Science.gov

Sample records for activated stellate cells

  1. (+)-Catechin attenuates activation of hepatic stellate cells.

    PubMed

    Bragança de Moraes, Cristina Machado; Bitencourt, Shanna; de Mesquita, Fernanda Cristina; Mello, Denizar; de Oliveira, Leticia Paranhos; da Silva, Gabriela Viegas; Lorini, Vinicius; Caberlon, Eduardo; de Souza Basso, Bruno; Schmid, Julia; Ferreira, Gabriela Acevedo; de Oliveira, Jarbas Rodrigues

    2014-04-01

    (+)-Catechin is a type of catechin present in large amounts in açaí fruits and cocoa seeds. Besides its antioxidant and anti-inflammatory activities, little is known about its effects in the liver, especially during hepatic fibrosis. We report here the effects of (+)-catechin on hepatic stellate cells. (+)-Catechin induced quiescent phenotype in GRX cells, along with an increase in lipid droplets. Proliferator-activated receptor γ mRNA expression was upregulated, whereas type I collagen mRNA expression was downregulated. Pro-inflammatory cytokines were not influenced by (+)-catechin, whereas the levels of interleukin 10 were significantly increased. The data provide evidence that (+)-catechin can reduce hepatic stellate cell activation. PMID:24353036

  2. Senescence of activated stellate cells limits liver fibrosis

    PubMed Central

    Krizhanovsky, Valery; Yon, Monica; Dickins, Ross A.; Hearn, Stephen; Simon, Janelle; Miething, Cornelius; Yee, Herman; Zender, Lars; Lowe, Scott W.

    2011-01-01

    Summary Cellular senescence acts as a potent mechanism of tumor suppression; however, its functional contribution to non-cancer pathologies has not been examined. Here we show that senescent cells accumulate in murine livers treated to produce fibrosis, a precursor pathology to cirrhosis. The senescent cells are derived primarily from activated hepatic stellate cells, which initially proliferate in response to liver damage and produce the extracellular matrix deposited in the fibrotic scar. In mice lacking key senescence regulators, stellate cells continue to proliferate, leading to excessive liver fibrosis. Furthermore, senescent activated stellate cells exhibit gene expression profile consistent with cell cycle exit, reduced secretion of extracellular matrix components, enhanced secretion of extracellular matrix degrading enzymes, and enhanced immune surveillance. Accordingly natural killer cells preferentially kill senescent activated stellate cells in vitro and in vivo, thereby facilitating the resolution of fibrosis. Therefore, the senescence program limits the fibrogenic response to acute tissue damage. PMID:18724938

  3. Epigenetic Changes during Hepatic Stellate Cell Activation

    PubMed Central

    Götze, Silke; Schumacher, Eva C.; Kordes, Claus; Häussinger, Dieter

    2015-01-01

    Background and Aims Hepatic stellate cells (HSC), which can participate in liver regeneration and fibrogenesis, have recently been identified as liver-resident mesenchymal stem cells. During their activation HSC adopt a myofibroblast-like phenotype accompanied by profound changes in the gene expression profile. DNA methylation changes at single genes have been reported during HSC activation and may participate in the regulation of this process, but comprehensive DNA methylation analyses are still missing. The aim of the present study was to elucidate the role of DNA methylation during in vitro activation of HSC. Methods and Results The analysis of DNA methylation changes by antibody-based assays revealed a strong decrease in the global DNA methylation level during culture-induced activation of HSC. To identify genes which may be regulated by DNA methylation, we performed a genome-wide Methyl-MiniSeq EpiQuest sequencing comparing quiescent and early culture-activated HSC. Approximately 400 differentially methylated regions with a methylation change of at least 20% were identified, showing either hypo- or hypermethylation during activation. Further analysis of selected genes for DNA methylation and expression were performed revealing a good correlation between DNA methylation changes and gene expression. Furthermore, global DNA demethylation during HSC activation was investigated by 5-bromo-2-deoxyuridine assay and L-mimosine treatment showing that demethylation was independent of DNA synthesis and thereby excluding a passive DNA demethylation mechanism. Conclusions In summary, in vitro activation of HSC initiated strong DNA methylation changes, which were associated with gene regulation. These results indicate that epigenetic mechanisms are important for the control of early HSC activation. Furthermore, the data show that global DNA demethylation during activation is based on an active DNA demethylation mechanism. PMID:26065684

  4. Mitochondrial uncouplers inhibit hepatic stellate cell activation

    PubMed Central

    2012-01-01

    Background Mitochondrial dysfunction participates in the progression of several pathologies. Although there is increasing evidence for a mitochondrial role in liver disease, little is known about its contribution to hepatic stellate cell (HSC) activation. In this study we investigated the role of mitochondrial activity through mild uncoupling during in vitro activation of HSCs. Methods Cultured primary human and mouse HSCs were treated with the chemical uncouplers FCCP and Valinomycin. ATP levels were measured by luciferase assay and production of reactive oxygen species was determined using the fluorescent probe DCFH-DA. Possible cytotoxicity by uncoupler treatment was evaluated by caspase 3/7 activity and cytoplasmic protease leakage. Activation of HSCs and their response to the pro-fibrogenic cytokine TGF-β was evaluated by gene expression of activation markers and signal mediators using RT-qPCR. Proliferation was measured by incorporation of EdU and protein expression of α-smooth muscle actin was analyzed by immunocytochemistry and western blot. Results FCCP and Valinomycin treatment mildly decreased ATP and reactive oxygen species levels. Both uncouplers increased the expression of mitochondrial genes such as Tfam and COXIV while inducing morphological features of quiescent mouse HSCs and abrogating TGF-β signal transduction. Mild uncoupling reduced HSC proliferation and expression of pro-fibrogenic markers of mouse and human HSCs. Conclusions Mild mitochondrial uncoupling inhibits culture-induced HSC activation and their response to pro-fibrogenic cytokines like TGF-β. These results therefore suggest mitochondrial uncoupling of HSCs as a strategy to reduce progression of liver fibrosis. PMID:22686625

  5. Inhibitory effect of oestradiol on activation of rat hepatic stellate cells in vivo and in vitro

    PubMed Central

    Shimizu, I; Mizobuchi, Y; Yasuda, M; Shiba, M; Ma, Y; Horie, T; Liu, F; Ito, S

    1999-01-01

    Background—Hepatic stellate cells play a key role in the pathogenesis of hepatic fibrosis. 
Aims—To examine the inhibitory effect of oestradiol on stellate cell activation. 
Methods—In vivo, hepatic fibrosis was induced in rats by dimethylnitrosamine or pig serum. In vitro, rat stellate cells were activated by contact with plastic dishes resulting in their transformation into myofibroblast-like cells. 
Results—In the dimethylnitrosamine and pig serum models, treatment with oestradiol at gestation related doses resulted in a dose dependent suppression of hepatic fibrosis with restored content of hepatic retinyl palmitate, reduced collagen content, lower areas of stellate cells which express α smooth muscle actin (α-SMA) and desmin, and lower procollagen type I and III mRNA levels in the liver. In cultured stellate cells, oestradiol inhibited type I collagen production, α-SMA expression, and cell proliferation. These findings suggest that oestradiol is a potent inhibitor of stellate cell transformation. 
Conclusion—The antifibrogenic role of oestradiol in the liver may contribute to the sex associated differences in the progression from hepatic fibrosis to cirrhosis. 

 Keywords: hepatic stellate cells; hepatic fibrosis; oestradiol; α smooth muscle actin; retinyl palmitate PMID:9862839

  6. Adiponectin Regulation of Stellate Cell Activation via PPARγ-Dependent and -Independent Mechanisms

    PubMed Central

    Shafiei, Mahnoush S.; Shetty, Shoba; Scherer, Philipp E.; Rockey, Don C.

    2011-01-01

    In this study, we elucidated the mechanism by which adiponectin modulates hepatic stellate cell activation and fibrogenesis. Adiponectin-overexpressing transgenic mice receiving thioacetamide were resistant to fibrosis, compared with controls. In contrast, adiponectin-null animals developed severe fibrosis. Expression of collagen α1(I) and α-smooth muscle actin (α-SMA) mRNAs were significantly lower in adiponectin-overexpressing mice, compared with controls. In wild-type stellate cells exposed to a lentivirus encoding adiponectin, expression of peroxisome proliferator-activated receptor-γ (PPARγ), SREBP1c, and CEBPα mRNAs was significantly increased (3.2-, 4.1-, and 2.2-fold, respectively; n = 3; P < 0.05, adiponectin virus versus control), consistent with possible activation of an adipogenic transcriptional program. Troglitazone, a PPARγ agonist, strongly suppressed up-regulation of collagen α1(I) and α-SMA mRNA in stellate cells isolated from wild-type mice; however, stellate cells from adiponectin-null animals failed to respond to troglitazone. Furthermore, in isolated stellate cells in which PPARγ was depleted using an adenovirus-Cre-recombinase system and in which adiponectin was also overexpressed, collagen α1(I) and α-SMA were significantly inhibited. We conclude that the PPARγ effect on stellate cell activation and the fibrogenic cascade appears to be adiponectin-dependent; however, the inhibitory effect of adiponectin on stellate cell activation was not dependent on PPARγ, suggesting the presence of PPARγ-dependent as well as independent pathways in stellate cells. PMID:21641391

  7. Pharmacological Intervention in Hepatic Stellate Cell Activation and Hepatic Fibrosis

    PubMed Central

    Schon, Hans-Theo; Bartneck, Matthias; Borkham-Kamphorst, Erawan; Nattermann, Jacob; Lammers, Twan; Tacke, Frank; Weiskirchen, Ralf

    2016-01-01

    The activation and transdifferentiation of hepatic stellate cells (HSCs) into contractile, matrix-producing myofibroblasts (MFBs) are central events in hepatic fibrogenesis. These processes are driven by autocrine- and paracrine-acting soluble factors (i.e., cytokines and chemokines). Proof-of-concept studies of the last decades have shown that both the deactivation and removal of hepatic MFBs as well as antagonizing profibrogenic factors are in principle suitable to attenuate ongoing hepatic fibrosis. Although several drugs show potent antifibrotic activities in experimental models of hepatic fibrosis, there is presently no effective pharmaceutical intervention specifically approved for the treatment of liver fibrosis. Pharmaceutical interventions are generally hampered by insufficient supply of drugs to the diseased liver tissue and/or by adverse effects as a result of affecting non-target cells. Therefore, targeted delivery systems that bind specifically to receptors solely expressed on activated HSCs or transdifferentiated MFBs and delivery systems that can improve drug distribution to the liver in general are urgently needed. In this review, we summarize current strategies for targeted delivery of drugs to the liver and in particular to pro-fibrogenic liver cells. The applicability and efficacy of sequestering molecules, selective protein carriers, lipid-based drug vehicles, viral vectors, transcriptional targeting approaches, therapeutic liver- and HSC-specific nanoparticles, and miRNA-based strategies are discussed. Some of these delivery systems that had already been successfully tested in experimental animal models of ongoing hepatic fibrogenesis are expected to translate into clinically useful therapeutics specifically targeting HSCs. PMID:26941644

  8. Gene regulation in hepatic stellate cell.

    PubMed

    Lang, A; Brenner, D A

    1999-03-01

    Hepatic stellate cells are now recognized as the major source of extracellular matrix in hepatic fibrosis. Following liver injury the hepatic stellate cell changes from a quiescent to an activated cell. The activation process includes an increased proliferation rate, a phenotypic change to a myofibroblast-like cell, loss of vitamin A stores, increased extra-cellular matrix protein synthesis and contractility. Furthermore, hepatic stellate cells have been implicated in hepatic inflammation through their ability to secrete cytokines and chemokines. Here, we review the literature on the molecular pathogenesis of hepatic stellate cells activation with emphasis on the most recent findings. The reviewed topics include transcriptional and post-transcriptional regulation of the genes encoding type I collagen in hepatic stellate cells; the role of the transcription factor nuclear factor Kappa B in the hepatic stellate cell activation; focal adhesion kinase and integrin-mediated signal transduction in hepatic stellate cell, and apoptosis in hepatic stellate cells. New insight into hepatic stellate cell activation and death may lead to the development of novel therapies for hepatic fibrosis. PMID:10363203

  9. Antifibrotic activity of coumarins from Cnidium monnieri fruits in HSC-T6 hepatic stellate cells.

    PubMed

    Shin, Eunjin; Lee, Chul; Sung, Sang Hyun; Kim, Young Choong; Hwang, Bang Yeon; Lee, Mi Kyeong

    2011-04-01

    The CHCl(3) fraction of Cnidium monnieri fruits significantly inhibited the proliferation of hepatic stellate cells in an in-vitro assay system employing HSC-T6 hepatic stellate cell lines. Activity-guided fractionation of the CHCl(3) fraction of C. monnieri led to the isolation of ten coumarins: osthol (1), meranzin (2), auraptenol (3), meranzin hydrate (4), 7-hydroxy-8-methoxy coumarin (5), imperatorin (6), xanthotoxol (7), xanthotoxin (8), bergapten (9) and isopimpinellin (10). Of these, compounds 1 and 6 significantly inhibited proliferation of HSCs in a time- and concentration-dependent manner. In addition, compounds 1 and 6 significantly reduced collagen content in HSC-T6 cells. PMID:21082271

  10. Capsaicin modulates proliferation, migration, and activation of hepatic stellate cells.

    PubMed

    Bitencourt, Shanna; Mesquita, Fernanda; Basso, Bruno; Schmid, Júlia; Ferreira, Gabriela; Rizzo, Lucas; Bauer, Moises; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis; Mannaerts, Inge; van Grunsven, Leo Adrianus; Oliveira, Jarbas

    2014-03-01

    Capsaicin, the active component of chili pepper, has been reported to have antiproliferative and anti-inflammatory effects on a variety of cell lines. In the current study, we aimed to investigate the effects of capsaicin during HSC activation and maintenance. Activated and freshly isolated HSCs were treated with capsaicin. Proliferation was measured by incorporation of EdU. Cell cycle arrest and apoptosis were investigated using flow cytometry. The migratory response to chemotactic stimuli was evaluated by a modified Boyden chamber assay. Activation markers and inflammatory cytokines were determined by qPCR, immunocytochemistry, and flow cytometry. Our results show that capsaicin reduces HSC proliferation, migration, and expression of profibrogenic markers of activated and primary mouse HSCs. In conclusion, the present study shows that capsaicin modulates proliferation, migration, and activation of HSC in vitro. PMID:23955514

  11. Oxidative stress plays a role in high glucose-induced activation of pancreatic stellate cells

    SciTech Connect

    Ryu, Gyeong Ryul; Lee, Esder; Chun, Hyun-Ji; Yoon, Kun-Ho; Ko, Seung-Hyun; Ahn, Yu-Bae; Song, Ki-Ho

    2013-09-20

    Highlights: •High glucose increased production of reactive oxygen species in cultured pancreatic stellate cells. •High glucose facilitated the activation of these cells. •Antioxidant treatment attenuated high glucose-induced activation of these cells. -- Abstract: The activation of pancreatic stellate cells (PSCs) is thought to be a potential mechanism underlying islet fibrosis, which may contribute to progressive β-cell failure in type 2 diabetes. Recently, we demonstrated that antioxidants reduced islet fibrosis in an animal model of type 2 diabetes. However, there is no in vitro study demonstrating that high glucose itself can induce oxidative stress in PSCs. Thus, PSCs were isolated and cultured from Sprague Dawley rats, and treated with high glucose for 72 h. High glucose increased the production of reactive oxygen species. When treated with high glucose, freshly isolated PSCs exhibited myofibroblastic transformation. During early culture (passage 1), PSCs treated with high glucose contained an increased number of α-smooth muscle actin-positive cells. During late culture (passages 2–5), PSCs treated with high glucose exhibited increases in cell proliferation, the expression of fibronectin and connective tissue growth factor, release of interleukin-6, transforming growth factor-β and collagen, and cell migration. Finally, the treatment of PSCs with high glucose and antioxidants attenuated these changes. In conclusion, we demonstrated that high glucose increased oxidative stress in primary rat PSCs, thereby facilitating the activation of these cells, while antioxidant treatment attenuated high glucose-induced PSC activation.

  12. Antiproliferative and cytotoxic effects of purple pitanga (Eugenia uniflora L.) extract on activated hepatic stellate cells.

    PubMed

    Denardin, Cristiane C; Parisi, Mariana M; Martins, Leo A M; Terra, Silvia R; Borojevic, Radovan; Vizzotto, Márcia; Perry, Marcos L S; Emanuelli, Tatiana; Guma, Fátima T C R

    2014-01-01

    The presence of phenolic compounds in fruit- and vegetable-rich diets has attracted researchers' attention due to their health-promoting effects. The objective of this study was to evaluate the effects of purple pitanga (Eugenia uniflora L.) extract on cell proliferation, viability, mitochondrial membrane potential, cell death and cell cycle in murine activated hepatic stellate cells (GRX). Cell viability by 3-(4,5-dimethylthiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was significantly decreased on cells treated with 50 and 100 µg ml(-1) of purple pitanga extract for 48 and 72 h, and the percentage of dead cell stained with 7-amino-actinomycin D was significantly higher in treated cells. The reduction of cell proliferation was dose dependent, and we also observed alterations on cell cycle progression. At all times studied, GRX cells treated with 50 and 100 µg ml(-1) of purple pitanga showed a significant reduction in cellular mitochondrial content as well as a decrease in mitochondrial membrane potential. Furthermore, our results indicated that purple pitanga extract induces early and late apoptosis/necrosis and necrotic death in GRX cells. This is the first report describing the antiproliferative, cytotoxic and apoptotic activity for E. uniflora fruits in hepatic stellate cells. The present study provides a foundation for the prevention and treatment of liver fibrosis, and more studies will be carried to elucidate this effect. PMID:23475531

  13. Suppression of hepatic stellate cell activation by microRNA-29b

    SciTech Connect

    Sekiya, Yumiko; Ogawa, Tomohiro; Yoshizato, Katsutoshi; Ikeda, Kazuo; Kawada, Norifumi

    2011-08-19

    Highlights: {yields} Expression of miR-29b was found to be down-regulated during the activation of hepatic stellate cells in primary culture. {yields} Transfection of a miR-29b precursor markedly attenuated the expression of Col1a1 and Col1a2 mRNAs. {yields} It blunted the increased expression of {alpha}-SMA, DDR2, FN1, ITGB1, and PDGFR-b mRNAs essential for stellate cell activation. {yields} miR-29b overexpression led stellate cells to remain in a quiescent state, as evidenced by their star-like morphology. {yields} miR-29b overexpression suppressed the expression of c-fos mRNA. -- Abstract: MicroRNAs (miRNAs) participate in the regulation of cellular functions including proliferation, apoptosis, and migration. It has been previously shown that the miR-29 family is involved in regulating type I collagen expression by interacting with the 3'UTR of its mRNA. Here, we investigated the roles of miR-29b in the activation of mouse primary-cultured hepatic stellate cells (HSCs), a principal collagen-producing cell in the liver. Expression of miR-29b was found to be down-regulated during HSC activation in primary culture. Transfection of a miR-29b precursor markedly attenuated the expression of Col1a1 and Col1a2 mRNAs and additionally blunted the increased expression of {alpha}-SMA, DDR2, FN1, ITGB1, and PDGFR-{beta}, which are key genes involved in the activation of HSCs. Further, overexpression of miR-29b led HSCs to remain in a quiescent state, as evidenced by their quiescent star-like cell morphology. Although phosphorylation of FAK, ERK, and Akt, and the mRNA expression of c-jun was unaffected, miR-29b overexpression suppressed the expression of c-fos mRNA. These results suggested that miR-29b is involved in the activation of HSCs and could be a candidate molecule for suppressing their activation and consequent liver fibrosis.

  14. Class II HDAC Inhibition Hampers Hepatic Stellate Cell Activation by Induction of MicroRNA-29

    PubMed Central

    Mannaerts, Inge; Eysackers, Nathalie; Onyema, Oscar O.; Van Beneden, Katrien; Valente, Sergio; Mai, Antonello; Odenthal, Margarete; van Grunsven, Leo A.

    2013-01-01

    Background The conversion of a quiescent vitamin A storing hepatic stellate cell (HSC) to a matrix producing, contractile myofibroblast-like activated HSC is a key event in the onset of liver disease following injury of any aetiology. Previous studies have shown that class I histone deacetylases (HDACs) are involved in the phenotypical changes occurring during stellate cell activation in liver and pancreas. Aims In the current study we investigate the role of class II HDACs during HSC activation. Methods We characterized the expression of the class II HDACs freshly isolated mouse HSCs. We inhibited HDAC activity by selective pharmacological inhibition with MC1568, and by repressing class II HDAC gene expression using specific siRNAs. Results Inhibition of HDAC activity leads to a strong reduction of HSC activation markers α-SMA, lysyl oxidase and collagens as well as an inhibition of cell proliferation. Knock down experiments showed that HDAC4 contributes to HSC activation by regulating lysyl oxidase expression. In addition, we observed a strong up regulation of miR-29, a well-known anti-fibrotic miR, upon treatment with MC1568. Our in vivo work suggests that a successful inhibition of class II HDACs could be promising for development of future anti-fibrotic compounds. Conclusions In conclusion, the use of MC1568 has enabled us to identify a role for class II HDACs regulating miR-29 during HSC activation. PMID:23383282

  15. Serum Amyloid A Induces Inflammation, Proliferation and Cell Death in Activated Hepatic Stellate Cells

    PubMed Central

    Siegmund, Sören V.; Schlosser, Monika; Schildberg, Frank A.; Seki, Ekihiro; De Minicis, Samuele; Uchinami, Hiroshi; Kuntzen, Christian; Knolle, Percy A.; Strassburg, Christian P.; Schwabe, Robert F.

    2016-01-01

    Serum amyloid A (SAA) is an evolutionary highly conserved acute phase protein that is predominantly secreted by hepatocytes. However, its role in liver injury and fibrogenesis has not been elucidated so far. In this study, we determined the effects of SAA on hepatic stellate cells (HSCs), the main fibrogenic cell type of the liver. Serum amyloid A potently activated IκB kinase, c-Jun N-terminal kinase (JNK), Erk and Akt and enhanced NF-κB-dependent luciferase activity in primary human and rat HSCs. Serum amyloid A induced the transcription of MCP-1, RANTES and MMP9 in an NF-κB- and JNK-dependent manner. Blockade of NF-κB revealed cytotoxic effects of SAA in primary HSCs with signs of apoptosis such as caspase 3 and PARP cleavage and Annexin V staining. Serum amyloid A induced HSC proliferation, which depended on JNK, Erk and Akt activity. In primary hepatocytes, SAA also activated MAP kinases, but did not induce relevant cell death after NF-κB inhibition. In two models of hepatic fibrogenesis, CCl4 treatment and bile duct ligation, hepatic mRNA levels of SAA1 and SAA3 were strongly increased. In conclusion, SAA may modulate fibrogenic responses in the liver in a positive and negative fashion by inducing inflammation, proliferation and cell death in HSCs. PMID:26937641

  16. Serum Amyloid A Induces Inflammation, Proliferation and Cell Death in Activated Hepatic Stellate Cells.

    PubMed

    Siegmund, Sören V; Schlosser, Monika; Schildberg, Frank A; Seki, Ekihiro; De Minicis, Samuele; Uchinami, Hiroshi; Kuntzen, Christian; Knolle, Percy A; Strassburg, Christian P; Schwabe, Robert F

    2016-01-01

    Serum amyloid A (SAA) is an evolutionary highly conserved acute phase protein that is predominantly secreted by hepatocytes. However, its role in liver injury and fibrogenesis has not been elucidated so far. In this study, we determined the effects of SAA on hepatic stellate cells (HSCs), the main fibrogenic cell type of the liver. Serum amyloid A potently activated IκB kinase, c-Jun N-terminal kinase (JNK), Erk and Akt and enhanced NF-κB-dependent luciferase activity in primary human and rat HSCs. Serum amyloid A induced the transcription of MCP-1, RANTES and MMP9 in an NF-κB- and JNK-dependent manner. Blockade of NF-κB revealed cytotoxic effects of SAA in primary HSCs with signs of apoptosis such as caspase 3 and PARP cleavage and Annexin V staining. Serum amyloid A induced HSC proliferation, which depended on JNK, Erk and Akt activity. In primary hepatocytes, SAA also activated MAP kinases, but did not induce relevant cell death after NF-κB inhibition. In two models of hepatic fibrogenesis, CCl4 treatment and bile duct ligation, hepatic mRNA levels of SAA1 and SAA3 were strongly increased. In conclusion, SAA may modulate fibrogenic responses in the liver in a positive and negative fashion by inducing inflammation, proliferation and cell death in HSCs. PMID:26937641

  17. Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation

    NASA Astrophysics Data System (ADS)

    Caliari, Steven R.; Perepelyuk, Maryna; Cosgrove, Brian D.; Tsai, Shannon J.; Lee, Gi Yun; Mauck, Robert L.; Wells, Rebecca G.; Burdick, Jason A.

    2016-02-01

    Tissue fibrosis contributes to nearly half of all deaths in the developed world and is characterized by progressive matrix stiffening. Despite this, nearly all in vitro disease models are mechanically static. Here, we used visible light-mediated stiffening hydrogels to investigate cell mechanotransduction in a disease-relevant system. Primary hepatic stellate cell-seeded hydrogels stiffened in situ at later time points (following a recovery phase post-isolation) displayed accelerated signaling kinetics of both early (Yes-associated protein/Transcriptional coactivator with PDZ-binding motif, YAP/TAZ) and late (alpha-smooth muscle actin, α-SMA) markers of myofibroblast differentiation, resulting in a time course similar to observed in vivo activation dynamics. We further validated this system by showing that α-SMA inhibition following substrate stiffening resulted in attenuated stellate cell activation, with reduced YAP/TAZ nuclear shuttling and traction force generation. Together, these data suggest that stiffening hydrogels may be more faithful models for studying myofibroblast activation than static substrates and could inform the development of disease therapeutics.

  18. Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation

    PubMed Central

    Caliari, Steven R.; Perepelyuk, Maryna; Cosgrove, Brian D.; Tsai, Shannon J.; Lee, Gi Yun; Mauck, Robert L.; Wells, Rebecca G.; Burdick, Jason A.

    2016-01-01

    Tissue fibrosis contributes to nearly half of all deaths in the developed world and is characterized by progressive matrix stiffening. Despite this, nearly all in vitro disease models are mechanically static. Here, we used visible light-mediated stiffening hydrogels to investigate cell mechanotransduction in a disease-relevant system. Primary hepatic stellate cell-seeded hydrogels stiffened in situ at later time points (following a recovery phase post-isolation) displayed accelerated signaling kinetics of both early (Yes-associated protein/Transcriptional coactivator with PDZ-binding motif, YAP/TAZ) and late (alpha-smooth muscle actin, α-SMA) markers of myofibroblast differentiation, resulting in a time course similar to observed in vivo activation dynamics. We further validated this system by showing that α-SMA inhibition following substrate stiffening resulted in attenuated stellate cell activation, with reduced YAP/TAZ nuclear shuttling and traction force generation. Together, these data suggest that stiffening hydrogels may be more faithful models for studying myofibroblast activation than static substrates and could inform the development of disease therapeutics. PMID:26906177

  19. EPAC activation inhibits acetaldehyde-induced activation and proliferation of hepatic stellate cell via Rap1.

    PubMed

    Yang, Yan; Yang, Feng; Wu, Xiaojuan; Lv, Xiongwen; Li, Jun

    2016-05-01

    Hepatic stellate cells (HSCs) activation represents an essential event during alcoholic liver fibrosis (ALF). Previous studies have demonstrated that the rat HSCs could be significantly activated after exposure to 200 μmol/L acetaldehyde for 48 h, and the cAMP/PKA signaling pathways were also dramatically upregulated in activated HSCs isolated from alcoholic fibrotic rat liver. Exchange protein activated by cAMP (EPAC) is a family of guanine nucleotide exchange factors (GEFs) for the small Ras-like GTPases Rap, and is being considered as a vital mediator of cAMP signaling in parallel with the principal cAMP target protein kinase A (PKA). Our data showed that both cAMP/PKA and cAMP/EPAC signaling pathways were involved in acetaldehyde-induced HSCs. Acetaldehyde could reduce the expression of EPAC1 while enhancing the expression of EPAC2. The cAMP analog Me-cAMP, which stimulates the EPAC/Rap1 pathway, could significantly decrease the proliferation and collagen synthesis of acetaldehyde-induced HSCs. Furthermore, depletion of EPAC2, but not EPAC1, prevented the activation of HSC measured as the production of α-SMA and collagen type I and III, indicating that EPAC1 appears to have protective effects on acetaldehyde-induced HSCs. Curiously, activation of PKA or EPAC perhaps has opposite effects on the synthesis of collagen and α-SMA: EPAC activation by Me-cAMP increased the levels of GTP-bound (activated) Rap1 while PKA activation by Phe-cAMP had no significant effects on such binding. These results suggested that EPAC activation could inhibit the activation and proliferation of acetaldehyde-induced HSCs via Rap1. PMID:26854595

  20. Neferine inhibits cultured hepatic stellate cell activation and facilitates apoptosis: A possible molecular mechanism.

    PubMed

    Ding, Hui; Shi, Jinghong; Wang, Ying; Guo, Jia; Zhao, Juhui; Dong, Lei

    2011-01-10

    Neferine is a major alkaloid component of "Lian Zi Xin", embryos of the seeds of Nelumbo nucifera Gaertner, Nymphaeaceae. Previous studies have shown that neferine has an inhibitory effect on pulmonary fibrosis through its anti-inflammatory and anti-oxidative activities and inhibition of cytokines and NF-κB. However, it is unknown whether neferine also has an inhibitory effect on liver fibrosis through inhibition of TGF-β1 and collagen I and facilitation of apoptosis of hepatic stellate cells. This study examined the effects of neferine on cultured hepatic stellate (HSC-T6) cells and explored its possible action mechanisms by means of MTT assay, enzyme-linked immunosorbent assay, flow-cytometric annexin V-PI assay and Hoechst 33258 staining, as well as real-time PCR and western blotting. The results showed that neferine administration (2, 4, 6, 8 and 10μmol/l) significantly decreased the TGF-β1 and collagen I produced in HSC-T6 cells, and increased the HSC-T6 cell apoptosis in a dose-dependent manner. Neferine treatment for 48h at concentrations of 6 and 10μmol/l significantly increased Bax and caspase 3 mRNAs and proteins, and reduced Bcl2 and alpha-smooth muscle actin (α-SMA) mRNAs and proteins. Our data indicate that neferine efficiently inhibits cultured HSC-T6 cell activation and induces apoptosis by increasing Bax and caspase 3 expression via the mitochondrial pathway. PMID:20969858

  1. Ionone Derivatives from the Mycelium of Phellinus linteus and the Inhibitory Effect on Activated Rat Hepatic Stellate Cells

    PubMed Central

    Huang, Shiow-Chyn; Kuo, Ping-Chung; Hung, Hsin-Yi; Pan, Tai-Long; Chen, Fu-An; Wu, Tian-Shung

    2016-01-01

    Three new γ-ionylideneacetic acid derivatives, phellinulins A–C (1–3), were characterized from the mycelium extract of Phellinus linteus. The chemical structures were established based on the spectroscopic analysis. In addition, phellinulin A (1) was subjected to the examination of effects on activated rat hepatic stellate cells and exhibited significant inhibition of hepatic fibrosis. PMID:27164091

  2. Receptor channel TRPC6 orchestrate the activation of human hepatic stellate cell under hypoxia condition

    SciTech Connect

    Iyer, Soumya C; Kannan, Anbarasu; Gopal, Ashidha; Devaraj, Niranjali; Halagowder, Devaraj

    2015-08-01

    Hepatic stellate cells (HSCs), a specialized stromal cytotype have a great impact on the biological behaviors of liver diseases. Despite this fact, the underlying mechanism that regulates HSC still remains poorly understood. The aim of the present study was to understand the role of TRPC6 signaling in regulating the molecular mechanism of HSCs in response to hypoxia. In the present study we showed that under hypoxia condition, the upregulated Hypoxia Inducible Factor 1α (HIF1α) increases NICD activation, which in turn induces the expression of transient receptor potential channel 6 (TRPC6) in HSC line lx-2. TRPC6 causes a sustained elevation of intracellular calcium which is coupled with the activation of the calcineurin-nuclear factor of activated T-cell (NFAT) pathway which activates the synthesis of extracellular matrix proteins. TRPC6 also activates SMAD2/3 dependent TGF-β signaling in facilitating upregulated expression of αSMA and collagen. As activated HSCs may be a suitable target for HCC therapy and targeting these cells rather than the HCC cells may result in a greater response. Collectively, our studies indicate for the first time the detailed mechanism of activation of HSC through TRPC6 signaling and thus being a promising therapeutic target. - Highlights: • HIF1α increases NICD, induces TRPC6 in lx2 cells. • TRPC6 a novel regulator in the activation of HSC. • HSCs as target for HCC therapy.

  3. NADPH Oxidase NOX4 Mediates Stellate Cell Activation and Hepatocyte Cell Death during Liver Fibrosis Development

    PubMed Central

    Sancho, Patricia; Mainez, Jèssica; Crosas-Molist, Eva; Roncero, César; Fernández-Rodriguez, Conrado M.; Pinedo, Fernando; Huber, Heidemarie; Eferl, Robert; Mikulits, Wolfgang; Fabregat, Isabel

    2012-01-01

    A role for the NADPH oxidases NOX1 and NOX2 in liver fibrosis has been proposed, but the implication of NOX4 is poorly understood yet. The aim of this work was to study the functional role of NOX4 in different cell populations implicated in liver fibrosis: hepatic stellate cells (HSC), myofibroblats (MFBs) and hepatocytes. Two different mice models that develop spontaneous fibrosis (Mdr2−/−/p19ARF−/−, Stat3Δhc/Mdr2−/−) and a model of experimental induced fibrosis (CCl4) were used. In addition, gene expression in biopsies from chronic hepatitis C virus (HCV) patients or non-fibrotic liver samples was analyzed. Results have indicated that NOX4 expression was increased in the livers of all animal models, concomitantly with fibrosis development and TGF-β pathway activation. In vitro TGF-β-treated HSC increased NOX4 expression correlating with transdifferentiation to MFBs. Knockdown experiments revealed that NOX4 downstream TGF-β is necessary for HSC activation as well as for the maintenance of the MFB phenotype. NOX4 was not necessary for TGF-β-induced epithelial-mesenchymal transition (EMT), but was required for TGF-β-induced apoptosis in hepatocytes. Finally, NOX4 expression was elevated in patients with hepatitis C virus (HCV)-derived fibrosis, increasing along the fibrosis degree. In summary, fibrosis progression both in vitro and in vivo (animal models and patients) is accompanied by increased NOX4 expression, which mediates acquisition and maintenance of the MFB phenotype, as well as TGF-β-induced death of hepatocytes. PMID:23049784

  4. DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats

    SciTech Connect

    Bian, Er-Bao; Huang, Cheng; Ma, Tao-Tao; Tao, Hui; Zhang, Hui; Cheng, Chang; Lv, Xiong-Wen; Li, Jun

    2012-10-01

    Hepatic stellate cell (HSC) activation is an essential event during liver fibrogenesis. Phosphatase and tension homolog deleted on chromosome 10 (PTEN), a tumor suppressor, is a negative regulator of this process. PTEN promoter hypermethylation is a major epigenetic silencing mechanism in tumors. The present study aimed to investigate whether PTEN promoter methylation was involved in HSC activation and liver fibrosis. Treatment of activated HSCs with the DNA methylation inhibitor 5-aza-2′-deoxycytidine (5-azadC) decreased aberrant hypermethylation of the PTEN gene promoter and prevented the loss of PTEN expression that occurred during HSC activation. Silencing DNA methyltransferase 1 (DNMT1) gene also decreased the PTEN gene promoter methylation and upregulated the PTEN gene expression in activated HSC-T6 cells. In addition, knockdown of DNMT1 inhibited the activation of both ERK and AKT pathways in HSC-T6 cells. These results suggest that DNMT1-mediated PTEN hypermethylation caused the loss of PTEN expression, followed by the activation of the PI3K/AKT and ERK pathways, resulting in HSC activation. Highlights: ► PTEN methylation status and loss of PTEN expression ► DNMT1 mediated PTEN hypermethylation. ► Hypermethylation of PTEN contributes to the activation of ERK and AKT pathways.

  5. Astaxanthin prevents and reverses the activation of mouse primary hepatic stellate cells.

    PubMed

    Yang, Yue; Bae, Minkyung; Kim, Bohkyung; Park, Young-Ki; Koo, Sung I; Lee, Ji-Young

    2016-03-01

    Activation of hepatic stellate cells (HSCs) is a critical step that leads to the development of liver fibrosis. We showed that astaxanthin (ASTX), a xanthophyll carotenoid, displays antifibrogenic effects in LX-2 cells, a human HSC cell line. In this study, we further determined the effect of ASTX on HSC activation and inactivation using primary HSCs from C57BL/6J mice. Quiescent and activated HSCs were incubated with ASTX (25μM) at different stages of activation. ASTX prevented the activation of quiescent HSCs, as evidenced by the presence of intracellular lipid droplets and reduction of α-smooth muscle actin, an HSC activation marker. Also, ASTX reverted activated HSCs to a quiescent phenotype with the reappearance of lipid droplets with a concomitant increase in lecithin retinol acyltransferase mRNA. Cellular accumulation of reactive oxygen species was significantly reduced by ASTX, which was attributable to a decrease in NADPH oxidase 2 expression. The antifibrogenic effect of ASTX was independent of nuclear erythroid 2-related factor 2 as it was observed in HSCs from wild-type and Nrf2(-/-) mice. In conclusion, ASTX inhibits HSC activation and reverts activated HSCs to a quiescent state. Further investigation is warranted to determine if ASTX effectively prevents the development of liver fibrosis. PMID:26895661

  6. Sauchinone attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway.

    PubMed

    Lee, Ju-Hee; Jang, Eun Jeong; Seo, Hye Lim; Ku, Sae Kwang; Lee, Jong Rok; Shin, Soon Shik; Park, Sun-Dong; Kim, Sang Chan; Kim, Young Woo

    2014-10-16

    Hepatic stellate cells (HSCs) are key mediators of fibrogenesis, and the regulation of their activation is now viewed as an attractive target for the treatment of liver fibrosis. Here, the authors investigated the ability of sauchinone, an active lignan found in Saururus chinensis, to regulate the activation of HSCs, to prevent liver fibrosis, and to inhibit oxidative stress in vivo and in vitro. Blood biochemistry and histopathology were assessed in CCl4-induced mouse model of liver fibrosis to investigate the effects of sauchinone. In addition, transforming growth factor-β1 (TGF-β1)-activated LX-2 cells (a human HSC line) were used to investigate the in vitro effects of sauchinone. Sauchinone significantly inhibited liver fibrosis, as indicated by decreases in regions of hepatic degeneration, inflammatory cell infiltration, and the intensity of α-smooth muscle actin staining in mice. Sauchinone blocked the TGF-β1-induced phosphorylation of Smad 2/3 and the transcript levels of plasminogen activator inhibitor-1 and matrix metalloproteinase-2 as well as autophagy in HSCs. Furthermore, sauchinone inhibited oxidative stress, as assessed by stainings of 4-hydroxynonenal and nitrotyrosine: these events may have a role in its inhibitory effects on HSCs activation. Sauchinone attenuated CCl4-induced liver fibrosis and TGF-β1-induced HSCs activation, which might be, at least in part, mediated by suppressing autophagy and oxidative stress in HSCs. PMID:25451574

  7. ATRA modulates mechanical activation of TGF-β by pancreatic stellate cells

    PubMed Central

    Sarper, Muge; Cortes, Ernesto; Lieberthal, Tyler J.; del Río Hernández, Armando

    2016-01-01

    The hallmark of pancreatic ductal adenocarcinoma (PDAC) is abundant desmoplasia, which is orchestrated by pancreatic stellate cells (PSCs) and accounts for the majority of the stroma surrounding the tumour. Healthy PSCs are quiescent, but upon activation during disease progression, they adopt a myofibroblast-contractile phenotype and secrete and concomitantly reorganise the stiff extracellular matrix (ECM). Transforming growth factor β (TGF-β) is a potent activator of PSCs, and its activation requires spatiotemporal organisation of cellular and extracellular cues to liberate it from an inactive complex with latent TGF-β binding protein (LTBP). Here we study the mechanical activation of TGF-β by PSCs in vitro by investigating LTBP-1 organisation with fibrillar fibronectin and show that all trans-retinoic acid (ATRA), which induces PSC quiescence, down-regulates the ability of PSCs to mechanically organise LTBP-1 and activate TGF-β through a mechanism involving myosin II dependent contractility. Therefore, ATRA inhibits the ability of PSCs to mechanically release active TGF-β, which might otherwise act in an autocrine manner to sustain PSCs in an active state and a tumour-favouring stiff microenvironment. PMID:27375161

  8. Inhibitory Effects of Ecklonia cava Extract on High Glucose-Induced Hepatic Stellate Cell Activation

    PubMed Central

    Yokogawa, Kumiko; Matsui-Yuasa, Isao; Tamura, Akiko; Terada, Masaki; Kojima-Yuasa, Akiko

    2011-01-01

    Nonalcoholic steatohepatitis (NASH) is a disease closely associated with obesity and diabetes. A prevalence of type 2 diabetes and a high body mass index in cryptogenic cirrhosis may imply that obesity leads to cirrhosis. Here, we examined the effects of an extract of Ecklonia cava, a brown algae, on the activation of high glucose-induced hepatic stellate cells (HSCs), key players in hepatic fibrosis. Isolated HSCs were incubated with or without a high glucose concentration. Ecklonia cava extract (ECE) was added to the culture simultaneously with the high glucose. Treatment with high glucose stimulated expression of type I collagen and α-smooth muscle actin, which are markers of activation in HSCs, in a dose-dependent manner. The activation of high glucose-treated HSCs was suppressed by the ECE. An increase in the formation of intracellular reactive oxygen species (ROS) and a decrease in intracellular glutathione levels were observed soon after treatment with high glucose, and these changes were suppressed by the simultaneous addition of ECE. High glucose levels stimulated the secretion of bioactive transforming growth factor-β (TGF-β) from the cells, and the stimulation was also suppressed by treating the HSCs with ECE. These results suggest that the suppression of high glucose-induced HSC activation by ECE is mediated through the inhibition of ROS and/or GSH and the downregulation of TGF-β secretion. ECE is useful for preventing the development of diabetic liver fibrosis. PMID:22363250

  9. Diosgenin attenuates hepatic stellate cell activation through transforming growth factor-β/Smad signaling pathway

    PubMed Central

    Xie, Wei-Lin; Jiang, Rong; Shen, Xiao-Lu; Chen, Zhi-Yu; Deng, Xiao-Ming

    2015-01-01

    Activation of hepatic stellate cells (HSC) plays a pivotal role in the development of hepatic fibrosis. Transforming growth factor-β1 (TGF-β1) is considered to be the main stimuli factor responsible for the activation of HSC. Diosgenin is a steroidal saponin found in several plants including Solanum and Dioscorea species, and it inhibited high glucose-induced renal tubular fibrosis. However, the effects of diosgenin against hepatic fibrosis remain elusive. Therefore, in this study, we investigated the effects of diosgenin on TGF-β1-induced HSCs and elucidate the possible mechanism of its anti-fibrotic effect. Our results demonstrated that diosgenin inhibited TGF-β1-induced HSC proliferation, reduced the expression of collagen I and α-smooth muscle actin (α-SMA), as well as the expression of TGF-β receptor I (TGF-β RI) and II. Moreover, diosgenin suppressed TGF-β1-induced phosphorylation of Smad3 in HSCs. In conclusion, our data demonstrate that diosgenin inhibited HSC-T6 cell proliferation and activation, at least in part, via the TGF-β1/Smad signaling pathway. These results provide that diosgenin may have potential to treat liver fibrosis. PMID:26884947

  10. Diosgenin attenuates hepatic stellate cell activation through transforming growth factor-β/Smad signaling pathway.

    PubMed

    Xie, Wei-Lin; Jiang, Rong; Shen, Xiao-Lu; Chen, Zhi-Yu; Deng, Xiao-Ming

    2015-01-01

    Activation of hepatic stellate cells (HSC) plays a pivotal role in the development of hepatic fibrosis. Transforming growth factor-β1 (TGF-β1) is considered to be the main stimuli factor responsible for the activation of HSC. Diosgenin is a steroidal saponin found in several plants including Solanum and Dioscorea species, and it inhibited high glucose-induced renal tubular fibrosis. However, the effects of diosgenin against hepatic fibrosis remain elusive. Therefore, in this study, we investigated the effects of diosgenin on TGF-β1-induced HSCs and elucidate the possible mechanism of its anti-fibrotic effect. Our results demonstrated that diosgenin inhibited TGF-β1-induced HSC proliferation, reduced the expression of collagen I and α-smooth muscle actin (α-SMA), as well as the expression of TGF-β receptor I (TGF-β RI) and II. Moreover, diosgenin suppressed TGF-β1-induced phosphorylation of Smad3 in HSCs. In conclusion, our data demonstrate that diosgenin inhibited HSC-T6 cell proliferation and activation, at least in part, via the TGF-β1/Smad signaling pathway. These results provide that diosgenin may have potential to treat liver fibrosis. PMID:26884947

  11. lincRNA-p21 inhibits hepatic stellate cell activation and liver fibrogenesis via p21.

    PubMed

    Zheng, Jianjian; Dong, Peihong; Mao, Yuqing; Chen, Shaolong; Wu, Xiaoli; Li, Guojun; Lu, Zhongqiu; Yu, Fujun

    2015-12-01

    Long non-coding RNAs are involved in various biological processes and diseases. The biological role of long intergenic non-coding RNA-p21 (lincRNA-p21) in liver fibrosis remains unknown before this study. In this study, we observed marked reduction of lincRNA-p21 expression in mice liver fibrosis models and human cirrhotic liver. Over-expression of lincRNA-p21 suppressed activation of hepatic stellate cells (HSCs) in vitro. Lentivirus-mediated lincRNA-p21 transfer into mice decreased the severity of liver fibrosis in vivo. Additionally, lincRNA-p21 reversed the activation of HSCs to their quiescent phenotype. The mRNA levels of lincRNA-p21 and p21 were positively correlated. Our results show that over-expression of lincRNA-p21 promotes up-regulation of p21 at both the mRNA and protein levels. Furthermore, lincRNA-p21 inhibited cell-cycle progression and proliferation of primary HSCs through enhancement of p21 expression. Compared with healthy subjects, serum lincRNA-p21 levels were significantly lower in patients with liver cirrhosis, especially those with decompensation. These findings collectively indicate that lincRNA-p21 is a mediator of HSC activation, supporting its utility as a novel therapeutic target for liver fibrosis. PMID:26433205

  12. Mechanisms of liver fibrosis associated with experimental Fasciola hepatica infection: roles of Fas2 proteinase and hepatic stellate cell activation.

    PubMed

    Marcos, Luis A; Terashima, Angélica; Yi, Pedro; Andrade, Roy; Cubero, Francisco J; Albanis, Efsevia; Gotuzzo, Eduardo; Espinoza, Jose R; Friedman, Scott L

    2011-02-01

    We have evaluated the possible mechanisms of liver fibrosis caused by Fasciola hepatica in an animal model and in culture using immortalized human stellate cells. Liver biopsies of F. hepatica-infected rats were performed at wk 8 and 16. Serum-starved LX-2 cells, a human stellate cell line, were exposed to increasing concentrations of Fas2 antigen. The expression of key fibrosis-related genes was evaluated by qRT-PCR. There was a significant correlation between fibrogenic gene expression and both intensity and duration of infection. LX-2 cells exposed to Fas2 showed progressively increased expression of mRNAs for Collagen I, alpha-smooth muscle-actin, platelet-derived growth factor beta receptor, and tissue inhibitor of metalloproteinase II; inhibition of Fas2 cysteine proteinase activity by E-64 abrogated these increases, suggesting that the protease activity of Fas2 is involved in fibrogenic stimulation. In summary, F. hepatica infection is associated with up-regulation of mRNAs associated with hepatic fibrogenesis in vivo and in activated hepatic stellate cells. PMID:21348611

  13. Silymarin suppresses hepatic stellate cell activation in a dietary rat model of non-alcoholic steatohepatitis: analysis of isolated hepatic stellate cells.

    PubMed

    Kim, Mina; Yang, Su-Geun; Kim, Joon Mi; Lee, Jin-Woo; Kim, Young Soo; Lee, Jung Il

    2012-09-01

    Non-alcoholic steatohepatitis (NASH) is characterized by hepatocellular injury and initial fibrosis severity has been suggested as an important prognostic factor of NASH. Silymarin was reported to improve carbon tetrachloride-induced liver fibrosis and reduce the activation of hepatic stellate cells (HSC). We investigated whether silymarin could suppress the activation of HSCs in NASH induced by methionine- and choline-deficient (MCD) diet fed to insulin-resistant rats. NASH was induced by feeding MCD diet to obese diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Non-diabetic Long-Evans Tokushima Otsuka (LETO) rats were fed with standard chow and served as the control. OLETF rats were fed on either standard laboratory chow, or MCD diet or MCD diet mixed with silymarin. Histological analysis of the liver showed improved non-alcoholic fatty liver disease (NAFLD) activity score in silymarin-fed MCD-induced NASH. Silymarin reduced the activation of HSCs, evaluated by counting α-smooth muscle actin (SMA)-positive cells and measuring α-SMA mRNA expression in the liver lysates as well as in HSCs isolated from the experimental animals. Although silymarin decreased α(1)-procollagen mRNA expression in isolated HSCs, the anti-fibrogenic effect of silymarin was not prominent so as to show significant difference under histological analysis. Silymarin increased the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and decreased tumor necrosis factor (TNF)-α mRNA expression in the liver. Our study suggested that the possible protective effect of silymarin in diet induced NASH by suppressing the activation of HSCs and disturbing the role of the inflammatory cytokine TNF-α. PMID:22710359

  14. Pancreatic stellate cells contribute pancreatic cancer pain via activation of sHH signaling pathway

    PubMed Central

    Han, Liang; Ma, Jiguang; Duan, Wanxing; Zhang, Lun; Yu, Shuo; Xu, Qinhong; Lei, Jianjun; Li, Xuqi; Wang, Zheng; Wu, Zheng; Huang, Jason H.; Wu, Erxi; Ma, Qingyong; Ma, Zhenhua

    2016-01-01

    Abdominal pain is a critical clinical symptom in pancreatic cancer (PC) that affects the quality of life for PC patients. However, the pathogenesis of PC pain is largely unknown. In this study, we show that PC pain is initiated by the sonic hedgehog (sHH) signaling pathway in pancreatic stellate cells (PSCs), which is activated by sHH secreted from PC cells, and then, neurotrophic factors derived from PSCs mediate the pain. The different culture systems were established in vitro, and the expression of sHH pathway molecules, neurotrophic factors, TRPV1, and pain factors were examined. Capsaicin-evoked TRPV1 currents in dorsal root ganglion (DRG) neurons were examined by the patch-clamp technique. Pain-related behavior was observed in an orthotopic tumor model. sHH and PSCs increased the expression and secretion of TRPV1, SP, and CGRP by inducing NGF and BDNF in a co-culture system, also increasing TRPV1 current. But, suppressing sHH pathway or NGF reduced the expression of TRPV1, SP, and CGRP. In vivo, PSCs and PC cells that expressed high levels of sHH could enhance pain behavior. Furthermore, the blockade of NGF or TRPV1 significantly attenuated the pain response to mechanical stimulation compared with the control. Our results demonstrate that sHH signaling pathway is involved in PC pain, and PSCs play an essential role in the process greatly by inducing NGF. PMID:26934446

  15. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    SciTech Connect

    Zan, Yanlu; Zhang, Yuxia; Tien, Po

    2013-06-07

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg protein purified from cell medium directly activated HSCs. -- Abstract: Chronic hepatitis B virus infection is a major cause of hepatic fibrosis, leading to liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus e antigen (HBeAg) is an accessory protein of HBV, not required for viral replication but important for natural infection in vivo. Hepatic stellate cells (HSCs) are the major producers of excessive extracellular matrix during liver fibrogenesis. Therefore, we examined the influence of HBeAg on HSCs. The rat HSC line HSC-T6 was transfected with HBeAg plasmids, and expression of α-smooth muscle actin, collagen I, transforming growth factor-β1 (TGF-β), and tissue inhibitors of metalloproteinase 1 (TIMP-1) was investigated by quantitative real-time PCR. The proliferation of HSCs was determined by MTS analysis. HBeAg transduction induced up-regulation of these fibrogenic genes and proliferation of HSCs. We found that HBeAg induced TGF-β secretion in HSCs, and the activation of HSCs was prevented by a neutralizing anti-TGF-β antibody. Depletion and addition of HBeAg protein in conditioned medium from HSC-T6 cells transduced with HBeAg indicated that HBeAg directly induced the activation and proliferation of rat primary HSCs. Taken together, HBeAg induces the activation and proliferation of HSCs, mainly mediated by TGF-β, and HBeAg protein purified from cell medium can directly activate HSCs.

  16. Gallic Acid Induces Necroptosis via TNF–α Signaling Pathway in Activated Hepatic Stellate Cells

    PubMed Central

    Chang, Ya Ju; Hsu, Shih Lan; Liu, Yi Ting; Lin, Yu Hsuan; Lin, Ming Hui; Huang, Shu Jung; Ho, Ja-an Annie; Wu, Li-Chen

    2015-01-01

    Gallic acid (3, 4, 5-trihydroxybenzoic acid, GA), a natural phenolic acid widely found in gallnuts, tea leaves and various fruits, possesses several bioactivities against inflammation, oxidation, and carcinogenicity. The beneficial effect of GA on the reduction of animal hepatofibrosis has been indicated due to its antioxidative property. However, the cytotoxicity of GA autoxidation causing cell death has also been reported. Herein, we postulated that GA might target activated hepatic stellate cells (aHSCs), the cell type responsible for hepatofibrosis, to mitigate the process of fibrosis. The molecular cytotoxic mechanisms that GA exerted on aHSCs were then analyzed. The results indicated that GA elicited aHSC programmed cell death through TNF–α–mediated necroptosis. GA induced significant oxidative stress through the suppression of catalase activity and the depletion of glutathione (GSH). Elevated oxidative stress triggered the production of TNF–α facilitating the undergoing of necroptosis through the up-regulation of key necroptotic regulatory proteins TRADD and receptor-interacting protein 3 (RIP3), and the inactivation of caspase–8. Calmodulin and calpain–1 activation were engaged, which promoted subsequent lysosomal membrane permeabilization (LMP). The TNF–α antagonist (SPD–304) and the RIP1 inhibitor (necrostatin–1, Nec–1) confirmed GA-induced TNFR1–mediated necroptosis. The inhibition of RIP1 by Nec–1 diverted the cell death from necroptosis to apoptosis, as the activation of caspase 3 and the increase of cytochrome c. Collectively, this is the first report indicating that GA induces TNF signaling–triggered necroptosis in aHSCs, which may offer an alternative strategy for the amelioration of liver fibrosis. PMID:25816210

  17. miRNA studies in in vitro and in vivo activated hepatic stellate cells

    PubMed Central

    Maubach, Gunter; Lim, Michelle Chin Chia; Chen, Jinmiao; Yang, Henry; Zhuo, Lang

    2011-01-01

    AIM: To understand which and how different miRNAs are implicated in the process of hepatic stellate cell (HSC) activation. METHODS: We used microarrays to examine the differential expression of miRNAs during in vitro activation of primary HSCs (pHSCs). The transcriptome changes upon stable transfection of rno-miR-146a into an HSC cell line were studied using cDNA microarrays. Selected differentially regulated miRNAs were investigated by quantitative real-time polymerase chain reaction during in vivo HSC activation. The effect of miRNA mimics and inhibitor on the in vitro activation of pHSCs was also evaluated. RESULTS: We found that 16 miRNAs were upregulated and 26 were downregulated significantly in 10-d in vitro activated pHSCs in comparison to quiescent pHSCs. Overexpression of rno-miR-146a was characterized by marked upregulation of tissue inhibitor of metalloproteinase-3, which is implicated in the regulation of tumor necrosis factor-α activity. Differences in the regulation of selected miRNAs were observed comparing in vitro and in vivo HSC activation. Treatment with miR-26a and 29a mimics, and miR-214 inhibitor during in vitro activation of pHSCs induced significant downregulation of collagen type I transcription. CONCLUSION: Our results emphasize the different regulation of miRNAs in in vitro and in vivo activated pHSCs. We also showed that miR-26a, 29a and 214 are involved in the regulation of collagen type I mRNA. PMID:21734783

  18. Activated pancreatic stellate cells can impair pancreatic islet function in mice

    PubMed Central

    Zang, Guangxiang; Sandberg, Monica; Carlsson, Per-Ola; Welsh, Nils; Jansson, Leif

    2015-01-01

    Background Pancreatic or islet fibrosis is often associated with activated pancreatic stellate cells (PSCs). PSCs are considered not only to promote fibrosis, but also to be associated with glucose intolerance in some diseases. We therefore evaluated morphological and functional relationships between islets and PSCs in the normal mouse pancreas and transplanted islets. Methods Immunohistochemistry was used to map the presence of PSCs in the normal mouse pancreas and islets implanted under the renal capsule. We isolated and cultured mouse PSCs and characterized them morphologically by immunofluorescence staining. Furthermore, we measured their cytokine production and determined their effects on insulin release from simultaneously cultured islets. Results PSCs were scattered throughout the pancreas, with occasional cells within the islets, particularly in the islet capsule. In islet transplants they were found mainly in the graft periphery. Cultured PSCs became functionally activated and produced several cytokines. Throughout the culture period they linearly increased their production of interleukin-6 and mammalian keratinocyte-derived chemokine. PSC cytokine production was not affected by acute hyperglycemia. Syngeneic islets co-cultured with PSCs for 24–48 h increased their insulin release and lowered their insulin content. However, short-term insulin release in batch-type incubations was unaffected after 48 h of co-culture. Increased islet cell caspase-3 activation and a decreased islet cell replication were consistently observed after co-culture for 2 or 7 days. Conclusion Activated PSCs may contribute to impaired islet endocrine function seen in exocrine pancreatitis and in islet fibrosis associated with some cases of type 2 diabetes. PMID:25854824

  19. Acidic Sphingomyelinase Controls Hepatic Stellate Cell Activation and in Vivo Liver Fibrogenesis

    PubMed Central

    Moles, Anna; Tarrats, Núria; Morales, Albert; Domínguez, Marlene; Bataller, Ramón; Caballería, Juan; García-Ruiz, Carmen; Fernández-Checa, José C.; Marí, Montserrat

    2010-01-01

    The mechanisms linking hepatocellular death, hepatic stellate cell (HSC) activation, and liver fibrosis are largely unknown. Here, we investigate whether acidic sphingomyelinase (ASMase), a known regulator of death receptor and stress-induced hepatocyte apoptosis, plays a role in liver fibrogenesis. We show that selective stimulation of ASMase (up to sixfold), but not neutral sphingomyelinase, occurs during the transdifferentiation/activation of primary mouse HSCs into myofibroblast-like cells, coinciding with cathepsin B (CtsB) and D (CtsD) processing. ASMase inhibition or genetic down-regulation by small interfering RNA blunted CtsB/D processing, preventing the activation and proliferation of mouse and human HSCs (LX2 cells). In accordance, HSCs from heterozygous ASMase mice exhibited decreased CtsB/D processing, as well as lower levels of α-smooth muscle actin expression and proliferation. Moreover, pharmacological CtsB inhibition reproduced the antagonism of ASMase in preventing the fibrogenic properties of HSCs, without affecting ASMase activity. Interestingly, liver fibrosis induced by bile duct ligation or carbon tetrachloride administration was reduced in heterozygous ASMase mice compared with that in wild-type animals, regardless of their sensitivity to liver injury in either model. To provide further evidence for the ASMase-CtsB pathway in hepatic fibrosis, liver samples from patients with nonalcoholic steatohepatitis were studied. CtsB and ASMase mRNA levels increased eight- and threefold, respectively, in patients compared with healthy controls. These findings illustrate a novel role of ASMase in HSC biology and liver fibrogenesis by regulating its downstream effectors CtsB/D. PMID:20651240

  20. Stellate Cell Networks in the Teleost Pituitary

    PubMed Central

    Golan, Matan; Hollander-Cohen, Lian; Levavi-Sivan, Berta

    2016-01-01

    The folliculostellate cells of the mammalian pituitary are non-endocrine cells that are implicated in long-distance communication and paracrine signaling, but to date, these cells have yet to be characterized in teleosts. We found that the stellate cells of the teleost pituitary share many common attributes with mammalian folliculostellate cells. By labeling of stellate cells in live preparations of tilapia pituitaries we investigated their distribution, association with other endocrine cells and their anatomical and functional coupling. In the pars intermedia, stellate cells were arranged around neuronal bundles and their processes extended into the pars distalis. Within the pars distalis, stellate cells formed close associations with FSH cells and, to a lesser degree, with GH and LH cells, suggesting differential paracrine regulation of the two gonadotrope populations. The production of follistatin by stellate cells further corroborates the notion of a paracrine role on FSH release. We also found stellate cells to form gap junctions that enabled dye transfer to neighboring stellate cells, implicating that these cells form a large-scale network that connects distant parts of the pituitary. Our findings represent the first wide-scale study of stellate cells in teleosts and provide valuable information regarding their functional roles in pituitary function. PMID:27086978

  1. Amplified inhibition of stellate cell activation pathways by PPAR-γ, RAR and RXR agonists.

    PubMed

    Sharvit, Efrat; Abramovitch, Shirley; Reif, Shimon; Bruck, Rafael

    2013-01-01

    Peroxisome proliferator activator receptors (PPAR) ligands such as 15-Δ12,13-prostaglandin L(2) [PJ] and all trans retinoic acid (ATRA) have been shown to inhibit the development of liver fibrosis. The role of ligands of retinoic X receptor (RXR) and its ligand, 9-cis, is less clear. The purpose of this study was to investigate the effects of combined treatment of the three ligends, PJ, ATRA and 9-cis, on key events during liver fibrosis in rat primary hepatic stellate cells (HSCs). We found that the anti-proliferative effect of the combined treatment of PJ, ATRA and 9-cis on HSCs was additive. Further experiments revealed that this inhibition was due to cell cycle arrest at the G0/G1 phase as demonstrated by FACS analysis. In addition, the combined treatment reduced cyclin D1 expression and increased p21 and p27 protein levels. Furthermore, we found that the three ligands down regulated the phosphorylation of mTOR and p70(S6K). The activation of HSCs was also inhibited by the three ligands as shown by inhibition of vitamin A lipid droplets depletion from HSCs. Studies using real time PCR and western blot analysis showed marked inhibition of collagen Iα1 and αSMA by the combination of the three ligands. These findings suggest that the combined use of PJ, ATRA and 9-cis causes inhibition of cell proliferation by cell cycle arrest and down-regulation of fibrotic markers to a greater extent compared to each of the ligands alone. PMID:24098526

  2. Relevance of activated hepatic stellate cells in predicting the development of pediatric liver allograft fibrosis.

    PubMed

    Venturi, Carla; Reding, Raymond; Quinones, Jorge Abarca; Sokal, Etienne; Rahier, Jacques; Bueno, Javier; Sempoux, Christine

    2016-06-01

    Activated hepatic stellate cells (HSCs) are the main collagen-producing cells in liver fibrogenesis. With the purpose of analyzing their presence and relevance in predicting liver allograft fibrosis development, 162 liver biopsies of 54 pediatric liver transplantation (LT) recipients were assessed at 6 months, 3 years, and 7 years after LT. The proportion of activated HSCs, identified by α-smooth muscle actin (ASMA) immunostaining, and the amount of fibrosis, identified by picrosirius red (PSR%) staining, were determined by computer-based morphometric analysis. Fibrosis was also staged by using the semiquantitative liver allograft fibrosis score (LAFSc), specifically designed to score fibrosis in the pediatric LT population. Liver allograft fibrosis displayed progression over time by PSR% (P < 0.001) and by LAFSc (P < 0.001). The ASMA expression decreased in the long term, with inverse evolution with respect to fibrosis (P < 0.01). Patients with ASMA-positive HSCs area ≥ 8% at 6 months (n = 20) developed a higher fibrosis proportion compared to those with ASMA-positive HSCs area ≤ 8% (n = 34) at the same period of time and in the long term (P = 0.03 and P < 0.01, respectively), but not at 3 years (P = 0.8). ASMA expression ≥ 8% at 6 months was found to be an independent risk factor for 7-year fibrosis development by PSR% (r(2) = 0.5; P < 0.01) and by LAFSc (r(2) = 0.3; P = 0.03). Furthermore, ASMA expression ≥ 8% at 3 years showed an association with the development of fibrosis at 7 years (P = 0.02). In conclusion, there is a high proportion of activated HSCs in pediatric LT recipients. ASMA ≥ 8% at 6 months seems to be a risk factor for early and longterm fibrosis development. In addition, activated HSCs showed inverse evolution with respect to fibrosis in the long term. Liver Transplantation 22 822-829 2016 AASLD. PMID:26851053

  3. Effects of miR-9 and tetramethylpyrazine on activation of hepatic stellate cells.

    PubMed

    Li, Shan-Gao; Zhou, Jun; Zhong, Ji-Hong; Cao, Hai-Jun; Zhu, Ling; Liu, Jun; Hu, Hua-Jun; Lv, Bin

    2015-01-01

    Micro-RNAs (miRNAs) are involved in regulation of the incidence and development of several hepatic diseases. Thus manipulating miRNAs may be a promising therapeutic strategy against these entities. In this study hepatic stellate cells (HSCs) were transfected with hsa-miR-9 or anti-hsa-miR-9, treated with tetramethylpyrazine (TMP), or subjected to treatment with TMP and hsa-miR-9 transfection (combined treatment group). Then, real-time polymerase chain reaction (PCR) was performed to measure mRNA levels of hsa-miR-9. Expression of hsa-miR-9 was highest in the combination treatment group compared with other groups, and significantly higher than TMP-treated and hsa-miR-9-transfected groups (both p<0.05). The anti-hsa-miR-9-transfected group expressed the lowest mRNA level of hsa-miR-9 with marked decrease versus control (p<0.05). Downstream factors that may be affected by miR-9 such as leptin, α-smooth muscle actin (SMA), and collagen I, as well as phosphorylation levels of Janus kinase 1 (JAK1)/signal transducer and activator of transcription 3 (STAT3) were investigated at the protein level. All these factors were regulated contrariwise to expression trends of hsa-miR-9, showing the lowest level in the combination treatment group and highest level in anti-hsa-miR-9-transfected group. These results suggest that both transfection of hsa-miR-9 and TMP can lead to upregulated endogenous expression of hsa-miR-9, inhibit activation of JAK1/STAT3 signal pathway induced by leptin, and lead to reduction of α-SMA and collagen I-thus impeding activation of HSC. PMID:25560232

  4. Early activated hepatic stellate cell-derived molecules reverse acute hepatic injury

    PubMed Central

    Chang, Wen-Ju; Song, Lu-Jun; Yi, Tuo; Shen, Kun-Tang; Wang, Hong-Shan; Gao, Xiao-Dong; Li, Min; Xu, Jian-Min; Niu, Wei-Xin; Qin, Xin-Yu

    2015-01-01

    AIM: To test whether hepatic stellate cells (HSCs) at different activation stages play different roles in acetaminophen (APAP)-induced acute liver injury (ALI). METHODS: HSCs were isolated from mouse liver and cultured in vitro. Morphological changes of initiation HSCs [HSCs (5d)] and perpetuation HSCs [HSCs (p3)] were observed by immunofluorescence and transmission electron microscopy. The protective effects of HSC-derived molecules, cell lysates and HSC-conditioned medium (HSC-CM) were tested in vivo by survival and histopathological analyses. Liver injury was determined by measuring aminotransferase levels in the serum and by histologic examination of tissue sections under a light microscope. Additionally, to determine the molecular mediators of the observed protective effects of initiation HSCs, we examined HSC-CM using a high-density protein array. RESULTS: HSCs (5d) and HSCs (p3) had different morphological and phenotypic traits. HSCs (5d) presented a star-shaped appearance with expressing α-SMA at non-uniform levels between cells. However, HSCs (p3) evolved into myofibroblast-like cells without lipid droplets and expressed a uniform and higher level of α-SMA. HSC-CM (5d), but not HSC-CM (p3), provided a significant survival benefit and showed a dramatic reduction of hepatocellular necrosis and panlobular leukocyte infiltrates in mice exposed to APAP. However, this protective effect was abrogated at higher cell masses, indicating a therapeutic window of effectiveness. Furthermore, the protein array screen revealed that HSC-CM (5d) was composed of many chemokines and growth factors that correlated with inflammatory inhibition and therapeutic activity. When compared with HSC-CM (p3), higher levels of monocyte chemoattractant protein-1, macrophage inflammatory protein-1γ, hepatocyte growth factor, interleukin-10, and matrix metalloproteinase-2, but lower levels of stem cell factor and Fas-Ligand were observed in HSC-CM (5d). CONCLUSION: These data indicated

  5. Two novel antifibrotics, HOE 077 and Safironil, modulate stellate cell activation in rat liver injury: differential effects in males and females.

    PubMed Central

    Wang, Y. J.; Wang, S. S.; Bickel, M.; Guenzler, V.; Gerl, M.; Bissell, D. M.

    1998-01-01

    The perisinusoidal stellate cells of the liver in an injury milieu undergo activation, acquiring a myofibroblast-like phenotype. In this state, they are the principal source of collagen and related proteins in fibrosis. The present studies evaluate the mechanism of action of two novel antifibrotic compounds, HOE 077 and Safironil, which were designed as competitive inhibitors of collagen protein synthesis. Fibrosis was induced in rats by administration of carbon tetrachloride, and activation was monitored as the level of collagen I mRNA or smooth muscle alpha-actin. Both male and female rats were studied. Stellate cell activation, rather than collagen synthesis, proved to be the target of both HOE 077 and Safironil in the intact liver. In culture, the drugs not only prevented the activation of stellate cells but also accelerated their deactivation. They were no more effective in co-cultures containing hepatocytes than in pure stellate cell cultures, indicating that metabolic conversion of HOE 077 was not required. Interestingly, the response of cells from females was greater than that of male cells, leading to the conclusion that stellate activation is sexually dimorphic. This finding may be relevant to the observation that fibrosis in chronic viral hepatitis progresses less rapidly and that hepatocellular carcinoma is less frequent in females than in males. Images Figure 1 Figure 2 Figure 7 PMID:9422545

  6. Effect of Huazhuojiedu medicated serum on the proliferation and activation of hepatic stellate cells and the expression of PI3K and p-Akt in rats

    PubMed Central

    Kang, Liang; Wang, Yangang; Zhang, Mingxi; Sun, Runxue; Lou, Yingying; Wang, Ying; Li, Diangui

    2014-01-01

    To observe the effect of Huazhuojiedu medicated serum on the proliferation and activation of hepatic stellate cells, as well as the expression of PI3K and p-Akt in rats, and to explore the underlying mechanism of Huazhuojiedu prescription against hepatic fibrosis. Hepatic stellate cells harvested from rats were resuscitated and subcultured, followed by the intervention of Huazhuojiedu equivalent dose, Huazhuojiedu double dose, and positive drug (Compound Biejiaruangan Troche) medicated serum of rats. After in vitro culture, hepatic stellate cells were stimulated with 5 ng/mL transforming growth factor-β1. At 24, 48, 72 hours, the proliferation of hepatic stellate cells was detected with MTT assay; at 48 hours, α-SMA mRNA and protein expression in hepatic stellate cells were determined with RT-PCR assay and western blot analysis, respectively, to evaluate the activation of hepatic stellate cells; in addition, PI3K and p-Akt protein expression levels were also assayed with western blot analysis at 48 hours. The results showed that, 24-hour transforming growth factor-β1 stimulation significantly promoted the proliferation of hepatic stellate cells (P < 0.01). Each medicated serum inhibited the proliferation of hepatic stellate cells (P < 0.01). Huazhuojiedu equivalent dose had the similar inhibition effect with positive drug (P > 0.05), and Huazhuojiedu double dose achieved more apparent inhibition effect (P < 0.01). After 48 and 72 hours of transforming growth factor-β1 stimulation, hepatic stellate cells still proliferated significantly (P < 0.01), which was inhibited by each medicated serum (P < 0.01). Huazhuojiedu equivalent dose showed a weaker inhibition effect than positive drug (P < 0.05), and Huazhuojiedu double dose exerted a strong inhibition effect (P < 0.05). After hepatic stellate cells were stimulated with transforming growth factor-β1 for 48 hours, the expression of α-SMA mRNA and protein in hepatic stellate cells was significantly increased (P

  7. Transcriptional regulation of hepatic stellate cells.

    PubMed

    Mann, Jelena; Mann, Derek A

    2009-07-01

    Hepatic stellate cell (HSC) activation is a process of cellular transdifferentiation in which, upon liver injury, the quiescent vitamin A storing perisinusoidal HSC is converted into a wound-healing myofibroblast and acquires potent pro-inflammatory and pro-fibrogenic activities. This remarkable phenotypic transformation is underpinned by changes in the expression of a vast number of genes. In this review we survey current knowledge of the transcription factors that either control HSC activation or which regulate specific fibrogenic functions of the activated HSC such as collagen expression, proliferation and resistance to apoptosis. PMID:19393271

  8. Chrysin attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway.

    PubMed

    Balta, Cornel; Herman, Hildegard; Boldura, Oana Maria; Gasca, Ionela; Rosu, Marcel; Ardelean, Aurel; Hermenean, Anca

    2015-10-01

    We investigated the protective effect of chrysin on chronic liver fibrosis in mice and the potential mechanism underlying TGF-β1-mediated hepatic stellate cells (HSCs) activation on fibrogenesis. Experimental fibrosis was established by intraperitoneal injection of mice with 20% v/v, 2 ml/kg CCl4 twice a week, for 7 weeks. Mice were orally treated with 3 doses of chrysin (50, 100 and 200 mg/kg) or with vehicle as control. For the assessment of the spontaneous reversion of fibrosis, CCl4 treated animals were investigated after two weeks of recovery time. Silymarin was used as standard hepatoprotective flavonoid. Histopathological investigations showed that hepatic fibrosis grade was markedly reduced in the chrysin groups compared to the fibrotic one. Moreover, CCl4 activated HSCs induced an upregulation of smooth muscle actin (α-SMA), an increased number of TGF-β1 immunopositive cells and marked up-regulation of TGF-β1. α-SMA and TGF-β1 levels were significantly reduced in all chrysin treated groups in a dose-dependent manner, whereas the level of spontaneous reversal of fibrosis was lower compared to all flavonoid treated groups. Liver mRNA levels of Smad 2 in the 50, 100 and 200 mg/kg chrysin treated groups were significantly reduced by about 88.54%, 92.15% and 95.56% of the corresponding levels in the fibrosis mice group. The results were similar for mRNA levels of Smad 3. The protective response to silymarin was almost similar to that seen with the highest doses of chrysin. In this study, we have shown that chrysin has the efficacy to reverse CCl4-stimulated liver fibrosis by inhibition of HSCs activation and proliferation through TGF-β1/Smad pathway. These results suggest that chrysin may be useful in stopping or reversing the progression of liver fibrosis and might offer the possibility to develop a new therapeutic drug, useful in treatment of chronic liver diseases. PMID:26297989

  9. Tetrandrine regulates hepatic stellate cell activation via TAK1 and NF-κB signaling.

    PubMed

    Li, Xia; Jin, Quan; Wu, Yan-Ling; Sun, Peng; Jiang, Shuang; Zhang, Yu; Zhang, De-Quan; Zhang, Yu-Jing; Lian, Li-Hua; Nan, Ji-Xing

    2016-07-01

    We investigated the anti-fibrotic mechanism of tetrandrine, a bisbenzylisoquinoline alkaloid from the Chinese herb, Stephania tetrandra, on the immortalized HSC-T6 rat hepatic stellate cell line. Tetrandrine (0.39-50μM) dose- and time-dependently inhibited HSC-T6 cell viability within 24h and exhibited almost no cytotoxicity at concentrations lower than 6.25μM in the presence of tumor necrosis factor-α (TNF-α). At a much high concentration (50μM), tetrandrine caused fatal cytotoxity in both HSCs and hepatocytes. TNF-α time-dependently increased α-smooth muscle actin (α-SMA) expression, while a lower concentration of tetrandrine (6.25μM) prior to TNF-α treatment reduced the expression of α-SMA and TNFR-1-associated death domain (TRADD). TNF-α treatment induced TGF-β-activated kinase-1 (TAK1) and c-Jun N-terminal kinase (JNK) phosphorylation, which were attenuated by tetrandrine. Furthermore, TNF-α treatment activated nuclear factor-κB (NF-κB) nuclear translocation and IκB-α degradation. Tetrandrine treatment prior to TNF-α reduced nuclear phosphorylated and total NF-κB p65, while the cytosolic IκB-α and NF-κB p65 levels significantly increased. In addition, treatment with only tetrandrine induced the cleavage of caspase-3 and PARP within a range of higher concentrations. Tetrandrine-induced apoptosis was confirmed by the TUNEL assay and flow-cytometric analysis. Treatment with only tetrandrine markedly reduced α-SMA expression, except for at lower concentrations of tetrandrine. A higher concentration of tetrandrine (25μM) induced a significant increase in JNK and extracellular signal-regulated kinase (ERK) phosphorylation, NF-κB nuclear translocation and IκB-α degradation. In conclusion, the anti-fibrogenic effects of tetrandrine on HSCs involved a dosage-dependent signaling pathway, based on the tetrandrine concentration, by regulating TAK1, JNK and NF-κB. The present data provides strong evidence for the anti-fibrotic dosage

  10. Regenerating islet-derived protein 1 inhibits the activation of islet stellate cells isolated from diabetic mice.

    PubMed

    Xu, Wei; Li, Wei; Wang, Ying; Zha, Min; Yao, Honghong; Jones, Peter M; Sun, Zilin

    2015-11-10

    Emerging evidence indicates that the islet fibrosis is attributable to activation of islet stellate cells (ISCs). In the present study, we compared the differences in biological activity of ISCs isolated from diabetic db/db and non-diabetic db/m mice, and the effects of the regenerating islet-derived protein 1 (Reg1) on ISC function. We showed that ISCs isolated from db/db mice were activated more rapidly than those from db/m mice during culture. Both Reg1 and its putative receptor exostosin-like glycosyltransferase 3 (EXTL3) were highly expressed by diabetic ISCs. Treatment with Reg1 inhibited migration, viability, and synthesis and secretion of Type I Collagen(Col-I), Type III Collagen(Col-III) and Fibronectin(FN) by diabetic ISCs, and this was associated with deactivation of the PI3K/Akt, MAPK/Erk1/2 signaling pathway in an EXTL3-dependent manner. In conclusion, our observations (i) confirmed the presence of fibrogenic stellate cells within pancreatic islets, which are prone to be activated in Type 2 diabetes, and (ii) revealed a potential role for Reg1 in preventing ISC activation. PMID:26496027

  11. Non-Canonical Wnt Predominates in Activated Rat Hepatic Stellate Cells, Influencing HSC Survival and Paracrine Stimulation of Kupffer Cells

    PubMed Central

    Corbett, Laura; Mann, Jelena; Mann, Derek A.

    2015-01-01

    The Wnt system is highly complex and is comprised of canonical and non-canonical pathways leading to the activation of gene expression. Our aim was to examine changes in the expression of Wnt ligands and regulators during hepatic stellate cell (HSC) transdifferentiation and assess the relative contributions of the canonical and non-canonical Wnt pathways in fibrogenic activated HSC. The expression profile of Wnt ligands and regulators in HSC was not supportive for a major role for β-catenin-dependent canonical Wnt signalling, this verified by inability to induce Topflash reporter activity in HSC even when expressing a constitutive active β-catenin. We detected expression of Wnt5a in activated HSC which can signal via non-canonical mechanisms and showed evidence for non-canonical signalling in these cells involving phosphorylation of Dvl2 and pJNK. Stimulation of HSC or Kupffer cells with Wnt5a regulated HSC apoptosis and expression of TGF-β1 and MCP1 respectively. We were unable to confirm a role for β-catenin-dependent canonical Wnt in HSC and instead propose autocrine and paracrine functions for Wnts expressed by activated HSC via non-canonical pathways. The data warrant detailed investigation of Wnt5a in liver fibrosis. PMID:26566235

  12. Activated hepatic stellate cells promote liver cancer by induction of myeloid-derived suppressor cells through cyclooxygenase-2.

    PubMed

    Xu, Yaping; Zhao, Wenxiu; Xu, Jianfeng; Li, Jie; Hong, Zaifa; Yin, Zhenyu; Wang, Xiaomin

    2016-02-23

    Hepatic stellate cells (HSCs) are critical mediators of immunosuppression and the pathogenesis of hepatocellular carcinoma (HCC). Our previous work indicates that HSCs promote HCC progression by enhancing immunosuppressive cell populations including myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). MDSCs are induced by inflammatory cytokines (e.g., prostaglandins) and are important in immune suppression. However, how HSCs mediate expansion of MDSCs is uncertain. Thus, we studied activated HSCs that could induce MDSCs from bone marrow cells and noted that HSC-induced MDSCs up-regulated immunosuppressive activity via iNOS, Arg-1, and IL-4Rα. After treating cells with a COX-2 inhibitor or an EP4 antagonist, we established that HSC-induced MDSC accumulation was mediated by the COX2-PGE2-EP4 signaling. Furthermore, in vivo animal studies confirmed that inhibition of HSC-derived PGE2 could inhibit HSC-induced MDSC accumulation and HCC growth. Thus, our data show that HSCs are required for MDSC accumulation mediated by the COX2-PGE2-EP4 pathway, and these data are the first to link HSC and MDSC subsets in HCC immune microenvironment and provide a rationale for targeting PGE2 signaling for HCC therapy. PMID:26758420

  13. Activated hepatic stellate cells promote liver cancer by induction of myeloid-derived suppressor cells through cyclooxygenase-2

    PubMed Central

    Xu, Jianfeng; Li, Jie; Hong, Zaifa; Yin, Zhenyu; Wang, Xiaomin

    2016-01-01

    Hepatic stellate cells (HSCs) are critical mediators of immunosuppression and the pathogenesis of hepatocellular carcinoma (HCC). Our previous work indicates that HSCs promote HCC progression by enhancing immunosuppressive cell populations including myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). MDSCs are induced by inflammatory cytokines (e.g., prostaglandins) and are important in immune suppression. However, how HSCs mediate expansion of MDSCs is uncertain. Thus, we studied activated HSCs that could induce MDSCs from bone marrow cells and noted that HSC-induced MDSCs up-regulated immunosuppressive activity via iNOS, Arg-1, and IL-4Rα. After treating cells with a COX-2 inhibitor or an EP4 antagonist, we established that HSC-induced MDSC accumulation was mediated by the COX2-PGE2-EP4 signaling. Furthermore, in vivo animal studies confirmed that inhibition of HSC-derived PGE2 could inhibit HSC-induced MDSC accumulation and HCC growth. Thus, our data show that HSCs are required for MDSC accumulation mediated by the COX2-PGE2-EP4 pathway, and these data are the first to link HSC and MDSC subsets in HCC immune microenvironment and provide a rationale for targeting PGE2 signaling for HCC therapy. PMID:26758420

  14. Activated hepatic stellate cells are dependent on self-collagen, cleaved by membrane type 1 matrix metalloproteinase for their growth.

    PubMed

    Birukawa, Naoko Kubo; Murase, Kazuyuki; Sato, Yasushi; Kosaka, Akemi; Yoneda, Akihiro; Nishita, Hiroki; Fujita, Ryosuke; Nishimura, Miyuki; Ninomiya, Takafumi; Kajiwara, Keiko; Miyazaki, Miyono; Nakashima, Yusuke; Ota, Sigenori; Murakami, Yuya; Tanaka, Yasunobu; Minomi, Kenjiro; Tamura, Yasuaki; Niitsu, Yoshiro

    2014-07-18

    Stellate cells are distributed throughout organs, where, upon chronic damage, they become activated and proliferate to secrete collagen, which results in organ fibrosis. An intriguing property of hepatic stellate cells (HSCs) is that they undergo apoptosis when collagen is resolved by stopping tissue damage or by treatment, even though the mechanisms are unknown. Here we disclose the fact that HSCs, normal diploid cells, acquired dependence on collagen for their growth during the transition from quiescent to active states. The intramolecular RGD motifs of collagen were exposed by cleavage with their own membrane type 1 matrix metalloproteinase (MT1-MMP). The following evidence supports this conclusion. When rat activated HSCs (aHSCs) were transduced with siRNA against the collagen-specific chaperone gp46 to inhibit collagen secretion, the cells underwent autophagy followed by apoptosis. Concomitantly, the growth of aHSCs was suppressed, whereas that of quiescent HSCs was not. These in vitro results are compatible with the in vivo observation that apoptosis of aHSCs was induced in cirrhotic livers of rats treated with siRNAgp46. siRNA against MT1-MMP and addition of tissue inhibitor of metalloproteinase 2 (TIMP-2), which mainly inhibits MT1-MMP, also significantly suppressed the growth of aHSCs in vitro. The RGD inhibitors echistatin and GRGDS peptide and siRNA against the RGD receptor αVβ1 resulted in the inhibition of aHSCs growth. Transduction of siRNAs against gp46, αVβ1, and MT1-MMP to aHSCs inhibited the survival signal of PI3K/AKT/IκB. These results could provide novel antifibrosis strategies. PMID:24867951

  15. Resveratrol Regulates the Quiescence-Like Induction of Activated Stellate Cells by Modulating the PPARγ/SIRT1 Ratio.

    PubMed

    de Souza, Izabel Cristina Custódio; Martins, Leo Anderson Meira; de Vasconcelos, Mariana; de Oliveira, Cleverson Moraes; Barbé-Tuana, Florencia; Andrade, Cláudia Balbinotti; Pettenuzzo, Letícia Ferreira; Borojevic, Radovan; Margis, Rogério; Guaragna, Regina; Guma, Fátima Costa Rodrigues

    2015-10-01

    The activation of hepatic stellate cell (HSC), from a quiescent cell featuring cytoplasmic lipid droplets to a proliferative myofibroblast, plays an important role in liver fibrosis development. The GRX line is an activated HSC model that can be induced by all-trans-retinol to accumulate lipid droplets. Resveratrol is known for activating Sirtuin1 (SIRT1), a NAD(+)-dependent deacetylase that suppresses the activity of peroxisome proliferator-activated receptor gamma (PPARγ), an important adipogenic transcription factor involved in the quiescence maintenance of HSC. We evaluated the effects of 0.1 μM of resveratrol in retinol-induced GRX quiescence by investigating the interference of SIRT1 and PPARγ on cell lipogenesis. GRX lipid accumulation was evaluated through Oil-red O staining, triacylglycerides quantification, and [(14)C] acetate incorporation into lipids. mRNA expression and protein content of SIRT1 and PPARγ were measured by RT-PCR and immunoblotting, respectively. Resveratrol-mediated SIRT1 stimuli did not induce lipogenesis and reduced the retinol-mediated fat-storing capacity in GRX. In order to support our results, we established a cell culture model of transgenic super expression of PPARγ in GRX cells (GRXPγ). Resveratrol reduced lipid droplets accumulation in GRXPγ cells. These results suggest that the PPARγ/SIRT1 ratio plays an important role in the fate of HSC. Thus, whenever the PPARγ activity is greater than SIRT1 activity the lipogenesis is enabled. PMID:25833683

  16. Calcium signalling in pancreatic stellate cells: Mechanisms and potential roles.

    PubMed

    Gryshchenko, Oleksiy; Gerasimenko, Julia V; Gerasimenko, Oleg V; Petersen, Ole H

    2016-03-01

    Hepatic and pancreatic stellate cells may or may not be regarded as stem cells, but they are capable of remarkable transformations. There is less information about stellate cells in the pancreas than in the liver, where they were discovered much earlier and therefore have been studied longer and more intensively than in the pancreas. Most of the work on pancreatic stellate cells has been carried out in studies on cell cultures, but in this review we focus attention on Ca(2+) signalling in stellate cells in their real pancreatic environment. We review current knowledge on patho-physiologically relevant Ca(2+) signalling events and their underlying mechanisms. We focus on the effects of bradykinin in the initial stages of acute pancreatitis, an often fatal disease in which the pancreas digests itself and its surroundings. Ca(2+) signals, elicited in the stellate cells by the action of bradykinin, may have a negative effect on the outcome of the acute disease process and promote the development of chronic pancreatitis. The bradykinin-elicited Ca(2+) signals can be inhibited by blockade of type 2 receptors and also by blockade of Ca(2+)-release activated Ca(2+) channels. The potential benefits of such pharmacological inhibition for the treatment of pancreatitis are reviewed. PMID:26960936

  17. Bisphosphonates Inhibit Stellate Cell Activity and Enhance Antitumor Effects of Nanoparticle Albumin Bound-Paclitaxel in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Gonzalez-Villasana, Vianey; Rodriguez-Aguayo, Cristian; Arumugam, Thiruvengadam; Cruz-Monserrate, Zobeida; Fuentes-Mattei, Enrique; Deng, Defeng; Hwang, Rosa F.; Wang, Huamin; Ivan, Cristina; Garza, Raul Joshua; Cohen, Evan; Gao, Hui; Armaiz-Pena, Guillermo N.; Monroig-Bosque, Paloma del C.; Philip, Bincy; Rashed, Mohammed H.; Aslan, Burcu; Erdogan, Mumin Alper; Gutierrez-Puente, Yolanda; Ozpolat, Bulent; Reuben, James M.; Sood, Anil K.; Logsdon, Craig; Lopez-Berestein, Gabriel

    2014-01-01

    Pancreatic stellate cells (PSCs) have been recognized as the principal cells responsible for the production of fibrosis in PDAC. Recently PSCs have been noted to share characteristics with cells of monocyte-macrophage lineage (MML cells). Thus, we tested whether PSCs could be targeted with the nitrogen-containing bisphosphonates (NBPs) [pamidronate (Pam) or zoledronic acid (ZA)], which are potent MML cell inhibitors. In addition, we tested NBPs treatment combination with nanoparticle albumin-bound paclitaxel (nab-paclitaxel) to enhance antitumor activity. In vitro we observed that PSCs possess α-naphthyl butyrate esterase (ANBE) enzyme activity, a specific marker of MML cells. Moreover NBPs inhibited PSCs proliferation, activation, release of macrophage chemoattractant protein-1 (MCP-1) and type I collagen expression. NBPs also induced PSC apoptosis and cell cycle arrest in the G1 phase. In vivo, NBPs inactivated PSCs; reduced fibrosis; inhibited tumor volume, tumor weight, peritoneal dissemination, angiogenesis, and cell proliferation; and increased apoptosis in an orthotopic murine model of PDAC. These in vivo antitumor effects were enhanced when NBPs were combined with nab-paclitaxel but not gemcitabine (Gem). Our study suggests that targeting PSCs and tumor cells with NBPs in combination with nab-paclitaxel may be a novel therapeutic approach to PDAC. PMID:25193509

  18. Curcumin inhibits aerobic glycolysis in hepatic stellate cells associated with activation of adenosine monophosphate-activated protein kinase.

    PubMed

    Lian, Naqi; Jin, Huanhuan; Zhang, Feng; Wu, Li; Shao, Jiangjuan; Lu, Yin; Zheng, Shizhong

    2016-07-01

    Activation of hepatic stellate cells (HSCs) is characterized by expression of extracellular matrix and loss of adipogenic phenotype during liver fibrogenesis. Emerging evidence suggests that HSCs adopt aerobic glycolysis during activation. The present work aimed at investigating whether the anti-fibrogenic effects of curcumin was associated with interfering with glycolysis in HSCs. Primary rat HSCs were cultured in vitro. We demonstrated that inhibition of glycolysis by 2-deoxyglucose or galloflavin reduced the expression of α-smooth muscle actin (α-SMA) and α1(I)procollagen at both mRNA and protein levels, and increased the intracellular lipid contents and upregulated the gene and protein expression of adipogenic transcription factors C/EBPα and PPAR-γ in HSCs. Curcumin at 20 μM produced similar effects. Moreover, curcumin decreased the expression of hexokinase (HK), phosphofructokinase-2 (PFK2), and glucose transporter 4 (glut4), three key glycolytic parameters, at both mRNA and protein levels. Curcumin also reduced lactate production concentration-dependently in HSCs. Furthermore, curcumin increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK), but AMPK inhibitor BML-275 significantly abolished the curcumin downregulation of HK, PFK2, and glut4. In addition, curcumin inhibition of α-SMA and α1(I)procollagen was rescued by BML-275, and curcumin upregulation of C/EBPα and PPAR-γ was abrogated by BML-275. These results collectively indicated that curcumin inhibited glycolysis in an AMPK activation-dependent manner in HSCs. We revealed a novel mechanism for curcumin suppression of HSC activation implicated in antifibrotic therapy. © 2016 IUBMB Life, 68(7):589-596, 2016. PMID:27278959

  19. Histological and immunohistochemical effects of Curcuma longa on activation of rat hepatic stellate cells after cadmium induced hepatotoxicity.

    PubMed

    El-Mansy, A A; Mazroa, S A; Hamed, W S; Yaseen, A H; El-Mohandes, E A

    2016-03-01

    The liver is a target for toxic chemicals such as cadmium (Cd). When the liver is damaged, hepatic stellate cells (HSC) are activated and transformed into myofibroblast-like cells, which are responsible for liver fibrosis. Curcuma longa has been reported to exert a hepato-protective effect under various pathological conditions. We investigated the effects of C. longa administration on HSC activation in response to Cd induced hepatotoxicity. Forty adult male albino rats were divided into: group 1 (control), group 2 (Cd treated), group 3 (C. longa treated) and group 4 (Cd and C. longa treated). After 6 weeks, liver specimens were prepared for light and electron microscopy examination of histological changes and immunohistochemical localization of alpha smooth muscle actin (αSMA) as a specific marker for activated HSC. Activated HSC with a positive αSMA immune reaction were not detected in groups 1 and 3. Large numbers of activated HSC with αSMA immune reactions were observed in group 2 in addition to Cd induced hepatotoxic changes including excess collagen deposition in thickened portal triads, interlobular septa with hepatic lobulation, inflammatory cell infiltration, a significant increase in Kupffer cells and degenerated hepatocytes. In group 4, we observed a significant decrease in HSC that expressed αSMA with amelioration of the hepatotoxic changes. C. longa administration decreased HSC activation and ameliorated hepatotoxic changes caused by Cd in adult rats. PMID:26796199

  20. Association of differentially expressed genes with activation of mouse hepatic stellate cells by high-density cDNA mircoarray

    PubMed Central

    Liu, Xiao-Jing; Yang, Li; Luo, Feng-Ming; Wu, Hong-Bin; Qu-Qiang

    2004-01-01

    AIM: To characterize the gene expression profiles associated with activation of mouse hepatic stellate cell (HSC) and provide novel insights into the pathogenesis of hepatic fibrosis. METHODS: Mice HSCs were isolated from BALB/c mice by in situ perfusion of collagenase and pronase and single-step density Nycodenz gradient. Total RNA and mRNA of quiescent HSC and culture-activated HSC were extracted, quantified and reversely transcripted into cDNA. cDNAs from activated HSC were labeled with Cy5 and cDNAs from the quiescent HSC were labeled with Cy3, which were mixed with equal quantity, then hybridized with cDNA chips containing 4000 genes. Chips were washed, scanned and analyzed. Increased expression of 4 genes and decreased expression of one gene in activated HSC were confirmed by reverse transcription- polymerase chain reaction (RT-PCR). RESULTS: A total of 835 differentially expressed genes were identified by cDNA chip between activated and quiescent HSC, and 465 genes were highly expressed in activated HSC. The differentially expressed genes included those involved in protein synthesis, cell-cycle regulation, apoptosis, and DNA damage response. CONCLUSION: Many genes implicated in intrahepatic inflammation, fibrosis and proliferation were up-regulated in activated HSC. cDNA microarray is an effective technique in screening for differentially expressed genes between two different situations of the HSC. Further analysis of the obtained genes will help understand the molecular mechanism of activation of HSC and hepatic fibrosis. PMID:15162533

  1. Antihepatic Fibrosis Effect of Active Components Isolated from Green Asparagus (Asparagus officinalis L.) Involves the Inactivation of Hepatic Stellate Cells.

    PubMed

    Zhong, Chunge; Jiang, Chunyu; Xia, Xichun; Mu, Teng; Wei, Lige; Lou, Yuntian; Zhang, Xiaoshu; Zhao, Yuqing; Bi, Xiuli

    2015-07-01

    Green asparagus (Asparagus officinalis L.) is a vegetable with numerous nutritional properties. In the current study, a total of 23 compounds were isolated from green asparagus, and 9 of these compounds were obtained from this genus for the first time. Preliminary data showed that the ethyl acetate (EtOAc)-extracted fraction of green asparagus exerted a stronger inhibitory effect on the growth of t-HSC/Cl-6 cells, giving an IC50 value of 45.52 μg/mL. The biological activities of the different compounds isolated from the EtOAc-extracted fraction with respect to antihepatic fibrosis were investigated further. Four compounds, C3, C4, C10, and C12, exhibited profound inhibitory effect on the activation of t-HSC/Cl-6 cells induced by TNF-α. The activation t-HSC/Cl-6 cells, which led to the production of fibrotic matrix (TGF-β1, activin C) and accumulation of TNF-α, was dramatically decreased by these compounds. The mechanisms by which these compounds inhibited the activation of hepatic stellate cells appeared to be associated with the inactivation of TGF-β1/Smad signaling and c-Jun N-terminal kinases, as well as the ERK phosphorylation cascade. PMID:26089141

  2. Loss of expression of miR-335 is implicated in hepatic stellate cell migration and activation

    SciTech Connect

    Chen, Chao; Wu, Chao-Qun; Zhang, Zong-Qi; Yao, Ding-Kang; Zhu, Liang

    2011-07-15

    Activation and migration of resident stellate cells (HSCs) within the hepatic space of Disse play an important role in hepatic fibrosis, which accounts for the increased numbers of activated HSCs in areas of inflammation during hepatic fibrosis. Currently, microRNAs have been found to play essential roles in HSC differentiation, proliferation, apoptosis, fat accumulation and collagen production. However, little is known about microRNA mediated HSC activation and migration. In this study, the miRNA expression profiles of quiescent HSCs, partially activated HSCs and fully activated HSCs were compared in pairs. Gene ontology (GO) and GO-Map network analysis indicated that the activation of HSCs was regulated by microRNAs. Among them miR-335 was confirmed to be significantly reduced during HSC activation by qRT-PCR, and restoring expression of miR-335 inhibited HSC migration and reduced {alpha}-SMA and collagen type I. Previous study revealed that tenascin-C (TNC), an extracellular matrix glycoprotein involved in cell migration, might be a target of miR-335. Therefore, we further studied the TNC expression in miR-335 over-expressed HSCs. Our data showed that exogenous TNC could enhance HSC migration in vitro and miR-335 restoration resulted in a significant inhibition of TNC expression. These results demonstrated that miR-335 restoration inhibited HSC migration, at least in part, via downregulating the TNC expression.

  3. Long non-coding RNA APTR promotes the activation of hepatic stellate cells and the progression of liver fibrosis

    SciTech Connect

    Yu, Fujun; Zheng, Jianjian; Mao, Yuqing; Dong, Peihong; Li, Guojun; Lu, Zhongqiu; Guo, Chuanyong; Liu, Zhanju; Fan, Xiaoming

    2015-08-07

    In this study, we aimed at assessing a role of Alu-mediated p21 transcriptional regulator (APTR) in hepatofibrogenesis. APTR was upregulated in fibrotic liver samples and activated hepatic stellate cells (HSCs). Knockdown of APTR inhibited the activation of HSCs in vitro and mitigated the accumulation of collagen in vivo. Importantly, APTR silencing could abrogate TGF-β{sub 1}-induced upregulation of α-SMA in HSCs. In addition, inhibition of cell cycle and cell proliferation by APTR knockdown was attenuated by p21 siRNA1 in primary HSCs. Finally, serum APTR levels were increased in patients with liver cirrhosis, indicating a potential biomarker for liver cirrhosis. Collectively, evidence is proposed for a new biological role of APTR in hepatofibrogenesis. - Highlights: • APTR is upregulated in fibrotic liver tissues and activated HSCs. • APTR silencing inhibits HSC activation and the progression of liver fibrosis. • Antifibrotic effect of APTR silencing is achieved by increasing p21.

  4. Thymoquinone attenuates liver fibrosis via PI3K and TLR4 signaling pathways in activated hepatic stellate cells.

    PubMed

    Bai, Ting; Lian, Li-Hua; Wu, Yan-Ling; Wan, Ying; Nan, Ji-Xing

    2013-02-01

    Thymoquinone (TQ) is the major active compound derived from the medicinal Nigella sativa. In the present study, we investigated the anti-fibrotic mechanism of TQ in lipopolysaccharide (LPS)-activated rat hepatic stellate cells line, T-HSC/Cl-6. T-HSC/Cl-6 cells were treated with TQ (3.125, 6.25 and 12.5μM) prior to LPS (1μg/ml). Our data demonstrated that TQ effectively decreased activated T-HSC/Cl-6 cell viability. TQ significantly attenuated the expression of CD14 and Toll-like receptor 4 (TLR4). TQ also significantly inhibited phosphatidylinositol 3-kinase (PI3K) and serine/threonine kinase-protein kinase B (Akt) phosphorylation. The expression of α-SMA and collagen-I were significantly decreased by TQ. Furthermore, TQ decreased X linked inhibitor of apoptosis (XIAP) and cellular FLIP (c-FLIPL) expression, which are related with the regulation of apoptosis. Furthermore, TQ significantly increased the survival against LPS challenge in d-galactosamine (d-GlaN)-sensitized mice, and decreased the levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), which were in line with in vitro results. Our data demonstrated that TQ attenuates liver fibrosis partially via blocking TLR4 expression and PI3K phosphorylation on the activated HSCs. Therefore, TQ may be a potential candidate for the therapy of hepatic fibrosis. PMID:23318601

  5. Activation of PPARγ/P53 signaling is required for curcumin to induce hepatic stellate cell senescence

    PubMed Central

    Jin, H; Lian, N; Zhang, F; Chen, L; Chen, Q; Lu, C; Bian, M; Shao, J; Wu, L; Zheng, S

    2016-01-01

    Activation of quiescent hepatic stellate cells (HSCs) is the major event in hepatic fibrogenesis, along with enhancement of cell proliferation and overproduction of extracellular matrix. Although inhibition of cell proliferation and induction of apoptosis are potential strategies to block the activation of HSCs, a better understanding of the senescence of activated HSCs can provide a new therapeutic strategy for prevention and treatment of liver fibrosis. The antioxidant curcumin, a phytochemical from turmeric, has been shown to suppress HSC activation in vitro and in vivo. The current work was aimed to evaluate the effect of curcumin on senescence of activated HSCs and to elucidate the underlying mechanisms. In this study, curcumin promoted the expression of senescence marker Hmga1 in rat fibrotic liver. In addition, curcumin increased the number of senescence-associated β-galactosidase-positive HSCs in vitro. At the same time, curcumin induced HSC senescence by elevating the expression of senescence markers P16, P21 and Hmga1, concomitant with reduced abundance of HSC activation markers α-smooth muscle actin and α1(I)-procollagen in cultured HSCs. Moreover, curcumin affected the cell cycle and telomerase activity. We further demonstrated that P53 pharmacological inhibitor pifithrin-α (PFT-α) or transfection with P53 siRNA abrogated the curcumin-induced HSC senescence in vitro. Meanwhile, curcumin disruption of P53 leading to increased senescence of activated HSCs was further verified in vivo. Further studies indicated that curcumin promoted the expression of P53 through a PPARγ activation-dependent mechanism. Moreover, promoting PPARγ transactivating activity by a PPARγ agonist 15d-PGJ2 markedly enhanced curcumin induction of senescence of activated HSCs. However, the PPARγ antagonist PD68235 eliminated curcumin induction of HSC senescence. Taken together, our results provided a novel insight into the mechanisms underlying curcumin inhibition of HSC

  6. Activation of PPARγ/P53 signaling is required for curcumin to induce hepatic stellate cell senescence.

    PubMed

    Jin, H; Lian, N; Zhang, F; Chen, L; Chen, Q; Lu, C; Bian, M; Shao, J; Wu, L; Zheng, S

    2016-01-01

    Activation of quiescent hepatic stellate cells (HSCs) is the major event in hepatic fibrogenesis, along with enhancement of cell proliferation and overproduction of extracellular matrix. Although inhibition of cell proliferation and induction of apoptosis are potential strategies to block the activation of HSCs, a better understanding of the senescence of activated HSCs can provide a new therapeutic strategy for prevention and treatment of liver fibrosis. The antioxidant curcumin, a phytochemical from turmeric, has been shown to suppress HSC activation in vitro and in vivo. The current work was aimed to evaluate the effect of curcumin on senescence of activated HSCs and to elucidate the underlying mechanisms. In this study, curcumin promoted the expression of senescence marker Hmga1 in rat fibrotic liver. In addition, curcumin increased the number of senescence-associated β-galactosidase-positive HSCs in vitro. At the same time, curcumin induced HSC senescence by elevating the expression of senescence markers P16, P21 and Hmga1, concomitant with reduced abundance of HSC activation markers α-smooth muscle actin and α1(I)-procollagen in cultured HSCs. Moreover, curcumin affected the cell cycle and telomerase activity. We further demonstrated that P53 pharmacological inhibitor pifithrin-α (PFT-α) or transfection with P53 siRNA abrogated the curcumin-induced HSC senescence in vitro. Meanwhile, curcumin disruption of P53 leading to increased senescence of activated HSCs was further verified in vivo. Further studies indicated that curcumin promoted the expression of P53 through a PPARγ activation-dependent mechanism. Moreover, promoting PPARγ transactivating activity by a PPARγ agonist 15d-PGJ2 markedly enhanced curcumin induction of senescence of activated HSCs. However, the PPARγ antagonist PD68235 eliminated curcumin induction of HSC senescence. Taken together, our results provided a novel insight into the mechanisms underlying curcumin inhibition of HSC

  7. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increases human hepatic stellate cell activation.

    PubMed

    Harvey, Wendy A; Jurgensen, Kimberly; Pu, Xinzhu; Lamb, Cheri L; Cornell, Kenneth A; Clark, Reilly J; Klocke, Carolyn; Mitchell, Kristen A

    2016-02-17

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a halogenated aromatic hydrocarbon that elicits toxicity through the aryl hydrocarbon receptor (AhR). In the liver, gross markers of TCDD toxicity are attributed to AhR activation in parenchymal hepatocytes. However, less is known regarding the consequences of TCDD treatment on non-parenchymal cells in the liver. Hepatic stellate cells (HSCs) are non-parenchymal cells that store vitamin A when quiescent. Upon liver injury, activated HSCs lose this storage ability and instead function in the development and maintenance of inflammation and fibrosis through the production of pro-inflammatory mediators and collagen type I. Reports that TCDD exposure disrupts hepatic retinoid homeostasis and dysregulates extracellular matrix remodeling in the liver led us to speculate that TCDD treatment may disrupt HSC activity. The human HSC line LX-2 was used to test the hypothesis that TCDD treatment directly activates HSCs. Results indicate that exposure to 10nM TCDD almost completely inhibited lipid droplet storage in LX-2 cells cultured with retinol and palmitic acid. TCDD treatment also increased LX-2 cell proliferation, expression of α-smooth muscle actin, and production of monocyte chemoattractant protein-1 (MCP-1), all of which are characteristics of activated HSCs. However, TCDD treatment had no effect on Col1a1 mRNA levels in LX-2 cells stimulated with the potent profibrogenic mediator, transforming growth factor-β. The TCDD-mediated increase in LX-2 cell proliferation, but not MCP-1 production, was abolished when phosphoinositide 3-kinase was inhibited. These results indicate that HSCs are susceptible to direct modulation by TCDD and that TCDD likely increases HSC activation through a multi-faceted mechanism. PMID:26860701

  8. Alteration of N-glycoproteins/N-glycosites in human hepatic stellate cells activated with transforming growth factor-β1.

    PubMed

    Qin, Y; Wang, Q; Zhong, Y; Zhao, F; Wu, F; Wang, Y; Ma, T; Liu, C; Bian, H; Li, Z

    2016-01-01

    Proteins N-glycosylation is significantly increased in the activated human hepatic stellate cells (HSCs) stimulated by transforming growth factor-β1 (TGF-β1) compared to the quiescent HSCs according to our previous study. However, little is known about the alteration of N-glycoprotein profiles in the activated HSCs. Profiles of N-glycopeptides / N-glycoproteins / N-glycosites in LX-2 cells, with and without activation by TGF-β1, were identified and compared using hydrazide chemistry enrichment coupled with liquid chromatography - mass spectrometry analysis. Western blot and immunohistochemistry were further used for validation. A total of 103 non-redundant N-glycopeptides, with 107 glycosylation sites from 86 N-glycoproteins, were identified in activated and quiescent LX-2 cells respectively. Among these, 23 proteins were known N-glycoproteins, and 58 were newly identified N-glycoproteins. In addition, 43 proteins (e.g., pigment epithelium-derived factor and clathrin heavy chain 1) were solely identified or up-regulated in the activated LX-2 cells, which participated in focal adhesion and glycosaminoglycan degradation pathways and were involved in interaction clusters of cytoskeletal proteins (e.g., myosin light chains and keratins). The increased expression of glucosamine (N-acetyl)-6-sulfatase and phospholipase C beta 2 and the decreased expression of zinc finger and BTB domain-containing protein 1 were validated in the activated compared to the quiescent LX-2 cells. In conclusion, increased expression of N-glycoproteins and N-glycosites play important roles in cellular contractility, signal transduction, and responses to stimuli in the activated HSCs, which might provide useful information for discovering novel molecular mechanism of HSC activation and therapeutic targets in liver fibrosis. PMID:27064874

  9. A novel fused 1,2,4-triazine aryl derivative as antioxidant and nonselective antagonist of adenosine A(2A) receptors in ethanol-activated liver stellate cells.

    PubMed

    Szuster-Ciesielska, Agnieszka; Sztanke, Krzysztof; Kandefer-Szerszeń, Martyna

    2012-01-01

    It has been detected that hepatic adenosine A(2A) receptors play an active role in the pathogenesis of hepatic fibrosis and suggest a novel therapeutic target in the treatment and prevention of hepatic cirrhosis. In this paper we examined if our new triazine derivative (IMT) can inhibit ethanol-induced activation of HSCs measured as increased α-SMA, collagen synthesis and enhanced oxidative stress in rat liver stellate cells. We also investigated its influence on cytokines (TGF-β, TNF-α) synthesis, MMP-2 and TIMP-1 production and ethanol-induced intracellular signal transduction. Moreover, with using of known adenosine A(2A) receptor agonist (CGS 21680), and antagonist (SCH 58261) we examined if this triazine derivative acts on adenosine receptors. We detected a strong antagonistic action of new triazine derivative (IMT) on ethanol-induced rat liver stellate cells activation, observed as a significant decrease in α-SMA, collagen synthesis, reactive oxygen species production, TGF-β, TNF-α, MMP-2 and TIMP-1 production as well as JNK, p38MAPK, NFκB, IκB, Smad3 phosphorylation. Moreover, IMT strongly inhibited activation of stellate cells by known selective agonist of adenosine A(2A) receptor (CGS 21680). When known A(2A) receptor antagonist (SCH 58261) was used together with IMT this effect was not spectacular. Additionally, only slight enhancement of inhibition was observed when cells were pretreated both IMT with SCH 58261, hence we suppose that IMT acts as nonselective antagonist of A(2A) receptors, and, besides its antioxidant activity, also by this way inhibited ethanol-induced stellate cell activation. PMID:22063920

  10. ω-3 PUFAs ameliorate liver fibrosis and inhibit hepatic stellate cells proliferation and activation by promoting YAP/TAZ degradation

    PubMed Central

    Zhang, Kun; Chang, Yanan; Shi, Zhemin; Han, Xiaohui; Han, Yawei; Yao, Qingbin; Hu, Zhimei; Cui, Hongmei; Zheng, Lina; Han, Tao; Hong, Wei

    2016-01-01

    Elevated levels of the transcriptional regulators Yes-associated protein (YAP) and transcriptional coactivators with PDZ-binding motif (TAZ), key effectors of the Hippo pathway, have been shown to play essential roles in controlling liver cell fate and the activation of hepatic stellate cells (HSCs). The dietary intake of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) has been positively associated with a number of health benefits including prevention and reduction of cardiovascular diseases, inflammation and cancers. However, little is known about the impact of ω-3 PUFAs on liver fibrosis. In this study, we used CCl4-induced liver fibrosis mouse model and found that YAP/TAZ is over-expressed in the fibrotic liver and activated HSCs. Fish oil administration to the model mouse attenuates CCl4-induced liver fibrosis. Further study revealed that ω-3 PUFAs down-regulate the expression of pro-fibrogenic genes in activated HSCs and fibrotic liver, and the down-regulation is mediated via YAP, thus identifying YAP as a target of ω-3 PUFAs. Moreover, ω-3 PUFAs promote YAP/TAZ degradation in a proteasome-dependent manner. Our data have identified a mechanism of ω-3 PUFAs in ameliorating liver fibrosis. PMID:27435808

  11. ω-3 PUFAs ameliorate liver fibrosis and inhibit hepatic stellate cells proliferation and activation by promoting YAP/TAZ degradation.

    PubMed

    Zhang, Kun; Chang, Yanan; Shi, Zhemin; Han, Xiaohui; Han, Yawei; Yao, Qingbin; Hu, Zhimei; Cui, Hongmei; Zheng, Lina; Han, Tao; Hong, Wei

    2016-01-01

    Elevated levels of the transcriptional regulators Yes-associated protein (YAP) and transcriptional coactivators with PDZ-binding motif (TAZ), key effectors of the Hippo pathway, have been shown to play essential roles in controlling liver cell fate and the activation of hepatic stellate cells (HSCs). The dietary intake of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) has been positively associated with a number of health benefits including prevention and reduction of cardiovascular diseases, inflammation and cancers. However, little is known about the impact of ω-3 PUFAs on liver fibrosis. In this study, we used CCl4-induced liver fibrosis mouse model and found that YAP/TAZ is over-expressed in the fibrotic liver and activated HSCs. Fish oil administration to the model mouse attenuates CCl4-induced liver fibrosis. Further study revealed that ω-3 PUFAs down-regulate the expression of pro-fibrogenic genes in activated HSCs and fibrotic liver, and the down-regulation is mediated via YAP, thus identifying YAP as a target of ω-3 PUFAs. Moreover, ω-3 PUFAs promote YAP/TAZ degradation in a proteasome-dependent manner. Our data have identified a mechanism of ω-3 PUFAs in ameliorating liver fibrosis. PMID:27435808

  12. Elevated Levels of Endocannabinoids in Chronic Hepatitis C May Modulate Cellular Immune Response and Hepatic Stellate Cell Activation

    PubMed Central

    Patsenker, Eleonora; Sachse, Philip; Chicca, Andrea; Gachet, María Salomé; Schneider, Vreni; Mattsson, Johan; Lanz, Christian; Worni, Mathias; de Gottardi, Andrea; Semmo, Mariam; Hampe, Jochen; Schafmayer, Clemens; Brenneisen, Rudolf; Gertsch, Jürg; Stickel, Felix; Semmo, Nasser

    2015-01-01

    The endocannabinoid (EC) system is implicated in many chronic liver diseases, including hepatitis C viral (HCV) infection. Cannabis consumption is associated with fibrosis progression in patients with chronic hepatitis C (CHC), however, the role of ECs in the development of CHC has never been explored. To study this question, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) were quantified in samples of HCV patients and healthy controls by gas and liquid chromatography mass spectrometry. Fatty acid amide hydrolase (FAAH) and monoaclyglycerol lipase (MAGL) activity was assessed by [3H]AEA and [3H]2-AG hydrolysis, respectively. Gene expression and cytokine release were assayed by TaqMan PCR and ELISpot, respectively. AEA and 2-AG levels were increased in plasma of HCV patients, but not in liver tissues. Hepatic FAAH and MAGL activity was not changed. In peripheral blood mononuclear cells (PBMC), ECs inhibited IFN-γ, TNF-α, and IL-2 secretion. Inhibition of IL-2 by endogenous AEA was stronger in PBMC from HCV patients. In hepatocytes, 2-AG induced the expression of IL-6, -17A, -32 and COX-2, and enhanced activation of hepatic stellate cells (HSC) co-cultivated with PBMC from subjects with CHC. In conclusion, ECs are increased in plasma of patients with CHC and might reveal immunosuppressive and profibrogenic effects. PMID:25826533

  13. Niemann-Pick Type C2 Protein Mediates Hepatic Stellate Cells Activation by Regulating Free Cholesterol Accumulation

    PubMed Central

    Twu, Yuh-Ching; Lee, Tzong-Shyuan; Lin, Yun-Lian; Hsu, Shih-Ming; Wang, Yuan-Hsi; Liao, Chia-Yu; Wang, Chung-Kwe; Liang, Yu-Chih; Liao, Yi-Jen

    2016-01-01

    In chronic liver diseases, regardless of their etiology, the development of fibrosis is the first step toward the progression to cirrhosis, portal hypertension, and hepatocellular carcinoma. Hepatic stellate cells (HSCs) are the main profibrogenic cells that promote the pathogenesis of liver fibrosis, and so it is important to identify the molecules that regulate HSCs activation and liver fibrosis. Niemann-Pick type C2 (NPC2) protein plays an important role in the regulation of intracellular cholesterol homeostasis by directly binding with free cholesterol. However, the roles of NPC2 in HSCs activation and liver fibrosis have not been explored in detail. Since a high-cholesterol diet exacerbates liver fibrosis progression in both rodents and humans, we propose that the expression of NPC2 affects free cholesterol metabolism and regulates HSCs activation. In this study, we found that NPC2 is decreased in both thioacetamide- and carbon tetrachloride-induced liver fibrosis tissues. In addition, NPC2 is expressed in quiescent HSCs, but its activation status is down-regulated. Knockdown of NPC2 in HSC-T6 cells resulted in marked increases in transforming growth factor-β1 (TGF-β1)-induced collagen type 1 α1 (Col1a1), α-smooth muscle actin (α-SMA) expression, and Smad2 phosphorylation. In contrast, NPC2 overexpression decreased TGF-β1-induced HSCs activation. We further demonstrated that NPC2 deficiency significantly increased the accumulation of free cholesterol in HSCs, increasing Col1a1 and α-SMA expression and activating Smad2, and leading to sensitization of HSCs to TGF-β1 activation. In contrast, overexpression of NPC2 decreased U18666A-induced free cholesterol accumulation and inhibited the subsequent HSCs activation. In conclusion, our study has demonstrated that NPC2 plays an important role in HSCs activation by regulating the accumulation of free cholesterol. NPC2 overexpression may thus represent a new treatment strategy for liver fibrosis. PMID:27420058

  14. MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression

    PubMed Central

    Hyun, Jeongeun; Wang, Sihyung; Kim, Jieun; Rao, Kummara Madhusudana; Park, Soo Yong; Chung, Ildoo; Ha, Chang-Sik; Kim, Sang-Woo; Yun, Yang H.; Jung, Youngmi

    2016-01-01

    Hedgehog (Hh) signalling regulates hepatic fibrogenesis. MicroRNAs (miRNAs) mediate various cellular processes; however, their role in liver fibrosis is unclear. Here we investigate regulation of miRNAs in chronically damaged fibrotic liver. MiRNA profiling shows that expression of miR-378 family members (miR-378a-3p, miR-378b and miR-378d) declines in carbon tetrachloride (CCl4)-treated compared with corn-oil-treated mice. Overexpression of miR-378a-3p, directly targeting Gli3 in activated hepatic stellate cells (HSCs), reduces expression of Gli3 and profibrotic genes but induces gfap, the inactivation marker of HSCs, in CCl4-treated liver. Smo blocks transcriptional expression of miR-378a-3p by activating the p65 subunit of nuclear factor-κB (NF-κB). The hepatic level of miR-378a-3p is inversely correlated with the expression of Gli3 in tumour and non-tumour tissues in human hepatocellular carcinoma. Our results demonstrate that miR-378a-3p suppresses activation of HSCs by targeting Gli3 and its expression is regulated by Smo-dependent NF-κB signalling, suggesting miR-378a-3p has therapeutic potential for liver fibrosis. PMID:27001906

  15. MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression.

    PubMed

    Hyun, Jeongeun; Wang, Sihyung; Kim, Jieun; Rao, Kummara Madhusudana; Park, Soo Yong; Chung, Ildoo; Ha, Chang-Sik; Kim, Sang-Woo; Yun, Yang H; Jung, Youngmi

    2016-01-01

    Hedgehog (Hh) signalling regulates hepatic fibrogenesis. MicroRNAs (miRNAs) mediate various cellular processes; however, their role in liver fibrosis is unclear. Here we investigate regulation of miRNAs in chronically damaged fibrotic liver. MiRNA profiling shows that expression of miR-378 family members (miR-378a-3p, miR-378b and miR-378d) declines in carbon tetrachloride (CCl4)-treated compared with corn-oil-treated mice. Overexpression of miR-378a-3p, directly targeting Gli3 in activated hepatic stellate cells (HSCs), reduces expression of Gli3 and profibrotic genes but induces gfap, the inactivation marker of HSCs, in CCl4-treated liver. Smo blocks transcriptional expression of miR-378a-3p by activating the p65 subunit of nuclear factor-κB (NF-κB). The hepatic level of miR-378a-3p is inversely correlated with the expression of Gli3 in tumour and non-tumour tissues in human hepatocellular carcinoma. Our results demonstrate that miR-378a-3p suppresses activation of HSCs by targeting Gli3 and its expression is regulated by Smo-dependent NF-κB signalling, suggesting miR-378a-3p has therapeutic potential for liver fibrosis. PMID:27001906

  16. Hypoxia Inducible Factor 1 (HIF-1) Recruits Macrophage to Activate Pancreatic Stellate Cells in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Li, Na; Li, Yang; Li, Zengxun; Huang, Chongbiao; Yang, Yanhui; Lang, Mingxiao; Cao, Junli; Jiang, Wenna; Xu, Yu; Dong, Jie; Ren, He

    2016-01-01

    Hypoxia inducible factor 1 (HIF-1) is a transcription factor composed of two subunits, namely, HIF-1α and HIF-1β, in which HIF-1β is constitutively expressed. HIF-1 upregulates several hypoxia-responsive proteins, including angiogenesis factors, glycolysis solution enzymes, and cell survival proteins. HIF-1 is also associated with the degree of inflammation in the tumor region, but the exact mechanism remains unclear. This study aims to identify the molecular mechanism of recruiting monocytes/macrophages by HIF-1α in pancreatic ductal adenocarcinoma (PDAC) and the effects of macrophages on pancreatic stellate cells (PSCs). Immunohistochemistry (IHC) was performed for cluster of differentiation 68 (CD68), HIF-1α, and chemical chemokines 2 (CCL2). Western blot, real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), chromatin immunoprecipitation assay, and The Cancer Genome Atlas (TCGA) were used to verify the correlation between HIF-1α and CCL2 at protein and nucleic acid levels. Monocytes/macrophages were co-cultured with PSCs to observe their interaction. Samples showed significant correlation between CD68 and HIF-1α (t-test, p < 0.05). HIF-1α recruited monocytes/macrophages by promoting CCL2 secretion. Moreover, macrophages could accelerate the activation of PSCs. HIF-1α might promote inflammation and fibrosis of PDAC through CCL2 secretion, which may provide a novel target to treat PDAC patients. PMID:27271610

  17. Liver Fatty acid binding protein (L-Fabp) modulates murine stellate cell activation and diet induced nonalcoholic fatty liver disease

    PubMed Central

    Chen, Anping; Tang, Youcai; Davis, Victoria; Hsu, Fong-Fu; Kennedy, Susan M.; Song, Haowei; Turk, John; Brunt, Elizabeth M.; Newberry, Elizabeth P.; Davidson, Nicholas O.

    2013-01-01

    Activation of hepatic stellate cells (HSCs) is crucial to the development of fibrosis in nonalcoholic fatty liver disease. Quiescent HSCs contain lipid droplets (LDs), whose depletion upon activation induces a fibrogenic gene program. Here we show that liver fatty acid-binding protein (L-Fabp), an abundant cytosolic protein that modulates fatty acid (FA) metabolism in enterocytes and hepatocytes also modulates HSC FA utilization and in turn regulates the fibrogenic program. L-Fabp expression decreased 10-fold following HSC activation, concomitant with depletion of LDs. Primary HSCs isolated from L-FABP−/− mice contain fewer LDs than wild type (WT) HSCs, and exhibit upregulated expression of genes involved in HSC activation. Adenoviral L-Fabp transduction inhibited activation of passaged WT HSCs and increased both the expression of prolipogenic genes and also augmented intracellular lipid accumulation, including triglyceride and FA, predominantly palmitate. Freshly isolated HSCs from L-FABP−/− mice correspondingly exhibited decreased palmitate in the free FA pool. To investigate whether L-FABP deletion promotes HSC activation in vivo, we fed L-FABP−/− and WT mice a high fat diet supplemented with trans-fatty acids and fructose (TFF). TFF-fed L-FABP−/− mice exhibited reduced hepatic steatosis along with decreased LD abundance and size compared to WT mice. In addition, TFF-fed L-FABP−/− mice exhibited decreased hepatic fibrosis, with reduced expression of fibrogenic genes, compared to WT mice. Conclusion L-FABP deletion attenuates both diet-induced hepatic steatosis and fibrogenesis, despite the observation that L-Fabp paradoxically promotes FA and LD accumulation and inhibits HSC activation in vitro. These findings highlight the importance of cell-specific modulation of hepatic lipid metabolism in promoting fibrogenesis in nonalcoholic fatty liver disease. PMID:23401290

  18. Expression of SPARC by activated hepatic stellate cells and its correlation with the stages of fibrogenesis in human chronic hepatitis.

    PubMed

    Nakatani, Kazuki; Seki, Shuichi; Kawada, Norifumi; Kitada, Takuya; Yamada, Takao; Sakaguchi, Hiroki; Kadoya, Hirokazu; Ikeda, Kazuo; Kaneda, Kenji

    2002-11-01

    Secreted protein, acidic and rich in cysteine (SPARC), which functions in tissue remodeling, has been reported to be expressed by myofibroblasts in liver cirrhosis and hepatocellular carcinoma. This study aimed to reveal its expression in chronic hepatitis. Immuno-light and electron microscopy demonstrated that SPARC was expressed by nerve fibers and hepatic stellate cells (HSCs) in the liver parenchyma and myofibroblasts in the fibrous septa. Reaction products were localized in the rough endoplasmic reticulum and nuclear envelope. Serial section analysis demonstrated that SPARC, platelet-derived growth factor receptor-beta, and alpha-smooth muscle actin were co-expressed by HSCs. Quantitative analysis demonstrated that, while SPARC-positive HSCs were sparse in control livers, they significantly increased in number in the livers with chronic hepatitis. There were, however, no significant differences in number among the grades of activity, the stages of fibrosis, or etiology (virus-infected or autoimmune, hepatitis B virus or hepatitis C virus). In liver cirrhosis, however, they significantly decreased in number. The present results indicate that SPARC is expressed by activated HSCs in chronic hepatitis, suggesting the involvement of SPARC in hepatic fibrogenesis after chronic injuries. PMID:12447677

  19. The hop constituent xanthohumol exhibits hepatoprotective effects and inhibits the activation of hepatic stellate cells at different levels

    PubMed Central

    Weiskirchen, Ralf; Mahli, Abdo; Weiskirchen, Sabine; Hellerbrand, Claus

    2015-01-01

    Xanthohumol is the principal prenylated flavonoid of the female inflorescences of the hop plant. In recent years, various beneficial xanthohumol effects including anti-inflammatory, antioxidant, hypoglycemic activities, and anticancer effects have been revealed. This review summarizes present studies indicating that xanthohumol also inhibits several critical pathophysiological steps during the development and course of chronic liver disease, including the activation and pro-fibrogenic genotype of hepatic stellate cells. Also the various mechanism of action and molecular targets of the beneficial xanthohumol effects will be described. Furthermore, the potential use of xanthohumol or a xanthohumol-enriched hop extract as therapeutic agent to combat the progression of chronic liver disease will be discussed. It is notable that in addition to its hepatoprotective effects, xanthohumol also holds promise as a therapeutic agent for treating obesity, dysregulation of glucose metabolism and other components of the metabolic syndrome including hepatic steatosis. Thus, therapeutic xanthohumol application appears as a promising strategy, particularly in obese patients, to inhibit the development as well as the progression of non-alcoholic fatty liver disease. PMID:25999863

  20. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice

    SciTech Connect

    Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna; Chowdhury, Abhijit; Boyer, James L.; Santra, Amal

    2011-02-15

    Arsenic is an environmental toxicant and carcinogen. Exposure to arsenic is associated with development of liver fibrosis and portal hypertension through ill defined mechanisms. We evaluated hepatic fibrogenesis after long term arsenic exposure in a murine model. BALB/c mice were exposed to arsenic by daily gavages of 6 {mu}g/gm body weight for 1 year and were evaluated for markers of hepatic oxidative stress and fibrosis, as well as pro-inflammatory, pro-apoptotic and pro-fibrogenic factors at 9 and 12 months. Hepatic NADPH oxidase activity progressively increased in arsenic exposure with concomitant development of hepatic oxidative stress. Hepatic steatosis with occasional collection of mononuclear inflammatory cells and mild portal fibrosis were the predominant liver lesion observed after 9 months of arsenic exposure, while at 12 months, the changes included mild hepatic steatosis, inflammation, necrosis and significant fibrosis in periportal areas. The pathologic changes in the liver were associated with markers of hepatic stellate cells (HSCs) activation, matrix reorganization and fibrosis including {alpha}-smooth muscle actin, transforming growth factor-{beta}1, PDGF-R{beta}, pro-inflammatory cytokines and enhanced expression of tissue inhibitor of metalloproteinase-1 and pro({alpha}) collagen type I. Moreover, pro-apoptotic protein Bax was dominantly expressed and Bcl-2 was down-regulated along with increased number of TUNEL positive hepatocytes in liver of arsenic exposed mice. Furthermore, HSCs activation due to increased hepatic oxidative stress observed after in vivo arsenic exposure was recapitulated in co-culture model of isolated HSCs and hepatocytes exposed to arsenic. These findings have implications not only for the understanding of the pathology of arsenic related liver fibrosis but also for the design of preventive strategies in chronic arsenicosis.

  1. Hepatic Stellate Cells Inhibit T Cells through Active TGF-β1 from a Cell Surface-Bound Latent TGF-β1/GARP Complex.

    PubMed

    Li, Yan; Kim, Byung-Gyu; Qian, Shiguang; Letterio, John J; Fung, John J; Lu, Lina; Lin, Feng

    2015-09-15

    Hepatic stellate cells (HSCs) inhibit T cells, a process that could help the liver to maintain its immunoprivileged status. HSCs secrete latent TGF-β1, but the detailed mechanisms by which latent TGF-β1 is activated and whether it plays any role in HSC-mediated T cell suppression remain unclear. Glycoprotein A repetitions predominant (GARP) is a surface marker of activated regulatory T cells. GARP binds latent TGF-β1 for its activation, which is critical for regulatory T cells to suppress effector T cells; however, it is still unclear whether GARP is present on HSCs and whether it has any impact on HSC function. In this study, we found that TGF-β1(+/-) HSCs, which produce reduced levels of TGF-β1, showed decreased potency in inhibiting T cells. We also found that pharmaceutical or genetic inhibition of the TGF-β1 signaling pathway reduced the T cell-inhibiting activity of HSCs. Additionally, using isolated primary HSCs, we demonstrated that GARP was constitutively expressed on HSCs. Blocking GARP function or knocking down GARP expression significantly impaired the potency of HSCs to suppress the proliferation of and IFN-γ production from activated T cells, suggesting that GARP is important for HSCs to inhibit T cells. These results demonstrate the unexpected presence of GARP on HSCs and its significance in regard to the ability of HSCs to activate latent TGF-β1 and thereby inhibit T cells. Our study reveals a new mechanism for HSC-mediated immune regulation and potentially for other conditions, such as liver fibrosis, that involve HSC-secreted TGF-β1. PMID:26246140

  2. Down-regulation of FoxO-dependent c-FLIP expression mediates TRAIL-induced apoptosis in activated hepatic stellate cells.

    PubMed

    Park, Soo-Jung; Sohn, Hee-Young; Yoon, Jeongsook; Park, Sang Ick

    2009-10-01

    Activated hepatic stellate cells which contribute to liver fibrosis have represented an important target for antifibrotic therapy. In this study, we found that TRAIL inhibited PI3K/Akt-dependent FoxO phosphorylation and relocated FoxO proteins into the nucleus from the cytosol in activated human hepatic stellate LX-2 cells. The accumulated FoxO proteins in the nucleus led to down-regulation of c-FLIP(L/S) expression, resulting in the activation of apoptosis-related signaling molecules including the activation of caspase-8, -3, and Bid, as well as mitochondrial cytochrome c release. These results were supported by showing that siRNA-mediated knockdown of FoxO led to restoration of c-FLIP(L/S) expression and resistance to TRAIL-induced apoptosis after treatment of LX-2 cells with TRAIL. Furthermore, c-FLIP(L/S)-transfected LX-2 cells showed the decreased sensitivity to TRAIL-induced apoptosis. Collectively, our data suggest that sequential activation of FoxO proteins under conditions of suppressed PI3K/Akt signaling by TRAIL can down-regulate c-FLIP(L/S), consequently promoting TRAIL-induced apoptosis in LX-2 cells. Therefore, the present study suggests TRAIL may be an effective strategy for antifibrotic therapy in liver fibrosis. PMID:19470406

  3. The herbal compound Songyou Yin (SYY) inhibits hepatocellular carcinoma growth and improves survival in models of chronic fibrosis via paracrine inhibition of activated hepatic stellate cells.

    PubMed

    Bu, Yang; Jia, Qing-An; Ren, Zheng-Gang; Xue, Tong-Chun; Zhang, Quan-Bao; Zhang, Ke-Zhi; Zhang, Qiang-Bo; You, Yang; Tian, Hui; Qin, Lun-Xiu; Tang, Zhao-You

    2015-11-24

    Chronic fibrosis is a major risk factor for the development of hepatocellular carcinoma (HCC). The pathological progression of hepatic fibrosis has been linked to cellular processes that promote tumor growth and metastasis. Several recent studies have highlighted the cross-talk between tumor cells and activated hepatic stellate cells (aHSCs) in HCC. The herbal compound Songyou Yin (SYY) is known to attenuate hepatoma cell invasion and metastasis via down-regulation of cytokine secretion by aHSCs. However the underlying mechanism of SYY treatment in reversal of hepatic fibrosis and metastasis of liver cancers is not known. In the current study, a nude mouse model with liver fibrosis bearing orthotopic xenograft was established and we found that SYY could reduce associated fibrosis, inhibit tumor growth and improve survival. In the subcutaneous tumor model with fibrosis, we found that SYY could inhibit liver cancer. In vitro, hepatoma cells incubated with conditioned media (CM) from SYY treated aHSCs showed reduced proliferation, decrease in colony formation and invasive potential. SYY treated group showed altered gene expression, with 1205 genes up-regulated and 1323 genes down-regulated. Gene cluster analysis indicated that phosphatidylinositol-3-kinase (PI3K) was one of the key genes altered in the expression profiles. PI3K related markers were all significantly down-regulated. ELISA also indicated decreased secretion of cytokines which were regulated by PI3K/AKT signaling after SYY treatment in the hepatic stellate cell line, LX2. These data clearly demonstrate that SYY therapy inhibits HCC invasive and metastatic potential and improves survival in nude mice models with chronic fibrosis background via inhibition of cytokine secretion by activated hepatic stellate cells. PMID:26517671

  4. The herbal compound Songyou Yin (SYY) inhibits hepatocellular carcinoma growth and improves survival in models of chronic fibrosis via paracrine inhibition of activated hepatic stellate cells

    PubMed Central

    Xue, Tong-Chun; Zhang, Quan-Bao; Zhang, Ke-Zhi; Zhang, Qiang-Bo; You, Yang; Tian, Hui; Qin, Lun-Xiu; Tang, Zhao-You

    2015-01-01

    Chronic fibrosis is a major risk factor for the development of hepatocellular carcinoma (HCC). The pathological progression of hepatic fibrosis has been linked to cellular processes that promote tumor growth and metastasis. Several recent studies have highlighted the cross-talk between tumor cells and activated hepatic stellate cells (aHSCs) in HCC. The herbal compound Songyou Yin (SYY) is known to attenuate hepatoma cell invasion and metastasis via down-regulation of cytokine secretion by aHSCs. However the underlying mechanism of SYY treatment in reversal of hepatic fibrosis and metastasis of liver cancers is not known. In the current study, a nude mouse model with liver fibrosis bearing orthotopic xenograft was established and we found that SYY could reduce associated fibrosis, inhibit tumor growth and improve survival. In the subcutaneous tumor model with fibrosis, we found that SYY could inhibit liver cancer. In vitro, hepatoma cells incubated with conditioned media (CM) from SYY treated aHSCs showed reduced proliferation, decrease in colony formation and invasive potential. SYY treated group showed altered gene expression, with 1205 genes up-regulated and 1323 genes down-regulated. Gene cluster analysis indicated that phosphatidylinositol-3-kinase (PI3K) was one of the key genes altered in the expression profiles. PI3K related markers were all significantly down-regulated. ELISA also indicated decreased secretion of cytokines which were regulated by PI3K/AKT signaling after SYY treatment in the hepatic stellate cell line, LX2. These data clearly demonstrate that SYY therapy inhibits HCC invasive and metastatic potential and improves survival in nude mice models with chronic fibrosis background via inhibition of cytokine secretion by activated hepatic stellate cells. PMID:26517671

  5. Wnt Pathway Stabilizes MeCP2 Protein to Repress PPAR-γ in Activation of Hepatic Stellate Cells.

    PubMed

    Kweon, Soo-Mi; Chi, Feng; Higashiyama, Reiichi; Lai, Keane; Tsukamoto, Hidekazu

    2016-01-01

    PPAR-γ is essential for differentiation of hepatic stellate cells (HSC), and its loss due to epigenetic repression by methyl-CpG binding protein 2 (MeCP2) causes HSC myofibroblastic activation mediated in part via Wnt pathway, the key cellular event in liver fibrosis. Decreased miR-132 was previously proposed to promote MeCP2 protein translation for Ppar-γ repression in activated HSC (aHSC). The present study aimed to test this notion and to better understand the mechanisms of MeCP2 upregulation in aHSC. MeCP2 protein is increased on day 3 to 7 as HSC become activated in primary culture on plastic, but this is accompanied by increased but not reduced miR-132 or miR-212 which is also expected to target MeCP2 due to its similar sequence with miR-132. The levels of these mRNAs are decreased 40~50% in aHSCs isolated from experimental cholestatic liver fibrosis but increased 6-8 fold in aHSC from hepatotoxic liver fibrosis in rats. Suppression of either or both of miR132 and miR212 with specific anti-miRNA oligonucleotides (anti-oligo), does not affect MeCP2 protein levels in aHSCs. The Wnt antagonist FJ9 which inhibits HSC activation, increases miR-132/miR-212, reduces MeCP2 and its enrichment at 5' Ppar-γ promoter, and restores Ppar-γ expression but the anti-oligo do not prevent Ppar-γ upregulation. The pan-NADPH oxidase (NOX) inhibitor diphenyleneiodonium (DPI) also reduces both MeCP2 and stabilized non-(S33/S37/Thr41)-phospho β-catenin and reverts aHSC to quiescent cells but do not affect miR-132/miR-212 levels. Wnt antagonism with FJ9 increases MeCP2 protein degradation in cultured HSC, and FJ9-mediated loss of MeCP2 is rescued by leupeptin but not by proteasome and lysozome inhibitors. In conclusion, canonical Wnt pathway increases MeCP2 protein due to protein stability which in turn represses Ppar-γ and activates HSC. PMID:27214381

  6. Wnt Pathway Stabilizes MeCP2 Protein to Repress PPAR-γ in Activation of Hepatic Stellate Cells

    PubMed Central

    Kweon, Soo-Mi; Chi, Feng; Higashiyama, Reiichi; Lai, Keane; Tsukamoto, Hidekazu

    2016-01-01

    PPAR-γ is essential for differentiation of hepatic stellate cells (HSC), and its loss due to epigenetic repression by methyl-CpG binding protein 2 (MeCP2) causes HSC myofibroblastic activation mediated in part via Wnt pathway, the key cellular event in liver fibrosis. Decreased miR-132 was previously proposed to promote MeCP2 protein translation for Ppar-γ repression in activated HSC (aHSC). The present study aimed to test this notion and to better understand the mechanisms of MeCP2 upregulation in aHSC. MeCP2 protein is increased on day 3 to 7 as HSC become activated in primary culture on plastic, but this is accompanied by increased but not reduced miR-132 or miR-212 which is also expected to target MeCP2 due to its similar sequence with miR-132. The levels of these mRNAs are decreased 40~50% in aHSCs isolated from experimental cholestatic liver fibrosis but increased 6–8 fold in aHSC from hepatotoxic liver fibrosis in rats. Suppression of either or both of miR132 and miR212 with specific anti-miRNA oligonucleotides (anti-oligo), does not affect MeCP2 protein levels in aHSCs. The Wnt antagonist FJ9 which inhibits HSC activation, increases miR-132/miR-212, reduces MeCP2 and its enrichment at 5’ Ppar-γ promoter, and restores Ppar-γ expression but the anti-oligo do not prevent Ppar-γ upregulation. The pan-NADPH oxidase (NOX) inhibitor diphenyleneiodonium (DPI) also reduces both MeCP2 and stabilized non-(S33/S37/Thr41)-phospho β-catenin and reverts aHSC to quiescent cells but do not affect miR-132/miR-212 levels. Wnt antagonism with FJ9 increases MeCP2 protein degradation in cultured HSC, and FJ9-mediated loss of MeCP2 is rescued by leupeptin but not by proteasome and lysozome inhibitors. In conclusion, canonical Wnt pathway increases MeCP2 protein due to protein stability which in turn represses Ppar-γ and activates HSC. PMID:27214381

  7. Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells

    PubMed Central

    Reiner, Andrew H.; Coll, Mar; Verhulst, Stefaan; Mannaerts, Inge; Øie, Cristina I.; Smedsrød, Bård; Najimi, Mustapha; Sokal, Etienne; Luttun, Aernout; Sancho-Bru, Pau; Collas, Philippe; van Grunsven, Leo A.

    2015-01-01

    Background & Aims Liver fibrogenesis – scarring of the liver that can lead to cirrhosis and liver cancer – is characterized by hepatocyte impairment, capillarization of liver sinusoidal endothelial cells (LSECs) and hepatic stellate cell (HSC) activation. To date, the molecular determinants of a healthy human liver cell phenotype remain largely uncharacterized. Here, we assess the transcriptome and the genome-wide promoter methylome specific for purified, non-cultured human hepatocytes, LSECs and HSCs, and investigate the nature of epigenetic changes accompanying transcriptional changes associated with activation of HSCs. Material and methods Gene expression profile and promoter methylome of purified, uncultured human liver cells and culture-activated HSCs were respectively determined using Affymetrix HG-U219 genechips and by methylated DNA immunoprecipitation coupled to promoter array hybridization. Histone modification patterns were assessed at the single-gene level by chromatin immunoprecipitation and quantitative PCR. Results We unveil a DNA-methylation-based epigenetic relationship between hepatocytes, LSECs and HSCs despite their distinct ontogeny. We show that liver cell type-specific DNA methylation targets early developmental and differentiation-associated functions. Integrative analysis of promoter methylome and transcriptome reveals partial concordance between DNA methylation and transcriptional changes associated with human HSC activation. Further, we identify concordant histone methylation and acetylation changes in the promoter and putative novel enhancer elements of genes involved in liver fibrosis. Conclusions Our study provides the first epigenetic blueprint of three distinct freshly isolated, human hepatic cell types and of epigenetic changes elicited upon HSC activation. PMID:26353929

  8. Dietary Flavonoid Hyperoside Induces Apoptosis of Activated Human LX-2 Hepatic Stellate Cell by Suppressing Canonical NF-κB Signaling

    PubMed Central

    Bai, Liang; Tao, Yongqing; Wang, Suying; Zhi, Dexian

    2016-01-01

    Hyperoside, an active compound found in plants of the genera Hypericum and Crataegus, is reported to exhibit antioxidant, anticancer, and anti-inflammatory activities. Induction of hepatic stellate cell (HSC) apoptosis is recognized as a promising strategy for attenuation of hepatic fibrosis. In this study, we investigated whether hyperoside treatment can exert antifibrotic effects in human LX-2 hepatic stellate cells. We found that hyperoside induced apoptosis in LX-2 cells and decreased levels of α-smooth muscle actin (α-SMA), type I collagen, and intracellular reactive oxygen species (ROS). Remarkably, hyperoside also inhibited the DNA-binding activity of the transcription factor NF-κB and altered expression levels of NF-κB-regulated genes related to apoptosis, including proapoptotic genes Bcl-Xs, DR4, Fas, and FasL and anti-apoptotic genes A20, c-IAP1, Bcl-XL, and RIP1. Our results suggest that hyperoside may have potential as a therapeutic agent for the treatment of liver fibrosis. PMID:27110557

  9. Dietary Flavonoid Hyperoside Induces Apoptosis of Activated Human LX-2 Hepatic Stellate Cell by Suppressing Canonical NF-κB Signaling.

    PubMed

    Wang, Liwen; Yue, Zhiwei; Guo, Mengzheng; Fang, Lianying; Bai, Liang; Li, Xinyu; Tao, Yongqing; Wang, Suying; Liu, Qiang; Zhi, Dexian; Zhao, Hui

    2016-01-01

    Hyperoside, an active compound found in plants of the genera Hypericum and Crataegus, is reported to exhibit antioxidant, anticancer, and anti-inflammatory activities. Induction of hepatic stellate cell (HSC) apoptosis is recognized as a promising strategy for attenuation of hepatic fibrosis. In this study, we investigated whether hyperoside treatment can exert antifibrotic effects in human LX-2 hepatic stellate cells. We found that hyperoside induced apoptosis in LX-2 cells and decreased levels of α-smooth muscle actin (α-SMA), type I collagen, and intracellular reactive oxygen species (ROS). Remarkably, hyperoside also inhibited the DNA-binding activity of the transcription factor NF-κB and altered expression levels of NF-κB-regulated genes related to apoptosis, including proapoptotic genes Bcl-Xs, DR4, Fas, and FasL and anti-apoptotic genes A20, c-IAP1, Bcl-X L , and RIP1. Our results suggest that hyperoside may have potential as a therapeutic agent for the treatment of liver fibrosis. PMID:27110557

  10. All-trans and 9-cis retinoic acid alter rat hepatic stellate cell phenotype differentially

    PubMed Central

    Hellemans, K; Grinko, I; Rombouts, K; Schuppan, D; Geerts, A

    1999-01-01

    BACKGROUND—Hepatic stellate cells exert specific functions in the liver: storage of large amounts of retinyl esters, synthesis and breakdown of hepatic extracellular matrix, secretion of a variety of cytokines, and control of the diameter of the sinusoids.
AIMS—To examine the influence of all-trans retinoic acid (ATRA) and 9-cis retinoic acid (9RA) on extracellular matrix production and proliferation of activated hepatic stellate cells.
METHODS—Cells were isolated using collagenase/pronase, purified by centrifugation in nycodenz, and cultured for two weeks. At this time point the cells exhibited the activated phenotype. Cells were exposed to various concentrations of ATRA and 9RA. The expression of procollagens I, III, and IV, of fibronectin and of laminin were analysed by immunoprecipitation and northern hybridisation.
RESULTS—ATRA exerted a significant inhibitory effect on the synthesis of procollagens type I, III, and IV, fibronectin, and laminin, but did not influence stellate cell proliferation, whereas 9RA showed a clear but late effect on proliferation. 9RA increased procollagen I mRNA 1.9-fold, but did not affect the expression of other matrix proteins.
CONCLUSION—Results showed that ATRA and 9RA exert different, often contrary effects on activated stellate cells. These observations may explain prior divergent results obtained following retinoid administration to cultured stellate cells or in animals subjected to fibrogenic stimuli.


Keywords: hepatic stellate cells; retinoic acid; extracellular matrix proteins; proliferation PMID:10369717

  11. Egg antigen p40 of Schistosoma japonicum promotes senescence in activated hepatic stellate cells by activation of the STAT3/p53/p21 pathway

    PubMed Central

    Chen, Jinling; Xu, Tianhua; Zhu, Dandan; Wang, Jianxin; Huang, Caiqun; Lyu, Lei; Hu, Bin; Sun, Wei; Duan, Yinong

    2016-01-01

    Liver fibrosis is a serious disease that is characterized by the excess deposition of extracellular matrix (ECM) components. Activated hepatic stellate cells (HSCs) are a major source of ECM and serve as a key regulator in liver fibrogenesis. Inactivation of HSCs is essential for liver fibrotic regression. The present study explores the underlying mechanisms of Schistosoma japonicum egg antigen p40 (Sjp40) promoting senescence in HSCs and antifibrosis. For the first time we report that Sjp40 inhibits the activation and proliferation of an immortalized human HSC line (LX-2 cells) and promotes cellular senescence and cell cycle arrest. Sjp40 through action on the STAT3/p53/p21 pathway triggered cellular senescence, while knockdown of p53 or STAT3 partly restored cell senescence. In addition, Sjp40-induced cellular senescence caused LX-2 cells to be more sensitive to a human NK cell line (YT cells). Together these findings provide novel insights into the mechanism of antifibrosis and may have implications for the development of antifibrosis therapies. PMID:27468691

  12. α-Lipoic acid inhibits liver fibrosis through the attenuation of ROS-triggered signaling in hepatic stellate cells activated by PDGF and TGF-β.

    PubMed

    Foo, Ning-Ping; Lin, Shu-Huei; Lee, Yu-Hsuan; Wu, Ming-Jiuan; Wang, Ying-Jan

    2011-03-28

    Reactive oxygen species (ROS) have been implicated in hepatic stellate cell activation and liver fibrosis. We previously reported that α-lipoic acid (LA) and its reduced form dihydrolipoic acid (DHLA) inhibited toxicant-induced inflammation and ROS generation. In the present study, we further examined the effects of LA/DHLA on thioacetamide (TAA)-induced liver fibrosis in rats and the possible underlying mechanisms in hepatic stellate cells in vitro. We found that co-administration of LA to rats chronically treated with TAA inhibited the development of liver cirrhosis, as indicated by reductions in cirrhosis incidence, hepatic fibrosis, and AST/ALT activities. We also found that DHLA inhibited TGF-β/PDGF-stimulated HSC-T6 activation and ROS generation. These effects could be mediated by the MAPK and PI3K/Akt pathways. According to our current results, LA may have a beneficial role in the treatment of chronic liver diseases caused by ongoing hepatic damage. PMID:21251946

  13. Septin4_i1 regulates apoptosis in hepatic stellate cells through peroxisome proliferator-activated receptor-γ/Akt/B-cell lymphoma 2 pathway.

    PubMed

    Zhu, Dandan; Wang, Jianxin; Sun, Xiaolei; Chen, Jinling; Duan, Yinong; Pan, Jing; Xu, Tianhua; Qin, Yongwei; He, Xingxin; Huang, Caiqun

    2015-03-01

    Apoptosis of activated hepatic stellate cells (HSCs) has been verified as a potential mechanism to aid in hepatic fibrosis remission. Earlier research suggests that Septin4_i1 may sensitize hepatocellular carcinoma cells to serum starvation-induced apoptosis. Here, we aimed to investigate the effect of Septin4_i1 on HSC apoptosis and explore the associated signaling pathways. We found that Septin4_i1 can induce apoptosis in LX-2 cells and that this is accompanied by an up-regulation in cleaved-caspase-3 and peroxisome proliferator-activated receptor-γ (PPAR-γ) expression and a down-regulation in α-SMA expression. Over-expression of Septin4_i1 reduced phosphorylated Akt and B-cell lymphoma 2 (Bcl-2) expression but had no effect on the expression of p53 and death receptor (DR)-5. The decreased expression of Bcl-2 and the increased expression of cleaved-caspase-3 induced by Sept4_i1 could be reversed by GW501516, a PPAR-β/δ agonist that has been reported by others to enhance Akt signaling. In addition, GW9662, an antagonist of PPAR-γ, could also inhibit apoptosis in LX-2 cells induced by Sept4_i1. In conclusion, our data suggest that Sept4_i1 induces HSC apoptosis by inhibiting Akt and Bcl-2 expression and up-regulating PPAR-γ expression. PMID:25527525

  14. Soluble egg antigens of Schistosoma japonicum induce senescence in activated hepatic stellate cells by activation of the STAT3/p53/p21 pathway.

    PubMed

    Chen, Jinling; Pan, Jing; Wang, Jianxin; Song, Ke; Zhu, Dandan; Huang, Caiqun; Duan, Yinong

    2016-01-01

    Liver fibrosis is characterized by the activation of hepatic stellate cells (HSCs). Recent findings suggest that senescence of activated HSCs might limit the development of liver fibrosis. Based on previously observed anti-fibrotic effects of soluble egg antigens from Schistosoma japonicum in vitro, we hypothesized that SEA might play a crucial role in alleviating liver fibrosis through promoting senescence of activated HSCs. We show here that SEA inhibited expression of α-SMA and pro-collagen I and promoted senescence of activated HSCs in vitro. In addition, SEA induced an increased expression of P-p53 and p21. Knockdown of p53 inhibited the expression of p21 and failed to induce senescence of activated-HSCs. Phosphorylated STAT3 was elevated upon SEA stimulation, while loss of STAT3 decreased the level of p53 and senescence of HSCs. Results from immunoprecipitation analysis demonstrated that SOCS3 might be involved in the SEA-induced senescence in HSCs through its interaction with p53. This study demonstrates the potential capacity of SEA in restricting liver fibrosis through promoting senescence in HSCs. Furthermore, a novel STAT3-p53-p21 pathway might participate in the observed SEA-mediated senescence of HSCs. Our results suggest that SEA might carry potential therapeutic effects of restraining liver fibrosis through promoting senescence. PMID:27489164

  15. Soluble egg antigens of Schistosoma japonicum induce senescence in activated hepatic stellate cells by activation of the STAT3/p53/p21 pathway

    PubMed Central

    Chen, Jinling; Pan, Jing; Wang, Jianxin; Song, Ke; Zhu, Dandan; Huang, Caiqun; Duan, Yinong

    2016-01-01

    Liver fibrosis is characterized by the activation of hepatic stellate cells (HSCs). Recent findings suggest that senescence of activated HSCs might limit the development of liver fibrosis. Based on previously observed anti-fibrotic effects of soluble egg antigens from Schistosoma japonicum in vitro, we hypothesized that SEA might play a crucial role in alleviating liver fibrosis through promoting senescence of activated HSCs. We show here that SEA inhibited expression of α-SMA and pro-collagen I and promoted senescence of activated HSCs in vitro. In addition, SEA induced an increased expression of P-p53 and p21. Knockdown of p53 inhibited the expression of p21 and failed to induce senescence of activated-HSCs. Phosphorylated STAT3 was elevated upon SEA stimulation, while loss of STAT3 decreased the level of p53 and senescence of HSCs. Results from immunoprecipitation analysis demonstrated that SOCS3 might be involved in the SEA-induced senescence in HSCs through its interaction with p53. This study demonstrates the potential capacity of SEA in restricting liver fibrosis through promoting senescence in HSCs. Furthermore, a novel STAT3-p53-p21 pathway might participate in the observed SEA-mediated senescence of HSCs. Our results suggest that SEA might carry potential therapeutic effects of restraining liver fibrosis through promoting senescence. PMID:27489164

  16. Bone marrow-derived pancreatic stellate cells in rats.

    PubMed

    Sparmann, Gisela; Kruse, Marie-Luise; Hofmeister-Mielke, Nicole; Koczan, Dirk; Jaster, Robert; Liebe, Stefan; Wolff, Daniel; Emmrich, Jörg

    2010-03-01

    Origin and fate of pancreatic stellate cells (PSCs) before, during and after pancreatic injury are a matter of debate. The crucial role of PSCs in the pathogenesis of pancreatic fibrosis is generally accepted. However, the turnover of the cells remains obscure. The present study addressed the issue of a potential bone marrow (BM) origin of PSCs. We used a model of stable hematopoietic chimerism by grafting enhanced green fluorescence protein (eGFP)-expressing BM cells after irradiation of acceptor rats. Chimerism was detected by FACS analysis of eGFP-positive cells in the peripheral blood. Dibutyltin dichloride (DBTC) was used to induce acute pancreatic inflammation with subsequent recovery over 4 weeks. Investigations have been focused on isolated cells to detect the resting PSC population. The incidence of eGFP-positive PSC obtained from the pancreas of chimeric rats was approximately 7% in healthy pancreatic tissue and increased significantly to a mean of 18% in the restored pancreas 4 weeks after DBTC-induced acute inflammation. Our results suggest that BM-derived progenitor cells represent a source of renewable stellate cells in the pancreas. Increased numbers of resting PSCs after regeneration point toward enhanced recruitment of BM-derived cells to the pancreas and/or re-acquisition of a quiescent state after inflammation-induced activation. PMID:20101265

  17. Activated Pancreatic Stellate Cells Sequester CD8+ T-Cells to Reduce Their Infiltration of the Juxtatumoral Compartment of Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Ene-Obong, Abasi; Clear, Andrew J.; Watt, Jennifer; Wang, Jun; Fatah, Rewas; Riches, John C.; Marshall, John F.; Chin-Aleong, Joanne; Chelala, Claude; Gribben, John G.; Ramsay, Alan G.; Kocher, Hemant M.

    2013-01-01

    Background & Aims Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prominent desmoplastic microenvironment that contains many different immune cells. Activated pancreatic stellate cells (PSCs) contribute to the desmoplasia. We investigated whether distinct stromal compartments are differentially infiltrated by different types of immune cells. Method We used tissue microarray analysis to compare immune cell infiltration of different pancreatico-biliary diseased tissues (PDAC, ampullary carcinoma, cholangiocarcinoma, mucinous cystic neoplasm, chronic inflammation, and chronic pancreatitis), and juxtatumoral stromal (<100 μm from tumor) and panstromal compartments. We investigated the association between immune infiltrate and patient survival times. We analyzed T-cell migration and tumor infiltration in LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) mice, and the effects of all-trans retinoic acid (ATRA) on these processes. Results Juxtatumoral compartments in PDAC samples from 2 independent groups of patients contained increased numbers of myeloperoxidase+ and CD68+ cells, compared with panstromal compartments. However, juxtatumoral compartments of PDACs contained fewer CD8+, FoxP3+, CD56+, or CD20+ cells than panstromal compartments, a distinction absent in ampullary carcinomas and cholangiocarcinomas. Patients with PDACs that had high densities of CD8+ T-cells in the juxtatumoral compartment had longer survival times than patients with lower densities. In KPC mice, administration of ATRA, which renders PSCs quiescent, increased numbers of CD8+ T-cells in juxtatumoral compartments. We found that activated PSCs express cytokines, chemokines, and adhesion molecules that regulate T-cell migration. In vitro migration assays showed that CD8+ T-cells from PDAC patients had increased chemotaxis towards activated PSCs, which secrete CXCL12, compared with quiescent PSC or tumor cells. These effects could be reversed by knockdown of CXCL12 or treatment of

  18. Activation of PPARgamma is required for curcumin to induce apoptosis and to inhibit the expression of extracellular matrix genes in hepatic stellate cells in vitro.

    PubMed

    Zheng, Shizhong; Chen, Anping

    2004-11-15

    During liver fibrogenesis, quiescent HSC (hepatic stellate cells) become active, a transformation that is associated with enhanced cell proliferation and overproduction of ECM (extracellular matrix). Inhibition of cell proliferation and induction of apoptosis are potential strategies to block the activation of HSC for the prevention and treatment of liver fibrosis. Levels of PPARgamma (peroxisome proliferator-activated receptor gamma) are dramatically diminished in parallel with HSC activation. Stimulation of PPARgamma by its agonists inhibits HSC activation in vitro and in vivo. We demonstrated recently that curcumin, the yellow pigment in curry, inhibited HSC activation in vitro, reducing cell proliferation, inducing apoptosis and inhibiting ECM gene expression. Further studies indicated that curcumin induced the gene expression of PPARgamma and stimulated its activity in activated HSC in vitro, which was required for curcumin to inhibit HSC proliferation. The aims of the present study were to evaluate the roles of PPARgamma activation in the induction of apoptosis and suppression of ECM gene expression by curcumin in activated HSC, and to elucidate the underlying mechanisms. Our results demonstrated that blocking PPARgamma activation abrogated the effects of curcumin on the induction of apoptosis and inhibition of the expression of ECM genes in activated HSC in vitro. Further experiments demonstrated that curcumin suppressed the gene expression of TGF-beta (transforming growth factor-beta) receptors and interrupted the TGF-beta signalling pathway in activated HSC, which was mediated by PPARgamma activation. Taken together, our results demonstrate that curcumin stimulated PPARgamma activity in activated HSC in vitro, which was required for curcumin to reduce cell proliferation, induce apoptosis and suppress ECM gene expression. These results provide novel insight into the mechanisms responsible for the inhibition of HSC activation by curcumin. The characteristics

  19. Targeted TFO delivery to hepatic stellate cells.

    PubMed

    Yang, Ningning; Singh, Saurabh; Mahato, Ram I

    2011-10-30

    Triplex-forming oligonucleotides (TFOs) represent an antigene approach for gene regulation through direct interaction with genomic DNA. While this strategy holds great promise owing to the fact that only two alleles need silencing to impact gene regulation, delivering TFOs to target cells in vivo is still a challenge. Our recent efforts have focused on conjugating TFOs to carrier molecules like cholesterol to enhance their cellular uptake and mannose-6-phosphate-bovine serum albumin (M6P-BSA) to target TFO delivery to hepatic stellate cells (HSCs) for treating liver fibrosis. These approaches however are rendered less effective owing to a lack of targeted delivery, as seen with lipid-conjugates, and the potential immune reactions due to repeated dosing with high molecular weight BSA conjugated TFO. In this review, we discuss our latest efforts to enhance the effectiveness of TFO for treating liver fibrosis. We have shown that conjugation of TFOs to M6P-HPMA can enhance TFO delivery to HSCs and has the potential to treat liver fibrosis by inhibiting collagen synthesis. This TFO conjugate shows negligible immunogenicity owing to the use of HPMA, one of the least immunogenic copolymers, thereby making it a suitable and more effective candidate for antifibrotic therapy. PMID:21763370

  20. Targeted TFO Delivery to Hepatic Stellate Cells

    PubMed Central

    Yang, Ningning; Singh, Saurabh; Mahato, Ram I

    2011-01-01

    Triplex-forming oligonucleotides (TFOs) represent an antigene approach for gene regulation through direct interaction with genomic DNA. While this strategy holds great promise owing to the fact that only two alleles need silencing to impact gene regulation, delivering TFOs to target cells in vivo is still a challenge. Our recent efforts have focused on conjugating TFOs to carrier molecules like cholesterol to enhance their cellular uptake and mannose-6-phosphate-bovine serum albumin (M6P-BSA) to target TFO delivery to hepatic stellate cells (HSCs) for treating liver fibrosis. These approaches however are rendered less effective owing to a lack of targeted delivery, as seen with lipid-conjugates, and the potential immune reactions due to repeated dosing with high molecular weight BSA conjugated TFO. In this review, we discuss our latest efforts to enhance the effectiveness of TFO for treating liver fibrosis. We have shown that conjugation of TFOs to M6P-HPMA can enhance TFO delivery to HSCs and has the potential to treat liver fibrosis by inhibiting collagen synthesis. This TFO conjugate shows negligible immunogenicity owing to the use of HPMA, one of the least immunogenic copolymers, thereby making it a suitable and more effective candidate for antifibrotic therapy. PMID:21763370

  1. Discovery of cytoglobin and its roles in physiology and pathology of hepatic stellate cells

    PubMed Central

    YOSHIZATO, Katsutoshi; THUY, Le Thi Thanh; SHIOTA, Goshi; KAWADA, Norifumi

    2016-01-01

    Cytoglobin (CYGB), a new member of the globin family, was discovered in 2001 as a protein associated with stellate cell activation (stellate cell activation-associated protein [STAP]). Knowledge of CYGB, including its crystal, gene, and protein structures as well as its physiological and pathological importance, has increased progressively. We investigated the roles of oxygen (O2)-binding CYGB as STAP in hepatic stellate cells (HSCs) to understand the part played by this protein in their pathophysiological activities. Studies involving CYGB-gene-deleted mice have led us to suppose that CYGB functions as a regulator of O2 homeostasis; when O2 homeostasis is disrupted, HSCs are activated and play a key role(s) in hepatic fibrogenesis. In this review, we discuss the rationale for this hypothesis. PMID:26972599

  2. Discovery of cytoglobin and its roles in physiology and pathology of hepatic stellate cells.

    PubMed

    Yoshizato, Katsutoshi; Thuy, Le Thi Thanh; Shiota, Goshi; Kawada, Norifumi

    2016-01-01

    Cytoglobin (CYGB), a new member of the globin family, was discovered in 2001 as a protein associated with stellate cell activation (stellate cell activation-associated protein [STAP]). Knowledge of CYGB, including its crystal, gene, and protein structures as well as its physiological and pathological importance, has increased progressively. We investigated the roles of oxygen (O2)-binding CYGB as STAP in hepatic stellate cells (HSCs) to understand the part played by this protein in their pathophysiological activities. Studies involving CYGB-gene-deleted mice have led us to suppose that CYGB functions as a regulator of O2 homeostasis; when O2 homeostasis is disrupted, HSCs are activated and play a key role(s) in hepatic fibrogenesis. In this review, we discuss the rationale for this hypothesis. PMID:26972599

  3. The role of pancreatic stellate cells in pancreatic cancer.

    PubMed

    Erkan, Mert

    2013-01-01

    Since conventional and targeted therapies aiming at cancer cells have largely failed to prolong survival in pancreatic cancer, targeting the infrastructure of the tumor, hence its stroma is a novel strategy. It is believed that fibrotic and hypovascular stroma forms a barrier around cancer cells, hindering effective delivery of chemotherapy. Theoretically, antifibrotic therapy should reduce the compactness of the stroma and reduce the interstitial pressure, allowing better delivery of chemotherapy. This approach has worked successfully in a genetically engineered mouse model but failed in humans, paradoxically increasing mortality in the treatment arm. Normally, stromal cells deposit extracellular matrix as an innate defensive reaction to form a barrier between what is harmful and the rest of the body. Despite the significant amount of in vitro data suggesting the pro-tumorigenic roles of activated stellate cells, there is no reason to believe that stellate cells around genetically mutated cells are from the beginning there to support carcinogenesis. Such a stromal activation is also observed around PanIN lesions (which harbor genetically mutated cells) in chronic pancreatitis, where no cancer develops. In pancreatic cancer, the selection pressure created by the fibrotic and hypoxic stroma eventually leads to the evolution of more aggressive clones, indirectly contributing to the aggressiveness of the tumor. Here, the main problem is the late diagnosis of pancreatic cancer, which gives cancer cells enough time for malignant evolution. Therefore, applying antifibrotic therapy at a late stage can be counterproductive. It may increase delivery of chemotherapy, but also lead to the escape of cancer cells. PMID:23561966

  4. Mannan binding lectin-associated serine protease 1 is induced by hepatitis C virus infection and activates human hepatic stellate cells

    PubMed Central

    Saeed, A; Baloch, K; Brown, R J P; Wallis, R; Chen, L; Dexter, L; McClure, C P; Shakesheff, K; Thomson, B J

    2013-01-01

    Mannan binding lectin (MBL)-associated serine protease type 1 (MASP-1) has a central role in the lectin pathway of complement activation and is required for the formation of C3 convertase. The activity of MASP-1 in the peripheral blood has been identified previously as a highly significant predictor of the severity of liver fibrosis in hepatitis C virus (HCV) infection, but not in liver disease of other aetiologies. In this study we tested the hypotheses that expression of MASP-1 may promote disease progression in HCV disease by direct activation of hepatic stellate cells (HSCs) and may additionally be up-regulated by HCV. In order to do so, we utilized a model for the maintenance of primary human HSC in the quiescent state by culture on basement membrane substrate prior to stimulation. In comparison to controls, recombinant MASP-1 stimulated quiescent human HSCs to differentiate to the activated state as assessed by both morphology and up-regulation of HSC activation markers α-smooth muscle actin and tissue inhibitor of metalloproteinase 1. Further, the expression of MASP-1 was up-regulated significantly by HCV infection in hepatocyte cell lines. These observations suggest a new role for MASP-1 and provide a possible mechanistic link between high levels of MASP-1 and the severity of disease in HCV infection. Taken together with previous clinical observations, our new findings suggest that the balance of MASP-1 activity may be proinflammatory and act to accelerate fibrosis progression in HCV liver disease. PMID:23841802

  5. Hepatic Stellate Cells: Protean, Multifunctional, and Enigmatic Cells of the Liver

    PubMed Central

    Friedman, Scott L.

    2010-01-01

    The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization. The paradigm in liver injury of activation of quiescent vitamin A-rich stellate cells into proliferative, contractile, and fibrogenic myofibroblasts has launched an era of astonishing progress in understanding the mechanistic basis of hepatic fibrosis progression and regression. But this simple paradigm has now yielded to a remarkably broad appreciation of the cell's functions not only in liver injury, but also in hepatic development, regeneration, xenobiotic responses, intermediary metabolism, and immunoregulation. Among the most exciting prospects is that stellate cells are essential for hepatic progenitor cell amplification and differentiation. Equally intriguing is the remarkable plasticity of stellate cells, not only in their variable intermediate filament phenotype, but also in their functions. Stellate cells can be viewed as the nexus in a complex sinusoidal milieu that requires tightly regulated autocrine and paracrine cross-talk, rapid responses to evolving extracellular matrix content, and exquisite responsiveness to the metabolic needs imposed by liver growth and repair. Moreover, roles vital to systemic homeostasis include their storage and mobilization of retinoids, their emerging capacity for antigen presentation and induction of tolerance, as well as their emerging relationship to bone marrow-derived cells. As interest in this cell type intensifies, more surprises and mysteries are sure to unfold that will ultimately benefit our understanding of liver physiology and the diagnosis and treatment of liver disease. PMID:18195085

  6. LIM-domain protein cysteine- and glycine-rich protein 2 (CRP2) is a novel marker of hepatic stellate cells and binding partner of the protein inhibitor of activated STAT1.

    PubMed Central

    Weiskirchen, R; Moser, M; Weiskirchen, S; Erdel, M; Dahmen, S; Buettner, R; Gressner, A M

    2001-01-01

    Activation of hepatic stellate cells is considered to be the main step in the development of liver fibrosis, which is characterized by the transition of quiescent vitamin-A-rich cells to proliferative, fibrogenic and contractile myofibroblasts. The identification of regulatory genes during early cell activation and transdifferentiation is essential to extend our knowledge of hepatic fibrogenesis. In liver, the gene CSRP2 is exclusively expressed by stellate cells, whereas no transcripts are detectable in hepatocytes, sinusoidal endothelial cells or Kupffer cells. The early activation of stellate cells induced by platelet-derived growth factor is accompanied by an enhanced expression of CSRP2. During later stages of transdifferentiation, the expression of CSRP2 in these cells is suppressed in vitro and in vivo. The CSRP2-encoded cysteine- and glycine-rich double-LIM-domain protein (CRP)2 is proposed to function as a molecular adapter, arranging two or more as yet unidentified protein constituents into a macromolecular complex. To identify these proteins and assign a cellular function to CRP2, a human cDNA library was screened with full-length CRP2 as bait in a yeast two-hybrid screen. The protein inhibitor of activated STAT1 ('PIAS1') was shown to associate selectively with the C-terminal LIM domain of CRP2. Physical interaction of both proteins in the cellular environment was confirmed by co-localization experiments with confocal laser scanning microscopy and co-immunoprecipitation analysis. These results establish CRP2 as a potential new factor in the JAK/STAT-signalling pathway and suggest that the suppression of CSRP2 might be a prerequisite for the myofibroblastic transition of hepatic stellate cells. PMID:11672422

  7. Dihydroartemisinin alleviates bile duct ligation-induced liver fibrosis and hepatic stellate cell activation by interfering with the PDGF-βR/ERK signaling pathway.

    PubMed

    Chen, Qin; Chen, Lianyun; Kong, Desong; Shao, Jiangjuan; Wu, Li; Zheng, Shizhong

    2016-05-01

    Liver fibrosis represents a frequent event following chronic insult to trigger wound healing responses in the liver. Activation of hepatic stellate cells (HSCs), which is a pivotal event during liver fibrogenesis, is accompanied by enhanced expressions of a series of marker proteins and pro-fibrogenic signaling molecules. Artemisinin, a powerful antimalarial medicine, is extracted from the Chinese herb Artemisia annua L., and can inhibit the proliferation of cancer cells. Dihydroartemisinin (DHA), the major active metabolite of artemisinin, is able to attenuate lung injury and fibrosis. However, the effect of DHA on liver fibrosis remains unclear. The aim of this study was to investigate the effect of DHA on bile duct ligation-induced injury and fibrosis in rats. DHA improved the liver histological architecture and attenuated collagen deposition in the fibrotic rat liver. Experiments in vitro showed that DHA inhibited the proliferation of HSCs and arrested the cell cycle at the S checkpoint by altering several cell-cycle regulatory proteins. Moreover, DHA reduced the protein expressions of a-SMA, α1 (I) collagen and fibronectin, being associated with interference of the platelet-derived growth factor β receptor (PDGF-βR)-mediated ERK pathway. These data collectively revealed that DHA relieved liver fibrosis possibly by targeting HSCs via the PDGF-βR/ERK pathway. DHA may be a therapeutic antifibrotic agent for the treatment of hepatic fibrosis. PMID:27038258

  8. Nod-like receptor protein 3 inflammasome activation by Escherichia coli RNA induces transforming growth factor beta 1 secretion in hepatic stellate cells

    PubMed Central

    Wang, Hui; Liu, Shu; Wang, Ying; Chang, Bing; Wang, Bingyuan

    2016-01-01

    Nod-like receptor protein 3 (NLRP3) inflammasome has been implicated in alcoholic liver disease. Chronic alcohol consumption enhances gut permeability and causes microbial translocation. The present study explored the activation of the NLRP3 inflammasome by Escherichia coli RNA in hepatic stellate cells (HSCs), and the potential role of NLRP3 inflammasome in hepatic fibrosis. E. coli RNA transfection induced HSC-T6 cells to secrete and express mature interleukin-1 beta (IL-1β), which was abolished by NLRP3 siRNA pretreatment. In addition, E. coli RNA transfection enhanced caspase-1 expression, whereas reduced caspase-1 precursor (pro-caspase-1) expression. E. coli RNA-stimulated transforming growth factor beta 1 (TGF-β1) overproduction in HSC-T6 cells, which was blocked by recombinant IL-1 receptor antagonist (rIL-1Ra) or nuclear factor κB inhibitor BAY 11-7082. Furthermore, E. coli RNA-induced overexpression of pro-fibrogenic factors was suppressed by rIL-1Ra or TGF-β receptor inhibitor A83-01. These results demonstrate that E. coli RNA can stimulate NLRP3 inflammasome activation, which leads to excessive production of pro-fibrogenic factors, suggesting that NLRP3 inflammasome activation in HSCs may play a role in hepatic fibrosis. PMID:26773180

  9. Transcriptional repression of SIRT1 by protein inhibitor of activated STAT 4 (PIAS4) in hepatic stellate cells contributes to liver fibrosis

    PubMed Central

    Sun, Lina; Fan, Zhiwen; Chen, Junliang; Tian, Wenfang; Li, Min; Xu, Huihui; Wu, Xiaoyan; Shao, Jing; Bian, Yaoyao; Fang, Mingming; Xu, Yong

    2016-01-01

    Interstitial fibrosis represents a key pathological process in non-alcoholic steatohepatitis (NASH). In the liver, fibrogenesis is primarily mediated by activated hepatic stellate cells (HSCs) transitioning from a quiescent state in response to a host of stimuli. The molecular mechanism underlying HSC activation is not completely understood. Here we report that there was a simultaneous up-regulation of PIAS4 expression and down-regulation of SIRT1 expression accompanying increased hepatic fibrogenesis in an MCD-diet induced mouse model of NASH. In cultured primary mouse HSCs, stimulation with high glucose activated PIAS4 while at the same time repressed SIRT1. Over-expression of PIAS4 directly repressed SIRT1 promoter activity. In contrast, depletion of PIAS4 restored SIRT1 expression in HSCs treated with high glucose. Estrogen, a known NASH-protective hormone, antagonized HSC activation by targeting PIAS4. Lentivirus-mediated delivery of short hairpin RNA (shRNA) targeting PIAS4 in mice ameliorated MCD diet induced liver fibrosis by normalizing SIRT1 expression in vivo. PIAS4 promoted HSC activation in a SIRT1-dependent manner in vitro. Mechanistically, PIAS4 mediated SIRT1 repression led to SMAD3 hyperacetylation and enhanced SMAD3 binding to fibrogenic gene promoters. Taken together, our data suggest SIRT1 trans-repression by PIAS4 plays an important role in HSC activation and liver fibrosis. PMID:27323886

  10. Integrative analysis of the transcriptome and targetome identifies the regulatory network of miR-16: an inhibitory role against the activation of hepatic stellate cells.

    PubMed

    Pan, Qin; Guo, Canjie; Sun, Chao; Fan, Jiangao; Fang, Chunhua

    2014-01-01

    Hepatic stellate cell (HSC) activation is the critical event of liver fibrosis. Abnormality of miR-16 expression induces their activation. However, the action model of miR-16 remains to be elucidated because of its multiple-targeted manner. Here, we report that miR-16 restoration exerted a wide-range impact on transcriptome (2,082 differentially expressed transcripts) of activated HSCs. Integrative analysis of both targetome (1,195 targets) and transcriptome uncovered the miR-16 regulatory network based upon bio-molecular interaction databases (BIND, BioGrid, Tranfac, and KEGG), cross database searching with iterative algorithm, Dijkstra's algorithm with greedy method, etc. Eight targets in the targetome (Map2k1, Bmpr1b, Nf1, Pik3r3, Ppp2r1a, Prkca, Smad2, and Sos2) served as key regulatory network nodes that mediate miR-16 action. A set of TFs (Sp1, Jun, Crebl, Arnt, Fos, and Nf1) was recognized to be the functional layer of key nodes, which mapped the signal of miR-16 to transcriptome. In result, the comprehensive action of miR-16 abrogated transcriptomic characteristics that determined the phenotypes of activated HSCs, including active proliferation, ECM deposition, and apoptosis resistance. Therefore, a multi-layer regulatory network based upon the integration of targetome and transcriptome may underlie the global action of miR-16, which suggesting it plays an inhibitory role in HSC activation. PMID:25227104

  11. Anti-fibrotic effect of thymoquinone on hepatic stellate cells.

    PubMed

    Ghazwani, Mohammed; Zhang, Yifei; Gao, Xiang; Fan, Jie; Li, Jiang; Li, Song

    2014-02-15

    Hepatic stellate cells (HSCs) are the major cell type involved in the production of extracellular matrix in liver. After liver injury, HSCs undergo transdifferentiation process from quiescent state to activated state, which plays an important role in liver fibrosis. Previous studies have shown that thymoquinone (TQ) might have protective effect against liver fibrosis in animal models; however, the underlying mechanism of action is not fully understood. The aim of this study is to examine whether TQ has any direct effect on HSCs. Our results showed that pretreatment of mice with TQ has protective effect against CCl4-induced liver injury compared to control group (untreated), which is consistent with previous studies. Moreover, our in vivo study showed that COL1A1 and α-SMA mRNA levels were significantly downregulated by TQ treatment. Similarly, in vitro study confirmed that TQ downregulated COL1A1, COL3A1 and α-SMA mRNA levels in activated rat HSCs and LX2 cells, an immortalized human hepatic stellate cell line. Pretreatment with TQ also inhibited the LPS-induced proinflammatory response in LX2 cells as demonstrated by reduced mRNA expression of IL-6 and MCP-1. Mechanistically, inactivation of NF-κB pathway is likely to play a role in the TQ-mediated inhibition of proinflammatory response in HSCs. Finally, we have shown that TQ inhibited the culture-triggered transdifferentiation of freshly isolated rat HSCs as shown by significant downregulation of mRNA expression of several fibrosis-related genes. In conclusion, our study suggests that TQ has a direct effect on HSCs, which may contribute to its overall antifibrotic effect. PMID:24182989

  12. MicroRNA-122 Inhibits the Production of Inflammatory Cytokines by Targeting the PKR Activator PACT in Human Hepatic Stellate Cells

    PubMed Central

    Nakamura, Masato; Kanda, Tatsuo; Sasaki, Reina; Haga, Yuki; Jiang, Xia; Wu, Shuang; Nakamoto, Shingo; Yokosuka, Osamu

    2015-01-01

    MicroRNA-122 (miR-122) is one of the most abundant miRs in the liver. Previous studies have demonstrated that miR-122 plays a role in inflammation in the liver and functions in hepatic stellate cells (HSCs), which reside in the space of Disse. Here, we showed that the transient inhibition of PKR-activating protein (PACT) expression, by miR-122 or siRNA targeting of PACT, suppressed the production of proinflammatory cytokines, such as interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1) and IL-1β, in human HSC LX-2. Sequence and functional analyses confirmed that miR-122 directly targeted the 3′-untranslated region of PACT. Immunofluorescence analysis revealed that miR-122 blocked NF-κB-nuclear translocation in LX-2 cells. We also showed that conditioned medium from miR-122-transfected LX-2 cells suppressed human monocyte-derived THP-1 cell migration. Taken together, our study indicates that miR-122 may downregulate cytokine production in HSCs and macrophage chemotaxis and that the targeting of miR-122 may have therapeutic potential for preventing the progression of liver diseases. PMID:26636761

  13. MicroRNA-122 Inhibits the Production of Inflammatory Cytokines by Targeting the PKR Activator PACT in Human Hepatic Stellate Cells.

    PubMed

    Nakamura, Masato; Kanda, Tatsuo; Sasaki, Reina; Haga, Yuki; Jiang, Xia; Wu, Shuang; Nakamoto, Shingo; Yokosuka, Osamu

    2015-01-01

    MicroRNA-122 (miR-122) is one of the most abundant miRs in the liver. Previous studies have demonstrated that miR-122 plays a role in inflammation in the liver and functions in hepatic stellate cells (HSCs), which reside in the space of Disse. Here, we showed that the transient inhibition of PKR-activating protein (PACT) expression, by miR-122 or siRNA targeting of PACT, suppressed the production of proinflammatory cytokines, such as interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1) and IL-1β, in human HSC LX-2. Sequence and functional analyses confirmed that miR-122 directly targeted the 3'-untranslated region of PACT. Immunofluorescence analysis revealed that miR-122 blocked NF-κB-nuclear translocation in LX-2 cells. We also showed that conditioned medium from miR-122-transfected LX-2 cells suppressed human monocyte-derived THP-1 cell migration. Taken together, our study indicates that miR-122 may downregulate cytokine production in HSCs and macrophage chemotaxis and that the targeting of miR-122 may have therapeutic potential for preventing the progression of liver diseases. PMID:26636761

  14. The Multiple Functions of T Stellate/Multipolar/Chopper Cells in the Ventral Cochlear Nucleus

    PubMed Central

    Oertel, Donata; Wright, Samantha; Cao, Xiao-Jie; Ferragamo, Michael; Bal, Ramazan

    2010-01-01

    Acoustic information is brought to the brain by auditory nerve fibers, all of which terminate in the cochlear nuclei, and is passed up the auditory pathway through the principal cells of the cochlear nuclei. A population of neurons variously known as T stellate, type I multipolar, planar multipolar, or chopper cells forms one of the major ascending auditory pathways through the brain stem. T Stellate cells are sharply tuned; as a population they encode the spectrum of sounds. In these neurons, phasic excitation from the auditory nerve is made more tonic by feed forward excitation, coactivation of inhibitory with excitatory inputs, relatively large excitatory currents through NMDA receptors, and relatively little synaptic depression. The mechanisms that make firing tonic also obscure the fine structure of sounds that is represented in the excitatory inputs from the auditory nerve and account for the characteristic chopping response patterns with which T stellate cells respond to tones. In contrast with other principal cells of the ventral cochlear nucleus (VCN), T stellate cells lack a low-voltage-activated potassium conductance and are therefore sensitive to small, steady, neuromodulating currents. The presence of cholinergic, serotonergic and noradrenergic receptors allows the excitability of these cells to be modulated by medial olivocochlear efferent neurons and by neuronal circuits associated with arousal. T Stellate cells deliver acoustic information to the ipsilateral dorsal cochlear nucleus (DCN), ventral nucleus of the trapezoid body (VNTB), periolivary regions around the lateral superior olivary nucleus (LSO), and to the contralateral ventral lemniscal nuclei (VNLL) and inferior colliculus (IC). It is likely that T stellate cells participate in feedback loops through both medial and lateral olivocochlear efferent neurons and they may be a source of ipsilateral excitation of the LSO. PMID:21056098

  15. Ascorbic acid supplementation down-regulates the alcohol induced oxidative stress, hepatic stellate cell activation, cytotoxicity and mRNA levels of selected fibrotic genes in guinea pigs.

    PubMed

    Abhilash, P A; Harikrishnan, R; Indira, M

    2012-02-01

    Both oxidative stress and endotoxins mediated immunological reactions play a major role in the progression of alcoholic hepatic fibrosis. Ascorbic acid has been reported to reduce alcohol-induced toxicity and ascorbic acid levels are reduced in alcoholics. Hence, we investigated the hepatoprotective action of ascorbic acid in the reversal of alcohol-induced hepatic fibrosis in male guinea pigs (n = 36), and it was compared with the animals abstenting from alcohol treatment. In comparison with the alcohol abstention group, there was a reduction in the activities of toxicity markers and levels of lipid and protein peroxidation products, expression of α-SMA, caspase-3 activity and mRNA levels of CYP2E1, TGF-β(1), TNF-α and α(1)(I) collagen in liver of the ascorbic acid-supplemented group. The ascorbic acid content in liver was significantly reduced in the alcohol-treated guinea pigs. But it was reversed to normal level in the ascorbic acid-supplemented group. The anti-fibrotic action of ascorbic acid in the rapid regression of alcoholic liver fibrosis may be attributed to decrease in the oxidative stress, hepatic stellate cells activation, cytotoxicity and mRNA expression of fibrotic genes CYP2E1, TGF-β(1), TNF-α and α(1) (I) collagen in hepatic tissues. PMID:22149461

  16. Over-expression of C/EBP-{alpha} induces apoptosis in cultured rat hepatic stellate cells depending on p53 and peroxisome proliferator-activated receptor-{gamma}

    SciTech Connect

    Wang Xueqing; Huang Guangcun; Mei Shuang; Qian Jin; Ji Juling; Zhang Jinsheng

    2009-03-06

    Hepatic stellate cells (HSCs) play a key role in the pathogenesis of hepatic fibrosis. In our previous studies, CCAAT enhancer binding protein-{alpha} (C/EBP-{alpha}) has been shown to be involved in the activation of HSCs and to have a repression effect on hepatic fibrosis in vivo. However, the mechanisms are largely unknown. In this study, we show that the infection of adenovirus vector expressing C/EBP-{alpha} gene (Ad-C/EBP-{alpha}) could induce HSCs apoptosis in a dose- and time-dependent manner by Annexin V/PI staining, caspase-3 activation assay, and flow cytometry. Also, over-expression of C/EBP-{alpha} resulted in the up-regulation of peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) and P53, while P53 expression was regulated by PPAR-{gamma}. In addition, Fas, FasL, DR4, DR5, and TRAIL were studied. The results indicated that the death receptor pathway was mainly involved and regulated by PPAR-{gamma} and p53 in the process of apoptosis triggered by C/EBP-{alpha} in HSCs.

  17. A Novel Matrine Derivative WM130 Inhibits Activation of Hepatic Stellate Cells and Attenuates Dimethylnitrosamine-Induced Liver Fibrosis in Rats

    PubMed Central

    Xu, Yang; Peng, Zhangxiao; Ji, Weidan; Li, Xiang; Lin, Xuejing; Qian, Liqiang; Li, Xiaoya; Chai, Xiaoyun; Wu, Qiuye; Gao, Quangen; Su, Changqing

    2015-01-01

    Activation of hepatic stellate cells (HSCs) is a critical event in process of hepatic fibrogenesis and cirrhosis. Matrine, the active ingredient of Sophora, had been used for clinical treatment of acute/chronic liver disease. However, its potency was low. We prepared a high potency and low toxicity matrine derivate, WM130 (C30N4H40SO5F), which exhibited better pharmacological activities on antihepatic fibrosis. This study demonstrated that WM130 results in a decreased proliferative activity of HSC-T6 cells, with the half inhibitory concentration (IC50) of 68 μM. WM130 can inhibit the migration and induce apoptosis in HSC-T6 cells at both concentrations of 68 μM (IC50) and 34 μM (half IC50). The expression of α-SMA, Collagen I, Collagen III, and TGF-β1 could be downregulated, and the protein phosphorylation levels of EGFR, AKT, ERK, Smad, and Raf (p-EGFR, p-AKT, p-ERK, p-Smad, and p-Raf) were also decreased by WM130. On the DMN-induced rat liver fibrosis model, WM130 can effectively reduce the TGF-β1, AKT, α-SMA, and p-ERK levels, decrease the extracellular matrix (ECM) formation, and inhibit rat liver fibrosis progression. In conclusion, this study demonstrated that WM130 can significantly inhibit the activation of HSC-T6 cells and block the rat liver fibrosis progression by inducing apoptosis, suppressing the deposition of ECM, and inhibiting TGF-β/Smad and Ras/ERK pathways. PMID:26167476

  18. A Novel Matrine Derivative WM130 Inhibits Activation of Hepatic Stellate Cells and Attenuates Dimethylnitrosamine-Induced Liver Fibrosis in Rats.

    PubMed

    Xu, Yang; Peng, Zhangxiao; Ji, Weidan; Li, Xiang; Lin, Xuejing; Qian, Liqiang; Li, Xiaoya; Chai, Xiaoyun; Wu, Qiuye; Gao, Quangen; Su, Changqing

    2015-01-01

    Activation of hepatic stellate cells (HSCs) is a critical event in process of hepatic fibrogenesis and cirrhosis. Matrine, the active ingredient of Sophora, had been used for clinical treatment of acute/chronic liver disease. However, its potency was low. We prepared a high potency and low toxicity matrine derivate, WM130 (C30N4H40SO5F), which exhibited better pharmacological activities on antihepatic fibrosis. This study demonstrated that WM130 results in a decreased proliferative activity of HSC-T6 cells, with the half inhibitory concentration (IC50) of 68 μM. WM130 can inhibit the migration and induce apoptosis in HSC-T6 cells at both concentrations of 68 μM (IC50) and 34 μM (half IC50). The expression of α-SMA, Collagen I, Collagen III, and TGF-β1 could be downregulated, and the protein phosphorylation levels of EGFR, AKT, ERK, Smad, and Raf (p-EGFR, p-AKT, p-ERK, p-Smad, and p-Raf) were also decreased by WM130. On the DMN-induced rat liver fibrosis model, WM130 can effectively reduce the TGF-β1, AKT, α-SMA, and p-ERK levels, decrease the extracellular matrix (ECM) formation, and inhibit rat liver fibrosis progression. In conclusion, this study demonstrated that WM130 can significantly inhibit the activation of HSC-T6 cells and block the rat liver fibrosis progression by inducing apoptosis, suppressing the deposition of ECM, and inhibiting TGF-β/Smad and Ras/ERK pathways. PMID:26167476

  19. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis.

    PubMed

    Zambirinis, Constantinos P; Levie, Elliot; Nguy, Susanna; Avanzi, Antonina; Barilla, Rocky; Xu, Yijie; Seifert, Lena; Daley, Donnele; Greco, Stephanie H; Deutsch, Michael; Jonnadula, Saikiran; Torres-Hernandez, Alejandro; Tippens, Daniel; Pushalkar, Smruti; Eisenthal, Andrew; Saxena, Deepak; Ahn, Jiyoung; Hajdu, Cristina; Engle, Dannielle D; Tuveson, David; Miller, George

    2015-11-16

    Modulation of Toll-like receptor (TLR) signaling can have protective or protumorigenic effects on oncogenesis depending on the cancer subtype and on specific inflammatory elements within the tumor milieu. We found that TLR9 is widely expressed early during the course of pancreatic transformation and that TLR9 ligands are ubiquitous within the tumor microenvironment. TLR9 ligation markedly accelerates oncogenesis, whereas TLR9 deletion is protective. We show that TLR9 activation has distinct effects on the epithelial, inflammatory, and fibrogenic cellular subsets in pancreatic carcinoma and plays a central role in cross talk between these compartments. Specifically, TLR9 activation can induce proinflammatory signaling in transformed epithelial cells, but does not elicit oncogene expression or cancer cell proliferation. Conversely, TLR9 ligation induces pancreatic stellate cells (PSCs) to become fibrogenic and secrete chemokines that promote epithelial cell proliferation. TLR9-activated PSCs mediate their protumorigenic effects on the epithelial compartment via CCL11. Additionally, TLR9 has immune-suppressive effects in the tumor microenvironment (TME) via induction of regulatory T cell recruitment and myeloid-derived suppressor cell proliferation. Collectively, our work shows that TLR9 has protumorigenic effects in pancreatic carcinoma which are distinct from its influence in extrapancreatic malignancies and from the mechanistic effects of other TLRs on pancreatic oncogenesis. PMID:26481685

  20. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis

    PubMed Central

    Zambirinis, Constantinos P.; Levie, Elliot; Nguy, Susanna; Avanzi, Antonina; Barilla, Rocky; Xu, Yijie; Seifert, Lena; Daley, Donnele; Greco, Stephanie H.; Deutsch, Michael; Jonnadula, Saikiran; Torres-Hernandez, Alejandro; Tippens, Daniel; Pushalkar, Smruti; Eisenthal, Andrew; Saxena, Deepak; Ahn, Jiyoung; Hajdu, Cristina; Engle, Dannielle D.; Tuveson, David

    2015-01-01

    Modulation of Toll-like receptor (TLR) signaling can have protective or protumorigenic effects on oncogenesis depending on the cancer subtype and on specific inflammatory elements within the tumor milieu. We found that TLR9 is widely expressed early during the course of pancreatic transformation and that TLR9 ligands are ubiquitous within the tumor microenvironment. TLR9 ligation markedly accelerates oncogenesis, whereas TLR9 deletion is protective. We show that TLR9 activation has distinct effects on the epithelial, inflammatory, and fibrogenic cellular subsets in pancreatic carcinoma and plays a central role in cross talk between these compartments. Specifically, TLR9 activation can induce proinflammatory signaling in transformed epithelial cells, but does not elicit oncogene expression or cancer cell proliferation. Conversely, TLR9 ligation induces pancreatic stellate cells (PSCs) to become fibrogenic and secrete chemokines that promote epithelial cell proliferation. TLR9-activated PSCs mediate their protumorigenic effects on the epithelial compartment via CCL11. Additionally, TLR9 has immune-suppressive effects in the tumor microenvironment (TME) via induction of regulatory T cell recruitment and myeloid-derived suppressor cell proliferation. Collectively, our work shows that TLR9 has protumorigenic effects in pancreatic carcinoma which are distinct from its influence in extrapancreatic malignancies and from the mechanistic effects of other TLRs on pancreatic oncogenesis. PMID:26481685

  1. MicroRNA-130a and -130b enhance activation of hepatic stellate cells by suppressing PPARγ expression: A rat fibrosis model study.

    PubMed

    Lu, Le; Wang, Jinlong; Lu, Hongwei; Zhang, Guoyu; Liu, Yang; Wang, Jiazhong; Zhang, Yafei; Shang, Hao; Ji, Hong; Chen, Xi; Duan, Yanxia; Li, Yiming

    2015-09-25

    Hepatic stellate cells (HSCs) are the primary sources of extracellular matrix (ECM) in normal and fibrotic liver. Peroxisome proliferator-activated receptor gamma (PPARγ) maintains HSCs in a quiescent state, and its downregulation induces HSC activation. MicroRNAs (miRNAs) can induce PPARγ mRNA degradation, but the mechanism by which miRNAs regulate PPARγ in rat HSCs is unclear. This study aimed to investigate some miRNAs which putatively bind to the 3'-untranslated region (3'-UTR) of PPARγ mRNA, and increase expression of ECM genes in rat HSCs. In carbon tetrachloride injection (CCl4) and common bile duct ligation (CBDL) liver fibrosis models, miRNAs miR-130a, miR-130b, miR-301a, miR-27b and miR-340 levels were found to be increased and PPARγ expression decreased. Overexpression of miR-130a and miR-130b enhanced cell proliferation by involving Runx3. MiR-130a and miR-130b decreased PPARγ expression by targeting the 3'-UTR of PPARγ mRNA in rat HSC-T6 cells. Transforming growth factor-β1 (TGF-β1) may mediate miR-130a and miR-130b overexpression, PPARγ downregulation, and ECM genes overexpression in cell culture. These findings suggest that miR-130a and miR-130b are involved in downregulation of PPARγ in liver fibrosis. PMID:26255201

  2. The HIV Matrix Protein p17 Promotes the Activation of Human Hepatic Stellate Cells through Interactions with CXCR2 and Syndecan-2

    PubMed Central

    Renga, Barbara; Francisci, Daniela; Schiaroli, Elisabetta; Carino, Adriana; Cipriani, Sabrina; D'Amore, Claudio; Sidoni, Angelo; Sordo, Rachele Del; Ferri, Ivana; Lucattelli, Monica; Lunghi, Benedetta; Baldelli, Franco; Fiorucci, Stefano

    2014-01-01

    Background The human immunodeficiency virus type 1 (HIV-1) p17 is a matrix protein involved in virus life's cycle. CXCR2 and Syndecan-2, the two major coreceptors for the p17 protein, are expressed in hepatic stellate cells (HSCs), a key cell type involved in matrix deposition in liver fibrotic disorders. Aim In this report we have investigated the in vitro impact of p17 on HSCs transdifferentiation and function and underlying signaling pathways involved in these processes. Methods LX-2 cells, a human HSC line, and primary HSC were challenged with p17 and expressions of fibrogenic markers and of p17 receptors were assessed by qRT-PCR and Western blot. Downstream intracellular signaling pathways were evaluated with qRT-PCR and Western blot as well as after pre-treatment with specific pathway inhibitors. Results Exposure of LX2 cells to p17 increases their contractile force, reshapes the cytoskeleton fibers and upregulates the expression of transdifferentiation markers including αSMA, COL1α1 and endothelin-1 through the activation of Jak/STAT and Rho signaling pathways. These effects are lost in HSCs pre-incubated with a serum from HIV positive person who underwent a vaccination with a p17 peptide. Confocal laser microscopy studies demonstrates that CXCR2 and syndecan-2 co-associate at the plasma membrane after exposure to p17. Immunostaining of HIV/HCV liver biopsies from co-infected patients reveals that the progression of liver fibrosis correlates with a reduced expression of CXCR2. Conclusions The HIV matrix protein p17 is pro-fibrogenic through its interactions both with CXCR2 and syndecan-2 on activated HSCs. PMID:24736615

  3. microRNA-29b prevents liver fibrosis by attenuating hepatic stellate cell activation and inducing apoptosis through targeting PI3K/AKT pathway

    PubMed Central

    Wang, Jia; Chu, Eagle S.H.; Chen, Hai-Yong; Man, Kwan; Go, Minnie Y.Y.; Huang, Xiao Ru; Lan, Hui Yao; Sung, Joseph J.Y.; Yu, Jun

    2015-01-01

    microRNA-29b (miR-29b) is known to be associated with TGF-β-mediated fibrosis, but the mechanistic action of miR-29b in liver fibrosis remains unclear and is warranted for investigation. We found that miR-29b was significantly downregulated in human and mice fibrotic liver tissues and in primary activated HSCs. miR-29b downregulation was directly mediated by Smad3 through binding to the promoter of miR-29b in hepatic stellate cell (HSC) line LX1, whilst miR-29b could in turn suppress Smad3 expression. miR-29b transduction in the liver of mice prevented CCl4 induced-fibrogenesis, concomitant with decreased expression of α-SMA, collagen I and TIMP-1. Ectopic expression of miR-29b in activated HSCs (LX-1, HSC-T6) inhibited cell viability and colony formation, and caused cell cycle arrest in G1 phase by downregulating cyclin D1 and p21cip1. Further, miR-29b induced apoptosis in HSCs mediated by caspase-9 and PARP. miR-29b inhibited its downstream effectors of PIK3R1 and AKT3 through direct targeting their 3′UTR regions. Moreover, knockdown of PIK3R1 or AKT3 suppressed α-SMA and collagen I and induced apoptosis in both HSCs and in mice. In conclusion, miR-29b prevents liver fibrogenesis by inhibiting HSC activation and inducing HSC apoptosis through inhibiting PI3K/AKT pathway. These results provide novel mechanistic insights for the anti-fibrotic effect of miR-29b. PMID:25356754

  4. Effect of indole-3-carbinol on ethanol-induced liver injury and acetaldehyde-stimulated hepatic stellate cells activation using precision-cut rat liver slices.

    PubMed

    Guo, Yu; Wu, Xiao-Qian; Zhang, Chun; Liao, Zhang-Xiu; Wu, Yong; Xia, Zheng-Yuan; Wang, Hui

    2010-12-01

    1. Indole-3-carbinol (I3C), a major indole compound found in high levels in cruciferous vegetables, shows a broad spectrum of biological activities. However, few studies have reported the effect of I3C on alcoholic liver injury. In the present study, we investigated the protective effect of I3C on acute ethanol-induced hepatotoxicity and acetaldehyde-stimulated hepatic stellate cells (HSC) activation using precision-cut liver slices (PCLS). 2. Rat PCLS were incubated with 50 mmol/L ethanol or 350 μmol/L acetaldehyde, and different concentrations (100-400 μmol/L) of I3C were added into the culture system of these two liver injury models, respectively. Hepatotoxicity was assessed by measuring enzyme leakage and malondialdehyde (MDA) content in tissue. Activities of alcoholic enzymes were also determined. α-Smooth muscle actin (α-SMA), transforming growth factor (TGF-β(1) ) and hydroxyproline (HYP) were used as indices to evaluate the activation of HSC. In addition, matrix metalloproteinase-1 (MMP-1) and the tissue inhibitor of metalloproteinase (TIMP-1) were observed to estimate collagen degradation. 3. I3C significantly reduced the enzyme leakage in ethanol-treated slices. In I3C groups, cytochrome P450 (CYP) 2E1 activities were inhibited by 40.9-51.8%, whereas alcohol dehydrogenase (ADH) activity was enhanced 1.6-fold compared with the ethanol-treated group. I3C also showed an inhibitory effect against HSC activation and collagen production stimulated by acetaldehyde. After being incubated with I3C (400 μmol/L), the expression of MMP-1 was markedly enhanced, whereas TIMP-1 was decreased. 4. These results showed that I3C protected PCLS against alcoholic liver injury, which might be associated with the regulation of ethanol metabolic enzymes, attenuation of oxidative injury and acceleration of collagen degradation. PMID:20880187

  5. Retinoic Acid Ameliorates Pancreatic Fibrosis and Inhibits the Activation of Pancreatic Stellate Cells in Mice with Experimental Chronic Pancreatitis via Suppressing the Wnt/β-Catenin Signaling Pathway

    PubMed Central

    Yin, Guojian; Fan, Yuting; Wu, Deqing; Qiu, Lei; Yu, Ge; Xing, Miao; Hu, Guoyong; Wang, Xingpeng; Wan, Rong

    2015-01-01

    Pancreatic fibrosis, a prominent feature of chronic pancreatitis (CP), induces persistent and permanent damage in the pancreas. Pancreatic stellate cells (PSCs) provide a major source of extracellular matrix (ECM) deposition during pancreatic injury, and persistent activation of PSCs plays a vital role in the progression of pancreatic fibrosis. Retinoic acid (RA), a retinoid, has a broad range of biological functions, including regulation of cell differentiation and proliferation, attenuating progressive fibrosis of multiple organs. In the present study, we investigated the effects of RA on fibrosis in experimental CP and cultured PSCs. CP was induced in mice by repetitive cerulein injection in vivo, and mouse PSCs were isolated and activated in vitro. Suppression of pancreatic fibrosis upon administration of RA was confirmed based on reduction of histological damage, α-smooth muscle actin (α-SMA) expression and mRNA levels of β-catenin, platelet-derived growth factor (PDGF)-Rβ transforming growth factor (TGF)-βRII and collagen 1α1 in vivo. Wnt 2 and β-catenin protein levels were markedly down-regulated, while Axin 2 expression level was up-regulated in the presence of RA, both in vivo and in vitro. Nuclear translation of β-catenin was significantly decreased following RA treatment, compared with cerulein-induced CP in mice and activated PSCs. Furthermore, RA induced significant PSC apoptosis, inhibited proliferation, suppressed TCF/LEF-dependent transcriptional activity and ECM production of PSC via down-regulation of TGFβRII, PDGFRβ and collagen 1α1 in vitro. These results indicate a critical role of the Wnt/β-catenin signaling pathway in RA-induced effects on CP and PSC regulation and support the potential of RA as a suppressor of pancreatic fibrosis in mice. PMID:26556479

  6. Dioscin alleviates alcoholic liver fibrosis by attenuating hepatic stellate cell activation via the TLR4/MyD88/NF-κB signaling pathway

    PubMed Central

    Liu, Min; Xu, Youwei; Han, Xu; Yin, Lianhong; Xu, Lina; Qi, Yan; Zhao, Yanyan; Liu, Kexin; Peng, Jinyong

    2015-01-01

    The present work aimed to investigate the activities and underlying mechanisms of dioscin against alcoholic liver fibrosis (ALF). In vivo liver fibrosis in mice was induced by an alcoholic liquid diet, and in vitro studies were performed on activated HSC-T6 and LX2 cells treated with lipopolysaccharide. Our results showed that dioscin significantly attenuated hepatic stellate cells (HSCs) activation, improved collagen accumulation, and attenuated inflammation through down-regulating the levels of myeloid differentiation factor 88 (MyD88), nuclear factor κB (NF-κB), interleukin (IL)-1, IL-6 and tumour necrosis factor-α by decreasing Toll-like receptor (TLR)4 expression both in vivo and in vitro. TLR4 overexpression was also decreased by dioscin, leading to the markedly down-regulated levels of MyD88, NF-κB, transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (α-SMA) and type I collagen (COL1A1) in cultured HSCs. Suppression of cellular MyD88 by ST2825 or abrogation of NF-κB by pyrrolidine dithiocarbamate eliminated the inhibitory effects of dioscin on the levels of TGF-β1, α-SMA and COL1A1. In a word, dioscin exhibited potent effects against ALF via altering TLR4/MyD88/NF-κB signaling pathway, which provided novel insights into the mechanisms of this compound as an antifibrogenic candidate for the treatment of ALF in the future. PMID:26655640

  7. MiR-146a-5p suppresses activation and proliferation of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis through directly targeting Wnt1 and Wnt5a

    PubMed Central

    Du, Jinghua; Niu, Xuemin; Wang, Yang; Kong, Lingbo; Wang, Rongqi; Zhang, Yuguo; Zhao, Suxian; Nan, Yuemin

    2015-01-01

    Nonalcoholic fibrosing steatohepatitis is a uniform process throughout nonalcoholic fatty liver disease (NAFLD). MicroRNAs (miRNAs) have been suggested to modulate cellular processes in liver diseases. However, the functional role of miRNAs in nonalcoholic fibrosing steatohepatitis is largely unclear. In this study, we systematically analyzed the hepatic miRNAs by microarray analysis in nonalcoholic fibrosing steatohepatitis in C57BL/6J mice induced by methionine-choline deficient (MCD) diet. We identified 19 up-regulated and 18 down-regulated miRNAs in liver with fibrosis. Among these dysregulated miRNAs, miR-146a-5p was the most significant down-regulated miRNA. Luciferase activity assay confirmed that Wnt1 and Wnt5a were both the target genes of miR-146a-5p. Hepatic miR-146a-5p was down-regulated in fibrosing steatohepatitis, but its target genes Wnt1 and Wnt5a and their consequent effectors α-SMA and Col-1 were significantly up-regulated. In addition, miR-146a-5p was downregulated, whilst Wnt1 and Wnt5a were up-regulated in the activated primary hepatic stellate cells (HSCs) compared to the quiescent primary HSCs. Overexpression of miR-146a-5p in HSCs inhibited HSC activation and proliferation, which concomitant with the decreased expressions of Wnt1, Wnt5a, α-SMA and Col-1. In conclusion, miR-146a-5p suppresses activation and proliferation of HSCs in the progress of nonalcoholic fibrosing steatohepatitis through targeting Wnt1 and Wnt5a and consequent effectors α-SMA and Col-1. PMID:26537990

  8. Essential Roles of RNA-binding Protein HuR in Activation of Hepatic Stellate Cells Induced by Transforming Growth Factor-β1

    PubMed Central

    Ge, Jingjing; Chang, Na; Zhao, Zhongxin; Tian, Lei; Duan, Xianghui; Yang, Lin; Li, Liying

    2016-01-01

    RNA-binding protein HuR mediates transforming growth factor (TGF)-β1-induced profibrogenic actions. Up-regulation of Sphingosine kinase 1 (SphK1) is involved in TGF-β1-induced activation of hepatic stellate cells (HSCs) in liver fibrogenesis. However, the molecular mechanism of TGF-β1 regulates SphK1 remains unclear. This study was designed to investigate the role of HuR in TGF-β1-induced SphK1 expression and identify a new molecular mechanism in liver fibrogenensis. In vivo, HuR expression was increased, translocated to cytoplasm, and bound to SphK1 mRNA in carbon tetrachloride- and bile duct ligation-induced mouse fibrotic liver. HuR mRNA expression had a positive correlation with mRNA expressions of SphK1 and fibrotic markers, α-smooth muscle actin (α-SMA) and Collagen α1(I), respectively. In vitro, up-regulation of SphK1 and activation of HSCs stimulated by TGF-β1 depended on HuR cytoplasmic accumulation. The effects of TGF-β1 were diminished when HuR was silenced or HuR cytoplasmic translocation was blocked. Meanwhile, overexpression of HuR mimicked the effects of TGF-β1. Furthermore, TGF-β1 prolonged half-life of SphK1 mRNA by promoting its binding to HuR. Pharmacological or siRNA-induced SphK1 inhibition abrogated HuR-mediated HSC activation. In conclusion, our data suggested that HuR bound to SphK1 mRNA and played a crucial role in TGF-β1-induced HSC activation. PMID:26912347

  9. Deficiency of NOX1 or NOX4 Prevents Liver Inflammation and Fibrosis in Mice through Inhibition of Hepatic Stellate Cell Activation

    PubMed Central

    Lan, Tian; Kisseleva, Tatiana; Brenner, David A.

    2015-01-01

    Reactive oxygen species (ROS) produced by nicotinamide adenine dinucleotide phosphate oxidase (NOX) play a key role in liver injury and fibrosis. Previous studies demonstrated that GKT137831, a dual NOX1/4 inhibitor, attenuated liver fibrosis in mice as well as pro-fibrotic genes in hepatic stellate cells (HSCs) as well as hepatocyte apoptosis. The effect of NOX1 and NOX4 deficiency in liver fibrosis is unclear, and has never been directly compared. HSCs are the primary myofibroblasts in the pathogenesis of liver fibrosis. Therefore, we aimed to determine the role of NOX1 and NOX4 in liver fibrosis, and investigated whether NOX1 and NOX4 signaling mediates liver fibrosis by regulating HSC activation. Mice were treated with carbon tetrachloride (CCl4) to induce liver fibrosis. Deficiency of either NOX1 or NOX4 attenuates liver injury, inflammation, and fibrosis after CCl4 compared to wild-type mice. NOX1 or NOX4 deficiency reduced lipid peroxidation and ROS production in mice with liver fibrosis. NOX1 and NOX4 deficiency are approximately equally effective in preventing liver injury in the mice. The NOX1/4 dual inhibitor GKT137831 suppressed ROS production as well as inflammatory and proliferative genes induced by lipopolysaccharide (LPS), platelet-derived growth factor (PDGF), or sonic hedgehog (Shh) in primary mouse HSCs. Furthermore, the mRNAs of proliferative and pro-fibrotic genes were downregulated in NOX1 and NOX4 knock-out activated HSCs (cultured on plastic for 5 days). Finally, NOX1 and NOX4 protein levels were increased in human livers with cirrhosis compared with normal controls. Thus, NOX1 and NOX4 signaling mediates the pathogenesis of liver fibrosis, including the direct activation of HSC. PMID:26222337

  10. Suppressive effect of microRNA-29b on hepatic stellate cell activation and its crosstalk with TGF-β1/Smad3.

    PubMed

    Liang, Chunli; Bu, Shurui; Fan, Xiaoming

    2016-07-01

    The microRNA (miR)-29 family is closely associated with fibrotic processes by virtue of its low expression in many tissues during organ fibrosis. The present study investigated whether miR-29b overexpression suppressed hepatic stellate cell (HSC) activation and its interactions with transforming growth factor (TGF)-β1/mothers against decapentaplegic homolog 3 (Smad3), a classical signal transduction pathway contributing to the activation of HSCs. The results showed that transfection of LX-2 (human HSC) cells with miR-29b mimic or pSUPER-Smad3 silencing (si)RNA resulted in significantly increased expression of miR-29b and decreased expression of Smad3. miR-29b overexpression inhibited proliferation of LX-2 cells 24 h after transfection. Both miR-29b overexpression and Smad3 silencing antagonized the effects of TGF-β1 on the expression of α-smooth muscle actin (α-SMA) and collagen type I (col-1). Furthermore, infection with miR-29b mimics suppressed Smad3 and TGF-β1 expression, suggesting that miR-29b inhibited LX-2 activation mediated by both Smad3 and TGF-β1. Nevertheless, primary miR-29a/b1, miR-29b2/c and mature miR-29b were downregulated by TGF-β1 and stimulated by Smad3 silencing, suggesting that TGF-β1/Smad3 signalling pathway regulate not just mature miR-29b but also its transcription. In summary, our results show overwhelming evidence corroborating the suppressive effect of miR-29b on TGF-β1-induced LX-2 cell activation. The results also revealed the existence of crosstalk between miR-29b and TGF-β1/Smad3 during LX-2 activation, suggesting a feedback loop between miR-29b and TGF-β1/Smad3 signalling that promotes liver fibrosis. Copyright © 2016 The Authors. Cell Biochemistry and Function published by John Wiley & Sons, Ltd. PMID:27273381

  11. Circulating miRNAs as Predictor Markers for Activation of Hepatic Stellate Cells and Progression of HCV-Induced Liver Fibrosis

    PubMed Central

    El-Ahwany, Eman; Nagy, Faten; Zoheiry, Mona; Shemis, Mohamed; Nosseir, Mona; Taleb, Hoda Abu; El Ghannam, Maged; Atta, Rafaat; Zada, Suher

    2016-01-01

    Introduction Liver fibrosis is the excessive accumulation of extracellular matrix that occurs by activation of hepatic stellate cells (HSCs), which has been identified as the major driver of liver fibrosis. Several studies confirmed that miRNAs have regulatory effects on the activation of HSCs by affecting the signaling pathways. The aim of this study was to develop non-invasive diagnostic markers by measuring different circulating miRNAs in serum as predictor markers for early diagnosis of liver fibrosis and its progression. Methods In this case-control study, we enrolled 66 subjects with chronic hepatitis C (CHC) with early stage of fibrosis and 65 subjects with CHC with late-stage fibrosis. Also, 40 subjects were included as normal controls. The six main miRNAs, i.e., miR-138, miR-140, miR-143, miR-325, miR-328, and miR-349, were measured using the reverse transcription-polymerase chain reaction. Results In the cases of CHC both with early and late stage of fibrosis, the circulating levels of the six main miRNAs were significantly higher than the levels in the control group. ROC analysis indicated that the sensitivity and specificity of miR-138 were 89.3% and 71.43%, respectively, in the early stage of fibrosis. In the late stage, the sensitivity and specificity of miR-138 were 89.3 and 93.02%, respectively, whereas, for miR-143, they were 75.0 and 88.4%, respectively. Conclusions Circulating miR-138 could serve as a non-invasive biomarker for the detection of early fibrosis. Also, miR-138 and miR-143 could be specific biomarkers for indicating the late stage of liver fibrosis. PMID:26955452

  12. Role of YAP and TAZ in pancreatic ductal adenocarcinoma and in stellate cells associated with cancer and chronic pancreatitis

    PubMed Central

    Morvaridi, Susan; Dhall, Deepti; Greene, Mark I.; Pandol, Stephen J.; Wang, Qiang

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibrotic and inflammatory microenvironment that is formed primarily by activated, myofibroblast-like, stellate cells. Although the stellate cells are thought to contribute to tumorigenesis, metastasis and drug resistance of PDAC, the signaling events involved in activation of the stellate cells are not well defined. Functioning as transcription co-factors, Yes-associated protein (YAP) and its homolog transcriptional co-activator with PDZ-binding motif (TAZ) modulate the expression of genes involved in various aspects of cellular functions, such as proliferation and mobility. Using human tissues we show that YAP and TAZ expression is restricted to the centroacinar and ductal cells of normal pancreas, but is elevated in cancer cells. In particular, YAP and TAZ are expressed at high levels in the activated stellate cells of both chronic pancreatitis and PDAC patients as well as in the islets of Langerhans in chronic pancreatitis tissues. Of note, YAP is up regulated in both acinar and ductal cells following induction of acute and chronic pancreatitis in mice. These findings indicate that YAP and TAZ may play a critical role in modulating pancreatic tissue regeneration, neoplastic transformation, and stellate cell functions in both PDAC and pancreatitis. PMID:26567630

  13. Role of YAP and TAZ in pancreatic ductal adenocarcinoma and in stellate cells associated with cancer and chronic pancreatitis.

    PubMed

    Morvaridi, Susan; Dhall, Deepti; Greene, Mark I; Pandol, Stephen J; Wang, Qiang

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibrotic and inflammatory microenvironment that is formed primarily by activated, myofibroblast-like, stellate cells. Although the stellate cells are thought to contribute to tumorigenesis, metastasis and drug resistance of PDAC, the signaling events involved in activation of the stellate cells are not well defined. Functioning as transcription co-factors, Yes-associated protein (YAP) and its homolog transcriptional co-activator with PDZ-binding motif (TAZ) modulate the expression of genes involved in various aspects of cellular functions, such as proliferation and mobility. Using human tissues we show that YAP and TAZ expression is restricted to the centroacinar and ductal cells of normal pancreas, but is elevated in cancer cells. In particular, YAP and TAZ are expressed at high levels in the activated stellate cells of both chronic pancreatitis and PDAC patients as well as in the islets of Langerhans in chronic pancreatitis tissues. Of note, YAP is up regulated in both acinar and ductal cells following induction of acute and chronic pancreatitis in mice. These findings indicate that YAP and TAZ may play a critical role in modulating pancreatic tissue regeneration, neoplastic transformation, and stellate cell functions in both PDAC and pancreatitis. PMID:26567630

  14. MicroRNA-130a and -130b enhance activation of hepatic stellate cells by suppressing PPARγ expression: A rat fibrosis model study

    SciTech Connect

    Lu, Le; Wang, Jinlong; Lu, Hongwei; Zhang, Guoyu; Liu, Yang; Wang, Jiazhong; Zhang, Yafei; Shang, Hao; Ji, Hong; Chen, Xi; Duan, Yanxia; Li, Yiming

    2015-09-25

    Hepatic stellate cells (HSCs) are the primary sources of extracellular matrix (ECM) in normal and fibrotic liver. Peroxisome proliferator-activated receptor gamma (PPARγ) maintains HSCs in a quiescent state, and its downregulation induces HSC activation. MicroRNAs (miRNAs) can induce PPARγ mRNA degradation, but the mechanism by which miRNAs regulate PPARγ in rat HSCs is unclear. This study aimed to investigate some miRNAs which putatively bind to the 3′-untranslated region (3′-UTR) of PPARγ mRNA, and increase expression of ECM genes in rat HSCs. In carbon tetrachloride injection (CCl{sub 4}) and common bile duct ligation (CBDL) liver fibrosis models, miRNAs miR-130a, miR-130b, miR-301a, miR-27b and miR-340 levels were found to be increased and PPARγ expression decreased. Overexpression of miR-130a and miR-130b enhanced cell proliferation by involving Runx3. MiR-130a and miR-130b decreased PPARγ expression by targeting the 3′-UTR of PPARγ mRNA in rat HSC-T6 cells. Transforming growth factor-β1 (TGF-β1) may mediate miR-130a and miR-130b overexpression, PPARγ downregulation, and ECM genes overexpression in cell culture. These findings suggest that miR-130a and miR-130b are involved in downregulation of PPARγ in liver fibrosis. - Highlights: • MiR-130a and miR-130b are increased and PPARγ is decreased in liver fibrosis models. • MiR-130a and miR-130b decreased PPARγ by targeting the 3′-UTR of PPARγ mRNA. • MiR-130a and miR-130b enhanced HSC cell proliferation by involving Runx3. • TGF-β1 may mediate miR-130a and miR-130b overexpression.

  15. Ligustrazine attenuates oxidative stress-induced activation of hepatic stellate cells by interrupting platelet-derived growth factor-β receptor-mediated ERK and p38 pathways

    SciTech Connect

    Zhang, Feng; Ni, Chunyan; Kong, Desong; Zhang, Xiaoping; Zhu, Xiaojing; Chen, Li; Lu, Yin; Zheng, Shizhong

    2012-11-15

    Hepatic fibrosis represents a frequent event following chronic insult to trigger wound healing reactions with accumulation of extracellular matrix (ECM) in the liver. Activation of hepatic stellate cells (HSCs) is the pivotal event during liver fibrogenesis. Compelling evidence indicates that oxidative stress is concomitant with liver fibrosis irrespective of the underlying etiology. Natural antioxidant ligustrazine exhibits potent antifibrotic activities, but the mechanisms are poorly understood. Our studies were to investigate the ligustrazine effects on HSC activation stimulated by hydrogen peroxide (H{sub 2}O{sub 2}), an in vitro model mimicking the oxidative stress in liver fibrogenesis, and to elucidate the possible mechanisms. Our results demonstrated that H{sub 2}O{sub 2} at 5 μM significantly stimulated HSC proliferation and expression of marker genes of HSC activation; whereas ligustrazine dose-dependently suppressed proliferation and induced apoptosis in H{sub 2}O{sub 2}-activated HSCs, and attenuated expression of fibrotic marker genes. Mechanistic investigations revealed that ligustrazine reduced platelet-derived growth factor-β receptor (PDGF-βR) expression and blocked the phosphorylation of extracellular regulated protein kinase (ERK) and p38 kinase, two downstream effectors of PDGF-βR. Further molecular evidence suggested that ligustrazine interruption of ERK and p38 pathways was dependent on the blockade of PDGF-βR and might be involved in ligustrazine reduction of fibrotic marker gene expression under H{sub 2}O{sub 2} stimulation. Furthermore, ligustrazine modulated some proteins critical for HSC activation and ECM homeostasis in H{sub 2}O{sub 2}-stimulated HSCs. These data collectively indicated that ligustrazine could attenuate HSC activation caused by oxidative stress, providing novel insights into ligustrazine as a therapeutic option for hepatic fibrosis. Highlights: ► Ligustrazine inhibits oxidative stress-induced HSC activation.

  16. Molecular magnetic resonance imaging of activated hepatic stellate cells with ultrasmall superparamagnetic iron oxide targeting integrin αvβ3 for staging liver fibrosis in rat model

    PubMed Central

    Zhang, Caiyuan; Liu, Huanhuan; Cui, Yanfen; Li, Xiaoming; Zhang, Zhongyang; Zhang, Yong; Wang, Dengbin

    2016-01-01

    Purpose To evaluate the expression level of integrin αvβ3 on activated hepatic stellate cells (HSCs) at different stages of liver fibrosis induced by carbon tetrachloride (CCl4) in rat model and the feasibility to stage liver fibrosis by using molecular magnetic resonance imaging (MRI) with arginine-glycine-aspartic acid (RGD) peptide modified ultrasmall superparamagnetic iron oxide nanoparticle (USPIO) specifically targeting integrin αvβ3. Materials and methods All experiments received approval from our Institutional Animal Care and Use Committee. Thirty-six rats were randomly divided into three groups of 12 subjects each, and intraperitoneally injected with CCl4 for either 3, 6, or 9 weeks. Controls (n=10) received pure olive oil. The change in T2* relaxation rate (ΔR2*) pre- and postintravenous administration of RGD-USPIO or naked USPIO was measured by 3.0T clinical MRI and compared by one-way analysis of variance or the Student’s t-test. The relationship between expression level of integrin αvβ3 and liver fibrotic degree was evaluated by Spearman’s ranked correlation. Results Activated HSCs were confirmed to be the main cell types expressing integrin αvβ3 during liver fibrogenesis. The protein level of integrin αv and β3 subunit expressed on activated HSCs was upregulated and correlated well with the progression of liver fibrosis (r=0.954, P<0.001; r=0.931, P<0.001, respectively). After injection of RGD-USPIO, there is significant difference in ΔR2* among rats treated with 0, 3, 6, and 9 weeks of CCl4 (P<0.001). The accumulation of iron particles in fibrotic liver specimen is significantly greater for RGD-USPIO than naked USPIO after being injected with equal dose of iron. Conclusion Molecular MRI of integrin αvβ3 expressed on activated HSCs by using RGD-USPIO may distinguish different liver fibrotic stages in CCl4 rat model and shows promising to noninvasively monitor the progression of the liver fibrosis and therapeutic response to

  17. The development of hepatic stellate cells in normal and abnormal human fetuses – an immunohistochemical study

    PubMed Central

    Loo, Christine K C; Pereira, Tamara N; Pozniak, Katarzyna N; Ramsing, Mette; Vogel, Ida; Ramm, Grant A

    2015-01-01

    The precise embryological origin and development of hepatic stellate cells is not established. Animal studies and observations on human fetuses suggest that they derive from posterior mesodermal cells that migrate via the septum transversum and developing diaphragm to form submesothelial cells beneath the liver capsule, which give rise to mesenchymal cells including hepatic stellate cells. However, it is unclear if these are similar to hepatic stellate cells in adults or if this is the only source of stellate cells. We have studied hepatic stellate cells by immunohistochemistry, in developing human liver from autopsies of fetuses with and without malformations and growth restriction, using cellular Retinol Binding Protein-1 (cRBP-1), Glial Fibrillary Acidic Protein (GFAP), and α-Smooth Muscle Actin (αSMA) antibodies, to identify factors that influence their development. We found that hepatic stellate cells expressing cRBP-1 are present from the end of the first trimester of gestation and reduce in density throughout gestation. They appear abnormally formed and variably reduced in number in fetuses with abnormal mesothelial Wilms Tumor 1 (WT1) function, diaphragmatic hernia and in ectopic liver nodules without mesothelium. Stellate cells showed similarities to intravascular cells and their presence in a fetus with diaphragm agenesis suggests they may be derived from circulating stem cells. Our observations suggest circulating stem cells as well as mesothelium can give rise to hepatic stellate cells, and that they require normal mesothelial function for their development. PMID:26265759

  18. Recombinant fusion protein of albumin-retinol binding protein inactivates stellate cells

    SciTech Connect

    Choi, Soyoung; Park, Sangeun; Kim, Suhyun; Lim, Chaeseung; Kim, Jungho; Cha, Dae Ryong; Oh, Junseo

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer We designed novel recombinant albumin-RBP fusion proteins. Black-Right-Pointing-Pointer Expression of fusion proteins inactivates pancreatic stellate cells (PSCs). Black-Right-Pointing-Pointer Fusion proteins are successfully internalized into and inactivate PSCs. Black-Right-Pointing-Pointer RBP moiety mediates cell specific uptake of fusion protein. -- Abstract: Quiescent pancreatic- (PSCs) and hepatic- (HSCs) stellate cells store vitamin A (retinol) in lipid droplets via retinol binding protein (RBP) receptor and, when activated by profibrogenic stimuli, they transform into myofibroblast-like cells which play a key role in the fibrogenesis. Despite extensive investigations, there is, however, currently no appropriate therapy available for tissue fibrosis. We previously showed that the expression of albumin, composed of three homologous domains (I-III), inhibits stellate cell activation, which requires its high-affinity fatty acid-binding sites asymmetrically distributed in domain I and III. To attain stellate cell-specific uptake, albumin (domain I/III) was coupled to RBP; RBP-albumin{sup domain} {sup III} (R-III) and albumin{sup domain} {sup I}-RBP-albumin{sup III} (I-R-III). To assess the biological activity of fusion proteins, cultured PSCs were used. Like wild type albumin, expression of R-III or I-R-III in PSCs after passage 2 (activated PSCs) induced phenotypic reversal from activated to fat-storing cells. On the other hand, R-III and I-R-III, but not albumin, secreted from transfected 293 cells were successfully internalized into and inactivated PSCs. FPLC-purified R-III was found to be internalized into PSCs via caveolae-mediated endocytosis, and its efficient cellular uptake was also observed in HSCs and podocytes among several cell lines tested. Moreover, tissue distribution of intravenously injected R-III was closely similar to that of RBP. Therefore, our data suggest that albumin-RBP fusion protein comprises

  19. Resveratrol mitigate structural changes and hepatic stellate cell activation in N'-nitrosodimethylamine-induced liver fibrosis via restraining oxidative damage.

    PubMed

    Ahmad, Areeba; Ahmad, Riaz

    2014-09-25

    Resveratrol, a polyphenol, found in skin of red grapes, peanuts and berries possesses anti-inflammatory, anti-carcinogenic and lipid modulation properties. Here, we demonstrate in vivo antifibrotic activity of resveratrol in a mammalian model, wherein hepatic fibrosis was induced by N'-nitrosodimethylamine (NDMA) administration. Apart from being a potent hepatotoxin, NDMA is a known mutagen and carcinogen, as well. To induce hepatic fibrosis, rats were administered NDMA (i.p.) in 10mg/kgb.wt thrice/week for 21 days. Another group of animals received resveratrol supplement (10mg/kgb.wt) subsequent to NDMA administration and were sacrificed weekly. The changes in selected biomarkers were monitored to compare profibrotic effects of NDMA and antifibrotic activity of resveratrol. The selected biomarkers were: sera transaminases, ALP, bilirubin, liver glycogen, LPO, SOD, protein carbonyl content, ATPases (Ca(2+), Mg(2+), Na(+)/K(+)) and hydroxyproline/collagen content. Alterations in liver architecture were assessed by H&E, Masson's trichrome and reticulin staining of liver biopsies. Immuno-histochemistry and immunoblotting were employed to examine expression of α-SMA. Our results demonstrate that during NDMA-induced liver fibrosis transaminases, ALP, bilirubin, hydroxyproline and liver collagen increases, while liver glycogen is depleted. The decline in SOD (>65%) and ATPases, which were concomitant with the elevation in MDA and protein carbonyls, strongly indicate oxidative damage. Fibrotic transformation of liver in NDMA-treated rats was verified by histopathology, immuno-histochemistry and immunoblotting data, with the higher expressivity of α-SMA-positive HSCs being most established diagnostic immuno-histochemical marker of HSCs. Resveratrol-supplement refurbished liver architecture by significantly restoring levels of biomarkers of oxidative damage (MDA, SOD, protein carbonyls and membrane-bound ATPases). Therefore, we conclude that antifibrotic effect of

  20. The stellate vascular smooth muscle cell phenotype is induced by IL-1β via the secretion of PGE2 and subsequent cAMP-dependent protein kinase A activation.

    PubMed

    Blirando, Karl; Blaise, Régis; Gorodnaya, Natalia; Rouxel, Clotilde; Meilhac, Olivier; Vincent, Pierre; Limon, Isabelle

    2015-12-01

    Atherosclerosis development is associated with morphological changes to intimal cells, leading to a stellate cell phenotype. In this study, we aimed to determine whether and how key pro-atherogenic cytokines present in atherosclerotic plaques (IL-1β, TNFα and IFNγ) could induce this phenotype, as these molecules are known to trigger the transdifferentiation of vascular smooth muscle cells (VSMCs). We found that, IL-1β was the only major inflammatory mediator tested capable of inducing a stellate morphology in VSMCs. This finding was confirmed by staining for F-actin and vinculin at focal adhesions, as these two markers were disrupted only by IL-1β. We then investigated the possible association of this IL-1β-dependent change in morphology with an increase in intracellular cAMP concentration ([cAMP]), using the FRET-based biosensor for cAMP (T)Epac(VV). Experiments in the presence of IL-1β or medium conditioned by IL-1β-treated VSMCs and pharmacological tools demonstrated that the long-term increase in intracellular cAMP concentration was induced by the secretion of an autocrine/paracrine mediator, prostaglandin E₂(PGE₂), acting through the EP4 receptor. Finally, by knocking down the expression of the regulatory subunit PKAR1α, thereby reproducing the effects of IL-1β and PGE₂ on VSMCs, we demonstrated the contribution of PKA activity to the observed behavior of VSMCs. PMID:26403276

  1. CXCL12 induces hepatic stellate cell contraction through a calcium-independent pathway.

    PubMed

    Saiman, Yedidya; Agarwal, Ritu; Hickman, DaShawn A; Fausther, Michel; El-Shamy, Ahmed; Dranoff, Jonathan A; Friedman, Scott L; Bansal, Meena B

    2013-09-01

    Liver fibrosis, with subsequent development of cirrhosis and ultimately portal hypertension, results in the death of patients with end-stage liver disease if liver transplantation is not performed. Hepatic stellate cells (HSCs), central mediators of liver fibrosis, resemble tissue pericytes and regulate intrahepatic blood flow by modulating pericapillary resistance. Therefore, HSCs can contribute to portal hypertension in patients with chronic liver disease (CLD). We have previously demonstrated that activated HSCs express functional chemokine receptor, CXCR4, and that receptor engagement by its ligand, CXCL12, which is increased in patients with CLD, leads to further stellate cell activation in a CXCR4-specific manner. We therefore hypothesized that CXCL12 promotes HSC contraction in a CXCR4-dependent manner. Stimulation of HSCs on collagen gel lattices with CXCL12 led to gel contraction and myosin light chain (MLC) phosphorylation, which was blocked by addition of AMD3100, a CXCR4 small molecule inhibitor. These effects were further mediated by the Rho kinase pathway since both Rho kinase knockdown or Y-27632, a Rho kinase inhibitor, blocked CXCL12 induced phosphorylation of MLC and gel contraction. BAPTA-AM, a calcium chelator, had no effect, indicating that this pathway is calcium sensitive but not calcium dependent. In conclusion, CXCL12 promotes stellate cell contractility in a predominantly calcium-independent fashion. Our data demonstrates a novel role of CXCL12 in stellate cell contraction and the availability of small molecule inhibitors of the CXCL12/CXCR4 axis justifies further investigation into its potential as therapeutic target for portal hypertension. PMID:23812037

  2. ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion.

    PubMed

    Chronopoulos, Antonios; Robinson, Benjamin; Sarper, Muge; Cortes, Ernesto; Auernheimer, Vera; Lachowski, Dariusz; Attwood, Simon; García, Rebeca; Ghassemi, Saba; Fabry, Ben; Del Río Hernández, Armando

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a dismal survival rate. Persistent activation of pancreatic stellate cells (PSCs) can perturb the biomechanical homoeostasis of the tumour microenvironment to favour cancer cell invasion. Here we report that ATRA, an active metabolite of vitamin A, restores mechanical quiescence in PSCs via a mechanism involving a retinoic acid receptor beta (RAR-β)-dependent downregulation of actomyosin (MLC-2) contractility. We show that ATRA reduces the ability of PSCs to generate high traction forces and adapt to extracellular mechanical cues (mechanosensing), as well as suppresses force-mediated extracellular matrix remodelling to inhibit local cancer cell invasion in 3D organotypic models. Our findings implicate a RAR-β/MLC-2 pathway in peritumoural stromal remodelling and mechanosensory-driven activation of PSCs, and further suggest that mechanical reprogramming of PSCs with retinoic acid derivatives might be a viable alternative to stromal ablation strategies for the treatment of PDAC. PMID:27600527

  3. Stellated Ag-Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Ye, Feng; Yao, Qiaofeng; Cao, Hongbin; Xie, Jianping; Lee, Jim Yang; Yang, Jun

    2014-02-01

    The usefulness of Pt-based nanomaterials for catalysis can be greatly enhanced by coupling morphology engineering to the strategic presence of a second or even third metal. Here we demonstrate the design and preparation of stellated Ag-Pt bimetallic nanoparticles where significant activity difference between the methanol oxidation reaction (MOR) and the oxygen reduction reaction (ORR) may be realized by relegating Ag to the core or by hollowing out the core. In particular the stellated Pt surface, with an abundance of steps, edges, corner atoms, and {111} facets, is highly effective for the ORR but is ineffective for MOR. MOR activity is only observed in the presence of a Ag core through electronic coupling to the stellated Pt shell. The bimetallic Ag-Pt stellates therefore demonstrate the feasibility of tuning a Pt surface for two very different structure sensitive catalytic reactions. Stellated bimetallics may therefore be an effective platform for highly tunable catalyst designs.

  4. Stellated Ag-Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning

    PubMed Central

    Liu, Hui; Ye, Feng; Yao, Qiaofeng; Cao, Hongbin; Xie, Jianping; Lee, Jim Yang; Yang, Jun

    2014-01-01

    The usefulness of Pt-based nanomaterials for catalysis can be greatly enhanced by coupling morphology engineering to the strategic presence of a second or even third metal. Here we demonstrate the design and preparation of stellated Ag-Pt bimetallic nanoparticles where significant activity difference between the methanol oxidation reaction (MOR) and the oxygen reduction reaction (ORR) may be realized by relegating Ag to the core or by hollowing out the core. In particular the stellated Pt surface, with an abundance of steps, edges, corner atoms, and {111} facets, is highly effective for the ORR but is ineffective for MOR. MOR activity is only observed in the presence of a Ag core through electronic coupling to the stellated Pt shell. The bimetallic Ag-Pt stellates therefore demonstrate the feasibility of tuning a Pt surface for two very different structure sensitive catalytic reactions. Stellated bimetallics may therefore be an effective platform for highly tunable catalyst designs. PMID:24495979

  5. Retinol Binding Protein-Albumin Domain III Fusion Protein Deactivates Hepatic Stellate Cells

    PubMed Central

    Park, Sangeun; Choi, Soyoung; Lee, Min-Goo; Lim, Chaeseung; Oh, Junseo

    2012-01-01

    Liver fibrosis is characterized by accumulation of extracellular matrix, and activated hepatic stellate cells (HSCs) are the primary source of the fibrotic neomatrix and considered as therapeutic target cells. We previously showed that albumin in pancreatic stellate cells (PSCs), the key cell type for pancreatic fibrogenesis, is directly involved in the formation of vitamin A-containing lipid droplets, inhibiting PSC activation. In this study, we evaluated the anti-fibrotic activity of both albumin and retinol binding protein-albumin domain III fusion protein (R-III), designed for stellate cell-targeted delivery of albumin III, in rat primary HSCs and investigated the underlying mechanism. Forced expression of albumin or R-III in HSCs after passage 2 (activated HSCs) induced lipid droplet formation and deactivated HSCs, whereas point mutations in high-affinity fatty acid binding sites of albumin domain III abolished their activities. Exogenous R-III, but not albumin, was successfully internalized into and deactivated HSC-P2. When HSCs at day 3 after plating (pre-activated HSCs) were cultured in the presence of purified R-III, spontaneous activation of HSCs was inhibited even after passage 2, suggestive of a potential for preventive effect. Furthermore, treatment of HSCs-P2 with R-III led to a significant reduction in both cytoplasmic levels of all-trans retinoic acid and the subsequent retinoic acid signaling. Therefore, our data suggest that albumin deactivates HSCs with reduced retinoic acid levels and that R-III may have therapeutic and preventive potentials on liver fibrosis. PMID:23161170

  6. Constraints on the synchronization of entorhinal cortex stellate cells

    NASA Astrophysics Data System (ADS)

    Crotty, Patrick; Lasker, Eric; Cheng, Sen

    2012-07-01

    Synchronized oscillations of large numbers of central neurons are believed to be important for a wide variety of cognitive functions, including long-term memory recall and spatial navigation. It is therefore plausible that evolution has optimized the biophysical properties of central neurons in some way for synchronized oscillations to occur. Here, we use computational models to investigate the relationships between the presumably genetically determined parameters of stellate cells in layer II of the entorhinal cortex and the ability of coupled populations of these cells to synchronize their intrinsic oscillations: in particular, we calculate the time it takes circuits of two or three cells with initially randomly distributed phases to synchronize their oscillations to within one action potential width, and the metabolic energy they consume in doing so. For recurrent circuit topologies, we find that parameters giving low intrinsic firing frequencies close to those actually observed are strongly advantageous for both synchronization time and metabolic energy consumption.

  7. Pancreatic Stellate Cell Models for Transcriptional Studies of Desmoplasia-Associated Genes

    PubMed Central

    Mathison, Angela; Liebl, Ann; Bharucha, Jinai; Mukhopadhyay, Debabrata; Lomberk, Gwen; Shah, Vijay; Urrutia, Raul

    2010-01-01

    Background Pancreatic stellate cells are emerging as key players in pathophysiopathological processes underlying the development of pancreatic disease, including pancreatitis and cancer. The cells are scarce in the pancreas making their isolation time and resource use consuming. Methods Therefore, with the ultimate goal of facilitating mechanistic studies, here we report the isolation, characterization, and immortalization of stellate cell lines from rat and mouse origin. Results These cell lines display morphological and molecular markers as well as non-tumorigenic characteristics similar to the frequently used hepatic counterparts. In addition, we have tested their robustness as a model for transcriptional regulatory studies. We find that these cells respond well to TGFβ signaling by triggering a distinct cascade of gene expression, some genes overlap with the TGFβ response of LX2 cells. These cells express several key chromatin proteins and epigenetic regulators involved in the regulation of gene expression, including co-repressors such as Sin3A (short-term repression), HP1 (long-term repression), as well as CBP/p300 (activation). Furthermore, these cells are well suited for Gal4-based transcriptional activation and repression assays. Conclusions The cell model reported here may therefore help fuel investigations in the field of signaling, transcription, and perhaps other studies on similarly exciting cellular processes. PMID:20847583

  8. The inhibition of activated hepatic stellate cells proliferation by arctigenin through G0/G1 phase cell cycle arrest: persistent p27(Kip1) induction by interfering with PI3K/Akt/FOXO3a signaling pathway.

    PubMed

    Li, Ao; Wang, Jun; Wu, Mingjun; Zhang, Xiaoxun; Zhang, Hongzhi

    2015-01-15

    Proliferation of hepatic stellate cells (HSCs) is vital for the development of fibrosis during liver injury. In this study, we describe that arctigenin (ATG), a major bioactive component of Fructus Arctii, exhibited selective cytotoxic activity via inhibiting platelet-derived growth factor-BB (PDGF-BB)-activated HSCs proliferation and arrested cell cycle at G0/G1 phase, which could not be observed in normal human hepatocytes in vitro. The cyclin-dependent kinase (CDK) 4/6 activities could be strongly inhibited by ATG through down-regulation of cyclin D1 and CDK4/6 expression in early G1 phase arrest. In the ATG-treated HSCs, the expression level of p27(Kip1) and the formation of CDK2-p27(Kip1) complex were also increased. p27(Kip1) silencing significantly attenuated the effect of ATG, including cell cycle arrest and suppression of proliferation in activated HSCs. We also found that ATG suppressed PDGF-BB-induced phosphorylation of Akt and its downstream transcription factor Forkhead box O 3a (FOXO3a), decreased binding of FOXO3a to 14-3-3 protein, and stimulated nuclear translocation of FOXO3a in activated HSCs. Furthermore, knockdown of FOXO3a expression by FOXO3a siRNA attenuated ATG-induced up-regulation of p27(Kip1) in activated HSCs. All the above findings suggested that ATG could increase the levels of p27(Kip1) protein through inhibition of Akt and improvement of FOXO3a activity, in turn inhibited the CDK2 kinase activity, and eventually caused an overall inhibition of HSCs proliferation. PMID:25498792

  9. Activation of TGF-β1 promoter by hepatitis C virus-induced AP-1 and Sp1: role of TGF-β1 in hepatic stellate cell activation and invasion.

    PubMed

    Presser, Lance D; McRae, Steven; Waris, Gulam

    2013-01-01

    Our previous studies have shown the induction and maturation of transforming growth factor-beta 1 (TGF-β1) in HCV-infected human hepatoma cells. In this study, we have investigated the molecular mechanism of TGF-β1 gene expression in response to HCV infection. We demonstrate that HCV-induced transcription factors AP-1, Sp1, NF-κB and STAT-3 are involved in TGF-β1 gene expression. Using chromatin immunoprecipitation (ChIP) assay, we further show that AP-1 and Sp1 interact with TGF-b1 promoter in vivo in HCV-infected cells. In addition, we demonstrate that HCV-induced TGF-β1 gene expression is mediated by the activation of cellular kinases such as p38 MAPK, Src, JNK, and MEK1/2. Next, we determined the role of secreted bioactive TGF-β1 in human hepatic stellate cells (HSCs) activation and invasion. Using siRNA approach, we show that HCV-induced bioactive TGF-β1 is critical for the induction of alpha smooth muscle actin (α-SMA) and type 1 collagen, the markers of HSCs activation and proliferation. We further demonstrate the potential role of HCV-induced bioactive TGF-β1 in HSCs invasion/cell migration using a transwell Boyden chamber. Our results also suggest the role of HCV-induced TGF-β1 in HCV replication and release. Collectively, these observations provide insight into the mechanism of TGF-β1 promoter activation, as well as HSCs activation and invasion, which likely manifests in liver fibrosis associated with HCV infection. PMID:23437118

  10. Infiltrating basal cell carcinoma: a stellate peri-tumor dermatoscopy pattern as a clue to diagnosis

    PubMed Central

    Pyne, John H.; Fishburn, Paul; Dicker, Anthony; David, Michael

    2015-01-01

    Background: Infiltrating basal cell carcinoma (BCC) has associated features that may be readily identified using dermatoscopy. Objective: Investigate a stellate dermatoscopy pattern extending from the peripheral margin of infiltrating BCC. Methods: A total of 741 consecutive cases of BCC were assessed retrospectively using non-polarized dermatoscopy. Following histopathologic examination, cases were categorized into six different BCC subtypes. Infiltrating cases numbered 107. This stellate feature was defined as a geometric star shaped pattern extending outwards from the circumferential peripheral edge of the tumor, and identified by white lines, vessels or uneven skin surface morphology. The percentages of infiltrating subtype within the tumor mass and tumor depth were compared, with and without the stellate pattern. Results: Infiltrating BCC displayed the stellate pattern more than other BCC subtypes. Concordance between the two observers was almost perfect for white lines: Kappa coefficient of 0.87 (95% CI: 0.0.79–0.95) P<0.01 and substantial for vessels: Kappa coefficient of 0.71 95% CI: 0.59–0.84) P<0.01. Folds were only recorded in infiltrating cases (n=3). Compared to other BCC subtypes the stellate pattern had a sensitivity of 31.7% and specificity of 94.1%. A higher mean fraction of the tumor mass containing infiltrating subtype was found when comparing stellate pattern observed to stellate pattern not observed (P<0.01). No statistically significant association was found between the tumor depth with and without the stellate pattern. Conclusion: This study found a higher incidence of the stellate pattern within infiltrating BCC compared to the other BCC subtypes. As the percentage of the infiltrating subtype within the tumors increased the incidence of the stellate pattern also increased. PMID:26114047

  11. Angiotensin II enhances epithelial-to-mesenchymal transition through the interaction between activated hepatic stellate cells and the stromal cell-derived factor-1/CXCR4 axis in intrahepatic cholangiocarcinoma.

    PubMed

    Okamoto, Koichi; Tajima, Hidehiro; Nakanuma, Shinichi; Sakai, Seisho; Makino, Isamu; Kinoshita, Jun; Hayashi, Hironori; Nakamura, Keishi; Oyama, Katsunobu; Nakagawara, Hisatoshi; Fujita, Hideto; Takamura, Hiroyuki; Ninomiya, Itasu; Kitagawa, Hirohisa; Fushida, Sachio; Fujimura, Takashi; Harada, Shinichi; Wakayama, Tomohiko; Iseki, Shoichi; Ohta, Tetsuo

    2012-08-01

    We previously reported that hepatic stellate cells (HSCs) activated by angiotensin II (AngII) facilitate stromal fibrosis and tumor progression in intrahepatic cholangiocarcinoma (ICC). AngII has been known as a growth factor which can promote epithelial-to-mesenchymal transition (EMT) in renal epithelial cells, alveolar epithelial cells and peritoneal mesothelial cells. However, in the past, the relationship between AngII and stromal cell-derived factor-1 (SDF-1) in the microenvironment around cancer and the role of AngII on EMT of cancer cells has not been reported in detail. SDF-1 and its specific receptor, CXCR4, are now receiving attention as a mechanism of cell progression and metastasis. In this study, we examined whether activated HSCs promote tumor fibrogenesis, tumor progression and distant metastasis by mediating EMT via the AngII/AngII type 1 receptor (AT-1) and the SDF-1/CXCR4 axis. Two human ICC cell lines and a human HSC line, LI-90, express CXCR4. Significantly higher concentration of SDF-1α was released into the supernatant of LI-90 cells to which AngII had been added. SDF-1α increased the proliferative activity of HSCs and enhanced the activation of HSCs as a growth factor. Furthermore, addition of SDF-1α and AngII enhanced the increase of the migratory capability and vimentin expression, reduced E-cadherin expression, and translocated the expression of β-catenin into the nucleus and cytoplasm in ICC cells. Co-culture with HSCs also enhanced the migratory capability of ICC cells. These findings suggest that SDF-1α, released from activated HSCs and AngII, play important roles in cancer progression, tumor fibrogenesis, and migration in autocrine and paracrine fashion by mediating EMT. Our mechanistic findings may provide pivotal insights into the molecular mechanism of the AngII and SDF-1α-initiated signaling pathway that regulates fibrogenesis in cancerous stroma, tumor progression and meta-stasis of tumor cells expressing AT-1 and CXCR4

  12. Anticytoproliferative effect of Vitamin C on rat hepatic stellate cell

    PubMed Central

    Su, Min; Chao, Guo; Liang, Minqing; Song, Jianhua; Wu, Ka

    2016-01-01

    This study was conducted to investigate the potential therapeutical benefit of Vitamin (VC), a potent antioxidant, on suppressing proliferation of immortalized rat liver stellate cell line (HSC-T6) in vitro, and to discuss the underlying mechanism. HSC-T6 was co-treated with different concentrations of VC (50, 100, 200 μmol/L) on designed time points. Then, cell viability was assessed by using MTT analysis, and the changes of cytomorphology was observed with apoptosis-specific TUNEL and immunohistochemical stains, as well as the intracellular target genes was determined by using RT-PCR, respectively. As the outcomes, VC-treated HSC-T6 showed significantly inhibited cell growth in a dose-dependent manner when compared to the vehicle control. Cytologically, VC increased TUNEL-labeled positive cells in cultured HSC-T6, which the cell count was greater than vehicle control. Meanwhile, VC-treated HSC-T6 showed elevated immunoreactive for TGF-β1-labeled cells. Moreover, VC contributed to down-regulated expressions of intracellular c-myc, cyclin D1, mTOR mRNAs in HSC-T6. Collectively, these preliminary findings have demonstrated that VC-mediated anti-proliferative effect on HSCs is involved in molecular mechanisms of promoting apoptosis and blocking endogenous collagenation. PMID:27398165

  13. All-trans retinoic acid diminishes collagen production in a hepatic stellate cell line via suppression of active protein-1 and c-Jun N-terminal kinase signal.

    PubMed

    Ye, Yuan; Dan, Zili

    2010-12-01

    Following acute and chronic liver injury, hepatic stellate cells (HSCs) become activated to undergo a phenotypic transformation into myofibroblast-like cells and lose their retinol content, but the mechanisms of retinoid loss and its potential roles in HSCs activation and liver fibrosis are not understood. The influence of retinoids on HSCs and hepatic fibrosis remains controversial. The purpose of this study was to evaluate the effects of all-trans retinoid acid (ATRA) on cell proliferation, mRNA expression of collagen genes [procollagen α1 (I), procollagen α1 (III)], profibrogenic genes (TGF-β(1), CTGF, MMP-2, TIMP-1, TIMP-2, PAI-1), fibrolytic genes (MMP-3, MMP-13) and the upstream element (JNK and AP-1) in the rat hepatic stellate cell line (CFSC-2G). Cell proliferation was evaluated by measuring BrdU incorporation. The mRNA expression levels of collagen genes [procollagen α1 (I), procollagen α1 (III)], profibrogenic genes (TGF-β(1), CTGF, MMP-2, TIMP-1, TIMP-2, PAI-1), and fibrolytic genes (MMP-3, MMP-13) were quantitatively detected by using real-time PCR. The mRNA expression of JNK and AP-1 was quantified by RT-PCR. The results showed that ATRA inhibited HSCs proliferation and diminished the mRNA expression of collagen genes [procollagen α1 (I), procollagen α1 (III)] and profibrogenic genes (TGF-β(1), CTGF, MMP-2, TIMP-1, TIMP-2, PAI-1), and significantly stimulated the mRNA expression of MMP-3 and MMP-13 in HSCs by suppressing the mRNA expression of JNK and AP-1. These findings suggested that ATRA could inhibit proliferation and collagen production of HSCs via the suppression of active protein-1 and c-Jun N-terminal kinase signal, then decrease the mRNAs expression of profibrogenic genes (TGF-β(1), CTGF, MMP-2, TIMP-1, TIMP-2, PAI-1), and significantly induce the mRNA expression of MMP-3 and MMP-13. PMID:21181362

  14. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion.

    PubMed

    Sousa, Cristovão M; Biancur, Douglas E; Wang, Xiaoxu; Halbrook, Christopher J; Sherman, Mara H; Zhang, Li; Kremer, Daniel; Hwang, Rosa F; Witkiewicz, Agnes K; Ying, Haoqiang; Asara, John M; Evans, Ronald M; Cantley, Lewis C; Lyssiotis, Costas A; Kimmelman, Alec C

    2016-08-25

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by an intense fibrotic stromal response and deregulated metabolism. The role of the stroma in PDAC biology is complex and it has been shown to play critical roles that differ depending on the biological context. The stromal reaction also impairs the vasculature, leading to a highly hypoxic, nutrient-poor environment. As such, these tumours must alter how they capture and use nutrients to support their metabolic needs. Here we show that stroma-associated pancreatic stellate cells (PSCs) are critical for PDAC metabolism through the secretion of non-essential amino acids (NEAA). Specifically, we uncover a previously undescribed role for alanine, which outcompetes glucose and glutamine-derived carbon in PDAC to fuel the tricarboxylic acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift in fuel source decreases the tumour’s dependence on glucose and serum-derived nutrients, which are limited in the pancreatic tumour microenvironment. Moreover, we demonstrate that alanine secretion by PSCs is dependent on PSC autophagy, a process that is stimulated by cancer cells. Thus, our results demonstrate a novel metabolic interaction between PSCs and cancer cells, in which PSC-derived alanine acts as an alternative carbon source. This finding highlights a previously unappreciated metabolic network within pancreatic tumours in which diverse fuel sources are used to promote growth in an austere tumour microenvironment. PMID:27509858

  15. MicroRNA-146a-5p Negatively Regulates Pro-Inflammatory Cytokine Secretion and Cell Activation in Lipopolysaccharide Stimulated Human Hepatic Stellate Cells through Inhibition of Toll-Like Receptor 4 Signaling Pathways.

    PubMed

    Chen, Yuhan; Zeng, Zhaochong; Shen, Xiaoyun; Wu, Zhifeng; Dong, Yinying; Cheng, Jason Chia-Hsien

    2016-01-01

    Lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signaling pathway is demonstrated to be involved in the hepatic fibrosis. MicroRNA (miR)-146a-5p is a key regulator of the innate immune response. The functional significance of miR-146a-5p during the LPS/TLR4 mediated hepatic fibrosis process remains unclear. In this study, we found that TLR4 and α-smooth muscle actin (α-SMA) were up-regulated and miR-146a-5p was down-regulated in human hepatic stellate cell (HSC) line LX2 after LPS stimulation. Overexpression of miR-146a-5p inhibited LPS induced pro-inflammatory cytokines secretion through down-regulating the expression levels of TLR-4, IL-1 receptor-associated kinase 1 (IRAK1), TNF receptor associated factor-6 (TRAF6) and phosphorylation of nuclear factor-kappa B (NF-κB). Knockdown of IRAK1 and TRAF6 also suppressed pro-inflammatory cytokine production by inhibiting NF-κB phosphorylation. In addition, miR-146a-5p mimic blocked LPS induced TRAF6 dependent c-Jun N-terminal kinase (JNK) and Smad2 activation as well as α-SMA production. Taken together, these results suggest that miR-146a-5p suppresses pro-inflammatory cytokine secretion and cell activation of HSC through inhibition of TLR4/NF-κB and TLR4/TRAF6/JNK pathway. PMID:27399683

  16. MicroRNA-146a-5p Negatively Regulates Pro-Inflammatory Cytokine Secretion and Cell Activation in Lipopolysaccharide Stimulated Human Hepatic Stellate Cells through Inhibition of Toll-Like Receptor 4 Signaling Pathways

    PubMed Central

    Chen, Yuhan; Zeng, Zhaochong; Shen, Xiaoyun; Wu, Zhifeng; Dong, Yinying; Cheng, Jason Chia-Hsien

    2016-01-01

    Lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signaling pathway is demonstrated to be involved in the hepatic fibrosis. MicroRNA (miR)-146a-5p is a key regulator of the innate immune response. The functional significance of miR-146a-5p during the LPS/TLR4 mediated hepatic fibrosis process remains unclear. In this study, we found that TLR4 and α-smooth muscle actin (α-SMA) were up-regulated and miR-146a-5p was down-regulated in human hepatic stellate cell (HSC) line LX2 after LPS stimulation. Overexpression of miR-146a-5p inhibited LPS induced pro-inflammatory cytokines secretion through down-regulating the expression levels of TLR-4, IL-1 receptor-associated kinase 1 (IRAK1), TNF receptor associated factor-6 (TRAF6) and phosphorylation of nuclear factor-kappa B (NF-κB). Knockdown of IRAK1 and TRAF6 also suppressed pro-inflammatory cytokine production by inhibiting NF-κB phosphorylation. In addition, miR-146a-5p mimic blocked LPS induced TRAF6 dependent c-Jun N-terminal kinase (JNK) and Smad2 activation as well as α-SMA production. Taken together, these results suggest that miR-146a-5p suppresses pro-inflammatory cytokine secretion and cell activation of HSC through inhibition of TLR4/NF-κB and TLR4/TRAF6/JNK pathway. PMID:27399683

  17. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    SciTech Connect

    Genz, Berit; Thomas, Maria; Pützer, Brigitte M.; Siatkowski, Marcin; Fuellen, Georg; Vollmar, Brigitte; Abshagen, Kerstin

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.

  18. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    SciTech Connect

    Hamada, Shin; Masamune, Atsushi; Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa; Hamada, Hirofumi; Kobune, Masayoshi; Satoh, Kennichi; Shimosegawa, Tooru

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. Black-Right-Pointing-Pointer Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. Black-Right-Pointing-Pointer Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. Black-Right-Pointing-Pointer Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. Black-Right-Pointing-Pointer This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called 'cancer stem cells', within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the 'stemness' of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  19. Hepatic Stellate Cells and microRNAs in Pathogenesis of Liver Fibrosis

    PubMed Central

    Kitano, Mio; Bloomston, P. Mark

    2016-01-01

    microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by either blocking translation or inducing degradation of target mRNA. miRNAs play essential roles in diverse biological and pathological processes, including development of hepatic fibrosis. Hepatic stellate cells (HSCs) play a central role in development of hepatic fibrosis and there are intricate regulatory effects of miRNAs on their activation, proliferation, collagen production, migration, and apoptosis. There are multiple differentially expressed miRNAs in activated HSCs, and in this review we aim to summarize current data on miRNAs that participate in the development of hepatic fibrosis. Based on this review, miRNAs may serve as biomarkers for diagnosis of liver disease, as well as markers of disease progression. Most importantly, dysregulated miRNAs may potentially be targeted by novel therapies to treat and reverse progression of hepatic fibrosis. PMID:26999230

  20. CD95/CD95L-mediated apoptosis of the hepatic stellate cell. A mechanism terminating uncontrolled hepatic stellate cell proliferation during hepatic tissue repair.

    PubMed Central

    Saile, B.; Knittel, T.; Matthes, N.; Schott, P.; Ramadori, G.

    1997-01-01

    During liver tissue repair, hepatic stellate cells (HSC), a pericyte-like mesenchymal liver cell population, transform from a "quiescent" status ("resting" HSC) into myofibroblast-like cells ("activated" HSC) with the latter representing the principle matrix synthesizing cell of the liver. Presently, the mechanisms that terminate HSC cell proliferation when tissue repair is concluded are poorly understood. Controlled cell death known as apoptosis could be a mechanism underlying this phenomenon. Therefore, apoptosis and its regulation were studied in HSC using an in vitro and in vivo approach. Spontaneous apoptosis became detectable in parallel with HSC activation because resting cells (2 days after isolation) displayed no sign of apoptosis, whereas apoptosis was present in 8% (+/- 5%) of "transitional" cells (day 4) and in 18% (+/- 8%) of fully activated cells (day 7). Both CD95 (APO-1/Fas) and CD95L (APO-1-/Fas-ligand) became increasingly expressed during the course of activation. Apoptosis could be fully blocked by CD95-blocking antibodies in normal cells and HSC already entering the apoptotic cycle. Using CD95-activating antibodies, transition of more than 95% cells into apoptosis was evident at each activation step. The apoptosis-regulating proteins Bcl-2 and p53 could not be detected in resting cells but were found in increasing amounts at days 4 and 7 of cultivation. Whereas p53 expression was induced by the CD95-activating antibody, no change was inducible in Bcl-2 expression. The Bcl-2-related protein bax could be found at days 2 and 4 in similar expression, was considerably up-regulated at day 7, but was not regulated by CD95-agonistic antibodies. In vivo, acute tissue damage was first accompanied by activation and proliferation of HSC displaying no sign of apoptosis. In the recovery phase, apoptotic HSC were detectable in parallel to a reduction in the total number of HSC present in the liver tissue. The data demonstrate that apoptosis becomes detectable

  1. Metformin Reduces Desmoplasia in Pancreatic Cancer by Reprogramming Stellate Cells and Tumor-Associated Macrophages

    PubMed Central

    Chin, Shan M.; Vardam-Kaur, Trupti; Liu, Hao; Hato, Tai; Babykutty, Suboj; Chen, Ivy; Deshpande, Vikram; Jain, Rakesh K.; Fukumura, Dai

    2015-01-01

    Background Pancreatic ductal adenocarcinoma (PDAC) is a highly desmoplastic tumor with a dismal prognosis for most patients. Fibrosis and inflammation are hallmarks of tumor desmoplasia. We have previously demonstrated that preventing the activation of pancreatic stellate cells (PSCs) and alleviating desmoplasia are beneficial strategies in treating PDAC. Metformin is a widely used glucose-lowering drug. It is also frequently prescribed to diabetic pancreatic cancer patients and has been shown to associate with a better outcome. However, the underlying mechanisms of this benefit remain unclear. Metformin has been found to modulate the activity of stellate cells in other disease settings. In this study, we examine the effect of metformin on PSC activity, fibrosis and inflammation in PDACs. Methods/Results In overweight, diabetic PDAC patients and pre-clinical mouse models, treatment with metformin reduced levels of tumor extracellular matrix (ECM) components, in particular hyaluronan (HA). In vitro, we found that metformin reduced TGF-ß signaling and the production of HA and collagen-I in cultured PSCs. Furthermore, we found that metformin alleviates tumor inflammation by reducing the expression of inflammatory cytokines including IL-1β as well as infiltration and M2 polarization of tumor-associated macrophages (TAMs) in vitro and in vivo. These effects on macrophages in vitro appear to be associated with a modulation of the AMPK/STAT3 pathway by metformin. Finally, we found in our preclinical models that the alleviation of desmoplasia by metformin was associated with a reduction in ECM remodeling, epithelial-to-mesenchymal transition (EMT) and ultimately systemic metastasis. Conclusion Metformin alleviates the fibro-inflammatory microenvironment in obese/diabetic individuals with pancreatic cancer by reprogramming PSCs and TAMs, which correlates with reduced disease progression. Metformin should be tested/explored as part of the treatment strategy in overweight

  2. Cytoglobin as a Marker of Hepatic Stellate Cell-derived Myofibroblasts

    PubMed Central

    Kawada, Norifumi

    2015-01-01

    Myofibroblasts play important roles in inflammation, fibrosis and tumorigenesis in chronically inflamed liver. Liver myofibroblasts originate from hepatic stellate cells, portal fibroblasts or mesothelial cells, and they are localized in and around fibrotic septum and portal tracts. Liver myofibroblasts are the source of extracellular matrix materials, including type I collagen and multiple fibrogenic growth factors, such as transforming growth factor-β and vascular endothelial growth factor. Although a detailed characterization of the function of individual myofibroblasts has not been conducted, owing to the lack of appropriate cell markers, recent lineage-tracing technology has revealed the limited contribution of myofibroblasts that are derived from portal fibroblasts to various types of liver fibrosis, as compared with the contribution of hepatic stellate cells. In addition, cytoglobin, which is the fourth globin in mammals and function as a local gas sensor, provides a new perspective on the involvement of stellate cells in fibrosis and carcinogenesis, possibly through its anti-oxidative properties and is a promising new marker that discriminates between myofibroblasts derived from stellate cells and those from portal fibroblasts. PMID:26617531

  3. Intracellular glutathione depletion by oridonin leads to apoptosis in hepatic stellate cells.

    PubMed

    Kuo, Liang-Mou; Kuo, Chan-Yen; Lin, Chen-Yu; Hung, Min-Fa; Shen, Jiann-Jong; Hwang, Tsong-Long

    2014-01-01

    Proliferation of hepatic stellate cells (HSCs) plays a key role in the pathogenesis of liver fibrosis. Induction of HSC apoptosis by natural products is considered an effective strategy for treating liver fibrosis. Herein, the apoptotic effects of 7,20-epoxy-ent-kaurane (oridonin), a diterpenoid isolated from Rabdosia rubescens, and its underlying mechanisms were investigated in rat HSC cell line, HSC-T6. We found that oridonin inhibited cell viability of HSC-T6 in a concentration-dependent manner. Oridonin induced a reduction in mitochondrial membrane potential and increases in caspase 3 activation, subG1 phase, and DNA fragmentation. These apoptotic effects of oridonin were completely reversed by thiol antioxidants, N-acetylcysteine (NAC) and glutathione monoethyl ester. Moreover, oridonin increased production of reactive oxygen species (ROS), which was also inhibited by NAC. Significantly, oridonin reduced intracellular glutathione (GSH) level in a concentration- and time-dependent fashion. Additionally, oridonin induced phosphorylations of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK). NAC prevented the activation of MAPKs in oridonin-induced cells. However, selective inhibitors of MAPKs failed to alter oridonin-induced cell death. In summary, these results demonstrate that induction of apoptosis in HSC-T6 by oridonin is associated with a decrease in cellular GSH level and increase in ROS production. PMID:24647034

  4. 1,25-(OH){sub 2}-vitamin D{sub 3} prevents activation of hepatic stellate cells in vitro and ameliorates inflammatory liver damage but not fibrosis in the Abcb4{sup −/−} model

    SciTech Connect

    Reiter, Florian P.; Hohenester, Simon; Nagel, Jutta M.; Wimmer, Ralf; Artmann, Renate; Wottke, Lena; Makeschin, Marie-Christine; Mayr, Doris; Rust, Christian; Trauner, Michael; Denk, Gerald U.

    2015-04-03

    Background/Purpose of the study: Vitamin D{sub 3}-deficiency is common in patients with chronic liver-disease and may promote disease progression. Vitamin D{sub 3}-administration has thus been proposed as a therapeutic approach. Vitamin D{sub 3} has immunomodulatory effects and may modulate autoimmune liver-disease such as primary sclerosing cholangitis. Although various mechanisms of action have been proposed, experimental evidence is limited. Here we test the hypothesis that active 1,25-(OH){sub 2}-vitamin D{sub 3} inhibits activation of hepatic stellate cells (HSC) in vitro and modulates liver-injury in vivo. Methods: Proliferation and activation of primary murine HSC were assessed by BrdU- and PicoGreen{sup ®}-assays, immunoblotting, immunofluorescence-microscopy, quantitative-PCR, and zymography following calcitriol-treatment. Wild-type and ATP-binding cassette transporter b4{sup −/−} (Abcb4{sup −/−})-mice received calcitriol for 4 weeks. Liver-damage, inflammation, and fibrosis were assessed by serum liver-tests, Sirius-red staining, quantitative-PCR, immunoblotting, immunohistochemistry and hydroxyproline quantification. Results: In vitro, calcitriol inhibited activation and proliferation of murine HSC as shown by reduced α-smooth muscle actin and platelet-derived growth factor-receptor-β-protein-levels, BrdU and PicoGreen®-assays. Furthermore, mRNA-levels and activity of matrix metalloproteinase 13 were profoundly increased. In vivo, calcitriol ameliorated inflammatory liver-injury reflected by reduced levels of alanine aminotransferase in Abcb4{sup −/−}-mice. In accordance, their livers had lower mRNA-levels of F4/80, tumor necrosis factor-receptor 1 and a lower count of portal CD11b positive cells. In contrast, no effect on overall fibrosis was observed. Conclusion: Calcitriol inhibits activation and proliferation of HSCs in vitro. In Abcb4{sup −/−}-mice, administration of calcitriol ameliorates inflammatory liver-damage but has

  5. Modulation of Bcl-x Alternative Splicing Induces Apoptosis of Human Hepatic Stellate Cells

    PubMed Central

    Wu, Lin; Mao, Chengqiong

    2016-01-01

    Liver fibrosis is a major cause of morbidity and mortality worldwide due to chronic viral hepatitis and, more recently, from fatty liver diseases. Activation and proliferation of hepatic stellate cells (HSCs) represent a key aspect of fibrogenesis and are associated with progressive reduction of HSC apoptosis. Bcl-x, an antiapoptotic member of Bcl-2 gene family, plays a role in apoptosis regulation in mammalian cells. Through alternative splicing, the Bcl-x gene yields two major protein isoforms with opposing functions, antiapoptotic Bcl-xL and proapoptotic Bcl-xS. This study aimed to investigate the role of Bcl-x and its alternate splicing in HSC apoptosis. The results indicated that the expression of Bcl-xL was dramatically higher than Bcl-2 in activated human HSCs. The relative expression of Bcl-xL over Bcl-xS increased gradually when HSCs were activated in cell culture, which was consistent with the increase in apoptosis resistance of activated HSCs. Redirection of Bcl-x splicing by an antisense oligonucleotide from the antiapoptotic isoform to the proapoptotic isoform induced death of HSCs without other apoptosis stimuli. We conclude that Bcl-x plays a role in regulation of HSC apoptosis and modulation of Bcl-x alternative splicing may become a novel molecular therapy for liver fibrosis. PMID:27579319

  6. Tenascin-C promotes migration of hepatic stellate cells and production of type I collagen.

    PubMed

    Ma, Jian-Cang; Huang, Xin; Shen, Ya-Wei; Zheng, Chen; Su, Qing-Hua; Xu, Jin-Kai; Zhao, Jun

    2016-08-01

    Tenascin-C (TN-C) is an extracellular matrix glycoprotein markedly upregulated during liver fibrosis. The study is performed to explore the role of TN-C during the growth and activation of hepatic stellate cells (HSCs). We found that TN-C was accumulated accompanying with the HSC activation. Our data on cell migration assay revealed that the rTN-C treatment enhanced HSC migration in a dose- and time-dependent manner, but did not influence their proliferation. HSCs transfected with pTARGET-TN-C overexpression vector displayed increased the type I collagen (Col I) production. TN-C overexpression enhanced the process of HSC activation through TGF-β1 signaling. Moreover, the anti-α9β1 integrin antibody treatment blocked the TN-C-driven Col I increase in rat HSCs. Collectively, TN-C had a positive role in activation of HSCs mediated by TGF-β1 and α9β1 integrin, manifesting elevation of Col I production and promotion of cell migration. Our results provide a potential insight for the therapy of hepatic fibrosis. PMID:27031437

  7. Modulation of Bcl-x Alternative Splicing Induces Apoptosis of Human Hepatic Stellate Cells.

    PubMed

    Wu, Lin; Mao, Chengqiong; Ming, Xin

    2016-01-01

    Liver fibrosis is a major cause of morbidity and mortality worldwide due to chronic viral hepatitis and, more recently, from fatty liver diseases. Activation and proliferation of hepatic stellate cells (HSCs) represent a key aspect of fibrogenesis and are associated with progressive reduction of HSC apoptosis. Bcl-x, an antiapoptotic member of Bcl-2 gene family, plays a role in apoptosis regulation in mammalian cells. Through alternative splicing, the Bcl-x gene yields two major protein isoforms with opposing functions, antiapoptotic Bcl-xL and proapoptotic Bcl-xS. This study aimed to investigate the role of Bcl-x and its alternate splicing in HSC apoptosis. The results indicated that the expression of Bcl-xL was dramatically higher than Bcl-2 in activated human HSCs. The relative expression of Bcl-xL over Bcl-xS increased gradually when HSCs were activated in cell culture, which was consistent with the increase in apoptosis resistance of activated HSCs. Redirection of Bcl-x splicing by an antisense oligonucleotide from the antiapoptotic isoform to the proapoptotic isoform induced death of HSCs without other apoptosis stimuli. We conclude that Bcl-x plays a role in regulation of HSC apoptosis and modulation of Bcl-x alternative splicing may become a novel molecular therapy for liver fibrosis. PMID:27579319

  8. Comparative immunohistochemical study of stellate cells in normal canine and equine adenohypophyses and in pituitary tumours.

    PubMed

    Méndez, A; Martín de las Mulas, J; Bautista, M J; Chacón, F; Millán, Y; Fondevila, D; Pumarola, M

    1998-01-01

    The presence and distribution of S100 protein (alpha and beta subunits), cytokeratin polypeptides, glial fibrillary acidic protein, neurofilaments, vimentin, neuron specific enolase, synaptophysin, HLA class II DR antigen, and pituitary hormones (prolactin, adrenocorticotropic hormone and human chorionic gonadotrophin) in stellate cells were studied immunohistochemically in four normal canine pituitary glands, five canine pituitary adenomas, two canine pituitary carcinomas and two equine pituitary adenomas (with surrounding normal glandular tissue). Stellate cells of the pars distalis and pars intermedia of canine and equine adenohypophyses showed a strong reaction with antibodies against S100 protein subunits alpha and beta. They also reacted with antibody against high and low molecular weight cytokeratins, but not with those against other intermediate filament proteins, neuroendocrine markers, the HLA-class II DR antigen or the pituitary hormones. Other populations of cells expressing both subunits of the S100 protein were polygonal cells of the pars distalis of the adenohypophysis (horse) and marginal epithelial cells of the pars intermedia of the adenohypophysis (dog and horse). Some pituitary tumours had S100-immunoreactive cells with a distribution of alpha and beta subunits that differed between the two species. Some canine tumours (one adenoma and one carcinoma) expressed only the alpha subunit, but both of the equine adenomas expressed alpha and beta protein subunits. Some of the S100-immunoreactive tumour cells reacted with RCK-102 (cytokeratins 5+8) antibody in the dog but not in the horse. The results suggested that canine and equine stellate cells of the adenohypophysis are more closely related to epithelial than to glial cells, as is the case in cattle, sheep and goats but not human beings or mice. No subpopulation of cells of bone marrow origin could be identified among canine stellate cells, as they lack MHC class II antigen. The results also

  9. Non-local models for the formation of hepatocyte-stellate cell aggregates.

    PubMed

    Green, J E F; Waters, S L; Whiteley, J P; Edelstein-Keshet, L; Shakesheff, K M; Byrne, H M

    2010-11-01

    Liver cell aggregates may be grown in vitro by co-culturing hepatocytes with stellate cells. This method results in more rapid aggregation than hepatocyte-only culture, and appears to enhance cell viability and the expression of markers of liver-specific functions. We consider the early stages of aggregate formation, and develop a new mathematical model to investigate two alternative hypotheses (based on evidence in the experimental literature) for the role of stellate cells in promoting aggregate formation. Under Hypothesis 1, each population produces a chemical signal which affects the other, and enhanced aggregation is due to chemotaxis. Hypothesis 2 asserts that the interaction between the two cell types is by direct physical contact: the stellates extend long cellular processes which pull the hepatocytes into the aggregates. Under both hypotheses, hepatocytes are attracted to a chemical they themselves produce, and the cells can experience repulsive forces due to overcrowding. We formulate non-local (integro-partial differential) equations to describe the densities of cells, which are coupled to reaction-diffusion equations for the chemical concentrations. The behaviour of the model under each hypothesis is studied using a combination of linear stability analysis and numerical simulations. Our results show how the initial rate of aggregation depends upon the cell seeding ratio, and how the distribution of cells within aggregates depends on the relative strengths of attraction and repulsion between the cell types. Guided by our results, we suggest experiments which could be performed to distinguish between the two hypotheses. PMID:20709085

  10. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells.

    PubMed

    Geerts, A

    2001-08-01

    In 1876, von Kupffer described liver Sternzellen (star-shaped cells). The functions of these cells remained enigmatic for 75 years until Ito observed lipid-containing perisinusoidal cells in human liver. In 1971, Wake demonstrated that the Sternzellen of von Kupffer and the fat-storing cells described by Ito were identical. Wake also established that these cells were important sites of vitamin A storage. Soon thereafter, Kent and Popper demonstrated that the stellate cells were intimately linked to the pathogenesis of hepatic fibrosis. Since then, these cells have been studied in detail. Quiescent stellate cells represent 5-8% of the total number of liver cells. They play a cardinal role in storage and controlled release of retinoids. They control extracellular matrix (ECM) turnover in the space of Disse by secreting the correct amounts of a limited number of ECM molecules, and by releasing matrix metalloproteinases and their inhibitors. By virtue of their long cytoplasmic processes, quiescent stellate cells presumably contribute to the control of blood flow through the sinusoidal capillaries. They are important sources of paracrine, autocrine, juxtacrine, and chemoattractant factors that maintain homeostasis in the microenvironment of the hepatic sinusoid. PMID:11586463

  11. Canonical Wnt signaling maintains the quiescent stage of hepatic stellate cells

    SciTech Connect

    Kordes, Claus Sawitza, Iris; Haeussinger, Dieter

    2008-02-29

    It is well known that hepatic stellate cells (HSC) develop into cells, which are thought to contribute to liver fibrogenesis. Recent data suggest that HSC are progenitor cells with the capacity to differentiate into cells of endothelial and hepatocyte lineages. The present study shows that {beta}-catenin-dependent canonical Wnt signaling is active in freshly isolated HSC of rats. Mimicking of the canonical Wnt pathway in cultured HSC by TWS119, an inhibitor of the glycogen synthase kinase 3{beta}, led to reduced {beta}-catenin phosphorylation, induced nuclear translocation of {beta}-catenin, elevated glutamine synthetase production, impeded synthesis of {alpha}-smooth muscle actin and Wnt5a, but promoted the expression of glial fibrillary acidic protein, Wnt10b, and paired-like homeodomain transcription factor 2c. In addition, canonical Wnt signaling lowered DNA synthesis and hindered HSC from entering the cell cycle. The findings demonstrate that {beta}-catenin-dependent Wnt signaling maintains the quiescent state of HSC and, similar to stem and progenitor cells, influences their developmental fate.

  12. Exploitation of the hepatic stellate cell Raman signature for their detection in native tissue samples.

    PubMed

    Galler, Kerstin; Schleser, Franziska; Fröhlich, Esther; Requardt, Robert Pascal; Kortgen, Andreas; Bauer, Michael; Popp, Jürgen; Neugebauer, Ute

    2014-10-01

    Hepatic stellate cells (HSCs) surround liver sinusoids and store retinol while they are quiescent. During fibrotic liver diseases and acute-on-chronic liver failure they change to the activated state in which they proliferate, lose their retinol content and deposit extracellular matrix molecules. The process of HSC activation is of utmost interest, but so far only insufficiently understood, because there is a lack of techniques to address the function of single HSCs in the tissue context. In this contribution, the potential of Raman micro-spectroscopy for the label-free detection of HSCs in mouse liver samples is demonstrated. First, culture-induced activation of primary mouse HSCs is followed in vitro and characterized by means of Raman spectroscopy. The HSC activation state is confirmed by immunofluorescence labeling of glial fibrillary acidic protein (GFAP) and α-smooth muscle actin (ASMA). As expected, the unique Raman spectrum of retinol in quiescent HSCs is lost during activation. Nevertheless, successful discrimination of HSCs from primary hepatocytes is possible during all states of activation. A classification model based on principal component analysis followed by linear discriminant analysis (PCA-LDA) of the lipid droplet Raman data yields a prediction accuracy of 99%. The in vitro results are transferred to fresh liver slices and freshly sampled livers. Quiescent HSCs and a HSC transforming from quiescent to activated state are identified based on their Raman signature. This provides valuable information on HSC activation state in the liver. PMID:25145462

  13. Berberine Inhibition of Fibrogenesis in a Rat Model of Liver Fibrosis and in Hepatic Stellate Cells

    PubMed Central

    Wang, Ning; Xu, Qihe; Tan, Hor Yue; Hong, Ming; Li, Sha; Yuen, Man-Fung; Feng, Yibin

    2016-01-01

    Aim. To examine the effect of berberine (BBR) on liver fibrosis and its possible mechanisms through direct effects on hepatic stellate cells (HSC). Methods. The antifibrotic effect of BBR was determined in a rat model of bile duct ligation- (BDL-) induced liver fibrosis. Multiple cellular and molecular approaches were introduced to examine the effects of BBR on HSC. Results. BBR potently inhibited hepatic fibrosis induced by BDL in rats. It exhibited cytotoxicity to activated HSC at doses nontoxic to hepatocytes. High doses of BBR induced apoptosis of activated HSC, which was mediated by loss of mitochondrial membrane potential and Bcl-2/Bax imbalance. Low doses of BBR suppressed activation of HSC as evidenced by the inhibition of α-smooth muscle actin (α-SMA) expression and cell motility. BBR did not affect Smad2/3 phosphorylation but significantly activated 5′ AMP-activated protein kinase (AMPK) signalling, which was responsible for the transcriptional inhibition by BBR of profibrogenic factors α-SMA and collagen in HSC. Conclusion. BBR is a promising agent for treating liver fibrosis through multiple mechanisms, at least partially by directly targeting HSC and by inhibiting the AMPK pathway. Its value as an antifibrotic drug in patients with liver disease deserves further investigation. PMID:27239214

  14. Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line.

    PubMed

    Miyamae, Yusaku; Nishito, Yukina; Nakai, Naomi; Nagumo, Yoko; Usui, Takeo; Masuda, Seiji; Kambe, Taiho; Nagao, Masaya

    2016-08-12

    Macroautophagy, or autophagy, is a cellular response in which unnecessary cytoplasmic components, including lipids and organelles, are self-degraded. Recent studies closely related autophagy to activation of hepatic stellate cells (HSCs), a process critical in the pathogenesis of liver fibrosis. During HSC activation, cytoplasmic lipid droplets (LDs) are degraded as autophagic cargo, and then cells express fibrogenic genes. Thus, inhibition of autophagy in HSCs is a potential therapeutic approach for attenuating liver fibrosis. We found that tetrandrine, a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra, induced lipid accumulation, a phenotype associated with quiescent HSCs, through blockade of autophagy in the rat-derived HSC line HSC-T6. Tetrandrine inhibited autophagic flux without affecting lysosomal function. A phenotypic comparison using siRNA knockdown suggested that tetrandrine may target regulators, involved in fusion between autophagosomes and lysosomes (e.g., syntaxin 17). Moreover, perilipin 1, an LD-coated protein, co-localized specifically with LC3, a marker protein for autophagosomes, in tetrandrine-treated HSC-T6 cells. This suggests a potential role for perilipin 1 in autophagy-mediated LD degradation in HSCs. Our results identified tetrandrine as a potential tool for prevention and treatment of HSC activation. PMID:27270032

  15. Conditionally immortalized human pancreatic stellate cell lines demonstrate enhanced proliferation and migration in response to IGF-I

    SciTech Connect

    Rosendahl, Ann H.; Gundewar, Chinmay; Said Hilmersson, Katarzyna; Ni, Lan; Saleem, Moin A.; Andersson, Roland

    2015-01-15

    Pancreatic stellate cells (PSCs) play a key role in the dense desmoplastic stroma associated with pancreatic ductal adenocarcinoma. Studies on human PSCs have been minimal due to difficulty in maintaining primary PSC in culture. We have generated the first conditionally immortalized human non-tumor (NPSC) and tumor-derived (TPSC) pancreatic stellate cells via transformation with the temperature-sensitive SV40 large T antigen and human telomerase (hTERT). These cells proliferate at 33°C. After transfer to 37°C, the SV40LT is switched off and the cells regain their primary PSC phenotype and growth characteristics. NPSC contained cytoplasmic vitamin A-storing lipid droplets, while both NPSC and TPSC expressed the characteristic markers αSMA, vimentin, desmin and GFAP. Proteome array analysis revealed that of the 55 evaluated proteins, 27 (49%) were upregulated ≥3-fold in TPSC compared to NPSC, including uPA, pentraxin-3, endoglin and endothelin-1. Two insulin-like growth factor binding proteins (IGFBPs) were inversely expressed. Although discordant IGFBP-2 and IGFBP-3 levels, IGF-I was found to stimulate proliferation of both NPSC and TPSC. Both basal and IGF-I stimulated motility was significantly enhanced in TPSC compared to NPSC. In conclusion, these cells provide a unique resource that will facilitate further study of the active stroma compartment associated with pancreatic cancer. - Highlights: • Generation of human conditionally immortalized human pancreatic stellate cell lines. • Temperature-sensitive SV40LT allows switch to primary PSC phenotype characteristics. • Proteome profiling revealed distinct expression patterns between TPSC and NPSC. • Enhanced IGF-I-stimulated proliferation and motility by TPSC compared to NPSC.

  16. Nitric oxide signals are interlinked with calcium signals in normal pancreatic stellate cells upon oxidative stress and inflammation

    PubMed Central

    2016-01-01

    The mammalian diffuse stellate cell system comprises retinoid-storing cells capable of remarkable transformations from a quiescent to an activated myofibroblast-like phenotype. Activated pancreatic stellate cells (PSCs) attract attention owing to the pivotal role they play in development of tissue fibrosis in chronic pancreatitis and pancreatic cancer. However, little is known about the actual role of PSCs in the normal pancreas. These enigmatic cells have recently been shown to respond to physiological stimuli in a manner that is markedly different from their neighbouring pancreatic acinar cells (PACs). Here, we demonstrate the capacity of PSCs to generate nitric oxide (NO), a free radical messenger mediating, for example, inflammation and vasodilatation. We show that production of cytosolic NO in PSCs is unambiguously related to cytosolic Ca2+ signals. Only stimuli that evoke Ca2+ signals in the PSCs elicit consequent NO generation. We provide fresh evidence for the striking difference between signalling pathways in PSCs and adjacent PACs, because PSCs, in contrast to PACs, generate substantial Ca2+-mediated and NOS-dependent NO signals. We also show that inhibition of NO generation protects both PSCs and PACs from necrosis. Our results highlight the interplay between Ca2+ and NO signalling pathways in cell–cell communication, and also identify a potential therapeutic target for anti-inflammatory therapies. PMID:27488376

  17. Oleoylethanolamide, an endogenous PPAR-α ligand, attenuates liver fibrosis targeting hepatic stellate cells

    PubMed Central

    Chen, Junde; Li, Lei; Zheng, Zihan; Ren, Jie; Qiu, Yan

    2015-01-01

    Oleoylethanolamide (OEA), an endocannabinoid-like molecule, was revealed to modulate lipid metabolism through a peroxisome proliferator-activated receptor-α (PPAR-α) mediated mechanism. In present study, we further investigated the activities and mechanisms of OEA in ameliorating hepatic fibrosis in Sv/129 mice induced by a methionine choline-deficient (MCD) diet or thioacetamide (TAA) treatment. Liver fibrosis development was assessed by Hematoxylin-eosin and Sirius red staining. Treatment with OEA (5 mg/kg/day, intraperitoneal injection, i.p.) significantly attenuated the progress of liver fibrosis in both two experimental animal models by blocking the activation of hepatic stellate cells (HSCs). Gene expression analysis of hepatic tissues indicated that OEA inhibited the expression of α-smooth muscle action (α-SMA) and collagen matrix, fibrosis markers, and genes involved in inflammation and extracellular matrix remodeling. In vitro studies showed that OEA inhibited transforming growth factor β1-stimulated HSCs activation through suppressing Smad2/3 phosphorylation, α-SMA expression and myofibroblast transformation. These improvements could not be observed in PPAR-α knockout mice models with OEA administration, which suggested all the anti-fibrotic effects of OEA in vivo and in vitro were mediated by PPAR-α activation. Collectively, our results suggested that OEA exerted a pharmacological effect on modulating hepatic fibrosis development through the inhibition of HSCs activation in liver and therefore may be a potential therapeutic agent for liver fibrosis. PMID:26729705

  18. Oleoylethanolamide, an endogenous PPAR-α ligand, attenuates liver fibrosis targeting hepatic stellate cells.

    PubMed

    Chen, Ling; Li, Long; Chen, Junde; Li, Lei; Zheng, Zihan; Ren, Jie; Qiu, Yan

    2015-12-15

    Oleoylethanolamide (OEA), an endocannabinoid-like molecule, was revealed to modulate lipid metabolism through a peroxisome proliferator-activated receptor-α (PPAR-α) mediated mechanism. In present study, we further investigated the activities and mechanisms of OEA in ameliorating hepatic fibrosis in Sv/129 mice induced by a methionine choline-deficient (MCD) diet or thioacetamide (TAA) treatment. Liver fibrosis development was assessed by Hematoxylin-eosin and Sirius red staining. Treatment with OEA (5 mg/kg/day, intraperitoneal injection, i.p.) significantly attenuated the progress of liver fibrosis in both two experimental animal models by blocking the activation of hepatic stellate cells (HSCs). Gene expression analysis of hepatic tissues indicated that OEA inhibited the expression of α-smooth muscle action (α-SMA) and collagen matrix, fibrosis markers, and genes involved in inflammation and extracellular matrix remodeling. In vitro studies showed that OEA inhibited transforming growth factor β1-stimulated HSCs activation through suppressing Smad2/3 phosphorylation, α-SMA expression and myofibroblast transformation. These improvements could not be observed in PPAR-α knockout mice models with OEA administration, which suggested all the anti-fibrotic effects of OEA in vivo and in vitro were mediated by PPAR-α activation. Collectively, our results suggested that OEA exerted a pharmacological effect on modulating hepatic fibrosis development through the inhibition of HSCs activation in liver and therefore may be a potential therapeutic agent for liver fibrosis. PMID:26729705

  19. Pyramidal and Stellate Cell Specificity of Grid and Border Representations in Layer 2 of Medial Entorhinal Cortex

    PubMed Central

    Tang, Qiusong; Burgalossi, Andrea; Ebbesen, Christian Laut; Ray, Saikat; Naumann, Robert; Schmidt, Helene; Spicher, Dominik; Brecht, Michael

    2014-01-01

    Summary In medial entorhinal cortex, layer 2 principal cells divide into pyramidal neurons (mostly calbindin positive) and dentate gyrus-projecting stellate cells (mostly calbindin negative). We juxtacellularly labeled layer 2 neurons in freely moving animals, but small sample size prevented establishing unequivocal structure-function relationships. We show, however, that spike locking to theta oscillations allows assigning unidentified extracellular recordings to pyramidal and stellate cells with ∼83% and ∼89% specificity, respectively. In pooled anatomically identified and theta-locking-assigned recordings, nonspatial discharges dominated, and weakly hexagonal spatial discharges and head-direction selectivity were observed in both cell types. Clear grid discharges were rare and mostly classified as pyramids (19%, 19/99 putative pyramids versus 3%, 3/94 putative stellates). Most border cells were classified as stellate (11%, 10/94 putative stellates versus 1%, 1/99 putative pyramids). Our data suggest weakly theta-locked stellate border cells provide spatial input to dentate gyrus, whereas strongly theta-locked grid discharges occur mainly in hexagonally arranged pyramidal cell patches and do not feed into dentate gyrus. PMID:25482025

  20. Rat pancreatic stellate cells secrete matrix metalloproteinases: implications for extracellular matrix turnover

    PubMed Central

    Phillips, P A; McCarroll, J A; Park, S; Wu, M-J; Pirola, R; Korsten, M; Wilson, J S; Apte, M V

    2003-01-01

    Background: Pancreatic fibrosis is a characteristic feature of chronic pancreatic injury and is thought to result from a change in the balance between synthesis and degradation of extracellular matrix (ECM) proteins. Recent studies suggest that activated pancreatic stellate cells (PSCs) play a central role in pancreatic fibrogenesis via increased synthesis of ECM proteins. However, the role of these cells in ECM protein degradation has not been fully elucidated. Aims: To determine: (i) whether PSCs secrete matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) and, if so (ii) whether MMP and TIMP secretion by PSCs is altered in response to known PSC activating factors such as tumour necrosis factor α (TNF-α), transforming growth factor β1 (TGF-β1), interleukin 6 (IL-6), ethanol, and acetaldehyde. Methods: Cultured rat PSCs (n=3–5 separate cell preparations) were incubated at 37°C for 24 hours with serum free culture medium containing TNF-α (5–25 U/ml), TGF-β1 (0.5–1 ng/ml), IL-6 (0.001–10 ng/ml), ethanol (10–50 mM), or acetaldehyde (150–200 μM), or no additions (controls). Medium from control cells was examined for the presence of MMPs by zymography using a 10% polyacrylamide-0.1% gelatin gel. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to examine gene expression of MMP9 and the tissue inhibitors of metalloproteinases TIMP1 and TIMP2. Western blotting was used to identify a specific MMP, MMP2 (a gelatinase that digests basement membrane collagen and the dominant MMP observed on zymography) and a specific TIMP, TIMP2. Reverse zymography was used to examine functional TIMPs in PSC secretions. The effect of TNF-α, TGF-β1, and IL-6 on MMP2 secretion was assessed by densitometry of western blots. The effect of ethanol and acetaldehyde on MMP2 and TIMP2 secretion was also assessed by this method. Results: Zymography revealed that PSCs secrete a number of MMPs including proteinases with molecular

  1. Alteration and localization of glycan-binding proteins in human hepatic stellate cells during liver fibrosis.

    PubMed

    Zhong, Yaogang; Qin, Yannan; Dang, Liuyi; Jia, Liyuan; Zhang, Zhiwei; Wu, Haoxiang; Cui, Jihong; Bian, Huijie; Li, Zheng

    2015-10-01

    Glycan-binding proteins (GBPs) play an important role in cell adhesion, bacterial/viral infection, and cellular signaling pathways. However, little is known about the precision alteration of GBPs referred to pathological changes in hepatic stellate cells (HSCs) during liver fibrosis. Here, the carbohydrate microarrays were used to probe the alteration of GBPs in the activated HSCs and quiescent HSCs. As a result, 12 carbohydrates (e.g. Gal, GalNAc, and Man-9Glycan) showed increased signal, while seven carbohydrates (e.g. NeuAc, Lac, and GlcNAc-O-Ser) showed decreased signal in activated HSCs. Three carbohydrates (Gal, GalNAc, and NeuAc) were selected and subsequently used to validate the results of the carbohydrate microarrays as well as assess the distribution and localization of their binding proteins in HSCs and liver tissues by cy/histochemistry; the results showed that GBPs mainly distributed in the cytoplasma membrane and perinuclear region of cytoplasm. The immunocytochemistry was further used to verify some GBPs really exist in Golgi apparatus of the cells. The precision alteration and localization of GBPs referred to pathological changes in HSCs may provide pivotal information to help understand the biological functions of glycans how to exert through their recognition by a wide variety of GBPs. This study could lead to the development of new anti-fibrotic strategies. PMID:26058380

  2. Vitamin A and insulin are required for the maintenance of hepatic stellate cell quiescence.

    PubMed

    Yoneda, Akihiro; Sakai-Sawada, Kaori; Niitsu, Yoshiro; Tamura, Yasuaki

    2016-02-01

    Transdifferentiation of vitamin A-storing hepatic stellate cells (HSCs) to vitamin A-depleted myofibroblastic cells leads to liver fibrosis. Vitamin A regulates lipid accumulation and gene transcription, suggesting that vitamin A is involved in the maintenance of HSC quiescence under a physiological condition. However, the precise mechanism remains elusive because there is no appropriate in vitro culture system for quiescent HSCs. Here, we show that treatment of quiescent HSCs with vitamin A partially maintained the accumulation of lipid droplets and expression of quiescent HSC markers (glial fibrillary acidic protein, peroxisome proliferator-activator receptor-γ and CCAAT/enhancer-binding protein-α) and also the expression of myofibroblastic markers (α-smooth muscle actin, heat shock protein 47 and collagen type I). On the other hand, combined treatment with vitamin A and insulin sustained the characteristic of HSC quiescence and completely suppressed the expression of myofibroblastic markers through activation of the JAK2/STAT5 signaling pathway and increased expression of sterol regulatory element binding protein-1. These treated HSCs transdifferentiated to myofibroblastic cells under a culture condition with fetal bovine serum. The results suggest an important role of vitamin A and insulin in the maintenance of HSC quiescence under a physiological condition. PMID:26812497

  3. Single cell analysis in native tissue: Quantification of the retinoid content of hepatic stellate cells

    NASA Astrophysics Data System (ADS)

    Galler, Kerstin; Requardt, Robert Pascal; Glaser, Uwe; Markwart, Robby; Bocklitz, Thomas; Bauer, Michael; Popp, Jürgen; Neugebauer, Ute

    2016-04-01

    Hepatic stellate cells (HSCs) are retinoid storing cells in the liver: The retinoid content of those cells changes depending on nutrition and stress level. There are also differences with regard to a HSC’s anatomical position in the liver. Up to now, retinoid levels were only accessible from bulk measurements of tissue homogenates or cell extracts. Unfortunately, they do not account for the intercellular variability. Herein, Raman spectroscopy relying on excitation by the minimally destructive wavelength 785 nm is introduced for the assessment of the retinoid state of single HSCs in freshly isolated, unprocessed murine liver lobes. A quantitative estimation of the cellular retinoid content is derived. Implications of the retinoid content on hepatic health state are reported. The Raman-based results are integrated with histological assessments of the tissue samples. This spectroscopic approach enables single cell analysis regarding an important cellular feature in unharmed tissue.

  4. Single cell analysis in native tissue: Quantification of the retinoid content of hepatic stellate cells

    PubMed Central

    Galler, Kerstin; Requardt, Robert Pascal; Glaser, Uwe; Markwart, Robby; Bocklitz, Thomas; Bauer, Michael; Popp, Jürgen; Neugebauer, Ute

    2016-01-01

    Hepatic stellate cells (HSCs) are retinoid storing cells in the liver: The retinoid content of those cells changes depending on nutrition and stress level. There are also differences with regard to a HSC’s anatomical position in the liver. Up to now, retinoid levels were only accessible from bulk measurements of tissue homogenates or cell extracts. Unfortunately, they do not account for the intercellular variability. Herein, Raman spectroscopy relying on excitation by the minimally destructive wavelength 785 nm is introduced for the assessment of the retinoid state of single HSCs in freshly isolated, unprocessed murine liver lobes. A quantitative estimation of the cellular retinoid content is derived. Implications of the retinoid content on hepatic health state are reported. The Raman-based results are integrated with histological assessments of the tissue samples. This spectroscopic approach enables single cell analysis regarding an important cellular feature in unharmed tissue. PMID:27063397

  5. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    SciTech Connect

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI; Roskams, Tania; Oben, Jude A.

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  6. Phospholipase D1 decreases type I collagen levels in hepatic stellate cells via induction of autophagy.

    PubMed

    Seo, H-Y; Jang, B-K; Jung, Y-A; Lee, E-J; Kim, H-S; Jeon, J-H; Kim, J-G; Lee, I-K; Kim, M-K; Park, K-G

    2014-06-20

    Hepatic stellate cells (HSCs) are major players in liver fibrogenesis. Accumulating evidence shows that suppression of autophagy plays an important role in the development and progression of liver disease. Phospholipase D1 (PLD1), which catalyzes the hydrolysis of phosphatidylcholine to yield phosphatidic acid (PA) and choline, was recently shown to modulate autophagy. However, little is known about the effects of PLD1 on the production of type I collagen that characterizes liver fibrosis. Here, we examined whether PLD1 regulates type I collagen levels in HSCs through induction of autophagy. Adenovirus-mediated overexpression of PLD-1 (Ad-PLD1) reduced type I collagen levels in the activated human HSC lines, hTERT and LX2. Overexpression of PLD1 in HSCs led to induction of autophagy as demonstrated by increased LC3-II conversion and formation of LC3 puncta, and decreased p62 abundance. Moreover, inhibiting the induction of autophagy by treating cells with bafilomycin or a small interfering (si)RNA for ATG7 rescued Ad-PLD1-induced suppression of type I collagen accumulation in HSCs. The effects of PLD on type I collagen levels were not related to TGF-β/Smad signaling. Furthermore, treatment of cells with PA induced autophagy and inhibited type I collagen accumulation. The present study indicates that PLD1 plays a role in regulating type I collagen accumulation through induction of autophagy. PMID:24802400

  7. Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology

    PubMed Central

    2014-01-01

    The liver is a central immunological organ. Liver resident macrophages, Kupffer cells (KC), but also sinusoidal endothelial cells, dendritic cells (DC) and other immune cells are involved in balancing immunity and tolerance against pathogens, commensals or food antigens. Hepatic stellate cells (HSCs) have been primarily characterized as the main effector cells in liver fibrosis, due to their capacity to transdifferentiate into collagen-producing myofibroblasts (MFB). More recent studies elucidated the fundamental role of HSC in liver immunology. HSC are not only the major storage site for dietary vitamin A (Vit A) (retinol, retinoic acid), which is essential for proper function of the immune system. This pericyte further represents a versatile source of many soluble immunological active factors including cytokines [e.g., interleukin 17 (IL-17)] and chemokines [C-C motif chemokine (ligand) 2 (CCL2)], may act as an antigen presenting cell (APC), and has autophagy activity. Additionally, it responds to many immunological triggers via toll-like receptors (TLR) (e.g., TLR4, TLR9) and transduces signals through pathways and mediators traditionally found in immune cells, including the Hedgehog (Hh) pathway or inflammasome activation. Overall, HSC promote rather immune-suppressive responses in homeostasis, like induction of regulatory T cells (Treg), T cell apoptosis (via B7-H1, PDL-1) or inhibition of cytotoxic CD8 T cells. In conditions of liver injury, HSC are important sensors of altered tissue integrity and initiators of innate immune cell activation. Vice versa, several immune cell subtypes interact directly or via soluble mediators with HSC. Such interactions include the mutual activation of HSC (towards MFB) and macrophages or pro-apoptotic signals from natural killer (NK), natural killer T (NKT) and gamma-delta T cells (γδ T-cells) on activated HSC. Current directions of research investigate the immune-modulating functions of HSC in the environment of liver

  8. Maintaining human fetal pancreatic stellate cell function and proliferation require β1 integrin and collagen I matrix interactions

    PubMed Central

    Chen, Bijun; Li, Jinming; Fellows, George F.; Sun, Zilin; Wang, Rennian

    2015-01-01

    Pancreatic stellate cells (PaSCs) are cells that are located around the acinar, ductal, and vasculature tissue of the rodent and human pancreas, and are responsible for regulating extracellular matrix (ECM) turnover and maintaining the architecture of pancreatic tissue. This study examines the contributions of integrin receptor signaling in human PaSC function and survival. Human PaSCs were isolated from pancreata collected during the 2nd trimester of pregnancy and identified by expression of stellate cell markers, ECM proteins and associated growth factors. Multiple integrins are found in isolated human PaSCs, with high levels of β1, α3 and α5. Cell adhesion and migration assays demonstrated that human PaSCs favour collagen I matrix, which enhanced PaSC proliferation and increased TGFβ1, CTGF and α3β1 integrin. Significant activation of FAK/ERK and AKT signaling pathways, and up-regulation of cyclin D1 protein levels, were observed within PaSCs cultured on collagen I matrix. Blocking β1 integrin significantly decreased PaSC adhesion, migration and proliferation, further complementing the aforementioned findings. This study demonstrates that interaction of β1 integrin with collagen I is required for the proliferation and function of human fetal PaSCs, which may contribute to the biomedical engineering of the ECM microenvironment needed for the efficient regulation of pancreatic development. PMID:26062655

  9. TLR4-Dependent Secretion by Hepatic Stellate Cells of the Neutrophil-Chemoattractant CXCL1 Mediates Liver Response to Gut Microbiota

    PubMed Central

    Ebrahimkhani, Mohammad R.; Shimizu-Albergine, Masami; Campbell, Jean S.; Crispe, Ian N.

    2016-01-01

    Background & Aims The gut microbiota significantly influences hepatic immunity. Little is known on the precise mechanism by which liver cells mediate recognition of gut microbes at steady state. Here we tested the hypothesis that a specific liver cell population was the sensor and we aimed at deciphering the mechanism by which the activation of TLR4 pathway would mediate liver response to gut microbiota. Methods Using microarrays, we compared total liver gene expression in WT versus TLR4 deficient mice. We performed in situ localization of the major candidate protein, CXCL1. With an innovative technique based on cell sorting, we harvested enriched fractions of KCs, LSECs and HSCs from the same liver. The cytokine secretion profile was quantified in response to low levels of LPS (1ng/mL). Chemotactic activity of stellate cell-derived CXCL1 was assayed in vitro on neutrophils upon TLR4 activation. Results TLR4 deficient liver had reduced levels of one unique chemokine, CXCL1 and subsequent decreased of neutrophil counts. Depletion of gut microbiota mimicked TLR4 deficient phenotype, i.e., decreased neutrophils counts in the liver. All liver cells were responsive to low levels of LPS, but hepatic stellate cells were the major source of chemotactic levels of CXCL1. Neutrophil migration towards secretory hepatic stellate cells required the TLR4 dependent secretion of CXCL1. Conclusions Showing the specific activation of TLR4 and the secretion of one major functional chemokine—CXCL1, the homolog of human IL-8-, we elucidate a new mechanism in which Hepatic Stellate Cells play a central role in the recognition of gut microbes by the liver at steady state. PMID:27002851

  10. miR-1273g-3p modulates activation and apoptosis of hepatic stellate cells by directly targeting PTEN in HCV-related liver fibrosis.

    PubMed

    Niu, Xuemin; Fu, Na; Du, Jinghua; Wang, Rongqi; Wang, Yang; Zhao, Suxian; Du, Huijuan; Wang, Baoyu; Zhang, Yuguo; Sun, Dianxing; Nan, Yuemin

    2016-08-01

    MicroRNA (miRNA) play a pivotal role in the development of liver fibrosis. However, the functions of miRNA in hepatitis C virus (HCV)-related liver fibrosis remain unclear. In this study, we systematically analyzed the microarray data of the serum miRNA in patients with HCV-induced hepatic fibrosis. Among 41 dysregulated miRNA, miR-1273g-3p was the most significantly upregulated miRNA and correlated with the stage of liver fibrosis. Overexpression of miR-1273g-3p could inhibit translation of PTEN, increase the expression of α-SMA, Col1A1, and reduce apoptosis in HSCs. Hence, we conclude that miR-1273g-3p might affect the activation and apoptosis of HSCs by directly targeting PTEN in HCV-related liver fibrosis. PMID:27423040

  11. Dihydroartemisinin restricts hepatic stellate cell contraction via an FXR-S1PR2-dependent mechanism.

    PubMed

    Xu, Wenxuan; Lu, Chunfeng; Zhang, Feng; Shao, Jiangjuan; Zheng, Shizhong

    2016-05-01

    Hepatic stellate cells (HSCs) are universally acknowledged to play a stimulative role in the pathogenesis of hepatic fibrosis and portal hypertension. HSCs when activated in response to liver injury are characterized with many changes, with HSC contraction being the most common cause of portal hypertension. Previous studies have shown that dihydroartemisinine (DHA) is a potential antifibrotic natural product by inducing HSC apoptosis, whereas the role of DHA in regulating HSC contraction and the mechanisms involved remain a riddle. Recent studies have emphasized on the importance of farnesoid X receptor (FXR) and sphingosine-1-phosphate receptor 2 (S1PR2) in controlling cell contractility. This study showed that DHA strongly induced the mRNA and protein expression of FXR in LX-2 cells in a dose- and time-dependent manner and inhibited HSC activation, implying a conceivable impact of DHA on HSC contraction. The gel contraction assays and fluorescence staining of actin cytoskeleton verified that DHA dose-dependently limited contraction of collagen lattices and reorganization of actin stress fibers in LX-2 cells. DHA also decreased the phosphorylation of myosin light chain that is responsible for the contractile force of HSCs. Furthermore, gain- or loss-of-function analyses exhibited a FXR- and S1PR2-dependent mechanism of inhibiting HSC contraction by DHA, and DHA decreased S1PR2 expression by modulating FXR activation. Subsequent work revealed that inhibition of both Ca(2+) -dependent and Ca(2+) -sensitization signaling transductions contributed to DHA-induced HSC relaxation. In summary, these findings suggest that DHA could restrict HSC contraction through modulating FXR/S1PR2 pathway-mediated Ca(2+) -dependent and Ca(2+) -sensitization signaling. Our discoveries make DHA a potential candidate for portal hypertension. © 2016 IUBMB Life 68(5):376-387, 2016. PMID:27027402

  12. Distinct antifibrogenic effects of erlotinib, sunitinib and sorafenib on rat pancreatic stellate cells

    PubMed Central

    Elsner, Anne; Lange, Falko; Fitzner, Brit; Heuschkel, Martin; Krause, Bernd Joachim; Jaster, Robert

    2014-01-01

    AIM: To study if three clinically available small molecule kinase inhibitors (SMI), erlotinib, sunitinib and sorafenib, exert antifibrogenic effects on pancreatic stellate cells (PSC) and analyze the basis of their action. METHODS: Cultured rat PSC were exposed to SMI. Cell proliferation and viability were assessed employing 5-bromo-2’-deoxyuridine incorporation assay and flow cytometry, respectively. 2-Deoxy-2-[18F] fluoroglucose (18F-FDG) uptake was measured to study metabolic activity. Exhibition of the myofibroblastic PSC phenotype was monitored by immunofluorescence analysis of α-smooth muscle actin (α-SMA) expression. Levels of mRNA were determined by real-time PCR, while protein expression and phosphorylation were analyzed by immunoblotting. Transforming growth factor-β1 (TGF-β1) levels in culture supernatants were quantified by ELISA. RESULTS: All three SMI inhibited cell proliferation and 18F-FDG uptake in a dose-dependent manner and without significant cytotoxic effects. Furthermore, additive effects of the drugs were observed. Immunoblot analysis showed that sorafenib and sunitib, but not erlotinib, efficiently blocked activation of the AKT pathway, while all three drugs displayed little effect on phosphorylation of ERK1/2. Cells treated with sorafenib or sunitinib expressed less interleukin-6 mRNA as well as less collagen type 1 mRNA and protein. Sorafenib was the only drug that also upregulated the expression of matrix metalloproteinase-2 and reduced the secretion of TGF-β1 protein. All three drugs showed insignificant or discordant effects on the mRNA and protein levels of α-SMA. CONCLUSION: The tested SMI, especially sorafenib, exert inhibitory effects on activated PSC, which should be further evaluated in preclinical studies. PMID:24976727

  13. Endotoxin-stimulated Rat Hepatic Stellate Cells Induce Autophagy in Hepatocytes as a Survival Mechanism.

    PubMed

    Dangi, Anil; Huang, Chao; Tandon, Ashish; Stolz, Donna; Wu, Tong; Gandhi, Chandrashekhar R

    2016-01-01

    Bacterial lipopolysaccharide (LPS)-stimulated hepatic stellate cells (HSCs) produce many cytokines including IFNβ, TNFα, and IL6, strongly inhibit DNA synthesis, but induce apoptosis of a small number of hepatocytes. In vivo administration of LPS (up to 10 mg/mL) causes modest inflammation and weight loss in rats but not mortality. We determined whether LPS-stimulated HSCs instigate mechanisms of hepatocyte survival. Rats received 10 mg/kg LPS (i.p.) and determinations were made at 6 h. In vitro, HSCs were treated with 100 ng/mL LPS till 24 h. The medium was transferred to hepatocytes, and determinations were made at 0-12 h. Controls were HSC-conditioned medium or medium-containing LPS. LPS treatment of rats caused autophagy in hepatocytes, a physiological process for clearance of undesirable material including injured or damaged organelles. This was accompanied by activation of c-Jun NH2 terminal kinase (JNK) and apoptosis of ~4-5% of hepatocytes. In vitro, LPS-conditioned HSC medium (LPS/HSC) induced autophagy in hepatocytes but apoptosis of only ~10% of hepatocytes. While LPS/HSC stimulated activation of JNK (associated with cell death), it also activated NFkB and ERK1/2 (associated with cell survival). LPS-stimulated HSCs produced IFNβ, and LPS/HSC-induced autophagy in hepatocytes and their apoptosis were significantly inhibited by anti-IFNβ antibody. Blockade of autophagy, on the other hand, strongly augmented hepatocyte apoptosis. While LPS-stimulated HSCs cause apoptosis of a subpopulation of hepatocytes by producing IFNβ, they also induce cell survival mechanisms, which may be of critical importance in resistance to liver injury during endotoxemia. PMID:26031389

  14. ATGL and CGI-58 are lipid droplet proteins of the hepatic stellate cell line HSC-T6.

    PubMed

    Eichmann, Thomas O; Grumet, Lukas; Taschler, Ulrike; Hartler, Jürgen; Heier, Christoph; Woblistin, Aaron; Pajed, Laura; Kollroser, Manfred; Rechberger, Gerald; Thallinger, Gerhard G; Zechner, Rudolf; Haemmerle, Günter; Zimmermann, Robert; Lass, Achim

    2015-10-01

    Lipid droplets (LDs) of hepatic stellate cells (HSCs) contain large amounts of vitamin A [in the form of retinyl esters (REs)] as well as other neutral lipids such as TGs. During times of insufficient vitamin A availability, RE stores are mobilized to ensure a constant supply to the body. To date, little is known about the enzymes responsible for the hydrolysis of neutral lipid esters, in particular of REs, in HSCs. In this study, we aimed to identify LD-associated neutral lipid hydrolases by a proteomic approach using the rat stellate cell line HSC-T6. First, we loaded cells with retinol and FAs to promote lipid synthesis and deposition within LDs. Then, LDs were isolated and lipid composition and the LD proteome were analyzed. Among other proteins, we found perilipin 2, adipose TG lipase (ATGL), and comparative gene identification-58 (CGI-58), known and established LD proteins. Bioinformatic search of the LD proteome for α/β-hydrolase fold-containing proteins revealed no yet uncharacterized neutral lipid hydrolases. In in vitro activity assays, we show that rat (r)ATGL, coactivated by rat (r)CGI-58, efficiently hydrolyzes TGs and REs. These findings suggest that rATGL and rCGI-58 are LD-resident proteins in HSCs and participate in the mobilization of both REs and TGs. PMID:26330055

  15. ATGL and CGI-58 are lipid droplet proteins of the hepatic stellate cell line HSC-T6[S

    PubMed Central

    Eichmann, Thomas O.; Grumet, Lukas; Taschler, Ulrike; Hartler, Jürgen; Heier, Christoph; Woblistin, Aaron; Pajed, Laura; Kollroser, Manfred; Rechberger, Gerald; Thallinger, Gerhard G.; Zechner, Rudolf; Haemmerle, Günter; Zimmermann, Robert; Lass, Achim

    2015-01-01

    Lipid droplets (LDs) of hepatic stellate cells (HSCs) contain large amounts of vitamin A [in the form of retinyl esters (REs)] as well as other neutral lipids such as TGs. During times of insufficient vitamin A availability, RE stores are mobilized to ensure a constant supply to the body. To date, little is known about the enzymes responsible for the hydrolysis of neutral lipid esters, in particular of REs, in HSCs. In this study, we aimed to identify LD-associated neutral lipid hydrolases by a proteomic approach using the rat stellate cell line HSC-T6. First, we loaded cells with retinol and FAs to promote lipid synthesis and deposition within LDs. Then, LDs were isolated and lipid composition and the LD proteome were analyzed. Among other proteins, we found perilipin 2, adipose TG lipase (ATGL), and comparative gene identification-58 (CGI-58), known and established LD proteins. Bioinformatic search of the LD proteome for α/β-hydrolase fold-containing proteins revealed no yet uncharacterized neutral lipid hydrolases. In in vitro activity assays, we show that rat (r)ATGL, coactivated by rat (r)CGI-58, efficiently hydrolyzes TGs and REs. These findings suggest that rATGL and rCGI-58 are LD-resident proteins in HSCs and participate in the mobilization of both REs and TGs. PMID:26330055

  16. Synthesis of peptides of Carapax Trionycis and their inhibitory effects on TGF-β1-induced hepatic stellate cells.

    PubMed

    Hu, C L; Peng, X Z; Tang, Y P; Liu, Y W

    2013-12-01

    We previous identified the antifibrotic active ingredients from Carapax Trionycis as two peptides. Here, we synthesized these two peptides (peptide 1 and peptide 2) by a solid phase method and examined their effects on proliferation and activation of cultured hepatic stellate cells (HSC) which are the main ECM (extracellular matrix)-producing cells in fibrosis progression. We demonstrated that peptide 1 and peptide 2 significantly reduced HSC proliferation and activation in a dose dependent manner. Further, peptide 1 and peptide 2 could interfere with TGF-signaling by down-regulating Smad 3 phosphorylation. Thus, these synthetic peptides of Carapax Trionycis could inhibit proliferation and activation of HSC and might be used as a candidate for treatment of liver fibrosis. PMID:24423656

  17. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells

    SciTech Connect

    Kikuta, Kazuhiro; Masamune, Atsushi; Watanabe, Takashi; Ariga, Hiroyuki; Itoh, Hiromichi; Hamada, Shin; Satoh, Kennichi; Egawa, Shinichi; Unno, Michiaki; Shimosegawa, Tooru

    2010-12-17

    Research highlights: {yields} Recent studies have shown that pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. {yields} Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and scattered, fibroblast-like appearance. {yields} PSCs decreased the expression of epithelial markers but increased that of mesenchymal markers, along with increased migration. {yields} This study suggests epithelial-mesenchymal transition as a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Because epithelial-mesenchymal transition (EMT) plays a critical role in the progression of pancreatic cancer, we hypothesized that PSCs promote EMT in pancreatic cancer cells. Panc-1 and SUIT-2 pancreatic cancer cells were indirectly co-cultured with human PSCs isolated from patients undergoing operation for pancreatic cancer. The expression of epithelial and mesenchymal markers was examined by real-time PCR and immunofluorescent staining. The migration of pancreatic cancer cells was examined by scratch and two-chamber assays. Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and a scattered, fibroblast-like appearance. The expression of E-cadherin, cytokeratin 19, and membrane-associated {beta}-catenin was decreased, whereas vimentin and Snail (Snai-1) expression was increased more in cancer cells co-cultured with PSCs than in mono-cultured cells. The migration of pancreatic cancer cells was increased by co-culture with PSCs. The PSC-induced decrease of E-cadherin expression was not altered

  18. Islet Stellate Cells Isolated from Fibrotic Islet of Goto-Kakizaki Rats Affect Biological Behavior of Beta-Cell.

    PubMed

    Li, Feng-Fei; Chen, Bi-Jun; Li, Wei; Li, Ling; Zha, Min; Zhou, S; Bachem, M G; Sun, Zi-Lin

    2016-01-01

    We previously isolated islet stellate cells (ISCs) from healthy Wistar rat islets. In the present study, we isolated "already primed by diabetic environment" ISCs from islets of Goto-Kakizaki rats, determined the gene profile of these cells, and assessed the effects of these ISCs on beta-cell function and survival. We detected gene expression of ISCs by digital gene expression. INS-1 cell proliferation, apoptosis, and insulin production were measured after being treated with ISCs supernatant (SN). We observed the similar expression pattern of ISCs and PSCs, but 1067 differentially expressed genes. Insulin production in INS-1 cells cultured with ISC-SN was significantly reduced. The 5-ethynyl-2'-deoxyuridine-positive INS-1 cells treated with ISC-SN were decreased. Propidium iodide- (PI-) positive INS-1 cells were 2.6-fold higher than those in control groups. Caspase-3 activity was increased. In conclusion, ISCs presented in fibrotic islet of GK rats might be special PSCs, which impaired beta-cell function and proliferation and increased beta-cell apoptosis. PMID:26697502

  19. Sorafenib induces autophagic cell death and apoptosis in hepatic stellate cell through the JNK and Akt signaling pathways.

    PubMed

    Hao, Huiyao; Zhang, Di; Shi, Junli; Wang, Yan; Chen, Lei; Guo, Yongze; Ma, Junji; Jiang, Xiaoyu; Jiang, Huiqing

    2016-03-01

    Increasing hepatic stellate cell (HSC) death is an attractive approach for limiting liver fibrosis. We investigated the molecular mechanisms underlying the effects of sorafenib on HSCs. LX2 cells were incubated with sorafenib and a variety of inhibitors of apoptosis, autophagy, and necrosis. Electron microscopy was used to observe autophagosomes. Inhibitors and siRNA were used to examine the role of the Akt/mTOR/p70S6K and JNK pathways. Ultrastructural analysis revealed that rat HSCs treated with 5 μmol/l sorafenib accumulated residual digested material and empty or autophagic vacuoles. Incubating LX2 cells with lysosomal protease inhibitors increased the accumulation of LC3-II, indicating that sorafenib enhances autophagic flux in HSCs. Autophagy may precede apoptosis. Lower concentrations of sorafenib and a shorter treatment time resulted in the dominance of autophagic cell death over apoptosis. Further analysis showed that Beclin 1 is inactivated by the caspases induced by sorafenib during apoptosis. Inhibition of autophagy in LX2 cells using 3-methyladenine treatment or siRNA-mediated knockdown of Atg5 resulted in a marked increase in apoptosis. Finally, sorafenib induced programmed cell death by attenuation and activation of Akt/mTOR/p70S6K and JNK signaling. Sorafenib-induced cell death is mediated by both autophagy and apoptosis. Elucidation of the signaling pathways activated by sorafenib could potentially lead to novel antifibrosis therapies for chronic liver diseases. PMID:26629768

  20. Liver Fibrosis and Protection Mechanisms Action of Medicinal Plants Targeting Apoptosis of Hepatocytes and Hepatic Stellate Cells

    PubMed Central

    Moreno-Cuevas, Jorge E.; González-Garza, Maria Teresa; Rodríguez-Montalvo, Carlos; Cruz-Vega, Delia Elva

    2014-01-01

    Following chronic liver injury, hepatocytes undergo apoptosis leading to activation of hepatic stellate cells (HSC). Consequently, activated HSC proliferate and produce excessive extracellular matrix, responsible for the scar formation. The pandemic trend of obesity, combined with the high incidence of alcohol intake and viral hepatitis infections, highlights the urgent need to find accessible antifibrotic therapies. Treatment strategies should take into account the versatility of its pathogenesis and act on all the cell lines involved to reduce liver fibrosis. Medicinal plants are achieving popularity as antifibrotic agents, supported by their safety, cost-effectiveness, and versatility. This review will describe the role of hepatocytes and HSC in the pathogenesis of liver fibrosis and detail the mechanisms of modulation of apoptosis of both cell lines by twelve known hepatoprotective plants in order to reduce liver fibrosis. PMID:25505905

  1. The Effector Protein BPE005 from Brucella abortus Induces Collagen Deposition and Matrix Metalloproteinase 9 Downmodulation via Transforming Growth Factor β1 in Hepatic Stellate Cells.

    PubMed

    Arriola Benitez, Paula Constanza; Rey Serantes, Diego; Herrmann, Claudia Karina; Pesce Viglietti, Ayelén Ivana; Vanzulli, Silvia; Giambartolomei, Guillermo Hernán; Comerci, Diego José; Delpino, María Victoria

    2016-02-01

    The liver is frequently affected in patients with active brucellosis. In the present study, we identified a virulence factor involved in the modulation of hepatic stellate cell function and consequent fibrosis during Brucella abortus infection. This study assessed the role of BPE005 protein from B. abortus in the fibrotic phenotype induced on hepatic stellate cells during B. abortus infection in vitro and in vivo. We demonstrated that the fibrotic phenotype induced by B. abortus on hepatic stellate (LX-2) cells was dependent on BPE005, a protein associated with the type IV secretion system (T4SS) VirB from B. abortus. Our results indicated that B. abortus inhibits matrix metalloproteinase 9 (MMP-9) secretion through the activity of the BPE005-secreted protein and induces concomitant collagen deposition by LX-2 cells. BPE005 is a small protein containing a cyclic nucleotide monophosphate binding domain (cNMP) that modulates the LX-2 cell phenotype through a mechanism that is dependent on the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway. Altogether, these results indicate that B. abortus tilts LX-2 cells to a profibrogenic phenotype employing a functional T4SS and the secreted BPE005 protein through a mechanism that involves the cAMP and PKA signaling pathway. PMID:26667834

  2. The improving effects on hepatic fibrosis of interferon-γ liposomes targeted to hepatic stellate cells

    NASA Astrophysics Data System (ADS)

    Li, Qinghua; Yan, Zhiqiang; Li, Feng; Lu, Weiyue; Wang, Jiyao; Guo, Chuanyong

    2012-07-01

    No satisfactory anti-fibrotic therapies have yet been applied clinically. One of the main reasons is the inability to specifically target the responsible cells to produce an available drug concentration and the side-effects. Exploiting the key role of the activated hepatic stellate cells (HSCs) in both hepatic fibrogenesis and over-expression of platelet-derived growth factor receptor-β (PDGFR-β), we constructed targeted sterically stable liposomes (SSLs) modified by a cyclic peptide (pPB) with affinity for the PDGFR-β to deliver interferon (IFN)-γ to HSCs. The pPB-SSL-IFN-γ showed satisfactory size distribution. In vitro pPB-SSL could be taken up by activated HSCs. The study of tissue distribution via living-body animal imaging showed that the pPB-SSL-IFN-γ mostly accumulated in the liver until 24 h. Furthermore, the pPB-SSL-IFN-γ showed more significant remission of hepatic fibrosis. In vivo the histological Ishak stage, the semiquantitative score for collagen in fibrotic liver and the serum levels of collagen type IV-C in fibrotic rats treated with pPB-SSL-IFN-γ were less than those treated with SSL-IFN-γ, IFN-γ and the control group. In vitro pPB-SSL-IFN-γ was also more effective in suppressing activated HSC proliferation and inducing apoptosis of activated HSCs. Thus the data suggest that pPB-SSL-IFN-γ might be a more effective anti-fibrotic agent and a new opportunity for clinical therapy of hepatic fibrosis.

  3. Therapeutic targeting of the PDGF and TGF-beta-signaling pathways in hepatic stellate cells by PTK787/ZK22258.

    PubMed

    Liu, Yuqing; Wen, Xiao Ming; Lui, Eric Lik Hang; Friedman, Scott L; Cui, Wei; Ho, Nancy Pei Shan; Li, Lei; Ye, Tao; Fan, Sheung Tat; Zhang, Hui

    2009-10-01

    Stimulation of hepatic stellate cells (HSCs) by platelet-derived growth factor (PDGF) and transforming growth factor-beta1 (TGF-beta1) is an essential pathway of proliferation and fibrogenesis, respectively, in liver fibrosis. We provide evidence that PTK787/ZK222584 (PTK/ZK), a potent tyrosine kinase inhibitor that blocks vascular endothelial growth factor receptor (VEGFR), significantly inhibits PDGF receptor expression, as well as PDGF-simulated HSC proliferation, migration and phosphorylation of ERK1/2, Akt and p70S6 kinase. Interestingly, PTK/ZK also antagonizes the TGF-beta1-induced expression of VEGF and VEGFR1. Furthermore, PTK/ZK downregulates TGF-beta receptor expression, which is associated with reduced Akt, ERK and p38MAPK phosphorylation. Furthermore, PDGF-induced TGF-beta1 expression is inhibited by PTK/ZK. These findings provide evidence that PTK/ZK targets multiple essential pathways of stellate cell activation that provoke proliferation and fibrogenesis. Our study underscores the potential use of PTK/ZK as an antifibrotic drug in chronic liver disease. PMID:19668241

  4. Brucella abortus induces collagen deposition and MMP-9 down-modulation in hepatic stellate cells via TGF-β1 production.

    PubMed

    Arriola Benitez, Paula C; Scian, Romina; Comerci, Diego J; Serantes, Diego Rey; Vanzulli, Silvia; Fossati, Carlos A; Giambartolomei, Guillermo H; Delpino, M Victoria

    2013-12-01

    In patients with active brucellosis, the liver is frequently affected by histopathologic lesions, such as granulomas, inflammatory infiltrations, and parenchymal necrosis. Herein, we examine some potential mechanisms of liver damage in brucellosis. We demonstrate that Brucella abortus infection inhibits matrix metalloproteinase-9 (MMP-9) secretion and induces collagen deposition and tissue inhibitor of matrix metalloproteinase-1 secretion induced by hepatic stellate cells (LX-2). These phenomena depend on transforming growth factor-β1 induction. In contrast, supernatants from B. abortus-infected hepatocytes and monocytes induce MMP-9 secretion and inhibit collagen deposition in hepatic stellate cells. Yet, if LX-2 cells are infected with B. abortus, the capacity of supernatants from B. abortus-infected hepatocytes and monocytes to induce MMP-9 secretion and inhibit collagen deposition is abrogated. These results indicate that depending on the balance between interacting cells and cytokines of the surrounding milieu, the response of LX-2 cells could be turned into an inflammatory or fibrogenic phenotype. Livers from mice infected with B. abortus displayed a fibrogenic phenotype with patches of collagen deposition and transforming growth factor-β1 induction. This study provides potential mechanisms of liver immune response induced by B. abortus-infected hepatic stellate cells. In addition, these results demonstrate that the cross talk of these cells with hepatocytes and macrophages implements a series of interactions that may contribute to explaining some of mechanisms of liver damage observed in human brucellosis. PMID:24113459

  5. Blocking of SMAD4 expression by shRNA effectively inhibits fibrogenesis of human hepatic stellate cells

    PubMed Central

    Khanizadeh, Sayyad; Ravanshad, Mehrdad; Hosseini, SeyedYounes; Davoodian, Parivash; Nejati Zadeh, Azim; Sarvari, Jamal

    2015-01-01

    Aim: In this study, to clarify the SMAD4 blocking impact on fibrosis process, we investigated its down-regulation by shRNA on activated human LX-2 cell, in vitro. Background: Liver fibrosis is a critical consequence of chronic damage to the liver that can progress toward advanced diseases, liver cirrhosis and hepatocellular carcinoma (HCC). Different SMAD proteins play as major mediators in the fibrogenesis activity of hepatic stellate cells through TGF-β pathways, but the extent of SMAD4 as a co-SMAD protein remained less clear. Patients and methods: vector expressing verified shRNA targeting human SMAD4 gene was transfected into LX-2 cells. The GFP expressing plasmid was transfected in the same manner as a control group while leptin treated cells were employed as positive controls. Subsequently, total RNA was extracted and real-time PCR was performed to measure the mRNA levels of SMAD4, COL-1A1, α-SMA, TGF-β and TIMP-1. Furthermore, trypan blue exclusion was performed to test the effect of plasmid transfection and SMAD4 shutting-down on cellular viability. Results: The results indicated that the expression of SMAD4was down-regulated following shRNA transfection intoLX-2 cells (P<0.001). The gene expression analysis of fibrotic genes in LX-2 cells showed that SMAD4 blocking by shRNA significantly reduced the expression level of fibrotic genes when compared to control plasmids (P<0.001). Vector expressing SMAD4-shRNA induced no significant cytotoxic or proliferative effects on LX-2 cells as determined by viability assay (P<0.05). Conclusion: The results of this study suggested that knockdown of SMAD4 expression in stellate cell can control the progression of fibrogenesis through TGF-β pathway blocking. PMID:26468346

  6. Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics

    PubMed Central

    Bi, Yan; Mukhopadhyay, Dhriti; Drinane, Mary; Ji, Baoan; Li, Xing; Cao, Sheng

    2014-01-01

    Hepatic stellate cells (HSCs) generate matrix, which in turn may also regulate HSCs function during liver fibrosis. We hypothesized that HSCs may endocytose matrix proteins to sense and respond to changes in microenvironment. Primary human HSCs, LX2, or mouse embryonic fibroblasts (MEFs) [wild-type; c-abl−/−; or Yes, Src, and Fyn knockout mice (YSF−/−)] were incubated with fluorescent-labeled collagen or gelatin. Fluorescence-activated cell sorting analysis and confocal microscopy were used for measuring cellular internalization of matrix proteins. Targeted PCR array and quantitative real-time PCR were used to evaluate gene expression changes. HSCs and LX2 cells endocytose collagens in a concentration- and time-dependent manner. Endocytosed collagen colocalized with Dextran 10K, a marker of macropinocytosis, and 5-ethylisopropyl amiloride, an inhibitor of macropinocytosis, reduced collagen internalization by 46%. Cytochalasin D and ML7 blocked collagen internalization by 47% and 45%, respectively, indicating that actin and myosin are critical for collagen endocytosis. Wortmannin and AKT inhibitor blocked collagen internalization by 70% and 89%, respectively, indicating that matrix macropinocytosis requires phosphoinositide-3-kinase (PI3K)/AKT signaling. Overexpression of dominant-negative dynamin-2 K44A blocked matrix internalization by 77%, indicating a role for dynamin-2 in matrix macropinocytosis. Whereas c-abl−/− MEF showed impaired matrix endocytosis, YSF−/− MEF surprisingly showed increased matrix endocytosis. It was also associated with complex gene regulations that related with matrix dynamics, including increased matrix metalloproteinase 9 (MMP-9) mRNA levels and zymographic activity. HSCs endocytose matrix proteins through macropinocytosis that requires a signaling network composed of PI3K/AKT, dynamin-2, and c-abl. Interaction with extracellular matrix regulates matrix dynamics through modulating multiple gene expressions including MMP-9

  7. Development of Adenoviral Delivery Systems to Target Hepatic Stellate Cells In Vivo

    PubMed Central

    Meier, Claudia; Kowtharapu, Bhavani S.; Timm, Franziska; Vollmar, Brigitte; Herchenröder, Ottmar; Abshagen, Kerstin; Pützer, Brigitte M.

    2013-01-01

    Hepatic stellate cells (HSCs) are known as initiator cells that induce liver fibrosis upon intoxication or other noxes. Deactivation of this ongoing remodeling process of liver parenchyma into fibrotic tissue induced by HSCs is an interesting goal to be achieved by targeted genetic modification of HSCs. The most widely applied approach in gene therapy is the utilization of specifically targeted vectors based on Adenovirus (Ad) serotype 5. To narrow down the otherwise ubiquitous tropism of parental Ad, two modifications are required: a) ablating the native tropism and b) redirecting the vector particles towards a specific entity solely present on the cells of interest. Therefore, we designed a peptide of the nerve growth factor (NGFp) with specific affinity for the p75 neurotrophin receptor (p75NTR) present on HSCs. Coupling of this NGFp to vector particles was done either via chemical conjugation using bifunctional polyethylene glycol (PEG) or, alternatively, by molecular bridging with a fusion protein specific for viral fiber knob and p75NTR. Both Ad vectors transmit the gene for the green fluorescent protein (GFP). GFP expression was monitored in vitro on primary murine HSCs as well as after systemic administration in mice with healthy and fibrotic livers using intravital fluorescence microscopy. Coupling of NGFp to Ad via S11 and/or PEGylation resulted in markedly reduced liver tropism and an enhanced adenoviral-mediated gene transfer to HSCs. Transduction efficiency of both specific Ads was uniformly higher in fibrotic livers, whereas Ad.GFP-S11-NGFp transduce activated HSCs better than Ad.GFP-PEG-NGFp. These experiments contribute to the development of a targeted gene transfer system to specifically deliver antifibrotic compounds into activated HSCs by systemically applied adenoviral vector modified with NGFp. PMID:23825626

  8. Adiponectin Reduces Hepatic Stellate Cell Migration by Promoting Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Secretion*

    PubMed Central

    Ramezani-Moghadam, Mehdi; Wang, Jianhua; Ho, Vikki; Iseli, Tristan J.; Alzahrani, Badr; Xu, Aimin; Van der Poorten, David; Qiao, Liang; George, Jacob; Hebbard, Lionel

    2015-01-01

    Hepatic stellate cells (HSC) are central players in liver fibrosis that when activated, proliferate, migrate to sites of liver injury, and secrete extracellular matrix. Obesity, a known risk factor for liver fibrosis is associated with reduced levels of adiponectin, a protein that inhibits liver fibrosis in vivo and limits HSC proliferation and migration in vitro. Adiponectin-mediated activation of adenosine monophosphate-activated kinase (AMPK) inhibits HSC proliferation, but the mechanism by which it limits HSC migration to sites of injury is unknown. Here we sought to elucidate how adiponectin regulates HSC motility. Primary rat HSCs were isolated and treated with adiponectin in migration assays. The in vivo actions of adiponectin were examined by treating mice with carbon tetrachloride for 12 weeks and then injecting them with adiponectin. Cell and tissue samples were collected and analyzed for gene expression, signaling, and histology. Serum from patients with liver fibrosis was examined for adiponectin and tissue inhibitor of metalloproteinase-1 (TIMP-1) protein. Adiponectin administration into mice increased TIMP-1 gene and protein expression. In cultured HSCs, adiponectin promoted TIMP-1 expression and through binding of TIMP-1 to the CD63/β1-integrin complex reduced phosphorylation of focal adhesion kinase to limit HSC migration. In mice with liver fibrosis, adiponectin had similar effects and limited focal adhesion kinase phosphorylation. Finally, in patients with advanced fibrosis, there was a positive correlation between serum adiponectin and TIMP-1 levels. In sum, these data show that adiponectin stimulates TIMP-1 secretion by HSCs to retard their migration and contributes to the anti-fibrotic effects of adiponectin. PMID:25575598

  9. Molecular insights into connective tissue growth factor action in rat pancreatic stellate cells.

    PubMed

    Karger, Anna; Fitzner, Brit; Brock, Peter; Sparmann, Gisela; Emmrich, Jörg; Liebe, Stefan; Jaster, Robert

    2008-10-01

    Pancreatic fibrosis, a key feature of chronic pancreatitis and pancreatic cancer, is mediated by activated pancreatic stellate cells (PSC). Connective tissue growth factor (CTGF) has been suggested to play a major role in fibrogenesis by enhancing PSC activation after binding to alpha5beta1 integrin. Here, we have focussed on molecular determinants of CTGF action. Inhibition of CTGF expression in PSC by siRNA was associated with decreased proliferation, while application of exogenous CTGF stimulated both cell growth and collagen synthesis. Real-time PCR studies revealed that CTGF target genes in PSC not only include mediators of matrix remodelling but also the proinflammatory cytokines interleukin (IL)-1beta and IL-6. CTGF stimulated binding of NF-kappaB to the IL-6 promoter, and siRNA targeting the NF-kappaB subunit RelA interfered with CTGF-induced IL-6 expression, implicating the NF-kappaB pathway in the mediation of the CTGF effect. In further studies, we have analyzed regulation of CTGF expression in PSC. Transforming growth factor-beta1, activin A and tumor necrosis factor-alpha enhanced expression of the CTGF gene, while interferon-gamma displayed the opposite effect. The region from -74 to -125 of the CTGF promoter was revealed to be critical for its activity in PSC as well as for the inhibitory effect of interferon-gamma. Taken together, our results indicate a tight control of CTGF expression in PSC at the transcriptional level. CTGF promotes fibrogenesis both directly by enhancing PSC proliferation and matrix protein synthesis, and indirectly through the release of proinflammatory cytokines that may accelerate the process of chronic inflammation. PMID:18639630

  10. Cervical Vagal Nerve Stimulation Activates the Stellate Ganglion in Ambulatory Dogs

    PubMed Central

    Rhee, Kyoung-Suk; Hsueh, Chia-Hsiang; Hellyer, Jessica A.; Park, Hyung Wook; Lee, Young Soo; Garlie, Jason; Onkka, Patrick; Doytchinova, Anisiia T.; Garner, John B.; Patel, Jheel; Chen, Lan S.; Fishbein, Michael C.; Everett, Thomas; Lin, Shien-Fong

    2015-01-01

    Background and Objectives Recent studies showed that, in addition to parasympathetic nerves, cervical vagal nerves contained significant sympathetic nerves. We hypothesized that cervical vagal nerve stimulation (VNS) may capture the sympathetic nerves within the vagal nerve and activate the stellate ganglion. Materials and Methods We recorded left stellate ganglion nerve activity (SGNA), left thoracic vagal nerve activity (VNA), and subcutaneous electrocardiogram in seven dogs during left cervical VNS with 30 seconds on-time and 30 seconds off time. We then compared the SGNA between VNS on and off times. Results Cervical VNS at moderate (0.75 mA) output induced large SGNA, elevated heart rate (HR), and reduced HR variability, suggesting sympathetic activation. Further increase of the VNS output to >1.5 mA increased SGNA but did not significantly increase the HR, suggesting simultaneous sympathetic and parasympathetic activation. The differences of integrated SGNA and integrated VNA between VNS on and off times (ΔSGNA) increased progressively from 5.2 mV-s {95% confidence interval (CI): 1.25-9.06, p=0.018, n=7} at 1.0 mA to 13.7 mV-s (CI: 5.97-21.43, p=0.005, n=7) at 1.5 mA. The difference in HR (ΔHR, bpm) between on and off times was 5.8 bpm (CI: 0.28-11.29, p=0.042, n=7) at 1.0 mA and 5.3 bpm (CI 1.92 to 12.61, p=0.122, n=7) at 1.5 mA. Conclusion Intermittent cervical VNS may selectively capture the sympathetic components of the vagal nerve and excite the stellate ganglion at moderate output. Increasing the output may result in simultaneously sympathetic and parasympathetic capture. PMID:25810737

  11. Deregulation of energy metabolism promotes antifibrotic effects in human hepatic stellate cells and prevents liver fibrosis in a mouse model.

    PubMed

    Karthikeyan, Swathi; Potter, James J; Geschwind, Jean-Francois; Sur, Surojit; Hamilton, James P; Vogelstein, Bert; Kinzler, Kenneth W; Mezey, Esteban; Ganapathy-Kanniappan, Shanmugasundaram

    2016-01-15

    Liver fibrosis and cirrhosis result from uncontrolled secretion and accumulation of extracellular matrix (ECM) proteins by hepatic stellate cells (HSCs) that are activated by liver injury and inflammation. Despite the progress in understanding the biology liver fibrogenesis and the identification of potential targets for treating fibrosis, development of an effective therapy remains elusive. Since an uninterrupted supply of intracellular energy is critical for the activated-HSCs to maintain constant synthesis and secretion of ECM, we hypothesized that interfering with energy metabolism could affect ECM secretion. Here we report that a sublethal dose of the energy blocker, 3-bromopyruvate (3-BrPA) facilitates phenotypic alteration of activated LX-2 (a human hepatic stellate cell line), into a less-active form. This treatment-dependent reversal of activated-LX2 cells was evidenced by a reduction in α-smooth muscle actin (α-SMA) and collagen secretion, and an increase in activity of matrix metalloproteases. Mechanistically, 3-BrPA-dependent antifibrotic effects involved down-regulation of the mitochondrial metabolic enzyme, ATP5E, and up-regulation of glycolysis, as evident by elevated levels of lactate dehydrogenase, lactate production and its transporter, MCT4. Finally, the antifibrotic effects of 3-BrPA were validated in vivo in a mouse model of carbon tetrachloride-induced liver fibrosis. Results from histopathology & histochemical staining for collagen and α-SMA substantiated that 3-BrPA promotes antifibrotic effects in vivo. Taken together, our data indicate that sublethal, metronomic treatment with 3-BrPA blocks the progression of liver fibrosis suggesting its potential as a novel therapeutic for treating liver fibrosis. PMID:26525850

  12. Localization of Xenobiotic Transporter OCTN1/SLC22A4 in Hepatic Stellate Cells and Its Protective Role in Liver Fibrosis.

    PubMed

    Tang, Yaliang; Masuo, Yusuke; Sakai, Yoshio; Wakayama, Tomohiko; Sugiura, Tomoko; Harada, Ryuichi; Futatsugi, Azusa; Komura, Takuya; Nakamichi, Noritaka; Sekiguchi, Hirotaka; Sutoh, Keita; Usumi, Koji; Iseki, Shoichi; Kaneko, Shuichi; Kato, Yukio

    2016-05-01

    Xenobiotic transporters play key roles in disposition of certain therapeutic agents, although limited information is available on their roles other than pharmacokinetic issues. Here, suppressive effect of multispecific organic cation transporter OCTN1/SLC22A4 on liver fibrosis was proposed in liver injury models. After injection of hepatotoxins such as dimethylnitrosamine (DMN) or concanavalin A, hepatic fibrosis, and oxidative stress, evaluated in terms of Sirius red and 4-hydroxy-2-nonenal staining, respectively, were more severe in liver of octn1/slc22a4 gene knockout (octn1(-/-)) mice than that in wild-type mice. DMN treatment markedly increased α-smooth muscle actin and F4/80, markers of activated stellate and Kupffer cells, respectively, in liver of octn1(-/-), but had less effect in wild-type mice. Thus, octn1/slc22a4 gene deletion results in more severe hepatic fibrosis, oxidative stress, and inflammation. DMN-treated wild-type mice showed increased Octn1 staining and hepatic concentration of its food-derived antioxidant ergothioneine (ERGO). The upregulated Octn1 was co-localized with α-smooth muscle actin. Functional expression of Octn1 was demonstrated in activated human hepatic stellate cell lines, LI90 and LX-2. Provision of ERGO-rich feed ameliorated DMN-induced liver fibrosis and oxidative stress. Overall, Octn1 is upregulated in activated stellate cells, resulting in increased delivery of its substrate antioxidant ERGO and a protective effect against liver fibrosis. PMID:27020986

  13. Targeting 15d-Prostaglandin J2 to Hepatic Stellate Cells: Two Options Evaluated

    PubMed Central

    Hagens, Werner I.; Mattos, Adriana; Greupink, Rick; de Jager-Krikken, Alie; Reker-Smit, Catharina; van Loenen-Weemaes, AnneMiek; Gouw, Annette S. H.; Poelstra, Klaas

    2007-01-01

    Purpose Delivery of apoptosis-inducing compounds to hepatic stellate cells (HSC) may be an effective strategy to reverse liver fibrosis. The aim of this study was therefore to examine the selective targeting of the apoptosis-inducing drug 15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2) with two different HSC-carriers: human serum albumin modified with the sugar mannose-6-phosphate (M6PHSA) or albumin modified with PDGF-receptor recognizing peptides (pPBHSA). Methods and Results After chemical conjugation of 15dPGJ2 to the carriers, the constructs displayed pharmacological activity and specific receptor-mediated binding to HSC in vitro. Unlike 15dPGJ2-pPBHSA, the cellular binding of 15dPGJ2-M6PHSA was reduced by a scavenger receptor antagonist. In vivo, both conjugates rapidly accumulated in fibrotic livers. Intrahepatic analysis revealed that 15dPGJ2-M6PHSA mainly accumulated in HSC, and to a lesser extent in Kupffer cells. 15dPGJ2-pPBHSA also predominantly accumulated in HSC with additional uptake in hepatocytes. Assessment of target receptors in human cirrhotic livers revealed that M6P/IGFII-receptor expression was present in fibrotic areas. PDGF-β receptor expression was abundantly expressed on human fibroblasts. Conclusions These studies show that 15dPGJ2 coupled to either M6PHSA or pPBHSA is specifically taken up by HSC and is highly effective within these cells. Both carriers differ with respect to receptor specificity, leading to differences in intrahepatic distribution. Nevertheless, both carriers can be used to deliver the apoptosis-inducing drug 15dPGJ2 to HSC in vivo. PMID:17245650

  14. THE INFLUENCE OF DETERGENTS ON SOME PHYSIOLOGICAL PHENOMENA, ESPECIALLY ON THE PROPERTIES OF THE STELLATE CELLS OF THE FROG LIVER

    PubMed Central

    Höber, Rudulf; Höber, Josephine

    1942-01-01

    1. After a consideration of the physicochemical properties of detergents, it was deemed worth while to study some of their physiological effects. As nonpolar-polar electrolytes, the detergents are surface-active and as such cytolytics; but probably due to their dispersing and wetting properties, they are cytolytic in a fashion different from that of other cytolytics. The detergents tested were alkyl sulfonates, alkyl sulfosuccinates, and bile salts. 2. The cytolytic power has been tested in two ways, (1) with red cells by following the escape of hemoglobin, (2) with muscles by measuring the development of an injury potential. In both series of experiments the threshold concentrations of action have been determined. The effect on the potentials has proved to be, in general, reversible. 3. The hemolytic and the myolytic power run fairly parallel to the surface activity. 4. Dehydrocholate has been found to be lacking in nonpolar-polar properties. 5. The stellate cells (Kupffer cells) of the Ringer-perfused frog liver are unable to take up colloidal dyestuffs (trypan blue and soluble blue R), except after addition of a small amount of serum to the perfusing Ringer solution. Only under the latter conditions, the uptake of dye is increased by adding a detergent. This seems to be due to the combined action of the proteins and the detergents. 6. The effect of relatively high concentrations of detergent is disintegration of the stellate cells; viz., cytolysis. There are reasons to assume that small concentrations, which produce a threshold increase of the dyestuff uptake, raise the functional activity. PMID:19873307

  15. TRPM7 channel regulates PDGF-BB-induced proliferation of hepatic stellate cells via PI3K and ERK pathways

    SciTech Connect

    Fang, Ling Zhan, Shuxiang; Huang, Cheng; Cheng, Xi; Lv, Xiongwen; Si, Hongfang; Li, Jun

    2013-11-01

    TRPM7, a non-selective cation channel of the TRP channel superfamily, is implicated in diverse physiological and pathological processes including cell proliferation. Recently, TRPM7 has been reported in hepatic stellate cells (HSCs). Here, we investigated the contribution role of TRPM7 in activated HSC-T6 cell (a rat hepatic stellate cell line) proliferation. TRPM7 mRNA and protein were measured by RT-PCR and Western blot in rat model of liver fibrosis in vivo and PDGF-BB-activated HSC-T6 cells in vitro. Both mRNA and protein of TRPM7 were dramatically increased in CCl{sub 4}-treated rat livers. Stimulation of HSC-T6 cells with PDGF-BB resulted in a time-dependent increase of TRPM7 mRNA and protein. However, PDGF-BB-induced HSC-T6 cell proliferation was inhibited by non-specific TRPM7 blocker 2-aminoethoxydiphenyl borate (2-APB) or synthetic siRNA targeting TRPM7, and this was accompanied by downregulation of cell cycle proteins, cyclin D1, PCNA and CDK4. Blockade of TRPM7 channels also attenuated PDGF-BB induced expression of myofibroblast markers as measured by the induction of α-SMA and Col1α1. Furthermore, the phosphorylation of ERK and AKT, associated with cell proliferation, decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TRPM7 channels contribute to perpetuated fibroblast activation and proliferation of PDGF-BB induced HSC-T6 cells via the activation of ERK and PI3K pathways. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis. - Highlights: • Upregulation of TRPM7 mRNA and protein in the fibrotic livers from CCl{sub 4}-treated rats. • Increasing expression of TRPM7 mRNA and protein during HSC activation. • Blockade of TRPM7 inhibited the PDGF-BB induced proliferation of HSC-T6 cells. • Blockade of TRPM7 decreased α-SMA and Col1α1 expressions in activated HSC-T6 cells. • TRPM7 up-regulation contributes to the activation of ERK and AKT pathways.

  16. Folliculo-stellate cells - potential mediators of the inflammaging-induced hyperactivity of the hypothalamic-pituitary-adrenal axis in healthy elderly individuals.

    PubMed

    Jovanović, Ivan; Ugrenović, Slađana; Ljubomirović, Miljana; Vasović, Ljiljana; Cukuranović, Rade; Stefanović, Vladisav

    2014-10-01

    Some evidence has suggested that, with age, the hypothalamic-pituitary-adrenal (HPA) axis becomes less resilient, leading to higher glucocorticoids nocturnal levels and a flattening of the circadian profiles. Such age-related changes in the activity of the HPA axis has overexposed the brain and peripheral organs to the effects of the glucocorticoids, increasing the morbidity and mortality rates of the elderly. Debate among scientists regarding the contributions of HPA axis age-related changes of impaired feedback regulation vs. direct overactivation persists. Supporters of impaired feedback regulation assumed that this effect might be the consequence of the hippocampal age-related neuronal loss and the reduction of the number of mineralocorticoid and glucocorticoid receptors. On the other hand, healthy elderly individuals are characterized by an increase of proinflammatory cytokines, including IL-1, IL-6, and TNF-α, and the development of a chronic low-grade inflammatory state, known as inflammaging. Cytokines central to inflammaging send signals to the brain, activate HPA axis, and, by increased cortisol secretion, down-regulate inflammaging in a process known as anti-inflammaging. Even as these cytokines act at the level of the hypothalamic paraventricular nucleus, they are hampered by the intact blood-brain barrier. Further, the corticotropes in the anterior pituitary do not express cytokine receptors, and the density of folliculo-stellate cells generally increases with age. Therefore, we assumed that folliculo-stellate cells were the target structures through which the elevated levels of cytokines, as a part of the inflammaging phenomenon, would cause the overactivation of the HPA axis in healthy elderly individuals. Folliculo-stellate cells are non-endocrine cells that were originally considered to act as supporting cells for the endocrine cells. Despite the fact that FS cells do not produce any of the established hormones of the anterior pituitary, they

  17. Identification of mediators stimulating proliferation and matrix synthesis of rat pancreatic stellate cells.

    PubMed

    Schneider, E; Schmid-Kotsas, A; Zhao, J; Weidenbach, H; Schmid, R M; Menke, A; Adler, G; Waltenberger, J; Grünert, A; Bachem, M G

    2001-08-01

    The aim of this study was to identify fibrogenic mediators stimulating activation, proliferation, and/or matrix synthesis of rat pancreatic stellate cells (PSC). PSC were isolated from the pancreas of normal Wistar rats and from rats with cerulein pancreatitis. Cell activation was demonstrated by immunofluorescence microscopy of smooth muscle alpha-actin (SMA) and real-time quantitative RT-PCR of SMA, fibronectin, and transforming growth factor (TGF)-beta(1). Proliferation was measured by bromodeoxyuridine incorporation. Matrix synthesis was demonstrated on the protein and mRNA level. Within a few days in primary culture, PSC changed their phenotype from fat-storing to SMA-positive myofibroblast-like cells expressing platelet-derived growth factor (PDGF) alpha- and PDGF beta-receptors. TGF-beta(1) and tumor necrosis factor (TNF)-alpha accelerated the change in the cells' phenotype. Addition of 50 ng/ml PDGF and 5 ng/ml basic fibroblast growth factor (bFGF) to cultured PSC significantly stimulated cell proliferation (4.37 +/- 0.49- and 2.96 +/- 0.39-fold of control). Fibronectin synthesis calculated on the basis of DNA was stimulated by 5 ng/ml bFGF (3.44 +/- 1.13-fold), 5 ng/ml TGF-beta(1) (2.46 +/- 0.89-fold), 20 ng/ml PDGF (2.27 +/- 0.68-fold), and 50 ng/ml TGF-alpha (1.87 +/- 0.19-fold). As shown by RT-PCR, PSC express predominantly the splice variant EIII-A of fibronectin. Immunofluorescence microscopy and Northern blot confirmed that in particular bFGF and TGF-beta(1) stimulated the synthesis of fibronectin and collagens type I and III. In conclusion, our data demonstrate that 1) TGF-beta(1) and TNF-alpha accelerate the change in the cell phenotype, 2) PDGF represents the most effective mitogen, and 3) bFGF, TGF-beta(1), PDGF, and, to a lesser extent, TGF-alpha stimulate extracellular matrix synthesis of cultured rat PSC. PMID:11443052

  18. Hepatic uptake of (TH)retinol bound to the serum retinol binding protein involves both parenchymal and perisinusoidal stellate cells

    SciTech Connect

    Blomhoff, R.; Norum, K.R.; Berg, T.

    1985-11-05

    We have studied the hepatic uptake of retinol bound to the circulating retinol binding protein-transthyretin complex. Labeled complex was obtained from the plasma of donor rats that were fed radioactive retinol. When labeled retinol-retinol binding protein-transthyretin complex was injected intravenously into control rats, about 45% of the administered dose was recovered in liver after 56 h. Parenchymal liver cells were responsible for an initial rapid uptake. Perisinusoidal stellate cells initially accumulated radioactivity more slowly than did the parenchymal cells, but after 16 h, these cells contained more radioactivity than the parenchymal cells. After 56 h, about 70% of the radioactivity recovered in liver was present in stellate cells. For the first 2 h after injection, most of the radioactivity in parenchymal cells was recovered as unesterified retinol. The radioactivity in the retinyl ester fraction increased after a lag period of about 2 h, and after 5 h more than 60% of the radioactivity was recovered as retinyl esters. In stellate cells, radioactivity was mostly present as retinyl esters at all time points examined. Uptake of retinol in both parenchymal cells and stellate cells was reduced considerably in vitamin A-deficient rats. Less than 5% of the injected dose of radioactivity was found in liver after 5-6 h (as compared to 25% in control rats), and the radioactivity recovered in liver from these animals was mostly in the unesterified retinol fraction. Studies with separated cells in vitro suggested that both parenchymal and stellate cells isolated from control rats were able to take up retinol from the retinol-retinol binding protein-transthyretin complex. This uptake was temperature dependent.

  19. Posttranscriptional regulation of collagen alpha1(I) mRNA in hepatic stellate cells.

    PubMed Central

    Stefanovic, B; Hellerbrand, C; Holcik, M; Briendl, M; Aliebhaber, S; Brenner, D A

    1997-01-01

    The hepatic stellate cell (HSC) is the primary cell responsible for the dramatic increase in the synthesis of type I collagen in the cirrhotic liver. Quiescent HSCs contain a low level of collagen alpha1(I) mRNA, while activated HSCs contain about 60- to 70-fold more of this mRNA. The transcription rate of the collagen alpha1(I) gene is only two fold higher in activated HSCs than in quiescent HSCs. In assays using actinomycin D or 5,6-dichlorobenzimidazole riboside collagen alpha1(I) mRNA has estimated half-lives of 1.5 h in quiescent HSCs and 24 h in activated HSCs. Thus, this 16-fold change in mRNA stability is primarily responsible for the increase in collagen alpha1(I) mRNA steady-state level in activated HSCs. We have identified a novel RNA-protein interaction targeted to the C-rich sequence in the collagen alpha1(I) mRNA 3' untranslated region (UTR). This sequence is localized 24 nucleotides 3' to the stop codon. In transient transfection experiments, mutation of this sequence diminished accumulation of an mRNA transcribed from a collagen alpha1(I) minigene and in stable transfections decreased the half-life of collagen alpha1(I) minigene mRNA. Binding to the collagen alpha1(I) 3' UTR is present in cytoplasmic extracts of activated but not quiescent HSCs. It contains as a subunit alphaCP, which is also found in the complex involved in stabilization of alpha-globin mRNA. The auxiliary factors necessary to promote binding of alphaCP to the collagen 3' UTR are distinct from the factors necessary for binding to the alpha-globin sequence. Since alphaCP is expressed in both quiescent and activated HSCs, these auxiliary factors are responsible for the differentially expressed RNA-protein interaction at the collagen alpha1(I) mRNA 3' UTR. PMID:9271398

  20. Characterization and regulation of insulin-like growth factor binding proteins in human hepatic stellate cells.

    PubMed

    Gentilini, A; Feliers, D; Pinzani, M; Woodruff, K; Abboud, S

    1998-02-01

    Cultured hepatic stellate cells (HSCs), the cell type primarily involved in the progression of liver fibrosis, secrete insulin-like growth factor-I (IGF-I) and IGF binding protein (IGFBP) activity. IGF-I exerts a mitogenic effect on HSCs, thus potentially contributing to the fibrogenic process in an autocrine fashion. However, IGF-I action is modulated by the presence of specific IGFBPs that may inhibit and/or enhance its biologic effects. Therefore, we examined IGFBP-1 through IGFBP-6 mRNA and protein expression in HSCs isolated from human liver and activated in culture. Regulation of IGFBPs in response to IGF-I and other polypeptide growth factors involved in the hepatic fibrogenic process was also assessed. RNase protection assays and ligand blot analysis demonstrated that HSCs express IGFBP-2 through IGFBP-6 mRNAs and release detectable levels of IGFBP-2 through IGFBP-5. Because IGF-I, platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-beta (TGF-beta) stimulate HSC proliferation and/or matrix production, we tested their effect on IGFBPs released by HSCs. IGF-I induced IGFBP-3 and IGFBP-5 proteins in a time-dependent manner without an increase in the corresponding mRNAs. IGFBP-4 protein levels decreased in response to IGF-I. TGF-beta stimulated IGFBP-3 mRNA and protein but decreased IGFBP-5 mRNA and protein. In contrast, PDGF-BB failed to regulate IGFBPs compared with controls. Recombinant human IGFBP-3 (rhIGFBP-3) was then tested for its effect on IGF-I-induced mitogenesis in HSCs. rhIGFBP-3 inhibited IGF-I-stimulated DNA synthesis in a dose-dependent manner, with a peak effect observed at 25 nM IGFBP-3. Because TGF-beta is highly expressed in cirrhotic liver tissue, we determined whether IGFBP-3 mRNA expression is increased in liver biopsies obtained from patients with an active fibroproliferative response due to viral-induced chronic active hepatitis. In the majority of these samples, IGFBP-3 mRNA was increased compared with normal

  1. Hepatic stellate cells undermine the allostimulatory function of liver myeloid dendritic cells via STAT3-dependent induction of IDO

    PubMed Central

    Sumpter, Tina L.; Dangi, Anil; Matta, Benjamin M.; Huang, Chao; Stolz, Donna B.; Vodovotz, Yoram; Thomson, Angus W.; Gandhi, Chandrashekhar R.

    2012-01-01

    Hepatic stellate cells (HSCs) are critical for hepatic wound repair and tissue remodeling. They also produce cytokines and chemokines that may contribute to the maintenance of hepatic immune homeostasis and the inherent tolerogenicity of the liver. The functional relationship between HSCs and the professional migratory APCs in the liver, i.e. dendritic cells (DCs), has not been evaluated. Here, we report that murine liver DCs co-localize with HSCs in vivo under normal, steady-state conditions, and cluster with HSCs in vitro. In vitro, HSCs secrete high levels of DC chemoattractants, such as MIP1α and MCP-1, as well as cytokines that modulate DC activation, including TNFα, IL-6 and IL-1β. Culture of HSCs with conventional liver myeloid (m) DCs resulted in increased IL-6 and IL-10 secretion compared to that of either cell population alone. Co-culture also resulted in enhanced expression of co-stimulatory (CD80, CD86) and co-inhibitory (B7-H1) molecules on mDCs. HSC-induced mDC maturation required cell-cell contact and could be blocked, in part, by neutralizing MIP1α or MCP-1. HSC-induced mDC maturation was dependent on activation of STAT3 in mDCs and in part on HSC-secreted IL-6. Despite up-regulation of co-stimulatory molecules, mDCs conditioned by HSCs demonstrated impaired ability to induce allogeneic T cell proliferation, which was independent of B7-H1, but dependent upon HSC-induced STAT3 activation and subsequent up-regulation of IDO. In conclusion, by promoting IDO expression, HSCs may act as potent regulators of liver mDCs and function to maintain hepatic homeostasis and tolerogenicity. PMID:22962681

  2. Graptopetalum Paraguayense Ameliorates Chemical-Induced Rat Hepatic Fibrosis In Vivo and Inactivates Stellate Cells and Kupffer Cells In Vitro

    PubMed Central

    Su, Li-Jen; Chang, Chia-Chuan; Yang, Chih-Hsueh; Hsieh, Shur-Jong; Wu, Yi-Chin; Lai, Jin-Mei; Tseng, Tzu-Ling; Huang, Chi-Ying F.; Hsu, Shih-Lan

    2013-01-01

    Background Graptopetalum paraguayense (GP) is a folk herbal medicine with hepatoprotective effects that is used in Taiwan. The aim of this study was to evaluate the hepatoprotective and antifibrotic effects of GP on experimental hepatic fibrosis in both dimethylnitrosamine (DMN)- and carbon tetrachloride (CCl4)-induced liver injury rats. Methods Hepatic fibrosis-induced rats were fed with the methanolic extract of GP (MGP) by oral administration every day. Immunohistochemistry, biochemical assays, and Western blot analysis were performed. The effects of MGP on the expression of fibrotic markers and cytokines in the primary cultured hepatic stellate cells (HSCs) and Kupffer cells, respectively, were evaluated. Results Oral administration of MGP significantly alleviated DMN- or CCl4-induced liver inflammation and fibrosis. High levels of alanine transaminase, aspartate transaminase, bilirubin, prothrombin activity and mortality rates also decreased in rats treated with MGP. There were significantly decreased hydroxyproline levels in therapeutic rats compared with those of the liver-damaged rats. Collagen I and alpha smooth muscle actin (α-SMA) expression were all reduced by incubation with MGP in primary cultured rat HSCs. Furthermore, MGP induced apoptotic cell death in activated HSCs. MGP also suppressed lipopolysaccharide-stimulated rat Kupffer cell activation by decreasing nitric oxide, tumor necrosis factor-α and interleukin-6 production, and increasing interleukin-10 expression. Conclusions The results show that the administration of MGP attenuated toxin-induced hepatic damage and fibrosis in vivo and inhibited HSC and Kupffer cell activation in vitro, suggesting that MGP might be a promising complementary or alternative therapeutic agent for liver inflammation and fibrosis. PMID:23335984

  3. The Unfolded Protein Response Plays a Predominant Homeostatic Role in Response to Mitochondrial Stress in Pancreatic Stellate Cells.

    PubMed

    Su, Hsin-Yuan; Waldron, Richard T; Gong, Raymond; Ramanujan, V Krishnan; Pandol, Stephen J; Lugea, Aurelia

    2016-01-01

    Activated pancreatic stellate cells (PaSC) are key participants in the stroma of pancreatic cancer, secreting extracellular matrix proteins and inflammatory mediators. Tumors are poorly vascularized, creating metabolic stress conditions in cancer and stromal cells that necessitate adaptive homeostatic cellular programs. Activation of autophagy and the endoplasmic reticulum unfolded protein response (UPR) have been described in hepatic stellate cells, but the role of these processes in PaSC responses to metabolic stress is unknown. We reported that the PI3K/mTOR pathway, which AMPK can regulate through multiple inputs, modulates PaSC activation and fibrogenic potential. Here, using primary and immortalized mouse PaSC, we assess the relative contributions of AMPK/mTOR signaling, autophagy and the UPR to cell fate responses during metabolic stress induced by mitochondrial dysfunction. The mitochondrial uncoupler rottlerin at low doses (0.5-2.5 μM) was added to cells cultured in 10% FBS complete media. Mitochondria rapidly depolarized, followed by altered mitochondrial dynamics and decreased cellular ATP levels. This mitochondrial dysfunction elicited rapid, sustained AMPK activation, mTOR pathway inhibition, and blockade of autophagic flux. Rottlerin treatment also induced rapid, sustained PERK/CHOP UPR signaling. Subsequently, high doses (>5 μM) induced loss of cell viability and cell death. Interestingly, AMPK knock-down using siRNA did not prevent rottlerin-induced mTOR inhibition, autophagy, or CHOP upregulation, suggesting that AMPK is dispensable for these responses. Moreover, CHOP genetic deletion, but not AMPK knock-down, prevented rottlerin-induced apoptosis and supported cell survival, suggesting that UPR signaling is a major modulator of cell fate in PaSC during metabolic stress. Further, short-term rottlerin treatment reduced both PaSC fibrogenic potential and IL-6 mRNA expression. In contrast, expression levels of the angiogenic factors HGF and VEGF

  4. The Unfolded Protein Response Plays a Predominant Homeostatic Role in Response to Mitochondrial Stress in Pancreatic Stellate Cells

    PubMed Central

    Su, Hsin-Yuan; Waldron, Richard T.; Gong, Raymond; Ramanujan, V. Krishnan; Pandol, Stephen J.; Lugea, Aurelia

    2016-01-01

    Activated pancreatic stellate cells (PaSC) are key participants in the stroma of pancreatic cancer, secreting extracellular matrix proteins and inflammatory mediators. Tumors are poorly vascularized, creating metabolic stress conditions in cancer and stromal cells that necessitate adaptive homeostatic cellular programs. Activation of autophagy and the endoplasmic reticulum unfolded protein response (UPR) have been described in hepatic stellate cells, but the role of these processes in PaSC responses to metabolic stress is unknown. We reported that the PI3K/mTOR pathway, which AMPK can regulate through multiple inputs, modulates PaSC activation and fibrogenic potential. Here, using primary and immortalized mouse PaSC, we assess the relative contributions of AMPK/mTOR signaling, autophagy and the UPR to cell fate responses during metabolic stress induced by mitochondrial dysfunction. The mitochondrial uncoupler rottlerin at low doses (0.5–2.5 μM) was added to cells cultured in 10% FBS complete media. Mitochondria rapidly depolarized, followed by altered mitochondrial dynamics and decreased cellular ATP levels. This mitochondrial dysfunction elicited rapid, sustained AMPK activation, mTOR pathway inhibition, and blockade of autophagic flux. Rottlerin treatment also induced rapid, sustained PERK/CHOP UPR signaling. Subsequently, high doses (>5 μM) induced loss of cell viability and cell death. Interestingly, AMPK knock-down using siRNA did not prevent rottlerin-induced mTOR inhibition, autophagy, or CHOP upregulation, suggesting that AMPK is dispensable for these responses. Moreover, CHOP genetic deletion, but not AMPK knock-down, prevented rottlerin-induced apoptosis and supported cell survival, suggesting that UPR signaling is a major modulator of cell fate in PaSC during metabolic stress. Further, short-term rottlerin treatment reduced both PaSC fibrogenic potential and IL-6 mRNA expression. In contrast, expression levels of the angiogenic factors HGF and VEGF

  5. Contribution of microRNAs in understanding the pancreatic tumor microenvironment involving cancer associated stellate and fibroblast cells

    PubMed Central

    Ali, Shadan; Suresh, Raagini; Banerjee, Sanjeev; Bao, Bin; Xu, Zhihong; Wilson, Jeremy; Philip, Philip A; Apte, Minoti; Sarkar, Fazlul H

    2015-01-01

    Understanding of molecular events associated with tumor microenvironment in pancreatic cancer (PC) is an active area of research especially because of the rich desmoplasia seen in human PC. Desmoplasia is contributed by several cell types including cancer-associated fibroblast (CAF) and stellate cells (PSCs), which are believed to play critical roles in conferring aggressiveness to PC. The aberrant expression of microRNAs (miRNAs) in PSCs and CAF cells appears to play a pivotal role in the development and progression of PC. In this study, expression analysis of miR-21/miR-221 in conditioned media derived from PSCs/CAF cells, and from PSCs/CAF cells showed up-regulation of both miRNAs compared to MIAPaCa-2 PC cells. In addition, miR-21 expression in stellate cells derived from normal pancreas was substantially lower when compared to PSCs or CAF cells. COLO-357 PC cells cultured in the presence of conditioned media derived from PSC/CAF cells led to a significant increase in clonogenicity and pancreatosphere formation. Furthermore, inhibition of miR-21 with antisense oligonucleotide (ASO) transfection resulted in decreased migration/invasive capacity of PSCs. Similarly, the effect of ASO-miR-221 transfection in CAF cells reduced the expression of NF-κB and K-Ras (target of miR-221) along with inhibition of migration/invasion. Moreover, miRNA expression profiling of PSCs, MIAPaCa-2, and COLO-357 cells, and further validation by real-time PCR, showed several differentially expressed miRNAs, among which four was significantly up-regulated. Collectively, these results suggest a crosstalk between PSCs/CAF cells and PC cells, resulting in the up-regulation of miR-21/miR-221 expression which in part may confer aggressiveness to PC. We conclude that targeting these miRNAs could be useful for developing precision medicine for the prevention of tumor progression and/or for the treatment of PC. PMID:26046003

  6. Quantitative analysis of 3D extracellular matrix remodelling by pancreatic stellate cells

    PubMed Central

    Robinson, Benjamin K.; Cortes, Ernesto; Rice, Alistair J.; Sarper, Muge

    2016-01-01

    ABSTRACT Extracellular matrix (ECM) remodelling is integral to numerous physiological and pathological processes in biology, such as embryogenesis, wound healing, fibrosis and cancer. Until recently, most cellular studies have been conducted on 2D environments where mechanical cues significantly differ from physiologically relevant 3D environments, impacting cellular behaviour and masking the interpretation of cellular function in health and disease. We present an integrated methodology where cell-ECM interactions can be investigated in 3D environments via ECM remodelling. Monitoring and quantification of collagen-I structure in remodelled matrices, through designated algorithms, show that 3D matrices can be used to correlate remodelling with increased ECM stiffness observed in fibrosis. Pancreatic stellate cells (PSCs) are the key effectors of the stromal fibrosis associated to pancreatic cancer. We use PSCs to implement our methodology and demonstrate that PSC matrix remodelling capabilities depend on their contractile machinery and β1 integrin-mediated cell-ECM attachment. PMID:27170254

  7. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology

    NASA Astrophysics Data System (ADS)

    Mederacke, Ingmar; Hsu, Christine C.; Troeger, Juliane S.; Huebener, Peter; Mu, Xueru; Dapito, Dianne H.; Pradere, Jean-Philippe; Schwabe, Robert F.

    2013-11-01

    Although organ fibrosis causes significant morbidity and mortality in chronic diseases, the lack of detailed knowledge about specific cellular contributors mediating fibrogenesis hampers the design of effective antifibrotic therapies. Different cellular sources, including tissue-resident and bone marrow-derived fibroblasts, pericytes and epithelial cells, have been suggested to give rise to myofibroblasts, but their relative contributions remain controversial, with profound differences between organs and different diseases. Here we employ a novel Cre-transgenic mouse that marks 99% of hepatic stellate cells (HSCs), a liver-specific pericyte population, to demonstrate that HSCs give rise to 82-96% of myofibroblasts in models of toxic, cholestatic and fatty liver disease. Moreover, we exclude that HSCs function as facultative epithelial progenitor cells in the injured liver. On the basis these findings, HSCs should be considered the primary cellular target for antifibrotic therapies across all types of liver disease.

  8. Treatment with 4-Methylpyrazole Modulated Stellate Cells and Natural Killer Cells and Ameliorated Liver Fibrosis in Mice

    PubMed Central

    Lee, Young-Sun; Jung, Ju Yeon; Park, Seol-Hee; Park, Keun-Gyu; Choi, Hueng-Sik; Suh, Jae Myoung; Jeong, Won-Il

    2015-01-01

    Background & Aims Accumulating evidence suggests that retinol and its metabolites are closely associated with liver fibrogenesis. Recently, we demonstrated that genetic ablation of alcohol dehydrogenase 3 (ADH3), a retinol metabolizing gene that is expressed in hepatic stellate cells (HSCs) and natural killer (NK) cells, attenuated liver fibrosis in mice. In the current study, we investigated whether pharmacological ablation of ADH3 has therapeutic effects on experimentally induced liver fibrosis in mice. Methods Liver fibrosis was induced by intraperitoneal injections of carbon tetrachloride (CCl4) or bile duct ligation (BDL) for two weeks. To inhibit ADH3-mediated retinol metabolism, 10 μg 4-methylpyrazole (4-MP)/g of body weight was administered to mice treated with CCl4 or subjected to BDL. The mice were sacrificed at week 2 to evaluate the regression of liver fibrosis. Liver sections were stained for collagen and α-smooth muscle actin (α-SMA). In addition, HSCs and NK cells were isolated from control and treated mice livers for molecular and immunological studies. Results Treatment with 4-MP attenuated CCl4- and BDL-induced liver fibrosis in mice, without any adverse effects. HSCs from 4-MP treated mice depicted decreased levels of retinoic acids and increased retinol content than HSCs from control mice. In addition, the expression of α-SMA, transforming growth factor-β1 (TGF-β1), and type I collagen α1 was significantly reduced in the HSCs of 4-MP treated mice compared to the HSCs from control mice. Furthermore, inhibition of retinol metabolism by 4-MP increased interferon-γ production in NK cells, resulting in increased apoptosis of activated HSCs. Conclusions Based on our data, we conclude that inhibition of retinol metabolism by 4-MP ameliorates liver fibrosis in mice through activation of NK cells and suppression of HSCs. Therefore, retinol and its metabolizing enzyme, ADH3, might be potential targets for therapeutic intervention of liver fibrosis

  9. MicroRNA-199a and -214 as potential therapeutic targets in pancreatic stellate cells in pancreatic tumor

    PubMed Central

    Kuninty, Praneeth R.; Bojmar, Linda; Tjomsland, Vegard; Larsson, Marie; Storm, Gert; Östman, Arne; Sandström, Per; Prakash, Jai

    2016-01-01

    Pancreatic stellate cells (PSCs) are the key precursor cells for cancer-associated fibroblasts (CAFs) in pancreatic tumor stroma. In this study, we explored miRNA as therapeutic targets in tumor stroma and found miR-199a-3p and miR-214-3p induced in patient-derived pancreatic CAFs and TGF-β-activated human PSCs (hPSCs). Inhibition of miR-199a/-214 using hairpin inhibitors significantly inhibited TGFβ-induced differentiation markers (e.g. α-SMA, collagen, PDGFβR), migration and proliferation. Furthermore, heterospheroids of Panc-1 and hPSCs attained smaller size with hPSCs transfected with anti-miR-199a/-214 compared to control anti-miR. The conditioned medium obtained from TGFβ-activated hPSCs induced tumor cell growth and endothelial cell tube formation. Interestingly, these inductions were abrogated in hPSCs transfected with anti-miR-199a or miR-214. Moreover, IPA analyses revealed signaling pathways related to miR-199a (TP53, mTOR, Smad1) and miR-214 (PTEN, Bax, ING4). Taken together, this study reveals miR-199a-3p and miR-214-3p as major regulators of PSC activation and PSC-induced pro-tumoral effects, representing them as key therapeutic targets in pancreatic cancer. PMID:26918939

  10. TIMP-1 mediates TGF-β-dependent crosstalk between hepatic stellate and cancer cells via FAK signaling.

    PubMed

    Park, Sang-A; Kim, Min-Jin; Park, So-Yeon; Kim, Jung-Shin; Lim, Woosung; Nam, Jeong-Seok; Yhong Sheen, Yhun

    2015-01-01

    Transforming growth factor-β (TGF-β) signaling plays a key role in progression and metastasis of HCC. This study was undertaken to gain the proof of concept of a small-molecule inhibitor of TGF-β type I receptor kinase, EW-7197 as a potent anti-cancer therapy for HCC. We identified tissue inhibitors of metalloproteinases-1 (TIMP-1) as one of the secreted proteins of hepatic stellate cells (HSCs) and a key mediator of TGF-β-mediated crosstalk between HSCs and HCC cells. TGF-β signaling led to increased expression of TIMP-1, which activates focal adhesion kinase (FAK) signaling via its interaction with CD63. Inhibition of TGF-β signaling using EW-7197 significantly attenuated the progression and intrahepatic metastasis of HCC in an SK-HEP1-Luc orthotopic-xenograft mouse model. In addition, EW-7197 inhibited TGF-β-stimulated TIMP-1 secretion by HSCs as well as the TIMP-1-induced proliferation, motility, and survival of HCC cells. Further, EW-7197 interrupted TGF-β-mediated epithelial-to-mesenchymal transition and Akt signaling, leading to significant reductions in the motility and anchorage-independent growth of HCC cells. In conclusion, we found that TIMP-1 mediates TGF-β-regulated crosstalk between HSCs and HCC cells via FAK signaling. In addition, EW-7197 demonstrates potent in vivo anti-cancer therapeutic activity and may be a potential new anti-cancer drug of choice to treat patients with liver cancer. PMID:26549110

  11. TIMP-1 mediates TGF-β-dependent crosstalk between hepatic stellate and cancer cells via FAK signaling

    PubMed Central

    Park, Sang-A; Kim, Min-Jin; Park, So-Yeon; Kim, Jung-Shin; Lim, Woosung; Nam, Jeong-Seok; Yhong Sheen, Yhun

    2015-01-01

    Transforming growth factor-β (TGF-β) signaling plays a key role in progression and metastasis of HCC. This study was undertaken to gain the proof of concept of a small-molecule inhibitor of TGF-β type I receptor kinase, EW-7197 as a potent anti-cancer therapy for HCC. We identified tissue inhibitors of metalloproteinases-1 (TIMP-1) as one of the secreted proteins of hepatic stellate cells (HSCs) and a key mediator of TGF-β-mediated crosstalk between HSCs and HCC cells. TGF-β signaling led to increased expression of TIMP-1, which activates focal adhesion kinase (FAK) signaling via its interaction with CD63. Inhibition of TGF-β signaling using EW-7197 significantly attenuated the progression and intrahepatic metastasis of HCC in an SK-HEP1-Luc orthotopic-xenograft mouse model. In addition, EW-7197 inhibited TGF-β-stimulated TIMP-1 secretion by HSCs as well as the TIMP-1-induced proliferation, motility, and survival of HCC cells. Further, EW-7197 interrupted TGF-β-mediated epithelial-to-mesenchymal transition and Akt signaling, leading to significant reductions in the motility and anchorage-independent growth of HCC cells. In conclusion, we found that TIMP-1 mediates TGF-β-regulated crosstalk between HSCs and HCC cells via FAK signaling. In addition, EW-7197 demonstrates potent in vivo anti-cancer therapeutic activity and may be a potential new anti-cancer drug of choice to treat patients with liver cancer. PMID:26549110

  12. Apoptosis and anergy of T cell induced by pancreatic stellate cells-derived galectin-1 in pancreatic cancer.

    PubMed

    Tang, Dong; Gao, Jun; Wang, Sen; Yuan, Zhongxu; Ye, Nianyuan; Chong, Yang; Xu, Chuanqi; Jiang, Xuetong; Li, Bin; Yin, Wei; Miao, Yi; Wang, Daorong; Jiang, Kuirong

    2015-07-01

    Galectin-1, a β-galactoside-binding protein implicated in cancer cell immune privilege, was highly expressed in activated pancreatic stellate cells (PSCs). This study was designed to investigate the relationship between PSC-derived galectin-1 and tumor immunity in pancreatic cancer. Isolated PSCs were identified as normal pancreas cells (hNPSCs) or pancreatic cancer cells (hCaPSCs) by immunohistochemical staining for α-SMA and vimentin, and galectin-1 expression was evaluated by Western blotting and quantitative RT-PCR. Apoptosis, caspase activity, and cytokine production (IL-6, IL-10, TNF-β, and IFN-γ) of T cells co-cultured with PSCs were evaluated, and immunohistochemical staining of galectin-1 was correlated with CD3 and clinicopathological variables in 66 pancreatic cancer and 10 normal pancreatic tissue samples. hCaPSCs exhibited higher galectin-1 expression than did hNPSCs, and hCaPSCs induced higher levels of apoptosis in T cells following co-culture. hCaPSCs activated caspase-9 and caspase-3 in the mitochondrial apoptotic pathway and stimulated secretion of Th2 cytokines (IL-6 and IL-10) but decreased secretion of Th1 cytokines (TNF-β and IFN-γ), compared with hNPSCs. Immunohistochemical staining indicated that galectin-1 and CD3 were more highly expressed in pancreatic cancer tissue. Galectin-1 expression was highest in poorly differentiated pancreatic cancer cells and lowest in well-differentiated pancreatic cancer cells and was associated with tumor size, lymph node metastasis, differentiation, and UICC stage. However, CD3 expression showed the opposite trend and was highest in well-differentiated pancreatic cancer cells and was associated with tumor differentiation and UICC stage. High expression of galectin-1 was associated with short survival, as was low expression of CD3. hCaPSC-derived galectin-1 enhanced apoptosis and anergy of T cells in pancreatic cancer, which contributes to the immune escape of pancreatic cancer cells. PMID:25725585

  13. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells.

    PubMed

    Genz, Berit; Thomas, Maria; Pützer, Brigitte M; Siatkowski, Marcin; Fuellen, Georg; Vollmar, Brigitte; Abshagen, Kerstin

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. PMID:24995995

  14. The interplay of the Notch signaling in hepatic stellate cells and macrophages determines the fate of liver fibrogenesis.

    PubMed

    Bansal, Ruchi; van Baarlen, Joop; Storm, Gert; Prakash, Jai

    2015-01-01

    Hepatic stellate cells (HSCs) known as "master producers" and macrophages as "master regulators", are the key cell types that strongly contribute to the progression of liver fibrosis. Since Notch signaling regulates multiple cellular processes, we aimed to study the role of Notch signaling in HSCs differentiation and macrophages polarization and to evaluate its implication in liver fibrogenesis. Notch pathway components were found to be significantly upregulated in TGFβ-activated HSCs, inflammatory M1 macrophages, and in mouse and human fibrotic livers. Interestingly, inhibition of Notch using a selective γ-secretase inhibitor, Avagacestat, significantly inhibited TGFβ-induced HSC activation and contractility, and suppressed M1 macrophages. Additionally, Avagacestat inhibited M1 driven-fibroblasts activation and fibroblasts-driven M1 polarization (nitric oxide release) in fibroblasts and macrophages co-culture, and conditioned medium studies. In vivo, post-disease treatment with Avagacestat significantly attenuated fibrogenesis in CCl4-induced liver fibrosis mouse model. These effects were attributed to the reduction in HSCs activation, and inhibition of inflammatory M1 macrophages and upregulation of suppressive M2 macrophages. These findings suggest that Notch signaling plays a crucial role in HSC activation and M1/M2 polarization of macrophages in liver fibrosis. These results provide new insights for the development of novel therapies against liver fibrosis through modulation of Notch signaling. PMID:26658360

  15. Tetrandrine stimulates the apoptosis of hepatic stellate cells and ameliorates development of fibrosis in a thioacetamide rat model

    PubMed Central

    Yin, Ming-Fu; Lian, Li-Hua; Piao, Dong-Ming; Nan, Ji-Xing

    2007-01-01

    AIM: To investigate the therapeutic effect of tetrandrine on liver fibrosis induced by thioacetamide in rats in vivo and in vitro. METHODS: In vitro study: we investigated the effect of tetrandrine on the apoptosis of rat hepatic stellate cells transformed by simian virus 40 (T-HSC/Cl-6), which retains the features of activated cells. In vivo study: hepatic fibrosis was induced in rats by thioacetamide. Tetrandrine was given orally to rats at doses of 5, 10 or 20 mg/kg for 4 wk compared with intraperitoneal injection of interferon-г. RESULTS: In vitro study: 5, 10 or 25 μg/mL of tetrandrine-induced activation of caspase-3 in t-HSC/Cl-6 cells occurred dose-dependently. In vivo study: tetrandrine treatment as well as interferon-г significantly ameliorated the development of fibrosis as determined by lowered serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (T-Bil) and the levels of liver hydroxyproline (Hyp), hyaluronic acid (HA), laminin (LN) and also improved histological findings. The effects of tetrandrine at the concentration of 20 mg/kg were better than the other concentration groups. CONCLUSION: Tetrandrine promotes the apoptosis of activated HSCs in vitro. Tetrandrine administration can prevent liver fibrosis and liver damage induced by thioacetamide in rats in vivo, indicating that it might exert a direct effect on rat HSCs. PMID:17451202

  16. Synergistic growth inhibitory effects of the dual endothelin-1 receptor antagonist bosentan on pancreatic stellate and cancer cells.

    PubMed

    Fitzner, Brit; Brock, Peter; Holzhüter, Stephanie-Anna; Nizze, Horst; Sparmann, Gisela; Emmrich, Jörg; Liebe, Stefan; Jaster, Robert

    2009-02-01

    Pancreatic stellate cells (PSC) play a key role in pancreatic fibrosis. Activation of PSC occurs in response to pro-fibrogenic stimuli and is maintained by autocrine loops of mediators, such as endothelin (ET)-1. Here, we have evaluated effects of the dual ET receptor antagonist bosentan in models of pancreatic fibrogenesis and cancer. Cell culture studies revealed that PSC and DSL6A pancreatic cancer cells expressed both ET-1 and ET receptors. Bosentan efficiently inhibited proliferation of both cell types and collagen synthesis in PSC. Expression of the myofibroblastic marker alpha-smooth muscle actin, connective tissue growth factor, and ET-1 itself in PSC was reduced, while expression of matrix metalloproteinase-9 was enhanced. Like PSC, DSL6A cells secrete less ET-1 when cultured with bosentan. In a rat model of pancreatic fibrosis, chronic pancreatitis induced by dibutyltin dichloride, a tendency towards a diminished disease progression was observed in a subgroup of rats with less severe disease. Together, our results indicate that bosentan exerts antifibrotic and antitumor effects in vitro. Its efficiency in vivo warrants further investigation. PMID:18612819

  17. The use of nanoparticles to deliver nitric oxide to hepatic stellate cells for treating liver fibrosis and portal hypertension.

    PubMed

    Duong, Hien T T; Dong, Zhixia; Su, Lin; Boyer, Cyrille; George, Jacob; Davis, Thomas P; Wang, Jianhua

    2015-05-20

    Polymeric nanoparticles are designed to transport and deliver nitric oxide (NO) into hepatic stellate cells (HSCs) for the potential treatment of both liver fibrosis and portal hypertension. The nanoparticles, incorporating NO donor molecules (S-nitrosoglutathione compound), are designed for liver delivery, minimizing systemic delivery of NO. The nanoparticles are decorated with vitamin A to specifically target HSCs. We demonstrate, using in vitro and in vivo experiments, that the targeted nanoparticles are taken up specifically by rat primary HSCs and the human HSC cell line accumulating in the liver. When nanoparticles, coated with vitamin A, release NO in liver cells, we find inhibition of collagen I and α-smooth muscle actin (α-SMA), fibrogenic genes associated with activated HSCs expression in primary rat liver and human activated HSCs without any obvious cytotoxic effects. Finally, NO-releasing nanoparticles targeted with vitamin A not only attenuate endothelin-1 (ET-1) which elicites HSC contraction but also acutely alleviates haemodynamic disorders in bile duct-ligated-induced portal hypertension evidenced by decreasing portal pressure (≈20%) and unchanging mean arterial pressure. This study clearly shows, for the first time, the potential for HSC targeted nanoparticle delivery of NO as a treatment for liver diseases with proven efficacy for alleviating both liver fibrosis and portal hypertension. PMID:25641921

  18. Expression and function of fibroblast growth factor (FGF) 9 in hepatic stellate cells and its role in toxic liver injury

    SciTech Connect

    Antoine, Marianne; Wirz, Werner; Tag, Carmen G.; Gressner, Axel M.; Marvituna, Meltem; Wycislo, Mathias; Hellerbrand, Claus; Kiefer, Paul . E-mail: paul.kiefer@klinik.uni-regensburg.de

    2007-09-21

    Hepatic injury and regeneration of the liver are associated with activation of hepatic stellate cells (HSC). Fibroblast growth factors (FGFs) and their receptors are important regulators of repair in various tissues. HSC express FGFR3IIIc as well as FGFGR4 and different spliced FGFR1IIIc and FGFR2IIIc isoforms which differ in the presence or absence of the acid box and of the first Ig-like domain. Expression of FGF9, known to be capable to activate the HSC FGFR2/3-isoforms, was increased in HSC in liver slice cultures after exposition to carbon tetrachloride, as an acute liver injury model. FGF9 significantly stimulated 3-H thymidine incorporation of hepatocytes, but failed to induce DNA synthesis in HSC despite the fact that FGF9 induced a sustained activation of extracellular signal-related kinases (ERK) 1/2. FGF9 induced an increased phosphorylation of Tyr436 of the fibroblast growth factor receptor substrate (FRS) 2, while phosphorylation of Tyr196 which is required for efficient Grb2 recruitment remained unchanged. Our findings suggest that HSC FGF9 provide a paracrine mitogenic signal to hepatocytes during acute liver injury, while the autocrine FGF9 signaling appears to be not sufficient to induce cell proliferation.

  19. A TLR4/MD2 fusion protein inhibits LPS-induced pro-inflammatory signaling in hepatic stellate cells

    SciTech Connect

    Schnabl, Bernd Brandl, Katharina; Fink, Marina; Gross, Philipp; Taura, Kojiro; Gaebele, Erwin; Hellerbrand, Claus; Falk, Werner

    2008-10-17

    Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis. In injured liver they are the main extracellular matrix protein producing cell type and further perpetuate hepatic injury by secretion of pro-inflammatory mediators. Since LPS-mediated signaling through toll-like receptor 4 (TLR4) has been identified as key fibrogenic signal in HSCs we aimed to test TLR4 as potential target of therapy via ligand-binding soluble receptors. Incubation of human HSCs with a fusion protein between the extracellular domain of TLR4 and MD2 which binds LPS inhibited LPS-induced NF{kappa}B and JNK activation. TLR4/MD2 abolished LPS-induced secretion of IL-6, IL-8, MCP1, and RANTES in HSCs. In addition, TLR4/MD2 fused to human IgG-Fc neutralized LPS activity. Since TLR4 mutant mice are resistant to liver fibrosis, the TLR4/MD2 soluble receptor might represent a new therapeutic molecule for liver fibrogenesis in vivo.

  20. Periostin down-regulation attenuates the pro-fibrogenic response of hepatic stellate cells induced by TGF-β1

    PubMed Central

    Hong, Li; Shejiao, Dai; Fenrong, Chen; Gang, Zhao; Lei, Dong

    2015-01-01

    Liver fibrosis is characterized by an exacerbated accumulation of deposition of the extracellular matrix (ECM), and the activation of hepatic stellate cells (HSC) plays a pivotal role in the development of liver fibrosis. Periostin has been shown to regulate cell adhesion, proliferation, migration and apoptosis; however, the involvement of periostin and its role in transforming growth factor (TGF)-β1-induced HSC activation remains unclear. We used RT-PCR and Western blot to evaluate the expression level of periostin in hepatic fibrosis tissues and HSCs, respectively. Cell proliferation was determined using the Cell Proliferation ELISA BrdU kit, cell cycle was analysed by flow cytometry. The expression of α-smooth muscle actin (α-SMA), collagen I, TGF-β1, p-Smad2 and p-Smad3 were determined by western blot. Our study found that periostin was up-regulated in liver fibrotic tissues and activated HSCs. In addition, siRNA-periostin suppressed TGF-β1-induced HSC proliferation. The HSC transfected with siRNA-periostin significantly inhibited TGF-β1-induced expression levels of α-SMA and collagen I. Furthermore, TGF-β1 stimulated the expression of periostin, and siRNA-periostin attenuated TGF-β1-induced Smad2/3 activation in HSCs. These results suggest that periostin may function as a novel regulator to modulate HSC activation, potentially by promoting the TGF-β1/Smad signalling pathway, and propose a strategy to target periostin for the treatment of liver fibrosis. PMID:26249143

  1. Overexpression of pim-3 and protective role in lipopolysaccharide-stimulated hepatic stellate cells

    PubMed Central

    Liu, Lin-Hua; Lai, Qi-Nan; Chen, Jian-Yong; Zhang, Ji-Xiang; Cheng, Bin

    2015-01-01

    AIM: To investigate pim-3 expression in hepatic stellate cells (HSCs) stimulated by lipopolysaccharide (LPS), and its protective effect on HSCs. METHODS: Rat HSC-T6 cells were stimulated by LPS. The effect of LPS on proliferation and apoptosis of HSC-T6 cells was investigated by methyl thiazoyltetrazolium (MTT) assay and flow cytometry after annexin V-fluorescein isothiocyanate/propidium iodide double staining. pim-3 mRNA and protein were detected by reverse transcriptase polymerase chain reaction and Western blotting at 48 h when HSC-T6 cells were stimulated with 1 μg/mL LPS for 0, 3, 6, 12, 24 and 48 h. The cells without stimulation served as controls. To study the effect of pim-3 kinase on HSC-T6 cells, si-pim3 (siRNA against pim-3) was transfected into HSC-T6 cells. HSC-T6 cells were subjected to different treatments, including LPS, si-pim3, or si-pim3 plus LPS, and control cells were untreated. Protein expression of pim-3 was detected at 48 h after treatment, and cell proliferation at 24 and 48 h by MTT assay. Apoptosis was detected by flow cytometry, and confirmed with caspase-3 activity assay. RESULTS: LPS promoted HSC-T6 cell proliferation and protected against apoptosis. Significantly delayed upregulation of pim-3 expression induced by LPS occurred at 24 and 48 h for mRNA expression (pim-3/β-actin RNA, 24 or 48 h vs 0 h, 0.81 ± 0.20 or 0.78 ± 0.21 vs 0.42 ± 0.13, P < 0.05), and occurred at 12 h and peaked at 24 and 48 h for protein expression (pim-3/GAPDH protein, 12, or 24 or 48 h vs 0 h, 0.68 ± 0.12, 1.47 ± 0.25 or 1.51 ± 0.23 vs 0.34 ± 0.04, P < 0.01). pim-3 protein was ablated by si-pim3 and upregulated by LPS in HSC-T6 cells at 48 h after treatment (pim-3/GAPDH: si-pim3, si-pim3 plus LPS or LPS vs control, 0.11 ± 0.05, 0.12 ± 0.05 or 1.08 ± 0.02 vs 0.39 ± 0.03, P < 0.01). Ablation of pim-3 by si-pim3 in HSC-T6 cells partly abolished proliferation (OD at 24 h, si-pim3 group or si-pim3 plus LPS vs control, 0.2987 ± 0.050 or 0.4063 ± 0

  2. Mesothelial cells give rise to hepatic stellate cells and myofibroblasts via mesothelial-mesenchymal transition in liver injury.

    PubMed

    Li, Yuchang; Wang, Jiaohong; Asahina, Kinji

    2013-02-01

    In many organs, myofibroblasts play a major role in the scarring process in response to injury. In liver fibrogenesis, hepatic stellate cells (HSCs) are thought to transdifferentiate into myofibroblasts, but the origins of both HSCs and myofibroblasts remain elusive. In the developing liver, lung, and intestine, mesothelial cells (MCs) differentiate into specific mesenchymal cell types; however, the contribution of this differentiation to organ injury is unknown. In the present study, using mouse models, conditional cell lineage analysis has demonstrated that MCs expressing Wilms tumor 1 give rise to HSCs and myofibroblasts during liver fibrogenesis. Primary MCs, isolated from adult mouse liver using antibodies against glycoprotein M6a, undergo myofibroblastic transdifferentiation. Antagonism of TGF-β signaling suppresses transition of MCs to mesenchymal cells both in vitro and in vivo. These results indicate that MCs undergo mesothelial-mesenchymal transition and participate in liver injury via differentiation to HSCs and myofibroblasts. PMID:23345421

  3. Global Analysis of Protein Expression and Phosphorylation Levels in Nicotine-Treated Pancreatic Stellate Cells.

    PubMed

    Paulo, Joao A; Gaun, Aleksandr; Gygi, Steven P

    2015-10-01

    Smoking is a risk factor in pancreatic disease; however, the biochemical mechanisms correlating smoking with pancreatic dysfunction remain poorly understood. Strategies using multiplexed isobaric tag-based mass spectrometry facilitate the study of drug-induced perturbations on biological systems. Here, we present the first large-scale analysis of the proteomic and phosphoproteomic alterations in pancreatic stellate cells following treatment with two nicotinic acetylcholine receptor (nAChR) ligands: nicotine and α-bungarotoxin. We treated cells with nicotine or α-bungarotoxin for 12 h in triplicate and compared alterations in protein expression and phosphorylation levels to mock-treated cells using a tandem mass tag (TMT9plex)-based approach. Over 8100 proteins were quantified across all nine samples, of which 46 were altered in abundance upon treatment with nicotine. Proteins with increased abundance included those associated with neurons, defense mechanisms, indicators of pancreatic disease, and lysosomal proteins. In addition, we measured differences for ∼16 000 phosphorylation sites across all nine samples using a titanium dioxide-based strategy, of which 132 sites were altered with nicotine and 451 with α-bungarotoxin treatment. Many altered phosphorylation sites were involved in nuclear function and transcriptional events. This study supports the development of future targeted investigations to establish a better understanding for the role of nicotine and associated receptors in pancreatic disease. PMID:26265067

  4. Global analysis of protein expression and phosphorylation levels in nicotine-treated pancreatic stellate cells

    PubMed Central

    Paulo, Joao A.; Gaun, Aleksandr; Gygi, Steven P.

    2016-01-01

    Smoking is a risk factor in pancreatic disease, however, the biochemical mechanisms correlating smoking with pancreatic dysfunction remain poorly understood. Strategies using multiplexed isobaric tag-based mass spectrometry facilitate the study of drug-induced perturbations on biological systems. Here, we present the first large scale analysis of the proteomic and phosphoproteomic alterations in pancreatic stellate cells following treatment with two nicotinic acetylcholine receptor (nAChR) ligands: nicotine and α-bungarotoxin. We treated cells with nicotine or α-bungarotoxin for 12hr in triplicate and compared alterations in protein expression and phosphorylation levels to mock treated cells using a tandem mass tag (TMT9plex)-based approach. Over 8,100 proteins were quantified across all nine samples of which 46 were altered in abundance upon treatment with nicotine. Proteins with increased abundance included those associated with neurons, defense mechanisms, indicators of pancreatic disease and lysosomal proteins. In addition, we measured differences for ∼16,000 phosphorylation sites across all nine samples using a titanium dioxide-based strategy, of which 132 sites were altered with nicotine and 451 with α-bungarotoxin treatment. Many altered phosphorylation sites were involved in nuclear function and transcriptional events. This study supports the development of future targeted investigations to establish a better understanding for the role of nicotine and associated receptors in pancreatic disease. PMID:26265067

  5. Hepatic stellate cell-expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage.

    PubMed

    Mogler, Carolin; Wieland, Matthias; König, Courtney; Hu, Junhao; Runge, Anja; Korn, Claudia; Besemfelder, Eva; Breitkopf-Heinlein, Katja; Komljenovic, Dorde; Dooley, Steven; Schirmacher, Peter; Longerich, Thomas; Augustin, Hellmut G

    2015-03-01

    Liver fibrosis is a reversible wound-healing response to injury reflecting the critical balance between liver repair and scar formation. Chronic damage leads to progressive substitution of liver parenchyma by scar tissue and ultimately results in liver cirrhosis. Stromal cells (hepatic stellate cells [HSC] and endothelial cells) have been proposed to control the balance between liver fibrosis and regeneration. Here, we show that endosialin, a C-type lectin, expressed in the liver exclusively by HSC and portal fibroblasts, is upregulated in liver fibrosis in mouse and man. Chronic chemically induced liver damage resulted in reduced fibrosis and enhanced hepatocyte proliferation in endosialin-deficient (EN(KO)) mice. Correspondingly, acute-liver-damage-induced hepatocyte proliferation (partial hepatectomy) was increased in EN(KO) mice. A candidate-based screen of known regulators of hepatocyte proliferation identified insulin-like growth factor 2 (IGF2) as selectively endosialin-dependent hepatocyte mitogen. Collectively, the study establishes a critical role of HSC in the reciprocal regulation of fibrogenesis vs. hepatocyte proliferation and identifies endosialin as a therapeutic target in non-neoplastic settings. PMID:25680861

  6. Hepatic stellate cell-expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage

    PubMed Central

    Mogler, Carolin; Wieland, Matthias; König, Courtney; Hu, Junhao; Runge, Anja; Korn, Claudia; Besemfelder, Eva; Breitkopf-Heinlein, Katja; Komljenovic, Dorde; Dooley, Steven; Schirmacher, Peter; Longerich, Thomas; Augustin, Hellmut G

    2015-01-01

    Liver fibrosis is a reversible wound-healing response to injury reflecting the critical balance between liver repair and scar formation. Chronic damage leads to progressive substitution of liver parenchyma by scar tissue and ultimately results in liver cirrhosis. Stromal cells (hepatic stellate cells [HSC] and endothelial cells) have been proposed to control the balance between liver fibrosis and regeneration. Here, we show that endosialin, a C-type lectin, expressed in the liver exclusively by HSC and portal fibroblasts, is upregulated in liver fibrosis in mouse and man. Chronic chemically induced liver damage resulted in reduced fibrosis and enhanced hepatocyte proliferation in endosialin-deficient (ENKO) mice. Correspondingly, acute-liver-damage-induced hepatocyte proliferation (partial hepatectomy) was increased in ENKO mice. A candidate-based screen of known regulators of hepatocyte proliferation identified insulin-like growth factor 2 (IGF2) as selectively endosialin-dependent hepatocyte mitogen. Collectively, the study establishes a critical role of HSC in the reciprocal regulation of fibrogenesis vs. hepatocyte proliferation and identifies endosialin as a therapeutic target in non-neoplastic settings. PMID:25680861

  7. Connective tissue growth factor hammerhead ribozyme attenuates human hepatic stellate cell function

    PubMed Central

    Gao, Run-Ping; Brigstock, David R

    2009-01-01

    AIM: To determine the effect of hammerhead ribozyme targeting connective tissue growth factor (CCN2) on human hepatic stellate cell (HSC) function. METHODS: CCN2 hammerhead ribozyme cDNA plus two self-cleaving sequences were inserted into pTriEx2 to produce pTriCCN2-Rz. Each vector was individually transfected into cultured LX-2 human HSCs, which were then stimulated by addition of transforming growth factor (TGF)-β1 to the culture medium. Semi-quantitative RT-PCR was used to determine mRNA levels for CCN2 or collagen I, while protein levels of each molecule in cell lysates and conditioned medium were measured by ELISA. Cell-cycle progression of the transfected cells was assessed by flow cytometry. RESULTS: In pTriEx2-transfected LX-2 cells, TGF-β1 treatment caused an increase in the mRNA level for CCN2 or collagen I, and an increase in produced and secreted CCN2 or extracellular collagen I protein levels. pTriCCN2-Rz-transfected LX-2 cells showed decreased basal CCN2 or collagen mRNA levels, as well as produced and secreted CCN2 or collagen I protein. Furthermore, the TGF-β1-induced increase in mRNA or protein for CCN2 or collagen I was inhibited partially in pTriCCN2-Rz-transfected LX-2 cells. Inhibition of CCN2 using hammerhead ribozyme cDNA resulted in fewer of the cells transitioning into S phase. CONCLUSION: Endogenous CCN2 is a mediator of basal or TGF-β1-induced collagen I production in human HSCs and regulates entry of the cells into S phase. PMID:19673024

  8. Cyclooxygenase-2 contributes to the selective induction of cell death by the endocannabinoid 2-arachidonoyl glycerol in hepatic stellate cells.

    PubMed

    Siegmund, S V; Wojtalla, A; Schlosser, M; Schildberg, F A; Knolle, P A; Nüsing, R M; Zimmer, A; Strassburg, C P; Singer, M V

    2016-02-12

    The endogenous cannabinoid 2-arachidonoyl glycerol (2-AG) is an anti-fibrotic lipid mediator that induces apoptosis in hepatic stellate cells (HSCs), but not in hepatocytes. However, the exact molecular mechanisms of this selective induction of HSC death are still unresolved. Interestingly, the inducible isoform of cyclooxygenase, COX-2, can metabolize 2-AG to pro-apoptotic prostaglandin glycerol esters (PG-GEs). We analyzed the roles of COX-2 and endocannabinoid-derived PG-GEs in the differential susceptibility of primary activated HSCs and hepatocytes toward 2-AG-induced cell death. HSCs displayed significant COX-2 expression in contrast to hepatocytes. Similar to 2-AG, treatment of HSCs with PGD2-GE dose-dependently induced cell death independently from cannabinoid receptors that was accompanied by PARP- and caspase 3-cleavage. In contrast to 2-AG, PGD2-GE failed to induce significant ROS formation in HSCs, and depletion of membrane cholesterol did not rescue HSCs from PGD2-GE-induced apoptosis. These findings indicate differential engagement of initial intracellular signaling pathways by 2-AG and its COX-2-derived metabolite PGD2-GE, but similar final cell death pathways. Other PG-GEs, such as PGE2-or PGF2α-GE did not induce apoptosis in HSCs. Primary rat hepatocytes were mainly resistant against 2-AG- and PGD2-GE-induced apoptosis. HSCs, but not hepatocytes were able to metabolize 2-AG to PGD2-GE. As a proof of principle, HSCs from COX-2(-/-) mice lacked PDG2-GE production after 2-AG treatment. Accordingly, COX-2(-/-) HSCs were resistant against 2-AG-induced apoptosis. In conclusion, the divergent expression of COX-2 in HSCs and hepatocytes contributes to the different susceptibility of these cell types towards 2-AG-induced cell death due to the generation of pro-apoptotic PGD2-GE by COX-2 in HSCs. Modulation of COX-2-driven metabolization of 2-AG may provide a novel physiological concept allowing the specific targeting of HSCs in liver fibrosis. PMID

  9. Possible Involvement of Hepatitis B Virus Infection of Hepatocytes in the Attenuation of Apoptosis in Hepatic Stellate Cells

    PubMed Central

    Sasaki, Reina; Kanda, Tatsuo; Nakamura, Masato; Nakamoto, Shingo; Haga, Yuki; Wu, Shuang; Shirasawa, Hiroshi; Yokosuka, Osamu

    2016-01-01

    Background The induction of apoptosis in hepatic stellate cells (HSCs) is a promising therapeutic strategy against hepatitis B virus (HBV)-related hepatic fibrosis. The underlying mechanisms of apoptosis in HSCs, however, are unknown under consideration of HBV infection. In this study, the effects of HBV on apoptosis and endoplasmic reticulum (ER) stress signaling in HSCs were examined. Methods The effects of conditioned media (CM) from HepG2.2.15 on apoptosis induced by the proteasome inhibitor MG132 in LX-2 and HHSteC were studied in regard to c-Jun. In combination with c-Fos, c-Jun forms the AP-1 early response transcription factor, leading to AP-1 activation, signal transduction, endoplasmic reticulum (ER) stress and apoptosis. Results In LX-2 cells, MG132 treatment was associated with the phosphorylation of c-Jun, activation of AP-1 and apoptosis. However, in the presence of CM from HepG2.2.15, these phenomena were attenuated. In HHSteC cells, similar results were observed. HBV genomic DNA is not involved in the process of HSC apoptosis. It is possible that HBeAg has an inhibitory effect on MG132-induced apoptosis in LX-2. We also observed the upregulation of several ER stress-associated genes, such as cAMP responsive element binding protein 3-like 3, inhibin-beta A and solute carrier family 17-member 2, in the presence of CM from HepG2.2.15, or CM from PXB cells infected with HBV. Conclusions HBV inhibits the activation of c-Jun/AP-1 in HSCs, contributing to the attenuation of apoptosis and resulting in hepatic fibrosis. HBV also up-regulated several ER stress genes associated with cell growth and fibrosis. These mechanistic insights might shed new light on a treatment strategy for HBV-associated hepatic fibrosis. PMID:26731332

  10. Hepatic Stellate Cell-Derived Microvesicles Prevent Hepatocytes from Injury Induced by APAP/H2O2

    PubMed Central

    Huang, Renwei; Wang, Yan; Liang, Yaolong; Liao, Xiaorong; Li, Mingyi

    2016-01-01

    Hepatic stellate cells (HSCs), previously described for liver-specific mesenchymal stem cells (MSCs), appear to contribute to liver regeneration. Microvesicles (MVs) are nanoscale membrane fragments, which can regulate target cell function by transferring contents from their parent cells. The aim of this study was to investigate the effect of HSC-derived MVs on xenobiotic-induced liver injury. Rat and human hepatocytes, BRL-3A and HL-7702, were used to build hepatocytes injury models by n-acetyl-p-aminophenol n-(APAP) or H2O2 treatment. MVs were prepared from human and rat HSCs, LX-2, and HST-T6 and, respectively, added to injured BRL-3A and HL-7702 hepatocytes. MTT assay was utilized to determine cell proliferation. Cell apoptosis was analyzed by flow cytometry and hoechst33258 staining. Western blot was used for analyzing the expression of activated caspase-3. Liver injury indicators, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) in culture medium were also assessed. Results showed that (1) HSC-MVs derived from LX-2 and HST-T6 were positive to CD90 and annexin V surface markers; (2) HSC-MVs dose-dependently improved the viability of hepatocytes in both injury models; (3) HSC-MVs dose-dependently inhibited the APAP/H2O2 induced hepatocytes apoptosis and activated caspase-3 expression and leakage of LDH, ALT, and AST. Our results demonstrate that HSC-derived MVs protect hepatocytes from toxicant-induced injury. PMID:27239205

  11. PPAR{gamma} agonists prevent TGF{beta}1/Smad3-signaling in human hepatic stellate cells

    SciTech Connect

    Zhao Caiyan; Chen, Wei; Yang Liu; Chen Lihong; Stimpson, Stephen A.; Diehl, Anna Mae . E-mail: annamae.diehl@duke.edu

    2006-11-17

    PPAR{gamma} agonists inhibit liver fibrosis, but the mechanisms involved are uncertain. We hypothesized that PPAR{gamma} agonists inhibit transforming growth factor (TGF){beta}1-activation of TGF{beta} receptor (TGF{beta}R)-1 signaling in quiescent stellate cells, thereby abrogating Smad3-dependent induction of extracellular matrix (ECM) genes, such as PAI-1 and collagen-1{alpha}I. To test this, human HSC were cultured to induce a quiescent phenotype, characterized by lipid accumulation and PPAR{gamma} expression and transcriptional activity. These adipocytic HSC were then treated with TGF{beta}1 {+-} a TGF{beta}R-1 kinase inhibitor (SB431542) or a PPAR{gamma} agonist (GW7845). TGF{beta}1 caused dose- and time-dependent increases in Smad3 phosphorylation, followed by induction of collagen and PAI-1 expression. Like the TGF{beta}R-1 kinase inhibitor, the PPAR{gamma} agonist caused dose-dependent inhibition of all of these responses without effecting HSC proliferation or viability. Thus, the anti-fibrotic actions of PPAR{gamma} agonists reflect their ability to inhibit TGF{beta}1-TGF{beta}R1 signaling that initiates ECM gene expression in quiescent HSC.

  12. Transcriptomic and proteomic analysis of human hepatic stellate cells treated with natural taurine.

    PubMed

    Liang, Jian; Deng, Xin; Wu, Fa-Sheng; Tang, Yan-Fang

    2013-05-01

    The aim of this study was to investigate the differential expression of genes and proteins between natural taurine (NTau)‑treated hepatic stellate cells (HSCs) and control cells as well as the underlying mechanism of NTau in inhibiting hepatic fibrosis. A microculture tetrazolium (MTT) assay was used to analyze the proliferation of NTau‑treated HSCs. Flow cytometry was performed to compare the apoptosis rate between NTau-treated and non‑treated HSCs. Proteomic analysis using a combination of 2-dimensional gel electrophoresis (2DE) and mass spectrometry (MS) was conducted to identify the differentially expressed proteins. Microarray analysis was performed to investigate the differential expression of genes and real-time polymerase chain reaction (PCR) was used to validate the results. The experimental findings obtained demonstrated that NTau decreased HSC proliferation, resulting in an increased number of cells in the G0/G1 phase and a reduced number of cells in the S phase. Flow cytometric analysis showed that NTau-treated HSCs had a significantly increased rate of apoptosis when compared with the non‑treated control group. A total of 15 differentially expressed proteins and 658 differentially expressed genes were identified by 2DE and MS, and microarray analysis, respectively. Gene ontology (GO) functional analysis indicated that these genes and proteins were enriched in the function clusters and pathways related to cell proliferation, cellular apoptosis and oxidation. The transcriptome and proteome analyses of NTau-treated HSCs demonstrated that NTau is able to significantly inhibit cell proliferation and promote cell apoptosis, highlighting its potential therapeutic benefits in the treatment of hepatic fibrosis. PMID:23525364

  13. Distinct Populations of Hepatic Stellate Cells in the Mouse Liver Have Different Capacities for Retinoid and Lipid Storage

    PubMed Central

    D'Ambrosio, Diana N.; Walewski, José L.; Clugston, Robin D.; Berk, Paul D.; Rippe, Richard A.; Blaner, William S.

    2011-01-01

    Hepatic stellate cell (HSC) lipid droplets are specialized organelles for the storage of retinoid, accounting for 50–60% of all retinoid present in the body. When HSCs activate, retinyl ester levels progressively decrease and the lipid droplets are lost. The objective of this study was to determine if the HSC population in a healthy, uninjured liver demonstrates heterogeneity in its capacity for retinoid and lipid storage in lipid droplets. To this end, we utilized two methods of HSC isolation, which leverage distinct properties of these cells, including their vitamin A content and collagen expression. HSCs were isolated either from wild type (WT) mice in the C57BL/6 genetic background by flotation in a Nycodenz density gradient, followed by fluorescence activated cell sorting (FACS) based on vitamin A autofluorescence, or from collagen-green fluorescent protein (GFP) mice by FACS based on GFP expression from a GFP transgene driven by the collagen I promoter. We show that GFP-HSCs have: (i) increased expression of typical markers of HSC activation; (ii) decreased retinyl ester levels, accompanied by reduced expression of the enzyme needed for hepatic retinyl ester synthesis (LRAT); (iii) decreased triglyceride levels; (iv) increased expression of genes associated with lipid catabolism; and (v) an increase in expression of the retinoid-catabolizing cytochrome, CYP2S1. Conclusion: Our observations suggest that the HSC population in a healthy, uninjured liver is heterogeneous. One subset of the total HSC population, which expresses early markers of HSC activation, may be “primed” and ready for rapid response to acute liver injury. PMID:21949825

  14. Modified citrus pectin stops progression of liver fibrosis by inhibiting galectin-3 and inducing apoptosis of stellate cells.

    PubMed

    Abu-Elsaad, Nashwa M; Elkashef, Wagdi Fawzi

    2016-05-01

    Modified citrus pectin (MCP) is a pH modified form of the dietary soluble citrus peel fiber known as pectin. The current study aims at testing its effect on liver fibrosis progression. Rats were injected with CCl4 (1 mL/kg, 40% v/v, i.p., twice a week for 8 weeks). Concurrently, MCP (400 or 1200 mg/kg) was administered daily in drinking water from the first week in groups I and II (prophylactic model) and in the beginning of week 5 in groups III and IV (therapeutic model). Liver function biomarkers (ATL, AST, and ALP), fibrosis markers (laminin and hyaluronic acid), and antioxidant biomarkers (reduced glutathione (GSH) and superoxide dismutase (SOD)) were measured. Stained liver sections were scored for fibrosis and necroinflammation. Additionally, expression of galectin-3 (Gal-3), α-smooth muscle actin (SMA), tissue inhibitor metalloproteinase (TIMP)-1, collagen (Col)1A1, caspase (Cas)-3, and apoptosis related factor (FAS) were assigned. Modified pectin late administration significantly (p < 0.05) decreased malondialdehyde (MDA), TIMP-1, Col1A1, α-SMA, and Gal-3 levels and increased levels of FAS, Cas-3, GSH, and SOD. It also decreased percentage of fibrosis and necroinflammation significantly (p < 0.05). It can be concluded that MCP can attenuate liver fibrosis through an antioxidant effect, inhibition of Gal-3 mediated hepatic stellate cells activation, and induction of apoptosis. PMID:27010252

  15. Ferric nitrilotriacetate (Fe-NTA)-induced reactive oxidative species protects human hepatic stellate cells from apoptosis by regulating Bcl-2 family proteins and mitochondrial membrane potential

    PubMed Central

    Liu, Mei; Li, Shu-Jie; Xin, Yong-Ning; Ji, Shu-Sheng; Xie, Rui-Jin; Xuan, Shi-Ying

    2015-01-01

    Reactive oxidative species (ROS)-induced apoptosis of human hepatic stellate (HSC) is one of the treatments for liver fibrosis. However, how ROS (reactive oxygen species) affect HSC apoptosis and liver fibrosis is still unknown. In our study, ROS in human HSC cell line LX-2 was induced by ferric nitrilotriacetate (Fe-NTA) and assessed by superoxide dismutase (SOD) activity and methane dicarboxylic aldehyde (MDA) level. We found that in LX2 cells Fe-NTA induced notable ROS, which played a protective role in HSCs cells apoptosis by inhibiting Caspase-3 activation. Fe-NTA-induced ROS increased mRNA and protein level of anti-apoptosis Bcl-2 and decreased mRNA protein level of pro-apoptosis gene Bax, As a result, maintaining mitochondrial membrane potential of HSCs. Fe-NTA-induced ROS play a protective role in human HSCs by regulating Bcl-2 family proteins and mitochondrial membrane potential. PMID:26770403

  16. Peculiarities of piRNA-mediated post-transcriptional silencing of Stellate repeats in testes of Drosophila melanogaster.

    PubMed

    Kotelnikov, Roman N; Klenov, Mikhail S; Rozovsky, Yakov M; Olenina, Ludmila V; Kibanov, Mikhail V; Gvozdev, Vladimir A

    2009-06-01

    Silencing of Stellate genes in Drosophila melanogaster testes is caused by antisense piRNAs produced as a result of transcription of homologous Suppressor of Stellate (Su(Ste)) repeats. Mechanism of piRNA-dependent Stellate repression remains poorly understood. Here, we show that deletion of Su(Ste) suppressors causes accumulation of spliced, but not nonspliced Stellate transcripts both in the nucleus and cytoplasm, revealing post-transcriptional degradation of Stellate RNA as the predominant mechanism of silencing. We found a significant amount of Su(Ste) piRNAs and piRNA-interacting protein Aubergine (Aub) in the nuclear fraction. Immunostaining of isolated nuclei revealed co-localization of a portion of cellular Aub with the nuclear lamina. We suggest that the piRNA-Aub complex is potentially able to perform Stellate silencing in the cell nucleus. Also, we revealed that the level of the Stellate protein in Su(Ste)-deficient testes is increased much more dramatically than the Stellate mRNA level. Similarly, Su(Ste) repeats deletion exerts an insignificant effect on mRNA abundance of the Ste-lacZ reporter, but causes a drastic increase of beta-gal activity. In cell culture, exogenous Su(Ste) dsRNA dramatically decreases beta-gal activity of hsp70-Ste-lacZ construct, but not its mRNA level. We suggest that piRNAs, similarly to siRNAs, degrade only unmasked transcripts, which are accessible for translation. PMID:19321499

  17. Peculiarities of piRNA-mediated post-transcriptional silencing of Stellate repeats in testes of Drosophila melanogaster

    PubMed Central

    Kotelnikov, Roman N.; Klenov, Mikhail S.; Rozovsky, Yakov M.; Olenina, Ludmila V.; Kibanov, Mikhail V.; Gvozdev, Vladimir A.

    2009-01-01

    Silencing of Stellate genes in Drosophila melanogaster testes is caused by antisense piRNAs produced as a result of transcription of homologous Suppressor of Stellate (Su(Ste)) repeats. Mechanism of piRNA-dependent Stellate repression remains poorly understood. Here, we show that deletion of Su(Ste) suppressors causes accumulation of spliced, but not nonspliced Stellate transcripts both in the nucleus and cytoplasm, revealing post-transcriptional degradation of Stellate RNA as the predominant mechanism of silencing. We found a significant amount of Su(Ste) piRNAs and piRNA-interacting protein Aubergine (Aub) in the nuclear fraction. Immunostaining of isolated nuclei revealed co-localization of a portion of cellular Aub with the nuclear lamina. We suggest that the piRNA–Aub complex is potentially able to perform Stellate silencing in the cell nucleus. Also, we revealed that the level of the Stellate protein in Su(Ste)-deficient testes is increased much more dramatically than the Stellate mRNA level. Similarly, Su(Ste) repeats deletion exerts an insignificant effect on mRNA abundance of the Ste-lacZ reporter, but causes a drastic increase of β-gal activity. In cell culture, exogenous Su(Ste) dsRNA dramatically decreases β-gal activity of hsp70-Ste-lacZ construct, but not its mRNA level. We suggest that piRNAs, similarly to siRNAs, degrade only unmasked transcripts, which are accessible for translation. PMID:19321499

  18. Differential Regulation of TGF-β/Smad Signaling in Hepatic Stellate Cells between Acute and Chronic Liver Injuries.

    PubMed

    Yoshida, Katsunori; Matsuzaki, Koichi

    2012-01-01

    Current evidence suggests that regulation of extracellular matrix (ECM) accumulation by fibrogenic transforming growth factor (TGF)-β and platelet-derived growth factor (PDGF) signals involves different mechanisms in acute and chronic liver injuries, even though hepatic stellate cells (HSC) are the principal effecter in both cases. As a result of chronic liver damage, HSC undergo progressive activation to become myofibroblasts (MFB)-like cells. Our current review will discuss the differential regulation of TGF-β signaling between HSC and MFB in vitro and in vivo. Smad proteins, which convey signals from TGF-β receptors to the nucleus, have intermediate linker regions between conserved Mad-homology (MH) 1 and MH2 domains. TGF-β type I receptor and Ras-associated kinases differentially phosphorylate Smad2 and Smad3 to create COOH-terminally (C), linker (L), or dually (L/C) phosphorylated (p) isoforms. After acute liver injury, TGF-β and PDGF synergistically promote collagen synthesis in the activated HSC via pSmad2L/C and pSmad3L/C pathways. To avoid unlimited ECM deposition, Smad7 induced by TGF-β negatively regulates the fibrogenic TGF-β signaling. In contrast, TGF-β and PDGF can transmit the fibrogenic pSmad2L/C and mitogenic pSmad3L signals in MFB throughout chronic liver injury, because Smad7 cannot be induced by the pSmad3L pathway. This lack of Smad7 induction might lead to constitutive fibrogenesis in MFB, which eventually develop into accelerated liver fibrosis. PMID:22457652

  19. Distribution of vitamin A-storing lipid droplets in hepatic stellate cells in liver lobules--a comparative study.

    PubMed

    Higashi, Nobuyo; Senoo, Haruki

    2003-03-01

    To investigate the storage mechanisms of vitamin A, we examined the liver of adult polar bears and arctic foxes, which physiologically store a large amount of vitamin A, by high-performance liquid chromatography (HPLC), transmission electron microscopy (TEM) morphometry, gold chloride staining, fluorescence microscopy for the detection of autofluorescence of vitamin A, staining with hematoxylin-eosin (H&E), Masson's trichrome, and Ishii and Ishii's silver impregnation. HPLC revealed that the polar bears and arctic foxes contained 1.8-1.9 x 10(4) nmol total retinol (retinol plus retinyl esters) per gram liver. In the arctic foxes, the composition of the retinyl esters was found to be 51.1% palmitate, 26.6% oleate, 15.4% stearate, and 7% linoleate. The hepatic stellate cells of the arctic animals were demonstrated by TEM to contain the bulk of the vitamin A-lipid droplets in their cytoplasm. The liver lobules of the arctic animals showed a zonal gradient in the storage of vitamin A. The gradient was expressed as a symmetric crescendo-decrescendo profile starting at the periportal zone, peaking at the middle zone, and sloping down toward the central zone in the liver lobule. The density (i.e., cell number per area) of hepatic stellate cells was essentially the same among the zones. The gradient and the composition of the retinyl esters in storing vitamin A were not changed by differences in the vitamin A amount in the livers. These results indicate that the heterogeneity of vitamin A-storage capacity in hepatic stellate cells of arctic foxes and polar bears is genetically determined. PMID:12552640

  20. Impact by pancreatic stellate cells on epithelial-mesenchymal transition and pancreatic cancer cell invasion: Adding a third dimension in vitro.

    PubMed

    Karnevi, Emelie; Rosendahl, Ann H; Hilmersson, Katarzyna Said; Saleem, Moin A; Andersson, Roland

    2016-08-15

    Pancreatic cancer is associated with a highly abundant stroma and low-grade inflammation. In the local tumour microenvironment, elevated glucose levels, the presence of tumour-associated stellate cells and macrophages are hypothesised to promote the tumour progression and invasion. The present study investigated the influence by the microenvironment on pancreatic cancer cell invasion in vitro. After co-culture with tumour-associated pancreatic stellate cells (TPSCs), pancreatic cancer cells displayed up to 8-fold reduction in levels of epithelial-mesenchymal transition (EMT) markers E-cadherin and ZO-1, while β-catenin and vimentin levels were increased. A 3D organotypic model showed that TPSCs stimulated pancreatic cancer cell invasion, both as single cell (PANC-1) and cohort (MIAPaCa-2) invasion. The combined presence of TPSCs and M2-like macrophages induced invasion of the non-invasive BxPC-3 cells. High glucose conditions further enhanced changes in EMT markers as well as the cancer cell invasion. In summary, co-culture with TPSCs induced molecular changes associated with EMT in pancreatic cancer cells, regardless of differentiation status, and the organotypic model demonstrated the influence of microenvironmental factors, such as glucose, stellate cells and macrophages, on pancreatic cancer cell invasion. PMID:27443257

  1. Profile of MMP and TIMP Expression in Human Pancreatic Stellate Cells: Regulation by IL-1α and TGFβ and Implications for Migration of Pancreatic Cancer Cells.

    PubMed

    Tjomsland, Vegard; Pomianowska, Eva; Aasrum, Monica; Sandnes, Dagny; Verbeke, Caroline Sophie; Gladhaug, Ivar Prydz

    2016-07-01

    Pancreatic ductal adenocarcinoma is characterized by a prominent fibroinflammatory stroma with both tumor-promoting and tumor-suppressive functions. The pancreatic stellate cell (PSC) is the major cellular stromal component and the main producer of extracellular matrix proteins, including collagens, which are degraded by metalloproteinases (MMPs). PSCs interact with cancer cells through various factors, including transforming growth factor (TGF)β and interleukin (IL)-1α. The role of TGFβ in the dual nature of tumor stroma, i.e., protumorigenic or tumor suppressive, is not clear. We aimed to investigate the roles of TGFβ and IL-1α in the regulation of MMP profiles in PSCs and the subsequent effects on cancer cell migration. Human PSCs isolated from surgically resected specimens were cultured in the presence of pancreatic cancer cell lines, as well as IL-1α or TGFβ. MMP production and activities in PSCs were quantified by gene array transcripts, mRNA measurements, fluorescence resonance energy transfer-based activity assay, and zymography. PSC-conditioned media and pancreatic cancer cells were included in a collagen matrix cell migration model. We found that production of IL-1α by pancreatic cancer cells induced alterations in MMP and tissue inhibitors of matrix metalloproteinase (TIMP) profiles and activities in PSCs, upregulated expression and activation of MMP1 and MMP3, and enhanced migration of pancreatic cancer cells in the collagen matrix model. TGFβ counteracted the effects of IL-1α on PSCs, reestablished PSC MMP and TIMP profiles and activities, and inhibited migration of cancer cells. This suggests that tumor TGFβ has a role as a suppressor of stromal promotion of tumor progression through alterations in PSC MMP profiles with subsequent inhibition of pancreatic cancer cell migration. PMID:27435927

  2. A SLC4-like anion exchanger from renal tubules of the mosquito (Aedes aegypti): evidence for a novel role of stellate cells in diuretic fluid secretion.

    PubMed

    Piermarini, Peter M; Grogan, Laura F; Lau, Kenneth; Wang, Li; Beyenbach, Klaus W

    2010-03-01

    Transepithelial fluid secretion across the renal (Malpighian) tubule epithelium of the mosquito (Aedes aegypti) is energized by the vacuolar-type (V-type) H(+)-ATPase and not the Na(+)-K(+)-ATPase. Located at the apical membrane of principal cells, the V-type H(+)-ATPase translocates protons from the cytoplasm to the tubule lumen. Secreted protons are likely to derive from metabolic H(2)CO(3), which raises questions about the handling of HCO(3)(-) by principal cells. Accordingly, we tested the hypothesis that a Cl/HCO(3) anion exchanger (AE) related to the solute-linked carrier 4 (SLC4) superfamily mediates the extrusion of HCO(3)(-) across the basal membrane of principal cells. We began by cloning from Aedes Malpighian tubules a full-length cDNA encoding an SLC4-like AE, termed AeAE. When expressed heterologously in Xenopus oocytes, AeAE is both N- and O-glycosylated and mediates Na(+)-independent intracellular pH changes that are sensitive to extracellular Cl(-) concentration and to DIDS. In Aedes Malpighian tubules, AeAE is expressed as two distinct forms: one is O-glycosylated, and the other is N-glycosylated. Significantly, AeAE immunoreactivity localizes to the basal regions of stellate cells but not principal cells. Concentrations of DIDS that inhibit AeAE activity in Xenopus oocytes have no effects on the unstimulated rates of fluid secretion mediated by Malpighian tubules as measured by the Ramsay assay. However, in Malpighian tubules stimulated with kinin or calcitonin-like diuretic peptides, DIDS reduces the diuretic rates of fluid secretion to basal levels. In conclusion, Aedes Malpighian tubules express AeAE in the basal region of stellate cells, where this transporter may participate in producing diuretic rates of transepithelial fluid secretion. PMID:20042685

  3. An HNF1α-regulated feedback circuit modulates hepatic fibrogenesis via the crosstalk between hepatocytes and hepatic stellate cells

    PubMed Central

    Qian, Hui; Deng, Xing; Huang, Zhao-Wei; Wei, Ji; Ding, Chen-Hong; Feng, Ren-Xin; Zeng, Xin; Chen, Yue-Xiang; Ding, Jin; Qiu, Lei; Hu, Zhen-Lin; Zhang, Xin; Wang, Hong-Yang; Zhang, Jun-Ping; Xie, Wei-Fen

    2015-01-01

    Hepatocytes are critical for the maintenance of liver homeostasis, but its involvement in hepatic fibrogenesis remains elusive. Hepatocyte nuclear factor 1α (HNF1α) is a liver-enriched transcription factor that plays a key role in hepatocyte function. Our previous study revealed a significant inhibitory effect of HNF1α on hepatocellular carcinoma. In this study, we report that the expression of HNF1α is significantly repressed in both human and rat fibrotic liver. Knockdown of HNF1α in the liver significantly aggravates hepatic fibrogenesis in either dimethylnitrosamine (DMN) or bile duct ligation (BDL) model in rats. In contrast, forced expression of HNF1α markedly alleviates hepatic fibrosis. HNF1α regulates the transcriptional expression of SH2 domain-containing phosphatase-1 (SHP-1) via directly binding to SHP-1 promoter in hepatocytes. Inhibition of SHP-1 expression abrogates the anti-fibrotic effect of HNF1α in DMN-treated rats. Moreover, HNF1α repression in primary hepatocytes leads to the activation of NF-κB and JAK/STAT pathways and initiates an inflammatory feedback circuit consisting of HNF1α, SHP-1, STAT3, p65, miR-21 and miR-146a, which sustains the deregulation of HNF1α in hepatocytes. More interestingly, a coordinated crosstalk between hepatocytes and hepatic stellate cells (HSCs) participates in this positive feedback circuit and facilitates the progression of hepatocellular damage. Our findings demonstrate that impaired hepatocytes play an active role in hepatic fibrogenesis. Early intervention of HNF1α-regulated inflammatory feedback loop in hepatocytes may have beneficial effects in the treatment of chronic liver diseases. PMID:26169608

  4. TGF-β1-elevated TRPM7 channel regulates collagen expression in hepatic stellate cells via TGF-β1/Smad pathway

    SciTech Connect

    Fang, Ling; Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Ma, Taotao; Liu, Xuejiao; Zhu, Qian; Zhan, Shuxiang; Li, Jun

    2014-10-15

    Transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts plays a critical role in the development of liver fibrosis, since myofibroblasts are the key cells responsible for excessive deposition of ECM proteins. Transient receptor potential melastatin 7 (TRPM7), a non-selective cation channel with protein serine/threonine kinase activity, has been demonstrated to function in the proliferation of activated HSCs. Here, we investigated the functional role of TRPM7 in collagen deposition in activated HSC-T6 cells (a rat hepatic stellate cell line). TRPM7 mRNA and protein were measured by Real-time PCR and Western blot in TGF-β1-activated HSC-T6 cells in vitro. Results demonstrated that TRPM7 protein was dramatically increased in fibrotic human livers. Stimulation of HSC-T6 cells with TGF-β1 increased TRPM7 mRNA and protein level in a time-dependent manner. Nevertheless, TGF-β1-elicited upregulation of TRPM7 in HSC-T6 cells was abrogated by SB431542 (TGF-β1 receptor blocker) or SIS3 (inhibitor of Smad3 phosphorylation). Additionally, blockade of TRPM7 channels with non-specific TRPM7 blocker 2-APB or synthetic siRNA targeting TRPM7 attenuated TGF-β1-induced expression of myofibroblast markers, as measured by the induction of α-SMA and Col1α1. Silencing TRPM7 also increased the ratio of MMPs/TIMPs by increasing MMP-13 expression and decreasing TIMP-1 and TIMP-2 levels. Strikingly, phosphorylation of p-Smad2 and p-Smad3, associated with collagen production, was decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TGF-β1 elevates TRPM7 expression in HSCs via Smad3-dependant mechanisms, which in turn contributes Smad protein phosphorylation, and subsequently increases fibrous collagen expression. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis. - Highlights: • Upregulation of TRPM7 protein in human fibrotic livers • Upregulation of TRPM7 by TGF-β1 elicited Smad signaling in HSC-T6 cells

  5. Hepatic stellate cell promoted hepatoma cell invasion via the HGF/c-Met signaling pathway regulated by p53.

    PubMed

    Liu, Wen-Ting; Jing, Ying-Ying; Yu, Guo-Feng; Chen, Hong; Han, Zhi-Peng; Yu, Dan-Dan; Fan, Qing-Min; Ye, Fei; Li, Rong; Gao, Lu; Zhao, Qiu-Dong; Wu, Meng-Chao; Wei, Li-Xin

    2016-04-01

    The biological behaviors of hepatocellular carcinoma (HCC) are complex mainly due to heterogeneity of progressive genetic and epigenetic mutations as well as tumor environment. Hepatocyte growth factor (HGF)/c-Met signaling pathway is regarded to be a prototypical example for stromal-epithelial interactions during developmental morphogenesis, wound healing, organ regeneration and cancer progression. And p53 plays as an important regulator of Met-dependent cell motility and invasion. Present study showed that 2 HCC cell lines, Hep3B and HepG2, displayed different invasive capacity when treated with HGF which was secreted by hepatic stellate cells (HSCs). We found that HGF promoted Hep3B cells invasion and migration as well as epithelial-mesenchymal transition (EMT) occurrence because Hep3B was p53 deficient, which leaded to the c-Met over-expression. Then we found that HGF/c-Met promoted Hep3B cells invasion and migration by upregulating Snail expression. In conclusion, HGF/c-Met signaling is enhanced by loss of p53 expression, resulting in increased ability of invasion and migration by upregulating the expression of Snail. PMID:27077227

  6. Exosomes mediate intercellular transfer of pro-fibrogenic connective tissue growth factor (CCN2) between hepatic stellate cells, the principal fibrotic cells in the liver

    PubMed Central

    Charrier, Alyssa; Chen, Ruju; Chen, Li; Kemper, Sherri; Hattori, Takako; Takigawa, Masaharu; Brigstock, David R.

    2014-01-01

    Background Fibrogenic pathways in the liver are principally regulated by hepatic stellate cells (HSC) which produce and respond to fibrotic mediators such as connective tissue growth factor (CCN2). The aim of this study was to determine whether CCN2 is shuttled between HSC in membraneous nanovesicles, or “exosomes”. Methods Exosomes were incubated with HSC after isolation from conditioned medium of control or CCN2-GFP-transfected primary mouse HSC or human LX-2 HSC. Some exosomes were flourescently stained with PKH26. HSC co-culture experiments were performed in the presence of GW4869 exosome inhibitor. CCN2 or CCN2-GFP were evaluated by qRT-PCR or Western blot. Results HSC-derived exosomes contained CCN2 or CCN2 mRNA, each of which increased in concentration during HSC activation or after transfection of HSC with CCN2-GFP. Exosomes, stained with either PKH26 or purified from CCN2-GFP-transfected cells, were taken up by activated or quiescent HSC resulting in CCN2-GFP delivery, as shown by their direct addition to recipient cells or by the GW4869-dependency of donor HSC. Conclusions CCN2 is packaged into secreted nano-sized exosomes which mediate its intercellular transfer between HSC. Exosomal CCN2 may amplify or fine-tune fibrogenic signaling and may, in conjunction with other exosome constituents, have utility as a noninvasive biomarker to assess hepatic fibrosis. PMID:24882759

  7. Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner.

    PubMed

    Mace, Thomas A; Ameen, Zeenath; Collins, Amy; Wojcik, Sylwia; Mair, Markus; Young, Gregory S; Fuchs, James R; Eubank, Tim D; Frankel, Wendy L; Bekaii-Saab, Tanios; Bloomston, Mark; Lesinski, Gregory B

    2013-05-15

    Pancreatic stellate cells (PSC) are a subset of pancreatic cancer-associated fibroblasts. These cells provide prosurvival signals to tumors; however, little is known regarding their interactions with immune cells within the tumor microenvironment. We hypothesized that factors produced by human PSC could enhance myeloid-derived suppressor cell (MDSC) differentiation and function, which promotes an immunosuppressive microenvironment. Primary PSC cell lines (n = 7) were generated from human specimens and phenotypically confirmed via expression of vimentin, α-smooth muscle actin (α-SMA), and glial fibrillary acidic protein (GFAP). Luminex analysis indicated that PSC but not human fetal primary pancreatic fibroblast cells (HPF; negative controls) produced MDSC-promoting cytokines [interleukin (IL-6), VEGF, macrophage colony-stimulating factor (M-CSF) ] and chemokines (SDF-1, MCP-1). Culture of peripheral blood mononuclear cells [peripheral blood mononuclear cell (PBMC), n = 3 donors] with PSC supernatants or IL-6/granulocyte macrophage colony-stimulating factor (GM-CSF; positive control) for 7 days promoted PBMC differentiation into an MDSC (CD11b+CD33+) phenotype and a subpopulation of polymorphonuclear CD11b+CD33+CD15+ cells. The resulting CD11b+CD33+ cells functionally suppressed autologous T-lymphocyte proliferation. In contrast, supernatants from HPF did not induce an MDSC phenotype in PBMCs. Culture of normal PBMCs with PSC supernatants led to STAT3 but not STAT1 or STAT5 phosphorylation. IL-6 was an important mediator as its neutralization inhibited PSC supernatant-mediated STAT3 phosphorylation and MDSC differentiation. Finally, the FLLL32 STAT3 inhibitor abrogated PSC supernatant-mediated MDSC differentiation, PSC viability, and reduced autocrine IL-6 production indicating these processes are STAT3 dependent. These results identify a novel role for PSC in driving immune escape in pancreatic cancer and extend the evidence that STAT3 acts as a driver of stromal

  8. Pancreatic Cancer-Associated Stellate Cells Promote Differentiation of Myeloid-Derived Suppressor Cells in a STAT3-Dependent Manner

    PubMed Central

    Mace, Thomas A.; Ameen, Zeenath; Collins, Amy; Wojcik, Sylwia; Mair, Markus; Young, Gregory S.; Fuchs, James R.; Eubank, Tim D.; Frankel, Wendy L.; Bekaii-Saab, Tanios; Bloomston, Mark; Lesinski, Gregory B.

    2013-01-01

    Pancreatic stellate cells (PSC) are a subset of pancreatic cancer-associated fibroblasts. These cells provide prosurvival signals to tumors; however, little is known regarding their interactions with immune cells within the tumor microenvironment. We hypothesized that factors produced by human PSC could enhance myeloid-derived suppressor cell (MDSC) differentiation and function, which promotes an immunosuppressive microenvironment. Primary PSC cell lines (n = 7) were generated from human specimens and phenotypically confirmed via expression of vimentin, α-smooth muscle actin (α-SMA), and glial fibrillary acidic protein (GFAP). Luminex analysis indicated that PSC but not human fetal primary pancreatic fibroblast cells (HPF; negative controls) produced MDSC-promoting cytokines [interleukin (IL-6), VEGF, macrophage colony-stimulating factor (M-CSF)] and chemokines (SDF-1, MCP-1). Culture of peripheral blood mononuclear cells [peripheral blood mononuclear cell (PBMC), n = 3 donors] with PSC supernatants or IL-6/granulocyte macrophage colony-stimulating factor (GM-CSF; positive control) for 7 days promoted PBMC differentiation into an MDSC (CD11b+CD33+) phenotype and a subpopulation of polymorphonuclear CD11b+CD33+CD15+ cells. The resulting CD11b+CD33+ cells functionally suppressed autologous T-lymphocyte proliferation. In contrast, supernatants from HPF did not induce an MDSC phenotype in PBMCs. Culture of normal PBMCs with PSC supernatants led to STAT3 but not STAT1 or STAT5 phosphorylation. IL-6 was an important mediator as its neutralization inhibited PSC supernatant-mediated STAT3 phosphorylation and MDSC differentiation. Finally, the FLLL32 STAT3 inhibitor abrogated PSC supernatant-mediated MDSC differentiation, PSC viability, and reduced autocrine IL-6 production indicating these processes are STAT3 dependent. These results identify a novel role for PSC in driving immune escape in pancreatic cancer and extend the evidence that STAT3 acts as a driver of stromal

  9. Interferon-β Mediates Signaling Pathways Uniquely Regulated in Hepatic Stellate Cells and Attenuates the Progression of Hepatic Fibrosis in a Dietary Mouse Model

    PubMed Central

    Nishimura, Kazumi; Akiyama, Hideo; Funamoto, Saeko; Izawa, Akiko; Sai, Takafumi; Kunita, Kana; Kainoh, Mie; Suzuki, Tomohiko; Kawada, Norifumi

    2015-01-01

    The results of clinical and experimental studies suggest that type I interferons (IFNs) may have direct antifibrotic activity in addition to their antiviral properties. However, the mechanisms are still unclear; in particular, little is known about the antifibrotic activity of IFN-β and how its activity is distinct from that of IFN-α. Using DNA microarrays, we demonstrated that gene expression in TWNT-4 cells, an activated human hepatic stellate cell line, was remarkably altered by IFN-β more than by IFN-α. Integrated pathway enrichment analyses revealed that a variety of IFN-β–mediated signaling pathways are uniquely regulated in TWNT-4 cells, including those related to cell cycle and Toll-like receptor 4 (TLR4) signaling. To investigate the antifibrotic activity of IFN-β and the involvement of TLR4 signaling in vivo, we used mice fed a choline-deficient l-amino acid-defined diet as a model of nonalcoholic steatohepatitis-related hepatic fibrosis. In this model, the administration of IFN-β significantly attenuated augmentation of the area of liver fibrosis, with accompanying transcriptional downregulation of the TLR4 adaptor molecule MyD88. Our results provide important clues for understanding the mechanisms of the preferential antifibrotic activity of IFN-β and suggest that IFN-β itself, as well as being a modulator of its unique signaling pathway, may be a potential treatment for patients with hepatic fibrosis in a pathogenesis-independent manner. PMID:25715168

  10. Selective Expansion of Allogeneic Regulatory T Cells by Hepatic Stellate Cells: Role of Endotoxin and Implications for Allograft Tolerance

    PubMed Central

    Dangi, Anil; Sumpter, Tina L.; Kimura, Shoko; Stolz, Donna B.; Murase, Noriko; Raimondi, Giorgio; Vodovotz, Yoram; Huang, Chao; Thomson, Angus W.; Gandhi, Chandrashekhar R.

    2012-01-01

    Hepatic stellate cells (HSCs) may play an important role in hepatic immune regulation by producing numerous cytokines/chemokines, and expressing Ag-presenting and T cell co-regulatory molecules. Due to disruption of the endothelial barrier during cold-ischemic storage and reperfusion of liver grafts, HSCs can interact directly with cells of the immune system. Endotoxin (LPS), levels of which increase in liver diseases and transplantation, stimulates the synthesis of many mediators by HSCs. We hypothesized that LPS-stimulated HSCs might promote hepatic tolerogenicity by influencing naturally-occurring immunosuppressive CD4+CD25+FoxP3+ regulatory T cells (Tregs). Following their portal venous infusion, allogeneic CD4+ T cells, including Tregs, were found closely associated with HSCs, and this association increased in LPS-treated livers. In vitro, both unstimulated and LPS-stimulated HSCs up-regulated Fas (CD95) expression on conventional CD4+ T cells and induced their apoptosis in a Fas/FasL-dependent manner. By contrast, HSCs induced Treg proliferation, which required cell-cell contact, and was MHC class II-dependent. This effect was augmented when HSCs were pretreated with LPS. LPS increased the expression of MHC class II, CD80 and CD86, and stimulated the production of IL-1α, IL-1β, IL-6, IL-10 and TNFα by HSCs. Interestingly, production of IL-1α, IL-1β, IL-6 and TNFα was strongly inhibited, but that of IL-10 enhanced, in LPS-pretreated HSC/Treg co-cultures. Adoptively transferred allogeneic HSCs migrated to the secondary lymphoid tissues and induced Treg expansion in lymph nodes. These data implicate endotoxins-stimulated HSCs as important immune regulators in liver transplantation by inducing selective expansion of tolerance-promoting Tregs, and reducing inflammation and allo-immunity. PMID:22427640

  11. Enhanced Effectivity of an ALK5-Inhibitor after Cell-Specific Delivery to Hepatic Stellate Cells in Mice with Liver Injury

    PubMed Central

    van Beuge, Marike Marjolijn; Prakash, Jai; Lacombe, Marie; Post, Eduard; Reker-Smit, Catharina; Beljaars, Leonie; Poelstra, Klaas

    2013-01-01

    Transforming growth factor-β (TGF-β) is a major pro-fibrotic cytokine, causing the overproduction of extracellular matrix molecules in many fibrotic diseases. Inhibition of its type-I receptor (ALK5) has been shown to effectively inhibit fibrosis in animal models. However, apart from its pro-fibrotic effects, TGF-β also has a regulatory role in the immune system and influences tumorigenesis, which limits the use of inhibitors. We therefore explored the cell-specific delivery of an ALK5-inhibitor to hepatic stellate cells, a key cell in the development of liver fibrosis. We synthesized a conjugate of the ALK5-inhibitor LY-364947 coupled to mannose-6-phosphate human serum albumin (M6PHSA), which binds to the insulin-like growth factor II receptor on activated HSC. The effectivity of the conjugate was evaluated in primary HSC and in an acute liver injury model in mice. In vitro, the free drug and the conjugate significantly inhibited fibrotic markers in HSC. In hepatocytes, TGF-β-dependent signaling was inhibited by free drug, but not by the conjugate, thus showing its cell-specificity. In vivo, the conjugate localized in desmin-positive cells in the liver and not in hepatocytes or immune cells. In the acute liver injury model in mice, the conjugate reduced fibrogenic markers and collagen deposition more effectively than free drug. We conclude that we can specifically deliver an ALK5-inhibitor to HSC using the M6PHSA carrier and that this targeted drug reduces fibrogenic parameters in vivo, without affecting other cell-types. PMID:23441194

  12. In vitro interactions between rat bone marrow-derived endothelial progenitor cells and hepatic stellate cells: interaction between EPCs and HSCs.

    PubMed

    Liu, Feng; Liu, Zhi-da; Wu, Nan; Wang, Jiang-Hua; Zhang, Heng-Hui; Fei, Ran; Cong, Xu; Chen, Hong-song; Wei, Lai

    2013-08-01

    Transplantation of bone marrow (BM)-derived endothelial progenitor cells (EPCs) has been reported to improve liver fibrosis, but there is no direct evidence for the mechanism of improvement. We investigated the mechanism in vitro by coculturing BM-derived EPCs with activated hepatic stellate cells (HSCs) to mimic the hepatic environment. EPCs and HSCs were cultured alone and indirectly cocultured at a 1:1 ratio in a Transwell system. The characteristics of HSCs and EPCs were examined at different time points. An invasion assay showed the time-dependent effect on degradation of the extracellular matrix (ECM) layer in EPCs cultured alone. Real-time PCR and enzyme-linked immunosorbent assay analysis revealed that EPCs served as a source of matrix metalloproteinase-9 (MMP-9), and MMP-9 expression levels significantly increased during the 2 d of coculture. CFSE labeling showed that EPCs inhibited proliferation of HSCs. Annexin-V/PI staining, erminal deoxynucleotidyl transferase X-dUTP nick end labeling analysis, and (cleaved) caspase-3 activity revealed that EPCs promoted HSC apoptosis. However, the proliferation and apoptosis of EPCs were unaffected by cocultured HSCs. Coculturing increased the expression of inducible nitric oxide synthase, vascular endothelial growth factor, and hepatocyte growth factor (HGF) in EPCs, promoted differentiation of EPCs, and reduced the expression of types I and III collagens and transforming growth factor beta 1. Knockdown of HGF expression attenuated EPC-induced activation of HSC apoptosis and profibrotic ability. These findings demonstrated that BM-derived EPCs could degrade ECM, promoting activated HSC apoptosis, suppressing proliferation and profibrotic ability of activated HSCs. HGF secretion by EPCs plays a key role in inducing activated HSC apoptosis and HSC profibrotic ability. PMID:23722413

  13. Stereological assessment of sexual dimorphism in the rat liver reveals differences in hepatocytes and Kupffer cells but not hepatic stellate cells.

    PubMed

    Marcos, Ricardo; Lopes, Célia; Malhão, Fernanda; Correia-Gomes, Carla; Fonseca, Sónia; Lima, Margarida; Gebhardt, Rolf; Rocha, Eduardo

    2016-06-01

    There is long-standing evidence that male and female rat livers differ in enzyme activity. More recently, differences in gene expression profiling have also been found to exist; however, it is still unclear whether there is morphological expression of male/female differences in the normal liver. Such differences could help to explain features seen at the pathological level, such as the greater regenerative potential generally attributed to the female liver. In this paper, hepatocytes (HEP), Kupffer cells (KC) and hepatic stellate cells (HSC) of male and female rats were examined to investigate hypothesised differences in number, volume and spatial co-localisation of these cell types. Immunohistochemistry and design-based stereology were used to estimate total numbers, numbers per gram and mean cell volumes. The position of HSC within lobules (periportal vs. centrilobular) and their spatial proximity to KC was also assessed. In addition, flow cytometry was used to investigate the liver ploidy. In the case of HEP and KC, differences in the measured cell parameters were observed between male and female specimens; however, no such differences were detected for HSC. Female samples contained a higher number of HEP per gram, with more binucleate cells. The HEP nuclei were smaller in females, which was coincident with more abundant diploid particles in these animals. The female liver also had a greater number of KC per gram, with a lower percentage of KC in the vicinity of HSC compared with males. In this study, we document hitherto unknown morphological sexual dimorphism in the rat liver, namely in HEP and KC. These differences may account for the higher regenerative potential of the female liver and lend weight to the argument for considering the rat liver as a sexually dimorphic organ. PMID:26892301

  14. Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte-hepatic stellate cell interactions and flow effects.

    PubMed

    Lee, Seung-A; No, Da Yoon; Kang, Edward; Ju, Jongil; Kim, Dong-Sik; Lee, Sang-Hoon

    2013-09-21

    We have developed a three-dimensional (3D) liver-on-a-chip to investigate the interaction of hepatocytes and hepatic stellate cells (HSCs) in which primary 3D hepatocyte spheroids and HSCs are co-cultured without direct cell-cell contact. Here, we show that the 3D liver chip offers substantial advantages for the formation and harvesting of spheroids. The most important feature of this liver chip is that it enables continuous flow of medium to the cells through osmotic pumping, and thus requires only minimal handling and no external power source. We also demonstrate that flow assists the formation and long-term maintenance of spheroids. Additionally, we quantitatively and qualitatively investigated the paracrine effects of HSCs, demonstrating that HSCs assist in the maintenance of hepatocyte spheroids and play an important role in the formation of tight cell-cell contacts, thereby improving liver-specific function. Spheroids derived from co-cultures exhibited improved albumin and urea secretion rates compared to mono-cultured spheroids after 9 days. Immunostaining for cytochrome P450 revealed that the enzymatic activity of spheroids co-cultured for 8 days was greater than that of mono-cultured spheroids. These results indicate that this system has the potential for further development as a unique model for studying cellular interactions or as a tool that can be incorporated into other models aimed at creating hepatic structure and prolonging hepatocyte function in culture. PMID:23657720

  15. Dihydroartemisinin prevents liver fibrosis in bile duct ligated rats by inducing hepatic stellate cell apoptosis through modulating the PI3K/Akt pathway.

    PubMed

    Chen, Qin; Chen, Lianyun; Wu, Xiafei; Zhang, Feng; Jin, Huanhuan; Lu, Chunfeng; Shao, Jiangjuan; Kong, Desong; Wu, Li; Zheng, Shizhong

    2016-03-01

    As a frequent event following chronic insult, liver fibrosis triggers wound healing reactions, with extracellular matrix components accumulated in the liver. During liver fibrogenesis, activation of hepatic stellate cells (HSCs) is the pivotal event. Fibrosis regression can feasibly be treated through pharmacological induction of HSC apoptosis. Herein we showed that dihydroartemisinin (DHA) improved liver histological architecture, decreased hepatic enzyme levels, and inhibited HSCs activation in the fibrotic rat liver. DHA also induced apoptosis of HSCs in such liver, as demonstrated by reduced distribution of α-SMA-positive cells and the presence of high number of cleaved-caspase-3-positive cells in vivo, as well as by down-regulation of Bcl-2 and up-regulation of Bax. In addition, in vitro experiments showed that DHA significantly inhibited HSC proliferation and led to dramatic morphological alterations in HSCs. we found that DHA disrupted mitochondrial functions and led to activation of caspase cascades in HSCs. Mechanistic investigations revealed that DHA induced HSC apoptosis through disrupting the phosphoinositide 3-kinase (PI3K)/Akt pathway and that PI3K specific inhibitor LY294002 mimicked the pro-apoptotic effect of DHA. DHA is a promising candidate for the prevention and treatment of liver fibrosis. PMID:26865509

  16. The distribution of stellate cell descending axons in the rat cerebellum: a Golgi and a combined Golgi-electron microscopical study.

    PubMed Central

    Paula-Barbosa, M M; Tavares, M A; Ruela, C; Barroca, H

    1983-01-01

    Axonal descending branches of stellate cells in the molecular layer of the cerebellar cortex of the rat were studied by means of Golgi and combined Golgi-ultrastructural methods. Special attention was paid to those branches from more superficially located cell bodies. With the Golgi method, it was observed that the number of axons from stellate cells forming pericellular baskets and 'pinceaux' increases as their cell bodies come to lie deeper in the layer. With the combined Golgi-ultrastructural method, it was verified that the synaptic contacts established by these axons are identical to those of axons from basket cells, either contacting Purkinje cell bodies or lying around the axon initial segments, where they establish septate-like junctions. This overlapping of axonal territories between stellate and basket cells is in accordance with the hypothesis that these interneurons, although situated at different levels of the cerebellar molecular layer, may be genetically identical cells. Their diversity of form would depend on the cellular microenvironment present at the time of differentiation. Images Figs. 1-4 Figs. 5-7 Fig. 8 Fig. 9 Fig. 10 PMID:6668252

  17. Role of TGF-β signaling in differentiation of mesothelial cells to vitamin A-poor hepatic stellate cells in liver fibrosis.

    PubMed

    Li, Yuchang; Lua, Ingrid; French, Samuel W; Asahina, Kinji

    2016-02-15

    Mesothelial cells (MCs) form a single layer of the mesothelium and cover the liver surface. A previous study demonstrated that, upon liver injury, MCs migrate inward from the liver surface and give rise to hepatic stellate cells (HSCs) in biliary fibrosis induced by bile duct ligation (BDL) or myofibroblasts in CCl4-induced fibrosis. The present study analyzed the role of transforming growth factor-β (TGF-β) signaling in mesothelial-mesenchymal transition (MMT) and the fate of MCs during liver fibrosis and its regression. Deletion of TGF-β type II receptor (Tgfbr2) gene in cultured MCs suppressed TGF-β-mediated myofibroblastic conversion. Conditional deletion of Tgfbr2 gene in MCs reduced the differentiation of MCs to HSCs and myofibroblasts in the BDL and CCl4 models, respectively, indicating that the direct TGF-β signaling in MCs is responsible to MMT. After BDL and CCl4 treatment, MC-derived HSCs and myofibroblasts were distributed near the liver surface and the thickness of collagen was increased in Glisson's capsule beneath the liver surface. Fluorescence-activated cell sorting analysis revealed that MC-derived HSCs and myofibroblasts store little vitamin A lipids and have fibrogenic phenotype in the fibrotic livers. MCs contributed to 1.4 and 2.0% of activated HSCs in the BDL and CCl4 models, respectively. During regression of CCl4-induced fibrosis, 20% of MC-derived myofibroblasts survived in the liver and deactivated to vitamin A-poor HSCs. Our data indicate that MCs participate in capsular fibrosis by supplying vitamin A-poor HSCs during a process of liver fibrosis and regression. PMID:26702136

  18. Disruption of intermolecular disulfide bonds in PDGF-BB dimers by N-acetyl-L-cysteine does not prevent PDGF signaling in cultured hepatic stellate cells

    SciTech Connect

    Borkham-Kamphorst, Erawan; Meurer, Steffen K.; Gressner, Axel M.; Weiskirchen, Ralf . E-mail: rweiskirchen@ukaachen.de

    2005-12-30

    Oxidative stress is important in the pathogenesis of liver fibrosis through its induction of hepatic stellate cell (HSC) proliferation and enhancement of collagen synthesis. Reactive oxygen species have been found to be essential second messengers in the signaling of both major fibrotic growth factors, platelet-derived growth factor (PDGF) and transforming growth factor-{beta} (TGF-{beta}), in cultured HSC and liver fibrosis. The non-toxic aminothiol N-acetyl-L-cysteine (NAC) inhibits cellular activation and attenuates experimental fibrosis in liver. Prior reports show that NAC is capable of reducing the effects of TGF-{beta} in biological systems, in cultured endothelial cells, and HSC through its direct reducing activity upon TGF-{beta} molecules. We here analyzed the effects of NAC on PDGF integrity, receptor binding, and downstream signaling in culture-activated HSC. We found that NAC dose-dependently induces disintegration of PDGF in vitro. However, even high doses (>20 mM) were not sufficient to prevent the phosphorylation of the PDGF receptor type {beta}, extracellular signal-regulated kinase, or protein kinase B (PKB/Akt). Therefore, we conclude that the PDGF monomer is still active. The described antifibrotic effects are therefore mainly attributable to the structural impairment of TGF-{beta} signaling components reported previously.

  19. Orphan nuclear receptor NR4A2 inhibits hepatic stellate cell proliferation through MAPK pathway in liver fibrosis

    PubMed Central

    Chen, Pengguo; Li, Jie; Huo, Yan; Lu, Jin; Wan, Lili; Li, Bin; Gan, Run

    2015-01-01

    Hepatic stellate cells (HSCs) play a crucial role in liver fibrosis, which is a pathological process characterized by extracellular matrix accumulation. NR4A2 is a nuclear receptor belonging to the NR4A subfamily and vital in regulating cell growth, metabolism, inflammation and other biological functions. However, its role in HSCs is unclear. We analyzed NR4A2 expression in fibrotic liver and stimulated HSCs compared with control group and studied the influence on cell proliferation, cell cycle, cell apoptosis and MAPK pathway after NR4A2 knockdown. NR4A2 expression was examined by real-time polymerase chain reaction, Western blotting, immunohistochemistry and immunofluorescence analyses. NR4A2 expression was significantly lower in fibrotic liver tissues and PDGF BB or TGF-β stimulated HSCs compared with control group. After NR4A2 knockdown α-smooth muscle actin and Col1 expression increased. In addition, NR4A2 silencing led to the promotion of cell proliferation, increase of cell percentage in S phase and reduced phosphorylation of ERK1/2, P38 and JNK in HSCs. These results indicate that NR4A2 can inhibit HSC proliferation through MAPK pathway and decrease extracellular matrix in liver fibrogenesis. NR4A2 may be a promising therapeutic target for liver fibrosis. PMID:26713258

  20. Morin ameliorates chemically induced liver fibrosis in vivo and inhibits stellate cell proliferation in vitro by suppressing Wnt/β-catenin signaling

    SciTech Connect

    MadanKumar, Perumal; NaveenKumar, Perumal; Manikandan, Samidurai; Devaraj, Halagowder; NiranjaliDevaraj, Sivasithamparam

    2014-06-01

    The anti-fibrotic effect of morin was examined in LX-2 cells (culture-activated human hepatic stellate cells) and in diethylnitrosamine induced rat model of liver fibrosis. The in vitro study was designed to determine whether morin affects the survival of cultured LX-2 cells, while the in vivo study was designed to evaluate the antioxidant and anti-fibrotic efficacy of morin on diethylnitrosamine induced liver fibrosis in male albino Wistar rat. The activities of liver function enzymes in serum, liver lipid peroxide levels, activities of serum antioxidant enzymes and liver architecture were monitored to cast light on the antioxidant and hepatoprotective nature of morin. To establish the anti-fibrotic effects of morin, the levels of key Wnt signaling molecules which are strongly associated with the signal transduction pathway of HSC activation were measured. Overall, from the in vitro results, it was observed that morin at 50 μM concentration inhibited the proliferation of cultured LX-2 cells, inhibited Wnt signaling and induced G1 cell cycle arrest. The in vivo results further confirmed that morin by downregulating the expressions of GSK-3β, β-catenin and cyclin D1 ameliorated DEN-induced liver fibrosis. Hence morin could be employed as a promising chemopreventive natural supplement for liver fibrosis. - Highlights: • In vivo and in vitro results revealed the active participation of Wnt signaling. • Morin at 50 μM inhibited LX-2 cell proliferation by suppressing Wnt signaling. • Morin exhibited hepatoprotective effects against DEN induced liver fibrosis. • Morin inhibited HSC activation in vivo by downregulating Wnt/β-catenin signaling.

  1. Regulator of G-Protein Signaling-5 Is a Marker of Hepatic Stellate Cells and Expression Mediates Response to Liver Injury

    PubMed Central

    Bahrami, Arya J.; Gunaje, Jagadambika J.; Hayes, Brian J.; Riehle, Kimberly J.; Kenerson, Heidi L.; Yeung, Raymond S.; Stempien-Otero, April S.; Campbell, Jean S.; Mahoney, William M.

    2014-01-01

    Liver fibrosis is mediated by hepatic stellate cells (HSCs), which respond to a variety of cytokine and growth factors to moderate the response to injury and create extracellular matrix at the site of injury. G-protein coupled receptor (GPCR)-mediated signaling, via endothelin-1 (ET-1) and angiotensin II (AngII), increases HSC contraction, migration and fibrogenesis. Regulator of G-protein signaling-5 (RGS5), an inhibitor of vasoactive GPCR agonists, functions to control GPCR-mediated contraction and hypertrophy in pericytes and smooth muscle cells (SMCs). Therefore we hypothesized that RGS5 controls GPCR signaling in activated HSCs in the context of liver injury. In this study, we localize RGS5 to the HSCs and demonstrate that Rgs5 expression is regulated during carbon tetrachloride (CCl4)-induced acute and chronic liver injury in Rgs5LacZ/LacZ reporter mice. Furthermore, CCl4 treated RGS5-null mice develop increased hepatocyte damage and fibrosis in response to CCl4 and have increased expression of markers of HSC activation. Knockdown of Rgs5 enhances ET-1-mediated signaling in HSCs in vitro. Taken together, we demonstrate that RGS5 is a critical regulator of GPCR signaling in HSCs and regulates HSC activation and fibrogenesis in liver injury. PMID:25290689

  2. Silencing tissue inhibitors of metalloproteinases (TIMPs) with short interfering RNA reveals a role for TIMP-1 in hepatic stellate cell proliferation

    SciTech Connect

    Fowell, Andrew J.; Collins, Jane E.; Duncombe, Dale R.; Pickering, Judith A.; Rosenberg, William M.C.; Benyon, R. Christopher

    2011-04-08

    Research highlights: {yields} Myofibroblastic, activated hepatic stellate cells (HSC) play a pivotal role in the development of liver fibrosis. {yields} We used short interfering RNA (siRNA) to investigate the effects of autocrine TIMP-1 and -2 on HSC proliferation. {yields} Specific silencing of TIMP-1, but not TIMP-2, significantly reduces HSC proliferation and is associated with reduced Akt phosphorylation. {yields} TIMP-1 is localised in part to the HSC nucleus. {yields} TIMP-1 might promote liver fibrosis by means other than its previously described anti-apoptotic effect on HSC. -- Abstract: Myofibroblastic, activated hepatic stellate cells (HSC) play a pivotal role in the development of liver fibrosis through the secretion of fibrillar collagens and the tissue inhibitors of metalloproteinase (TIMP)-1 and -2. TIMPs are believed to promote hepatic fibrosis by inhibiting both matrix degradation and apoptosis of HSC. In other cell types, there is evidence that TIMP-1 has effects on proliferation, however the role of TIMPs in the regulation of HSC proliferation remains unexplored. Therefore, we have used short interfering RNA (siRNA) to investigate the effects of autocrine TIMP-1 and -2 on HSC proliferation. TIMP-1 and -2 siRNA were highly effective, producing peak target protein knockdown compared to negative control siRNA of 92% and 63%, respectively. Specific silencing of TIMP-1, using siRNA, significantly reduced HSC proliferation. TIMP-1 was localised in part to the HSC nucleus and TIMP-1 siRNA resulted in loss of both cytoplasmic and nuclear TIMP-1. Attenuated proliferation was associated with reduced Akt phosphorylation and was partially rescued by addition of recombinant TIMP-1. We have revealed a novel autocrine mitogenic effect of TIMP-1 on HSC, which may involve Akt-dependent and specific nuclear mechanisms of action. We suggest that TIMP-1 might promote liver fibrosis by means other than its previously described anti-apoptotic effect on HSC. Moreover

  3. IL-13 promotes the proliferation of rat pancreatic stellate cells through the suppression of NF-{kappa}B/TGF-{beta}{sub 1} pathway

    SciTech Connect

    Shinozaki, Satoshi; Mashima, Hirosato; Ohnishi, Hirohide; Sugano, Kentaro

    2010-02-26

    In chronic pancreatitis, pancreatic stellate cells (PSCs) play a central role in tissue fibrogenesis. Transforming growth factor {beta}{sub 1} (TGF-{beta}{sub 1}) and the Th2 lymphokines such as interleukin (IL)-13 are major profibrogenic cytokines in many organs. Activated PSCs produce various inflammatory cytokines including TGF-{beta}{sub 1}. In this study, we investigated whether IL-13 affects pancreatic fibrogenesis by modulating the functions of PSCs. IL-13 promoted PSCs proliferation without activation through the suppression of autocrine TGF-{beta}{sub 1}. IL-13 enhanced Stat6 phosphorylation in PSCs but Stat6 was not involved in the suppression of TGF-{beta}{sub 1}. IL-13 inhibited the transcriptional activity of NF-{kappa}B, and the expression of mutant I-{kappa}B reproduced the suppression of autocrine TGF-{beta}{sub 1} and promoted PSCs proliferation. Taken together, we demonstrated that IL-13 promotes PSCs proliferation through the suppression of the transcriptional activity of NF-{kappa}B, resulting in the decrease of autocrine TGF-{beta}{sub 1}. This finding provides an unequivocal evidence of IL-13 participation in pancreatic fibrosis, illustrating a new strategy for chronic pancreatitis.

  4. Simultaneous characterization of pancreatic stellate cells and other pancreatic components within three-dimensional tissue environment during chronic pancreatitis

    NASA Astrophysics Data System (ADS)

    Hu, Wenyan; Fu, Ling

    2013-05-01

    Pancreatic stellate cells (PSCs) and other pancreatic components that play a critical role in exocrine pancreatic diseases are generally identified separately by conventional studies, which provide indirect links between these components. Here, nonlinear optical microscopy was evaluated for simultaneous characterization of these components within a three-dimensional (3-D) tissue environment, primarily based on multichannel detection of intrinsic optical emissions and cell morphology. Fresh rat pancreatic tissues harvested at 1 day, 7 days, and 28 days after induction of chronic pancreatitis were imaged, respectively. PSCs, inflammatory cells, blood vessels, and collagen fibers were identified simultaneously. The PSCs at day 1 of chronic pancreatitis showed significant enlargement compared with those in normal pancreas (p<0.001, analysis of variance linear contrast; n=8 for each group). Pathological events relating to these components were observed, including presence of inflammatory cells, deposited collagen, and phenotype conversion of PSCs. We demonstrate that label-free nonlinear optical microscopy is an efficient tool for dissecting PSCs and other pancreatic components coincidently within 3-D pancreatic tissues. It is a prospect for intravital observation of dynamic events under natural physiological conditions, and might help uncover the key mechanisms of exocrine pancreatic diseases, leading to more effective treatments.

  5. Chronic Hyperglycemia Induces Trans-Differentiation of Human Pancreatic Stellate Cells and Enhances the Malignant Molecular Communication with Human Pancreatic Cancer Cells

    PubMed Central

    Kiss, Katalin; Baghy, Kornélia; Spisák, Sándor; Szanyi, Szilárd; Tulassay, Zsolt; Zalatnai, Attila; Löhr, J.-Matthias; Jesenofsky, Ralf; Kovalszky, Ilona; Firneisz, Gábor

    2015-01-01

    Background Diabetes mellitus is linked to pancreatic cancer. We hypothesized a role for pancreatic stellate cells (PSC) in the hyperglycemia induced deterioration of pancreatic cancer and therefore studied two human cell lines (RLT-PSC, T3M4) in hyperglycemic environment. Methodology/Principal Findings The effect of chronic hyperglycemia (CHG) on PSCs was studied using mRNA expression array with real-time PCR validation and bioinformatic pathway analysis, and confirmatory protein studies. The stress fiber formation (IC: αSMA) indicated that PSCs tend to transdifferentiate to a myofibroblast-like state after exposure to CHG. The phosphorylation of p38 and ERK1/2 was increased with a consecutive upregulation of CDC25, SP1, cFOS and p21, and with downregulation of PPARγ after PSCs were exposed to chronic hyperglycemia. CXCL12 levels increased significantly in PSC supernatant after CHG exposure independently from TGF-β1 treatment (3.09-fold with a 2.73-fold without TGF-β1, p<0.05). The upregualtion of the SP1 transcription factor in PSCs after CHG exposure may be implicated in the increased CXCL12 and IGFBP2 production. In cancer cells, hyperglycemia induced an increased expression of CXCR4, a CXCL12 receptor that was also induced by PSC’s conditioned medium. The receptor-ligand interaction increased the phosphorylation of ERK1/2 and p38 resulting in activation of MAP kinase pathway, one of the most powerful stimuli for cell proliferation. Certainly, conditioned medium of PSC increased pancreatic cancer cell proliferation and this effect could be partially inhibited by a CXCR4 inhibitor. As the PSC conditioned medium (normal glucose concentration) increased the ERK1/2 and p38 phosphorylation, we concluded that PSCs produce other factor(s) that influence(s) pancreatic cancer behaviour. Conclusions Hyperglycemia induces increased CXCL12 production by the PSCs, and its receptor, CXCR4 on cancer cells. The ligand-receptor interaction activates MAP kinase signaling

  6. Fuzheng Huayu Recipe Ameliorates Liver Fibrosis by Restoring Balance between Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Hepatic Stellate Cells.

    PubMed

    Pan, Qin; Wang, Yu-Qin; Li, Guang-Ming; Duan, Xiao-Yan; Fan, Jian-Gao

    2015-01-01

    Activation of hepatic stellate cells (HSCs) depending on epithelial-to-mesenchymal transition (EMT) reflects the key event of liver fibrosis. Contrastively, mesenchymal-to-epithelial transition (MET) of HSCs facilitates the fibrosis resolution. Here we investigated the effect of Fuzheng Huayu (FZHY) recipe, a Chinese herbal decoction made of Radix Salviae Miltiorrhizae, Semen Persicae, Cordyceps sinensis, Pollen Pini, and Gynostemma pentaphyllum, on liver fibrosis concerning the balance of EMT and MET in HSCs. In contrast to the increased TGF-β 1/BMP-7 ratio in activated HSCs, FZHY administration induced significant upregulation of BMP-7 and downregulation of TGF-β 1 at both transcription and translation levels. Restoration of TGF-β 1/BMP-7 ratio inhibited the expression of p38 MAPK and phosphorylated p38 MAPK, resulting in the reversal of epithelial-to-mesenchymal transition (EMT) to mesenchymal-to-epithelial transition (MET) as characterized by the abolishment of EMT markers (α-SMA and desmin) and reoccurrence of MET marker (E-cadherin). In vivo treatment of FZHY recipe also demonstrated the statistical reduction of activated HSCs with EMT phenotype, which attenuated the carbon tetrachloride- (CCl4-) induced liver fibrosis in a dose-dependent manner. These findings may highlight a novel antifibrotic role of FZHY recipe on the basis of rebalancing EMT and MET in HSCs. PMID:26881209

  7. Fuzheng Huayu Recipe Ameliorates Liver Fibrosis by Restoring Balance between Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Hepatic Stellate Cells

    PubMed Central

    Pan, Qin; Wang, Yu-Qin; Li, Guang-Ming; Duan, Xiao-Yan; Fan, Jian-Gao

    2015-01-01

    Activation of hepatic stellate cells (HSCs) depending on epithelial-to-mesenchymal transition (EMT) reflects the key event of liver fibrosis. Contrastively, mesenchymal-to-epithelial transition (MET) of HSCs facilitates the fibrosis resolution. Here we investigated the effect of Fuzheng Huayu (FZHY) recipe, a Chinese herbal decoction made of Radix Salviae Miltiorrhizae, Semen Persicae, Cordyceps sinensis, Pollen Pini, and Gynostemma pentaphyllum, on liver fibrosis concerning the balance of EMT and MET in HSCs. In contrast to the increased TGF-β1/BMP-7 ratio in activated HSCs, FZHY administration induced significant upregulation of BMP-7 and downregulation of TGF-β1 at both transcription and translation levels. Restoration of TGF-β1/BMP-7 ratio inhibited the expression of p38 MAPK and phosphorylated p38 MAPK, resulting in the reversal of epithelial-to-mesenchymal transition (EMT) to mesenchymal-to-epithelial transition (MET) as characterized by the abolishment of EMT markers (α-SMA and desmin) and reoccurrence of MET marker (E-cadherin). In vivo treatment of FZHY recipe also demonstrated the statistical reduction of activated HSCs with EMT phenotype, which attenuated the carbon tetrachloride- (CCl4-) induced liver fibrosis in a dose-dependent manner. These findings may highlight a novel antifibrotic role of FZHY recipe on the basis of rebalancing EMT and MET in HSCs. PMID:26881209

  8. Hydrogels with Differential and Patterned Mechanics to Study Stiffness-Mediated Myofibroblastic Differentiation of Hepatic Stellate Cells

    PubMed Central

    Guvendiren, Murat; Perepelyuk, Maryna; Wells, Rebecca G.; Burdick, Jason A.

    2014-01-01

    The differentiation of hepatic stellate cells (HSCs) into myofbroblasts is a key event in liver fibrosis. Due to the local stiffening of the extracellular matrix (ECM) during fibrosis, it is of great interest to develop mimics that can be used to investigate the cellular response to changes in mechanics. Here, we used a step-wise hydrogel crosslinking technique, where macromolecules are crosslinked using a sequence of addition then UV light-mediated radical crosslinking, to generate hydrogels with tunable stiffness. Freshly isolated HSCs remained rounded with lipid droplets and high levels of PPARγ expression on soft substrates (E~2 kPa); however, HSCs spread, lost their lipid droplets, and expressed high levels of α-smooth muscle actin (α-SMA) and type I collagen on stiff substrates (E~ 24 kPa). Similarly, fully differentiated cells reverted to a quiescent state when plated on soft substrates. Stiffness-induced differentiation of HSCs was enhanced in the presence of exogenous TGF-β1, a dominant signal in fibrosis. When the UV-induced secondary crosslinking was restricted with a photomask to spatially control mechanics, HSCs responded based on the local hydrogel stiffness, although they remained quiescent on stiff substrates if the stiff feature size was not sufficient to allow cell spreading. This hydrogel system permits the investigation of HSC response to materials with diverse levels and spatially heterogeneous mechanical properties. PMID:24361340

  9. Suppression of fibrogenic signaling in hepatic stellate cells by Twist1-dependent microRNA-214 expression: Role of exosomes in horizontal transfer of Twist1.

    PubMed

    Chen, Li; Chen, Ruju; Kemper, Sherri; Charrier, Alyssa; Brigstock, David R

    2015-09-15

    A hallmark of liver fibrosis is the activation of hepatic stellate cells (HSC), which results in their production of fibrotic molecules, a process that is largely regulated by connective tissue growth factor (CCN2). CCN2 is increasingly expressed during HSC activation because of diminished expression of microRNA-214 (miR-214), a product of dynamin 3 opposite strand (DNM3os) that directly suppresses CCN2 mRNA. We show that an E-box in the miR-214 promoter binds the basic helix-loop-helix transcription factor, Twist1, which drives miR-214 expression and results in CCN2 suppression. Twist1 expression was suppressed in HSC of fibrotic livers or in cultured HSC undergoing activation in vitro or after treatment with ethanol. Furthermore, Twist1 decreasingly interacted with DNM3os as HSC underwent activation in vitro. Nanovesicular exosomes secreted by quiescent but not activated HSC contained high levels of Twist1, thus reflecting the suppression of cellular Twist1 during HSC activation. Exosomal Twist1 was intercellularly shuttled between HSC and stimulated expression of miR-214 in the recipient cells, causing expression of CCN2 and its downstream effectors to be suppressed. Additionally, the miR-214 E-box in HSC was also regulated by hepatocyte-derived exosomes, showing that functional transfer of exosomal Twist1 occurs between different cell types. Finally, the levels of Twist1, miR-214, or CCN2 in circulating exosomes from fibrotic mice reflected fibrosis-induced changes in the liver itself, highlighting the potential utility of these and other constituents in serum exosomes as novel circulating biomarkers for liver fibrosis. These findings reveal a unique function for cellular or exosomal Twist1 in CCN2-dependent fibrogenesis. PMID:26229009

  10. Design, synthesis, and characterization of novel apigenin analogues that suppress pancreatic stellate cell proliferation in vitro and associated pancreatic fibrosis in vivo

    PubMed Central

    Chen, Haijun; Mrazek, Amy A.; Wang, Xiaofu; Ding, Chunyong; Ding, Ye; Porro, Laura J.; Liu, Huiling; Chao, Celia; Hellmich, Mark R.; Zhou, Jia

    2014-01-01

    Accumulating evidence suggests that activated pancreatic stellate cells (PSC) play an important role in chronic pancreatitis (CP), and inhibition of the activated PSC is considered as a potential strategy for the treatment and prevention of CP. Herein, we disclose our findings that apigenin and its novel analogues suppress the proliferation and induce apoptosis in PSC which reduce the PSC-mediated fibrosis in CP. Chemical modifications of apigenin have been directed to build a focused library of O-alkylamino-tethered apigenin derivatives at 4′-O position of the ring C with the attempt to enhance the potency and drug-like properties including aqueous solubility. A number of compounds such as 14, 16, and 24 exhibited potent antiproliferative effects as well as improved aqueous solubility. Intriguingly, apigenin, new analogues 23 and 24 displayed significant efficacy to reduce pancreatic fibrosis even at a low dose of 0.5 mg/kg in our proof-of-concept study using a preclinical in vivo mouse model of CP. PMID:24837156

  11. HIV and HCV Co-Culture Promotes Profibrogenic Gene Expression through an Epimorphin-Mediated ERK Signaling Pathway in Hepatic Stellate Cells.

    PubMed

    Shi, Lei; Qin, Enqiang; Zhou, Junnian; Zhao, Juanjuan; Nie, Weimin; Jiang, Tianjun; Chen, Weiwei; Wu, Dan; Huang, Lei; Liu, Liying; Lv, Liping; Zhao, Min; Zhang, Zheng; Wang, Fusheng

    2016-01-01

    Accelerated fibrosis in patients co-infected with hepatitis C virus (HCV) and human immunodeficiency virus (HIV) has been a major cause of mortality in the highly active anti-retroviral therapy (HAART) era. However, the role of co-infection in accelerating the progression of liver fibrosis, particularly with regard to the effects of co-infection on hepatic stellate cells (HSCs), remains unclear. We hypothesized that HIV and HCV induce liver fibrosis synergistically by altering the regulation of epimorphin production, and thereby indirectly alter HSC function. Here, we examined the effects of epimorphin on HSC proliferation and invasion, and the changes in fibrogenesis-related gene activity in HSCs (LX2) in the presence of inactivated CXCR4-tropic HIV and HCV (JFH1). The combination of HIV and HCV significantly increased epimorphin expression, which increased the proliferation and invasion capabilities of HSCs. Epimorphin also induced the expression of profibrogenic tissue inhibitor of metalloproteinase 1 (TIMP1) in an extracellular signal-regulated kinase (ERK)-dependent manner. These data indicated that the effects of HIV/HCV co-infection on hepatic fibrosis might be mediated in part by EPM. Strategies to limit the expression of EPM might represent a novel therapeutic approach to prevent the progression of hepatic fibrosis during HIV/HCV co-infection. PMID:27362846

  12. HIV and HCV Co-Culture Promotes Profibrogenic Gene Expression through an Epimorphin-Mediated ERK Signaling Pathway in Hepatic Stellate Cells

    PubMed Central

    Shi, Lei; Qin, Enqiang; Zhou, Junnian; Zhao, Juanjuan; Nie, Weimin; Jiang, Tianjun; Chen, Weiwei; Wu, Dan; Huang, Lei; Liu, Liying; Lv, Liping; Zhao, Min; Zhang, Zheng; Wang, Fusheng

    2016-01-01

    Accelerated fibrosis in patients co-infected with hepatitis C virus (HCV) and human immunodeficiency virus (HIV) has been a major cause of mortality in the highly active anti-retroviral therapy (HAART) era. However, the role of co-infection in accelerating the progression of liver fibrosis, particularly with regard to the effects of co-infection on hepatic stellate cells (HSCs), remains unclear. We hypothesized that HIV and HCV induce liver fibrosis synergistically by altering the regulation of epimorphin production, and thereby indirectly alter HSC function. Here, we examined the effects of epimorphin on HSC proliferation and invasion, and the changes in fibrogenesis-related gene activity in HSCs (LX2) in the presence of inactivated CXCR4-tropic HIV and HCV (JFH1). The combination of HIV and HCV significantly increased epimorphin expression, which increased the proliferation and invasion capabilities of HSCs. Epimorphin also induced the expression of profibrogenic tissue inhibitor of metalloproteinase 1 (TIMP1) in an extracellular signal-regulated kinase (ERK)-dependent manner. These data indicated that the effects of HIV/HCV co-infection on hepatic fibrosis might be mediated in part by EPM. Strategies to limit the expression of EPM might represent a novel therapeutic approach to prevent the progression of hepatic fibrosis during HIV/HCV co-infection. PMID:27362846

  13. In vitro structure-toxicity relationship of chalcones in human hepatic stellate cells.

    PubMed

    Zenger, Katharina; Dutta, Subhajit; Wolff, Horst; Genton, Marc G; Kraus, Birgit

    2015-10-01

    Xanthohumol (XN), the major prenylated chalcone from hops (Humulus lupulus L.), has received much attention within the last years, due to its multiple pharmacological activities including anti-proliferative, anti-inflammatory, antioxidant, pro-apoptotic, anti-bacterial and anti-adhesive effects. However, there exists a huge number of metabolites and structurally-related chalcones, which can be expected, or are already known, to exhibit various effects on cells. We have therefore analyzed the effects of XN and 18 other chalcones in a panel, consisting of multiple cell-based assays. Readouts of these assays addressed distinct aspects of cell-toxicity, like proliferation, mitochondrial health, cell cycle and other cellular features. Besides known active structural elements of chalcones, like the Michael system, we have identified several moieties that seem to have an impact on specific effects and toxicity in human liver cells in vitro. Based on these observations, we present a structure-toxicity model, which will be crucial to understand the molecular mechanisms of wanted effects and unwanted side-effects of chalcones. PMID:26201061

  14. Effect of pentoxifylline on arachidonic acid metabolism, neutral lipid synthesis and accumulation during induction of the lipocyte phenotype by retinol in murine hepatic stellate cell.

    PubMed

    Cardoso, Carla C A; Paviani, Ernani R; Cruz, Lavínia A; Guma, Fátima C R; Borojevic, Radovan; Guaragna, Regina M

    2003-12-01

    In liver fibrosis, the quiescent hepatic stellate cells (HSC) are activated to proliferate and express the activated myofibroblast phenotype, losing fat droplets and the stored vitamin A, and depositing more extracellular matrix. Therapeutic strategies for liver fibrosis are focused on HSC. Pentoxifylline (PTF), an analog of the methylxanthine, prevents the biochemical and histological changes associated with animal liver fibrosis. The aim of the present study was to investigate the phenotypic change of myofibroblasts into quiescent lipocytes by PTF and/or retinol, using a permanent cell line GRX that represents murine HSC. We studied the action of both drugs on the synthesis of neutral lipids, activity of phospholipase A2 (PLA2), release of arachidonic acid (AA) and prostaglandins synthesis. Accumulation and synthesis of neutral lipids was dependent upon association of retinol with PTF. PTF (0.5 mg/mL) alone did not induce lipid accumulation and synthesis, but in cells induced by physiologic concentration of retinol (1-2.5 microM), it increased the quantity of stored lipids. Retinol and PTF (5 microM and 0.1 mg/mL, respectively) had a synergistic effect on neutral lipid synthesis and accumulation. In higher PTF concentrations (0.5 and 0.7 mg/ml), the synthesis was stimulated but accumulation decreased. Membrane-associated PLA2 activity decreased after PTF treatment, which increased the AA release 8 fold, and significantly increased the production of PGE2, but not of PGF2. However, when in presence of retinol, we observed a slightly higher increase in PGE2 and PGF2a production. In conclusion, PTF treatment generated an excess of free AA. We propose that retinol counteracts the action of PTF on the AA release and PGs production, even though both drugs stimulated the lipocyte induction in the HSC. PMID:14674680

  15. Functional and structural specific roles of activity-driven BDNF within circuits formed by single spiny stellate neurons of the barrel cortex

    PubMed Central

    Sun, Qian-Quan; Zhang, Zhi; Sun, June; Nair, Anand S.; Petrus, Dan P.; Zhang, Chunzhao

    2014-01-01

    Brain derived neurotrophic factor (BDNF) plays key roles in several neurodevelopmental disorders and actions of pharmacological treatments. However, it is unclear how specific BDNF’s effects are on different circuit components. Current studies have largely focused on the role of BDNF in modification of synaptic development. The precise roles of BDNF in the refinement of a functional circuit in vivo remain unclear. Val66Met polymorphism of BDNF may be associated with increased risk for cognitive impairments and is mediated at least in part by activity-dependent trafficking and/or secretion of BDNF. Using mutant mice that lacked activity-driven BDNF expression (bdnf-KIV), we previously reported that experience regulation of the cortical GABAergic network is mediated by activity-driven BDNF expression. Here, we demonstrate that activity-driven BDNF’s effects on circuits formed by the layer IV spiny stellate cells are highly specific. Structurally, dendritic but not axonal morphology was altered in the mutant. Physiologically, GABAergic but not glutamatergic synapses were severely affected. The effects on GABA transmission occurs via presynaptic alteration of calcium-dependent release probability. These results suggest that neuronal activity through activity-driven BDNF expression, can selectively regulate specific features of layer IV circuits in vivo. We postulate that the role of activity-dependent BDNF is to modulate the computational ability of circuits that relate to the gain control (i.e., feed-forward inhibition); whereas the basic wiring of circuits relevant to the sensory pathway is spared. Gain control modulation within cortical circuits has broad impact on cognitive processing and brain state-transitions. Cognitive behavior and mode is determined by brain states, thus the studying of circuit alteration by endogenous BDNF provides insights into the cellular and molecular mechanisms of diseases mediated by BDNF. PMID:25414642

  16. Carvedilol Improves Inflammatory Response, Oxidative Stress and Fibrosis in the Alcohol-Induced Liver Injury in Rats by Regulating Kuppfer Cells and Hepatic Stellate Cells

    PubMed Central

    Leitão, Renata Ferreira de Carvalho; Brito, Gerly Anne de Castro; Miguel, Emilio de Castro; Guedes, Paulo Marcos Matta; de Araújo, Aurigena Antunes

    2016-01-01

    Aim To evaluate the anti-inflammatory, anti-oxidant and antifibrotic effects of carvedilol (CARV) in rats with ethanol-induced liver injury. Methods Liver injury was induced by gavage administration of alcohol (7 g/kg) for 28 consecutive days. Eighty Wistar rats were pretreated with oral CARV at 1, 3, or 5 mg/kg or with saline 1 h before exposure to alcohol. Liver homogenates were assayed for interleukin (IL)-1β, IL-10, and tumor necrosis factor (TNF)-α level as well as for myeloperoxidase (MPO) activity and malonyldialdehyde (MDA) and glutathione (GSH) levels. Serum aspartate aminotransferase (AST) activity and liver triglyceride (TG) levels were also assayed. Immunohistochemical analyses of cyclooxygenase 2 (COX-2), receptor activator of nuclear factor kappa-B/ligand (RANK/RANKL), suppressor of cytokine signalling (SOCS1), the Kupffer cell marker IBA-1 (ionized calcium-binding adaptor molecule 1), intercellular adhesion molecule 1 (ICAM-1), superoxide dismutase (SOD-1), and glutathione peroxidase (GPx-1) expression were performed. Confocal microscopy analysis of IL-1β and NF-κB expression and real-time quantitative PCR analysis for TNFα, PCI, PCIII, and NF-κB were performed. Results CARV treatment (5 mg/kg) during the alcohol exposure protocol was associated with reduced steatosis, hepatic cord degeneration, fibrosis and necrosis, as well as reduced levels of AST (p < 0.01), ALT (p < 0.01), TG (p < 0.001), MPO (p < 0.001), MDA (p < 0.05), and proinflammatory cytokines (IL-1β and TNF-α, both p < 0.05), and increased levels of the anti-inflammatory cytokine IL-10 (p < 0.001) and GSH (p < 0.05), compared to the alcohol-only group. Treatment with CARV 5 mg/kg also reduced expression levels of COX-2, RANK, RANKL, IBA-1, and ICAM-1 (all p < 0.05), while increasing expression of SOCS1, SOD-1, and GPx-1 (all p < 0.05) and decreasing expression of IL-1β and NF-κB (both, p < 0.05). Real-time quantitative PCR analysis showed that mRNA production of TNF

  17. Distribution of (/sup 14/C)-2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and its effect on the vitamin A content in parenchymal and stellate cells of rat liver

    SciTech Connect

    Hakansson, H.H.; Hanberg, A.

    1989-04-01

    Isolated liver cells from male Sprague-Dawley rats given a single dose of (/sup 14/C)-2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 10 micrograms, 0.9 microCi/kg body wt in corn oil, p.o.) or vehicle only were separated into parenchymal and nonparenchymal cell fractions 4 h, and 1, 4, 7, 25, 50, and 147 d after treatment. Vitamin A content and TCDD-derived radioactivity were estimated in the parenchymal cells and in the stellate cells, which were identified and quantified in these fractions. Similar levels of vitamin A (0.3 +/- 0.4 nmol per million cells or 0.5 +/- 0.7 mumol per liver; values are mean +/- SD for 56 rats) were found in parenchymal cells from both control and TCDD-treated rats. However, while the vitamin A content of stellate cells increased from 14 to 46 nmol per million cells (i.e., from 1.7 to 7.7 mumol per liver) in control rats over the course of the study, stellate cells from TCDD-exposed rats showed no increase in vitamin A level until at least 25 d after exposure and remained at a level about 30% below the controls thereafter. TCDD-derived radioactivity resided mainly in the parenchymal cell compartment, although stellate cells contained more radioactivity per cell. Most of the radioactivity in parenchymal cells was eliminated with a half-life of 13 d, whereas the remainder persisted with an elimination half-life of 70 d. The elimination half-life in stellate cells was estimated to be 52 d. Thus, TCDD inhibited storage of vitamin A in stellate cells until 60-90% of the TCDD-derived radioactivity had been eliminated from the liver.

  18. Reconstruction of hepatic stellate cell-incorporated liver capillary structures in small hepatocyte tri-culture using microporous membranes.

    PubMed

    Kasuya, Junichi; Sudo, Ryo; Masuda, Genta; Mitaka, Toshihiro; Ikeda, Mariko; Tanishita, Kazuo

    2015-03-01

    In liver sinusoids, hepatic stellate cells (HSCs) locate the outer surface of microvessels to form a functional unit with endothelia and hepatocytes. To reconstruct functional liver tissue in vitro, formation of the HSC-incorporated sinusoidal structure is essential. We previously demonstrated capillary formation of endothelial cells (ECs) in tri-culture, where a polyethylene terephthalate (PET) microporous membrane was intercalated between the ECs and hepatic organoids composed of small hepatocytes (SHs), i.e. hepatic progenitor cells, and HSCs. However, the high thickness and low porosity of the membranes limited heterotypic cell-cell interactions, which are essential to form HSC-EC hybrid structures. Here, we focused on the effective use of the thin and highly porous poly( d, l-lactide-co-glycolide) (PLGA) microporous membranes in SH-HSC-EC tri-culture to reconstruct the HSC-incorporated liver capillary structures in vitro. First, the formation of EC capillary-like structures was induced on Matrigel-coated PLGA microporous membranes. Next, the membranes were stacked on hepatic organoids composed of small SHs and HSCs. When the pore size and porosity of the membranes were optimized, HSCs selectively migrated to the EC capillary-like structures. This process was mediated in part by platelet-derived growth factor (PDGF) signalling. In addition, the HSCs were located along the outer surface of the EC capillary-like structures with their long cytoplasmic processes. In the HSC-incorporated capillary tissues, SHs acquired high levels of differentiated functions, compared to those without ECs. This model will provide a basis for the construction of functional, thick, vascularized liver tissues in vitro. PMID:23086892

  19. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells.

    PubMed

    Maroteaux, Matthieu; Liu, Siqiong June

    2016-01-01

    The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current-voltage (I-V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I-V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I-V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I-V relationship of EPSCs at GluA2-lacking AMPAR synapses. PMID:27280156

  20. Interspecies comparison of stellate cell-containing macula flavae and vitamin A storage in vocal fold mucosa

    PubMed Central

    Toya, Yutaka; Riabroy, Napaporn; Davis, Christopher R; Kishimoto, Yo; Tanumihardjo, Sherry A; Bless, Diane M; Welham, Nathan V

    2014-01-01

    The macula flavae (MF), populated by vitamin A-storing stellate cells (SCs), are believed to play a fundamental role in development, maintenance and repair of the vocal fold (VF) mucosa; however, to date, they have mostly been examined in observational human cadaver studies. Here, we conducted an interspecies comparison of MF and SC phenotype, as well as vitamin A quantification and localization, in human, pig, dog, rabbit and rat VF mucosae. MF containing vitamin A-positive SCs were only identified in human and rat specimens. Pig, dog and rabbit VF mucosae contained no discernable MF, but rather exhibited preferential vitamin A localization to mucous (pig), serous (dog) or mixed (rabbit) glands. This glandular vitamin A storage corresponded to exceedingly high concentrations of retinol in pig and dog mucosae, and retinyl ester in dog mucosa. These findings have significant implications for the presumed role of the MF and SCs in VF biology, the nature of vitamin A storage within the VF mucosa, and the selection of an appropriate animal model for future experimental studies. PMID:25040030

  1. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells123

    PubMed Central

    2016-01-01

    Abstract The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current–voltage (I–V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I–V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I–V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I–V relationship of EPSCs at GluA2-lacking AMPAR synapses. PMID:27280156

  2. Gene profile of chemokines on hepatic stellate cells of schistosome-infected mice and antifibrotic roles of CXCL9/10 on liver non-parenchymal cells.

    PubMed

    Liang, Yue-jin; Luo, Jie; Lu, Qiao; Zhou, Ying; Wu, Hai-wei; Zheng, Dan; Ren, Yong-ya; Sun, Ke-yi; Wang, Yong; Zhang, Zhao-song

    2012-01-01

    Hepatic stellate cells (HSCs) play a key role in the development of liver fibrosis caused by schistosomiasis. Chemokines were widely expressed and involved in cellular activation, proliferation and migration in inflammatory and infectious diseases. However, little is known about the expressions of chemokines on HSCs in the schistosoma infection. In addition, the roles of chemokines in pathogenesis of liver fibrosis are not totally clear. In our study, we used microarray to analyze the temporal gene expressions of primary HSCs isolated from mice with both acute and chronic schistosomiasis. Our microarray data showed that most of the chemokines expressed on HSCs were upregulated at 3 weeks post-infection (p.i) when the egg granulomatous response was not obviously evoked in the liver. However, some of them like CXCL9, CXCL10 and CXCL11 were subsequently decreased at 6 weeks p.i when the granulomatous response reached the peak. In the chronic stage, most of the differentially expressed chemokines maintained persistent high-abundances. Furthermore, several chemokines including CCR2, CCR5, CCR7, CXCR3, CXCR4, CCL2, CCL5, CCL21, CXCL9 and CXCL10 were expressed by HCSs and the abundances of them were changed following the praziquantel treatment in the chronic stage, indicating that chemokines were possibly necessary for the persistence of the chronic stage. In vitro experiments, hepatic non-parenchymal cells, primary HSCs and human HSCs line LX-2 were stimulated by chemokines. The results showed that CXCL9 and CXCL10, but not CXCL11 or CXCL4, significantly inhibited the gene expressions of Col1α1, Col3α1 and α-SMA, indicating the potential anti-fibrosis effect of CXCL9 and CXCL10 in schistosomiasis. More interestingly, soluble egg antigen (SEA) of Schistosoma japonicum was able to inhibit transcriptional expressions of some chemokines by LX-2 cells, suggesting that SEA was capable of regulating the expression pattern of chemokine family and modulating the hepatic immune

  3. Targeted blockade of JAK/STAT3 signaling inhibits proliferation, migration and collagen production as well as inducing the apoptosis of hepatic stellate cells.

    PubMed

    Gu, Yuan-Jing; Sun, Wu-Yi; Zhang, Sen; Li, Xin-Ran; Wei, Wei

    2016-09-01

    Protein tyrosine kinases belonging to the Janus kinase (JAK) family are associated with many cytokine receptors, which, on ligand binding, regulate important cellular functions such as proliferation, apoptosis and differentiation. The protective effects of JAK inhibitors on fibrotic diseases such as myelofibrosis and bone marrow fibrosis have been demonstrated in previous studies. The JAK inhibitor SHR0302 is a synthetic molecule that potently inhibits all members of the JAK family, particularly JAK1. However, its effect on hepatic fibrosis has not been investigated to date, to the best of our knowledge. In the present study, the effects of SHR0302 on the activation, proliferation, migration and apoptosis of hepatic stellate cells (HSCs) as well as HSC collagen production were investigated. Our data demonstrated that treatment with SHR0302 (10-9-10-5 mol/l) exerted an inhibitory effect on the activation, proliferation and migration of HSCs. In addition, the expression of collagen I and collagen III were significantly decreased following treatment with SHR0302. Furthermore, SHR0302 induced the apoptosis of HSCs, which was demonstrated by Annexin V/PI staining. SHR0302 significantly increased the activation of caspase-3 and Bax in HSCs whereas it decreased the expression of Bcl-2. SHR0302 also inhibited the activation of Akt signaling pathway. The pharmacological inhibition of the JAK1/signal transducer and activator of transcription (STAT)3 pathway led to the disruption of functions essential for HSC growth. Taken together, these findings provide evidence that SHR0302 may have the potential to alleviate hepatic fibrosis by targeting HSC functions. PMID:27460897

  4. CD248/endosialin critically regulates hepatic stellate cell proliferation during chronic liver injury via a PDGF-regulated mechanism

    PubMed Central

    Wilhelm, Annika; Aldridge, Victoria; Haldar, Debashis; Naylor, Amy J; Weston, Christopher J; Hedegaard, Ditte; Garg, Abhilok; Fear, Janine; Reynolds, Gary M; Croft, Adam P; Henderson, Neil C; Buckley, Christopher D; Newsome, Philip N

    2016-01-01

    Introduction CD248 (endosialin) is a stromal cell marker expressed on fibroblasts and pericytes. During liver injury, myofibroblasts are the main source of fibrotic matrix. Objective To determine the role of CD248 in the development of liver fibrosis in the rodent and human setting. Design CD248 expression was studied by immunostaining and quantitative PCR in both normal and diseased human and murine liver tissue and isolated hepatic stellate cells (HSCs). Hepatic fibrosis was induced in CD248−/− and wild-type controls with carbon tetrachloride (CCl4) treatment. Results Expression of CD248 was seen in normal liver of humans and mice but was significantly increased in liver injury using both immunostaining and gene expression assays. CD248 was co-expressed with a range of fibroblast/HSC markers including desmin, vimentin and α-smooth muscle actin (α-SMA) in murine and human liver sections. CD248 expression was restricted to isolated primary murine and human HSC. Collagen deposition and α-SMA expression, but not inflammation and neoangiogenesis, was reduced in CD248−/− mice compared with wild-type mice after CCl4 treatment. Isolated HSC from wild-type and CD248−/− mice expressed platelet-derived growth factor receptor α (PDGFR-α) and PDGFR-β at similar levels. As expected, PDGF-BB stimulation induced proliferation of wild-type HSC, whereas CD248−/− HSC did not demonstrate a proliferative response to PDGF-BB. Abrogated PDGF signalling in CD248−/− HSC was confirmed by significantly reduced c-fos expression in CD248−/− HSC compared with wild-type HSC. Conclusions Our data show that deletion of CD248 reduces susceptibility to liver fibrosis via an effect on PDGF signalling, making it an attractive clinical target for the treatment of liver injury. PMID:26078290

  5. Interaction of TWEAK with Fn14 leads to the progression of fibrotic liver disease by directly modulating hepatic stellate cell proliferation.

    PubMed

    Wilhelm, Annika; Shepherd, Emma L; Amatucci, Aldo; Munir, Mamoona; Reynolds, Gary; Humphreys, Elizabeth; Resheq, Yazid; Adams, David H; Hübscher, Stefan; Burkly, Linda C; Weston, Christopher J; Afford, Simon C

    2016-05-01

    Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) have been associated with liver regeneration in vivo. To further investigate the role of this pathway we examined their expression in human fibrotic liver disease and the effect of pathway deficiency in a murine model of liver fibrosis. The expression of Fn14 and TWEAK in normal and diseased human and mouse liver tissue and primary human hepatic stellate cells (HSCs) were investigated by qPCR, western blotting and immunohistochemistry. In addition, the levels of Fn14 in HSCs following pro-fibrogenic and pro-inflammatory stimuli were assessed and the effects of exogenous TWEAK on HSCs proliferation and activation were studied in vitro. Carbon tetrachloride (CCl4 ) was used to induce acute and chronic liver injury in TWEAK KO mice. Elevated expression of both Fn14 and TWEAK were detected in acute and chronic human liver injury, and co-localized with markers of activated HSCs. Fn14 levels were low in quiescent HSCs but were significantly induced in activated HSCs, which could be further enhanced with the profibrogenic cytokine TGFβ in vitro. Stimulation with recombinant TWEAK induced proliferation but not further HSCs activation. Fn14 gene expression was also significantly up-regulated in CCl4 models of hepatic injury whereas TWEAK KO mice showed reduced levels of liver fibrosis following chronic CCl4 injury. In conclusion, TWEAK/Fn14 interaction leads to the progression of fibrotic liver disease via direct modulation of HSCs proliferation, making it a potential therapeutic target for liver fibrosis. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:26924336

  6. Salvianolic acid B lowers portal pressure in cirrhotic rats and attenuates contraction of rat hepatic stellate cells by inhibiting RhoA signaling pathway.

    PubMed

    Xu, Hong; Zhou, Yang; Lu, Chao; Ping, Jian; Xu, Lie-Ming

    2012-12-01

    The contraction of hepatic stellate cells (HSCs) has a critical role in the regulation of intrahepatic vascular resistance and portal hypertension. Previous studies have confirmed that salvianolic acid B (Sal B) is effective against liver fibrosis. In the present study, we evaluated the effect of Sal B on portal hypertension and on HSCs contractility. Liver cirrhosis was induced in rats by peritoneal injection of dimethylnitrosamine and the portal pressure was measured. HSCs contraction was evaluated by collagen gel contraction assay. Glycerol-urea gel electrophoresis was performed to determine the phosphorylation of myosin light chain 2 (MLC2). F-actin stress fiber polymerization was detected by fluorescein isothiocyanate-labeled phalloidin. Intracellular Ca(2+) and RhoA signaling activation were also measured. Sal B effectively reduced the portal pressure in DMN-induced cirrhotic rats. It decreased the contraction by endothelin-1 (ET-1)-activated HSCs by ∼66.5% and caused the disassembly of actin stress fibers and MLC2 dephosphorylation. Although Sal B reduced ET-1-induced intracellular Ca(2+) increase, blocking Ca(2+) increase completely by BAPTA-AM, a Ca(2+) chelator, barely affected the magnitude of contraction. Sal B decreased ET-1-induced RhoA and Rho-associated coiled coil-forming protein kinase (ROCK) II activation by 66.84% and by 76.79%, respectively, and inhibited Thr(696) phosphorylation of MYPT1 by 80.09%. In vivo, Sal B lowers the portal pressure in rats with DMN-induced cirrhosis. In vitro, Sal B attenuates ET-1-induced HSCs contraction by inhibiting the activation of RhoA and ROCK II and the downstream MYPT1 phosphorylation at Thr(696). We consider Sal B a potential candidate for the pharmacological treatment of portal hypertension. PMID:22986787

  7. Interaction of TWEAK with Fn14 leads to the progression of fibrotic liver disease by directly modulating hepatic stellate cell proliferation‡

    PubMed Central

    Wilhelm, Annika; Shepherd, Emma L; Amatucci, Aldo; Munir, Mamoona; Reynolds, Gary; Humphreys, Elizabeth; Resheq, Yazid; Adams, David H; Hübscher, Stefan; Burkly, Linda C; Weston, Christopher J

    2016-01-01

    Abstract Tumour necrosis factor‐like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor‐inducible 14 (Fn14) have been associated with liver regeneration in vivo. To further investigate the role of this pathway we examined their expression in human fibrotic liver disease and the effect of pathway deficiency in a murine model of liver fibrosis. The expression of Fn14 and TWEAK in normal and diseased human and mouse liver tissue and primary human hepatic stellate cells (HSCs) were investigated by qPCR, western blotting and immunohistochemistry. In addition, the levels of Fn14 in HSCs following pro‐fibrogenic and pro‐inflammatory stimuli were assessed and the effects of exogenous TWEAK on HSCs proliferation and activation were studied in vitro. Carbon tetrachloride (CCl4) was used to induce acute and chronic liver injury in TWEAK KO mice. Elevated expression of both Fn14 and TWEAK were detected in acute and chronic human liver injury, and co‐localized with markers of activated HSCs. Fn14 levels were low in quiescent HSCs but were significantly induced in activated HSCs, which could be further enhanced with the profibrogenic cytokine TGFβ in vitro. Stimulation with recombinant TWEAK induced proliferation but not further HSCs activation. Fn14 gene expression was also significantly up‐regulated in CCl4 models of hepatic injury whereas TWEAK KO mice showed reduced levels of liver fibrosis following chronic CCl4 injury. In conclusion, TWEAK/Fn14 interaction leads to the progression of fibrotic liver disease via direct modulation of HSCs proliferation, making it a potential therapeutic target for liver fibrosis. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:26924336

  8. N-Acetylglucosaminyltransferase V regulates TGF-β response in hepatic stellate cells and the progression of steatohepatitis.

    PubMed

    Kamada, Yoshihiro; Mori, Kanako; Matsumoto, Hitoshi; Kiso, Shinichi; Yoshida, Yuichi; Shinzaki, Shinichiro; Hiramatsu, Naoki; Ishii, Mayuko; Moriwaki, Kenta; Kawada, Norifumi; Takehara, Tetsuo; Miyoshi, Eiji

    2012-06-01

    N-Acetylglucosaminyltransferase V (GnT-V), catalyzing β1-6 branching in asparagine-linked oligosaccharides, is one of the most important glycosyltransferases involved in tumor metastasis and carcinogenesis. Although the expression of GnT-V is induced in chronic liver diseases, the biological meaning of GnT-V in the diseases remains unknown. The aim of this study was to investigate the effects of GnT-V on the progression of chronic hepatitis, using GnT-V transgenic (Tg) mice fed a high fat and high cholesterol (HFHC) diet, an experimental model of murine steatohepatitis. Although enhanced hepatic lymphocytes infiltration and fibrosis were observed in wild-type (WT) mice fed the HFHC diet, they were dramatically prevented in Tg mice. In addition, the gene expression of inflammatory Th1 cytokines in the liver was significantly decreased in Tg mice than WT mice. Inhibition of liver fibrosis was due to the dysfunction of hepatic stellate cells (HSCs), which play pivotal roles in liver fibrosis through the production of transforming growth factor (TGF)-β1. Although TGF-β1 signaling was enhanced in Tg mouse-derived HSCs (Tg-HSCs) compared with WT mouse-derived HSCs (WT-HSCs), collagen expression was significantly reduced in Tg-HSCs. As a result from DNA microarray, cyclooxygenase-2 (COX2) expression, known as a negative feedback signal for TGF-β1, was significantly elevated in Tg-HSCs compared with WT-HSCs. Prostaglandin E2 (PGE2), the product of COX2, production was also significantly elevated in Tg-HSCs. COX2 inhibition by celecoxib decreased PGE2 and increased collagen expression in Tg-HSCs. In conclusion, GnT-V prevented steatohepatitis progression through modulating lymphocyte and HSC functions. PMID:22294551

  9. miR-181b Promotes hepatic stellate cells proliferation by targeting p27 and is elevated in the serum of cirrhosis patients

    SciTech Connect

    Wang, Baocan; Li, Wenxi; Guo, Kun; Xiao, Yongtao; Wang, Yuqin; Fan, Jiangao

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer miR-181a and miR-181b, especially, miR-181b could be induced by transforming growth factor-beta 1 (TGF-{beta}1) in hepatic stellate cells. Black-Right-Pointing-Pointer miR-181b could promote HSC-T6 cell proliferation by directly targeting the negative cell regulator-p27 in HSC-T6 cell. Black-Right-Pointing-Pointer miR-181b was identified as potential serum diagnostic marker for liver cirrhosis patients. -- Abstract: MicroRNAs, as a kind of negative gene regulators, were demonstrated to be involved in many types of diseases. In this study, we found that transforming growth factor-beta 1 could induce the expression of miR-181a and miR-181b, and miR-181b increased in the much higher folds than miR-181a. Because of the important role of transforming growth factor-beta 1 in HSC activation and liver cirrhosis, we investigate the effect of miR-181a and miR-181b on HSC proliferation. The results showed that miR-181b could promote HSC-T6 cell proliferation by regulating cell cycle. Further study showed p27, the cell cycle regulator, was the direct target of miR-181b in HSC-T6 cell. But miR-181a had no effects on HSC-T6 cell proliferation and cell cycle, and did not target p27. Interestingly, miR-181b is elevated significantly in serum of liver cirrhosis cases comparing to that of normal persons, whereas miR-181a expression was in the similar level with that of normal persons. These results suggested that miR-181b could be induced by TGF-{beta}1 and promote the growth of HSCs by directly targeting p27. The elevation of miR-181b in serum suggested that it may be potential diagnostic biomarkers for cirrhosis. As for miR-181a, it may work in TGF-{beta}1 pathway by a currently unknown mechanism.

  10. Characterization of the MMP/TIMP Imbalance and Collagen Production Induced by IL-1β or TNF-α Release from Human Hepatic Stellate Cells

    PubMed Central

    Robert, Sacha; Gicquel, Thomas; Bodin, Aude; Lagente, Vincent; Boichot, Elisabeth

    2016-01-01

    Inflammation has an important role in the development of liver fibrosis in general and the activation of hepatic stellate cells (HSCs) in particular. It is known that HSCs are themselves able to produce cytokines and chemokines, and that this production may be a key event in the initiation of fibrogenesis. However, the direct involvement of cytokines and chemokines in HSC (self-)activation remains uncertain. In this study, the effects of pro-inflammatory cytokines IL-1α and β, TNF-α, and IL-8 on the activation state of HSCs were examined, in comparison to the pro-fibrogenic mediator TGF-β1. LX-2 cells were stimulated for 24 or 48 hours with recombinant human form of the pro-inflammatory cytokines IL-1α and β, TNF-α, and IL-8, and also the pro-fibrogenic mediator TGF-β1. Two drugs were also evaluated, the anti-TNF-α monoclonal antibody infliximab and the IL-1 receptor antagonist anakinra, regarding their inhibitory effects. In LX-2 human HSC, treatment with TGF-β1 are associated with downregulation of the metalloproteinase (MMP)-1 and MMP-3, with upregulation of tissue inhibitor of metalloproteinase (TIMP)-1, collagen type I α1, collagen type IV α1, α-SMA, endothelin-1 and PDGF-BB. Cytokines and chemokines expression were found to be downregulated, excepting IL-6. In contrast, we observed that LX-2 exposure to IL-1, TNF-α and IL-8 can reverse the phenotype of pro-fibrogenic activated cells. Indeed, MMP-1, MMP-3 and MMP-9 were found elevated, associated with downregulation of α-SMA and/or PDGF-BB, and a greater expression of IL-1β, IL-6, IL-8, CXCL1 and CCL2. Lastly, we found that infliximab and anakinra successfully inhibits effects of TNF-α and IL-1 respectively in LX-2 cells. Infliximab and anakinra may be of value in preclinical trials in chronic liver disease. Overall, our results suggest that (i) pro-inflammatory mediators exert complex effects in HSCs via an MMP/TIMP imbalance, and (ii) targeting IL-1 signaling may be a potentially valuable

  11. Epigenetic regulation of connective tissue growth factor by microRNA-214 delivery in exosomes from mouse or human hepatic stellate cells

    PubMed Central

    Chen, Li; Charrier, Alyssa; Zhou, Yu; Chen, Ruju; Yu, Bo; Agarwal, Kitty; Tsukamoto, Hidekazu; Lee, L. James; Paulaitis, Michael E; Brigstock, David R

    2013-01-01

    Connective tissue growth factor (CCN2) drives fibrogenesis in hepatic stellate cells (HSC). Here we show that CCN2 up-regulation in fibrotic or steatotic livers, or in culture-activated or ethanol-treated primary mouse HSC is associated with a reciprocal down-regulation of microRNA-214 (miR-214). By using protector or reporter assays to investigate the 3′-untranslated region (UTR) of CCN2 mRNA, we found that induction of CCN2 expression in HSC by fibrosis-inducing stimuli was due to reduced expression of miR-214 which otherwise inhibited CCN2 expression by directly binding to the CCN2 3′-UTR. Additionally, miR-214 was present in HSC exosomes, which were bi-membrane vesicles, 50–150nm in diameter, negatively charged (−26mV), and positive for CD9. MiR-214 levels in exosomes but not in cell lysates were reduced by pre-treatment of the cells with the exosome inhibitor, GW4869. Co-culture of miR-214-transfected donor HSC with CCN2 3′-UTR luciferase reporter-transfected recipient HSC resulted in miR-214- and exosome-dependent regulation of a wild type CCN2 3′-UTR reporter but not of a mutant CCN2 3′-UTR reporter lacking the miR-214 binding site. Exosomes from HSC were a conduit for uptake of miR-214 by primary mouse hepatocytes. Down-regulation of CCN2 expression by miR-214 also occurred in human LX-2 HSC, consistent with a conserved miR-214 binding site in the human CCN2 3′-UTR. MiR-214 in LX-2 cells was shuttled via exosomes to recipient LX-2 cells or human HepG2 hepatocytes, resulting in suppression of CCN2 3′-UTR activity or expression of CCN2 downstream targets, including αSMA or collagen. Experimental fibrosis in mice was associated with reduced circulating miR-214 levels. Conclusion Exosomal transfer of miR-214 is a paradigm for the regulation of CCN2-dependent fibrogenesis and identifies fibrotic pathways as targets of epigenetic regulation by exosomal miRs. PMID:24122827

  12. MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase

    SciTech Connect

    Zhang, Yifei; Ghazwani, Mohammed; Li, Jiang; Sun, Ming; Stolz, Donna B.; He, Fengtian; Fan, Jie; Xie, Wen; Li, Song

    2014-04-18

    Highlights: • Enhanced HSP47 and LOX expression is associated with decreased miR-29b level in liver fibrosis. • miR-29b down-regulates HSP47 and LOX expression. • The suppression of HSP47 and LOX by miR-29b is mediated by putative sites at their 3′-UTRs. • miR-29b inhibits extracellular LOX activity and collagen maturation. - Abstract: Altered expression of miR-29b is implicated in the pathogenesis and progression of liver fibrosis. We and others previously demonstrated that miR-29b down-regulates the expression of several extracellular-matrix (ECM) genes including Col 1A1, Col 3A1 and Elastin via directly targeting their 3′-UTRs. However, whether or not miR-29b plays a role in the post-translational regulation of ECM biosynthesis has not been reported. Heat shock protein 47 (HSP47) and lysyl oxidase (LOX) are known to be essential for ECM maturation. In this study we have demonstrated that expression of HSP47 and LOX was significantly up-regulated in culture-activated primary rat hepatic stellate cells (HSCs), TGF-β stimulated LX-2 cells and liver tissue of CCl{sub 4}-treated mice, which was accompanied by a decrease of miR-29b level. In addition, over-expression of miR-29b in LX-2 cells resulted in significant inhibition on HSP47 and LOX expression. Mechanistically, miR-29b inhibited the expression of a reporter gene that contains the respective full-length 3′-UTR from HSP47 and LOX gene, and this inhibitory effect was abolished by the deletion of a putative miR-29b targeting sequence from the 3′-UTRs. Transfection of LX-2 cells with miR-29b led to abnormal collagen structure as shown by electron-microscopy, presumably through down-regulation of the expression of molecules involved in ECM maturation including HSP47 and LOX. These results demonstrated that miR-29b is involved in regulating the post-translational processing of ECM and fibril formation.

  13. Matrix metalloproteinase-1 induction by diethyldithiocarbamate is regulated via Akt and ERK/miR222/ETS-1 pathways in hepatic stellate cells

    PubMed Central

    Liu, Tianhui; Wang, Ping; Cong, Min; Zhang, Dong; Liu, Lin; Li, Hongyi; Zhai, Qingling; Li, Zhuo; Jia, Jidong; You, Hong

    2016-01-01

    Matrix metalloproteinase-1 (MMP-1) plays an important role in fibrolysis by degrading excessively deposited collagen I and III. We previously demonstrated that diethyldithiocarbamate (DDC) up-regulates MMP-1 in hepatic stellate cells via the ERK1/2 and Akt signalling pathways. In the current study, we attempted to further explore the molecular mechanisms involved in the regulation of MMP-1. We treated a co-cultured system that included hepatocytes (C3A) and hepatic stellate cells (LX-2) with DDC. The data revealed that the transcriptional factor ETS-1, which is an important regulator of MMP-1, was up-regulated in LX-2 cells following DDC treatment. Furthermore, the up-regulation of MMP-1 by DDC has been abrogated through employing si-ETS-1 to block expression of ETS-1. We found that DDC significantly inhibited the expression of miR-222 in LX-2 cells. We transfected miR-222 mimic into LX-2 cells and then co-cultured the cells with C3A. The up-regulation of ETS-1 and MMP-1 in LX-2 cells treated with DDC were inhibited after miR-222 mimic transfection. These data indicate that DDC up-regulated MMP-1 in LX-2 cells through the miR-222/ETS-1 pathway. Finally, we treated the co-cultured system with an Akt inhibitor (T3830) and an ERK1/2 inhibitor (U0126). Both T3830 and U0126 blocked the suppression of miR-222 by DDC in LX-2. Collectively, these data indicate that DDC up-regulated MMP-1 in LX-2 cells through the Akt and ERK/miR-222/ETS-1 pathways. Our study provides experimental data that will aid the control of the process of fibrolysis in liver fibrosis prevention and treatment. PMID:27412967

  14. Upregulation of microRNA-126 in hepatic stellate cells may affect pathogenesis of liver fibrosis through the NF-κB pathway.

    PubMed

    Feng, Xiao; Tan, Wenkai; Cheng, Si; Wang, Hao; Ye, Shicai; Yu, Caiyuan; He, Yanting; Zeng, Juncheng; Cen, Junwei; Hu, Juxiang; Zheng, Rong; Zhou, Yu

    2015-07-01

    Hepatic fibrosis, which results from chronic liver disease, currently lacks effective treatment. MicroRNAs, a group of small noncoding RNA molecules, have been observed to play an essential role in liver diseases, including hepatic fibrosis. In this study, we described the regulation of nuclear factor kappa B (NF-κB) inhibitor alpha (IκBα) and its possible signaling pathway by miR-126 in human hepatic stellate cell (HSC) line LX-2. The 3'-untranslated region (3'-UTR) of IκBα combined with miR-126 was analyzed by using a dual-luciferase reporter assay. Furthermore, the effects of miR-126 on IκBα mRNA and protein and NF-κB protein expression were assessed by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and western blot analysis in the human HSC LX-2 cell line transfected with miR-126 mimic or inhibitor. Moreover, to understand the molecular mechanism of miR-126 in promoting liver fibrosis through NF-κB signaling pathway, the NF-κB downstream signaling factors expression such as transforming growth factor (TGF)-β1 and collagen I mRNA were detected by real-time qRT-PCR. We identified that IκBα is a potential target gene of miR-126, by directly targeting its 3'-UTR. Endogenous miR-126 and exogenous miR-126 mimic inhibited IκBα expression. Moreover, overexpression of miR-126 reduced total and the cytoplasm IκBα protein expression and increased total and cytoblast NF-κB protein expression of LX-2. Conversely, knockdown of miR-126 could inhibit NF-κB activation by upregulation of IκBα protein expression. Further, miR-126 promoted TNF-a-induced TGF-β1 and collagen I mRNA expression in LX-2 cells. miR-126 may play an important role in hepatic fibrosis by downregulating the expression of IκBα partly through the NF-κB signaling pathway. PMID:25974152

  15. The induction of human myeloid derived suppressor cells through hepatic stellate cells is dose-dependently inhibited by the tyrosine kinase inhibitors nilotinib, dasatinib and sorafenib, but not sunitinib.

    PubMed

    Heine, Annkristin; Schilling, Judith; Grünwald, Barbara; Krüger, Achim; Gevensleben, Heidrun; Held, Stefanie Andrea Erika; Garbi, Natalio; Kurts, Christian; Brossart, Peter; Knolle, Percy; Diehl, Linda; Höchst, Bastian

    2016-03-01

    Increased numbers of immunosuppressive myeloid derived suppressor cells (MDSCs) correlate with a poor prognosis in cancer patients. Tyrosine kinase inhibitors (TKIs) are used as standard therapy for the treatment of several neoplastic diseases. However, TKIs not only exert effects on the malignant cell clone itself but also affect immune cells. Here, we investigate the effect of TKIs on the induction of MDSCs that differentiate from mature human monocytes using a new in vitro model of MDSC induction through activated hepatic stellate cells (HSCs). We show that frequencies of monocytic CD14(+)HLA-DR(-/low) MDSCs derived from mature monocytes were significantly and dose-dependently reduced in the presence of dasatinib, nilotinib and sorafenib, whereas sunitinib had no effect. These regulatory effects were only observed when TKIs were present during the early induction phase of MDSCs through activated HSCs, whereas already differentiated MDSCs were not further influenced by TKIs. Neither the MAPK nor the NFκB pathway was modulated in MDSCs when any of the TKIs was applied. When functional analyses were performed, we found that myeloid cells treated with sorafenib, nilotinib or dasatinib, but not sunitinib, displayed decreased suppressive capacity with regard to CD8+ T cell proliferation. Our results indicate that sorafenib, nilotinib and dasatinib, but not sunitinib, decrease the HSC-mediated differentiation of monocytes into functional MDSCs. Therefore, treatment of cancer patients with these TKIs may in addition to having a direct effect on cancer cells also prevent the differentiation of monocytes into MDSCs and thereby differentially modulate the success of immunotherapeutic or other anti-cancer approaches. PMID:26786874

  16. Development of Salvianolic acid B-Tanshinone II A-Glycyrrhetinic acid compound liposomes: formulation optimization and its effects on proliferation of hepatic stellate cells.

    PubMed

    Lin, Jiahao; Wang, Xiuli; Wu, Qing; Dai, Jundong; Guan, Huida; Cao, Weiyi; He, Liangying; Wang, Yurong

    2014-02-28

    The aim of this study was to systematically optimize and characterize the co-encapsulation process of Salvianolic acid B (Sal B), Tanshinone II A (TSN) and Glycyrrhetinic acid (GA) into liposomes. The liposomes (GTS-lip) were prepared using film hydration method combined with probe sonication to encapsulate two hydrophobic components (TSN and GA), and using pH gradient method to load hydrophilic component Sal B. The concentration of encapsulated drugs was measured by a reversed phase high performance liquid chromatography (RP-HPLC) method. Systematic optimization of encapsulation process was performed using single factor test, orthogonal test in combination with Box-Behnken Design. Optimum conditions are as follows: ratio of GA to lipid (w/w)=0.08, ratio of Sal B to lipid (w/w)=0.12 and pH of buffer=3.3. Based on the conditions mentioned above, encapsulation efficiency of Sal B, TSN and GA reached target levels: (96.03 ± 0.28)%, (80.63 ± 0.91)% and (88.56 ± 0.17)%, respectively. The GTS-lip had a unimodal size-distribution and a mean diameter of 191.3 ± 6.31 nm. Morphology determination of the GTS-lip indicated that the liposomes were spherical, and there was no free drug crystal in the visual field of transmission electron microscopy. Also, the ζ potential of GTS-lip was detected to be -11.6 ± 0.35 mV. In vitro release investigation of GTS-lip suggested that the release rate of GTS-lip significantly decreased compared to drug solution. The accumulative release percentage of TSN, GA and Sal B were 10% in 36 h, 4% in 36 h and 77% in 24 h. Meanwhile, GTS-lip exhibited definite activity on proliferative inhibition of hepatic stellate cells (HSC). GTS-lip decreased the viability of the HSC to higher than 75% at two high drug concentration groups in 24h. At the same time, GTS-lip of two low drug concentration groups increased the inhibition rates by 2.3 folds and 1.9 folds separately at 48 h compared to 24h. By contrast, inhibition activity of G-T-S solution group

  17. Sirtuin 3 (SIRT3) Regulates α-Smooth Muscle Actin (α-SMA) Production through the Succinate Dehydrogenase-G Protein-coupled Receptor 91 (GPR91) Pathway in Hepatic Stellate Cells.

    PubMed

    Li, Ying Hui; Choi, Dae Hee; Lee, Eun Hye; Seo, Su Ryeon; Lee, Seungkoo; Cho, Eun-Hee

    2016-05-01

    Sirtuin 3 (SIRT3) is an NAD(+)-dependent protein deacetylase. Recent studies have shown that SIRT3 expression is decreased in nonalcoholic fatty liver disease (NAFLD). Moreover, SIRT3 is a key regulator of succinate dehydrogenase (SDH), which catalyzes the oxidation of succinate to fumarate. Increased succinate concentrations and the specific G protein-coupled receptor 91 (GPR91) are involved in the activation of hepatic stellate cells (HSCs). In this study, we aimed to establish whether SIRT3 regulated the SDH activity, succinate, and GPR91 expression in HSCs and an animal model of NAFLD. Our goal was also to determine whether succinate released from hepatocytes regulated HSC activation. Inhibiting SIRT3 using SIRT3 siRNA exacerbated HSC activation via the SDH-succinate-GPR91 pathway, and SIRT3 overexpression or honokiol treatment attenuated HSC activation in vitro In isolated liver and HSCs from methionine- and choline-deficient (MCD) diet-induced NAFLD, the expression of SIRT3 and SDH activity was decreased, and the succinate concentrations and GPR91 expression were increased. Moreover, we found that GPR91 knockdown or resveratrol treatment improved the steatosis in MCD diet-fed mice. This investigation revealed a novel mechanism of the SIRT3-SDH-GPR91 cascade in MCD diet-induced HSC activation in NAFLD. These findings highlight the biological significance of novel strategies aimed at targeting SIRT3 and GPR91 in HSCs with the goal of improving NAFLD treatment. PMID:26912655

  18. Short Hairpin RNA Causes the Methylation of Transforming Growth Factor-β Receptor II Promoter and Silencing of the Target Gene in Rat Hepatic Stellate Cells

    PubMed Central

    Kim, Jin-Wook; Zhang, Yan-Hong; Zern, Mark A; Rossi, John J.; Wu, Jian

    2008-01-01

    Small interfering RNA (siRNA) induces transcriptional gene silencing (TGS) in plant and animal cells. RNA dependent DNA methylation (RdDM) accounts for TGS in plants, but it is unclear whether siRNA induces RdDM in mammalian cells. To determine whether stable expression of short hairpin siRNA (shRNA) induces DNA methylation in mammalian cells, we transduced rat hepatic stellate SBC10 cells with lentiviral vectors which encode an U6 promoter-driven shRNA expression cassette homologous to the transforming growth factor-β receptor (TGFβRII) promoter region. Sequencing analysis of bisulfite-modified genomic DNA showed the methylation of cytosine residues both in CpG dinucleotides and non-CpG sites around the target region of the TGFβRII promoter in SBC10 cells transduced with the promoter-targeting lentiviral vector. In these cells, real-time RT-PCR showed a decrease in TGFβRII mRNA levels which were reversed by treatment with 5-aza-2-deoxycytidine. Our results demonstrate that recombinant lentivirus-mediated shRNA delivery resulted in the methylation of the homologous promoter area in mammalian cells, and this approach may be used as a tool for transcriptional gene silencing by epigenetic modification of mammalian cell promoters. PMID:17533113

  19. Schistosoma japonicum egg antigen up-regulates fibrogenesis and inhibits proliferation in primary hepatic stellate cells in a concentration-dependent manner

    PubMed Central

    Liu, Ping; Wang, Mi; Lu, Xiao-Dan; Zhang, Shu-Juan; Tang, Wang-Xian

    2013-01-01

    AIM: To investigate the effects of different concentrations of Schistosoma japonicum (S. japonicum) egg antigen on fibrogenesis and apoptosis in primary hepatic stellate cells (HSCs). METHODS: A mouse model of schistosomiasis-associated liver fibrosis (SSLF) was established by infecting mice with schistosomal cercaria via the abdomen. HSCs were isolated from SSLF mice by discontinuous density gradient centrifugation, and their identity was confirmed by immunofluorescence double staining of α-smooth muscle actin (α-SMA) and desmin. The growth inhibitory effect and 50% inhibitory concentration (IC50) of S. japonicum egg antigen for primary HSCs (24 h) were determined using a cell counting kit-8 (CCK-8) assay. The expression levels of α-SMA, matrix metalloproteinase-9 (MMOL/LP-9) and tissue inhibitor of metalloproteinases-1 (TIMP-1) in HSCs in response to different concentrations of S. japonicum egg antigen were detected by Western blotting and real-time reverse transcription-polymerase chain reaction. The levels of phospho-P38 (P-P38), phospho-Jun N-terminal kinase (P-JNK) and phospho-Akt (P-AKT) in HSCs were detected by Western blotting. RESULTS: An SSLF mouse model was established, and primary HSCs were successfully isolated and cultured. S. japonicum egg antigen inhibited HSC proliferation in a concentration-dependent manner. The IC50 of the S. japonicum egg antigen was 244.53 ± 35.26 μg/mL. S. japonicum egg antigen enhanced α-SMA expression at both the mRNA and protein levels and enhanced TIMP-1 expression at the mRNA level in HSCs (P < 0.05), whereas the expression of MMOL/LP-9 was attenuated at both the mRNA and protein levels in a concentration-dependent manner (P < 0.05). A high concentration of S. japonicum egg antigen enhanced P-P38, P-JNK and P-AKT activation (P < 0.05). The changes in α-SMA and MMOL/LP-9 expression induced by S. japonicum egg antigen were closely correlated with P-P38 and P-JNK activation (P < 0.05). The attenuation of MMOL/LP-9

  20. Connective tissue growth factor (CCN2) and microRNA-21 are components of a positive feedback loop in pancreatic stellate cells (PSC) during chronic pancreatitis and are exported in PSC-derived exosomes.

    PubMed

    Charrier, Alyssa; Chen, Ruju; Chen, Li; Kemper, Sherri; Hattori, Takako; Takigawa, Masaharu; Brigstock, David R

    2014-06-01

    Pancreatitis is an inflammatory condition of the pancreas which, in its chronic form, involves tissue destruction, exocrine and endocrine insufficiency, increased risk of pancreatic cancer, and an extensive fibrotic pathology which is due to unrelenting collagen deposition by pancreatic stellate cells (PSC). In response to noxious agents such as alcohol-excessive consumption of which is a major cause of pancreatitis in the West-normally quiescent PSC undergo a phenotypic and functional transition to activated myofibroblasts which produce and deposit collagen at high levels. This process is regulated by connective tissue growth factor (CCN2), expression of which is highly up-regulated in activated PSC. We show that CCN2 production by activated PSC is associated with enhanced expression of microRNA-21 (miR-21) which was detected at high levels in activated PSC in a murine model of alcoholic chronic pancreatitis. A positive feedback loop between CCN2 and miR-21 was identified that resulted in enhancement of their respective expression as well as that of collagen α1(I). Both miR-21 and CCN2 mRNA were present in PSC-derived exosomes, which were characterized as 50-150 nm CD9-positive nano-vesicles. Exosomes from CCN2-GFP- or miR-21-GFP-transfected PSC were taken up by other PSC cultures, as shown by direct fluorescence or qRT-PCR for GFP. Collectively these studies establish miR-21 and CCN2 as participants in a positive feedback loop during PSC activation and as components of the molecular payload in PSC-derived exosomes that can be delivered to other PSC. Thus interactions between cellular or exosomal miR-21 and CCN2 represent novel aspects of fibrogenic regulation in PSC. Summary Chronic injury in the pancreas is associated with fibrotic pathology which is driven in large part by CCN2-dependent collagen production in pancreatic stellate cells. This study shows that CCN2 up-regulation in PSC is associated with increased expression of miR-21 which, in turn, is able to

  1. IL-17A Enhances the Expression of Pro-fibrotic Genes through Upregulation of the TGF-β Receptor on Hepatic Stellate Cells in a JNK-dependent Manner

    PubMed Central

    Fabre, Thomas; Kared, Hassen; Friedman, Scott L.; Shoukry, Naglaa H.

    2014-01-01

    Activation of hepatic stellate cells (HSCs) is a key event in the initiation of liver fibrosis, characterized by enhanced extracellular matrix (ECM) production and altered degradation. Activation of HSCs can be modulated by cytokines produced by immune cells. Recent reports have implicated the pro-inflammatory cytokine IL-17A in liver fibrosis progression. We hypothesized that IL-17A may enhance activation of HSC and induction of the fibrogenic signals in these cells. The human HSC line LX2 and primary human HSCs were stimulated with increasing doses of IL-17A and compared to TGF-β and PBS-treated cells as positive and negative controls, respectively. IL-17A alone did not induce activation of HSC. However, IL-17A sensitized HSCs to the action of suboptimal doses of TGF-β as confirmed by strong induction of alpha-smooth muscle actin (α-SMA), collagen type I (COL1A1) and tissue inhibitor of matrix metalloproteinase I (TIMP-I) gene expression and protein production. IL-17A specifically upregulated the cell surface expression of TGF-β-RII following stimulation. Pretreatment of HSCs with IL-17A enhanced signaling through the TGF-β-RII as observed by increased phosphorylation of SMAD2/3 in response to stimulation with suboptimal doses of TGF-β. This enhanced TGF-β response of HSCs induced by IL-17A was JNK-dependent. Our results suggest a novel pro-fibrotic function for IL-17A by enhancing the response of HSCs to TGF-β through activation of the JNK pathway. IL-17A acts through upregulation and stabilization of the TGF-β-RII leading to increased SMAD2/3 signaling. These findings represent a novel example of cooperative signaling between an immune cytokine and a fibrogenic receptor. PMID:25210118

  2. Transforming growth factor-beta and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury.

    PubMed

    Yoshida, Katsunori; Matsuzaki, Koichi; Mori, Shigeo; Tahashi, Yoshiya; Yamagata, Hideo; Furukawa, Fukiko; Seki, Toshihito; Nishizawa, Mikio; Fujisawa, Junichi; Okazaki, Kazuichi

    2005-04-01

    After liver injury, transforming growth factor-beta (TGF-beta) and platelet-derived growth factor (PDGF) regulate the activation of hepatic stellate cells (HSCs) and tissue remodeling. Mechanisms of PDGF signaling in the TGF-beta-triggered cascade are not completely understood. TGF-beta signaling involves phosphorylation of Smad2 and Smad3 at linker and C-terminal regions. Using antibodies to distinguish Smad2/3 phosphorylated at linker regions from those phosphorylated at C-terminal regions, we investigated Smad2/3-mediated signaling in rat liver injured by CCl(4) administration and in cultured HSCs. In acute liver injury, Smad2/3 were transiently phosphorylated at both regions. Although linker-phosphorylated Smad2 remained in the cytoplasm of alpha-smooth muscle actin-immunoreactive mesenchymal cells adjacent to necrotic hepatocytes in centrilobular areas, linker-phosphorylated Smad3 accumulated in the nuclei. c-Jun N-terminal kinase (JNK) in the activated HSCs directly phosphorylated Smad2/3 at linker regions. Co-treatment of primary cultured HSCs with TGF-beta and PDGF activated the JNK pathway, subsequently inducing endogenous linker phosphorylation of Smad2/3. The JNK pathway may be involved in migration of resident HSCs within the space of Disse to the sites of tissue damage because the JNK inhibitor SP600125 inhibited HSC migration induced by TGF-beta and PDGF signals. Moreover, treatment of HSCs with both TGF-beta and PDGF increased transcriptional activity of plasminogen activator inhibitor-1 through linker phosphorylation of Smad3. In conclusion, TGF-beta and PDGF activate HSCs by transmitting their signals through JNK-mediated Smad2/3 phosphorylation at linker regions, both in vivo and in vitro. PMID:15793284

  3. Microtransplantation of cellular membranes from squid stellate ganglion reveals ionotropic GABA receptors.

    PubMed

    Conti, Luca; Limon, Agenor; Palma, Eleonora; Miledi, Ricardo

    2013-02-01

    The squid has been the most studied cephalopod, and it has served as a very useful model for investigating the events associated with nerve impulse generation and synaptic transmission. While the physiology of squid giant axons has been extensively studied, very little is known about the distribution and function of the neurotransmitters and receptors that mediate inhibitory transmission at the synapses. In this study we investigated whether γ-aminobutyric acid (GABA) activates neurotransmitter receptors in stellate ganglia membranes. To overcome the low abundance of GABA-like mRNAs in invertebrates and the low expression of GABA in cephalopods, we used a two-electrode voltage clamp technique to determine if Xenopus laevis oocytes injected with cell membranes from squid stellate ganglia responded to GABA. Using this method, membrane patches containing proteins and ion channels from the squid's stellate ganglion were incorporated into the surface of oocytes. We demonstrated that GABA activates membrane receptors in cellular membranes isolated from squid stellate ganglia. Using the same approach, we were able to record native glutamate-evoked currents. The squid's GABA receptors showed an EC(50) of 98 μmol l(-1) to GABA and were inhibited by zinc (IC(50) = 356 μmol l(-1)). Interestingly, GABA receptors from the squid were only partially blocked by bicuculline. These results indicate that the microtransplantation of native cell membranes is useful to identify and characterize scarce membrane proteins. Moreover, our data also support the role of GABA as an ionotropic neurotransmitter in cephalopods, acting through chloride-permeable membrane receptors. PMID:23493508

  4. Unfolded protein response induced by Brefeldin A increases collagen type I levels in hepatic stellate cells through an IRE1α, p38 MAPK and Smad-dependent pathway.

    PubMed

    de Galarreta, Marina Ruiz; Navarro, Amaia; Ansorena, Eduardo; Garzón, Antonia García; Mòdol, Teresa; López-Zabalza, María J; Martínez-Irujo, Juan J; Iraburu, María J

    2016-08-01

    Unfolded protein response (UPR) triggered as a consequence of ER stress has been shown to be involved in the development of different pathologies, including fibrotic disorders. In the present paper we explore the role played by UPR on a key fibrogenic parameter in the liver: collagen type I levels in activated hepatic stellate cells (HSC). Using Brefeldin A (BFA) as an ER stress inducer we found that UPR correlated with enhanced mRNA and protein levels of collagen type I in a cell line of immortalized non-tumoral rat HSC. Analysis of the three branches of UPR revealed the activation of IRE1α, PERK and ATF6 in response to BFA, although PERK activation was shown not to be involved in the fibrogenic action of BFA. BFA also activated p38 MAPK in an IRE1α-dependent way and the p38 MAPK inhibitor SB203580 prevented the increase in collagen type I mRNA and protein levels caused by BFA, suggesting the involvement of this kinase on this effect. Analysis of Smad activation showed that phosphorylated nuclear levels of Smad2 and 3 were increased in response to BFA treatment. Inhibition of Smad3 phosphorylation by SIS3 prevented the enhancement of collagen type I levels caused by BFA. Pretreatment with IRE1α and p38 MAPK inhibitors also prevented the increased p-Smad3 accumulation in the nucleus, suggesting an IRE1α-p38 MAPK-Smad pathway to be responsible for the fibrogenic action of BFA on HSC. PMID:27155082

  5. Suppression of CD51 in pancreatic stellate cells inhibits tumor growth by reducing stroma and altering tumor-stromal interaction in pancreatic cancer.

    PubMed

    Horioka, Kohei; Ohuchida, Kenoki; Sada, Masafumi; Zheng, Biao; Moriyama, Taiki; Fujita, Hayato; Manabe, Tatsuya; Ohtsuka, Takao; Shimamoto, Masaya; Miyazaki, Tetsuyuki; Mizumoto, Kazuhiro; Oda, Yoshinao; Nakamura, Masafumi

    2016-04-01

    Pancreatic stellate cells (PSCs) enhance the malignant behavior of pancreatic cancer by interacting with cancer cells and producing extracellular matrix (ECM). To date, several stroma-targeted therapies for pancreatic cancer have been attempted, but these therapies are still not in practical use. Integrins expressed in stromal cells are involved in fibrosis of several organs, as well as promoting tumor malignancy. We investigated whether CD51, also known as integrin αV, expressed in PSCs was associated with stromal formation of pancreatic cancer and enhancement of tumor malignancy. We also assessed the effects of suppression of CD51 in PSCs on pancreatic cancer. Immunohistochemistry for CD51 in resected pancreatic cancer tissues showed that high expression of CD51 in the tumor stroma was associated with lymph node metastasis (P=0.025), positive pathologic margin (P=0.025), and shorter patient survival times (P=0.043). Lentivirus-mediated short hairpin RNA knockdown of CD51 decreased the proliferation and migration of PSCs. Quantitative real-time polymerase chain reaction showed that expression levels of genes related with ECM and tumor-stromal interactions were decreased by CD51 knockdown in PSCs. In a co-implantation model of pancreatic cancer cells and PSCs, tumor growth in vivo was inhibited by CD51 knockdown in PSCs (P<0.05). We also found reduced tumor stroma and decreased proliferation of cancer cells in implanted cancer tissues with CD51-silenced PSCs (P<0.05). Our results showed that CD51 expression in pancreatic cancer stroma is associated with enhanced tumor malignancy and that CD51 may be a potential therapeutic target for pancreatic cancer. PMID:26846197

  6. Hepatic Stellate Cell–Targeted Delivery of Hepatocyte Growth Factor Transgene via Bile Duct Infusion Enhances Its Expression at Fibrotic Foci to Regress Dimethylnitrosamine-Induced Liver Fibrosis

    PubMed Central

    Narmada, Balakrishnan Chakrapani; Kang, Yuzhan; Venkatraman, Lakshmi; Peng, Qiwen; Sakban, Rashidah Binte; Nugraha, Bramasta; Jiang, Xuan; Bunte, Ralph M.; So, Peter T.C.; Tucker-Kellogg, Lisa

    2013-01-01

    Abstract Liver fibrosis generates fibrotic foci with abundant activated hepatic stellate cells and excessive collagen deposition juxtaposed with healthy regions. Targeted delivery of antifibrotic therapeutics to hepatic stellate cells (HSCs) might improve treatment outcomes and reduce adverse effects on healthy tissue. We delivered the hepatocyte growth factor (HGF) gene specifically to activated hepatic stellate cells in fibrotic liver using vitamin A–coupled liposomes by retrograde intrabiliary infusion to bypass capillarized hepatic sinusoids. The antifibrotic effects of DsRed2-HGF vector encapsulated within vitamin A–coupled liposomes were validated by decreases in fibrotic markers in vitro. Fibrotic cultures transfected with the targeted transgene showed a significant decrease in fibrotic markers such as transforming growth factor-β1. In rats, dimethylnitrosamine-induced liver fibrosis is manifested by an increase in collagen deposition and severe defenestration of sinusoidal endothelial cells. The HSC-targeted transgene, administered via retrograde intrabiliary infusion in fibrotic rats, successfully reduced liver fibrosis markers alpha-smooth muscle actin and collagen, accompanied by an increase in the expression of DsRed2-HGF near the fibrotic foci. Thus, targeted delivery of HGF gene to hepatic stellate cells increased the transgene expression at the fibrotic foci and strongly enhanced its antifibrotic effects. PMID:23527815

  7. Indole-3-carbinol enhances the resolution of rat liver fibrosis and stimulates hepatic stellate cell apoptosis by blocking the inhibitor of κB kinase α/inhibitor of κB-α/nuclear factor-κB pathway.

    PubMed

    Ping, Jie; Gao, Ai-mei; Qin, Hai-quan; Wei, Xiao-ning; Bai, Jing; Liu, Lian; Li, Xiao-hai; Li, Rui-wen; Ao, Ying; Wang, Hui

    2011-11-01

    Hepatic stellate cells (HSC) play a pivotal role in liver fibrosis, and the clearance of activated HSC by apoptosis is associated with the resolution of liver fibrosis. The development of strategies that promote this process in a selective way is therefore important. We evaluated the effects of indole-3-carbinol (I3C), a nutritional component derived from vegetables from the Brassica family, on liver fibrosis and HSC apoptosis. The in vivo therapeutic effects of I3C were monitored in three rat models of liver fibrosis induced by porcine serum, bile duct ligation, or multiple hepatotoxic factors, and its proapoptotic effect and molecular mechanism were studied in vitro in HSC-T6, a rat HSC line. The results showed that I3C treatment significantly reduced the number of activated HSC in the livers of rats with liver fibrosis. In histopathology, I3C reduced hepatocyte degeneration and necrosis, accelerated collagen degradation, and promoted the reversal of liver fibrosis. I3C prescribed to HSC-T6 resulted in morphologic alterations typical of apoptosis and DNA cleavage to a nucleosomal ladder. Moreover, I3C significantly increased the HSC-T6 apoptosis rate and the expression ratio of Bax to Bcl-2. High-throughput protein array analysis indicated that the tumor necrosis factor-α/nuclear factor-κB (NF-κB) signal pathway participated in I3C-induced HSC-T6 apoptosis. Western blot and electrophoretic mobility-shift assay confirmed that I3C inhibited the phosphorylation of inhibitor of κB kinase α and inhibitor of κB-α and NF-κB DNA binding activity. In conclusion, I3C could promote the reverse process of liver fibrosis in vivo and induce apoptosis of activated HSC in vitro, which indicates the use of I3C as a potential therapeutic agent in liver fibrosis treatment. PMID:21862660

  8. Role of interleukin-1 and its antagonism of hepatic stellate cell proliferation and liver fibrosis in the Abcb4-/- mouse model

    PubMed Central

    Reiter, Florian P; Wimmer, Ralf; Wottke, Lena; Artmann, Renate; Nagel, Jutta M; Carranza, Manuel O; Mayr, Doris; Rust, Christian; Fickert, Peter; Trauner, Michael; Gerbes, Alexander L; Hohenester, Simon; Denk, Gerald U

    2016-01-01

    AIM: To study the interleukin-1 (IL-1) pathway as a therapeutic target for liver fibrosis in vitro and in vivo using the ATP-binding cassette transporter b4-/- (Abcb4-/-) mouse model. METHODS: Female and male Abcb4-/- mice from 6 to 13 mo of age were analysed for the degree of cholestasis (liver serum tests), extent of liver fibrosis (hydroxyproline content and Sirius red staining) and tissue-specific activation of signalling pathways such as the IL-1 pathway [quantitative polymerase chain reaction (qPCR)]. For in vivo experiments, murine hepatic stellate cells (HSCs) were isolated via pronase-collagenase perfusion followed by density gradient centrifugation using female mice. Murine HSCs were stimulated with up to 1 ng/mL IL-1β with or without 2.5 μg/mL Anakinra, an IL-1 receptor antagonist, respectively. The proliferation of murine HSCs was assessed via the BrdU assay. The toxicity of Anakinra was evaluated via the fluorescein diacetate hydrolysis (FDH) assay. In vivo 8-wk-old Abcb4-/- mice with an already fully established hepatic phenotype were treated with Anakinra (1 mg/kg body-weight daily intraperitoneally) or vehicle and liver injury and liver fibrosis were evaluated via serum tests, qPCR, hydroxyproline content and Sirius red staining. RESULTS: Liver fibrosis was less pronounced in males than in female Abcb4-/- animals as defined by a lower hydroxyproline content (274 ± 64 μg/g vs 436 ± 80 μg/g liver, respectively; n = 13-15; P < 0.001; Mann-Whitney U-test) and lower mRNA expression of the profibrogenic tissue inhibitor of metalloproteinase-1 (TIMP) (1 ± 0.41 vs 0.66 ± 0.33 fold, respectively; n = 13-15; P < 0.05; Mann-Whitney U-test). Reduced liver fibrosis was associated with significantly lower levels of F4/80 mRNA expression (1 ± 0.28 vs 0.71 ± 0.41 fold, respectively; n = 12-15; P < 0.05; Mann-Whitney U-test) and significantly lower IL-1β mRNA expression levels (1 ± 0.38 vs 0.44 ± 0.26 fold, respectively; n = 13-15; P < 0.001; Mann

  9. Calcium channel blockers ameliorate iron overload-associated hepatic fibrosis by altering iron transport and stellate cell apoptosis.

    PubMed

    Zhang, Ying; Zhao, Xin; Chang, Yanzhong; Zhang, Yuanyuan; Chu, Xi; Zhang, Xuan; Liu, Zhenyi; Guo, Hui; Wang, Na; Gao, Yonggang; Zhang, Jianping; Chu, Li

    2016-06-15

    Liver fibrosis is the principal cause of morbidity and mortality in patients with iron overload. Calcium channel blockers (CCBs) can antagonize divalent cation entry into renal and myocardial cells and inhibit fibrogenic gene expression. We investigated the potential of CCBs to resolve iron overload-associated hepatic fibrosis. Kunming mice were assigned to nine groups (n=8 per group): control, iron overload, deferoxamine, high and low dose verapamil, high and low dose nimodipine, and high and low dose diltiazem. Iron deposition and hepatic fibrosis were measured in mouse livers. Expression levels of molecules associated with transmembrane iron transport were determined by molecular biology approaches. In vitro HSC-T6 cells were randomized into nine groups (the same groups as the mice). Changes in proliferation, apoptosis, and metalloproteinase expression in cells were detected to assess the anti-fibrotic effects of CCBs during iron overload conditions. We found that CCBs reduced hepatic iron content, intracellular iron deposition, the number of hepatic fibrotic areas, collagen expression levels, and hydroxyproline content. CCBs rescued abnormal expression of α1C protein in L-type voltage-dependent calcium channel (LVDCC) and down-regulated divalent metal transporter-1 (DMT-1) expression in mouse livers. In iron-overloaded HSC-T6 cells, CCBs reduced iron deposition, inhibited proliferation, induced apoptosis, and elevated expression of matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1). CCBs are potential therapeutic agents that can be used to address hepatic fibrosis during iron overload. They resolve hepatic fibrosis probably correlated with regulating transmembrane iron transport and inhibiting HSC growth. PMID:27095094

  10. Astrocyte Stellation, a Process Dependent on Rac1 Is Sustained by the Regulated Exocytosis of Enlargeosomes

    PubMed Central

    Racchetti, Gabriella; D'Alessandro, Rosalba; Meldolesi, Jacopo

    2012-01-01

    Cultured astrocytes exhibit a flat/epitelioid phenotype much different from the star-like phenotype of tissue astrocytes. Upon exposure to treatments that affect the small GTPase Rho and/or its effector ROCK, however, flat astrocytes undergo stellation, with restructuring of cytoskeleton and outgrowth of processes with lamellipodia, assuming a phenotype closer to that exhibited in situ. The mechanisms of this change are known only in part. Using the ROCK blocker drug Y27632, which induces rapid (tens of min), dose-dependent and reversible stellations, we focused on two specific aspects of the process: its dependence on small GTPases and the large surface expansion of the cells. Contrary to previous reports, we found stellation to be governed by the small G protein Rac1, up to disappearance of the process when Rac1 was downregulated or blocked by a specific drug. In contrast cdc42, the other G-protein often involved in phenotype changes, appeared not involved. The surface expansion concomitant to cytoskeleton restructuring, also dependent on Rac1, was found to be at least partially sustained by the exocytosis of enlargeosomes, small vesicles distinct from classical cell organelles, which are abundant in astrocytes. Exhaustion of stellation induced by repeated administrations of Y27632 correlated with the decrease of the enlargeosome pool. A whole-cell process like stellation of cultured astrocytes might be irrelevant in the brain tissue. However, local restructuring of the cytoskeleton coordinate with surface expansion, occurring at critical cell sites and sustained by mechanisms analogous to those of stellation, might be of importance in both astrocyte physiology and pathology. © 2011 Wiley Periodicals, Inc. PMID:22144092

  11. Screening and isolation for anti-hepatofibrotic components from medicinal mushrooms using TGF-(β1-induced live fibrosis in hepatic stellate cells.

    PubMed

    Geng, Yan; Wang, Jing; Xie, Minfeng; Lu, Zhenming; Xu, Hongyu; Shi, Jin-Song; Xu, Zheng-Hong

    2014-01-01

    Liver fibrosis is a wound-healing response to chronic liver injury that could lead to liver failure, but treatment remains ineffective. In this study, we investigated anti-hepatic fibrosis activity of n-hexane, chloroform, ethyl acetate, and methanol extracts of mycelia from six commercially available medicinal mushrooms in submerged culture, namely Antrodia camphorata, Cephalosporium sinensis, Cordyceps mortierella, Hericium erinaceus, Ganoderma lucidum, and Armillaria mellea. Their anti-fibrotic activities were evaluated via inhibition against accumulation of TGF-β1-induced collagen deposition in CFSC-8B cells. Hex, Chl, and MeOH extracts of A. camphorata and Hex extract of A. mellea significantly decreased collagen production. Bioactivity-guided fractionation led to the identification of seven compounds using UPLC-Q-TOF-MS from the Hex Fr.2 of A. camphorata. At the molecular level, Hex Fr.2 of A. camphorata suppressed α-SMA, Collagen I, Collagen III, and Fibronectin expression induced by TGF-β1 in CFSC-8B cells as indicated by qRT-PCR analysis. They also inhibited α-SMA and Collagen I protein expression according to western blot analyses. Mechanistically, Hex Fr.2 of A. camphorata negatively regulates TGF-β1/Smad2/3 signaling. Our studies demonstrate that A. camphorata has in vitro anti-hepatofibrotic activity and that there is great potential for the discovery of new drugs for the treatment of liver fibrosis by screening more medicinal mushrooms. PMID:25404218

  12. Grid cell firing patterns may arise from feedback interaction between intrinsic rebound spiking and transverse traveling waves with multiple heading angles

    PubMed Central

    Hasselmo, Michael E.; Shay, Christopher F.

    2014-01-01

    This article presents a model using cellular resonance and rebound properties to model grid cells in medial entorhinal cortex. The model simulates the intrinsic resonance properties of single layer II stellate cells with different frequencies due to the hyperpolarization activated cation current (h current). The stellate cells generate rebound spikes after a delay interval that differs for neurons with different resonance frequency. Stellate cells drive inhibitory interneurons to cause rebound from inhibition in an alternate set of stellate cells that drive interneurons to activate the first set of cells. This allows maintenance of activity with cycle skipping of the spiking of cells that matches recent physiological data on theta cycle skipping. The rebound spiking interacts with subthreshold oscillatory input to stellate cells or interneurons regulated by medial septal input and defined relative to the spatial location coded by neurons. The timing of rebound determines whether the network maintains the activity for the same location or shifts to phases of activity representing a different location. Simulations show that spatial firing patterns similar to grid cells can be generated with a range of different resonance frequencies, indicating how grid cells could be generated with low frequencies present in bats and in mice with knockout of the HCN1 subunit of the h current. PMID:25400555

  13. Computer detection of stellate lesions in mammograms

    NASA Astrophysics Data System (ADS)

    Kegelmeyer, W. Philip, Jr.

    1992-06-01

    The three primary signs for which radiologists search when screening mammograms for breast cancer are stellate lesions, microcalcifications, and circumscribed lesions. Stellate lesions are of particular importance, as they are almost always associated with a malignancy. Further, they are often indicated only by subtle architectural distortions and so are in general easier to miss than the other signs. We have developed a method for the automatic detection of stellate lesions in digitized mammograms, and have tested them on image data where the presence or absence of malignancies is known. We extract image features from the known images, use them to grow binary decision trees, and use those trees to label each pixel of new mammograms with its probability of being located on an abnormality. The primary feature for the detection of stellate lesions is ALOE, analysis of local oriented edges, which is derived from an analysis of the histogram of edge orientations in local windows. Other features, based on the Laws texture energy measures, have been developed to respond to normal tissue, and so improve the false alarm performance of the entire system.

  14. A bioinformatic and mechanistic study elicits the antifibrotic effect of ursolic acid through the attenuation of oxidative stress with the involvement of ERK, PI3K/Akt, and p38 MAPK signaling pathways in human hepatic stellate cells and rat liver

    PubMed Central

    He, Wenhua; Shi, Feng; Zhou, Zhi-Wei; Li, Bimin; Zhang, Kunhe; Zhang, Xinhua; Ouyang, Canhui; Zhou, Shu-Feng; Zhu, Xuan

    2015-01-01

    NADPH oxidases (NOXs) are a predominant mediator of redox homeostasis in hepatic stellate cells (HSCs), and oxidative stress plays an important role in the pathogenesis of liver fibrosis. Ursolic acid (UA) is a pentacyclic triterpenoid with various pharmacological activities, but the molecular targets and underlying mechanisms for its antifibrotic effect in the liver remain elusive. This study aimed to computationally predict the molecular interactome and mechanistically investigate the antifibrotic effect of UA on oxidative stress, with a focus on NOX4 activity and cross-linked signaling pathways in human HSCs and rat liver. Drug–drug interaction via chemical–protein interactome tool, a server that can predict drug–drug interaction via chemical–protein interactome, was used to predict the molecular targets of UA, and Database for Annotation, Visualization, and Integrated Discovery was employed to analyze the signaling pathways of the predicted targets of UA. The bioinformatic data showed that there were 611 molecular proteins possibly interacting with UA and that there were over 49 functional clusters responding to UA. The subsequential benchmarking data showed that UA significantly reduced the accumulation of type I collagen in HSCs in rat liver, increased the expression level of MMP-1, but decreased the expression level of TIMP-1 in HSC-T6 cells. UA also remarkably reduced the gene expression level of type I collagen in HSC-T6 cells. Furthermore, UA remarkably attenuated oxidative stress via negative regulation of NOX4 activity and expression in HSC-T6 cells. The employment of specific chemical inhibitors, SB203580, LY294002, PD98059, and AG490, demonstrated the involvement of ERK, PI3K/Akt, and p38 MAPK signaling pathways in the regulatory effect of UA on NOX4 activity and expression. Collectively, the antifibrotic effect of UA is partially due to the oxidative stress attenuating effect through manipulating NOX4 activity and expression. The results

  15. Liver Fibrosis Occurs Through Dysregulation of MyD88-dependent Innate B cell Activity

    PubMed Central

    Thapa, Manoj; Chinnadurai, Raghavan; Velazquez, Victoria M.; Tedesco, Dana; Elrod, Elizabeth; Han, Jin-Hwan; Sharma, Prachi; Ibegbu, Chris; Gewirtz, Andrew; Anania, Frank; Pulendran, Bali; Suthar, Mehul S.; Grakoui, Arash

    2015-01-01

    Chronic liver disease mediated by activation of hepatic stellate cells (HSCs) leads to liver fibrosis. Here, we postulated that the immune regulatory properties of HSCs might promote the profibrogenic activity of B cells. Fibrosis is completely attenuated in carbon tetrachloride (CCl4)-treated B cell deficient μMT mice showing that B cells are required. The retinoic acid produced by HSCs augmented B cell survival, plasma cell marker CD138 expression, and IgG production. These activities were reversed following the addition of the retinoic acid inhibitor, LE540. Transcriptional profiling of fibrotic liver B cells revealed an increased expression of genes related to NF-κB activation, proinflammatory cytokine production and CD40 signaling suggesting that these B cells are activated and may be acting as inflammatory cells. Biological validation experiments also revealed increased activation (CD44 and CD86 expressions), constitutive IgG production and secretion of the proinflammatory cytokines TNF-α, MCP-1 and MIP1-α. Likewise targeted deletion of B-cell-intrinsic MyD88 signaling, an innate adaptor with involvement in RA signaling, resulted in reduced infiltration of migratory CD11c+ dendritic cells and Ly6C++ monocytes, and hence reduced liver pathology. Conclusion Our findings demonstrate that liver fibrosis occurs through a mechanism of HSC-mediated augmentation of innate B cell activity and highlight B cells as an important ‘first responders’ of the intrahepatic immune environment. PMID:25711908

  16. Solar cell activation system

    SciTech Connect

    Apelian, L.

    1983-07-05

    A system for activating solar cells involves the use of phosphorescent paint, the light from which is amplified by a thin magnifying lens and used to activate solar cells. In a typical system, a member painted with phosphorescent paint is mounted adjacent a thin magnifying lens which focuses the light on a predetermined array of sensitive cells such as selenium, cadmium or silicon, mounted on a plastic board. A one-sided mirror is mounted adjacent the cells to reflect the light back onto said cells for purposes of further intensification. The cells may be coupled to rechargeable batteries or used to directly power a small radio or watch.

  17. Utility of stellate ganglion block in atypical facial pain: a case report and consideration of its possible mechanisms.

    PubMed

    Shanthanna, Harsha

    2013-01-01

    We present this report of a young patient with chronic severe atypical facial pain who was successfully controlled with stellate ganglion block under ultrasound guidance. The patient had a history of severe disabling, unilateral, facial neuropathic pain with minimal response to analgesic medications. Upon assessment the patient had features suggestive of trigeminal neuralgia, although postherpetic neuralgia could not be ruled out. As a diagnostic test intervention, stellate ganglion block was tried under ultrasound guidance. The patient showed significant improvement in pain control and functional disability lasting beyond 10 weeks. Subsequent blocks reinforced the analgesia. Atypical facial pain has several differential diagnoses. The involvement of sympathetic system in its causation or sustenance is uncertain. Stellate ganglion block achieves sympathetic block of cervicofacial structures, and its blockade has been shown to affect chronic pain conditions. Although its mechanism is not clear, one has to consider its possible role in conditions of stress apart from directly controlling the sympathetic activity. There is certainly a role in exploring the potential benefits of stellate ganglion block in such clinical conditions. The technique of stellate block under ultrasound is also described, as it influences the safety and precision of the block. PMID:24065993

  18. Liver injury-on-a-chip: microfluidic co-cultures with integrated biosensors for monitoring liver cell signaling during injury.

    PubMed

    Zhou, Qing; Patel, Dipali; Kwa, Timothy; Haque, Amranul; Matharu, Zimple; Stybayeva, Gulnaz; Gao, Yandong; Diehl, Anna Mae; Revzin, Alexander

    2015-12-01

    Tissue injury triggers complex communication between cells via secreted signaling molecules such as cytokines and growth factors. Discerning when and where these signals begin and how they propagate over time is very challenging with existing cell culture and analysis tools. The goal of this study was to develop new tools in the form of microfluidic co-cultures with integrated biosensors for local and continuous monitoring of secreted signals. Specifically, we focused on how alcohol injury affects TGF-β signaling between two liver cell types, hepatocytes and stellate cells. Activation of stellate cells happens early during liver injury and is at the center of liver fibrosis. We demonstrated that alcohol injury to microfluidic co-cultures caused significantly higher levels of stellate cell activation compared to conditioned media and transwell injury experiments. This highlighted the advantage of the microfluidic co-culture: placement of two cell types in close proximity to ensure high local concentrations of injury-promoting secreted signals. Next, we developed a microsystem consisting of five chambers, two for co-culturing hepatocytes with stellate cells and three additional chambers containing miniature aptamer-modified electrodes for monitoring secreted TGF-β. Importantly, the walls separating microfluidic chambers were actuatable; they could be raised or lowered to create different configurations of the device. The use of reconfigurable microfluidics and miniature biosensors revealed that alcohol injury causes hepatocytes to secrete TGF-β molecules, which diffuse over to neighboring stellate cells and trigger production of additional TGF-β from stellate cells. Our results lend credence to the emerging view of hepatocytes as active participants of liver injury. Broadly speaking, our microsystem makes it possible to monitor paracrine crosstalk between two cell types communicating via the same signaling molecule (e.g. TGF-β). PMID:26480303

  19. VLPs of Leptopilina boulardi share biogenesis and overall stellate morphology with VLPs of the heterotoma clade.

    PubMed

    Gueguen, Gwenaelle; Rajwani, Roma; Paddibhatla, Indira; Morales, Jorge; Govind, Shubha

    2011-09-01

    Viruses and virus-like particles (VLPs) of insect parasitoids modify host-parasite interactions. The Drosophila wasp, Leptopilina heterotoma, produce 300 nm spiked VLPs that bind to the host's blood cells via surface projections. L. heterotoma is a generalist wasp that attacks over a dozen Drosophila species. Oviposition introduces VLPs into the hemolymph of Drosophila larvae. VLPs lyse hemocytes and obliterate immune signaling in infected larval hosts. L. boulardi, a member of a distinct Leptopilina clade, is a specialist, whose host range is limited to the melanogaster group. As a step toward understanding a potential relationship between venom contents and host range in these wasps, we used electron microscopy to characterize VLPs from the virulent L. boulardi-17 (Lb-17) strain. While the Lb-17 VLPs can neither lyse blood cells nor suppress host defense, their biogenesis is surprisingly similar to that of L. heterotoma. Like L. heterotoma VLPs, L. boulardi VLPs are stellate; but they have fewer spikes, each spike being significantly longer than the spikes in L. heterotoma VLPs. The Lb-17 VLPs possess a dimple, making them clearly distinct from L. heterotoma VLPs. We discuss the significance of these cross-clade differences in VLP morphologies in relation to their biological activities and the host range of the wasp. PMID:21704090

  20. Stellate nonhereditary idiopathic foveomacular retinoschisis concomitant to exudative maculopathies.

    PubMed

    Casalino, G; Upendran, M; Bandello, F; Chakravarthy, U

    2016-05-01

    PurposeTo report the clinical course of patients presenting with stellate nonhereditary idiopathic foveomacular retinoschisis (SNIFR) concomitant with exudative maculopathies.MethodsRetrospective case series. Multimodal imaging findings, including spectral-domain optical coherence tomography (SD-OCT) were reviewed. Genetic testing for the RS1 gene was performed in one patient.ResultsWe identified two female patients who fit the definition of SNIFR and presented with concomitant neovascular age-related macular degeneration (n-AMD). In both the patients, SD-OCT showed exudative macular features and splitting (bilateral in patient 1, unilateral in patient 2) of the outer plexiform layer (OPL) in the macula with no other evidence of hereditary or an acquired predisposing condition. Genetic testing excluded mutation of RS1 gene in patient 1. The fundi of both the patients showed characteristic signs of active choroidal neovascularization (CNV) and following anti-VEGF treatment, visual acuity improved and CNV-related exudative changes resolved. However, the split along the OPL remained unaltered.ConclusionsSNIFR may be associated with n-AMD. It is important to recognise the presence of retinoschisis when there is other exudative pathology as the former may be misinterpreted as intraretinal fluid, prompting unnecessary treatment. PMID:26915743

  1. Fluorescence activated cell sorting.

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Hulett, H. R.; Sweet, R. G.; Herzenberg, L. A.

    1972-01-01

    An instrument has been developed for sorting biological cells. The cells are rendered differentially fluorescent and incorporated into a small liquid stream illuminated by a laser beam. The cells pass sequentially through the beam, and fluorescent light from the cells gives rise to electrical signals. The stream is broken into a series of uniform size drops downstream of the laser. The cell signals are used to give appropriate electrostatic charges to drops containing the cells. The drops then pass between two charged plates and are deflected to appropriate containers. The system has proved capable of providing fractions containing large numbers of viable cells highly enriched in a particular functional type.

  2. Clade-specific positive selection on a developmental gene: BRANCHLESS TRICHOME and the evolution of stellate trichomes in Physaria (Brassicaceae).

    PubMed

    Mazie, Abigail R; Baum, David A

    2016-07-01

    Positive selection is known to drive the evolution of genes involved in evolutionary arms races, but what role does it play in the evolution of genes involved in developmental processes? We used the single-celled epidermal trichomes of Brassicaceae as a model to uncover the molecular evolutionary processes that contributed to the transition from dendritic trichomes, as seen in most species of Brassicaceae, to the distinctive stellate trichomes of the genus Physaria. We explored the role of positive selection on the evolution of BRANCHLESS TRICHOME (BLT), a candidate gene for changes in trichome branching pattern. Maximum likelihood models of codon evolution point to a shift in selective pressure affecting the evolution of BLT across the entire Physaria clade, and we found strong evidence that positive selection has acted on a subset of Physaria BLT codons. Almost all of the 10 codon sites with the highest probability of having evolved under positive selection are clustered in a predicted coiled-coil domain, pointing to changes in protein-protein interactions. Thus, our findings suggest that selection acted on BLT to modify its interactions with other proteins. The fact that positive selection occurred throughout the radiation of Physaria could reflect selection to stabilize development in response to an abrupt switch from the dendritic form to the stellate form, divergent selection for diversification of the stellate form, or both. These results point to the need for evolutionary developmental studies of BLT and its interacting proteins in Physaria. PMID:27015897

  3. Granzyme A released upon stimulation of cytotoxic T lymphocytes activates the thrombin receptor on neuronal cells and astrocytes.

    PubMed Central

    Suidan, H S; Bouvier, J; Schaerer, E; Stone, S R; Monard, D; Tschopp, J

    1994-01-01

    Granzymes are a family of serine proteases that are harbored in cytoplasmic granules of activated T lymphocytes and are released upon target cell interaction. Immediate and complete neurite retraction was induced in a mouse neuronal cell line when total extracts of granule proteins were added. This activity was isolated and identified as granzyme A. This protease not only induced neurite retraction at nanomolar concentrations but also reversed the stellation of astrocytes. Both effects were critically dependent on the esterolytic activity of granzyme A. As neurite retraction is known to be induced by thrombin, possible cleavage and activation of the thrombin receptor were investigated. A synthetic peptide spanning the N-terminal thrombin receptor activation sequence was cleaved by granzyme A at the authentic thrombin cleavage site Leu-Asp-Pro-Arg-Ser. Antibodies to the thrombin receptor inhibited both thrombin and granzyme A-mediated neurite retraction. Thus, T-cell-released granzyme A induces cellular responses by activation of the thrombin receptor. As brain-infiltrating CD4+ lymphocytes are the effector cells in experimental allergic encephalomyelitis, granzyme A released in the brain may contribute to the etiology of autoimmune disorders in the nervous system. Images PMID:8058766

  4. Effects of Fluvastatin on Characteristics of Stellate Ganglion Neurons in a Rabbit Model of Myocardial Ischemia

    PubMed Central

    Cheng, Li-Jun; Li, Guang-Ping; Li, Jian; Chen, Yan; Wang, Xing-Hua

    2016-01-01

    Background: Stellate ganglion (SG) plays an important role in cardiovascular diseases. The electrical activity of SG neurons is involved in the regulation of the autonomic nervous system. The aim of this research was to evaluate the effects of fluvastatin on the electrophysiological characteristics of SG neurons in a rabbit model of myocardial ischemia (MI). Methods: The MI model was induced by abdominal subcutaneous injections of isoproterenol in rabbits. Using whole-cell patch clamp technique, we studied the characteristic changes of ion channels and action potentials (APs) in isolated SG neurons in control group (n = 20), MI group (n = 20) and fluvastatin pretreated group (fluvastatin group, n = 20), respectively. The protein expression of sodium channel in SG was determined by immunohistochemical analysis. Results: MI and the intervention of fluvastatin did not have significantly influence on the characteristics of delayed rectifier potassium channel currents. The maximal peak current density of sodium channel currents in SG neurons along with the characteristics of activation curves, inactivation curves, and recovery curves after inactivation were changed in the MI group. The peak current densities of control group, MI group, and fluvastatin group (n = 10 in each group) were −71.77 ± 23.22 pA/pF, −126.75 ± 18.90 pA/pF, and −86.42 ± 28.30 pA/pF, respectively (F = 4.862, P = 0.008). Fluvastatin can decrease the current amplitude which has been increased by MI. Moreover, fluvastatin induced the inactivation curves and post-inactive recovery curves moving to the position of the control group. But the expression of sodium channel-associated protein (Nav1.7) had no significantly statistical difference among the three groups. The percentages of Nav1.7 protein in control group, MI group, and fluvastatin group (n = 5 in each group) were 21.49 ± 7.33%, 28.53 ± 8.26%, and 21.64 ± 2.78%, respectively (F = 1.495, P = 0.275). Moreover, MI reduced the electrical

  5. Membrane potential-dependent integration of synaptic inputs in entorhinal stellate neurons.

    PubMed

    Economo, Michael N; Martínez, Joan José; White, John A

    2014-12-01

    Stellate cells (SCs) of the medial entorhinal cortex exhibit robust spontaneous membrane-potential oscillations (MPOs) in the theta (4-12 Hz) frequency band as well as theta-frequency resonance in their membrane impedance spectra. Past experimental and modeling work suggests that these features may contribute to the phase-locking of SCs to the entorhinal theta rhythm and may be important for forming the hexagonally tiled grid cell place fields exhibited by these neurons in vivo. Among the major biophysical mechanisms contributing to MPOs is a population of persistent (non-inactivating or slowly inactivating) sodium channels. The resulting persistent sodium conductance (GNaP ) gives rise to an apparent increase in input resistance as the cell approaches threshold. In this study, we used dynamic clamp to test the hypothesis that this increased input resistance gives rise to voltage-dependent, and thus MPO phase-dependent, changes in the amplitude of excitatory and inhibitory post-synaptic potential (PSP) amplitudes. We find that PSP amplitude depends on membrane potential, exhibiting a 5-10% increase in amplitude per mV depolarization. The effect is larger than-and sums quasi-linearly with-the effect of the synaptic driving force, V - Esyn . Given that input-driven MPOs 10 mV in amplitude are commonly observed in MEC stellate cells in vivo, this voltage- and phase-dependent synaptic gain is large enough to modulate PSP amplitude by over 50% during theta-frequency MPOs. Phase-dependent synaptic gain may therefore impact the phase locking and phase precession of grid cells in vivo to ongoing network oscillations. © 2014 Wiley Periodicals, Inc. PMID:25044927

  6. The Role of Mesothelial Cells in Liver Development, Injury, and Regeneration

    PubMed Central

    Lua, Ingrid; Asahina, Kinji

    2016-01-01

    Mesothelial cells (MCs) cover the surface of visceral organs and the parietal walls of cavities, and they synthesize lubricating fluids to create a slippery surface that facilitates movement between organs without friction. Recent studies have indicated that MCs play active roles in liver development, fibrosis, and regeneration. During liver development, the mesoderm produces MCs that form a single epithelial layer of the mesothelium. MCs exhibit an intermediate phenotype between epithelial cells and mesenchymal cells. Lineage tracing studies have indicated that during liver development, MCs act as mesenchymal progenitor cells that produce hepatic stellate cells, fibroblasts around blood vessels, and smooth muscle cells. Upon liver injury, MCs migrate inward from the liver surface and produce hepatic stellate cells or myofibroblast depending on the etiology, suggesting that MCs are the source of myofibroblasts in capsular fibrosis. Similar to the activation of hepatic stellate cells, transforming growth factor β induces the conversion of MCs into myofibroblasts. Further elucidation of the biological and molecular changes involved in MC activation and fibrogenesis will contribute to the development of novel approaches for the prevention and therapy of liver fibrosis. PMID:26934883

  7. The Role of Mesothelial Cells in Liver Development, Injury, and Regeneration.

    PubMed

    Lua, Ingrid; Asahina, Kinji

    2016-03-23

    Mesothelial cells (MCs) cover the surface of visceral organs and the parietal walls of cavities, and they synthesize lubricating fluids to create a slippery surface that facilitates movement between organs without friction. Recent studies have indicated that MCs play active roles in liver development, fibrosis, and regeneration. During liver development, the mesoderm produces MCs that form a single epithelial layer of the mesothelium. MCs exhibit an intermediate phenotype between epithelial cells and mesenchymal cells. Lineage tracing studies have indicated that during liver development, MCs act as mesenchymal progenitor cells that produce hepatic stellate cells, fibroblasts around blood vessels, and smooth muscle cells. Upon liver injury, MCs migrate inward from the liver surface and produce hepatic stellate cells or myofibroblast depending on the etiology, suggesting that MCs are the source of myofibroblasts in capsular fibrosis. Similar to the activation of hepatic stellate cells, transforming growth factor β induces the conversion of MCs into myofibroblasts. Further elucidation of the biological and molecular changes involved in MC activation and fibrogenesis will contribute to the development of novel approaches for the prevention and therapy of liver fibrosis. PMID:26934883

  8. Gliotoxin causes apoptosis and necrosis of rat Kupffer cells in vitro and in vivo in the absence of oxidative stress: Exacerbation by caspase and serine protease inhibition

    PubMed Central

    Anselmi, Kristin; Stolz, Donna B.; Nalesnik, Michael; Watkins, Simon C.; Kamath, Ravindra; Gandhi, Chandrashekhar R.

    2009-01-01

    Background/Aims A potential application of gliotoxin therapy for liver fibrosis was suggested by its apoptotic effect on fibrogenic activated stellate cells. We investigated if gliotoxin exerts similar effects on hepatic macrophages Kupffer cells. Methods Effects of gliotoxin on Kupffer cells isolated from the normal liver and in vivo following its administration to CCl4–induced cirrhotic rats were studied. Results Gliotoxin caused apoptosis of cultured Kupffer cells, the effect being apparent at 0.3 μM concentration within 1 hour; longer incubation caused necrosis. This effect was associated with mitochondroial cytochrome c release, caspase-3 activation and ATP depletion. Interestingly, inhibition of caspase-3 and serine proteases accelerated and augmented gliotoxin-induced cell death via necrosis. Gliotoxin stimulated nuclear translocation of NFκB, and phosphorylation of p38, ERK1/2 and JNK MAP kinases, but these signaling molecules were not involved in gliotoxin-induced death of Kupffer cells. In vivo administration of gliotoxin to cirrhotic rats caused apoptosis of Kupffer cells, stellate cells and hepatocytes. In control rats, the effect was minimal on the nonparenchymal cells and not apparent on hepatocytes. Conclusions In the fibrotic liver, gliotoxin nonspecifically causes death of hepatic cell types. Modification of gliotoxin molecule may be necessary for selective targeting and elimination of activated stellate cells. PMID:17466404

  9. Saikosaponin a and saikosaponin d inhibit proliferation and migratory activity of rat HSC-T6 cells.

    PubMed

    Chen, Ming Feng; Huang, Chao Cheng; Liu, Pei Shan; Chen, Chang Han; Shiu, Li Yen

    2013-09-01

    The proliferation and migration of hepatic stellate cells (HSCs) profoundly impact the pathogenesis of liver inflammation and fibrogenesis. As a perennial herb native to China, Bupleurum falcatum is administered for its anti-inflammatory, antipyretic, and antihepatotoxic effects. Saikosaponin a (SSa) and Saikosaponin d (SSd) are the major active components of triterpene saponins in Bupleurum falcatum. This study analyzes how SSa and SSd affect rat HSC-T6 cell line proliferation and migration. Experimental results indicate that, in addition to suppressing HSC-T6 proliferation, wound healing activity and cell migration in a time- and dose-dependent manner, SSa and SSd significantly induce apoptosis. Additionally, SSa and SSd decreased the expressions of extracellular matrix-regulated kinase 1/2 (ERK1/2), platelet-derived growth factor receptor 1 (PDGFR1), and subsequently transforming growth factor-β1 receptor (TGF-β1R), α-smooth muscle actin, TGF-β1 and connective tissue growth factor. They also decreased phosphorylation of p38 (p-p38) and ERK1/2 (p-ERK1/2) of HSC-T6. Furthermore, both SSa and SSd can block PDGF-BB and TGF-β1-induced cell proliferation and migration of HSC-T6. These results suggest that SSa and SSd may inhibit proliferation and activation of HSC-T6, and the modulated mechanisms warrant further study. PMID:24044489

  10. Multitarget magnetic activated cell sorter

    PubMed Central

    Adams, Jonathan D.; Kim, Unyoung; Soh, H. Tom

    2008-01-01

    Magnetic selection allows high-throughput sorting of target cells based on surface markers, and it is extensively used in biotechnology for a wide range of applications from in vitro diagnostics to cell-based therapies. However, existing methods can only perform separation based on a single parameter (i.e., the presence or absence of magnetization), and therefore, the simultaneous sorting of multiple targets at high levels of purity, recovery, and throughput remains a challenge. In this work, we present an alternative system, the multitarget magnetic activated cell sorter (MT-MACS), which makes use of microfluidics technology to achieve simultaneous spatially-addressable sorting of multiple target cell types in a continuous-flow manner. We used the MT-MACS device to purify 2 types of target cells, which had been labeled via target-specific affinity reagents with 2 different magnetic tags with distinct saturation magnetization and size. The device was engineered so that the combined effects of the hydrodynamic force produced from the laminar flow and the magnetophoretic force produced from patterned ferromagnetic structures within the microchannel result in the selective purification of the differentially labeled target cells into multiple independent outlets. We demonstrate here the capability to simultaneously sort multiple magnetic tags with >90% purity and >5,000-fold enrichment and multiple bacterial cell types with >90% purity and >500-fold enrichment at a throughput of 109 cells per hour. PMID:19015523

  11. The anti-hepatic fibrosis activity of ergosterol depended on upregulation of PPARgamma in HSC-T6 cells.

    PubMed

    Tai, Chen-Jei; Choong, Chen-Yen; Lin, Yu-Chun; Shi, Yeu-Ching; Tai, Cheng-Jeng

    2016-04-20

    Advanced glycation endproducts (AGEs) were shown to play an important role in metabolic syndrome and were suggested to contribute to the development of hepatic fibrosis. Evidence indicates that AGEs resulted in hepatic fibrosis coupled to the activation of the receptor for AGEs (RAGE) in hepatic stellate cells (HSCs). NADPH oxidase is downstream of the RAGE signaling pathway, resulting in an increase in reactive oxygen species (ROS), alpha-smooth muscle actin (alpha-SMA), RAGE, and matrix metalloproteinase-9 (MMP-9). This study was designed to evaluate the effects of ergosterol on RAGE signaling in HSC-T6 cells. Ergosterol suppressed the activation of HSC-T6 cells induced by AGEs, and attenuated overexpressions of alpha-SMA, MMP-9, and epithelial-mesenchymal transition (EMT) markers, including N-cadherin and vimentin. We also found that these inhibitory effects of ergosterol on the activation of HSCs were dependent on peroxisome proliferator-activated receptor-gamma (PPARgamma) confirmed by PPARgamma reporter assay and PPARgamma knockdown. In addition, ergosterol also showed an inhibitory effect on the generation of AGEs, fructosamine, and α-dicarbonyl compounds in this study. Our results show that ergosterol can be used as a protective agent against hepatic fibrosis caused by induction of AGEs. PMID:27040153

  12. All-In-One: Advanced preparation of Human Parenchymal and Non-Parenchymal Liver Cells

    PubMed Central

    Werner, Melanie; Driftmann, Sabrina; Kleinehr, Kathrin; Kaiser, Gernot M.; Mathé, Zotlan; Treckmann, Juergen-Walter; Paul, Andreas; Skibbe, Kathrin; Timm, Joerg; Canbay, Ali; Gerken, Guido; Schlaak, Joerg F.; Broering, Ruth

    2015-01-01

    Background & Aims Liver cells are key players in innate immunity. Thus, studying primary isolated liver cells is necessary for determining their role in liver physiology and pathophysiology. In particular, the quantity and quality of isolated cells are crucial to their function. Our aim was to isolate a large quantity of high-quality human parenchymal and non-parenchymal cells from a single liver specimen. Methods Hepatocytes, Kupffer cells, liver sinusoidal endothelial cells, and stellate cells were isolated from liver tissues by collagenase perfusion in combination with low-speed centrifugation, density gradient centrifugation, and magnetic-activated cell sorting. The purity and functionality of cultured cell populations were controlled by determining their morphology, discriminative cell marker expression, and functional activity. Results Cell preparation yielded the following cell counts per gram of liver tissue: 2.0±0.4×107 hepatocytes, 1.8±0.5×106 Kupffer cells, 4.3±1.9×105 liver sinusoidal endothelial cells, and 3.2±0.5×105 stellate cells. Hepatocytes were identified by albumin (95.5±1.7%) and exhibited time-dependent activity of cytochrome P450 enzymes. Kupffer cells expressed CD68 (94.5±1.2%) and exhibited phagocytic activity, as determined with 1μm latex beads. Endothelial cells were CD146+ (97.8±1.1%) and exhibited efficient uptake of acetylated low-density lipoprotein. Hepatic stellate cells were identified by the expression of α-smooth muscle actin (97.1±1.5%). These cells further exhibited retinol (vitamin A)-mediated autofluorescence. Conclusions Our isolation procedure for primary parenchymal and non-parenchymal liver cells resulted in cell populations of high purity and quality, with retained physiological functionality in vitro. Thus, this system may provide a valuable tool for determining liver function and disease. PMID:26407160

  13. An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses.

    PubMed

    De Schutter, E; Bower, J M

    1994-01-01

    1. Both excitatory and inhibitory postsynaptic channels were added to a previously described complex compartmental model of a cerebellar Purkinje cell to examine model responses to synaptic inputs. All model parameters remained as described previously, leaving maximum synaptic conductance as the only parameter that was tuned in the studies described in this paper. Under these conditions the model was capable of reproducing physiological recorded responses to each of the major types of synaptic input. 2. When excitatory synapses were activated on the smooth dendrites of the model, the model generated a complex dendritic Ca2+ spike similar to that generated by climbing fiber inputs. Examination of the model showed that activation of P-type Ca2+ channels in both the smooth and spiny dendrites augmented the depolarization during the complex spike and that Ca(2+)-activated K+ channels in the same dendritic regions determined the duration of the spike. When these synapses were activated under simulated current-clamp conditions the model also generated the characteristic dual reversal potential of the complex spike. The shape of the dendritic complex spike could be altered by changing the maximum conductance of the climbing fiber synapse and thus the amount of Ca2+ entering the cell. 3. To explore the background simple spike firing properties of Purkinje cells in vivo we added excitatory "parallel fiber" synapses to the spiny dendritic branches of the model. Continuous asynchronous activation of these granule cell synapses resulted in the generation of spontaneous sodium spikes. However, very low asynchronous input frequencies produced a highly regular, very fast rhythm (80-120 Hz), whereas slightly higher input frequencies resulted in Purkinje cell bursting. Both types of activity are uncharacteristic of in vivo Purkinje cell recordings. 4. Inhibitory synapses of the sort presumably generated by stellate cells were also added to the dendritic tree. When asynchronous

  14. Seborrheic dermatitis treatment with stellate ganglion block: a case report

    PubMed Central

    Kim, Gun Woo; Mun, Ki Ho; Song, Jeong Yun; Kim, Byung Gun; Jung, Jong Kwon; Lee, Choon Soo; Cha, Young Deog

    2016-01-01

    Seborrheic dermatitis is a chronic recurrent inflammatory disorder presumed to be caused by increased sebaceous gland secretion, metabolic changes in the cutaneous microflora, and changes in the host immune function. Stellate ganglion block (SGB) is known to increase the blood flow rate without altering the blood pressure, heart rate, or cardiac output, to stabilize hypertonic conditions of the sympathetic nerves, and to affect the endocrine and immune systems. It is used in the differential diagnosis and treatment of autonomic nervous system disorders of the head, neck, and upper limbs. The authors report the first case of successful treatment of a patient with seborrheic dermatitis through repeated SGB trials. PMID:27064785

  15. Seborrheic dermatitis treatment with stellate ganglion block: a case report.

    PubMed

    Kim, Gun Woo; Mun, Ki Ho; Song, Jeong Yun; Kim, Byung Gun; Jung, Jong Kwon; Lee, Choon Soo; Cha, Young Deog; Song, Jang Ho

    2016-04-01

    Seborrheic dermatitis is a chronic recurrent inflammatory disorder presumed to be caused by increased sebaceous gland secretion, metabolic changes in the cutaneous microflora, and changes in the host immune function. Stellate ganglion block (SGB) is known to increase the blood flow rate without altering the blood pressure, heart rate, or cardiac output, to stabilize hypertonic conditions of the sympathetic nerves, and to affect the endocrine and immune systems. It is used in the differential diagnosis and treatment of autonomic nervous system disorders of the head, neck, and upper limbs. The authors report the first case of successful treatment of a patient with seborrheic dermatitis through repeated SGB trials. PMID:27064785

  16. Hexon Modification to Improve the Activity of Oncolytic Adenovirus Vectors against Neoplastic and Stromal Cells in Pancreatic Cancer

    PubMed Central

    Lucas, Tanja; Benihoud, Karim; Vigant, Frédéric; Schmidt, Christoph Q. Andreas; Simmet, Thomas; Kochanek, Stefan

    2015-01-01

    Primary pancreatic carcinoma has an unfavourable prognosis and standard treatment strategies mostly fail in advanced cases. Virotherapy might overcome this resistance to current treatment modalities. However, data from clinical studies with oncolytic viruses, including replicating adenoviral (Ad) vectors, have shown only limited activity against pancreatic cancer and other carcinomas. Since pancreatic carcinomas have a complex tumor architecture and frequently a strong stromal compartment consisting of non-neoplastic cell types (mainly pancreatic stellate cells = hPSCs) and extracellular matrix, it is not surprising that Ad vectors replicating in neoplastic cells will likely fail to eradicate this aggressive tumor type. Because the TGFβ receptor (TGFBR) is expressed on both neoplastic cells and hPSCs we inserted the TGFBR targeting peptide CKS17 into the hypervariable region 5 (HVR5) of the capsid protein hexon with the aim to generate a replicating Ad vector with improved activity in complex tumors. We demonstrated increased transduction of both pancreatic cancer cell lines and of hPSCs and enhanced cytotoxicity in co-cultures of both cell types. Surface plasmon resonance analysis demonstrated decreased binding of coagulation factor X to CKS17-modified Ad particles and in vivo biodistribution studies performed in mice indicated decreased transduction of hepatocytes. Thus, to increase activity of replicating Ad vectors we propose to relax tumor cell selectivity by genetic hexon-mediated targeting to the TGFBR (or other receptors present on both neoplastic and non-neoplastic cells within the tumor) to enable replication also in the stromal cell compartment of tumors, while abolishing hepatocyte transduction, and thereby increasing safety. PMID:25692292

  17. Tracking and treating activated T cells

    PubMed Central

    Kim, N.H.; Nadithe, V.; Elsayed, M.; Merkel, O.M.

    2014-01-01

    Upon activation, T cells of various subsets are the most important mediators in cell-mediated immune responses. Activated T cells play an important role in immune system related diseases such as chronic inflammatory diseases, viral infections, autoimmune disease, transplant rejection, Crohn disease, diabetes, and many more. Therefore, efforts have been made to both visualize and treat activated T cells specifically. This review summarizes imaging approaches and selective therapeutics for activated T cells and gives an outlook on how tracking and treating can be combined into theragnositc agents for activated T cells. PMID:24660025

  18. Viral Evasion of Natural Killer Cell Activation

    PubMed Central

    Ma, Yi; Li, Xiaojuan; Kuang, Ersheng

    2016-01-01

    Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections. PMID:27077876

  19. Mechanisms of Cell Propulsion by Active Stresses.

    PubMed

    Carlsson, A E

    2011-07-01

    The mechanisms by which cytoskeletal flows and cell-substrate interactions interact to generate cell motion are explored using a simplified model of the cytoskeleton as a viscous gel containing active stresses. This model yields explicit general results relating cell speed and traction forces to the distributions of active stress and cell-substrate friction. It is found that 1) the cell velocity is given by a function that quantifies the asymmetry of the active-stress distribution, 2) gradients in cell-substrate friction can induce motion even when the active stresses are symmetrically distributed, 3) the traction-force dipole is enhanced by protrusive stresses near the cell edges or contractile stresses near the center of the cell, and 4) the cell velocity depends biphasically on the cell-substrate adhesion strength if active stress is enhanced by adhesion. Specific experimental tests of the calculated dependences are proposed. PMID:21804763

  20. Mechanisms of Cell Propulsion by Active Stresses

    PubMed Central

    Carlsson, A. E.

    2011-01-01

    The mechanisms by which cytoskeletal flows and cell-substrate interactions interact to generate cell motion are explored using a simplified model of the cytoskeleton as a viscous gel containing active stresses. This model yields explicit general results relating cell speed and traction forces to the distributions of active stress and cell-substrate friction. It is found that 1) the cell velocity is given by a function that quantifies the asymmetry of the active-stress distribution, 2) gradients in cell-substrate friction can induce motion even when the active stresses are symmetrically distributed, 3) the traction-force dipole is enhanced by protrusive stresses near the cell edges or contractile stresses near the center of the cell, and 4) the cell velocity depends biphasically on the cell-substrate adhesion strength if active stress is enhanced by adhesion. Specific experimental tests of the calculated dependences are proposed. PMID:21804763

  1. Identification of 6-octadecynoic acid from a methanol extract of Marrubium vulgare L. as a peroxisome proliferator-activated receptor γ agonist.

    PubMed

    Ohtera, Anna; Miyamae, Yusaku; Nakai, Naomi; Kawachi, Atsushi; Kawada, Kiyokazu; Han, Junkyu; Isoda, Hiroko; Neffati, Mohamed; Akita, Toru; Maejima, Kazuhiro; Masuda, Seiji; Kambe, Taiho; Mori, Naoki; Irie, Kazuhiro; Nagao, Masaya

    2013-10-18

    6-Octadecynoic acid (6-ODA), a fatty acid with a triple bond, was identified in the methanol extract of Marrubium vulgare L. as an agonist of peroxisome proliferator-activated receptor γ (PPARγ). Fibrogenesis caused by hepatic stellate cells is inhibited by PPARγ whose ligands are clinically used for the treatment of diabetes. Plant extracts of Marrubium vulgare L., were screened for activity to inhibit fibrosis in the hepatic stellate cell line HSC-T6 using Oil Red-O staining, which detects lipids that typically accumulate in quiescent hepatic stellate cells. A methanol extract with activity to stimulate accumulation of lipids was obtained. This extract was found to have PPARγ agonist activity using a luciferase reporter assay. After purification using several chromatographic methods, 6-ODA, a fatty acid with a triple bond, was identified as a candidate of PPARγ agonist. Synthesized 6-ODA and its derivative 9-octadecynoic acid (9-ODA), which both have a triple bond but in different positions, activated PPARγ in a luciferase reporter assay and increased lipid accumulation in 3T3-L1 adipocytes in a PPARγ-dependent manner. There is little information about the biological activity of fatty acids with a triple bond, and to our knowledge, this is the first report that 6-ODA and 9-ODA function as PPARγ agonists. PMID:24025677

  2. Ultrasound-guided stellate ganglion block: safety and efficacy.

    PubMed

    Narouze, Samer

    2014-06-01

    Cervical sympathetic and stellate ganglion blocks (SGB) provide a valuable diagnostic and therapeutic benefit to sympathetically maintained pain syndromes in the head, neck, and upper extremity. With the ongoing efforts to improve the safety of the procedure, the techniques for SGB have evolved over time, from the use of the standard blind technique, to fluoroscopy, and recently to the ultrasound (US)-guided approach. Over the past few years, there has been a growing interest in the ultrasound-guided technique and the many advantages that it might offer. Fluoroscopy is a reliable method for identifying bony surfaces, which facilitates identifying the C6 and C7 transverse processes. However, this is only a surrogate marker for the cervical sympathetic trunk. The ideal placement of the needle tip should be anterolateral to the longus colli muscle, deep to the prevertebral fascia (to avoid spread along the carotid sheath) but superficial to the fascia investing the longus colli muscle (to avoid injecting into the muscle substance). Identifying the correct fascial plane can be achieved with ultrasound guidance, thus facilitating the caudal spread of the injectate to reach the stellate ganglion at C7-T1 level, even if the needle is placed at C6 level. This allows for a more effective and precise sympathetic block with the use of a small injectate volume. Ultrasound-guided SGB may also improve the safety of the procedure by direct visualization of vascular structures (inferior thyroidal, cervical, vertebral, and carotid arteries) and soft tissue structures (thyroid, esophagus, and nerve roots). Accordingly, the risk of vascular and soft tissue injury may be minimized. PMID:24760493

  3. Effect of stellate ganglion block on laryngopharyngeal reflux disease

    PubMed Central

    Chun, Hye Jung; Lee, Mi Soon; Ahn, Ki Ryang; Kim, Chun Sook; Kang, Kyu Sik; Yoo, Sie Hyeon; Chung, Jin Hun; Kim, Nan-Seol; Seo, Yong Han; Gong, Hyung Youn; Lee, Yong Man

    2013-01-01

    Background Laryngopharyngeal reflux (LPR) disease has many symptoms such as globus pharyngeus, excessive throat clearing and hoarseness. The aim of this study was to investigate the effect of stellate ganglion block (SGB) in addition to proton pump inhibitors (PPI) on LPR. Methods Fifty patients complaining of more than 3 typical LPR symptoms for over 3 months were enrolled in the study. The P group took PPI for 8 weeks. The SP group took PPI and interwent a series of 8 SGB procedure once a week during the period of treatment. The blocks were performed one at a time unilaterally on the right and left stellate ganglions by injecting 1% mepivacaine 6 ml. We evaluated the reflux symptom index (RSI) before treatment and following 4 weeks and 8 weeks of treatment in both groups. Results After 4 weeks of treatment, the RSI of the P group decreased, but not significantly, to 16.6 ± 6.8 compared with the baseline value of 19.2 ± 2.7 (P = 0.093), whereas the RSI of the SP group decreased significantly to 9.8 ± 3.3 compared with the baseline value of 19.0 ± 4.7 (P = 0.000). After 8 weeks of treatment, the RSI of the P group decreased significantly to 13.7 ± 6.7 (P = 0.001) and the RSI of the SP group also decreased significantly to 7.7 ± 3.4 (P = 0.000). There were significant differences in the RSI between the two groups after 4 weeks (P = 0.000) and 8 weeks (P = 0.001) of treatment. Conclusions The symptoms of LPR improved earlier when PPI therapy was combined with SGB compared with PPI therapy alone. PMID:23741567

  4. Evaluation of new approach to ultrasound guided stellate ganglion block

    PubMed Central

    Ghai, Anju; Kaushik, Teshi; Kundu, Zile Singh; Wadhera, Sarthak; Wadhera, Raman

    2016-01-01

    Background: Ultrasound imaging is an ideal tool for stellate ganglion block (SGB) due to clarity, portability, lack of radiation, and low cost. Ultrasound guided anterior approach requires the application of pressure to the anterior neck and is associated with more risk of injury to inferior thyroid artery, vertebral artery, and esophagus. The lateral approach does not interfere with nerve or vascular structures. Blockade at the C6 vertebral level results in more successful sympathetic blockade of the head and neck with less sympathetic blockade of the upper extremity compared to sympathetic blockade at C7 vertebral level, which produces successful sympathetic blockade of upper extremity. This is helpful in patients of complex regional pain syndrome of the upper limb. Hence, we conducted a study using the lateral approach at C7 level. Materials and Methods: Ultrasound guided SGBs using lateral in-plane technique at C7 level were given in 20 patients suffering from chronic pain patients of upper extremity, head, and neck using 4 ml of 0.25% bupivacaine and 1 ml of 40 mg triamcinolone. The patients were assessed for a numeric pain intensity score (NPIS), the rise in axillary temperature, the range of motion of joints of upper extremity, and resolution of edema at various time intervals up to 3 months. Results: NPIS showed a statistically significant decrease from baseline at 30 min, which was sustained till 3rd month. The rise in axillary temperature after the block was statistically significant, which was sustained till 2nd week. The edema score decreased significantly at all-time intervals (P ≤ 0.001). The restriction of motion in all joints of upper limb decreased from 13 to 3 patients. Conclusion: There is a significant variation in the anatomy of stellate ganglion at the level of C6 and C7. Ultrasound guided lateral approach increases the efficacy of SGB by deposition of drug subfascially with real-time imaging. PMID:27051366

  5. Pilot evaluation of a stellate ganglion block for the treatment of hot flashes

    PubMed Central

    Pachman, Deirdre R.; Barton, Debra; Carns, Paul E.; Novotny, Paul J.; Wolf, Sherry; Linquist, Breanna; Kohli, Sadhna; Smith, DeAnne R.; Loprinzi, Charles L.

    2011-01-01

    Purpose Hot flashes are a significant problem in breast cancer patients, especially because the most effective therapy, estrogen, is often contraindicated. Based on recent pilot data from a single group supporting the use of a stellate ganglion block for the treatment of hot flashes, the present pilot trial was done to further evaluate the hypothesis that a stellate ganglion block may be a safe and effective therapy for hot flashes. Methods In women with breast cancer who had hot flashes, a stellate ganglion block was performed after 1 week of baseline hot flash data collection. The main efficacy measures were the changes from baseline in hot flash frequency and hot flash score during the 6th week. Results Ten patients were enrolled between 4/23/2009 and 7/10/2009; eight patients were evaluable. After the stellate ganglion block, the mean hot flash frequency and score decreased from baseline values by over 60% during some of the post-treatment weeks. The mean hot flash frequency and score at week 6 decreased from baseline values by 44% and 45%, respectively. There were no significant adverse events clearly attributed to the stellate ganglion blocks. Conclusions The results of this pilot trial support that stellate ganglion blocks may be a helpful therapy for hot flashes. A prospective placebo-controlled clinical trial should be done to more definitively determine this contention. PMID:20496155

  6. Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells.

    PubMed

    Sun, Chen; Kitamura, Takashi; Yamamoto, Jun; Martin, Jared; Pignatelli, Michele; Kitch, Lacey J; Schnitzer, Mark J; Tonegawa, Susumu

    2015-07-28

    Entorhinal-hippocampal circuits in the mammalian brain are crucial for an animal's spatial and episodic experience, but the neural basis for different spatial computations remain unknown. Medial entorhinal cortex layer II contains pyramidal island and stellate ocean cells. Here, we performed cell type-specific Ca(2+) imaging in freely exploring mice using cellular markers and a miniature head-mounted fluorescence microscope. We found that both oceans and islands contain grid cells in similar proportions, but island cell activity, including activity in a proportion of grid cells, is significantly more speed modulated than ocean cell activity. We speculate that this differential property reflects island cells' and ocean cells' contribution to different downstream functions: island cells may contribute more to spatial path integration, whereas ocean cells may facilitate contextual representation in downstream circuits. PMID:26170279

  7. Mast cells enhance T cell activation: Importance of mast cell-derived TNF

    NASA Astrophysics Data System (ADS)

    Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.

    2005-05-01

    Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response

  8. Myosin II Activity Softens Cells in Suspension

    PubMed Central

    Chan, Chii J.; Ekpenyong, Andrew E.; Golfier, Stefan; Li, Wenhong; Chalut, Kevin J.; Otto, Oliver; Elgeti, Jens; Guck, Jochen; Lautenschläger, Franziska

    2015-01-01

    The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells. PMID:25902426

  9. Myosin II Activity Softens Cells in Suspension.

    PubMed

    Chan, Chii J; Ekpenyong, Andrew E; Golfier, Stefan; Li, Wenhong; Chalut, Kevin J; Otto, Oliver; Elgeti, Jens; Guck, Jochen; Lautenschläger, Franziska

    2015-04-21

    The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells. PMID:25902426

  10. Natural killer cell activity during measles.

    PubMed Central

    Griffin, D E; Ward, B J; Jauregui, E; Johnson, R T; Vaisberg, A

    1990-01-01

    Natural killer cells are postulated to play an important role in host anti-viral defences. We measured natural killer cell activity in 30 individuals with acute measles (73 +/- 21 lytic units (LU)/10(7) cells) and 16 individuals with other infectious diseases (149 +/- 95 LU) and found it reduced compared with values for adults (375 +/- 70 LU; P less than 0.001) or children (300 +/- 73 LU, P less than 0.01) without infection. Reduced natural killer cell activity was found in measles patients with (84 +/- 30 LU) and without (55 +/- 18 LU) complications and was present for at least 3 weeks after the onset of the rash. Activity was increased by in vitro exposure of cells to interleukin-2. Depressed natural killer cell activity parallels in time the suppression of other parameters of cell-mediated immunity that occurs during measles. PMID:1696863

  11. Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells

    PubMed Central

    Sun, Chen; Kitamura, Takashi; Yamamoto, Jun; Martin, Jared; Pignatelli, Michele; Kitch, Lacey J.; Schnitzer, Mark J.; Tonegawa, Susumu

    2015-01-01

    Entorhinal–hippocampal circuits in the mammalian brain are crucial for an animal’s spatial and episodic experience, but the neural basis for different spatial computations remain unknown. Medial entorhinal cortex layer II contains pyramidal island and stellate ocean cells. Here, we performed cell type-specific Ca2+ imaging in freely exploring mice using cellular markers and a miniature head-mounted fluorescence microscope. We found that both oceans and islands contain grid cells in similar proportions, but island cell activity, including activity in a proportion of grid cells, is significantly more speed modulated than ocean cell activity. We speculate that this differential property reflects island cells’ and ocean cells’ contribution to different downstream functions: island cells may contribute more to spatial path integration, whereas ocean cells may facilitate contextual representation in downstream circuits. PMID:26170279

  12. Cell death sensitization of leukemia cells by opioid receptor activation

    PubMed Central

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  13. Stem cell tracking with optically active nanoparticles

    PubMed Central

    Gao, Yu; Cui, Yan; Chan, Jerry KY; Xu, Chenjie

    2013-01-01

    Stem-cell-based therapies hold promise and potential to address many unmet clinical needs. Cell tracking with modern imaging modalities offers insight into the underlying biological process of the stem-cell-based therapies, with the goal to reveal cell survival, migration, homing, engraftment, differentiation, and functions. Adaptability, sensitivity, resolution, and non-invasiveness have contributed to the longstanding use of optical imaging for stem cell tracking and analysis. To identify transplanted stem cells from the host tissue, optically active probes are usually used to label stem cells before the administration. In comparison to the traditional fluorescent probes like fluorescent proteins and dyes, nanoparticle-based probes are advantageous in terms of the photo-stabilities and minimal changes to the cell phenotype. The main focus here is to overview the recent development of optically active nanoparticles for stem cells tracking. The related optical imaging modalities include fluorescence imaging, photoacoustic imaging, Raman and surface enhanced Raman spectroscopy imaging. PMID:23638335

  14. Mitochondrial ROS fire up T cell activation.

    PubMed

    Murphy, Michael P; Siegel, Richard M

    2013-02-21

    Metabolic reprogramming has emerged as an important feature of immune cell activation. Two new studies, including Sena et al. (2013) in this issue of Immunity, identify mitochondrial reactive oxygen species (ROS) arising from metabolic reprogramming as signaling molecules in T cell activation. PMID:23438817

  15. Low-intensity treadmill exercise-related changes in the rat stellate ganglion neurons.

    PubMed

    Cavalcanti, Renato Albuquerque de Oliveira; da Pureza, Demilto Yamaguchi; de Melo, Mariana Pereira; de Souza, Romeu Rodrigues; Bergamaschi, Cássia T; do Amaral, Sandra Lia; Tang, Helen; Loesch, Andrzej; Ribeiro, Antonio Augusto Coppi Maciel

    2009-05-01

    Stellate ganglion (SG) represents the main sympathetic input to the heart. This study aimed at investigating physical exercise-related changes in the quantitative aspects of SG neurons in treadmill-exercised Wistar rats. By applying state-of-the-art design-based stereology, the SG volume, total number of SG neurons, mean perikaryal volume of SG neurons, and the total volume of neurons in the whole SG have been examined. Arterial pressure and heart rate were also measured at the end of the exercise period. The present study showed that a low-intensity exercise training program caused a 12% decrease in the heart rate of trained rats. In contrast, there were no effects on systolic pressure, diastolic pressure, or mean arterial pressure. As to quantitative changes related to physical exercise, the main findings were a 21% increase in the fractional volume occupied by neurons in the SG, and an 83% increase in the mean perikaryal volume of SG neurons in treadmill-trained rats, which shows a remarkable neuron hypertrophy. It seems reasonable to infer that neuron hypertrophy may have been the result of a functional overload imposed on the SG neurons by initial posttraining sympathetic activation. From the novel stereological data we provide, further investigations are needed to shed light on the mechanistic aspect of neuron hypertrophy: what role does neuron hypertrophy play? Could neuron hypertrophy be assigned to the functional overload induced by physical exercise? PMID:19115406

  16. Chemical ablation of stellate ganglion for head and neck cancer pain.

    PubMed

    Ghai, A; Kaushik, T; Kumar, R; Wadhera, S

    2016-01-01

    We present a case of patient with orofacial cancer having pain on one side of face affecting her ability to speak, chew, swallow and sleep leading to emotional and behavioral deterioration. A diagnostic stellate ganglion block was performed followed by chemical neurolysis using phenol under ultrasound guidance, to prevent complications due to inadvertent spread of drug. Her pain scores decreased drastically, she was able to chew and swallow. Weighing the risk of permanent Horner's syndrome or motor paralysis with benefit of improvement in basic functioning of debilitated patients chemical neurolysis of stellate ganglion can be performed with advanced imaging modalities. PMID:27363209

  17. Transition from circular to stellate forms of submarine volcanoes

    NASA Astrophysics Data System (ADS)

    Mitchell, Neil C.

    2001-02-01

    Large volcanic islands and guyots have stellate forms that reflect the relief of radiating volcanic rift zones, multiple volcanic centers, and embayments due to giant flank failures. Small mid-ocean ridge volcanoes, in contrast, are commonly subcircular in plan view and show only embryonic rift zones. In order to characterize the transition between these two end-members the morphology of 141 seamounts and guyots was studied using the shape of the depth contour at half the height of each edifice. Irregularity was characterized by measuring perimeter distance, elongation, and moment of inertia of the contours, assuming an "ideal" edifice is circular. The analysis reveals a general transition over 2-4 km edifice height (best transition estimate 3 km), while some large edifices 4-5 km high show no major embayments or ridges, suggesting considerable variation in the effectiveness of mechanisms that cause flank instability and growth of rift zones. The various origins of the transition are discussed, and the upper limit of magma chambers, many of which lie above the basement of the larger edifices, is proposed to affect the morphologic complexity via a number of mechanisms and is an important factor affecting the mode of growth. The origins of the truncated cone shape of mid-ocean ridge volcanoes are also discussed. Of the eruption mechanisms that have been proposed to explain their flat summits, the most likely mechanisms involve eruption from small ephemeral magma bodies lying within the low-density upper oceanic crust. The discussion includes speculations on factors affecting the depths of magma chambers beneath oceanic volcanoes. Supporting table is available via Web browser or via Anonymous FTP from ftp://kosmos.agu.org, directory "append" (Username = "anonymous", Password ="guest"); subdirectories in the ftp site are arranged by paper number. Information on searching and submitting electronic supplements is found at http://www.agu.org/pubs/csupp_about.html.

  18. Dendritic NMDA receptors activate axonal calcium channels

    PubMed Central

    Christie, Jason M.; Jahr, Craig E.

    2008-01-01

    Summary NMDA receptor (NMDAR) activation can alter synaptic strength by regulating transmitter release from a variety of neurons in the CNS. As NMDARs are permeable to Ca2+ and monovalent cations, they could alter release directly by increasing presynaptic Ca2+ or indirectly by axonal depolarization sufficient to activate voltage-sensitive Ca2+ channels (VSCCs). Using two-photon microscopy to measure Ca2+ excursions, we found that somatic depolarization or focal activation of dendritic NMDARs elicited small Ca2+ transients in axon varicosities of cerebellar stellate cell interneurons. These axonal transients resulted from Ca2+ entry through VSCCs that were opened by the electrotonic spread of the NMDAR-mediated depolarization elicited in the dendrites. In contrast, we were unable to detect direct activation of NMDARs on axons indicating an exclusive somatodendritic expression of functional NMDARs. In cerebellar stellate cells, dendritic NMDAR activation masquerades as a presynaptic phenomenon and may influence Ca2+-dependent forms of presynaptic plasticity and release. PMID:18957221

  19. Activity-driven fluctuations in living cells

    NASA Astrophysics Data System (ADS)

    Fodor, É.; Guo, M.; Gov, N. S.; Visco, P.; Weitz, D. A.; van Wijland, F.

    2015-05-01

    We propose a model for the dynamics of a probe embedded in a living cell, where both thermal fluctuations and nonequilibrium activity coexist. The model is based on a confining harmonic potential describing the elastic cytoskeletal matrix, which undergoes random active hops as a result of the nonequilibrium rearrangements within the cell. We describe the probe's statistics and we bring forth quantities affected by the nonequilibrium activity. We find an excellent agreement between the predictions of our model and experimental results for tracers inside living cells. Finally, we exploit our model to arrive at quantitative predictions for the parameters characterizing nonequilibrium activity, such as the typical time scale of the activity and the amplitude of the active fluctuations.

  20. Kinetic discrimination in T-cell activation.

    PubMed Central

    Rabinowitz, J D; Beeson, C; Lyons, D S; Davis, M M; McConnell, H M

    1996-01-01

    We propose a quantitative model for T-cell activation in which the rate of dissociation of ligand from T-cell receptors determines the agonist and antagonist properties of the ligand. The ligands are molecular complexes between antigenic peptides and proteins of the major histocompatibility complex on the surfaces of antigen-presenting cells. Binding of ligand to receptor triggers a series of biochemical reactions in the T cell. If the ligand dissociates after these reactions are complete, the T cell receives a positive activation signal. However, dissociation of ligand after completion of the first reaction but prior to generation of the final products results in partial T-cell activation, which acts to suppress a positive response. Such a negative signal is brought about by T-cell ligands containing the variants of antigenic peptides referred to as T-cell receptor antagonists. Results of recent experiments with altered peptide ligands compare favorably with T-cell responses predicted by this model. PMID:8643643

  1. Membrane-To-Nucleus Signaling Links Insulin-Like Growth Factor-1- and Stem Cell Factor-Activated Pathways

    PubMed Central

    Hayashi, Yujiro; Asuzu, David T.; Gibbons, Simon J.; Aarsvold, Kirsten H.; Bardsley, Michael R.; Lomberk, Gwen A.; Mathison, Angela J.; Kendrick, Michael L.; Shen, K. Robert; Taguchi, Takahiro; Gupta, Anu; Rubin, Brian P.; Fletcher, Jonathan A.; Farrugia, Gianrico; Urrutia, Raul A.; Ordog, Tamas

    2013-01-01

    Stem cell factor (mouse: Kitl, human: KITLG) and insulin-like growth factor-1 (IGF1), acting via KIT and IGF1 receptor (IGF1R), respectively, are critical for the development and integrity of several tissues. Autocrine/paracrine KITLG-KIT and IGF1-IGF1R signaling are also activated in several cancers including gastrointestinal stromal tumors (GIST), the most common sarcoma. In murine gastric muscles, IGF1 promotes Kitl-dependent development of interstitial cells of Cajal (ICC), the non-neoplastic counterpart of GIST, suggesting cooperation between these pathways. Here, we report a novel mechanism linking IGF1-IGF1R and KITLG-KIT signaling in both normal and neoplastic cells. In murine gastric muscles, the microenvironment for ICC and GIST, human hepatic stellate cells (LX-2), a model for cancer niches, and GIST cells, IGF1 stimulated Kitl/KITLG protein and mRNA expression and promoter activity by activating several signaling pathways including AKT-mediated glycogen synthase kinase-3β inhibition (GSK3i). GSK3i alone also stimulated Kitl/KITLG expression without activating mitogenic pathways. Both IGF1 and GSK3i induced chromatin-level changes favoring transcriptional activation at the Kitl promoter including increased histone H3/H4 acetylation and H3 lysine (K) 4 methylation, reduced H3K9 and H3K27 methylation and reduced occupancy by the H3K27 methyltransferase EZH2. By pharmacological or RNA interference-mediated inhibition of chromatin modifiers we demonstrated that these changes have the predicted impact on KITLG expression. KITLG knock-down and immunoneutralization inhibited the proliferation of GIST cells expressing wild-type KIT, signifying oncogenic autocrine/paracrine KITLG-KIT signaling. We conclude that membrane-to-nucleus signaling involving GSK3i establishes a previously unrecognized link between the IGF1-IGF1R and KITLG-KIT pathways, which is active in both physiologic and oncogenic contexts and can be exploited for therapeutic purposes. PMID:24116170

  2. Lipolytic activity in adipocyte cell fractions.

    PubMed

    Oschry, Y; Shapiro, B

    1980-05-28

    Adipocytes release only negligible amounts of free fatty acids unless stimulated, but reveal considerable lipolytic activity when homogenized. Epinephrine treatment of the cells caused only a 20-40% increase in the activity of infranatants of homogenates while raising the activity associated with the fat layer up to 10-fold. Full activity (i.e. that of intact-activated cells) could be revealed by epinephrine treatment of the homogenate as well as by sonication of the fat layer in buffer. The combination of both treatments did not yield higher activities. The fat cake contains the bulk of the potential activities which are only realized when dispersed in the aqueous phase by sonication, or upon hormone activation of the whole homogenate. Increase in activity could also be obtained by removal of most of the lipid from the fat layer by extraction with petroleum ether. Re-introduction of extracted lipid inhibited lipolysis. The active enzyme could be separated by flotation at 1.12 specific gravity. The data suggest that the lack of activity in the intact non-stimulated cell may be due to the lack of availability of the aqueous phase to the enzyme. PMID:7378439

  3. Coupling Specificity of NOP Opioid Receptors to Pertussis-Toxin-Sensitive Gα Proteins in Adult Rat Stellate Ganglion Neurons Using Small Interference RNA

    PubMed Central

    Margas, Wojciech; Sedeek, Khaled; Ruiz-Velasco, Victor

    2008-01-01

    The opioid receptor-like 1 (NOP or ORL1) receptor is a G-protein-coupled receptor the endogenous ligand of which is the heptadecapeptide, nociceptin (Noc). NOP receptors are known to modulate pain processing at spinal, supraspinal, and peripheral levels. Previous work has demonstrated that NOP receptors inhibit N-type Ca2+ channel currents in rat sympathetic stellate ganglion (SG) neurons via pertussis toxin (PTX)-sensitive Gαi/o subunits. However, the identification of the specific Gα subunit that mediates the Ca2+ current modulation is unknown. The purpose of the present study was to examine coupling specificity of Noc-activated NOP receptors to N-type Ca2+ channels in SG neurons. Small interference RNA (siRNA) transfection was employed to block the expression of PTX-sensitive Gα subunits. RT-PCR results showed that siRNA specifically decreased the expression of the intended Gα subunit. Evaluation of cell surface protein expression and Ca2+ channel modulation were assessed by immunofluorescence staining and electrophysiological recordings, respectively. Furthermore, the presence of mRNA of the intended siRNA target Gα protein was examined by RT-PCR experiments. Fluorescence imaging showed that Gαi1, Gαi3, and Gαo were expressed in SG neurons. The transfection of Gαi1-specific siRNA resulted in a significant decrease in Noc-mediated Ca2+ current inhibition, while silencing of either Gαi3 or Gαo was without effect. Taken together, these results suggest that in SG neurons Gαi1 subunits selectively couple NOP receptors to N-type Ca2+ channels. PMID:18562551

  4. New host and expanded geographic range of the stellate scale, Vinsonia stellifera (Westwood) (Hemiptera: Coccidae: Ceroplastinae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stellate scale, Vinsonia stellifera (Westwood), is a polyphagous wax scale with a distribution spanning across the tropics and subtropics of both the northern and southern hemispheres. This insect feeds on a wide range of plant taxa and can occur in high densities on a single plant. As a resul...

  5. Regional intravenous guanethidine vs. stellate ganglion block in reflex sympathetic dystrophies: a randomized trial.

    PubMed

    Bonelli, S; Conoscente, F; Movilia, P G; Restelli, L; Francucci, B; Grossi, E

    1983-07-01

    Regional intravenous guanethidine blocks and stellate ganglion blocks have been compared in a randomized trial. Nineteen patients, randomly allocated to two groups of therapy and exhibiting severe reflex sympathetic dystrophy following peripheral nerve lesions, have been treated. The performance of the intravenous guanethidine block is of longer duration and superior to stellate ganglion block, as regards some early pharmacological effects (skin temperatures and amplitude of plethysmographic waves recorded before blockade and 15 min, 60 min, 24 h, 48 h after institution of the block). In fact the intravenous guanethidine group shows a persistent and significant increase of the skin temperature and of the plethysmographic traces in the blocked side 24 h and 48 h after blockade in comparison with the patients treated with stellate ganglion block. Concerning the therapeutic effects (changes in pain scores and clinical signs--hyperpathia, allodynia, vasomotor disturbances, trophic changes, oedema and limited motion), recorded at the end of treatment and 1 month and 3 months follow-up, an intravenous guanethidine block carried out every 4 days up to a total of 4 blocks is comparable with a stellate ganglion block every day up to a total of 8 blocks. The results of this study show that regional sympathetic block with guanethidine is a good therapeutic tool in the treatment of reflex dystrophies, especially on account of its negligible risks and contraindications. PMID:6350994

  6. Long-term effects of intraperitoneal injection of estradiol-17β on the growth and physiology of juvenile stellate sturgeon Acipenser stellatus.

    PubMed

    Falahatkar, Bahram; Poursaeid, Samaneh; Meknatkhah, Bahman; Khara, Hossein; Efatpanah, Iraj

    2014-04-01

    Juvenile stellate sturgeon Acipenser stellatus were intraperitoneally injected with estradiol-17β (E2; 0 and 5 mg/kg fish) to investigate the possibility of sex reversal and also determine the changes in biochemical parameters. Five-month-old fish (40.9 ± 1.1 g) were injected every 3-week interval during a 190-day trial. At the termination of the experiment, final weight and other growth parameters including weight gain and specific growth rate, hepatosomatic and viscerosomatic indices were not affected by repetitive injection of E2. Hematological features of E2-treated fish showed significant reductions in number of red blood cells, hemoglobin concentration, hematocrit value and mean corpuscular hemoglobin (P < 0.05), but no significant changes were observed in number of white blood cells, mean corpuscular volume and mean corpuscular hemoglobin concentration (P > 0.05). Calcium, phosphorus, glucose, triacylglycerol, cholesterol, total protein and estradiol concentrations were significantly increased in fish injected with E2 (P < 0.001). Plasma progesterone and testosterone levels were noticeably lower in fish injected with 5 mg/kg E2 rather than the control fish (P < 0.001). Histological observations of gonads showed that all fish injected with 5 mg/kg E2 apparently feminized, while 66.6 % of the control group was female. These results revealed that the injection of E2 is an effective method for feminization of stellate sturgeon without having significant inhibitory effects on growth and survival. PMID:23990284

  7. Lymphatic endothelial cells actively regulate prostate cancer cell invasion.

    PubMed

    Shah, Tariq; Wildes, Flonne; Kakkad, Samata; Artemov, Dmitri; Bhujwalla, Zaver M

    2016-07-01

    Lymphatic vessels serve as the primary route for metastatic spread to lymph nodes. However, it is not clear how interactions between cancer cells and lymphatic endothelial cells (LECs), especially within hypoxic microenvironments, affect the invasion of cancer cells. Here, using an MR compatible cell perfusion assay, we investigated the role of LEC-prostate cancer (PCa) cell interaction in the invasion and degradation of the extracellular matrix (ECM) by two human PCa cell lines, PC-3 and DU-145, under normoxia and hypoxia, and determined the metabolic changes that occurred under these conditions. We observed a significant increase in the invasion of ECM by invasive PC-3 cells, but not poorly invasive DU-145 cells when human dermal lymphatic microvascular endothelial cells (HMVEC-dlys) were present. Enhanced degradation of ECM by PC-3 cells in the presence of HMVEC-dlys identified interactions between HMVEC-dlys and PCa cells influencing cancer cell invasion. The enhanced ECM degradation was partly attributed to increased MMP-9 enzymatic activity in PC-3 cells when HMVEC-dlys were in close proximity. Significantly higher uPAR and MMP-9 expression levels observed in PC-3 cells compared to DU-145 cells may be one mechanism for increased invasion and degradation of matrigel by these cells irrespective of the presence of HMVEC-dlys. Hypoxia significantly decreased invasion by PC-3 cells, but this decrease was significantly attenuated when HMVEC-dlys were present. Significantly higher phosphocholine was observed in invasive PC-3 cells, while higher glycerophosphocholine was observed in DU-145 cells. These metabolites were not altered in the presence of HMVEC-dlys. Significantly increased lipid levels and lipid droplets were observed in PC-3 and DU-145 cells under hypoxia reflecting an adaptive survival response to oxidative stress. These results suggest that in vivo, invasive cells in or near lymphatic endothelial cells are likely to be more invasive and degrade the ECM

  8. Cicletanine stimulates eNOS phosphorylation and NO production via Akt and MAP kinase/Erk signaling in sinusoidal endothelial cells.

    PubMed

    Liu, Songling; Rockey, Don C

    2013-07-15

    The function of the endothelial isoform of nitric oxide synthase (eNOS) and production of nitric oxide (NO) is altered in a number of disease states. Pharmacological approaches to enhancing NO synthesis and thus perhaps endothelial function could have substantial benefits in patients. We analyzed the effect of cicletanine, a synthetic pyridine with potent vasodilatory characteristics, on eNOS function and NO production in normal (liver) and injured rat sinusoidal endothelial cells, and we studied the effect of cicletanine-induced NO on stellate cell contraction and portal pressure in an in vivo model of liver injury. Sinusoidal endothelial cells were isolated from normal and injured rat livers. After exposure to cicletanine, eNOS phosphorylation, NO synthesis, and the signaling pathway regulating eNOS activation were measured. Cicletanine led to an increase in eNOS (Ser¹¹⁷⁷) phosphorylation, cytochrome c reductase activity, L-arginine conversion to L-citrulline, as well as NO production. The mechanism of the effect of cicletanine appeared to be via the protein kinase B (Akt) and MAP kinase/Erk signaling pathways. Additionally, cicletanine improved NO synthesis in injured sinusoidal endothelial cells. NO production induced by cicletanine in sinusoidal endothelial cells increased protein kinase G (PKG) activity as well as relaxation of stellate cells. Finally, administration of cicletanine to mice with portal hypertension induced by bile duct ligation led to reduction of portal pressure. The data indicate that cicletanine might improve eNOS activity in injured sinusoidal endothelial cells and likely activates hepatic stellate cell NO/PKG signaling. It raises the possibility that cicletanine could improve intrahepatic vascular function in portal hypertensive patients. PMID:23639812

  9. Activation of intraislet lymphoid cells causes destruction of islet cells.

    PubMed Central

    Lacy, P. E.; Finke, E. H.

    1991-01-01

    In vitro culture of rat islets at 24 degrees C for 7 days in tissue culture medium CMRL 1066 almost completely eliminated lymphoid cells from the islets. Immunostaining of the islets with monoclonal antibody OX4 for demonstration of class II major histocompatibility complex (MHC)-expressing cells revealed a decrease from 13.1 +/- 0.6 positive cells per islet on day 0 to 0.7 +/- 0.1 cells per islet on day 7. A comparable decrease was found using OX1 for demonstration of all leukocytes. In contrast, culture of rat islets at 24 degrees C for 7 days with tissue culture Roswell Park Memorial Institute (RPMI) 1640 medium was not as effective in eliminating lymphoid cells as in medium CMRL 1066 (3.0 +/- 0.2 class II MHC positive cells per islet at 7 days). Effective elimination of intraislet lymphoid cells apparently is due to the combined effect of low temperature culture and the tissue culture medium CMRL-1066. The second goal of the study was to determine whether the destructive effect of interferon gamma (IFN-gamma) on rat islets in culture was due to intraislet lymphoid cells. In vitro culture of rat islets with IFN-gamma (1000 units/ml) at 37 degrees C caused almost complete destruction of the islets at 7 days. If intraislet lymphoid cells were eliminated from the islets by in vitro culture at 24 degrees C followed by exposure to IFN-gamma (1000 units/ml) for 7 days at 37 degrees C, then IFN-gamma did not cause destruction of the islets and transplants of the treated islets produced normoglycemia in diabetic recipient mice. These findings indicate that intraislet lymphoid cells are responsible for destruction of islet cells when these cells (presumably macrophages) are activated by IFN-gamma. Intraislet lymphoid cells may play a significant role in destroying islet cells in autoimmune diabetes. Images Figure 1 Figure 2 PMID:1902627

  10. Protrusive Activity Guides Changes in Cell-Cell Tension during Epithelial Cell Scattering

    PubMed Central

    Maruthamuthu, Venkat; Gardel, Margaret L.

    2014-01-01

    Knowing how epithelial cells regulate cell-matrix and cell-cell adhesions is essential to understand key events in morphogenesis as well as pathological events such as metastasis. During epithelial cell scattering, epithelial cell islands rupture their cell-cell contacts and migrate away as single cells on the extracellular matrix (ECM) within hours of growth factor stimulation, even as adhesion molecules such as E-cadherin are present at the cell-cell contact. How the stability of cell-cell contacts is modulated to effect such morphological transitions is still unclear. Here, we report that in the absence of ECM, E-cadherin adhesions continue to sustain substantial cell-generated forces upon hepatocyte growth factor (HGF) stimulation, consistent with undiminished adhesion strength. In the presence of focal adhesions, constraints that preclude the spreading and movement of cells at free island edges also prevent HGF-mediated contact rupture. To explore the role of cell motion and cell-cell contact rupture, we examine the biophysical changes that occur during the scattering of cell pairs. We show that the direction of cell movement with respect to the cell-cell contact is correlated with changes in the average intercellular force as well as the initial direction of cell-cell contact rupture. Our results suggest an important role for protrusive activity resulting in cell displacement and force redistribution in guiding cell-cell contact rupture during scattering. PMID:25099795

  11. Activation of radiosensitizers by hypoxic cells.

    PubMed Central

    Olive, P. L.; Durand, R. E.

    1978-01-01

    Hypoxic cells can metabolize nitroheterocyclic compounds to produce toxic intermediates capable of affecting the survival of neighbouring oxygenated cells. Mutagenesis experiments with E. coli WP-2 343 (deficient in nitroreductase) indicated that reduction of nitroheterocyclics outside bacteria causes killing and mutations within bacteria, presumably due to the transfer of the "active" specie (s). Using animal tissue slices to reduce nitrofurans, cultured L-929 cells incubated under aerobic conditions were far more sensitive to the toxic and DNA damaging effects of these drugs. Transfer of the active species also occurs in a tissue-like environment in multicell spheroids where the presence of a hypoxic central core served to convert the nitroheterocyclics to intermediates which also damaged the neighbouring oxygenated cells. PMID:354676

  12. Polyclonal B cell activation in ankylosing spondylitis.

    PubMed Central

    Barbieri, P; Olivieri, I; Benedettini, G; Marelli, P; Ciompi, M L; Pasero, G; Campa, M

    1990-01-01

    The peripheral blood lymphocyte response of patients with ankylosing spondylitis (AS) to several polyclonal B cell activators was investigated. No differences were found in the reactivity to pokeweed mitogen and protein A between patients and controls; in contrast, the peripheral blood lymphocyte response to Staphylococcus aureus strain Cowan I (SAC) was significantly higher in patients with AS than in controls. This responsiveness was not influenced either by the presence of the HLA-B27 antigen or by environmental factors or associated diseases, and it was higher in patients with active AS than in those with inactive disease. The percentage of circulating B cells was normal. The responses to T cell mitogens and the percentages of T cell subpopulations were similar in patients and in controls. The peripheral blood lymphocyte hyperactivity of patients with AS to SAC was associated with an increased in vitro production of immunoglobulins. PMID:2383063

  13. Entangled active matter: From cells to ants

    NASA Astrophysics Data System (ADS)

    Hu, D. L.; Phonekeo, S.; Altshuler, E.; Brochard-Wyart, F.

    2016-07-01

    Both cells and ants belong to the broad field of active matter, a novel class of non-equilibrium materials composed of many interacting units that individually consume energy and collectively generate motion or mechanical stresses. However cells and ants differ from fish and birds in that they can support static loads. This is because cells and ants can be entangled, so that individual units are bound by transient links. Entanglement gives cells and ants a set of remarkable properties usually not found together, such as the ability to flow like a fluid, spring back like an elastic solid, and self-heal. In this review, we present the biology, mechanics and dynamics of both entangled cells and ants. We apply concepts from soft matter physics and wetting to characterize these systems as well as to point out their differences, which arise from their differences in size. We hope that our viewpoints will spur further investigations into cells and ants as active materials, and inspire the fabrication of synthetic active matter.

  14. Imaging CREB Activation in Living Cells*

    PubMed Central

    Friedrich, Michael W.; Aramuni, Gayane; Mank, Marco; Mackinnon, Jonathan A. G.; Griesbeck, Oliver

    2010-01-01

    The Ca2+- and cAMP-responsive element-binding protein (CREB) and the related ATF-1 and CREM are stimulus-inducible transcription factors that link certain forms of cellular activity to changes in gene expression. They are attributed to complex integrative activation characteristics, but current biochemical technology does not allow dynamic imaging of CREB activation in single cells. Using fluorescence resonance energy transfer between mutants of green fluorescent protein we here develop a signal-optimized genetically encoded indicator that enables imaging activation of CREB due to phosphorylation of the critical serine 133. The indicator of CREB activation due to phosphorylation (ICAP) was used to investigate the role of the scaffold and anchoring protein AKAP79/150 in regulating signal pathways converging on CREB. We show that disruption of AKAP79/150-mediated protein kinase A anchoring or knock-down of AKAP150 dramatically reduces the ability of protein kinase A to activate CREB. In contrast, AKAP79/150 regulation of CREB via L-type channels may only have minor importance. ICAP allows dynamic and reversible imaging in living cells and may become useful in studying molecular components and cell-type specificity of activity-dependent gene expression. PMID:20484048

  15. Critical telomerase activity for uncontrolled cell growth.

    PubMed

    Wesch, Neil L; Burlock, Laura J; Gooding, Robert J

    2016-01-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed. PMID:27500377

  16. Critical telomerase activity for uncontrolled cell growth

    NASA Astrophysics Data System (ADS)

    Wesch, Neil L.; Burlock, Laura J.; Gooding, Robert J.

    2016-08-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed.

  17. Activated mast cells promote differentiation of B cells into effector cells

    PubMed Central

    Palm, Anna-Karin E.; Garcia-Faroldi, Gianni; Lundberg, Marcus; Pejler, Gunnar; Kleinau, Sandra

    2016-01-01

    Based on the known accumulation of mast cells (MCs) in B cell-dependent inflammatory diseases, including rheumatoid arthritis, we hypothesized that MCs directly modulate B cells. We show here that degranulated, and to a lesser extent naïve or IgE-sensitized, MCs activate both naïve and B cell receptor-activated B cells. This was shown by increased proliferation, blast formation, and expression of CD19, MHC class II and CD86 in the B cells. Further, MCs stimulated the secretion of IgM and IgG in IgM+ B cells, indicating that MCs can induce class-switch recombination in B cells. We also show that coculture of MCs with B cells promotes surface expression of L-selectin, a homing receptor, on the B cells. The effects of MCs on B cells were partly dependent on cell-cell contact and both follicular and marginal zone B cells could be activated by MCs. Our findings suggest that degranulated MCs support optimal activation of B cells, a finding that is in line with in vivo studies showing that MCs frequently degranulate in the context of B-cell driven pathologies such as arthritis. Together, our findings show that MCs have the capacity to differentiate B cells to effector cells. PMID:26847186

  18. Active mechanics and geometry of adherent cells and cell colonies

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya

    2014-03-01

    Measurements of traction stresses exerted by adherent cells or cell colonies on elastic substrates have yielded new insight on how the mechanical and geometrical properties of the substrate regulate cellular force distribution, mechanical energy, spreading, morphology or stress ber architecture. We have developed a generic mechanical model of adherent cells as an active contractile gel mechanically coupled to an elastic substrate and to neighboring cells in a tissue. The contractile gel model accurately predicts the distribution of cellular and traction stresses as observed in single cell experiments, and captures the dependence of cell shape, traction stresses and stress ber polarization on the substrate's mechanical and geometrical properties. The model further predicts that the total strain energy of an adherent cell is solely regulated by its spread area, in agreement with recent experiments on micropatterned substrates with controlled geometry. When used to describe the behavior of colonies of adherent epithelial cells, the model demonstrates the crucial role of the mechanical cross-talk between intercellular and extracellular adhesion in regulating traction force distribution. Strong intercellular mechanical coupling organizes traction forces to the colony periphery, whereas weaker intercellular coupling leads to the build up of traction stresses at intercellular junctions. Furthermore, in agreement with experiments on large cohesive keratinocyte colonies, the model predicts a linear scaling of traction forces with the colony size. This scaling suggests the emergence of an effective surface tension as a scale-free material property of the adherent tissue, originating from actomyosin contractility.

  19. Mechanically activated artificial cell by using microfluidics.

    PubMed

    Ho, Kenneth K Y; Lee, Lap Man; Liu, Allen P

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology. PMID:27610921

  20. Mechanically activated artificial cell by using microfluidics

    PubMed Central

    Ho, Kenneth K. Y.; Lee, Lap Man; Liu, Allen P.

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology. PMID:27610921

  1. Photochemical approaches to T-cell activation

    PubMed Central

    Huse, Morgan

    2010-01-01

    Despite decades of intensive research, T-cell activation has remained mysterious because of both the dizzying diversity of antigen recognition and the speed and comprehensiveness of the T-cell-receptor signalling network. Further progress will require new approaches and reagents that provide added levels of control. Photochemistry allows specific biochemical processes to be controlled with light and is well suited to mechanistic studies in complex cellular environments. In recent years, several laboratories have adopted approaches based on photoreactive peptide-major histocompatibility complex reagents in order to study T-cell activation and function with high precision. Here, I review these efforts and outline future directions for this exciting area of research. PMID:20406301

  2. Cultured Mycelium Cordyceps sinensis allevi¬ates CCl4-induced liver inflammation and fibrosis in mice by activating hepatic natural killer cells

    PubMed Central

    Peng, Yuan; Huang, Kai; Shen, Li; Tao, Yan-yan; Liu, Cheng-hai

    2016-01-01

    Aim: Recent evidence shows that cultured mycelium Cordyceps sinensis (CMCS) effectively protects against liver fibrosis in mice. Here, we investigated whether the anti-fibrotic action of CMCS was related to its regulation of the activity of hepatic natural killer (NK) cells in CCl4-treated mice. Methods: C57BL/6 mice were injected with 10% CCl4 (2 mL/kg, ip) 3 times per week for 4 weeks, and received CMCS (120 mg·kg−1·d−1, ig) during this period. In another part of experiments, the mice were also injected with an NK cell-deleting antibody ASGM-1 (20 μg, ip) 5 times in the first 3 weeks. After the mice were sacrificed, serum liver function, and liver inflammation, hydroxyproline content and collagen deposition were assessed. The numbers of hepatic NK cells and expression of NKG2D (activation receptor of NK cells) on isolated liver lymphocytes were analyzed using flow cytometry. Desmin expression and cell apoptosis in liver tissues were studied using desmin staining and TUNEL assay, respectively. The levels of α-SMA, TGF-β, RAE-1δ and RAE-1ε in liver tissues were determined by RT-qPCR. Results: In CCl4-treated mice, CMCS administration significantly improved liver function, attenuated liver inflammation and fibrosis, and increased the numbers of hepatic NK cells and expression level of NKG2D on hepatic NK cells. Furthermore, CMCS administration significantly decreased desmin expression in liver tissues, and increased TUNEL staining adjacent to hepatic stellate cells. Injection with NK cell-deleting ASGM-1 not only diminished the numbers of hepatic NK cells, but also greatly accelerated liver inflammation and fibrosis in CCl4-treated mice. In CCl4-treated mice with NK cell depletion, CMCS administration decelerated the rate of liver fibrosis development, and mildly upregulated the numbers of hepatic NK cells but without changing NKG2D expression. Conclusion: CMCS allevi¬ates CCl4-induced liver inflammation and fibrosis via promoting activation of hepatic

  3. Stellate ganglion pulsed radiofrequency ablation for stretch induced complex regional pain syndrome type II

    PubMed Central

    Singh Rana, Shiv Pratap; Abraham, Mary; Gupta, Varun; Biswas, Shubhashish; Marda, Manish

    2015-01-01

    Complex regional pain syndrome (CRPS) following injury or nerve damage, as its name signifies, is a challenging entity, and its successful management requires a multidisciplinary approach. It not only manifests as severe pain, but also gives rise to functional disability, lack of sleep, lack of enjoyment of life and poor quality of life. Various pain interventional techniques have been described in the literature for the management of CRPS ranging from sympathetic blocks to spinal cord stimulator. A 34-year-old liver transplant donor, who developed position-induced right upper limb neuropathic pain suggestive of CRPS type II was managed initially with medications and later with stellate ganglion block under fluoroscopic guidance at cervical C7 position. Following an initial significant improvement in pain and allodynia, which was transient, a pulsed radiofrequency ablation of stellate ganglion was performed successfully to provide prolonged and sustained pain relief, which persisted up to 14 months of follow-up. PMID:26543471

  4. Subcolumnar dendritic and axonal organization of spiny stellate and star pyramid neurons within a barrel in rat somatosensory cortex.

    PubMed

    Egger, Veronica; Nevian, Thomas; Bruno, Randy M

    2008-04-01

    Excitatory neurons at the level of cortical layer 4 in the rodent somatosensory barrel field often display a strong eccentricity in comparison with layer 4 neurons in other cortical regions. In rat, dendritic symmetry of the 2 main excitatory neuronal classes, spiny stellate and star pyramid neurons (SSNs and SPNs), was quantified by an asymmetry index, the dendrite-free angle. We carefully measured shrinkage and analyzed its influence on morphological parameters. SSNs had mostly eccentric morphology, whereas SPNs were nearly radially symmetric. Most asymmetric neurons were located near the barrel border. The axonal projections, analyzed at the level of layer 4, were mostly restricted to a single barrel except for those of 3 interbarrel projection neurons. Comparing voxel representations of dendrites and axon collaterals of the same neuron revealed a close overlap of dendritic and axonal fields, more pronounced in SSNs versus SPNs and considerably stronger in spiny L4 neurons versus extragranular pyramidal cells. These observations suggest that within a barrel dendrites and axons of individual excitatory cells are organized in subcolumns that may confer receptive field properties such as directional selectivity to higher layers, whereas the interbarrel projections challenge our view of barrels as completely independent processors of thalamic input. PMID:17656622

  5. Identification of 6-octadecynoic acid from a methanol extract of Marrubium vulgare L. as a peroxisome proliferator-activated receptor γ agonist

    SciTech Connect

    Ohtera, Anna; Miyamae, Yusaku; Nakai, Naomi; Kawachi, Atsushi; Kawada, Kiyokazu; Han, Junkyu; Isoda, Hiroko; Neffati, Mohamed; Akita, Toru; Maejima, Kazuhiro; Masuda, Seiji; Kambe, Taiho; Mori, Naoki; Irie, Kazuhiro; Nagao, Masaya

    2013-10-18

    Highlights: •6-ODA, a rare fatty acid with a triple bond, was identified from Marrubium vulgare. •6-ODA was synthesized from petroselinic acid as a starting material. •6-ODA stimulated lipid accumulation in HSC-T6 and 3T3-L1 cells. •The first report of a fatty acid with a triple bond functioning as a PPARγ agonist. •This study sheds light on novel functions of a fatty acid with a triple bond. -- Abstract: 6-Octadecynoic acid (6-ODA), a fatty acid with a triple bond, was identified in the methanol extract of Marrubium vulgare L. as an agonist of peroxisome proliferator-activated receptor γ (PPARγ). Fibrogenesis caused by hepatic stellate cells is inhibited by PPARγ whose ligands are clinically used for the treatment of diabetes. Plant extracts of Marrubium vulgare L., were screened for activity to inhibit fibrosis in the hepatic stellate cell line HSC-T6 using Oil Red-O staining, which detects lipids that typically accumulate in quiescent hepatic stellate cells. A methanol extract with activity to stimulate accumulation of lipids was obtained. This extract was found to have PPARγ agonist activity using a luciferase reporter assay. After purification using several chromatographic methods, 6-ODA, a fatty acid with a triple bond, was identified as a candidate of PPARγ agonist. Synthesized 6-ODA and its derivative 9-octadecynoic acid (9-ODA), which both have a triple bond but in different positions, activated PPARγ in a luciferase reporter assay and increased lipid accumulation in 3T3-L1 adipocytes in a PPARγ-dependent manner. There is little information about the biological activity of fatty acids with a triple bond, and to our knowledge, this is the first report that 6-ODA and 9-ODA function as PPARγ agonists.

  6. Transition metals activate TFEB in overexpressing cells

    PubMed Central

    Peña, Karina A.; Kiselyov, Kirill

    2015-01-01

    Transition metal toxicity is an important factor in the pathogenesis of numerous human disorders, including neurodegenerative diseases. Lysosomes have emerged as important factors in transition metal toxicity because they handle transition metals via endocytosis, autophagy, absorption from the cytoplasm and exocytosis. Transcription factor EB (TFEB) regulates lysosomal biogenesis and the expression of lysosomal proteins in response to lysosomal and/or metabolic stresses. Since transition metals cause lysosomal dysfunction, we proposed that TFEB may be activated to drive gene expression in response to transition metal exposure and that such activation may influence transition metal toxicity. We found that transition metals copper (Cu) and iron (Fe) activate recombinant TFEB and stimulate the expression of TFEB-dependent genes in TFEB-overexpressing cells. In cells that show robust lysosomal exocytosis, TFEB was cytoprotective at moderate levels of Cu exposure, decreasing oxidative stress as reported by the expression of heme oxygenase-1 (HMOX1) gene. However, at high levels of Cu exposure, particularly in cells with low levels of lysosomal exocytosis, activation of overexpressed TFEB was toxic, increasing oxidative stress and mitochondrial damage. Based on these data, we conclude that TFEB-driven gene network is a component of the cellular response to transition metals. These data suggest limitations and disadvantages of TFEB overexpression as a therapeutic approach. PMID:26251447

  7. Decidual Cell Polyploidization Necessitates Mitochondrial Activity

    PubMed Central

    Ma, Xinghong; Gao, Fei; Rusie, Allison; Hemingway, Jennifer; Ostmann, Alicia B.; Sroga, Julie M.; Jegga, Anil G.; Das, Sanjoy K.

    2011-01-01

    Cellular polyploidy has been widely reported in nature, yet its developmental mechanism and function remain poorly understood. In the present study, to better define the aspects of decidual cell polyploidy, we isolated pure polyploid and non-polyploid decidual cell populations from the in vivo decidual bed. Three independent RNA pools prepared for each population were then subjected to the Affymetrix gene chip analysis for the whole mouse genome transcripts. Our data revealed up-regulation of 1015 genes and down-regulation of 1207 genes in the polyploid populations, as compared to the non-polyploid group. Comparative RT-PCR and in situ hybridization results indeed confirmed differential expressional regulation of several genes between the two populations. Based on functional enrichment analyses, up-regulated polyploidy genes appeared to implicate several functions, which primarily include cell/nuclear division, ATP binding, metabolic process, and mitochondrial activity, whereas that of down-regulated genes primarily included apoptosis and immune processes. Further analyses of genes that are related to mitochondria and bi-nucleation showed differential and regional expression within the decidual bed, consistent with the pattern of polyploidy. Consistently, studies revealed a marked induction of mitochondrial mass and ATP production in polyploid cells. The inhibition of mitochondrial activity by various pharmacological inhibitors, as well as by gene-specific targeting using siRNA-mediated technology showed a dramatic attenuation of polyploidy and bi-nucleation development during in vitro stromal cell decidualization, suggesting mitochondria play a major role in positive regulation of decidual cell polyploidization. Collectively, analyses of unique polyploidy markers and molecular signaling networks may be useful to further characterize functional aspects of decidual cell polyploidy at the site of implantation. PMID:22046353

  8. Noninvasive low-frequency electromagnetic stimulation of the left stellate ganglion reduces myocardial infarction-induced ventricular arrhythmia

    PubMed Central

    Wang, Songyun; Zhou, Xiaoya; Huang, Bing; Wang, Zhuo; Zhou, Liping; Wang, Menglong; Yu, Lilei; Jiang, Hong

    2016-01-01

    Noninvasive magnetic stimulation has been widely used in autonomic disorders in the past few decades, but few studies has been done in cardiac diseases. Recently, studies showed that low-frequency electromagnetic field (LF-EMF) might suppress atrial fibrillation by mediating the cardiac autonomic nervous system. In the present study, the effect of LF-EMF stimulation of left stellate ganglion (LSG) on LSG neural activity and ventricular arrhythmia has been studied in an acute myocardium infarction canine model. It is shown that LF-EMF stimulation leads to a reduction both in the neural activity of LSG and in the incidence of ventricular arrhythmia. The obtained results suggested that inhibition of the LSG neural activity might be the causal of the reduction of ventricular arrhythmia since previous studies have shown that LSG hyperactivity may facilitate the incidence of ventricular arrhythmia. LF-EMF stimulation might be a novel noninvasive substitute for the existing implant device-based electrical stimulation or sympathectomy in the treatment of cardiac disorders. PMID:27470078

  9. Fluorescence activated cell sorting of plant protoplasts.

    PubMed

    Bargmann, Bastiaan O R; Birnbaum, Kenneth D

    2010-01-01

    High-resolution, cell type-specific analysis of gene expression greatly enhances understanding of developmental regulation and responses to environmental stimuli in any multicellular organism. In situ hybridization and reporter gene visualization can to a limited extent be used to this end but for high resolution quantitative RT-PCR or high-throughput transcriptome-wide analysis the isolation of RNA from particular cell types is requisite. Cellular dissociation of tissue expressing a fluorescent protein marker in a specific cell type and subsequent Fluorescence Activated Cell Sorting (FACS) makes it possible to collect sufficient amounts of material for RNA extraction, cDNA synthesis/amplification and microarray analysis. An extensive set of cell type-specific fluorescent reporter lines is available to the plant research community. In this case, two marker lines of the Arabidopsis thaliana root are used: P(SCR;)::GFP (endodermis and quiescent center) and P(WOX5;)::GFP (quiescent center). Large numbers (thousands) of seedlings are grown hydroponically or on agar plates and harvested to obtain enough root material for further analysis. Cellular dissociation of plant material is achieved by enzymatic digestion of the cell wall. This procedure makes use of high osmolarity-induced plasmolysis and commercially available cellulases, pectinases and hemicellulases to release protoplasts into solution. FACS of GFP-positive cells makes use of the visualization of the green versus the red emission spectra of protoplasts excited by a 488 nm laser. GFP-positive protoplasts can be distinguished by their increased ratio of green to red emission. Protoplasts are typically sorted directly into RNA extraction buffer and stored for further processing at a later time. This technique is revealed to be straightforward and practicable. Furthermore, it is shown that it can be used without difficulty to isolate sufficient numbers of cells for transcriptome analysis, even for very scarce

  10. Chronic variable stress activates hematopoietic stem cells

    PubMed Central

    Courties, Gabriel; Dutta, Partha; Iwamoto, Yoshiko; Zaltsman, Alex; von zur Muhlen, Constantin; Bode, Christoph; Fricchione, Gregory L.; Denninger, John; Lin, Charles P.; Vinegoni, Claudio; Libby, Peter; Swirski, Filip K.; Weissleder, Ralph; Nahrendorf, Matthias

    2014-01-01

    Exposure to psychosocial stress is a risk factor for many diseases, including atherosclerosis1,2. While incompletely understood, interaction between the psyche and the immune system provides one potential mechanism linking stress and disease inception and progression. Known crosstalk between the brain and immune system includes the hypothalamic–pituitary–adrenal axis, which centrally drives glucocorticoid production in the adrenal cortex, and the sympathetic–adrenal–medullary axis, which controls stress–induced catecholamine release in support of the fight–or–flight reflex3,4. It remains unknown however if chronic stress changes hematopoietic stem cell activity. Here we show that stress increases proliferation of these most primitive progenitors, giving rise to higher levels of disease–promoting inflammatory leukocytes. We found that chronic stress induced monocytosis and neutrophilia in humans. While investigating the source of leukocytosis in mice, we discovered that stress activates upstream hematopoietic stem cells. Sympathetic nerve fibers release surplus noradrenaline, which uses the β3 adrenergic receptor to signal bone marrow niche cells to decrease CXCL12 levels. Consequently, elevated hematopoietic stem cell proliferation increases output of neutrophils and inflammatory monocytes. When atherosclerosis–prone ApoE−/− mice encounter chronic stress, accelerated hematopoiesis promotes plaque features associated with vulnerable lesions that cause myocardial infarction and stroke in humans. PMID:24952646

  11. Modulation of NGF by cortisol and the Stellate Ganglion Block - is this the missing link between memory consolidation and PTSD?

    PubMed

    Lipov, Eugene; Kelzenberg, Briana; Rothfeld, Courtney; Abdi, Salahadin

    2012-12-01

    Post-Traumatic Stress Disorder (PTSD) is a common psychiatric disorder that is often associated with intrusive memories and deficits in declarative memory function. The neurobiology of this effect is complex. The report focus is to provide an overview of systems activated during stress and consequences of the activation as well as modulation of those effects. Two systems predominate in stress and related memory processing and encoding. They are the autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal axis (HPA) axis. ANS has significant effect on enhancing encoding of emotional memories, sensitization, and fear conditioning with the main neurotransmitter being norepinephrine (NE). HPA system is involved in memory regulation where cortisol (CORT), by itself and with NE, regulates memories of emotional events. Therapeutic interference with stress-related memory dysfunction has been a focus of research for some time. New focus of this research may be the HPA axis and ANS. Recent evidence demonstrates significant efficacy in prevention of PTSD by administration of CORT, as well as treatment of PTSD by utilization of Stellate Ganglion Block (SGB), which reduces NE. Both therapeutic approaches may act by a common pathway involving Nerve Growth Factor (NGF). This factor may be the "missing link" between memory consolidation and PTSD. Suppression of NGF can reduce memory effect directly or by effect on NE, leading to prevention or effective treatment of PTSD. PMID:22998954

  12. Persistent neural activity in head direction cells

    NASA Technical Reports Server (NTRS)

    Taube, Jeffrey S.; Bassett, Joshua P.; Oman, C. M. (Principal Investi