Sample records for activated spinach leaf

  1. Effect of Light and Chilling Temperatures on Chilling-sensitive and Chilling-resistant Plants. Pretreatment of Cucumber and Spinach Thylakoids in Vivo and in Vitro.

    PubMed

    Garber, M P

    1977-05-01

    The effects of chilling temperatures, in light or dark, on the isolated thylakoids and leaf discs of cucumber (Cucumis sativa L. "Marketer") and spinach (Spinacia oleracea L. "Bloomsdale") were studied. The pretreatment of isolated thylakoids and leaf discs at 4 C in the dark did not affect the phenazine methosulfate-dependent phosphorylation, proton uptake, osmotic response to sucrose, Ca(2+)-dependent ATPase activity, or chlorophyll content. Exposure of cucumber cotyledon discs and isolated thylakoids of cucumber and spinach to 4 C in light resulted in a rapid inactivation of the thylakoids. The sequence of activities or components lost during inactivation (starting with the most sensitive) are: phenazine methosulfate-dependent cyclic phosphorylation, proton uptake, osmotic response to sucrose, Ca(2+)-dependent ATPase activity, and chlorophyll. The rate of loss of proton uptake, osmotic response to sucrose, Ca(2+)-dependent ATPase activity and chlorophyll is similar for isolated cucumber and spinach thylakoids, whereas spinach thylakoids are more resistant to the loss of phenazine methosulfate-dependent phosphorylation. The thylakoids of spinach leaf discs were unaffected by exposure to 4 C in light. The results question whether the extreme resistance of spinach thylakoids treated in vivo is solely a function of the chloroplast thylakoid membranes and establish the validity of using in vitro results to make inferences about cucumber thylakoids treated in vivo at 4 C in light.

  2. Effect of Light and Chilling Temperatures on Chilling-sensitive and Chilling-resistant Plants. Pretreatment of Cucumber and Spinach Thylakoids in Vivo and in Vitro1

    PubMed Central

    Garber, Melvin P.

    1977-01-01

    The effects of chilling temperatures, in light or dark, on the isolated thylakoids and leaf discs of cucumber (Cucumis sativa L. “Marketer”) and spinach (Spinacia oleracea L. “Bloomsdale”) were studied. The pretreatment of isolated thylakoids and leaf discs at 4 C in the dark did not affect the phenazine methosulfate-dependent phosphorylation, proton uptake, osmotic response to sucrose, Ca2+-dependent ATPase activity, or chlorophyll content. Exposure of cucumber cotyledon discs and isolated thylakoids of cucumber and spinach to 4 C in light resulted in a rapid inactivation of the thylakoids. The sequence of activities or components lost during inactivation (starting with the most sensitive) are: phenazine methosulfate-dependent cyclic phosphorylation, proton uptake, osmotic response to sucrose, Ca2+-dependent ATPase activity, and chlorophyll. The rate of loss of proton uptake, osmotic response to sucrose, Ca2+-dependent ATPase activity and chlorophyll is similar for isolated cucumber and spinach thylakoids, whereas spinach thylakoids are more resistant to the loss of phenazine methosulfate-dependent phosphorylation. The thylakoids of spinach leaf discs were unaffected by exposure to 4 C in light. The results question whether the extreme resistance of spinach thylakoids treated in vivo is solely a function of the chloroplast thylakoid membranes and establish the validity of using in vitro results to make inferences about cucumber thylakoids treated in vivo at 4 C in light. PMID:16659980

  3. Site-directed mutagenesis of serine 158 demonstrates its role in spinach leaf sucrose-phosphate synthase modulation

    NASA Technical Reports Server (NTRS)

    Toroser, D.; McMichael, R. Jr; Krause, K. P.; Kurreck, J.; Sonnewald, U.; Stitt, M.; Huber, S. C.; Davies, E. (Principal Investigator)

    1999-01-01

    Site-directed mutagenesis of spinach sucrose-phosphate synthase (SPS) was performed to investigate the role of Ser158 in the modulation of spinach leaf SPS. Tobacco plants expressing the spinach wild-type (WT), S158A, S158T and S157F/S158E SPS transgenes were produced. Expression of transgenes appeared not to reduce expression of the tobacco host SPS. SPS activity in the WT and the S158T SPS transgenics showed light/dark modulation, whereas the S158A and S157F/S158E mutants were not similarly light/dark modulated: the S158A mutant enzyme was not inactivated in the dark, and the S157F/S158E was not activated in the light. The inability to modulate the activity of the S158A mutant enzyme by protein phosphorylation was demonstrated in vitro. The WT spinach enzyme immunopurified from dark transgenic tobacco leaves had a low initial activation state, and could be activated by PP2A and subsequently inactivated by SPS-kinase plus ATP. Rapid purification of the S158A mutant enzyme from dark leaves of transgenic plants using spinach-specific monoclonal antibodies yielded enzyme that had a high initial activation state, and pre-incubation with leaf PP2A or ATP plus SPS-kinase (the PKIII enzyme) caused little modulation of activity. The results demonstrate the regulatory significance of Ser158 as the major site responsible for dark inactivation of spinach SPS in vivo, and indicate that the significance of phosphorylation is the introduction of a negative charge at the Ser158 position.

  4. Transgenic cotton over-producing spinach sucrose phosphate synthase showed enhanced leaf sucrose synthesis and improved fiber quality under controlled environmental conditions.

    PubMed

    Haigler, Candace H; Singh, Bir; Zhang, Deshui; Hwang, Sangjoon; Wu, Chunfa; Cai, Wendy X; Hozain, Mohamed; Kang, Wonhee; Kiedaisch, Brett; Strauss, Richard E; Hequet, Eric F; Wyatt, Bobby G; Jividen, Gay M; Holaday, A Scott

    2007-04-01

    Prior data indicated that enhanced availability of sucrose, a major product of photosynthesis in source leaves and the carbon source for secondary wall cellulose synthesis in fiber sinks, might improve fiber quality under abiotic stress conditions. To test this hypothesis, a family of transgenic cotton plants (Gossypium hirsutum cv. Coker 312 elite) was produced that over-expressed spinach sucrose-phosphate synthase (SPS) because of its role in regulation of sucrose synthesis in photosynthetic and heterotrophic tissues. A family of 12 independent transgenic lines was characterized in terms of foreign gene insertion, expression of spinach SPS, production of spinach SPS protein, and development of enhanced extractable V (max) SPS activity in leaf and fiber. Lines with the highest V (max) SPS activity were further characterized in terms of carbon partitioning and fiber quality compared to wild-type and transgenic null controls. Leaves of transgenic SPS over-expressing lines showed higher sucrose:starch ratio and partitioning of (14)C to sucrose in preference to starch. In two growth chamber experiments with cool nights, ambient CO(2) concentration, and limited light below the canopy, the transgenic line with the highest SPS activity in leaf and fiber had higher fiber micronaire and maturity ratio associated with greater thickness of the cellulosic secondary wall.

  5. Evaluation of cycloate followed by two-leaf stage phenmedipham application in fresh market spinach

    USDA-ARS?s Scientific Manuscript database

    Fresh market spinach has one primary herbicide, cycloate, which does not control all weeds. Previous studies demonstrated that cycloate PRE followed by (fb) phenmedipham at the four-leaf spinach stage is a safe and effective treatment. However, this treatment is not useful for the main growing seaso...

  6. Effect of spinach cultivar and bacterial adherence factors on survival of Escherichia coli O157:H7 on spinach leaves.

    PubMed

    Macarisin, Dumitru; Patel, Jitendra; Bauchan, Gary; Giron, Jorge A; Ravishankar, Sadhana

    2013-11-01

    Similar to phytopathogens, human bacterial pathogens have been shown to colonize the plant phylloplane. In addition to environmental factors, such as temperature, UV, relative humidity, etc., the plant cultivar and, specifically, the leaf blade morphological characteristics may affect the persistence of enteropathogens on leafy greens. This study was conducted to evaluate the effect of cultivar-dependent leaf topography and the role of strain phenotypic characteristics on Escherichia coli O157:H7 persistence on organic spinach. Spinach cultivars Emilia, Lazio, Space, and Waitiki were experimentally inoculated with the foodborne E. coli O157:H7 isolate EDL933 and its isogenic mutants deficient in cellulose, curli, or both curli and cellulose production. Leaves of 6-week-old plants were inoculated with 6.5 log CFU per leaf in a biosafety level 2 growth chamber. At 0, 1, 7, and 14 days, E. coli O157:H7 populations were determined by plating on selective medium and verified by laser scanning confocal microscopy. Leaf morphology (blade roughness and stoma density) was evaluated by low-temperature and variable-pressure scanning electron microscopy. E. coli O157:H7 persistence on spinach was significantly affected by cultivar and strain phenotypic characteristics, specifically, the expression of curli. Leaf blade roughness and stoma density influenced the persistence of E. coli O157:H7 on spinach. Cultivar Waitiki, which had the greatest leaf roughness, supported significantly higher E. coli O157:H7 populations than the other cultivars. These two morphological characteristics of spinach cultivars should be taken into consideration in developing intervention strategies to enhance the microbial safety of leafy greens.

  7. O-acetylserine(thiol)lyase from spinach (Spinacia oleracea L.) leaf: cDNA cloning, characterization, and overexpression in Escherichia coli of the chloroplast isoform.

    PubMed

    Rolland, N; Droux, M; Lebrun, M; Douce, R

    1993-01-01

    The last enzymatic step for L-cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL, EC 4.2.99.8) which synthesizes L-cysteine from O-acetylserine and "sulfide." We have isolated and characterized a full-length cDNA (1432 bp) from a lambda gt11 library of spinach leaf encoding the complete precursor of the chloroplast isoform. The 1149-nucleotide open reading frame coding for O-acetylserine(thiol)lyase was in the direction opposite that of the lambda gt11 beta-galactosidase gene. The derived amino acid sequence indicates that the protein precursor consists of 383 amino acid residues including a N-terminal presequence peptide of 52 residues. The amino acid sequence of mature spinach chloroplast O-acetylserine(thiol)lyase shows 40 and 57% homology with its bacterial counterparts. Sequence comparison with several pyridoxal 5'-phosphate-containing proteins reveals the presence of a lysine residue assumed to be involved in cofactor binding. A synthetic cDNA was constructed, coding for the entire 331-amino-acid mature O-acetylserine(thiol)lyase and for an initiating methionine. A high level of expression of the active mature chloroplast isoform was achieved in an Escherichia coli strain carrying the T7 RNA polymerase system (F. W. Studier, A. H. Rosenberg, J. J. Dunn, and J. W. Dubendorff, 1990, in Methods in Enzymology, D. V. Goeddel, Ed., Vol. 185, pp. 60-89, Academic Press, San Diego, CA). Addition of pyridoxine to the bacterial growth medium enhanced the enzyme activity due to the recombinant protein. The extent of production is 25-fold higher than in chloroplast from spinach leaves and the recombinant protein presents the relative molecular mass and immunological properties of the natural enzyme from spinach leaf chloroplast. This work, together with our previous biochemical studies, are in accordance with a prokaryotic type enzyme for L-cysteine biosynthesis in higher plant chloroplasts. Southern blot analysis indicated that O-acetylserine(thiol)lyase is encoded by multiple genes in the spinach leaf genomic DNA.

  8. Distinctive Responses of Ribulose-1,5-Bisphosphate Carboxylase and Carbonic Anhydrase in Wheat Leaves to Nitrogen Nutrition and their Possible Relationships to CO2-Transfer Resistance 1

    PubMed Central

    Makino, Amane; Sakashita, Hiroshi; Hidema, Jun; Mae, Tadahiko; Ojima, Kunihiko; Osmond, Barry

    1992-01-01

    The amounts of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), total chlorophyll (Chl), and total leaf nitrogen were measured in fully expanded, young leaves of wheat (Triticum aestivum L.), rice (Oryza sativa L.), spinach (Spinacia oleracea L.), bean (Phaseolus vulgaris L.), and pea (Pisum sativum L.). In addition, the activities of whole-chain electron transport and carbonic anhydrase were measured. All plants were grown hydroponically at different nitrogen concentrations. Although a greater than proportional increase in Rubisco content relative to leaf nitrogen content and Chl was found with increasing nitrogen supply for rice, spinach, bean, and pea, the ratio of Rubisco to total leaf nitrogen or Chl in wheat was essentially independent of nitrogen treatment. In addition, the ratio of Rubisco to electron transport activities remained constant only in wheat. Nevertheless, gas-exchange analysis showed that the in vivo balance between the capacities of Rubisco and electron transport in wheat, rice, and spinach remained almost constant, irrespective of nitrogen treatment. The in vitro carbonic anhydrase activity in wheat was very low and strongly responsive to increasing nitrogen content. Such a response was not found for the other C3 plants examined, which had 10- to 30-fold higher carbonic anhydrase activity than wheat at any leaf-nitrogen content. These distinctive responses of carbonic anhydrase activity in wheat were discussed in relation to CO2-transfer resistance and the in vivo balance between the capacities of Rubisco and electron transport. PMID:16653191

  9. Epidemiology and control of spinach downy mildew in coastal California

    USDA-ARS?s Scientific Manuscript database

    The most serious threat to global fresh market spinach production is spinach downy mildew, caused by the obligate biotrophic pathogen, Peronospora effusa. Downy mildew causes yellow chlorotic lesions on spinach leaf tissue, often accompanied by abundant sporulation on the undersides of leaves. Very ...

  10. Interaction between Silver Nanoparticles and Spinach Leaf

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Li, H.; Zhang, Y.; Riser, E.; He, S.; Zhang, W.

    2013-12-01

    Interactions of engineered nanoparticles (ENPs) with plant surfaces are critical to assessing the bioavailability of ENPs to edible plants and to further evaluating impacts of ENPs on ecological health and food safety. Silver nanoparticles (i.e., nanoAg) could enter the agroecosystems either as an active ingredient in pesticides or from other industrial and consumer applications. Thus, in the events of pesticide application, rainfall, and irrigation, vegetable leaves could become in contact and then interact with nanoAg. The present study was to assess whether the interaction of nanoAg with spinach leaves can be described by classical sorption models and to what extent it depends on and varies with dispersion methods, environmental temperature, and ion release. We investigated the stability and ion release of nanoAg dispersed by sodium dodecyl sulfate (SDS, 1%) and humic acid (HA, 10 mg C/L) solutions, as well as sorption and desorption of nanoAg on and from the fresh spinach leaf. Results showed SDS-nanoAg released about 2%-8% more Ag ion than HA-nanoAg. The sorption of Ag ion, described by the Freundlich model in the initial concentration range of 0.6-50 mg/L, was 2-4 times higher than that of nanoAg. The sorption of nanoAg on spinach leaf can be fitted by the Langmuir model, and the maximum sorption amount of HA-nanoAg and SDS-nanoAg was 0.21 and 0.41 mg/g, respectively. The higher sorption of SDS-nanoAg relative to that of HA-nanoAg could be partially resulted from the higher release of Ag ion from the former. The maximum desorption amount of HA-nanoAg and SDS-nanoAg in 1% SDS solution was 0.08 and 0.10 mg/g, respectively. NanoAg attachment on and its penetration to the spinach leaf was visualized by the Scanning Electron Microscope equipped with an Energy Dispersive Spectrometer (SEM-EDS). It is equally important that the less sorption of nanoAg under low environmental temperature could be partially due to the closure of stomata, as verified by SEM-EDS. CytoViva Hyperspectral Imaging System was also employed to map the distribution of nanoAg in the leaf profile. Significant sorption of nanoAg on spinach leaf should urge the precaution with potential widespread use of ENPs in agriculture.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okita, T.W.; Nakata, P.A.; Anderson, J.M.

    ADPglucose pyrophosphorylase has been extensively purified from potato (Solanum tuberosum L.) tuber tissue to study its structure. By employing a modified published procedure together with Mono Q chromatography, a near homogeneous enzyme preparation was obtained with substantial improvement in enzyme yield and specific activity. In single dimensional sodium dodecyl sulfate polyacrylamide gels, the enzyme migrated as a single polypeptide band with a mobility of about 50,000 daltons. Analysis by two-dimensional polyacrylamide gel electrophoresis, however, revealed the presence of two types of subunits which could be distinguished by their slight differences in net charge and molecular weight. The smaller potato tubermore » subunit was recognized by antiserum prepared against the smaller spinach leaf 51 kilodalton ADPglucose pyrophosphorylase subunit. In contrast, the anti-54 kilodalton raised against the spinach leaf subunit did not significantly react to the tuber enzyme subunits. The results are consistent with the hypothesis that the potato tuber ADPglucose pyrophosphorylase is not composed of a simple homotetramer as previously suggested, but is a product of two separate and distinct subunits as observed for the spinach leaf and maize enzymes.« less

  12. Enhancement of Antioxidant Quality of Green Leafy Vegetables upon Different Cooking Method

    PubMed Central

    Hossain, Afzal; Khatun, Mst. Afifa; Islam, Mahfuza; Huque, Roksana

    2017-01-01

    Antioxidant rich green leafy vegetables including garden spinach leaf, water spinach leaf, Indian spinach leaf, and green leaved amaranth were selected to evaluate the effects of water boiling and oil frying on their total phenolic content (TPC), total flavonoid content (TFC), reducing power (RP), and antioxidant capacity. The results revealed that there was a significant increase in TPC, TFC, and RP in all the selected vegetables indicating the effectiveness of the cooking process on the antioxidant potential of leafy vegetables. Both cooking processes enhanced significantly (P<0.05) the radical scavenging ability, especially the oil fried samples showed the highest values. There is a significant reduction in the vitamin C content in all the vegetables due to boiling and frying except in the Indian spinach leaf. However, the present findings suggest that boiling and frying can be used to enhance the antioxidant ability, by increasing the bioaccessibility of health-promoting constituents from the four vegetables investigated in this study. PMID:29043220

  13. Physical and mechanical properties of spinach for whole-surface online imaging inspection

    NASA Astrophysics Data System (ADS)

    Tang, Xiuying; Mo, Chang Y.; Chan, Diane E.; Peng, Yankun; Qin, Jianwei; Yang, Chun-Chieh; Kim, Moon S.; Chao, Kuanglin

    2011-06-01

    The physical and mechanical properties of baby spinach were investigated, including density, Young's modulus, fracture strength, and friction coefficient. The average apparent density of baby spinach leaves was 0.5666 g/mm3. The tensile tests were performed using parallel, perpendicular, and diagonal directions with respect to the midrib of each leaf. The test results showed that the mechanical properties of spinach are anisotropic. For the parallel, diagonal, and perpendicular test directions, the average values for the Young's modulus values were found to be 2.137MPa, 1.0841 MPa, and 0.3914 MPa, respectively, and the average fracture strength values were 0.2429 MPa, 0.1396 MPa, and 0.1113 MPa, respectively. The static and kinetic friction coefficient between the baby spinach and conveyor belt were researched, whose test results showed that the average coefficients of kinetic and maximum static friction between the adaxial (front side) spinach leaf surface and conveyor belt were 1.2737 and 1.3635, respectively, and between the abaxial (back side) spinach leaf surface and conveyor belt were 1.1780 and 1.2451 respectively. These works provide the basis for future development of a whole-surface online imaging inspection system that can be used by the commercial vegetable processing industry to reduce food safety risks.

  14. Evidence for the presence of a [2Fe-2S] ferredoxin in bean sprouts.

    PubMed

    Hirasawa, M; Sung, J D; Malkin, R; Zilber, A; Droux, M; Knaff, D B

    1988-07-06

    An iron-sulfur protein with properties similar to those of ferredoxins found in the leaves of higher plants has been isolated from bean sprouts--a non-photosynthetic plant tissue. The bean sprout protein has a molecular mass of 12.5 kDa and appears to contain a single [2Fe-2S] cluster. The absorbance and circular dichroism spectra of the bean sprout protein resemble those of spinach leaf ferredoxin and the bean sprout protein can replace spinach ferredoxin as an electron donor for NADP+ reduction, nitrite reduction and thioredoxin reduction by spinach leaf enzymes. Although the reduced bean sprout protein (Em = -440 mV) is a slightly stronger reductant than spinach ferredoxin and appears to be less acidic than spinach ferredoxin, the two proteins are similar enough so that the bean sprout protein is recognized by an antibody raised against spinach ferredoxin.

  15. Effect of spinach cultivar and strain variation on survival of Escherichia coli O157:H7 on spinach leaves

    USDA-ARS?s Scientific Manuscript database

    Introduction: Escherichia coli O157:H7 outbreaks of infections associated with the consumption of fresh produce have increased in recent years. Bacterial cell surface appendages such as curli and the spinach leaf structure topography influence pathogen attachment and subsequent survival on spinach ...

  16. Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins

    NASA Technical Reports Server (NTRS)

    Toroser, D.; Athwal, G. S.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    We report an Mg2+-dependent interaction between spinach leaf sucrose-phosphate synthase (SPS) and endogenous 14-3-3 proteins, as evidenced by co-elution during gel filtration and co-immunoprecipitation. The content of 14-3-3s associated with an SPS immunoprecipitate was inversely related to activity, and was specifically reduced when tissue was pretreated with 5-aminoimidazole-4-carboxamide riboside, suggesting metabolite control in vivo. A synthetic phosphopeptide based on Ser-229 was shown by surface plasmon resonance to bind a recombinant plant 14-3-3, and addition of the phosphorylated SPS-229 peptide was found to stimulate the SPS activity of an SPS:14-3-3 complex. Taken together, the results suggest a regulatory interaction of 14-3-3 proteins with Ser-229 of SPS.

  17. Abscisic Acid Accumulation in Spinach Leaf Slices in the Presence of Penetrating and Nonpenetrating Solutes 1

    PubMed Central

    Creelman, Robert A.; Zeevaart, Jan A. D.

    1985-01-01

    Abscisic acid (ABA) accumulated in detached, wilted leaves of spinach (Spinacia oleracea L. cv Savoy Hybrid 612) and reached a maximum level within 3 to 4 hours. The increase in ABA over that found in detached turgid leaves was approximately 10-fold. The effects of water stress could be mimicked by the use of thin slices of spinach leaves incubated in the presence of 0.6 molar mannitol, a compound which causes plasmolysis (loss of turgor). About equal amounts of ABA were found both in the leaf slices and in detached leaves, whereas 2 to 4 times more ABA accumulated in the medium than in the slices. When spinach leaf slices were incubated with ethylene glycol, a compound which rapidly penetrates the cell membrane causing a decrease in the osmotic potential of the tissue and only transient loss of turgor, no ABA accumulated. Ethylene glycol was not inhibitory with respect to ABA accumulation. Spinach leaf slices incubated in both ethylene glycol and mannitol had ABA levels similar to those found when slices were incubated with mannitol alone. Increases similar to those found with mannitol also occurred when Aquacide III, a highly purified form of polyethylene glycol, was used. Aquacide III causes cytorrhysis, a situation similar to that found in wilted leaves. Thus, it appears that loss of turgor is essential for ABA accumulation. When spinach leaf slices were incubated with solutes which are supposed to disturb membrane integrity (KHSO3, 2-propanol, or KCl) no increase in ABA was observed. These data indicate that, with respect to the accumulation of ABA, mannitol caused a physical stress (loss of turgor) rather than a chemical stress (membrane damage). PMID:16664022

  18. Abscisic Acid accumulation in spinach leaf slices in the presence of penetrating and nonpenetrating solutes.

    PubMed

    Creelman, R A; Zeevaart, J A

    1985-01-01

    Abscisic acid (ABA) accumulated in detached, wilted leaves of spinach (Spinacia oleracea L. cv Savoy Hybrid 612) and reached a maximum level within 3 to 4 hours. The increase in ABA over that found in detached turgid leaves was approximately 10-fold. The effects of water stress could be mimicked by the use of thin slices of spinach leaves incubated in the presence of 0.6 molar mannitol, a compound which causes plasmolysis (loss of turgor). About equal amounts of ABA were found both in the leaf slices and in detached leaves, whereas 2 to 4 times more ABA accumulated in the medium than in the slices. When spinach leaf slices were incubated with ethylene glycol, a compound which rapidly penetrates the cell membrane causing a decrease in the osmotic potential of the tissue and only transient loss of turgor, no ABA accumulated. Ethylene glycol was not inhibitory with respect to ABA accumulation. Spinach leaf slices incubated in both ethylene glycol and mannitol had ABA levels similar to those found when slices were incubated with mannitol alone. Increases similar to those found with mannitol also occurred when Aquacide III, a highly purified form of polyethylene glycol, was used. Aquacide III causes cytorrhysis, a situation similar to that found in wilted leaves. Thus, it appears that loss of turgor is essential for ABA accumulation.When spinach leaf slices were incubated with solutes which are supposed to disturb membrane integrity (KHSO(3), 2-propanol, or KCl) no increase in ABA was observed. These data indicate that, with respect to the accumulation of ABA, mannitol caused a physical stress (loss of turgor) rather than a chemical stress (membrane damage).

  19. Purification of Peroxisomes and Mitochondria from Spinach Leaf by Percoll Gradient Centrifugation 1

    PubMed Central

    Schwitzguebel, Jean-Paul; Siegenthaler, Paul-André

    1984-01-01

    A procedure was developed to purify simultaneously peroxisomes and mitochondria from spinach (Spinacia oleracea L.) leaf under isoosmotic and low viscosity conditions. This method involved differential centrifugation and density gradient centrifugation on four layers of Percoll. Chlorophyll-free preparations of highly intact and active organelles were obtained and cross-contamination was negligible. Both organelles were stable for several hours, even if they remained in Percoll. Purified mitochondria were able to carry out the oxidation of different substrates with excellent respiratory control and ADP:O ratios. The method described in the present work was also suitable to purify mitochondria and peroxisomes from potato (Solanum tuberosum L.) tubers. PMID:16663685

  20. Identification of heavy metals on vegetables at the banks of Kaligarang river using neutron analysis activation method

    NASA Astrophysics Data System (ADS)

    Yulianti, D.; Marwoto, P.; Fianti

    2018-03-01

    This research aims to determine the type, concentration, and distribution of heavy metals in vegetables on the banks river Kaligarang using Neutron Analysis Activation (NAA) Method. The result is then compared to its predefined threshold. Vegetable samples included papaya leaf, cassava leaf, spinach, and water spinach. This research was conducted by taking a snippet of sediment and vegetation from 4 locations of Kaligarang river. These snippets are then prepared for further irradiated in the reactor for radioactive samples emiting γ-ray. The level of γ-ray energy determines the contained elements of sample that would be matched to Neutron Activation Table. The results showed that vegetablesat Kaligarang are containing Cr-50, Co-59, Zn-64, Fe-58, and Mn-25, and well distributed at all research locations. Furthermore, the level of the detected metal elements is less than the predefined threshold.

  1. Association analysis and identification of SNP markers for Stemphylium leaf spot (Stemphylium botryosum f. sp. spinacia) resistance in spinach (Spinacia oleracea)

    USDA-ARS?s Scientific Manuscript database

    Stemphylium leaf spot, caused by Stemphylium botryosum f. sp. spinacia is an important disease in spinach. Use of genetic resistance is an efficient, economic and environment-friendly method to control this disease. The objective of this research was to conduct association analysis and identify SNP ...

  2. Decrease of Nitrate Reductase Activity in Spinach Leaves during a Light-Dark Transition 1

    PubMed Central

    Riens, Burgi; Heldt, Hans Walter

    1992-01-01

    In leaves of spinach plants (Spinacia oleracea L.) performing CO2 and NO3− assimilation, at the time of sudden darkening, which eliminates photosystem I-dependent nitrite reduction, only a minor temporary increase of the leaf nitrite content is observed. Because nitrate reduction does not depend on redox equivalents generated by photosystem I activity, a continuation of nitrate reduction after darkening would result in a large accumulation of nitrite in the leaves within a very short time, which is not observed. Measurements of the extractable nitrate reductase activity from spinach leaves assayed under standard conditions showed that in these leaves the nitrate reductase activity decreased during darkening to 15% of the control value with a half-time of only 2 minutes. Apparently, in these leaves nitrate reductase is very rapidly inactivated at sudden darkness avoiding an accumulation of the toxic nitrite in the cells. PMID:16668679

  3. Summer (sub-arctic) versus winter (sub-tropical) production affects on spinach leaf bio-nutrients: Vitamins (C, E, Folate, K1, provitamin A), lutein, phenolics, and antioxidants

    USDA-ARS?s Scientific Manuscript database

    Comparison of spinach (Spinacia oleracea L.) cultivars Lazio and Samish grown during the summer solstice in the sub-arctic versus the winter solstice in the sub-tropics provided insight into interactions between plant environment (day length, light intensity, ambient temperatures), cultivar and leaf...

  4. Texture, composition and anatomy of spinach leaves in relation to nitrogen fertilization.

    PubMed

    Gutiérrez-Rodríguez, Eduardo; Lieth, Heiner J; Jernstedt, Judith A; Labavitch, John M; Suslow, Trevor V; Cantwell, Marita I

    2013-01-01

    The postharvest quality and shelf life of spinach are greatly influenced by cultural practices. Reduced spinach shelf life is a common quandary in the Salinas Valley, California, where current agronomic practices depend on high nitrogen (N) rates. This study aimed to describe the postharvest fracture properties of spinach leaves in relation to N fertilization, leaf age and spinach cultivar. Force-displacement curves, generated by a puncture test, showed a negative correlation between N fertilization and the toughness, stiffness and strength of spinach leaves (P > 0.05). Younger leaves (leaves 12 and 16) from all N treatments were tougher than older leaves (leaves 6 and 8) (P > 0.05). Leaves from the 50 and 75 ppm total N treatments irrespective of spinach cultivar had higher fracture properties and nutritional quality than leaves from other N treatments (P > 0.05). Total alcohol-insoluble residues (AIR) and pectins were present at higher concentrations in low-N grown plants. These plants also had smaller cells and intercellular spaces than high-N grown leaves (P > 0.05). Observed changes in physicochemical and mechanical properties of spinach leaves due to excess nitrogen fertilization were significantly associated with greater postharvest leaf fragility and lower nutritional quality. Copyright © 2012 Society of Chemical Industry.

  5. Effect of route of introduction and host cultivar on the colonization, internalization, and movement of the human pathogen Escherichia coli O157:H7 in spinach.

    PubMed

    Mitra, R; Cuesta-Alonso, E; Wayadande, A; Talley, J; Gilliland, S; Fletcher, J

    2009-07-01

    Human pathogens can contaminate leafy produce in the field by various routes. We hypothesized that interactions between Escherichia coli O157:H7 and spinach are influenced by the route of introduction and the leaf microenvironment. E. coli O157:H7 labeled with green fluorescent protein was dropped onto spinach leaf surfaces, simulating bacteria-laden raindrops or sprinkler irrigation, and survived on the phylloplane for at least 14 days, with increasing titers and areas of colonization over time. The same strains placed into the rhizosphere by soil infiltration remained detectable on very few plants and in low numbers (10(2) to 10(6) CFU/g fresh tissue) that decreased over time. Stem puncture inoculations, simulating natural wounding, rarely resulted in colonization or multiplication. Bacteria forced into the leaf interior survived for at least 14 days in intercellular spaces but did not translocate or multiply. Three spinach cultivars with different leaf surface morphologies were compared for colonization by E. coli O157:H7 introduced by leaf drop or soil drench. After 2 weeks, cv. Bordeaux hosted very few bacteria. More bacteria were seen on cv. Space and were dispersed over an area of up to 0.3 mm2. The highest bacterial numbers were observed on cv. Tyee but were dispersed only up to 0.15 mm2, suggesting that cv. Tyee may provide protected niches or more nutrients or may promote stronger bacterial adherence. These findings suggest that the spinach phylloplane is a supportive niche for E. coli O157:H7, but no conclusive evidence was found for natural entry into the plant interior. The results are relevant for interventions aimed at minimizing produce contamination by human pathogens.

  6. Ion Homeostasis in Chloroplasts under Salinity and Mineral Deficiency 1

    PubMed Central

    Schröppel-Meier, Gabriele; Kaiser, Werner M.

    1988-01-01

    Spinach (Spinacia oleracea var “Yates”) plants in hydroponic culture were exposed to stepwise increased concentrations of NaCl or NaNO3 up to a final concentration of 300 millimoles per liter, at constant Ca2+-concentration. Leaf cell sap and extracts from aqueously isolated spinach chloroplasts were analyzed for mineral cations, anions, amino acids, sugars, and quarternary ammonium compounds. Total osmolality of leaf sap and photosynthetic capacity of leaves were also measured. For comparison, leaf sap from salt-treated pea plants was also analyzed. Spinach plants under NaCl or NaNO3 salinity took up large amounts of sodium (up to 400 millimoles per liter); nitrate as the accompanying anion was taken up less (up to 90 millimoles per liter) than chloride (up to 450 millimoles per liter). Under chloride salinity, nitrate content in leaves decreased drastically, but total amino acid concentrations remained constant. This response was much more pronounced (and occurred at lower salt concentrations) in leaves from the glycophyte (pea, Pisum sativum var “Kleine Rheinländerin”) than from moderately salt-tolerant spinach. In spinach, sodium chloride or nitrate taken up into leaves was largely sequestered in the vacuoles; both salts induced synthesis of quarternary ammonium compounds, which were accumulated mainly in chloroplasts (and cytosol). This prevented impairment of metabolism, as indicated by an unchanged photosynthetic capacity of leaves. PMID:16666232

  7. Relationship between fresh-packaged spinach leaves exposed to continuous light or dark and bioactive contents: effects of cultivar, leaf size, and storage duration.

    PubMed

    Lester, Gene E; Makus, Donald J; Hodges, D Mark

    2010-03-10

    Current retail marketing conditions allow produce to receive artificial light 24 h per day during its displayed shelf life. Essential human-health vitamins [ascorbic acid (vit C), folate (vit B(9)), phylloquinone (vit K(1)), alpha-tocopherol (vit E), and the carotenoids lutein, violaxanthin, zeaxanthin, and beta-carotene (provit A)] also are essential for photosynthesis and are biosynthesized in plants by light conditions even under chilling temperatures. Spinach leaves, notably abundant in the aforementioned human-health compounds, were harvested from flat-leaf 'Lazio' and crinkle-leafed 'Samish' cultivars at peak whole-plant maturity as baby (top- and midcanopy) and larger (lower-canopy) leaves. Leaves were placed as a single layer in commercial, clear-polymer retail boxes and stored at 4 degrees C for up to 9 days under continuous light (26.9 micromol.m(2 ).s) or dark. Top-canopy, baby-leaf spinach generally had higher concentrations of all bioactive compounds, on a dry weight basis, with the exception of carotenoids, than bottom-canopy leaves. All leaves stored under continuous light generally had higher levels of all bioactive compounds, except beta-carotene and violaxanthin, and were more prone to wilting, especially the flat-leafed cultivar. All leaves stored under continuous darkness had declining or unchanged levels of the aforementioned bioactive compounds. Findings from this study revealed that spinach leaves exposed to simulated retail continuous light at 4 degrees C, in clear plastic containers, were overall more nutritionally dense (enriched) than leaves exposed to continuous darkness.

  8. Betaine aldehyde dehydrogenase isozymes of spinach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, A.D.; Weretilnyk, E.A.; Weigel, P.

    1986-04-01

    Betaine is synthesized in spinach chloroplasts via the pathway Choline ..-->.. Betaine Aldehyde ..-->.. Betaine; the second step is catalyzed by betaine aldehyde dehydrogenase (BADH). The subcellular distribution of BADH was determined in leaf protoplast lysates; BADH isozymes were separated by 6-9% native PAGE. The chloroplast stromal fraction contains a single BADH isozyme (number1) that accounts for > 80% of the total protoplast activity; the extrachloroplastic fraction has a minor isozyme (number2) which migrates more slowly than number1. Both isozymes appear specific for betaine aldehyde, are more active with NAD than NADP, and show a ca. 3-fold activity increase inmore » salinized leaves. The phenotype of a natural variant of isozyme number1 suggests that the enzyme is a dimer.« less

  9. Inhibition of Escherichia coli O157:H7 and Salmonella enterica on spinach and identification of antimicrobial substances produced by a commercial Lactic Acid Bacteria food safety intervention.

    PubMed

    Cálix-Lara, Thelma F; Rajendran, Mahitha; Talcott, Stephen T; Smith, Stephen B; Miller, Rhonda K; Castillo, Alejandro; Sturino, Joseph M; Taylor, T Matthew

    2014-04-01

    The microbiological safety of fresh produce is of concern for the U.S. food supply. Members of the Lactic Acid Bacteria (LAB) have been reported to antagonize pathogens by competing for nutrients and by secretion of substances with antimicrobial activity, including organic acids, peroxides, and antimicrobial polypeptides. The objectives of this research were to: (i) determine the capacity of a commercial LAB food antimicrobial to inhibit Escherichia coli O157:H7 and Salmonella enterica on spinach leaf surfaces, and (ii) identify antimicrobial substances produced in vitro by the LAB comprising the food antimicrobial. Pathogens were inoculated on freshly harvested spinach, followed by application of the LAB antimicrobial. Treated spinach was aerobically incubated up to 12 days at 7 °C and surviving pathogens enumerated via selective/differential plating. l-Lactic acid and a bacteriocin-like inhibitory substance (BLIS) were detected and quantified from cell-free fermentates obtained from LAB-inoculated liquid microbiological medium. Application of 8.0 log10 CFU/g LAB produced significant (p < 0.05) reductions in E. coli O157:H7 and Salmonella populations on spinach of 1.6 and 1.9 log10 CFU/g, respectively. It was concluded the LAB antimicrobial inhibited foodborne pathogens on spinach during refrigerated storage, likely the result of the production of metabolites with antimicrobial activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Impact of pigeon pea biochar on cadmium mobility in soil and transfer rate to leafy vegetable spinach.

    PubMed

    Coumar, M Vassanda; Parihar, R S; Dwivedi, A K; Saha, J K; Rajendiran, S; Dotaniya, M L; Kundu, S

    2016-01-01

    Introduction of heavy metals in the environment by various anthropogenic activities has become a potential treat to life. Among the heavy metals, cadmium (Cd) shows relatively high soil mobility and has high phyto-mammalian toxicity. Integration of soil remediation and ecosystem services, such as carbon sequestration in soils through organic amendments, may provide an attractive land management option for contaminated sites. The application of biochar in agriculture has recently received much attention globally due to its associated multiple benefits, particularly, long-term carbon storage in soil. However, the application of biochar from softwood crop residue for heavy metal immobilization, as an alternative to direct field application, has not received much attention. Hence, a pot experiment was conducted to study the effect of pigeon pea biochar on cadmium mobility in a soil-plant system in cadmium-spiked sandy loam soil. The biochar was prepared from pigeon pea stalk through a slow pyrolysis method at 300 °C. The experiment was designed with three levels of Cd (0, 5, and 10 mg Cd kg(-1) soil) and three levels of biochar (0, 2.5, and 5 g kg(-1) soil) using spinach as a test crop. The results indicate that with increasing levels of applied cadmium at 5 and 10 mg kg(-1) soil, the dry matter yield (DMY) of spinach leaf decreased by 9.84 and 18.29 %, respectively. However, application of biochar (at 2.5 and 5 g kg(-1) soil) significantly increased the dry matter yield of spinach leaf by 5.07 and 15.02 %, respectively, and root by 14.0 and 24.0 %, respectively, over the control. Organic carbon content in the post-harvest soil increased to 34.9 and 60.5 % due to the application of biochar 2.5 and 5 g kg(-1) soil, respectively. Further, there was a reduction in the diethylene triamine pentaacetic acid (DTPA)-extractable cadmium in the soil and in transfer coefficient values (soil to plant), as well as its concentrations in spinach leaf and root, indicating that cadmium mobility was decreased due to biochar application. This study shows that pigeon pea biochar has the potential to increase spinach yield and reduce cadmium mobility in contaminated sandy soil.

  11. Expression of holo and apo forms of spinach acyl carrier protein-I in leaves of transgenic tobacco plants.

    PubMed Central

    Post-Beittenmiller, M A; Schmid, K M; Ohlrogge, J B

    1989-01-01

    Acyl carrier protein (ACP) is a chloroplast-localized cofactor of fatty acid synthesis, desaturation, and acyl transfer. We have transformed tobacco with a chimeric gene consisting of the tobacco ribulose-1,5-bisphosphate carboxylase promoter and transit peptide and the sequence encoding the mature spinach ACP-I. Spinach ACP-I was expressed in the transformed plants at levels twofold to threefold higher than the endogenous tobacco ACPs as determined by protein immunoblots and assays of ACP in leaf extracts. In addition to these elevated levels of the holo form, there were high levels of apoACP-I, a form lacking the 4'-phosphopantetheine prosthetic group and not previously detected in vivo. The mature forms of both apoACP-I and holoACP-I were located in the chloroplasts, indicating that the transit peptide was cleaved and that attachment of the prosthetic group was not required for uptake into the plastid. There were also significant levels of spinach acyl-ACP-I, demonstrating that spinach ACP-I participated in tobacco fatty acid metabolism. Lipid analyses of the transformed plants indicated that the increased ACP levels caused no significant alterations in leaf lipid biosynthesis. PMID:2535529

  12. Short term physiological implications of NBPT application on the N metabolism of Pisum sativum and Spinacea oleracea.

    PubMed

    Cruchaga, Saioa; Artola, Ekhiñe; Lasa, Berta; Ariz, Idoia; Irigoyen, Ignacio; Moran, Jose Fernando; Aparicio-Tejo, Pedro M

    2011-03-01

    The application of urease inhibitors in conjunction with urea fertilizers as a means of reducing N loss due to ammonia volatilization requires an in-depth study of the physiological effects of these inhibitors on plants. The aim of this study was to determine how the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) affects N metabolism in pea and spinach. Plants were cultivated in pure hydroponic culture with urea as the sole N source. After 2 weeks of growth for pea, and 3 weeks for spinach, half of the plants received NBPT in their nutrient solution. Urease activity, urea and ammonium content, free amino acid composition and soluble protein were determined in leaves and roots at days 0, 1, 2, 4, 7 and 9, and the NBPT content in these tissues was determined 48h after inhibitor application. The results suggest that the effects of NBPT on spinach and pea urease activity differ, with pea being most affected by this treatment, and that the NBPT absorbed by the plant caused a clear inhibition of the urease activity in pea leaf and roots. The high urea concentration observed in leaves was associated with the development of necrotic leaf margins, and was further evidence of NBPT inhibition in these plants. A decrease in the ammonium content in roots, where N assimilation mainly takes place, was also observed. Consequently, total amino acid contents were drastically reduced upon NBPT treatment, indicating a strong alteration of the N metabolism. Furthermore, the amino acid profile showed that amidic amino acids were major components of the reduced pool of amino acids. In contrast, NBPT was absorbed to a much lesser degree by spinach plants than pea plants (35% less) and did not produce a clear inhibition of urease activity in this species. Copyright © 2010 Elsevier GmbH. All rights reserved.

  13. Methionine biosynthesis in higher plants. II. Purification and characterization of cystathionine beta-lyase from spinach chloroplasts.

    PubMed

    Droux, M; Ravanel, S; Douce, R

    1995-01-10

    Cystathionine beta-lyase, the second enzyme of the transsulfuration pathway leading to homocysteine synthesis was purified over 16,000-fold from spinach (Spinacia oleracea L.) leaf chloroplasts (soluble fraction). Enzyme activity was followed along the purification scheme by either a colorimetric method for the determination of cysteine or by fluorescence detection of the bimane derivative of L-homocysteine after reverse-phase HPLC. Cystathionine beta-lyase has a molecular mass of 170,000 +/- 5000 Da and consists of four identical subunits of 44,000 Da. The enzyme exhibits an absorption spectrum in the visible range with a maximum at 418 nm due to pyridoxal 5'-phosphate. The chloroplastic enzyme catalyzes alpha,beta-cleavage of the thioether L-cystathionine and the dithioacetal L-djenkolate with apparent Km values of 0.15 and 0.34 mM, respectively, and apparent Vm values corresponding to a specific activity of 13 Units mg-1. However, no activity was detected toward the disulfide L-cysteine. With either L-cystathionine and L-djenkolate as substrate, maximal activity was obtained between pH 8.3 and pH 9.0. Besides the chloroplastic enzyme form, anion exchange chromatography of a total spinach leaf extract allowed the detection of a second pool of cystathionine beta-lyase activity that is associated with the cytosolic compartment and eluted at a lower salt concentration than the chloroplastic isoform. Kinetics of inactivation of cystathionine beta-lyase by the L-alpha-(2-aminoethoxyvinyl) glycine (AVG), an analogue of L-cystathionine, are consistent with the existence of an intermediate reversible enzyme inhibitor complex (apparent inhibition constant Kappi of 110 microM) preceding the irreversible formation of a final inactivated state of the enzyme (kd = 4.8 x 10(-3) s-1). Pyridoxal 5'-phosphate free in solution binds AVG with an apparent dissociation constant Kapp in the order of 350 microM. The comparison between the Kapp (free pyridoxal 5'-phosphate) and Kappi (enzyme inactivation) values indicate that the prosthetic group of spinach chloroplast cystathionine beta-lyase is freely accessible to the inhibitor compound AVG.

  14. Ion Relations of Symplastic and Apoplastic Space in Leaves from Spinacia oleracea L. and Pisum sativum L. under Salinity 1

    PubMed Central

    Speer, Michael; Kaiser, Werner M.

    1991-01-01

    Salt tolerant spinach (Spinacia oleracea) and salt sensitive pea (Pisum sativum) plants were exposed to mild salinity under identical growth conditions. In order to compare the ability of the two species for extra- and intracellular solute compartmentation in leaves, various solutes were determined in intercellular washing fluids and in aqueously isolated intact chloroplasts. In pea plants exposed to 100 millimolar NaCl for 14 days, apoplastic salt concentrations in leaflets increased continuously with time up to 204 (Cl−) and 87 millimolar (Na+), whereas the two ions reached a steady concentration of only 13 and 7 millimolar, respectively, in spinach leaves. In isolated intact chloroplasts from both species, sodium concentrations were not much different, but chloride concentrations were significantly higher in pea than in spinach. Together with data from whole leaf extracts, these measurements permitted an estimation of apoplastic, cytoplasmic, and vacuolar solute concentrations. Sodium and chloride concentration gradients across the tonoplast were rather similar in both species, but spinach was able to maintain much steeper sodium gradients across the plasmamembrane compared with peas. Between day 12 and day 17, concentrations of other inorganic ions in the pea leaf apoplast increased abruptly, indicating the onset of cell disintegration. It is concluded that the differential salt sensitivity of pea and spinach cannot be traced back to a single plant performance. Major differences appear to be the inability of pea to control salt accumulation in the shoot, to maintain steep ion gradients across the leaf cell plasmalemma, and to synthesize compatible solutes. Perhaps less important is a lower selectivity of pea for K+/Na+ and NO3−/Cl− uptake by roots. PMID:16668541

  15. Spinach and mustard greens response to soil type, sulfur addition and lithium level

    USDA-ARS?s Scientific Manuscript database

    A greenhouse experiment was conducted near Weslaco, Texas (Lat. 26o 8' N, Long. 97o 57' W) between Dec. 2006 and Feb 2007 to evaluate the effect of soil type, added sulfur and lithium level on the growth and leaf nutrients, particularly biofortified levels of Li and S, in spinach and mustard gree...

  16. Comparison of two possible routes of pathogen contamination of spinach leaves in a hydroponic cultivation system.

    PubMed

    Koseki, Shigenobu; Mizuno, Yasuko; Yamamoto, Kazutaka

    2011-09-01

    The route of pathogen contamination (from roots versus from leaves) of spinach leaves was investigated with a hydroponic cultivation system. Three major bacterial pathogens, Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes, were inoculated into the hydroponic solution, in which the spinach was grown to give concentrations of 10⁶ and 10³ CFU/ml. In parallel, the pathogens were inoculated onto the growing leaf surface by pipetting, to give concentrations of 10⁶ and 10³ CFU per leaf. Although contamination was observed at a high rate through the root system by the higher inoculum (10⁶ CFU) for all the pathogens tested, the contamination was rare when the lower inoculum (10³ CFU) was applied. In contrast, contamination through the leaf occurred at a very low rate, even when the inoculum level was high. For all the pathogens tested in the present study, the probability of contamination was promoted through the roots and with higher inoculum levels. The probability of contamination was analyzed with logistic regression. The logistic regression model showed that the odds ratio of contamination from the roots versus from the leaves was 6.93, which suggested that the risk of contamination from the roots was 6.93 times higher than the risk of contamination from the leaves. In addition, the risk of contamination by L. monocytogenes was about 0.3 times that of Salmonella enterica subsp. enterica serovars Typhimurium and Enteritidis and E. coli O157:H7. The results of the present study indicate that the principal route of pathogen contamination of growing spinach leaves in a hydroponic system is from the plant's roots, rather than from leaf contamination itself.

  17. Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: effects of iodine species and solution concentrations.

    PubMed

    Zhu, Y-G; Huang, Y-Z; Hu, Y; Liu, Y-X

    2003-04-01

    A hydroponic experiment was carried out to investigate the effects of iodine species and solution concentrations on iodine uptake by spinach (Spinacia oleracea L.). Five iodine concentrations (0, 1, 10, 50 and 100 microM) for iodate (IO(3)(-)) and iodide (I(-)) were used. Results show that higher concentrations of I(-) (> or =10 microM) had some detrimental effect on plant growth, while IO(3)(-) had little effect on the biomass production of spinach plants. Increases in iodine concentration in the growth solution significantly enhanced I concentrations in plant tissues. The detrimental effect of I(-) on plant growth was probably due to the excessively high accumulation of I in plant tissues. The solution-to-spinach leaf transfer factors (TF(leaf), fresh weight basis) for plants treated with iodide were between 14.2 and 20.7 at different solution concentrations of iodide; TF(leaf) for plants treated with iodate decreased gradually from 23.7 to 2.2 with increasing solution concentrations of iodate. The distribution coefficients (DCs) of I between leaves and roots were constantly higher for plants treated with iodate than those treated with iodide. DCs for plants treated with iodide increased with increasing solution concentrations of iodide, while DCs for plants treated with iodate (around 5.5) were similar across the range of solution concentrations of iodate used in this experiment. The implications of iodine accumulation in leafy vegetables in human iodine nutrition are also discussed. Copyright 2002 Elsevier Science Ltd.

  18. Protoplast Volume:Water Potential Relationship and Bound Water Fraction in Spinach Leaves 1

    PubMed Central

    Santakumari, Mane; Berkowitz, Gerald A.

    1989-01-01

    Methods used to estimate the (nonosmotic) bound water fraction (BWF) (i.e. apoplast water) of spinach (Spinacia oleracea L.) leaves were evaluated. Studies using three different methods of pressure/volume (P/V) curve construction all resulted in a similar calculation of BWF; approximately 40%. The theoretically derived BWF, and the water potential (Ψw)/relative water content relationship established from P/V curves were used to establish the relationship between protoplast (i.e. symplast) volume and Ψw. Another method of establishing the protoplast volume/Ψw relationship in spinach leaves was compared with the results from P/V curve experiments. This second technique involved the vacuum infiltration of solutions at a range of osmotic potentials into discs cut from spinach leaves. These solutions contained radioactively labeled H2O and sorbitol. This dual label infiltration technique allowed for simultaneous measurement of the total and apoplast volumes in leaf tissue; the difference yielded the protoplast volume. The dual label infiltration experiments and the P/V curve constructions both showed that below −1 megapascals, protoplast volume decreases sharply with decreasing water potential; with 50% reduction in protoplast volume occurring at −1.8 megapascals leaf water potential. PMID:16666983

  19. Characterization of E coli biofim formations on baby spinach leaf surfaces using hyperspectral fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Cho, Hyunjeong; Baek, Insuck; Oh, Mirae; Kim, Sungyoun; Lee, Hoonsoo; Kim, Moon S.

    2017-05-01

    Bacterial biofilm formed by pathogens on fresh produce surfaces is a food safety concern because the complex extracellular matrix in the biofilm structure reduces the reduction and removal efficacies of washing and sanitizing processes such as chemical or irradiation treatments. Therefore, a rapid and nondestructive method to identify pathogenic biofilm on produce surfaces is needed to ensure safe consumption of fresh, raw produce. This research aimed to evaluate the feasibility of hyperspectral fluorescence imaging for detecting Escherichia.coli (ATCC 25922) biofilms on baby spinach leaf surfaces. Samples of baby spinach leaves were immersed and inoculated with five different levels (from 2.6x104 to 2.6x108 CFU/mL) of E.coli and stored at 4°C for 24 h and 48 h to induce biofilm formation. Following the two treatment days, individual leaves were gently washed to remove excess liquid inoculums from the leaf surfaces and imaged with a hyperspectral fluorescence imaging system equipped with UV-A (365 nm) and violet (405 nm) excitation sources to evaluate a spectral-image-based method for biofilm detection. The imaging results with the UV-A excitation showed that leaves even at early stages of biofilm formations could be differentiated from the control leaf surfaces. This preliminary investigation demonstrated the potential of fluorescence imaging techniques for detection of biofilms on leafy green surfaces.

  20. Antibacterial activity of oregano oil against antibiotic resistant Salmonella enterica on organic leafy greens at varying exposure times and storage temperatures

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate the effectiveness of oregano oil on four organic leafy greens (iceberg and romaine lettuces and mature and baby spinaches) inoculated with Salmonella Newport as a function of treatment exposure times as well as storage temperatures. Leaf samples were wash...

  1. Biocontrol of Escherichia coli O157: H7 on fresh-cut leafy greens.

    PubMed

    Boyacioglu, Olcay; Sharma, Manan; Sulakvelidze, Alexander; Goktepe, Ipek

    2013-01-01

    The effect of a bacteriophage cocktail (EcoShield™) that is specific against Escherichia coli O157:H7 was evaluated against a nalidixic acid-resistant enterohemorrhagic E. coli O157:H7 RM4407 (EHEC) strain on leafy greens stored under either (1) ambient air or (2) modified atmosphere (MA; 5% O 2 /35% CO 2 /60% N 2 ). Pieces (~2 × 2 cm 2 ) of leafy greens (lettuce and spinach) inoculated with 4.5 log CFU/cm 2 EHEC were sprayed with EcoShield™ (6.5 log PFU/cm 2 ). Samples were stored at 4 or 10°C for up to 15 d. On spinach, the level of EHEC declined by 2.38 and 2.49 log CFU/cm 2 at 4 and 10°C, respectively, 30 min after phage application (p ≤ 0.05). EcoShield™ was also effective in reducing EHEC on the surface of green leaf lettuce stored at 4°C by 2.49 and 3.28 log units in 30 min and 2 h, respectively (p ≤ 0.05). At 4°C under atmospheric air, the phage cocktail significantly (p ≤ 0.05) lowered the EHEC counts in one day by 1.19, 3.21 and 3.25 log CFU/cm 2 on spinach, green leaf and romaine lettuce, respectively compared with control (no bacteriophage) treatments. When stored under MA at 4°C, phages reduced (p ≤ 0.05) EHEC populations by 2.18, 3.50 and 3.13 log CFU/cm 2 , on spinach, green leaf and romaine lettuce. At 10°C, EHEC reductions under atmospheric air storage were 1.99, 3.90 and 3.99 log CFU/cm 2 (p ≤ 0.05), while population reductions under MA were 3.08, 3.89 and 4.34 logs on spinach, green leaf and romaine lettuce, respectively, compared with controls (p ≤ 0.05). The results of this study showed that bacteriophages were effective in reducing the levels of E. coli O157:H7 on fresh leafy produce, and that the reduction was further improved when produce was stored under the MA conditions.

  2. Effects of plant maturity and bacterial inoculum level on the colonization and internalization of escherichia coli 0157:H7 in growing spinach leaves.

    USDA-ARS?s Scientific Manuscript database

    The incidence of foodborne outbreaks linked to fresh produce has increased in the United States. Particularly noteworthy, was the 2006 Escherichia coli O157:H7 outbreak associated with pre-packaged baby spinach. The study aimed to determine whether E. coli O157:H7 would be present in the aerial leaf...

  3. Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase

    NASA Technical Reports Server (NTRS)

    Bachmann, M.; Shiraishi, N.; Campbell, W. H.; Yoo, B. C.; Harmon, A. C.; Huber, S. C.; Davies, E. (Principal Investigator)

    1996-01-01

    Spinach leaf NADH:nitrate reductase (NR) responds to light/dark signals and photosynthetic activity in part as a result of rapid regulation by reversible protein phosphorylation. We have identified the major regulatory phosphorylation site as Ser-543, which is located in the hinge 1 region connecting the cytochrome b domain with the molybdenum-pterin cofactor binding domain of NR, using recombinant NR fragments containing or lacking the phosphorylation site sequence. Studies with NR partial reactions indicated that the block in electron flow caused by phosphorylation also could be localized to the hinge 1 region. A synthetic peptide (NR6) based on the phosphorylation site sequence was phosphorylated readily by NR kinase (NRk) in vitro. NR6 kinase activity tracked the ATP-dependent inactivation of NR during several chromatographic steps and completely inhibited inactivation/phosphorylation of native NR in vitro. Two forms of NRk were resolved by using anion exchange chromatography. Studies with synthetic peptide analogs indicated that both forms of NRk had similar specificity determinants, requiring a basic residue at P-3 (i.e., three amino acids N-terminal to the phosphorylated serine) and a hydrophobic residue at P-5. Both forms are strictly calcium dependent but belong to distinct families of protein kinases because they are distinct immunochemically.

  4. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; An Nguyen, Thien; Alfano, Robert R.

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S2 state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  5. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf.

    PubMed

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  6. The effect of cerium (III) on the chlorophyll formation in spinach.

    PubMed

    Fashui, Hong; Ling, Wang; Xiangxuan, Meng; Zheng, Wei; Guiwen, Zhao

    2002-12-01

    The effect of Ce(3+) on the chlorophyll (chl) of spinach was studied in pot culture experiments. The results showed that Ce(3+) could obviously stimulate the growth of spinach and increase its chlorophyll contents and photosynthetic rate. It could also improve the PSII formation and enhance its electron transport rate of PSII as well. By inductively coupled plasma-mass spectroscopy and atom absorption spectroscopy methods, it was revealed that the rare-earth-element (REE) distribution pattern in the Ce(3+)-treated spinach was leaf > root > shoot in Ce(3+) contents. The spinach leaves easily absorbed REEs. The Ce(3+) contents of chloroplast and chlorophyll of the Ce(3+)-treated spinach were higher than that of any other rare earth and were much higher than that of the control; it was also suggested that Ce(3+) could enter the chloroplast and bind easily to chlorophyll and might replace magnesium to form Ce-chlorophyll. By ultraviolet-visible, Fourier transform infrared, and extended X-ray absorption fine structure (EXAFS) methods, Ce(3+)-coordinated nitrogen of porphyrin rings with eight coordination numbers and average length of the Ce-N bond of 0.251 nm.

  7. Purification and characterization of O-acetylserine (thiol) lyase from spinach chloroplasts.

    PubMed

    Droux, M; Martin, J; Sajus, P; Douce, R

    1992-06-01

    O-Acetylserine (thiol) lyase, the last enzyme in the cysteine biosynthetic pathway, was purified to homogeneity from spinach leaf chloroplasts. The enzyme has a molecular mass of 68,000 and consists of two identical subunits of Mr 35,000. The absorption spectrum obtained at pH 7.5 exhibited a peak at 407 nm due to pyridoxal phosphate, and addition of O-acetylserine induced a considerable modification of the spectrum. The pyridoxal phosphate content was found to be 1.1 per subunit of 35,000, and the chromophore was displaced from the enzyme by O-acetylserine, leading to a progressive inactivation of the holoenzyme. Upon gel filtration chromatography on Superdex 200, part of the chloroplastic O-acetylserine (thiol) lyase eluted in association with serine acetyltransferase at a position corresponding to a molecular mass of 310,000 (such a complex called cysteine synthase has been characterized in bacteria). The activity of O-acetylserine (thiol) lyase was optimum between pH 7.5 and 8.5. The apparent Km for O-acetylserine was 1.3 mM and for sulfide was 0.25 mM. The calculated activation energy was 12.6 kcal/mol at 10 mM O-acetylserine. The overall amino-acid composition of spinach chloroplast O-acetylserine (thiol) lyase was different than that determined for the same enzyme (cytosolic?) obtained from a crude extract of spinach leaves. A polyclonal antibody prepared against the chloroplastic O-acetylserine (thiol) lyase exhibited a very low cross-reactivity with a preparation of mitochondrial matrix and cytosolic proteins suggesting that the chloroplastic isoform was distinct from the mitochondrial and cytosolic counterparts.

  8. Behavior of Escherichia coli O157:H7 on damaged leaves of spinach, lettuce, cilantro, and parsley stored at abusive temperatures.

    PubMed

    Khalil, Rowaida K; Frank, Joseph F

    2010-02-01

    Recent foodborne illness outbreaks associated with the consumption of leafy green produce indicates a need for additional information on the behavior of pathogenic bacteria on these products. Previous research indicates that pathogen growth and survival is enhanced by leaf damage. The objective of this study was to compare the behavior of Escherichia coli O157:H7 on damaged leaves of baby Romaine lettuce, spinach, cilantro, and parsley stored at three abusive temperatures (8, 12, and 15 degrees C). The damaged portions of leaves were inoculated with approximately 10(5) CFU E. coli O157:H7 per leaf. The pathogen grew on damaged spinach leaves held for 3 days at 8 and 12 degrees C (P < 0.05), with the population increasing by 1.18 and 2.08 log CFU per leaf, respectively. E. coli O157:H7 did not grow on damaged Romaine leaves at 8 or 12 degrees C, but growth was observed after 8 h of storage at 15 degrees C, with an increase of less than 1.0 log. Growth of E. coli O157:H7 on Romaine lettuce held at 8 or 12 degrees C was enhanced when inocula were suspended in 0.05% ascorbic acid, indicating the possibility of inhibition by oxidation reactions associated with tissue damage. Damaged cilantro and Italian parsley leaves held at 8 degrees C for 4 days did not support the growth of E. coli O157:H7. Behavior of the pathogen in leaf extracts differed from behavior on the damaged tissue. This study provides evidence that the damaged portion of a leafy green is a distinct growth niche that elicits different microbial responses in the various types of leafy greens.

  9. Osmotic adjustment and the growth response of seven vegetable crops following water-deficit stress. [Phaseolus vulgaris L. ; Beta vulgaris L. ; Abelmoschus esculentus; Pisum sativum L. ; Capsicum annuum L. ; Spinacia oleracea L. ; Lycopersicon esculentum Mill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wullschleger, S.D.; Oosterhuis, D.M.

    Growth-chamber studies were conducted to examine the ability of seven vegetable crops- Blue Lake beam (Phaseolus vulgaris L.) Detroit Dark Red beet (Beta vulgaris L.) Burgundy okra (Abelmoschus esculentus) (Moench), Little Marvel pea (Pisum sativum L), California Wonder bell pepper (Capsicum annuum L), New Zealand spinach (Spinacia oleracea L), and Beefsteak tomato (Lycopersicon esculentum Mill.) - to adjust osmotically in response to water-deficit stress. Water stress was imposed by withholding water for 3 days, and the adjustment of leaf and root osmotic potentials upon relief of the stress and rehydration were monitored with thermocouple psychrometers. Despite similar reductions in leafmore » water potential and stomatal conductance among the species studied reductions in lead water potential an stomatal conductance among the species, crop-specific differences were observed in leak and root osmotic adjustment. Leaf osmotic adjustment was observed for bean, pepper, and tomato following water-deficit stress. Root osmotic adjustment was significant in bean, okra, pea and tomato. Furthermore, differences in leaf and root osmotic adjustment were also observed among five tomato cultivars. Leaf osmotic adjustment was not associated with the maintenance of leaf growth following water-deficit stress, since leaf expansion of water-stressed bean and pepper, two species capable of osmotic adjustment, was similar to that of spinach, which exhibited no leaf osmotic adjustment.« less

  10. Proximate composition and mineral content of two edible species of Cnidoscolus (tree spinach).

    PubMed

    Kuti, J O; Kuti, H O

    1999-01-01

    Proximate composition and mineral content of raw and cooked leaves of two edible tree spinach species (Cnidoscolus chayamansa and C. aconitifolius), known locally as 'chaya', were determined and compared with that of a traditional green vegetable, spinach (Spinicia oleraceae). Results of the study indicated that the edible leafy parts of the two chaya species contained significantly (p<0.05) greater amounts of crude protein, crude fiber, Ca, K, Fe, ascorbic acid and beta-carotene than the spinach leaf. However, no significant (p>0.05) differences were found in nutritional composition and mineral content between the chaya species, except minor differences in the relative composition of fatty acids, protein and amino acids. Cooking of chaya leaves slightly reduced nutritional composition of both chaya species. Cooking is essential prior to consumption to inactivate the toxic hydrocyanic glycosides present in chaya leaves. Based on the results of this study, the edible chaya leaves may be good dietary sources of minerals (Ca, K and Fe) and vitamins (ascorbic acid and beta-carotene).

  11. Conversion of L-sorbosone to L-ascorbic acid by a NADP-dependent dehydrogenase in bean and spinach leaf. [Phaseolus vulgaris L. ; Spinacia oleracea L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loewus, M.W.; Bedgar, D.L.; Saito, Kazumi

    An NADP-dependent dehydrogenase catalyzing the conversion of L-sorbosone to L-ascorbic acid has been isolated from Phaseolus vulgaris L. and Spinacia oleracea L. and partially purified. It is stable at {minus}20{degree}C for up to 8 months. Molecular masses, as determined by gel filtration, were 21 and 29 kilodaltons for bean and spinach enzymes, respectively. K{sub m} for sorbosone were 12 {plus minus} 2 and 18 {plus minus} 2 millimolar and for NADP{sup +}, 0.14 {plus minus} 0.05 and 1.2 {plus minus} 0.5 millimolar, for bean and spinach, respectively. Lycorine, a purported inhibitor of L-ascorbic acid biosynthesis, had no effect on themore » reaction.« less

  12. Comparison of Survival of Campylobacter jejuni in the Phyllosphere with That in the Rhizosphere of Spinach and Radish Plants

    PubMed Central

    Brandl, Maria T.; Haxo, Aileen F.; Bates, Anna H.; Mandrell, Robert E.

    2004-01-01

    Campylobacter jejuni has been isolated previously from market produce and has caused gastroenteritis outbreaks linked to produce. We have tested the ability of this human pathogen to utilize organic compounds that are present in leaf and root exudates and to survive in the plant environment under various conditions. Carbon utilization profiles revealed that C. jejuni can utilize many organic acids and amino acids available on leaves and roots. Despite the presence of suitable substrates in the phyllosphere and the rhizosphere, C. jejuni was unable to grow on lettuce and spinach leaves and on spinach and radish roots of plants incubated at 33°C, a temperature that is conducive to its growth in vitro. However, C. jejuni was cultured from radish roots and from the spinach rhizosphere for at least 23 and 28 days, respectively, at 10°C. This enteric pathogen also persisted in the rhizosphere of spinach for prolonged periods of time at 16°C, a temperature at which many cool-season crops are grown. The decline rate constants of C. jejuni populations in the spinach and radish rhizosphere were 10- and 6-fold lower, respectively, than on healthy spinach leaves at 10°C. The enhanced survival of C. jejuni in soil and in the rhizosphere may be a significant factor in its contamination cycle in the environment and may be associated with the sporadic C. jejuni incidence and campylobacteriosis outbreaks linked to produce. PMID:14766604

  13. Role of Ascorbate in Detoxifying Ozone in the Apoplast of Spinach (Spinacia oleracea L.) Leaves.

    PubMed Central

    Luwe, MWF.; Takahama, U.; Heber, U.

    1993-01-01

    Both reduced and oxidized ascorbate (AA and DHA) are present in the aqueous phase of the extracellular space, the apoplast, of spinach (Spinacia oleracea L.) leaves. Fumigation with 0.3 [mu]L L-1 of ozone resulted in ozone uptake by the leaves close to 0.9 pmol cm-2 of leaf surface area s-1. Apoplastic AA was slowly oxidized by ozone. The initial decrease of apoplastic AA was <0.1 pmol cm-2 s-1. The apoplastic ratio of AA to (AA + DHA) decreased within 6 h of fumigation from 0.9 to 0.1. Initially, the concentration of (AA + DHA) did not change in the apoplast, but when fumigation was continued, DHA increased and AA remained at a very low constant level. After fumigation was discontinued, DHA decreased very slowly in the apoplast, reaching control level after 70 h. The data show that insufficient AA reached the apoplast from the cytosol to detoxify ozone in the apoplast when the ozone flux into the leaves was 0.9 pmol cm-2 s-1. The transport of DHA back into the cytosol was slower than AA transport into the apoplast. No dehydroascorbate reductase activity could be detected in the apoplast of spinach leaves. In contrast to its extracellular redox state, the intracellular redox state of AA did not change appreciably during a 24-h fumigation period. However, intracellular glutathi-one became slowly oxidized. At the beginning of fumigation, 90% of the total glutathione was reduced. Only 10% was reduced after 24-h exposure of the leaves to 0.3 [mu]L L-1 of ozone. Necrotic leaf damage started to become visible when fumigation was extended beyond a 24-h period. A close correlation between the extent of damage, on the one hand, and the AA content and the ascorbate redox state of whole leaves, on the other, was observed after 48 h of fumigation. Only the youngest leaves that contained high ascorbate concentrations did not exhibit necrotic leaf damage after 48 h. PMID:12231749

  14. Suppression Effects of Betaine-Enriched Spinach on Hyperhomocysteinemia Induced by Guanidinoacetic Acid and Choline Deficiency in Rats

    PubMed Central

    Liu, Yi-Qun; Jia, Zheng; Han, Feng; Inakuma, Takahiro; Miyashita, Tatsuya; Sugiyama, Kimio; Sun, Li-Cui; Xiang, Xue-Song; Huang, Zhen-Wu

    2014-01-01

    Betaine is an important natural component of rich food sources, especially spinach. Rats were fed diets with betaine or spinach powder at the same level of betaine for 10 days to investigate the dose-dependent effects of spinach powder supplementation on hyperhomocysteinemia induced by guanidinoacetic acid (GAA) addition and choline deprivation. The GAA-induced hyperhomocysteinemia in rats fed 25% casein diet (25C) was significantly suppressed by supplementation with betaine or spinach, and it was completely suppressed by taking 11.0% spinach supplementation. The choline deprivation-induced enhancement of plasma homocysteine concentration in rats fed 25% soybean protein diet (25S) was markedly suppressed by 3.82% spinach. Supplementation with betaine or spinach partially prevented the effects of GAA on hepatic concentrations of methionine metabolites. The decrease in activity of betaine-homocysteine S-methyltransferase (BHMT) and cystathionine β-synthase (CBS) in GAA-induced hyperhomocysteinemia was recovered by supplementation with betaine or spinach. Supplementation with betaine or spinach did not affect BHMT activity, whereas it partially restored CBS activity in choline-deprived 25S. The results indicated that betaine or spinach could completely suppress the hyperhomocysteinemia induced by choline deficiency resulting from stimulating the homocysteine removal by both remethylation and cystathionine formation. PMID:25250392

  15. Suppression effects of betaine-enriched spinach on hyperhomocysteinemia induced by guanidinoacetic acid and choline deficiency in rats.

    PubMed

    Liu, Yi-Qun; Jia, Zheng; Han, Feng; Inakuma, Takahiro; Miyashita, Tatsuya; Sugiyama, Kimio; Sun, Li-Cui; Xiang, Xue-Song; Huang, Zhen-Wu

    2014-01-01

    Betaine is an important natural component of rich food sources, especially spinach. Rats were fed diets with betaine or spinach powder at the same level of betaine for 10 days to investigate the dose-dependent effects of spinach powder supplementation on hyperhomocysteinemia induced by guanidinoacetic acid (GAA) addition and choline deprivation. The GAA-induced hyperhomocysteinemia in rats fed 25% casein diet (25 C) was significantly suppressed by supplementation with betaine or spinach, and it was completely suppressed by taking 11.0% spinach supplementation. The choline deprivation-induced enhancement of plasma homocysteine concentration in rats fed 25% soybean protein diet (25S) was markedly suppressed by 3.82% spinach. Supplementation with betaine or spinach partially prevented the effects of GAA on hepatic concentrations of methionine metabolites. The decrease in activity of betaine-homocysteine S-methyltransferase (BHMT) and cystathionine β-synthase (CBS) in GAA-induced hyperhomocysteinemia was recovered by supplementation with betaine or spinach. Supplementation with betaine or spinach did not affect BHMT activity, whereas it partially restored CBS activity in choline-deprived 25S. The results indicated that betaine or spinach could completely suppress the hyperhomocysteinemia induced by choline deficiency resulting from stimulating the homocysteine removal by both remethylation and cystathionine formation.

  16. Pre-harvest nitrogen and azoxystrobin application enhances raw product quality and post-harvest shelf-life of baby spinach (Spinacia oleracea L.).

    PubMed

    Conversa, Giulia; Bonasia, Anna; Lazzizera, Corrado; Elia, Antonio

    2014-12-01

    Baby spinach was cultivated under spring or winter conditions to investigate the effect of azoxystrobin and, only in the winter cycle, of nitrogen fertilisation (0, 80 and 120 kg ha(-1) of N) on yield and product morphological traits at harvest and on the physical, visual, bio-physiological, nutritional and anti-nutritional characteristics change during cold storage. The yield was 37% higher in spring than in the overwinter cycle. Spring grown plant had leaves of lighter colour, lower in dry matter content, higher in ascorbic acid, nitrate, and total phenol content. They had higher weight loss during storage than the winter product. Fresh weight was favoured by azoxystrobin only in the non-fertilised plants. During storage azoxystrobin reduced leaf dehydration, contrasted weight loss and the increase in phenols in leaves from fertilised plants. N supply positively affected yield, and greenness of raw and stored leaves. N fertilisation lowered weight loss due to respiration and showed a protective effect on membrane integrity during storage. Azoxystrobin proved effective in reducing nitrate leaf content. Azoxystrobin, especially in fertilised crop, is useful in improving the physiological quality, the safety, and the nutritional quality of baby spinach. A rate of 80 kg ha(-1) can be suggested as optimum N fertilisation. © 2014 Society of Chemical Industry.

  17. Classification of fecal contamination on leafy greens by hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chieh; Jun, Won; Kim, Moon S.; Chao, Kaunglin; Kang, Sukwon; Chan, Diane E.; Lefcourt, Alan

    2010-04-01

    This paper reported the development of hyperspectral fluorescence imaging system using ultraviolet-A excitation (320-400 nm) for detection of bovine fecal contaminants on the abaxial and adaxial surfaces of romaine lettuce and baby spinach leaves. Six spots of fecal contamination were applied to each of 40 lettuce and 40 spinach leaves. In this study, the wavebands at 666 nm and 680 nm were selected by the correlation analysis. The two-band ratio, 666 nm / 680 nm, of fluorescence intensity was used to differentiate the contaminated spots from uncontaminated leaf area. The proposed method could accurately detect all of the contaminated spots.

  18. The plasma membrane-associated NADH oxidase of spinach leaves responds to blue light

    NASA Technical Reports Server (NTRS)

    Morre, D. James; Penel, Claude; Greppin, Hubert; Morre, Dorothy M.

    2002-01-01

    The plasma membrane-associated NADH oxidase (NOX) of spinach leaf disks is characterized by oscillations in activity with a regular period length of ca. 24 min. Within a single population of plants exposed to light at the same time, NOX activities of all plants function synchronously. Exposure of plants transferred from darkness to blue light (495 nm, 2 min, 50 micromoles m-2 s-1) resulted in a complex response pattern but with a new maximum in the rate of NOX activity 36 (24+12) min after illumination and then with maxima in the rate of NOX activity every 24 min thereafter. Transient maxima in NOX activity were observed as well after 9.3 + /- 1.4 and 20.7 +/- 2.1 min. The blue light response differed from the response to red (650 nm, 10 min, 50 micromoles m-2 s-1) or white light where activity maxima were initiated 12 min after the light exposure followed by maxima every 24 min thereafter. Green or yellow light was ineffective. The light response was independent of the time in the 24-min NOX cycle when the light was given. The net effects of blue and red light were ultimately the same with a new maximum in the rate of NOX activity at 12+24=36 min (and every 24 min thereafter), but the mechanisms appear to be distinct.

  19. Spinacia oleracea L. leaf stomata harboring Cryptosporidium parvum oocysts: A potential threat for food safety

    USDA-ARS?s Scientific Manuscript database

    Scientific literature documents the prevalence of Cryptosporidium oocysts in irrigation waters and on fresh produce. In the present study spinach leaves were experimentally exposed to Cryptosporidium oocysts which were subsequently irrigated with clean water daily for 5 days. As determined by confoc...

  20. Role of curli and plant cultivation conditions on Escherichia coli O157:H7 internalization into spinach grown on hydroponics and in soil.

    PubMed

    Macarisin, Dumitru; Patel, Jitendra; Sharma, Vijay K

    2014-03-03

    Contamination of fresh produce could represent a public health concern because no terminal kill step is applied during harvest or at the processing facility to kill pathogens. In addition, once contaminated, pathogens may internalize into produce and be protected from disinfectants during the postharvest processing step. The objective of the current study was to determine the potential internalization of Escherichia coli O157:H7 into spinach roots and subsequent transfer to the edible parts. Because curli are involved in biofilm formation, we investigated whether their presence influence the internalization of E. coli O157:H7 into spinach. Further, the effect of the spinach cultivar on E. coli O157:H7 internalization was evaluated. Spinach plants were grown in contaminated soil as well as hydroponically to prevent mechanical wounding of the roots and inadvertent transfer of pathogens from the contamination source to the non-exposed plant surfaces. Results showed that E. coli O157:H7 could internalize into hydroponically grown intact spinach plants through the root system and move to the stem and leaf level. The incidence of internalization was significantly higher in hydroponically grown plants when roots were exposed to 7 log CFU/mL compared to those exposed to 5 log CFU/mL. The effect of cultivar on E. coli O157:H7 internalization was not significant (P>0.05) for the analyzed spinach varieties, internalization incidences showing almost equal distribution between Space and Waitiki, 49.06% and 50.94% respectively. Wounding of the root system in hydroponically grown spinach increased the incidence of E. coli O157:H7 internalization and translocation to the edible portions of the plant. Experimental contamination of the plants grown in soil resulted in a greater number of internalization events then in those grown hydroponically, suggesting that E. coli O157:H7 internalization is dependent on root damage, which is more likely to occur when plants are grown in soil. Curli expression by E. coli O157:H7 had no significant effect on its root uptake by spinach plants. Published by Elsevier B.V.

  1. Application of anaerobic digested residues on safe food production.

    PubMed

    Shi, Ya-juan; Lu, Yong-long; Liang, Dan

    2002-01-01

    Experiments were conducted in pot culture and field plots to study the effects of Anaerobic Digested Residues (ADR) on nitrate accumulation in leaf vegetables, which is critical for the safety of food. The results showed that compared to chemical fertilizer, ADR could decrease the nitrate accumulation in rape and spinach. Furthermore, nitrate content in plant tissue was increased with the increase of percentage of chemical nitrogen in the mixture of chemical fertilizer and ADR. A comparison of spraying digested slurry with irrigation showed that spraying method could reduce the nitrate content of rape, however, a reverse result was found in spinach. The nitrate accumulation in rape affected by ADR was more apparent in high fertility soil than that in low fertility one. To regulate the nitrate accumulation in plant, it was more apparent in rape under greenhouse cultivation, while more apparent in spinach under open-air cultivation. The results demonstrated that the ADR was effective in the safe food production and it may convert the technology to be more profitable.

  2. Correlating Arsenic-Induced Morphological Change in Spinach Leaves With Leaf Spectral Characteristics

    USDA-ARS?s Scientific Manuscript database

    Arsenic (As) is a widely spread soil contaminant which can be accumulated into plant parts. The presence of As in edible portions of plants allows for potentially dangerous ingestion by humans and animals. The ability to detect As in plants is an important tool to minimize such risks. Remote sens...

  3. [Determination of iodine and its species in plant samples using ion chromatography-inductively coupled plasma mass spectrometry].

    PubMed

    Lin, Li; Chen, Guang; Chen, Yuhong

    2011-07-01

    A method was established for the determination of iodine and its species in plant samples using ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP/ MS). Alkaline extraction and IC-ICP/MS were applied as the sample pre-treatment method and the detection technique respectively, for iodate and iodide determination. Moreover, high-temperature pyrolysis absorption was adopted as the pre-treatment method for total iodine analysis, which finally converted all the iodine species into iodide and measured the iodide by IC-ICP/MS. The recoveries of iodine for alkaline extraction and high-temperature pyrolysis absorption were 89.6%-97.5% and 95.2%-111.2%, respectively. The results were satisfactory. The detection limit of iodine was 0.010 mg/kg. The iodine and its speciation contents in several kinds of plant samples such as seaweeds, kelp, cabbage, tea leaf and spinach were investigated. It was shown that the iodine in seaweeds mainly existed as organic iodine; while the ones in kelp, cabbage, tea leaf and spinach mainly existed as inorganic iodine.

  4. A comparative study of the antacid effect of raw spinach juice and spinach extract in an artificial stomach model.

    PubMed

    Panda, Vandana Sanjeev; Shinde, Priyanka Mangesh

    2016-12-01

    BackgroundSpinacia oleracea known as spinach is a green-leafy vegetable consumed by people across the globe. It is reported to possess potent medicinal properties by virtue of its numerous antioxidant phytoconstituents, together termed as the natural antioxidant mixture (NAO). The present study compares the antacid effect of raw spinach juice with an antioxidant-rich methanolic extract of spinach (NAOE) in an artificial stomach model. MethodsThe pH of NAOE at various concentrations (50, 100 and 200 mg/mL) and its neutralizing effect on artificial gastric acid was determined and compared with that of raw spinach juice, water, the active control sodium bicarbonate (SB) and a marketed antacid preparation ENO. A modified model of Vatier's artificial stomach was used to determine the duration of consistent neutralization of artificial gastric acid for the test compounds. The neutralizing capacity of test compounds was determined in vitro using the classical titration method of Fordtran. Results NAOE (50, 100 and 200 mg/mL), spinach juice, SB and ENO showed significantly better acid-neutralizing effect, consistent duration of neutralization and higher antacid capacity when compared with water. Highest antacid activity was demonstrated by ENO and SB followed by spinach juice and NAOE200. Spinach juice exhibited an effect comparable to NAOE (200 mg/mL). ConclusionsThus, it may be concluded that spinach displays significant antacid activity be it in the raw juice form or as an extract in methanol.

  5. Functional Metagenomics of Escherichia coli O157:H7 Interactions with Spinach Indigenous Microorganisms during Biofilm Formation

    PubMed Central

    Carter, Michelle Q.; Xue, Kai; Brandl, Maria T.; Liu, Feifei; Wu, Liyou; Louie, Jacqueline W.; Mandrell, Robert E.; Zhou, Jizhong

    2012-01-01

    The increase in foodborne outbreaks worldwide attributed to fresh fruit and vegetables suggests that produce may serve as an ecological niche for enteric pathogens. Here we examined the interaction of E. coli O157:H7 (EcO157) with spinach leaf indigenous microorganisms during co-colonization and establishment of a mixed biofilm on a stainless steel surface. Stainless steel surface was selected to mimic the surface of produce-processing equipment, where retention of foodborne pathogens such as EcO157 could serve as a potential source for transmission. We observed a positive effect of spinach-associated microbes on the initial attachment of EcO157, but an antagonistic effect on the EcO157 population at the later stage of biofilm formation. Metagenomic analyses of the biofilm community with the GeoChip revealed an extremely diverse community (gene richness, 23409; Shannon-Weiner index H, 9.55). Presence of EcO157 in the mixed biofilm resulted in a significant decrease in the community α-diversity (t test, P<0.05), indicating a putative competition between the pathogen and indigenous spinach microbes. The decrease in the β-diversity of the EcO157-inoculated biofilm at 48 h (ANOVA, P<0.05) suggested a convergent shift in functional composition in response to EcO157 invasion. The success of EcO157 in the mixed biofilm is likely associated with its metabolic potential in utilizing spinach nutrients: the generation time of EcO157 in spinach lysates at 28°C is ∼ 38 min, which is comparable to that in rich broth. The significant decrease in the abundance of many genes involved in carbon, nitrogen, and phosphorus cycling in the EcO157-inoculated biofilms (t test, P<0.05) further support our conclusion that competition for essential macronutrients is likely the primary interaction between the EcO157 and indigenous spinach-biofilm species. PMID:22957052

  6. Comparative Study of Betacyanin Profile and Antimicrobial Activity of Red Pitahaya (Hylocereus polyrhizus) and Red Spinach (Amaranthus dubius).

    PubMed

    Yong, Yi Yi; Dykes, Gary; Lee, Sui Mae; Choo, Wee Sim

    2017-03-01

    Betacyanins are reddish to violet pigments that can be found in red pitahaya (Hylocereus polyrhizus) and red spinach (Amaranthus dubius). This study investigated the impact of sub-fractionation (solvent partitioning) on betacyanin content in both plants. Characterization of betacyanins and evaluation of their antimicrobial activities were also carried out. Betanin was found in both plants. In addition, isobetanin, phyllocactin and hylocerenin were found in red pitahaya whereas amaranthine and decarboxy-amaranthine were found in red spinach. Sub-fractionated red pitahaya and red spinach had 23.5 and 121.5 % more betacyanin content, respectively, than those without sub-fractionation. Sub-fractionation increased the betanin and decarboxy-amaranthine content in red pitahaya and red spinach, respectively. The betacyanin fraction from red spinach (minimum inhibitory concentration [MIC] values: 0.78-3.13 mg/mL) demonstrated a better antimicrobial activity profile than that of red pitahaya (MIC values: 3.13-6.25 mg/mL) against nine Gram-positive bacterial strains. Similarly, the red spinach fraction (MIC values: 1.56-3.13 mg/mL) was more active than the red pitahaya fraction (MIC values: 3.13-6.25 mg/mL) against five Gram-negative bacterial strains. This could be because of a higher amount of betacyanin, particularly amaranthine in the red spinach.

  7. Induction of Hexose-Phosphate Translocator Activity in Spinach Chloroplasts.

    PubMed Central

    Quick, W. P.; Scheibe, R.; Neuhaus, H. E.

    1995-01-01

    Many environmental and experimental conditions lead to accumulation of carbohydrates in photosynthetic tissues. This situation is typically associated with major changes in the mRNA and protein complement of the cell, including metabolic repression of photosynthetic gene expression, which can be induced by feeding carbohydrates directly to leaves. In this study we examined the carbohydrate transport properties of chloroplasts isolated from spinach (Spinacia oleracea L.) leaves fed with glucose for several days. These chloroplasts contain large quantities of starch, can perform photosynthetic 3-phosphoglycerate reduction, and surprisingly also have the ability to perform starch synthesis from exogenous glucose-6-phosphate (Glc-6-P) both in the light and in darkness, similarly to heterotrophic plastids. Glucose-1-phosphate does not act as an exogenous precursor for starch synthesis. Light, ATP, and 3-phosphoglyceric acid stimulate Glc-6-P-dependent starch synthesis. Short-term uptake experiments indicate that a novel Glc-6-P-translocator capacity is present in the envelope membrane, exhibiting an apparent Km of 0.54 mM and a Vmax of 2.9 [mu]mol Glc-6-P mg-1 chlorophyll h-1. Similar results were obtained with chloroplasts isolated from glucose-fed potato leaves and from water-stressed spinach leaves. The generally held view that sugar phosphates transported by chloroplasts are confined to triose phosphates is not supported by these results. A physiological role for a Glc-6-P translocator in green plastids is presented with reference to the source/sink function of the leaf. PMID:12228584

  8. The inhibitor protein of phosphorylated nitrate reductase from spinach (Spinacia oleracea) leaves is a 14-3-3 protein.

    PubMed

    Bachmann, M; Huber, J L; Liao, P C; Gage, D A; Huber, S C

    1996-06-03

    The inhibitor protein (IP) that inactivates spinach leaf NADH:nitrate reductase (NR) has been identified for the first time as a member of the eukaryotic 14-3-3 protein family based on three lines of evidence. First, the sequence of an eight amino acid tryptic peptide, obtained from immunopurified IP, matched that of a highly conserved region of the 14-3-3 proteins. Second, an authentic member of the 14-3-3 family, recombinant Arabidopsis GF14omega, caused inactivation of phospho-NR in a magnesium-dependent manner identical to IP. Third, an anti-GF14 monoclonal antibody cross-reacted with IP and anti-IP monoclonal antibodies cross-reacted with GF14omega.

  9. Retail display conditions of continuous light and dark on the disposition of vitamins in baby-leaf spinach

    USDA-ARS?s Scientific Manuscript database

    Human-health benefits from the consumption of fruits and vegetables are due to the many bioactive compounds in these foods. Many of these compounds are heavily influenced by genetics (i.e. cultivar) and the environment, especially the many pigments and vitamins that can degrade during processing an...

  10. ATP sulfurylase from higher plants: kinetic and structural characterization of the chloroplast and cytosol enzymes from spinach leaf.

    PubMed

    Renosto, F; Patel, H C; Martin, R L; Thomassian, C; Zimmerman, G; Segel, I H

    1993-12-01

    Two forms of ATP sulfurylase were purified from spinach leaf. The major (chloroplast) form accounts for 85 to 90% of the total leaf activity (0.03 +/- 0.01 adenosine-5'-phosphosulfate (APS) synthesis units x gram fresh weight-1). Both enzyme forms appear to be tetramers composed of 49- to 50-kDa subunits with the minor (cytosolic) form being slightly larger than the chloroplast form. The specific activities (units x milligram protein-1) of the chloroplast form at pH 8.0, 30 degrees C, were as follows: APS synthesis, 16; molybdolysis, 229; ATP synthesis, 267; selenolysis, 4.1; fluorophosphate activation, 11. Kinetic constants for the physiological reaction were as follows: KmA = 0.046 mM, K(ia) = 0.85 mM, KmB = 0.25 mM, KmQ = 0.37 microM, K(iq) = 64-85 nM, and KmP = 10 microM, where A = MgATP, B = SO4(2-), P = total PPi at 5 mM Mg2+, and Q = APS. The kinetic constants for molybdolysis were similar to those of the APS synthesis reaction. The kinetic constants of the minor (cytosol) form were similar to those of the major form with two exceptions: (a) The molybdolysis activity was 120 units x milligram protein-1, yielding a Vmax (ATP synthesis)/Vmax (molybdolysis) ratio close to 2 (compared to about unity for the chloroplast form) and (b) KmA was greater (0.24 and 0.15 mM for APS synthesis and molybdolysis, respectively). Initial velocity measurements (made over an extended range of MgATP and SO4(2-) concentrations), product inhibition studies (by initial velocity methods and by reaction progress curve analyses), dead end inhibition studies (with monovalent and divalent oxyanions), and kcat/Km comparisons (for SO4(2-) and MoO4(2-) support a random AB-ordered PQ kinetic mechanism in which MgATP and SO4(2-) bind in a highly synergistic manner. Equilibrium binding studies indicated the presence of one APS site per subunit. HPLC elution profiles of chymotryptic and tryptic peptides were essentially the same for both enzyme forms. The N-terminal sequence of residues 5-20 of the cytosol enzyme was identical to residues 1-16 of the chloroplast enzyme.

  11. Coupling Spore Traps and Quantitative PCR Assays for Detection of the Downy Mildew Pathogens of Spinach (Peronospora effusa) and Beet (P. schachtii)

    PubMed Central

    Klosterman, Steven J.; Anchieta, Amy; McRoberts, Neil; Koike, Steven T.; Subbarao, Krishna V.; Voglmayr, Hermann; Choi, Young-Joon; Thines, Marco; Martin, Frank N.

    2016-01-01

    Downy mildew of spinach (Spinacia oleracea), caused by Peronospora effusa, is a production constraint on production worldwide, including in California, where the majority of U.S. spinach is grown. The aim of this study was to develop a real-time quantitative polymerase chain reaction (qPCR) assay for detection of airborne inoculum of P. effusa in California. Among oomycete ribosomal DNA (rDNA) sequences examined for assay development, the highest nucleotide sequence identity was observed between rDNA sequences of P. effusa and P. schachtii, the cause of downy mildew on sugar beet and Swiss chard in the leaf beet group (Beta vulgaris subsp. vulgaris). Single-nucleotide polymorphisms were detected between P. effusa and P. schachtii in the 18S rDNA regions for design of P. effusa- and P. schachtii-specific TaqMan probes and reverse primers. An allele-specific probe and primer amplification method was applied to determine the frequency of both P. effusa and P. schachtii rDNA target sequences in pooled DNA samples, enabling quantification of rDNA of P. effusa from impaction spore trap samples collected from spinach production fields. The rDNA copy numbers of P. effusa were, on average, ≈3,300-fold higher from trap samples collected near an infected field compared with those levels recorded at a site without a nearby spinach field. In combination with disease-conducive weather forecasting, application of the assays may be helpful to time fungicide applications for disease management. PMID:24964150

  12. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation

    NASA Technical Reports Server (NTRS)

    Yorio, N. C.; Goins, G. D.; Kagie, H. R.; Wheeler, R. M.; Sager, J. C.

    2001-01-01

    Radish (Raphanus sativus L. cv. Cherriette), lettuce (Lactuca sativa L. cv. Waldmann's Green), and spinach (Spinacea oleracea L. cv. Nordic IV) plants were grown under 660-nm red light-emitting diodes (LEDs) and were compared at equal photosynthetic photon flux (PPF) with either plants grown under cool-white fluorescent lamps (CWF) or red LEDs supplemented with 10% (30 micromoles m-2 s-1) blue light (400-500 nm) from blue fluorescent (BF) lamps. At 21 days after planting (DAP), leaf photosynthetic rates and stomatal conductance were greater for plants grown under CWF light than for those grown under red LEDs, with or without supplemental blue light. At harvest (21 DAP), total dry-weight accumulation was significantly lower for all species tested when grown under red LEDs alone than when grown under CWF light or red LEDs + 10% BF light. Moreover, total dry weight for radish and spinach was significantly lower under red LEDs + 10% BF than under CWF light, suggesting that addition of blue light to the red LEDs was still insufficient for achieving maximal growth for these crops.

  13. Chloroplast Growth and Replication in Germinating Spinach Cotyledons following Massive γ-Irradiation of the Seed

    PubMed Central

    Rose, Ray; Possingham, John

    1976-01-01

    Spinach seeds (Spinacia oleracea L.) given massive doses of γ-irradiation (500 krad) germinate and form a seedling with two green cotyledons and a radicle, but develop no further. Irradiated cotyledons show no increase in cell number or total DNA over a 7-day period in the light, while in control cotyledons there is a small increase in cell number and large increases in total DNA and chloroplast number. The chloroplasts of irradiated cotyledons are delayed in their division, become greatly enlarged and contain large amounts of starch. The whole population of chloroplasts subsequently undergoes a wave of division. The daughter chloroplasts show normal thylakoid development, but have some abnormal structural features caused by the radiation stress. Information on the effect of X-irradiation, ultraviolet irradiation, and 5-fluorodeoxyuridine on chloroplast replication and on chloroplast and nuclear DNA synthesis was obtained from cultured spinach leaf discs. It appears that chloroplast replication is more resistant to ionizing radiation than cell division and can proceed in the absence of nuclear DNA synthesis and greatly reduced chloroplast DNA synthesis. Images PMID:16659421

  14. Escherichia coli O157:H7 biofilm formation and internalization on lettuce and spinach leaf surfaces reduces efficacy of irradiation and sodium hypochlorite washes

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli O157:H7 contamination of leafy green vegetables is an ongoing concern for consumers. Biofilm-associated and internalized pathogens are relatively resistant to chemical treatments, but little is known about the response of these protected pathogens to irradiation. Leaves of Romaine l...

  15. Relationship between fresh-packaged spinach leaves exposed to continuous light or dark and bioactive contents: Effects of cultivar, leaf size, and storage duration

    USDA-ARS?s Scientific Manuscript database

    Human-health benefits derived from consumption of fruits and vegetables are due to the many bioactive compounds found in produce. The concentrations of these bioactive compounds are heavily influenced by genetics (i.e. cultivar) and environment, especially the many pigments and vitamins that can ch...

  16. Infrared sensor-based aerosol sanitization system for controlling Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on fresh produce.

    PubMed

    Kim, Sang-Oh; Ha, Jae-Won; Park, Ki-Hwan; Chung, Myung-Sub; Kang, Dong-Hyun

    2014-06-01

    An economical aerosol sanitization system was developed based on sensor technology for minimizing sanitizer usage, while maintaining bactericidal efficacy. Aerosol intensity in a system chamber was controlled by a position-sensitive device and its infrared value range. The effectiveness of the infrared sensor-based aerosolization (ISA) system to inactivate Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on spinach leaf surfaces was compared with conventional aerosolization (full-time aerosol treated), and the amount of sanitizer consumed was determined after operation. Three pathogens artificially inoculated onto spinach leaf surfaces were treated with aerosolized peracetic acid (400 ppm) for 15, 30, 45, and 60 min at room temperature (22 ± 2°C). Using the ISA system, inactivation levels of the three pathogens were equal or better than treatment with conventional full-time aerosolization. However, the amount of sanitizer consumed was reduced by ca. 40% using the ISA system. The results of this study suggest that an aerosol sanitization system combined with infrared sensor technology could be used for transportation and storage of fresh produce efficiently and economically as a practical commercial intervention.

  17. RNA signal amplifier circuit with integrated fluorescence output.

    PubMed

    Akter, Farhima; Yokobayashi, Yohei

    2015-05-15

    We designed an in vitro signal amplification circuit that takes a short RNA input that catalytically activates the Spinach RNA aptamer to produce a fluorescent output. The circuit consists of three RNA strands: an internally blocked Spinach aptamer, a fuel strand, and an input strand (catalyst), as well as the Spinach aptamer ligand 3,5-difluoro-4-hydroxylbenzylidene imidazolinone (DFHBI). The input strand initially displaces the internal inhibitory strand to activate the fluorescent aptamer while exposing a toehold to which the fuel strand can bind to further displace and recycle the input strand. Under a favorable condition, one input strand was able to activate up to five molecules of the internally blocked Spinach aptamer in 185 min at 30 °C. The simple RNA circuit reported here serves as a model for catalytic activation of arbitrary RNA effectors by chemical triggers.

  18. Extraction and characterization of mixed phase KNO2-KNO3 nanocrystals derived from flat-leaf green spinach

    NASA Astrophysics Data System (ADS)

    Hazarika, S.; Mohanta, D.

    2013-01-01

    Naturally available green spinach, which is a rich source of potassium, was used as the key ingredient to extract mixed-phase ferroelectric crystals of nitrite and nitrate derivatives (KNO2 + KNO3). The KNO3 phase was found to be dominant for higher pH values, as revealed by the x-ray diffraction patterns. The characteristic optical absorption spectra exhibited intra-band π-π* electronic transitions, whereas Fourier transform infrared spectra exhibited characteristic N-O stretching vibrations. Differential scanning calorimetry revealed a broad endothermic peak at ˜121.8 °C, highlighting a transition from phase II to I via phase III of KNO3. Obtaining nanoscale ferroelectrics via the adoption of green synthesis is economically viable for large-scale production and possible application in ferroelectric elements/devices.

  19. Transfer of the fungicide vinclozolin from treated to untreated plants via volatilization.

    PubMed

    Baumeister, M; Steep, M; Dieckmann, S; Melzer, O; Klöppel, H; Jürling, H; Bender, L

    2002-07-01

    Head lettuce plantlets (Lactuca sativa L. var. capitata) were potted, treated with vinclozolin at the six-leaf stage according to application standards and allowed to dry for 24 h. The potted plantlets were then placed in either growth chambers with controlled temperature (20 and 25 degrees C, respectively) or in a greenhouse (approximately 12 degrees C), together with untreated spinach (Spinacia oleracea L.) and standardized grass cultures (Lolium multiflorum Lam. ssp.) While the treated lettuce pots remained in the respective growing compartments until the end of the experiments, spinach and grass were exposed to the compartment air for 24 h and their shoot material was analyzed for vinclozolin by GC-ECD and GC-high resolution mass spectrometry. Exposure and analysis of untreated spinach and grass were carried out at two- or three-day intervals during the course of the experiments. Also, air samples were taken from the compartments at intervals and analyzed for vinclozolin. Maximum vinclozolin concentration in the growth chamber air was about 330 ng m(-3) while vinclozolin contamination of the untreated plants ranged from 50 to 200 microg kg(-1) FW (fresh weight). In the greenhouse atmospheric vinclozolin concentration reached approximately 15 ngm(-3) and maximum contamination of spinach and grass were 30-40 microg kg(-1) FW. Our data clearly show that unintended contamination of plants growing in the vicinity of vinclozolin-treated plants can occur even if the fungicide layer is completely dry. Implications for safety testing and food plants are discussed.

  20. Curli fimbriae are conditionally required in Escherichia coli O157:H7 for initial attachment and biofilm formation.

    PubMed

    Carter, Michelle Qiu; Louie, Jacqueline W; Feng, Doris; Zhong, Wayne; Brandl, Maria T

    2016-08-01

    Several species of enteric pathogens produce curli fimbriae, which may affect their interaction with surfaces and other microbes in nonhost environments. Here we used two Escherichia coli O157:H7 outbreak strains with distinct genotypes to understand the role of curli in surface attachment and biofilm formation in several systems relevant to fresh produce production and processing. Curli significantly enhanced the initial attachment of E. coli O157:H7 to spinach leaves and stainless steel surfaces by 5-fold. Curli was also required for E. coli O157:H7 biofilm formation on stainless steel and enhanced biofilm production on glass by 19-27 fold in LB no-salt broth. However, this contribution was not observed when cells were grown in sterile spinach lysates. Furthermore, both strains of E. coli O157:H7 produced minimal biofilms on polypropylene in LB no-salt broth but considerable amounts in spinach lysates. Under the latter conditions, curli appeared to slightly increase biofilm production. Importantly, curli played an essential role in the formation of mixed biofilm by E. coli O157:H7 and plant-associated microorganisms in spinach leaf washes, as revealed by confocal microscopy. Little or no E. coli O157:H7 biofilms were detected at 4 °C, supporting the importance of temperature control in postharvest and produce processing environments. Published by Elsevier Ltd.

  1. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein

    PubMed Central

    Warner, Katherine Deigan; Chen, Michael C.; Song, Wenjiao; Strack, Rita L.; Thorn, Andrea; Jaffrey, Samie R.; Ferré-D’Amaré, Adrian R.

    2014-01-01

    Green fluorescent protein (GFP) and its derivatives revolutionized the study of proteins. Spinach is a recently reported in vitro evolved RNA mimic of GFP, which as genetically encoded fusions, makes possible live-cell, real-time imaging of biological RNAs, without resorting to large RNA-binding protein-GFP fusions. To elucidate the molecular basis of Spinach fluorescence, we have solved its co-crystal structure bound to its cognate exogenous chromophore, revealing that Spinach activates the small molecule by immobilizing it between a base triple, a G-quadruplex, and an unpaired guanine. Mutational and NMR analyses indicate that the G-quadruplex is essential for Spinach fluorescence, is also present in other fluorogenic RNAs, and may represent a general strategy for RNAs to induce fluorescence of chromophores. The structure has guided the design of a miniaturized 'Baby Spinach', and provides the foundation for structure-driven design and tuning of fluorescent RNAs. PMID:25026079

  2. Compartmentation Studies on Spinach Leaf Peroxisomes 1

    PubMed Central

    Heupel, Ralf; Markgraf, Therese; Robinson, David G.; Heldt, Hans Walter

    1991-01-01

    In concurrence with earlier results, the following enzymes showed latency in intact spinach (Spinacia oleracea L.) leaf peroxisomes: malate dehydrogenase (89%), hydroxypyruvate reductase (85%), serine glyoxylate aminotransferase (75%), glutamate glyoxylate aminotransferase (41%), and catalase (70%). In contrast, glycolate oxidase was not latent. Aging of peroxisomes for several hours resulted in a reduction in latency accompanied by a partial solubilization of the above mentioned enzymes. The extent of enzyme solubilization was different, being highest with glutamate glyoxylate aminotransferase and lowest with malate dehydrogenase. Osmotic shock resulted in only a partial reduction of enzyme latency. Electron microscopy revealed that the osmotically shocked peroxisomes remained compact, with smaller particle size and pleomorphic morphology but without a continuous boundary membrane. Neither in intact nor in osmotically shocked peroxisomes was a lag phase observed in the formation of glycerate upon the addition of glycolate, serine, malate, and NAD. Apparently, the intermediates, glyoxylate, hydroxypyruvate, and NADH, were confined within the peroxisomal matrix in such a way that they did not readily leak out into the surrounding medium. We conclude that the observed compartmentation of peroxisomal metabolism is not due to the peroxisomal boundary membrane as a permeability barrier, but is a function of the structural arrangement of enzymes in the peroxisomal matrix allowing metabolite channeling. ImagesFigure 3 PMID:16668283

  3. Antibacterial Activities of Hibiscus sabdariffa Extracts and Chemical Sanitizers Directly on Green Leaves Contaminated with Foodborne Pathogens.

    PubMed

    Gómez-Aldapa, Carlos A; Rangel-Vargas, Esmeralda; Torres-Vitela, Ma Refugio; Villarruel-López, Angélica; Acevedo-Sandoval, Otilio A; Gordillo-Martínez, Alberto J; Godínez-Oviedo, Angélica; Castro-Rosas, Javier

    2018-02-01

    Leafy greens have been associated with foodborne disease outbreaks in different countries. To decrease microbial contamination of leafy greens, chemical agents are commonly used; however, a number of studies have shown these agents to have limited antimicrobial effect against pathogenic bacteria on vegetables. The objective of this study was to compare the antibacterial effect of Hibiscus sabdariffa calyx extracts (water, methanol, acetone, and ethyl acetate), sodium hypochlorite, acetic acid, and colloidal silver against foodborne bacteria on leafy greens. Thirteen foodborne bacteria were used in the study: Listeria monocytogenes, Shigella flexneri, Salmonella serotypes Typhimurium Typhi, and Montevideo, Staphylococcus aureus, Escherichia coli O157:H7, five E. coli pathotypes (Shiga toxin-producing, enteropathogenic, enterotoxigenic, enteroinvasive, and enteroaggregative), and Vibrio cholerae O1. Each foodborne bacterium was separately inoculated on romaine lettuce, spinach, and coriander leaves. Separately, contaminated leafy greens were immersed in four hibiscus extracts and in sanitizers for 5 min. Next, green leaves were washed with sterile tap water. Separately, each green leaf was placed in a bag that contained 0.1% sterile peptone water and was rubbed for 2 min. Counts were done by plate count using appropriate dilutions (in sterile peptone water) of the bacterial suspensions spread on Trypticase soy agar plates and incubated at 35 ± 2°C for 48 h. Statistically significant differences ( P < 0.05) were calculated with an analysis of variance and Duncan's test. All 13 foodborne bacteria attached to leafy greens. Roselle calyx extracts caused a significantly greater reduction ( P < 0.05) in concentration of all foodborne bacteria on contaminated romaine lettuce, spinach, and coriander than did the sodium hypochlorite, colloidal silver, and acetic acid. Dry roselle calyx extracts may potentially be a useful addition to disinfection procedures for romaine lettuce, spinach, and coriander.

  4. Purification and Kinetic Properties of Serine Acetyltransferase Free of O-Acetylserine(thiol)lyase from Spinach Chloroplasts.

    PubMed

    Ruffet, M. L.; Droux, M.; Douce, R.

    1994-02-01

    Serine acetyltransferase, a key enzyme in the L-cysteine biosynthetic pathway, was purified over 300,000-fold from the stroma of spinach (Spinacia oleracea) leaf chloroplasts. The purification procedure consisted of ammonium sulfate precipitation, anion-exchange chromatography (Trisacryl M DEAE and Mono Q HR10/10), hydroxylapatite chromatography, and gel filtration (Superdex 200). The purified enzyme exhibited a specific activity higher than 200 units mg-1 and a subunit molecular mass of about 33 kD upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Moreover, the purified serine acetyltransferase appeared to be essentially free of O-acetyleserine(thiol)lyase, another enzyme component in the L-cysteine biosynthetic pathway. A steady-state kinetic analysis indicated that the mechanism of the enzyme-catalyzed reaction involves a double displacement. The apparent Km for the two substrates, L-serine and acetyl-coenzyme A, were 2.29 [plus or minus] 0.43 and 0.35 [plus or minus] 0.02 mM, respectively. The rate of L-cysteine synthesis in vitro was measured in a coupled enzyme assay using extensively purified O-acetylserine(thiol)lyase and serine acetyltransferase. This rate was maximum when the assay contained approximately a 400-fold excess of O-acetylserine(thiol)lyase over serine acetyltransferase. Measurements of the relative level of O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma indicated that the former enzyme was present in much larger quantities than the latter. Thus, the activity ratio for these two enzymes [O-acetylserine(thiol)lyase activity/serine acetyltransferase activity] measured in the stromal protein extract was 345. This strongly suggested that all the O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma are involved in bringing a full synthesis of L-cysteine in the chloroplast.

  5. Purification and Kinetic Properties of Serine Acetyltransferase Free of O-Acetylserine(thiol)lyase from Spinach Chloroplasts.

    PubMed Central

    Ruffet, M. L.; Droux, M.; Douce, R.

    1994-01-01

    Serine acetyltransferase, a key enzyme in the L-cysteine biosynthetic pathway, was purified over 300,000-fold from the stroma of spinach (Spinacia oleracea) leaf chloroplasts. The purification procedure consisted of ammonium sulfate precipitation, anion-exchange chromatography (Trisacryl M DEAE and Mono Q HR10/10), hydroxylapatite chromatography, and gel filtration (Superdex 200). The purified enzyme exhibited a specific activity higher than 200 units mg-1 and a subunit molecular mass of about 33 kD upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Moreover, the purified serine acetyltransferase appeared to be essentially free of O-acetyleserine(thiol)lyase, another enzyme component in the L-cysteine biosynthetic pathway. A steady-state kinetic analysis indicated that the mechanism of the enzyme-catalyzed reaction involves a double displacement. The apparent Km for the two substrates, L-serine and acetyl-coenzyme A, were 2.29 [plus or minus] 0.43 and 0.35 [plus or minus] 0.02 mM, respectively. The rate of L-cysteine synthesis in vitro was measured in a coupled enzyme assay using extensively purified O-acetylserine(thiol)lyase and serine acetyltransferase. This rate was maximum when the assay contained approximately a 400-fold excess of O-acetylserine(thiol)lyase over serine acetyltransferase. Measurements of the relative level of O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma indicated that the former enzyme was present in much larger quantities than the latter. Thus, the activity ratio for these two enzymes [O-acetylserine(thiol)lyase activity/serine acetyltransferase activity] measured in the stromal protein extract was 345. This strongly suggested that all the O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma are involved in bringing a full synthesis of L-cysteine in the chloroplast. PMID:12232109

  6. Utilization of biochar and activated carbon to reduce Cd, Pb and Zn phytoavailability and phytotoxicity for plants.

    PubMed

    Břendová, Kateřina; Zemanová, Veronika; Pavlíková, Daniela; Tlustoš, Pavel

    2016-10-01

    In the present study, the content of risk elements and content of free amino acids were studied in spinach (Spinacia oleracea L.) and mustard (Sinapis alba L.) subsequently grown on uncontaminated and contaminated soils (5 mg Cd/kg, 1000 mg Pb/kg and 400 mg Zn/kg) with the addition of activated carbon (from coconut shells) or biochar (derived from local wood residues planted for phytoextaction) in different seasons (spring, summer and autumn). The results showed that activated carbon and biochar increased biomass production on contaminated site. Application of amendments decreased Cd and Zn uptake by spinach plants. Mustard significantly increased Pb accumulation in the biomass as well in subsequently grown autumn spinach. Glutamic acid and glutamine were major free amino acids in leaves of all plants (15-34% and 3-45%) from total content. Application of activated carbon and biochar increased content of glutamic acid in all plants on uncontaminated and contaminated soils. Activated carbon and biochar treatments also induced an increase of aspartic acid in spinach plants. Biochar produced from biomass originated from phytoextraction technologies promoted higher spinach biomass yield comparing unamended control and showed a tendency to reduce accumulation of cadmium and zinc and thus it is promising soil amendment. Copyright © 2016. Published by Elsevier Ltd.

  7. Spinacia oleracea L. Leaf Stomata Harboring Cryptosporidium parvum Oocysts: a Potential Threat to Food Safety ▿ †

    PubMed Central

    Macarisin, Dumitru; Bauchan, Gary; Fayer, Ronald

    2010-01-01

    Cryptosporidium parvum is a cosmopolitan microscopic protozoan parasite that causes severe diarrheal disease (cryptosporidiosis) in mammals, including humans and livestock. There is growing evidence of Cryptosporidium persistence in fresh produce that may result in food-borne infection, including sporadic cases as well as outbreaks. However, drinking and recreational waters are still considered the major sources of Cryptosporidium infection in humans, which has resulted in prioritization of studies of parasite etiology in aquatic environments, while the mechanisms of transmission and parasite persistence on edible plants remain poorly understood. Using laser scanning confocal microscopy together with fluorescein-labeled monoclonal antibodies, C. parvum oocysts were found to strongly adhere to spinach plants after contact with contaminated water, to infiltrate through the stomatal openings in spinach leaves, and to persist at the mesophyll level. These findings and the fact that this pathogenic parasite resists washing and disinfection raise concerns regarding food safety. PMID:19933348

  8. Cold Plasma-activated hydrogen peroxide aerosol inactivates Escherichia coli 0157:H7, Salmonella Typhimurium, and Listeria innocua and maintains quality of grape tomato, spinach and cantaloupe

    USDA-ARS?s Scientific Manuscript database

    The purpose of this study was to investigate the efficacy of aerosolized hydrogen peroxide in inactivating bacteria and maintaining quality of grape tomato, baby spinach leaves and cantaloupe. Stem scar and smooth surfaces of tomatoes, spinach leaves, and cantaloupe rinds, inoculated with Escherich...

  9. Kinetic thermal degradation of vitamin C during microwave drying of okra and spinach.

    PubMed

    Dadali, Gökçe; Ozbek, Belma

    2009-01-01

    In this present study, the effect of microwave output power and sample amount on vitamin C loss in okra (Hibiscus esculenta L.) and spinach (Spinacia oleracea L.) were investigated using the microwave drying technique. The procedure is based on the reaction between l-ascorbic acid (vitamin C) and 2,6-dichloroindophenol. The proposed method was applied successfully to both okra and spinach for the determination of ascorbic acid (vitamin C) content. It was observed that as the microwave output power increased or as the sample amount decreased, the vitamin C in okra and spinach decreased as well. The activation energy for degradation of vitamin C for both okra and spinach was calculated using an exponential expression based on the Arrhenius equation.

  10. Whole-Transcriptome Analysis of Verocytotoxigenic Escherichia coli O157:H7 (Sakai) Suggests Plant-Species-Specific Metabolic Responses on Exposure to Spinach and Lettuce Extracts

    PubMed Central

    Crozier, Louise; Hedley, Pete E.; Morris, Jenny; Wagstaff, Carol; Andrews, Simon C.; Toth, Ian; Jackson, Robert W.; Holden, Nicola J.

    2016-01-01

    Verocytotoxigenic Escherichia coli (VTEC) can contaminate crop plants, potentially using them as secondary hosts, which can lead to food-borne infection. Currently, little is known about the influence of the specific plant species on the success of bacterial colonization. As such, we compared the ability of the VTEC strain, E. coli O157:H7 ‘Sakai,’ to colonize the roots and leaves of four leafy vegetables: spinach (Spinacia oleracea), lettuce (Lactuca sativa), vining green pea (Pisum sativum), and prickly lettuce (Lactuca serriola), a wild relative of domesticated lettuce. Also, to determine the drivers of the initial response on interaction with plant tissue, the whole transcriptome of E. coli O157:H7 Sakai was analyzed following exposure to plant extracts of varying complexity (spinach leaf lysates or root exudates, and leaf cell wall polysaccharides from spinach or lettuce). Plant extracts were used to reduce heterogeneity inherent in plant–microbe interactions and remove the effect of plant immunity. This dual approach provided information on the initial adaptive response of E. coli O157:H7 Sakai to the plant environment together with the influence of the living plant during bacterial establishment and colonization. Results showed that both the plant tissue type and the plant species strongly influence the short-term (1 h) transcriptional response to extracts as well as longer-term (10 days) plant colonization or persistence. We show that propagation temperature (37 vs. 18°C) has a major impact on the expression profile and therefore pre-adaptation of bacteria to a plant-relevant temperature is necessary to avoid misleading temperature-dependent wholescale gene-expression changes in response to plant material. For each of the plant extracts tested, the largest group of (annotated) differentially regulated genes were associated with metabolism. However, large-scale differences in the metabolic and biosynthetic pathways between treatment types indicate specificity in substrate utilization. Induction of stress-response genes reflected the apparent physiological status of the bacterial genes in each extract, as a result of glutamate-dependent acid resistance, nutrient stress, or translational stalling. A large proportion of differentially regulated genes are uncharacterized (annotated as hypothetical), which could indicate yet to be described functional roles associated with plant interaction for E. coli O157:H7 Sakai. PMID:27462311

  11. Osmotic Stress Induces Expression of Choline Monooxygenase in Sugar Beet and Amaranth1

    PubMed Central

    Russell, Brenda L.; Rathinasabapathi, Bala; Hanson, Andrew D.

    1998-01-01

    Choline monooxygenase (CMO) catalyzes the committing step in the synthesis of glycine betaine, an osmoprotectant accumulated by many plants in response to salinity and drought. To investigate how these stresses affect CMO expression, a spinach (Spinacia oleracea L., Chenopodiaceae) probe was used to isolate CMO cDNAs from sugar beet (Beta vulgaris L., Chenopodiaceae), a salt- and drought-tolerant crop. The deduced beet CMO amino acid sequence comprised a transit peptide and a 381-residue mature peptide that was 84% identical (97% similar) to that of spinach and that showed the same consensus motif for coordinating a Rieske-type [2Fe-2S] cluster. A mononuclear Fe-binding motif was also present. When water was withheld, leaf relative water content declined to 59% and the levels of CMO mRNA, protein, and enzyme activity rose 3- to 5-fold; rewatering reversed these changes. After gradual salinization (NaCl:CaCl2 = 5.7:1, mol/mol), CMO mRNA, protein, and enzyme levels in leaves increased 3- to 7-fold at 400 mm salt, and returned to uninduced levels when salt was removed. Beet roots also expressed CMO, most strongly when salinized. Salt-inducible CMO mRNA, protein, and enzyme activity were readily detected in leaves of Amaranthus caudatus L. (Amaranthaceae). These data show that CMO most probably has a mononuclear Fe center, is inducibly expressed in roots as well as in leaves of Chenopodiaceae, and is not unique to this family. PMID:9489025

  12. Quantum Yields of CAM Plants Measured by Photosynthetic O2 Exchange 1

    PubMed Central

    Adams, William W.; Nishida, Kojiro; Osmond, C. Barry

    1986-01-01

    The quantum yield of photosynthetic O2 exchange was measured in eight species of leaf succulents representative of both malic enzyme type and phosphoenolpyruvate carboxykinase type CAM plants. Measurements were made at 25°C and CO2 saturation using a leaf disc O2 electrode system, either during or after deacidification. The mean quantum yield was 0.095 ± 0.012 (sd) moles O2 per mole quanta, which compared with 0.094 ± 0.006 (sd) moles O2 per mole quanta for spinach leaf discs measured under the same conditions. There were no consistent differences in quantum yield between decarboxylation types or during different phases of CAM metabolism. On the basis of current notions of compartmentation of CAM biochemistry, our observations are interpreted to indicate that CO2 refixation is energetically independent of gluconeogenesis during deacidification. PMID:16664793

  13. Looking for a substituent of spinach (Spinacia oleracea) chloroplasts

    NASA Astrophysics Data System (ADS)

    Chang, Ying Ping; Yeoh, Loo Yew; Chee, Swee Yong; Lim, Tuck Meng

    2017-04-01

    Spinach's chloroplasts electron transport features are often adapted to build biofuel cells or biosensors for environment conservation. This approach may raise food security issues. The present study aimed to test on in vitro functional activity of chloroplasts from selected underutilized leaves of: Pandan (Pandanus amaryllifolius), oil palm (Elaeis guineensis) and water lettuce (Pistia stratiotes) in comparison with spinach (Spinacia oleracea). The leaves' electrical conductivity was measured to evaluate the initial cell permeability. We applied Hill's reaction to determine the photoreduction capacity of the chloroplasts. Initial electrical conductivity of leaves ranged from 11.5 to 18.5 µs/cm/g followed the order of water lettuce

  14. Expression and purification of spinach nitrite reductase in E. coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellissimo, D.; Privalle, L.

    1991-03-11

    The study of structure-function relationships in nitrite reductase (NiR) by site-directed mutagenesis requires an expression system from which suitable quantities of active enzyme can be purified. Spinach NiR cDNA was cloned into pUC18 and expressed in E.coli JM109 as a beta-galactosidase fusion protein. The IPTG-induced fusion protein contains five additional amino acids at the N-terminus. The expressed NiR in aerobic cultures was mostly insoluble and inactive indicating the presence of inclusion bodies. By altering growth conditions, active NiR could represent 0.5-1.0% of the total E.coli protein, Effects of the addition of delta-aminolevulinic acid, a heme precursor, and anaerobic growth weremore » also examined. Spinach NiR was purified approximately 200 fold to homogeneity. When subjected to electrophoresis on SDS polyacrylamide gels, the NiR migrated as a single band with similar mobility to pure spinach enzyme. The expressed enzyme also reacted with rabbit anti-spinach NiR antibody as visualized by Western blot analysis. The absorption spectrum of the E.coli-expressed enzyme was identical to spinach enzyme with a Soret and alpha band a 386 and 573 nm, respectively, and an A{sub 278}/A{sub 386} = 1.9. The addition of nitrite produced the characteristic shifts in the spectrum. The E. coli-expressed NiR catalyzed the methylviologen-dependent reduction of nitrite. The specific activity was 100 U/mg. The K{sub m} determined for nitrite was 0.3 mM which is in agreement with values reported for the enzyme. These results indicate that the E.coli-expressed NiR is fully comparable to spinach NiR in purity, catalytic activity and physical state. Site-directed mutants have been made using PCR to examine structure-function relationships in this enzyme.« less

  15. Purification and Characterization of a Glycerol-Resistant CF0-CF1 and CF1-ATPase from the Halotolerant Alga Dunaliella bardawil1

    PubMed Central

    Finel, Moshe; Pick, Uri; Selman-Reimer, Susanne; Selman, Bruce R.

    1984-01-01

    The isolation of the chloroplast ATP synthase complex (CF0-CF1) and of CF1 from Dunaliella bardawil is described. The subunit structure of the D. bardawil ATPase differs from that of the spinach in that the D. bardawil α subunit migrates ahead of the β subunit and ε-migrates ahead of subunit II of CF0 when separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The CF1 isolated from D. bardawil resembles the CF1 isolated from Chladmydomonas reinhardi in that a reversible, Mg2+-dependent ATPase is induced by selected organic solvents. Glycerol stimulates cyclic photophosphorylation catalyzed by D. bardawil thylakoid membranes but inhibits photophosphorylation catalyzed by spinach thylakoid membranes. Glycerol (20%) also stimulates the rate of ATP-Pi exchange catalyzed by D. bardawil CF0-CF1 proteoliposomes but inhibits the activity with the spinach enzyme. The ethanol-activated, Mg2+-ATPase of the D. bardawil CF1 is more resistant to glycerol inhibition than the octylglucoside-activated, Mg2+-ATPase of spinach CF1 or the ethanol-activated, Mg2+-dependent ATPase of the C. reinhardi CF1. Both cyclic photophosphorylation and ATP-Pi exchange catalyzed by D. bardawil CF0-CF1 are more sensitive to high concentrations of NaCl than is the spinach complex. Images Fig. 5 PMID:16663507

  16. CINNAMIC ACID HYDROXYLASE IN SPINACH,

    DTIC Science & Technology

    An acetone precipitate from an extract of spinach leaves catalysed the hydroxylation of trans- cinnamic acid to p-coumaric acid . The enzyme was...and addition of L-phenylalanine inhibited cinnamic acid hydroxylase activity. (Author)...Tetrahydrofolic acid and a reduced pyridine nucleotide coenzyme were necessary for maximum activity. Aminopterin was a potent inhibitor of the hydroxylating

  17. Response of spinach and komatsuna to biogas effluent made from source-separated kitchen garbage.

    PubMed

    Furukawa, Yuichiro; Hasegawa, Hiroshi

    2006-01-01

    Recycling of kitchen garbage is an urgent task for reducing public spending and environmental burdens by incineration and/or landfill. There is an interesting regional effort in Ogawa, Saitama prefecture, Japan, in which source-separated kitchen garbage is anaerobically fermented with a biogas plant and the resultant effluent is used as a quick-release organic fertilizer by surrounding farmers. However, scientific assessments of fertilizer values and risks in the use of the effluent were lacking. Thus, a field experiment was conducted from 2003 to 2004 in Tohoku National Agricultural Research Center to grow spinach (Spinacia oleracea L.) and komatsuna (Brassica rapa var. perviridis L. H. Bailey) for evaluating the fertilizer value of the kitchen garbage effluent (KGE), nitrate, coliform group (CG), Escherichia coli, fecal streptococci (FS), and Vibrio parahaemolyticus concentrations of KGE and in the soil and the plant leaves. A cattle manure effluent (CME) and chemical fertilizers (NPK) were used as controls. Total nitrogen (N) and ammonium N concentrations of the KGE were 1.47 and 1.46 g kg(-1), respectively. The bacteria tested were detected in both biogas effluents in the order of 2 to 3 log CFU g(-1), but there was little evidence that the biogas effluents increased these bacteria in the soil and the plant leaves. At the rate of 22 g N m(-2), yield, total N uptake, apparent N recovery rate, and leaf nitrate ion concentration at harvest of spinach and komatsuna in the KGE plot were mostly comparable to those in the NPK and CME plots. We conclude that the KGE is a quick-release N fertilizer comparable to chemical fertilizers and does not cause contamination of CG, E. coli, FS, or V. parahaemolyticus in the soil and spinach and komatsuna leaves.

  18. A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hao; Suslov, Nikolai B.; Li, Nan-Sheng

    2014-08-21

    Spinach is an in vitro–selected RNA aptamer that binds a GFP-like ligand and activates its green fluorescence. Spinach is thus an RNA analog of GFP and has potentially widespread applications for in vivo labeling and imaging. We used antibody-assisted crystallography to determine the structures of Spinach both with and without bound fluorophore at 2.2-Å and 2.4-Å resolution, respectively. Spinach RNA has an elongated structure containing two helical domains separated by an internal bulge that folds into a G-quadruplex motif of unusual topology. The G-quadruplex motif and adjacent nucleotides comprise a partially preformed binding site for the fluorophore. The fluorophore bindsmore » in a planar conformation and makes extensive aromatic stacking and hydrogen bond interactions with the RNA. Our findings provide a foundation for structure-based engineering of new fluorophore-binding RNA aptamers.« less

  19. A G-Quadruplex-Containing RNA Activates Fluorescence in a GFP-Like Fluorophore

    PubMed Central

    Huang, Hao; Suslov, Nikolai B.; Li, Nan-Sheng; Shelke, Sandip A.; Evans, Molly E.; Koldobskaya, Yelena; Rice, Phoebe A.; Piccirilli, Joseph A.

    2014-01-01

    Spinach is an in vitro selected RNA aptamer that binds a GFP-like ligand and activates its green fluorescence.Spinach is thus an RNA analog of GFP, and has potentially widespread applications for in vivo labeling and imaging. We used antibody-assisted crystallography to determine the structures of Spinach both with and without bound fluorophore at 2.2 and 2.4 Å resolution, respectively. Spinach RNA has an elongated structure containing two helical domains separated by an internal bulge that folds into a G-quadruplex motif of unusual topology. The G-quadruplex motif and adjacent nucleotides comprise a partially pre-formed binding site for the fluorophore.The fluorophore binds in a planar conformation and makes extensive aromatic stacking and hydrogen bond interactions with the RNA. Our findings provide a foundation for structure-based engineering of new fluorophore-binding RNA aptamers. PMID:24952597

  20. Effects of high temperature frying of Spinach leaves in sunflower oil on carotenoids, chlorophylls and tocopherol composition

    NASA Astrophysics Data System (ADS)

    Zeb, Alam; Nisar, Parveen

    2017-03-01

    Spinach is one of the highly consumed vegetable, with significant nutritional and beneficial properties. This study revealed for the first time, the effects of high temperature frying on the carotenoids, chlorophylls and tocopherol contents of spinach leaves. Spinach leaves were thermally processed in the sunflower oil for 15, 30, 45 and 60 min at 250 °C. HPLC-DAD results revealed a total of eight carotenoids, four chlorophylls and α-tocopherol in the spinach leaves. Lutein, neoxanthin, violaxanthin and β-carotene-5,6-epoxide were the major carotenoids, while chlorophyll a and b' were present in higher amounts. Frying of spinach leaves increased significantly the amount of α-tocopherol, β-carotene-5,6-epoxide, luteoxanthin, lutein and its Z-isomers and chlorophyll b' isomer. There was a dose dependent decrease in the amounts of neoxanthin, violaxanthin, chlorophyll b, b' and chlorophyll a with increase of frying time. The increase of frying time increased the total phenolic contents in spinach leaves and fried sunflower oil samples. Chemical characteristics such as peroxide values, free fatty acids, conjugated dienes, conjugated trienes and radical scavenging activity were significantly affected by frying, while spinach leaves increased the stability of the frying oil. This study can be used to improve the quality of fried vegetable leaves or their products at high temperature frying in food industries for increasing consumer acceptability.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Chao; Hong Fashui; Wu Kang

    Neodymium (Nd), as a member of rare earth elements, proved to enhance the photosynthesis rate and organic substance accumulation of spinach through the increase in carboxylation activity of Rubisco. Although the oxygenase activity of spinach Rubisco was slightly changed with the Nd{sup 3+} treatment, the specific factor of Rubisco was greatly increased. It was partially due to the promotion of Rubisco activase (R-A) activity but mainly to the formation of Rubisco-Rubisco activase super-complex, a heavier molecular mass protein (about 1200 kD) comprising both Rubisco and Rubisco activase. This super-complex was found during the extraction procedure of Rubisco by the gelmore » electrophoresis and Western-blot studies. The formation of Rubisco-R-A super-complex suggested that the secondary structure of the protein purified from the Nd{sup 3+}-treated spinach was different from that of the control. Extended X-ray absorption fine structure study of the 'Rubisco' purified from the Nd{sup 3+}-treated spinach revealed that Nd was bound with four oxygen atoms and two sulfur atoms of amino acid residues at the Nd-O and Nd-S bond lengths of 2.46 and 2.89 A, respectively.« less

  2. Characterization of an Olive Flounder Bone Gelatin-Zinc Oxide Nanocomposite Film and Evaluation of Its Potential Application in Spinach Packaging.

    PubMed

    Beak, Songee; Kim, Hyeri; Song, Kyung Bin

    2017-11-01

    Olive flounder bone gelatin (OBG) was used for a film base material in this study. In addition, zinc oxide nanoparticles (ZnO) were incorporated into the OBG film to prepare a nanocomposite film and to impart antimicrobial activity to it. The tensile strength of the OBG film increased by 6.62 MPa, and water vapor permeability and water solubility decreased by 0.93 × 10 -9 g/m s Pa and 13.79%, respectively, by the addition of ZnO to the OBG film. In particular, the OBG-ZnO film exhibited antimicrobial activity against Listeria monocytogenes. To investigate the applicability of the OBG-ZnO packaging film, fresh spinach was wrapped in this film and stored for a week. The results indicated that the OBG-ZnO film showed antimicrobial activity against L. monocytogenes inoculated on spinach without affecting the quality of spinach, such as vitamin C content and color. Thus, the OBG-ZnO nanocomposite film can be applied as an efficient antimicrobial food packaging material. As a base material of edible films, gelatin was extracted from olive flounder bone, which is fish processing by-product. Olive flounder bone gelatin (OBG) nanocomposite films were prepared with zinc oxide nanoparticles (ZnO). For an application to antimicrobial packaging, spinach was wrapped with the OBG-ZnO nanocomposite film. © 2017 Institute of Food Technologists®.

  3. Requirement of a Relatively High Threshold Level of Mg2+ for Cell Growth of a Rhizoplane Bacterium, Sphingomonas yanoikuyae EC-S001

    PubMed Central

    Hoo, Henny; Hashidoko, Yasuyuki; Islam, Md. Tofazzal; Tahara, Satoshi

    2004-01-01

    Mg2+ is one of the essential elements for bacterial cell growth. The presence of the magnesium cation (Mg2+) in various concentrations often affects cell growth restoration in plant-associating bacteria. This study attempted to determine whether Mg2+ levels in Sphingomonas yanoikuyae EC-S001 affected cell growth restoration in the host plant and what the threshold level is. S. yanoikuyae EC-S001, isolated from the rhizoplane of spinach seedlings grown from surface-sterilized seeds under aseptic conditions, displayed uniform dispersion and attachment throughout the rhizoplane and phylloplane of the host seedlings. S. yanoikuyae EC-S001 did not grow in potato-dextrose broth medium but grew well in an aqueous extract of spinach leaves. Chemical investigation of the growth factor in the spinach leaf extract led to identification of the active principle as the magnesium cation. A concentration of ca. 0.10 mM Mg2+ or more allowed S. yanoikuyae EC-S001 to grow in potato-dextrose broth medium. Some saprophytic and/or diazotrophic bacteria used in our experiment were found to have diverse threshold levels for their Mg2+ requirements. For example, Burkholderia cepacia EC-K014, originally isolated from the rhizoplane of a Melastoma sp., could grow even in Mg2+-free Hoagland's no. 2 medium with saccharose and glutamine (HSG medium) and requires a trace level of Mg2+ for its growth. In contrast, S. yanoikuyae EC-S001, together with Bacillus subtilis IFO12113, showed the most drastic restoring responses to subsequent addition of 0.98 mM Mg2+ to Mg2+-free HSG medium. Our studies concluded that Mg2+ is more than just the essential trace element needed for cell growth restoration in S. yanoikuyae EC-S001 and that certain nonculturable bacteria may require a higher concentration of Mg2+ or another specific essential element for their growth. PMID:15345402

  4. Antioxidant activity of fermented broccoli and spinach by Kombucha culture

    NASA Astrophysics Data System (ADS)

    Artanti, Nina; Susilowati, Agustine; Aspiyanto, Lotulung, Puspa Dewi Narrij; Maryati, Yati

    2017-11-01

    Broccoli (Brassica oleracea L.) and spinach (Amaranthus spp.) are vegetables that known to have many benefit for health. Previous studies on the fermentation of those vegetables using kombucha cultured showed increase in bioactive components such as total polyphenol content. The current studies was performed to evaluate the antioxidant activity of fermented spinach and broccoli before (feed) and after treatment with filtration (retentate and permeate). Filtration was conducted using Stirred Ultrafiltration Cell (SUFC) with UF membrane 100,000 MWCO mode at fixed condition (stirred rotation 300 rpm, room temperature, pressure 40 psia). Antioxidant evaluation was conducted using 2,2-diphenyl-1-picril hydrazyl (DPPH) free radical scavenging activity assay. The results showed that all samples from fermented broccoli showed antioxidant activity (feed 15.82% inhibition and retentate 15.29% inhibition), with the best antioxidant activity was obtained from permeate (75.98% inhibition). Whereas from fermented spinach only permeate showed antioxidant activity (21.84% inhibition) and it significantly lower than broccoli permeate. The mass spectrum of LCMS analysis on broccoli samples showed the present of several mass spectrum with (M+H) range from 148.1 to 442.5 in feed, retentate and permeate. In those samples (M+H) 360.4 always has the highest relative intensity. These results suggest that fermented broccoli has potential for development as functional drink for the source of antioxidant and the permeate obtained from filtration treatment significantly increased the antioxidant activity.

  5. Folate Biofortification in Hydroponically Cultivated Spinach by the Addition of Phenylalanine.

    PubMed

    Watanabe, Sho; Ohtani, Yuta; Tatsukami, Yohei; Aoki, Wataru; Amemiya, Takashi; Sukekiyo, Yasunori; Kubokawa, Seiichi; Ueda, Mitsuyoshi

    2017-06-14

    Folate is an important vitamin mainly ingested from vegetables, and folate deficiency causes various health problems. Recently, several studies demonstrated folate biofortification in plants or food crops by metabolic engineering through genetic modifications. However, the production and sales of genetically modified foods are under strict regulation. Here, we developed a new approach to achieve folate biofortification in spinach (Spinacia oleracea) without genetic modification. We hydroponically cultivated spinach with the addition of three candidate compounds expected to fortify folate. As a result of liquid chromatography tandem mass spectrometry analysis, we found that the addition of phenylalanine increased the folate content up to 2.0-fold (306 μg in 100 g of fresh spinach), representing 76.5% of the recommended daily allowance for adults. By measuring the intermediates of folate biosynthesis, we revealed that phenylalanine activated folate biosynthesis in spinach by increasing the levels of pteridine and p-aminobenzoic acid. Our approach is a promising and practical approach to cultivate nutrient-enriched vegetables.

  6. D-ribulose-5-phosphate 3-epimerase: Cloning and heterologous expression of the spinach gene, and purification and characterization of the recombinant enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.R.; Hartman, F.C.; Lu, T.Y.S.

    The authors have achieved, to their knowledge, the first high-level heterologous expression of the gene encoding D-ribulose-5-phosphate 3-epimerase from any source, thereby permitting isolation and characterization of the epimerase as found in photosynthetic organisms. The extremely labile recombinant spinach (Spinacia oleracea L.) enzyme was stabilized by DL-{alpha}-glycerophosphate or ethanol and destabilized by D-ribulose-5-phosphate or 2-mercaptoethanol. Despite this lability, the unprecedentedly high specific activity of the purified material indicates that the structural integrity of the enzyme is maintained throughout isolation. Ethylenediaminetetraacetate and divalent metal cations did not affect epimerase activity, thereby excluding a requirement for the latter in catalysis. As deducedmore » from the sequence of the cloned spinach gene and the electrophoretic mobility under denaturing conditions of the purified recombinant enzyme, its 25-kD subunit size was about the same as that of the corresponding epimerases of yeast and mammals. However, in contrast to these other species, the recombinant spinach enzyme was octameric rather than dimeric, as assessed by gel filtration and polyacrylamide gel electrophoresis under nondenaturing conditions. Western-blot analyses with antibodies to the purified recombinant enzyme confirmed that the epimerase extracted from spinach leaves is also octameric.« less

  7. Studies on the movements of ionic selectivity, compatible solutes, and intracellular ions caused in the leaves of spinach (Spinacia oleracea L.) plants cultured in a nutrient solution with seawater.

    PubMed

    Sun, Jin; Jia, Yongxia; Guo, Shirong; Chen, Lifang

    2010-01-01

    Analyses of ionic selectivity, compatible solutes, and intracellular ions in the leaves of spinach (Spinacia oleracea L.) plants cultured in the Hoagland's nutrient solution with or.without seawater (40%) were carried out using two cultivars--the Helan No.3 (seawater tolerant) and the Yuanye (seawater sensitive). When both cultivars were subjected to seawater stress, the leaves of the Helan No. 3 spinach preferred potassium (K+), calcium (Ca2+), magnesium (Mg2+), and sulfate (SO4(2-)) over sodium (Na+) and chlorine (Cl-) to keep high ratios of K/Na, Mg/Na, Ca/Na, and SO4(2-)/Cl- compared with the Yanye spinach. Moreover, those of the Helan No. 3 spinach under the seawater stress showed high efficiency of accumulation of compatible solutes (sugars and proline), low degradation of proteins, and suppression of free amino acids. However, the activities of plasma membrane H+ -ATPase and tonoplast H+ -ATPase in the leaves of spinach with the stress were enhanced. Taken together, the Helan No. 3 spinach under the seawater stress seems to acquire a high tolerance to the seawater salinity by inducing a high ion uptake, low concentration of Na+ and Cl-, efficient accumulation of compatible solutes, low decomposition of proteins, and suppression of free amino acids in the leaves.

  8. Thermal inactivation kinetics of hepatitis A virus in spinach.

    PubMed

    Bozkurt, Hayriye; Ye, Xiaofei; Harte, Federico; D'Souza, Doris H; Davidson, P Michael

    2015-01-16

    Leafy vegetables have been recognized as important vehicles for the transmission of foodborne viral pathogens. To control hepatitis A viral foodborne illness outbreaks associated with mildly heated (e.g., blanched) leafy vegetables such as spinach, generation of adequate thermal processes is important both for consumers and the food industry. Therefore, the objectives of this study were to determine the thermal inactivation behavior of hepatitis A virus (HAV) in spinach, and provide insights on HAV inactivation in spinach for future studies and industrial applications. The D-values calculated from the first-order model (50-72 °C) ranged from 34.40 ± 4.08 to 0.91 ± 0.12 min with a z-value of 13.92 ± 0.87 °C. The calculated activation energy value was 162 ± 11 kJ/mol. Using the information generated in the present study and the thermal parameters of industrial blanching conditions for spinach as a basis (100 °C for 120-180 s), the blanching of spinach in water at 100 °C for 120-180 s under atmospheric conditions will provide greater than 6 log reduction of HAV. The results of this study may be useful to the frozen food industry in designing blanching conditions for spinach to inactivate or control hepatitis A virus outbreaks. Copyright © 2014. Published by Elsevier B.V.

  9. Selection of Leafy Green Vegetable Varieties for a Pick-and-Eat Diet Supplement on ISS

    NASA Technical Reports Server (NTRS)

    Massa, Gioia; Richards, Jeff; Spencer, LaShelle; Hummerick, Mary; Stutte, Gary; Wheeler, Raymond; Douglas, Grace; Sirmons, Takiyah

    2015-01-01

    Spinach, lettuce, chard, beet, mizuna, and Chinese cabbage were grown in plant chambers to assess their potential as candidate crops for space food production systems. The species and varieties were compared in terms of biomass yields, size, nutrient value, and taste factors, as determined by a taste panel. Although other species might be considered for future studies, Chinese cabbage ranked number one from the testing, chard second, mizuna third, and red-leaf lettuce fourth. Results from the testing and analyses will be presented.

  10. Nutrient value of leaf versus seed

    NASA Astrophysics Data System (ADS)

    Edelman, Marvin; Holt, Monica

    2016-07-01

    Major differences stand out between edible leaves and seeds in protein quality, vitamin and mineral concentrations and omega 6 / omega 3 fatty acid ratios. Data for seeds (wheat, rice, corn, soy, lentil, chick pea) are compared with corresponding data for edible green leaves (kale, spinach, broccoli, duckweed). An x/y representation of data for lysine and methionine content highlights the group differences between grains, pulses, leafy vegetables and animal foods. Leaves come out with flying colors in all these comparisons. The perspective ends with a discussion on “So why do we eat mainly seeds?”

  11. Diverse mechanisms of plant resistance to cauliflower mosaic virus revealed by leaf skeleton hybridization.

    PubMed

    Melcher, U; Brannan, C M; Gardner, C O; Essenberg, R C

    1992-01-01

    Plants not hosts for cauliflower mosaic virus (CaMV) may prevent systemic CaMV infection by interfering with dissemination of infection through the plant or by preventing viral replication and maturation. Leaf skeleton hybridization allows distinction between these two barriers. The technique assesses the spatial distribution of CaMV in an inoculated leaf by hybridization of a skeleton of the leaf with a CaMV DNA probe. Leaves or leaflets of soybean, cucumber, peanut, tomato, lettuce, spinach, pepper, onion, wheat, maize and barley, inoculated with CaMV DNA or CaMV virions were processed for leaf skeleton hybridization either immediately after inoculation or two weeks thereafter. Autoradiographic images of soybean and cucumber skeletons had many dark spots suggesting that CaMV DNA replication and local spread had occurred. Images of onion leaf skeletons prepared two weeks after inoculation with CaMV DNA had fewer spots. To test whether these spots resulted from CaMV replication, DNA was extracted from inoculated onion leaves and analyzed by electrophoresis, blotting and hybridization. Molecules recovered two weeks after inoculation resembled those inoculated, indicating absence of replication. For the other species, we found no evidence of local spread of CaMV infections. Thus, many plant species resist systemic CaMV infection by preventing replication or local spread of CaMV, while others solely prevent systemic movement of infection.

  12. Spinach RNA aptamer detects lead (II) with high selectivity†

    PubMed Central

    DasGupta, Saurja; Shelke, Sandip A.; Li, Nan-sheng

    2015-01-01

    Spinach RNA aptamer contains a G-quadruplex motif that serves as a platform for binding and fluorescence activation of a GFP-like fluorophore. Here we show that Pb2+ induces formation of Spinach’s G-quadruplex and activates fluorescence with high selectivity and sensitivity. This device establishes the first example of an RNA-based sensor that provides a simple and inexpensive tool for Pb2+ detection. PMID:25940073

  13. Activation of a chloroplast type of fructose bisphosphatase from Chlamydomonas reinhardtii by light-mediated agents

    NASA Technical Reports Server (NTRS)

    Huppe, H. C.; Buchanan, B. B.

    1989-01-01

    A chloroplast type of fructose-1,6-bisphosphatase, a central regulatory enzyme of photosynthetic carbon metabolism, has been partially purified from Chlamydomonas reinhardtii. Unlike its counterpart from spinach chloroplasts, the algal FBPase showed a strict requirement for a dithiol reductant irrespective of Mg2+ concentration. The enzymes from the two sources resembled each other immunologically, in subunit molecular mass and response to pH. In the presence of dithiothreitol, the pH optimum for both the algal and spinach enzymes shifted from 8.5 to a more physiologic value of 8.0 as the Mg2+ concentration was increased from 1 to 16 mM. At 1 mM Mg2+, a concentration estimated to be close to physiological, the Chlamydomonas FBPase was active only in the presence of reduced thioredoxin and was most active with Chlamydomonas thioredoxin f. Under these conditions, the enzyme showed a pH optimum of 8.0. The data suggest that the Chlamydomonas enzyme resembles its spinach counterpart in most respects, but it has a stricter requirement for reduction and less strict reductant specificity. A comparison of the properties of the FBPases from Chlamydomonas and spinach will be helpful for elucidating the mechanism of the reductive activation of this enzyme.

  14. Metal contamination of home garden soils and cultivated vegetables in the province of Brescia, Italy: implications for human exposure.

    PubMed

    Ferri, Roberta; Hashim, Dana; Smith, Donald R; Guazzetti, Stefano; Donna, Filippo; Ferretti, Enrica; Curatolo, Michele; Moneta, Caterina; Beone, Gian Maria; Lucchini, Roberto G

    2015-06-15

    For the past century, ferroalloy industries in Brescia province, Italy produced particulate emissions enriched in manganese (Mn), lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), chromium (Cr), iron (Fe), and aluminum (Al). This study assessed metal concentrations in soil and vegetables of regions with varying ferroalloy industrial activity levels. Home gardens (n=63) were selected in three regions of varying ferroalloy plant activity durations in Brescia province. Total soil metal concentration and extractability were measured by X-Ray Fluorescence (XRF), aqua regia extraction, and modified Community Bureau of Reference (BCR) sequential extraction. Unwashed and washed spinach and turnips cultivated in the same gardens were analyzed for metal concentrations by flame atomic absorption spectrometry. Median soil Al, Cd, Fe, Mn, Pb, and Zn concentrations were significantly higher in home gardens near ferroalloy plants compared to reference home gardens. The BCR method yielded the most mobile soil fraction (the sum of extractable metals in Fractions 1 and 2) and all metal concentrations were higher in ferroalloy plant areas. Unwashed spinach showed higher metal concentrations compared to washed spinach. However, some metals in washed spinach were higher in the reference area likely due to history of agricultural product use. Over 60% of spinach samples exceeded the 2- to 4-fold Commission of European Communities and Codex Alimentarius Commission maximum Pb concentrations, and 10% of the same spinach samples exceeded 2- to 3-fold maximum Cd concentrations set by both organizations. Turnip metal concentrations were below maximum standard reference values. Prolonged industrial emissions increase median metal concentrations and most soluble fractions (BCR F1+F2) in home garden soils near ferroalloy plants. Areas near ferroalloy plant sites had spinach Cd and Pb metal concentrations several-fold above maximum standard references. We recommend thorough washing of vegetables to minimize metal exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Metal contamination of home gardens soils and cultivated vegetables in the province of Brescia, Italy: Implications for human exposure

    PubMed Central

    Ferri, Roberta; Hashim, Dana; Smith, Donald R.; Guazzetti, Stefano; Donna, Filippo; Ferretti, Enrica; Curatolo, Michele; Moneta, Caterina; Beone, Gian Maria; Lucchini, Roberto G.

    2015-01-01

    Background For the past century, ferroalloy industries in Brescia province, Italy produced particulate emissions enriched in manganese (Mn), lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), chromium (Cr), iron (Fe), aluminum (Al). This study assessed metal concentrations in soil and vegetables of regions with varying ferroalloy industrial activity levels. Methods Home gardens (n=63) were selected in three regions of varying ferroalloy plant activity duration in Brescia province. Total soil metal concentration and extractability were measured by X-ray fluorescence (XRF), aqua regia extraction, and modified Community Bureau of Reference (BCR) sequential extraction. Unwashed and washed spinach and turnips cultivated in the same gardens were analyzed for metal concentrations by flame atomic absorption spectrometry. Results Median soil Al, Cd, Fe, Mn, Pb, and Zn concentrations were significantly higher in home gardens near ferroalloy plants compared to reference home gardens. The BCR method yielded the most mobile soil fraction (the sum of extractable metals in Fractions 1 and 2) and all metal concentrations were higher in ferroalloy plant areas. Unwashed spinach showed higher metal concentrations compared to washed spinach. However, some metals in washed spinach were higher in the reference area likely due to history of agricultural product use. Over 60% of spinach samples exceeded the 2- to 4-fold Commission of European Communities and Codex Alimentarius Commission maximum Pb concentrations, and 10% of the same spinach samples exceeded 2- to 3-fold maximum Cd concentrations set by both organizations. Turnip metal concentrations were below maximum standard reference values. Conclusions Prolonged industrial emissions increase median metal concentrations and most soluble fractions (BCR F1+F2) in home garden soils near ferroalloy plants. Areas near ferroalloy plant sites had spinach Cd and Pb metal concentrations several-fold above maximum standard references. We recommend thoroughly washing vegetables to minimize metal exposure. PMID:25777956

  16. Concentrating biomass of fermented broccoli (Brassica oleracea) and spinach (Amaranthus sp.) by ultrafiltration for source of organic acids and natural antioxidant

    NASA Astrophysics Data System (ADS)

    Aspiyanto, Susilowati, Agustine; Lotulung, Puspa D.; Maryati, Yati

    2017-11-01

    Organic acids and polyphenol from fermentation of green vegetables by Kombucha culture are novelty functional food to achieve prebiotic and natural antioxidant. Ultrafiltration (UF) mode was performed to concentrate biomass of fermented broccoli (Brassica oleracea L.) and spinach (Amaranthus spp.) at stirrer rotation speed of 200, 300 and 400 rpm, room temperature and trans membrane pressure 40 psia for 30 minutes. Based on total organic acids, experiment activity showed that the best treatment on biomass of fermented broccoli and spinach were reached at stirrer rotation speed of 400 rpm and 300 rpm, respectively. In this condition, fermented broccoli and spinach concentrates gave total acids 0.83 % and 0.81 %, total polyphenol 0.06 % and 0.11 %, reducing sugar 63.95 mg/mL and 20.54 mg/mL, total sugars 2.43 ug/mL and 2.28 ug/mL, total solids 6.42 % and 7.17 %, respectively. Compared with feed, the optimum condition on fermented spinach and broccoli concentrates increased total acids 13.33 % and 10 %, however decreased total polyphenol 34.1 % and 41 %. Identification on monomer from fermented spinach and broccoli at optimum condition on lactic acid were dominated by monomers with molecular weights (MWs) 252.19 and 252.36 Dalton (Da.), and monomer of polyphenol dominated by monomer with MWs 193.17 and 193.22 Da. and relative intensity 100 %. Fermented broccoli has potency as prebiotic, meanwhile fermented spinach has potency as anti oxidant.

  17. Gross alpha and beta activity and annual committed effective dose due to natural radionuclides in some water spinach (ipomoea aquatica Forssk) samples in Ho Chi Minh City, Vietnam.

    PubMed

    Le, Hao Cong; Nguyen, Thang Van; Huynh, Thu Nguyen Phong; Huynh, Phuong Truc

    2017-07-01

    The results of gross alpha and beta radioactivity measurement in water spinach samples from some districts in Ho Chi Minh City, Vietnam are presented in this paper. The measurements were performed using a low-background proportional counters LB4200 manufactured by Canberra Company, Inc. Mean concentrations of gross alpha and beta activity were found to be 1.50 ± 0.38 Bq kg -1 to 84.25 ± 8.67 Bq kg -1 . In order to keep the recommended dose level, a recommended maximum intake of water spinach was proposed to be 6 kg fresh per year. The total annual committed effective dose due to natural radionuclides in water spinach samples was then found in range from 0.07 mSv y -1 to 0.82 mSv y -1 . The dose from 26.32% of samples exceeds the exemption mean dose criterion of 0.3 mSv y -1 but complies with the upper dose principle of 1 mSv y -1 provided in UNSCEAR 2008 report. The estimated soil-to-plant transfer factors for gross alpha and beta for water spinach samples were also presented. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Ecdysteroid-containing food supplements from Cyanotis arachnoidea on the European market: evidence for spinach product counterfeiting

    NASA Astrophysics Data System (ADS)

    Hunyadi, Attila; Herke, Ibolya; Lengyel, Katalin; Báthori, Mária; Kele, Zoltán; Simon, András; Tóth, Gábor; Szendrei, Kálmán

    2016-12-01

    Phytoecdysteroids like 20-hydroxyecdysone (“ecdysterone”) can exert a mild, non-hormonal anabolic/adaptogenic activity in mammals, and as such, are frequently used in food supplements. Spinach is well-known for its relatively low ecdysteroid content. Cyanotis arachnoidea, a plant native in China, is among the richest sources of phytoecdysteroids, and extracts of this plant are marketed in tons per year amounts via the internet at highly competitive prices. Here we report the investigation of a series of food supplements produced in Germany and claimed to contain spinach extracts. Twelve ecdysteroids including two new compounds were isolated and utilized as marker compounds. A comparative analysis of the products with Cyanotis and spinach extracts provides evidence that they were manufactured from Cyanotis extracts instead of spinach as stated. Based on the chromatographic fingerprints, 20-hydroxyecdysone 2- and 3-acetate are suggested as diagnostic markers for related quality control. This case appears to represent an unusual type of dietary supplement counterfeiting: undeclared extracts from alternative plants would supposedly ‘guarantee’ product efficacy.

  19. Chemical and Physical Characterization of the Activation of Ribulosebiphosphate Carboxylase/Oxygenase

    DOE R&D Accomplishments Database

    Donnelly, M. I.; Ramakrishnan, V.; Hartman, F. C.

    1983-08-01

    Molecular structure of ribulosebiphosphate carboxylase/oxygenase isolated from Rhodospirillium was compared with the enzyme isolated from Alcaligens eutrophus. Peptides derived from the active center of the bacterial enzyme were highly homologous with those isolated from spinach. Molecular shapes of the carboxylases were estimated using neutron scattering data. These studies suggested that the enzyme as isolated from R. rubrum is a solid prolate ellipsoid or cylinder, while the spinach enzyme resembles a hollow sphere.

  20. Effect of a bacteriophage cocktail in combination with modified atmosphere packaging in controlling Listeria monocytogenes on fresh-cut spinach

    USDA-ARS?s Scientific Manuscript database

    A Listeria monocytogenes-specific bacteriophage cocktail (ListShield™) was evaluated for its activity against a nalidixic acid-resistant L. monocytogenes (Lm-NalR) isolate on fresh-cut spinach stored under modified atmosphere packaging (MAP) at various temperatures. Pieces (~2x2 cm2) of fresh spinac...

  1. Light-Induced Nuclear Synthesis of Spinach Chloroplast Fructose-1,6-bisphosphatase 1

    PubMed Central

    Chueca, Ana; Lázaro, Juan José; Gorgé, Julio López

    1984-01-01

    Etiolated spinach (Spinacia oleracea L. var Winter Giant) seedlings show a residual photosynthetic fructose-1,6-bisphosphatase activity, which sharply rises under illumination. This increase in activity is due to a light-induced de novo synthesis, as it has been demonstrated by enzyme labeling experiments with 2H2O and [35S]methionine. The rise of bisphosphatase activity under illumination is strongly inhibited by cycloheximide, but not by the 70S ribosome inhibitor lincocin, which shows the nuclear origin of this chloroplastic enzyme. Images Fig. 3 PMID:16663662

  2. Differential sensitivity of spinach and amaranthus to enhanced UV-B at varying soil nutrient levels: association with gas exchange, UV-B-absorbing compounds and membrane damage.

    PubMed

    Singh, Suruchi; Agrawal, Madhoolika; Agrawal, S B

    2013-07-01

    The metabolic reasons associated with differential sensitivity of C3 and C4 plant species to enhanced UV-B under varying soil nutrient levels are not well understood. In the present study, spinach (Spinacia oleracea L. var All Green), a C3 and amaranthus (Amaranthus tricolor L. var Pusa Badi Chaulai), a C4 plant were subjected to enhanced UV-B (280-315 nm; 7.2 kJ m(-2) day(-1)) over ambient under varying soil nutrient levels. The nutrient amendments were recommended Nitrogen (N), Phosphorus (P), Potassium (K), 1.5× recommended NPK, 1.5× recommended N and 1.5× recommended K. Enhanced UV-B negatively affected both the species at all nutrient levels, but the reductions varied with nutrient concentration and combinations. Reductions in photosynthetic rate, stomatal conductance and chlorophyll content were significantly more in spinach compared with amaranthus. The reduction in photosynthetic rate was maximum at 1.5× recommended K and minimum in 1.5× NPK amended plants. The oxidative damage to membranes measured in terms of malondialdehyde content was significantly higher in spinach compared with amaranthus. Enhanced UV-B reduced SOD activity in both the plants except in amaranthus at 1.5× recommended K. POX activity increased under enhanced UV-B at all nutrient levels in amaranthus, but only at 1.5× K in spinach. Amaranthus had significantly higher UV-B-absorbing compounds than spinach even under UV-B stress. Lowest reductions in yield and total biomass under enhanced UV-B compared with ambient were observed in amaranthus grown at 1.5× recommended NPK. Enhanced UV-B did not significantly change the nitrogen use efficiency in amaranthus at all NPK levels, but reduced in spinach except at 1.5× K. These findings suggest that the differential sensitivity of the test species under enhanced UV-B at varying nutrient levels is due to varying antioxidative and UV-B screening capacity, and their ability to utilize nutrients. Amaranthus tolerated enhanced UV-B stress more than spinach at all nutrient levels and 1.5× recommended NPK lowered the sensitivity maximally to enhanced UV-B with respect to photosynthesis, biomass and yield. PCA score has also confirmed the lower sensitivity of amaranthus compared with spinach with respect to the measured physiological and biochemical parameters.

  3. Nutrient Value of Leaf vs. Seed

    PubMed Central

    Edelman, Marvin; Colt, Monica

    2016-01-01

    Major differences stand out between edible leaves and seeds in protein quality, vitamin, and mineral concentrations and omega 6/omega 3 fatty acid ratios. Data for seeds (wheat, rice, corn, soy, lentil, chick pea) are compared with corresponding data for edible green leaves (kale, spinach, broccoli, duckweed). An x/y representation of data for lysine and methionine content highlights the group differences between grains, pulses, leafy vegetables, and animal foods. Leaves come out with flying colors in all these comparisons. The perspective ends with a discussion on “So why do we eat mainly seeds?” PMID:27493937

  4. Treatment of munitions in soils using phytoslurries.

    PubMed

    Medina, Victor F; Larson, Steven L; Agwaramgbo, Lovell; Perez, Waleska

    2002-01-01

    Phytoremediation is an established technology for the treatment of explosives in water and soil. This study investigated the possibility of using slurried plants (or phytoslurries) to treat explosives (TNT and RDX). The degradation of TNT in solution using intact and slurried parrotfeather (Myriophyllum aquaticum), spinach (Spinicia oleracea), and mustard greens (Brassica juncea) was evaluated. Phytoslurries of parrotfeather and spinach removed the TNT faster than the intact plant. Conversely, the removal rate constants for slurried and intact mustard greens were about the same. A study using pressurized heating to destroy enzymatic activity in the phytoslurries was also conducted to compare removal from released plant chemicals to adsorptive removal. Aqueous phase removal of TNT by autoclaved spinach phytoslurry was compared with nonautoclaved spinach phytoslurry. The autoclaved phytoslurry did remove TNT, but not as completely as nonautoclaved slurry. This suggests that some removal is due to adsorption, but not all. Phytoslurries of mustard greens and parrotfeather had higher RDX removal rates compared with intact plant removal, but the rates for parrotfeather in either case were relatively low. Phytoslurries of spinach had relatively modest increases in RDX removal rates compared with intact plant. Studies were then conducted with phytoslurry/soil mixtures at two scales: 60 ml and 1.5 l. In both cases, phytoslurries of mustard greens and spinach removed TNT and RDX at higher levels than control slurries.

  5. Red spinach (Amaranthus tricolor L.) ethanolic extract as prevention against atherosclerosis based on the level of Low-Density Lipoprotein and histopathological feature of aorta in male Sprague-Dawley rats

    NASA Astrophysics Data System (ADS)

    Pradana, Dimas Adhi; Pondawinata, Marizki; Widyarini, Sitarina

    2017-03-01

    This study aimed to determine the potential activity of standardized ethanolic extract of red spinach as prevention against atherosclerosis based on the level of Low-Density Lipoprotein (LDL) and histopathological feature of aorta in male Sprague-Dawley rats induced by high-fat, high-cholesterol diet. A total of 42 animals was divided into 6 groups: normal control group, negative control group, positive control group (0.9 mg/kgBW of simvastatin), first intervention group (200 mg/kgBW of red spinach extract), second intervention group (400 mg/kgBW of red spinach extract), and third intervention group (800 mg/kgBW of red spinach extract). From the first day up to the 66th day, all the groups, except the normal control group and negative control group, were administered simvastatin (positive control) and extract of amaranth (intervention). Then, from the eighth day until Day 66, induction of high-fat and high-cholesterol diet was given in two hours after the simvastatin and red spinach extract administration. The determination of LDL parameters was conducted on Day 0, Day 35, and Day 67. On the 67th day, the animals were dissected to examine the aortic histopathological parameters. The results showed that the ethanolic extract of red spinach with a dose of 200 mg/kgBW, 400 mg/kgBW, and 800 mg/kgBW statistically demonstrated a significant difference (p<0.05). The histopathological feature of the aorta in the treatment indicated the absence of fat in the blood vessel walls or even of foam cells supporting thereby the result of LDL level. This means there was a significant effect of ethanolic extract of red spinach on the prevention against atherosclerosis based on the level of Low-Density Lipoprotein and the histopathological feature of aorta in male Sprague-Dawley rats.

  6. Effect of Fermented Spinach as Sources of Pre-Converted Nitrite on Color Development of Cured Pork Loin

    PubMed Central

    Hwang, Ko-Eun

    2017-01-01

    The effect of fermented spinach extracts on color development in cured meats was investigated in this study. The pH values of raw cured meats without addition of fermented spinach extract or nitrite (negative control) were higher (p<0.05) than those added with fermented spinach extract. The pH values of raw and cooked cured meats in treatment groups were decreased with increasing addition levels of fermented spinach extract. The lightness and yellowness values of raw cured meats formulated with fermented spinach extract were higher (p<0.05) than those of the control groups (both positive and negative controls). The redness values of cooked cured meats were increased with increasing fermented spinach extract levels, whereas the yellowness values of cooked cured meats were decreased with increasing levels of fermented spinach extract. The lowest volatile basic nitrogen (VBN) and thiobarbituric acid reactive substances (TBARS) values were observed in the positive control group with addition of nitrite. TBARS values of cured meats added with fermented spinach extract were decreased with increasing levels of fermented spinach extract and VBN values of curing meat with 30% fermented spinach extract was lower than the other treatments. Total viable bacterial counts in cured meats added with fermented spinach extract ranged from 0.34-1.01 Log CFU/g. E. coli and coliform bacteria were not observed in any of the cured meats treated with fermented spinach extracts or nitrite. Residual nitrite contents in treatment groups were increased with increasing levels of fermented spinach extract added. These results demonstrated that fermented spinach could be added to meat products to improve own curing characteristics. PMID:28316477

  7. Effect of Fermented Spinach as Sources of Pre-Converted Nitrite on Color Development of Cured Pork Loin.

    PubMed

    Kim, Tae-Kyung; Kim, Young-Boong; Jeon, Ki-Hong; Park, Jong-Dae; Sung, Jung-Min; Choi, Hyun-Wook; Hwang, Ko-Eun; Choi, Yun-Sang

    2017-01-01

    The effect of fermented spinach extracts on color development in cured meats was investigated in this study. The pH values of raw cured meats without addition of fermented spinach extract or nitrite (negative control) were higher ( p <0.05) than those added with fermented spinach extract. The pH values of raw and cooked cured meats in treatment groups were decreased with increasing addition levels of fermented spinach extract. The lightness and yellowness values of raw cured meats formulated with fermented spinach extract were higher ( p <0.05) than those of the control groups (both positive and negative controls). The redness values of cooked cured meats were increased with increasing fermented spinach extract levels, whereas the yellowness values of cooked cured meats were decreased with increasing levels of fermented spinach extract. The lowest volatile basic nitrogen (VBN) and thiobarbituric acid reactive substances (TBARS) values were observed in the positive control group with addition of nitrite. TBARS values of cured meats added with fermented spinach extract were decreased with increasing levels of fermented spinach extract and VBN values of curing meat with 30% fermented spinach extract was lower than the other treatments. Total viable bacterial counts in cured meats added with fermented spinach extract ranged from 0.34-1.01 Log CFU/g. E. coli and coliform bacteria were not observed in any of the cured meats treated with fermented spinach extracts or nitrite. Residual nitrite contents in treatment groups were increased with increasing levels of fermented spinach extract added. These results demonstrated that fermented spinach could be added to meat products to improve own curing characteristics.

  8. Methionine biosynthesis in higher plants. I. Purification and characterization of cystathionine gamma-synthase from spinach chloroplasts.

    PubMed

    Ravanel, S; Droux, M; Douce, R

    1995-01-10

    Cystathionine gamma-synthase, the first enzyme specific for the methionine biosynthetic pathway, was purified to apparent homogeneity from spinach leaf chloroplasts. A nonradioactive assay based on O-phthaldialdehyde derivatization of L-cystathionine and fluorescence detection was developed to determine the cystathionine gamma-synthase activity. A unique cystathionine gamma-synthase activity was located in the stromal fraction of chloroplasts while cystathionine beta-lyase, the second enzyme of the transsulfuration pathway, was associated with both the chloroplastic and cytosolic compartments (see companion manuscript). The purified enzyme exhibited a specific activity of 13 U mg-1. As estimated by gel filtration and polyacrylamide gel electrophoresis (PAGE) under nondenaturing conditions followed by activity staining, the native enzyme had an apparent M(r) of 215,000. On the basis of sodium dodecyl sulfate-PAGE, purified cystathionine gamma-synthase migrated as two molecular species of M(r) 53,000 and 50,000 that are identical in their N-termini. The absorption spectrum obtained at pH 7.5 exhibited a peak at 425 nm due to pyridoxal 5'-phosphate (PLP). The purified enzyme catalyzed the formation of L-cystathionine or L-homocysteine depending on the sulfur-containing substrate, L-cysteine or sulfide. Maximal cystathionine gamma-synthase activity was found at pH 7.4. The apparent Km values for O-phospho-L-homoserine (the unique homoserine ester synthesized in the chloroplast), L-cysteine, and sulfide were 1.4, 0.18, and 0.6 mM, respectively. Inactivation of cystathionine gamma-synthase by DL-propargylglycine (PAG) showed pseudo-first-order kinetics and data were consistent with the existence of an intermediate reversible enzyme-inhibitor complex (Kappi = 140 microM) preceding the formation of a final enzyme-inhibitor complex (kd = 24 x 10(-3) s-1). The irreversibility of the inhibition and the partial restoration of the activity by pyridoxal-phosphate suggest that PAG interacts with the PLP prosthetic group of the enzyme. Kinetic and equilibrium binding studies showed that PAG binding to PLP was considerably enhanced in the enzyme binding pocket compared to that with PLP free in solution.

  9. SpinachDB: A Well-Characterized Genomic Database for Gene Family Classification and SNP Information of Spinach.

    PubMed

    Yang, Xue-Dong; Tan, Hua-Wei; Zhu, Wei-Min

    2016-01-01

    Spinach (Spinacia oleracea L.), which originated in central and western Asia, belongs to the family Amaranthaceae. Spinach is one of most important leafy vegetables with a high nutritional value as well as being a perfect research material for plant sex chromosome models. As the completion of genome assembly and gene prediction of spinach, we developed SpinachDB (http://222.73.98.124/spinachdb) to store, annotate, mine and analyze genomics and genetics datasets efficiently. In this study, all of 21702 spinach genes were annotated. A total of 15741 spinach genes were catalogued into 4351 families, including identification of a substantial number of transcription factors. To construct a high-density genetic map, a total of 131592 SSRs and 1125743 potential SNPs located in 548801 loci of spinach genome were identified in 11 cultivated and wild spinach cultivars. The expression profiles were also performed with RNA-seq data using the FPKM method, which could be used to compare the genes. Paralogs in spinach and the orthologous genes in Arabidopsis, grape, sugar beet and rice were identified for comparative genome analysis. Finally, the SpinachDB website contains seven main sections, including the homepage; the GBrowse map that integrates genome, genes, SSR and SNP marker information; the Blast alignment service; the gene family classification search tool; the orthologous and paralogous gene pairs search tool; and the download and useful contact information. SpinachDB will be continually expanded to include newly generated robust genomics and genetics data sets along with the associated data mining and analysis tools.

  10. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics

    NASA Astrophysics Data System (ADS)

    Wong, Min Hao; Giraldo, Juan P.; Kwak, Seon-Yeong; Koman, Volodymyr B.; Sinclair, Rosalie; Lew, Tedrick Thomas Salim; Bisker, Gili; Liu, Pingwei; Strano, Michael S.

    2017-02-01

    Plant nanobionics aims to embed non-native functions to plants by interfacing them with specifically designed nanoparticles. Here, we demonstrate that living spinach plants (Spinacia oleracea) can be engineered to serve as self-powered pre-concentrators and autosamplers of analytes in ambient groundwater and as infrared communication platforms that can send information to a smartphone. The plants employ a pair of near-infrared fluorescent nanosensors--single-walled carbon nanotubes (SWCNTs) conjugated to the peptide Bombolitin II to recognize nitroaromatics via infrared fluorescent emission, and polyvinyl-alcohol functionalized SWCNTs that act as an invariant reference signal--embedded within the plant leaf mesophyll. As contaminant nitroaromatics are transported up the roots and stem into leaf tissues, they accumulate in the mesophyll, resulting in relative changes in emission intensity. The real-time monitoring of embedded SWCNT sensors also allows residence times in the roots, stems and leaves to be estimated, calculated to be 8.3 min (combined residence times of root and stem) and 1.9 min mm-1 leaf, respectively. These results demonstrate the ability of living, wild-type plants to function as chemical monitors of groundwater and communication devices to external electronics at standoff distances.

  11. Chloroplast Osmotic Adjustment and Water Stress Effects on Photosynthesis 1

    PubMed Central

    Gupta, Ashima Sen; Berkowitz, Gerald A.

    1988-01-01

    Previous studies have suggested that chloroplast stromal volume reduction may mediate the inhibition of photosynthesis under water stress. In this study, the effects of spinach (Spinacia oleracea, var `Winter Bloomsdale') plant water deficits on chloroplast photosynthetic capacity, solute concentrations in chloroplasts, and chloroplast volume were studied. In situ (gas exchange) and in vitro measurements indicated that chloroplast photosynthetic capacity was maintained during initial leaf water potential (Ψw) and relative water content (RWC) decline. During the latter part of the stress period, photosynthesis dropped precipitously. Chloroplast stromal volume apparently remained constant during the initial period of decline in RWC, but as leaf Ψw reached −1.2 megapascals, stromal volume began to decline. The apparent maintenance of stromal volume over the initial RWC decline during a stress cycle suggested that chloroplasts are capable of osmotic adjustment in response to leaf water deficits. This hypothesis was confirmed by measuring chloroplast solute levels, which increased during stress. The results of these experiments suggest that stromal volume reduction in situ may be associated with loss of photosynthetic capacity and that one mechanism of photosynthetic acclimation to low Ψw may involve stromal volume maintenance. PMID:16666266

  12. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics.

    PubMed

    Wong, Min Hao; Giraldo, Juan P; Kwak, Seon-Yeong; Koman, Volodymyr B; Sinclair, Rosalie; Lew, Tedrick Thomas Salim; Bisker, Gili; Liu, Pingwei; Strano, Michael S

    2017-02-01

    Plant nanobionics aims to embed non-native functions to plants by interfacing them with specifically designed nanoparticles. Here, we demonstrate that living spinach plants (Spinacia oleracea) can be engineered to serve as self-powered pre-concentrators and autosamplers of analytes in ambient groundwater and as infrared communication platforms that can send information to a smartphone. The plants employ a pair of near-infrared fluorescent nanosensors-single-walled carbon nanotubes (SWCNTs) conjugated to the peptide Bombolitin II to recognize nitroaromatics via infrared fluorescent emission, and polyvinyl-alcohol functionalized SWCNTs that act as an invariant reference signal-embedded within the plant leaf mesophyll. As contaminant nitroaromatics are transported up the roots and stem into leaf tissues, they accumulate in the mesophyll, resulting in relative changes in emission intensity. The real-time monitoring of embedded SWCNT sensors also allows residence times in the roots, stems and leaves to be estimated, calculated to be 8.3 min (combined residence times of root and stem) and 1.9 min mm -1 leaf, respectively. These results demonstrate the ability of living, wild-type plants to function as chemical monitors of groundwater and communication devices to external electronics at standoff distances.

  13. Liquid extraction surface analysis (LESA) of food surfaces employing chip-based nano-electrospray mass spectrometry.

    PubMed

    Eikel, Daniel; Henion, Jack

    2011-08-30

    An automated surface-sampling technique called liquid extraction surface analysis (LESA), coupled with infusion nano-electrospray high-resolution mass spectrometry and tandem mass spectrometry (MS/MS), is described and applied to the qualitative determination of surface chemical residues resulting from the artificial spraying of selected fresh fruits and vegetables with representative pesticides. Each of the targeted pesticides was readily detected with both high-resolution and full-scan collision-induced dissociation (CID) mass spectra. In the case of simazine and sevin, a mass resolution of 100,000 was insufficient to distinguish the isobaric protonated molecules for these compounds. When the surface of a spinach leaf was analyzed by LESA, trace levels of diazinon were readily detected on the spinach purchased directly from a supermarket before they were sprayed with the five-pesticide mixture. A 30 s rinse under hot running tap water appeared to quantitatively remove all remaining residues of this pesticide. Diazinon was readily detected by LESA analysis on the skin of the artificially sprayed spinach. Finally, incurred pyrimethanil at a level of 169 ppb in a batch slurry of homogenized apples was analyzed by LESA and this pesticide was readily detected by both high-resolution mass spectrometry and full-scan CID mass spectrometry, thus showing that pesticides may also be detected in whole fruit homogenized samples. This report shows that representative pesticides on fruit and vegetable surfaces present at levels 20-fold below generally allowed EPA tolerance levels are readily detected and confirmed by the title technologies making LESA-MS as interesting screening method for food safety purposes. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing.

    PubMed

    Shi, Ainong; Qin, Jun; Mou, Beiquan; Correll, James; Weng, Yuejin; Brenner, David; Feng, Chunda; Motes, Dennis; Yang, Wei; Dong, Lingdi; Bhattarai, Gehendra; Ravelombola, Waltram

    2017-01-01

    Spinach (Spinacia oleracea L., 2n = 2x = 12) is an economically important vegetable crop worldwide and one of the healthiest vegetables due to its high concentrations of nutrients and minerals. The objective of this research was to conduct genetic diversity and population structure analysis of a collection of world-wide spinach genotypes using single nucleotide polymorphisms (SNPs) markers. Genotyping by sequencing (GBS) was used to discover SNPs in spinach genotypes. Three sets of spinach genotypes were used: 1) 268 USDA GRIN spinach germplasm accessions originally collected from 30 countries; 2) 45 commercial spinach F1 hybrids from three countries; and 3) 30 US Arkansas spinach cultivars/breeding lines. The results from this study indicated that there was genetic diversity among the 343 spinach genotypes tested. Furthermore, the genetic background in improved commercial F1 hybrids and in Arkansas cultivars/lines had a different structured populations from the USDA germplasm. In addition, the genetic diversity and population structures were associated with geographic origin and germplasm from the US Arkansas breeding program had a unique genetic background. These data could provide genetic diversity information and the molecular markers for selecting parents in spinach breeding programs.

  15. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing

    PubMed Central

    Qin, Jun; Mou, Beiquan; Correll, James; Weng, Yuejin; Brenner, David; Feng, Chunda; Motes, Dennis; Yang, Wei; Dong, Lingdi; Bhattarai, Gehendra; Ravelombola, Waltram

    2017-01-01

    Spinach (Spinacia oleracea L., 2n = 2x = 12) is an economically important vegetable crop worldwide and one of the healthiest vegetables due to its high concentrations of nutrients and minerals. The objective of this research was to conduct genetic diversity and population structure analysis of a collection of world-wide spinach genotypes using single nucleotide polymorphisms (SNPs) markers. Genotyping by sequencing (GBS) was used to discover SNPs in spinach genotypes. Three sets of spinach genotypes were used: 1) 268 USDA GRIN spinach germplasm accessions originally collected from 30 countries; 2) 45 commercial spinach F1 hybrids from three countries; and 3) 30 US Arkansas spinach cultivars/breeding lines. The results from this study indicated that there was genetic diversity among the 343 spinach genotypes tested. Furthermore, the genetic background in improved commercial F1 hybrids and in Arkansas cultivars/lines had a different structured populations from the USDA germplasm. In addition, the genetic diversity and population structures were associated with geographic origin and germplasm from the US Arkansas breeding program had a unique genetic background. These data could provide genetic diversity information and the molecular markers for selecting parents in spinach breeding programs. PMID:29190770

  16. Frequency of Verticillium Species in Commercial Spinach Fields and Transmission of V. dahliae from Spinach to Subsequent Lettuce Crops.

    PubMed

    Short, D P G; Gurung, S; Koike, S T; Klosterman, S J; Subbarao, K V

    2015-01-01

    Verticillium wilt caused by V. dahliae is a devastating disease of lettuce in California (CA). The disease is currently restricted to a small geographic area in central coastal CA, even though cropping patterns in other coastal lettuce production regions in the state are similar. Infested spinach seed has been implicated in the introduction of V. dahliae into lettuce fields but direct evidence linking this inoculum to wilt epidemics in lettuce is lacking. In this study, 100 commercial spinach fields in four coastal CA counties were surveyed to evaluate the frequency of Verticillium species recovered from spinach seedlings and the area under spinach production in each county was assessed. Regardless of the county, V. isaacii was the most frequently isolated species from spinach followed by V. dahliae and, less frequently, V. klebahnii. The frequency of recovery of Verticillium species was unrelated to the occurrence of Verticillium wilt on lettuce in the four counties but was related to the area under spinach production in individual counties. The transmission of V. dahliae from infested spinach seeds to lettuce was investigated in microplots. Verticillium wilt developed on lettuce following two or three plantings of Verticillium-infested spinach, in independent experiments. The pathogen recovered from the infected lettuce from microplots was confirmed as V. dahliae by polymerase chain reaction assays. In a greenhouse study, transmission of a green fluorescence protein-tagged mutant strain of V. dahliae from spinach to lettuce roots was demonstrated, after two cycles of incorporation of infected spinach residue into the soil. This study presents conclusive evidence that V. dahliae introduced via spinach seed can cause Verticillium wilt in lettuce.

  17. Glycolipids from spinach suppress LPS-induced vascular inflammation through eNOS and NK-κB signaling.

    PubMed

    Ishii, Masakazu; Nakahara, Tatsuo; Araho, Daisuke; Murakami, Juri; Nishimura, Masahiro

    2017-07-01

    Glycolipids are the major constituent of the thylakoid membrane of higher plants and have a variety of biological and pharmacological activities. However, anti-inflammatory effects of glycolipids on vascular endothelial cells have not been elucidated. Here, we investigated the effect of glycolipids extracted from spinach on lipopolysaccharides (LPS)-induced endothelial inflammation and evaluated the underlying molecular mechanisms. Treatment with glycolipids from spinach had no cytotoxic effects on cultured human umbilical vein endothelial cells (HUVECs) and significantly blocked the expression of LPS-induced interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), and intracellular adhesion molecule-1 (ICAM-1) in them. Glycolipids treatment also effectively suppressed monocyte adhesion to HUVECs. Treatment with glycolipids inhibited LPS-induced NF-κB phosphorylation and nuclear translocation. In addition, glycolipids treatment significantly promoted endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) production in HUVECs. Furthermore, glycolipids treatment blocked LPS-induced inducible NOS (iNOS) expression in HUVECs. Pretreatment with a NOS inhibitor attenuated glycolipids-induced suppression of NF-κB activation and adhesion molecule expression, and abolished the glycolipids-mediated suppression of monocyte adhesion to HUVECs. These results indicate that glycolipids suppress LPS-induced vascular inflammation through attenuation of the NF-κB pathway by increasing NO production in endothelial cells. These findings suggest that glycolipids from spinach may have a potential therapeutic use for inflammatory vascular diseases. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Evaluation of the metabolic fate of munitions material (TNT & RDX) in plant systems and initial assessment of material interaction with plant genetic material. Validation of the metabolic fate of munitions materials (TNT, RDX) in mature crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fellows, R.J.; Harvey, S.D.; Cataldo, D.A.

    1995-09-01

    The goals of this effort were to confirm and expand data related to the behavior and impacts of munitions residues upon human food chain components. Plant species employed included corn (Zea mays), alfalfa (Medicago sativa). spinach (Spinacea oleraceae), and carrot (Daucus carota). Plants were grown from seed to maturity (70 to 120 days) in a low-fertility soil (Burbank) amended with either {sup 14}C-TNT or {sup 14}C-RDX at which time they were harvested and analyzed for munitions uptake, partitioning, and chemical form of the munition or munition-metabolite. All four of the plant species used in this study accumulated the {sup 14}C-TNT-more » and RDX-derived label. The carrot, alfalfa, and corn demonstrated a higher percentage of label retained in the roots (62, 73, and 83% respectively). The spinach contained less activity in its root (36%) but also contained the highest TNT specific activity observed (>4600 jig TNT equivalents/g dry wt.). The specific uptake values of RDX for the spinach and alfalfa were comparable to those previously reported for wheat and bean (314 to 590 {mu}g RDX-equivalents/g dry wt. respectively). An exception to this may be the carrot where the specific activity was found to exceed 4200 {mu}g RDX-equivalents/g dry wt. in the shoot. The total accumulation of TNT by the plants ranged from 1.24% for the spinach to 2.34% for the carrot. The RDX plants ranging from 15% for the spinach to 37% for the carrot. There was no identifiable TNT or amino dinitrotoluene (ADNT) isomers present in the plants however, the parent RDX compound was found at significant levels in the shoot of alfalfa (> 1 80 {mu}g/g) and corn (>18 {mu}g/g).« less

  19. In situ stabilization remediation of cadmium contaminated soils of wastewater irrigation region using sepiolite.

    PubMed

    Sun, Yuebing; Sun, Guohong; Xu, Yingming; Wang, Lin; Lin, Dasong; Liang, Xuefeng; Shi, Xin

    2012-01-01

    The effects of immobilization remediation of Cd-contaminated soils using sepiolite on soil pH, enzyme activities and microbial communities, TCLP-Cd (toxicity characteristic leaching procedure-Cd) concentration, and spinach (Spinacia oleracea) growth and Cd uptake and accumulation were investigated. Results showed that the addition of sepiolite could increase soil pH, while the TCLP-Cd concentration in soil was decreased with increasing sepiolite. The changes of soil enzyme activities and bacteria number indicated that a certain metabolic recovery occurred after the sepiolite treatments, and spinach shoot biomass increased by 58.5%-65.5% in comparison with the control group when the concentration of sepiolite was < or = 10 g/kg. However, the Cd concentrations in the shoots and roots of spinach decreased with an increase in the rate of sepiolite, experiencing 38.4%-59.1% and 12.6%-43.6% reduction, respectively, in contrast to the control. The results indicated that sepiolite has the potential for success on a field scale in reducing Cd entry into the food chain.

  20. Isolation of Mesophyll Cells and Bundle Sheath Cells from Digitaria sanguinalis (L.) Scop. Leaves and a Scanning Microscopy Study of the Internal Leaf Cell Morphology 1

    PubMed Central

    Edwards, Gerald E.; Black, Clanton C.

    1971-01-01

    A technique is described for the separation of mesophyll and bundle sheath cells from Digitaria sanguinalis leaves and evidence for separation is given with light and scanning electron micrographs. Gentle grinding of fully differentiated leaves in a mortar releases mesophyll cells which are isolated on nylon nets by filtration. More extensive grinding of the remaining tissue yields bundle sheath strands which are isolated by filtration with stainless steel sieves and nylon nets. Further grinding of bundle sheath strands in a tissue homogenizer releases bundle sheath cells which are collected on nylon nets. Percentage of purity derived from cell counts and yield data on a chlorophyll basis are given. The internal leaf cell morphology is presented in scanning electron micrographs and compared with light micrographs of fully-differentiated D. sanguinalis leaves. In leaves of plants which possess the C4-dicarboxylic acid cycle of photosynthesis, the relationship of leaf morphology to photosynthesis in mesophyll and bundle sheath cells is considered, and the hypothesis is presented that as atmospheric CO2 enters a leaf about 85% is fixed by the C4-dicarboxylic acid cycle in the mesophyll cells and 10 to 15% is fixed by the reductive pentose phosphate cycle in the bundle sheath cells. A technique also is given for the isolation of mesophyll cells from spinach leaves. Images PMID:16657571

  1. Isolation of Mesophyll Cells and Bundle Sheath Cells from Digitaria sanguinalis (L.) Scop. Leaves and a Scanning Microscopy Study of the Internal Leaf Cell Morphology.

    PubMed

    Edwards, G E; Black, C C

    1971-01-01

    A technique is described for the separation of mesophyll and bundle sheath cells from Digitaria sanguinalis leaves and evidence for separation is given with light and scanning electron micrographs. Gentle grinding of fully differentiated leaves in a mortar releases mesophyll cells which are isolated on nylon nets by filtration. More extensive grinding of the remaining tissue yields bundle sheath strands which are isolated by filtration with stainless steel sieves and nylon nets. Further grinding of bundle sheath strands in a tissue homogenizer releases bundle sheath cells which are collected on nylon nets. Percentage of purity derived from cell counts and yield data on a chlorophyll basis are given.The internal leaf cell morphology is presented in scanning electron micrographs and compared with light micrographs of fully-differentiated D. sanguinalis leaves. In leaves of plants which possess the C(4)-dicarboxylic acid cycle of photosynthesis, the relationship of leaf morphology to photosynthesis in mesophyll and bundle sheath cells is considered, and the hypothesis is presented that as atmospheric CO(2) enters a leaf about 85% is fixed by the C(4)-dicarboxylic acid cycle in the mesophyll cells and 10 to 15% is fixed by the reductive pentose phosphate cycle in the bundle sheath cells.A technique also is given for the isolation of mesophyll cells from spinach leaves.

  2. Association analysis for oxalate concentration in spinach

    USDA-ARS?s Scientific Manuscript database

    Screening and breeding low-oxalate germplasm is a major objective in spinach breeding. This research aims to conduct association analysis and identify SNP markers associated with oxalate concentration in spinach germplasm. A total of 310 spinach genotypes including 300 USDA germplasm accessions and ...

  3. Persistence of poultry associated Salmonella spp. on spinach plants

    USDA-ARS?s Scientific Manuscript database

    Introduction: Pre-harvest spinach contamination can occur via irrigation water and can influence the persistence of Salmonella on spinach leaves. Salmonella persistence on spinach plants should be evaluated as nearby poultry farms can be a critical source of contaminated water run-off. Purpose: The...

  4. Impact of Sweet Potato Starch-Based Nanocomposite Films Activated With Thyme Essential Oil on the Shelf-Life of Baby Spinach Leaves

    PubMed Central

    Issa, Aseel; Ibrahim, Salam A.; Tahergorabi, Reza

    2017-01-01

    Salmonella Typhimurium (S. Typhi) and Escherichia coli (E. coli) have been responsible for an increasing number of outbreaks linked to fresh produce, such as baby spinach leaves, in the last two decades. More recently, antimicrobial biodegradable packaging systems have been attracting much attention in the food packaging industry as eco-friendly alternatives to conventional plastic packaging. The objective of this study was to evaluate the effect of antibacterial nanocomposite films on inoculated spinach leaves and on the sensory properties of these leaves during eight days of refrigerated storage. In this study, an antibacterial film comprised of sweet potato starch (SPS), montmorillonite (MMT) nanoclays and thyme essential oil (TEO) as a natural antimicrobial agent was developed. Our results showed that the incorporation of TEO in the film significantly (p < 0.05) reduced the population of E. coli and S. Typhi on fresh baby spinach leaves to below detectable levels within five days, whereas the control samples without essential oil maintained approximately 4.5 Log colony forming unit (CFU)/g. The sensory scores for spinach samples wrapped in films containing TEO were higher than those of the control. This study thus suggests that TEO has the potential to be directly incorporated into a SPS film to prepare antimicrobial nanocomposite films for food packaging applications. PMID:28587199

  5. Assessment of natural sepiolite on cadmium stabilization, microbial communities, and enzyme activities in acidic soil.

    PubMed

    Sun, Yuebing; Sun, Guohong; Xu, Yingming; Wang, Lin; Liang, Xuefeng; Lin, Dasong; Hu, Fazhi

    2013-05-01

    A pot trial was conducted to assess the efficiency of sepiolite-induced cadmium (Cd) immobilization in ultisoils. Under Cd concentrations of 1.25, 2.5, and 5 mg kg(-1), the available Cd in the soil after the application of 1-10 % sepiolite decreased by a maximum of 44.4, 23.0, and 17.0 %, respectively, compared with no sepiolite treatments. The increase in the values of soil enzyme activities and microbial number proved that a certain metabolic recovery occurred after sepiolite treatment. The dry biomass of spinach (Spinacia oleracea) increased with increasing sepiolite concentration in the soil. However, the concentration (dry weight) of Cd in the spinach shoots decreased with the increase in sepiolite dose, with maximum reduction of 92.2, 90.0, and 84.9 %, respectively, compared with that of unamended soils. Under a Cd level of 1.25 mg kg(-1), the Cd concentration in the edible parts of spinach at 1 % sepiolite amendment was lower than 0.2 mg kg(-1) fresh weight, the maximum permissible concentration (MPC) of Cd in vegetable. Even at higher Cd concentrations (2.5 and 5 mg kg(-1)), safe spinach was produced when the sepiolite treatment was up to 5 %. The results showed that sepiolite-assisted remediation could potentially succeed on a field scale by decreasing Cd entry into the food chain.

  6. Spinach downy mildew – Threat, prevention and control

    USDA-ARS?s Scientific Manuscript database

    Downy mildew disease is a widespread and destructive disease of spinach in California and elsewhere where spinach is grown, and is caused by Peronospora effusa, an obligate, plant pathogenic oomycete. As in the case with most other crops damaged by downy mildews, spinach downy mildew culminates in ...

  7. Colonization of spinach (Spinacia oleracea L.) by GFP-tagged verticillium dahliae.

    USDA-ARS?s Scientific Manuscript database

    The soilborne fungus, Verticillium dahliae, causes wilt in a wide range of hosts, including spinach (Spinacia oleracea L.). The interaction between a green fluorescent protein (GFP)-tagged V. dahliae strain and spinach was studied by confocal laser scanning microscopy. The roots of spinach seedlings...

  8. Shifts in spinach microbial communities after chlorine washing and storage at compliant and abusive temperatures

    USDA-ARS?s Scientific Manuscript database

    Fresh produce, such as spinach, harbors large, diverse bacterial populations, including spoilage and potentially pathogenic bacteria. This study examined the effects of produce washing in chlorinated water and subsequent storage on the microbiota of spinach. Baby spinach leaves from a commercial fre...

  9. Genetic diversity and association mapping of mineral element concentrations in spinach leaves

    USDA-ARS?s Scientific Manuscript database

    Spinach is one of the healthiest vegetables in the human diet due to its high concentrations of nutrients and mineral elements. Breeding new spinach cultivars with high nutritional value is one of the main goals in spinach breeding programs worldwide, and identification of single nucleotide polymorp...

  10. Response of Carbon Dioxide Fixation to Water Stress

    PubMed Central

    Plaut, Z.; Bravdo, B.

    1973-01-01

    Application of water stress to isolated spinach (Spinacia oleracea) chloroplasts by redutcion of the osmotic potentials of CO2 fixation media below −6 to −8 bars resulted in decreased rates of fixation regardless of solute composition. A decrease in CO2 fixation rate of isolated chloroplasts was also found when leaves were dehydrated in air prior to chloroplast isolation. An inverse response of CO2 fixation to osmotic potential of the fixation medium was found with chloroplasts isolated from dehydrated leaves—namely, fixation rate was inhibited at −8 bars, compared with −16 or −24 bars. Low leaf water potentials were found to inhibit CO2 fixation of intact leaf discs to almost the same degree as they did CO2 fixation by chloroplasts isolated from those leaves. CO2 fixation by intact leaves was decreased by 50 and 80% when water potentials were reduced from −7.1 to −9.6 and from −7.1 to −17.6 bars, respectively. Transpiration was decreased by only 40 and 60%, under the same conditions. However, correction for the increase in leaf temperature indicated transpiration decreases of 57 and 80%, similar to the relative decreases in CO2 fixation. Despite the 4-fold increase in leaf resistance to CO2 diffusion in the gas phase when the water potential of leaves was reduced from −6.5 to −14.0 bars, an additional increase of about 50% in mesophyll resistance was obtained. CO2 concentration at compensation also increased when leaf water potential was reduced. PMID:16658493

  11. Differences in biofilm formation of produce and poultry Salmonella enterica isolates and their persistence on spinach plants

    USDA-ARS?s Scientific Manuscript database

    Repeat irrigation of spinach plants with water containing Salmonella was used to determine Salmonella persistence on spinach leaves. Spinach plants were irrigated four times (biweekly) with water containing ca. 2.1 log CFU Salmonella per 100 ml water (the maximum generic E. coli MPN recommended by...

  12. [Interspecific relationship and Si, N nutrition of rice in rice-water spinach intercropping system.

    PubMed

    Ning, Chuan Chuan; Yang, Rong Shuang; Cai, Mao Xia; Wang, Jian Wu; Luo, Shi Ming; Cai, Kun Zheng

    2017-02-01

    Intercropping is a sound eco-agriculture model, but aquatic crops (e.g., rice) intercropping is seldom researched. In the present study, rice and water spinach were chosen as the research objects, a field trial was conducted to explore the yields, interspecific relationship and Si, N nutrition of rice under rice-water spinach intercropping for four seasons during two consecutive years (2014-2015). The experiment had five treatments: rice monoculture, water spinach monoculture, and rice-water spinach intercropping ratios of 2:2, 3:2, 4:2, respectively. The results showed that rice-water spinach intercropping significantly increased rice yield, and the increase rates of 2:2, 3:2 and 4:2 intercropping per unit area were 77.5%-120.6%, 64.9%-80.9%, 37.7%-56.0%, respectively. However, intercropping resulted in reduction of water spinach yield. Intercropping significantly increased total yield of rice and water spinach from land equivalent ratios (LER) analysis. The values of LER were more than 1.0, and the ratio of 3:2 intercropping had the best effect. As for the competitive index, rice was more competitive than water spinach in intercropping system, especially in early season. Compared with rice monoculture, rice-water spinach intercropping significantly increased the absorption of Si and N in rice leaves, and Si content of rice leaves during ripening stage, but didn't increase its N content and even slightly reduced it during ripening stage. Intercropping had no significant effect on available Si, ammonium N and nitrate N content in soil. Compared with rice monoculture and intercropping, water spinach monoculture had always the highest available Si, ammonium N and nitrate N contents in soil through the experiment period. The results suggested that rice-spinach intercropping could promote rice to absorb silicon and nitrogen and increase the competitive ability of rice.

  13. Enhanced susceptibility of photosynthesis to low-temperature photoinhibition due to interruption of chill-induced increase of S-adenosylmethionine decarboxylase activity in leaves of spinach (Spinacia oleracea L.).

    PubMed

    He, Lixiong; Nada, Kazuyoshi; Kasukabe, Yoshihisa; Tachibana, Shoji

    2002-02-01

    The possible involvement of polyamines in the chilling tolerance of spinach (Spinacia oleracea L.) was investigated focusing on photosynthesis. During chilling at 8/5C (day/night) for 6 d, S-adenosylmethionine decarboxylase (SAMDC) activity increased significantly in leaves in parallel with the increase in putrescine and spermidine (Spd) content in leaves and chloroplasts. Treatment of leaves with methylglyoxal-bis(guanylhydrazone) (MGBG), an SAMDC inhibitor, resulted in the deterioration of plant growth and photosynthesis under chilling conditions, which was reversed by the concomitant treatment with Spd through the roots. Plants treated with MGBG showed lower photochemical efficiency of PSII than either the control or plants treated with MGBG plus Spd during chilling and even after transfer to warm conditions, suggesting an increase of photoinhibition due to low Spd in chloroplasts. Indeed, MGBG-treated plants had much lower activities of thylakoid electron transport and enzymes in carbon metabolism as well as higher degrees of lipid peroxidation of thylakoid membranes compared to the control. These results indicate that the enhanced activity of SAMDC with a consequential rise of Spd in chloroplasts is crucial for the cold acclimation of the photosynthetic apparatus in spinach leaves.

  14. Agronomic viability of New Zealand spinach and kale intercropping.

    PubMed

    Cecílio, Arthur B; Bianco, Matheus S; Tardivo, Caroline F; Pugina, Gabriel C M

    2017-01-01

    The intercropping is a production system that aims to provide increased yield with less environmental impact, due to greater efficiency in the use of natural resources and inputs involved in the production process. An experiment was carried out to evaluate the agronomic viability of kale and New Zealand spinach intercropping as a function of the spinach transplanting time. (0, 14, 28, 42, 56, 70, 84 and 98 days after transplanting of the kale). The total yield (TY) and yield per harvest (YH) of the kale in intercropping did not differ from those obtained in monoculture. The spinach TY was influenced by the transplanting time, the earlier the transplanting, the higher the TY. The spinach YH was not influenced by the transplanting time, but rather by the cultivation system. In intercropping, the spinach YH was 13.5% lower than in monoculture. The intercropping was agronomically feasible, since the land use efficiency index, which was not influenced by the transplanting time, had an average value of 1.71, indicating that the intercropping produced 71% more kale and spinach than the same area in monoculture. Competitiveness coefficient, aggressiveness and yield loss values showed that kale is the dominating species and spinach is the dominated.

  15. Bioavailability of iron from spinach using an in vitro/human Caco-2 cell bioassay model

    NASA Technical Reports Server (NTRS)

    Rutzke, Corinne J.; Glahn, Raymond P.; Rutzke, Michael A.; Welch, Ross M.; Langhans, Robert W.; Albright, Louis D.; Combs, Gerald F Jr; Wheeler, Raymond M.

    2004-01-01

    Spinach (Spinacia oleracea) cv Whitney was tested for iron bioavailabilty using an in vitro human intestinal cell culture ferritin bioassay technique previously developed. Spinach was cultured in a growth chamber for 33 days, harvested, and freeze-dried. Total iron in the samples was an average of 71 micrograms/g dry weight. Spinach was digested in vitro (pepsin and 0.1 M HCl followed by pancreatin and 0.1 M NaHCO3) with and without the addition of supplemental ascorbic acid. Caco-2 cell cultures were used to determine iron bioavailability from the spinach mixtures. Production of the iron-binding protein ferritin in the Caco-2 cells showed the supplemental ascorbic acid doubled bioavailability of iron from spinach. The data show fresh spinach is a poor source of iron, and emphasize the importance of evaluation of whole meals rather than single food items. The data support the usefulness of the in vitro/Caco-2 cell ferritin bioassay model for prescreening of space flight diets for bioavailable iron.

  16. Using a Specific RNA-Protein Interaction To Quench the Fluorescent RNA Spinach.

    PubMed

    Roszyk, Laura; Kollenda, Sebastian; Hennig, Sven

    2017-12-15

    RNAs are involved in interaction networks with other biomolecules and are crucial for proper cell function. Yet their biochemical analysis remains challenging. For Förster Resonance Energy Transfer (FRET), a common tool to study such interaction networks, two interacting molecules have to be fluorescently labeled. "Spinach" is a genetically encodable RNA aptamer that starts to fluoresce upon binding of an organic molecule. Therefore, it is a biological fluorophore tag for RNAs. However, spinach has never been used in a FRET assembly before. Here, we describe how spinach is quenched when close to acceptors. We used RNA-DNA hybridization to bring quenchers or red organic dyes in close proximity to spinach. Furthermore, we investigate RNA-protein interactions quantitatively on the example of Pseudomonas aeruginosa phage coat protein 7 (PP7) and its interacting pp7-RNA. We utilize spinach quenching as a fully genetically encodable system even under lysate conditions. Therefore, this work represents a direct method to analyze RNA-protein interactions by quenching the spinach aptamer.

  17. High-Level Culturability of Epiphytic Bacteria and Frequency of Biosurfactant Producers on Leaves

    PubMed Central

    Burch, Adrien Y.; Do, Paulina T.; Sbodio, Adrian; Suslow, Trevor V.

    2016-01-01

    ABSTRACT To better characterize the bacterial community members capable of biosurfactant production on leaves, we distinguished culturable biosurfactant-producing bacteria from nonproducers and used community sequencing to compare the composition of these distinct cultured populations with that from DNA directly recovered from leaves. Communities on spinach, romaine, and head lettuce leaves were compared with communities from adjacent samples of soil and irrigation source water. Soil communities were poorly described by culturing, with recovery of cultured representatives from only 21% of the prevalent operational taxonomic units (OTUs) (>0.2% reads) identified. The dominant biosurfactant producers cultured from soil included bacilli and pseudomonads. In contrast, the cultured communities from leaves are highly representative of the culture-independent communities, with over 85% of the prevalent OTUs recovered. The dominant taxa of surfactant producers from leaves were pseudomonads as well as members of the infrequently studied genus Chryseobacterium. The proportions of bacteria cultured from head lettuce and romaine leaves that produce biosurfactants were directly correlated with the culture-independent proportion of pseudomonads in a given sample, whereas spinach harbored a wider diversity of biosurfactant producers. A subset of the culturable bacteria in irrigation water also became enriched on romaine leaves that were irrigated overhead. Although our study was designed to identify surfactant producers on plants, we also provide evidence that most bacteria in some habitats, such as agronomic plant surfaces, are culturable, and these communities can be readily investigated and described by more classical culturing methods. IMPORTANCE The importance of biosurfactant production to the bacteria that live on waxy leaf surfaces as well as their ability to be accurately assessed using culture-based methodologies was determined by interrogating epiphytic populations by both culture-dependent and culture-independent methods. Biosurfactant production was much more frequently observed in cultured communities on leaves than in other nearby habitats, such as soil and water, suggesting that this trait is important to life on a leaf by altering either the leaf itself or the interaction of bacteria with water. While pseudomonads were the most common biosurfactant producers isolated, this habitat also selects for taxa, such as Chryseobacterium, for which this trait was previously unrecognized. The finding that most epiphytic bacterial taxa were culturable validates strategies using more classical culturing methodologies for their study in this habitat. PMID:27474719

  18. Inoculating chlamydospores of Trichoderma asperellum SM-12F1 changes arsenic availability and enzyme activity in soils and improves water spinach growth.

    PubMed

    Su, Shiming; Zeng, Xibai; Bai, Lingyu; Williams, Paul N; Wang, Yanan; Zhang, Lili; Wu, Cuixia

    2017-05-01

    Arsenic (As)-contaminated agricultural soils threaten crop yields and pose a human health risk. Augmentation of exogenous microorganisms exhibiting plant-growth promoting and As speciation changing shows potential to improve crop growth and change soil As availability. Trichoderma asperellum SM-12F1 exhibiting both traits was developed into chlamydospores to improve its persistence in contaminated soils. After inoculation, As availability and enzyme activity in two types of soils and the growth as well as As uptake of water spinach (Ipomoea aquatic Forsk.) were investigated. The results indicated that inoculation significantly improved water spinach growth in both soils. Inoculating chlamydospores at 5% significantly increased As concentration (139%), bioconcentration factor (150%), and translocation factor (150%) in water spinach grown in Chenzhou (CZ) soils, while no significant change for these in Shimen (SM) soils. Inoculating chlamydospores at 5% caused a significant increase (16%) of available As content in CZ soils, while a significant decrease (13%) in SM soils. Inoculation significantly caused As methylation in both soils, while significant As reduction merely observed in CZ soils. The differential changes in available As contents in both soils were attributed to the soil pH, As fractionations and speciation characteristics. Furthermore, Inoculating chlamydospores at 5% significantly improved the activities of β-glucosidase (155%), chitinase (211%), and phosphatase (108%) in SM soils, while significant decreases in β-glucosidase (81%), phosphatase (54%), aminopeptidase (60%), and catalase (67%) in CZ soils. Bioaugmentation and As availability change were responsible for this result. These observations will be helpful for the application of fungal chlamydospores in the future bioremediation. Copyright © 2017. Published by Elsevier Ltd.

  19. Distinct Transcriptional Profiles and Phenotypes Exhibited by Escherichia coli O157:H7 Isolates Related to the 2006 Spinach-Associated Outbreak

    PubMed Central

    Kyle, Jennifer L.; Huynh, Steven; Carter, Michelle Q.; Brandl, Maria T.; Mandrell, Robert E.

    2012-01-01

    In 2006, a large outbreak of Escherichia coli O157:H7 was linked to the consumption of ready-to-eat bagged baby spinach in the United States. The likely sources of preharvest spinach contamination were soil and water that became contaminated via cattle or feral pigs in the proximity of the spinach fields. In this study, we compared the transcriptional profiles of 12 E. coli O157:H7 isolates that possess the same two-enzyme pulsed-field gel electrophoresis (PFGE) profile and are related temporally or geographically to the above outbreak. These E. coli O157:H7 isolates included three clinical isolates, five isolates from separate bags of spinach, and single isolates from pasture soil, river water, cow feces, and a feral pig. The three clinical isolates and two spinach bag isolates grown in cultures to stationary phase showed decreased expression of many σS-regulated genes, including gadA, osmE, osmY, and katE, compared with the soil, water, cow, feral pig, and the other three spinach bag isolates. The decreased expression of these σS-regulated genes was correlated with the decreased resistance of the isolates to acid stress, osmotic stress, and oxidative stress but increases in scavenging ability. We also observed that intraisolate variability was much more pronounced among the clinical and spinach isolates than among the environmental isolates. Together, the transcriptional and phenotypic differences of the spinach outbreak isolates of E. coli O157:H7 support the hypothesis that some variants within the spinach bag retained characteristics of the preharvest isolates, whereas other variants with altered gene expression and phenotypes infected the human host. PMID:22081562

  20. Survival and transfer of murine norovirus 1, a surrogate for human noroviruses, during the production process of deep-frozen onions and spinach.

    PubMed

    Baert, Leen; Uyttendaele, Mieke; Vermeersch, Mattias; Van Coillie, Els; Debevere, Johan

    2008-08-01

    The reduction of murine norovirus 1 (MNV-1) on onions and spinach by washing was investigated as was the risk of contamination during the washing procedure. To decontaminate wash water, the industrial sanitizer peracetic acid (PAA) was added to the water, and the survival of MNV-1 was determined. In contrast to onions, spinach undergoes a heat treatment before freezing. Therefore, the resistance of MNV-1 to blanching of spinach was examined. MNV-1 genomic copies were detected with a real-time reverse transcription PCR assay in PAA-treated water and blanched spinach, and PFUs (representing infectious MNV-1 units) were determined with a plaque assay. A < or = 1-log reduction in MNV-1 PFUs was achieved by washing onion bulbs and spinach leaves. More than 3 log PFU of MNV-1 was transmitted to onion bulbs and spinach leaves when these vegetables were washed in water containing approximately 5 log PFU/ml. No decline of MNV-1 occurred in used industrial spinach wash water after 6 days at room temperature. A concentration of 20 ppm of PAA in demineralized water (pH 4.13) and in potable water (pH 7.70) resulted in reductions of 2.88 +/- 0.25 and 2.41 +/- 0.18 log PFU, respectively, after 5 min of exposure, but no decrease in number of genomic copies was observed. No reduction of MNV-1 PFUs was observed on frozen onions or spinach during storage for 6 months. Blanching spinach (80 degrees C for 1 min) resulted in at least 2.44-log reductions of infectious MNV-1, but many genomic copies were still present.

  1. Distribution of Metabolites between Chloroplast and Cytoplasm during the Induction Phase of Photosynthesis in Leaf Protoplasts 1

    PubMed Central

    Robinson, Simon P.; Walker, David A.

    1980-01-01

    A method for rapid separation of the chloroplast and cytoplasmic fractions from isolated leaf protoplasts of wheat and spinach has been used to determine the distribution of 14C-labeled products during photosynthesis. In the dark, CO2 fixation was only 1 to 2% of that in the light and the products were mainly in the cytoplasmic fraction suggesting fixation by phosphoenolpyruvate carboxylase. Label appeared rapidly in the chloroplast fraction following illumination but the amount leveled off after 4 to 5 minutes reflecting the buildup of intermediates to steady state levels. There was only a slight lag before label appeared in the cytoplasmic fraction and it continued to increase at a constant rate reflecting synthesis of neutral products. In the light, the percentage of label in the chloroplast fraction decreased rapidly in the first minute of illumination and was only 10 to 20% in the steady-state. It is suggested that the chloroplast phosphate transporter promotes a rapid transfer of sugar phosphates from the chloroplast to the cytoplasm, even during the induction phase of photosynthesis. PMID:16661305

  2. Uptake of different species of iodine by water spinach and its effect to growth.

    PubMed

    Weng, Huan-Xin; Yan, Ai-Lan; Hong, Chun-Lai; Xie, Lin-Li; Qin, Ya-Chao; Cheng, Charles Q

    2008-08-01

    A hydroponic experiment has been carried out to study the influence of iodine species [iodide (I(-)), iodate (IO(-)(3)), and iodoacetic acid (CH(2)ICOO(-))] and concentrations on iodine uptake by water spinach. Results show that low levels of iodine in the nutrient solution can effectively stimulate the growth of biomass of water spinach. When iodine levels in the nutrient solution are from 0 to 1.0 mg/l, increases in iodine levels can linearly augment iodine uptake rate by the leafy vegetables from all three species of iodine, and the uptake effects are in the following order: CH(2)ICOO(-) >I(-)>IO(-)(3). In addition, linear correlation was observed between iodine content in the roots and shoots of water spinach, and their proportion is 1:1. By uptake of I(-), vitamin C (Vit C) content in water spinach increased, whereas uptake of IO(-)(3) and CH(2)ICOO(-) decreased water spinach Vit C content. Furthermore, through uptake of I(-) and IO(-)(3). The nitrate content in water spinach was increased by different degrees.

  3. A novel membrane based process to isolate photosystem-I membrane complex from spinach.

    PubMed

    Liu, Jianguo; Yin, Mengmeng; Wang, Meng; Zhang, Xuefang; Ge, Baosheng; Liu, Shuang; Lu, Jianren; Cui, Zhanfeng

    2011-02-01

    The isolation of photosystem-I (PS-I) from spinach has been conducted using ultrafiltration with 300 kDa molecular weight cut-off polyethersulfone membranes. The effects of ultrafiltration operating conditions on PS-I activity were optimized using parameter scanning ultrafiltration. These conditions included solution pH, ionic strength, stirring speed, and permeate flux. The effects of detergent (Triton X-100 and n-dodecyl-beta-D-maltoside) concentration on time dependent activity of PS-I were also studied using an O(2) electrode. Under optimized conditions, the PS-I purity obtained in the retentate was about 84% and the activity recovery was greater than 94% after ultrafiltration. To our knowledge, this is the first report of the isolation of a membrane protein using ultrafiltration alone.

  4. Surface Structures Involved in Plant Stomata and Leaf Colonization by Shiga-Toxigenic Escherichia Coli O157:H7

    PubMed Central

    Saldaña, Zeus; Sánchez, Ethel; Xicohtencatl-Cortes, Juan; Puente, Jose Luis; Girón, Jorge A.

    2011-01-01

    Shiga-toxigenic Escherichia coli (STEC) O157:H7 uses a myriad of surface adhesive appendages including pili, flagella, and the type 3 secretion system (T3SS) to adhere to and inflict damage to the human gut mucosa. Consumption of contaminated ground beef, milk, juices, water, or leafy greens has been associated with outbreaks of diarrheal disease in humans due to STEC. The aim of this study was to investigate which of the known STEC O157:H7 adherence factors mediate colonization of baby spinach leaves and where the bacteria reside within tainted leaves. We found that STEC O157:H7 colonizes baby spinach leaves through the coordinated production of curli, the E. coli common pilus, hemorrhagic coli type 4 pilus, flagella, and T3SS. Electron microscopy analysis of tainted leaves revealed STEC bacteria in the internal cavity of the stomata, in intercellular spaces, and within vascular tissue (xylem and phloem), where the bacteria were protected from the bactericidal effect of gentamicin, sodium hypochlorite or ozonated water treatments. We confirmed that the T3S escN mutant showed a reduced number of bacteria within the stomata suggesting that T3S is required for the successful colonization of leaves. In agreement, non-pathogenic E. coli K-12 strain DH5α transformed with a plasmid carrying the locus of enterocyte effacement (LEE) pathogenicity island, harboring the T3SS and effector genes, internalized into stomata more efficiently than without the LEE. This study highlights a role for pili, flagella, and T3SS in the interaction of STEC with spinach leaves. Colonization of plant stomata and internal tissues may constitute a strategy by which STEC survives in a nutrient-rich microenvironment protected from external foes and may be a potential source for human infection. PMID:21887151

  5. The use of a single multielement standard for trace analysis in biological materials by external beam PIXE

    NASA Astrophysics Data System (ADS)

    Biswas, S. K.; Khaliquzzaman, M.; Islam, M. M.; Khan, A. H.

    1984-04-01

    The validity of the use of a single multielement standard for mass calibration in thick-target external beam PIXE analysis of biological materials has been investigated. In this study, the NBS orchard leaf, SRM 1571, was used as the basic standard for trace element analysis in other biological materials. Using the present procedure, the concentrations of K, Ca, Mn, Fe, Ni, Cu, Zn, Br, Rb and Sr were determined in several NBS reference materials such as bovine liver, spinach, rice flour, etc., generally in 20 μC irradiations with 2.0 MeV protons. The analytical results are compared with certified values of the NBS as well as with other measurements and the sources of errors are discussed.

  6. Shifts in spinach microbial communities after chlorine washing and storage at compliant and abusive temperatures.

    PubMed

    Gu, Ganyu; Ottesen, Andrea; Bolten, Samantha; Ramachandran, Padmini; Reed, Elizabeth; Rideout, Steve; Luo, Yaguang; Patel, Jitendra; Brown, Eric; Nou, Xiangwu

    2018-08-01

    Fresh produce, like spinach, harbors diverse bacterial populations, including spoilage and potentially pathogenic bacteria. This study examined the effects of produce washing in chlorinated water and subsequent storage on the microbiota of spinach. Baby spinach leaves from a commercial fresh-cut produce processor were assessed before and after washing in chlorinated water, and then after one week's storage at 4, 10, and 15 °C. Microbial communities on spinach were analyzed by non-selective plating, qPCR, and 16S rDNA amplicon sequencing. Bacterial populations on spinach, averaging 6.12 ± 0.61 log CFU/g, were reduced by 1.33 ± 0.57 log after washing. However, populations increased by 1.77-3.24 log after storage, with larger increases occurring at higher temperature (15 > 10 > 4 °C). The predominant phylum identified on unwashed spinach leaves was Proteobacteria; dominant genera were Pseudomonas and Sphingomonas. Bacterial communities shifted significantly after chlorine washing and storage. Several Proteobacteria species, such as Stenotrophomonas sp. and Erwinia sp., were relatively tolerant of chlorine treatment, while species of Flavobacterium and Pedobacter (phylum Bacteroidetes) grew rapidly during storage, especially at abusive temperatures. Cupriavidus sp. and Ralstonia sp. showed significant increases after washing. After storage, microbial communities on spinach appeared to shift back toward the pre-washing distributions. Copyright © 2018. Published by Elsevier Ltd.

  7. Flavonoid-rich apples and nitrate-rich spinach augment nitric oxide status and improve endothelial function in healthy men and women: a randomized controlled trial.

    PubMed

    Bondonno, Catherine P; Yang, Xingbin; Croft, Kevin D; Considine, Michael J; Ward, Natalie C; Rich, Lisa; Puddey, Ian B; Swinny, Ewald; Mubarak, Aidilla; Hodgson, Jonathan M

    2012-01-01

    Flavonoids and nitrates in fruits and vegetables may protect against cardiovascular disease. Dietary flavonoids and nitrates can augment nitric oxide status via distinct pathways, which may improve endothelial function and lower blood pressure. Recent studies suggest that the combination of flavonoids and nitrates can enhance nitric oxide production in the stomach. Their combined effect in the circulation is unclear. Here, our objective was to investigate the independent and additive effects of flavonoid-rich apples and nitrate-rich spinach on nitric oxide status, endothelial function, and blood pressure. A randomized, controlled, crossover trial with healthy men and women (n=30) was conducted. The acute effects of four energy-matched treatments (control, apple, spinach, and apple+spinach), administered in random order, were compared. Measurements included plasma nitric oxide status, assessed by measuring S-nitrosothiols+other nitrosylated species (RXNO) and nitrite, blood pressure, and endothelial function, measured as flow-mediated dilatation of the brachial artery. Results are means and 95% CI. Relative to control, all treatments resulted in higher RXNO (control, 33 nmol/L, 26, 42; apple, 51 nmol/L, 40, 65; spinach, 86 nmol/L, 68, 110; apple+spinach, 69 nmol/L, 54, 88; P<0.01) and higher nitrite (control, 35 nmol/L, 27, 46; apple, 69 nmol/L, 53, 90; spinach, 99 nmol/L, 76, 129; apple+spinach, 80 nmol/L, 61, 104; P<0.01). Compared to control, all treatments resulted in higher flow-mediated dilatation (P<0.05) and lower pulse pressure (P<0.05), and apple and spinach resulted in lower systolic blood pressure (P<0.05). No significant effect was observed on diastolic blood pressure. The combination of apple and spinach did not result in additive effects on nitric oxide status, endothelial function, or blood pressure. In conclusion, flavonoid-rich apples and nitrate-rich spinach can independently augment nitric oxide status, enhance endothelial function, and lower blood pressure acutely, outcomes that may benefit cardiovascular health. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Protein phosphorylation as a mechanism for osmotic-stress activation of sucrose-phosphate synthase in spinach leaves.

    PubMed

    Toroser, D; Huber, S C

    1997-07-01

    Experiments were performed to investigated the mechanism of sucrose-phosphate synthase (SPS) activation by osmotic stress in darkened spinach (Spinacia oleracea L.) leaves. The activation was stable through immunopurification and was not the result of an increased SPS protein level. The previously described Ca(2+)-independent peak III kinase, obtained by ion-exchange chromatography, is confirmed to be the predominant enzyme catalyzing phosphorylation and inactivation of dephosphoserine-158-SPS. A new, Ca(2+)-dependent SPS-protein kinase activity (peak IV kinase) was also resolved and shown to phosphorylate and activate phosphoserine-158-SPS in vitro. The peak IV kinase also phosphorylated a synthetic peptide (SP29) based on the amino acid sequence surrounding serine-424, which also contains the motif described for the serine-158 regulatory phosphorylation site; i.e. basic residues at P-3 and P-6 and a hydrophobic residue at P-5. Peak IV kinase had a native molecular weight of approximately 150,000 as shown by gel filtration. The SP29 peptide was not phosphorylated by the inactivating peak III kinase. Osmotically stressed leaves showed increased peak IV kinase activity with the SP29 peptide as a substrate. Tryptic 32P-phosphopeptide analysis of SPS from excised spinach leaves fed [32P]inorganic P showed increased phosphorylation of the tryptic peptide containing serine-424. Therefore, at least part of the osmotic stress activation of SPS in dark leaves results from phosphorylation of serine-424 catalyzed by a Ca(2+)-dependent, 150-kD protein kinase.

  9. cDNA cloning and analysis of betaine aldehyde dehydrogenase, a salt inducible enzyme in sugar beet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCue, K.F.; Hanson, A.D.

    1990-05-01

    Betaine accumulates and serves as a compatible osmolyte in some plants subjected to drought or salinity stress. The last enzyme in the betaine biosynthetic pathway is betaine aldehyde dehydrogenase (BADH). The activity of BADH increases in response to increasing salinity levels. This increase in activity corresponds to an increase in protein detectable by immunoblotting, and to an increase in the translatable BADH mRNA. BADH was cloned from a cDNA library constructed in {lambda}gt10 using poly(A){sup +} RNA from sugar beets salinized to 500 mM NaCl. cDNAs were size selected (>1kb) before ligation into the vector, and the library was screenedmore » with a spinach BADH cDNA probe. Three nearly full length clones obtained were confirmed as BADH by their nucleotide and deduced amino acid homology to spinach BADH. Clones averaged 1.8 kb and contained open reading frames of 500 amino acids at 80% identity with spinach BADH. RNA gel blot analysis of poly(A){sup +} RNA indicated that salinization to 500 mM NaCl resulted in a 5-fold increase of BADH mRNA level.« less

  10. Generic Escherichia coli Contamination of Spinach at the Preharvest Stage: Effects of Farm Management and Environmental Factors

    PubMed Central

    Navratil, Sarah; Gregory, Ashley; Bauer, Arin; Srinath, Indumathi; Jun, Mikyoung; Szonyi, Barbara; Nightingale, Kendra; Anciso, Juan; Ivanek, Renata

    2013-01-01

    The objective of this study was to determine the effects of farm management and environmental factors on preharvest spinach contamination with generic Escherichia coli as an indicator of fecal contamination. A repeated cross-sectional study was conducted by visiting spinach farms up to four times per growing season over a period of 2 years (2010 to 2011). Spinach samples (n = 955) were collected from 12 spinach farms in Colorado and Texas as representative states of the Western and Southwestern United States, respectively. During each farm visit, farmers were surveyed about farm-related management and environmental factors using a questionnaire. Associations between the prevalence of generic E. coli in spinach and farm-related factors were assessed by using a multivariable logistic regression model including random effects for farm and farm visit. Overall, 6.6% of spinach samples were positive for generic E. coli. Significant risk factors for spinach contamination with generic E. coli were the proximity (within 10 miles) of a poultry farm, the use of pond water for irrigation, a >66-day period since the planting of spinach, farming on fields previously used for grazing, the production of hay before spinach planting, and the farm location in the Southwestern United States. Contamination with generic E. coli was significantly reduced with an irrigation lapse time of >5 days as well as by several factors related to field workers, including the use of portable toilets, training to use portable toilets, and the use of hand-washing stations. To our knowledge, this is the first report of an association between field workers' personal hygiene and produce contamination with generic E. coli at the preharvest level. Collectively, our findings support that practice of good personal hygiene and other good farm management practices may reduce produce contamination with generic E. coli at the preharvest level. PMID:23666336

  11. Lettuce and spinach breeding

    USDA-ARS?s Scientific Manuscript database

    Lettuce and spinach production is beset by numerous biotic an abiotic challenges. This report to the California Leafy Greens Research Program annual meeting provides an update by the ‘Genetic Enhancement of Lettuce, Spinach, Melon, and Related Species’ project at Salinas on the genetics and breeding...

  12. Construction of a high-density genetic map and the X/Y sex-determining gene mapping in spinach based on large-scale markers developed by specific-locus amplified fragment sequencing (SLAF-seq).

    PubMed

    Qian, Wei; Fan, Guiyan; Liu, Dandan; Zhang, Helong; Wang, Xiaowu; Wu, Jian; Xu, Zhaosheng

    2017-04-04

    Cultivated spinach (Spinacia oleracea L.) is one of the most widely cultivated types of leafy vegetable in the world, and it has a high nutritional value. Spinach is also an ideal plant for investigating the mechanism of sex determination because it is a dioecious species with separate male and female plants. Some reports on the sex labeling and localization of spinach in the study of molecular markers have surfaced. However, there have only been two reports completed on the genetic map of spinach. The lack of rich and reliable molecular markers and the shortage of high-density linkage maps are important constraints in spinach research work. In this study, a high-density genetic map of spinach based on the Specific-locus Amplified Fragment Sequencing (SLAF-seq) technique was constructed; the sex-determining gene was also finely mapped. Through bio-information analysis, 50.75 Gb of data in total was obtained, including 207.58 million paired-end reads. Finally, 145,456 high-quality SLAF markers were obtained, with 27,800 polymorphic markers and 4080 SLAF markers were finally mapped onto the genetic map after linkage analysis. The map spanned 1,125.97 cM with an average distance of 0.31 cM between the adjacent marker loci. It was divided into 6 linkage groups corresponding to the number of spinach chromosomes. Besides, the combination of Bulked Segregation Analysis (BSA) with SLAF-seq technology(super-BSA) was employed to generate the linkage markers with the sex-determining gene. Combined with the high-density genetic map of spinach, the sex-determining gene X/Y was located at the position of the linkage group (LG) 4 (66.98 cM-69.72 cM and 75.48 cM-92.96 cM), which may be the ideal region for the sex-determining gene. A high-density genetic map of spinach based on the SLAF-seq technique was constructed with a backcross (BC 1 ) population (which is the highest density genetic map of spinach reported at present). At the same time, the sex-determining gene X/Y was mapped to LG4 with super-BSA. This map will offer a suitable basis for further study of spinach, such as gene mapping, map-based cloning of Specific genes, quantitative trait locus (QTL) mapping and marker-assisted selection (MAS). It will also provide an efficient reference for studies on the mechanism of sex determination in other dioecious plants.

  13. Biphasic Activation of Ribulose Bisphosphate Carboxylase in Spinach Leaves as Determined from Nonsteady-State CO2 Exchange 1

    PubMed Central

    Woodrow, Ian E.; Mott, Keith A.

    1992-01-01

    The activation kinetics of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) following an increase in photon flux density (PFD) were studied by analyzing CO2 assimilation time courses in spinach leaves (Spinacia oleracea). When leaves were exposed to 45 minutes of darkness before illumination at 690 micromoles per square meter per second, Rubisco activation followed apparent first-order kinetics with a relaxation time of about 3.8 minutes. But when leaves were illuminated for 45 minutes at 160 micromoles per square meter per second prior to illumination at 690 micromoles per square meter per second the relaxation time for Rubisco activation was only 2.1 minutes. The kinetics of this change in relaxation times were investigated by exposing dark-adapted leaves to 160 micromoles per square meter per second for different periods before increasing the PFD to 690 micromoles per square meter per second. It was found that the apparent relaxation time for Rubisco activation changed from 3.8 to 2.1 minutes slowly, requiring at least 8 minutes for completion. This result indicates that at least two sequential, slow processes are involved in light-mediated activation of Rubisco in spinach leaves and that the relaxation times characterizing these two processes are about 4 and 2 minutes, respectively. The kinetics of the first process in the reverse direction and the dependence of the relaxation time for the second process on the magnitude of the increase in PFD were also determined. Evidence that the first slow process is activation of the enzyme Rubisco activase and that the second slow process is the catalytic activation of Rubisco by activase is discussed. PMID:16668865

  14. A qPCR assay for detection and quantification of Verticillium dahliae in spinach seed.

    USDA-ARS?s Scientific Manuscript database

    The fungus Verticillium dahliae is the causal agent of Verticillium wilt of lettuce and other specialty crops in the Salinas Valley of California. Spinach, another major specialty crop in California, is not affected by Verticillium wilt in commercial production. However, spinach seed infected with ...

  15. Development of a qPCR assay for quantification of verticillium dahliae in spinach seed.

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt, caused by the soilborne fungus Verticillium dahliae, is an important disease of lettuce and other specialty crops in the Salinas Valley of California. Although spinach is not affected by Verticillium wilt in commercial production, spinach seed infected with V. dahliae from locatio...

  16. Microbiological quality of spinach irrigated with reclaimed wastewater and roof-harvest water

    USDA-ARS?s Scientific Manuscript database

    Aims: The effect of reclaimed wastewater (RCW) and roof-harvest rainwater (RHW) on microbiological quality of irrigated spinach was investigated. Methods and Results: Spinach grown in controlled environment chamber was irrigated by RCW, RHW, or creek water (CW; control water) for four weeks, and th...

  17. Season-long dynamics of spinach downy mildew determined by spore trapping and disease

    USDA-ARS?s Scientific Manuscript database

    Peronospora effusa is an obligate oomycete pathogen, and the cause of downy mildew of spinach. Downy mildew threatens sustainable production of fresh market organic spinach in California, and routine fungicide sprays are often necessary for conventional production. In this study, airborne P. effus...

  18. Effect of green spinach (Amaranthus tricolor L.) and tomato (Solanum lycopersicum) addition in physical, chemical, and sensory properties of marshmallow as an alternative prevention of iron deficiency anemia

    NASA Astrophysics Data System (ADS)

    Yudhistira, B.; Affandi, D. R.; Nusantari, P. N.

    2018-01-01

    Iron deficiency anemia is the most common nutritional disorder in the world. Consuming vegetable which contain iron, including spinach, is an alternative to fulfill iron requirement. Fe will be more easily absorbed in the presence of vitamin C. Tomato is one of vitamin C source that can be used. Spinach can be applied into confectionary products in the form of marshmallow. This research aimed to find out the physical, chemical and sensory properties of green spinach Marshmallow in addition of Tomato, the best formula, and define the category of nutrition contents based on Acuan Label Gizi (ALG). This study used a completely randomized design (CRD) with one factor that was different proportion of spinach:tomato (75%: 25%; 50%: 50%; 25%: 75%). The data were analyzed using One Way Anova with 5% significance level. The result of this study showed that the difference of spinach and tomato proportion affect tensile strength, moisture, ash content, Fe content, crude fiber, vitamin C, color and marshmallow’s flavor. Best marshmallow formulation of 25% spinach in addition of 75% tomato had Fe content of 1.159 mg/100g and vitamin C of 44 mg/100g.

  19. Immunostimulatory effect of spinach aqueous extract on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages.

    PubMed

    Ishida, Momoko; Ose, Saya; Nishi, Kosuke; Sugahara, Takuya

    2016-07-01

    We herein report the immunostimulatory effect of spinach aqueous extract (SAE) on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages. SAE significantly enhanced the production of interleukin (IL)-6 and tumor necrosis factor-α by both J774.1 cells and peritoneal macrophages by enhancing the expression levels of these cytokine genes. In addition, the phagocytosis activity of J774.1 cells was facilitated by SAE. Immunoblot analysis revealed that SAE activates mitogen-activated protein kinase and nuclear factor-κB cascades. It was found that SAE activates macrophages through not only TLR4, but also other receptors. The production of IL-6 was significantly enhanced by peritoneal macrophages from SAE-administered BALB/c mice, suggesting that SAE has a potential to stimulate macrophage activity in vivo. Taken together, these data indicate that SAE would be a beneficial functional food with immunostimulatory effects on macrophages.

  20. Plasmolysis and vital staining reveal viable oospores of Peronospora effusa in spinach seed lots

    USDA-ARS?s Scientific Manuscript database

    Production of oospores by Peronospora effusa, the causal agent of downy mildew on spinach (Spinacia oleracea), was reported on spinach seed over three decades ago. In view of the rapid proliferation of new races of P. effusa worldwide, seed borne transmission has been suspected but methods to test ...

  1. Effects of substrate type on plant growth and nitrogen and nitrate concentration in spinach

    USDA-ARS?s Scientific Manuscript database

    The effects of three commercial substrates (a mixture of forest residues, composted grape husks, and white peat; black peat; and coir) on plant growth and nitrogen (N) and nitrate (NO3) concentration and content were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were trans...

  2. Ultrasound enhanced sanitizer efficacy in reduction of Escherichia coli O157:H7 population on spinach leaves

    USDA-ARS?s Scientific Manuscript database

    The use of ultrasound to enhance the efficacy of selected sanitizers in reduction of Escherichia coli O157:H7 populations on spinach was investigated. Spot-inoculated spinach samples were treated with water, chlorine, acidified sodium chlorite (ASC), peroxyacetic acid (POAA), and acidic electrolyzed...

  3. Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea).

    PubMed

    Yoon, Young-Eun; Kuppusamy, Saranya; Cho, Kye Man; Kim, Pil Joo; Kwack, Yong-Bum; Lee, Yong Bok

    2017-01-15

    The contents of soluble sugars (sucrose, fructose, glucose, maltose and raffinose), vitamin C and free amino acids (34 compounds, essential and non-essential) were quantified in open-field and greenhouse-grown spinaches in response to cold stress using liquid chromatography. In general, greenhouse cultivation produced nutritionally high value spinach in a shorter growing period, where the soluble sugars, vitamin C and total amino acids concentrations, including essential were in larger amounts compared to those grown in open-field scenarios. Further, low temperature exposure of spinach during a shorter growth period resulted in the production of spinach with high sucrose, ascorbate, proline, gamma-aminobutyric acid, valine and leucine content, and these constitute the most important energy/nutrient sources. In conclusion, cultivation of spinach in greenhouse at a low temperature (4-7°C) and exposure for a shorter period (7-21days) before harvest is recommended. This strategy will produce a high quality product that people can eat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Identification of Key Root Volatiles Signaling Preference of Tomato Over Spinach by the Root Knot Nematode Meloidogyne incognita.

    PubMed

    Murungi, Lucy K; Kirwa, Hillary; Coyne, Danny; Teal, Peter E A; Beck, John J; Torto, Baldwyn

    2018-06-25

    The root knot nematode, Meloidogyne incognita (Kofoid and White) Chitwood, is a serious pest of tomato (Solanum lycopersicum) and spinach (Spinacea oleracea) in sub-Saharan Africa. In East Africa these two crops are economically important and are commonly intercropped by smallholder farmers. The role of host plant volatiles in M. incognita interactions with these two commodities is currently unknown. Here, we investigate the olfactory basis of attraction of tomato and spinach roots by the infective second stage juveniles (J2s) of M. incognita. In olfactometer assays, J2s were attracted to root volatiles from both crops over moist sand (control), but in choice tests using the two host plants, volatiles of tomato roots were more attractive than those released by spinach. Root volatiles sampled by solid phase micro-extraction (SPME) fiber and analysed by gas chromatography/mass spectrometry (GC/MS) identified a total of eight components, of which five (2-isopropyl-3-methoxypyrazine, 2-(methoxy)-3-(1-methylpropyl)pyrazine, tridecane, and α- and β-cedrene) occurred in the root-emitted volatiles of both plants, with three (δ-3-carene, sabinene and methyl salicylate) being specific to tomato root volatiles. In a series of bioassays, methyl salicylate contributed strongly to the attractiveness of tomato, whereas 2-isopropyl-3-methoxypyrazine and tridecane contributed to the attractiveness of spinach. M. incognita J2s were also more attracted to natural spinach root volatiles when methyl salicylate was combined, than to spinach volatiles alone, indicating that the presence of methyl salicylate in tomato volatiles strongly contributes to its preference over spinach. Our results indicate that since both tomato and spinach roots are attractive to M. incognita, identifying cultivars of these two plant species that are chemically less attractive can be helpful in the management of root knot nematodes.

  5. Fat Metabolism in Higher Plants

    PubMed Central

    Jacobson, Bruce S.; Jaworski, J. G.; Stumpf, P. K.

    1974-01-01

    Stearyl-acyl carrier protein desaturase (EC 1.14.99.6), present in the stroma fraction of spinach (Spinacia oleracea) chloroplasts, rapidly desaturated enzymatically prepared stearyl-acyl carrier protein to oleic acid. No other substrates were desaturated. In addition to stearyl-acyl carrier protein, reduced ferredoxin was an essential component of the system. The electron donor systems were either ascorbate, dichlorophenolindophenol, photosystem I and light, or NADPH and ferredoxin-NADP reductase. The desaturase was more active in extracts prepared from chloroplasts obtained from immature spinach leaves than from mature leaves. Stearyl-acyl carrier protein desaturase also occurs in soluble extracts of avocado (Persea americana Mill.) mesocarp and of developing safflower (Carthamus tinctorius) seeds. PMID:16658913

  6. Changes in rubisco, cysteine-rich proteins and antioxidant system of spinach (Spinacia oleracea L.) due to sulphur deficiency, cadmium stress and their combination.

    PubMed

    Bagheri, Rita; Ahmad, Javed; Bashir, Humayra; Iqbal, Muhammad; Qureshi, M Irfan

    2017-03-01

    Sulphur (S) deficiency, cadmium (Cd) toxicity and their combinations are of wide occurrence throughout agricultural lands. We assessed the impact of short-term (2 days) and long-term (4 days) applications of cadmium (40 μg/g soil) on spinach plants grown on sulphur-sufficient (300 μM SO 4 2- ) and sulphur-deficient (30 μM SO 4 2- ) soils. Compared with the control (+S and -Cd), oxidative stress was increased by S deficiency (-S and -Cd), cadmium (+S and +Cd) and their combination stress (-S and +Cd) in the order of (S deficiency) < (Cd stress) < (S deficiency and +Cd stress). SDS-PAGE profile of leaf proteins showed a high vulnerability of rubisco large subunit (RbcL) to S deficiency. Rubisco small subunit (RbcS) was particularly sensitive to Cd as well as dual stress (+Cd and -S) but increased with Cd in the presence of S. Cysteine content in low molecular weight proteins/peptide was also affected, showing a significant increase under cadmium treatment. Components of ascorbate-glutathione antioxidant system altered their levels, showing the maximum decline in ascorbate (ASA), dehydroascorbate (DHA), total ascorbate (ASA + DHA, hereafter TA), glutathione (GSH) and total glutathione (GSH + GSSG, hereafter TG) under S deficiency. However, total ascorbate and total glutathione increased, besides a marginal increase in their reduced and oxidized forms, when Cd was applied in the presence of sufficient S. Sulphur supply also helped in increasing the activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR) and catalase (CAT) under Cd stress. However, their activity suffered by S deficiency and by Cd stress during S deficiency. Each stress declined the contents of soluble protein and photosynthetic pigments; the highest decline in contents of protein and pigments occurred under S deficiency and dual stress respectively. The fresh and dry weights, although affected adversely by every stress, declined most under dual stress. It may be concluded that an optimal level of S is required during Cd stress for better response of SOD, APX, GR and CAT activity, as well as synthesis of cysteine. RbcS is as highly sensitive to S deficiency as RbcL is to Cd stress.

  7. Optimization of low-temperature blanching combined with calcium treatment to inactivate Escherichia coli O157:H7 on fresh-cut spinach.

    PubMed

    Kim, N H; Lee, N Y; Kim, S H; Lee, H J; Kim, Y; Ryu, J H; Rhee, M S

    2015-07-01

    To develop a mild blanching method with calcium salts to ensure microbiological safety and quality of fresh-cut spinach. The antimicrobial efficacy of eight calcium salts was evaluated on Escherichia coli O157:H7 at 45-65°C and calcium hydroxide (Ca(OH)2 ) showed the greatest synergistic antimicrobial effect with heat. Combinations of low temperature treatments (45, 55, 65°C), time (20, 40, 60 s) and Ca(OH)2 (0·25, 0·50, 0·75%) were applied for E. coli O157:H7 disinfection on fresh-cut spinach to develop a predictive model using a Box-Behnken experimental design. A suitable quadratic model was produced (R(2) = 0·98, P < 0·001) and the optimum condition (64·9°C with 0·52% Ca(OH)2 for 42·4 s) was drawn by reducing 6·6 log CFU g(-1) of E. coli O157:H7 on fresh-cut spinach. Blanching at 61·9°C with 0·52% Ca(OH)2 for 41·7 s can inactivate E. coli O157:H7 on spinach by 5·4 log CFU g(-1) . The new method was comparable to the CDC recommendation for safe spinach cooking (71·1°C, 15 s; 5·0 log CFU g(-1) reduction) with lower levels of weight loss of the spinach (P < 0·05). This study suggests an efficient spinach blanching method for E. coli O157:H7 disinfection. This blanching method will enhance microbiological safety of fresh-cut produce while minimizing the use of energy and chemicals. © 2015 The Society for Applied Microbiology.

  8. Growth Conditions To Reduce Oxalic Acid Content of Spinach

    NASA Technical Reports Server (NTRS)

    Johnson-Rutzke, Corinne

    2003-01-01

    A controlled-environment agricultural (CEA) technique to increase the nutritive value of spinach has been developed. This technique makes it possible to reduce the concentration of oxalic acid in spinach leaves. It is desirable to reduce the oxalic acid content because oxalic acid acts as an anti-nutritive calcium-binding component. More than 30 years ago, an enzyme (an oxidase) that breaks down oxalic acid into CO2 and H2O2 was discovered and found to be naturally present in spinach leaves. However, nitrate, which can also be present because of the use of common nitratebased fertilizers, inactivates the enzyme. In the CEA technique, one cuts off the supply of nitrate and keeps the spinach plants cool while providing sufficient oxygen. This technique provides the precise environment that enables the enzyme to naturally break down oxalate. The result of application of this technique is that the oxalate content is reduced by 2/3 in one week.

  9. An Improved Method for the Extraction and Thin-Layer Chromatography of Chlorophyll A and B from Spinach

    ERIC Educational Resources Information Center

    Quach, Hao T.; Steeper, Robert L.; Griffin, William G.

    2004-01-01

    A simple and fast method, which resolves chlorophyll a and b from spinach leaves on analytical plates while minimizing the appearance of chlorophyll degradation products is shown. An improved mobile phase for the Thin-layer chromatographic analysis of spinach extract that allows for the complete resolution of the common plant pigments found in…

  10. Detection of the downy mildew pathogens of spinach (Peronospora effusa) and beet (P. schachtii) using spore traps and quantitative PCR assays

    USDA-ARS?s Scientific Manuscript database

    Downy mildew of spinach, caused by Peronospora effusa, is a disease constraint on spinach production worldwide. The aim of this study was to develop a real-time quantitative PCR assay for detection of airborne inoculum of P. effusa in California. This type of assay may, in combination with disease-...

  11. Coupling spore traps and quantitative PCR assays for detection of the downy mildew pathogens of spinach (Peronospora effusa) and beet (Peronospora schachtii)

    USDA-ARS?s Scientific Manuscript database

    Downy mildew of spinach (Spinacia oleracea L.), caused by Peronospora effusa, is a disease constraint on production worldwide, including in California where the majority of United States spinach is grown. The aim of this study was to develop a real-time quantitative PCR (qPCR) assay for detection o...

  12. Protection by beverages, fruits, vegetables, herbs, and flavonoids against genotoxicity of 2-acetylaminofluorene and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in metabolically competent V79 cells.

    PubMed

    Edenharder, R; Sager, J W; Glatt, H; Muckel, E; Platt, K L

    2002-11-26

    Chinese hamster lung fibroblasts, genetically engineered for the expression of rat cytochrome P450 dependent monooxygenase 1A2 and rat sulfotransferase 1C1 (V79-rCYP1A2-rSULT1C1 cells), were utilized to check for possible protective effects of beverages of plant origin, fruits, vegetables, and spices against genotoxicity induced by 2-acetylaminofluorene (AAF) or 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Antigenotoxic activities of juices from spinach and red beets against AAF could be monitored with similar effectivity by the HPRT-mutagenicity test (IC(50)=0.64%; 2.57%) and alkaline single cell gel electrophoresis (comet assay; IC(50)=0.12%; 0.89%) which detects DNA strand breaks and abasic sites. Applying the comet assay, genotoxicity of PhIP could, however, be demonstrated only in the presence of hydroxyurea and 1-[beta-D-arabinofuranosyl]cytosine, known inhibitors of DNA repair synthesis. As expected, AAF and PhIP were unable to induce any genotoxic effects in the parent V79 cells. Genotoxic activity of PhIP was strongly reduced in a dose-related manner by green tea and red wine, by blueberries, blackberries, red grapes, kiwi, watermelon, parsley, and spinach, while two brands of beer, coffee, black tea, rooibos tea, morellos, black-currants, plums, red beets, broccoli (raw and cooked), and chives were somewhat less active. One brand of beer was only moderately active while white wine, bananas, white grapes, and strawberries were inactive. Similarly, genotoxicity of AAF was strongly reduced by green, black, and rooibos tea, red wine, morellos, black-currants, kiwi, watermelon, and spinach while plums, red beets, and broccoli (raw) were less potent. Broccoli cooked exerted only moderate and white wine weak antigenotoxic activity. With respect to the possible mechanism(s) of inhibition of genotoxicity, benzo[a]pyrene-7,8-dihydrodiol (BaP-7,8-OH) and N-OH-PhIP were applied as substrates for the CYP1A family and for rSULT 1C1, respectively. Morellos, black-currants, and black tea strongly reduced the genotoxicity of BaP-7,8-OH, onions, rooibos tea, and red wine were less potent while red beets and spinach were inactive. On the other hand, red beets and spinach strongly inhibited the genotoxicity of N-OH-PhIP, rooibos tea was weakly active while all other items were inactive. These results are suggestive for enzyme inhibition as mechanism of protection by complex mixtures of plant origin. Taken together, our results demonstrate that protection by beverages, fruits, and vegetables against genotoxicity of heterocyclic aromatic amines may take place within metabolically competent mammalian cells as well as under the conditions of the Salmonella/reversion assay.

  13. Mild Fe-deficiency improves biomass production and quality of hydroponic-cultivated spinach plants (Spinacia oleracea L.).

    PubMed

    Jin, Chong-Wei; Liu, Yue; Mao, Qian-Qian; Wang, Qian; Du, Shao-Ting

    2013-06-15

    It is of great practical importance to improve yield and quality of vegetables in soilless cultures. This study investigated the effects of iron-nutrition management on yield and quality of hydroponic-cultivated spinach (Spinacia oleracea L.). The results showed that mild Fe-deficient treatment (1 μM FeEDTA) yielded a greater biomass of edible parts than Fe-omitted treatment (0 μM FeEDTA) or Fe-sufficient treatments (10 and 50 μM FeEDTA). Conversely, mild Fe-deficient treatment had the lowest nitrate concentration in the edible parts out of all the Fe treatments. Interestingly, all the concentrations of soluble sugar, soluble protein and ascorbate in mild Fe-deficient treatments were higher than Fe-sufficient treatments. In addition, both phenolic concentration and DPPH scavenging activity in mild Fe-deficient treatments were comparable with those in Fe-sufficient treatments, but were higher than those in Fe-omitted treatments. Therefore, we concluded that using a mild Fe-deficient nutrition solution to cultivate spinach not only would increase yield, but also would improve quality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Characteristic of fermented spinach (Amaranthus spp.) polyphenol by kombucha culture for antioxidant compound

    NASA Astrophysics Data System (ADS)

    Aspiyanto, Susilowati, Agustine; Iskandar, Jeti M.; Melanie, Hakiki; Maryati, Yati; Lotulung, Puspa D.

    2017-01-01

    Fermentation on spinach (Amaranthus sp.) vegetable by kombucha culture as an effort to get poliphenol as antioxidant compound had been done. Purification of fermented spinach extract suspension was carried out through microfiltration (MF) membrane (pore size 0.15 µm) fitted in dead-end Stirred Ultrafiltration Cell (SUFC) mode at fixed condition (stirrer rotation 400 rpm, room temperature, pressure 40 psia). Result of the experimental activity showed that long fermentation time increased total acids, total polyphenol and Total Plate Count (TPC), and decreased total solids and reducing sugar in biomass. The optimal fermentation time was reached for 2 weeks with total polyphenol recovery increasing of 92.76 % from before and after fermentation. On this optimal fermentation time, biomass had identified galic acid with relative intensity of 8 %, while as polyphenol monomer was resulted 5 kinds of polyphenol compounds with total intensity 27.97 % and molecular weight (MW) 191.1736, 193.1871 and 194.2170 at T2.5, T2.86 and T3.86. Long fermentation time increased functional properties of polyphenol as antioxidant.

  15. Leaf conductance and carbon gain under salt-stressed conditions

    NASA Astrophysics Data System (ADS)

    Volpe, V.; Manzoni, S.; Marani, M.; Katul, G.

    2011-12-01

    Exposure of plants to salt stress is often accompanied by reductions in leaf photosynthesis and in stomatal and mesophyll conductances. To separate the effects of salt stress on these quantities, a model based on the hypothesis that carbon gain is maximized subject to a water loss cost is proposed. The optimization problem of adjusting stomatal aperture for maximizing carbon gain at a given water loss is solved for both a non-linear and a linear biochemical demand function. A key novel theoretical outcome of the optimality hypothesis is an explicit relationship between the stomatal and mesophyll conductances that can be evaluated against published measurements. The approaches here successfully describe gas-exchange measurements reported for olive trees (Olea europea L.) and spinach (Spinacia oleraceaL.) in fresh water and in salt-stressed conditions. Salt stress affected both stomatal and mesophyll conductances and photosynthetic efficiency of both species. The fresh water/salt water comparisons show that the photosynthetic capacity is directly reduced by 30%-40%, indicating that reductions in photosynthetic rates under increased salt stress are not due only to a limitation of CO2diffusion. An increase in salt stress causes an increase in the cost of water parameter (or marginal water use efficiency) exceeding 100%, analogous in magnitude to findings from extreme drought stress studies. The proposed leaf-level approach can be incorporated into physically based models of the soil-plant-atmosphere system to assess how saline conditions and elevated atmospheric CO2 jointly impact transpiration and photosynthesis.

  16. Comparison of Spinach Sex Chromosomes with Sugar Beet Autosomes Reveals Extensive Synteny and Low Recombination at the Male-Determining Locus.

    PubMed

    Takahata, Satoshi; Yago, Takumi; Iwabuchi, Keisuke; Hirakawa, Hideki; Suzuki, Yutaka; Onodera, Yasuyuki

    2016-01-01

    Spinach (Spinacia oleracea, 2n = 12) and sugar beet (Beta vulgaris, 2n = 18) are important crop members of the family Chenopodiaceae ss Sugar beet has a basic chromosome number of 9 and a cosexual breeding system, as do most members of the Chenopodiaceae ss. family. By contrast, spinach has a basic chromosome number of 6 and, although certain cultivars and genotypes produce monoecious plants, is considered to be a dioecious species. The loci determining male and monoecious sexual expression were mapped to different loci on the spinach sex chromosomes. In this study, a linkage map with 46 mapped protein-coding sequences was constructed for the spinach sex chromosomes. Comparison of the linkage map with a reference genome sequence of sugar beet revealed that the spinach sex chromosomes exhibited extensive synteny with sugar beet chromosomes 4 and 9. Tightly linked protein-coding genes linked to the male-determining locus in spinach corresponded to genes located in or around the putative pericentromeric and centromeric regions of sugar beet chromosomes 4 and 9, supporting the observation that recombination rates were low in the vicinity of the male-determining locus. The locus for monoecism was confined to a chromosomal segment corresponding to a region of approximately 1.7Mb on sugar beet chromosome 9, which may facilitate future positional cloning of the locus. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Demonstration tests of irrigation water disinfection with chlorine dioxide in open field cultivation of baby spinach.

    PubMed

    López-Gálvez, Francisco; Gil, Maria I; Meireles, Ana; Truchado, Pilar; Allende, Ana

    2018-06-01

    Treatments for the disinfection of irrigation water have to be evaluated by demonstration tests carried out under commercial settings taking into account not only their antimicrobial activity but also the potential phytotoxic effects on the crop. The consequences of the treatment of irrigation water with chlorine dioxide (ClO 2 ) used for sprinkler irrigation of baby spinach in two commercial agricultural fields was assessed. Residual ClO 2 levels at the sprinklers in the treated field were always below 1 mg L -1 . ClO 2 treatment provoked limited but statistically significant reductions in culturable Escherichia coli counts (0.2-0.3 log reductions), but not in the viable E. coli counts in water, suggesting the presence of viable but non-culturable cells (VBNC). Although disinfected irrigation water did not have an impact on the microbial loads of Enterobacteriaceae nor on the quality characteristics of baby spinach, it caused the accumulation of chlorates (up to 0.99 mg kg -1 in plants) and the reduction of the photosynthetic efficiency of baby spinach. Low concentrations of ClO 2 are effective in reducing the culturable E. coli present in irrigation water but it might induce the VBNC state. Presence of disinfection by-products and their accumulation in the crop must be considered to adjust doses in order to avoid crop damage and chemical safety risks. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Decreasing the NO3 and increasing the vitamin C contents in spinach by a nitrogen deprivation method.

    PubMed

    Mozafar, A

    1996-02-01

    Excessive use of nitrogen fertilizers is known to increase the NO3 and reduce the vitamin C contents in fruits and vegetables. We investigated the concentration of these compounds in spinach leaves when plants were transferred to nitrogen-free media prior to their harvest. It was noted that a pre-harvest transfer of spinach to N-free media reduces the NO3 and increases the vitamin C content of the leaves by a substantial amount in a 2-3 day period. It is suggested that this technique may be suited to produce spinach or other leafy vegetables with low NO3 and high vitamin C contents under commercial hydroponic conditions.

  19. Effects of different sewage sludge applications on heavy metal accumulation, growth and yield of spinach (Spinacia oleracea L.).

    PubMed

    Eid, Ebrahem M; El-Bebany, Ahmed F; Alrumman, Sulaiman A; Hesham, Abd El-Latif; Taher, Mostafa A; Fawy, Khaled F

    2017-04-03

    In this study, we present the response of spinach to different amendment rates of sewage sludge (0, 10, 20, 30, 40 and 50 g kg -1 ) in a greenhouse pot experiment, where plant growth, biomass and heavy metal uptake were measured. The results showed that sewage sludge application increased soil electric conductivity (EC), organic matter, chromium and zinc concentrations and decreased soil pH. All heavy metal concentrations of the sewage sludge were below the permissible limits for land application of sewage sludge recommended by the Council of the European Communities. Biomass and all growth parameters (except the shoot/root ratio) of spinach showed a positive response to sewage sludge applications up to 40 g kg -1 compared to the control soil. Increasing the sewage sludge amendment rate caused an increase in all heavy metal concentrations (except lead) in spinach root and shoot. However, all heavy metal concentrations (except chromium and iron) were in the normal range and did not reach the phytotoxic levels. The spinach was characterized by a bioaccumulation factor <1.0 for all heavy metals. The translocation factor (TF) varied among the heavy metals as well as among the sewage sludge amendment rates. Spinach translocation mechanisms clearly restricted heavy metal transport to the edible parts (shoot) because the TFs for all heavy metals (except zinc) were <1.0. In conclusion, sewage sludge used in the present study can be considered for use as a fertilizer in spinach production systems in Saudi Arabia, and the results can serve as a management method for sewage sludge.

  20. Exploratory Study into the Microbiological Quality of Spinach and Cabbage Purchased from Street Vendors and Retailers in Johannesburg, South Africa.

    PubMed

    Plessis, Erika M du; Govender, Sarasha; Pillay, Bala; Korsten, Lise

    2017-10-01

    Knowledge of the microbiological quality and prevalence of antibiotic resistance and virulence genes in bacterial isolates from leafy green vegetables supplied by formal suppliers (retailers) and informal suppliers (street vendors) in South Africa is limited. Because leafy vegetables have been implicated in foodborne disease outbreaks worldwide, 180 cabbage and spinach samples were collected from three major retailers and nine street vendors in Johannesburg, South Africa. Escherichia coli and coliforms were enumerated using Petrifilm plates. The prevalence of Listeria monocytogenes, Salmonella, and Shigella was determined using real-time PCR analysis. Identities of presumptive E. coli isolates from the fresh produce were confirmed using matrix-assisted laser desorption-ionization time of flight mass spectroscopy. Isolates were characterized using phenotypic (antibiotic resistance) and genotypic (phylogenetic and virulence gene) analysis. Hygiene indicator bacteria levels on spinach from formal and informal retailers exceeded the maximum level specified by the Department of Health guidelines for fresh fruit and vegetables. E. coli counts for street vendor spinach were higher (P < 0.0789) than those for retailer spinach. E. coli was present in only two cabbage samples, at 0.0035 CFU/g. L. monocytogenes and Salmonella were detected in 7.2 and 5% of the 180 samples, respectively, based on real-time PCR analysis; Shigella was not detected. Of the 29 spinach E. coli isolates, 37.9% were multidrug resistant. Virulence genes eae and stx 1 were present in 14 and 3% of the spinach E. coli isolates, respectively; the stx 2 gene was not detected. Eighty-six percent of these isolates belonged to phylogroup A, 3% belonged to group C, 7% belonged to group E, and 3% belonged to clade 1. The results from the current exploratory study on the microbiological quality of spinach bought from selected retailers highlight the need for continued surveillance on a larger scale, especially in the informal sector, to characterize the potential health risks to the consumer.

  1. Inactivation of Escherichia coli O157:H7 attached to spinach harvester blade using bacteriophage.

    PubMed

    Patel, Jitendra; Sharma, Manan; Millner, Patricia; Calaway, Todd; Singh, Manpreet

    2011-04-01

    Outbreaks associated with leafy greens have focused attention on the transfer of human pathogens to these commodities during harvest with commercial equipment. Attachment of Escherichia coli O157:H7 on new or rusty spinach harvester blades immersed in spinach extract or 10% tryptic soy broth (TSB) was investigated. Bacteriophages specific for E. coli O157:H7 were evaluated to kill cells attached to blade. A cocktail of five nalidixic acid-resistant E. coli O157:H7 isolates was transferred to 25 mL of spinach extract or 10% TSB. A piece of sterilized spinach harvester blade (2×1") was placed in above spinach extract or 10% TSB and incubated at room (22 °C) or dynamic (30 °C day, 20 °C night) temperatures. E. coli O157:H7 populations attached to blade during incubation in spinach extract or 10% TSB were determined. When inoculated at 1 log CFU/mL, E. coli O157:H7 attachment to blades after 24 and 48 h incubation at dynamic temperature (6.09 and 6.37 log CFU/mL) was significantly higher than when incubated at 22 °C (4.84 and 5.68 log CFU/mL), respectively. After 48 h incubation, two blades were sprayed on each side with a cocktail of E. coli O157-specific bacteriophages before scraping the blade, and subsequent plating on Sorbitol MacConkey media-nalidixic acid. Application of bacteriophages reduced E. coli O157:H7 populations by 4.5 log CFU on blades after 2 h of phage treatment. Our study demonstrates that E. coli O157:H7 can attach to and proliferate on spinach harvester blades under static and dynamic temperature conditions, and bacteriophages are able to reduce E. coli O157:H7 populations adhered to blades. © Mary Ann Liebert, Inc.

  2. Characterization and Field Studies of a Cucumber Mosaic Virus Isolate from Spinach in the Winter Garden Area of Texas

    Treesearch

    A. Dan Wilson; R.S. Halliwell

    1985-01-01

    An isolate of cucumber mosaic virus (CMV) was identified from spinach in the Winter Garden area of Texas. The isolate was very closely related serologically to strain S of CMVand is designated the Texas spinach isolate of CMV-S. The virus infected 39 species of crop plants and wild hosts in 12 of 13 families tested. The green peach aphid efficiently transmitted the...

  3. [Concentrations of mercury in ambient air in wastewater irrigated area of Tianjin City and its accumulation in leafy vegetables].

    PubMed

    Zheng, Shun-An; Han, Yun-Lei; Zheng, Xiang-Qun

    2014-11-01

    Gaseous Hg can evaporate and enter the plants through the stomata of plat leaves, which will cause a serious threat to local food safety and human health. For the risk assessment, this study aimed to characterize atmospheric mercury (Hg) as well as its accumulation in 5 leafy vegetables (spinach, edible amaranth, rape, lettuce, allium tuberosum) from sewage-irrigated area of Tianjin City. Bio-monitoring sites were located in paddy (wastewater irrigation for 30 a), vegetables (wastewater irrigation for 15 a) and grass (control) fields. Results showed that after long-term wastewater irrigation, the mean values of mercury content in paddy and vegetation fields were significantly higher than the local background value and the national soil environment quality standard value for mercury in grade I, but were still lower than grade II. Soil mercury contents in the studied control grass field were between the local background value and the national soil environment quality standard grade I . Besides, the atmospheric environment of paddy and vegetation fields was subjected to serious mercury pollution. The mean values of mercury content in the atmosphere of paddy and vegetation fields were 71.3 ng x m(-3) and 39.2 ng x m(-3), respectively, which were markedly higher than the reference gaseous mercury value on the north sphere of the earth (1.5-2.0 ng x m(-3)). The mean value of ambient mercury in the control grass fields was 9.4 ng x m(-3). In addition, it was found that the mercury content in leafy vegetables had a good linear correlation with the ambient total gaseous mercury (the data was transformed into logarithms as the dataset did not show a normal distribution). The comparison among 5 vegetables showed that the accumulations of mercury in vegetables followed this order: spinach > edible amaranth > allium tuberosum > rape > lettuce. Median and mean values of mercury contents in spinach and edible amaranth were greater than the hygienic standard for the allowable limit of mercury in food. Spinach appeared to accumulate more mercury than the other four vegetables, in which the median and mean mercury content were both higher than 20 μg x kg(-1). The mercury concentrations in rape, lettuce and allium tuberosum were lower than the standard. Moreover, test results indicated that the Hg content in leafy vegetables was mainly the gaseous mercury through leaf adsorption but not the Hg particulates. This study clearly manifested that there should be a great concern on the pollution risk of both air-and soil borne mercury when cultivating leafy vegetables in long-term wastewater-irrigated area.

  4. Quality of fresh-cut baby spinach grown under a floating trays system as affected by nitrogen fertilisation and innovative packaging treatments.

    PubMed

    Rodríguez-Hidalgo, Stephanie; Artés-Hernández, Francisco; Gómez, Perla A; Fernández, Juan Antonio; Artés, Francisco

    2010-04-30

    Alternative techniques for cultivation of leafy vegetables such as a floating tray system and unconventional gas mixtures for post-harvest active modified atmosphere packaging (MAP) could be of interest in the minimally processed vegetable industry. The combined effect of three pre-harvest fertilisation doses (8, 12 or 16 mmol N L(-1)) and three post-harvest MAP conditions (passive, super-atmospheric or N2O-enriched) on the main quality attributes of fresh-cut baby spinach leaves throughout 10 days at 5 degrees C was studied. After 8 days of shelf life, spinach leaves fertilised with 8 and 16 mmol N L(-1) and stored under N2O-enriched MAP showed the lowest microbial growth, with good sensory quality. Such combined treatments also preserved the total antioxidant capacity sampled at harvest (8 g ascorbic acid equivalent antioxidant capacity kg(-1) f.w.). A decrease of 10-20% in total vitamin C content regardless of N fertilisation and packaging treatment was found during shelf life. Total phenolics content at harvest was 2 g gallic acid equivalents kg(-1) f.w., which was slightly decreased or preserved during shelf life while total chlorophylls were preserved for all treatments assayed around 550 mg kg(-1) f.w. No clear effect of fertilisation doses was observed during post-harvest storage on overall quality of fresh-cut baby spinach leaves, while N2O-enriched atmospheres seems to be a promising alternative to passive MAP for extending shelf life.

  5. Molecular cloning and photoperiod-regulated expression of gibberellin 20-oxidase from the long-day plant spinach.

    PubMed

    Wu, K; Li, L; Gage, D A; Zeevaart, J A

    1996-02-01

    Spinach (Spinacia oleracea L.) is a long-day (LD) rosette plant in which stem growth under LD conditions is mediated by gibberellins (GAs). Major control points in spinach are the later steps of sequential oxidation and elimination of C-20 of C20-GAs. Degenerate oligonucleotide primers were used to obtain a polymerase chain reaction product from spinach genomic DNA that has a high homology with GA 20-oxidase cDNAs from Cucurbita maxima L. and Arabidopsis thaliana Heynh. This polymerase chain reaction product was used as a probe to isolate a full-length cDNA clone with an open reading frame encoding a putative 43-kD protein of 374 amino acid residues. When this cDNA clone was expressed in Escherichia coli, the fusion protein catalyzed the biosynthetic sequence GA53-->GA44-->GA19-->GA20 and GA19-->GA17. This establishes that in spinach a single protein catalyzes the oxidation and elimination of C-20. Transfer of spinach plants from short day (SD) to LD conditions caused an increase in the level of all GAs of the early-13-hydroxylation pathway, except GA53, with GA20, GA1, and GA8 showing the largest increases. Northern blot analysis indicated that the level of GA 20-oxidase mRNA was higher in plants in LD than in SD conditions, with highest level of expression in the shoot tips and elongating stems. This expression pattern of GA 20-oxidase is consistent with the different levels of GA20, GA1, and GA8 found in spinach plants grown in SD and LD conditions.

  6. Risk assessment of vegetables irrigated with arsenic-contaminated water.

    PubMed

    Bhatti, S M; Anderson, C W N; Stewart, R B; Robinson, B H

    2013-10-01

    Arsenic (As) contaminated water is used in South Asian countries to irrigate food crops, but the subsequent uptake of As by vegetables and associated human health risk is poorly understood. We used a pot trial to determine the As uptake of four vegetable species (carrot, radish, spinach and tomato) with As irrigation levels ranging from 50 to 1000 μg L(-1) and two irrigation techniques, non-flooded (70% field capacity for all studied vegetables), and flooded (110% field capacity initially followed by aerobic till next irrigation) for carrot and spinach only. Only the 1000 μg As L(-1) treatment showed a significant increase of As concentration in the vegetables over all other treatments (P < 0.05). The distribution of As in vegetable tissues was species dependent; As was mainly found in the roots of tomato and spinach, but accumulated in the leaves and skin of root crops. There was a higher concentration of As in the vegetables grown under flood irrigation relative to non-flood irrigation. The trend of As bioaccumulation was spinach > tomato > radish > carrot. The As concentration in spinach leaves exceeded the Chinese maximum permissible concentration for inorganic As (0.05 μg g(-1) fresh weight) by a factor of 1.6 to 6.4 times. No other vegetables recorded an As concentration that exceeded this threshold. The USEPA parameters hazard quotient and cancer risk were calculated for adults and adolescents. A hazard quotient value greater than 1 and a cancer risk value above the highest target value of 10(-4) confirms potential risk to humans from ingestion of spinach leaves. In our study, spinach presents a direct risk to human health where flood irrigated with water containing an arsenic concentration greater than 50 μg As L(-1).

  7. Effects of a nitrate-rich meal on arterial stiffness and blood pressure in healthy volunteers.

    PubMed

    Liu, Alex H; Bondonno, Catherine P; Croft, Kevin D; Puddey, Ian B; Woodman, Richard J; Rich, Lisa; Ward, Natalie C; Vita, Joseph A; Hodgson, Jonathan M

    2013-11-30

    An increase in nitrate intake can augment circulating nitrite and nitric oxide. This may lead to lower blood pressure and improved vascular function. Green leafy vegetables, such as spinach, are rich sources of nitrate. We aimed to assess the acute effects of a nitrate-rich meal containing spinach on arterial stiffness and blood pressure in healthy men and women. Twenty-six participants aged 38-69years were recruited to a randomized controlled cross-over trial. The acute effects of two energy-matched (2000kJ) meals, administered in random order, were compared. The meals were either high nitrate (220mg of nitrate derived from spinach [spinach]) or low nitrate [control]. Outcome measurements were performed pre-meal and at specific time points up to 210min post meal. Spinach resulted in an eightfold increase in salivary nitrite and a sevenfold increase in salivary nitrate concentrations from pre-meal (P<0.001) to 120min post meal. Spinach compared with control resulted in higher large artery elasticity index (P<0.001), and lower pulse pressure (P<0.001) and systolic blood pressure (P<0.001). Post meal carotid-femoral pulse wave velocity (P=0.07), augmentation index (P=0.63), small artery elasticity index (P=0.98) and diastolic blood pressure (P=0.13) were not significantly altered by spinach relative to control. Therefore, consumption of a nitrate-rich meal can lower systolic blood pressure and pulse pressure and increase large artery compliance acutely in healthy men and women. If sustained, these effects could contribute to better cardiovascular health. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Opposite Effects of the Spinach Food Matrix on Lutein Bioaccessibility and Intestinal Uptake Lead to Unchanged Bioavailability Compared to Pure Lutein.

    PubMed

    Margier, Marielle; Buffière, Caroline; Goupy, Pascale; Remond, Didier; Halimi, Charlotte; Caris-Veyrat, Catherine; Borel, Patrick; Reboul, Emmanuelle

    2018-06-01

    Food matrix is generally believed to alter carotenoid bioavailability, but its effect on xanthophylls is usually limited. This study thus aims to decipher the digestion-absorption process of lutein in the presence or not of a food matrix. Lutein transfer to gastric-like lipid droplets or artificial mixed micelles was assessed when lutein was added to test meals either as a pure molecule ((all-E)-lutein) or in canned spinach ((Z) + (all-E)-lutein). The obtained mixed micelles were delivered to Caco-2 cells to evaluate lutein uptake. Finally postprandial plasma lutein responses were compared in minipigs after the two test meals. Lutein transfer to gastric-like lipid droplets and to mixed micelles was higher when lutein was added in spinach than when it was added as pure lutein (+614% and +147%, respectively, p < 0.05). Conversely, lutein uptake was less effective when micellar lutein was from a meal containing spinach than from a meal containing its pure form (-55%, p < 0.05). In minipigs, postprandial lutein response was delayed with spinach but not significantly different after the two test meals. Opposite effects at the micellarization and intestinal cell uptake steps explain the lack of effect of spinach matrix on lutein bioavailability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Spatial and Temporal Factors Associated with an Increased Prevalence of Listeria monocytogenes in Spinach Fields in New York State

    PubMed Central

    Weller, Daniel; Wiedmann, Martin

    2015-01-01

    While rain and irrigation events have been associated with an increased prevalence of foodborne pathogens in produce production environments, quantitative data are needed to determine the effects of various spatial and temporal factors on the risk of produce contamination following these events. This study was performed to quantify these effects and to determine the impact of rain and irrigation events on the detection frequency and diversity of Listeria species (including L. monocytogenes) and L. monocytogenes in produce fields. Two spinach fields, with high and low predicted risks of L. monocytogenes isolation, were sampled 24, 48, 72, and 144 to 192 h following irrigation and rain events. Predicted risk was a function of the field's proximity to water and roads. Factors were evaluated for their association with Listeria species and L. monocytogenes isolation by using generalized linear mixed models (GLMMs). In total, 1,492 (1,092 soil, 334 leaf, 14 fecal, and 52 water) samples were collected. According to the GLMM, the likelihood of Listeria species and L. monocytogenes isolation from soil samples was highest during the 24 h immediately following an event (odds ratios [ORs] of 7.7 and 25, respectively). Additionally, Listeria species and L. monocytogenes isolates associated with irrigation events showed significantly lower sigB allele type diversity than did isolates associated with precipitation events (P = <0.001), suggesting that irrigation water may be a point source of L. monocytogenes contamination. Small changes in management practices (e.g., not irrigating fields before harvest) may therefore reduce the risk of L. monocytogenes contamination of fresh produce. PMID:26116668

  10. Enzymatic Digestion for Improved Bacteria Separation from Leafy Green Vegetables.

    PubMed

    Wang, Danhui; Wang, Ziyuan; He, Fei; Kinchla, Amanda J; Nugen, Sam R

    2016-08-01

    An effective and rapid method for the separation of bacteria from food matrix remains a bottleneck for rapid bacteria detection for food safety. Bacteria can strongly attach to a food surface or internalize within the matrix, making their isolation extremely difficult. Traditional methods of separating bacteria from food routinely involve stomaching, blending, and shaking. However, these methods may not be efficient at removing all the bacteria from complex matrices. Here, we investigate the benefits of using enzyme digestion followed by immunomagnetic separation to isolate Salmonella from spinach and lettuce. Enzymatic digestion using pectinase and cellulase was able to break down the structure of the leafy green vegetables, resulting in the detachment and release of Salmonella from the leaves. Immunomagnetic separation of Salmonella from the liquefied sample allowed an additional separation step to achieve a more pure sample without leaf debris that may benefit additional downstream applications. We have investigated the optimal combination of pectinase and cellulase for the digestion of spinach and lettuce to improve sample detection yields. The concentrations of enzymes used to digest the leaves were confirmed to have no significant effect on the viability of the inoculated Salmonella. Results reported that the recovery of the Salmonella from the produce after enzyme digestion of the leaves was significantly higher (P < 0.05) than traditional sample preparation methods to separate bacteria (stomaching and manually shaking). The results demonstrate the potential for use of enzyme digestion prior to separation can improve the efficiency of bacteria separation and increase the likelihood of detecting pathogens in the final detection assay.

  11. Potential application of gasification to recycle food waste and rehabilitate acidic soil from secondary forests on degraded land in Southeast Asia.

    PubMed

    Yang, Zhanyu; Koh, Shun Kai; Ng, Wei Cheng; Lim, Reuben C J; Tan, Hugh T W; Tong, Yen Wah; Dai, Yanjun; Chong, Clive; Wang, Chi-Hwa

    2016-05-01

    Gasification is recognized as a green technology as it can harness energy from biomass in the form of syngas without causing severe environmental impacts, yet producing valuable solid residues that can be utilized in other applications. In this study, the feasibility of co-gasification of woody biomass and food waste in different proportions was investigated using a fixed-bed downdraft gasifier. Subsequently, the capability of biochar derived from gasification of woody biomass in the rehabilitation of soil from tropical secondary forests on degraded land (adinandra belukar) was also explored through a water spinach cultivation study using soil-biochar mixtures of different ratios. Gasification of a 60:40 wood waste-food waste mixture (w/w) produced syngas with the highest lower heating value (LHV) 5.29 MJ/m(3)-approximately 0.4-4.0% higher than gasification of 70:30 or 80:20 mixtures, or pure wood waste. Meanwhile, water spinach cultivated in a 2:1 soil-biochar mixture exhibited the best growth performance in terms of height (a 4-fold increment), weight (a 10-fold increment) and leaf surface area (a 5-fold increment) after 8 weeks of cultivation, owing to the high porosity, surface area, nutrient content and alkalinity of biochar. It is concluded that gasification may be an alternative technology to food waste disposal through co-gasification with woody biomass, and that gasification derived biochar is suitable for use as an amendment for the nutrient-poor, acidic soil of adinandra belukar. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study.

    PubMed

    Ou, Boxin; Huang, Dejian; Hampsch-Woodill, Maureen; Flanagan, Judith A; Deemer, Elizabeth K

    2002-05-22

    A total of 927 freeze-dried vegetable samples, including 111 white cabbages, 59 carrots, 51 snap beans, 57 cauliflower, 33 white onions, 48 purple onions, 130 broccoli, 169 tomatoes, 25 beets, 88 peas, 88 spinach, 18 red peppers, and 50 green peppers, were analyzed using the oxygen radical absorption capacity (ORAC) and ferric reducing antioxidant capacity (FRAP) methods. The data show that the ORAC and FRAP values of vegetable are not only dependent on species, but also highly dependent on geographical origin and harvest time. The two antioxidant assay methods, ORAC and FRAP, also give different antioxidant activity trends. The discrepancy is extensively discussed based on the chemistry principles upon which these methods are built, and it is concluded that the ORAC method is chemically more relevant to chain-breaking antioxidants activity, while the FRAP has some drawbacks such as interference, reaction kinetics, and quantitation methods. On the basis of the ORAC results, green pepper, spinach, purple onion, broccoli, beet, and cauliflower are the leading sources of antioxidant activities against the peroxyl radicals.

  13. Total antioxidant capacity of commonly used fruits, vegetables, herbs and spices of Pakistan.

    PubMed

    Abid, Mobasher Ali; Ashfaq, Muhammad; Sharif, Muhammad Junaid Hassan; Rauf, Khalid; Mahmood, Wajahat; Khan, Ikarmullah; Abbas, Ghulam

    2017-11-01

    The current study was aimed at investigating the total antioxidant activity (TAC) of various fruits, vegetables, herbs and spices habitat in Pakistan. The ferric reducing ability of plasma (FRAP) assay was used to measure the TAC of various extracts (aqueous, ethanolic and aqueous-ethanolic). Following is the potency order for fruits (guava >strawberry >Pomegranate >apple >kinnow >melon >lemon >banana), vegetables (spinach >Cabbage (Purple) >Jalapeno >Radish >Brinjal >Bell Pepper >Lettuce >Carrot >Cabbage (White) >Onion >Potato >Tomato >Cucumber) and herbs/spices (clove >Rosemary >Thyme >Oregano >Cinnamon >Cumin >Kalonji >Paprika >Neem (Flower) >Fennel >Black Cardamom >Turmeric >Coriander >Ginger >Garlic). In conclusion, the guava, spinach and clove provide the best natural dietary option for treatment / prevention of oxidative stress and thus could alleviate several associated ailments.

  14. Irradiated ready-to-eat spinach leaves: How information influences awareness towards irradiation treatment and consumer's purchase intention

    NASA Astrophysics Data System (ADS)

    Finten, G.; Garrido, J. I.; Agüero, M. V.; Jagus, R. J.

    2017-01-01

    This article aims to clarify and supply further information on food irradiation acceptance, with particular focus on Argentina and irradiated ready-to-eat (RTE) spinach leaves through an open web-online survey. Results showed that half of respondents did not know food irradiation, but the other half demonstrated uncertainty despite they declared they had knowledge about it; thus, confirming little awareness towards this technology. Respondents who believed in the misleading myth about food irradiation represented 39%, while roughly the same number was doubtful. On the other hand, after supplying informative material, respondents were positively influenced and an increase in acceptance by 90% was found. Finally, 42% of respondents were willing to consume/purchase irradiated RTE spinach leaves, and 35% remained doubtful. Respondents who did not exclude to accept irradiated spinach could be considered potential consumers if intensive campaigns about the benefits of food irradiation were carried out by reliable actors. If the Argentinean RTE market grew, following the world consumption trend towards these products, irradiated spinach leaves could be successfully introduced by making better efforts to inform consumers about food irradiation.

  15. Co-localization of glyceraldehyde-3-phosphate dehydrogenase with ferredoxin-NADP reductase in pea leaf chloroplasts

    PubMed Central

    Negi, Surendra S.; Carol, Andrew A.; Pandya, Shivangi; Braun, Werner; Anderson, Louise E.

    2008-01-01

    In immunogold double-labeling of pea leaf thin sections with antibodies raised against ferredoxin-NADP reductase (EC 1.18.1.2, FNR) and antibodies directed against the A or B subunits of the NADP-linked glyceraldehyde-3-P dehydrogenase (GAPD) (EC 1.2.1.13), many small and large gold particles were found together over the chloroplasts. Nearest neighbor analysis of the distribution of the gold particles indicates that FNR and the NADP-linked GAPD are co-localized, in situ. This suggests that FNR might carry FADH2 or NADPH from the thylakoid membrane to GAPD, or that ferredoxin might carry electrons to FNR co-localized with GAPD in the stroma. Crystal structures of the spinach enzymes are available. When they are docked computationally, the proteins appear, as modeled, to be able to form at least two different complexes. One involves a single GAPD monomer and an FNR monomer (or dimer). The amino acid residues located at the putative interface are highly conserved on the chloroplastic forms of both enzymes. The other potential complex involves the GAPD A2B2 tetramer and an FNR monomer (or dimer). The interface residues are conserved in this model as well. Ferredoxin is able to interact with FNR in either complex. PMID:17945509

  16. A novel chlorophyll solar cell

    NASA Astrophysics Data System (ADS)

    Ludlow, J. C.

    The photosynthetic process is reviewed in order to produce a design for a chlorophyll solar cell. In a leaf, antenna chlorophyll absorbs light energy and conducts it to an energy trap composed of a protein and two chlorophyll molecules, which perform the oxidation-reduction chemistry. The redox potential of the trap changes from 0.4 to -0.6 V, which is sufficient to reduce nearby molecules with redox potentials in that range. The reduction occurs by transfer of an electron, and a chlorophyll solar cell would direct the transferred electron to a current carrier. Chlorophyll antenna and traps are placed on a metallic support immersed in an electron acceptor solution, and resulting electrons from exposure to light are gathered by a metallic current collector. Spinach chlorophyll extracted, purified, and applied in a cell featuring a Pt collector and an octane water emulsion resulted in intensity independent voltages.

  17. Photocurrent generation by dye-sensitized solar cells using natural pigments.

    PubMed

    Armendáriz-Mireles, Eddie Nahúm; Rocha-Rangel, Enrique; Caballero-Rico, Frida; Ramírez-de-León, José Alberto; Vázquez, Manuel

    2017-01-01

    The development of photovoltaic panels has improved the conversion of solar radiation into electrical energy. This paper deals with the electrical and thermal characteristics (voltage, current, and temperature) of photovoltaic solar cells sensitized with natural pigments (dye-sensitized solar cell, DSSC) based on a titanium dioxide semiconductor. Several natural pigments (blackberry, beets, eggplant skin, spinach, flame tree flower, papaya leaf, and grass extracts) were evaluated to determine their sensitizing effect on titanium dioxide. The results showed the great potential of natural pigments for use in solar cells. The best results were obtained with the blackberry pigment, reaching a value of 7.1 mA current, open-circuit voltage (V oc ) of 0.72 V in 2 cm 2 , and fill factor (ff) of 0.51 in the DSSC. This performance is well above than that currently offers by actual cells. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  18. Physical, chemical and biochemical studies with isolated chloroplasts and purified enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Badry, A. M.

    1971-01-01

    Fructose-1,6-diphosphatase has been isolated, purified, and crystallized from previously isolated spinach chloroplasts. The effects of various anions, cations, and sulfhydryl reagent were tested, and activation by Mg ++, glycine, HCO 3 -, and sulfhydryl reagent is described.

  19. 21 CFR 139.135 - Enriched vegetable macaroni products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... macaroni product containing the prescribed amount of spinach and made in units not conforming in shape and size to the requirements for macaroni, spaghetti, or vermicelli is “Enriched spinach macaroni product...

  20. 21 CFR 139.135 - Enriched vegetable macaroni products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... macaroni product containing the prescribed amount of spinach and made in units not conforming in shape and size to the requirements for macaroni, spaghetti, or vermicelli is “Enriched spinach macaroni product...

  1. Growing and processing conditions lead to changes in the carotenoid profile of spinach.

    PubMed

    Heymann, Thomas; Westphal, Lore; Wessjohann, Ludger; Glomb, Marcus A

    2014-05-28

    This study aimed to evaluate the influence of different light regimens during spinach cultivation on the isomeric composition of β-carotene. Irradiation with a halogen lamp, which has a wavelength spectrum close to that of daylight, was used to mimic field-grown conditions. The additional use of optical filters was established as a model system for greenhouse cultivation. Field-grown model systems led to a preferential increase of 9-cis-β-carotene, whereas 13-cis-β-carotene was just formed at the beginning of irradiation. Additionally 9,13-di-cis-β-carotene decreased significantly in the presence of energy-rich light. Isomerization of β-carotene was strongly suppressed during irradiation in greenhouse-grown model systems and led to significant differences. These results were verified in biological samples. Authentic field-grown spinach (Spinacia oleracea L.) showed among changes of other isomers a significantly higher level of 9-cis-isomers (7.52 ± 0.14%) and a significantly lower level of 9,13-di-cis-isomers (0.25 ± 0.03%) compared to authentic greenhouse-grown spinach (6.49 ± 0.11 and 0.76 ± 0.05%). Almost all analyzed commercial spinach samples (fresh and frozen) were identified as common field-grown cultivation. Further investigations resulted in a clear differentiation of frozen commercial samples from fresh spinach, caused by significantly higher levels of 13-cis- and 15-cis-β-carotene as a result of industrial blanching processes.

  2. Assessment of microbial risk factors and impact of meteorological conditions during production of baby spinach in the Southeast of Spain.

    PubMed

    Castro-Ibáñez, I; Gil, M I; Tudela, J A; Ivanek, R; Allende, A

    2015-08-01

    There is a timely need to evaluate the effect agricultural factors and meteorological conditions on fresh produce contamination. This study evaluated those risk factors and described, for the first time, the distribution of indicator microorganisms (Escherichia coli, Enterococcus, coliforms, and Enterobacteriaceae) and the prevalence of foodborne pathogens (Enterohaemorrhagic E. coli, Listeria monocytogenes and Salmonella spp.) in baby spinach grown in the Southeast of Spain. A longitudinal study was conducted on three farms (2011-2013). Results obtained for E. coli highlighted soil and irrigation water as important factors affecting the microbial safety of baby spinach. Significant differences in the proportion of E. coli positive samples were found between treated (46.1%) and untreated (100%) irrigation water. However, the microbial quality of irrigation water didn't affect E. coli prevalence in produce. All E. coli positive spinach samples were detected at the highest observed temperature range suggesting that ambient temperature affects the probability and extent of spinach contamination. Salmonella spp. was detected by RT-PCR in manure, soil, irrigation water and baby spinach but only two of them (manure and irrigation water) were confirmed by isolation in culture media. Salmonella RT-PCR positive samples showed higher levels of E. coli than Salmonella negative samples. This preliminary finding supports recent identification of E. coli as a suitable parameter for the hygiene criterion at the primary production of leafy greens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effect of gamma radiation on the reduction of Salmonella strains, Listeria monocytogenes, and Shiga toxin-producing Escherichia coli and sensory evaluation of minimally processed spinach (Tetragonia expansa).

    PubMed

    Rezende, Ana Carolina B; Igarashi, Maria Crystina; Destro, Maria Teresa; Franco, Bernadette D G M; Landgraf, Mariza

    2014-10-01

    This study evaluated the effects of irradiation on the reduction of Shiga toxin-producing Escherichia coli (STEC), Salmonella strains, and Listeria monocytogenes, as well as on the sensory characteristics of minimally processed spinach. Spinach samples were inoculated with a cocktail of three strains each of STEC, Salmonella strains, and L. monocytogenes, separately, and were exposed to gamma radiation doses of 0, 0.2, 0.4, 0.6, 0.8, and 1.0 kGy. Samples that were exposed to 0.0, 1.0, and 1.5 kGy and kept under refrigeration (4°C) for 12 days were submitted to sensory analysis. D10 -values ranged from 0.19 to 0.20 kGy for Salmonella and from 0.20 to 0.21 for L. monocytogenes; for STEC, the value was 0.17 kGy. Spinach showed good acceptability, even after exposure to 1.5 kGy. Because gamma radiation reduced the selected pathogens without causing significant changes in the quality of spinach leaves, it may be a useful method to improve safety in the fresh produce industry.

  4. Changes in quality, liking, and purchase intent of irradiated fresh-cut spinach during storage.

    PubMed

    Fan, Xuetong; Sokorai, Kimberly J B

    2011-08-01

    The use of ionizing radiation to enhance microbial safety of fresh spinach at a maximum dose of 4 kGy has been approved by the U.S. Food and Drug Administration (FDA). However, whether spinach can tolerate those high doses of radiation is unclear. Therefore, this study was conducted to investigate the effects of irradiation and storage on quality, liking, and purchase intent of fresh-cut spinach. The oxygen radical absorbance capacity values and total phenolic content were not consistently affected by irradiation. However, the ascorbic acid content of irradiated sample decreased rapidly during storage, resulting in these samples being lower in ascorbic acid content than controls after 7 and 14 d of storage at 4 °C. Sensory evaluation by a 50-member panel revealed that purchase intent and ratings for liking of appearance, aroma, texture, flavor, and overall were not affected by irradiation at doses up to 2 kGy. Therefore, irradiation at doses up to 2 kGy may be used to enhance microbial safety without affecting consumer acceptance or overall antioxidant values of irradiated spinach. Journal of Food Science © 2011 Institute of Food Technologists® No claim to original US government works.

  5. Monitoring of nitrites and nitrates levels in leafy vegetables (spinach and lettuce): a contribution to risk assessment.

    PubMed

    Iammarino, Marco; Di Taranto, Aurelia; Cristino, Marianna

    2014-03-15

    Nitrites and nitrates are compounds considered harmful to humans and the major part of the daily intake of nitrates in foodstuffs is related to vegetable consumption. In this work, 150 leafy vegetables samples (75 spinach and 75 lettuce) were analysed in order to assess the levels of nitrites and nitrates. The analyses were carried out by a validated ion chromatography method and the samples with nitrate concentrations higher than legal limits and/or with quantifiable concentrations of nitrites were confirmed by an alternative ion chromatography method. Nitrate levels higher than legal limits were detected both in spinach (four samples) and in lettuce (five samples). Nitrite residues were registered both at low concentrations--lower than 28.5 mg kg⁻¹ (12 spinach samples)--and at high concentrations, up to 197.5 mg kg⁻¹ (three spinach and one lettuce sample). Considering the non-negligible percentage of 'not-compliant' samples for nitrates (6.0%), control is needed. Moreover, it is possible to suggest the introduction in the Communities Regulations of a 'maximum admissible level' for nitrites in leafy vegetables. © 2013 Society of Chemical Industry.

  6. Spray Drying of Spinach Juice: Characterization, Chemical Composition, and Storage.

    PubMed

    Çalışkan Koç, Gülşah; Nur Dirim, Safiye

    2017-12-01

    The 1st aim of this study is to determine the influence of inlet and outlet air temperatures on the physical and chemical properties of obtained powders from spinach juice (SJ) with 3.2 ± 0.2 °Brix (°Bx). Second, the effect of 3 different drying agents (maltodextrin, whey powder, and gum Arabic) on the same properties was investigated for the selected inlet/outlet temperatures (160/100 °C) which gives the minimum moisture content and water activity values. For this purpose, the total soluble solid content of SJ was adjusted to 5.0 ± 0.2 °Bx with different drying agents. Finally, the effects of different storage conditions (4, 20, and 30 °C) on the physical and chemical properties of spinach powders (SPs) produced at selected conditions were examined. A pilot scale spray dryer was used at 3 different inlet/outlet air temperatures (160 to 200 °C/80 to 100 °C) where the outlet air temperature was controlled by regulating the feed flow rate. Results showed that the moisture content, water activity, browning index, total chlorophyll, and total phenolic contents of the SP significantly decreased and pH and total color change of the SP significantly increased by the addition of different drying agents (P < 0.05). In addition, the changes in the above-mentioned properties were determined during the storage period, at 3 different temperatures. It was also observed that the vitamin C, β-carotene, chlorophyll, and phenolic compounds retention showed first-order degradation kinetic with activation energy of 32.6840, 10.2736, 27.7031, and 28.2634 kJ/K.mol, respectively. © 2017 Institute of Food Technologists®.

  7. Healthy Weight: Russell Morgan's Low-Cal Dinner Delights

    MedlinePlus

    ... green beans, one-half medium-size steamed sweet potato. Spinach salad with sliced tomatoes, cucumbers and carrots, ... 1 cup steamed cauliflower, one 6 oz baked potato. Spinach and tomato salad, topped with 1 calorie ...

  8. Quantifying the Reduction in Potential Health Risks by Determining the Sensitivity of Poliovirus Type 1 Chat Strain and Rotavirus SA-11 to Electron Beam Irradiation of Iceberg Lettuce and Spinach

    PubMed Central

    Espinosa, Ana Cecilia; Jesudhasan, Palmy; Arredondo, René; Cepeda, Martha; Mazari-Hiriart, Marisa; Mena, Kristi D.

    2012-01-01

    Fresh produce, such as lettuce and spinach, serves as a route of food-borne illnesses. The U.S. FDA has approved the use of ionizing irradiation up to 4 kGy as a pathogen kill step for fresh-cut lettuce and spinach. The focus of this study was to determine the inactivation of poliovirus and rotavirus on lettuce and spinach when exposed to various doses of high-energy electron beam (E-beam) irradiation and to calculate the theoretical reduction in infection risks that can be achieved under different contamination scenarios and E-beam dose applications. The D10 value (dose required to reduce virus titers by 90%) (standard error) of rotavirus on spinach and lettuce was 1.29 (± 0.64) kGy and 1.03 (± 0.05) kGy, respectively. The D10 value (standard error) of poliovirus on spinach and lettuce was 2.35 (± 0.20) kGy and 2.32 (± 0.08) kGy, respectively. Risk assessment of data showed that if a serving (∼14 g) of lettuce was contaminated with 10 PFU/g of poliovirus, E-beam irradiation at 3 kGy will reduce the risk of infection from >2 in 10 persons to approximately 6 in 100 persons. Similarly, if a serving size (∼0.8 g) of spinach is contaminated with 10 PFU/g of rotavirus, E-beam irradiation at 3 kGy will reduce infection risks from >3 in 10 persons to approximately 5 in 100 persons. The results highlight the value of employing E-beam irradiation to reduce public health risks but also the critical importance of adhering to good agricultural practices that limit enteric virus contamination at the farm and in packing houses. PMID:22179244

  9. Multiresidue pesticide analysis in ginseng and spinach by nontargeted and targeted screening procedures.

    PubMed

    Hayward, Douglas G; Wong, Jon W; Zhang, Kai; Chang, James; Shi, Feng; Banerjee, Kaushik; Yang, Paul

    2011-01-01

    Five different mass spectrometers interfaced to GC or LC were evaluated for their application to targeted and nontargeted screening of pesticides in two foods, spinach and ginseng. The five MS systems were capillary GC/MS/MS, GC-high resolution time-of-flight (GC/HR-TOF)-MS, TOF-MS interfaced with a comprehensive multidimensional GC (GCxGC/TOF-MS), an MS/MS ion trap hybrid mass (qTrap) system interfaced with an ultra-performance liquid chromatograph (UPLC-qTrap), and UPLC interfaced to an orbital trap high resolution mass spectrometer (UPLC/Orbitrap HR-MS). Each MS system was tested with spinach and ginseng extracts prepared through a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) procedure. Each matrix was fortified at 10 and 50 ng/g for spinach or 25 and 100 ng/g for ginseng with subsets of 486 pesticides, isomers, and metabolites representing most pesticide classes. HR-TOF-MS was effective in a targeted search for characteristic accurate mass ions and identified 97% of 170 pesticides in ginseng at 25 ng/g. A targeted screen of either ginseng or spinach found 94-95% of pesticides fortified for analysis at 10 ng/g with GC/MS/MS or LC/MS/MS using multiple reaction monitoring (MRM) procedures. Orbitrap-MS successfully found 89% of 177 fortified pesticides in spinach at 25 ng/g using a targeted search of accurate mass pseudomolecular ions in the positive electrospray ionization mode. A comprehensive GCxGC/TOF-MS system provided separation and identification of 342 pesticides and metabolites in a single 32 min acquisition with standards. Only 67 or 81% of the pesticides were identified in ginseng and spinach matrixes at 25 ng/g or 10 ng/g, respectively. MS/MS or qTrap-MS operated in the MRM mode produced the lowest false-negative rates, at 10 ng/g. Improvements to instrumentation, methods, and software are needed for efficient use of nontargeted screens in parallel with triple quadrupole MS.

  10. Effect of chemical sanitizer combined with modified atmosphere packaging on inhibiting Escherichia coli O157:H7 in commercial spinach.

    PubMed

    Lee, Sun-Young; Baek, Seung-Youb

    2008-06-01

    Escherichia coli O157:H7 contaminated spinach has recently caused several outbreaks of human illness in the USA and Canada. However, to date, there has been no study demonstrating an effective way to eliminate E. coli O157:H7 in spinach. Therefore, this study was conducted to investigate the effect of chemical sanitizers alone or in combination with packaging methods such as vacuum and modified atmosphere packaging (MAP) on inactivating E. coli O157:H7 in spinach during storage time. Spinach inoculated with E. coli O157:H7 was packaged in four different methods (air, vacuum, N(2) gas, and CO(2) gas packaging) following treatment with water, 100 ppm chlorine dioxide, or 100 ppm sodium hypochlorite for 5 min at room temperature and stored at 7+/-2 degrees C. Treatment with water did not significantly reduce levels of E. coli O157:H7 in spinach. However, treatment with chlorine dioxide and sodium hypochlorite significantly decreased levels of E. coli O157:H7 by 2.6 and 1.1 log(10)CFU/g, respectively. Levels of E. coli O157:H7 in samples packaged in air following treatments grew during storage time, whereas levels were maintained in samples packaged in other packaging methods (vacuum, N(2) gas, and CO(2) gas packaging). Therefore there were significant differences (about 3-4 log) of E. coli O157:H7 populations between samples packed in air and other packaging methods following treatment with chemical sanitizers after 7 days storage. These results suggest that the combination of treatment with chlorine dioxide and packaging methods such as vacuum and MAP may be useful for improving the microbial safety of spinach against E. coli O157:H7 during storage.

  11. 40 CFR 180.587 - Famoxadone; tolerance for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., liver 0.05 Spinach 50 Tomato 1.0 Vegetable, cucurbit, group 9 0.30 Vegetable, fruiting, group 8, except tomato 4.0 Vegetable, leafy, except Brassica, group 4, except spinach 25 1 There are no U.S...

  12. 40 CFR 180.613 - Flonicamid; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 12 0.60 Hop, dried cones 7.0 Okra 0.40 Potato, granules/flakes 0.40 Radish, tops 16 Spinach 9.0..., fruiting, group 8 0.40 Vegetable, leafy, except brassica, group 4, except spinach 4.0 Vegetable, root...

  13. Selection of Leafy Green Vegetable Varieties for a Pick-and-Eat Diet Supplement on ISS

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.; Wheeler, Raymond M.; Stutte, Gary W.; Richards, Jeffrey T.; Spencer, LaShelle E.; Hummerick, Mary E.; Douglas, Grace L.; Sirmons, Takiyah

    2015-01-01

    Several varieties of leafy vegetables were evaluated with the goal of selecting those with the best growth, nutrition, and organoleptic acceptability for ISS. Candidate species were narrowed to commercially available cultivars with desirable growth attributes for space (e.g., short stature and rapid growth). Seeds were germinated in controlled environment chambers under conditions similar to what might be found in the Veggie plant growth chamber on ISS. Eight varieties of leafy greens were grown: 'Tyee' spinach, 'Flamingo' spinach, 'Outredgeous' Red Romaine lettuce, 'Waldmann's Dark Green' leaf lettuce, 'Bull's Blood' beet, 'Rhubarb' Swiss chard, 'Tokyo Bekana' Chinese cabbage, and Mizuna. Plants were harvested at maturity and biometric data on plant height, diameter, chlorophyll content, and fresh mass were obtained. Tissue was ground and extractions were performed to determine the tissue elemental content of Potassium (K), Magnesium (Mg), Calcium (Ca) and Iron (Fe). Following the biometric/elemental evaluation, four of the eight varieties were tested further for levels of anthocyanins, antioxidant (ORAC-fluorescein) capacity, lutein, zeaxanthin, and Vitamin K. For sensory evaluation, 'Outredgeous' lettuce, Swiss chard, Chinese cabbage, and Mizuna plants were grown, harvested when mature, packaged under refrigerated conditions, and sent to the JSC Space Food Systems Laboratory. Tasters evaluated overall acceptability, appearance, color intensity, bitterness, flavor, texture, crispness and tenderness. All varieties received acceptable scores with overall ratings greater than 6 on a 9-point hedonic scale. Chinese cabbage was the highest rated, followed by Mizuna, 'Outredgeous' lettuce, and Swiss chard. Based on our results, the selected varieties of Chinese cabbage, lettuce, Swiss chard and Mizuna seem suitable for a pick-and-eat scenario on ISS with a ranking based on all factors analyzed to help establish priority.

  14. Structure and Stability of the Spinach Aquaporin SoPIP2;1 in Detergent Micelles and Lipid Membranes

    PubMed Central

    Plasencia, Inés; Survery, Sabeen; Ibragimova, Sania; Hansen, Jesper S.; Kjellbom, Per; Helix-Nielsen, Claus; Johanson, Urban; Mouritsen, Ole G.

    2011-01-01

    Background SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. Methodology/Principal Finding We have characterized the protein structural stability after purification and after reconstitution into detergent micelles and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-β-D-glucopyranoside (OG) or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPhPC), or reconstituted into lipid membranes formed from mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE), 1-palmitoyl-2oleoyl-phosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS), and ergosterol. Generally, SoPIP2;1 secondary structure was found to be predominantly α-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58°C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced by an increased melting temperature of up to 70°C. Conclusion/Significance The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes for biotechnological applications. PMID:21339815

  15. Structure and stability of the spinach aquaporin SoPIP2;1 in detergent micelles and lipid membranes.

    PubMed

    Plasencia, Inés; Survery, Sabeen; Ibragimova, Sania; Hansen, Jesper S; Kjellbom, Per; Helix-Nielsen, Claus; Johanson, Urban; Mouritsen, Ole G

    2011-02-14

    SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. We have characterized the protein structural stability after purification and after reconstitution into detergent micelles and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-β-D-glucopyranoside (OG) or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPhPC), or reconstituted into lipid membranes formed from mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE), 1-palmitoyl-2oleoyl-phosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS), and ergosterol. Generally, SoPIP2;1 secondary structure was found to be predominantly α-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58°C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced by an increased melting temperature of up to 70°C. The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes for biotechnological applications.

  16. The role of acyl carrier protein isoforms from Cuphea lanceolata seeds in the de-novo biosynthesis of medium-chain fatty acids.

    PubMed

    Schütt, B S; Brummel, M; Schuch, R; Spener, F

    1998-06-01

    To investigate the role of acyl carrier protein (ACP) in determining the fate of the acyl moieties linked to it in the course of de-novo fatty acid biosynthesis in higher plants, we carried out in vitro experiments to reconstitute the fatty acid synthase (FAS) reaction in extracts of spinach (Spinacia oleracea L.) leaves, rape (Brassica napus L.) seeds and Cuphea lanceolata Ait. seeds. The action of two major C. lanceolata ACP isoforms (ACP 1 and ACP 2) compared to ACP from Escherichia coli was monitored by saponification of the corresponding FAS products with subsequent analysis of the liberated fatty acids by high-performance liquid chromatography. In a second approach the preference of the medium-chain acyl-ACP-specific thioesterase (EC 3.1.2.14) of C. lanceolata seeds for the hydrolysis of acyl-ACPs prepared from the three ACP types was investigated. Both ACP isoforms from C. lanceolata seeds supported the synthesis of medium-chain fatty acids in a reconstituted FAS reaction of spinach leaf extracts. Compared to the isoform ACP 1, ACP 2 was more effective in supporting the synthesis of such fatty acids in the FAS reaction of rape seed extracts and caused a higher accumulation of FAS products in all experiments. No preference of the medium-chain thioesterase for one specific ACP isoform was observed. The results indicate that the presence of ACP 2 is essential for the synthesis of decanoic acid in C. lanceolata seeds, and its expression in the phase of accumulation of high levels of this fatty acid provides an additional and highly efficient cofactor for stimulating the FAS reaction.

  17. Lettuce and spinach breeding

    USDA-ARS?s Scientific Manuscript database

    Lettuce and spinach production is beset by numerous biotic an abiotic challenges, thus the leafy-vegetable industry of California requires continued development of improved, adapted cultivars to meet new disease and insect problems, changes in the market, and changes in growing procedures. The lettu...

  18. Photosynthetic Electron Transport Chain of Chlamydomonas reinhardi. IV. Purification and Properties of Plastocyanin.

    PubMed

    Gorman, D S; Levine, R P

    1966-12-01

    The copper protein plastocyanin has been found to be an essential component of the photosynthetic electron transport chain of Chlamydomonas reinhardi, and in this paper we describe a method for its isolation and purification from the wild-type strain. In addition, we describe some of its properties and compare them with those reported for spinach plastocyanin.The plastocyanin was extracted from acetone powders prepared from intact cells, and it was purified by ion exchange chromatography on DEAE cellulose and gel filtration on Sephadex G-75. The yield of the purified protein ranged from plastocyanin equivalent to 2.0 to 2.5 mug atoms copper per 1000 mumoles chlorophyll. In general the absorption spectrum of plastocyanin from C. reinhardi resembled that of the plastocyanin from spinach. Some spectral differences were found in the ultraviolet region where, in contrast to spinach plastocyanin, that of C. reinhardi had a greater absorbance (relative to peaks in the visible) and less evidence for phenylalanine fine structure. The normal oxidation-reduction potential of C. reinhardi plastocyanin was found to be + 0.37 volts, the same as reported for spinach plastocyanin. The molecular weight of C. reinhardi plastocyanin has been estimated to be 13,000 +/- 2000. In contrast, the value for spinach plastocyanin has been found to be 21,000.

  19. Multistate Outbreak of Escherichia coli O157:H7 Infections Associated with Consumption of Fresh Spinach: United States, 2006.

    PubMed

    Sharapov, Umid M; Wendel, Arthur M; Davis, Jeffrey P; Keene, William E; Farrar, Jeffrey; Sodha, Samir; Hyytia-Trees, Eija; Leeper, Molly; Gerner-Smidt, Peter; Griffin, Patricia M; Braden, Chris

    2016-12-01

    During September to October, 2006, state and local health departments and the Centers for Disease Control and Prevention investigated a large, multistate outbreak of Escherichia coli O157:H7 infections. Case patients were interviewed regarding specific foods consumed and other possible exposures. E. coli O157:H7 strains isolated from human and food specimens were subtyped using pulsed-field gel electrophoresis and multiple-locus variable-number tandem repeat analyses (MLVA). Two hundred twenty-five cases (191 confirmed and 34 probable) were identified in 27 states; 116 (56%) case patients were hospitalized, 39 (19%) developed hemolytic uremic syndrome, and 5 (2%) died. Among 176 case patients from whom E. coli O157:H7 with the outbreak genotype (MLVA outbreak strain) was isolated and who provided details regarding spinach exposure, 161 (91%) reported fresh spinach consumption during the 10 days before illness began. Among 116 patients who provided spinach brand information, 106 (91%) consumed bagged brand A. E. coli O157:H7 strains were isolated from 13 bags of brand A spinach collected from patients' homes; isolates from 12 bags had the same MLVA pattern. Comprehensive epidemiologic and laboratory investigations associated this large multistate outbreak of E. coli O157:H7 infections with consumption of fresh bagged spinach. MLVA, as a supplement to pulsed-field gel electrophoresis genotyping of case patient isolates, was important to discern outbreak-related cases. This outbreak resulted in enhanced federal and industry guidance to improve the safety of leafy green vegetables and launched an independent collaborative approach to produce safety research in 2007.

  20. Oxalic acid does not influence nonhaem iron absorption in humans: a comparison of kale and spinach meals.

    PubMed

    genannt Bonsmann, S Storcksdieck; Walczyk, T; Renggli, S; Hurrell, R F

    2008-03-01

    To evaluate the influence of oxalic acid (OA) on nonhaem iron absorption in humans. Two randomized crossover stable iron isotope absorption studies. Zurich, Switzerland. Sixteen apparently healthy women (18-45 years, <60 kg body weight), recruited by poster advertizing from the staff and student populations of the ETH, University and University Hospital of Zurich, Switzerland. Thirteen subjects completed both studies. Iron absorption was measured based on erythrocyte incorporation of (57)Fe or (58)Fe 14 days after the administration of labelled meals. In study I, test meals consisted of two wheat bread rolls (100 g) and either 150 g spinach with a native OA content of 1.27 g (reference meal) or 150 g kale with a native OA content of 0.01 g. In study II, 150 g kale given with a potassium oxalate drink to obtain a total OA content of 1.27 g was compared to the spinach meal. After normalization for the spinach reference meal absorption, geometric mean iron absorption from wheat bread rolls with kale (10.7%) did not differ significantly from wheat rolls with kale plus 1.26 g OA added as potassium oxalate (11.5%, P=0.86). Spinach was significantly higher in calcium and polyphenols than kale and absorption from the spinach meal was 24% lower compared to the kale meal without added OA, but the difference did not reach statistical significance (P>0.16). Potassium oxalate did not influence iron absorption in humans from a kale meal and our findings strongly suggest that OA in fruits and vegetables is of minor relevance in iron nutrition.

  1. Development and Survival of Spodoptera exigua (Lepidoptera: Noctuidae) on Alternate Crops in Cotton Cropping Pattern, With Implications to Integrated Pest Management.

    PubMed

    Saeed, Qamar; Ahmad, Faheem; Saeed, Shafqat

    2017-06-01

    Spodoptera exigua (Hübner) is a polyphagous pest that shifts its population to different hosts during its life cycle to receive nutritive advantages. Therefore, demographic evaluation of alternate hosts is important for effective pest management. Here, we have evaluated castor (Ricinus communis L.), cauliflower (Brassica oleracea L.), cotton (Gossypium hirsutum L.), okra (Abelmoschus esculentus L.), and spinach (Spinacia oleracea L.) for growth, survival, and population development of S. exigua. Development of early populations of S. exigua is best supported on castor where earlier instars had least mortalities (10%) compared with spinach (36%), although later instars and pupae had significantly higher mortalities (20.8%) on it. Spinach and okra, on the other hand, promote larval survivals in later instars. Little or no differences in stadia lengths were observed during early development of larvae and, interestingly, the longevity of female moths increased significantly when reared on castor, cauliflower, and spinach (12.3, 11.3, and 11.7 d, respectively), resulting into significantly higher fecundity. The survival curves of all five populations have clearly demonstrated a steep early decline in larval numbers when reared on okra and only 60% larvae could survive. These findings conclude that S. exigua when fed on spinach was greatly disadvantaged in terms of growth and development; hence, the pest's field population can be opportunistically controlled by spraying adjacent spinach fields. In addition, the results highlight the vulnerable stages in pest's life cycle in the field where we can apply integrated control strategies for its effective management. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance

    NASA Astrophysics Data System (ADS)

    Xue, Lihong; Yang, Linzhang

    Different nitrogen (N) treatments of four common green-leafy vegetable varieties with different leaf color: lettuce ( Lactuca sativa L. var. crispa L.) with yellow green leaves, pakchoi ( Brassica chinensis L.) var. aijiaohuang in Chinese (AJH) with middle green leaves, spinach ( Spinacia oleracea L.) with green leaves and pakchoi ( B. chinensis L.) var. shanghaiqing in Chinese (SHQ) with dark green leaves, were carried out to achieve a wide range of chlorophyll content. The relationship of vegetable leaf hyperspectral response to its chlorophyll content was examined in this study. Almost all reported successful leaf chlorophyll indices in the literature were evaluated for their ability to predict the chlorophyll content in vegetable leaves. Some new indices based on the first derivative curve were also developed, and compared with the chlorophyll indices published. The results showed that most of the indices showed a strong relation with leaf chlorophyll content. In general, modified indices with the blue or near red edge wavelength performed better than their simple counterpart without modification, ratio indices performed a little better than normalized indices when chlorophyll expressed on area basis and reversed when chlorophyll expressed on fresh weight basis. A normalized derivative difference ratio (BND: (D722-D700)/(D722+D700) calibrated by Maire et al. [Maire, G., Francois, C., Dufrene, E., 2004. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment 89 (1), 1-28]) gave the best results among all published indices in this study (RMSE=22.1 mg m -2), then the mSR-like indices with the RMSE between 22.6 and 23.0 mg m -2. The new indices EBAR (ratio of the area of red and blue, ∑ dRE/∑ dB), EBFN (normalized difference of the amplitude of red and blue, (dRE-dB)/(dRE+dB)) and EBAN (normalized difference of the area of red and blue, (∑ dRE-∑ dB)/(∑ dRE+∑ dB)) calculated with the derivatives also showed a good performance with the RMSE of 23.3, 24.15 and 24.33 mg m -2, respectively. The study suggests that spectral reflectance measurements hold promise for the assessment of chlorophyll content at the leaf level for green-leafy vegetables. Further investigation is needed to evaluate the effectiveness of such techniques on other vegetable varieties or at the canopy level.

  3. Solar energy from spinach and toothpaste: fabrication of a solar cell in schools

    NASA Astrophysics Data System (ADS)

    Siemsen, F.; Bunk, A.; Fischer, K.; Korneck, F.; Engel, H.; Roux, D.

    1998-01-01

    We will show how pupils can make a solar cell with spinach, toothpaste and a few other items found in any school laboratory. This device is called a Graetzel cell, and could trigger off a revolution in photovoltaic technology.

  4. Isolation and Characterization of Phosphatidyl Choline from Spinach Leaves.

    ERIC Educational Resources Information Center

    Devor, Kenneth A.

    1979-01-01

    This inexpensive but informative experiment for undergraduate biochemistry students involves isolating phosphatidyl choline from spinach leaves. Emphasis is on introducing students to techniques of lipid extraction, separation of lipids, identification using thin layer chromatography, and identification of fatty acids. Three periods of three hours…

  5. Detection of latent infections of Peronospora effusa in spinach

    USDA-ARS?s Scientific Manuscript database

    Downy mildew, caused by Peronospora effusa, is the most serious disease of spinach in central coastal California. The disease is managed in conventional production fields by a combination of host resistance and calendar-based fungicide applications, in which fungicides are applied to prevent downy ...

  6. The CrIIL reduction of [2Fe-2S] ferredoxins and site of attachment of CrIII using 1H NMR and site-directed mutagenesis.

    PubMed

    Im, S C; Worrall, J A; Liu, G; Aliverti, A; Zanetti, G; Luchinat, C; Bertini, I; Sykes, A G

    2000-04-17

    The recently reported NMR solution structure of FeIIIFeIII parsley FdI has made possible 2D NOESY NMR studies to determine the point of attachment of CrIIIL in FeIIIFeIII...CrIIIL. The latter Cr-modified product was obtained by reduction of FeIIIFeIII parsley and spinach FdI forms with [Cr(15-aneN4) (H2O)2]2+ (15-aneN4 = 1,4,8,12-tetraazacyclopentadecane), referred to here as CrIIL, followed by air oxidation and chromatographic purification. From a comparison of NMR cross-peak intensities of native and Cr-modified proteins, two surface sites designated A and B, giving large paramagnetic CrIIIL broadening of a number of amino acid peaks, have been identified. The effects at site A (residues 19-22, 27, and 30) are greater than those at site B (residues 92-94 and 96), which is on the opposite side of the protein. From metal (ICP-AES) and electrospray ionization mass spectrometry (EIMS) analyses on the Cr-modified protein, attachment of a single CrIIIL only is confirmed for both parsley and spinach FdI and FdII proteins. Electrostatic interaction of the 3+ CrIIIL center covalently attached to one protein molecule (charge approximately -18) with a second (like) molecule provides an explanation for the involvement of two regions. Thus for 3-4 mM FeIIIFeIII...CrIIIL solutions used in NMR studies (CrIIIL attached at A), broadening effects due to electrostatic interactions at B on a second molecule are observed. Experiments with the Cys18Ala spinach FdI variant have confirmed that the previously suggested Cys-18 at site A is not the site of CrIIIL attachment. Line broadening at Val-22 of A gives the largest effect, and CrIIIL attachment at one or more adjacent (conserved) acidic residues in this region is indicated. The ability of CrIIL to bind in some (parsley and spinach) but not all cases (Anabaena variabilis) suggests that intramolecular H-bonding of acidic residues at A is relevant. The parsley and spinach FeIIFeIII...CrIIIL products undergo a second stage of reduction with the formation of FeIIFeII...CrIIIL. However, the spinach Glu92Ala (site B) variant undergoes only the first stage of reduction, and it appears that Glu-92 is required for the second stage of reduction to occur. A sample of CrIIIL-modified parsley FeIIIFeIII Fd is fully active as an electron carrier in the NADPH-cytochrome c reductase reaction catalyzed by ferredoxin-NADP+ reductase.

  7. Effect of single or combined chemical and natural antimicrobial interventions on Escherichia coli O157:H7, total microbiota and color of packaged spinach and lettuce.

    PubMed

    Poimenidou, Sofia V; Bikouli, Vasiliki C; Gardeli, Chryssavgi; Mitsi, Christina; Tarantilis, Petros A; Nychas, George-John; Skandamis, Panagiotis N

    2016-03-02

    Aqueous extract of Origanum vulgare (oregano), sodium hypochlorite (60 and 300 ppm of free chlorine), Citrox® (containing citric acid and phenolic compounds [bioflavonoids] as active ingredients), vinegar, lactic acid, and double combinations of Citrox, lactic acid and oregano were evaluated against Escherichia coli O157:H7 and total mesophilic microbiota on fresh-cut spinach and lettuce and for their impact on color of treated vegetables. Spinach and lettuce leaves were inoculated with E. coli O157:H7 to a level of 5-6 log CFU/g and immersed in washing solutions for 2 or 5 min at 20 °C, followed by rinsing with ice water (30s). Bacterial populations on vegetables were enumerated immediately after washing and after storage of the samples at 5 °C for 7 days under 20% CO2: 80% N2. No significant post-washing microbial reductions were achieved by chlorinated water, whereas after storage total microbiota was increased by 2.4 log CFU/g on lettuce. Vinegar wash was the most effective treatment causing E. coli O157:H7 reductions of 1.8-4.3 log CFU/g. During storage, pathogen was further decreased to below the detection limit level (<2 log CFU/g) and total microbiota exhibited the highest reductions compared to other treatments. Lactic acid reduced pathogen by 1.6-3.7 log CFU/g after washing; however levels of total microbiota increased by up to 2 log CFU/g on packaged lettuce during storage. Washing lettuce samples with oregano for 2 min resulted in 2.1 log CFU/g reduction of E. coli O157:H7. When Citrox was combined with oregano, 3.7-4.0 log CFU/g reduction was achieved on spinach and lettuce samples, with no significant effect on color parameters. Additionally, rinsing with ice water after decontamination treatments contributed to maintenance of color of the treated vegetables. In conclusion, the results indicated that vinegar, lactic acid or oregano aqueous extract alone or in combination, as alternative washing solutions to chlorine, may be effectively used to control E. coli O157:H7 and sustain acceptable appearance of fresh cut spinach and lettuce. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Spatiotemporal patterns in the airborne dispersal of spinach downy mildew

    USDA-ARS?s Scientific Manuscript database

    Downy mildew, caused by the biotrophic oomycete pathogen, Peronospora effusa, is the most devastating disease of spinach that threatens sustainable production. The disease results in yellow lesions that render leaves unmarketable as the high value fresh produce. In this study, the levels of D...

  9. Flavonoid content and antioxidant capacity of spinach genotypes determined by high-performance liquid chromatography/mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Flavonoids in different spinach genotypes were separated, identified, and quantified by a high-performance liquid chromatographic method with photodiode array and mass spectrometric detection. The antioxidant capacities of the genotypes were also measured using two antioxidant assays - oxygen radica...

  10. Regulation of Ribulose-1,5-Bisphosphate Carboxylase Activity by the Activase System in Lysed Spinach Chloroplasts

    PubMed Central

    Parry, Martin A. J.; Keys, Alfred J.; Foyer, Christine H.; Furbank, Robert T.; Walker, David A.

    1988-01-01

    Ribulose-1,5-bisphosphate (RuBP) carboxylase in lysed spinach (Spinacia oleracea L. cv virtuosa) chloroplasts that had been partly inactivated at low CO2 and Mg2+ by incubating in darkness with 4 millimolar partially purified RuBP was reactivated by light. If purified RuBP was used to inhibit dark activation of the enzyme, reactivation by light was not observed unless fructose-1,6-bisphosphate, ATP, or ADP plus inorganic phosphate were also added. Presumably, ADP plus inorganic phosphate acted as an ATP-generating system with a requirement for the generation of ΔpH across the thylakoid membrane. When the RuBP obtained from Sigma Chemical Co. was used, light did not reactivate the enzyme. There was no direct correlation between ΔpH and activation. Therefore, thylakoids are required in the ribulose-1,5-bisphosphate carboxylase activase system largely to synthesize ATP. Inactivation of RuBP carboxylase in isolated chloroplasts or in the lysed chloroplast system was not promoted simply by a transition from light to dark conditions but was caused by low CO2 and Mg2+. PMID:16666184

  11. Assay, Purification, and Partial Characterization of Choline Monooxygenase from Spinach.

    PubMed Central

    Burnet, M.; Lafontaine, P. J.; Hanson, A. D.

    1995-01-01

    The osmoprotectant glycine betaine is synthesized via the path-way choline -> betaine aldehyde -> glycine betaine. In spinach (Spinacia oleracea), the first step is catalyzed by choline monooxygenase (CMO), and the second is catalyzed by betaine aldehyde dehydrogenase. Because betaine aldehyde is unstable and not easily detected, we developed a coupled radiometric assay for CMO. [14C]Choline is used as substrate; NAD+ and betaine aldehyde dehydrogenase prepared from Escherichia coli are added to oxidize [14C]betaine aldehyde to [14C]glycine betaine, which is isolated by ion exchange. The assay was used in the purification of CMO from leaves of salinized spinach. The 10-step procedure included polyethylene glycol precipitation, polyethyleneimine precipitation, hydrophobic interaction, anion exchange on choline-Sepharose, dimethyldiethanolamine-Sepharose, and Mono Q, hydroxyapatite, gel filtration, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Following gel filtration, overall purification was about 600-fold and recovery of activity was 0.5%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a polypeptide with a molecular mass of 45 kD. Taken with the value of 98 kD estimated for native CMO (R. Brouquisse, P. Weigel, D. Rhodes, C.F. Yocum, A.D. Hanson [1989] Plant Physiol 90: 322-329), this indicates that CMO is a homodimer. CMO preparations were red-brown, showed absorption maxima at 329 and 459 nm, and lost color upon dithionite addition, suggesting that CMO is an iron-sulfur protein. PMID:12228495

  12. Analysis of eight organophosphorus pesticide residues in fresh vegetables retailed in agricultural product markets of Nanjing, China.

    PubMed

    Wang, Ligang; Liang, Yongchao; Jiang, Xin

    2008-10-01

    A method to effectively remove pigments in fresh vegetables using activated carbon followed cleanup through solid phase extraction (SPE) cartridge to further reduce matrix interference and contamination, was established to determine eight organophosphorous pesticides (OPPs) by gas chromatography (GC) with nitrogen-phosphorus detection (NPD) in this study, and it has been successfully applied for the determination of eight OPPs in various fresh vegetables with the recoveries ranging from 61.8% to 107%. To evaluate eight OPPs residue level, some fresh vegetables retailed at three agricultural product markets (APM) of Nanjing in China were detected, the results showed that phorate in Shanghai green (0.0257 microg g(-1)) and Chinese cabbage (0.0398 microg g(-1)), dimethoate in Shanghai green (0.0466-0.0810 microg g(-1)), Chinese cabbage (0.077 microg g(-1)), and spinach (0.118-0.124 microg g(-1)), methyl-parathion in Shanghai green (0.0903 microg g(-1)), Chinese cabbage (0.157 microg g(-1)), and spinach (0.0924 microg g(-1)), malathion in Shanghai green (0.0342-0.0526 microg g(-1)), chorpyrifos in spinach (0.106-0.204 microg g(-1)), and Chinese cabbage (0.149 microg g(-1)), chlorfenvinfos in carrot (0.094-0.131 microg g(-1)), were found. However, fonofos and fenthion were not detected in all the collected vegetable samples.

  13. Recovering folic acid and its identification on mixed pastes of tempeh and fermented vegetable as natural source of folic acid

    NASA Astrophysics Data System (ADS)

    Susilowati, Agustine; Aspiyanto, Maryati, Yati; Melanie, Hakiki; Lotulung, Puspa D.

    2017-11-01

    Mixing between tempeh and both fermented broccoli (Brassica oleracea) and spinach (Amaranthus sp.) were conducted to achieve mixed pastes as natural source of folic acid for 'smart food'. Mixing was performed on soy, mung bean, and kidney bean tempehs with both fermented broccoli and spinach at ratio of 1 : 1, 1 : 2, 1 : 3, 1 : 4, 1 : 5 and 1 : 6, respectively. Result of experimental activity showed that pulverizing ratio becoming more and more low will decrease total solids, soluble protein and N-Amino, but fluctuates on folic acid in mixed paste. Based on folic acid equivalent and the best fermented vegetable efficiency, optimization condition was reached in paste with combination between mung beans tempeh and fermented spinach at ratio of 1 : 2 by increasing folic acid concentration of 83.18 % (0.83 times), dissolved protein 432.29 % (4.32 times) and N-amino 55.36 % (0,55 times). While, it is occurred a lowering total solids 22.16 % (0.22 times) when compared with folic acid, soluble protein, N-amino, and total solids on initial materials of mung bean tempeh. In this condition, it is achieved folic acid monomer with molecular weight (MW) 148.14 Da. with relative intensity 100 %, and glutamic acid monomer 443.50 Da.with relative intensity 0.07 %.

  14. Genetic diversity and association analysis of leafminer (Liriomyza langei) resistance in spinach (Spinacia oleracea)

    USDA-ARS?s Scientific Manuscript database

    Leafminer (Liriomyza spp.) is a major insect pest of many important agricultural crops, including spinach (Spinacia oleracea). Use of genetic resistance is an efficient, economic and environment-friendly method to control this pest. The objective of this research was to conduct association analysis ...

  15. Multispectral fluorescence imaging for detection of bovine feces on Romaine lettuce and baby spinach leaves

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral fluorescence imaging with ultraviolet-A excitation was used to evaluate the feasibility of two-waveband fluorescence algorithms for the detection of bovine fecal contaminants on the abaxial and adaxial surfaces of Romaine lettuce and baby spinach leaves. Correlation analysis was used t...

  16. Responses of spinach to salinity and nutrient deficiency in growth, physiology and nutritional value

    USDA-ARS?s Scientific Manuscript database

    Salinity and nutrient depleted soil are major constraints to crop production, especially for vegetable crops. The effects of salinity and nutrient deficiency on spinach were evaluated in sand cultures under greenhouse conditions. Plants were watered every day with Hoagland nutrition solution, depriv...

  17. Purification and Assay of Rubisco Activase from Leaves 1

    PubMed Central

    Robinson, Simon P.; Streusand, Virginia J.; Chatfield, J. Mark; Portis, Archie R.

    1988-01-01

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) activase protein was purified from spinach leaves by ammonium sulfate precipitation and ion exchange fast protein liquid chromatography. This resulted in 48-fold purification with 70% recovery of activity and yielded up to 18 milligrams of rubisco activase protein from 100 grams of leaves. Based on these figures, the protein comprised approximately 2% by weight of soluble protein in spinach (Spinacia oleracea L.) leaves. The preparations were at least 95% pure and were stable when frozen in liquid nitrogen. Addition of ATP during purification and storage was necessary to maintain activity. Assay of rubisco activase was based on its ability to promote activation of rubisco in the presence of ribulose-1,5-bisphosphate. There was an absolute requirement for ATP which could not be replaced by other nucleoside phosphates. The initial rate of increase of rubisco activity and the final rubisco specific activity achieved were both dependent on the concentration of rubisco activase. The initial rate was directly proportional to the rubisco activase concentration and was used as the basis of activity. The rate of activation of rubisco was also dependent on the rubisco concentration, suggesting that the activation process is a second order reaction dependent on the concentrations of both rubisco and rubisco activase. It is suggested that deactivation of rubisco occurs simultaneously with rubisco activase-mediated activation, and that rubisco activation state represents a dynamic equilibrium between these two processes. Images Fig. 2 PMID:16666412

  18. Ribose 5-Phosphate Isomerase Investigations for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Jewett, Kathy; Sandwick, Roger K.

    2011-01-01

    The enzyme ribose 5-phosphate isomerase (RpiA) has many features that make it attractive as a focal point of a semester-long, advanced biochemistry laboratory for undergraduate students. The protein can easily and inexpensively be isolated from spinach using traditional purification techniques. Characterization of RpiA enzyme activity can be…

  19. Release of antioxidant capacity from five plant foods during a multistep enzymatic digestion protocol.

    PubMed

    Papillo, Valentina Azzurra; Vitaglione, Paola; Graziani, Giulia; Gokmen, Vural; Fogliano, Vincenzo

    2014-05-07

    This study aimed at elucidating the influence of food matrix on the release of antioxidant activity from five plant foods (apple, spinach, walnut, red bean, and whole wheat). To this purpose a protocol based on sequential enzymatic digestion was adopted. The total antioxidant capacity (TAC) of both solubilized and insoluble materials was measured at each step. Results showed that the overall TAC obtained by enzyme treatments was usually higher than that obtained by chemical extraction-based methods. In apple most of the TAC was released upon water washing and after pepsin treatment, whereas in spinach, beans, and whole wheat the TAC released by treatments with bacterial enzymes was prominent. Walnut had the highest TAC value, which was mainly released after pancreatin treatment. Therefore, the enzyme treatment is fundamental to estimate the overall potential TAC of foods having a high amount of polyphenols bound to dietary fiber or entrapped in the food matrix.

  20. The ferredoxin-thioredoxin system of a green alga, Chlamydomonas reinhardtii: identification and characterization of thioredoxins and ferredoxin-thioredoxin reductase components

    NASA Technical Reports Server (NTRS)

    Huppe, H. C.; de Lamotte-Guery, F.; Buchanan, B. B.

    1990-01-01

    The components of the ferredoxin-thioredoxin (FT) system of Chlamydomonas reinhardtii have been purified and characterized. The system resembled that of higher plants in consisting of a ferredoxin-thioredoxin reductase (FTR) and two types of thioredoxin, a single f and two m species, m1 and m2. The Chlamydomonas m and f thioredoxins were antigenically similar to their higher-plant counterparts, but not to one another. The m thioredoxins were recognized by antibodies to both higher plant m and bacterial thioredoxins, whereas the thioredoxin f was not. Chlamydomonas thioredoxin f reacted, although weakly, with the antibody to spinach thioredoxin f. The algal thioredoxin f differed from thioredoxins studied previously in behaving as a basic protein on ion-exchange columns. Purification revealed that the algal thioredoxins had molecular masses (Mrs) typical of thioredoxins from other sources, m1 and m2 being 10700 and f 11500. Chlamydomonas FTR had two dissimilar subunits, a feature common to all FTRs studied thus far. One, the 13-kDa ("similar") subunit, resembled its counterpart from other sources in both size and antigenicity. The other, 10-kDa ("variable") subunit was not recognized by antibodies to any FTR tested. When combined with spinach, (Spinacia oleracea L.) thylakoid membranes, the components of the FT system functioned in the light activation of the standard target enzymes from chloroplasts, corn (Zea mays L.) NADP-malate dehydrogenase (EC 1.1.1.82) and spinach fructose 1,6-bisphosphatase (EC 3.1.3.11) as well as the chloroplast-type fructose 1,6-bisphosphatase from Chlamydomonas. Activity was greatest if ferredoxin and other components of the FT system were from Chlamydomonas. The capacity of the Chlamydomonas FT system to activate autologous FBPase indicates that light regulates the photosynthetic carbon metabolism of green algae as in other oxygenic photosynthetic organisms.

  1. Combining essential oils and olive extract for control of multi-drug resistant Salmonella enterica on organic leafy greens

    USDA-ARS?s Scientific Manuscript database

    We investigated the combined antimicrobial effects of plant essential oils and olive extract. Organic baby spinach, mature spinach, romaine lettuce, and iceberg lettuce were inoculated with the pathogen and then dip-treated in phosphate buffered saline (PBS) control, 3.0% hydrogen peroxide, a 0.1% ...

  2. Persistence and internalization of Salmonella on/in organic spinach sprout: exploring the contamination route

    USDA-ARS?s Scientific Manuscript database

    Purpose: The effects of contamination route, including seed and water, on the persistence and internalization of Salmonella in organic spinach cultivars- Lazio, Space, Emilia and Waitiki were studied. Methods: Seeds (1g) were contaminated with S. Newport using 10 ml of S. Newport-water suspension ov...

  3. First report of Phytophthora root rot, caused by Phytophthora cryptogea, on spinach in California

    USDA-ARS?s Scientific Manuscript database

    In 2006 and 2007, commercially grown spinach (Spinacia oleracea) in California’s coastal Salinas Valley (Monterey County) was affected by an unreported root rot disease. Disease was limited to patches along the edges of fields. Affected plants were stunted with chlorotic older leaves. As disease pro...

  4. Short-term effects of composted cattle manure or cotton burr on growth, physiology and phytochemical of spinach

    USDA-ARS?s Scientific Manuscript database

    Compost is increasingly used in horticultural crop production as soil conditioner and fertilizer because of its contribution to agriculture sustainability. The short-term effects of compost on soil fertility and spinach (Spinacia oleracea L.) were evaluated in a greenhouse. Pots were filled with soi...

  5. Combining essential oils and olive extract for control of multi-drug resistant Salmonella enterica on organic leafy greens

    USDA-ARS?s Scientific Manuscript database

    We investigated the combined antimicrobial effects of plant essential oils and olive extract against antibiotic resistant Salmonella enterica serovar Newport on organic leafy greens. Organic baby spinach, mature spinach, romaine lettuce, and iceberg lettuce were inoculated with S. Newport and dip-t...

  6. Adherence of curli producing Shiga-toxigenic Escherichia coli to baby spinach leaves

    USDA-ARS?s Scientific Manuscript database

    Cellular appendages, such as curli fibers have been suggested to be involved in STEC persistence in fresh produce as these curli are critical in biofilm formation and adherence to animal cells. We determined the role of curli in attachment of STEC on spinach leaves. The curli expression by wild-ty...

  7. Effect of surface characteristics on retention and removal of Escherichia coli O157:H7 on surfaces of spinach

    USDA-ARS?s Scientific Manuscript database

    The topography and the spatial heterogeneity of produce surfaces may impact the attachment of microbial cells onto produce surfaces and affect disinfection efficacy. In this study, the effects of produce surface characteristics on the removal of bacteria were studied. Fresh spinach leaves were sp...

  8. Effect of Soil Amendments on Cd accumulation by Spinach from a Cd-Mineralized Soil

    USDA-ARS?s Scientific Manuscript database

    Cadmium mineralized soils occur in many nations. When these soils are non-calcareous, crops and especially leafy vegetables such as lettuce and spinach accumulate levels of Cd which exceed international standards. Lockwood loam from Monterey Co., CA, has been found to cause excessive Cd in leafy veg...

  9. Enzyme-assisted extraction of stabilized chlorophyll from spinach.

    PubMed

    Özkan, Gülay; Ersus Bilek, Seda

    2015-06-01

    Zinc complex formation with chlorophyll derivatives in spinach pulp was studied by adding 300ppm Zn(2+) for production of stable food colorant, followed by the heating at 110°C for 15min. Zinc complex formation increased at pH values of 7.0 or greater. Pectinex Ultra SP-L was selected for enzyme-assisted release of zinc-chlorophyll derivatives from spinach pulp. Effect of enzyme concentration (1-9%), treatment temperature (30-60°C), and time (30-210min) on total chlorophyll content (TCC) were optimized using response surface methodology. A quadratic regression model (R(2)=0.9486) was obtained from the experimental design. Optimum treatment conditions were 8% enzyme concentration, 45°C, and 30min, which yielded a 50.747mgTCC/100g spinach pulp. Enzymatic treatment was followed by solvent extraction with ethanol at a solvent-to-sample ratio of 2.5:1 at 60°C for 45min for the highest TCC recovery. Pretreatment with enzyme and extraction in ethanol resulted in 39% increase in Zn-chlorophyll derivative yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. 24-epibrassinolide and 20-hydroxyecdysone affect photosynthesis differently in maize and spinach.

    PubMed

    Rothová, Olga; Holá, Dana; Kočová, Marie; Tůmová, Lenka; Hnilička, František; Hniličková, Helena; Kamlar, Marek; Macek, Tomáš

    2014-07-01

    The aim of the work was to examine the effect of brassinosteroid (24-epibrassinolide; 24E) and ecdysteroid (20-hydroxyecdysone; 20E) on various parts of primary photosynthetic processes in maize and spinach. Additionally, the effect of steroids on gaseous exchange, pigment content and biomass accumulation was studied. The efficiency of the photosynthetic whole electron-transport chain responded negatively to the 24E or 20E treatment in both species, but there were interspecific differences regarding Photosystem (PS) II response. A positive effect on its oxygen-evolving complex and a slightly better energetical connectivity between PSII units were observed in maize whereas the opposite was true for spinach. The size of the pool of the PSI end electron acceptors was usually diminished due to 24E or 20E treatment. The treatment of plants with 24E or 20E applied individually positively influenced the content of photosynthetic pigments in maize (not in spinach). On the other hand, it did not affect gaseous exchange in maize but resulted in its reduction in spinach. Plants treated with combination of both steroids mostly did not significantly differ from the control plants. We have demonstrated for the first time that 20E applied in low (10nM) concentration can affect various parts of photosynthetic processes similarly to 24E and that brassinosteroids regulate not only PSII but also other parts of the photosynthetic electron transport chain - but not necessarily in the same way. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Effects of extraction and high-performance liquid chromatographic conditions on the determination of lutein in spinach.

    PubMed

    Simonovska, Breda; Vovk, Irena; Glavnik, Vesna; Cernelič, Katarina

    2013-02-08

    A major factor in the direct determination of lutein in spinach extracts proved to be obtaining reproducible and stable chromatography of lutein. This was achieved on a C30 column with the mobile phase acetone-0.1M triethylammonium acetate (TEAA) buffer (pH 7) 9:1 (v/v). Extraction of 10mg of lyophilized spinach with 10 mL of extraction solvent (ethanol, acetone, ethanol-ethyl acetate 1:1 (v/v), methanol-THF 1:1 (v/v)) for 15 min with magnetic stirring under nitrogen resulted in equal yields of lutein. The yields were enhanced by addition of 15% of 1M TEAA buffer pH 7 to all four extraction solvents. As confirmed by recovery experiments, no loss of lutein occurred during the extraction. The relative standard deviation from triplicate extractions was less than 5%. The addition of 15% TEAA pH 7 to acetone enhanced the extraction yield of lutein also from unlyophilized spinach. The content of lutein in different spinach samples ranged from 5 to 15 mg/100g of fresh weight. The first separation is reported of all the carotenoids and chlorophylls on a C18 core-shell column and the addition of 15% of 1M TEAA buffer pH 7 to acetone also enhanced the extraction yield of β-carotene compared to the yield produced by pure acetone. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Combination treatment of chlorine dioxide gas and aerosolized sanitizer for inactivating foodborne pathogens on spinach leaves and tomatoes.

    PubMed

    Park, Sang-Hyun; Kang, Dong-Hyun

    2015-08-17

    The objective of this study was to evaluate the antimicrobial effect of chlorine dioxide (ClO2) gas and aerosolized sanitizer, when applied alone or in combination, on the survival of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes inoculated onto spinach leaves and tomato surfaces. Spinach leaves and tomatoes were inoculated with a cocktail of three strains each of the three foodborne pathogens. ClO2 gas (5 or 10 ppmv) and aerosolized peracetic acid (PAA) (80 ppm) were applied alone or in combination for 20 min. Exposure to 10 ppmv of ClO2 gas for 20 min resulted in 3.4, 3.3, and 3.4 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes on spinach leaves, respectively. Treatment with 80 ppm of aerosolized PAA for 20 min caused 2.3, 1.9, and 0.8 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. Combined treatment of ClO2 gas (10 ppmv) and aerosolized PAA (80 ppm) for 20 min caused 5.4, 5.1, and 4.1 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. E. coli O157:H7, S. Typhimurium, and L. monocytogenes on tomatoes experienced similar reduction patterns to those on spinach leaves. As treatment time increased, most combinations of ClO2 gas and aerosolized PAA showed additive effects in the inactivation of the three pathogens. Combined treatment of ClO2 gas and aerosolized PAA produced injured cells of three pathogens on spinach leaves while generally did not produce injured cells of these pathogens on tomatoes. Combined treatment of ClO2 gas (10 ppmv) and aerosolized PAA (80 ppm) did not significantly (p>0.05) affect the color and texture of samples during 7 days of storage. Copyright © 2015. Published by Elsevier B.V.

  13. β-Carotene in Golden Rice is as good as β-carotene in oil at providing vitamin A to children.

    PubMed

    Tang, Guangwen; Hu, Yuming; Yin, Shi-an; Wang, Yin; Dallal, Gerard E; Grusak, Michael A; Russell, Robert M

    2012-09-01

    Golden Rice (GR) has been genetically engineered to be rich in β-carotene for use as a source of vitamin A. The objective was to compare the vitamin A value of β-carotene in GR and in spinach with that of pure β-carotene in oil when consumed by children. Children (n = 68; age 6-8 y) were randomly assigned to consume GR or spinach (both grown in a nutrient solution containing 23 atom% ²H₂O) or [²H₈]β-carotene in an oil capsule. The GR and spinach β-carotene were enriched with deuterium (²H) with the highest abundance molecular mass (M) at M(β-C)+²H₁₀. [¹³C₁₀]Retinyl acetate in an oil capsule was administered as a reference dose. Serum samples collected from subjects were analyzed by using gas chromatography electron-capture negative chemical ionization mass spectrometry for the enrichments of labeled retinol: M(retinol)+4 (from [²H₈]β-carotene in oil), M(retinol)+5 (from GR or spinach [²H₁₀]β-carotene), and M(retinol)+10 (from [¹³C₁₀]retinyl acetate). Using the response to the dose of [¹³C₁₀]retinyl acetate (0.5 mg) as a reference, our results (with the use of AUC of molar enrichment at days 1, 3, 7, 14, and 21 after the labeled doses) showed that the conversions of pure β-carotene (0.5 mg), GR β-carotene (0.6 mg), and spinach β-carotene (1.4 mg) to retinol were 2.0, 2.3, and 7.5 to 1 by weight, respectively. The β-carotene in GR is as effective as pure β-carotene in oil and better than that in spinach at providing vitamin A to children. A bowl of ~100 to 150 g cooked GR (50 g dry weight) can provide ~60% of the Chinese Recommended Nutrient Intake of vitamin A for 6-8-y-old children.

  14. Decontamination of green onions and baby spinach by vaporized ethyl pyruvate.

    PubMed

    Durak, M Zeki; Churey, John J; Gates, Matthew; Sacks, Gavin L; Worobo, Randy W

    2012-06-01

    Foodborne illnesses associated with fresh produce continue to be a major concern as consumer demand for healthier and nonthermally processed food increases. The objective of this study was to evaluate vaporized ethyl pyruvate (EP; CAS 617-35-6) as a safe alternative antimicrobial agent for the decontamination of Escherichia coli O157:H7 on green onions and spinach. Baby spinach leaves and green onions were inoculated with a five-strain cocktail of E. coli O157:H7 (pGFP) by the dipping method. Samples were treated with concentrations of 0, 42, 105, and 420 mg/liter vaporized EP in a 2.6-liter enclosed container. The efficacy of EP vapors for reducing E. coli O157:H7((GFP)) populations on green onions and baby spinach at 4 and 10°C was monitored for 7 and 5 days, respectively. The lowest EP concentration (42 mg/liter) resulted in a 1.7-log reduction of E. coli O157:H7((GFP)) on green onions after 7 days at 4°C and a 1.9-log reduction after 5 days at 10°C (P < 0.05). In baby spinach, the same concentration resulted in 0.9-log and 1.4-log reductions (P < 0.05) of E. coli O157:H7((GFP)) after 7 days at 4°C and 5 days at 10°C, respectively. On green onions, the highest concentration of EP (420 mg/liter) reduced the population of E. coli O157:H7((GFP)) by >4.7 log CFU/g after 7 days at 4°C and 5 days at 10°C. The same concentration was also effective for reducing E. coli O157:H7((GFP)) populations in baby spinach by 4.3 log CFU/g after 7 days at 4°C and by >6.5 log CFU/g after 3 days at 10°C. Although the successful EP treatments minimally affected the sensory attributes of green onions, the treatments resulted in significant changes in the sensory attributes of baby spinach samples stored at 4 and 10°C. These results indicate that EP is an effective antimicrobial that could be used to enhance the safety of fresh produce depending on the sensory characteristics of the product.

  15. "Spinach to Chocolate": Changing Awareness and Attitudes in ESL Writing Teachers.

    ERIC Educational Resources Information Center

    Winer, Lise

    1992-01-01

    Data from student journals in an English-as-a-Second-Language writing practicum are used to trace the process by which practice of and reflection on specific activities change awareness of and attitudes toward writing and the teaching of writing. The paper demonstrates the necessity of integrating training and development in teacher education.…

  16. Direct Spectrophotometric Measurement of Photosystem I and Photosystem II Activities of Photosynthetic Membrane Preparations from Cyanophora paradoxa, Phormidium laminosum, and Spinach 1

    PubMed Central

    Vernon, Leo P.; Cardon, Stephan

    1982-01-01

    Vesicles prepared with the French press from membranes of cyanelles of Cyanophora paradoxa retain O2 evolution activity with rates up to 500 micromoles 2,6-dichlorophenolindophenol reduced per hour per milligram chlorophyll. This activity is immediately lost when the vesicles are transferred from the sucrose-phosphate-citrate preparation buffer into dilute phosphate buffer. Similar preparations from Phormidium laminosum, a thermophilic cyanobacterium retain activity under such conditions. Photosystem I activities of both cyanobacterial vesicle preparations were determined by direct spectrophotometric measurement of N,N,N′,N′-tetramethyl-p-phenylenediamine photooxidation in the presence of anthraquinone-2-sulfonate. The rates so determined were compared with rates of O2 taken up in the presence of methyl viologen or anthraquinone-2-sulfonate as electron acceptors. The predicted stoichiometry of two was observed for moles of N,N,N′,N′-tetramethyl-p-phenylenediamine oxidized per mole of oxygen taken up. Anthraquinone-2-sulfonate was the better electron acceptor, and maximal rates of 943 micromoles per hour per milligram chlorophyll for O2 uptake were observed for Phormidium laminosum preparations in the presence of superoxide dismutase. For purposes of comparison, spinach chloroplasts were assayed for similar activities. All preparations were readily assayed for photosystem I activity by the direct spectrophotometric method, which has advantages of simplicity and freedom from errors introduced by photoxidation of other substrates by photosystem I when O2 uptake is measured. PMID:16662512

  17. Survival of pathogenic Escherichia coli on basil, lettuce, and spinach

    USDA-ARS?s Scientific Manuscript database

    The contamination of lettuce, spinach and basil with pathogenic E. coli has caused numerous illnesses over the past decade. E. coli O157:H7, E. coli O104:H4 and avian pathogenic E. coli (APECstx- and APECstx+) were inoculated on basil plants and in promix soiless substrate using drip and overhead ir...

  18. Development and evaluation of a TaqMan Real-Time PCR assay for Fusarium oxysporum f. sp. spinaciae

    USDA-ARS?s Scientific Manuscript database

    Fusarium oxysporum f. sp. spinaciae, causal agent of spinach Fusarium wilt, is an important soilborne pathogen in many areas of the world where spinach is grown. The pathogen is persistent in acid soils of maritime western Oregon and Washington, the only region of the USA suitable for commercial spi...

  19. Internalization of E. coli O157:H7 in spinach cultivated in soil and hydroponic media

    USDA-ARS?s Scientific Manuscript database

    Introduction: Internalization of E. coli O157:H7 into spinach plants through root uptake is a potential route of contamination. Previous studies that have investigated uptake of E. coli O157:H7 into leafy greens have expressed green fluorescent protein (gfp) from a plasmid, possibly limiting detecti...

  20. Real-time PCR and spore trap-based detection of the downy mildew pathogen, Peronospora effusa

    USDA-ARS?s Scientific Manuscript database

    Peronospora effusa is an obligate pathogen and the causal agent of downy mildew on spinach. The pathogen can be dispersed by splashing rain and wind, and may overwinter as oospores. Outbreaks of downy mildew on spinach are common in the cool climate of central coastal California, including the Sal...

  1. The effect of total organic carbon content and repeated irrigation on the persistence of E. coli O157:H7 on baby spinach

    USDA-ARS?s Scientific Manuscript database

    Introduction: Contaminated fresh-cut spinach and other leafy greens have caused foodborne illness in the United States. In response, growers are adopting recommendations stated in the California Leafy Greens Marketing Agreement (LGMA). The LGMA permits a maximum population of 126 Most Probable Nu...

  2. Frequency of Verticillium species in commercial spinach fields and transmission of V. dahliae from spinach to subsequent lettuce crops

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt, caused by Verticillium dahlia,e is a devastating disease of lettuce in California. The disease on lettuce is currently restricted to a small geographic area in the central coastal California, even though cropping patterns in other coastal lettuce production regions in the state ar...

  3. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing

    USDA-ARS?s Scientific Manuscript database

    Spinach (Spinacia oleracea L., 2n=2x=12) is an economically important vegetable crop worldwide and one of the healthiest vegetables due to its high concentrations of nutrients and mineral compounds. The objective of this research is to conduct genetic diversity and population structure analysis of w...

  4. Inactivation of Escherichia coli O157:H7 in vitro and on the surface of spinach leaves by biobased surfactants

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to evaluate the effect of biosurfactants on the populations of Escherichia coli O157:H7 in suspension and on spinach leaves. Eight surfactants including four soybean oil-based biosurfactants, sodium dodecyl sulfate (SDS), polyoxyethylene sorbitan monooleate (Tween 80), sopho...

  5. Localization of ATP Sulfurylase and O-Acetylserine(thiol)lyase in Spinach Leaves.

    PubMed

    Lunn, J E; Droux, M; Martin, J; Douce, R

    1990-11-01

    The intracellular compartmentation of ATP sulfurylase and O-acetylserine(thiol)lyase in spinach (Spinacia oleracea L.) leaves has been investigated by isolation of organelles and fractionation of protoplasts. ATP sulfurylase is located predominantly in the chloroplasts, but is also present in the cytosol. No evidence was found for ATP sulfurylase activity in the mitochondria. Two forms of ATP sulfurylase were separated by anion-exchange chromatography. The more abundant form is present in the chloroplasts, the second is cytosolic. O-Acetylserine(thiol)lyase activity is located primarily in the chloroplasts and cytosol, but is also present in the mitochondria. Three forms of O-acetylserine(thiol)lyase were separated by anion-exchange chromatography, and each was found to be specific to one intracellular compartment. The cytosolic ATP sulfurylase may not be active in vivo due to the unfavorable equilibrium constant of the reaction, and the presence of micromolar concentrations of inorganic pyrophosphate in the cytosol, therefore its role remains unknown. It is suggested that the plant cell may be unable to transport cysteine between the different compartments, so that the cysteine required for protein synthesis must be synthesized in situ, hence the presence of O-acetylserine(thiol)lyase in the three compartments where proteins are synthesized.

  6. Localization of ATP Sulfurylase and O-Acetylserine(thiol)lyase in Spinach Leaves

    PubMed Central

    Lunn, John E.; Droux, Michel; Martin, Jacqueline; Douce, Roland

    1990-01-01

    The intracellular compartmentation of ATP sulfurylase and O-acetylserine(thiol)lyase in spinach (Spinacia oleracea L.) leaves has been investigated by isolation of organelles and fractionation of protoplasts. ATP sulfurylase is located predominantly in the chloroplasts, but is also present in the cytosol. No evidence was found for ATP sulfurylase activity in the mitochondria. Two forms of ATP sulfurylase were separated by anion-exchange chromatography. The more abundant form is present in the chloroplasts, the second is cytosolic. O-Acetylserine(thiol)lyase activity is located primarily in the chloroplasts and cytosol, but is also present in the mitochondria. Three forms of O-acetylserine(thiol)lyase were separated by anion-exchange chromatography, and each was found to be specific to one intracellular compartment. The cytosolic ATP sulfurylase may not be active in vivo due to the unfavorable equilibrium constant of the reaction, and the presence of micromolar concentrations of inorganic pyrophosphate in the cytosol, therefore its role remains unknown. It is suggested that the plant cell may be unable to transport cysteine between the different compartments, so that the cysteine required for protein synthesis must be synthesized in situ, hence the presence of O-acetylserine(thiol)lyase in the three compartments where proteins are synthesized. PMID:16667839

  7. Effect of lead stress on mineral content and growth of wheat (Triticum aestivum) and spinach (Spinacia oleracea) seedlings

    PubMed Central

    Lamhamdi, Mostafa; El Galiou, Ouiam; Bakrim, Ahmed; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Aarab, Ahmed; Lafont, René

    2012-01-01

    Lead (Pb) is the most common heavy metal contaminant in the environment. Pb is not an essential element for plants, but they absorb it when it is present in their environment, especially in rural areas when the soil is polluted by automotive exhaust and in fields contaminated with fertilizers containing heavy metal impurities. To investigate lead effects on nutrient uptake and metabolism, two plant species, spinach (Spinacia oleracea) and wheat (Triticum aestivum), were grown under hydroponic conditions and stressed with lead nitrate, Pb(NO3)2, at three concentrations (1.5, 3, and 15 mM). Lead is accumulated in a dose-dependent manner in both plant species, which results in reduced growth and lower uptake of all mineral ions tested. Total amounts and concentrations of most mineral ions (Na, K, Ca, P, Mg, Fe, Cu and Zn) are reduced, although Mn concentrations are increased, as its uptake is reduced less relative to the whole plant’s growth. The deficiency of mineral nutrients correlates in a strong decrease in the contents of chlorophylls a and b and proline in both species, but these effects are less pronounced in spinach than in wheat. By contrast, the effects of lead on soluble proteins differ between species; they are reduced in wheat at all lead concentrations, whereas they are increased in spinach, where their value peaks at 3 mM Pb. The relative lead uptake by spinach and wheat, and the different susceptibility of these two species to lead treatment are discussed. PMID:23961216

  8. 77 FR 29588 - Notice of Decision To Issue Permits for the Importation of Fresh Celery, Arugula, and Spinach...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ..., arugula, and spinach from Colombia. Based on the findings of three pest risk analyses, which we made..., based on the findings of a pest risk analysis (PRA), can be safely imported subject to one or more of... or disseminating plant pests or noxious weeds via the importation of fresh celery, arugula, and...

  9. The effect of repeated irrigation with varying total organic carbon content on the persistence of E. coli O157:H7 on baby spinach

    USDA-ARS?s Scientific Manuscript database

    In response to U.S. foodborne illnesses caused by contaminated spinach, growers have adopted regulations stated in the California Leafy Greens Marketing Agreement (LGMA). The LGMA permits a maximum population mean of 126 Most Probable Number (MPN) generic E. coli per 100 ml irrigation water. These...

  10. Live-cell imaging of mammalian RNAs with Spinach2.

    PubMed

    Strack, Rita L; Jaffrey, Samie R

    2015-01-01

    The ability to monitor RNAs of interest in living cells is crucial to understanding the function, dynamics, and regulation of this important class of molecules. In recent years, numerous strategies have been developed with the goal of imaging individual RNAs of interest in living cells, each with their own advantages and limitations. This chapter provides an overview of current methods of live-cell RNA imaging, including a detailed discussion of genetically encoded strategies for labeling RNAs in mammalian cells. This chapter then focuses on the development and use of "RNA mimics of GFP" or Spinach technology for tagging mammalian RNAs and includes a detailed protocol for imaging 5S and CGG60 RNA with the recently described Spinach2 tag. © 2015 Elsevier Inc. All rights reserved.

  11. Effect of low-temperature plasma on the degradation of omethoate residue and quality of apple and spinach

    NASA Astrophysics Data System (ADS)

    Xingmin, SHI; Jinren, LIU; Guimin, XU; Yueming, WU; Lingge, GAO; Xiaoyan, LI; Yang, YANG; Guanjun, ZHANG

    2018-04-01

    Dielectric barrier corona discharge was developed to generate low-temperature plasma (LTP) to treat apple and spinach samples contaminated with omethoate. Experimental results showed that, after 20 min exposure, the degradation rate of omethoate residue in apple and spinach was (94.55 ± 0.01)% and (95.55 ± 0.01)%, respectively. When the treatment time was shorter than 20 min, the contents of moisture, vitamin C and beta-carotene were not affected by LTP. Exploration of related mechanisms suggested that LTP might destroy unsaturated double bonds of omethoate and produce phosphate ion, eventually leading to omethoate destruction. It is concluded that appropriate dosage of LTP can effectively degrade omethoate residue in fruits and vegetables without affecting their quality.

  12. Enhancement of iron content in spinach plants stimulated by magnetic nano particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yulianto, Agus; Astuti, Budi; Amalia, Saptaria Rosa

    In our previous study, the iron content in spinach plants could be detected by magnetic susceptibility values. In the present work, magnetic nano particles were found from the iron sand. The magnetic nano particles are synthesis by using co-precipitation process and sol-gel technique. The stimulation of magnetic nano particles in the plant has been done by the provision of magnetic nano particles in growing media. After certain time, plant samples was characterized using susceptibility-meter MS2B and atomic absorption spectroscopy to measure the magnetic susceptibility and the amount of iron content that absorbed of the plant, respectively. The iron content inmore » the spinach plants was increased when the magnetic nano particles was injected in the growing media.« less

  13. Transcriptome and phenotypic difference of Escherichia coli O157:H7 isolates related to the 2006 spinach-associated outbreak reveals variants in the bag

    USDA-ARS?s Scientific Manuscript database

    Food-borne outbreaks of Escherichia coli O157:H7 illness linked to the consumption of ready-to-eat leafy vegetables, such as lettuce and spinach, are a mounting concern. Likely sources of pre-harvest contamination are soil and water that become contaminated via cattle and feral pigs in the proximit...

  14. Use of zero-valent iron biosand filters to reduce E. coli O157:H12 in irrigation water applied to spinach plants in a field setting

    USDA-ARS?s Scientific Manuscript database

    Introduction: Zero-valent iron (ZVI) filters may provide an efficient method to mitigate the contamination of produce crops through irrigation water. Purpose: To evaluate the use of ZVI-filtration in decontaminating E. coli O157:H12 in irrigation water and on spinach plants in a small, field-scale...

  15. Appetite suppressing effect of Spinacia oleracea in rats: Involvement of the short term satiety signal cholecystokinin.

    PubMed

    Panda, Vandana; Shinde, Priyanka

    2017-06-01

    Spinacia oleracea (spinach) is a green leafy vegetable rich in antioxidant phyto-constituents such as flavonoids, polyphenols, carotenoids and vitamins. Fruits and vegetables rich in flavonoids are known to prevent weight gain by inducing satiety. The present study evaluates the appetite suppressing effect of a flavonoid rich extract of the spinach leaf (SOE) in rats. HPTLC of SOE was performed for detecting flavonoids. Rats were administered SOE (200 mg/kg and 400 mg/kg, p. o) and fluoxetine (6 mg/kg i. p) as a pre-meal for 14 days. Food intake and weight gain was observed daily during the treatment period. Serum levels of the short term satiety signals cholecystokinin (CCK) and glucose were measured on the 7th and 14thdays at different time points after start of meal to study the satiety inducing effect of SOE. HPTLC showed the presence of 14 flavonoids in SOE. SOE and fluoxetine treated rats showed a significant reduction in food intake and weight gain when compared with the normal control rats. On the 7th day of treatment, peak CCK levels were reached in 30 min after start of meal in fluoxetine treated rats and in 60 min in the remaining rats. On the 14th day, CCK peaking was observed in 30 min after start of meal in the fluoxetine as well as SOE 400 mg/kg treated rats. Peak glucose levels in all treatment groups were obtained in 60 min after start of feeding on both days of the study. It maybe concluded that SOE exhibited a promising appetite suppressing effect by inducing a quicker than normal release of CCK, thus eliciting an early onset of satiety in rats. This effect may be due to its high flavonoid content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Resource partitioning to male and female flowers of Spinacia oleracea L. in relation to whole-plant monocarpic senescence

    PubMed Central

    Sklensky, Diane E.; Davies, Peter J.

    2011-01-01

    Male plants of spinach (Spinacea oleracea L.) senesce following flowering. It has been suggested that nutrient drain by male flowers is insufficient to trigger senescence. The partitioning of radiolabelled photosynthate between vegetative and reproductive tissue was compared in male (staminate) versus female (pistillate) plants. After the start of flowering staminate plants senesce 3 weeks earlier than pistillate plants. Soon after the start of flowering, staminate plants allocated several times as much photosynthate to flowering structures as did pistillate plants. The buds of staminate flowers with developing pollen had the greatest draw of photosynthate. When the staminate plants begin to show senescence 68% of fixed C was allocated to the staminate reproductive structures. In the pistillate plants, export to the developing fruits and young flowers remained near 10% until mid-reproductive development, when it increased to 40%, declining to 27% as the plants started to senesce. These differences were also present on a sink-mass corrected basis. Flowers on staminate spinach plants develop faster than pistillate flowers and have a greater draw of photosynthate than do pistillate flowers and fruits, although for a shorter period. Pistillate plants also produce more leaf area within the inflorescence to sustain the developing fruits. The 14C in the staminate flowers declined due to respiration, especially during pollen maturation; no such loss occurred in pistillate reproductive structures. The partitioning to the reproductive structures correlates with the greater production of floral versus vegetative tissue in staminate plants and their more rapid senescence. As at senescence the leaves still had adequate carbohydrate, the resources are clearly phloem-transported compounds other than carbohydrates. The extent of the resource redistribution to reproductive structures and away from the development of new vegetative sinks, starting very early in the reproductive phase, is sufficient to account for the triggering of senescence in the rest of the plant. PMID:21565983

  17. Ion-exchange chromatography separates activities synthesizing and degrading fructose 2,6-bisphosphate from C3 and C4 leaves but not from rat liver

    NASA Technical Reports Server (NTRS)

    Macdonald, F. D.; Chou, Q.; Buchanan, B. B.

    1987-01-01

    Fructose-6-phosphate,2-kinase and fructose-2,6-bisphosphatase were separated on the basis of charge from leaves of C3 (spinach, lettuce, and pea) and C4 (sorghum and amaranthus) plants but not from rat liver--a tissue known to contain a bifunctional enzyme with both activities. [2-32P]Fructose 2,6-bisphosphate binding experiments also suggest that the major forms of these activities reside on different proteins in leaves.

  18. Short-term alteration of nitrogen supply prior to harvest affects quality in hydroponic-cultivated spinach (Spinacia oleracea).

    PubMed

    Lin, Xian Yong; Liu, Xiao Xia; Zhang, Ying Peng; Zhou, Yuan Qing; Hu, Yan; Chen, Qiu Hui; Zhang, Yong Song; Jin, Chong Wei

    2014-03-30

    Quality-associated problems, such as excessive in planta accumulation of oxalate, often arise in soillessly cultivated spinach (Spinacia oleracea). Maintaining a higher level of ammonium (NH₄⁺) compared to nitrate (NO₃⁻) during the growth period can effectively decrease the oxalate content in hydroponically cultivated vegetables. However, long-term exposure to high concentrations of NH₄⁺ induces toxicity in plants, and thus decreases the biomass production. Short-term application of NH₄⁺ before harvesting in soilless cultivation may provide an alternative strategy to decrease oxalate accumulation in spinach, and minimise the yield reduction caused by NH₄⁺ toxicity. The plants were pre-cultured in 8 mmol L⁻¹ NO₃⁻ nutrient solution. Next, 6 days before harvest, the plants were transferred to a nutrient solution containing 4 mmol L⁻¹ NO₃⁻ and 4 mmol L⁻¹ NH₄⁺. This new mix clearly reduced oxalate accumulation, increased levels of several antioxidant compounds, and enhanced antioxidant capacity in the edible parts of spinach plants, but it did not affect biomass production. However, when the 8 mmol L⁻¹ NO₃⁻ was shifted to either nitrogen-free, 4 mmol L⁻¹ NH₄⁺ or 8 mmol L⁻¹ NH₄⁺ treatments, although some of the quality indexes were improved, yields were significantly reduced. Short-term alteration of nitrogen supply prior to harvest significantly affects quality and biomass of spinach plants, and we strongly recommend to simultaneously use NO₃⁻ and NH₄⁺ in hydroponic cultivation, which improves vegetable quality without decreasing biomass production. © 2013 Society of Chemical Industry.

  19. Quantitative contamination assessment of Escherichia coli in baby spinach primary production in Spain: Effects of weather conditions and agricultural practices.

    PubMed

    Allende, Ana; Castro-Ibáñez, Irene; Lindqvist, Roland; Gil, María Isabel; Uyttendaele, Mieke; Jacxsens, Liesbeth

    2017-09-18

    A quantitative microbial contamination model of Escherichia coli during primary production of baby spinach was developed. The model included only systematic contamination routes (e.g. soil and irrigation water) and it was used to evaluate the potential impact of weather conditions, agricultural practices as well as bacterial fitness in soil on the E. coli levels present in the crop at harvest. The model can be used to estimate E. coli contamination of baby spinach via irrigation water, via soil splashing due to irrigation water or rain events, and also including the inactivation of E. coli on plants due to solar radiation during a variable time of culturing before harvest. Seasonality, solar radiation and rainfall were predicted to have an important impact on the E. coli contamination. Winter conditions increased E. coli prevalence and levels when compared to spring conditions. As regards agricultural practices, both water quality and irrigation system slightly influenced E. coli levels on baby spinach. The good microbiological quality of the irrigation water (average E. coli counts in positive water samples below 1 log/100mL) could have influenced the differences observed among the tested agricultural practices (water treatment and irrigation system). This quantitative microbial contamination model represents a preliminary framework that assesses the potential impact of different factors and intervention strategies affecting E. coli concentrations at field level. Taking into account that E. coli strains may serve as a surrogate organism for enteric bacterial pathogens, obtained results on E. coli levels on baby spinach may be indicative of the potential behaviour of these pathogens under defined conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effects of natural antimicrobials with modified atmosphere packaging on the growth kinetics of Listeria monocytogenes in ravioli at various temperatures

    PubMed Central

    Ro, Eun Young; Kim, Geun Su; Kwon, Do Young; Park, Young Min; Cho, Sang Woo; Lee, Sang Yun; Yeo, Ik Hyun

    2017-01-01

    Abstract The objective of this study was to investigate the antimicrobial effects of cultured sugar/vinegar (CSV) blend and nisin to control the risk of Listeria monocytogenes in ready to cook (RTC) ravioli. Ravioli dough was prepared with 0.1, 0.3, 0.5, 1% CSV blend and 0.1, 0.2, and 0.3% nisin. Inoculated spinach or artichoke raviolis with 2.0 ± 0.5 log cfu/g of L. monocytogenes were packed aerobically or using modified atmosphere packaging (MAP), and then stored at 4, 10, 17, and 24 °C for 60 days. Growth kinetic parameters of the observed data fit well to the Baranyi equation. Ravioli with spinach filling materials yielded a higher risk than that with artichoke. L. monocytogenes was able to survive in ravioli with artichoke, but did not grow. The addition of 1% CSV blend or 0.3% nisin in spinach ravioli with the combination of MAP effectively controlled the growth of L. monocytogenes at the temperature below 10 °C. The organoleptic quality of spinach ravioli was not also affected by the application of 1% CSV blend. Therefore, the CSV blend can be recommended to improve the microbial safety and quality of natural RTC ravioli at retail market. Practical applications The risk of ravioli was affected by the filling materials of ravioli at retail market. Addition of 1% cultured sugar/vinegar blend in dough substantially contributes to the extension of shelf‐life of MAP spinach raviolis. classification and regression tree analysis results indicate that refrigeration temperature is the main control factor to affect lag time and growth rate, while packaging method is critical for maximum population density. PMID:29456276

  1. Effects of waste water irrigation on soil properties and soil fauna of spinach fields in a West African urban vegetable production system.

    PubMed

    Stenchly, Kathrin; Dao, Juliane; Lompo, Désiré Jean-Pascal; Buerkert, Andreas

    2017-03-01

    The usage of inadequately processed industrial waste water (WW) can lead to strong soil alkalinity and soil salinization of agricultural fields with negative consequences on soil properties and biota. Gypsum as a soil amendment to saline-sodic soils is widely used in agricultural fields to improve their soil physical, chemical and hence biological properties. This study aimed at analysing the effects of intensive WW irrigation on the structure and composition of soil-dwelling arthropods on spinach fields (Spinacia oleracea L.) in a West African urban vegetable production system. We used gypsum as a soil amendment with the potential to alleviate soil chemical stress resulting in a potentially positive impact on soil arthropods. A total of 32 plots were established that showed a gradient in soil pH ranging from slight to strong soil alkalinity and that were irrigated with WW (n = 12) or clean water (CW; n = 20), including eight plots into which gypsum was incorporated. Our study revealed a high tolerance of soil-dwelling arthropods for alkaline soils, but spinach fields with increased soil electrical conductivity (EC) showed a reduced abundance of Hymenoptera, Diptera and Auchenorrhyncha. Arthropod abundance was positively related to a dense spinach cover that in turn was not affected by WW irrigation or soil properties. Gypsum application reduced soil pH but increased soil EC. WW irrigation and related soil pH affected arthropod composition in the investigated spinach fields which may lead to negative effects on agronomical important arthropod groups such as pollinators and predators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Evaluation of Models Describing the Growth of Nalidixic Acid-Resistant E. coli O157:H7 in Blanched Spinach and Iceberg Lettuce as a Function of Temperature

    PubMed Central

    Kim, Juhui; Chung, Hyunjung; Cho, Joonil; Yoon, Kisun

    2013-01-01

    The aim of this study was to model the growth of nalidixic acid-resistant E. coli O157:H7 (E. coli O157:H7NR) in blanched spinach and to evaluate model performance with an independent set of data for interpolation (8.5, 13, 15 and 27 °C) and for extrapolation (broth and fresh-cut iceberg lettuce) using the ratio method and the acceptable prediction zone method. The lag time (LT), specific growth rate (SGR) and maximum population density (MPD) obtained from each primary model were modeled as a function of temperature (7, 10, 17, 24, 30, and 36 °C) using Davey, square root, and polynomial models, respectively. At 7 °C, the populations of E. coli O157:H7NR increased in tryptic soy broth with nalidixic acid (TSBN), blanched spinach and fresh-cut iceberg lettuce, while the populations of E. coli O157:H7 decreased in TSB after 118 h of LT, indicating the risk of nalidixic acid-resistant strain of E. coli O157:H7 contaminated in ready-to-eat produce at refrigerated temperature. When the LT and SGR models of blanched spinach was extended to iceberg lettuce, all relative errors (percentage of RE = 100%) were inside the acceptable prediction zone and had an acceptable Bf and Af values. Thus, it was concluded that developed secondary models for E. coli O157:H7NR in blanched spinach were suitable for use in making predictions for fresh cut iceberg lettuce, but not for static TSBN in this work. PMID:23839062

  3. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells

    PubMed Central

    2013-01-01

    Due to unique properties and unlimited possible applications, graphene has attracted abundant interest in the areas of nanobiotechnology. Recently, much work has focused on the synthesis and properties of graphene. Here we show that a successful reduction of graphene oxide (GO) using spinach leaf extract (SLE) as a simultaneous reducing and stabilizing agent. The as-prepared SLE-reduced graphene oxide (S-rGO) was characterized by ultraviolet–visible spectroscopy and Fourier transform infrared spectroscopy. Dynamic light scattering technique was used to determine the average size of GO and S-rGO. Scanning electron microscopy and atomic force microscopy images provide clear surface morphological evidence for the formation of graphene. The resulting S-rGO has a mostly single-layer structure, is stable, and has significant water solubility. In addition, the biocompatibility of graphene was investigated using cell viability, leakage of lactate dehydrogenase and alkaline phosphatase activity in primary mouse embryonic fibroblast (PMEFs) cells. The results suggest that the biologically synthesized graphene has significant biocompatibility with PMEF cells, even at a higher concentration of 100 μg/mL. This method uses a ‘green’, natural reductant and is free of additional stabilizing reagents; therefore, it is an environmentally friendly, simple, and cost-effective method for the fabrication of soluble graphene. This study could open up a promising view for substitution of hydrazine by a safe, biocompatible, and powerful reduction for the efficient deoxygenation of GO, especially in large-scale production and potential biomedical applications. PMID:24059222

  4. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Eppakayala, Vasuki; Dayem, Ahmed Abdal; Kwon, Deug-Nam; Kim, Jin-Hoi

    2013-09-01

    Due to unique properties and unlimited possible applications, graphene has attracted abundant interest in the areas of nanobiotechnology. Recently, much work has focused on the synthesis and properties of graphene. Here we show that a successful reduction of graphene oxide (GO) using spinach leaf extract (SLE) as a simultaneous reducing and stabilizing agent. The as-prepared SLE-reduced graphene oxide (S-rGO) was characterized by ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy. Dynamic light scattering technique was used to determine the average size of GO and S-rGO. Scanning electron microscopy and atomic force microscopy images provide clear surface morphological evidence for the formation of graphene. The resulting S-rGO has a mostly single-layer structure, is stable, and has significant water solubility. In addition, the biocompatibility of graphene was investigated using cell viability, leakage of lactate dehydrogenase and alkaline phosphatase activity in primary mouse embryonic fibroblast (PMEFs) cells. The results suggest that the biologically synthesized graphene has significant biocompatibility with PMEF cells, even at a higher concentration of 100 μg/mL. This method uses a `green', natural reductant and is free of additional stabilizing reagents; therefore, it is an environmentally friendly, simple, and cost-effective method for the fabrication of soluble graphene. This study could open up a promising view for substitution of hydrazine by a safe, biocompatible, and powerful reduction for the efficient deoxygenation of GO, especially in large-scale production and potential biomedical applications.

  5. Ring-substituted 4-hydroxy-1H-quinolin-2-ones: preparation and biological activity.

    PubMed

    Jampilek, Josef; Musiol, Robert; Pesko, Matus; Kralova, Katarina; Vejsova, Marcela; Carroll, James; Coffey, Aidan; Finster, Jacek; Tabak, Dominik; Niedbala, Halina; Kozik, Violetta; Polanski, Jaroslaw; Csollei, Jozef; Dohnal, Jiri

    2009-03-13

    In the study, a series of twelve ring-substituted 4-hydroxy-1H-quinolin-2-one derivatives were prepared. The procedures for synthesis of the compounds are presented. The compounds were analyzed using RP-HPLC to determine lipophilicity and tested for their photosynthesis-inhibiting activity using spinach (Spinacia oleracea L.) chloroplasts. All the synthesized compounds were also evaluated for antifungal activity using in vitro screening with eight fungal strains. For all the compounds, the relationships between the lipophilicity and the chemical structure of the studied compounds are discussed, as well as their structure-activity relationships (SAR).

  6. Mathematical modeling and numerical analysis of the growth of Non-O157 shiga toxin-producing Escherichia coli in spinach leaves

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to investigate the growth of non-O157 Shiga toxin-producing Escherichia coli (STEC) in spinach leaves and to develop kinetic models to describe the bacterial growth. Six serogroups of non-O157 STEC, including O26, O45, O103, O111, O121, and O145, were used in the growth stu...

  7. The Effect of Repeated Irrigation with Water Containing Varying Levels of Total Organic Carbon on the Persistence of Escherichia coli O157:H7 on Baby Spinach

    USDA-ARS?s Scientific Manuscript database

    The California lettuce and leafy greens industry has adopted the Leafy Greens Marketing Agreement (LGMA), which allows for 126 Most Probable Number (MPN) generic E. coli/100ml in irrigation water. Repeat irrigation of baby spinach plants with water containing E. coli O157:H7 and different levels of...

  8. Conversion of Monogalactosyldiacylglycerols to Triacylglycerols in Ozone-Fumigated Spinach Leaves

    PubMed Central

    Sakaki, Takeshi; Saito, Kazuki; Kawaguchi, Akihiko; Kondo, Noriaki; Yamada, Mitsuhiro

    1990-01-01

    Molecular species and fatty acid distribution of triacylglycerol (TG) accumulated in spinach (Spinacia oleracea L.) leaves fumigated with ozone (0.5 microliter per liter) were compared with those of monogalactosyldiacylglycerol (MGDG). Analysis of positional distribution of the fatty acids in MGDG and the accumulated TG by the enzymatic digestion method showed that hexadecatrienoate (16:3) was restricted to sn-2 position of the glycerol backbone in both MGDG and TG, whereas α-linolenate (18:3) was preferentially located at sn-1 position in MGDG, and sn-1 and/or sn-3 positions in TG, suggesting that 1,2-diacylglycerol moieties of MGDG are the direct precursor of TG in ozonefumigated leaves. Further analysis of TG molecular species by argentation chromatography and mass spectrometry showed that TG increased with ozone fumigation consisted of approximately an equal molar ratio of sn-1,3-18:3-2-16:3 and sn-1,2,3-18:3. Because the molecular species of MGDG in spinach leaves is composed of a similar molar ratio of sn-1-18:3-2-16:3 and sn-1,2-18:3, we concluded that MGDG was converted to 1,2-diacylglycerol and acylated with 18:3 to TG in ozone-fumigated spinach leaves. Images Figure 1 PMID:16667777

  9. Antioxidant assays – consistent findings from FRAP and ORAC reveal a negative impact of organic cultivation on antioxidant potential in spinach but not watercress or rocket leaves

    PubMed Central

    Payne, Adrienne C; Mazzer, Alice; Clarkson, Graham J J; Taylor, Gail

    2013-01-01

    Watercress (Rorippa nasturtium-aquaticum), wild rocket (Diplotaxis tenuifolia), and spinach (Spinacia oleracea) are commercial crops reported to have high concentrations of antioxidants, possibly contributing to disease prevention following human consumption. Following analysis of supermarket-purchased salad leaves, we report the antioxidant content potential of these species using two comparable techniques assessing the consistency between the assays – by the ferric reducing antioxidant power (FRAP) assay and the oxygen radical absorbance capacity (ORAC) assay. The leaves were harvested from both conventionally and organically managed crops, to investigate whether organic agriculture results in improved crop quality. Watercress had the highest FRAP and ability to scavenge free radicals, followed by spinach and rocket. For watercress and rocket, there was no significant effect of organic agriculture on FRAP and ORAC, but for spinach, the antioxidant potential was reduced and this was significant at the 5% level of probability for FRAP but not ORAC, although the trend was clear in both tests. We conclude that there is variation in salad crop antioxidant potential and that FRAP and ORAC are useful techniques for measuring antioxidants in these salad crops with similar ranking for each salad crop studied. PMID:24804054

  10. Antioxidant assays - consistent findings from FRAP and ORAC reveal a negative impact of organic cultivation on antioxidant potential in spinach but not watercress or rocket leaves.

    PubMed

    Payne, Adrienne C; Mazzer, Alice; Clarkson, Graham J J; Taylor, Gail

    2013-11-01

    Watercress (Rorippa nasturtium-aquaticum), wild rocket (Diplotaxis tenuifolia), and spinach (Spinacia oleracea) are commercial crops reported to have high concentrations of antioxidants, possibly contributing to disease prevention following human consumption. Following analysis of supermarket-purchased salad leaves, we report the antioxidant content potential of these species using two comparable techniques assessing the consistency between the assays - by the ferric reducing antioxidant power (FRAP) assay and the oxygen radical absorbance capacity (ORAC) assay. The leaves were harvested from both conventionally and organically managed crops, to investigate whether organic agriculture results in improved crop quality. Watercress had the highest FRAP and ability to scavenge free radicals, followed by spinach and rocket. For watercress and rocket, there was no significant effect of organic agriculture on FRAP and ORAC, but for spinach, the antioxidant potential was reduced and this was significant at the 5% level of probability for FRAP but not ORAC, although the trend was clear in both tests. We conclude that there is variation in salad crop antioxidant potential and that FRAP and ORAC are useful techniques for measuring antioxidants in these salad crops with similar ranking for each salad crop studied.

  11. Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd-Pb exposures.

    PubMed

    Xin, Junliang; Huang, Baifei; Yang, Zhongyi; Yuan, Jiangang; Dai, Hongwen; Qiu, Qiu

    2010-03-15

    A pot experiment was conducted to investigate the stability of Cd and/or Pb accumulation in shoot of Cd and Pb pollution-safe cultivars (PSCs), the hereditary pattern of shoot Cd accumulation, and the transfer potentials of Cd and Pb in water spinach (Ipomoea aquatica Forsk.). A typical Cd-PSC, a typical non-Cd-PSC (Cd accumulative cultivar), a hybrid from the former two cultivars, and two typical Cd+Pb-PSCs were grown in seven soils with different concentrations of Cd and Pb. The results showed that concentrations of Cd and Pb in shoot of the PSCs were always lower than the non-PSC and the highest Cd and Pb transfer factors were also always observed in the non-PSC, indicating the stability of the PSCs in Cd and Pb accumulation. Shoot Cd concentration seemed to be controlled by high Cd dominant gene(s) and thus crossbreeding might not minimize Cd accumulation in water spinach. Interaction between Cd and Pb in soils affected the accumulations of the metals in shoot of water spinach. Under middle Cd and Pb treatments, the presence of higher Pb promoted the accumulation of Cd. However, under high Pb treatment, accumulations of Cd and Pb were both restricted. (c) 2009 Elsevier B.V. All rights reserved.

  12. Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: a review.

    PubMed

    Heaton, J C; Jones, K

    2008-03-01

    Consumption of fruit and vegetable products is commonly viewed as a potential risk factor for infection with enteropathogens such as Salmonella and Escherichia coli O157, with recent outbreaks linked to lettuce, spinach and tomatoes. Routes of contamination are varied and include application of organic wastes to agricultural land as fertilizer, contamination of waters used for irrigation with faecal material, direct contamination by livestock, wild animals and birds and postharvest issues such as worker hygiene. The ability of pathogens to survive in the field environment has been well studied, leading to the implementation of guidelines such as the Safe Sludge Matrix, which aim to limit the likelihood of viable pathogens remaining at point-of-sale. The behaviour of enteropathogens in the phyllosphere is a growing field of research, and it is suggested that inclusion in phyllosphere biofilms or internalization within the plant augments the survival. Improved knowledge of plant-microbe interactions and the interaction between epiphytic and immigrant micro-organisms on the leaf surface will lead to novel methods to limit enteropathogen survival in the phyllosphere.

  13. Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments

    PubMed Central

    Cendrero-Mateo, M. Pilar; Moran, M. Susan; Papuga, Shirley A.; Thorp, K.R.; Alonso, L.; Moreno, J.; Ponce-Campos, G.; Rascher, U.; Wang, G.

    2016-01-01

    Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, the measurement principles of both techniques are different, and only a few datasets concerning the relationships between them are reported in the literature. In this study, we investigated the potential for interchanging ChlF measurements using active techniques with passive measurements at different temporal and spatial scales. The ultimate objective was to determine the limits within which active and passive techniques are comparable. The results presented in this study showed that active and passive measurements were highly correlated over the growing season across nitrogen treatments at both canopy and leaf-average scale. At the single-leaf scale, the seasonal relation between techniques was weaker, but still significant. The variability within single-leaf measurements was largely related to leaf heterogeneity associated with variations in CO2 assimilation and stomatal conductance, and less so to variations in leaf chlorophyll content, leaf size or measurement inputs (e.g. light reflected and emitted by the leaf and illumination conditions and leaf spectrum). This uncertainty was exacerbated when single-leaf analysis was limited to a particular day rather than the entire season. We concluded that daily measurements of active and passive ChlF at the single-leaf scale are not comparable. However, canopy and leaf-average active measurements can be used to better understand the daily and seasonal behaviour of passive ChlF measurements. In turn, this can be used to better estimate plant photosynthetic capacity and therefore to provide improved information for crop management. PMID:26482242

  14. The effects of moderately high temperature on zeaxanthin accumulation and decay.

    PubMed

    Zhang, Ru; Kramer, David M; Cruz, Jeffrey A; Struck, Kimberly R; Sharkey, Thomas D

    2011-09-01

    Moderately high temperature reduces photosynthetic capacities of leaves with large effects on thylakoid reactions of photosynthesis, including xanthophyll conversion in the lipid phase of the thylakoid membrane. In previous studies, we have found that leaf temperature of 40°C increased zeaxanthin accumulation in dark-adapted, intact tobacco leaves following a brief illumination, but did not change the amount of zeaxanthin in light-adatped leaves. To investigate heat effects on zeaxanthin accumulation and decay, zeaxanthin level was monitored optically in dark-adapted, intact tobacco and Arabidopsis thaliana leaves at either 23 or 40°C under 45-min illumination. Heated leaves had more zeaxanthin following 3-min light but had less or comparable amounts of zeaxanthin by the end of 45 min of illumination. Zeaxanthin accumulated faster at light initiation and decayed faster upon darkening in leaves at 40°C than leaves at 23°C, indicating that heat increased the activities of both violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZE). In addition, our optical measurement demonstrated in vivo that weak light enhances zeaxanthin decay relative to darkness in intact leaves of tobacco and Arabidopsis, confirming previous observations in isolated spinach chloroplasts. However, the maximum rate of decay is similar for weak light and darkness, and we used the maximum rate of decay following darkness as a measure of the rate of ZE during steady-state light. A simulation indicated that high temperature should cause a large shift in the pH dependence of the amount of zeaxanthin in leaves because of differential effects on VDE and ZE. This allows for the reduction in ΔpH caused by heat to be offset by increased VDE activity relative to ZE.

  15. Relationship between the Heat Tolerance of Photosynthesis and the Thermal Stability of Rubisco Activase in Plants from Contrasting Thermal Environments1

    PubMed Central

    Salvucci, Michael E.; Crafts-Brandner, Steven J.

    2004-01-01

    Inhibition of net photosynthesis (Pn) by moderate heat stress has been attributed to an inability of Rubisco activase to maintain Rubisco in an active form. To examine this proposal, the temperature response of Pn, Rubisco activation, chlorophyll fluorescence, and the activities of Rubisco and Rubisco activase were examined in species from contrasting environments. The temperature optimum of Rubisco activation was 10°C higher in the creosote bush (Larrea tridentata) compared with the Antarctic hairgrass (Deschampsia antarctica), resembling the temperature response of Pn. Pn increased markedly with increasing internal CO2 concentration in Antarctic hairgrass and creosote bush plants subjected to moderate heat stress even under nonphotorespiratory conditions. Nonphotochemical quenching of chlorophyll fluorescence, the effective quantum yield of photochemical energy conversion (ΔF/Fm′) and the maximum yield of PSII (Fv/Fm) were more sensitive to temperature in Antarctic hairgrass and two other species endemic to cold regions (i.e. Lysipomia pumila and spinach [Spinacea oleracea]) compared with creosote bush and three species (i.e. jojoba [Simmondsia chinensis], tobacco [Nicotiana tabacum], and cotton [Gossypium hirsutum]) from warm regions. The temperature response of activity and the rate of catalytic inactivation of Rubisco from creosote bush and Antarctic hairgrass were similar, whereas the optimum for ATP hydrolysis and Rubisco activation by recombinant creosote bush, cotton, and tobacco activase was 8°C to 10°C higher than for Antarctic hairgrass and spinach activase. These results support a role for activase in limiting photosynthesis at high temperature. PMID:15084731

  16. Alpha-glucosidase Inhibitory and Antioxidant Potential of Antidiabetic Herb Alternanthera sessilis: Comparative Analyses of Leaf and Callus Solvent Fractions.

    PubMed

    Chai, Tsun-Thai; Khoo, Chee-Siong; Tee, Chong-Siang; Wong, Fai-Chu

    2016-01-01

    Alternanthera sessilis is a medicinal herb which is consumed as vegetable and used as traditional remedies of various ailments in Asia and Africa. This study aimed to investigate the antiglucosidase and antioxidant activity of solvent fractions of A. sessilis leaf and callus. Leaf and callus methanol extracts were fractionated to produce hexane, chloroform, ethyl acetate, butanol, and water fractions. Antiglucosidase and 1,1-diphenyl-2-picrylhydrazyl scavenging activities as well as total phenolic (TP), total flavonoid (TF), and total coumarin (TC) contents were evaluated. Lineweaver-Burk plot analysis was performed on leaf and callus fractions with the strongest antiglucosidase activity. Leaf ethyl acetate fraction (LEF) had the strongest antiglucosidase (EC 50 0.55 mg/mL) and radical scavenging (EC 50 10.81 μg/mL) activity among leaf fractions. Callus ethyl acetate fraction (CEF) and chloroform fraction had the highest antiglucosidase (EC 50 0.25 mg/mL) and radical scavenging (EC 50 34.12 μg/mL) activity, respectively, among callus fractions. LEF and CEF were identified as noncompetitive and competitive α-glucosidase inhibitors, respectively. LEF and CEF had greater antiglucosidase activity than acarbose. Leaf fractions had higher phytochemical contents than callus fractions. LEF had the highest TP, TF, and TC contents. Antiglucosidase and antioxidant activities of leaf fractions correlated with phytochemical contents. LEF had potent antiglucosidase activity and concurrent antioxidant activity. CEF had the highest antiglucosidase activity among all fractions. Callus culture is a promising tool for enhancing production of potent α-glucosidase inhibitors. Leaf ethyl acetate fraction (LEF) had the strongest antiglucosidase (EC 50 0.55 mg/mL) and radical scavenging (EC 50 10.81 μg/mL) activity among leaf fractionsCallus ethyl acetate fraction (CEF) and chloroform fraction had the highest antiglucosidase (EC 50 0.25 mg/mL) and radical scavenging (EC 50 34.12 μg/mL) activity, respectively, among callus fractionsLEF and CEF were identified as noncompetitive and competitive á-glucosidase inhibitors, respectivelyAntiglucosidase and antioxidant activities of leaf fractions correlated with phytochemical contents. Abbreviations used: LHF: Leaf hexane fraction, LCF: Leaf chloroform fraction, LEF: Leaf ethyl acetate fraction, LBF: Leaf butanol fraction, LWF: Leaf water fraction, CHF: Callus hexane fraction, CCF: Callus chloroform fraction, CEF: Callus ethyl acetate fraction, CBF: Callus butanol fraction, CWF: Callus water fraction, TP: Total phenolic, TF: Total flavonoid, TC: Total coumarin.

  17. Selection of candidate salad vegetables for controlled ecological life support system

    NASA Astrophysics Data System (ADS)

    Qin, L.; Guo, S.; Ai, W.; Tang, Y.

    Higher plants, as one of the essential biological components of CELSS, can supply food, oxygen and water for human crews during future long-duration space missions and Lunar/Mars habitats. In order to select suitable leaf vegetable varieties for our CELSS Experimental Facility (CEF), five varieties of lettuce (“Nenlvnaiyou”, “Dasusheng”, “Naichoutai”, “Dongfangkaixuan” and “Siji”), two of spinach (“Daye” and “Quanneng”), one of rape (“Jingyou No. 1”) and one of common sowthistle were grown and compared on the basis of edible biomass, and nutrient content. In addition, two series of experiments were conducted to study single leaf photosynthetic rates and transpiration rates at 30 days after planting, one which used various concentrations of CO2 (500, 1000, 1500 and 2000 μmol mol-1) and another which used various light intensities (100, 300, 500 and 700 μmol m-2 s-1). Results showed that lettuce cvs. “Nenlvnaiyou”, “Siji” and “Dasusheng” produced higher yields of edible biomass; common sowthisle would be a good source of β-carotene for the diet. Based on the collective findings, we selected three varieties of lettuce (“Nenlvnaiyou”, “Dasusheng” and “Siji”) and one of common sowthistle as the candidate crops for further research in our CEF. In addition, elevated CO2 concentration increased the rates of photosynthesis and transpiration, and elevated light intensity increased the rate of photosynthesis for these varieties. These results can be useful for determining optimal conditions for controlling CO2 and water fluxes between the crops and the overall CELSS.

  18. A novel approach to investigate the uptake and internalization of Escherichia coli O157:H7 in spinach cultivated in soil and hydroponic media

    USDA-ARS?s Scientific Manuscript database

    Internalization of E. coli O157:H7 into spinach plants through root uptake is a potential route of contamination. A Tn7-based plasmid vector was used to insert the green fluorescent protein (gfp) gene into the attTn7 site in the E. coli chromosome. Three gfp-labeled E. coli inocula, O157:H7 strains ...

  19. Desaturation of oleoyl groups in envelope membranes from spinach chloroplasts.

    PubMed Central

    Schmidt, H; Heinz, E

    1990-01-01

    Envelope membranes isolated from chloroplasts of spinach (Spinacia oleracea) desaturate oleoyl groups in monogalactosyl diacylglycerol to linoleoyl groups. The desaturation requires NADPH in combination with ferredoxin and is not restricted to monogalactosyl diacylglycerol, since it is also observed in biosynthetic intermediates as, for example, in phosphatidic acid. This indicates a certain degree of unspecificity of the oleate desaturase in isolated envelope membranes. Lipid desaturation is another important function of chloroplast envelopes. PMID:11607123

  20. Photosynthate partitioning during flowering in relation to senescence of spinach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sklensky, D.; Davies, P.J.

    1990-05-01

    Male spinach plants are frequently cited as a counter-example to the nutrient drain hypothesis. Photosynthate partitioning in both male and female plants was examined. Leaves just below the inflorescences in plants at various stages of flowering were labelled with {sup 14}CO{sub 2} and the photosynthate allowed to partition for three hours. The leaves, flowers and stems of the inflorescence, and the other above ground vegetative tissue were harvested. These parts were combusted in a sample oxidizer for the collection of the {sup 14}CO{sub 2}. Allocation to the male and female flowers at very early stages are similar. As the flowersmore » develop further, male flowers receive more photosynthate than do female flowers in early fruit production. Thus it is possible that nutrient drain to the flowers in male spinach plants is sufficient to account for senescence.« less

  1. New poleroviruses associated with yellowing symptoms in different vegetable crops in Greece.

    PubMed

    Lotos, L; Maliogka, V I; Katis, N I

    2016-02-01

    Four poleroviral isolates from Greece, two from lettuce, one from spinach and one from watermelon showing yellowing symptoms, were molecularly characterized by analyzing the sequence of a large part of the genome spanning from the 3'-terminal part of the RdRp to the end of the CP gene. The sequences were analyzed for their similarity and phylogenetic relationships to other members of the genus Polerovirus as well as for evidence of recombination events. The results revealed the existence of two putatively new viruses: one from lettuce and one from spinach, provisionally named "lettuce yellows virus" and "spinach yellows virus", respectively. Also, a new recombinant virus infecting lettuce, herein named "lettuce mild yellows virus", and a watermelon isolate of pepo aphid-borne yellows virus (PABYV) were identified. Our study highlights the existence of high genetic diversity within the genus Polerovirus, which could be associated with the emergence of new viral diseases in various crops worldwide.

  2. Characterization of biomasses, concentrates, and permeates of dried powder of Kombucha fermentation of spinach (Amaranthus sp.) and broccoli (Brassica oleracea) with membrane microfiltration and freeze drying techniques for natural sources of folic acid

    NASA Astrophysics Data System (ADS)

    Nugraha, Tutun; Susilowati, Agustine; Aspiyanto, Lotulung, Puspa Dewi; Maryati, Yati

    2017-11-01

    Fermentation of spinach (Amaranthus sp) and Broccoli (Brassica oleracea) using Kombucha Culture has been shown to produce biomass that has the potential to become natural sources of folic acid. To produce the materials, following the fermentation, the biomass was filtered using membrane microfiltration (0.15 µm) at a pressure of 40 psia, at room temperature, yielding the concentrate and the permeate fractions. Following this step, freeze drying process was done on the biomass feeds, as well as on the concentrate and permeate fractions. For the freeze drying stage, the samples were frozen, and the condenser was kept at -50°C for 40 hours, while the pressure in the chamber was set at 200 Pa. Freeze drying results showed that the final products, have differences in compositions, as well as differences in the dominat monomers of folates. After water content was driven out, freeze drying increased the concentrations of folic acid in the dried products, and was found to be the highest in the concentrate fractions. Freeze drying has been shown to be capable of protecting the folates from heat and oxidative damages that typicaly occur with other types of drying. The final freeze dried concentrates of fermentation of spinach and broccoli were found to contain folic acid at 2531.88 µg/mL and 1626.94 µg/mL, total solids at 87.23% and 88.65 %, total sugar at 22.66 µg/mL and 25.13 µg/mL, total reducing sugar at 34.46 mg/mL and 15.22 mg/mL, as well as disolved protein concentrations at 0.93 mg/mL and 1.45 mg/mL. Liquid Chromatography Mass Spectometry (LC-MS) identification of the folates in the freeze dried concentrates of fermented spinach and broccoli was done using folic acid and glutamic acid standard solutions as the reference materials. The results showed the presence of folic acid and showed that the dominant monomers of molecules of folates with molecular weights of 441.44 Da. and 441.54 Da. for spinach and broccoli respectively. Moreover, the monomers of glutamic acid were also found at molecular weights of 147.21 Da. and 147.35 Da. for spinach and broccoli respectively. Thus, it has been shown that kombucha fermentation of spinach and broccoli, followed by membrane microfiltration and freeze drying process, could produce dried materials with high concentrations of folates that have the potential to be used as naturally derived sources of folic acid.

  3. Spinach chloroplast 0-acetylserine (thiol)-lyase exhibits two catalytically non-equivalent pyridoxal-5'-phosphate-containing active sites.

    PubMed

    Rolland, N; Ruffet, M L; Job, D; Douce, R; Droux, M

    1996-02-15

    A synthetic gene encoding the mature spinach- chloroplast O-acetylserine (thiol)-lyase was constructed and expressed in an Escherichia coli strain carrying the T7 RNA polymerase system. The pure recombinant protein was obtained at high yield (6 mg/l cell culture) using a new purification procedure that includes affinity chromatography on Green A agarose. Its specific activity was of the order of 1000 U/mg, and its physical properties were similar to those previously reported for the natural enzyme isolated from spinach chloroplasts. In particular the recombinant enzyme, as for the natural enzyme, behaved as a homodimer composed of two identical subunits each of Mr 35000. From steady-state kinetic studies using sulfide or 5-thio(2-nitrobenzoate) (Nbs) as alternative nucleophilic co-substrates, the enzyme exhibited positive kinetic co-operativity with respect to O-acetylserine [Ser(Ac)] in the presence of sulfide and a negative kinetic co-operativity in the presence of Nbs. Binding of Ser(Ac) to the enzyme was also investigated by absorbance and fluorescence measurements to obtain insight into the role of pyridoxal 5'-phosphate and of the single tryptophan residue (Trp176) present in the enzyme molecule. Addition of Ser(Ac) to the enzyme provoked the disappearance of the 409-nm absorbance band of the pyridoxal 5'-phosphate Schiff base and the appearance of two new absorbance bands, the one located between 320 nm and 360 nm and the other centered at 470 nm. Also, the fluorescence emission of the pyridoxal 5'-phosphate Schiff base was quenched upon addition of Ser(Ac) to the enzyme. These changes were most presumably due to the formation of a Schiff base intermediate between alpha-aminoacrylate and the pyridoxal 5'-phosphate cofactor. The fluorescence emission of Trp176 was also quenched upon Ser(Ac) binding to the enzyme. Quantitative analysis of the absorbance and fluorescence equilibrium data disclosed a co-operative behavior in Ser(Ac) binding, in agreement with the steady-state kinetic results. Fluorescence quenching experiments with the acrylamide and iodide revealed that the indole ring of Trp176 was largely exposed and located within the pyridoxal 5'-phosphate active site. These results are consistent with the finding that the native enzyme is composed of two identical subunits. Yet, presumably due to subunit-subunit interactions, the enzyme exhibits two non-equivalent pyridoxal-5'-phosphate-containing active sites.

  4. Scavenging of reactive oxygen species in apoplastic and symplastic areas of rolled leaves in Ctenanthe setosa under drought stress.

    PubMed

    Saruhan, Neslihan; Terzi, Rabiye; Sağlam, Aykut; Kadioğlu, Asim

    2010-09-01

    The correspondence among apoplastic and symplastic antioxidant status, stomatal conductance and water potential was investigated during leaf rolling in Ctenanthe setosa (Rosc.) Eichler (Marantaceae) under drought stress. Apoplastic and symplastic extractions of leaf and petiole were performed at different visual leaf rolling scores from 1 to 4 (1 is unrolled, 4 is tightly rolled and the others are intermediate form). In the leaf symplast, the highest changes were found in catalase (CAT) and guaiacol peroxidase (GPX) activities when compared to score 1 during leaf rolling. No significant change was observed in superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities in the symplast of leaf during the rolling. The same phenomenon was also present in the symplast of petiole except APX activity. In the leaf apoplast, the highest increase occurred in APX and GPX activities, whilst a slight increase in CAT and SOD activities. In the apoplast of petiole, the highest increment was found only in GPX activity, while there were small increases in SOD, APX and CAT activities. Hydrogen peroxide content increased up to score 3 in the apoplast and symplast of leaf and petiole but then slightly decreased. Also, superoxide production increased in the leaf and petiole apoplast but its quantity in the apoplast was much more than that of the symplast. On the other hand, NAD(P)H oxidase activity increased in the leaf but no change was observed in the petiole. In conclusion, as a result of water deficit during leaf rolling antioxidant enzymes are induced to scavenging of ROS produced in symplast and apoplast.

  5. Ginseng leaf-stem: bioactive constituents and pharmacological functions

    PubMed Central

    Wang, Hongwei; Peng, Dacheng; Xie, Jingtian

    2009-01-01

    Ginseng root is used more often than other parts such as leaf stem although extracts from ginseng leaf-stem also contain similar active ingredients with pharmacological functions. Ginseng's leaf-stems are more readily available at a lower cost than its root. This article reviews the pharmacological effects of ginseng leaf-stem on some diseases and adverse effects due to excessive consumption. Ginseng leaf-stem extract contains numerous active ingredients, such as ginsenosides, polysaccharides, triterpenoids, flavonoids, volatile oils, polyacetylenic alcohols, peptides, amino acids and fatty acids. The extract contains larger amounts of the same active ingredients than the root. These active ingredients produce multifaceted pharmacological effects on the central nervous system, as well as on the cardiovascular, reproductive and metabolic systems. Ginseng leaf-stem extract also has anti-fatigue, anti-hyperglycemic, anti-obesity, anti-cancer, anti-oxidant and anti-aging properties. In normal use, ginseng leaf-stem extract is quite safe; adverse effects occur only when it is over dosed or is of poor quality. Extracts from ginseng root and leaf-stem have similar multifaceted pharmacological activities (for example central nervous and cardiovascular systems). In terms of costs and source availability, however, ginseng leaf-stem has advantages over its root. Further research will facilitate a wider use of ginseng leaf-stem. PMID:19849852

  6. The synthesis of acetylcholine by plants.

    PubMed

    Smallman, B N; Maneckjee, A

    1981-01-15

    Choline acetyltransferase was demonstrated in nettles (Urtica dioica), peas (Pisum sativum), spinach (Spinacia oleracea), sunflower (Helianthus annuus) and blue--green algae by using a Sepharose--CoASH affinity column. The column effected a 1500-fold purification of the enzyme from nettle homogenates and was required for demonstrating activity in the other higher plants. Demonstration of the enzyme in blue-green algae suggests that acetylcholine was a biochemical necessity in the earliest photosynthetic organisms.

  7. Improvement of red pepper yield and soil environment by summer catch aquatic crops in greenhouses

    NASA Astrophysics Data System (ADS)

    Du, X. F.; Wang, L. Z.; Peng, J.; Wang, G. L.; Guo, X. S.; Wen, T. G.; Gu, D. L.; Wang, W. Z.; Wu, C. W.

    2016-08-01

    To investigate effects of the rotation of summer catch crops on remediation retrogressed soils in continuous cropping, a field experiment was conducted. Rice, water spinach, or cress were selected as summer catch crops; bare fallow during summer fallow was used as the control group. Results showed that aquatic crops grown in summer fallow period could effectively reduce soil bulk density and pH, facilitate soil nutrient release, and improve soil physical and chemical properties compared with those grown in fallow period. Paddy-upland rotation could improve soil microbial members and increase bacterial and actinomycete populations; by contrast, paddy-upland rotation could reduce fungal populations and enhance bacterium-to-fungus ratio. Paddy-upland rotation could also actively promote activities of soil enzymes, such as urease, phosphatase, invertase, and catalase. The proposed paddy-upland rotation significantly affected the growth of red pepper; the yield and quality of the grown red pepper were enhanced. Summer catch crops, such as rice, water spinach, and cress significantly increased pepper yield in the following growing season by 15.4%, 10.2% and 14.0%, respectively, compared with those grown in fallow treatment. Therefore, the proposed paddy-upland crop rotation could be a useful method to alleviate continuous cropping problems involved in cultivating red pepper in greenhouses.

  8. Determination of carotenoids in foods by high-performance liquid chromatography.

    PubMed

    Abdel-Kader, Z M

    1991-01-01

    The mean values of alpha and beta-carotene of 10 fruits and vegetables from supermarkets in Cairo and Alexandria have been determined using HPLC method, and the average vitamin A activities (in retinol equivalents) calculated. Carrots, spinach and sweet potatoes were the best sources of provitamin A activity. Beta-carotene was the more prevalent carotenoid compared with alpha-carotene. An analysis of variance including all foods investigated demonstrated that there were no significant differences among either locations or times of analysis. There was no difference between the analysed values of vitamin A activity and the USDA Handbook No. 8 values.

  9. Cadmium dynamics in the rhizosphere and Cd uptake of different plant species evaluated by a mechanistic model.

    PubMed

    Stritsis, Christos; Steingrobe, Bernd; Claassen, Norbert

    2014-01-01

    Maize, sunflower,flax, and spinach differed in the accumulation of Cd when grown on a Cd contaminated soil. This was mainly due to the different Cd net influx, In, that varied among species by a factor of up to 30. The objective of this study was to find possible reasons for the different Cd In by using a mechanistic model. After 14 days of Cd uptake the model calculated only a small Cd depletion at the root surface, e.g. from 0.22 mumol L(-1) down to 0.19 mumol L(-1) for maize and from 0.48 mumol L(-1) down to 0.35 mumol L(-1)for spinach. Even so the model always overestimated the Cd I(n), for spinach by a factor of 1.5 and for maize by a factor of 10. Only simulating a decrease of C(Li) or the root absorbing power, alpha, by 40% to 90% gave an agreement of calculated and measured I(n),. This may be interpreted as that about 40% in the case of spinach and 90% in the case of maize of the Cd in soil solution were not accessible for plant uptake. The high sensitivity to alpha also shows that not the Cd transport to the root but alpha was limiting the step for Cd uptake.

  10. Variations in cadmium and nitrate co-accumulation among water spinach genotypes and implications for screening safe genotypes for human consumption*

    PubMed Central

    Tang, Lin; Luo, Wei-jun; He, Zhen-li; Gurajala, Hanumanth Kumar; Hamid, Yasir; Khan, Kiran Yasmin; Yang, Xiao-e

    2018-01-01

    Vegetables are important constituents of the human diet. Heavy metals and nitrate are among the major contaminants of vegetables. Consumption of vegetables and fruits with accumulated heavy metals and nitrate has the potential to damage different body organs leading to unwanted effects. Breeding vegetables with low heavy metal and nitrate contaminants is a cost-effective approach. We investigated 38 water spinach genotypes for low Cd and nitrate co-accumulation. Four genotypes, i.e. JXDY, GZQL, XGDB, and B888, were found to have low co-accumulation of Cd (<0.71 mg/kg dry weight) and nitrate (<3100 mg/kg fresh weight) in the edible parts when grown in soils with moderate contamination of both Cd (1.10 mg/kg) and nitrate (235.2 mg/kg). These genotypes should be appropriate with minimized risk to humans who consume them. The Cd levels in the edible parts of water spinach were positively correlated with the concentration of Pb or Zn, but Cd, Pb, or Zn was negatively correlated with P concentration. These results indicate that these three heavy metals may be absorbed into the plant in similar proportions or in combination, minimizing the influx to aerial parts. Increasing P fertilizer application rates appears to prevent heavy metal and nitrate translocation to shoot tissues and the edible parts of water spinach on co-contaminated soils. PMID:29405042

  11. D-Glucosone and L-sorbosone, putative intermediates of L-ascorbic acid biosynthesis in detached bean and spinach leaves. [Phaseolus vulgaris L. ; Spinacia oleracea L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Kazumi; Nick, J.A.; Loewus, F.A.

    D-(6-{sup 14}C)Glucosone that had been prepared enzymically from D-(6-{sup 14}C)glucose was used to compare relative efficiencies of these two sugars for L-ascorbic acid (AA) biosynthesis in detached bean (Phaseolus vulgaris L., cv California small white) apices and 4-week-old spinach (Spinacia oleracea L., cv Giant Noble) leaves. At tracer concentration, {sup 14}C from glucosone was utilized by spinach leaves for AA biosynthesis much more effectively than glucose. Carbon-14 from (6-{sup 14}C)glucose underwent considerable redistribution during AA formation, whereas {sup 14}C from (6-{sup 14}C)glucosone remained almost totally in carbon 6 of AA. In other experiments with spinach leaves, L-(U-{sup 14}C)sorbosone was foundmore » to be equivalent to (6-{sup 14}C)glucose as a source of {sup 14}C for AA. In the presence of 0.1% D-glucosone, conversion of (6-{sup 14}C) glucose into labeled AA was greatly repressed. In a comparable experiment with L-sorbosone replacing D-glucosone, the effect was much less. The experiments described here give substance to the proposal that D-glucosone and L-sorbosone are putative intermediates in the conversion of D-glucose to AA in higher plants.« less

  12. Interaction of Escherichia coli with growing salad spinach plants.

    PubMed

    Warriner, Keith; Ibrahim, Faozia; Dickinson, Matthew; Wright, Charles; Waites, William M

    2003-10-01

    In this study, the interaction of a bioluminescence-labeled Escherichia coli strain with growing spinach plants was assessed. Through bioluminescence profiles, the direct visualization of E. coli growing around the roots of developing seedlings was accomplished. Subsequent in situ glucuronidase (GUS) staining of seedlings confirmed that E. coli had become internalized within root tissue and, to a limited extent, within hypocotyls. When inoculated seeds were sown in soil microcosms and cultivated for 42 days, E. coli was recovered from the external surfaces of spinach roots and leaves as well as from surface-sterilized roots. When 20-day-old spinach seedlings (from uninoculated seeds) were transferred to soil inoculated with E. coli, the bacterium became established on the plant surface, but internalization into the inner root tissue was restricted. However, for seedlings transferred to a hydroponic system containing 10(2) or 10(3) CFU of E. coli per ml of the circulating nutrient solution, the bacterium was recovered from surface-sterilized roots, indicating that it had been internalized. Differences between E. coli interactions in the soil and those in the hydroponic system may be attributed to greater accessibility of the roots in the latter model. Alternatively, the presence of a competitive microflora in soil may have restricted root colonization by E. coli. The implications of this study's findings with regard to the microbiological safety of minimally processed vegetables are discussed.

  13. Performance test of nutrient control equipment for hydroponic plants

    NASA Astrophysics Data System (ADS)

    Rahman, Nurhaidar; Kuala, S. I.; Tribowo, R. I.; Anggara, C. E. W.; Susanti, N. D.

    2017-11-01

    Automatic control equipment has been made for the nutrient content in irrigation water for hydroponic plants. Automatic control equipment with CCT53200E conductivity controller to nutrient content in irrigation water for hydroponic plants, can be used to control the amount of TDS of nutrient solution in the range of TDS numbers that can be set according to the range of TDS requirements for the growth of hydroponically cultivated crops. This equipment can minimize the work time of hydroponic crop cultivators. The equipment measurement range is set between 1260 ppm up to 1610 ppm for spinach plants. Caisim plants were included in this experiment along with spinach plants with a spinach plants TDS range. The average of TDS device is 1450 ppm, while manual (conventional) is 1610 ppm. Nutrient solution in TDS controller has pH 5,5 and temperature 29,2 °C, while manual is pH 5,6 and temperature 31,3 °C. Manually treatment to hydroponic plant crop, yields in an average of 39.6 grams/plant, greater than the yield of spinach plants with TDS control equipment, which is in an average of 24.6 grams / plant. The yield of caisim plants by manual treatment is in an average of 32.3 grams/crop, less than caisim crop yields with TDS control equipment, which is in an average of 49.4 grams/plant.

  14. Cytotoxic activity screening of Bangladeshi medicinal plant extracts.

    PubMed

    Akter, Raushanara; Uddin, Shaikh J; Grice, I Darren; Tiralongo, Evelin

    2014-01-01

    The cytotoxic activity of 23 crude methanol extracts from 19 Bangladeshi medicinal plants was investigated against healthy mouse fibroblasts (NIH3T3), healthy monkey kidney (VERO) and four human cancer cell lines (gastric, AGS; colon, HT-29; and breast, MCF-7 and MDA-MB-231) using MTT assay. High cytotoxicity across all cell lines tested was exhibited by Aegiceras corniculatum (fruit) and Hymenodictyon excelsum (bark) extracts (IC50 values ranging from 0.0005 to 0.9980 and 0.08 to 0.44 mg/mL, respectively). Fourteen extracts from 11 plant species, namely Clitoria ternatea (flower and leaf), Dillenia indica (leaf), Diospyros peregrina (leaf), Dipterocarpus turbinatus (bark and leaf), Ecbolium viride (leaf), Glinus oppositifolius (whole plant), Gnaphalium luteoalbum (leaf), Jasminum sambac (leaf), Lannea coromandelica (bark and leaf), Mussaenda glabrata (leaf) and Saraca asoca (leaf), were also significantly cytotoxic (IC50 < 1.0 mg/mL) against at least one of the cancer cell lines tested. More selectively, Avicennia alba (leaf), C. ternatea (flower and leaf), Caesalpinia pulcherrima (leaf), E. viride (leaf) and G. oppositifolius (whole plant) showed cytotoxicity only against both of the breast cancer cell lines (MCF-7 and MDA-MB-231). In contrast, C. ternatea (flower and leaf) exhibited high cytotoxic activity against MDA-MB-231 (IC50 values of 0.11 and 0.49 mg/mL, respectively), whereas E. viride and G. oppositifolius whole plant extracts exhibited high activity against MCF-7 cells (IC50 values of 0.06 and 0.15 mg/mL, respectively). The cytotoxic activity test results for 9 of the plant species correlate with their traditional use as anticancer agents, thus making them interesting sources for further drug development.

  15. A Role for APETALA1/FRUITFULL Transcription Factors in Tomato Leaf Development[C][W

    PubMed Central

    Burko, Yogev; Shleizer-Burko, Sharona; Yanai, Osnat; Shwartz, Ido; Zelnik, Iris Daphne; Jacob-Hirsch, Jasmine; Kela, Itai; Eshed-Williams, Leor; Ori, Naomi

    2013-01-01

    Flexible maturation rates underlie part of the diversity of leaf shape, and tomato (Solanum lycopersicum) leaves are compound due to prolonged organogenic activity of the leaf margin. The CINCINNATA -TEOSINTE BRANCHED1, CYCLOIDEA, PCF (CIN-TCP) transcription factor LANCEOLATE (LA) restricts this organogenic activity and promotes maturation. Here, we show that tomato APETALA1/FRUITFULL (AP1/FUL) MADS box genes are involved in tomato leaf development and are repressed by LA. AP1/FUL expression is correlated negatively with LA activity and positively with the organogenic activity of the leaf margin. LA binds to the promoters of the AP1/FUL genes MBP20 and TM4. Overexpression of MBP20 suppressed the simple-leaf phenotype resulting from upregulation of LA activity or from downregulation of class I knotted like homeobox (KNOXI) activity. Overexpression of a dominant-negative form of MBP20 led to leaf simplification and partly suppressed the increased leaf complexity of plants with reduced LA activity or increased KNOXI activity. Tomato plants overexpressing miR319, a negative regulator of several CIN-TCP genes including LA, flower with fewer leaves via an SFT-dependent pathway, suggesting that miR319-sensitive CIN-TCPs delay flowering in tomato. These results identify a role for AP1/FUL genes in vegetative development and show that leaf and plant maturation are regulated via partially independent mechanisms. PMID:23771895

  16. A role for APETALA1/fruitfull transcription factors in tomato leaf development.

    PubMed

    Burko, Yogev; Shleizer-Burko, Sharona; Yanai, Osnat; Shwartz, Ido; Zelnik, Iris Daphne; Jacob-Hirsch, Jasmine; Kela, Itai; Eshed-Williams, Leor; Ori, Naomi

    2013-06-01

    Flexible maturation rates underlie part of the diversity of leaf shape, and tomato (Solanum lycopersicum) leaves are compound due to prolonged organogenic activity of the leaf margin. The CINCINNATA-teosinte branched1, cycloidea, PCF (CIN-TCP) transcription factor lanceolate (LA) restricts this organogenic activity and promotes maturation. Here, we show that tomato APETALA1/fruitfull (AP1/FUL) MADS box genes are involved in tomato leaf development and are repressed by LA. AP1/FUL expression is correlated negatively with LA activity and positively with the organogenic activity of the leaf margin. LA binds to the promoters of the AP1/FUL genes MBP20 and TM4. Overexpression of MBP20 suppressed the simple-leaf phenotype resulting from upregulation of LA activity or from downregulation of class I knotted like homeobox (KNOXI) activity. Overexpression of a dominant-negative form of MBP20 led to leaf simplification and partly suppressed the increased leaf complexity of plants with reduced LA activity or increased KNOXI activity. Tomato plants overexpressing miR319, a negative regulator of several CIN-TCP genes including LA, flower with fewer leaves via an SFT-dependent pathway, suggesting that miR319-sensitive CIN-TCPs delay flowering in tomato. These results identify a role for AP1/FUL genes in vegetative development and show that leaf and plant maturation are regulated via partially independent mechanisms.

  17. Relationship between uptake of mercury vapor by mushrooms and its catalase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogata, M.; Kenmotsu, K.; Hirota, N.

    1981-12-01

    The uptake of mercury vapor by mushrooms (Shiitake) artifically grown on an oak tree and the uptake in vitro by catalase extracts prepared from mushroom Hay Bacillus and spinach are reported. Mushrooms were exposed to 1.4 mg/Hg/cu m for 11 days. Measurement of total mercury was as previously described (Ogata et al. 1978, 1979). Levels in mushrooms ranged from 0.4 +/- 0.1 ..mu..g/g at 0.5 days to 4.6 +/- 0.2 ..mu..g/g at 10.5 days and steady-state thereafter. In in vitro studies Hy uptake by mushroom catalase extract was estimated by the perborate method. Uptake was found to parallel catalase activitymore » and was inhibited by potassium cyanide, sodium azide, and 3-amino-1,2,4-triazole. Similar results were obtained with Hay Bacillus and spinach catalase extracts. Results suggest that the level of mercury in the mushroom can be used as an indicator of mercury pollution in the environment. It is also suggested that catalase has an important role in uptake of mercury vapor in the plant. 2 tables (JMT)« less

  18. Simulating the Transfer of Strontium-90 from Soil to Leafy Vegetables by Using Strontium-88.

    PubMed

    Kuke, Ding; Shujuan, Liu; Yingxue, He; Dong, Yan; Fengshou, Zhang; Shuifeng, Wang; Jinghua, Guo; Wei, Zhang; Xin, Wang; Xiaoyan, Jiang

    The transfer, from soil to Chinese cabbage and spinach, of radioactive strontium-90 released as a result of accidents in nuclear power stations was studied using a stable isotope of strontium, namely nuclide strontium-88 ( 88 Sr). The study led to an experimental model for assessing the hazard of radionuclide strontium-90 ( 90 Sr) entering the food chain and for predicting the risk to food safety. Chinese cabbage and spinach were grown in pots in a greenhouse and irrigated with deionized water containing known quantities of strontium. Based on the strontium content of that water, the plants were divided into five groups (treatments) and strontium content of the soil, and 30-day-old plants were determined by inductively coupled plasma atomic emission spectroscopy instrument (ICP-AES). Data on the strontium content of soil and plants enabled the development of a model using MATLAB, a mathematical software package, which included curve fitting and problem solving using regression equations and differential equations. Although strontium curves for leaves, stems, and roots of Chinese cabbage were not exactly the same, all showed a non-linear increase when compared with the increase in the content of strontium in soil. Strontium curves for leaves, stems, and roots of spinach were very similar and showed an initial increase followed by a decrease. Strontium concentrations in both Chinese cabbage and spinach were initially related to the concentrations of sodium and sulfur, the next two relevant nuclides being calcium and magnesium. The relationship between calcium and strontium in Chinese cabbage was different from that in spinach. By using 88 Sr to simulate the transfer of radionuclide 90 Sr from soil to a crop, the relevant data required to deal with accidental release of strontium can be obtained using a fitting curve and regression equations, thereby providing some experimental basis for evaluating the potential hazards posed by such accidents to the food chain.

  19. Thermal Inactivation of Listeria monocytogenes and Salmonella during Water and Steam Blanching of Vegetables.

    PubMed

    Ceylan, Erdogan; McMahon, Wendy; Garren, Donna M

    2017-09-01

    Thermal inactivation of Listeria monocytogenes and Salmonella was evaluated on peas, spinach, broccoli, potatoes, and carrots that were treated with hot water and steam. One gram-positive bacterium, L. monocytogenes, and one gram-negative bacterium, Salmonella, were selected as pertinent human pathogens for evaluation. Samples were inoculated with a composite of five strains each of L. monocytogenes and Salmonella to achieve approximately 10 8 to 10 9 CFU/g. Inoculated samples were treated with hot water at 85 and 87.8°C and with steam at 85 and 96.7°C for up to 3.5 min. A greater than 5-log reduction of L. monocytogenes and Salmonella was achieved on all products within 0.5 min by hot water blanching at 85 and 87.8°C. Steam blanching at 85°C reduced Salmonella populations by greater than 5 log on spinach and peas within 2 min and on carrots and broccoli within 3.5 min. Populations of Salmonella were reduced by more than 5 log within 1 min on carrot, spinach, and broccoli and within 2 min on peas by steam blanching at 96.7°C. Steam blanching at 85°C reduced L. monocytogenes populations by more than 5 log on carrots and spinach within 2 min and on broccoli and peas within 3.5 min. L. monocytogenes populations were reduced more than 5 log within 1 min on carrot, spinach, peas and broccoli by steam blanching at 96.7°C. Longer treatment times and higher temperatures were required for steam-blanched samples than for samples blanched with hot water. Results suggest that hot water and steam blanching practices commonly used by the frozen vegetable industry will achieve the desired 5-log lethality of L. monocytogenes and Salmonella and will enhance microbiological safety prior to freezing.

  20. Feasibility study on phyto-remediation techniques for soil contaminated by the Fukushima Dai-Ichi nuclear power plant accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuu Ishimori; Akihiro Sakoda; Mina Yamada

    2013-07-01

    Tottori University and the Japan Atomic Energy Agency carried out jointly the feasibility study on phyto-remediation techniques, which apply to soil contaminated by the TEPCO's Fukushima Dai-ichi NPP accident. This paper illustrates the results from experimental investigations. Experimental investigations include both water-culture tests and field tests. Several plants, mainly halophytes that can specifically absorb more Na than K, and others like sunflower demonstrated for other domestic large-scale tests, were water-cultured and examined for screening. Easily cultivated and harvested plants without harmful effects on subsequent cultivation were also considered. New Zealand spinach was selected as a candidate for demonstrations in fields.more » The field tests were carried out at two sites of different agricultural types in Minami-soma, Fukushima prefecture. Concentration of {sup 137}Cs in soil is about 4.5 Bq/g-dry as the average of 10 cm depth. The aims of the field tests are to confirm absorption ability and environmental adaptation of the test plants and to document the cost and performance of projects. In conclusion, the absorption of {sup 137}Cs activity per unit area (Bq/m{sup 2}) by New Zealand spinach could be approximately 0.5%. To achieve an effective result in removal of {sup 137}Cs from soil in around a decade, it is required to find the plant which has ten or more times higher absorption capacity than New Zealand spinach. From the consistency of both results in water-culture and field tests, the water-culture test can be valid for screening. In addition, applicable sites will be limited to fields which are too steep or too narrow to use mechanical diggers, and which are free from any restrictions to enter. (authors)« less

  1. Effect of pH, Mg2+, CO2 and Mercurials on the Circular Dichroism, Thermal Stability and Light Scattering of Ribulose 1,5-Bisphosphate Carboxylases from Alfalfa, Spinach and Tobacco

    PubMed Central

    Tomimatsu, Yoshio; Donovan, John W.

    1981-01-01

    Circular dichroism, differential scanning calorimetry and light-scattering measurements of ribulose 1,5-bisphosphate carboxylase (E.C. 4.1.1.39) from alfalfa, spinach and tobacco show: a) The conformation and thermal stability of the native carboxylases are sensitive to changes in pH and to activation of the enzyme with Mg2+ and CO2. The helical content, denaturation temperature (Td) and specific enthalpy of denaturation (Δq) decreased with increase in pH. Addition of Mg2+ and CO2 at pH 9 increased Td by 4 to 5 C; at pH 7.5 the changes in Td were smaller. b) Addition of mercurials produced changes in conformation and thermal stability. The decrease in helical content of the enzymes with increase in pH was enhanced by the addition of p-chloromercuribenzoate. At pH 9, addition of p-chloromercuribenzoate or of 1-(3-(chloromercuri)-2-methoxypropyl)urea decreased Td by 11.4 to 20.2 C and Δq by 2.1 to 2.8 calories per gram. c) The spinach carboxylase undergoes the largest and the tobacco the smallest changes in conformation and thermal stability upon change in pH or treatment with mercurials. d) The calorimetric data suggest that the large and small subunits are heat denatured independently but at the same temperature. e) Light scattering measurements at pH 9 of p-chloromercuribenzoate treated tobacco enzyme showed that there is no dissociation into subunits upon heating to temperatures greater than Td. A `ball and string' model for the carboxylase molecule is proposed to reconcile independence of subunit denaturation with apparent strong interactions between subunits. PMID:16662003

  2. Abstracts of Plenary Lectures and Posters. International Symposium of the Structure and Function of Plant Lipids (7th) held in Davis, California on July 27-August 1, 1986,

    DTIC Science & Technology

    1986-08-01

    membranes of spinach chloroplasts, it has been shown by us that the naphthoate is prenylated by phytyl-PP to form 2-phytyl-1,4- napthocijinol which is...kinetics and mechanisms of phase transitions in aqueous dispersions of saturated monogalactosyldiacylglycerol from spinach leaves have been investigated by...521.6701, Hungary. Wheat seedlings grown in hydroponic cultures using media containing choline chloride exhibit an increased resistance to freezing

  3. The synthesis of acetylcholine by plants.

    PubMed Central

    Smallman, B N; Maneckjee, A

    1981-01-01

    Choline acetyltransferase was demonstrated in nettles (Urtica dioica), peas (Pisum sativum), spinach (Spinacia oleracea), sunflower (Helianthus annuus) and blue--green algae by using a Sepharose--CoASH affinity column. The column effected a 1500-fold purification of the enzyme from nettle homogenates and was required for demonstrating activity in the other higher plants. Demonstration of the enzyme in blue-green algae suggests that acetylcholine was a biochemical necessity in the earliest photosynthetic organisms. PMID:6796060

  4. Optimized, Fast-Throughput UHPLC-DAD Based Method for Carotenoid Quantification in Spinach, Serum, Chylomicrons, and Feces.

    PubMed

    Eriksen, Jane N; Madsen, Pia L; Dragsted, Lars O; Arrigoni, Eva

    2017-02-01

    An improved UHPLC-DAD-based method was developed and validated for quantification of major carotenoids present in spinach, serum, chylomicrons, and feces. Separation was achieved with gradient elution within 12.5 min for six dietary carotenoids and the internal standard, echinenone. The proposed method provides, for all standard components, resolution > 1.1, linearity covering the target range (R > 0.99), LOQ < 0.035 mg/L, and intraday and interday RSDs < 2 and 10%, respectively. Suitability of the method was tested on biological matrices. Method precision (RSD%) for carotenoid quantification in serum, chylomicrons, and feces was below 10% for intra- and interday analysis, except for lycopene. Method accuracy was consistent with mean recoveries ranging from 78.8 to 96.9% and from 57.2 to 96.9% for all carotenoids, except for lycopene, in serum and feces, respectively. Additionally, an interlaboratory validation study on spinach at two institutions showed no significant differences in lutein or β-carotene content, when evaluated on four occasions.

  5. Effects of industrial processing on folate content in green vegetables.

    PubMed

    Delchier, Nicolas; Ringling, Christiane; Le Grandois, Julie; Aoudé-Werner, Dalal; Galland, Rachel; Georgé, Stéphane; Rychlik, Michael; Renard, Catherine M G C

    2013-08-15

    Folates are described to be sensitive to different physical parameters such as heat, light, pH and leaching. Most studies on folates degradation during processing or cooking treatments were carried out on model solutions or vegetables only with thermal treatments. Our aim was to identify which steps were involved in folates loss in industrial processing chains, and which mechanisms were underlying these losses. For this, the folates contents were monitored along an industrial canning chain of green beans and along an industrial freezing chain of spinach. Folates contents decreased significantly by 25% during the washing step for spinach in the freezing process, and by 30% in the green beans canning process after sterilisation, with 20% of the initial amount being transferred into the covering liquid. The main mechanism involved in folate loss during both canning green beans and freezing spinach was leaching. Limiting the contact between vegetables and water or using steaming seems to be an adequate measure to limit folates losses during processing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Photosynthesis Is Not Involved in the Mechanism of Action of Acifluorfen in Cucumber (Cucumis sativus L.)

    PubMed Central

    Duke, Stephen O.; Kenyon, William H.

    1986-01-01

    The possible role of photosynthesis in the mechanism of action of the herbicide acifluorfen (2-chloro-4-(trifluoromethyl)phenoxy-2-nitrobenzoate; AF) was examined. The sensitivity to AF of cotyledons of cucumber (Cucumis sativus L.) which had been grown under far red light (FR) and white light were compared. FR grown tissues which were photosynthetically imcompetent were hypersensitive to AF under white light and had approximately the same relative response to AF under blue and red light as green, white-light-grown tissues. Ultrastructural damage was apparent in FR-grown, AF-treated tissues within an hour after exposure to white light, with cytoplasmic and plastidic disorganization occurring simultaneously. In cucumber cotyledon tissue which had been greening for various time periods, there was no correlation between photosynthetic capacity and herbicidal efficacy of AF. PSII inhibitors (atrazine and DCMU) and the photophosphorylation inhibitor, tentoxin, had no effect on AF activity. Atrazine did not reduce AF activity at any concentration or light intensity tested, indicating that there is no second, photosynthetic-dependent mechanism of action operating at low AF concentrations or low fluence rates. Carbon dioxide-dependent O2 evolution of intact chloroplasts of spinach (Spinacia oleracea L.) had an AF I50 of 125 micromolar compared to 1000 micromolar for cucumber, whereas AF was much more herbicidally active in tissues of cucumber than of spinach. Differences in activity could not be accounted for by differences in uptake of AF. Our results indicate that there is no photosynthetic involvement in the mechanism of action of AF in cucumber. Images Fig. 2 PMID:16664919

  7. Level 2 validation of a flow cytometric method for detection of Escherichia coli O157:H7 in raw spinach.

    PubMed

    Williams, Anna J; Cooper, Willie M; Summage-West, Christine V; Sims, Lillie M; Woodruff, Robert; Christman, Jessica; Moskal, Ted J; Ramsaroop, Shawn; Sutherland, John B; Alusta, Pierre; Wilkes, Jon G; Buzatu, Dan A

    2015-12-23

    The Bacteriological Analytical Manual (BAM) method currently used by the United States Food and Drug Administration (FDA) to detect Escherichia coli O157:H7 in spinach was systematically compared to a new flow cytometry based method. This Food and Drug Administration (FDA) level 2 external laboratory validation study was designed to determine the latter method's sensitivity and speed for analysis of this pathogen in raw spinach. Detection of target cell inoculations with a low cell count is critical, since enterohemorrhagic strains of E. coli require an infective dose of as few as 10 cells (Schmid-Hempel and Frank, 2007). Although, according to the FDA, the infectious dose is unknown (Food and Drug Administration, 1993). Therefore, the inoculation level into the spinach, a total of 2.0±2.6 viable E. coli O157 cells, was specified to yield between 25% and 75% detection by the new method, out of 20 samples (10 positives and 10 negatives). This criterion was met in that the new method detected 60% of the nominally positive samples; the corresponding sensitivity of the reference method was 50%. For both methods the most likely explanation for false negatives was that no viable cells were actually introduced into the sample. In this validation study, the flow cytometry method was equal to the BAM in sensitivity and far superior in speed. Published by Elsevier B.V.

  8. Cadmium and lead accumulations and agronomic quality of a newly bred pollution-safe cultivar (PSC) of water spinach.

    PubMed

    Huang, Ying-Ying; Mu, Yang-Xiu; He, Chun-Tao; Fu, Hui-Ling; Wang, Xue-Song; Gong, Fei-Yue; Yang, Zhong-Yi

    2018-04-01

    Breeding for pollution-safe cultivars (PSCs) can reduce pollutant accumulation in crops. However, the PSC breeding would face the risk of nutritional quality reduction, which is usually ignored in conventional breeding programs targeting to increase crop yield or nutritional quality. Thus, the doubt whether the risk would exist has to be clarified for supporting the PSC breeding. In the present study, a newly bred Cd/Pb-PSC of water spinach (Ipomoea aquatic Forsk.) and its parents (QLQ with low-Cd/Pb accumulation ability and T308 with high yield) of water spinach were employed to clarify the above-mentioned issue. Yields, and concentrations of Cd, Pb, nitrite, and organic and inorganic nutrients in shoots of the three experimental lines were determined. There were no significant differences in Cd/Pb concentration between the new PSC and QLQ, in nitrite content between the new PSC and its two parents and in yield between the new PSC and T308. It is decisively significant that shoot concentrations of organic and inorganic nutrients in the Cd/Pb-PSC were as high as those in one of its parents. It is affirmed that the breeding operations (crossing and consequently continuous selfing) for lowering Cd/Pb accumulation capacity of water spinach would not lower the nutritional values of the obtained Cd/Pb-PSCs from the breeding, which should be a pillar that supports the feasibility to minimize Cd/Pb pollution in vegetables using PSC-breeding method.

  9. Total Lactic Acid Bacteria (LAB), Antioxidant Activity, and Acceptance of Synbiotic Yoghurt with Binahong Leaf Extract (Anredera cordifolia (Ten.) Steenis)

    NASA Astrophysics Data System (ADS)

    Lestari, R. P.; Nissa, C.; Afifah, D. N.; Anjani, G.; Rustanti, N.

    2018-02-01

    Alternative treatment for metabolic syndrome can be done by providing a diet consist of functional foods or beverages. Synbiotic yoghurt containing binahong leaf extract which high in antioxidant, total LAB and fiber can be selected to reduce the risk of metabolic syndrome. The effect of binahong leaf extract in synbiotic yoghurt against total LAB, antioxidant activity, and acceptance were analyzed. The experiment was done with complete randomized design with addition of binahong leaf extract 0% (control); 0.12%; 0.25%; 0.5% in synbiotic yoghurt. Analysis of total LAB using Total Plate Count test, antioxidant activity using DPPH, and acceptance were analyzed by hedonic test. The addition of binahong leaf extract in various doses in synbiotic yoghurt decreased total LAB without significant effect (p=0,145). There was no effect of addition binahong leaf extract on antioxidant activity (p=0,297). The addition of binahong leaf extract had an effect on color, but not on aroma, texture and taste. The best result was yoghurt synbiotic with addition of 0,12% binahong leaf extract. Conclusion of the research was the addition of binahong leaf extract to synbiotic yogurt did not significantly affect total LAB, antioxidant activity, aroma, texture and taste; but had a significant effect on color.

  10. Inhibitory activities of Moringa oleifera leaf extract against α-glucosidase enzyme in vitro

    NASA Astrophysics Data System (ADS)

    Natsir, H.; Wahab, A. W.; Laga, A.; Arif, A. R.

    2018-03-01

    Alpha-glucosidase is a key enzyme in the final process of breaking carbohydrates into glucose. Inhibition of α-glucosidase affected more absorption of glucose, so it can reduce hyperglycemia condition. The aims of this study is to determine the effectiveness of inhibition wet and dried Moringa oleifera leaf extract through α-glucosidase activity in vitro. The effectiveness study of inhibition on the activity of α-glucosidase enzyme obtained from white glutinous rice (Oryza sativa glutinosa) was carried out using wet and dried kelor leaf extract of 13% (w/v) with 10 mM α-D-glucopyranoside (PNPG) substrate. A positive control used 1% acarbose and substrate without addition of extract was a negative control. Inhibitory activity was measured using spectrophotometers at a wavelength of 400 nm. The result showed that the inhibition activity against α-glucosidase enzyme of dried leaf extract, wet leaf extract and acarbose was 81,39%, 83,94%, and 95,4%, respectively on pH 7,0. The effectiveness inhibition of the wet Moringa leaf extract was greater than the dried leaf extract. The findings suggest that M. oleifera leaf has the potential to be developed as an alternative food therapy for diabetics.

  11. Antibacterial and antioxidant activities of Vaccinium corymbosum L. leaf extract

    PubMed Central

    Pervin, Mehnaz; Hasnat, Md Abul; Lim, Beong Ou

    2013-01-01

    Objective To investigate antibacterial and antioxidant activity of the leaf extract of tropical medicinal herb and food plant Vaccinium corymbosum L. (V. corymbosum). Methods Free radical scavenging activity on DPPH, ABTS, and nitrites were used to analyse phenoic and flavonoid contents of leaf extract. Other focuses included the determination of antioxidant enzymatic activity (SOD, CAT and GPx), metal chelating activity, reduction power, lipid peroxidation inhibition and the prevention of oxidative DNA damage. Antibacterial activity was determined by using disc diffusion for seven strains of bacteria. Results Results found that V. corymbosum leaf extract had significant antibacterial activity. The tested extract displayed the highest activity (about 23.18 mm inhibition zone) against Salmonella typhymurium and the lowest antibacterial activity was observed against Enterococcus faecalis (about 14.08 mm inhibition zone) at 10 mg/ disc. The IC50 values for DPPH, ABTS and radical scavenging activity were 0.120, 0.049 and 1.160 mg/mL, respectively. V. corymbosum leaf extract also showed dose dependent reduction power, lipid peroxidation, DNA damage prevention and significant antioxidant enzymatic activity. Conclusions These findings demonstrate that leaf extract of V. corymbosum could be used as an alternative therapy for antibiotic-resistant bacteria and help prevent various free radical related diseases.

  12. Gas-liquid chromatographic method for determining ethylenethiourea in potatoes, spinach, applesauce, and milk: collaborative study.

    PubMed

    Onley, H H

    1977-09-01

    Eight laboratories collaboratively tested a gas-liquid chromatographic method for determining ethylenetiourea (ETU) in potatoes, spinach, applesauce, and milk. In the determinative step, ETU is converted to the S-butyl derivative (2-n-butylmercapto-2-imidazoline) which is detected by a flame photometric detector, sulfur mode. For unknown fortification levels of 0.06, 0.12, and 0.30 ppm, the collaborators reported an overall average recovery range of 85-97% in the various commodities. The method has been adopted as interim official first action.

  13. The oxygen evolving enhancer protein 1 (OEE) of photosystem II in green algae exhibits thioredoxin activity.

    PubMed

    Heide, Heinrich; Kalisz, Henryk M; Follmann, Hartmut

    2004-02-01

    A thioredoxin-like chloroplast protein of the fructosebisphosphatase-stimulating f-type, but with an unusually high molecular mass of 28 kDa has previously been identified and purified to homogeneity in a fractionation scheme for resolution of the acid- and heat-stable, regular-size (12kDa) thioredoxins of the unicellular green algae, Scenedesmus obliquus. An apparently analogous protein of 26 kDa was described in a cyanobacterium, Anabaena sp., but no such large thioredoxin species f exists in the thioredoxin profiles of higher plants. The structure of the 28 kDa protein, which had been envisaged to represent a precursor, or fusion product of the two more specialized, common chloroplast thioredoxins f and m has now been determined by amino acid sequencing. Although it exhibits virtually all the properties and enzyme-modulating activities of a thioredoxin proper this algal protein, surprisingly, does not belong to the thioredoxin family of small redox proteins but is identical with OEE (oxygen evolving enhancer) protein 1, an auxiliary component of the photosystem II manganese cluster. Extracts of Chlorella vulgaris and Chlamydomonas reinhardtii also contain heat-stable protein fractions of 23-26 kDa capable of specifically stimulating chloroplast fructosebisphosphatase in vitro. In contrast, OEE protein 1 from spinach is not able to modulate FbPase or NADP malate dehydrogenase from spinach chloroplasts. A dual function of the OEE protein in algal photosynthesis is envisaged.

  14. Multiple forms of ADP-glucose pyrophosphorylase from tomato fruit

    NASA Technical Reports Server (NTRS)

    Chen, B. Y.; Janes, H. W.

    1997-01-01

    ADP-glucose pyrophosphorylase (AGP) was purified from tomato (Lycopersicon esculentum Mill.) fruit to apparent homogeneity. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis the enzyme migrated as two close bands with molecular weights of 50,000 and 51,000. Two-dimensional polyacrylamide gel electrophoresis analysis of the purified enzyme, however, revealed at least five major protein spots that could be distinguished by their slight differences in net charge and molecular weight. Whereas all of the spots were recognized by the antiserum raised against tomato fruit AGP holoenzyme, only three of them reacted strongly with antiserum raised against the potato tuber AGP large subunit, and the other two spots (with lower molecular weights) reacted specifically with antisera raised against spinach leaf AGP holoenzyme and the potato tuber AGP small subunit. The results suggest the existence of at least three isoforms of the AGP large subunit and two isoforms of the small subunit in tomato fruit in vivo. The native molecular mass of the enzyme determined by gel filtration was 220 +/- 10 kD, indicating a tetrameric structure for AGP from tomato fruit. The purified enzyme is very sensitive to 3-phosphoglycerate/inorganic phosphate regulation.

  15. Identifying fecal matter contamination in produce fields using multispectral reflectance imaging under ambient solar illumination

    NASA Astrophysics Data System (ADS)

    Everard, Colm D.; Kim, Moon S.; Lee, Hoonsoo; O'Donnell, Colm P.

    2016-05-01

    An imaging device to detect fecal contamination in fresh produce fields could allow the producer avoid harvesting fecal contaminated produce. E.coli O157:H7 outbreaks have been associated with fecal contaminated leafy greens. In this study, in-field spectral profiles of bovine fecal matter, soil, and spinach leaves are compared. A common aperture imager designed with two identical monochromatic cameras, a beam splitter, and optical filters was used to simultaneously capture two-spectral images of leaves contaminated with both fecal matter and soil. The optical filters where 10 nm full width half maximum bandpass filters, one at 690 nm and the second at 710 nm. These were mounted in front of the object lenses. New images were created using the ratio of these two spectral images on a pixel by pixel basis. Image analysis results showed that the fecal matter contamination could be distinguished from soil and leaf on the ratio images. The use of this technology has potential to allow detection of fecal contamination in produce fields which can be a source of foodbourne illnesses. It has the added benefit of mitigating cross-contamination during harvesting and processing.

  16. Antimicrobial, antibiofilm and antitumor activities of essential oil of Agastache rugosa from Xinjiang, China.

    PubMed

    Haiyan, Gong; Lijuan, He; Shaoyu, Li; Chen, Zhang; Ashraf, Muhammad Aqeel

    2016-07-01

    In the study, we evaluated chemical composition and antimicrobial, antibiofilm, and antitumor activities of essential oils from dried leaf essential oil of leaf and flower of Agastache rugosa for the first time. Essential oil of leaf and flower was evaluated with GC and GC-MS methods, and the essential oil of flower revealed the presence of 21 components, whose major compounds were pulegone (34.1%), estragole (29.5%), and p-Menthan-3-one (19.2%). 26 components from essential oil of leaf were identified, the major compounds were p-Menthan-3-one (48.8%) and estragole (20.8%). At the same time, essential oil of leaf, there is a very effective antimicrobial activity with MIC ranging from 9.4 to 42 μg ml(-1) and potential antibiofilm, antitumor activities for essential oils of flower and leaf essential oil of leaf. The study highlighted the diversity in two different parts of A. rugosa grown in Xinjiang region and other places, which have different active constituents. Our results showed that this native plant may be a good candidate for further biological and pharmacological investigations.

  17. A greenhouse experiment for the identification of spectral indices for crop water and nitrogen status assessment

    NASA Astrophysics Data System (ADS)

    Marino Gallina, Pietro; Bechini, Luca; Cabassi, Giovanni; Cavalli, Daniele; Chiaradia, Enrico Antonio; Corti, Martina; Ferrante, Antonio; Martinetti, Livia; Masseroni, Daniele; Morgutti, Silvia; Nocito, Fabio Francesco; Facchi, Arianna

    2015-04-01

    Improvements in crop production depend on the correct adoption of agronomic and irrigation management strategies. The use of high spatial and temporal resolution monitoring methods may be used in precision agriculture to improve the efficiency in water and nutrient input management, guaranteeing the environmental sustainability of agricultural productions. In the last decades, many indices for the monitoring of water or nitrogen status of crops were developed by using multispectral images and, more recently, hyperspectral and thermal images acquired by satellite of airborne platforms. To date, however, comprehensive studies aimed at identifying indices as independent as possible for the management of the two types of stress are still scarce in the literature. Moreover, the chemometric approach for the statistical analysis of the acquired images is not yet widely experienced in this research area. In this context, this work presents the set-up of a greenhouse experiment that will start in February 2015 in Milan (Northern Italy), which aims to the objectives described above. The experiment will be carried out on two crops with a different canopy geometry (rice and spinach) subjected to four nitrogen treatments, for a total of 96 pots. Hyperspectral scanner and thermal images will be acquired at four phenological stages. At each phenological phase, acquisitions will be conducted on one-fourth of the pots, in the first instance in good water conditions and, subsequently, at different time steps after the cessation of irrigation. During the acquisitions, measurements of leaf area index and biomass, chlorophyll and nitrogen content in the plants, soil water content, stomatal conductance and leaf water potential will be performed. Moreover, on leaf samples, destructive biochemical analysis will be conducted to evaluate the physiological stress status of crops in the light of different irrigation and nutrient levels. Multivariate regression analysis between the acquired spectra and the chemical-physical properties of the crop determined with standard methods will be used to identify suitable models for the estimation of crop water and nitrogen status. The most significant wavelengths for the detection of water and nitrogen stress could be the subject of a future experimentation in open field conditions using multispectral systems.

  18. Isolated spinach ribulose-1,5-bisphosphate carboxylase/oxgenase large subunit .epsilon. n-methyltransferase and method of inactivating ribulose-1,5-bishosphatase .epsilon. n-methyltransferase activity

    DOEpatents

    Houtz, Robert L.

    2001-01-01

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .sup..epsilon. N-methyltansferase (protein methylase III or Rubisco LSMT) from a plant which has a des(methyl) lysyl residue in the LS is disclosed. In addition, the full-length cDNA clones for Rubisco LSMT are disclosed. Transgenic plants and methods of producing same which have the Rubisco LSMT gene inserted into the DNA are also provided. Further, methods of inactivating the enzymatic activity of Rubisco LSMT are also disclosed.

  19. Tissue-specific changes of glutamine synthetase activity in oats after rhizosphere infestation by Pseudomonas syringae pv. tabaci. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, T.J.; Temple, S.; Sengupta-Gopalan, C.

    1996-05-15

    Oats (Avena sativa L. lodi) tolerant of rhizosphere infestation by Pseudomonas syringae pv. tabaci when challenged by the pathogen experience tissue-specific alterations of ammonia assimilatory capabilities. Altered ammonia assimilatory potentials between root and leaf tissue result from selective inactivation of glutamine synthetase (GS) by the toxin Tabtoxinine-B-lactam (TBL). Root GS is sensitive and leaf GSs are resistant to TBL inactivation. With prolonged challenge by the pathogen root GS activity decreases but leaf GS specific activity increase. Higher leaf GS activity is due to decreased rates of degradation rather than increased GS synthesis. Higher leaf GS activity and elevated levels ofmore » GS polypeptide appear to result from a limited interaction between GS and TBL leading to the accumulation of a less active but more stable GS holoenzyme. Tolerant challenged oats besides surviving rhizosphere infestation, experience enhanced growth. A strong correlation exists between leaf GS activity and whole plant fresh weight, suggesting that tissue-specific changes in ammonia assimilatory capability provides the plant a more efficient mechanism for uptake and utilization of nitrogen.« less

  20. Hands-On Whole Science: A Leaf Sampler.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1991-01-01

    Presents two elementary school activities to help students learn about autumn. The activities use autumn leaves to teach that each type of tree has its own distinctive type of leaf. One activity involves tracing, drawing, and writing about leaves; the other involves making a quilt using leaf designs. (SM)

  1. Inhibition of Escherichia coli O157:H7 and Clostridium sporogenes in spinach packaged in modified atmospheres after treatment combined with chlorine and lactic acid bacteria.

    PubMed

    Brown, Alison L; Brooks, J Chance; Karunasena, Enusha; Echeverry, Alejandro; Laury, Angela; Brashears, Mindy M

    2011-08-01

    Implementation of modified atmospheric packaging (MAP) into retail produce is a less commonly practiced method due to differences among commodities and the potential growth of anaerobes. Pathogens including Escherichia coli O157:H7 have been responsible for spinach outbreaks across the United States. In this study, hurdles, including those currently used with produce safety, such as MAP and chlorine, were combined with lactic acid bacteria (LAB) to inhibit pathogens. Spinach was coinoculated with E. coli O157:H7 and Clostridium sporogenes, a surrogate for C. botulinum, and treated with water or a hurdle that included water, chlorine, and LAB. Spinach from treatments were packaged in air (traditional), oxygen (80% O₂, 20% CO₂), or nitrogen (80% N₂, 20% CO₂) and stored in a retail display case for 9 d at 4 to 7 °C. The hurdle inhibited E. coli O157:H7 and C. sporogenes compared to controls with reductions of 1.43 and 1.10 log (P < 0.05), respectively. The nitrogen atmosphere was outperformed by air and oxygen in the reduction of E. coli O157:H7 (P < 0.05) with a decrease of 0.26 and 0.15 logs. There were no significant differences among the 3 atmospheres on C. sporogenes survival. Relative to these hurdles, we also chose to evaluate the potential benefits of LAB in pathogen control. The survival of LAB in interventions demonstrates implementation of LAB into produce could control pathogens, without damaging produce or altering organoleptic properties. The goal of our work was to identify methods that could reduce food-borne pathogens in packaged spinach products. Using current industry techniques in combination with unique methods, such as the use of beneficial bacteria, our research identified whether harmful microorganisms could be eliminated. Our data demonstrate that specific packaging conditions with beneficial bacteria can help eliminate or reduce the survival of E. coli O157:H7 and C. sporogenes (a model for C. botulinum) in produce. Journal of Food Science © 2011 Institute of Food Technologists® No claim to original US government works.

  2. Fermented guava leaf extract inhibits LPS-induced COX-2 and iNOS expression in Mouse macrophage cells by inhibition of transcription factor NF-kappaB.

    PubMed

    Choi, Soo-Youn; Hwang, Joon-Ho; Park, Soo-Young; Jin, Yeong-Jun; Ko, Hee-Chul; Moon, Sang-Wook; Kim, Se-Jae

    2008-08-01

    The goal of this study was to elucidate the antiinflammatory activities of Psidium guajava L. (guava) leaf. To improve the functionality of guava leaf, it was fermented with Phellinus linteus mycelia, Lactobacillus plantarum and Saccharomyces cerevisiae. The ethanol extract from fermented guava leaf inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production. Western blot analysis showed that fermented guava leaf extract decreased LPS-induced inducible nitric oxide synthase (iNOS) and the cyclooxygenase-2 (COX-2) protein level in RAW 264.7 cells. To investigate the mechanism involved, the study examined the effect of fermented guava leaf extract on LPS-induced nuclear factor-kappaB (NF-kappaB) activation. Fermented guava leaf extract significantly inhibited LPS-induced NF-kappaB transcriptional activity. Immunochemical analysis revealed that fermented guava leaf extract suppressed LPS-induced degradation of I-kappaBalpha. Taken together, the data indicate that fermented guava leaf extract is involved in the inhibition of iNOS and COX-2 via the down-regulation of NF-kappaB pathway, revealing a partial molecular basis for the antiinflammatory properties of fermented guava leaf extract.

  3. Purification and Properties of Mesophyll and Bundle Sheath Cell α-Glucan Phosphorylases from Zea mays L. 1

    PubMed Central

    Mateyka, Christian; Schnarrenberger, Claus

    1988-01-01

    Two major α-glucan phosphorylases (I and II) from leaves of the C4 plant corn (Zea mays L.) were previously shown to be compartmented in mesophyll and bundle sheath cells, respectively (C Mateyka, C Schnarrenberger 1984 Plant Sci Lett 36: 119-123). The two enzymes were separated by chromatography on DEAE-cellulose and purified to homogeneity by affinity chromatography on immobilized starch, according to published procedures, as developed for the cytosol and chloroplast phosphorylase from the C3 plant spinach. The two α-glucan phosphorylases have their pH optimum at pH 7. The specificity for polyglucans was similar for soluble starch and amylopectin, however, differed for glycogen (Km = 16 micrograms per milliliter for the mesophyll cell and 250 micrograms per milliliter for the bundle sheath cell phosphorylase). Maltose, maltotriose, and maltotetraose were not cleaved by either phosphorylase. If maltopentaose was used as substrate, the rate was about twice as high with the bundle sheath cell phosphorylase, than with the mesophyll cell phosphorylase. The phosphorylase I showed a molecular mass of 174 kilodaltons and the phosphorylase II of 195 kilodaltons for the native enzyme and of 87 and of 53 kilodaltons for the SDS-treated proteins, respectively. Specific antisera raised against mesophyll cell phosphorylase from corn leaves and against chloroplast phosphorylase from spinach leaves implied high similarity for the cytosol phosphorylase of the C3 plant spinach with mesophyll cell phosphorylase of the C4 plant corn and of chloroplast phosphorylase of spinach with the bundle sheath cell phosphorylase of corn. Images Fig. 2 Fig. 7 PMID:16665923

  4. Green vegetables, red meat and colon cancer: chlorophyll prevents the cytotoxic and hyperproliferative effects of haem in rat colon.

    PubMed

    de Vogel, Johan; Jonker-Termont, Denise S M L; van Lieshout, Esther M M; Katan, Martijn B; van der Meer, Roelof

    2005-02-01

    Diets high in red meat and low in green vegetables are associated with increased colon cancer risk. This association might be partly due to the haem content of red meat. In rats, dietary haem is metabolized in the gut to a cytotoxic factor that increases colonic cytotoxicity and epithelial proliferation. Green vegetables contain chlorophyll, a magnesium porphyrin structurally analogous to haem. We studied whether green vegetables inhibit the unfavourable colonic effects of haem. First, rats were fed a purified control diet or purified diets supplemented with 0.5 mmol haem/kg, spinach (chlorophyll concentration 1.2 mmol/kg) or haem plus spinach (n = 8/group) for 14 days. In a second experiment we also studied a group that received haem plus purified chlorophyll (1.2 mmol/kg). Cytotoxicity of faecal water was determined with a bioassay and colonic epithelial cell proliferation was quantified in vivo by [methyl-(3)H]thymidine incorporation into newly synthesized DNA. Exfoliation of colonocytes was measured as the amount of rat DNA in faeces. In both studies haem increased cytotoxicity of the colonic contents approximately 8-fold and proliferation of the colonocytes almost 2-fold. Spinach or an equimolar amount of chlorophyll supplement in the haem diet inhibited these haem effects completely. Haem clearly inhibited exfoliation of colonocytes, an effect counteracted by spinach and chlorophyll. Finally, size exclusion chromatography showed that chlorophyll prevented formation of the cytotoxic haem metabolite. We conclude that green vegetables may decrease colon cancer risk because chlorophyll prevents the detrimental, cytotoxic and hyperproliferative colonic effects of dietary haem.

  5. Optimal preferred MSG concentration in potatoes, spinach and beef and their effect on intake in institutionalized elderly people.

    PubMed

    Essed, N H; Oerlemans, P; Hoek, M; Van Staveren, W A; Kok, F J; De Graaf, C

    2009-11-01

    Elderly people may benefit from sensory stimulation to increase food intake since anorexia of ageing is prevalent among them. An optimal MSG concentration may increase the palatability of foods but this depends on the food and chemosensory status of the taster. Currently, the results on taste enhancing to increase intake are inconsistent. To find an optimal preferred MSG concentration in mashed potatoes, spinach and ground beef and to determine whether this concentration increases consumption of these foods among institutionalized elderly people. Single blind within subject cross-over study performed at the laboratory and in the residents' own apartments. 33 elderly and 29 young people in the sensory study and 53 elderly people in the intake study. Pleasantness of the foods was rated of the foods each with 0, 0.5, 0.8, 1.3 and 2.0 g of MSG/100g. Intake was measured by weighing back leftovers of 2 meals with MSG (0.5% in mashed potatoes, 2% in spinach and ground meat) and without MSG. 0.5% MSG (p < 0.05) was preferred in mashed potatoes but no optimal preferred concentration was found for spinach and ground beef, possibly because of their complex taste. Intake was not different between the foods with and without MSG or the total meal (all p > 0.68). MSG (0.5% and 2%) does not guarantee a higher intake among elderly. The chemosensory heterogeneity of the elderly population requires more individual flavor enhancement to improve the dietary intake and sensory experience.

  6. Microbial Quality, Safety, and Pathogen Detection by Using Quantitative PCR of Raw Salad Vegetables Sold in Dhanbad City, India.

    PubMed

    Mritunjay, Sujeet K; Kumar, Vipin

    2017-01-01

    Consumption of ready-to-eat fresh vegetables has increased worldwide, with a consequent increase in outbreaks caused by foodborne pathogens. In the Indian subcontinent, raw fresh vegetables are usually consumed without washing or other decontamination procedures, thereby leading to new food safety threats. In this study, the microbiological quality and pathogenic profile of raw salad vegetables was evaluated through standard protocols. In total, 480 samples (60 each of eight different salad vegetables) of cucumber, tomato, carrot, coriander, cabbage, beetroot, radish, and spinach were collected from different locations in Dhanbad, a city famous for its coal fields and often called the "Coal Capital of India." The samples were analyzed for total plate count, total coliforms, Escherichia coli , E. coli O157:H7, Listeria monocytogenes , and Salmonella spp. Incidences of pathogens were detected through quantitative PCR subsequent to isolation. Results showed that 46.7% (for total plate counts) and 30% (for total coliforms) of samples were unacceptable for consumption per the Food Safety and Standards Authority of India. Pathogenic microorganisms were detected in 3.7% of total samples. E. coli O157:H7 was detected in three samples of spinach (2) and beetroot ( 1 ); L. monocytogenes was detected in 14 samples of spinach ( 8 ), tomato ( 3 ), cucumber ( 2 ), and radish ( 1 ); and Salmonella spp. were detected in 16 samples of spinach ( 7 ), tomato ( 3 ), beetroot ( 2 ), cucumber ( 2 ), carrot ( 1 ), and radish ( 1 ). Pathogens were not detected in any of the cabbage and coriander samples.

  7. Preparation-free method for detecting Escherichia coli O157:H7 in the presence of spinach, spring lettuce mix, and ground beef particulates.

    PubMed

    Maraldo, David; Mutharasan, Raj

    2007-11-01

    We show the detection of 100 cells per ml of Escherichia coli O157:H7 in the presence of spinach, spring lettuce mix, and ground beef washes and particulate matter with piezoelectric-excited millimeter-sized cantilever (PEMC) sensors. The PEMC sensors (sensing area, 2 mm2) were immobilized with polyclonal antibody specific to E. coli O157:H7 (EC) and were exposed to 10 aqueous washes of locally purchased spinach, spring lettuce mix, and ground beef for testing if EC was present. Absence of resonance frequency shift indicated that EC was not present in the 30 samples tested. Following the last sample in each food matrix, 1,000 cells per ml of EC were spiked into the sample container, and resonance frequency change was monitored. The total resonance frequency change was 880 +/- 5, 1,875 +/- 8, and 1,417 +/- 4 Hz for spinach, spring lettuce mix, and ground beef, respectively. A mixture of the three food matrices spiked with 100 cells per ml of EC gave a sensor response of 260 +/- 15 Hz. The resonance frequency changes are approximately 40% lower than our previously reported study on ground beef. It is suggested that the reduction in sensitivity is due to differences in pathogen adherence to food matrices, which affects target binding to the sensor surface. We conclude that detection selectivity is conserved in the three food matrices examined and that the magnitude of sensor response is a function of the food matrix.

  8. Determining bioavailability of food folates in a controlled intervention study.

    PubMed

    Hannon-Fletcher, Mary P; Armstrong, Nicola C; Scott, John M; Pentieva, Kristina; Bradbury, Ian; Ward, Mary; Strain, J J; Dunn, Adele A; Molloy, Anne M; Kerr, Maeve A; McNulty, Helene

    2004-10-01

    The concept of dietary folate equivalents (DFEs) in the United States recognizes the differences in bioavailability between natural food folates and the synthetic vitamin, folic acid. However, many published reports on folate bioavailability are problematic because of several confounding factors. We compared the bioavailability of food folates with that of folic acid under controlled conditions. To broadly represent the extent to which natural folates are conjugated in foods, we used 2 natural sources of folate, spinach (50% polyglutamyl folate) and yeast (100% polyglutamyl folate). Ninety-six men were randomly assigned according to their screening plasma homocysteine (tHcy) concentration to 1 of 4 treatment groups for an intervention period of 30 d. Each subject received (daily under supervision) either a folate-depleted "carrier" meal or a drink plus 1) placebo tablet, 2) 200 microg folic acid in a tablet, 3) 200 microg natural folate provided as spinach, or 4) 200 microg natural folate provided as yeast. Among the subjects who completed the intervention, responses (increase in serum folate, lowering of tHcy) relative to those in the placebo group (n = 18) were significant in the folic acid group (n = 18) but not in the yeast folate (n = 19) or the spinach folate (n = 18) groups. Both natural sources of folate were significantly less bioavailable than was folic acid. Overall estimations of folate bioavailability relative to that of folic acid were found to be between 30% (spinach) and 59% (yeast). Relative bioavailability estimates were consistent with the estimates from the metabolic study that were used as a basis to derive the US DFE value.

  9. Modulation of δ-Aminolevulinic Acid Dehydratase Activity by the Sorbitol-Induced Osmotic Stress in Maize Leaf Segments.

    PubMed

    Jain, M; Tiwary, S; Gadre, R

    2018-01-01

    Osmotic stress induced with 1 M sorbitol inhibited δ-aminolevulinic acid dehydratase (ALAD) and aminolevulinic acid (ALA) synthesizing activities in etiolated maize leaf segments during greening; the ALAD activity was inhibited to a greater extent than the ALA synthesis. When the leaves were exposed to light, the ALAD activity increased for the first 8 h, followed by a decrease observed at 16 and 24 h in both sorbitol-treated and untreated leaf tissues. The maximum inhibition of the enzyme activity was observed in the leaf segments incubated with sorbitol for 4 to 8 h. Glutamate increased the ALAD activity in the in vitro enzymatic preparations obtained from the sorbitol-treated leaf segments; sorbitol inhibited the ALAD activity in the preparations from both sorbitol-treated and untreated leaves. It was suggested that sorbitol-induced osmotic stress inhibits the enzyme activity by affecting the ALAD induction during greening and regulating the ALAD steady-state level of ALAD in leaf cells. The protective effect of glutamate on ALAD in the preparations from the sorbitol-treated leaves might be due to its stimulatory effect on the enzyme.

  10. Effect of inorganic and organic copper fertilizers on copper nutrition in Spinacia oleracea and on labile copper in soil.

    PubMed

    Obrador, Ana; Gonzalez, Demetrio; Alvarez, Jose M

    2013-05-22

    To ensure an optimal concentration of Cu in food crops, the effectiveness of eight liquid Cu fertilizers was studied in a spinach ( Spinacia oleracea L.) crop grown on Cu-deficient soil under greenhouse conditions. Plant dry matter yields, Cu concentrations in spinach plants (total and morpholino acid (MES)- and ethylenediaminedisuccinic acid (EDDS)-extractable), and Cu uptakes were studied. The behavior of Cu in soil was evaluated by both single and sequential extraction procedures. The highest quantities of Cu in labile forms in the soil, total uptakes, and Cu concentrations in the plants were associated with the application of the two sources that contained Cu chelated by EDTA and/or DTPA. The fertilizers containing these Cu chelates represent a promising approach to achieve high levels of agronomic biofortification. The stronger correlations obtained between low-molecular-weight organic acid-extractable Cu in soil and the Cu concentrations and Cu uptakes by the plants show the suitability of this soil extraction method for predicting Cu available to spinach plants.

  11. Novel insights into ascorbate retention and degradation during the washing and post-harvest storage of spinach and other salad leaves.

    PubMed

    Dewhirst, Rebecca A; Clarkson, Graham J J; Rothwell, Steve D; Fry, Stephen C

    2017-10-15

    Post-harvest treatments of pre-packaged salad leaves potentially cause l-ascorbate loss, but the mechanisms of ascorbate degradation remain incompletely understood, especially in planta. We explored the extent and pathways of ascorbate loss in variously washed and stored salad leaves. Ascorbate was assayed by 2,6-dichlorophenolindophenol titration, and pathways were monitored by 14 C-radiolabelling followed by high-voltage electrophoresis. All leaves tested showed ascorbate loss during storage: lettuce showed the greatest percentage loss, wild rocket the least. Spinach leaves were particularly prone to losing ascorbate during washing, especially with simultaneous mechanical agitation; however, washing in the presence of hypochlorite did not significantly increase ascorbate loss. In spinach, [ 14 C]oxalate was the major product of [ 14 C]ascorbate degradation, suggesting that commercial washing causes oxidative stress. This study highlights that ascorbate/dehydroascorbic acid are lost via the oxidative pathway during washing and post-harvest storage of salad leaves. Thus changes to washing procedures could potentially increase the post-harvest retention of ascorbate. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Sample size allocation for food item radiation monitoring and safety inspection.

    PubMed

    Seto, Mayumi; Uriu, Koichiro

    2015-03-01

    The objective of this study is to identify a procedure for determining sample size allocation for food radiation inspections of more than one food item to minimize the potential risk to consumers of internal radiation exposure. We consider a simplified case of food radiation monitoring and safety inspection in which a risk manager is required to monitor two food items, milk and spinach, in a contaminated area. Three protocols for food radiation monitoring with different sample size allocations were assessed by simulating random sampling and inspections of milk and spinach in a conceptual monitoring site. Distributions of (131)I and radiocesium concentrations were determined in reference to (131)I and radiocesium concentrations detected in Fukushima prefecture, Japan, for March and April 2011. The results of the simulations suggested that a protocol that allocates sample size to milk and spinach based on the estimation of (131)I and radiocesium concentrations using the apparent decay rate constants sequentially calculated from past monitoring data can most effectively minimize the potential risks of internal radiation exposure. © 2014 Society for Risk Analysis.

  13. Conventional crops and organic amendments for Pb, Cd and Zn treatment at a severely contaminated site.

    PubMed

    Pichtel, J; Bradway, D J

    2008-03-01

    The ability of selected plants and amendments to treat Pb, Cd and Zn accumulations from a metalliferous waste disposal site was studied both in the greenhouse and field. Spinach (Spinacea oleracea), cabbage (Brassica oleracea), and a grass-legume mix (red fescue, Festuca rubra; ryegrass, Lolium perenne); and bean (Vicia faba) were grown in the greenhouse on blast furnace slag or baghouse dust amended with composted peat (CP). All plant species accumulated Pb, Cd and Zn to varying degrees. Total soil metal concentrations had a marked influence on plant uptake. Topdressing versus incorporating CP had a significant (p<0.05) effect on spinach and cabbage tissue metal concentrations. Soil Pb and Zn tended to shift towards less bioavailable forms after treatment with CP. Field plots were treated with CP, farmyard manure (FYM), or inorganic fertilizer. Dry matter production of spinach, cabbage and a grass-legume mix was greatest on either the CP or FYM treatments. Phytostabilization in combination with organic amendments may be the most appropriate technology to ensure stabilization of soil metals at this site.

  14. Photoregulation of fructose and glucose respiration in the intact chloroplasts of Chlamydomonas reinhardtii F-60 and spinach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, K.K.; Changguo Chen; Gibbs, M.

    1993-04-01

    The photoregulation of chloroplastic respiration was studied by monitoring in darkness and in light the release of [sup 14]CO[sub 2] from whole chloroplasts of Chlamydomonas reinhardtii F-60 and spinach (Spinacia oleracea L.) supplied externally with [[sup 14]C]glucose and [[sup 14]C]fructose, respectively. CO[sub 2] release was inhibited more than 90% in both chloroplasts by a light intensity of 4 W m[sup [minus]2]. Oxidants, oxaloacetate in Chlamydomonas, nitrite in spinach, and phenazine methosulfate in both chloroplasts, reversed the inhibition. The onset of the photoinhibitory effect on CO[sub 2] release was relatively rapid compared to the restoration of CO[sub 2] release following illumination.more » In both darkened chloroplasts, dithiothreitol inhibited release. Of the four enzymes (fructokinase, phosphoglucose isomerase, glucose-6-P dehydrogenase, and gluconate-6-P dehydrogenase) in the pathway catalyzing the release of CO[sub 2] from fructose, only glucose-6-P dehydrogenase was deactivated by light and by dithiothreitol. 33 refs., 3 figs., 4 tabs.« less

  15. Chemotaxonomic Characterization and in-Vitro Antimicrobial and Cytotoxic Activities of the Leaf Essential Oil of Curcuma longa Grown in Southern Nigeria

    PubMed Central

    Essien, Emmanuel E.; Newby, Jennifer Schmidt; Walker, Tameka M.; Setzer, William N.; Ekundayo, Olusegun

    2015-01-01

    Curcuma longa (turmeric) has been used in Chinese traditional medicine and Ayurvedic medicine for many years. Methods: The leaf essential oil of C. longa from southern Nigeria was obtained by hydrodistillation and analyzed by gas chromatography–mass spectrometry (GC-MS). The essential oil was screened for in vitro antibacterial, antifungal, and cytotoxic activities. The major components in C. longa leaf oil were ar-turmerone (63.4%), α-turmerone (13.7%), and β-turmerone (12.6%). A cluster analysis has revealed this to be a new essential oil chemotype of C. longa. The leaf oil showed notable antibacterial activity to Bacillus cereus and Staphylococcus aureus, antifungal activity to Aspergillus niger, and cytotoxic activity to Hs 578T (breast tumor) and PC-3 (prostate tumor) cells. The ar-turmerone-rich leaf essential oil of C. longa from Nigeria has shown potent biological activity and therapeutic promise. PMID:28930216

  16. Regulation of Chloroplastic Carbonic Anhydrase 1

    PubMed Central

    Porter, Michael A.; Grodzinski, Bernard

    1983-01-01

    It was previously reported that magnesium ion inhibited carbonic anhydrase (Bamberger and Avron 1975 Plant Physiol 56: 481-485). Studies with partially purified carbonic anhydrase from spinach (Spinacia oleracea L.) chloroplasts show that the effect was the result of the chloride counterion and not the magnesium ion. Enzyme activity was reduced 50% upon addition of 3 to 10 millimolar MgCl2 or KCl while all additions of MgSO4 between 0.3 and 10 millimolar were mildly stimulatory. PMID:16663052

  17. [Several changes of Indocalamus leaf active ingredients contents].

    PubMed

    Su, Chun-hua; Liu, Guo-hua; Wang, Fu-sheng; Ding, Yu-long; Xue, Jian-hui

    2011-09-01

    In this paper, the leaves of Indocalamus herklotsii, Indocalamus decorus, and Indocalamus latifolius were collected from Nanjing in different seasons to study the seasonal changes of the total flavonoids, tea polyphenols, and soluble sugar contents in the leaves. There existed significant differences in the test active ingredients contents among the leaves of the three Indocalamus species. The leaf total flavonoids content of the three Indocalamus species in different seasons ranged in 1.7%-2.7%, being the highest for I. herklotsii and I. decorus in spring and for I. latifolius in winter. The leaf tea polyphenols content varied from 5.5% to 7.6%; and the leaf soluble sugar content was 1.0%-8.5%, with the maximum in spring. Within the three months after leaf unfolding, the active ingredients contents in I. herklotsii and I. decorus leaves increased with leaf age. The optimal period for harvesting Indocalamus leaves was from December to next March. Among the three Indocalamus species, I. latifolius had the highest contents of the three active ingredients in leaves, suggesting that I. latifolius had greater potential value in the utilization of its leaf active ingredients than the other two species.

  18. Altitudinal variation of antioxidant components and capability in Indocalamus latifolius (Keng) McClure leaf.

    PubMed

    Ni, Qinxue; Wang, Zhiqiang; Xu, Guangzhi; Gao, Qianxin; Yang, Dongdong; Morimatsu, Fumiki; Zhang, Youzuo

    2013-01-01

    Indocalamus latifolius (Keng) McClure leaf is a popular food material in East Asia due to its antioxidant and anticorrosive activities. To utilize it more effectively, we investigated the discrepancy of antioxidant activities and active compound content in Indocalamus latifolius leaf along with the altitude change. Total flavonoids, phenolics, titerpenoids and eight characteristic active constituents, i.e, orientin, isoorientin, vitexin, homovitexin, p-coumaric acid, chlorogenic acid, caffeic acid, and ferulic acid, were determined by UV-spectrophotometer and synchronous RP-HPLC, respectively. Antioxidant activity was measured using DPPH and FRAP methods. Our data showed that the content of TP and TF, DPPH radical scavenging ability and ferric reduction power of Indocalamus latifolius leaf changed as altitude altered, with the trends of decreasing gradually when lower than 700 m and then increasing to 1,000 m. Chlorogenic acid and orientin were the main characteristic compounds in Indocalamus latifolius leaf and were also affected by altitude. Our result indicated that higher altitude with an adverse environment is conducive to secondary metabolite accumulation for Indocalamus latifolius. It would provide a theoretical basis to regulate the leaf collection conditions in the industrial use of Indocalamus latifolius leaf.

  19. Changes in nitrate and nitrite content of four vegetables during storage at refrigerated and ambient temperatures.

    PubMed

    Chung, J-C; Chou, S-S; Hwang, D-F

    2004-04-01

    The nitrate and nitrite contents of four kinds of vegetables (spinach, crown daisy, organic Chinese spinach and organic non-heading Chinese cabbage) in Taiwan were determined during storage at both refrigerated (5 +/- 1 degrees C) and ambient temperatures (22 +/- 1 degrees C) for 7 days. During storage at ambient temperature, nitrate levels in the vegetables dropped significantly from the third day while nitrite levels increased dramatically from the fourth day of storage. However, refrigerated storage did not lead to changes in nitrate and nitrite levels in the vegetables over 7 days.

  20. Isolation and Oxidative Properties of Intact Mitochondria Isolated from Spinach Leaves 1

    PubMed Central

    Douce, Roland; Moore, Antony L.; Neuburger, Michel

    1977-01-01

    A procedure was described for preparing intact mitochondria from spinach (Spinacia oleracea L.) leaves. These mitochondria oxidized succinate, malate, pyruvate, α-ketoglutarate, and NADH with good respiratory control and ADP/O ratios comparable to those observed with mitochondria from other plant tissues. Glycine was oxidized by the preparations. This oxidation linked to the mitochondrial electron transport chain, was coupled to three phosphorylation sites and was sensitive to electron transport and phosphorylation inhibitors. Cyanide completely inhibited the oxidation of NADH. The oxidation of succinate, malate, and glycine was only partially inhibited. Images PMID:16660151

  1. Efficacy of UV, acidified sodium hypochlorite, and mild heat for decontamination of surface and infiltrated Escherichia coli O157:H7 on green onions and baby spinach.

    PubMed

    Durak, M Zeki; Churey, John J; Worobo, Randy W

    2012-07-01

    Produce-associated foodborne illnesses outbreaks have highlighted the need for more effective decontamination methods to ensure the safety of fresh produce. The main objective of this study was to evaluate the individual and combined efficacies of germicidal UV light (12.5 to 500 mJ/cm(2)), acidified sodium hypochlorite (ASC 10 to 200 ppm), and mild heat (40 to 50°C) for decontaminating green onions and baby spinach infected with Escherichia coli O157:H7. Samples were inoculated by spot and dip inoculation methods to mimic surface and infiltrated E. coli O157:H7 contamination, respectively. In green onions and baby spinach, the individual efficacies of UV, ASC, and mild-heat treatments varied based on the produce type and contamination method. Following analysis of the efficacies of the single treatments, a combined treatment with 125 mJ/cm(2) UV and 200 ppm of ASC at 50°C was selected for spot-inoculated green onions, and a combined treatment with 125 mJ/cm(2) UV and 200 ppm of ASC at 20°C was selected for spot- and dip-inoculated baby spinach. While a >5-log reduction was achieved with the combination treatment for spot-inoculated green onions with an initial contamination level of 7.2 log CFU per spot, the same treatment reduced E. coli O157:H7 populations below the detection limit (<1 log) on green onions spot inoculated at a lower contamination level (4.3 log CFU per spot). On spot- and dip-inoculated baby spinach, the combined treatment reduced E. coli O157:H7 populations by 2.8 log CFU per spot and 2.6 log CFU/g, respectively. The combined treatment of 500 mJ/cm(2) UV and 200 ppm of ASC at 50°C selected for the decontamination of dip-inoculated green onions resulted in a 2.2-log CFU/g reduction. These findings suggest that when foodborne pathogens contaminate produce and subsequently infiltrate, attach to, or become localized into protected areas, the individual or combined applications of UV, ASC, and mild-heat treatments have limited decontamination efficacies on both green onions and baby spinach (<3 log). However, treatments combining UV, ASC, and mild heat could be a promising application for reducing pathogen populations (>5 log) on E. coli O157:H7 surface-contaminated green onions. This study also highlights the importance of developing and optimizing produce-specific decontamination methods to ensure the safety of fresh produce commodities.

  2. Nitrate-Rich Vegetables Increase Plasma Nitrate and Nitrite Concentrations and Lower Blood Pressure in Healthy Adults.

    PubMed

    Jonvik, Kristin L; Nyakayiru, Jean; Pinckaers, Philippe Jm; Senden, Joan Mg; van Loon, Luc Jc; Verdijk, Lex B

    2016-05-01

    Dietary nitrate is receiving increased attention due to its reported ergogenic and cardioprotective properties. The extent to which ingestion of various nitrate-rich vegetables increases postprandial plasma nitrate and nitrite concentrations and lowers blood pressure is currently unknown. We aimed to assess the impact of ingesting different nitrate-rich vegetables on subsequent plasma nitrate and nitrite concentrations and resting blood pressure in healthy normotensive individuals. With the use of a semirandomized crossover design, 11 men and 7 women [mean ± SEM age: 28 ± 1 y; mean ± SEM body mass index (BMI, in kg/m(2)): 23 ± 1; exercise: 1-10 h/wk] ingested 4 different beverages, each containing 800 mg (∼12.9 mmol) nitrate: sodium nitrate (NaNO3), concentrated beetroot juice, a rocket salad beverage, and a spinach beverage. Plasma nitrate and nitrite concentrations and blood pressure were determined before and up to 300 min after beverage ingestion. Data were analyzed using repeated-measures ANOVA. Plasma nitrate and nitrite concentrations increased after ingestion of all 4 beverages (P < 0.001). Peak plasma nitrate concentrations were similar for all treatments (all values presented as means ± SEMs: NaNO3: 583 ± 29 μmol/L; beetroot juice: 597 ± 23 μmol/L; rocket salad beverage: 584 ± 24 μmol/L; spinach beverage: 584 ± 23 μmol/L). Peak plasma nitrite concentrations were different between treatments (NaNO3: 580 ± 58 nmol/L; beetroot juice: 557 ± 57 nmol/L; rocket salad beverage: 643 ± 63 nmol/L; spinach beverage: 980 ± 160 nmol/L; P = 0.016). When compared with baseline, systolic blood pressure declined 150 min after ingestion of beetroot juice (from 118 ± 2 to 113 ± 2 mm Hg; P < 0.001) and rocket salad beverage (from 122 ± 3 to 116 ± 2 mm Hg; P = 0.007) and 300 min after ingestion of spinach beverage (from 118 ± 2 to 111 ± 3 mm Hg; P < 0.001), but did not change with NaNO3 Diastolic blood pressure declined 150 min after ingestion of all beverages (P < 0.05) and remained lower at 300 min after ingestion of rocket salad (P = 0.045) and spinach (P = 0.001) beverages. Ingestion of nitrate-rich beetroot juice, rocket salad beverage, and spinach beverage effectively increases plasma nitrate and nitrite concentrations and lowers blood pressure to a greater extent than sodium nitrate. These findings show that nitrate-rich vegetables can be used as dietary nitrate supplements. This trial was registered at clinicaltrials.gov as NCT02271633. © 2016 American Society for Nutrition.

  3. Localization of Carbamoylphosphate Synthetase and Aspartate Carbamoyltransferase in Chloroplasts

    PubMed Central

    Shibata, Hitoshi; Ochiai, Hideo; Sawa, Yoshihiro; Miyoshi, Shoji

    1986-01-01

    The localization of carbamoylphosphate synthetase (CPSase) and aspartate carbamoyltransferase (ACTase), the first two enzymes of the pyrimidine biosynthetic pathway, in chloroplasts was investigated. In dark-grown radish (Raphanus sativus) seedlings, light induced a prominent increase in CPSase activity, but had little effect on ACTase activity. Both enzymes were found in chloroplasts isolated from radish cotyledons and leaves of spinach (Spinacia oleracea), soybean (Glycine max), and corn (Zea mays). The higher activity of ACTase relative to CPSase is discussed in relation to the instability of carbamoylphosphate, the product of the CPSase, and to the control of pyrimidine synthesis. Based on these results, the function of CPSase and ACTase in chloroplasts is discussed. PMID:16664566

  4. Chloroplast Response to Low Leaf Water Potentials

    PubMed Central

    Boyer, J. S.; Potter, J. R.

    1973-01-01

    The effect of decreases in turgor on chloroplast activity was studied by measuring the photochemical activity of intact sunflower (Helianthus annuus L. cv. Russian Mammoth) leaves having low water potentials. Leaf turgor, calculated from leaf water potential and osmotic potential, was found to be affected by the dilution of cell contents by water in the cell walls, when osmotic potentials were measured with a thermocouple psychrometer. After the correction of measurements of leaf osmotic potential, both the thermocouple psychrometer and a pressure chamber indicated that turgor became zero in sunflower leaves at leaf water potentials of −10 bars. Since most of the loss in photochemical activity occurred at water potentials below −10 bars, it was concluded that turgor had little effect on the photochemical activity of the leaves. PMID:16658486

  5. Chloroplast response to low leaf water potentials: I. Role of turgor.

    PubMed

    Boyer, J S; Potter, J R

    1973-06-01

    The effect of decreases in turgor on chloroplast activity was studied by measuring the photochemical activity of intact sunflower (Helianthus annuus L. cv. Russian Mammoth) leaves having low water potentials. Leaf turgor, calculated from leaf water potential and osmotic potential, was found to be affected by the dilution of cell contents by water in the cell walls, when osmotic potentials were measured with a thermocouple psychrometer. After the correction of measurements of leaf osmotic potential, both the thermocouple psychrometer and a pressure chamber indicated that turgor became zero in sunflower leaves at leaf water potentials of -10 bars. Since most of the loss in photochemical activity occurred at water potentials below -10 bars, it was concluded that turgor had little effect on the photochemical activity of the leaves.

  6. Investigating biological activity spectrum for novel styrylquinazoline analogues.

    PubMed

    Jampilek, Josef; Musiol, Robert; Finster, Jacek; Pesko, Matus; Carroll, James; Kralova, Katarina; Vejsova, Marcela; O'Mahony, Jim; Coffey, Aidan; Dohnal, Jiri; Polanski, Jaroslaw

    2009-10-23

    In this study, series of ring-substituted 2-styrylquinazolin-4(3H)-one and 4-chloro-2-styrylquinazoline derivatives were prepared. The syntheses of the discussed compounds are presented. The compounds were analyzed by RP-HPLC to determine lipophilicity. They were tested for their inhibitory activity on photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Primary in vitro screening of the synthesized compounds was also performed against four mycobacterial strains and against eight fungal strains. Several compounds showed biological activity comparable with or higher than that of the standard isoniazid. It was found that the electronic properties of the R substituent, and not the total lipophilicity of the compound, were decisive for the photosynthesis-inhibiting activity of tested compounds.

  7. LC-MS-MS characterization of curry leaf flavonols and antioxidant activity

    USDA-ARS?s Scientific Manuscript database

    Curry leaf is a commonly used flavoring agent whose flavonol constituents have potential health benefits. This study characterized the curry leaf flavonol profile and antioxidant activity. Flavonols were extracted using ethanol, methanol, or acetone prior to identification and quantification using l...

  8. The relationship between leaf rolling and ascorbate-glutathione cycle enzymes in apoplastic and symplastic areas of Ctenanthe setosa subjected to drought stress.

    PubMed

    Saruhan, Neslihan; Terzi, Rabiye; Saglam, Aykut; Kadioglu, Asim

    2009-01-01

    The ascorbate-glutathione (ASC-GSH) cycle has an important role in defensive processes against oxidative damage generated by drought stress. In this study, the changes that take place in apoplastic and symplastic ASC-GSH cycle enzymes of the leaf and petiole were investigated under drought stress causing leaf rolling in Ctenanthe setosa (Rose.) Eichler (Marantaceae). Apoplastic and symplastic extractions of leaf and petiole were performed at different visual leaf rolling scores from 1 to 4 (1 is unrolled, 4 is tightly rolled and the others are intermediate forms). Glutathione reductase (GR), a key enzyme in the GSH regeneration cycle, and ascorbate (ASC) were present in apoplastic spaces of the leaf and petiole, whereas dehydroascorbate reductase (DHAR), which uses glutathione as reductant, monodehydroascorbate reductase (MDHAR), which uses NAD(P)H as reductant, and glutathione were absent. GR, DHAR and MDHAR activities increased in the symplastic and apoplastic areas of the leaf. Apoplastic and symplastic ASC and dehydroascorbate (DHA), the oxidized form of ascorbate, rose at all scores except score 4 of symplastic ASC in the leaf. On the other hand, while reduced glutathione (GSH) content was enhanced, oxidized glutathione (GSSG) content decreased in the leaf during rolling. As for the petiole, GR activity increased in the apoplastic area but decreased in the symplastic area. DHAR and MDHAR activities increased throughout all scores, but decreased to the score 1 level at score 4. The ASC content of the apoplast increased during leaf rolling. Conversely, symplastic ASC content increased at score 2, however decreased at the later scores. While the apoplastic DHA content declined, symplastic DHA rose at score 2, but later was down to the level of score 1. While GSH content enhanced during leaf rolling, GSSG content did not change except at score 2. As well, there were good correlations between leaf rolling and ASC-GSH cycle enzyme activities in the leaf (GR and DHAR) and leaf rolling and GSSG. These results showed that in apoplastic and symplastic areas, ASC-GSH cycle enzymes leading ROS detoxification may have a role in controlling leaf rolling.

  9. Efficacy of Gaseous Ozone Application during Vacuum Cooling against Escherichia coli O157:H7 on Spinach Leaves as Influenced by Bacterium Population Size.

    PubMed

    Yesil, Mustafa; Kasler, David R; Huang, En; Yousef, Ahmed E

    2017-07-01

    Foodborne disease outbreaks associated with the consumption of fresh produce pose a threat to public health, decrease consumer confidence in minimally processed foods, and negatively impact the sales of these commodities. The aim of the study was to determine the influence of population size of inoculated pathogen on its inactivation by gaseous ozone treatment during vacuum cooling. Spinach leaves were spot inoculated with Escherichia coli O157:H7 at approximate initial populations of 10 8 , 10 7 , and 10 5 CFU/g. Inoculated leaves were vacuum cooled (28.5 inHg; 4°C) in a custom-made vessel and then were subjected to a gaseous ozone treatment under the following conditions: 1.5 g of ozone per kg of gas mixture, vessel pressure at 10 lb/in 2 gauge, 94 to 98% relative humidity, and 30 min of holding time at 9°C. Treatment of the leaves, having the aforementioned inocula, decreased E. coli populations by 0.2, 2.1, and 2.8 log CFU/g, respectively, compared with the inoculated untreated controls. Additionally, spinach leaves were inoculated at 1.4 × 10 3 CFU/g, which approximates natural contamination level, and the small populations remaining after ozone treatment were quantified using the most-probable-number (MPN) method. Vacuum and ozone sequential treatment decreased this E. coli O157:H7 population to <3 MPN/g (i.e., greater than 3-log reduction). Resulting log reductions were greater (P < 0.05) at the lower rather than the higher inoculum levels. In conclusion, treatment of spinach leaves with gaseous ozone is effective against pathogen loads comparable to those found in naturally contaminated fresh produce, but efficacy decreases as inoculum level increases.

  10. Chemical Characterization and Water Holding Capacity of Fibre-rich Feedstuffs Used for Pigs in Vietnam.

    PubMed

    Ngoc, T T B; Len, N T; Lindberg, J E

    2012-06-01

    During two years, four samples per year were collected in Vietnam from rice bran, cassava residue, brewer's grain, tofu residue, soybean meal, coconut cake, sweet potato vines and water spinach for chemical analysis and assessment of water holding capacity (WHC). The selected feedstuffs represent fibre-rich plant sources and agro-industry co-products commonly used in pig feeding in Vietnam. The content (g/kg DM) of crude protein (CP), ether extract (EE) and non-starch polysaccharides (NSP) varied between feedstuffs and ranged from 21 to 506 for CP, from 14 to 118 for EE and from 197 to 572 for NSP. Cassava residue had a high starch content of 563 g/kg DM, while sweet potato vines, water spinach, coconut cake and soybean meal had a high content of sugars (63-71 g/kg DM). The content of individual neutral sugars varied between feed ingredients, with the highest content of arabinose, galactose and glucose in tofu residue, the highest content of xylose in brewer's grain and the highest content of mannose in coconut cake. The content of uronic acid was high for cassava residue, tofu residue, sweet potato vines and water spinach (57-88 g/kg DM). The content of soluble non-cellulosic polysaccharides (S-NCP) was positively correlated (r(2) = 0.82) to the WHC. The content (g/kg DM) of CP, NDF, neutral sugars, total NSP, total NCP, S-NCP and total dietary fibre in tofu residue, water spinach and coconut cake varied (p<0.05) between years. In conclusion, diet formulation to pigs can be improved if the variation in chemical composition of the fibre fraction and in WHC between potential feed ingredients is taken into account.

  11. Farm Management, Environment, and Weather Factors Jointly Affect the Probability of Spinach Contamination by Generic Escherichia coli at the Preharvest Stage

    PubMed Central

    Navratil, Sarah; Gregory, Ashley; Bauer, Arin; Srinath, Indumathi; Szonyi, Barbara; Nightingale, Kendra; Anciso, Juan; Jun, Mikyoung; Han, Daikwon; Lawhon, Sara; Ivanek, Renata

    2014-01-01

    The National Resources Information (NRI) databases provide underutilized information on the local farm conditions that may predict microbial contamination of leafy greens at preharvest. Our objective was to identify NRI weather and landscape factors affecting spinach contamination with generic Escherichia coli individually and jointly with farm management and environmental factors. For each of the 955 georeferenced spinach samples (including 63 positive samples) collected between 2010 and 2012 on 12 farms in Colorado and Texas, we extracted variables describing the local weather (ambient temperature, precipitation, and wind speed) and landscape (soil characteristics and proximity to roads and water bodies) from NRI databases. Variables describing farm management and environment were obtained from a survey of the enrolled farms. The variables were evaluated using a mixed-effect logistic regression model with random effects for farm and date. The model identified precipitation as a single NRI predictor of spinach contamination with generic E. coli, indicating that the contamination probability increases with an increasing mean amount of rain (mm) in the past 29 days (odds ratio [OR] = 3.5). The model also identified the farm's hygiene practices as a protective factor (OR = 0.06) and manure application (OR = 52.2) and state (OR = 108.1) as risk factors. In cross-validation, the model showed a solid predictive performance, with an area under the receiver operating characteristic (ROC) curve of 81%. Overall, the findings highlighted the utility of NRI precipitation data in predicting contamination and demonstrated that farm management, environment, and weather factors should be considered jointly in development of good agricultural practices and measures to reduce produce contamination. PMID:24509926

  12. Bacteriological quality of vegetables from organic and conventional production in different areas of Korea.

    PubMed

    Tango, Charles Nkufi; Choi, Na-Jung; Chung, Myung-Sub; Oh, Deog Hwan

    2014-08-01

    Foods grown in organic production systems have been described as representing an increased risk to public health compared with foods from conventional production. Leafy vegetables (spinach, romaine lettuce, and green sesame leaves) grown in organic and conventional systems were collected from various areas in Korea and examined using standard culture methods to compare the microbiological quality of the produce grown in the two agricultural systems. The 354 samples of these leafy vegetables were analyzed for levels of indicator bacteria (aerobic bacteria, coliforms, and Escherichia coli) and the prevalence of the pathogens Staphylococcus aureus, E. coli O157:H7, Listeria monocytogenes, Bacillus cereus, and Salmonella. Aerobic bacteria and coliforms were detected in all vegetable types, but nonpathogenic E. coli was below the limit of detection in all samples. B. cereus was the most prevalent pathogen, found on 7 (11.1%) of the 63 organic spinach samples. The prevalence of S. aureus was highest in organic sesame leaves; it was found on 5 (8.0%) of the 63 samples. The prevalence of L. monocytogenes was highest on organic romaine lettuce and spinach; it was found in 4 (6.4%) of 63 samples of each type of vegetable. E. coli O157:H7 found on only 1 (1.58%) of 55 conventional spinach samples. These results suggest that farming type at most only slightly affects the hygienic quality of leafy vegetables, and no effect was found for sample collection area. Salmonella was not isolated from any of the conventional or organic leafy vegetables. These results do not support the hypothesis that organic produce poses a substantially greater risk of pathogen contamination than does conventional produce.

  13. Evaluation of Suppressiveness of Soils Exhibiting Soil-Borne Disease Suppression after Long-Term Application of Organic Amendments by the Co-cultivation Method of Pathogenic Fusarium oxysporum and Indigenous Soil Microorganisms.

    PubMed

    Mitsuboshi, Masahiro; Kioka, Yuuzou; Noguchi, Katsunori; Asakawa, Susumu

    2018-03-29

    Preventive measures against soil-borne diseases need to be implemented before cultivation because very few countermeasures are available after the development of diseases. Some soils suppress soil-borne diseases despite the presence of a high population density of pathogens. If the suppressiveness of soil against soil-borne diseases may be predicted and diagnosed for crop fields, it may be possible to reduce the labor and cost associated with excessive disinfection practices. We herein evaluated the suppressiveness of soils in fields with the long-term application of organic amendments by examining the growth of pathogenic Fusarium oxysporum co-cultivated with indigenous soil microorganisms on agar plates. Soils treated with coffee residue compost or rapeseed meal showed suppressiveness against spinach wilt disease by F. oxysporum f. sp. spinaciae or spinach wilt and lettuce root rot diseases by F. oxysporum f. sp. spinaciae and F. oxysporum f. sp. lactucae, respectively, and the growth of pathogenic Fusarium spp. on agar plates was suppressed when co-cultured with microorganisms in a suspension from these soils before crop cultivation. These results indicate the potential of the growth degree of pathogenic F. oxysporum estimated by this method as a diagnostic indicator of the suppressiveness of soil associated with the inhabiting microorganisms. A correlation was found between the incidence of spinach wilt disease in spinach and the growth degree of F. oxysporum f. sp. spinaciae by this co-cultivation method, indicating that suppressiveness induced by organic amendment applications against F. oxysporum f. sp. spinaciae is evaluable by this method. The co-cultivation method may be useful for predicting and diagnosing suppressiveness against soil-borne diseases.

  14. Evaluation of Suppressiveness of Soils Exhibiting Soil-Borne Disease Suppression after Long-Term Application of Organic Amendments by the Co-cultivation Method of Pathogenic Fusarium oxysporum and Indigenous Soil Microorganisms

    PubMed Central

    Mitsuboshi, Masahiro; Kioka, Yuuzou; Noguchi, Katsunori; Asakawa, Susumu

    2018-01-01

    Preventive measures against soil-borne diseases need to be implemented before cultivation because very few countermeasures are available after the development of diseases. Some soils suppress soil-borne diseases despite the presence of a high population density of pathogens. If the suppressiveness of soil against soil-borne diseases may be predicted and diagnosed for crop fields, it may be possible to reduce the labor and cost associated with excessive disinfection practices. We herein evaluated the suppressiveness of soils in fields with the long-term application of organic amendments by examining the growth of pathogenic Fusarium oxysporum co-cultivated with indigenous soil microorganisms on agar plates. Soils treated with coffee residue compost or rapeseed meal showed suppressiveness against spinach wilt disease by F. oxysporum f. sp. spinaciae or spinach wilt and lettuce root rot diseases by F. oxysporum f. sp. spinaciae and F. oxysporum f. sp. lactucae, respectively, and the growth of pathogenic Fusarium spp. on agar plates was suppressed when co-cultured with microorganisms in a suspension from these soils before crop cultivation. These results indicate the potential of the growth degree of pathogenic F. oxysporum estimated by this method as a diagnostic indicator of the suppressiveness of soil associated with the inhabiting microorganisms. A correlation was found between the incidence of spinach wilt disease in spinach and the growth degree of F. oxysporum f. sp. spinaciae by this co-cultivation method, indicating that suppressiveness induced by organic amendment applications against F. oxysporum f. sp. spinaciae is evaluable by this method. The co-cultivation method may be useful for predicting and diagnosing suppressiveness against soil-borne diseases. PMID:29459498

  15. Isolated spinach ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit .sup..epsilon. N-methyltransferase and method of inactivating ribulose-1,5-bisphosphatase carboxylase/oxygenase large subunit .sup..epsilon. N-methyltransferase activity

    DOEpatents

    Houtz, Robert L.

    1999-01-01

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .sup..epsilon. N-methyltransferase (protein methylase III or Rubisco LSMT) from a plant which has a des(methyl) lysyl residue in the LS is disclosed. In addition, the full-length cDNA clones for Rubisco LSMT are disclosed. Transgenic plants and methods of producing same which have the Rubisco LSMT gene inserted into the DNA are also provided. Further, methods of inactivating the enzymatic activity of Rubisco LSMT are also disclosed.

  16. A preliminary study on activity budget, daily travel distance and feeding behaviour of long-tailed macaques and spectacled dusky leaf monkey in Bangi campus of Universiti Kebangsaan Malaysia, Selangor

    NASA Astrophysics Data System (ADS)

    Ruslin, Farhani; Yaakop, Salmah; Zain, Badrul Munir Md.

    2014-09-01

    The activity budget, ranging behaviour and feeding behaviour of a multimale-multifemale group of long-tailed macaques (Macaca fascicularis) and a multimale-multifemale group of spectacled dusky leaf monkey (Trachypithecus obscurus) were studied. A total of 145 hours and 143 hours have been spent to observe the group of long-tailed macaque and spectacled dusky leaf monkey that ranged the same habitat adjacent to the campus areas. The researchers examined the activity budgets, daily travel length and feeding activity of both species and distinguished how the sympatric species used the same forested habitat. Preliminary study found that the long-tailed macaques spent longer time feeding, moving than resting and other activities. On the other hand, the dusky leaf monkey spent much time in feeding and resting than moving. The differences of daily pattern between these two groups are significant. Macaques have higher daily mean of path length compared to the dusky leaf monkey and spent much time moving compare to the leaf monkey group. The spectacled dusky leaf monkey group also has fully utilized the forested areas where else the long-tailed macaques adopted foraging to the adjacent residential colleges.

  17. [Effects of root-knot nematodes on cucumber leaf N and P contents, soil pH, and soil enzyme activities].

    PubMed

    Xu, Hua; Ruan, Wei-Bin; Gao, Yu-Bao; Song, Xiao-Yan; Wei, Yu-Kun

    2010-08-01

    A pot experiment was conducted to study the effects of inoculation with root-knot nematodes on the cucumber leaf N and P contents, and the rhizospheric and non-rhizospheric soil pH and enzyme activities. The rhizospheric soil pH didn't have a significant decrease until the inoculation rate reached 6000 eggs per plant. With the increase of inoculation rate, the leaf N and P contents, rhizospheric soil peroxidase activity, and rhizospheric and non-rhizospheric soil polyphenol oxidase activity all decreased gradually, rhizospheric soil catalase activity was in adverse, non-rhizospheric soil pH decreased after an initial increase, and non-rhizospheric soil catalase activity had no regular change. After inoculation, rhizospheric soil urease activity decreased significantly, but rhizospheric and non-rhizospheric soil phosphatase activity and non-rhizospheric soil peroxidase activity only had a significant decrease under high inoculation rate. In most cases, there existed significant correlations between rhizospheric soil pH, enzyme activities, and leaf N and P contents; and in some cases, there existed significant correlations between non-rhizospheric soil pH, enzyme activities, and leaf N and P contents.

  18. Antioxidant compounds and activities of the stem, flower, and leaf extracts of the anti-smoking Thai medicinal plant: Vernonia cinerea Less

    PubMed Central

    Ketsuwan, Nitinet; Leelarungrayub, Jirakrit; Kothan, Suchart; Singhatong, Supawatchara

    2017-01-01

    Vernonia cinerea (VC) Less has been proposed as a medicinal plant with interesting activities, such as an aid for smoking cessation worldwide. Despite its previous clinical success in smoking cessation by exhibiting reduced oxidative stress, it has not been approved. The aim of this study was to investigate various antioxidant activity and active compounds that have not been approved, including the protective activity in human red blood cells (RBCs), from the stem, flower, and leaf extracts of VC Less in vitro. These extracts were tested for their antioxidant activity in scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and analyzed by high-performance liquid chromatography (HPLC) for their active compounds: total tannin, five catechin (C) compounds (epicatechin gallate [ECG], C, epicatechin [EC], epigallocatechin gallate [EGCG], and (−)-epigallocatechin [EGC]), flavonoid, nitrite, nitrate, caffeine, and nicotine. Moreover, antioxidant activities of the extracts were evaluated in 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH)-treated RBCs. The results showed that the flower and leaf of VC Less had higher activity than the stem in scavenging DPPH radicals. The tannin content in the flower and leaf was higher than that in the stem. The leaf had the highest content of the five catechins (C, EC, EGCG, ECG, and EGC), the same as in the flavonoid, when compared to the stem and flower. Furthermore, the leaf extract had higher nitrate and nitrite than the stem. Nicotine content was found to be higher in the leaf when compared to the flower. In addition, the leaf showed protective activity in glutathione (GSH), malondialdehyde (MDA), and protein carbonyl, with a dose response in AAPH-oxidized RBCs, the same as in standard EGCG. Thus, this study concluded that radical scavenging and antioxidant compounds such as catechins, flavonoid, nitrate and nitrite, and nicotine are present in different VC Less parts and are included in the AAPH-oxidized RBC model. PMID:28243061

  19. Antioxidant compounds and activities of the stem, flower, and leaf extracts of the anti-smoking Thai medicinal plant: Vernonia cinerea Less.

    PubMed

    Ketsuwan, Nitinet; Leelarungrayub, Jirakrit; Kothan, Suchart; Singhatong, Supawatchara

    2017-01-01

    Vernonia cinerea (VC) Less has been proposed as a medicinal plant with interesting activities, such as an aid for smoking cessation worldwide. Despite its previous clinical success in smoking cessation by exhibiting reduced oxidative stress, it has not been approved. The aim of this study was to investigate various antioxidant activity and active compounds that have not been approved, including the protective activity in human red blood cells (RBCs), from the stem, flower, and leaf extracts of VC Less in vitro. These extracts were tested for their antioxidant activity in scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and analyzed by high-performance liquid chromatography (HPLC) for their active compounds: total tannin, five catechin (C) compounds (epicatechin gallate [ECG], C, epicatechin [EC], epigallocatechin gallate [EGCG], and (-)-epigallocatechin [EGC]), flavonoid, nitrite, nitrate, caffeine, and nicotine. Moreover, antioxidant activities of the extracts were evaluated in 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-treated RBCs. The results showed that the flower and leaf of VC Less had higher activity than the stem in scavenging DPPH radicals. The tannin content in the flower and leaf was higher than that in the stem. The leaf had the highest content of the five catechins (C, EC, EGCG, ECG, and EGC), the same as in the flavonoid, when compared to the stem and flower. Furthermore, the leaf extract had higher nitrate and nitrite than the stem. Nicotine content was found to be higher in the leaf when compared to the flower. In addition, the leaf showed protective activity in glutathione (GSH), malondialdehyde (MDA), and protein carbonyl, with a dose response in AAPH-oxidized RBCs, the same as in standard EGCG. Thus, this study concluded that radical scavenging and antioxidant compounds such as catechins, flavonoid, nitrate and nitrite, and nicotine are present in different VC Less parts and are included in the AAPH-oxidized RBC model.

  20. Allelopathic activity and chemical constituents of walnut (Juglans regia) leaf litter in walnut-winter vegetable agroforestry system.

    PubMed

    Wang, Qian; Xu, Zheng; Hu, Tingxing; Rehman, Hafeez Ur; Chen, Hong; Li, Zhongbin; Ding, Bo; Hu, Hongling

    2014-01-01

    Walnut agroforestry systems have many ecological and economic benefits when intercropped with cool-season species. However, decomposing leaf litter is one of the main sources of allelochemicals in such systems. In this study, lettuce (Lactuca sativa var. angustata) was grown in the soil incorporated with walnut leaf litter to assess its allelopathic activity. Lettuce growth and physiological processes were inhibited by walnut leaf litter, especially during early growth stage (1-2 euphylla period) or with large amount of litter addition. The plants treated by small amount of leaf litter recovered their growth afterwards, while the inhibition for 180 g leaf litter persisted until harvest. Twenty-eight compounds were identified in the leaf litter, and several of them were reported to be phytotoxic, which may be responsible for the stress induced by walnut leaf litter. Thus, for highest economic value of vegetables such as lettuce, excessive incorporation of leaf litter should be discouraged.

  1. Plant Chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments

    USDA-ARS?s Scientific Manuscript database

    Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, although the measurement principles of both techniques a...

  2. Effects of activation energy and activation volume on the temperature-dependent viscosity of water.

    PubMed

    Kwang-Hua, Chu Rainer

    2016-08-01

    Water transport in a leaf is vulnerable to viscosity-induced changes. Recent research has suggested that these changes may be partially due to variation at the molecular scale, e.g., regulations via aquaporins, that induce reductions in leaf hydraulic conductance. What are the quantitative as well as qualitative changes in temperature-dependent viscosity due to the role of aquaporins in tuning activation energy and activation volume? Using the transition-state approach as well as the boundary perturbation method, we investigate temperature-dependent viscosity tuned by activation energy and activation volume. To validate our approach, we compare our numerical results with previous temperature-dependent viscosity measurements. The rather good fit between our calculations and measurements confirms our present approach. We have obtained critical parameters for the temperature-dependent (shear) viscosity of water that might be relevant to the increasing and reducing of leaf hydraulic conductance. These parameters are sensitive to temperature, activation energy, and activation volume. Once the activation energy increases, the (shear) viscosity of water increases. Our results also show that as the activation volume increases (say, 10^{-23}m^{3}), the (shear) viscosity of water decreases significantly and the latter induces the enhancing of leaf hydraulic conductance. Within the room-temperature regime, a small increase in the activation energy will increase the water viscosity or reduce the leaf hydraulic conductance. Our approach and results can be applied to diverse plant or leaf attributes.

  3. What Is a Leaf? An Online Tutorial and Tests

    ERIC Educational Resources Information Center

    Burrows, Geoffrey

    2008-01-01

    A leaf is a fundamental unit in botany and understanding what constitutes a leaf is fundamental to many plant science activities. My observations and subsequent testing indicated that many students could not confidently and consistently recognise a leaf from a leaflet, or recognise basic leaf arrangements and the various types of compound or…

  4. Inhibition of the protease activity of the light chain of type A botulinum neurotoxin by aqueous extract from stinging nettle (Urtica dioica) leaf.

    PubMed

    Gul, Nizamettin; Ahmed, S Ashraf; Smith, Leonard A

    2004-11-01

    We investigated the inhibitory effect of stinging nettle leaf extract on the protease activity of botulinum neurotoxin type A and B light chains. The nettle leaf infusion was fractionated and HPLC-based enzymatic assays were performed to determine the capacity of each fraction to inhibit the protease activity of botulinum neurotoxin type A and B light chains. Assay results demonstrated that a water-soluble fraction obtained from the nettle leaf infusion inhibited type A, but did not inhibit type B light chain protease activity. The inhibition mode of water soluble fraction against protease activity of type A light chain was analyzed and found to be a non-competitive.

  5. Antimicrobial activity of aqueous extract of leaf and stem extract of Santalum album

    PubMed Central

    Kumar, M. Giriram; Jeyraaj, Indira A.; Jeyaraaj, R.; Loganathan, P.

    2006-01-01

    The antimicrobial activity of aqueous extract leaf and stem of Santalum album was performed against Escherichia coli, Staphylococcus aureus and Pseudomonas. S. album leaf extract showed inhibition to E.coli (0.8mm), Staphylococcus aureus (1.0mm) and Pseudomonas (1.4mm) were as stem extract showed inhibition on E.coli (0.6mm), Staphylococcus aureus (0.4mm) and seudomonas (1.0mm) respectively. However leaf extract showed significantly higher inhibition when compared to stem extract. This might be due to presence of higher amount of secondary metabolites in the aqueous leaf extract. PMID:22557199

  6. The effect of variety and maturity on the quality of freeze-dried carrots. The effect of microwave blanching on the nutritional and textural quality of freeze-dried spinach

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Using carrots, the quality of freeze-dried products was studied to determine the optimum varieties and maturation stages for quality attributes such as appearance, flavor, texture, and nutritive value. The quality of freeze-dried carrots is discussed in terms of Gardner color, alcohol insoluble solids, viscosity, and core/cortex ratio. Also, microwave blanching of freeze-dried spinach was studied to determine vitamin interrelationships, anatomical changes, and oxidative deteriorations in terms of preprocessing microwave treatments. Statistical methods were employed in the gathering of data and interpretation of results in both studies.

  7. Jatropha curcas leaves analysis, reveals it as mineral source for low sodium diets.

    PubMed

    Méndez, Lucero; Rojas, Janne; Izaguirre, César; Contreras, Billmary; Gómez, Rubén

    2014-12-15

    Jatropha curcas is a perennial herb, belonging to the family Euphorbiaceae, found in countries such as India, Mexico and Venezuela. In the present study, proximate composition and mineral content on the leaves of J. curcas was analysed and compared to spinach (Spinacia oleracea L.) using a ICP-AES. The bromatologic test (dry material) results for ashes, proteins, lipids and carbohydrates revealed 23.4%, 28.0%, 3.2% and 45.4% for J. curcas; whereas for S. oleracea values were 28.9%, 20.8%, 0.5% and 49.9%. Furthermore, minerals found in both species ashes were: calcium, potassium, magnesium, iron and phosphorus, resulting that leaves of J. curcas are composed by three times the iron and calcium amount comparing to spinach; while sodium was absent from the former species. In this study Cu and Zn were found only in spinach, while Pb and As were not detected in any of the studied species. These results indicate that J. curcas leaves might be considered as mineral source suitable for animal and human consumption, especially for people who requires a low sodium diet. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Heavy metals in vegetables sold in the local market in Jordan.

    PubMed

    Osaili, Tareq M; Al Jamali, Abbas F; Makhadmeh, Ibrahim M; Taha, Mohammad; Jarrar, Sukiena K

    2016-09-01

    Heavy metals (As, Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn) in various vegetables (cabbage, green onion, lettuce, parsley, rocket, spinach, carrot, onion, potato and cauliflower) from the market in Jordan were measured using inductively coupled plasma-mass spectrometry. As, Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn ranged from 0.009-0.275 mg kg(-1) wet weight, 0.004-0.060 mg kg(-1), 0.003-0.401 mg kg(-1), 0.105-3.51 mg kg(-1), 0.15-1.15 mg kg(-1), 0.93-14.39 mg kg(-1), 0.044-0.702 mg kg(-1), 0.072-0.289 mg kg(-1) and 2.23-6.65 mg kg(-1), respectively. Parsley, followed by spinach, contained the highest concentration of heavy metals. Onion contained high levels of toxic heavy metals. The content of Cu in parsley and spinach and Pb in onion exceeded the Codex limits. However, the daily intake of heavy metals from the tested vegetables was lower than the maximum limits for allowable intake.

  9. [Fast separation and analysis of water-soluble vitamins in spinach by capillary electrophoresis with high voltage].

    PubMed

    Hu, Xiaoqin; You, Huiyan

    2009-11-01

    In capillary electrophoresis, 0-40 kV (even higher) voltage can be reached by a connecting double-model high voltage power supply. In the article, water-soluble vitamins, VB1, VB2, VB6, VC, calcium D-pantothenate, D-biotin, nicotinic acid and folic acid in vegetable, were separated by using the high voltage power supply under the condition of electrolyte water solution as running buffer. The separation conditions, such as voltage, the concentration of buffer and pH value etc. , were optimized during the experiments. The results showed that eight water-soluble vitamins could be baseline separated in 2.2 min at 40 kV applied voltage, 25 mmol/L sodium tetraborate buffer solution (pH 8.8). The water-soluble vitamins in spinach were quantified and the results were satisfied. The linear correlation coefficients of the water-soluble vitamins ranged from 0.9981 to 0.9999. The detection limits ranged from 0.2 to 0.3 mg/L. The average recoveries ranged from 88.0% to 100.6% with the relative standard deviations (RSD) range of 1.15%-4.13% for the spinach samples.

  10. Preparation and characterization of a novel adsorbent from Moringa oleifera leaf

    NASA Astrophysics Data System (ADS)

    Bello, Olugbenga Solomon; Adegoke, Kayode Adesina; Akinyunni, Opeyemi Omowumi

    2017-06-01

    A new and novel adsorbent was obtained by impregnation of Moringa oleifera leaf in H2SO4 and NaOH, respectively. Prepared adsorbents were characterized using elemental analysis, FT-IR, SEM, TGA and EDX analyses, respectively. The effects of operational parameters, such as pH, moisture content, ash content, porosity and iodine number on these adsorbents were investigated and compared with those of commercial activated carbon (CAC). EDX results of acid activated M. oleifera leaf have the highest percentage of carbon by weight (69.40 %) and (76.11 %) by atom, respectively. Proximate analysis showed that the fixed carbon content of acid activated M. oleifera leaf (69.14 ± 0.01) was the highest of all adsorbents studied. Conclusively, the present investigation shows that acid activated M. oleifera leaf is a good alternative adsorbent that could be used in lieu of CAC for recovery of dyes and heavy metal from aqueous solutions and other separation techniques.

  11. [Effects of exogenous spermidine on lipid peroxidation and membrane proton pump activity of cucumber seedling leaves under high temperature stress].

    PubMed

    Tian, Jing; Guo, Shi-Rong; Sun, Jin; Wang, Li-Ping; Yang, Yan-Juan; Li, Bin

    2011-12-01

    Taking a relatively heat-resistant cucumber (Cucumis sativus) cultivar 'Jinchun No. 4' as test material, a sand culture experiment was conducted in growth chamber to investigate the effects of foliar spraying spermidine (Spd) on the lipid peroxidation, membrane proton pump activity, and corresponding gene expression of cucumber seedling leaves under high temperature stress. Compared with the control, foliar spraying Spd increased the plant height, stem diameter, dry and fresh mass, and leaf area significantly, and inhibited the increase of leaf relative conductivity, malondialdehyde (MDA) content, and lipoxygenase (LOX) activity effectively. Foliar spraying Spd also helped to the increase of leaf plasma membrane- and tonoplast H(+)-ATPase activity, but no significant difference was observed in the gene expression levels. These results suggested that exogenous Spd could significantly decrease the leaf lipid peroxidation and increase the proton pump activity, and thus, stabilize the leaf membrane structure and function, alleviate the damage induced by high temperature stress, and enhance the heat tolerance of cucumber seedlings.

  12. Phytochemical screening and antioxidant activity of ethanolic extract and ethyl acetate fraction from basil leaf (Ocimum basilicum L.) by DPPH radical scavenging method

    NASA Astrophysics Data System (ADS)

    Warsi; Sholichah, A. R.

    2017-11-01

    Basil leaf (Ocimum basilicum L.) contains various compounds such as flavonoid, alkaloid, phenol and essential oil, so it needs to be fractionated to find out the flavonoid compound with the greatest potential as an antioxidant. This research was aimed to know the chemical compound, antioxidant potential of ethanolic extract and ethyl acetate fraction from basil leaf. The basil leaf was extracted by maceration using ethanol 70 %. The crude extract was fractionated with ethyl acetate. The ethanolic extract and ethyl acetate fraction were screened of phytochemical content including identification of flavonoids, alkaloids and polyphenolics. The antioxidant activity of the ethanolic extract and ethyl acetate fraction were tested qualitatively with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and phosphomolybdate. Its antioxidant activity was determined quantitatively using DPPH radical scavenging method. Phytochemical screening test showed that ethanolic extract and ethyl acetate fraction from basil leaf contain flavonoids, polyphenolics, and alkaloids. The qualitative analysis of antioxidant activity of ethanolic extract and ethyl acetate fraction from basil leaf showed an antioxidant activity. The IC50 value of ethanolic extract, ethyl acetate fraction and quercetin were 1,374.00±6.20 389.00±1.00 2.10±0.01μg/mL, respectively. The research showed that antioxidant activity of the ethyl acetate fraction more potential than the ethanol extract of the basil leaf, but less than quercetin.

  13. Leaf Activities.

    ERIC Educational Resources Information Center

    Mingie, Walter

    Leaf activities can provide a means of using basic concepts of outdoor education to learn in elementary level subject areas. Equipment needed includes leaves, a clipboard with paper, and a pencil. A bag of leaves may be brought into the classroom if weather conditions or time do not permit going outdoors. Each student should pick a leaf, examine…

  14. The TIE1 Transcriptional Repressor Links TCP Transcription Factors with TOPLESS/TOPLESS-RELATED Corepressors and Modulates Leaf Development in Arabidopsis[W

    PubMed Central

    Tao, Qing; Guo, Dongshu; Wei, Baoye; Zhang, Fan; Pang, Changxu; Jiang, Hao; Zhang, Jinzhe; Wei, Tong; Gu, Hongya; Qu, Li-Jia; Qin, Genji

    2013-01-01

    Leaf size and shape are mainly determined by coordinated cell division and differentiation in lamina. The CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors are key regulators of leaf development. However, the mechanisms that control TCP activities during leaf development are largely unknown. We identified the TCP Interactor containing EAR motif protein1 (TIE1), a novel transcriptional repressor, as a major modulator of TCP activities during leaf development. Overexpression of TIE1 leads to hyponastic and serrated leaves, whereas disruption of TIE1 causes epinastic leaves. TIE1 is expressed in young leaves and encodes a transcriptional repressor containing a C-terminal EAR motif, which mediates interactions with the TOPLESS (TPL)/TOPLESS-RELATED (TPR) corepressors. In addition, TIE1 physically interacts with CIN-like TCPs. We propose that TIE1 regulates leaf size and morphology by inhibiting the activities of TCPs through recruiting the TPL/TPR corepressors to form a tertiary complex at early stages of leaf development. PMID:23444332

  15. Sensitivity of Photosynthesis in a C4 Plant, Maize, to Heat Stress

    PubMed Central

    Crafts-Brandner, Steven J.; Salvucci, Michael E.

    2002-01-01

    Our objective was to determine the sensitivity of components of the photosynthetic apparatus of maize (Zea mays), a C4 plant, to high temperature stress. Net photosynthesis (Pn) was inhibited at leaf temperatures above 38°C, and the inhibition was much more severe when the temperature was increased rapidly rather than gradually. Transpiration rate increased progressively with leaf temperature, indicating that inhibition was not associated with stomatal closure. Nonphotochemical fluorescence quenching (qN) increased at leaf temperatures above 30°C, indicating increased thylakoid energization even at temperatures that did not inhibit Pn. Compared with CO2 assimilation, the maximum quantum yield of photosystem II (Fv/Fm) was relatively insensitive to leaf temperatures up to 45°C. The activation state of phosphoenolpyruvate carboxylase decreased marginally at leaf temperatures above 40°C, and the activity of pyruvate phosphate dikinase was insensitive to temperature up to 45°C. The activation state of Rubisco decreased at temperatures exceeding 32.5°C, with nearly complete inactivation at 45°C. Levels of 3-phosphoglyceric acid and ribulose-1,5-bisphosphate decreased and increased, respectively, as leaf temperature increased, consistent with the decrease in Rubisco activation. When leaf temperature was increased gradually, Rubisco activation acclimated in a similar manner as Pn, and acclimation was associated with the expression of a new activase polypeptide. Rates of Pn calculated solely from the kinetics of Rubisco were remarkably similar to measured rates if the calculation included adjustment for temperature effects on Rubisco activation. We conclude that inactivation of Rubisco was the primary constraint on the rate of Pn of maize leaves as leaf temperature increased above 30°C. PMID:12177490

  16. Exogenous Methyl Jasmonate Treatment Increases Glucosinolate Biosynthesis and Quinone Reductase Activity in Kale Leaf Tissue

    PubMed Central

    Ku, Kang-Mo; Jeffery, Elizabeth H.; Juvik, John A.

    2014-01-01

    Methyl jasmonate (MeJA) spray treatments were applied to the kale varieties ‘Dwarf Blue Curled Vates’ and ‘Red Winter’ in replicated field plantings in 2010 and 2011 to investigate alteration of glucosinolate (GS) composition in harvested leaf tissue. Aqueous solutions of 250 µM MeJA were sprayed to saturation on aerial plant tissues four days prior to harvest at commercial maturity. The MeJA treatment significantly increased gluconasturtiin (56%), glucobrassicin (98%), and neoglucobrassicin (150%) concentrations in the apical leaf tissue of these genotypes over two seasons. Induction of quinone reductase (QR) activity, a biomarker for anti-carcinogenesis, was significantly increased by the extracts from the leaf tissue of these two cultivars. Extracts of apical leaf tissues had greater MeJA mediated increases in phenolics, glucosinolate concentrations, GS hydrolysis products, and QR activity than extracts from basal leaf tissue samples. The concentration of the hydrolysis product of glucoraphanin, sulforphane was significantly increased in apical leaf tissue of the cultivar ‘Red Winter’ in both 2010 and 2011. There was interaction between exogenous MeJA treatment and environmental conditions to induce endogenous JA. Correlation analysis revealed that indole-3-carbanol (I3C) generated from the hydrolysis of glucobrassicin significantly correlated with QR activity (r = 0.800, P<0.001). Concentrations required to double the specific QR activity (CD values) of I3C was calculated at 230 µM, which is considerably weaker at induction than other isothiocyanates like sulforphane. To confirm relationships between GS hydrolysis products and QR activity, a range of concentrations of MeJA sprays were applied to kale leaf tissues of both cultivars in 2011. Correlation analysis of these results indicated that sulforaphane, NI3C, neoascorbigen, I3C, and diindolylmethane were all significantly correlated with QR activity. Thus, increased QR activity may be due to combined increases in phenolics (quercetin and kaempferol) and GS hydrolysis product concentrations rather than by individual products alone. PMID:25084454

  17. Type 1 ribosome-inactivating proteins depurinate plant 25S rRNA without species specificity.

    PubMed Central

    Prestle, J; Schönfelder, M; Adam, G; Mundry, K W

    1992-01-01

    Four different type 1 ribosome-inactivating proteins (RIPs) with RNA N-glycosidase activity were tested for their ability to attack the large rRNA of plant ribosomes derived from tobacco plants, as well as from the plant species from which the particular RIP had been isolated. Incubation of tobacco ribosomes with RIPs isolated from either Phytolacca americana L. (pokeweed), Dianthus barbatus L. (carnation), Spinacia oleracea L. (spinach) or Chenopodium amaranthicolor Coste and Reyn. (chenopodium) rendered the 25S rRNA sensitive to aniline-catalyzed hydrolysis, generating a single rRNA-fragment of about 350 nucleotides. The same fragment was generated when rRNAs from pokeweed, carnation, spinach or chenopodium ribosomes were aniline-treated without any deliberate treatment of the ribosomes with the respective RIP. This indicated that ribosomes from all RIP-producing plants were already inactivated by their own RIPs during preparation. These results demonstrate that plant ribosomes are generally susceptible to RIP attack, including modification by their own RIPs. Direct sequencing of the newly generated fragments revealed that a single N-glycosidic bond at an adenosine residue within the highly conserved sequence 5'-AGUACGAGAGGA-3' was cleaved by all of the RIPs investigated, a situation also found in animal, yeast and Escherichia coli ribosomes. Images PMID:1620614

  18. [Effects of Cunninghamia lanceolata-broadleaved tree species mixed leaf litters on active soil organic matter].

    PubMed

    Wang, Qing-kui; Wang, Si-long; Yu, Xiao-jun; Zhang, Jian; Liu, Yan-xin

    2007-06-01

    With incubation test, this paper studied the effects of Cunninghamia lanceolata leaf litter and its mixture with the litters of main broadleaved tree species in subtropical China, such as Alnus cremastogyne, Kalopanax septemlobus and Michelia macclurei on active soil organic matter. The results showed that adding leaf litters into soil could significantly increase soil microbial biomass C and N, respiration rate and dissolved organic C, and mixed leaf litters were more effective than C. lanceolata leaf litter in increasing soil dissolved organic C. By the end of the incubation, the increment of soil microbial biomass C and N, respiration rate, and dissolved organic C in treatments C. lanceolata leaf litter and C. lanceolata-broadleaved tree species mixed leaf litters was 49% and 63%, 35% and 75%, 65% and 100%, and 66% and 108%, respectively, compared with control. The addition of leaf litters had no significant effects on soil microbial quotient and microbial biomass C/N ratio.

  19. Aluminum toxicity in tomato. Part 2.Leaf gas exchange, chlorophyll content, and invertase activity

    Treesearch

    L. Simon; M. Kieger; Shi-Jean S. Sung; T.J. Smalley

    1994-01-01

    The effect of aluminum (Al) toxicity on leaf gas exchange, leaf chlorophyll content, and sucrose metabolizing enzyme activity of two tomato cultivars (Lycopersicon esculentum Mill. 'Mountain Pride' and 'Floramerica') was studied to determine the mechanism of growth reduction observed in a related study (Simon et al., 1994, Part 1).Plants were grown...

  20. Canopy and seasonal profiles of nitrate reductase in soybeans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, J.E.; Hageman, R.H.

    1972-01-01

    Nitrate reductase activity of soybeans (Glycine max L. Merr.) was evaluated in soil plots and outdoor hydroponic gravel culture systems throughout the growing season. Nitrate reductase profiles within the plant canopy were also established. Mean activity per gram fresh weight per hour of the entire plant canopy was highest in the seedling stage while total activity (activity per gram fresh weight per hour times the total leaf weight) reached a maximum when plants were in the full bloom to midpod fill stage. Nitrate reductase activity per gram fresh weight per hour was highest in the uppermost leaf just prior tomore » full expansion and declined with leaf positions lower in the canopy. Total nitrate reductase activity per leaf was also highest in the uppermost fully expanded leaf during early growth stages. Maximum total activity shifted to leaf positions lower in the plant canopy with later growth stages. Nitrate reductase activity of soybeans grown in hydroponic systems was significantly higher than activity of adjacent soil grown plants at later growth stages, which suggested that under normal field conditions the potential for nitrate utilization may not be realized. Nitrate reductase activity per gram fresh weight per hour and nitrate content were positively correlated over the growing season with plants grown in either soil or solution culture. Computations based upon the nitrate reductase assay of plants grown in hydroponics indicated that from 1.7 to 1.8 grams N could have been supplied to the plant via the nitrate reductase process. 11 references, 9 figures, 3 tables.« less

  1. Antimicrobial activity of commercial Olea europaea (olive) leaf extract.

    PubMed

    Sudjana, Aurelia N; D'Orazio, Carla; Ryan, Vanessa; Rasool, Nooshin; Ng, Justin; Islam, Nabilah; Riley, Thomas V; Hammer, Katherine A

    2009-05-01

    The aim of this research was to investigate the activity of a commercial extract derived from the leaves of Olea europaea (olive) against a wide range of microorganisms (n=122). Using agar dilution and broth microdilution techniques, olive leaf extract was found to be most active against Campylobacter jejuni, Helicobacter pylori and Staphylococcus aureus [including meticillin-resistant S. aureus (MRSA)], with minimum inhibitory concentrations (MICs) as low as 0.31-0.78% (v/v). In contrast, the extract showed little activity against all other test organisms (n=79), with MICs for most ranging from 6.25% to 50% (v/v). In conclusion, olive leaf extract was not broad-spectrum in action, showing appreciable activity only against H. pylori, C. jejuni, S. aureus and MRSA. Given this specific activity, olive leaf extract may have a role in regulating the composition of the gastric flora by selectively reducing levels of H. pylori and C. jejuni.

  2. Effect of Different Parts (Leaf, Stem and Stalk) and Seasons (Summer and Winter) on the Chemical Compositions and Antioxidant Activity of Moringa oleifera

    PubMed Central

    Shih, Ming-Chih; Chang, Cheng-Ming; Kang, Sue-Ming; Tsai, Min-Lang

    2011-01-01

    Moringa oleifera, Lam. (Moringaceae) is grown world-wide in the tropics and sub-tropics of Asia and Africa and contains abundant various nutrients. This study describes the effect of different parts (leaf, stem and stalk) and seasons (summer and winter) on the chemical compositions and antioxidant activity of M. oleifera grown in Taiwan. The results showed that the winter samples of Moringa had higher ash (except the stalk part), calcium and phenolic compounds (except the leaf part) and stronger antioxidative activity than summer samples. The methanolic extract of Moringa showed strong scavenging effect of DPPH radicals and reducing power. The trend of antioxidative activity as a function of the part of Moringa was: leaf > stem > stalk for samples from both seasons investigated. The Moringa extract showed strong hydrogen peroxide scavenging activity and high Superoxide Dismutase (SOD) activity except the stalk part. PMID:22016645

  3. Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables

    PubMed Central

    Adesemoye, A.O.; Obini, M.; Ugoji, E.O.

    2008-01-01

    Our objective was to compare some plant growth promoting rhizobacteria (PGPR) properties of Bacillus subtilis and Pseudomonas aeruginosa as representatives of their two genera. Solanum lycopersicum L. (tomato), Abelmoschus esculentus (okra), and Amaranthus sp. (African spinach) were inoculated with the bacterial cultures. At 60 days after planting, dry biomass for plants treated with B. subtilis and P. aeruginosa increased 31% for tomato, 36% and 29% for okra, and 83% and 40% for African spinach respectively over the non-bacterized control. Considering all the parameters tested, there were similarities but no significant difference at P < 0.05 between the overall performances of the two organisms. PMID:24031240

  4. Anti-cholesterol activity in vivo test of multifunction herbs extract in the water using in vivo method in mice (Mus musculus L.) DDY-strain

    NASA Astrophysics Data System (ADS)

    Tristantini, Dewi; Christina, Diana

    2018-02-01

    Atherosclerosis is the hardening of the arteries due to cholesterol accumulation in the blood vessels. The occurrence of cardiovascular disease can be reduced by lowering cholesterol levels in the blood. Nevertheless, using some pharmaceutical synthetic medicine for lowering the cholesterol has several side effects that dangerous for human body. There are 3 plants, tanjung leaf (Mimusops elengi L.), star fruit leaf (Averrhoa carambola L.), and curcuma (Curcuma xanthorrhiza L.), which are combined empirically believed would serve as multifunction herbs. Tanjung leaf has been known to have antioxidant, anti-cholesterol, and anti-platelet activity, also star fruit leaf have anti-hyperglycemia activity. Furthermore, curcuma has been known as a hepatoprotection agent. In this study, the combination of all three simplicias were used as anti-cholesterol. Anti-cholesterol activity test by in vivo method using mice (Mus muculus L.) result in decreased cholesterol as much as 47% for 250 mL human dosage in 7 days. This performance equals to 73% of simvastatin activity in decreased cholesterol. In this study, we can conclude the multifunction herbs that were combination of tanjung (M. elengi) leaf, star fruit leaf (Averrhoa carambola L.), and curcuma (Curcuma xanthorrhiza L.) extract can be used as cholesterol decreasing medicine.

  5. Pulvinus activity, leaf movement and leaf water-use efficiency of bush bean (Phaseplus vulgaris L.) in a hot environment.

    PubMed

    Raeini-Sarjaz, Mahmoud; Chalavi, Vida

    2008-11-01

    Pulvinus activity of Phaseolus species in response to environmental stimuli plays an essential role in heliotropic leaf movement. The aims of this study were to monitor the continuous daily pulvinus movement and pulvinus temperature, and to evaluate the effects of leaf movements, on a hot day, on instantaneous leaf water-use efficiency (WUEi), leaf gas exchange, and leaf temperature. Potted plants of Phaseolus vulgaris L. var. Provider were grown in Chicot sandy loam soil under well-watered conditions in a greenhouse. When the second trifoliate leaf was completely extended, one plant was selected to measure pulvinus movement using a beta-ray gauging (BRG) meter with a point source of thallium-204 (204Tl). Leaf gas exchange measurements took place on similar leaflets of three plants at an air temperature interval of 33-42 degrees C by a steady-state LI-6200 photosynthesis system. A copper-constantan thermocouple was used to monitor pulvinus temperature. Pulvinus bending followed the daily diurnal rhythm. Significant correlations were found between the leaf-incident angle and the stomatal conductance (R2 = 0.54; P < 0.01), and photosynthesis rate (R2 = 0.84; P < 0.01). With a reduction in leaf-incidence angle and increase in air temperature, WUEi was reduced. During the measurements, leaf temperature remained below air temperature and was a significant function of air temperature (r = 0.92; P < 0.01). In conclusion, pulvinus bending followed both light intensity and air temperature and influenced leaf gas exchange.

  6. Diurnal pH variations of a Glacial Stream: a starting point for Inquiry-driven student and teacher Investigations of a Glacial Ecosystem

    NASA Astrophysics Data System (ADS)

    O'Brien, W. P.; Galbraith, J.; Fatland, D. R.; Heavner, M.

    2009-12-01

    Contemporary geoscience research often operates in a mode that generates huge repositories of data available on the internet to the scientific community and the general public. The SEAMONSTER (SM) online data browser of both archival and real-time data is an example of such a dynamic online ecosystem resource associated with the Juneau Icefield. Although newly developed database navigation tools and geobrowsers make it easy for non-experts to access data of interest, it nonetheless can be daunting to K-16 educators to fashion lesson plans that make effective use of these rich resources. In the following scenario, a student and associated teacher, operating outside the traditional didactic lecture/demo mode, explore and try to make sense of a tiny portion of SM data in a spirit of inquiry guided by curiosity, looking for features that catch their attention as they skim through interactive time-series graphs (96 samples/day) of data from Lemon Creek (which drains Lemon Glacier) for stream hydrological variables (temperature, pH, conductivity, dissolved oxygen, turbidity, discharge) and associated meteorological variables (precipitation, humidity, temperature). Amidst all the complex fluctuations that follow no immediately apparent pattern, one regular and continuous feature does stand out: a seemingly sinusoidal diurnal variation in pH of about 0.1 that peaks daily at noon. This high-frequency signal is superimposed on a slower signal characterized by multiple-day trends and larger fluctuations in pH. The resulting composite signal with its easily identifiable patterns is an ideal candidate for investigating Fourier signal decomposition. They hypothesize that photosynthesis could be a contributing factor to the diurnal signal and then design and run an experiment modeling bioactive streamwater with a blended chloroplast-rich slurry of fresh spinach leaves (spinach soup). They put a recording pH meter in the spinach soup and expose it to high and low levels of light; the experiment (based in part on my own actual videotaped spinach-soup study) returns a positive correlation between elevated pH and increased photosynthetic activity in the soup, thereby providing a plausible explanation for micro-scale daily fluctuations in stream pH. They then re-examine the local hydrological and meteorological data, looking for patterns and correlations that might enable them to infer the sources (glacial or watershed) and types of photosynthetic producers/consumers living in Lemon Creek. These results could then be compared with diurnal pH variations also found in a nearby non-glacial stream, Montana Creek. Thus the steady pH heartbeat of a stream in the dynamic ecosystem surrounding a partially-glaciated watershed threads together a diverse set of inquiry-and-data-driven ecological investigations integrating topics from chemistry, biology, physics and informatics.

  7. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals

    PubMed Central

    Koeslin-Findeklee, Fabian; Becker, Martin A.; van der Graaff, Eric; Roitsch, Thomas; Horst, Walter J.

    2015-01-01

    Nitrogen (N) efficiency of winter oilseed rape (Brassica napus L.) line-cultivars (cvs.), defined as high grain yield under N limitation, has been primarily attributed to maintained N uptake during reproductive growth (N uptake efficiency) in combination with delayed senescence of the older leaves accompanied with maintained photosynthetic capacity (functional stay-green). However, it is not clear whether genotypic variation in N starvation-induced leaf senescence is due to leaf-inherent factors and/or governed by root-mediated signals. Therefore, the N-efficient and stay-green cvs. NPZ-1 and Apex were reciprocally grafted with the N-inefficient and early-senescing cvs. NPZ-2 and Capitol, respectively and grown in hydroponics. The senescence status of older leaves after 12 days of N starvation assessed by SPAD, photosynthesis and the expression of the senescence-specific cysteine protease gene SAG12-1 revealed that the stay-green phenotype of the cvs. NPZ-1 and Apex under N starvation was primarily under the control of leaf-inherent factors. The same four cultivars were submitted to N starvation for up to 12 days in a time-course experiment. The specific leaf contents of biologically active and inactive cytokinins (CKs) and the expression of genes involved in CK homeostasis revealed that under N starvation leaves of early-senescing cultivars were characterized by inactivation of biologically active CKs, whereas in stay-green cultivars synthesis, activation, binding of and response to biologically active CKs were favoured. These results suggest that the homeostasis of biologically active CKs was the predominant leaf-inherent factor for cultivar differences in N starvation-induced leaf senescence and thus N efficiency. PMID:25944925

  8. Leaf dynamics in growth and reproduction of Xanthium canadense as influenced by stand density

    PubMed Central

    Ogawa, Takahiro; Oikawa, Shimpei; Hirose, Tadaki

    2015-01-01

    Background and Aims Leaf longevity is controlled by the light gradient in the canopy and also by the nitrogen (N) sink strength in the plant. Stand density may influence leaf dynamics through its effects on light gradient and on plant growth and reproduction. This study tests the hypothesis that the control by the light gradient is manifested more in the vegetative period, whereas the opposite is true when the plant becomes reproductive and develops a strong N sink. Methods Stands of Xanthium canadense were established at two densities. Emergence, growth and death of every leaf on the main stem and branches, and plant growth and N uptake were determined from germination to full senescence. Mean residence time and dry mass productivity were calculated per leaf number, leaf area, leaf mass and leaf N (collectively termed ‘leaf variables’) in order to analyse leaf dynamics and its effect on plant growth. Key Results Branching and reproductive activities were higher at low than at high density. Overall there was no significant difference in mean residence time of leaf variables between the two stands. However, early leaf cohorts on the main stem had a longer retention time at low density, whereas later cohorts had a longer retention time at high density. Branch leaves emerged earlier and tended to live longer at low than at high density. Leaf efficiencies, defined as carbon export per unit investment of leaf variables, were higher at low density in all leaf variables except for leaf number. Conclusions In the vegetative phase of plant growth, the light gradient strongly controls leaf longevity, whereas later the effects of branching and reproductive activities become stronger and over-rule the effect of light environment. As leaf N supports photosynthesis and also works as an N source for plant development, N use is pivotal in linking leaf dynamics with plant growth and reproduction. PMID:26248476

  9. Studies on the nitrate reductase activities of the fruit and the source leaf in pepper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achhireddy, N.R.; Beevers, L.; Fletcher, J.S.

    Nitrate reductase (NR) activity (NO/sub 2//sup -/ produced in the dark and under anaerobic conditions) of 30-day-old fruit of Capsicum annuum L. was 2.2% that in tissues of a single leaf adjacent to each fruit (33 vs. 1500 nmoles/hr-g fresh weight). The optimal NR activity in one source leaf could only account for about 17% of the fruit's total nitrogen accumulation, while the fruit's own NR activity was almost negligible. Covered and uncovered fruits did not differ significantly in NR activities. 19 references, 1 figure, 1 table.

  10. BrWRKY65, a WRKY Transcription Factor, Is Involved in Regulating Three Leaf Senescence-Associated Genes in Chinese Flowering Cabbage.

    PubMed

    Fan, Zhong-Qi; Tan, Xiao-Li; Shan, Wei; Kuang, Jian-Fei; Lu, Wang-Jin; Chen, Jian-Ye

    2017-06-08

    Plant-specific WRKY transcription factors (TFs) have been implicated to function as regulators of leaf senescence, but their association with postharvest leaf senescence of economically important leafy vegetables, is poorly understood. In this work, the characterization of a Group IIe WRKY TF, BrWRKY65, from Chinese flowering cabbage ( Brassica rapa var. parachinensis) is reported. The expression of BrWRKY65 was up-regulated following leaf chlorophyll degradation and yellowing during postharvest senescence. Subcellular localization and transcriptional activation assays showed that BrWRKY65 was localized in the nucleus and exhibited trans-activation ability. Further electrophoretic mobility shift assay (EMSA) and transient expression analysis clearly revealed that BrWRKY65 directly bound to the W-box motifs in the promoters of three senescence-associated genes ( SAGs ) such as BrNYC1 and BrSGR1 associated with chlorophyll degradation, and BrDIN1 , and subsequently activated their expressions. These findings demonstrate that BrWRKY65 may be positively associated with postharvest leaf senescence, at least partially, by the direct activation of SAGs . Taken together, these findings provide new insights into the transcriptional regulatory mechanism of postharvest leaf senescence in Chinese flowering cabbage.

  11. Digestion of chrysanthemum stunt viroid by leaf extracts of Capsicum chinense indicates strong RNA-digesting activity.

    PubMed

    Iraklis, Boubourakas; Kanda, Hiroko; Nabeshima, Tomoyuki; Onda, Mayu; Ota, Nao; Koeda, Sota; Hosokawa, Munetaka

    2016-08-01

    CSVd could not infect Nicotiana benthamiana when the plants were pretreated with crude leaf extract of Capsicum chinense 'Sy-2'. C. chinense leaves were revealed to contain strong RNA-digesting activity. Several studies have identified active antiviral and antiviroid agents in plants. Capsicum plants are known to contain antiviral agents, but the mechanism of their activity has not been determined. We aimed to elucidate the mechanism of Capsicum extract's antiviroid activity. Chrysanthemum stunt viroid (CSVd) was inoculated into Nicotiana benthamiana plants before or after treating the plants with a leaf extract of Capsicum chinense 'Sy-2'. CSVd infection was determined using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) 3 weeks after inoculation. When Capsicum extract was sprayed or painted onto N. benthamiana before inoculation, it was effective in preventing infection by CSVd. To evaluate CSVd digestion activity in leaf extracts, CSVd was mixed with leaf extracts of Mirabilis, Phytolacca, Pelargonium and Capsicum. CSVd-digesting activities were examined by quantifying undigested CSVd using qRT-PCR, and RNA gel blotting permitted visualization of the digested CSVd. Only Capsicum leaf extract digested CSVd, and in the Capsicum treatment, small digested CSVd products were detected by RNA gel blot analysis. When the digesting experiment was performed for various cultivars and species of Capsicum, only cultivars of C. chinense showed strong CSVd-digesting activity. Our observations indicated that Capsicum extract contains strong RNA-digesting activity, leading to the conclusion that this activity is the main mechanism for protection from infection by CSVd through spraying or painting before inoculation. To our knowledge, this is the first report of a strong RNA-digesting activity by a plant extract.

  12. Identification of an NADP/thioredoxin system in Chlamydomonas reinhardtii

    NASA Technical Reports Server (NTRS)

    Huppe, H. C.; Picaud, A.; Buchanan, B. B.; Miginiac-Maslow, M.

    1991-01-01

    The protein components of the NADP/thioredoxin system, NADP-thioredoxin reductase (NTR) and thioredoxin h, have been purified and characterized from the green alga, Chlamydomonas reinhardtii. The analysis of this system confirms that photoautotrophic Chlamydomonas cells resemble leaves in having both an NADP- and ferrodoxin-linked thioredoxin redox system. Chlamydomonas thioredoxin h, which is smaller on sodium dodecyl sulfate-polyacrylamide gel electrophoresis than thioredoxin m from the same source, cross-reacted with antisera to thioredoxin h from spinach (Spinacia oleracea L.) and wheat germ (Triticum vulgaris L.) but not with antisera to m or f thioredoxins. In these properties, the thioredoxin h resembled a thioredoxin from Chlamydomonas, designated Ch1, whose sequence was reported recently (P. Decottignies et al., 1991, Eur. J. Biochem. 198, 505-512). The differential reactivity of thioredoxin h with antisera was used to demonstrate that thioredoxin h is enriched outside the chloroplast. The NTR was purified from Chlamydomonas using thioredoxin h from the same source. Similar to its counterpart from other organisms, Chlamydomonas NTR had a subunit size of approx. 36 kDa and was specific for NADPH. Chlamydomonas NTR effectively reduced thioredoxin h from the same source but showed little activity with the other thioredoxins tested, including spinach thioredoxin h and Escherichia coli thioredoxin. Comparison of the reduction of Chlamydomonas thioredoxins m and h by each of the endogenous thioredoxin reductases, NTR and ferredoxin-thioredoxin reductase, revealed a differential specificity of each enzyme for thioredoxin. Thus, NTR showed increased activity with thioredoxin h and ferredoxin-thioredoxin reductase with thioredoxins m and f.

  13. Increased leaf angle1, a Raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the Lamina joint of rice.

    PubMed

    Ning, Jing; Zhang, Baocai; Wang, Nili; Zhou, Yihua; Xiong, Lizhong

    2011-12-01

    Mitogen-activated protein kinase kinase kinases (MAPKKKs), which function at the top level of mitogen-activated protein kinase cascades, are clustered into three groups. However, no Group C Raf-like MAPKKKs have yet been functionally identified. We report here the characterization of a rice (Oryza sativa) mutant, increased leaf angle1 (ila1), resulting from a T-DNA insertion in a Group C MAPKKK gene. The increased leaf angle in ila1 is caused by abnormal vascular bundle formation and cell wall composition in the leaf lamina joint, as distinct from the mechanism observed in brassinosteroid-related mutants. Phosphorylation assays revealed that ILA1 is a functional kinase with Ser/Thr kinase activity. ILA1 is predominantly resident in the nucleus and expressed in the vascular bundles of leaf lamina joints. Yeast two-hybrid screening identified six closely related ILA1 interacting proteins (IIPs) of unknown function. Using representative IIPs, the interaction of ILA1 and IIPs was confirmed in vivo. IIPs were localized in the nucleus and showed transactivation activity. Furthermore, ILA1 could phosphorylate IIP4, indicating that IIPs may be the downstream substrates of ILA1. Microarray analyses of leaf lamina joints provided additional evidence for alterations in mechanical strength in ila1. ILA1 is thus a key factor regulating mechanical tissue formation at the leaf lamina joint.

  14. Determination of low levels of perchlorate in lettuce and spinach using ion chromatography-electrospray ionization mass spectrometry (IC-ESI-MS).

    PubMed

    Seyfferth, Angelia L; Parker, David R

    2006-03-22

    A sample preparation method was developed to quantify environmentally relevant (low micrograms per liter) concentrations of perchlorate (ClO4(-)) in leafy vegetables using IC-ESI-MS. Lettuce and spinach were macerated, centrifuged, and filtered, and the aqueous extracts were rendered water-clear using a one-step solid-phase extraction method. Total time for extraction and sample preparation was 6 h. Ion suppression was demonstrated and was likely due to unknown organics still present in the extract solution after cleanup. However, this interference was readily eliminated using a Cl(18)O4(-) internal standard at 1 microg/L in all standards and samples. Hydroponically grown perchlorate-free butterhead lettuce was spiked to either 10.3 or 37.7 microg/kg of fresh weight (FW), and recoveries were between 91 and 98% and between 93 and 101%, respectively. Five types of lettuce and spinach from a local grocery store were then analyzed; they contained from 0.6 to 6.4 microg/kg of FW. Spike recoveries using the store-bought samples ranged from 89 to 100%. The method detection limit for perchlorate in plant extracts is 40 ng/L, and the corresponding minimum reporting limit is 200 ng/L or 0.8 microg/kg of FW.

  15. Choline oxidation by intact spinach chloroplasts. [Spinacia oleracea L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weigel, P.; Lerma, C.; Hanson, A.D.

    1988-01-01

    Plants synthesize betaine by a two-step oxidation of choline (choline ..-->.. betaine aldehyde ..-->.. betaine). Protoplast-derived chloroplasts of spinach (Spinacia oleracea L.) carry out both reactions, more rapidly in light than in darkness. We investigated the light-stimulated oxidation of choline, using spinach chloroplasts isolated directly from leaves. The rates of choline oxidation obtained (dark and light rates: 10-50 and 100-300 nanomoles per hour per milligram chlorophyll, respectively) were approximately 20-fold higher than for protoplast-derived chloroplasts. Betaine aldehyde was the main product. Choline oxidation in darkness and light was suppressed by hypoxia. Neither uncouplers not the Calvin cycle inhibitor glyceraldehyde greatlymore » affected choline oxidation in the light, and maximal choline oxidation was attained far below light saturation of CO/sub 2/ fixation. The light stimulation of choline oxidation was abolished by the PSII inhibitors DCMU and dibromothymoquinone, and was partially restored by adding reduced diaminodurene, an electron donor to PSI. Both methyl viologen and phenazine methosulfate prevented choline oxidation. Adding dihydroxyacetone phosphate, which can generate NADPH in organello, doubled the dark rate of choline oxidation. These results indicate that choline oxidation in chloroplasts requires oxygen, and reducing power generated from PSI. Enzymic reactions consistent with these requirements are discussed.« less

  16. Development of an analytical method for antimony speciation in vegetables by HPLC-hydride generation-atomic fluorescence spectrometry.

    PubMed

    Olivares, David; Bravo, Manuel; Feldmann, Jorg; Raab, Andrea; Neaman, Alexander; Quiroz, Waldo

    2012-01-01

    A new method for antimony speciation in terrestrial edible vegetables (spinach, onions, and carrots) was developed using HPLC with hydride generation-atomic fluorescence spectrometry. Mechanical agitation and ultrasound were tested as extraction techniques. Different extraction reagents were evaluated and optimal conditions were determined using experimental design methodology, where EDTA (10 mmol/L, pH 2.5) was selected because this chelate solution produced the highest extraction yield and exhibited the best compatibility with the mobile phase. The results demonstrated that EDTA prevents oxidation of Sb(III) to Sb(V) and maintains the stability of antimony species during the entire analytical process. The LOD and precision (RSD values obtained) for Sb(V), Sb(III), and trimethyl Sb(V) were 0.08, 0.07, and 0.9 microg/L and 5.0, 5.2, and 4.7%, respectively, for a 100 microL sample volume. The application of this method to real samples allowed extraction of 50% of total antimony content from spinach, while antimony extracted from carrots and onion samples ranged between 50 and 60 and 54 and 70%, respectively. Only Sb(V) was detected in three roots (onion and spinach) that represented 60-70% of the total antimony in the extracts.

  17. Cryo-EM structure of the spinach chloroplast ribosome reveals the location of plastid-specific ribosomal proteins and extensions

    PubMed Central

    Graf, Michael; Arenz, Stefan; Huter, Paul; Dönhöfer, Alexandra; Nováček, Jiří

    2017-01-01

    Abstract Ribosomes are the protein synthesizing machines of the cell. Recent advances in cryo-EM have led to the determination of structures from a variety of species, including bacterial 70S and eukaryotic 80S ribosomes as well as mitoribosomes from eukaryotic mitochondria, however, to date high resolution structures of plastid 70S ribosomes have been lacking. Here we present a cryo-EM structure of the spinach chloroplast 70S ribosome, with an average resolution of 5.4 Å for the small 30S subunit and 3.6 Å for the large 50S ribosomal subunit. The structure reveals the location of the plastid-specific ribosomal proteins (RPs) PSRP1, PSRP4, PSRP5 and PSRP6 as well as the numerous plastid-specific extensions of the RPs. We discover many features by which the plastid-specific extensions stabilize the ribosome via establishing additional interactions with surrounding ribosomal RNA and RPs. Moreover, we identify a large conglomerate of plastid-specific protein mass adjacent to the tunnel exit site that could facilitate interaction of the chloroplast ribosome with the thylakoid membrane and the protein-targeting machinery. Comparing the Escherichia coli 70S ribosome with that of the spinach chloroplast ribosome provides detailed insight into the co-evolution of RP and rRNA. PMID:27986857

  18. Automatic Detection of Regions in Spinach Canopies Responding to Soil Moisture Deficit Using Combined Visible and Thermal Imagery

    PubMed Central

    Raza, Shan-e-Ahmed; Smith, Hazel K.; Clarkson, Graham J. J.; Taylor, Gail; Thompson, Andrew J.; Clarkson, John; Rajpoot, Nasir M.

    2014-01-01

    Thermal imaging has been used in the past for remote detection of regions of canopy showing symptoms of stress, including water deficit stress. Stress indices derived from thermal images have been used as an indicator of canopy water status, but these depend on the choice of reference surfaces and environmental conditions and can be confounded by variations in complex canopy structure. Therefore, in this work, instead of using stress indices, information from thermal and visible light imagery was combined along with machine learning techniques to identify regions of canopy showing a response to soil water deficit. Thermal and visible light images of a spinach canopy with different levels of soil moisture were captured. Statistical measurements from these images were extracted and used to classify between canopies growing in well-watered soil or under soil moisture deficit using Support Vector Machines (SVM) and Gaussian Processes Classifier (GPC) and a combination of both the classifiers. The classification results show a high correlation with soil moisture. We demonstrate that regions of a spinach crop responding to soil water deficit can be identified by using machine learning techniques with a high accuracy of 97%. This method could, in principle, be applied to any crop at a range of scales. PMID:24892284

  19. Low-molecular-weight (4.5S) ribonucleic acid in higher-plant chloroplast ribosomes.

    PubMed Central

    Whitfeld, P R; Leaver, C J; Bottomley, W; Atchison, B

    1978-01-01

    A species of RNA that migrates on 10% (w/v) polyacrylamide gels between 5S and 4S RNA was detected in spinach chloroplasts. This RNA (referred to as 4.5 S RNA) was present in amounts equimolar to the 5S RNA and its molecular weight was estimated to be approx. 33 000. Fractionation of the chloroplast components showed that the 4.5S RNA was associated with the 50 S ribosomal subunit and that it could be removed by washing the ribosomes with a buffer containing 0.01 M-EDTA and 0.5 M-KCl. It did not appear to be a cleavage product of the labile 23 S RNA of spinach chloroplast ribosomes. When 125I-labelled 4.5 S RNA was hybridized to fragments of spinach chloroplast DNA produced by SmaI restriction endonuclease, a single fragment (mol.wt. 1.15 times 10(6)) became labelled. The same DNA fragment also hybridized to chloroplast 5 S RNA and part of the 23 S RNA. It was concluded that the coding sequence for 4.5 S RNA was part of, or immediately adjacent to, the rRNA-gene region in chloroplast DNA . A comparable RNA species was observed in chloroplasts of tobacco and pea leaves. Images Fig. 8. PMID:743229

  20. MALDI-TOF MS analysis of condensed tannins with potent antioxidant activity from the leaf, stem bark and root bark of Acacia confusa.

    PubMed

    Wei, Shu-Dong; Zhou, Hai-Chao; Lin, Yi-Ming; Liao, Meng-Meng; Chai, Wei-Ming

    2010-06-15

    The structures of the condensed tannins from leaf, stem bark and root bark of Acacia confusa were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, and their antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and ferric reducing/antioxidant power (FRAP) assays. The results showed that the condensed tannins from stem bark and root bark include propelargonidin and procyanidin, and the leaf condensed tannins include propelargonidin, procyanidin and prodelphinidin, all with the procyanidin dominating. The condensed tannins had different polymer chain lengths, varying from trimers to undecamers for leaf and root bark and to dodecamers for stem bark. The condensed tannins extracted from the leaf, stem bark and root bark all showed a very good DPPH radical scavenging activity and ferric reducing power.

  1. Effect of Piper betle L. and its extracts on the growth and aflatoxin production by Aspergillus parasiticus.

    PubMed

    Chou, C C; Yu, R C

    1984-01-01

    Ground powder of the leaf and fruit of Piper betle L., a tropical spice plant grown in Southeast Asia, was prepared and extracted by chloroform, ethanol and water with one solvent only or with 3 solvents in sequence. The betel powder and various extracts were added to YES broth to determine their effects on the growth and aflatoxin production by Aspergillus parasiticus. Results showed that betel leaf powder exhibited higher antimycotic activity than fruit. One half percent of ground leaf powder completely inhibited the growth and aflatoxin production by A. parasiticus. Among the solvent extracts, chloroform and ethanol extracts of betel leaf prepared from a single solvent extraction showed more antimycotic activity. The ethanol extract of betel leaf at the level of 450 micrograms/ml would eliminate A. parasiticus growth and aflatoxin production. The antimycotic activity of this ethanol extract was most pronounced at pH 4.

  2. A growing Leaf as a Sheet of an Active Solid

    NASA Astrophysics Data System (ADS)

    Sharon, Eran

    A growing leaf is a thin sheet of active solid, which expands while obeying the laws of mechanics. The effective rheology of this active solid is nontrivial, allowing the leaf to increase its area by orders of magnitude, keeping its ''proper'' geometry. The questions of what the characteristics of the leaf growth field are and how it is regulated without any central ''headquarter'' are still open. I will present measurements of natural leaf growth with high time and space resolution. These show that the growth is a highly fluctuating process in both time and space. We suggest that the entire statistics of the growth field, not just its averages contain information important for the understanding of growth regulation. In another set of experiments we measure the effect of mechanical stress on deformation and growth. The measured effective rheology is viscoelastic with time varying parameters, indicating remodeling of the tissue in response to extended application of mechanical stress.

  3. Changes in some thylakoid membrane proteins and pigments upon desiccation of the resurrection plant Haberlea rhodopensis.

    PubMed

    Georgieva, Katya; Röding, Anja; Büchel, Claudia

    2009-09-15

    The changes in some proteins involved in the light reactions of photosynthesis of the resurrection plant Haberlea rhodopensis were examined in connection with desiccation. Fully hydrated (control) and completely desiccated plants (relative water content (RWC) 6.5%) were used for thylakoid preparations. The chlorophyll (Chl) a to Chl b ratios of thylakoids isolated from control and desiccated leaves were very similar, which was also confirmed by measuring their absorption spectra. HPLC analysis revealed that beta-carotene content was only slightly enhanced in desiccated leaves compared with the control, but the zeaxanthin level was strongly increased. Desiccation of H. rhodopensis to an air-dried state at very low light irradiance led to a little decrease in the level of D1, D2, PsbS and PsaA/B proteins in thylakoids, but a relative increase in LHC polypeptides. To further elucidate whether the composition of the protein complexes of the thylakoid membranes had changed, we performed a separation of solubilized thylakoids on sucrose density gradients. In contrast to spinach, Haberlea thylakoids appeared to be much more resistant to the same solubilization procedure, i.e. complexes were not separated completely and complexes of higher density were found. However, the fractions analyzed provided clear evidence for a move of part of the antenna complexes from PSII to PSI when plants became desiccated. This move was also confirmed by low temperature emission spectra of thylakoids. Overall, the photosynthetic proteins remained comparatively stable in dried Haberlea leaves when plants were desiccated under conditions similar to their natural habitat. Low light during desiccation was enough to induce a rise in the xanthophyll zeaxanthin and beta-carotene. Together with the extensive leaf shrinkage and some leaf folding, increased zeaxanthin content and the observed shift in antenna proteins from PSII to PSI during desiccation of Haberlea contributed to the integrity of the photosynthetic apparatus, which is important for rapid recovery after rehydration.

  4. Do Aphids Alter Leaf Surface Temperature Patterns During Early Infestation?

    PubMed Central

    Cahon, Thomas; Caillon, Robin

    2018-01-01

    Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf tissues, may, however, induce changes in leaf surface temperatures, but this effect was only rarely demonstrated. Using thermography analysis of leaf surfaces under controlled environmental conditions, we quantified the impact of presence of apple green aphids on the temperature distribution of apple leaves during early infestation. Aphids induced a slight change in leaf surface temperature patterns after only three days of infestation, mostly due to the effect of aphids on the maximal temperature that can be found at the leaf surface. Aphids may induce stomatal closure, leading to a lower transpiration rate. This effect was local since aphids modified the configuration of the temperature distribution over leaf surfaces. Aphids were positioned at temperatures near the maximal leaf surface temperatures, thus potentially experiencing the thermal changes. The feedback effect of feeding activity by insects on their host plant can be important and should be quantified to better predict the response of phytophagous insects to environmental changes. PMID:29538342

  5. Testosterone 5alpha-reductase inhibitory active constituents of Piper nigrum leaf.

    PubMed

    Hirata, Noriko; Tokunaga, Masashi; Naruto, Shunsuke; Iinuma, Munekazu; Matsuda, Hideaki

    2007-12-01

    Previously we reported that Piper nigrum leaf extract showed a potent stimulation effect on melanogenesis and that (-)-cubebin (1) and (-)-3,4-dimethoxy-3,4-desmethylenedioxycubebin (2) were isolated as active constituents. As a part of our continuous studies on Piper species for the development of cosmetic hair-care agents, testosterone 5alpha-reductase inhibitory activity of aqueous ethanolic extracts obtained from several different parts of six Piper species, namely Piper nigrum, P. methysticum, P. betle, P. kadsura, P. longum, and P. cubeba, were examined. Among them, the extracts of P. nigrum leaf, P. nigrum fruit and P. cubeba fruit showed potent inhibitory activity. Activity-guided fractionation of P. nigrum leaf extract led to the isolation of 1 and 2. Fruits of P. cubeba contain 1 as a major lignan, thus inhibitory activity of the fruit may be attributable to 1. As a result of further assay on other known constituents of the cited Piper species, it was found that piperine, a major alkaloid amide of P. nigrum fruit, showed potent inhibitory activity, thus a part of the inhibitory activity of P. nigrum fruit may depend on piperine. The 5alpha-reductase inhibitory activities of 1 and piperine were found for the first time. In addition, the P. nigrum leaf extract showed in vivo anti-androgenic activity using the hair regrowth assay in testosterone sensitive male C57Black/6CrSlc strain mice.

  6. Quercetin, kaempferol and isorhamnetin in Elaeagnus pungens Thunb. leaf: pharmacological activities and quantitative determination studies.

    PubMed

    Zhu, Ji-Xiao; Wen, Le; Zhong, Wei-Jin; Xiong, Li; Liang, Jian; Wang, Hong-Ling

    2018-05-26

    Elaeagnus pungens (E. pungens) leaf was documented to be very effective to treat asthma and chronic bronchitis both as traditional Chinese medicine and minority traditional medicine; yet the actual effective components still remain unknown. This work is to investigate the anti-inflammatory, antalgic and antitussive activities of E. pungens leaf, quercetin and kaempferol, and their contents in E. pungens leaf. Pharmacological experiments showed they could considerably reduce ear-swelling of mouse and relieve writhing reaction of mouse; they could also prevent mouse from coughing, significantly. These findings suggested quercetin and kaempferol are major effective components treating asthma and chronic bronchitis. Quantitative analysis results indicated the levels of quercetin, kaempferol and isorhamnetin varied greatly in different species of Elaeagnus and in different plant parts: E. pungens leaf is more similar to Elaeagnus umbellate leaf chemically; quercetin level is exceptionally high in Elaeagnus oldhami leaf; E. pungens leaf is a better medical part for treating asthma and chronic bronchitis in comparison with other parts. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Effect of Spinach, a High Dietary Nitrate Source, on Arterial Stiffness and Related Hemodynamic Measures: A Randomized, Controlled Trial in Healthy Adults

    PubMed Central

    Jovanovski, Elena; Bosco, Laura; Khan, Kashif; Au-Yeung, Fei; Ho, Hoang; Zurbau, Andreea; Jenkins, Alexandra L.

    2015-01-01

    Diets rich in fruits and vegetables reduce risk of adverse cardiovascular events. However, the constituents responsible for this effect have not been well established. Lately, the attention has been brought to vegetables with high nitrate content with evidence that this might represent a source of vasoprotective nitric oxide. We hypothesized that short-term consumption of spinach, a vegetable having high dietary nitrate content, can affect the arterial waveform indicative of arterial stiffness, as well as central and peripheral blood pressure (BP). Using a placebo-controlled, crossover design, 27 healthy participants were randomly assigned to receive either a high-nitrate (spinach; 845 mg nitrate/day) or low-nitrate soup (asparagus; 0.6 mg nitrate/day) for 7 days with a 1-week washout period. On days 1 and 7, profiles of augmentation index, central, and brachial BP were obtained over 180 min post-consumption in 4 fasted visits. A postprandial reduction in augmentation index was observed at 180 min on high-nitrate compared to low-nitrate intervention (-6.54 ± 9.7% vs. -0.82 ± 8.0%, p = 0.01) on Day 1, and from baseline on Day 7 (-6.93 ± 8.7%, p < 0.001; high vs. low: -2.28 ± 12.5%, p = 0.35), suggesting that the nitrate intervention is not associated with the development of tolerance for at least 7 days of continued supplementation. High vs. low-nitrate intervention also reduced central systolic (-3.39 ± 5.6 mmHg, p = 0.004) and diastolic BP (-2.60 ± 5.8 mmHg, p = 0.028) and brachial systolic BP (-3.48 ± 7.4 mmHg, p = 0.022) at 180 min following 7-day supplementation only. These findings suggest that dietary nitrate from spinach may contribute to beneficial hemodynamic effects of vegetable-rich diets and highlights the potential of developing a targeted dietary approach in the management of elevated BP. PMID:26251834

  8. Folate bioavailability from foods rich in folates assessed in a short term human study using stable isotope dilution assays.

    PubMed

    Mönch, Sabine; Netzel, Michael; Netzel, Gabriele; Ott, Undine; Frank, Thomas; Rychlik, Michael

    2015-01-01

    Different sources of folate may have different bioavailability and hence may impact the standard definition of folate equivalents. In order to examine this, a short term human study was undertaken to evaluate the relative native folate bioavailabilities from spinach, Camembert cheese and wheat germs compared to pteroylmonoglutamic acid as the reference dose. The study had a single-centre, randomised, four-treatment, four-period, four-sequence, cross-over design, i.e. the four (food) items to be tested (referred to as treatments) were administered in sequences according to the Latin square, so that each experimental treatment occurred only once within each sequence and once within each study period. Each of the 24 subjects received the four experimental items separated by a 14-day equilibrium phase and received a pteroylmonoglutamic acid supplement for 14 days before the first testing and between the testings for saturation of body pools. Folates in test foods, plasma and urine samples were determined by stable isotope dilution assays, and in urine and plasma, the concentrations of 5-methyltetrahydrofolate were evaluated. Standard non-compartmental methods were applied to determine the biokinetic parameters C(max), t(max) and AUC from baseline corrected 5-methyltetrahydrofolate concentrations within the interval from 0 to 12 hours. The variability of AUC and C(max) was moderate for spinach and oral solution of pteroylmonoglutamic acid but high for Camembert cheese and very high for wheat germs. The median t(max) was lowest for spinach, though t(max) showed a high variability among all treatments. When comparing the ratio estimates of AUC and C(max) for the different test foods, highest bioavailability was found for spinach followed by that for wheat germs and Camembert cheese. The results underline the dependence of folate bioavailability on the type of food ingested. Therefore, the general assumption of 50% bioavailability as the rationale behind the definition of folate equivalents has to be questioned and requires further investigation.

  9. Evaluation of analgesic, antipyretic and anti-inflammatory activity on Cordia dichotoma G. Forst. Leaf.

    PubMed

    Gupta, Richa; Kaur, Jagjit

    2015-01-01

    Cordia dichotoma G. Forst. is an important medicinal plant of family Boraginaceae. Traditionally, its leaves are used to treat fever, headache, and joint pain but its medicinal activities have not been proven by research. To evaluate the analgesic, anti-inflammatory, and antipyretic activity of C. dichotoma G. Forst. leaf extract. The various extracts of leaf powder were prepared by using soxhlet apparatus. The methanol extract was selected for pharmacological study. To evaluate analgesic activity, Eddy's hot plate method, to study anti-inflammatory activity, carageenan-induced rat paw edema method, and to study antipyretic activity, yeast-induced pyrexia method was used. SD female rats (180-200 g) were used for the study. In all three tests, the methanol extract high dose (400 mg/kg) was found to be highly significant as compared to standard drug. This study proved the traditional uses of plant leaves and concluded the analgesic, anti-inflammatory, and antipyretic activity of the leaf methanol extract.

  10. Evaluation of analgesic, antipyretic and anti-inflammatory activity on Cordia dichotoma G. Forst. Leaf

    PubMed Central

    Gupta, Richa; Kaur, Jagjit

    2015-01-01

    Background: Cordia dichotoma G. Forst. is an important medicinal plant of family Boraginaceae. Traditionally, its leaves are used to treat fever, headache, and joint pain but its medicinal activities have not been proven by research. Objective: To evaluate the analgesic, anti-inflammatory, and antipyretic activity of C. dichotoma G. Forst. leaf extract. Material and Methods: The various extracts of leaf powder were prepared by using soxhlet apparatus. The methanol extract was selected for pharmacological study. To evaluate analgesic activity, Eddy's hot plate method, to study anti-inflammatory activity, carageenan-induced rat paw edema method, and to study antipyretic activity, yeast-induced pyrexia method was used. SD female rats (180-200 g) were used for the study. Results: In all three tests, the methanol extract high dose (400 mg/kg) was found to be highly significant as compared to standard drug. Conclusion: This study proved the traditional uses of plant leaves and concluded the analgesic, anti-inflammatory, and antipyretic activity of the leaf methanol extract. PMID:25598647

  11. Biolarvicidal and pupicidal activity of Acalypha alnifolia Klein ex Willd.(Family:Euphorbiaceae) leaf extract and microbial insecticide, Metarhizium anisopliae(Metsch.)against malaria fever mosquito Anopheles stephensi Liston

    USDA-ARS?s Scientific Manuscript database

    This study was made to determine the biological activity of Acalypha alnifolia leaf extract and the microbial insecticide Metarizhium anisopliae against larvae and pupae of the malaria vector Anopheles stephensi. Ethanolic A. alnifolia leaf extract tested against 1st through 4th instars and pupae o...

  12. Defense Responses in Rice Induced by Silicon Amendment against Infestation by the Leaf Folder Cnaphalocrocis medinalis

    PubMed Central

    Han, Yongqiang; Li, Pei; Gong, Shaolong; Yang, Lang; Wen, Lizhang; Hou, Maolin

    2016-01-01

    Silicon (Si) amendment to plants can confer enhanced resistance to herbivores. In the present study, the physiological and cytological mechanisms underlying the enhanced resistance of plants with Si addition were investigated for one of the most destructive rice pests in Asian countries, the rice leaf folder, Cnaphalocrocis medinalis (Guenée). Activities of defense-related enzymes, superoxide dismutase, peroxidase, catalase, phenylalanine ammonia-lyase, and polyphenol oxidase, and concentrations of malondialdehyde and soluble protein in leaves were measured in rice plants with or without leaf folder infestation and with or without Si amendment at 0.32 g Si/kg soil. Silicon amendment significantly reduced leaf folder larval survival. Silicon addition alone did not change activities of defense-related enzymes and malondialdehyde concentration in rice leaves. With leaf folder infestation, activities of the defense-related enzymes increased and malondialdehyde concentration decreased in plants amended with Si. Soluble protein content increased with Si addition when the plants were not infested, but was reduced more in the infested plants with Si amendment than in those without Si addition. Regardless of leaf folder infestation, Si amendment significantly increased leaf Si content through increases in the number and width of silica cells. Our results show that Si addition enhances rice resistance to the leaf folder through priming the feeding stress defense system, reduction in soluble protein content and cell silicification of rice leaves. PMID:27124300

  13. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less

  14. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    PubMed Central

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H.; Busov, Victor B.

    2017-01-01

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting. PMID:28686626

  15. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    DOE PAGES

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; ...

    2017-07-07

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less

  16. BIG LEAF is a regulator of organ size and adventitious root formation in poplar.

    PubMed

    Yordanov, Yordan S; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H; Busov, Victor B

    2017-01-01

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.

  17. The potency of plant extracts as antimicrobials for the skin or hide preservation

    NASA Astrophysics Data System (ADS)

    Suparno, Ono; Afifah, Amalia; Panandita, Tania; Marimin, Purnawati, Rini

    2017-03-01

    Preservation of skin or hide uses antimicrobial that will be disposed in wastewater in the skin or hide processing resulting in the environmental pollution. Extracts of some types of plants contain some antimicrobial substances which are potential to be used as biocides for the preservation of skin or hide and are more environmentally friendly. The objectives of this study were to determine the phytochemical contents of moringa, cucumber tree or wuluh starfruit, cherry, and white leadtree or lamtoro leaves and to analyse the antibacterial activities of the plant extracts against microorganisms that cause spoilage of skin or hide. Phytochemical constituents of the dried plant leaves were extracted by 70% ethanol. The resulting extracts were analysed their phytochemical contents and antimicrobial activities against gram negative and gram positive bacteria (inhibition zone test) by well diffusion method, the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC). Phytochemical test showed that the four leaf extracts contained alkaloids, saponins, tannins, flavonoids, steroids, and glycosides. The inhibition zones of the extracts against Escherichia coli were 5 mm for moringa leaf, 6 mm for cucumber tree leaf, 12 mm for cherry leaf, and 17 mm for white leadtree leaf. Inhibition zone of the extracts against Staphylococcus aureus were 2.5 mm for moringa leaf, 7 mm for cucumber tree leaf, 7.3 mm for cherry leaf, and 13 mm for white leadtree leaf. Inhibition zones of the extracts against Bacillus subtilis were 8 mm for moringa leaf, 9 mm for cucumber tree starfruit leaf, 14 mm for cherry leaf, and 15 mm for white leadtree leaf. The best MIC and MBC tests were demonstrated by white leadtree leaf extract against E. coli found at concentration of 1500 µg/ml, against S. aureus at concentration of 3000 µg/ml, and against B. subtilis at concentration of 3000 µg/ml. The ethanol extract of white leadtree leaf had the best antibacterial activity and antimicrobial potency compared to the extracts of moringa, cucumber tree starfruit, and cherry leaves. Therefore, the ethanol extract of white leadtree leaf had a potency as a preservative of animal skin or hide and might be able to substitute the biocides used in the skin or hide preservation.

  18. Investigating biological activity spectrum for novel quinoline analogues.

    PubMed

    Musiol, Robert; Jampilek, Josef; Kralova, Katarina; Richardson, Des R; Kalinowski, Danuta; Podeszwa, Barbara; Finster, Jacek; Niedbala, Halina; Palka, Anna; Polanski, Jaroslaw

    2007-02-01

    The lack of the wide spectrum of biological data is an important obstacle preventing the efficient molecular design. Quinoline derivatives are known to exhibit a variety of biological effects. In the current publication, we tested a series of novel quinoline analogues for their photosynthesis-inhibiting activity (the inhibition of photosynthetic electron transport in spinach chloroplasts (Spinacia oleracea L.) and the reduction of chlorophyll content in Chlorella vulgaris Beij.). Moreover, antiproliferative activity was measured using SK-N-MC neuroepithelioma cell line. We described the structure-activity relationships (SAR) between the chemical structure and biological effects of the synthesized compounds. We also measured the lipophilicity of the novel compounds by means of the RP-HPLC and illustrate the relationships between the RP-HPLC retention parameter logK (the logarithm of capacity factor K) and logP data calculated by available programs.

  19. Leaf nitrogen assimilation and partitioning differ among subtropical forest plants in response to canopy addition of nitrogen treatments.

    PubMed

    Liu, Nan; Wu, Shuhua; Guo, Qinfeng; Wang, Jiaxin; Cao, Ce; Wang, Jun

    2018-05-12

    Global increases in nitrogen deposition may alter forest structure and function by interfering with plant nitrogen metabolism (e.g., assimilation and partitioning) and subsequent carbon assimilation, but it is unclear how these responses to nitrogen deposition differ among species. In this study, we conducted a 2-year experiment to investigate the effects of canopy addition of nitrogen (CAN) on leaf nitrogen assimilation and partitioning in three subtropical forest plants (Castanea henryi, Ardisia quinquegona, and Blastus cochinchinensis). We hypothesized that responses of leaf nitrogen assimilation and partitioning to CAN differ among subtropical forest plants. CAN increased leaf nitrate reductase (NR) activity, and leaf nitrogen and chlorophyll contents but reduced leaf maximum photosynthetic rate (A max ), photosynthetic nitrogen use efficiency (PNUE), ribulose-1,5-bisphosphate carboxylase (Rubisco) activity, and metabolic protein content of an overstory tree species C. henryi. In an understory tree A. quinquegona, CAN increased NR activity and glutamine synthetase activity and therefore increased metabolic protein synthesis (e.g., Rubisco) in leaves. In the shrub B. cochinchinensis, CAN increased A max , PNUE, Rubisco content, metabolic protein content, and Rubisco activity in leaves. Leaf nitrogen assimilation and partitioning results indicated that A. quinquegona and B. cochinchinensis may better acclimate to CAN than C. henryi and that the acclimation mechanism differs among the species. Results from this study suggest that long-term elevated atmospheric nitrogen deposition has contributed to the ongoing transformation of subtropical forests into communities dominated by small trees and shrubs. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Traditional Aboriginal Preparation Alters the Chemical Profile of Carica papaya Leaves and Impacts on Cytotoxicity towards Human Squamous Cell Carcinoma.

    PubMed

    Nguyen, Thao T; Parat, Marie-Odile; Shaw, Paul N; Hewavitharana, Amitha K; Hodson, Mark P

    2016-01-01

    Carica papaya leaf decoction, an Australian Aboriginal remedy, has been used widely for its healing capabilities against cancer, with numerous anecdotal reports. In this study we investigated its in vitro cytotoxicity on human squamous cell carcinoma cells followed by metabolomic profiling of Carica papaya leaf decoction and leaf juice/brewed leaf juice to determine the effects imparted by the long heating process typical of the Aboriginal remedy preparation. MTT assay results showed that in comparison with the decoction, the leaf juice not only exhibited a stronger cytotoxic effect on SCC25 cancer cells, but also produced a significant cancer-selective effect as shown by tests on non-cancerous human keratinocyte HaCaT cells. Furthermore, evidence from testing brewed leaf juice on these two cell lines suggested that the brewing process markedly reduced the selective effect of Carica papaya leaf on SCC25 cancer cells. To tentatively identify the compounds that contribute to the distinct selective anticancer activity of leaf juice, an untargeted metabolomic approach employing Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry followed by multivariate data analysis was applied. Some 90 and 104 peaks in positive and negative mode respectively were selected as discriminatory features from the chemical profile of leaf juice and >1500 putative compound IDs were obtained via database searching. Direct comparison of chromatographic and tandem mass spectral data to available reference compounds confirmed one feature as a match with its proposed authentic standard, namely pheophorbide A. However, despite pheophorbide A exhibiting cytotoxic activity on SCC25 cancer cells, it did not prove to be the compound contributing principally to the selective activity of leaf juice. With promising results suggesting stronger and more selective anticancer effects when compared to the Aboriginal remedy, Carica papaya leaf juice warrants further study to explore its activity on other cancer cell lines, as well as investigation to confirm the identity of compounds contributing to its selective effect, particularly those compounds altered by the long heating process applied during the traditional Aboriginal remedy preparation.

  1. Traditional Aboriginal Preparation Alters the Chemical Profile of Carica papaya Leaves and Impacts on Cytotoxicity towards Human Squamous Cell Carcinoma

    PubMed Central

    Nguyen, Thao T.; Parat, Marie-Odile; Shaw, Paul N.; Hewavitharana, Amitha K.; Hodson, Mark P.

    2016-01-01

    Carica papaya leaf decoction, an Australian Aboriginal remedy, has been used widely for its healing capabilities against cancer, with numerous anecdotal reports. In this study we investigated its in vitro cytotoxicity on human squamous cell carcinoma cells followed by metabolomic profiling of Carica papaya leaf decoction and leaf juice/brewed leaf juice to determine the effects imparted by the long heating process typical of the Aboriginal remedy preparation. MTT assay results showed that in comparison with the decoction, the leaf juice not only exhibited a stronger cytotoxic effect on SCC25 cancer cells, but also produced a significant cancer-selective effect as shown by tests on non-cancerous human keratinocyte HaCaT cells. Furthermore, evidence from testing brewed leaf juice on these two cell lines suggested that the brewing process markedly reduced the selective effect of Carica papaya leaf on SCC25 cancer cells. To tentatively identify the compounds that contribute to the distinct selective anticancer activity of leaf juice, an untargeted metabolomic approach employing Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry followed by multivariate data analysis was applied. Some 90 and 104 peaks in positive and negative mode respectively were selected as discriminatory features from the chemical profile of leaf juice and >1500 putative compound IDs were obtained via database searching. Direct comparison of chromatographic and tandem mass spectral data to available reference compounds confirmed one feature as a match with its proposed authentic standard, namely pheophorbide A. However, despite pheophorbide A exhibiting cytotoxic activity on SCC25 cancer cells, it did not prove to be the compound contributing principally to the selective activity of leaf juice. With promising results suggesting stronger and more selective anticancer effects when compared to the Aboriginal remedy, Carica papaya leaf juice warrants further study to explore its activity on other cancer cell lines, as well as investigation to confirm the identity of compounds contributing to its selective effect, particularly those compounds altered by the long heating process applied during the traditional Aboriginal remedy preparation. PMID:26829042

  2. Photosystem II functionality and antioxidant system changes during leaf rolling in post-stress emerging Ctenanthe setosa exposed to drought.

    PubMed

    Terzi, Rabiye; Saruhan, Neslihan; Sağlam, A; Nar, Hatice; Kadioğlu, A

    2009-12-01

    We studied the changes in antioxidant system and chlorophyll fluorescence parameters in post-stress emerging Ctenanthe setosa (Rosc.) Eichler (Marantaceae) plants (PSE plants) having reduced leaf area under drought stress causing leaf rolling and re-watering. PSE plants were compared to primary stressed plants (PS) in previous studies. The parameters were measured at different visual leaf rolling scores from 1 to 4 (1 is unrolled, 4 is tightly rolled and the others is intermediate form). Water potentials and stomatal conductance of leaves were gradually decreased during leaf rolling. Similarly, maximum quantum efficiency of open PS II center and quantum yield of PS II decreased during the rolling period. Non-photochemical quenching of chlorophyll fluorescence decreased at score 2 then increased while photochemical quenching did not change during leaf rolling. Electron transport rate decreased only at score 4 but approximately reached to score 1 level after re-watering. Superoxide dismutase activity was not constant at all leaf rolling scores. Ascorbate peroxidase, catalase and glutathione reductase activities generally tended to increase during leaf rolling. Lipid peroxidation and H 2 O 2 content increased at score 2 but decreased at the later scores. On the other hand, O 2 .- production increased during the rolling period. After re-watering of the plants having score 4 of leaf rolling, antioxidant enzyme activities were lower than those of score 1. Other physiological parameters also tended to reach the value of score 1. The results indicated that PSE plants gained drought tolerance by reducing leaf area effectively induced their antioxidant systems and protected the photosynthesis under drought stress similar to PS plants.

  3. Nitrate Reductase Activity and Polyribosomal Content of Corn (Zea mays L.) Having Low Leaf Water Potentials 1

    PubMed Central

    Morilla, Camila A.; Boyer, J. S.; Hageman, R. H.

    1973-01-01

    Desiccation of 8- to 13-day-old seedlings, achieved by withholding nutrient solution from the vermiculite root medium, caused a reduction in nitrate reductase activity of the leaf tissue. Activity declined when leaf water potentials decreased below −2 bars and was 25% of the control at a leaf water potential of −13 bars. Experiments were conducted to determine whether the decrease in nitrate reductase activity was due to reduced levels of nitrate in the tissue, direct inactivation of the enzyme by low leaf water potentials, or to changes in rates of synthesis or decay of the enzyme. Although tissue nitrate content decreased with the onset of desiccation, it did not continue to decline with tissue desiccation and loss of enzyme activity. Nitrate reductase activity recovered when the plants were rewatered with nitrate-free medium, suggesting that the nitrate in the plant was adequate for high nitrate reductase activity. The rate of decay of nitrate reductase activity from desiccated tissue was essentially identical to that of the control, in vivo or in vitro, regardless of the rapidity of desiccation of the tissue. Direct inactivation of the enzyme by the low water potentials was not detected. Polyribosomal content of the tissue declined with the decrease in water potential, prior to the decline in nitrate reductase activity. Changes in ribosomal profiles occurred during desiccation, regardless of whether the tissue had been excised or not and whether desiccation was rapid or slow. Reduction in polyribosomal content did not appear to be associated with changes in ribonuclease activity. Nitrate reductase activity and the polyribosomal content of the tissue recovered upon rewatering, following the recovery in water potential. The increase in polyribosomal content preceded the increase in nitrate reductase activity. Recovery of enzyme activity was prevented by cycloheximide. Based on these results, it appears that nitrate reductase activity was affected primarily by a decrease in the rate of enzyme synthesis at low leaf water potentials. PMID:16658419

  4. ANTI-ULCER ACTIVITY OF THE ALKALI PREPARATION OF THE ROOT AND FRESH LEAF JUICE OF MORINGA OLEIFERA LAM

    PubMed Central

    Ruckmani, K.; Kavimani, S.; Jayakar, B.; Anandan, R.

    1998-01-01

    The alkali preparation of the root and fresh leaf juice of Moringa oleifera possessed significant dose –depen-dent anti-ulcer activity in experimentally induced acute gastric ulcers with aspirin, the anti-ulcer effect of the alkali preparation of the root seems to be more pronounced than that of the fresh leaf juice. Te anti-ulcer activity of the alkali preparation of the root could be due to its content of alkaloids or its anticholinergic and antihistaminic activities, or a combination of these factors. PMID:22556845

  5. The chemical composition and antimicrobial activity of the leaf oil of Cupressus lusitanica from Monteverde, Costa Rica

    PubMed Central

    Hassanzadeh, Sara L.; Tuten, Jessika A.; Vogler, Bernhard; Setzer, William N.

    2010-01-01

    The essential oils from the leaves of three different individuals of Cupressus lusitanica were obtained by hydrodistillation and analyzed by gas chromatography - mass spectrometry. A total of 49 compounds were identified in the leaf oils. The major components of C. lusitanica leaf oil were α-pinene (40%-82%), limonene (4%-18%), isobornyl acetate (up to 10%) and cis-muurola-4(14),5-diene (up to 7%). The essential oil was screened for antimicrobial activity, and it showed antibacterial activity against Bacillus cereus and antifungal activity against Aspergillus niger. PMID:21808533

  6. The extreme halophyte Salicornia veneta is depleted of the extrinsic PsbQ and PsbP proteins of the oxygen-evolving complex without loss of functional activity

    PubMed Central

    Pagliano, Cristina; La Rocca, Nicoletta; Andreucci, Flora; Deák, Zsuzsanna; Vass, Imre; Rascio, Nicoletta; Barbato, Roberto

    2009-01-01

    Background and Aims Photosystem II of oxygenic organisms is a multi-subunit protein complex made up of at least 20 subunits and requires Ca2+ and Cl− as essential co-factors. While most subunits form the catalytic core responsible for water oxidation, PsbO, PsbP and PsbQ form an extrinsic domain exposed to the luminal side of the membrane. In vitro studies have shown that these subunits have a role in modulating the function of Cl− and Ca2+, but their role(s) in vivo remains to be elucidated, as the relationships between ion concentrations and extrinsic polypeptides are not clear. With the aim of understanding these relationships, the photosynthetic apparatus of the extreme halophyte Salicornia veneta has been compared with that of spinach. Compared to glycophytes, halophytes have a different ionic composition, which could be expected to modulate the role of extrinsic polypeptides. Methods Structure and function of in vivo and in vitro PSII in S. veneta were investigated and compared to spinach. Light and electron microscopy, oxygen evolution, gel electrophoresis, immunoblotting, DNA sequencing, RT–PCR and time-resolved chlorophyll fluorescence were used. Key Results Thylakoids of S. veneta did not contain PsbQ protein and its mRNA was absent. When compared to spinach, PsbP was partly depleted (30 %), as was its mRNA. All other thylakoid subunits were present in similar amounts in both species. PSII electron transfer was not affected. Fluorescence was strongly quenched upon irradiation of plants with high light, and relaxed only after prolonged dark incubation. Quenching of fluorescence was not linked to degradation of D1 protein. Conclusions In S. veneta the PsbQ protein is not necessary for photosynthesis in vivo. As the amount of PsbP is sub-stoichiometric with other PSII subunits, this protein too is largely dispensable from a catalytic standpoint. One possibility is that PsbP acts as an assembly factor for PSII. PMID:19033288

  7. Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts

    PubMed Central

    De Fine Licht, Henrik H.; Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Nygaard, Sanne; Roepstorff, Peter; Boomsma, Jacobus J.

    2013-01-01

    Leaf-cutting ants combine large-scale herbivory with fungus farming to sustain advanced societies. Their stratified colonies are major evolutionary achievements and serious agricultural pests, but the crucial adaptations that allowed this mutualism to become the prime herbivorous component of neotropical ecosystems has remained elusive. Here we show how coevolutionary adaptation of a specific enzyme in the fungal symbiont has helped leaf-cutting ants overcome plant defensive phenolic compounds. We identify nine putative laccase-coding genes in the fungal genome of Leucocoprinus gongylophorus cultivated by the leaf-cutting ant Acromyrmex echinatior. One of these laccases (LgLcc1) is highly expressed in the specialized hyphal tips (gongylidia) that the ants preferentially eat, and we confirm that these ingested laccase molecules pass through the ant guts and remain active when defecated on the leaf pulp that the ants add to their gardens. This accurate deposition ensures that laccase activity is highest where new leaf material enters the fungus garden, but where fungal mycelium is too sparse to produce extracellular enzymes in sufficient quantities to detoxify phenolic compounds. Phylogenetic analysis of LgLcc1 ortholog sequences from symbiotic and free-living fungi revealed significant positive selection in the ancestral lineage that gave rise to the gongylidia-producing symbionts of leaf-cutting ants and their non–leaf-cutting ant sister group. Our results are consistent with fungal preadaptation and subsequent modification of a particular laccase enzyme for the detoxification of secondary plant compounds during the transition to active herbivory in the ancestor of leaf-cutting ants between 8 and 12 Mya. PMID:23267060

  8. Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts.

    PubMed

    De Fine Licht, Henrik H; Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Nygaard, Sanne; Roepstorff, Peter; Boomsma, Jacobus J

    2013-01-08

    Leaf-cutting ants combine large-scale herbivory with fungus farming to sustain advanced societies. Their stratified colonies are major evolutionary achievements and serious agricultural pests, but the crucial adaptations that allowed this mutualism to become the prime herbivorous component of neotropical ecosystems has remained elusive. Here we show how coevolutionary adaptation of a specific enzyme in the fungal symbiont has helped leaf-cutting ants overcome plant defensive phenolic compounds. We identify nine putative laccase-coding genes in the fungal genome of Leucocoprinus gongylophorus cultivated by the leaf-cutting ant Acromyrmex echinatior. One of these laccases (LgLcc1) is highly expressed in the specialized hyphal tips (gongylidia) that the ants preferentially eat, and we confirm that these ingested laccase molecules pass through the ant guts and remain active when defecated on the leaf pulp that the ants add to their gardens. This accurate deposition ensures that laccase activity is highest where new leaf material enters the fungus garden, but where fungal mycelium is too sparse to produce extracellular enzymes in sufficient quantities to detoxify phenolic compounds. Phylogenetic analysis of LgLcc1 ortholog sequences from symbiotic and free-living fungi revealed significant positive selection in the ancestral lineage that gave rise to the gongylidia-producing symbionts of leaf-cutting ants and their non-leaf-cutting ant sister group. Our results are consistent with fungal preadaptation and subsequent modification of a particular laccase enzyme for the detoxification of secondary plant compounds during the transition to active herbivory in the ancestor of leaf-cutting ants between 8 and 12 Mya.

  9. Phosphatidylinositol 3-Kinase Promotes V-ATPase Activation and Vacuolar Acidification and Delays Methyl Jasmonate-Induced Leaf Senescence1

    PubMed Central

    Liu, Jian; Ji, Yingbin; Zhou, Jun; Xing, Da

    2016-01-01

    PI3K and its product PI3P are both involved in plant development and stress responses. In this study, the down-regulation of PI3K activity accelerated leaf senescence induced by methyl jasmonate (MeJA) and suppressed the activation of vacuolar H+-ATPase (V-ATPase). Yeast two-hybrid analyses indicated that PI3K bound to the V-ATPase B subunit (VHA-B). Analysis of bimolecular fluorescence complementation in tobacco guard cells showed that PI3K interacted with VHA-B2 in the tonoplasts. Through the use of pharmacological and genetic tools, we found that PI3K and V-ATPase promoted vacuolar acidification and stomatal closure during leaf senescence. Vacuolar acidification was suppressed by the PIKfyve inhibitor in 35S:AtVPS34-YFP Arabidopsis during MeJA-induced leaf senescence, but the decrease was lower than that in YFP-labeled Arabidopsis. These results suggest that PI3K promotes V-ATPase activation and consequently induces vacuolar acidification and stomatal closure, thereby delaying MeJA-induced leaf senescence. PMID:26739232

  10. 7 CFR 5.2 - Marketing season average price data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... market Artichokes, asparagus, snap beans, broccoli, cabbage, cantaloupe, carrots, cauliflower, celery..., spinach, tomatoes, and watermelons. vegetables for processing Asparagus, lima beans, snap beans, beets...

  11. 7 CFR 5.2 - Marketing season average price data.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... market Artichokes, asparagus, snap beans, broccoli, cabbage, cantaloupe, carrots, cauliflower, celery..., spinach, tomatoes, and watermelons. vegetables for processing Asparagus, lima beans, snap beans, beets...

  12. Overexpression of spinach non-symbiotic hemoglobin in Arabidopsis resulted in decreased NO content and lowered nitrate and other abiotic stresses tolerance

    PubMed Central

    Bai, Xuegui; Long, Juan; He, Xiaozhao; Yan, Jinping; Chen, Xuanqin; Tan, Yong; Li, Kunzhi; Chen, Limei; Xu, Huini

    2016-01-01

    A class 1 non-symbiotic hemoglobin family gene, SoHb, was isolated from spinach. qRT-PCR showed that SoHb was induced by excess nitrate, polyethylene glycol, NaCl, H2O2, and salicylic acid. Besides, SoHb was strongly induced by application of nitric oxide (NO) donor, while was suppressed by NO scavenger, nitrate reductase inhibitor, and nitric oxide synthase inhibitor. Overexpression of SoHb in Arabidopsis resulted in decreased NO level and sensitivity to nitrate stress, as shown by reduced root length, fresh weight, the maximum photosystem II quantum ratio of variable to maximum fluorescence (Fv/Fm), and higher malondialdehyde contents. The activities and gene transcription of superoxide dioxidase, and catalase decreased under nitrate stress. Expression levels of RD22, RD29A, DREB2A, and P5CS1 decreased after nitrate treatment in SoHb-overexpressing plants, while increased in the WT plants. Moreover, SoHb-overexpressing plants showed decreased tolerance to NaCl and osmotic stress. In addition, the SoHb-overexpression lines showed earlier flower by regulating the expression of SOC, GI and FLC genes. Our results indicated that the decreasing NO content in Arabidopsis by overexpressing SoHb might be responsible for lowered tolerance to nitrate and other abiotic stresses. PMID:27211528

  13. Dynamics of vacuum-sealed, double-leaf partitions

    NASA Astrophysics Data System (ADS)

    Kavanaugh, Joshua Stephen

    The goal of this research is to investigate the feasibility and potential effectiveness of using vacuum-sealed, double-leaf partitions for applications in noise control. Substantial work has been done previously on double-leaf partitions where the acoustics of the inner chamber and mechanical vibrations of structural supports are passively and actively controlled. The work presented here is unique in that the proposed system aims to eliminate the need for active acoustic control of transmitted acoustic energy by removing all the air between the two panels of the double partition. Therefore, the only remaining energy paths would be along the boundary and at the points where there are intermediate structural supports connecting the two panels. The eventual goal of the research is to develop a high-loss double-leaf partition that simplifies active control by removing the need for control of the air cavity and channeling all the energy into discrete structural paths. The work presented here is a first step towards the goal of designing a high-loss, actively-controlled double-leaf partition with an air-evacuated inner chamber. One experiment is conducted to investigate the effects of various levels of vacuum on the response of a double-leaf partition whose panels are mechanically coupled only at the boundary. Another experiment is conducted which investigates the effect of changing the stiffness of an intermediate support coupling the two panels of a double-leaf partition in which a vacuum has been applied to the inner cavity. The available equipment was able to maintain a 99% vacuum between the panels. Both experiments are accompanied by analytical models used to investigate the importance of various dynamic parameters. Results show that the vacuum-sealed system shows some potential for increased transmission loss, primarily by the changing the natural frequencies of the double-leaf partition.

  14. In vitro Antioxidant and Pharmacognostic Studies of Leaf Extracts of Cajanus cajan (L.) Millsp.

    PubMed

    Mahitha, B; Archana, P; Ebrahimzadeh, Md H; Srikanth, K; Rajinikanth, M; Ramaswamy, N

    2015-01-01

    Cajanus cajan (L.) Millsp is one of the second most dietary legume crops. The leaf extracts may be used as a potential source of natural antioxidant. The ash values, extractive values, total phenolic and flavonoid content, in vitro antioxidant activity of various leaf extracts as well as anatomical investigation of Cajanus cajan were carried out. Physicochemical parameters such as total, acid-insoluble and water-soluble ash values and moisture content of the leaf powder of C. cajan were found to be 9.50%, 1.40 g/100 g, 4.15 g/100 g drug and 6.72%, respectively. Percent yield of acetone, aqueous, ethanol, ethyl acetate and chloroform leaf extracts were 9.0, 10.6, 13.75, 8.7 and 5.8 g/100 g, respectively. Significant amount of phenolic and flavonoid content were observed. The results of the antioxidant activity were found to be concentration-dependent. The IC50 values for DPPH assay determined for aqueous and ethanol extracts were 0.69 and 0.79 mg/ml, respectively. Reducing power is increased with increasing amount of concentration in both aqueous and ethanol leaf extracts. The highest hydroxyl radical scavenging activity reached up to 83.67% in aqueous and 78.75% in ethanol extracts and in phosphomolybdenum assay the aqueous extract showed strong antioxidant capacity up to 55.97 nM gallic acid equivalents/g. It was found that the aqueous extract possessed highest antioxidant activity in all the assays tested. The antioxidant characteristics of leaf extracts are possibly because of the presence of polyphenols. Microscopic study showed the presence of collenchyma, fibres, xylem, phloem, epidermis, trichomes, palisade tissue, basal sheath, pith and cortex in leaf, petiole and pulvinus.

  15. In vitro Antioxidant and Pharmacognostic Studies of Leaf Extracts of Cajanus cajan (L.) Millsp

    PubMed Central

    Mahitha, B.; Archana, P.; Ebrahimzadeh, MD. H.; Srikanth, K.; Rajinikanth, M.; Ramaswamy, N.

    2015-01-01

    Cajanus cajan (L.) Millsp is one of the second most dietary legume crops. The leaf extracts may be used as a potential source of natural antioxidant. The ash values, extractive values, total phenolic and flavonoid content, in vitro antioxidant activity of various leaf extracts as well as anatomical investigation of Cajanus cajan were carried out. Physicochemical parameters such as total, acid-insoluble and water-soluble ash values and moisture content of the leaf powder of C. cajan were found to be 9.50%, 1.40 g/100 g, 4.15 g/100 g drug and 6.72%, respectively. Percent yield of acetone, aqueous, ethanol, ethyl acetate and chloroform leaf extracts were 9.0, 10.6, 13.75, 8.7 and 5.8 g/100 g, respectively. Significant amount of phenolic and flavonoid content were observed. The results of the antioxidant activity were found to be concentration-dependent. The IC50 values for DPPH assay determined for aqueous and ethanol extracts were 0.69 and 0.79 mg/ml, respectively. Reducing power is increased with increasing amount of concentration in both aqueous and ethanol leaf extracts. The highest hydroxyl radical scavenging activity reached up to 83.67% in aqueous and 78.75% in ethanol extracts and in phosphomolybdenum assay the aqueous extract showed strong antioxidant capacity up to 55.97 nM gallic acid equivalents/g. It was found that the aqueous extract possessed highest antioxidant activity in all the assays tested. The antioxidant characteristics of leaf extracts are possibly because of the presence of polyphenols. Microscopic study showed the presence of collenchyma, fibres, xylem, phloem, epidermis, trichomes, palisade tissue, basal sheath, pith and cortex in leaf, petiole and pulvinus. PMID:26009649

  16. Oreochromis mossambicus diet supplementation with Psidium guajava leaf extracts enhance growth, immune, antioxidant response and resistance to Aeromonas hydrophila.

    PubMed

    Gobi, Narayanan; Ramya, Chinnu; Vaseeharan, Baskaralingam; Malaikozhundan, Balasubramanian; Vijayakumar, Sekar; Murugan, Kadarkarai; Benelli, Giovanni

    2016-11-01

    In this research, we focused on the efficacy of aqueous and ethanol leaf extracts of Psidium guajava L. (guava) based experimental diets on the growth, immune, antioxidant and disease resistance of tilapia, Oreochromis mossambicus following challenge with Aeromonas hydrophila. The experimental diets were prepared by mixing powdered (1, 5 and 10 mg/g) aqueous and ethanol extract of guava leaf with commercial diet. The growth (FW, FCR and SGR), non-specific cellular immune (myeloperoxidase activity, reactive oxygen activity and reactive nitrogen activity) humoral immune (complement activity, antiprotease, alkaline phosphatase activity and lysozyme activity) and antioxidant enzyme responses (SOD, GPX, and CAT) were examined after 30 days of post-feeding. A significant enhancement in the biochemical and immunological parameters of fish were observed fed with experimental diets compared to control. The dietary supplementation of P. guajava leaf extract powder for 30 days significantly reduced the mortality and increased the disease resistance of O. mossambicus following challenge with A. hydrophila at 50 μl (1 × 10 7  cells ml -1 ) compared to control after post-infection. The results suggest that the guava leaf extract could be used as a promising feed additive in aquaculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Geranyl acetate esterase controls and regulates the level of geraniol in lemongrass (Cymbopogon flexuosus Nees ex Steud.) mutant cv. GRL-1 leaves.

    PubMed

    Ganjewala, Deepak; Luthra, Rajesh

    2009-01-01

    Essential oil isolated from lemongrass (Cymbopogon flexuosus) mutant cv. GRL-1 leaves is mainly composed of geraniol (G) and geranyl acetate (GA). The proportion of G and GA markedly fluctuates during leaf development. The proportions of GA and G in the essential oil recorded at day 10 after leaf emergence were approximately 59% and approximately 33% respectively. However, the level of GA went down from approximately 59 to approximately 3% whereas the level of G rose from approximately 33 to approximately 91% during the leaf growth period from day 10 to day 50. However, the decline in the level of GA was most pronounced in the early (day 10 to day 30) stage of leaf growth. The trend of changes in the proportion of GA and G has clearly indicated the role of an esterase that must be involved in the conversion of GA to G during leaf development. We isolated an esterase from leaves of different ages that converts GA into G and has been given the name geranyl acetate esterase (GAE). The GAE activity markedly varied during the leaf development cycle; it was closely correlated with the monoterpene (GA and G) composition throughout leaf development. GAE appeared as several isoenzymes but only three (GAE-I, GAE-II, and GAE-III) of them had significant GA cleaving activity. The GAE isoenzymes pattern was greatly influenced by the leaf developmental stages and so their GA cleaving activities. Like the GAE activity, GAE isoenzyme patterns were also found to be consistent with the monoterpene (GA and G) composition. GAE had an optimum pH at 8.5 and temperature at 30 degrees C. Besides GAE, a compound with phosphatase activity capable of hydrolyzing geranyl diphosphate (GPP) to produce geraniol has also been isolated.

  18. Contribution of flavonoids to the overall radical scavenging activity of olive (Olea europaea L.) leaf polar extracts.

    PubMed

    Goulas, Vlassios; Papoti, Vassiliki T; Exarchou, Vassiliki; Tsimidou, Maria Z; Gerothanassis, Ioannis P

    2010-03-24

    The contribution of flavonoids to the overall radical scavenging activity of olive leaf polar extracts, known to be good sources of oleuropein related compounds, was examined. Off line and on line HPLC-DPPH(*) assays were employed, whereas flavonoid content was estimated colorimetrically. Individual flavonoid composition was first assessed by RP-HPLC coupled with diode array and fluorescence detectors and verified by LC-MS detection system. Olive leaf was found a robust source of flavonoids regardless sampling parameters (olive cultivar, leaf age or sampling date). Total flavonoids accounted for the 13-27% of the total radical scavenging activity assessed using the on line protocol. Luteolin 7-O-glucoside was one of the dominant scavengers (8-25%). Taking into consideration frequency of appearance the contribution of luteolin (3-13%) was considered important, too. Our findings support that olive leaf, except for oleuropein and related compounds, is also a stable source of bioactive flavonoids.

  19. Effect of orally administered betel leaf (Piper betle Linn.) on digestive enzymes of pancreas and intestinal mucosa and on bile production in rats.

    PubMed

    Prabhu, M S; Platel, K; Saraswathi, G; Srinivasan, K

    1995-10-01

    The influence of two varieties of betel leaf (Piper betle Linn.) namely, the pungent Mysore and non-pungent Ambadi, was examined on digestive enzymes of pancreas and intestinal mucosa and on bile secretion in experimental rats. The betel leaves were administered orally at two doses which were either comparable to human consumption level or 5 times this. The results indicated that while these betel leaves do not influence bile secretion and composition, they have a significant stimulatory influence on pancreatic lipase activity. Besides, the Ambadi variety of betel leaf has a positive stimulatory influence on intestinal digestive enzymes, especially lipase, amylase and disaccharidases. A slight lowering in the activity of these intestinal enzymes was seen when Mysore variety of betel leaf was administered, and this variety also had a negative effect on pancreatic amylase. Further, both the betel leaf varieties have shown decreasing influence on pancreatic trypsin and chymotrypsin activities.

  20. Screening of plant resources with anti-ice nucleation activity for frost damage prevention.

    PubMed

    Suzuki, Shingo; Fukuda, Satoshi; Fukushi, Yukiharu; Arakawa, Keita

    2017-11-01

    Previous studies have shown that some polyphenols have anti-ice nucleation activity (anti-INA) against ice-nucleating bacteria that contribute to frost damage. In the present study, leaf disk freezing assay, a test of in vitro application to plant leaves, was performed for the screening of anti-INA, which inhibits the ice nucleation activity of an ice-nucleating bacterium Erwinia ananas in water droplets on the leaf surfaces. The application of polyphenols with anti-INA, kaempferol 7-O-β-glucoside and (-)-epigallocatechin gallate, to the leaf disk freezing assay by cooling at -4--6 °C for 3 h, revealed that both the compounds showed anti-INAs against E. ananas in water droplets on the leaf surfaces. Further, this assay also revealed that the extracts of five plant leaves showed high anti-INA against E. ananas in water droplets on leaf surfaces, indicating that they are the candidate resources to protect crops from frost damage.

  1. The Distribution of Catalase Activity, Isozyme Protein, and Transcript in the Tissues of the Developing Maize Seedling 1

    PubMed Central

    Redinbaugh, Margaret G.; Sabre, Mara; Scandalios, John G.

    1990-01-01

    The catalase activity, CAT-2 and CAT-3 isozyme protein levels, and the steady-state mRNA levels for each of the three catalase genes were determined in the scutellum, root, epicotyl, and leaf of the developing maize (Zea mays L.) seedling. Catalase activity was highest in the scutellum, with 10-fold lower enzyme activity in the leaf and epicotyl. Very low levels of catalase activity were found in the root. The highest levels of CAT-2 protein were found in the scutellum, with about 10-fold lower levels in the green leaf. CAT-2 protein was present in trace amounts early in root development and no CAT-2 protein was detected in the epicotyl. Shortly after germination, CAT-3 protein was present at high levels in both the epicotyl and green leaf. With development, the amount of CAT-3 protein decreased slowly in the epicotyl and rapidly in the green leaf. Low levels of this isozyme were detected in the scutellum and root. The Cat1 transcript accumulated to low levels in all four tissues during the 14 day developmental period. High levels of the Cat2 transcript were found in the scutellum, with moderate levels of the mRNA in the green leaf. The Cat2 transcript levels were very low in the root and epicotyl. While the Cat3 mRNA level in the scutellum was low, high levels of the Cat3 transcript were detected in the root, epicotyl, and leaf. There was a positive correlation between the accumulation of a catalase isozyme and its transcript, indicating that the tissue specificity of maize catalase gene expression was regulated pretranslationally. Images Figure 3 Figure 4 PMID:16667285

  2. Effects of Aluminum Stress on Protective Enzyme Activity in Tie Guanyin leaves

    NASA Astrophysics Data System (ADS)

    Sun, JingWei; Du, NaiChen; Zhang, YunFeng

    2018-01-01

    The experiment was adopted to study the change of SOD, CAT and POD activity of Tie guanyin (new leaf and old leaf blade of different concentrations of aluminum stress; in this paper, 0 (CK), 40, 200, four gradients of 400mg/L concentration of Al3+ in acidic conditions, Tieguanyin tea leaf SOD, cat and POD activity changes. The results showed that high concentrations of aluminum stress on antioxidant enzyme system activity cannot continue to increase; at the same time showed that SOD is sensitive to aluminum toxicity concentration change, its sensitivity is higher than CAT and POD, SOD and CAT activity and the aging and decline of plant There was a positive correlation.

  3. Study on beta-galactosidase enzymatic activity of herbal yogurt.

    PubMed

    Chowdhury, Banani Ray; Chakraborty, Runu; Raychaudhuri, Utpal

    2008-03-01

    Different types of herbal yogurts were developed by mixing standardized milk with pretreated herbs, namely tulsi leaf (Ocimum sanctum), pudina leaf (Mentha arvensis) and coriander leaf (Coriandrum sativum), with leaves separately and a 1:1 (v/v) mixture of the strains of lactic starter cultures---Lactobacillus acidophilus (NCIM 2903) and Lactobacillus plantarum (NCIM 2083)-followed by incubation at 40 degrees C for 6 h. The beta-galactosidase enzymatic activity of the abovementioned herbal yogurts was determined and interestingly noted to exhibit higher enzymatic activity compared with the control yogurt (without any herbs). Among all herbal yogurts, tulsi yogurt had the maximum beta-galactosidase activity.

  4. Antibacterial and antifungal activities of Dracontomelon dao.

    PubMed

    Khan, M R; Omoloso, A D

    2002-07-01

    The crude methanolic extracts of the leaves, stem and root barks of Drancantomelon dao and their subsequent partitioning (petrol, dichloromethane, ethyl acetate, butanol) gave fractions which demonstrated a very good level of broad spectrum antibacterial activity. The dichloromethane and butanol fractions of the leaf were the most active. Only the leaf fractions had antifungal activity, particularly the dichloromethane and butanol.

  5. The butanol fraction of guava (Psidium cattleianum Sabine) leaf extract suppresses MMP-2 and MMP-9 expression and activity through the suppression of the ERK1/2 MAPK signaling pathway.

    PubMed

    Im, Inhwan; Park, Kyung-Ran; Kim, Sung-Moo; Kim, Chulwon; Park, Jeong Ha; Nam, Dongwoo; Jang, Hyeung-Jin; Shim, Bum Sang; Ahn, Kyoo Seok; Mosaddik, Ashik; Sethi, Gautam; Cho, Somi K; Ahn, Kwang Seok

    2012-01-01

    The leaf extract of guava (Psidium cattleianum Sabine) has traditionally been used for the treatment of diarrhea and diabetes in East Asia and other countries. Recently, the leaf extract has been employed in the therapy of cancer, bacterial infections, and inflammation in experimental models. However, the exact mechanisms of how guava leaf extract inhibits tumor metastasis and invasion are still unknown. In the present study, we investigated in detail the molecular mechanism(s) responsible for the potential antimetastatic and antiinvasive effects of the butanol fraction of guava leaf extract (GBF). Interestingly, we observed for the first time that GBF suppressed both matrix metalloproteinases (MMP)-9 and MMP-2 expression and activity in part through the downregulation of the ERK1/2 activation in lung cancer cells. Also, importantly, the major components of the GBF were identified as d-glucuronic acid, quercetin 3-glucuronide, loganin, and xanthyletin by LC-ESI-MS/MS. Collectively, our data indicate that the guava leaf could reduce the metastasis of lung cancer cells and therefore suggest that it could be advantageously used to control the metastatic process.

  6. Variation in contents of total phenolics and flavonoids and antioxidant activities in the leaves of 11 Eriobotrya species.

    PubMed

    Hong, Yanping; Lin, Shunquan; Jiang, Yueming; Ashraf, Muhammad

    2008-12-01

    Eriobotrya plants are known to have significant amounts of phenolics and flavonoids, and exhibit a strong antioxidant activity. Experiments were conducted to examine variation in the contents of total phenolics and flavonoids, and antioxidant activities in the leaves of 11 Eriobotrya species (Tibet loquat, Daduhe loquat, Hengchun loquat, Taiwan loquat, Oak leaf loquat, Bengal loquat, Fragrant loquat, Guangxi loquat, Obovate loquat, Big flower loquat, and common loquat, the last species include two materials, one is a cultivar 'Zaozhong 6', another is a wild tree). In these species, 'Zaozhong 6' loquat is a cultivar. The leaf extracts of 'Tibet', 'Obovate', 'Taiwan', 'Bengal' and 'Hengchun' loquats exhibited significantly higher contents of total flavonoids and total phenolics, compared with those of other species. Of these 11 species, the highest contents of total phenolics and total flavonoids were observed in 'Tibet' and 'Obovatae' loquats, respectively. The significantly stronger antioxidant abilities assessed by the DPPH radical scavenging activity and reducing power were obtained in the leaf extracts of 'Taiwan', 'Tibet', 'Bengal', 'Oak leaf', 'Hengchun' and 'Obovate' loquats, compared with the other species. In addition, significant correlations were found between the contents of total phenolics or flavonoids and DPPH radical scavenging activity/reducing power. This work indicates that the leaf extracts of the wild Eriobotrya species, 'Tibet', 'Obovatae', 'Taiwan', 'Bengal', 'Oak leaf' and 'Hengchun' loquats, exhibited significantly higher levels of total phenolics and flavonoids, and significantly stronger antioxidant activities, compared with the cultivated species, 'Zaozhong 6' loquat, which suggests that these wild species have a better utilization value.

  7. Enzymatic, antimicrobial and toxicity studies of the aqueous extract of Ananas comosus (pineapple) crown leaf.

    PubMed

    Dutta, Sangita; Bhattacharyya, Debasish

    2013-11-25

    Various parts of the plant pineapple (Ananas comosus) are used in traditional medicine worldwide for treatment of a number of diseases and disorders. In folk medicine, pineapple leaf extract was used as an antimicrobial, vermicide, purgative, emmenagoogue, abortifacient, anti-oedema and anti-inflammatory agent. Compared to the fruit and stem extracts of pineapple, information about its leaf extract is limited. The potential of pineapple crown leaf extract as an ethno-medicine has been evaluated in terms of its enzymatic activities related to wound healing, antimicrobial property and toxicity. Major protein components of the extract were revealed by 2-D gel electrophoresis followed by MS/MS analysis. Zymography, DQ-gelatin assay were performed to demonstrate proteolytic, fibrinolytic, gelatinase and collagenase activities. DNase and RNase activities were revealed from agarose gel electrophoresis. Antimicrobial activity was evaluated spectrophotometrically from growth inhibition. Sprague-Dawley rat model was used to measure acute and sub-acute toxicity of the extract by analyzing blood markers. The extract contains several proteins that were clustered under native condition. Proteomic studies indicated presence of fruit bromelain as major protein constituent of the extract. It showed nonspecific protease activity, gelatinolytic, collagenase, fibrinolytic, acid and alkaline phosphatase, peroxidase, DNase and RNase activities along with considerable anti-microbial property. The leaf extract did not induce any toxicity in rats after oral administration of acute and sub-acute doses. Pineapple leaf extract is nontoxic, contains enzymes related to damage tissue repairing, wound healing and possibly prevents secondary infections from microbial organisms. © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Advanced Life Support Food Subsystem Salad Crop Requirements

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele H.; Stevens, Irene; Swango, Beverly E.; Toerne, Mary E.; Lane, Helen W. (Technical Monitor)

    2002-01-01

    As the National Aeronautics and Space Administration (NASA) begins to look towards longer duration space flights, the importance of fresh foods and varied menu choices increases. Long duration space missions require development of both a Transit Food System and a Lunar or Planetary Food System. These two systems are intrinsically different since the first one will be utilized in the transit vehicle in microgravity conditions while the second will be used in conditions of partial gravity (hypogravity). The Transit Food System will consist of prepackaged food of extended shelf life. Microgravity imposes significant limitations on the ability of the crew to handle food and allows only for minimal processing. Salad crops will be available for the planetary mission. Supplementing the transit food system with salad crops is also being considered. These crops will include carrots, tomatoes, lettuce, radish, spinach, chard, cabbage, and onion. The crops will be incorporated in the menu along with the prepackaged food. The fresh tasting salad crops will provide variety, texture, and color in the menu. This variety should provide increased psychological benefit. Preliminary studies on spinach, tomatoes, and bok choy have been completed. Sensory and analytical tests, including color and moisture were conducted on the chamber grown crops and compared to store bought spinach, tomatoes, and bok choy. Preliminary studies of the appropriate serving sizes and number of servings per week have also been conducted.

  9. Risk assessment related to biogenic amines occurrence in ready-to-eat baby foods.

    PubMed

    Czajkowska-Mysłek, Anna; Leszczyńska, Joanna

    2017-07-01

    Potential adverse reactions among infants and young children could appear after consumption of food containing small amounts of bioactive amines. This study presents the first assessment of biogenic amines occurrence in ready-to-eat vegetable without/with fish, meat and fruit baby products intended for the youngest consumers. The biogenic amine profiles and quantities of 6 amines were evaluated in 68 commercial baby foods produced by 10 leading manufacturers available in Poland, using HPLC-APCI-MS method. The total amine contents in analyzed products were obtained in the range of 1283-101421 ng/g. The maximum level of histamine (2375 ng/g) was found in the sample with spinach, tyramine (1667 ng/g) in fruit sample with banana, and of di- and polyamines (1263-53416 ng/g) in samples containing green peas. The results of amine analysis in baby foods indicated the presence of food ingredients which may be necessary to remove (tuna, possibly spinach) or reduce the amount added (spinach, green peas), either reduce their use by infants under 12 months of age (beef). Special attention should also be given to control the consumption of fruit baby products containing banana (higher tyramine and putrescine level). On the basis of obtained results a potential %ARfD, and the BAI were also evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Popeye principle: selling child health in the first nutrition crisis.

    PubMed

    Lovett, Laura

    2005-10-01

    The cartoon character Popeye the Sailor was capable of superhuman feats of strength after eating a can of spinach. Popeye ate spinach because the association of spinach with strength was a product of the first national nutrition crisis in the United States: the 1920s fight against child malnutrition. Spanning the first three decades of the twentieth century, the malnutrition crisis arose from the confluence of many different events including the invention of nutrition science and new standards for height and weight; international food crises created by world war; the rise of consumerism, advertising, and new forms of mass media; and Progressive reformers' conviction that education was a key component of any solution. The history of the malnutrition crisis presented in this essay synthesizes disparate histories concerning advertising, public health, education, consumerism, philanthropy, and Progressive Era reform with original analysis of a major nutrition education program sponsored by the Commonwealth Fund in the 1920s. Because the character of Popeye came to embody one of the nutritional norms advocated in the 1920s, I refer to the influence of culturally constructed social norms on children's beliefs about health and nutrition as the Popeye Principle. The history of the malnutrition crisis demonstrates the importance of understanding the cultural and economic conditions surrounding childhood nutrition, the use and influence of numerical norms, and the mutually reinforcing influences on children's nutritional norms from their parents, peers, teachers, and culture.

  11. Net primary production and phenology on a southern Appalachian watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, F.P. Jr.; Monk, C.D.

    1977-01-01

    Net primary production (NPP) is an important function of plant communities which has not often been examined seasonally in a forested ecosystem. The major objective of the study was to measure above-ground NPP seasonally and relate it to phenological activity on a hardwood forest watershed at Coweeta Hydrologic Laboratory, North Carolina. NPP was estimated as the increase in biomass, estimated from regression equations on diameter. Diameter increases were measured by venier tree bands. Phenological observations were made on bud break, leaf emergence, flowering, mature fruit, leaf senescence, and leaf fall. The species studied intensively were Acer rubrum, Quercus prinus, Caryamore » glabra, Cornus florida, and Liriodendron tulipifera. Liriodendron was found to be the most productive species per individual, but Quercus prinus was the most productive per unit ground area. The total watershed estimate of aboveground NPP was 8,754 kg ha/sup -1/yr/sup -1/ and included 47.9 percent leaves, 33.2 percent wood, 7.8 percent bark, 4.8 percent reproductive tissues, 4.2 percent loss to consumers, and 2.1 percent twigs. Increases in leaf biomass were most rapid in the spring, but woody tissue production peaked in June and continued through August. Since leaf production peaked in the spring, the plants' photosynthetic machinery was activated early in the growing season to support woody tissue production, which followed the period of rapid leaf growth, and reproductive activity. Flowering occurred during the leaf expansion period except for Acer rubrum, which flowered before leaf emergence. Fruit maturation occurred during late summer to early fall, when there were no additional biomass increases. Acer rubrum was an exception as its fruit matured during the period of leaf expansion.« less

  12. Net primary production and phenology on a southern Appalachian watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, F.P. Jr.; Monk, C.D.

    1977-10-01

    Net primary production (NPP) is an important function of plant communities which has not often been examined seasonally in a forested ecosystem. The major objective of the study was to measure above-ground NPP seasonally and relate it to phenological activity on a hardwood forest watershed at Coweeta Hydrologic Laboratory, North Carolina. NPP was estimated as the increase in biomass, estimated from regression equations on diameter. Diameter increases were measured by vernier tree bands. Phenological observations were made on bud break, leaf emergence, flowering, mature fruit, leaf senescence, and leaf fall. The species studied intensively were Acer rubrum, Quercus prinus, Caryamore » glabra, Cornus florida, and Liriodendron tulipifera. Liriodendron was found to be the most productive species per individual, but Quercus prinus was the most productive per unit ground area. The total watershed estimate of aboveground NPP was 8,754 kg ha/sup -1/ yr/sup -1/ and included 47.9% leaves, 33.2% wood, 7.8% bark, 4.8% reproductive tissues, 4.2% loss to consumers, and 2.1% twigs. Increases in leaf biomass were most rapid in the spring, but woody tissue production peaked in June and continued through August. Since leaf production peaked in the spring, the plants' photosynthetic machinery was activated early in the growing season to support woody tissue production, which followed the period of rapid leaf growth, and reproductive activity. Flowering ocurred during the leaf expansion period except for Acer rubrum, which flowered before leaf emergence. Fruit maturation occurred during late summer to early fall, when there were no additional biomass increases. Acer rubrum was an exception as its fruit matured during the period of leaf expansion.« less

  13. Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream.

    PubMed

    Mora-Gómez, Juanita; Duarte, Sofia; Cássio, Fernanda; Pascoal, Cláudia; Romaní, Anna M

    2018-04-15

    Drought frequency and intensity in some temperate regions are forecasted to increase under the ongoing global change, which might expose permanent streams to intermittence and have severe repercussions on stream communities and ecosystem processes. In this study, we investigated the effect of drought duration on microbial decomposition of Populus nigra leaf litter in a temperate permanent stream (Oliveira, NW Portugal). Specifically, we measured the response of the structural (assemblage composition, bacterial and fungal biomass) and functional (leaf litter decomposition, extracellular enzyme activities (EEA), and fungal sporulation) parameters of fungal and bacterial communities on leaf litter exposed to emersion during different time periods (7, 14 and 21d). Emersion time affected microbial assemblages and litter decomposition, but the response differed among variables. Leaf decomposition rates and the activity of β-glucosidase, cellobiohydrolase and phosphatase were gradually reduced with increasing emersion time, while β-xylosidase reduction was similar when emersion last for 7 or more days, and the phenol oxidase reduction was similar at 14 and 21days of leaf emersion. Microbial biomass and fungal sporulation were reduced after 21days of emersion. The structure of microbial assemblages was affected by the duration of the emersion period. The shifts in fungal assemblages were correlated with a decreased microbial capacity to degrade lignin and hemicellulose in leaf litter exposed to emersion. Additionally, some resilience was observed in leaf litter mass loss, bacterial biomass, some enzyme activities and structure of fungal assemblages. Our study shows that drought can strongly alter structural and functional aspects of microbial decomposers. Therefore, the exposure of leaf litter to increasing emersion periods in temperate streams is expected to affect decomposer communities and overall decomposition of plant material by decelerating carbon cycling in streams. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Revisiting "Vegetables" to combat modern epidemic of imbalanced glucose homeostasis.

    PubMed

    Tiwari, Ashok Kumar

    2014-04-01

    Vegetables have been part of human food since prehistoric times and are considered nutritionally necessary and good for health. Vegetables are rich natural resource of biological antioxidants and possess capabilities of maintaining glucose homeostasis. When taken before starch-rich diet, juice also of vegetables such as ridge gourd, bottle gourd, ash gourd, chayote and juice of leaves of vegetables such as radish, Indian Dill, ajwain, tropical green amaranth, and bladder dock are reported to arrest significantly the rise in postprandial blood glucose level. Juice of vegetables such as ash gourd, squash gourd, and tropical green amaranth leaves are observed to tone-down sweet-beverages such as sucrose, fructose, and glucose-induced postprandial glycemic excursion. On the other hand, juice of egg-plant and juice of leaves of Ceylon spinach, Joyweed, and palak are reported to augment starch-induced postprandial glycemic excursion; and juice of leaves of Ceylon spinach, Joyweed, and radish supplement to the glucose-induced postprandial glycemia. Vegetables possess multifaceted antihyperglycemic activities such as inhibition of pancreatic α-amylase and intestinal α-glucosidase, inhibition of protein-tyrosine phosphatase 1β in liver and skeletal muscles, and insulin mimetic and secretagogue activities. Furthermore, they are also reported to influence polyol pathway in favor of reducing development of oxidative stress, and consequently the development of diabetic complications. In the wake of emergence of modern maladaptive diet-induced hyperglycemic epidemic therefore, vegetables may offer cost-effective dietary regimen to control diet-induced glycemic over load and future development of diabetes mellitus. However, for vegetables have been reported to do both, mitigate as well as supplement to the diet-induced postprandial glycemic load, care is required in selection of vegetables when considered as medicament.

  15. Revisiting “Vegetables” to combat modern epidemic of imbalanced glucose homeostasis

    PubMed Central

    Tiwari, Ashok Kumar

    2014-01-01

    Vegetables have been part of human food since prehistoric times and are considered nutritionally necessary and good for health. Vegetables are rich natural resource of biological antioxidants and possess capabilities of maintaining glucose homeostasis. When taken before starch-rich diet, juice also of vegetables such as ridge gourd, bottle gourd, ash gourd, chayote and juice of leaves of vegetables such as radish, Indian Dill, ajwain, tropical green amaranth, and bladder dock are reported to arrest significantly the rise in postprandial blood glucose level. Juice of vegetables such as ash gourd, squash gourd, and tropical green amaranth leaves are observed to tone-down sweet-beverages such as sucrose, fructose, and glucose-induced postprandial glycemic excursion. On the other hand, juice of egg-plant and juice of leaves of Ceylon spinach, Joyweed, and palak are reported to augment starch-induced postprandial glycemic excursion; and juice of leaves of Ceylon spinach, Joyweed, and radish supplement to the glucose-induced postprandial glycemia. Vegetables possess multifaceted antihyperglycemic activities such as inhibition of pancreatic α-amylase and intestinal α-glucosidase, inhibition of protein-tyrosine phosphatase 1β in liver and skeletal muscles, and insulin mimetic and secretagogue activities. Furthermore, they are also reported to influence polyol pathway in favor of reducing development of oxidative stress, and consequently the development of diabetic complications. In the wake of emergence of modern maladaptive diet-induced hyperglycemic epidemic therefore, vegetables may offer cost-effective dietary regimen to control diet-induced glycemic over load and future development of diabetes mellitus. However, for vegetables have been reported to do both, mitigate as well as supplement to the diet-induced postprandial glycemic load, care is required in selection of vegetables when considered as medicament. PMID:24991093

  16. [Comparison study on total flavonoid content and anti-free redical activity of the leaves of bamboo, phyllostachys nigra, and Ginkgo bilabo].

    PubMed

    Zhang, Ying; Wu, Xiao-qing; Yu, Zuo-yu

    2002-04-01

    To investigate the differences of total flavonoid (TF) content and antifree radical activity between the-leaves of bamboo and Gingo biloba, as well as their seasonal changes. Spectrophotometery and Chemiluminescence methods were adopted to determine TF and half inhibiting concentration (IC50) on active oxygen free radicals of the leaves of bamboo, phyllostachys nigra (Lodd. ex. Lindl.) Munro, and Ginkgo biloba. Two kinds of leaves were picked in the same plot at the same time monthly. The TF of bamboo leaf varied in the range of 0.67%-1.71% (in dry basis of leaf, below as same) throughout a year, the minimum apparing in June and the maximum in July, then going down obviously, and remaining at a much high lever during November to next April. However, the TF of Ginkgo bilabo leaf varied in 1.48%-2.49% during whole growing period, early April to late November. It ascended with the growth of leaf, reaching the top during June and July, the going down slowly, and finally another peak appeared before defoliation. The average IC50 values on O2-. and .OH of bamboo leaf were at 11.0 micrograms.mL-1 and 5.3 mg.mL-1, and Ginkgo biloba at 19.0 micrograms.mL-1 and 3.6 mg.mL-1, respectively. The TF content and anti-free radical activity the bamboo leaf are comparable with the leaf of ginkgo biloba, which is a kind of potential resources for natural antioxidant and free radical scavenger.

  17. Biologic Propensities and Phytochemical Profile of Vangueria madagascariensis J. F. Gmelin (Rubiaceae): An Underutilized Native Medicinal Food Plant from Africa

    PubMed Central

    Ramalingum, Nelvana; Mahomoodally, M. Fawzi

    2014-01-01

    Vangueria madagascariensis (VM), consumed for its sweet-sour fruits, is used as a biomedicine for the management of diabetes and bacterial infections in Africa. The study aims to assess the potential of VM on α-amylase, α-glucosidase, glucose movement, and antimicrobial activity. The antioxidant properties were determined by measuring the FRAP, iron chelating activity, and abilities to scavenge DPPH, HOCl, ∙OH, and NO radicals. Leaf decoction, leaf methanol, and unripe fruit methanol extracts were observed to significantly inhibit α-amylase. Active extracts against α-glucosidase were unripe fruit methanol, unripe fruit decoction, leaf decoction, and ripe fruit methanol, which were significantly lower than acarbose. Kinetic studies revealed a mixed noncompetitive type of inhibition. Leaf methanolic extract was active against S. aureus and E. coli. Total phenolic content showed a strong significant positive correlation (r = 0.88) with FRAP. Methanolic leaf extract showed a more efficient NO scavenging potential and was significantly lower than ascorbic acid. Concerning ∙OH-mediated DNA degradation, only the methanol extracts of leaf, unripe fruit, and ripe fruit had IC50 values which were significantly lower than α-tocopherol. Given the dearth of information on the biologic propensities of VM, this study has established valuable primary information which has opened new perspectives for further pharmacological research. PMID:24812627

  18. Antiproliferative activity of guava leaf extract via inhibition of prostaglandin endoperoxide H synthase isoforms.

    PubMed

    Kawakami, Yuki; Nakamura, Tomomi; Hosokawa, Tomoko; Suzuki-Yamamoto, Toshiko; Yamashita, Hiromi; Kimoto, Masumi; Tsuji, Hideaki; Yoshida, Hideki; Hada, Takahiko; Takahashi, Yoshitaka

    2009-01-01

    Prostaglandin endoperoxide H synthase (PGHS) is a key enzyme for the synthesis of prostaglandins (PGs) which play important roles in inflammation and carcinogenesis. Because the extract from Psidium guajava is known to have a variety of beneficial effects on our body including the anti-inflammatory, antioxidative and antiproliferative activities, we investigated whether the extract inhibited the catalytic activity of the two PGHS isoforms using linoleic acid as an alternative substrate. The guava leaf extract inhibited the cyclooxygenase reaction of recombinant human PGHS-1 and PGHS-2 as assessed by conversion of linoleic acid to 9- and 13-hydroxyoctadecadienoic acids (HODEs). The guava leaf extract also inhibited the PG hydroperoxidase activity of PGHS-1, which was not affected by nonsteroidal anti-inflammatory drugs (NSAIDs). Quercetin which was one of the major components not only inhibited the cyclooxygenase activity of both isoforms but also partially inhibited the PG hydroperoxidase activity. Overexpression of human PGHS-1 and PGHS-2 in the human colon carcinoma cells increased the DNA synthesis rate as compared with mock-transfected cells which did not express any isoforms. The guava leaf extract not only inhibited the PGE(2) synthesis but also suppressed the DNA synthesis rate in the PGHS-1- and PGHS-2-expressing cells to the same level as mock-transfected cells. These results demonstrate the antiproliferative activity of the guava leaf extract which is at least in part caused by inhibition of the catalytic activity of PGHS isoforms.

  19. A potential oral anticancer drug candidate, Moringa oleifera leaf extract, induces the apoptosis of human hepatocellular carcinoma cells

    PubMed Central

    JUNG, IL LAE; LEE, JU HYE; KANG, SE CHAN

    2015-01-01

    It has previously been reported that cold water-extracts of Moringa oleifera leaf have anticancer activity against various human cancer cell lines, including non-small cell lung cancer. In the present study, the anticancer activity of M. oleifera leaf extracts was investigated in human hepatocellular carcinoma HepG2 cells. By the analysis of apoptotic signals, including the induction of caspase or poly(ADP-ribose) polymerase cleavage, and the Annexin V and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays, it was demonstrated that M. oleifera leaf extracts induce the apoptosis of HepG2 cells. In the hollow fiber assay, oral administration of the leaf extracts significantly reduced (44–52%) the proliferation of the HepG2 cells and A549 non-small cell lung cancer cells. These results support the potential of soluble extracts of M. oleifera leaf as orally administered therapeutics for the treatment of human liver and lung cancers. PMID:26622717

  20. Active suppression of a leaf meristem orchestrates determinate leaf growth

    PubMed Central

    Alvarez, John Paul; Furumizu, Chihiro; Efroni, Idan; Eshed, Yuval; Bowman, John L

    2016-01-01

    Leaves are flat determinate organs derived from indeterminate shoot apical meristems. The presence of a specific leaf meristem is debated, as anatomical features typical of meristems are not present in leaves. Here we demonstrate that multiple NGATHA (NGA) and CINCINNATA-class-TCP (CIN-TCP) transcription factors act redundantly, shortly after leaf initiation, to gradually restrict the activity of a leaf meristem in Arabidopsis thaliana to marginal and basal domains, and that their absence confers persistent marginal growth to leaves, cotyledons and floral organs. Following primordia initiation, the restriction of the broadly acting leaf meristem to the margins is mediated by the juxtaposition of adaxial and abaxial domains and maintained by WOX homeobox transcription factors, whereas other marginal elaboration genes are dispensable for its maintenance. This genetic framework parallels the morphogenetic program of shoot apical meristems and may represent a relic of an ancestral shoot system from which seed plant leaves evolved. DOI: http://dx.doi.org/10.7554/eLife.15023.001 PMID:27710768

Top