    Defontaine, G; Thormann, J; Lartiges, B S; El Samrani, A G; Barrs, O

    2005-01-01

    The role of mineral surface hydrophobicity in attachment to activated sludge flocs was investigated. Fluorite and quartz particles of similar granulometry were hydrophobized by adsorbing sodium oleate and dodecylamine chloride, respectively. Mineral hydrophobicity was assessed by flotation expriments. The attachment of particles to microbial flocs was determined by optical microscopy. The results indicate that hydrophobized particles are always better incorporated within activated sludge flocs than non-coated particles. A comparison with Aquatal particles used as sludge ballast reveals that hydrophobized minerals are associated with microbial flocs to the same extent. PMID:16459790

  16. In-situ measurement of ammonium and nitrate in the activated sludge process.

    PubMed

    Rieger, L; Siegrist, H; Winkler, S; Saracevic, E; Votava, R; Nadler, J

    2002-01-01

    A new in-situ probe is presented for the continuous measurement of ammonium and nitrate in wastewater. It requires no sample preparation and is installed directly in the process liquid. This new low-cost probe significantly reduces investment and operating costs and requires minimum maintenance. The paper describes the sensor principle and test results from three different probe locations: the primary clarifier effluent, the activated sludge tank and the nitrifying biofilter influent. Reference measurements were carried out by means of conventional analyzers with ultrafiltration, an in-situ UV spectrometer for the nitrate and laboratory analysis of spot and 2h-composite samples. The aim of the study was to investigate the operational reliability and accuracy of the new probe and the expenditure required for its maintenance and calibration. The tests showed that the new probe performed very well overall and required minimum maintenance. Some problems were observed during the biofilter plant test. They are assumed to be related to substantial changes in the wastewater composition. PMID:11936681

  17. Dynamics of effluent treatment plant during commissioning of activated sludge process unit.

    PubMed

    Bafana, Amit; Kumar, Gulshan; Kashyap, Sanjay M; Kanade, Gajanan S; Shinde, Vilas M

    2015-03-01

    Industrial effluent treatment plants (ETPs) are very important in protecting the environment and different life forms from harmful industrial waste. Hence, the efficiency of ETPs must be regularly monitored, particularly after major repair or replacement work. Present study evaluated the performance of an ETP over a period of 4 months, during which aeration tank (T1) of the activated sludge unit was replaced with a new one (T2). System had to be maintained operational during this transition, which warranted close monitoring of the system performance due to the daily load of hazardous industrial wastewater. Analysis showed that the raw wastewater was highly variable in composition and contained many hazardous organic and inorganic pollutants, such as heavy metals, bisphenol A and cyanoacetylurea. It showed significant toxicity against HepG2 cells in vitro. However, the ETP was found to successfully treat and detoxify the wastewater. Denaturing gradient gel electrophoresis (DGGE) analysis showed large temporal fluctuations in the ETP microbial community, which is consistent with the variable composition of wastewater. It indicated that functional stability of the ETP was not associated with stability of the microbial community, probably due to high microbial biodiversity and consequently high functional redundancy. In conclusion, the CETP showed consistent level of detoxification and microbial community dynamics after switching to T2, indicating successful development, acclimatization and commissioning of T2. PMID:25249053

  18. [Activated Sludge Bacteria Transforming Cyanopyridines and Amides of Pyridinecarboxylic Acids].

    PubMed

    Demakov, V A; Vasil'ev, D M; Maksimova, Yu G; Pavlova, Yu A; Ovechkina, G V; Maksimov, A Yu

    2015-01-01

    Species diversity of bacteria from the activated sludge of Perm biological waste treatment facilities capable of transformation of cyanopyridines and amides of pyridinecarboxylic acids was investigated. Enrichment cultures in mineral media with 3-cyanopyridine as the sole carbon and nitrogen source were used to obtain 32 clones of gram-negative heterotrophic bacteria exhibiting moderate growth on solid and liquid media with 3- and 4-cyanopyridine. Sequencing of the 16S rRNA gene fragments revealed that the clones with homology of at least 99% belonged to the genera Acinetobacte, Alcaligenes, Delftia, Ochrobactrum, Pseudomonas, Stenotrophomonas, and Xanthobacter. PCR analysis showed that 13 out of 32 isolates contained the sequences (-1070 bp) homologous to the nitrilase genes reported previously in Alcaligenes faecalis JM3 (GenBank, D13419.1). Nine clones were capable of nitrile and amide transformation in minimal salt medium. Acinetobacter sp. 11 h and Alcaligenes sp. osv transformed 3-cyanopyridine to nicotinamide, while most of the clones possessed amidase activity (0.5 to 46.3 mmol/(g h) for acetamide and 0.1 to 5.6 mmol/(g h) for nicotinamide). Nicotinamide utilization by strain A. faecalis 2 was shown to result in excretion of a secondary metabolite, which was identified as dodecyl acrylate at 91% probability. PMID:26263697

  19. Activated sludge studies of selected contaminants of PFH wastewater

    SciTech Connect

    Dudley, S.K.; Bustamante, R.B.; Bonner, W.P.

    1991-12-31

    Acetone, propionitrile, pyrrole, and thiocyanate were selected as representative compounds of wastewater expected from pressurized, fluidized-bed hydroretorting (PFH) of Eastern oil shales. The PFH process has been the subject of investigation by the Institute of Gas Technology, under contract with the United States Department of Energy, for the purpose of obtaining higher oil yields from Eastern shales than has been possible using conventional retorting methods. Preliminary batch experiments illustrated that acetone, propionitrile, pyrrole, and thiocyanate are aerobically biodegradable by heterogeneous microbiological cultures. Three continuous flow activated sludge reactors were used to further evaluate the biological treatability of the synthetic waste. The studies revealed that the compounds could be removed at hydraulic residence times of as low as one day. Three one-day experiments demonstrated that biological system`s capability to accept organic shock loadings without a change in effluent quality. A no-recycle reactor illustrated that the flocculent microbiological population had a high resistance to solids washout. Because a supplementary nitrogen source was not included in synthetic waste treated by the no-recycle unit, it was shown that propionitrile, pyrrole, and/or thiocyanate supplied the nitrogen necessary for biological activity.

  20. Activated sludge studies of selected contaminants of PFH wastewater

    SciTech Connect

    Dudley, S.K. ); Bustamante, R.B.; Bonner, W.P. )

    1991-01-01

    Acetone, propionitrile, pyrrole, and thiocyanate were selected as representative compounds of wastewater expected from pressurized, fluidized-bed hydroretorting (PFH) of Eastern oil shales. The PFH process has been the subject of investigation by the Institute of Gas Technology, under contract with the United States Department of Energy, for the purpose of obtaining higher oil yields from Eastern shales than has been possible using conventional retorting methods. Preliminary batch experiments illustrated that acetone, propionitrile, pyrrole, and thiocyanate are aerobically biodegradable by heterogeneous microbiological cultures. Three continuous flow activated sludge reactors were used to further evaluate the biological treatability of the synthetic waste. The studies revealed that the compounds could be removed at hydraulic residence times of as low as one day. Three one-day experiments demonstrated that biological system's capability to accept organic shock loadings without a change in effluent quality. A no-recycle reactor illustrated that the flocculent microbiological population had a high resistance to solids washout. Because a supplementary nitrogen source was not included in synthetic waste treated by the no-recycle unit, it was shown that propionitrile, pyrrole, and/or thiocyanate supplied the nitrogen necessary for biological activity.

  1. Combined System of Activated Sludge and Ozonation for the Treatment of Kraft E1 Effluent

    PubMed Central

    Assalin, Marcia Regina; dos Santos Almeida, Edna; Durán, Nelson

    2009-01-01

    The treatment of paper mill effluent for COD, TOC, total phenols and color removal was investigated using combined activated sludge-ozonation processes and single processes. The combined activated sludge-O3/pH 10 treatment was able to remove around 80% of COD, TOC and color from Kraft E1 effluent. For the total phenols, the efficiency removal was around 70%. The ozonation post treatment carried out at pH 8.3 also showed better results than the single process. The COD, TOC, color and total phenols removal efficiency obtained were 75.5, 59.1, 77 and 52.3%, respectively. The difference in the concentrations of free radical produced by activated sludge-O3/pH 10 and activated sludge-O3/pH 8.3 affected mainly the TOC and total phenol removal values. PMID:19440438

  2. EVIDENCE THAT MICROORGANISMS CAUSE INACTIVATION OF VIRUSES IN ACTIVATED SLUDGE (JOURNAL VERSION)

    EPA Science Inventory

    Virus loss in activated sludge appeared to be caused by microorganisms. This conclusion is supported by the finding that poliovirus infectivity decreased during incubation in mixed-liquor suspended solids, primarily because of a sedimentable, heat-sensitive component. Furthermore...

  3. Improved computational model (AQUIFAS) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, Part I: Semi-empirical model development.

    PubMed

    Sen, Dipankar; Randall, Clifford W

    2008-05-01

    Research was undertaken to develop a model for activated sludge, integrated fixed-film activated sludge (IFAS), and moving-bed biofilm reactor (MBBR) systems. The model can operate with up to 12 cells (reactors) in series, with biofilm media incorporated to one or more cells, except the anaerobic cells. The process configuration can be any combination of anaerobic, anoxic, aerobic, post-anoxic with or without supplemental carbon, and reaeration; it can also include any combination of step feed and recycles, including recycles for mixed liquor, return activated sludge, nitrates, and membrane bioreactors. This paper presents the structure of the model. The model embeds a biofilm model into a multicell activated sludge model. The biofilm flux rates for organics, nutrients, and biomass can be computed by two methods--a semi-empirical model of the biofilm that is relatively simpler, or a diffusional model that is computationally intensive. The values of the kinetic parameters for the model were measured using pilot-scale activated sludge, IFAS, and MBBR systems. For the semiempirical version, a series of Monod equations were developed for chemical oxygen demand, ammonium-nitrogen, and oxidized-nitrogen fluxes to the biofilm. Within the equations, a second Monod expression is used to simulate the effect of changes in biofilm thickness and fraction nitrifiers in the biofilm. The biofilm flux model is then linked to the activated sludge model. The diffusional model and the verification of the models are presented in subsequent papers (Sen and Randall, 2008a, 2008b). The model can be used to quantify the amount of media and surface area required to achieve nitrification, identify the best locations for the media, and optimize the dissolved oxygen levels and nitrate recycle rates. Some of the advanced features include the ability to apply different media types and fill fractions in cells; quantify nitrification, denitrification, and biomass production in the biofilm and

  4. Effect of humic acid in leachate on specific methanogenic activity of anaerobic granular sludge.

    PubMed

    Guo, Mengfei; Xian, Ping; Yang, Longhui; Liu, Xi; Zhan, Longhui; Bu, Guanghui

    2015-01-01

    In order to find out the effects of humic acid (HA) in anaerobic-treated landfill leachate on granular sludge, the anaerobic biodegradability of HA as well as the influences of HA on the total cumulative methane production, the anaerobic methanization process and the specific methanogenic activity (SMA) of granular sludge are studied in this paper. Experimental results show that as a non-biodegradable organic pollutant, HA is also difficult to be decomposed by microbes in the anaerobic reaction process. Presence of HA and changes in the concentration have no significant influences on the total cumulative methane production and the anaerobic methanization process of granular sludge. Besides, the total cumulative methane production cannot reflect the inhibition of toxics on the methanogenic activity of granular sludge on the premise of sufficient reaction time. Results also show that HA plays a promoting role on SMA of granular sludge. Without buffering agent the SMA value increased by 19.2% on average due to the buffering and regulating ability of HA, while with buffering agent the SMA value increased by 5.4% on average due to the retaining effect of HA on the morphology of the sludge particles. However, in the presence of leachate the SMA value decreased by 27.6% on average, because the toxic effect of the toxics in the leachate on granular sludge is much larger than the promoting effect of HA. PMID:25915186

  5. Comparison of extracellular polymeric substances (EPS) extraction from two different activated sludges.

    PubMed

    Zhang, Leiyan; Ren, Hongqiang; Ding, Lili

    2012-01-01

    The characteristics of extracellular polymeric substances (EPS) extracted with five different extraction protocols from two different activated sludges were studied. The results showed that the major EPS constituent extracted by centrifugation was protein for the sludge in sequencing batch reactor treating chemical wastewater, and nucleic acid for the sludge in moving bed biofilm reactor treating synthetic urban wastewater. The order of EPS extraction amounting from the two sludges was formaldehyde + NaOH > formaldehyde + heating > EDTA > heating > centrifugation. The different extraction methods, the wastewater type, and activated sludge source greatly affected the amount and composition of EPS. The chemical extracted methods were more effective than the physical methods in extracting EPS for the two sludges. Moreover, formaldehyde combined NaOH was most effective in extracting EPS for the two sludges. However, chemical extraction could contaminate the EPS solution, which was pointed out by infra-red analysis and was also proved by cell lyses during EPS extraction and carrying over of the chemical extractant. Therefore, this study highlights that the choice of EPS extraction method should consider both the extraction yield and content and the contamination of extracting reagents to the EPS solution. The extraction procedures should be optimized and most effective. PMID:22864444

  6. Biotransformation and adsorption of pharmaceutical and personal care products by activated sludge after correcting matrix effects.

    PubMed

    Deng, Yu; Li, Bing; Yu, Ke; Zhang, Tong

    2016-02-15

    This study reported significant suppressive matrix effects in analyses of six pharmaceutical and personal care products (PPCPs) in activated sludge, sterilized activated sludge and untreated sewage by ultra-performance liquid chromatography-tandem mass spectrometry. Quantitative matrix evaluation on selected PPCPs supplemented the limited quantification data of matrix effects on mass spectrometric determination of PPCPs in complex environment samples. The observed matrix effects were chemical-specific and matrix-dependent, with the most pronounced average effect (-55%) was found on sulfadiazine in sterilized activated sludge. After correcting the matrix effects by post-spiking known amount of PPCPs, the removal mechanisms and biotransformation kinetics of selected PPCPs in activated sludge system were revealed by batch experiment. Experimental data elucidated that the removal of target PPCPs in the activated sludge process was mainly by biotransformation while contributions of adsorption, hydrolysis and volatilization could be neglected. High biotransformation efficiency (52%) was observed on diclofenac while other three compounds (sulfadiazine, sulfamethoxazole and roxithromycin) were partially biotransformed by ~40%. The other two compounds, trimethoprim and carbamazepine, showed recalcitrant to biotransformation of the activated sludge. PMID:26706769

  7. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    PubMed

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems. PMID:25727891

  8. Biodegradation of imidazolium ionic liquids by activated sludge microorganisms.

    PubMed

    Liwarska-Bizukojc, Ewa; Maton, Cedric; Stevens, Christian V

    2015-11-01

    Biological properties of ionic liquids (ILs) have been usually tested with the help of standard biodegradation or ecotoxicity tests. So far, several articles on the identification of intermediate metabolites of microbiological decay of ILs have been published. Simultaneously, the number of novel ILs with unrecognized characteristics regarding biodegradability and effect on organisms and environment is still increasing. In this work, seven imidazolium ionic liquids of different chemical structure were studied. Three of them are 1-alkyl-3-methyl-imidazolium bromides, while the other four are tetra- or completely substituted imidazolium iodides. This study focused on the identification of intermediate metabolites of the aforementioned ionic liquids subjected to biodegradation in a laboratory activated sludge system. Both fully substituted ionic liquids and 1-ethyl-3-methyl-imidazolium bromide were barely biodegradable. In the case of two of them, no biotransformation products were detected. The elongation of the alkyl side chain made the IL more susceptible for microbiological decomposition. 1-Decyl-3-methyl-imidazolium bromide was biotransformed most easily. Its primary biodegradation up to 100 % could be achieved. Nevertheless, the cleavage of the imidazolium ring has not been observed. PMID:26463469

  9. Aerobic activated sludge transformation of methotrexate: identification of biotransformation products.

    PubMed

    Kosjek, Tina; Negreira, Noelia; de Alda, Miren López; Barceló, Damià

    2015-01-01

    This study describes the biotransformation of cytostatic and immunosuppressive pharmaceutical methotrexate. Its susceptibility to microbiological breakdown was studied in a batch biotransformation system, in presence or absence of carbon source and at two activated sludge concentrations. The primary focus of the present study are methotrexate biotransformation products, which were tentatively identified by the ultra-high performance liquid chromatography-quadrupole--Orbitrap-MS. Data-dependent experiments, combining full-scan MS data with product ion spectra were acquired, in order to identify the molecular ions of methotrexate transformation products, to propose the molecular formulae and to elucidate their chemical structures. Among the identified transformation products 2,4-diamino-N10-methyl-pteroic acid is most abundant and persistent. Other biotransformation reactions involve demethylation, oxidative cleavage of amine, cleavage of C-N bond, aldehyde to carboxylate transformation and hydroxylation. Finally, a breakdown pathway is proposed, which shows that most of methotrexate breakdown products retain the diaminopteridine structural segment. In total we propose nine transformation products, among them eight are described as methotrexate transformation products for the first time. PMID:24835159

  10. A hundred years of activated sludge: time for a rethink

    PubMed Central

    Sheik, Abdul R.; Muller, Emilie E. L.; Wilmes, Paul

    2014-01-01

    Biological wastewater treatment plants (BWWTPs) based on the activated sludge (AS) process have dramatically improved worldwide water sanitation despite increased urbanization and industrialization. However, current AS-based operations are considered economically and environmentally unsustainable. In this Perspective, we discuss our current understanding of microbial populations and their metabolic transformations in AS-based BWWTPs in view of developing more sustainable processes in the future. In particular, much has been learned over the course of the past 25 years about specialized microorganisms, which could be more comprehensively leveraged to recover energy and/or nutrients from wastewater streams. To achieve this, we propose a bottom-up design approach, focused around the concept of a “wastewater biorefinery column”, which would rely on the engineering of distinct ecological niches into a BWWTP in order to guarantee the targeted enrichment of specific organismal groups which in turn will allow the harvest of high-value resources from wastewater. This concept could be seen as a possible grand challenge to microbial ecologists and engineers alike at the centenary of the discovery of the AS process. PMID:24624120

  11. Integration of microbial fuel cell techniques into activated sludge wastewater treatment processes to improve nitrogen removal and reduce sludge production.

    PubMed

    Gajaraj, Shashikanth; Hu, Zhiqiang

    2014-12-01

    Bioelectrochemical systems are emerging for wastewater treatment, yet little is known about how well they can be integrated with current wastewater treatment processes. In this bench-scale study, the microbial fuel cell (MFC) technique was incorporated into the Modified Ludzack-Ettinger (MLE) process (phase I) and later with the membrane bioreactor (MBR) process (phase II) to evaluate the performance of MFC assisted wastewater treatment systems (i.e., MLE-MFC and MBR-MFC). There was no significant difference in the effluent NH4(+)-N concentration between the systems integrating MFC and the open circuit controls. The average effluent COD concentration was significantly lower in the MLE-MFC, but it did not change much in the MBR-MFC because of the already low COD concentrations in MBR operation. The MLE-MFC and MBR-MFC systems increased the NO3(-)-N removal efficiencies by 31% (±12%) and 20% (±12%), respectively, and reduced sludge production by 11% and 6%, respectively, while generating an average voltage of 0.13 (±0.03) V in both systems. Analysis of the bacterial specific oxygen uptake rate, the sludge volume index, and ammonia-oxidizing bacterial population (dominated by Nitrosomonas through terminal restriction fragment length polymorphism analysis) indicated that there was no significant difference in sludge activity, settling property, and nitrifying community structure between the MFC assisted systems and the open circuit controls. The results suggest that the wastewater treatment systems could achieve higher effluent water quality and lower sludge production if it is integrated well with MFC techniques. PMID:25014565

  12. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    SciTech Connect

    Y Onishi; KP Recknagle; BE Wells

    2000-08-09

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m{sup 3}) of supernatant liquid and 95,000 gallons (360 m{sup 3}) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom.

  13. Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production.

    PubMed

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Qilin; Ding, Jie; Ren, Nan-Qi

    2016-04-15

    Waste activated sludge is a valuable resource containing multiple nutrients, but is currently treated and disposed of as an important source of pollution. In this work, waste activated sludge after ultrasound pretreatment was reused as multiple nutrients for biofuel production. The nutrients trapped in sludge floc were transferred into liquid medium by ultrasonic disintegration during first 30 min, while further increase of pretreatment time only resulted in slight increase of nutrients release. Hydrogen production by Ethanoligenens harbinense B49 from glucose significantly increased with the concentration of ultrasonic sludge, and reached maximum yield of 1.97 mol H2/mol glucose at sludge concentration of 7.75 g volatile suspended solids/l. Without addition of any other chemicals, waste molasses rich in carbohydrate was efficiently turned into hydrogen with yield of 189.34 ml H2/g total sugar by E. harbinense B49 using ultrasonic sludge as nutrients. The results also showed that hydrogen production using pretreated sludge as multiple nutrients was higher than those using standard nutrients. Acetic acid produced by E. harbinense B49 together with the residual nutrients in the liquid medium were further converted into hydrogen (271.36 ml H2/g total sugar) by Rhodopseudomonas faecalis RLD-53 through photo fermentation, while ethanol was the sole end product with yield of 220.26 mg/g total sugar. Thus, pretreated sludge was an efficient nutrients source for biofuel production, which could replace the standard nutrients. This research provided a novel strategy to achieve environmental friendly sludge disposal and simultaneous efficient biofuel recovery from organic waste. PMID:26896823

  14. Is anaerobic digestion effective for the removal of organic micropollutants and biological activities from sewage sludge?

    PubMed

    Gonzalez-Gil, L; Papa, M; Feretti, D; Ceretti, E; Mazzoleni, G; Steimberg, N; Pedrazzani, R; Bertanza, G; Lema, J M; Carballa, M

    2016-10-01

    The occurrence of emerging organic micropollutants (OMPs) in sewage sludge has been widely reported; nevertheless, their fate during sludge treatment remains unclear. The objective of this work was to study the fate of OMPs during mesophilic and thermophilic anaerobic digestion (AD), the most common processes used for sludge stabilization, by using raw sewage sludge without spiking OMPs. Moreover, the results of analytical chemistry were complemented with biological assays in order to verify the possible adverse effects (estrogenic and genotoxic) on the environment and human health in view of an agricultural (re)use of digested sludge. Musk fragrances (AHTN, HHCB), ibuprofen (IBP) and triclosan (TCS) were the most abundant compounds detected in sewage sludge. In general, the efficiency of the AD process was not dependent on operational parameters but compound-specific: some OMPs were highly biotransformed (e.g. sulfamethoxazole and naproxen), while others were only slightly affected (e.g. IBP and TCS) or even unaltered (e.g. AHTN and HHCB). The MCF-7 assay evidenced that estrogenicity removal was driven by temperature. The Ames test did not show point mutation in Salmonella typhimurium while the Comet test exhibited a genotoxic effect on human leukocytes attenuated by AD. This study highlights the importance of combining chemical analysis and biological activities in order to establish appropriate operational strategies for a safer disposal of sewage sludge. Actually, it was demonstrated that temperature has an insignificant effect on the disappearance of the parent compounds while it is crucial to decrease estrogenicity. PMID:27344252

  15. Parameter identification and modeling of the biochemical methane potential of waste activated sludge.

    PubMed

    Appels, Lise; Lauwers, Joost; Gins, Geert; Degrève, Jan; Van Impe, Jan; Dewil, Raf

    2011-05-01

    Anaerobic digestion is widely used in waste activated sludge treatment. In this paper, partial least-squares (PLS) is employed to identify the parameters that are determining the biochemical methane potential (BMP) of waste activated sludge. Moreover, a model is developed for the prediction of the BMP. A strong positive correlation is observed between the BMP and volatile fatty acids and carbohydrate concentrations in the sludge. A somewhat weaker correlation with COD is also present. Soluble organics (sCOD, soluble carbohydrates and soluble proteins) were shown not to influence the BMP in the observed region. This finding could be most-valuable in the context of application of sludge pretreatment methods. The obtained model was able to satisfactory predict the BMP. PMID:21476497

  16. Comparison of imidazolium ionic liquids and traditional organic solvents: effect on activated sludge processes.

    PubMed

    Gendaszewska, Dorota; Liwarska-Bizukojc, Ewa

    2013-01-01

    Data concerning the biodegradability and ecotoxicity of ionic liquids (ILs) obtained so far are insufficient in the context of IL removal from wastewater in activated sludge systems. Thus, in this work the selected imidazolium ionic liquids and two organic solvents (methanol and acetone) were tested with respect to their influence on activated sludge processes, particularly on the morphology of sludge flocs. The presence of ionic liquids with the chemical structure of 1-alkyl-3-methyl imidazolium bromide in wastewater did not deteriorate biological wastewater treatment processes if their concentration was not higher than 5 mg l(-1). Regarding the structure of the ILs studied, the longer the alkyl substituent was, the stronger the effect on sludge flocs. The highest decrease in activated sludge floc area and biomass concentration was exerted by the ionic liquid with the longest alkyl chain, i.e. 1-decyl-3-methylimidazolium bromide. The action of both methanol and acetone on floc size, activated sludge concentration and efficiency of organic pollutants removal was weaker compared to all tested 1-alkyl-3-methyl imidazolium bromides. PMID:24355854

  17. Protists as bioindicators in activated sludge: Identification, ecology and future needs.

    PubMed

    Foissner, Wilhelm

    2016-08-01

    When the activated sludge process was developed, operators and scientists soon recognized protists as valuable indicators. However, only when Curds et al. (1968) showed with a few photographs the need of ciliates for a clear plant effluent, sewage protistology began to bloom but was limited by the need of species identification. Still, this is a major problem although several good guides are available. Thus, molecular kits should be developed for identification. Protists are indicators in two stages of wastewater treatment, viz., in the activated sludge and in the environmental water receiving the plant effluent. Continuous control of the protist and bacterial communities can prevent biological sludge foaming and bulking and may greatly save money for sludge oxygenation because several protist species are excellent indicators for the amount of oxygen present. The investigation of the effluent-receiving rivers gives a solid indication about the long term function of sewage works. The literature on protist bioindication in activated sludge is widely distributed. Thus, I compiled the data in a simple Table, showing which communities and species indicate good, mediocre, or poor plant performance. Further, many details on indication are provided, such as sludge loading and nitrifying conditions. Such specific features should be improved by appropriate statistics and more reliable identification of species. Then, protistologists have a fair chance to become important in wastewater works. Activated sludge is a unique habitat for particular species, often poorly or even undescribed. As an example, I present two new species. The first is a minute (∼30μm) Metacystis that makes an up to 300μm-sized mucous envelope mimicking a sludge floc. The second is a Phialina that is unique in having the contractile vacuole slightly posterior to mid-body. Finally, I provide a list of species which have the type locality in sewage plants. PMID:27062305

  18. The influence of hydrolysis induced biopolymers from recycled aerobic sludge on specific methanogenic activity and sludge filterability in an anaerobic membrane bioreactor.

    PubMed

    Buntner, D; Spanjers, H; van Lier, J B

    2014-03-15

    The objective of the present study was to evaluate the impact of excess aerobic sludge on the specific methanogenic activity (SMA), in order to establish the maximum allowable aerobic sludge loading. In batch tests, different ratios of aerobic sludge to anaerobic inoculum were used, i.e. 0.03, 0.05, 0.10 and 0.15, showing that low ratios led to an increased SMA. However, the ratio 0.15 caused more than 20% SMA decrease. In addition to the SMA tests, the potential influence of biopolymers and extracellular substances, that are generated as a result of excess aerobic sludge hydrolysis, on membrane performance was determined by assessing the fouling potential of the liquid broth, taking into account parameters such as specific resistance to filtration (SRF) and supernatant filterability (SF). Addition of aerobic sludge to the anaerobic biomass resulted in a high membrane fouling potential. The increase in biopolymers could be ascribed to aerobic sludge hydrolysis. A clear positive correlation between the concentration of the colloidal fraction of biopolymer clusters (cBPC) and the SRF was observed and a negative correlation between the cBPC and the SF measured at the end of the above described SMA tests. The latter implies that sludge filtration resistance increases when more aerobic sludge is hydrolyzed, and thus more cBPC is released. During AnMBR operation, proteins significantly contributed to sludge filterability decrease expressed as SRF and SF, whereas the carbohydrate fraction of SMP was of less importance due to low concentrations. On the contrary, carbohydrates seemed to improve filterability and diminish SRF of the sludge. Albeit, cBPC increase caused an increase in mean TMP during the AnMBR operation, confirming that cBPC is positively correlated to membrane fouling. PMID:24284260

  19. Improved computational model (AQUIFAS) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, part II: multilayer biofilm diffusional model.

    PubMed

    Sen, Dipankar; Randall, Clifford W

    2008-07-01

    Research was undertaken to develop a diffusional model of the biofilm that can be applied in lieu of a semi-empirical model to upgrade an activated sludge system to an integrated fixed-film activated sludge (IFAS) or moving-bed biofilm reactor (MBBR) system. The model has been developed to operate with up to 12 cells (reactors) in series, with biofilm media incorporated to one or more of the zone cells, except the anaerobic zone cells. The values of the kinetic parameters for the model were measured using pilot-scale activated sludge, IFAS, and MBBR systems. The biofilm is divided into 12 layers and has a stagnant liquid layer. Diffusion and substrate utilization are calculated for each layer. The equations are solved simultaneously using a finite difference technique. The biofilm flux model is then linked to the activated sludge model. Advanced features include the ability to compute the biofilm thickness and the effect of biofilm thickness on performance. The biofilm diffusional model is also used to provide information and create a table of biofilm yields at different substrate concentrations that can be used in the semi-empirical model. PMID:18710146

  20. Influence of bulking agents and microbial activator on thermophilic aerobic transformation of sewage sludge.

    PubMed

    Pasda, N; Limtong, P; Oliver, R; Montange, D; Panichsakpatana, S

    2005-10-01

    Bangkok, while improving the wastewater treatment in order to alleviate the river pollution, faces important amounts of sewage sludge. The sewage sludge contains organic matter, nitrogen and phosphorus available for plant growth. However, it may contain pathogenic microorganisms. To be used for agricultural purposes, these pathogens should be destroyed, which can be achieved with the thermophilic phase of composting. As the sewage sludge is dense and unable to compost alone (low C/N ratio), it should be mixed with an organic by-product. Two by-products available in large quantities in Thailand (wood chips and rice husk) have been tested for mixture with sewage sludge. As these products are not easy to decompose (presence of silica in rice husk and lignin/tannins in wood chips), the addition of a microbial activator for composting has been tested in controlled conditions (small quantities of organic mixtures, 55 degrees C, moisture maintained at 60-70% of water holding capacity). The monitoring of the decomposition has been made by measuring the carbon dioxide respiration, pH, organic matter and nitrogen contents and the evolution of enzymatic activities. When mixed with sewage sludge, wood chips and rice husk do not show significant differences concerning decomposition after 63 days. The use of an activator within the experimental conditions does not improve the decomposition of organic matter contained in the mixture of sewage sludge and rice husk or wood chips. PMID:16342535

  1. Identical full-scale biogas-lift reactors (Blrs) with anaerobic granular sludge and residual activated sludge for brewery wastewater treatment and kinetic modeling.

    PubMed

    Xu, Fu; Huang, Zhenxing; Miao, Hengfeng; Ren, Hongyan; Zhao, Mingxing; Ruan, Wenquan

    2013-10-01

    Two identical full-scale biogas-lift reactors treating brewery wastewater were inoculated with different types of sludge to compare their operational conditions, sludge characteristics, and kinetic models at a mesophilic temperature. One reactor (R1) started up with anaerobic granular sludge in 12 weeks and obtained a continuously average organic loading rate (OLR) of 7.4 kg chemical oxygen demand (COD)/(m3 x day), COD removal efficiency of 80%, and effluent COD of 450 mg/L. The other reactor (R2) started up with residual activated sludge in 30 weeks and granulation accomplished when the reactor reached an average OLR of 8.3 kg COD/(m3 x day), COD removal efficiency of 90%, and effluent COD of 240 mg/L. Differences in sludge characteristics, biogas compositions, and biogas-lift processes may be accounted for the superior efficiency of the treatment performance of R2 over R1. Grau second-order and modified StoverKincannon models based on influent and effluent concentrations as well as hydraulic retention time were successfully used to develop kinetic parameters of the experimental data with high correlation coefficients (R2 > 0.95), which further showed that R2 had higher treatment performance than R1. These results demonstrated that residual activated sludge could be used effectively instead of anaerobic granular sludge despite the need for a longer time. PMID:24494489

  2. Hanford immobilized low-activity tank waste performance assessment

    SciTech Connect

    Mann, F.M.

    1998-03-26

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis

  3. [Research on the treatment of wastewater containing PVA by ozonation-activated sludge process].

    PubMed

    Xing, Xiao-Qiong; Huang, Cheng-Lan; Liu, Min; Chen, Ying

    2012-11-01

    The wastewater containing polyvinyl alcohol (PVA) was characterized with poor biodegradability, and was difficult to remove. In order to find an economically reasonable and practical technology, the research on the removal efficiency of different concentration wastewater containing PVA by ozonation-activated sludge process was studied, and the result was compared with the traditional activated sludge process. The results showed that the ozonation-activated sludge process was not suitable for treating influent with COD below 500 mg x L(-1) and the wastewater PVA concentration was 10-30 mg x L(-1). When the influent COD was between 500-800 mg x L(-1) and the PVA concentration was 15-60 mg x L(-1), the system had advantages on dealing with this kind of wastewater, and the average removal efficiency of COD and PVA were 92.8% and 57.4%, which were better than the traditional activated sludge process 4.1% and 15.2% respectively. In addition, the effluent concentrations of COD could keep between 30-60 mg x L(-1). When the influent COD was 1 000-1 200 mg x L(-1) and the PVA concentration was 20-70 mg x L(-1), the average removal efficiencies of COD and PVA were 90.9% and 45.3%, which were better than the traditional activated sludge process 12.8% and 12.1% respectively, but the effluent should to be further treated. Compared with the traditional activated sludge process, ozonation-activated sludge process had high treatment efficiency, stable running effect, and effectively in dealing with industrial wastewater containing PVA. PMID:23323416

  4. Roseomonas eburnea sp. nov., isolated from activated sludge.

    PubMed

    Wang, Chenghong; Deng, Shikai; Liu, Xin; Yao, Li; Shi, Chao; Jiang, Jin; Kwon, Soon-Wo; He, Jian; Li, Jiayou

    2016-01-01

    A Gram-stain-negative, aerobic, short rod-shaped, non-endospore-forming, ivory-pigmented and non-motile bacterium, designated strain BUT-5T, was isolated from activated sludge of an herbicides-manufacturing wastewater treatment facility in Jiangsu Province, China. The major fatty acids (>5 % of total fatty acids) were C16 : 0, C18 : 1 2-OH and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The predominant respiratory quinone was ubiquinone Q-10. The polar lipids profile of strain BUT-5T included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and two unknown aminolipids. The DNA G+C content was 67.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain BUT-5T showed the highest sequence similarities to Roseomonas soli 5N26T (97.5 % 16S rRNA gene sequence similarity), followed by Roseomonas lacus TH-G33T (97.3 %) and Roseomonas terrae DS-48T (97.1 %). Strain BUT-5T showed low DNA-DNA relatedness with Roseomonas soli KACC 16376T (41 %), Roseomonas lacus KACC 11678T (46 %) and Roseomonas terrae KACC 12677T (42 %), respectively. On the basis of phenotypic and genotypic properties, as well as chemotaxonomic data, strain BUT-5T represents a novel species of the genus Roseomonas, for which the name Roseomonas eburnea sp. nov. is proposed. The type strain is BUT-5T ( = CCTCC AB2013276T = KACC 17166T). PMID:26530339

  5. Ornithinimicrobium pekingense sp. nov., isolated from activated sludge.

    PubMed

    Liu, Xing-Yu; Wang, Bao-Jun; Jiang, Cheng-Ying; Liu, Shuang-Jiang

    2008-01-01

    The bacterial strain LW6(T) was isolated from activated sludge of a wastewater treatment bioreactor. Cells of strain LW6(T) are Gram-positive, irregular, short rods and cocci, 0.5-0.8x1.0-1.6 microm. Colonies are light-yellow, smooth, circular and 0.2-1.0 mm in diameter after 3 days incubation. Strain LW6(T) is aerobic and heterotrophic. It grows at a temperature range of 26-38 degrees C and pH range of 6-9, with optimal growth at 33-37 degrees C and pH 7.8-8.2. The predominant cellular fatty acids of strain LW6(T) are iso-C(15:0) (38.9%) and iso-C(17:1)omega9c (18.8%). Strain LW6(T) has the major respiratory menaquinones MK-8(H(4)) and MK-8(H(2)) and polar lipids phosphatidylinositol, phosphatidylglycerol, diphosphatidylglycerol and unknown glycolipid/phospholipids. The cell wall peptidoglycan of strain LW6(T) contained the amino acids ornithine, lysine, glutamic acid, alanine, glycine and aspartic acid. Its molar DNA G+C content is 69 mol% (T(m)). Analysis of 16S rRNA gene sequences indicated that strain LW6(T) was related phylogenetically to members of the genus Ornithinimicrobium, with similarities ranging from 98.3 to 98.7%. The DNA-DNA relatedness of strain LW6(T) to Ornithinimicrobium humiphilum DSM 12362(T) and Ornithinimicrobium kibberense K22-20(T) was respectively 31.5 and 15.2%. Based on these results, it is concluded that strain LW6(T) represents a novel species of the genus Ornithinimicrobium, for which the name Ornithinimicrobium pekingense sp. nov. is proposed. The type strain is strain LW6(T) (=CGMCC 1.5362(T) =JCM 14001(T)). PMID:18175694

  6. Chryseomicrobium aureum sp. nov., a bacterium isolated from activated sludge.

    PubMed

    Deng, Shi-Kai; Ye, Xiao-Mei; Chu, Cui-Wei; Jiang, Jin; He, Jian; Zhang, Jun; Li, Shun-Peng

    2014-08-01

    A Gram-stain-positive, rod-shaped, non-motile, non-spore-forming, aerobic bacterial strain, designated BUT-2(T), was isolated from activated sludge of one herbicide-manufacturing wastewater-treatment facility in Kunshan, Jiangsu province, China, and subjected to polyphasic taxonomic studies. Analysis of the 16S rRNA gene sequence indicated that strain BUT-2(T) shared the highest similarity with Chryseomicrobium amylolyticum (98.98%), followed by Chryseomicrobium imtechense (98.88%), with less than 96% similarlity to members of the genera Paenisporosarcina, Planococcus, Sporosarcina and Planomicrobium. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain BUT-2(T) clustered with C. amylolyticum JC16(T) and C. imtechense MW10(T), occupying a distinct phylogenetic position. The major fatty acid (>10% of total fatty acids) type of strain BUT-2(T) was iso-C(15 : 0). The quinone system comprised menaquinone MK-7 (77.8%), MK-6 (11.9%) and MK-8 (10.3%). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and some unidentified phospholipids. The cell-wall peptidoglycan type of strain BUT-2(T) was L-Orn-D-Glu. The genomic DNA G+C content of strain BUT-2(T) was 48.5 mol%. Furthermore, the DNA-DNA relatedness in hybridization experiments against the reference strain was lower than 70%, confirming that strain BUT-2(T) did not belong to previously described species of the genus Chryseomicrobium. On the basis of its morphological, physiological and chemotaxonomic characteristics as well as phylogenetic analysis, strain BUT-2(T) is considered to represent a novel species of the genus Chryseomicrobium, for which the name Chryseomicrobium aureum sp. nov. is proposed. The type strain is BUT-2(T) ( = CCTCC AB2013082(T) = KACC 17219(T)). PMID:24827708

  7. Early warning signs of bulking in an activated sludge system through interpretation of ATP data in a systems analysis context.

    PubMed

    Brault, Jean-Martin; Whalen, Pat; Stuart, Paul

    2011-10-01

    A research project was undertaken at an integrated thermomechanical pulp and paper mill in Canada to evaluate the use of adenosine triphosphate (ATP) monitoring methods in order to identify the potential for operational problems related to microbiological aspects of activated sludge. The specific filamentous bulking ATP (fbATP) ratio is an emerging measurement technique that measures the proportion of flocs that have bulking potential by filtering a sample through a 250 microm mesh and measuring the ATP in the retentate. For the host mill in this study, the specific fbATP measurement provides early warning signs of bulking, at 1.0 to 1.5 times the sludge age, before poor settling occurs. A possible bulking scenario was identified in which the initiator was the overflow of an upstream tank containing high BOD whitewater, resulting in spikes of organic acids to the treatment and promoting the proliferation of certain types of filamentous bacteria. A storage response by filamentous bacteria to these high readily biodegradable substrate conditions was monitored with fbATP. By predicting the onset of bulking conditions, this technique can potentially assist operators to make corrective actions proactively. PMID:22329156

  8. USE OF AN EQUILIBRIUM MODEL TO FORECAST DISSOLUTION EFFECTIVENESS, SAFETY IMPACTS, AND DOWNSTREAM PROCESSABILITY FROM OXALIC ACID AIDED SLUDGE REMOVAL IN SAVANNAH RIVER SITE HIGH LEVEL WASTE TANKS 1-15

    SciTech Connect

    KETUSKY, EDWARD

    2005-10-31

    This thesis details a graduate research effort written to fulfill the Magister of Technologiae in Chemical Engineering requirements at the University of South Africa. The research evaluates the ability of equilibrium based software to forecast dissolution, evaluate safety impacts, and determine downstream processability changes associated with using oxalic acid solutions to dissolve sludge heels in Savannah River Site High Level Waste (HLW) Tanks 1-15. First, a dissolution model is constructed and validated. Coupled with a model, a material balance determines the fate of hypothetical worst-case sludge in the treatment and neutralization tanks during each chemical adjustment. Although sludge is dissolved, after neutralization more is created within HLW. An energy balance determines overpressurization and overheating to be unlikely. Corrosion induced hydrogen may overwhelm the purge ventilation. Limiting the heel volume treated/acid added and processing the solids through vitrification is preferred and should not significantly increase the number of glass canisters.

  9. Enhancing denitrification using a carbon supplement generated from the wet oxidation of waste activated sludge.

    PubMed

    Strong, P J; McDonald, B; Gapes, D J

    2011-05-01

    This study compared the effect of four pure carbon supplements on biological denitrification to a liquor derived as a by-product from the wet oxidation (WO) of waste activated sludge. Sequencing batch reactors were used to acclimate sludge biomass, which was used in batch assays. Acetate, WO liquor and ethanol-supplementation generated the fastest denitrification rates. Acetate and WO liquor were efficiently utilised by all acclimated biomass types, while poor rates were achieved with methanol and formate. When comparing an inoculum from an ethanol-supplemented and non-supplemented wastewater treatment plant (WWTP), the ethanol-acclimated sludge obtained superior denitrification rates when supplemented with ethanol. Similarly high nitrate removal rates were achieved with both sludge types with acetate and WO liquor supplementation, indicating that WO liquors could achieve excellent rates of nitrate removal. The performance of the WO liquor was attributed to the variety of organic carbon substrates (particularly acetic acid) present within the liquor. PMID:21196117

  10. Microbial lipids and stable foam formation in the activated sludge process.

    PubMed

    Goddard, A J; Forster, C F

    1991-01-01

    The presence of fats and oils in sewage has been related to the formation of stable foams in activated sludge treatment systems. Foam forming microbes can utilise and, in some cases, store lipid substrates. Since surface lipids would confer the hydrophobicity necessary for flotation on the sludge biomass, the extractable lipids in foaming and non-foaming biomass samples were examined. Both pure mono-cultures and sludge samples were used. The results showed that, whilst there were some differences in the lipid profiles of the mono-cultures, the different sludge types did not show any significant pattern or variation which could be used as a lipid-based explanation for foam formation. PMID:1907713

  11. Influence of different anoxic time exposures on active biomass, protozoa and filamentous bacteria in activated sludge.

    PubMed

    Rodriguez-Perez, S; Fermoso, F G; Arnaiz, C

    2016-01-01

    Medium-sized wastewater treatment plants are considered too small to implement anaerobic digestion technologies and too large for extensive treatments. A promising option as a sewage sludge reduction method is the inclusion of anoxic time exposures. In the present study, three different anoxic time exposures of 12, 6 and 4 hours have been studied to reduce sewage sludge production. The best anoxic time exposure was observed under anoxic/oxic cycles of 6 hours, which reduced 29.63% of the biomass production compared with the oxic control conditions. The sludge under different anoxic time exposures, even with a lower active biomass concentration than the oxic control conditions, showed a much higher metabolic activity than the oxic control conditions. Microbiological results suggested that both protozoa density and abundance of filamentous bacteria decrease under anoxic time exposures compared to oxic control conditions. The anoxic time exposures 6/6 showed the highest reduction in both protozoa density, 37.5%, and abundance of filamentous bacteria, 41.1%, in comparison to the oxic control conditions. The groups of crawling ciliates, carnivorous ciliates and filamentous bacteria were highly influenced by the anoxic time exposures. Protozoa density and abundance of filamentous bacteria have been shown as promising bioindicators of biomass production reduction. PMID:27508364

  12. Effect of pH on phosphorus, copper, and zinc elution from swine wastewater activated sludge.

    PubMed

    Waki, Miyoko; Yasuda, Tomoko; Fukumoto, Yasuyuki; Suzuki, Kazuyoshi

    2014-01-01

    With the goal of reducing the amounts of phosphorus (P), copper (Cu), and zinc (Zn) discharged from swine wastewater activated sludge treatment facilities, we studied the elution of these elements from activated sludge at various pH values. Sludge samples with neutral pH collected from three farms were incubated at pH values ranging from 3 to 10. The soluble concentrations of these elements changed dramatically with pH and were highest at pH 3. We assumed that P present in the sludge under neutral and alkaline conditions was in insoluble form bound up with magnesium (Mg) and calcium (Ca), because Ca and Mg also eluted from the sludge at low pH. To clarify forms of Zn and Cu in the sludge, we performed a sequential extraction analysis. Zinc in adsorbed, organically bound, and sulfide fractions made up a large proportion of the total Zn. Copper in organically bound, carbonate, and sulfide fractions made up a large proportion of the total Cu. The soluble P concentrations were lowest at pH 9 or 10 (11-36 mg/L), the soluble Zn concentrations were lowest at pH 8 or 9 (0.07-0.15 mg/L), and the soluble Cu concentrations were lowest at pH 6-9 (0.2 mg/L, the detection limit). PMID:25116486

  13. Detection of enteric viruses in activated sludge by feasible concentration methods

    PubMed Central

    Prado, Tatiana; Gaspar, Ana Maria Coimbra; Miagostovich, Marize Pereira

    2014-01-01

    Human enteric viruses are responsible to cause several diseases, including gastroenteritis and hepatitis, and can be present in high amounts in sewage sludge. This study compared virus recovery efficiency of two feasible concentration methods used for detecting human adenovirus (HAdV), rotavirus species A (RV-A), norovirus genogroup II (NoV GII) and hepatitis A virus (HAV) in sewage sludge from an activated sludge process. Twelve sewage sludge samples were collected bi-monthly from January to July, 2011. Ultracentrifugation was compared with a simplified protocol based on beef extract elution for recovering enteric viruses. Viruses were quantified by quantitative real-time PCR assays and virus recovery efficiency and limits of detection were determined. Methods showed mean recovery rates lower than 7.5%, presenting critical limits of detection (higher than 102 – 103 genome copies - GC L−1 for all viruses analyzed). Nevertheless, HAdV were detected in 90% of the analyzed sewage sludge samples (range: 1.8 × 104 to 1.1 × 105 GC L−1), followed by RV-A and NoV (both in 50%) and HAV (8%). Results suggesting that activated sludge is contaminated with high viral loads and HAdV are widely disseminated in these samples. The low virus recovery rates achieved, especially for HAV, indicate that other feasible concentration methods could be developed to improve virus recovery efficiency in these environmental matrices. PMID:24948954

  14. Chemical modeling of waste sludges

    SciTech Connect

    Weber, C.F.; Beahm, E.C.

    1996-10-01

    The processing of waste from underground storage tanks at the Oak Ridge National Laboratory (ORNL) and other facilities will require an understanding of the chemical interactions of the waste with process chemicals. Two aspects of sludge treatment should be well delineated and predictable: (1) the distribution of chemical species between aqueous solutions and solids, and (2) potential problems due to chemical interactions that could result in process difficulties or safety concerns. It is likely that the treatment of waste tank sludge will begin with washing, followed by basic or acidic leaching. The dissolved materials will be in a solution that has a high ionic strength where activity coefficients are far from unity. Activity coefficients are needed in order to calculate solubilities. Several techniques are available for calculating these values, and each technique has its advantages and disadvantages. The techniques adopted and described here is the Pitzer method. Like any of the methods, prudent use of this approach requires that it be applied within concentration ranges where the experimental data were fit, and its use in large systems should be preceded by evaluating subsystems. While much attention must be given to the development of activity coefficients, other factors such as coprecipitation of species and Ostwald ripening must also be considered when one aims to interpret results of sludge tests or to predict results of treatment strategies. An understanding of sludge treatment processes begins with the sludge tests themselves and proceeds to a general interpretation with the aid of modeling. One could stop with only data from the sludge tests, in which case the table of data would become an implicit model. However, this would be a perilous approach in situations where processing difficulties could be costly or result in concerns for the environment or health and safety.

  15. A comparative adsorption study: 17β-estradiol onto aerobic granular sludge and activated sludge.

    PubMed

    Zheng, Xiao-ying; He, Yu-jie; Chen, Wei; Wang, Ming-yang; Cao, Su-lan; Ni, Ming; Chen, Yu

    2016-01-01

    Adsorption plays a significant role in removing hydrophobic 17β-estradiol (E2) from wastewater. Batch experiments were conducted to compare the adsorption of E2 onto activated aerobic granular sludge (AGS) and activated sludge (AS), and features evaluated included the adsorption kinetics, thermodynamics, and influence of other environmental factors. By using a non-chemical wet-heat technique, both AGS and AS were treated to inactivated status. Then, after loading E2, the adsorption equilibrium capacity of the AGS was found to be greater than that of the AS at the same initial concentration of E2. Moreover, both the adsorption processes corresponded to a pseudo-second-order kinetic model; the adsorption rate constant of AGS was found to be higher and the half-adsorption time was shorter than that of AS. Next, evaluations of adsorption isotherms and thermodynamics indicated that the adsorption process was mainly a physical process. Lower temperatures facilitated a higher equilibrium adsorption capacity. However, the adsorption binding sites of AGS were distributed more uniformly at higher temperature, in contrast to the distribution found for AS. Finally, acidic conditions and an appropriate ionic strength (0.4 mol/L) were found to be particularly conducive to the adsorption process. Overall, the results showed that AGS has the potential to adsorb E2 with significant efficiency, thereby offering a new and more efficient means of treating E2 and trace oestrogens in wastewater. PMID:26209151

  16. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    SciTech Connect

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  17. MiDAS: the field guide to the microbes of activated sludge

    PubMed Central

    McIlroy, Simon Jon; Saunders, Aaron Marc; Albertsen, Mads; Nierychlo, Marta; McIlroy, Bianca; Hansen, Aviaja Anna; Karst, Søren Michael; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2015-01-01

    The Microbial Database for Activated Sludge (MiDAS) field guide is a freely available online resource linking the identity of abundant and process critical microorganisms in activated sludge wastewater treatment systems to available data related to their functional importance. Phenotypic properties of some of these genera are described, but most are known only from sequence data. The MiDAS taxonomy is a manual curation of the SILVA taxonomy that proposes a name for all genus-level taxa observed to be abundant by large-scale 16 S rRNA gene amplicon sequencing of full-scale activated sludge communities. The taxonomy can be used to classify unknown sequences, and the online MiDAS field guide links the identity to the available information about their morphology, diversity, physiology and distribution. The use of a common taxonomy across the field will provide a solid foundation for the study of microbial ecology of the activated sludge process and related treatment processes. The online MiDAS field guide is a collaborative workspace intended to facilitate a better understanding of the ecology of activated sludge and related treatment processes—knowledge that will be an invaluable resource for the optimal design and operation of these systems. Database URL: http://www.midasfieldguide.org PMID:26120139

  18. [Rapid method to extract high-quality RNA from activated sludge].

    PubMed

    Jin, Min; Zhao, Zu-Guo; Qiu, Zhi-Gang; Wang, Jing-Feng; Chen, Zhao-Li; Shen, Zhi-Qiang; Li, Chao; Wang, Xin-Wei; Dong, Yan; Li, Jun-Wen

    2010-01-01

    An effective and fast RNA isolation method of activated sludge was established and five different methods were compared based on RNA yield, purity, integrity, RT-PCR amplification of 16S rRNA genes and subsequent terminal restriction fragment length polymorphism (T-RFLP) analysis. That is, the precipitated activated sludge was washed with TENP and PBS buffer, followed by using lysozyme and TRIzol to direct lysis of microbial cells, chloroform to remove protein and most of the DNA from bacterial lysate, isopropanol to precipitate nucleic acid and DNase I to hydrolyze residual DNA. To further purify RNA, RNA purifying column was utilized. The results demonstrated that the extraction method, with the aid of TRIzol and RNA purification kit, can effectively extract high-quality RNA. It not only means low degradability and high quantity, purity and diversity, but also the genes of 16S rRNA and amoA can be amplified by RT-PCR. Compared with other methods, it showed great advantage of low cost and high efficiency and can be applied to RNA extraction of activated sludge in a large number. Furthermore, T-RFLP results indicated that the community composition as well as the abundance of individual members was affected by the kind of RNA extraction methods. This work established a rapid and effective method to extract high-quality RNA from activated sludge and would show great potential for monitoring microbial changes and studying metabolism and community array of activated sludge. PMID:20329549

  19. MiDAS: the field guide to the microbes of activated sludge.

    PubMed

    McIlroy, Simon Jon; Saunders, Aaron Marc; Albertsen, Mads; Nierychlo, Marta; McIlroy, Bianca; Hansen, Aviaja Anna; Karst, Søren Michael; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2015-01-01

    The Microbial Database for Activated Sludge (MiDAS) field guide is a freely available online resource linking the identity of abundant and process critical microorganisms in activated sludge wastewater treatment systems to available data related to their functional importance. Phenotypic properties of some of these genera are described, but most are known only from sequence data. The MiDAS taxonomy is a manual curation of the SILVA taxonomy that proposes a name for all genus-level taxa observed to be abundant by large-scale 16 S rRNA gene amplicon sequencing of full-scale activated sludge communities. The taxonomy can be used to classify unknown sequences, and the online MiDAS field guide links the identity to the available information about their morphology, diversity, physiology and distribution. The use of a common taxonomy across the field will provide a solid foundation for the study of microbial ecology of the activated sludge process and related treatment processes. The online MiDAS field guide is a collaborative workspace intended to facilitate a better understanding of the ecology of activated sludge and related treatment processes--knowledge that will be an invaluable resource for the optimal design and operation of these systems. PMID:26120139

  20. Removal of endocrine-disrupting chemicals in activated sludge treatment works.

    PubMed

    Johnson, A C; Sumpter, J P

    2001-12-15

    The release of endocrine-disrupting chemicals into the aquatic environment has raised the awareness of the central role played by sewage treatment in lowland water quality. This review focuses on the activated sludge process, which is commonly used to treat sewage in large towns and cities and which successfully removes the bulk of the organic compounds that enter the works. However, not all compounds are completely broken down or converted to biomass. For example, the estrogenic alkylphenols and steroid estrogens found in effluent are the breakdown products of incomplete breakdown of their respective parent compounds. Batch microcosm studies have indicated that estrone, ethinylestradiol, and alkylphenols will not be completely eliminated in activated sludge over typical treatment times. Field data suggest that the activated sludge treatment process can consistently remove over 85% of estradiol, estriol, and ethinylestradiol. The removal performance for estrone appears to be less and is more variable. Because of its relatively high hydrophobicity, the accumulation of alkylphenol in sludge has been observed. Although it has not been examined, accumulation of ethinylestradiol in sludge is a possibility due to its recalcitrance and hydrophobicity. A comparison between the concentrations of some of the major endocrine-active chemicals in effluents and their biological potencies has been made, to direct attention to the chemicals of most concern. While water purification techniques such as UV or activated charcoal could significantly remove these microorganic contaminants, the high costs involved suggest that research into the potential for treatment optimization should receive more attention. PMID:11775141

  1. Study of kinetics of degradation of cyclohexane carboxylic acid by acclimated activated sludge.

    PubMed

    Wang, Chunhua; Shi, Shuian; Chen, Hongyan

    2016-01-01

    Activated sludge contains complex microorganisms, which are highly effective biodegrading agents. In this study, the kinetics of biodegradation of cyclohexane carboxylic acid (CHCA) by an acclimated aerobic activated sludge were investigated. The results showed that after 180 days of acclimation, the activated sludge could steadily degrade >90% of the CHCA in 120 h. The degradation of CHCA by the acclimated activated sludge could be modeled using a first-order kinetics equation. The equations for the degradation kinetics for different initial CHCA concentrations were also obtained. The kinetics constant, kd, decreased with an increase in the CHCA concentration, indicating that, at high concentrations, CHCA had an inhibiting effect on the microorganisms in the activated sludge. The effects of pH on the degradation kinetics of CHCA were also investigated. The results showed that a pH of 10 afforded the highest degradation rate, indicating that basic conditions significantly promoted the degradation of CHCA. Moreover, it was found that the degradation efficiency for CHCA increased with an increase in temperature and concentration of dissolved oxygen under the experimental conditions. PMID:27191578

  2. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption

    SciTech Connect

    Yamada, Y.; Kawase, Y. . E-mail: bckawase@mail.eng.toyo.ac.jp

    2006-07-01

    In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial composting mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.

  3. Biocrude production by activated sludge microbial cultures using pulp and paper wastewaters as fermentation substrate.

    PubMed

    Upadhyaya, Kamal Lamichhane; Mondala, Andro; Hernandez, Rafael; French, Todd; Green, Magan; McFarland, Linda; Holmes, William

    2013-01-01

    Municipal wastewater activated sludge contains a mixed microbial community, which can be manipulated to produce biocrude, a lipid feedstock for biodiesel production. In this study, the potential of biocrude production by activated sludge microorganisms grown in three different types of pulp and paper mill wastewaters was investigated. A 20% (v/v) activated sludge was inoculated into pulp and paper wastewater, supplemented with glucose (60 g/L) and nutrients (nitrogen and phosphorus) to obtain a high carbon to nitrogen ratio (70:1). The culture was incubated aerobically for seven days. The results showed that the activated sludge microorganisms were able to grow and accumulate lipids when cultivated in amended wastewaters. Microorganisms growing in anaerobic settling pond effluent water showed the highest lipid accumulation of up to 40.6% cell dry weight (CDW) after five days of cultivation compared with pulp wash wastewater (PuWW) (11.7% CDW) and mixed wastewater (MWW) (8.2% CDW) after seven days of cultivation. The lipids mostly contained C16-C18 fatty acids groups with oleic acid and palmitic acid being the dominant fatty acids. The maximum biodiesel yield was about 6-8% CDW for all the wastewaters. The results showed the potential of utilizing pulp and paper mill effluents and other waste streams, such as activated sludge for the sustainable production of lipids for biofuel production. PMID:24350471

  4. Effect of polyhydroxyalkanoates on dark fermentative hydrogen production from waste activated sludge.

    PubMed

    Wang, Dongbo; Zeng, Guangming; Chen, Yinguang; Li, Xiaoming

    2015-04-15

    Polyhydroxyalkanoates (PHA), an intracellular energy and carbon storage polymer, can be accumulated in activated sludge in substantial quantities under wastewater dynamic treatment (i.e., substrate feast-famine) conditions. However, its influence on hydrogen production has never been investigated before. This study therefore evaluated the influences of PHA level and composition in waste activated sludge (WAS) on hydrogen production. The results showed that with the increase of sludge PHA content from 25 to 178 mg per gram volatile suspended solids (VSS) hydrogen production from WAS alkaline anaerobic fermentation increased from 26.5 to 58.7 mL/g VSS. The composition of PHA was also found to affect hydrogen production. When the dominant composition shifted from polyhydroxybutyrate (PHB) to polyhydroxyvalerate (PHV), the amount of generated hydrogen decreased from 51.2 to 41.1 mL/g VSS even under the same PHA level (around 130 mg/g VSS). The mechanism studies exhibited that the increased PHA content accelerated both the cell solubilization and the hydrolysis process of solubilized substrates. Compared with the PHB-dominant sludge, the increased PHV fraction not only slowed the hydrolysis process but also caused more propionic acid production, with less theoretical hydrogen generation in this fermentation type. It was also found that the increased PHA content enhanced the soluble protein conversion of non-PHA biomass. Further investigations with enzyme analyses showed that both the key hydrolytic enzyme activities and hydrogen-forming enzyme activities were in the sequence of the PHB-dominant sludge > the PHV-dominant sludge > the low PHA sludge, which was in accord with the observed order of hydrogen yield. PMID:25697693

  5. Organic matter extracted from activated sludge with ammonium hydroxide and its characterization.

    PubMed

    Wei, Liangliang; Wang, Kun; Zhao, Qingliang; Jiang, Junqiu; Xie, Chunmei; Qiu, Wei

    2010-01-01

    In order to characterize the organic properties of waste activated sludge in a wastewater treatment plant, organic matter within sludge was extracted with NH3.H20 preferentially, and subsequently fractionated into five fractions using XAD-8/XAD-4 resins. Up to a 63.8%-71.1% of organic matter within the sludge could be efficiently extracted by NH3.H2O. Fractionation results showed that hydrophobic acid and hydrophilic fraction were two main components among the sludge organic matter (accounting for 32.2% and 48.0% of the bulk organic matter, respectively), whereas transphilic acid, hydrophobic neutral and transphilic neutral were quite low (accounting for 9.2%, 5.8% and 4.8%, respectively). Despite that the extractant of NH3.H2O showed a relatively higher extraction efficiency of the aromatic components, the relatively low aromaticity of the organic fractions implied that those non-aromatic components could also be effectively extracted, especially for neutral and hydrophilic fractions. In addition, acidic fractions contained more aromatic humic-like components, whereas the neutral fractions had a greater content of aromatic proteins and soluble microbial byproduct-like components. Extraction of sludge organics with NH3.H2O and subsequential fractionation using XAD resins could be a novel method for further characterization of sludge organics. PMID:20608497

  6. Chitosan use in chemical conditioning for dewatering municipal-activated sludge.

    PubMed

    Zemmouri, H; Mameri, N; Lounici, H

    2015-01-01

    This work aims to evaluate the potential use of chitosan as an eco-friendly flocculant in chemical conditioning of municipal-activated sludge. Chitosan effectiveness was compared with synthetic cationic polyelectrolyte Sedipur CF802 (Sed CF802) and ferric chloride (FeCl₃). In this context, raw sludge samples from Beni-Messous wastewater treatment plant (WWTP) were tested. The classic jar test method was used to condition sludge samples. Capillary suction time (CST), specific resistance to filtration (SRF), cakes dry solid content and filtrate turbidity were analyzed to determine filterability, dewatering capacity of conditioned sludge and the optimum dose of each conditioner. Data exhibit that chitosan, FeCl₃and Sed CF802 improve sludge dewatering. Optimum dosages of chitosan, Sed CF802 and FeCl₃allowing CST values of 6, 5 and 9 s, were found, respectively, between 2-3, 1.5-3 and 6 kg/t ds. Both polymers have shown faster water removal with more permeable sludge. SRF values were 0.634 × 10¹², 0.932 × 10¹² and 2 × 10¹² m/kg for Sed CF802, chitosan and FeCl₃respectively. A reduction of 94.68 and 87.85% of the filtrate turbidity was obtained with optimal dosage of chitosan and Sed CF802, respectively. In contrast, 54.18% of turbidity abatement has been obtained using optimal dosage of FeCl₃. PMID:25812088

  7. Evaluation of activated sludge for biodegradation of propylene glycol as an aircraft deicing fluid.

    PubMed

    Delorit, Justin D; Racz, LeeAnn

    2014-04-01

    Aircraft deicing fluid used at airport facilities is often collected for treatment or disposal in order to prevent serious ecological threats to nearby surface waters. This study investigated lab scale degradation of propylene glycol, the active ingredient in a common aircraft deicing fluid, by way of a laboratory-scale sequencing batch reactor containing municipal waste water treatment facility activated sludge performing simultaneous organic carbon oxidation and nitrification. The ability of activated sludge to remove propylene glycol was evaluated by studying the biodegradation and sorption characteristics of propylene glycol in an activated sludge medium. The results indicate sorption may play a role in the fate of propylene glycol in AS, and the heterotrophic bacteria readily degrade this compound. Therefore, a field deployable bioreactor may be appropriate for use in flight line applications. PMID:24851333

  8. The Impact of Oxone on Disintegration and Dewaterability of Waste Activated Sludge.

    PubMed

    Wacławek, Stanisław; Grübel, Klaudiusz; Chłąd, Zuzanna; Dudziak, Mariusz; Černík, Miroslav

    2016-02-01

    Biochemical parameters such as soluble chemical oxygen demand (SCOD), phosphate, ammonium nitrogen and proteins are often used to characterize the efficiency of disintegration of waste activated sludge (WAS) flocs and microorganism cells. In this study, the chemical disintegration using peroxymonosulfate (MPS, Oxone) and thermally activated MPS, were evaluated for the destruction of WAS. Our study was conducted for chemical disintegration of WAS by MPS in doses between 84.7 - 847.5 mg/g(TS) activated by temperatures of 50, 70 and 90 °C over 30 minutes. The application of these methods causes an increase in the soluble COD value and protein concentration in the supernatant. Also, they positively influence the sludge volume index (SVI) which decreased from 89.8 to 17.2 ml/g. Our research work confirmed that the application of thermally activated MPS may become a new effective way of improving sewage treatment and sewage sludge processing. PMID:26803102

  9. Safety review of the DCS (Distributed Control System) controlled full scale SRAT/SME (Sludge Receipt Adjustment Tank/Slurry Mix Evaporator) for water runs

    SciTech Connect

    Hacker, B.A.

    1988-01-29

    This memorandum addresses safety concerns of the Full Scale Sludge Receipt Adjustment Tank/Slurry Mix Evaporator (SRAT/SME) resulting from the installation of the new Distributed Control System (DCS). The present configuration of the SRAT/SME with DCS has been determined to be safe for operational testing with water. Another memorandum will be written after experience has been gained during water runs for actual operation. Previous safety evaluations and process hazard reviews for this facility have addressed normal industrial safety hazards and hazards associated with formic acid handling and operation with organics in the feed. Process operation with the new DCS controls will be very similar to the earlier operation controlled by the Modicon programmable logic controller (PLC). The interlocks for the SRAT/SME that were in the PLC have been programmed into the new DCS and will be reviewed here. 6 refs.

  10. Distributions of 14 elements on 60 selected absorbers from two simulant solutions (acid-dissolved sludge and alkaline supernate) for Hanford HLW Tank 102-SY

    SciTech Connect

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1993-10-01

    Sixty commercially available or experimental absorber materials were evaluated for partitioning high-level radioactive waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. The distributions of 14 elements onto each absorber were measured from simulated solutions that represent acid-dissolved sludge and alkaline supernate solutions from Hanford high-level waste (HLW) Tank 102-SY. The selected elements, which represent fission products (Ce, Cs, Sr, Tc, and Y); actinides (U, Pu, and Am); and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr), were traced by radionuclides and assayed by gamma spectrometry. Distribution coefficients for each of the 1680 element/absorber/solution combinations were measured for dynamic contact periods of 30 min, 2 h, and 6 h to provide sorption kinetics information for the specified elements from these complex media. More than 5000 measured distribution coefficients are tabulated.

  11. Rhodoligotrophos jinshengii sp. nov., isolated from activated sludge.

    PubMed

    Deng, Shi-Kai; Chen, Guo-Qiang; Chen, Qing; Cai, Shu; Yao, Li; He, Jian; Li, Shun-Peng

    2014-09-01

    A Gram-stain-negative, non-spore-forming, non-motile, ovoid, aerobic bacterial strain, designated BUT-3(T), was isolated from activated sludge from the wastewater treatment facility of a herbicide-manufacturing plant in Kunshan city, Jiangsu province, PR China. Strain BUT-3(T) grew between 15 and 40 °C, with optimum growth at 30 °C. The pH range for growth was between 5.0 and 10.0 (optimum pH 7.0). The range of NaCl concentrations for growth of strain BUT-3(T) was 0-7.0 % (w/v), with an optimum of 1.5-3.0 % (w/v). A phylogenetic tree based on 16S rRNA gene sequence analysis showed that strain BUT-3(T) clustered closely with Rhodoligotrophos appendicifer 120-1(T) (98.32 % similarity), with a bootstrap confidence level of 100 %. The major fatty acids (>5 % of total fatty acids) were C19 : 0 cyclo ω8c, C18 : 1ω7c, C16 : 0, anteiso-C15 : 0 and iso-C15 : 0. Strain BUT-3(T) contained ubiquinone Q-10 as the predominant respiratory quinone. The polar lipid profile comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, three unidentified aminolipids (AL1-3), two unknown phospholipids (PL1, 5), four unidentified glycolipids (GL1-4) and two unknown lipids (L1, 2). The G+C content of the genomic DNA was 67.7 mol%. The DNA-DNA relatedness between BUT-3(T) and R. appendicifer 120-1(T) was 44.1±0.6 %. Based on the polyphasic taxonomic data, strain BUT-3(T) should be classified as a representative of a novel species of the genus Rhodoligotrophos, for which the name Rhodoligotrophos jinshengii sp. nov. is proposed. The type strain is BUT-3(T) ( = CCTCC AB2013083(T) = KACC 17220(T)). PMID:25002364

  12. Best-basis estimates of solubility of selected radionuclides in sludges in Hanford single-shell tanks

    SciTech Connect

    HARMSEN, R.W.

    1999-02-24

    The Hanford Defined Waste (HDW) model (Rev. 4) (Agnew et al. 1997) projects inventories (as of January 1, 1994) of 46 radionuclides in the Hanford Site underground waste storage tanks. To model the distribution of the 46 radionuclides among the 177 tanks, it was necessary for Agnew et al. to estimate the solubility of each radionuclide in the various waste types originally added to the single-shell tanks. Previous editions of the HDW model used single-point solubility estimates. The work described in this report was undertaken to provide more accurate estimates of the solubility of all 46 radionuclides in the various wastes.

  13. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    PubMed Central

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-01-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology. PMID:26830464

  14. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    NASA Astrophysics Data System (ADS)

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  15. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community.

    PubMed

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-01-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology. PMID:26830464

  16. Effect of magnetic nanoparticles on the performance of activated sludge treatment system.

    PubMed

    Ni, Shou-Qing; Ni, Jianyuan; Yang, Ning; Wang, Juan

    2013-09-01

    Both short-term and long-term exposure experiments were carried out to investigate the influence of magnetic nanoparticles (NPs) on activated sludge. The short-term presence of 50-200 mg/L of NPs decreased total nitrogen (TN) removal efficiencies, resulted from the acute toxicity of a shock load of NPs. However, long-term exposure of 50 mg/L magnetic NPs were observed to significantly improve TN removal efficiency, partially due to the self-repair function of activated sludge and magnetic-induced bio-effect. Sludge properties and extracellular polymer substrates secretion were affected. Additional investigations with enzyme and FISH assays indicated that short-term exposure of 50 mg/L magnetic NPs led to the abatement of nitrifying bacteria. However, the activities of the enzyme nitrite oxidoreductase and key denitrifying enzymes were increased after long-term exposure. PMID:23835260

  17. Use of metagenomic approaches to isolate lipolytic genes from activated sludge.

    PubMed

    Liaw, Ren-Bao; Cheng, Mei-Ping; Wu, Ming-Che; Lee, Chia-Yin

    2010-11-01

    The aims of this study were to access the bacterial diversity and isolate lipolytic genes using the metagenomic approach in activated sludge of a swine wastewater treatment facility. On the basis of BLASTN analysis of 16S rRNA gene clones, most of these communities (90%) were of uncultivated bacteria. The metagenomic library was constructed using a plasmid vector and DNA extracted directly from activated sludge samples. The average insert size was approximately 5.1 kb. A total of 12 unique and lipolytic clones were obtained using the tributyrin plate assay. The rate of discovering a lipolytic clone in this study was as high as 0.31%. Molecular analysis revealed that most of the 16 putative lipolytic enzymes showed 28-55% identity with non-redundant protein sequences in the database. Briefly, this study demonstrates that activated sludge is an ideal bioresource for isolating new lipolytic enzymes. PMID:20639117

  18. Prediction of the effect of fine grit on the MLVSS/MLSS ratio of activated sludge.

    PubMed

    Fan, Jianping; Ji, Fangying; Xu, Xiaoyi; Wang, Ying; Yan, Dachao; Xu, Xuan; Chen, Qingkong; Xiong, Jingzhong; He, Qiang

    2015-08-01

    This paper investigated the suspension properties of fine grit with different particle sizes in a bioreactor and developed a model to predict its effect on the ratio of mixed liquor volatile suspended solids to the mixed liquor suspended solids (MLVSS/MLSS) of activated sludge. The experimental results revealed that a smaller particle size corresponds to a larger suspension ratio, defined as the proportion of fine grit brought in by influent that is suspended in the activated sludge, and a smaller MLVSS/MLSS ratio. The model demonstrated that the effect of fine grit on the MLVSS/MLSS ratio is related to the fine grit concentration and chemical oxygen demand in influent and the observed sludge yield. However, fine grit has no influence on the activity of microorganisms. Wastewater treatment plants (WWTPs) can adjust MLSS based on the MLVSS/MLSS ratio to ensure the stability of MLVSS, which can achieve the stable operation of WWTPs. PMID:25919937

  19. Effect of a static magnetic field on formaldehyde biodegradation in wastewater by activated sludge.

    PubMed

    Łebkowska, Maria; Rutkowska-Narożniak, Anna; Pajor, Elżbieta; Pochanke, Zbigniew

    2011-10-01

    The aim of this study was to determine the impact of a static magnetic field (MF) of 7 mT on formaldehyde (FA) biodegradation by activated sludge in synthetic wastewater. The MF had a positive effect on activated sludge biomass growth and dehydrogenase activity. The influence of the MF on the degradation process was observed with a FA concentration of 2400-2880 mg/l. Decreases in FA concentration and chemical oxygen demand (COD) were greater, by 30% and 26% respectively, than those in the control sample. At initial FA concentrations in raw wastewater of 2400 and 2880 mg/l, a decrease in the wastewater biodegradation efficiency was observed. This resulted in an increase of the ecotoxicity of the effluent to Daphnia magna. The value of the sludge biotic index (SBI) was dependent on the FA concentration in raw wastewater and the induction of the MF. PMID:21824771

  20. Effect of membrane bioreactor configurations on sludge structure and microbial activity.

    PubMed

    Clouzot, L; Roche, N; Marrot, B

    2011-01-01

    The aim of this paper was to determine the effect of two different membrane bioreactor (MBR) configurations (external/immersed) on sludge structure and microbial activity. Sludge structure was deduced from rheological measurements. The high shear stress induced by the recirculation pump in the external MBR was shown to result in decreasing viscosity due to activated sludge (AS) deflocculation. Besides, soluble microbial products (SMP) release was higher in the external MBR (5 mgCOD gMLVSS(-1)) than in the immersed configuration (2 mgCOD gMLVSS(-1)). Microbial activity was followed from respirometry tests by focusing on the distinction between heterotrophs and autotrophs. An easier autotrophic microbe development was then observed in the immersed MBR compared to the external one. However, the external MBR was shown to allow better heterotrophic microbe development. PMID:20947340

  1. Virus elimination in activated sludge systems: from batch tests to mathematical modeling.

    PubMed

    Haun, Emma; Ulbricht, Katharina; Nogueira, Regina; Rosenwinkel, Karl-Heinz

    2014-01-01

    A virus tool based on Activated Sludge Model No. 3 for modeling virus elimination in activated sludge systems was developed and calibrated with the results from laboratory-scale batch tests and from measurements in a municipal wastewater treatment plant (WWTP). The somatic coliphages were used as an indicator for human pathogenic enteric viruses. The extended model was used to simulate the virus concentration in batch tests and in a municipal full-scale WWTP under steady-state and dynamic conditions. The experimental and modeling results suggest that both adsorption and inactivation processes, modeled as reversible first-order reactions, contribute to virus elimination in activated sludge systems. The model should be a useful tool to estimate the number of viruses entering water bodies from the discharge of treated effluents. PMID:25259502

  2. Fatty acids of lipid fractions in extracellular polymeric substances of activated sludge flocs.

    PubMed

    Conrad, Arnaud; Suutari, Merja Kontro; Keinänen, Minna M; Cadoret, Aurore; Faure, Pierre; Mansuy-Huault, Laurence; Block, Jean-Claude

    2003-10-01

    Phospholipid (PL), glycolipid (GL), and neutral lipid (NL) FA, and the lipopolysaccharide 2- and 3-hydroxy (LPS 2-OH and 3-OH) FA of activated sludges and extracted extracellular polymeric substances (EPS) were determined on samples collected from two wastewater treatment plants. EPS extracted from sludges by means of sonication and cation exchange contained proteins (43.4%), humic-like substances (11.5%), nucleic acids (10.9%), carbohydrates (9.9%), and lipid-bound FA (1.8%). The lipids associated with EPS were composed of GL, PL, NL, and LPS acids in proportions of 61, 21, 16, and 2%, respectively. The profiles of lipid-bound FA in activated sludges and EPS were similar (around 85 separate FA were identified). The FA signatures observed can be attributed to the likely presence of yeasts, fungi, sulfate-reducing bacteria, gram-positive and gram-negative bacteria, and, in lesser quantities, mycobacteria. Comparison of data from the dates of sampling (January and September) showed that there were more unsaturated PLFA in the EPS extracted from the activated sludges sampled in January. This observation could be partly related to microorganism adaptation to temperature variations. The comparison between two wastewater treatment plants showed that the FA profiles were similar, although differences in microbial community structure were also seen. Most of the FA in sludges had an even number of carbons. PMID:14669975

  3. Micropollutant removal by attached and suspended growth in a hybrid biofilm-activated sludge process.

    PubMed

    Falås, P; Longrée, P; la Cour Jansen, J; Siegrist, H; Hollender, J; Joss, A

    2013-09-01

    Removal of organic micropollutants in a hybrid biofilm-activated sludge process was investigated through batch experiments, modeling, and full-scale measurements. Batch experiments with carriers and activated sludge from the same full-scale reactor were performed to assess the micropollutant removal rates of the carrier biofilm under oxic conditions and the sludge under oxic and anoxic conditions. Clear differences in the micropollutant removal kinetics of the attached and suspended growth were demonstrated, often with considerably higher removal rates for the biofilm compared to the sludge. For several micropollutants, the removal rates were also affected by the redox conditions, i.e. oxic and anoxic. Removal rates obtained from the batch experiments were used to model the micropollutant removal in the full-scale process. The results from the model and plant measurements showed that the removal efficiency of the process can be predicted with acceptable accuracy (± 25%) for most of the modeled micropollutants. Furthermore, the model estimations indicate that the attached growth in hybrid biofilm-activated sludge processes can contribute significantly to the removal of individual compounds, such as diclofenac. PMID:23764599

  4. Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids.

    PubMed

    Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-06-01

    In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production. PMID:26698921

  5. [Comparative Metagenomics of BIOLAK and A2O Activated Sludge Based on Next-generation Sequencing Technology].

    PubMed

    Tian, Mei; Liu, Han-hu; Shen, Xin

    2016-02-15

    This is the first report of comparative metagenomic analyses of BIOLAK sludge and anaerobic/anoxic/oxic (A2O) sludge. In the BIOLAK and A2O sludge metagenomes, 47 and 51 phyla were identified respectively, more than the numbers of phyla identified in Australia EBPR (enhanced biological phosphorus removal), USA EBPR and Bibby sludge. All phyla found in the BIOLAK sludge were detected in the A2O sludge, but four phyla were exclusively found in the A20 sludge. The proportion of the phylum Ignavibacteriae in the A2O sludge was 2.0440%, which was 3.2 times as much as that in the BIOLAK sludge (0.6376%). Meanwhile, the proportion of the bacterial phylum Gemmatimonadetes in the BIOLAK sludge was 2.4673%, which was >17 times as much as that in the A2O sludge (0.1404%). The proportion of the bacterial phylum Chlamydiae in the BIOLAK metagenome (0.2192%) was >6 times higher than that in the A2O (0.0360%). Furthermore, 167 genera found in the A20 sludge were not detected in the BIOLAK sludge. And 50 genera found in the BIOLAK sludge were not detected in the A20 sludge. From the analyses of both the phylum and genus levels, there were huge differences between the two biological communities of A2O and BIOLAK sludge. However, the proportions of each group of functional genes associated with metabolism of nitrogen, phosphor, sulfur and aromatic compounds in BIOLAK were very similar to those in A2O sludge. Moreover, the rankings of all six KEGG (Kyoto Encyclopedia for Genes and Genomes) categories were identical in the two sludges. In addition, the analyses of functional classification and pathway related nitrogen metabolism showed that the abundant enzymes had identical ranking in the BIOLAK and A2O metagenomes. Therefore, comparative metagenomics of BIOLAK and A2O activated sludge indicated similar function assignments from the two different biological communities. PMID:27363155

  6. Comparison of microbial communities of activated sludge and membrane biofilm in 10 full-scale membrane bioreactors.

    PubMed

    Jo, Sung Jun; Kwon, Hyeokpil; Jeong, So-Yeon; Lee, Chung-Hak; Kim, Tae Gwan

    2016-09-15

    Operation of membrane bioreactors (MBRs) for wastewater treatment is hampered by the membrane biofouling resulting from microbial activities. However, the knowledge of the microbial ecology of both biofilm and activated sludge in MBRs has not been sufficient. In this study, we scrutinized microbial communities of biofilm and activated sludge from 10 full-scale MBR plants. Overall, Flavobacterium, Dechloromonas and Nitrospira were abundant in order of abundance in biofilm, whereas Dechloromonas, Flavobacterium and Haliscomenobacter in activated sludge. Community structure was analyzed in either biofilm or activated sludge. Among MBRs, as expected, not only diversity of microbial community but also its composition was different from one another (p < 0.05). Between the biofilm and activated sludge, community composition made significant difference, but its diversity measures (i.e., alpha diversity, e.g., richness, diversity and evenness) did not (p > 0.05). Effects of ten environmental factors on community change were investigated using Spearman correlation. MLSS, HRT, F/M ratio and SADm explained the variation of microbial composition in the biofilm, whereas only MLSS did in the activated sludge. Microbial networks were constructed with the 10 environmental factors. The network results revealed that there were different topological characteristics between the biofilm and activated sludge networks, in which each of the 4 factors had different associations with microbial nodes. These results indicated that the different microbial associations were responsible for the variation of community composition between the biofilm and activated sludge. PMID:27262549

  7. Thermal hydraulic evaluation of consolidating tank C-106 waste into tank AY-102

    SciTech Connect

    Sathyanarayana, K.

    1996-02-01

    This report describes the thermal hydraulic analysis performed to provide a technical basis in support of consolidation of tank C-106 waste into tank AY-102. Several parametric calculations were performed using the HUB and GOTH computer codes. First, the current heat load of tank AY-102 was determined. Potential quantities of waste transfer from tank C-106 were established to maintain the peak temperatures of consolidated sludge in tank AY-102 to remain within Operating Specification limits. For this purpose, it was shown that active cooling of the tank floor was essential and a secondary ventilation flow of 2,000 cfm should be maintained. Transient calculations were also conducted to evaluate the effects of ambient meteorological cyclic conditions on sludge peak temperature, and loss of ventilation systems. Detailed calculations were also performed to estimate the insulating concrete air channels cooling effectiveness and the resulting peak temperatures for the consolidated sludge in tank AY-102. Calculations are were also performed for a primary and secondary ventilation systems outage, both individually and combined to establish limits on outage duration. Because of its active cooling mode of operation, the secondary ventilation system limits the outage duration.

  8. Tank Waste Treatment Science Task quarterly report for October--December 1994

    SciTech Connect

    LaFemina, J.P.; Anderson, G.S.; Blanchard, D.L.

    1995-01-01

    The Pretreatment Technology Development Project is one of seven Tank Waste Remediation System (TWRS) projects being conducted at Pacific Northwest Laboratory (PNL). A key objective of this project, which includes the Tank Waste Treatment Science Task, is to provide the technical basis and scientific understanding to support TWRS baseline decisions and actions, in particular, the 1998 sludge pretreatment decision regarding the level of pretreatment to be incorporated into the tank waste process flowsheets being developed by Westinghouse Hanford Company. This report details work performed by the Tank Waste Treatment Science Task during the first quarter of FY 1995 (October--December 1994) in support of the project objective. Specific activities discussed in the main text are: analytical methods development; sludge dissolution modeling; sludge characterization studies; sludge component speciation; pretreatment chemistry evaluation; and colloidal studies for solid-liquid separations.

  9. Effects of black liquor shocks on activated sludge treatment of bleached kraft pulp mill wastewater.

    PubMed

    Morales, Gabriela; Pesante, Silvana; Vidal, Gladys

    2015-01-01

    Kraft pulp mills use activated sludge systems to remove organic matter from effluents. Process streams may appear as toxic spills in treatment plant effluents, such as black liquor, which is toxic to microorganisms of the activated sludge. The present study evaluates the effects of black liquor shocks in activated sludge systems. Four black liquor shocks from 883 to 3,225 mg chemical oxygen demand-COD L(-1) were applied during 24 hours in a continuously operating lab-scale activated sludge system. Removal efficiencies of COD, color and specific compounds were determined. Moreover, specific oxygen uptake rate (SOUR), sludge volumetric index (SVI) and indicator microorganisms were evaluated. Results show that the addition of black liquor caused an increase in COD removal (76-67%) immediately post shock; followed two days later by a decrease (-19-50%). On the other hand, SOUR ranged between 0.152 and 0.336 mgO2 g(-1) volatile suspended solids-VSS• min(-1) during shocks, but the initial value was reestablished at hour 24. When the COD concentration of the shock was higher than 1,014 mg/L, the abundance of stalked ciliates and rotifers dropped. Finally, no changes in SVI were observed, with values remaining in the range 65.8-40.2 mL g(-1) total suspended solids-TSS during the entire operating process. Based on the results, the principal conclusion is that the activated sludge system with the biomass adapted to the kraft pulp effluent could resist a black liquor shock with 3,225 mgCOD L(-1) of concentration during 24 h, under this study's conditions. PMID:25837566

  10. Relationship of species-specific filament levels to filamentous bulking in activated sludge.

    PubMed

    Liao, Jiangying; Lou, Inchio; de los Reyes, Francis L

    2004-04-01

    To examine the relationship between activated-sludge bulking and levels of specific filamentous bacteria, we developed a statistics-based quantification method for estimating the biomass levels of specific filaments using 16S rRNA-targeted fluorescent in situ hybridization (FISH) probes. The results of quantitative FISH for the filament Sphaerotilus natans were similar to the results of quantitative membrane hybridization in a sample from a full-scale wastewater treatment plant. Laboratory-scale reactors were operated under different flow conditions to develop bulking and nonbulking sludge and were bioaugmented with S. natans cells to stimulate bulking. Instead of S. natans, the filament Eikelboom type 1851 became dominant in the reactors. Levels of type 1851 filaments extending out of the flocs correlated strongly with the sludge volume index, and extended filament lengths of approximately 6 x 10(8) micro m ml(-1) resulted in bulking in laboratory-scale and full-scale activated-sludge samples. Quantitative FISH showed that high levels of filaments occurred inside the flocs in nonbulking sludge, supporting the "substrate diffusion limitation" hypothesis for bulking. The approach will allow the monitoring of incremental improvements in bulking control methods and the delineation of the operational conditions that lead to bulking due to specific filaments. PMID:15066840

  11. Degradation of PPCPs in activated sludge from different WWTPs in Denmark.

    PubMed

    Chen, Xijuan; Vollertsen, Jes; Nielsen, Jeppe Lund; Dall, Agnieszka Gieraltowska; Bester, Kai

    2015-12-01

    Pharmaceuticals and Personal care products (PPCPs) are often found in effluents from wastewater treatment plants (WWTPs) due to insufficient removal during wastewater treatment processes. To understand the factors affecting the removal of PPCPs in classical activated sludge WWTPs, the present study was performed to assess the removal of frequently occurring pharmaceuticals (Naproxen, Fenoprofen, Ketoprofen, Dichlofenac, Carbamazepine) and the biocide Triclosan in activated sludge from four different Danish WWTPs. The respective degradation constants were compared to operational parameters previous shown to be of importance for degradation of micropollutants such as biomass concentration, and sludge retention time (SRT). The most rapid degradation, was observed for NSAID pharmaceuticals (55-90% for Fenoprofen, 77-94% for Ketoprofen and 46-90% for Naproxen), followed by Triclosan (61-91%), while Dichlofenac and Carbamazepine were found to be persistent in the systems. Degradation rate constants were calculated as 0.0026-0.0407 for NSAID pharmaceuticals and 0.0022-0.0065 for triclosan. No relationships were observed between degradation rates and biomass concentrations in the diverse sludges. However, for the investigated PPCPs, the optimal SRT was within 14-20 days (for these values degradation of these PPCPs was the most efficient). Though all of these parameters influence the degradation rate, none of them seems to be overall decisive. These observations indicate that the biological composition of the sludge is more important than the design parameters of the respective treatment plant. PMID:26407712

  12. The abundance and diversity of ammonia-oxidizing bacteria in activated sludge under autotrophic domestication.

    PubMed

    Li, Qiang; Ma, Chao; Sun, Shifang; Xie, Hui; Zhang, Wei; Feng, Jun; Song, Cunjiang

    2013-04-01

    Ammonia-oxidizing bacteria (AOB) play a key role in nitrogen-removal wastewater treatment plants (WWTPs) as they can transform ammonia into nitrite. AOB can be enriched in activated sludge through autotrophic domestication although they are difficult to be isolated. In this study, autotrophic domestication was carried out in a lab-scale sequencing-batch-reactor (SBR) system with two activated sludge samples. The ammonia removal capacity of the sludge samples increased during the domestication, and pH exhibited a negative correlation with the ammonia removal amount, which indicated that it was one important factor of microbial ammonia oxidation. The count of AOB, measured by the most probable number (MPN) method, increased significantly during autotrophic domestication as ammonia oxidation efficiency was enhanced. We investigated the changes in the community structure of AOB before and after domestication by amoA clone library and T-RFLP profile. It showed that AOB had been successfully enriched and the community structure significantly shifted during the domestication. Two groups of AOB were found in sludge samples: Nitrosomonas-like group remained predominant all the time and Nitrosospira-like group changed obviously. Simultaneously, the total heterotrophic bacteria were investigated by MPN and Biolog assay. The metabolic diversity of heterotrophs had changed minutely, although the count of them decreased significantly and lost superiority of microbial communities in the sludge. PMID:24620598

  13. Improved computational model (AQUIFAS) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, part III: analysis and verification.

    PubMed

    Sen, Dipankar; Randall, Clifford W

    2008-07-01

    Research was undertaken to analyze and verify a model that can be applied to activated sludge, integrated fixed-film activated sludge (IFAS), and moving-bed biofilm reactor (MBBR) systems. The model embeds a biofilm model into a multicell activated sludge model. The advantage of such a model is that it eliminates the need to run separate computations for a plant being retrofitted from activated sludge to IFAS or MBBR. The biofilm flux rates for organics, nutrients, and biomass can be computed by two methods-a semi-empirical model of the biofilm that is relatively simpler, or a diffusional model of the biofilm that is computationally intensive. Biofilm support media can be incorporated to the anoxic and aerobic cells, but not the anaerobic cells. The model can be run for steady-state and dynamic simulations. The model was able to predict the changes in nitrification and denitrification at both pilot- and full-scale facilities. The semi-empirical and diffusional models of the biofilm were both used to evaluate the biofilm flux rates for media at different locations. The biofilm diffusional model was used to compute the biofilm thickness and growth, substrate concentrations, volatile suspended solids (VSS) concentration, and fraction of nitrifiers in each layer inside the biofilm. Following calibration, both models provided similar effluent results for reactor mixed liquor VSS and mixed liquor suspended solids and for the effluent organics, nitrogen forms, and phosphorus concentrations. While the semi-empirical model was quicker to run, the diffusional model provided additional information on biofilm thickness, quantity of growth in the biofilm, and substrate profiles inside the biofilm. PMID:18710147

  14. A laboratory-scale test of anaerobic digestion and methane production after phosphorus recovery from waste activated sludge.

    PubMed

    Takiguchi, Noboru; Kishino, Machiko; Kuroda, Akio; Kato, Junichi; Ohtake, Hisao

    2004-01-01

    In enhanced biological phosphorus removal (EBPR) processes, activated sludge microorganisms accumulate large quantities of polyphosphate (polyP) intracellularly. We previously discovered that nearly all of polyP could be released from waste activated sludge simply by heating it at 70 degrees C for about 1 h. We also demonstrated that this simple method was applicable to phosphorus (P) recovery from waste activated sludge in a pilot plant-scale EBPR process. In the present study, we evaluated the effect of this sludge processing (heat treatment followed by calcium phosphate precipitation) on anaerobic digestion in laboratory-scale experiments. The results suggested that the sludge processing for P recovery could improve digestive efficiency and methane productivity at both mesophilic (37 degrees C) and thermophilic (53 degrees C) temperatures. In addition, heat-treated waste sludge released far less P into the digested sludge liquor than did untreated waste sludge. It is likely that the P recovery step prior to anaerobic digestion has a potential advantage for controlling struvite (magnesium ammonium phosphate) deposit problems in sludge handling processes. PMID:16233643

  15. F-Canyon Sludge Physical Properties

    SciTech Connect

    Poirier, M. R.; Hansen, P. R.; Fink, S. D.

    2005-08-22

    The Site Deactivation and Decommissioning (SDD) Organization is evaluating options to disposition the 800 underground tanks (including removal of the sludge heels from these tanks). To support this effort, D&D requested assistance from Savannah River National Laboratory (SRNL) personnel to determine the pertinent physical properties to effectively mobilize the sludge from these tanks (Tanks 804, 808, and 809). SDD provided SRNL with samples of the sludge from Tanks 804, 808, and 809. The authors measured the following physical properties for each tank: particle settling rate, shear strength (i.e., settled solids yield stress), slurry rheology (i.e., yield stress and consistency), total solids concentration in the sludge, soluble solids concentration of the sludge, sludge density, and particle size distribution.

  16. RETRIEVAL & TREATMENT OF HANFORD TANK WASTE

    SciTech Connect

    EACKER, J.A.; SPEARS, J.A.; STURGES, M.H.; MAUSS, B.M.

    2006-01-20

    The Hanford Tank Farms contain 53 million gal of radioactive waste accumulated during over 50 years of operations. The waste is stored in 177 single-shell and double-shell tanks in the Hanford 200 Areas. The single-shell tanks were put into operation from the early 1940s through the 1960s with wastes received from several generations of processing facilities for the recovery of plutonium and uranium, and from laboratories and other ancillary facilities. The overall hanford Tank Farm system represents one of the largest nuclear legacies in the world driving towards completion of retrieval and treatment in 2028 and the associated closure activity completion by 2035. Remote operations, significant radiation/contamination levels, limited access, and old facilities are just some of the challenges faced by retrieval and treatment systems. These systems also need to be able to successfully remove 99% or more of the waste, and support waste treatment, and tank closure. The Tank Farm retrieval program has ramped up dramatically in the past three years with design, fabrication, installation, testing, and operations ongoing on over 20 of the 149 single-shell tanks. A variety of technologies are currently being pursued to retrieve different waste types, applications, and to help establish a baseline for recovery/operational efficiencies. The paper/presentation describes the current status of retrieval system design, fabrication, installation, testing, readiness, and operations, including: (1) Saltcake removal progress in Tanks S-102, S-109, and S-112 using saltcake dissolution, modified sluicing, and high pressure water lancing techniques; (2) Sludge vacuum retrieval experience from Tanks C-201, C-202, C-203, and C-204; (3) Modified sluicing experience in Tank C-103; (4) Progress on design and installation of the mobile retrieval system for sludge in potentially leaking single-shell tanks, particularly Tank C-101; and (5) Ongoing installation of various systems in the next

  17. Co-digestion of food and garden waste with mixed sludge from wastewater treatment in continuously stirred tank reactors.

    PubMed

    Fitamo, T; Boldrin, A; Boe, K; Angelidaki, I; Scheutz, C

    2016-04-01

    Co-digestions of urban organic waste were conducted to investigate the effect of the mixing ratio between sludge, food waste, grass clippings and green waste at different hydraulic retention times (HRTs). Compared to the digestion of 100% sludge, the methane yield increased by 48% and 35%, when co-digesting sludge with food waste, grass clippings and garden waste with a corresponding %VS of 10:67.5:15.75:6.75 (R1) and 10:45:31.5:13.5 (R2), respectively. The methane yield remained constant at around 425 and 385 NmL CH4/g VS in R1 and R2, respectively, when the reactors were operated at HRTs of 15, 20 and 30 days. However, the methane yield dropped significantly to 356 (R1) and 315 (R2) NmL CH4/g VS when reducing the HRT to 10 days, indicating that the process was stressed. Since the methane production rate improved significantly with decreasing HRT, the trade-off between yield and productivity was obtained at 15 days HRT. PMID:26866760

  18. Response of activated sludge to the treatment of oxytetracycline production waste stream.

    PubMed

    Liu, Miaomiao; Zhang, Yu; Ding, Ran; Gao, Yingxin; Yang, Min

    2013-10-01

    To investigate how the microbial community in activated sludge responded to high antibiotic levels, a bench-scale aerobic wastewater treatment system was used to treat oxytetracycline (OTC) mother liquor (OTC-ML). Removal efficiency of chemical oxygen demand decreased from 64.9 to 51.0 % when the OTC level increased from 191.6 to 620.5 mg/L, respectively. According to the cloning results, Psychrobacter and Cryptophyta were the dominant bacterium and eukaryote in the inoculated sludge, respectively, both of which related to low temperature. After OTC exposure, Alphaproteobacteria and Betaproteobacteria became the dominant bacteria, with a small proportion of Firmicutes, Actinobacteria appeared, and fungi (mainly Saccharomycotina) became the dominant eukaryotes, indicating the possible functions of these microorganisms in the wastewater treatment of OTC-ML. The relative abundance of nine tetracycline resistance genes and four mobile elements (class 1 integron, class 2 integron, transposon Tn916/1545, and pattern 1 insertion sequence common region) significantly increased from undetectable to 2.1 × 10(-3) in the inoculated sludge to 1.7 × 10(-4)-9.8 × 10(-1) in sludge exposed to 620.5 mg/L OTC by using real-time PCR. The variety of gene cassette arrays of class 1 integron in the sludge samples increased with increasing OTC exposure concentration. PMID:23188460

  19. Ammonia-methane two-stage anaerobic digestion of dehydrated waste-activated sludge.

    PubMed

    Nakashimada, Yutaka; Ohshima, Yasutaka; Minami, Hisao; Yabu, Hironori; Namba, Yuzaburo; Nishio, Naomichi

    2008-07-01

    The study investigated methane production from dehydrated waste-activated sludge (DWAS) with approximately 80% water content under thermophilic conditions. The repeated batch-wise treatment of DWAS using methanogenic sludge unacclimated to high concentrations of ammonia, increased the ammonia production up to 7,600 mg N per kilogram total wet sludge of total ammonia concentration, and stopped the methane production. Investigation revealed that the loading ratio of DWAS for methanogenic sludge influences anaerobic digestion. Methane production significantly decreased and ammonia concentration increased with the increase in loading ratio of DWAS. Since the semicontinuous culture revealed that approximately 50% of organic nitrogen in DWAS converted to ammonia at sludge retention time (SRT) after 4 days at 37 degrees C and 1.33 days at 55 degrees C, the previous stripping of the ammonia produced from DWAS was carried out. The stripping of ammonia increased methane production significantly. This ammonia-methane two-stage anaerobic digestion demonstrated a successful methane production at SRT 20 days in the semicontinuous operation using a laboratory-scale reactor system. PMID:18491038

  20. Enhancement of aerobic biodegradability potential of municipal waste activated sludge by ultrasonic aided bacterial disintegration.

    PubMed

    Kavitha, S; Jessin Brindha, G M; Sally Gloriana, A; Rajashankar, K; Yeom, Ick Tae; Rajesh Banu, J

    2016-01-01

    An investigation was performed to study the influence of ultrasonic aided bacterial disintegration on the aerobic degradability of sludge. In first phase of the study, effective floc disruption was achieved at an ultrasonic specific energy input of 2.45kJ/kg TS with 44.5mg/L of Extracellular Polymeric Substance (EPS) release including 0.035U/mL and 0.025U/mL protease and amylase activity respectively. In second phase, experimental outcomes revealed bacterial disintegration of floc disrupted-sludge showing a maximum solubilization of about 23% and was observed to be superior to bacterially disintegrated (11%) and control (6%), respectively. The result of aerobic biodegradability of ultrasonic aided bacterially pretreated sludge showed volatile solids (VS) degradation of about 40.2%. The kinetic study of aerobic biodegradability through non linear regression modelling reveals that floc disrupted sludge showed better biodegradability with decay constant of about 0.19d(-1) relatively higher than the control (0.14d(-1)) and bacterially disintegrated (0.17d(-1)) sludges. PMID:26479431

  1. Sludge pretreatment chemistry evaluation: Enhanced sludge washing separation factors

    SciTech Connect

    Colton, N.G.

    1995-03-01

    This report presents the work conducted in Fiscal Year 1994 by the Sludge Pretreatment Chemistry Evaluation Subtask for the Tank Waste Remediation System (TWRS) Tank Waste Treatment Science Task. The main purpose of this task, is to provide the technical basis and scientific understanding to support TWRS baseline decisions and actions, such as the development of an enhanced sludge washing process to reduce the volume of waste that will require high-level waste (HLW) vitrification. One objective within the Sludge Pretreatment Chemistry Evaluation Subtask was to establish wash factors for various SST (single-shell tank) sludges. First, analytical data were compiled from existing tank waste characterization reports. These data were summarized on tank-specific worksheets that provided a uniform format for reviewing and comparing data, as well as the means to verify whether the data set for each tank was complete. Worksheets were completed for 27 SST wastes. The analytical water wash data provided tank-specific information about the fraction of each component that dissolves with water, i.e., an estimate of tank-specific wash factors for evaluating tank-by-tank processing. These wash data were then used collectively to evaluate some of the wash factors that are assumed for the overall SST waste inventory; specifically, wash factors for elements that would be found primarily in sludges. The final step in this study was to incorporate the characterization and wash factor data into a spreadsheet that provides insight into the effect of enhanced sludge washing on individual tank sludges as well as for groups of sludges that may be representative of different waste types. Spreadsheet results include the estimated mass and percentage of each element that would be removed with washing and leaching. Furthermore, estimated compositions are given of the final wash and leach streams and residual solids, in terms of both concentration and dry weight percent.

  2. Identification of Triclosan-O-Sulfate and other transformation products of Triclosan formed by activated sludge.

    PubMed

    Chen, Xijuan; Casas, Mònica Escolà; Nielsen, Jeppe Lund; Wimmer, Reinhard; Bester, Kai

    2015-02-01

    Aerobic degradation experiments of Triclosan were performed in activated sludge to identify possible transformation products for this compound. During 7 days, the formation of biotransformation products such as 2,4-Dichlorophenol, 4-Chlorocatechol, 5-Hydroxy-Triclosan and other Monohydroxy-Triclosan derivatives as well as Dihydroxy-Triclosan-derivatives were observed. The structure of 5-Hydroxy-Triclosan was elucidated by NMR data for the first time in sludge degradation experiments. Additionally the production of a hitherto unknown transformation product in sludge, i.e., Triclosan-O-Sulfate was detected. During the incubations, the concentrations of this transformation product changed from zero to 330 μg L(-1). Based on the analysis of the biodegradation products, three types of reactions were identified: 1) chemical scission of ether bond to form phenols and catechols, 2) addition of OH moieties to the aromatic ring, and 3) adding of methyl or sulfate groups to the original hydroxyl group. PMID:25306094

  3. The influence of SRT on phosphorus removal and sludge characteristics in the HA-A/A-MCO sludge reduction process

    NASA Astrophysics Data System (ADS)

    Zuo, N.; Ji, F. Y.

    2013-02-01

    By researching the influence of sludge age (SRT) on phosphorous removal and sludge characteristics in the HA-A/A-MCO (hydrolysis-acidification-anaerobic/anoxic-multistep continuous oxic tank) process, which has the effect of simultaneous phosphorous and nitrogen removal and sludge reduction, it is found that extended SRT is helpful for improving the ability of anaerobic phosphorous release and chemical recovery of phosphate, but the hosphorous removal efficiency is not affected. Extended SRT causes the system to have even more active sludge; it can also lead to the system having a powerful ability of biochemical reaction by using superiority of concentration. Meanwhile, extended SRT can still reduce sludge yield. Extended SRT cannot make soluble metabolic product (SMP) accumulate in the reactor, so that the pollutant removal power is reduced; it also cannot affect the activity of the sludge. However, extended SRT is able to make the coagulation of the sludge hard, and cause the sludge volume index value increase, but cannot cause sludge bulking.

  4. Glass Science tutorial lecture No. 5: Historical review of USDOE tank waste management

    SciTech Connect

    McDaniel, E.W.

    1995-02-01

    This is a two day course whose objective is to present an unbiased historical overview of the DOE tank waste activities. World events which impacted the US nuclear program (or vise versa) will be presented. Liquid, mostly tank waste, and sludge are the primary concerns of this course.

  5. Effect of process variables on the production of Polyhydroxyalkanoates by activated sludge.

    PubMed

    Mokhtarani, Nader; Ganjidoust, Hossein; Vasheghani Farahani, Ebrahim

    2012-01-01

    Polyhydroxyalkanoates are known to be temporarily stored by microorganisms in activated sludge, especially in anaerobic-aerobic processes. Due to the problems resulted from the disposals of plastic wastes and excess sludge of wastewater treatment plants, the production of polyhydroxyalkanoates by treating activated sludge and determining the effect of process variables were the main issues of this paper. In this research, an anaerobic-aerobic sequencing batch reactor was used to make microorganism adapted and a batch aerobic reactor was used for enriching them. The variables affecting polyhydroxyalkanoates production including aeration time, sludge retention time, and volatile fatty acids concentration of the influent in sequencing batch reactor, and also carbon to nitrogen ratio and cultivation time in polymer production reactor, were investigated using Taguchi statistical approach to determine optimum conditions. The maximum polymer production of 29% was achieved at sludge retention time of 5-10 days, aeration time of 2 hours, supplementation of 40% of volatile fatty acids in the influent and increasing of carbon to nitrogen ratio of polymer production reactor to above 25 g/g. Based on the results, in optimum conditions, the volatile fatty acids concentration which increased the production of polyhydroxyalkanoates up to 49% was the most effective variable. Carbon to nitrogen ratio, sludge retention time and aeration time were ranked as the next affecting parameters. Although the polyhydroxyalkanoates content achieved in present study is much lower than that by pure culture, but the proposed method may still serve well as an environmental friendly means to convert waste into valuable product. PMID:23369512

  6. Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria

    NASA Astrophysics Data System (ADS)

    Bestawy, Ebtesam El.; Helmy, Shacker; Hussien, Hany; Fahmy, Mohamed; Amer, Ranya

    2013-03-01

    Removal of heavy metals from contaminated domestic-industrial effluent using eight resistant indigenous bacteria isolated from acclimatized activated sludge was investigated. Molecular identification using 16S rDNA amplification revealed that all strains were Gram-negative among which two were resistant to each of copper, cadmium and cobalt while one was resistant to each of chromium and the heavy metal mixture. They were identified as Enterobacter sp. (Cu1), Enterobacter sp. (Cu2), Stenotrophomonas sp. (Cd1), Providencia sp. (Cd2), Chryseobacterium sp. (Co1), Comamonas sp. (Co2), Ochrobactrum sp. (Cr) and Delftia sp. (M1) according to their resistance pattern. Strains Cu1, Cd1, Co2 and Cr were able to resist 275 mg Cu/l, 320 mg Cd/l, 140 mg Co/l and 29 mg Cr/l respectively. The four resistant strains were used as a mixture to remove heavy metals (elevated concentrations) and reduce the organic load of wastewater effluent. Results revealed that using the proposed activated sludge with the resistant bacterial mixture was more efficient for heavy metal removal compared to the activated sludge alone. It is therefore recommended that the proposed activated sludge system augmented with the acclimatized strains is the best choice to ensure high treatment efficiency and performance under metal stresses especially when industrial effluents are involved.

  7. Local adaptive approach toward segmentation of microscopic images of activated sludge flocs

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Burhan; Nisar, Humaira; Ng, Choon Aun; Lo, Po Kim; Yap, Vooi Voon

    2015-11-01

    Activated sludge process is a widely used method to treat domestic and industrial effluents. The conditions of activated sludge wastewater treatment plant (AS-WWTP) are related to the morphological properties of flocs (microbial aggregates) and filaments, and are required to be monitored for normal operation of the plant. Image processing and analysis is a potential time-efficient monitoring tool for AS-WWTPs. Local adaptive segmentation algorithms are proposed for bright-field microscopic images of activated sludge flocs. Two basic modules are suggested for Otsu thresholding-based local adaptive algorithms with irregular illumination compensation. The performance of the algorithms has been compared with state-of-the-art local adaptive algorithms of Sauvola, Bradley, Feng, and c-mean. The comparisons are done using a number of region- and nonregion-based metrics at different microscopic magnifications and quantification of flocs. The performance metrics show that the proposed algorithms performed better and, in some cases, were comparable to the state-of the-art algorithms. The performance metrics were also assessed subjectively for their suitability for segmentations of activated sludge images. The region-based metrics such as false negative ratio, sensitivity, and negative predictive value gave inconsistent results as compared to other segmentation assessment metrics.

  8. CRITICAL LITERATURE REVIEW AND RESEARCH NEEDED ON ACTIVATED SLUDGE SECONDARY CLARIFIERS

    EPA Science Inventory

    Secondary clarifiers are key to the successful performance of the activated sludge process. They serve to separate out the biological solids and produce a clear effluent and to concentrate the settled solids for return to the aeration basins. Clarifiers have served the purpose fo...

  9. An Operations Manual for Achieving Nitrification in an Activated Sludge Plant.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    In Ontario, the attainment of nitrification (oxidation of ammonia) in activated sludge plants is receiving increased attention. Nitrification of waste water is a necessary requirement because it reduces plant discharge of nitrogenous oxygen demand and/or toxic ammonia. However, this new requirement will result in added responsibility for…

  10. Operational Control Procedures for the Activated Sludge Process, Part III-A: Calculation Procedures.

    ERIC Educational Resources Information Center

    West, Alfred W.

    This is the second in a series of documents developed by the National Training and Operational Technology Center describing operational control procedures for the activated sludge process used in wastewater treatment. This document deals exclusively with the calculation procedures, including simplified mixing formulas, aeration tank…

  11. Operational Control Procedures for the Activated Sludge Process, Part I - Observations, Part II - Control Tests.

    ERIC Educational Resources Information Center

    West, Alfred W.

    This is the first in a series of documents developed by the National Training and Operational Technology Center describing operational control procedures for the activated sludge process used in wastewater treatment. Part I of this document deals with physical observations which should be performed during each routine control test. Part II…

  12. THE COUPLED TRICKLING FILTER-ACTIVATED SLUDGE PROCESS: DESIGN AND PERFORMANCE

    EPA Science Inventory

    A case history report was prepared on the upgrading of the Livermore, California, Water Reclamation Plant from a conventional trickling filter plant with tertiary oxidation ponds to a coupled trickling filter-activated sludge plant producing a nitrified effluent low in BOD5, susp...

  13. Bioavailable and biodegradable dissolved organic nitrogen in activated sludge and trickling filter wastewater treatment plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was carried out to understand the fate of biodegradable dissolved organic nitrogen (BDON) and bioavailable dissolved organic nitrogen (ABDON) along the treatment trains of a wastewater treatment facility (WWTF) equipped with an activated sludge (AS) system and a WWTF equipped with a two-stag...

  14. OXYGEN-ACTIVATED SLUDGE PLANT COMPLETES TWO YEARS OF SUCCESSFUL OPERATION

    EPA Science Inventory

    A detailed report of the conversion to and operational performance of an oxygen-activated sludge system at the Westgate wastewater treatment plant in Fairfax County, Virginia, is given in this report. It is presented in the form of a case history including the time span leading u...

  15. Two-phased hyperthermophilic anaerobic co-digestion of waste activated sludge with kitchen garbage.

    PubMed

    Lee, Myungyeol; Hidaka, Taira; Tsuno, Hiroshi

    2009-11-01

    For co-digestion of waste activated sludge with kitchen garbage, hyperthermophilic digester systems that consisted of an acidogenic reactor operated at hyperthermophilic (70 degrees C) and a methanogenic reactor operated at mesophilic (35 degrees C), thermophilic (55 degrees C) or hyperthermophilic (65 degrees C) conditions in series were studied by comparing with a thermophilic digester system that consisted of thermophilic (55 degrees C) acidogenic and methanogenic reactors. Laboratory scale reactors were operated continuously fed with a substrate blend composed of concentrated waste activated sludge and artificial kitchen garbage. At the acidogenic reactor, solubilization efficiencies of chemical oxygen demand (COD), carbohydrate and protein at 70 degrees C were about 39%, 42% and 54%, respectively, and they were higher than those at 55 degrees C by around 10%. The system of acidogenesis at 70 degrees C and methanogenesis at 55 degrees C was stable and well-functioned in terms of treatment performances and low ammonium nitrogen concentrations. Microbial community analysis was conducted using a molecular biological method. The key microbe determined at the hyperthermophilic acidogenesis step was Coprothermobacter sp., which was possibly concerned with the degradation of protein in waste activated sludge. The present study proved that the hyperthermophilic system was advantageous for treating substrate blends containing high concentrations of waste activated sludge. PMID:19804865

  16. Effects of TiO2 and Ag nanoparticles on polyhydroxybutyrate biosynthesis by activated sludge bacteria.

    PubMed

    Priester, John H; Van De Werfhorst, Laurie C; Ge, Yuan; Adeleye, Adeyemi S; Tomar, Shivira; Tom, Lauren M; Piceno, Yvette M; Andersen, Gary L; Holden, Patricia A

    2014-12-16

    Manufactured nanomaterials (MNMs) are increasingly incorporated into consumer products that are disposed into sewage. In wastewater treatment, MNMs adsorb to activated sludge biomass where they may impact biological wastewater treatment performance, including nutrient removal. Here, we studied MNM effects on bacterial polyhydroxyalkanoate (PHA), specifically polyhydroxybutyrate (PHB), biosynthesis because of its importance to enhanced biological phosphorus (P) removal (EBPR). Activated sludge was sampled from an anoxic selector of a municipal wastewater treatment plant (WWTP), and PHB-containing bacteria were concentrated by density gradient centrifugation. After starvation to decrease intracellular PHB stores, bacteria were nutritionally augmented to promote PHB biosynthesis while being exposed to either MNMs (TiO2 or Ag) or to Ag salts (each at a concentration of 5 mg L(-1)). Cellular PHB concentration and PhyloChip community composition were analyzed. The final bacterial community composition differed from activated sludge, demonstrating that laboratory enrichment was selective. Still, PHB was synthesized to near-activated sludge levels. Ag salts altered final bacterial communities, although MNMs did not. PHB biosynthesis was diminished with Ag (salt or MNMs), indicating the potential for Ag-MNMs to physiologically impact EBPR through the effects of dissolved Ag ions on PHB producers. PMID:25409530

  17. TOC, ATP AND RESPIRATION RATE AS CONTROL PARAMETERS FOR THE ACTIVATED SLUDGE PROCESS

    EPA Science Inventory

    This research was conducted to determine the feasibility of using TOC, ATP and respiration rates as tools for controlling a complete mix activated sludge plant handling a significant amount of industrial waste. Control methodology was centered on using F/M ratio which was determi...

  18. FATE OF WATER SOLUBLE AZO DYES IN THE ACTIVATED SLUDGE PROCESS

    EPA Science Inventory

    The objective of this study was to determine the partitioning of water soluble azo dyes in the activated sludge process (ASP). Azo dyes are of concern because some of the dyes, dye precursors , and/or their degradation products such as aromatic amines (which are also dye precurso...

  19. Activated sludge mass reduction and biodegradability of the endogenous residues by digestion under different aerobic to anaerobic conditions: Comparison and modeling.

    PubMed

    Martínez-García, C G; Fall, C; Olguín, M T

    2016-03-01

    This study was performed to identify suitable conditions for the in-situ reduction of excess sludge production by intercalated digesters in recycle-activated sludge (RAS) flow. The objective was to compare and model biological sludge mass reduction and the biodegradation of endogenous residues (XP) by digestion under hypoxic, aerobic, anaerobic, and five intermittent-aeration conditions. A mathematical model based on the heterotrophic endogenous decay constant (bH) and including the biodegradation of XP was used to fit the long-term data from the digesters to identify and estimate the parameters. Both the bH constant (0.02-0.05 d(-1)) and the endogenous residue biodegradation constant (bP, 0.001-0.004 d(-1)) were determined across the different mediums. The digesters with intermittent aeration cycles of 12 h-12 h and 5 min-3 h (ON/OFF) were the fastest, compared to the aerobic reactor. The study provides a basis for rating RAS-digester volumes to avoid the accumulation of XP in aeration tanks. PMID:26720137

  20. Fate of organic matter during moderate heat treatment of sludge: kinetics of biopolymer and hydrolytic activity release and impact on sludge reduction by anaerobic digestion.

    PubMed

    Lefebvre, D; Dossat-Létisse, V; Lefebvre, X; Girbal-Neuhauser, E

    2014-01-01

    Temperature-phased anaerobic digestion with a 50-70 °C pre-treatment is widely proposed for sludge. Here, such a sludge pre-treatment (65 °C) was studied against the physical, enzymatic and biodegradation processes. The soluble and particulate fractions were analysed in terms of biochemical composition and hydrolytic enzymatic activities. Two kinetics of organic matter solubilisation were observed: a rapid transfer of the weak-linked biopolymers to the water phase, including sugars, proteins or humic acid-like substances, to the water phase, followed by a slow and long-term solubilisation of proteins and humic acid-like substances. In addition, during the heat treatment a significant pool of thermostable hydrolytic enzymes including proteases, lipases and glucosidases remains active. Consequently, a global impact on organic matter was the transfer of the biodegradable chemical oxygen demand (COD) from the particulate to the soluble fraction as evaluated by the biological methane potential test. However, the total biodegradable COD content of the treated sludge remained constant. The heat process improves the bio-accessibility of the biodegradable molecules but doesn't increase the inherent sludge biodegradability, suggesting that the chemistry of the refractory proteins and humic acids seems to be the real limit to sludge digestion. PMID:24804656

  1. High-rate activated sludge communities have a distinctly different structure compared to low-rate sludge communities, and are less sensitive towards environmental and operational variables.

    PubMed

    Meerburg, Francis A; Vlaeminck, Siegfried E; Roume, Hugo; Seuntjens, Dries; Pieper, Dietmar H; Jauregui, Ruy; Vilchez-Vargas, Ramiro; Boon, Nico

    2016-09-01

    High-rate activated sludge processes allow for the recovery of organics and energy from wastewaters. These systems are operated at a short sludge retention time and high sludge-specific loading rates, which results in a higher sludge yield and better digestibility than conventional, low-rate activated sludge. Little is known about the microbial ecology of high-rate systems. In this work, we address the need for a fundamental understanding of how high-rate microbial communities differ from low-rate communities. We investigated the high-rate and low-rate communities in a sewage treatment plant in relation to environmental and operational variables over a period of ten months. We demonstrated that (1) high-rate and low-rate communities are distinctly different in terms of richness, evenness and composition, (2) high-rate community dynamics are more variable and less shaped by deterministic factors compared to low-rate communities, (3) sub-communities of continuously core and transitional members are more shaped by deterministic factors than the continuously rare members, both in high-rate and low-rate communities, and (4) high-rate community members showed a co-occurrence pattern similar to that of low-rate community members, but were less likely to be correlated to environmental and operational variables. These findings provide a basis for further optimization of high-rate systems, in order to facilitate resource recovery from wastewater. PMID:27183209

  2. Response of biodegradation characteristics of unacclimated activated sludge to moderate pressure in a batch reactor.

    PubMed

    Xu, Rui-Xiao; Li, Bing; Zhang, Yong; Si, Ling; Zhang, Xian-Qiu; Xie, Biao

    2016-04-01

    This study was aimed to investigate the effect of moderate pressure on unacclimated activated sludge. Process of organic degradation, variation of carbon dioxide (CO2) concentration of off-gas and characteristics of extracellular polymeric substances (EPS) of activated sludge were analyzed using pressure-atmospheric comparative experiments in bench-scale batch reactors. It was found that moderate pressure increased the degradation rate more dramatically when the biological process ran under a higher organic load with much more oxygen demand, which illuminated that applications of the pressurized method to high concentration organic wastewaters would be more reasonable and practicable. High oxygen transfer impetus increased utilization of oxygen which not only promoted the biodegradation of organics in wastewater, but also led to more EPS consumption in activated sludge. CO2 concentration of off-gas was lower in the earlier stage due to CO2 being pressed into the liquid phase and converted into inorganic carbon (IC). More CO2 emission was observed during the pressurized aerobic process 160 min later. EPS in pressurized reactor was much lower, which may be an important way of sludge reduction by pressurized technology. PMID:26802261

  3. Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge

    PubMed Central

    Liu, Mei; Gill, Jason J.; Young, Ry; Summer, Elizabeth J.

    2015-01-01

    Filamentous bacteria are a normal and necessary component of the activated sludge wastewater treatment process, but the overgrowth of filamentous bacteria results in foaming and bulking associated disruptions. Bacteriophages, or phages, were investigated for their potential to reduce the titer of foaming bacteria in a mixed-microbial activated sludge matrix. Foaming-associated filamentous bacteria were isolated from activated sludge of a commercial wastewater treatment plan and identified as Gordonia species by 16S rDNA sequencing. Four representative phages were isolated that target G. malaquae and two un-named Gordonia species isolates. Electron microscopy revealed the phages to be siphophages with long tails. Three of the phages - GordTnk2, Gmala1, and GordDuk1 - had very similar ~76 kb genomes, with >93% DNA identity. These genomes shared limited synteny with Rhodococcus equi phage ReqiDocB7 and Gordonia phage GTE7. In contrast, the genome of phage Gsput1 was smaller (43 kb) and was not similar enough to any known phage to be placed within an established phage type. Application of these four phages at MOIs of 5–15 significantly reduced Gordonia host levels in a wastewater sludge model by approximately 10-fold as compared to non-phage treated reactors. Phage control was observed for nine days after treatment. PMID:26349678

  4. Entomotoxicity, protease and chitinase activity of Bacillus thuringiensis fermented wastewater sludge with a high solids content.

    PubMed

    Brar, Satinder K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2009-10-01

    This study investigated the production of biopesticides, protease and chitinase activity by Bacillus thuringiensis grown in raw wastewater sludge at high solids concentration (30 g/L). The rheology of wastewater sludge was modified with addition of Tween-80 (0.2% v/v). This addition resulted in 1.6 and 1.3-fold increase in cell and spore count, respectively. The maximum specific growth rate (micro(max)) augmented from 0.17 to 0.22 h(-1) and entomotoxicity (Tx) increased by 29.7%. Meanwhile, volumetric mass transfer coefficient (k(L)a) showed marked variations during fermentation, and oxygen uptake rate (OUR) increased 2-fold. The proteolytic activity increased while chitinase decreased for Tween amended wastewater sludge, but the entomotoxicity increased. The specific entomotoxicity followed power law when plotted against spore concentration and the relation between Tx and protease activity was linear. The viscosity varied and volume percent of particles increased in Tween-80 amended wastewater sludge and particle size (D(50)) decreased at the end of fermentation. Thus, there was an increase in entomotoxicity at higher suspended solids (30 g/L) as Tween addition improved rheology (viscosity, particle size, surface tension); enhanced maximum growth rate and OUR. PMID:19447031

  5. Stoichiometry and kinetics of poly-{beta}-hydroxybutyrate metabolism in aerobic, slow growing, activated sludge cultures

    SciTech Connect

    Beun, J.J.; Paletta, F.; Loosdrecht, M.C.M. Van; Heijnen, J.J.

    2000-02-20

    This paper discusses the poly-{beta}-hydroxybutyrate (PHB) metabolism in aerobic, slow growing, activated sludge cultures, based on experimental data and on a metabolic model. The dynamic conditions which occur in activated sludge processes were simulated in a 2-L sequencing batch reactor (SBR) by subjecting a mixed microbial population to successive periods of external substrate availability (feast period) and no external substrate availability (famine period). Under these conditions intracellular storage and consumption of PHB was observed. It appeared that in the feast period, 66% to almost 100% of the substrate consumed is used for storage of PHB, the remainder is used for growth and maintenance processes. Furthermore, it appeared that at high sludge retention time (SRT) the growth rate in the feast and famine periods was the same. With decreasing SRT the growth rate in the feast period increased relative to the growth rate in the famine period. Acetate consumption and PHB production in the feast period both proceeded with a zero-order rate in acetate and PHB concentration respectively. PHB consumption in the famine period could best be described kinetically with a nth order degradation equation in PHB concentration. The obtained results are discussed in the context of the general activated sludge models.

  6. The impact of peroxydisulphate and peroxymonosulphate on disintegration and settleability of activated sludge.

    PubMed

    Wacławek, Stanisław; Grübel, Klaudiusz; Černík, Miroslav

    2016-01-01

    Chemical treatment processes have mostly been considered as an efficient way for biosolid minimization. The improvement of sludge dewatering was more a welcome side-effect of these sequential processes. In this study, heat-activated sodium peroxydisulphate (PDS) and potassium peroxymonosulphate (MPS) were applied in order to disintegrate waste activated sludge (WAS). PDS and MPS treatment of WAS results in the polymer transfer of organic matter from the solid phase to the liquid phase. Our research work was done for chemical disintegration of WAS by PDS and MPS in doses of 0.2%, 0.4%, 0.6%, 0.8% and 1% (169.5, 339.0, 508.5, 678.0 and 847.5 mg [Formula: see text]) activated at temperatures of 60°C and 90°C for 30 min. The application of these methods causes the soluble chemical oxygen demand value to increase in the supernatant. In addition, there was a positive influence on the sludge volume index which decreased for the highest doses of PDS of over 63% and 77% and MPS of over 78% and 82% through heat activation at temperatures of 60°C and 90°C, respectively. Furthermore, MPS was more successful in the floc particle destruction, therefore it caused a higher sludge settlement acceleration (sedimentation/compaction speed) than PDS. The experimental results demonstrated that the application of heat-activated PDS and MPS may become a novel effective way of processing sewage sludge. PMID:26503018

  7. Criticality Safety Assessment: Impact of Tank 40H Sludge Batch 2 Decant No. 2 on the Criticality Safety Assessment of the 242-25H Evaporator System (WSRC-TR-2000-00069)

    SciTech Connect

    Smiley, H.S.

    2001-07-30

    This assessment was done to evaluate the impact of the planned transfer of Decant No.2 from Sludge Batch 2 in Tank 40H on the potential for solids accumulation in the 242-25H evaporator. It is a nuclear criticality safety (NCS) goal to demonstrate that the evaporator vessel cannot accumulate fissile material in a quantity and configuration that provides a pathway to criticality.The mechanism for accumulation of fissile material is through formation of aluminosilicate solids.

  8. Effects of long term irrigation with polluted water and sludge amendment on some soil enzyme activities

    SciTech Connect

    Topac, F.O.; Baskaya, H.S.; Alkan, U.; Katkat, A.V.

    2008-01-15

    The objective of this study was to determine the effects of wastewater sludge-fly ash mixtures on urease, dehydrogenase, alkaline phosphatase and beta-glucosidase activities in soils. In order to evaluate the probable effects of previous soil management practices (irrigation with polluted water) on soil enzymes, two different soil samples which were similar in physical properties, but different in irrigation practice were used. The application of wastewater sludges supplemented with varying doses of fly ash increased potential enzyme activities for a short period of time (3 months) in comparison to unamended soils. However, the activity levels generally showed a decreasing trend with increasing ash ratios indicating the inhibitory effect of fly ash. The urease and dehydrogenase activities were particularly lower in soils irrigated from a polluted stream, indicating the negative effects of the previous soil management on soil microbial activity.

  9. Optimization of Ozonation Process for the Reduction of Excess Sludge Production from Activated Sludge Process of Sago Industry Wastewater Using Central Composite Design

    PubMed Central

    Subha, B.; Muthukumar, M.

    2012-01-01

    Sago industries effluent containing large amounts of organic content produced excess sludge which is a serious problem in wastewater treatment. In this study ozonation has been employed for the reduction of excess sludge production in activated sludge process. Central composite design is used to study the effect of ozone treatment for the reduction of excess sludge production in sago effluent and to optimise the variables such as pH, ozonation time, and retention time. ANOVA showed that the coefficient determination value (R2) of VSS and COD reduction were 0.9689 and 0.8838, respectively. VSS reduction (81%) was achieved at acidic pH 6.9, 12 minutes ozonation, and retention time of 10 days. COD reduction (87%) was achieved at acidic pH 6.7, 8 minutes of ozonation time, and retention time of 6 days. Low ozonation time and high retention time influence maximum sludge reduction, whereas low ozonation time with low retention time was effective for COD reduction. PMID:22593666

  10. Assessment of free nitrous acid pre-treatment on a mixture of primary sludge and waste activated sludge: Effect of exposure time and concentration.

    PubMed

    Zahedi, S; Icaran, P; Yuan, Z; Pijuan, M

    2016-09-01

    Free nitrous acid (FNA) has been shown to enhance the biodegradability of waste activated sludge (WAS) but its effectiveness on the pre-treatment of mixed sludge is not known. This study explores the effectiveness of four different FNA concentrations (0, 2.49, 3.55, 4.62mgN-HNO2/L) and three exposure times (2, 5, 9h) lower than the ones reported in literature (24h) on WAS characteristics and specific methane production (SMP). FNA pre-treatment reduced sludge cell viability below 10% in all cases after an exposure time of 5h, increasing the solubility of the organic matter. The treated mixed sludge was used as substrate for the biochemical methane production tests to assess its SMP. Results showed a significant increase (up to 25%) on SMP when the sludge was pretreated with the lowest FNA concentration (2.49mgN-HNO2/L) during 2 and 5h but did not show any improvement at longer exposure times or higher FNA concentrations. PMID:27318660

  11. pH-dependent biotransformation of ionizable organic micropollutants in activated sludge.

    PubMed

    Gulde, Rebekka; Helbling, Damian E; Scheidegger, Andreas; Fenner, Kathrin

    2014-12-01

    Removal of micropollutants (MPs) during activated sludge treatment can mainly be attributed to biotransformation and sorption to sludge flocs, whereby the latter process is known to be of minor importance for polar organic micropollutants. In this work, we investigated the influence of pH on the biotransformation of MPs with cationic-neutral speciation in an activated sludge microbial community. We performed batch biotransformation, sorption control, and abiotic control experiments for 15 MPs with cationic-neutral speciation, one control MP with neutral-anionic speciation, and two neutral MPs at pHs 6, 7, and 8. Biotransformation rate constants corrected for sorption and abiotic processes were estimated from measured concentration time series with Bayesian inference. We found that biotransformation is pH-dependent and correlates qualitatively with the neutral fraction of the ionizable MPs. However, a simple speciation model based on the assumption that only the neutral species is efficiently taken up and biotransformed by the cells tends to overpredict the effect of speciation. Therefore, additional mechanisms such as uptake of the ionic species and other more complex attenutation mechanisms are discussed. Finally, we observed that the sorption coefficients derived from our control experiments were small and showed no notable pH-dependence. From this we conclude that pH-dependent removal of polar, ionizable organic MPs in activated sludge systems is less likely an effect of pH-dependent sorption but rather of pH-dependent biotransformation. The latter has the potential to cause marked differences in the removal of polar, ionizable MPs at different operational pHs during activated sludge treatment. PMID:25337862

  12. Environmental and resource implications of phosphorus recovery from waste activated sludge.

    PubMed

    Sørensen, Birgitte Lilholt; Dall, Ole Leinikka; Habib, Komal

    2015-11-01

    Phosphorus is an essential mineral resource for the growth of crops and thus necessary to feed the ever increasing global population. The essentiality and irreplaceability of phosphorus in food production has raised the concerns regarding the long-term phosphorus availability and the resulting food supply issues in the future. Hence, the recovery of phosphorus from waste activated sludge and other waste streams is getting huge attention as a viable solution to tackle the potential availability issues of phosphorus in the future. This study explores the environmental implications of phosphorus recovery from waste activated sludge in Denmark and further elaborates on the potential availability or scarcity issue of phosphorus today and 2050. Life cycle assessment is used to assess the possibility of phosphorus recovery with little or no environmental impacts compared to the conventional mining. The phosphorus recovery method assessed in this study consists of drying process, and thermal gasification of the waste activated sludge followed by extraction of phosphorus from the ashes. Our results indicate that the environmental impacts of phosphorus recovery in an energy efficient process are comparable to the environmental effects from the re-use of waste activated sludge applied directly on farmland. Moreover, our findings conclude that the general recommendation according to the waste hierarchy, where re-use of the waste sludge on farmland is preferable to material and energy recovery, is wrong in this case. Especially when phosphorus is a critical resource due to its life threatening necessity, lack of substitution options and potential future supply risk originating due to the high level of global supply concentration. PMID:25792438

  13. Characterization Of The As-Received Sludge Batch 9 Qualification Sample (Htf-51-15-81)

    SciTech Connect

    Pareizs, J.

    2015-09-30

    Savannah River National Laboratory (SRNL) personnel have been requested to qualify the next sludge batch (Sludge Batch 9 – SB9) for processing at the Defense Waste Processing Facility (DWPF). To accomplish this task, Savannah River Remediation (SRR) has sent SRNL a 3-L slurried sample of Tank 51H (HTF-51-15-81) to be characterized, washed, and then used in a lab-scale demonstration of the DWPF flowsheet (potentially after combining with Tank 40H sludge). This report documents the first steps of the qualification process – characterization of the as-received Tank 51H qualification sample. These results will be used to support a reprojection of SB9 by SRR from which final Tank 51H washing, frit development, and Chemical Processing Cell (CPC) activities will be based.

  14. A hybrid anaerobic membrane bioreactor coupled with online ultrasonic equipment for digestion of waste activated sludge.

    PubMed

    Xu, Meilan; Wen, Xianghua; Yu, Zhiyong; Li, Yushan; Huang, Xia

    2011-05-01

    Anaerobic membrane bioreactor and online ultrasonic equipment used to enhance membrane filtration were coupled to form a hybrid system (US-AnMBR) designed for long-term digestion of waste activated sludge. The US-AnMBR was operated under volatile solids loading rates of 1.1-3.7 gVS/L·d. After comprehensive studies on digestion performance and membrane fouling control in the US-AnMBR, the final loading rate was determined to be 2.7 gVS/L·d with 51.3% volatile solids destruction. In the US-AnMBR, the improved digestion was due to enhanced sludge disintegration, as indicated by soluble matter comparison in the supernatant and particle size distribution in the digested sludge. Maximum specific methanogenic activity revealed that ultrasound application had no negative effect on anaerobic microorganisms. Furthermore, implementing ultrasound effectively controlled membrane fouling and successfully facilitated membrane bioreactor operation. This lab-scale study demonstrates the potential feasibility and effectiveness of setting up a US-AnMBR system for sludge digestion. PMID:21421308

  15. Fiscal year 1994 1/25-scale sludge mobilization testing

    SciTech Connect

    Powell, M.R.; Gates, C.M.; Hymas, C.R.; Sprecher, M.A.; Morter, N.J.

    1995-07-01

    There are 28 one-million-gallon double-shell radioactive waste tanks on the Hanford Reservation in southeastern Washington State. The waste in these tanks was generated during processing of nuclear materials. Solids-laden slurries were placed into many of the tanks. Over time, the waste solids have settled to form a layer of sludge in the bottom of these tanks. The sludge layer thickness varies from tank to tank with some having only a few centimeters or no sludge up to some tanks which have about 4.5 m (15 ft) of sludge. It is planned that the waste will be removed from these tanks as part of the overall Hanford site cleanup efforts. Jet mixer pumps are to be placed into the tanks to stir up (mobilize) the sludge and form a uniform slurry suitable for pumping to downstream processing facilities. These mixer pumps use powerful jets of tank fluid directed horizontally out of two, diametrically opposed nozzles near the tank bottom. These fluid jets impinge upon the sludge and stir it up. The amount of sludge mobilized by the mixer pump jets depends not only on the jet properties, but also on the ability of the sludge to resist the jets. It is the goal of the work described in this document to develop the ability to predict how much sludge will be mobilized by the mixer pumps based on the size and velocity of the mixer pump jets and the physical and chemical properties of the tank sludge.

  16. Effects of heavy metal and other elemental additives to activated sludge on growth of Eisenia foetida

    SciTech Connect

    Hartenstein, R.; Neuhauser, E.F.; Narahara, A.

    1981-09-01

    The approximate level at which added concentrations of certain elements would cause an activated sludge to induce a toxic effect upon the growth of Eisenia foetida was determined. During 43 trials on sludge samples obtained throughout 1 year of study, earthworms grew from 3 to 10 mg live wt at hatching to 792 mg +- 18% (mean +- C.V.) in 8 weeks, when sludge was 24/sup 0/C and contained no additives. None of several elements commonly used in microbial growth media enhanced the growth rate of the earthworm. At salt concentrations up to about 6.6% on a dry wt basis, none of six anions tested was in and of itself toxic, while five of 15 cations - Co, Hg, Cu, Ni, and Cd - appeared specifically to inhibit growth rate or cause death. Manganese, Cr, and Pb were innocuous even at the highest levels of application - 22,000, 46,000, and 52,000 mg/kg, respectively. Neither the anionic nor cationic component of certain salts, such as NaCl or NH/sub 4/Cl, could be said to inhibit growth, which occurred only at high concentrations of these salts (about 3.3 and/or 6.6%). Below 7 mmho/cm, toxicity could not be correlated with electrolytic conductance, though higher values may help to explain the nonspecific growth inhibitory effects of salts like NaCl and KCl. Nor could toxicity ever be ascribed to hydrogen ion activity, since sludge pH was not altered even at the highest salt dose. It is concluded that except under very extreme conditions, the levels of heavy metals and salts generally found in activated sludges will not have an adverse affect on the growth of E. foetida.

  17. Characterization of activated sludge exocellular polymers using several cation-associated extraction methods.

    PubMed

    Park, Chul; Novak, John T

    2007-04-01

    Evaluation of prior research and preliminary investigations in our laboratory led to the development of an extraction strategy that can be used to target different cations in activated sludge floc and extract their associated extracellular polymeric substances (EPS). The methods we used were the cation exchange resin (CER) procedure, base extraction, and sulfide addition to extract EPS linked with divalent cations, Al, and Fe, respectively. A comparison of sludge cations before and after CER extraction revealed that most of Ca(2+) and Mg(2+) were removed while Fe and Al remained intact, suggesting that this method is highly selective for Ca(2+) and Mg(2+)-bound EPS. The correlation between sludge Fe and sulfide-extracted EPS was indicative of selectivity of this method for Fe-bound EPS. The base extraction was less specific than the other methods but it was the method releasing the largest amount of Al into the extract, indicating that the method extracted Al-bound EPS. Concomitantly, the composition of extracted EPS and the amino acid composition differed for the three methods, indicating that EPS associated with different metals were not the same. The change in EPS following anaerobic and aerobic digestion was also characterized by the three extraction methods. CER-extracted EPS were reduced after aerobic digestion while they changed little by anaerobic digestion. On the other hand, anaerobic digestion was associated with the decrease in sulfide-extracted EPS. These results suggest that different types of cation-EPS binding mechanisms exist in activated sludge and that each cation-associated EPS fraction imparts unique digestion characteristics to activated sludge. PMID:17346764

  18. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    PubMed

    Cristale, Joyce; Ramos, Dayana D; Dantas, Renato F; Machulek Junior, Amilcar; Lacorte, Silvia; Sans, Carme; Esplugas, Santiago

    2016-01-01

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L(-1) to 150 µg L(-1). During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g(-1) dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatment and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H2O2 and O3) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H2O2 and O3. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs. PMID:26540311

  19. Effects of dissolved oxygen on performance and microbial community structure in a micro-aerobic hydrolysis sludge in situ reduction process.

    PubMed

    Niu, Tianhao; Zhou, Zhen; Shen, Xuelian; Qiao, Weimin; Jiang, Lu-Man; Pan, Wei; Zhou, Jijun

    2016-03-01

    A sludge process reduction activated sludge (SPRAS), with a sludge process reduction module composed of a micro-aerobic tank and a settler positioned before conventional activated sludge process, showed good performance of pollutant removal and sludge reduction. Two SPRAS systems were operated to investigate effects of micro-aeration on sludge reduction performance and microbial community structure. When dissolved oxygen (DO) concentration in the micro-aerobic tank decreased from 2.5 (SPH) to 0.5 (SPL) mg/L, the sludge reduction efficiency increased from 42.9% to 68.3%. Compared to SPH, activated sludge in SPL showed higher contents of extracellular polymeric substances and dissolved organic matter. Destabilization of floc structure in the settler, and cell lysis in the sludge process reduction module were two major reasons for sludge reduction. Illumina-MiSeq sequencing showed that microbial diversity decreased under high DO concentration. Proteobacteria, Bacteroidetes and Chloroflexi were the most abundant phyla in the SPRAS. Specific comparisons down to the class and genus level showed that fermentative, predatory and slow-growing bacteria in SPL community were more abundant than in SPH. The results revealed that micro-aeration in the SPRAS improved hydrolysis efficiency and enriched fermentative and predatory bacteria responsible for sludge reduction. PMID:26766160

  20. Treatment of swine wastewater using chemically modified zeolite and bioflocculant from activated sludge.

    PubMed

    Guo, Junyuan; Yang, Chunping; Zeng, Guangming

    2013-09-01

    Sterilization, alkaline-thermal and acid-thermal treatments were applied to activated sludge and the pre-treated sludge was used as raw material for Rhodococcus R3 to produce polymeric substances. After 60 h of fermentation, bioflocculant of 2.7 and 4.2 g L(-1) were produced in sterilized and alkaline-thermal treated sludge as compared to that of 0.9 g L(-1) in acid-thermal treated sludge. Response surface methodology (RSM) was employed to optimize the treatment process of swine wastewater using the composite of bioflocculant and zeolite modified by calcining with MgO. The optimal flocculating conditions were bioflocculant of 24 mg L(-1), modified zeolite of 12 g L(-1), CaCl2 of 16 mg L(-1), pH of 8.3 and contact time of 55 min, and the corresponding removal rates of COD, ammonium and turbidity were 87.9%, 86.9%, and 94.8%. The use of the composite by RSM provides a feasible way to improve the pollutant removal efficiencies and recycle high-level of ammonium from wastewater. PMID:23810950

  1. A novel rotation generator of hydrodynamic cavitation for waste-activated sludge disintegration.

    PubMed

    Petkovšek, Martin; Mlakar, Matej; Levstek, Marjetka; Stražar, Marjeta; Širok, Brane; Dular, Matevž

    2015-09-01

    The disintegration of raw sludge is very important for enhancement of the biogas production in anaerobic digestion process as it provides easily degradable substrate for microorganisms to perform maximum sludge treatment efficiency and stable digestion of sludge at lower costs. In the present study the disintegration was studied by using a novel rotation generator of hydrodynamic cavitation (RGHC). At the first stage the analysis of hydrodynamics of the RGHC were made with tap water, where the cavitation extent and aggressiveness was evaluated. At the second stage RGHC was used as a tool for pretreatment of a waste-activated sludge (WAS), collected from wastewater treatment plant (WWTP). In case of WAS the disintegration rate was measured, where the soluble chemical oxygen demand (SCOD) and soluble Kjeldahl nitrogen were monitored and microbiological pictures were taken. The SCOD increased from initial 45 mg/L up to 602 mg/L and 12.7% more biogas has been produced by 20 passes through RGHC. The results were obtained on a pilot bioreactor plant, volume of 400 L. PMID:25596776

  2. [Effect of powdered activated carbon on the sludge mixed liquor characteristics and membrane fouling of MBR].

    PubMed

    Li, Shao-Feng; Gao, Yuan

    2011-02-01

    Effect of dosing powder activated carbon (PAC) on the characteristics of the sludge mixed liquor in membrane bioreactor (MBR) was investigated by parallel tests. And the reason that PAC mitigated membrane fouling was also explored. The results showed that PAC could decrease mixture viscosity and increase sludge particle size, which led to less trans-membrane pressure developing. Extracellular polymer substances (EPS) content, sludge specific resistance and cake layer resistance (R(c)) had a good correlation. Adding PAC could decrease EPS concentration, sludge specific resistance and then slow down the increase of R(c), which mitigated membrane fouling. Membrane pore blocking resistance (R(p)) increased exponentially with increasing of the soluble microbial products (SMP) concentration in the supernatant. Dosing PAC reduced the SMP concentration and slowed down the growth rate of R(p), which was helpful to mitigating membrane fouling. R(c) and R(p) increased along with the operation of MBRs and R(c)/R(f) (26.32% -63.16%) was always greater than R(p)/R(f) (7.89% -35.32%) which suggested the R(c) was the main factor in membrane fouling. Moreover, it was also found that controlling of dosing PAC on R(c) was better than it on R(p). PMID:21528575

  3. Storage and degradation of poly-beta-hydroxybutyrate in activated sludge under aerobic conditions.

    PubMed

    Dircks, K; Henze, M; van Loosdrecht, M C; Mosbaek, H; Aspegren, H

    2001-06-01

    This research analyses the accumulation and degradation of poly-beta-hydroxybutyrate (PHB) in experiments with pulse addition of acetate to samples of activated sludge from pilot-plant and full-scale wastewater treatment plants. The experiments are divided into two periods: a feast period defined as the time when acetate is consumed and a famine period when the added acetate has been exhausted. In the feast period the significant process occurring is the production of PHB from acetate. The produced PHB is utilised in the famine period for production of glycogen and biomass. According to modelling results approximately 90% of the total potential growth occurs in the famine period utilising the stored PHB. The degradation rate for PHB in the famine period is found to be dependent on the level of PHB obtained at the end of the feast period. It was found that multiple order kinetics gives a good description of the rate of PHB degradation. The examined sludge of low SRT origin is found to degrade PHB faster than long SRT sludge at high fractions of PHB. The observed yield of glycogen on PHB in the famine period is in the range of 0.22-0.33 g COD/g COD depending on the SRT. The storage pool of glycogen in the examined sludge is more slowly degraded than PHB (COD/COD/h). PMID:11358308

  4. Addition of Al and Fe salts during treatment of paper mill effluents to improve activated sludge settlement characteristics.

    PubMed

    Agridiotis, V; Forster, C F; Carliell-Marquet, C

    2007-11-01

    Metal salts, ferrous sulphate and aluminium chloride, were added to laboratory-scale activated sludge plant treating paper mill effluents to investigate the effect on settlement characteristics. Before treatment the sludge was filamentous, had stirred sludge volume index (SSVI) values in excess of 300 and was moderately hydrophobic. The use of FeSO4.7H2O took three weeks to reduce the SSVI to 90. Microscopic examination showed that Fe had converted the filamentous flocs into a compact structure. When the iron dosing was stopped, the sludge returned to its bulking state within four weeks. In a subsequent trial, the addition of AlCl3 initially resulted in an improvement of the settlement index but then caused deterioration of the sludge properties. It is possible that aluminium was overdosed and caused charge reversal, increasing the SSVI. PMID:17113285

  5. The effect of iron dosing on reducing waste activated sludge in the oxic-settling-anoxic process.

    PubMed

    Yagci, Nevin; Novak, John T; Randall, Clifford W; Orhon, Derin

    2015-10-01

    This study evaluates the biological solid reduction in a conventional activated sludge system with an anoxic/anaerobic side stream reactor receiving 1/10 of return sludge mass. Influent iron concentrations and feeding modes were changed to explore the consistency between the influent iron concentration and yield values and to assess the impact of feeding pattern. The results indicated that sludge reduction occurs during alternately exposure of sludge to aerobic and anoxic/anaerobic conditions in a range of 38-87%. The sludge reduction values reached a maximum level with the higher iron concentrations. Thus, it is concluded that this configuration is more applicable for plants receiving high iron concentrations in the wastewaters. PMID:26141280

  6. Enhancement of waste activated sludge dewaterability using calcium peroxide pre-oxidation and chemical re-flocculation.

    PubMed

    Chen, Zhan; Zhang, Weijun; Wang, Dongsheng; Ma, Teng; Bai, Runying; Yu, Dezhong

    2016-10-15

    The effects of combined calcium peroxide (CaO2) oxidation with chemical re-flocculation on dewatering performance and physicochemical properties of waste activated sludge was investigated in this study. The evolutions of extracellular polymeric substances (EPS) distribution, composition and morphological properties were analyzed to unravel the sludge conditioning mechanism. It was found that sludge filtration performance was enhanced by calcium peroxide oxidation with the optimal dosage of 20 mg/gTSS. However, this enhancement was not observed at lower dosages due to the absence of oxidation and the performance deteriorated at higher dosages because of the release of excess EPS, mainly as protein-like substances. The variation in soluble EPS (SEPS) component can be fitted well with pseudo-zero-order kinetic model under CaO2 treatment. At the same time, extractable EPS content (SEPS and loosely bound EPS (LB-EPS)) were dramatically increased, indicating sludge flocs were effectively broken and their structure became looser after CaO2 addition. The sludge floc structure was reconstructed and sludge dewaterability was significantly enhanced using chemical re-flocculation (polyaluminium chloride (PACl), ferric iron (FeCl3) and polyacrylamide (PAM)). The inorganic coagulants performed better in improving sludge filtration dewatering performance and reducing cake moisture content than organic polymer, since they could act as skeleton builders and decrease the sludge compressibility. PMID:27450355

  7. Occurrence and activity of sulphate reducing bacteria in aerobic activated sludge systems.

    PubMed

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-03-01

    In the sewage or wastewater treatment plant, biological sulphate reduction can occur spontaneously or be applied beneficially for its treatment. The results of this study can be applied to control SRB in the sewage and WWTP. Therefore, population diversity analyses of SRB for nine activated sludge wastewater treatment plants (WWTP) in the Netherlands and the effect of long-term (months) oxygen exposures on the SRB activity were carried out. T-RFLP and clone sequencing analyses of winter and summer samples revealed that (1) all WWTP have a similar SRB population, (2) there is no seasonal impact (10-20 °C) on the SRB population present in the WWTP and (3) Desulfobacter postgatei, Desulfovibrio desulfuricans and Desulfovibrio intestinalis were the most common and dominant SRB species observed in these samples, and origin from the sewage. Short term activity tests demonstrated that SRB were not active in the aerobic WWTP, but while flushed with N2-gas SRB became slightly active after 3 h. In a laboratory reactor at a dissolved oxygen concentration of <2 %, sulphate reduction occurred and 89 % COD removal was achieved. SRB grew in granules, in order to protect themselves for oxygen exposures. SRB are naturally present in aerobic WWTP, which is due to the formation of granules. PMID:25649202

  8. F-AREA PUMP TANK 1 MIXING ANALYSIS

    SciTech Connect

    Tamburello, D; Richard Dimenna, R; Si Lee, S

    2008-11-05

    The F-area pump tanks are used to transfer supernate, sludge, and other materials. In any transfer, the solution must stay well mixed without allowing particulate matter to settle out of the liquid and, thus, accumulate in the bottom of the pump tank. Recently, the pulse jet mixing in F-area Pump Tank 1 (FPT1) has been decommissioned. An analysis of the liquid transfer through FPT1 has been performed using computational fluid dynamics (CFD) methods to assess whether or not the velocities throughout the tank will remain high enough to keep all particulate suspended using only transfer and recirculation pumps. The following paragraph is an abbreviated synopsis of the transfer procedure for FPT1 [1, 2]. Prior to a transfer, FPT1 begins to be filled with inhibited water through the inlet transfer line (TI). When the tank liquid level reaches 52.5 inches above the absolute tank bottom, the recirculation pump (RI and RO) is activated. At a tank liquid level of 72.5 inches above the absolute tank bottom, the outlet transfer line (TO) is activated to reduce the liquid level in FPT1 and transfer inhibited water to H-area Pump Tank 7 (HPT7). The liquid level is reduced down to 39.5 inches, with an allowable range from 37.5 to 41.5 inches above the absolute tank bottom. HPT7 goes through a similar procedure as FPT1 until both have tank liquid levels of approximately 39.5 inches above the absolute tank bottom. The transfer of inhibited water continues until a steady-state has been reached in both pump tanks. At this point, the supernate/sludge transfer begins with a minimum flow rate of 70 gpm and an average flow rate of 150 gpm. After the transfer is complete, the pump tanks (both FPT1 and HPT7) are pumped down to between 20.5 and 22.5 inches (above absolute bottom) and then flushed with 25,000 gallons of inhibited water to remove any possible sludge heal. After the flushing, the pump tanks are emptied. Note that the tank liquid level is measured using diptubes. Figure 2

  9. Effect of textile auxiliaries on the biodegradation of dyehouse effluent in activated sludge.

    PubMed

    Arslan Alaton, Idil; Insel, Güçlü; Eremektar, Gülen; Germirli Babuna, Fatos; Orhon, Derin

    2006-03-01

    The textile industry is confronted with serious environmental problems associated with its immense wastewater discharge, substantial pollution load, extremely high salinity, and alkaline, heavily coloured effluent. Particular sources of recalcitrance and toxicity in dyehouse effluent are two frequently used textile auxiliaries; i.e. dye carriers and biocidal finishing agents. The present experimental work reports the observation of scientific and practical significance related with the effect of two commercially important textile dye carriers and two biocidal finishing agents on biological activated sludge treatment at a textile preparation, dyeing and finishing plant in Istanbul. Respirometric measurements of the dyehouse effluent spiked with the selected textile chemicals were carried out for the assessment of the "readily biodegradable COD fraction" of the wastewater. The respirometric data obtained to visualize the effect of the selected textile auxiliaries on biomass activity was evaluated by an adopted activated sludge model. Results have indicated that the tested biocides did not exert any significant inhibitory effect on the treatment performance of the activated sludge reactor at the concentrations usually encountered in the final, total dyehouse effluent. The situation with the dye carriers was inherently different; one dye carrier appeared to be highly toxic and caused serious inhibition of the microbial respirometric activity, whereas the other dye carrier, also known as the more ecological alternative, i.e. the "Eco-Carrier", appeared to be biodegradable. Finally, the respirometric profile obtained for the Eco-Carrier was described by a simplified respirometric model. PMID:16098558

  10. Inhibition of the nitrification process in activated sludge by trivalent and hexavalent chromium, and partitioning of hexavalent chromium between sludge compartments.

    PubMed

    Novotnik, Breda; Zuliani, Tea; Ščančar, Janez; Milačič, Radmila

    2014-06-01

    The input of wastewater treatment plants (WWTPs) may contain high concentrations of Cr(III) and Cr(VI), which can affect nitrogen removal. In the present study the influence of different Cr(III) and Cr(VI) concentrations towards activated sludge nitrification was studied. To better understand the mechanisms of Cr(VI) toxicity, its reduction, adsorption and uptake in activated sludge was investigated in a batch growth system. Quantification of Cr(VI) was performed by speciated isotope dilution inductively coupled plasma mass spectrometry. It was found that Cr(VI) concentrations above 1.0 mg L(-1) and Cr(III) concentrations higher than 50 mg L(-1) negatively affected nitrification. Speciation studies indicated almost complete reduction of Cr(VI) after 24h of incubation when Cr(VI) concentrations were lower than 2.5 mg L(-1), whereas for Cr(VI) added to 5 mg L(-1) around 40% remained unreduced. The study of the partitioning of Cr in the activated sludge was performed by the addition of Cr(VI) in concentrations of 2.5 and 5.0 mg L(-1). Results revealed that Cr was allocated mainly within the intercellular compartments, whereas intracellular and adsorbed Cr represented less than 0.1% of the Cr sludge concentrations. Cr(VI) was reduced in all compartments, the most efficiently (about 94%) within the intracellular and intercellular fractions. The extent of reduction of adsorbed Cr was 92% and 80% for 2.5 and 5.0mg of Cr(VI) L(-1), respectively. The results of present investigation provide a new insight into the toxicity of Cr species towards activated sludge nitrification, which is of significant importance for the management of WWTPs in order to prevent them from inflows containing harmful Cr(VI) concentrations. PMID:24462082

  11. Modelling a full scale membrane bioreactor using Activated Sludge Model No.1: challenges and solutions.

    PubMed

    Delrue, F; Choubert, J M; Stricker, A E; Spérandio, M; Mietton-Peuchot, M; Racault, Y

    2010-01-01

    A full-scale membrane bioreactor (1,600 m(3) d(-1)) was monitored for modelling purposes during the summer of 2006. A complete calibration of the ASM1 model is presented, in which the key points were the wastewater characterisation, the oxygen transfer and the biomass kinetics. Total BOD tests were not able to correctly estimate the biodegradable fraction of the wastewater. Therefore the wastewater fractionation was identified by adjusting the simulated sludge production rate to the measured value. MLVSS and MLSS were accurately predicted during both calibration and validation periods (20 and 30 days). Because the membranes were immerged in the aeration tank, the coarse bubble and fine bubble diffusion systems coexisted in the same tank. This allowed five different aeration combinations, depending whether the 2 systems were operating separately or simultaneously, and at low speed or high speed. The aeration control maintained low DO concentrations, allowing simultaneous nitrification and denitrification. This made it difficult to calibrate the oxygen transfer. The nitrogen removal kinetics were determined using maximum nitrification rate tests and an 8-hour intensive sampling campaign. Despite the challenges encountered, a calibrated set of parameters was identified for ASM1 that gave very satisfactory results for the calibration period. Matching simulated and measured data became more difficult during the validation period, mainly because the dominant aeration configuration had changed. However, the merit of this study is to be the first effort to simulate a full-scale MBR plant. PMID:21076205

  12. Effect of an activated sludge wastewater treatment plant on ambient air densities of aerosols containing bacteria and viruses.

    PubMed

    Fannin, K F; Vana, S C; Jakubowski, W

    1985-05-01

    Bacteria- and virus-containing aerosols were studied during the late summer and fall seasons in a midwestern suburb of the United States before and during the start-up and operation of an unenclosed activated sludge wastewater treatment plant. The study showed that the air in this suburban area contained low-level densities of indicator microorganisms. After the plant began operating, the densities of total aerobic bacteria-containing particles, standard plate count bacteria, total coliforms, fecal coliforms, fecal streptococci, and coliphages increased significantly in the air within the perimeter of the plant. Before plant operations, bacteria were detected from five genera, Klebsiella, Enterobacter, Serratia, Salmonella, and Aeromonas. During plant operations, the number of genera identified increased to 11. In addition to those genera found before plant operations, Escherichia, Providencia, Citrobacter, Acinetobacter, Pasteurella, and Proteus, were also identified. Enteric viruses were detected in low densities from the air emissions of this plant. Only standard plate count bacteria remained at significantly higher than base-line densities beyond 250 m downwind from the center of the aeration tanks. Fecal streptococci and coliphages appeared to be more stable in aerosols than the other indicator microorganisms studied. In general, the densities of microorganism-containing aerosols were higher at night than during the day. The techniques used in this study may be employed to establish microorganism-containing aerosol exposure during epidemiological investigations. PMID:2988442

  13. Anaerobic co-digestion of municipal biomass wastes and waste activated sludge: dynamic model and material balances.

    PubMed

    Sun, Yifei; Wang, Dian; Qiao, Wei; Wang, Wei; Zhu, Tianle

    2013-10-01

    The organic matter degradation process during anaerobic co-digestion of municipal biomass waste (MBW) and waste-activated sludge (WAS) under different organic loading rates (OLRs) was investigated in bench-scale and pilot-scale semi-continuous stirred tank reactors. To better understand the degradation process of MBW and WAS co-digestion and provide theoretical guidance for engineering application, anaerobic digestion model No.1 was revised for the co-digestion of MBW and WAS. The results showed that the degradation of organic matter could be characterized into three different fractions, including readily hydrolyzable organics, easily degradable particulate organics, and recalcitrant particle organics. Hydrolysis was the rate-limiting step under lower OLRs, and methanogenesisis was the rate-limiting step for an OLR of 8.0 kg volatile solid (VS)/(m3 x day). The hydrolytic parameters of carbohydrate, protein, and lipids were 0.104, 0.083, and 0.084 kg chemical oxygen demand (COD)/(kg COD x hr), respectively, and the reaction rate parameters of lipid fermentation were 1 and 1.25 kg COD/(kg COD x hr) for OLRs of 4.0 and 6.0 kg VS/(m3 x day). A revised model was used to simulate methane yield, and the results fit well with the experimental data. Material balance data were acquired based on the revised model, which showed that 58.50% of total COD was converted to methane. PMID:24494499

  14. Configuration of biological wastewater treatment line and influent composition as the main factors driving bacterial community structure of activated sludge.

    PubMed

    Jaranowska, Paulina; Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2013-07-01

    The structure of microbial consortia in wastewater treatment facilities is a resultant of environmental conditions created by the operational parameters of the purification process. In the research, activated sludge from nine Polish wastewater treatment plants (WWTPs) was investigated at a molecular level to determine the impact of the complexity of biological treatment line and the influent composition on the species structure and the diversity of bacterial consortia. The community fingerprints and technological data were subjected to the canonical correspondence and correlation analyses. The number of separated biological processes realized in the treatment line and the presence of industrial wastewater in the influent were the key factors determining the species structure of total and ammonia-oxidizing bacteria in biomass. The N2O-reducers community composition depended significantly on the design of the facility; the highest species richness of denitrifiers was noted in the WWTPs with separated denitrification tanks. The contribution of industrial streams to the inflow affected the diversity of total and denitrifying bacterial consortia and diminished the diversity of ammonia oxidizers. The obtained data are valuable for engineers since they revealed the main factors, including the design of wastewater treatment plant, influencing the microbial groups critical for the stability of purification processes. PMID:23397107

  15. Biodegradability enhancement of a leachate after biological lagooning using a solar driven photo-Fenton reaction, and further combination with an activated sludge biological process, at pre-industrial scale.

    PubMed

    Silva, Tânia F C V; Fonseca, Amélia; Saraiva, Isabel; Vilar, Vítor J P; Boaventura, Rui A R

    2013-06-15

    This work proposes an integrated leachate treatment strategy, combining a solar photo-Fenton reaction, to enhance the biodegradability of the leachate from an aerated lagoon, with an activated sludge process, under aerobic and anoxic conditions, to achieve COD target values and nitrogen content according to the legislation. The efficiency and performance of the photo-Fenton reaction, concerning a sludge removal step after acidification, defining the optimum phototreatment time to reach a biodegradable wastewater that can be further oxidized in a biological reactor and, activation sludge biological process, defining the nitrification and denitrification reaction rates, alkalinity balance and methanol dose necessary as external carbon source, was evaluated in the integrated system at a scale close to industrial. The pre-industrial plant presents a photocatalytic system with 39.52 m(2) of compound parabolic collectors (CPCs) and 2 m(3) recirculation tank and, an activated sludge biological reactor with 3 m(3) capacity. Leachate biodegradability enhancement by means of a solar driven photo-Fenton process was evaluated using direct biodegradability tests, as Zahn-Wellens method, and indirect measure according to average oxidation state (AOS), low molecular carboxylic acids content (fast biodegradable character) and humic substances (recalcitrant character) concentration. Due to high variability of leachate composition, UV absorbance on-line measurement was established as a useful parameter for photo-Fenton reaction control. PMID:23642652

  16. Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge.

    PubMed

    Watanabe, K; Teramoto, M; Futamata, H; Harayama, S

    1998-11-01

    DNA was isolated from phenol-digesting activated sludge, and partial fragments of the 16S ribosomal DNA (rDNA) and the gene encoding the largest subunit of multicomponent phenol hydroxylase (LmPH) were amplified by PCR. An analysis of the amplified fragments by temperature gradient gel electrophoresis (TGGE) demonstrated that two major 16S rDNA bands (bands R2 and R3) and two major LmPH gene bands (bands P2 and P3) appeared after the activated sludge became acclimated to phenol. The nucleotide sequences of these major bands were determined. In parallel, bacteria were isolated from the activated sludge by direct plating or by plating after enrichment either in batch cultures or in a chemostat culture. The bacteria isolated were classified into 27 distinct groups by a repetitive extragenic palindromic sequence PCR analysis. The partial nucleotide sequences of 16S rDNAs and LmPH genes of members of these 27 groups were then determined. A comparison of these nucleotide sequences with the sequences of the major TGGE bands indicated that the major bacterial populations, R2 and R3, possessed major LmPH genes P2 and P3, respectively. The dominant populations could be isolated either by direct plating or by chemostat culture enrichment but not by batch culture enrichment. One of the dominant strains (R3) which contained a novel type of LmPH (P3), was closely related to Valivorax paradoxus, and the result of a kinetic analysis of its phenol-oxygenating activity suggested that this strain was the principal phenol digester in the activated sludge. PMID:9797297

  17. Fate and effect of naphthenic acids on oil refinery activated sludge wastewater treatment systems.

    PubMed

    Misiti, Teresa; Tezel, Ulas; Pavlostathis, Spyros G

    2013-01-01

    Naphthenic acids (NAs) are a complex group of alkyl-substituted acyclic, monocyclic and polycyclic carboxylic acids present in oil sands process waters, crude oil, refinery wastewater and petroleum products. Crude oil, desalter brine, influent, activated sludge mixed liquor and effluent refinery samples were received from six United States refineries. The total acid number (TAN) of the six crudes tested ranged from 0.12 to 1.5 mg KOH/g crude oil and correlated to the total NA concentration in the crudes. The total NA concentration in the desalter brine, influent, activated sludge mixed liquor and effluent samples ranged from 4.2 to 40.4, 4.5 to 16.6, 9.6 to 140.3 and 2.8 to 11.6 mg NA/L, respectively. The NAs in all wastewater streams accounted for less than 16% of the total COD, indicating that many other organic compounds are present and that NAs are a minor component in refinery wastewaters. Susceptibility tests showed that none of the activated sludge heterotrophic microcosms was completely inhibited by NAs up to 400 mg/L. Growth inhibition ranging from 10 to 59% was observed in all microcosms at and above 100 mg NA/L. NAs chronically-sorbed to activated sludge mixed liquor biomass and powdered activated carbon (PAC) were recalcitrant and persistent. More than 80% of the total NAs remained in the solid phase at the end of the 10-day desorption period (five successive desorption steps). Throughout a 90-day incubation period, the total NA concentration decreased by 33 and 51% in PAC-free and PAC-containing mixed liquor microcosms, respectively. The lower molecular weight fraction of NAs was preferentially degraded in both mixed liquors. The persistence of the residual, higher molecular weight NAs is likely a combination of molecular recalcitrance and decreased bioavailability when chronically-sorbed to the biomass and/or PAC. PMID:23141768

  18. Model development with defined biological mechanisms for xenobiotic treatment activated sludge at steady state.

    PubMed

    Chong, Nyuk-Min

    2015-06-01

    Activated sludge treatment of a xenobiotic organic compound, much different from treatment of biogenic organics, must be modeled with interactions involving a two-part biomass of degrader and nondegrader, which selectively or competitively grow on a two-part substrate of input xenobiotic and its biogenic metabolites. A xenobiotic treatment model was developed which incorporates kinetics of the growth of degrader and nondegrader, the line dividing metabolites into xenobiotic and biogenic, yields of degrader and nondegrader from utilization of their parts of substrates, and kinetics of degrader reversion to nondegrader due to instability of the degradative element degraders carry. Experimental activated sludge operated for treatment of a xenobiotic generated data for calibration of the model. With the input of influent xenobiotic concentration, mean cell and hydraulic residence times, and calibrated parameters, the model readily outputs concentrations of degrader, nondegrader, and effluent biogenic residue that closely match the results obtained from experiments. PMID:25561268

  19. Degradation of norgestrel by bacteria from activated sludge: comparison to progesterone.

    PubMed

    Liu, Shan; Ying, Guang-Guo; Liu, You-Sheng; Peng, Fu-Qiang; He, Liang-Ying

    2013-09-17

    Natural and synthetic progestagens in the environment have become a concern due to their adverse effects on aquatic organisms. Laboratory studies were performed to investigate aerobic biodegradation of norgestrel by bacteria from activated sludge in comparison with progesterone, and to identify their degradation products and biotransformation pathways. The degradation of norgestrel followed first order reaction kinetics (T1/2 = 12.5 d), while progesterone followed zero order reaction kinetics (T1/2 = 4.3 h). Four and eight degradation products were identified for norgestrel and progesterone, respectively. Six norgestrel-degrading bacterial strains (Enterobacter ludwigii, Aeromonas hydrophila subsp. dhakensis, Pseudomonas monteilii, Comamonas testosteroni, Exiguobacterium acetylicum, and Chryseobacterium indologenes) and one progesterone-degrading bacterial strain (Comamonas testosteroni) were successfully isolated from the enrichment culture inoculated with aerobic activated sludge. To our best knowledge, this is the first report on the biodegradation products and degrading bacteria for norgestrel under aerobic conditions. PMID:23952780

  20. Treatment of industrial effluents by a continuous system: electrocoagulation--activated sludge.

    PubMed

    Moisés, Tejocote-Pérez; Patricia, Balderas-Hernández; Barrera-Díaz, C E; Gabriela, Roa-Morales; Natividad-Rangel, Reyna

    2010-10-01

    A continuous system electrocoagulation--active sludge was designed and built for the treatment of industrial wastewater. The system included an electrochemical reactor with aluminum electrodes, a clarifier and a biological reactor. The electrochemical reactor was tested under different flowrates (50, 100 and 200 mL/min). In the biological reactor, the performance of different cultures of active sludge was assessed: coliform bacterial, ciliate and flagellate protozoa and aquatic fungus. Overall treatment efficiencies of color, turbidity and COD removal were 94%, 92% and 80%, respectively, under optimal conditions of 50 mL/min flowrate and using ciliate and flagellate protozoa. It was concluded that the system was efficient for the treatment of industrial wastewater. PMID:20570506

  1. Newly isolated alkalophilic Advenella species bioaugmented in activated sludge for high p-cresol removal.

    PubMed

    Xenofontos, Eleni; Tanase, Ana-Maria; Stoica, Ileana; Vyrides, Ioannis

    2016-03-25

    In this work, an alkalophilic bacterium (LVX-4) capable of using p-cresol as sole source of carbon and energy was screened and isolated from soil polluted by used oil. Phylogenetic (16S rRNA) and phenotypic characterization using Biolog GN microplates and API 20NE strips indicated that LVX-4 strain is a new Advenella species. It showed both the capability to degrade of p-cresol at high concentrations (750 mg/L) and to use p-cresol for growth in a pH from 7 to 10, although the optimum pH was 9. Moreover bioaugmentation of activated sludge with this strain lead to the complete removal of p-cresol in less than 100 h. This is the first study that shows the potential of Advenella sp. to be bioaugmented in activated sludge system for p-cresol biodegradation. PMID:26596887

  2. New mechanistically based model for predicting reduction of biosolids waste by ozonation of return activated sludge.

    PubMed

    Isazadeh, Siavash; Feng, Min; Urbina Rivas, Luis Enrique; Frigon, Dominic

    2014-04-15

    Two pilot-scale activated sludge reactors were operated for 98 days to provide the necessary data to develop and validate a new mathematical model predicting the reduction of biosolids production by ozonation of the return activated sludge (RAS). Three ozone doses were tested during the study. In addition to the pilot-scale study, laboratory-scale experiments were conducted with mixed liquor suspended solids and with pure cultures to parameterize the biomass inactivation process during exposure to ozone. The experiments revealed that biomass inactivation occurred even at the lowest doses, but that it was not associated with extensive COD solubilization. For validation, the model was used to simulate the temporal dynamics of the pilot-scale operational data. Increasing the description accuracy of the inactivation process improved the precision of the model in predicting the operational data. PMID:24572272

  3. Expression and transfer of engineered catabolic pathways harbored by Pseudomonas spp. introuduced into activated sludge microcosms

    SciTech Connect

    Nublein, K.; Maris, D.; Timmis, K.; Dwyer, D.F. )

    1992-10-01

    Two genetically engineered microorganisms (GEMs), Pseudomonas sp. strain B13 FR1(pFRC20P) (FR120) and Pseudomonas putida KT2440(pWWO-EB62) (EB62), were introduced into activated sludge microcosms that had the level of aeration, nutrient makeup, and microbial community structure of activated sludge reactors. FR120 contains an experimentally assembled ortho cleavage route for simultaneous degradation of 3-chlorobenzoate (3CB) and 4-methyl benzoate (4MB); EB62 contains a derivative TOL plasmid-encoded degradative pathway for toluene experimentally evolved so that it additionally processes 4-ethyl benzoate (4EB). Experiments assessed survival of the GEMs, their ability to degrade target substrates, and lateral transfer of plasmid-encoded recombinant DNA.

  4. Study of the sludge reduction in an oxic-settling-anaerobic activated sludge process based on UNITANK.

    PubMed

    Sun, L P; Chen, J F; Guo, W Z; Fu, X P; Tan, J X; Wang, T J

    2015-01-01

    An oxic-settling-anaerobic process (OSA) can effectively reduce sludge production, but most of the research studies on the OSA process have been either under laboratory test conditions or based on synthetic wastewater, which cannot fully reflect the performance and sludge reduction efficiency in existing OSA process. Thus, aiming at examining the sludge reduction efficiency and the stability of the OSA process, UNITANK and UNITANK-OSA processes were performed in a 120 m(3)/d pilot-scale system using actual sewage. The results indicate that UNITANK-OSA achieved a 48% reduction of the sludge compared to the reduction due to UNITANK, not considering the accumulation of the effluent-suspended solids. The effluent quality was not found to change significantly, except that the total phosphorus concentration increased slightly. The extracellular polymeric substances metal floc theory may, to some extent, explain this reduction in this study. The OSA process could be used to reform the classic wastewater treatment process to get lower sludge mass. PMID:25607677

  5. Simple method for the measurement of the hydrogenotrophic methanogenic activity of anaerobic sludges

    USGS Publications Warehouse

    Coates, J.D.; Coughlan, M.F.; Colleran, E.

    1996-01-01

    The specific hydrogenotrophic activity of anaerobic sludges is usually assayed by gas chromatographic analysis for methane in the headspace of sealed test vials. Gas is sampled with a pressure lock syringe which allows quantification independent of the pressure prevailing in the vials. An alternative method was developed using pressure transducer monitoring of the decrease in headspace gas pressure as the H2/CO2 substrate is converted to CH4. Application of a simple formula related the decrease at each sample point to millilitres of CH4 produced and gave values for the specific hydrogenotrophic activity of granular anaerobic sludge which were in good agreement with the values obtained by the more labor-intensive gas chromatographic method. The simplicity of the method facilitates multiple replicate analyses and allows more accurate determination of initial rates than is achievable by the gas chromatographic method which is prone to analytical error at the very low concentrations of CH4 present in the headspace during the early stages of the assay. Mass transfer of H2 from headspace to liquid was found to be rate-limiting and to result in significant under-estimation of the specific hydrogenotrophic activity of the granular sludge. A test protocol, which used a vial volatile suspended solids concentration between 1.7 and 8 g l-1; a 1:5 ratio between liquid and headspace; incubation of the vials horizontally with vigorous shaking (180 rev./min) and an initial H2/CO2 (80/20) gas pressure of 100-150 kPa was found to give reproducible and maximal values for the specific hydrogenotrophic activity of the test sludge.

  6. ALUM ADDITION AND STEP-FEED STUDIES IN OXYGEN-ACTIVATED SLUDGE

    EPA Science Inventory

    A plug flow, O2-activated sludge process was operated with alum addition to remove phosphorus and with lime addition to prevent the process pH from decreasing below 6.4. The O2 reactor was operated at F/M ratios between 0.18 to 0.24 gm of BOD5/gm of MLVSS/day in a typical co-curr...

  7. Insights into the amplification of bacterial resistance to erythromycin in activated sludge.

    PubMed

    Guo, Mei-Ting; Yuan, Qing-Bin; Yang, Jian

    2015-10-01

    Wastewater treatment plants are significant reservoirs for antimicrobial resistance. However, little is known about wastewater treatment effects on the variation of antibiotic resistance. The shifts of bacterial resistance to erythromycin, a macrolide widely used in human medicine, on a lab-scale activated sludge system fed with real wastewater was investigated from levels of bacteria, community and genes, in this study. The resistance variation of total heterotrophic bacteria was studied during the biological treatment process, based on culture dependent method. The alterations of bacterial community resistant to erythromycin and nine typical erythromycin resistance genes were explored with molecular approaches, including high-throughput sequencing and quantitative polymerase chain reaction. The results revealed that the total heterotrophs tolerance level to erythromycin concentrations (higher than 32 mg/L) was significantly amplified during the activated sludge treatment, with the prevalence increased from 9.6% to 21.8%. High-throughput sequencing results demonstrated an obvious increase of the total heterotrophic bacterial diversity resistant to erythromycin. Proteobacteria and Bacteroidetes were the two dominant phyla in the influent and effluent of the bioreactor. However, the prevalence of Proteobacteria decreased from 76% to 59% while the total phyla number increased greatly from 18 to 29 through activated sludge treatment. The gene proportions of erm(A), mef(E) and erm(D) were greatly amplified after biological treatment. It is proposed that the transfer of antibiotic resistance genes through the variable mixtures of bacteria in the activated sludge might be the reason for the antibiotic resistance amplification. The amplified risk of antibiotic resistance in wastewater treatment needs to be paid more attention. PMID:25957255

  8. The efficiency of different phenol-degrading bacteria and activated sludges in detoxification of phenolic leachates.

    PubMed

    Kahru, A; Reiman, R; Rätsep, A

    1998-07-01

    Phenolic composition, toxicity and biodegradability of three different phenolic leachates/samples was studied. Samples A and C were the leachates from the oil-shale industry spent shale dumps at Kohtla-Järve, Estonia. Sample B was a laboratory-prepared synthetic mixture of 7 phenolic compounds mimmicking the phenolic composition of the leachate A. Toxicity of these 3 samples was analyzed using two photobacterial test (BioTox and Microtox), Daphnia test (DAPHTOXKIT F pulex) and rotifiers' test (ROTOXKIT F). All the LC50 values were in the range of 1-10%, leachate A being the most toxic. The growth and detoxifying potential (toxicity of the growth medium was measured using photobacterial tests) of 3 different phenol-utilizing bacteria and acclimated activated sludges was studied in shake-flask cultures. 30% leachate A (altogether 0.6 mM total phenolic compounds) was too toxic to rhodococci and they did not grow. Cell number of Kurthia sp. and Pseudomonas sp. in 30% leachate A increased by 2 orders of magnitude but despite of the growth of bacteria the toxicity of the leachate did not decrease even by 7 weeks of cultivation. However, if the activated sludge was used instead of pure bacterial cultures the toxicity of the 30% leachate A was eliminated already after 3 days of incubation. 30% samples B and C were detoxified by activated sludge even more rapidly, within 2 days. As the biodegradable part of samples A and B should be identical, the detoxification of leachate A compared to that of sample B was most probably inhibited by inorganic (e.g. sulphuric) compounds present in the leachate A. Also, the presence of toxic recalcitrant organic compounds in the leachate A (missed by chemical analysis) that were not readily biodegradable even by activated sludge consortium should not be excluded. PMID:9650267

  9. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    SciTech Connect

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  10. Biofilms Versus Activated Sludge: Considerations in Metal and Metal Oxide Nanoparticle Removal from Wastewater.

    PubMed

    Walden, Connie; Zhang, Wen

    2016-08-16

    The increasing application of metal and metal oxide nanoparticles [Me(O)NPs] in consumer products has led to a growth in concentration of these nanoparticles in wastewater as emerging contaminants. This may pose a threat to ecological communities (e.g., biological nutrient removal units) within treatment plants and those subject to wastewater effluents. Here, the toxicity, fate, and process implications of Me(O)NPs within wastewater treatment, specifically during activated sludge processing and biofilm systems are reviewed and compared. Research showed activated sludge achieves high removal rate of Me(O)NPs by the formation of aggregates through adsorption. However, recent literature reveals evidence that inhibition is likely for nutrient removal capabilities such as nitrification. Biofilm systems were much less studied, but show potential to resist Me(O)NP inhibition and achieve removal through possible retention by sorption. Implicating factors during bacteria-Me(O)NP interactions such as aggregation, surface functionalization, and the presence of organics are summarized. At current modeled levels, neither activated sludge nor biofilm systems can achieve complete removal of Me(O)NPs, thus allowing for long-term environmental exposure of diverse biological communities to Me(O)NPs in streams receiving wastewater effluents. Future research directions are identified throughout in order to minimize the impact of these nanoparticles released. PMID:27437755

  11. Treatment of biomass gasification wastewater using a combined wet air oxidation/activated sludge process

    SciTech Connect

    English, C.J.; Petty, S.E.; Sklarew, D.S.

    1983-02-01

    A lab-scale treatability study for using thermal and biological oxidation to treat a biomass gasification wastewater (BGW) having a chemical oxygen demand (COD) of 46,000 mg/l is described. Wet air oxidation (WA0) at 300/sup 0/C and 13.8 MPa (2000 psi) was used to initially treat the BGW and resulted in a COD reduction of 74%. This was followed by conventional activated sludge treatment using operating conditions typical of municipal sewage treatment plants. This resulted in an additional 95% COD removal. Overall COD reduction for the combined process was 99%. A detailed chemical analysis of the raw BGW and thermal and biological effluents was performed using gas chromatography/mass spectrometry (GC/MS). These results showed a 97% decrease in total extractable organics with WA0 and a 99.6% decrease for combined WA0 and activated sludge treatment. Components of the treated waters tended to be fewer in number and more highly oxidized. An experiment was conducted to determine the amount of COD reduction caused by volatilization during biological treatment. Unfortunately, this did not yield conclusive results. Treatment of BGW using WA0 followed by activated sludge appears to be very effective and investigations at a larger scale are recommended.

  12. The activated sludge ecosystem contains a core community of abundant organisms

    PubMed Central

    Saunders, Aaron M; Albertsen, Mads; Vollertsen, Jes; Nielsen, Per H

    2016-01-01

    Understanding the microbial ecology of a system requires that the observed population dynamics can be linked to their metabolic functions. However, functional characterization is laborious and the choice of organisms should be prioritized to those that are frequently abundant (core) or transiently abundant, which are therefore putatively make the greatest contribution to carbon turnover in the system. We analyzed the microbial communities in 13 Danish wastewater treatment plants with nutrient removal in consecutive years and a single plant periodically over 6 years, using Illumina sequencing of 16S ribosomal RNA amplicons of the V4 region. The plants contained a core community of 63 abundant genus-level operational taxonomic units (OTUs) that made up 68% of the total reads. A core community consisting of abundant OTUs was also observed within the incoming wastewater to three plants. The net growth rate for individual OTUs was quantified using mass balance, and it was found that 10% of the total reads in the activated sludge were from slow or non-growing OTUs, and that their measured abundance was primarily because of immigration with the wastewater. Transiently abundant organisms were also identified. Among them the genus Nitrotoga (class Betaproteobacteria) was the most abundant putative nitrite oxidizer in a number of activated sludge plants, which challenges previous assumptions that Nitrospira (phylum Nitrospirae) are the primary nitrite-oxidizers in