Science.gov

Sample records for activated stress response

  1. Dynamics of active cellular response under stress

    NASA Astrophysics Data System (ADS)

    de, Rumi; Zemel, Assaf; Safran, Samuel

    2008-03-01

    Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. Using a simple theoretical model that includes the forces due to both the mechanosensitive nature of cells and the elastic response of the matrix, we predict the dynamics of orientation of cells. The model predicts many features observed in measurements of cellular forces and orientation including the increase with time of the forces generated by cells in the absence of applied stress and the consequent decrease of the force in the presence of quasi-static stresses. We also explain the puzzling observation of parallel alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material can be used to distinguish systems in which cell activity is controlled by stress from those where cell activity is controlled by strain. Reference: Nature Physics, vol. 3, pp 655 (2007).

  2. Dynamics of telomerase activity in response to acute psychological stress

    PubMed Central

    Epel, Elissa S.; Lin, Jue; Dhabhar, Firdaus S.; Wolkowitz, Owen M.; Puterman, E; Karan, Lori; Blackburn, Elizabeth H.

    2010-01-01

    Telomerase activity plays an essential role in cel0l survival, by lengthening telomeres and promoting cell growth and longevity. It is now possible to quantify the low levels of telomerase activity in human leukocytes. Low basal telomerase activity has been related to chronic stress in people and to chronic glucocorticoid exposure in vitro. Here we test whether leukocyte telomerase activity changes under acute psychological stress. We exposed 44 elderly women, including 22 high stress dementia caregivers and 22 matched low stress controls, to a brief laboratory psychological stressor, while examining changes in telomerase activity of peripheral blood mononuclear cells (PBMC). At baseline, caregivers had lower telomerase activity levels than controls, but during stress telomerase activity increased similarly in both groups. Across the entire sample, subsequent telomerase activity increased by 18% one hour after the end of the stressor (p<0.01). The increase in telomerase activity was independent of changes in numbers or percentages of monocytes, lymphocytes, and specific T cell types, although we cannot fully rule out some potential contribution from immune cell redistribution in the change in telomerase activity. Telomerase activity increases were associated with greater cortisol increases in response to the stressor. Lastly, psychological response to the tasks (greater threat perception) was also related to greater telomerase activity increases in controls. These findings uncover novel relationships of dynamic telomerase activity with exposure to an acute stressor, and with two classic aspects of the stress response -- perceived psychological stress and neuroendocrine (cortisol) responses to the stressor. PMID:20018236

  3. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    PubMed Central

    Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage. PMID:27053445

  4. Dynamical theory of active cellular response to external stress

    NASA Astrophysics Data System (ADS)

    de, Rumi; Safran, Samuel A.

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response.

  5. Dynamical theory of active cellular response to external stress.

    PubMed

    De, Rumi; Safran, Samuel A

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response.

  6. Ozone exposure activates oxidative stress responses in murine skin.

    PubMed

    Valacchi, Giuseppe; van der Vliet, Albert; Schock, Bettina C; Okamoto, Tatsuya; Obermuller-Jevic, Ute; Cross, Carroll E; Packer, Lester

    2002-09-30

    Ozone (O(3)) is among the most reactive environmental oxidant to which skin is exposed. O(3) exposure has previously been shown to induce antioxidant depletion as well as lipid and protein oxidation in the outermost skin layer, the stratum corneum (SC), but little is known regarding the potential effects of O(3) on the skin epidermis and dermis. To evaluate such skin responses to O(3), SKH-1 hairless mice were exposed for 2 h to 8.0 ppm O(3) or to ambient air. O(3) exposure caused a significant increase in skin carbonyls (28%) compared to the skin of air exposed control animals. An evident increase in 4-hydroxynonenal-protein adducts was detected after O(3) exposure. O(3) exposure caused a rapid up-regulation of HSP27 (20-fold), and more delayed induction of HSP70 (2.8-fold) and heme oxygenase-1 (5-fold). O(3) exposure also led to the induction of nitric oxide synthase (iNOS) 6-12 h following O(3) exposure. We conclude that skin exposure to high levels of O(3) not only affects antioxidant levels and oxidation markers in the SC, but also induces stress responses in the active layers of the skin, most likely by indirect mechanisms, since it is unlikely that O(3) itself penetrates the protective SC layers.

  7. Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy.

    PubMed

    Blázquez, Ana-Belén; Escribano-Romero, Estela; Merino-Ramos, Teresa; Saiz, Juan-Carlos; Martín-Acebes, Miguel A

    2014-01-01

    The Flavivirus is a genus of RNA viruses that includes multiple long known human, animal, and zoonotic pathogens such as Dengue virus, yellow fever virus, West Nile virus, or Japanese encephalitis virus, as well as other less known viruses that represent potential threats for human and animal health such as Usutu or Zika viruses. Flavivirus replication is based on endoplasmic reticulum-derived structures. Membrane remodeling and accumulation of viral factors induce endoplasmic reticulum stress that results in activation of a cellular signaling response termed unfolded protein response (UPR), which can be modulated by the viruses for their own benefit. Concomitant with the activation of the UPR, an upregulation of the autophagic pathway in cells infected with different flaviviruses has also been described. This review addresses the current knowledge of the relationship between endoplasmic reticulum stress, UPR, and autophagy in flavivirus-infected cells and the growing evidences for an involvement of these cellular pathways in the replication and pathogenesis of these viruses.

  8. Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy

    PubMed Central

    Blázquez, Ana-Belén; Escribano-Romero, Estela; Merino-Ramos, Teresa; Saiz, Juan-Carlos; Martín-Acebes, Miguel A.

    2014-01-01

    The Flavivirus is a genus of RNA viruses that includes multiple long known human, animal, and zoonotic pathogens such as Dengue virus, yellow fever virus, West Nile virus, or Japanese encephalitis virus, as well as other less known viruses that represent potential threats for human and animal health such as Usutu or Zika viruses. Flavivirus replication is based on endoplasmic reticulum-derived structures. Membrane remodeling and accumulation of viral factors induce endoplasmic reticulum stress that results in activation of a cellular signaling response termed unfolded protein response (UPR), which can be modulated by the viruses for their own benefit. Concomitant with the activation of the UPR, an upregulation of the autophagic pathway in cells infected with different flaviviruses has also been described. This review addresses the current knowledge of the relationship between endoplasmic reticulum stress, UPR, and autophagy in flavivirus-infected cells and the growing evidences for an involvement of these cellular pathways in the replication and pathogenesis of these viruses. PMID:24917859

  9. Estradiol levels modulate brain activity and negative responses to psychosocial stress across the menstrual cycle.

    PubMed

    Albert, Kimberly; Pruessner, Jens; Newhouse, Paul

    2015-09-01

    Although ovarian hormones are thought to have a potential role in the well-known sex difference in mood and anxiety disorders, the mechanisms through which ovarian hormone changes contribute to stress regulation are not well understood. One mechanism by which ovarian hormones might impact mood regulation is by mediating the effect of psychosocial stress, which often precedes depressive episodes and may have mood consequences that are particularly relevant in women. In the current study, brain activity and mood response to psychosocial stress was examined in healthy, normally cycling women at either the high or low estradiol phase of the menstrual cycle. Twenty eight women were exposed to the Montreal Imaging Stress Task (MIST), with brain activity determined through functional magnetic resonance imaging, and behavioral response assessed with subjective mood and stress measures. Brain activity responses to psychosocial stress differed between women in the low versus high estrogen phase of the menstrual cycle: women with high estradiol levels showed significantly less deactivation in limbic regions during psychosocial stress compared to women with low estradiol levels. Additionally, women with higher estradiol levels also had less subjective distress in response to the MIST than women with lower estradiol levels. The results of this study suggest that, in normally cycling premenopausal women, high estradiol levels attenuate the brain activation changes and negative mood response to psychosocial stress. Normal ovarian hormone fluctuations may alter the impact of psychosocially stressful events by presenting periods of increased vulnerability to psychosocial stress during low estradiol phases of the menstrual cycle. This menstrual cycle-related fluctuation in stress vulnerability may be relevant to the greater risk for affective disorder or post-traumatic stress disorder in women.

  10. Transposable Elements Contribute to Activation of Maize Genes in Response to Abiotic Stress

    PubMed Central

    Makarevitch, Irina; Waters, Amanda J.; West, Patrick T.; Stitzer, Michelle; Hirsch, Candice N.; Ross-Ibarra, Jeffrey; Springer, Nathan M.

    2015-01-01

    Transposable elements (TEs) account for a large portion of the genome in many eukaryotic species. Despite their reputation as “junk” DNA or genomic parasites deleterious for the host, TEs have complex interactions with host genes and the potential to contribute to regulatory variation in gene expression. It has been hypothesized that TEs and genes they insert near may be transcriptionally activated in response to stress conditions. The maize genome, with many different types of TEs interspersed with genes, provides an ideal system to study the genome-wide influence of TEs on gene regulation. To analyze the magnitude of the TE effect on gene expression response to environmental changes, we profiled gene and TE transcript levels in maize seedlings exposed to a number of abiotic stresses. Many genes exhibit up- or down-regulation in response to these stress conditions. The analysis of TE families inserted within upstream regions of up-regulated genes revealed that between four and nine different TE families are associated with up-regulated gene expression in each of these stress conditions, affecting up to 20% of the genes up-regulated in response to abiotic stress, and as many as 33% of genes that are only expressed in response to stress. Expression of many of these same TE families also responds to the same stress conditions. The analysis of the stress-induced transcripts and proximity of the transposon to the gene suggests that these TEs may provide local enhancer activities that stimulate stress-responsive gene expression. Our data on allelic variation for insertions of several of these TEs show strong correlation between the presence of TE insertions and stress-responsive up-regulation of gene expression. Our findings suggest that TEs provide an important source of allelic regulatory variation in gene response to abiotic stress in maize. PMID:25569788

  11. Protein aggregation activates erratic stress response in dietary restricted yeast cells

    PubMed Central

    Bhadra, Ankan Kumar; Das, Eshita; Roy, Ipsita

    2016-01-01

    Chronic stress and prolonged activation of defence pathways have deleterious consequences for the cell. Dietary restriction is believed to be beneficial as it induces the cellular stress response machinery. We report here that although the phenomenon is beneficial in a wild-type cell, dietary restriction leads to an inconsistent response in a cell that is already under proteotoxicity-induced stress. Using a yeast model of Huntington’s disease, we show that contrary to expectation, aggregation of mutant huntingtin is exacerbated and activation of the unfolded protein response pathway is dampened under dietary restriction. Global proteomic analysis shows that when exposed to a single stress, either protein aggregation or dietary restriction, the expression of foldases like peptidyl-prolyl isomerase, is strongly upregulated. However, under combinatorial stress, this lead is lost, which results in enhanced protein aggregation and reduced cell survival. Successful designing of aggregation-targeted therapeutics will need to take additional stressors into account. PMID:27633120

  12. Protein aggregation activates erratic stress response in dietary restricted yeast cells.

    PubMed

    Bhadra, Ankan Kumar; Das, Eshita; Roy, Ipsita

    2016-01-01

    Chronic stress and prolonged activation of defence pathways have deleterious consequences for the cell. Dietary restriction is believed to be beneficial as it induces the cellular stress response machinery. We report here that although the phenomenon is beneficial in a wild-type cell, dietary restriction leads to an inconsistent response in a cell that is already under proteotoxicity-induced stress. Using a yeast model of Huntington's disease, we show that contrary to expectation, aggregation of mutant huntingtin is exacerbated and activation of the unfolded protein response pathway is dampened under dietary restriction. Global proteomic analysis shows that when exposed to a single stress, either protein aggregation or dietary restriction, the expression of foldases like peptidyl-prolyl isomerase, is strongly upregulated. However, under combinatorial stress, this lead is lost, which results in enhanced protein aggregation and reduced cell survival. Successful designing of aggregation-targeted therapeutics will need to take additional stressors into account. PMID:27633120

  13. Activation of oxidative stress-responsive signaling pathways in early splenotoxic response of aniline

    SciTech Connect

    Wang Jianling; Wang Gangduo; Ansari, G.A.S.; Khan, M. Firoze

    2008-07-15

    Aniline exposure causes toxicity to the spleen, which leads to a variety of sarcomas, and fibrosis appears to be an important preneoplastic lesion. However, early molecular mechanisms in aniline-induced toxicity to the spleen are not known. Previously, we have shown that aniline exposure results in iron overload and induction of oxidative stress in the spleen, which can cause transcriptional upregulation of fibrogenic/inflammatory cytokines via activation of oxidative stress (OS)-responsive signaling pathways. To test this mechanism, male SD rats were treated with aniline (1mmol/kg/day via gavage) for 7days, an experimental condition that precedes the appearance of fibrosis. Significant increases in both NF-{kappa}B and AP-1 binding activity was observed in the nuclear extracts of splenocytes from aniline-treated rats as determined by ELISAs, and supported by Western blot data showing increases in p-I{kappa}B{alpha}, p-p65 and p-c-Jun. To understand the upstream signaling events which could account for the activation of NF-{kappa}B and AP-1, phosphorylation patterns of I{kappa}B kinases (IKK{alpha} and IKK{beta}) and mitogen-activated protein kinases (MAPKs) were pursued. Our data showed remarkable increases in both p-IKK{alpha} and p-IKK{beta} in the splenocytes from aniline-treated rats, suggesting their role in the phosphorylation of both I{kappa}B{alpha} and p65 subunits. Furthermore, aniline exposure led to activation of all three classes of MAPKs, as evident from increased phosphorylation of extracellular-signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK1/2) and p38 MAPKs, which could potentially contribute to the observed activation of both AP-1 and NF-{kappa}B. Activation of upstream signaling molecules was also associated with simultaneous increases in gene transcription of cytokines IL-1, IL-6 and TNF-{alpha}. The observed sequence of events following aniline exposure could initiate a fibrogenic and/or tumorigenic response in the spleen.

  14. Organizational and activational effects of testosterone on masculinization of female physiological and behavioral stress responses.

    PubMed

    Goel, Nirupa; Bale, Tracy L

    2008-12-01

    The prevalence of affective disorders is two times greater in women than in men. The onset of anxiety and depression occurs at different ages that may correspond to key developmental periods when the brain is more vulnerable to hormonal and exogenous influences. Because stressful life events can precipitate disease onset, the development of greater stress sensitivity in females may contribute to their increased vulnerability. Gonadal hormone exposure in males during early development and again from puberty onward plays a prominent role in sexually dimorphic brain formation, possibly contributing to sex differences in stress responsivity. Therefore, organizational effects of testosterone propionate (TP) administered postnatally and activational effects of TP administered beginning at puberty on adult female physiological and behavioral stress responses were examined in mice. Although the activational effects of TP in females ameliorated the sex difference in the hypothalamic-pituitary-adrenal axis stress response, there was no effect of postnatal TP. Similarly, higher immobile time in intact females in the tail suspension test was blunted by activational TP in the absence of postnatal TP. However, in the marble-burying test of anxiety-like behaviors, organizational and activational TP independently resulted in increased burying behaviors. These results show that TP administration has distinct effects on reducing physiological and behavioral stress responsivity in rodent models and suggest that sex differences in these responses may partially result from the absence of testosterone in females.

  15. S-Nitrosylation Positively Regulates Ascorbate Peroxidase Activity during Plant Stress Responses1

    PubMed Central

    Yang, Huanjie; Mu, Jinye; Chen, Lichao; Feng, Jian; Hu, Jiliang; Li, Lei; Zhou, Jian-Min; Zuo, Jianru

    2015-01-01

    Nitric oxide (NO) and reactive oxygen species (ROS) are two classes of key signaling molecules involved in various developmental processes and stress responses in plants. The burst of NO and ROS triggered by various stimuli activates downstream signaling pathways to cope with abiotic and biotic stresses. Emerging evidence suggests that the interplay of NO and ROS plays a critical role in regulating stress responses. However, the underpinning molecular mechanism remains poorly understood. Here, we show that NO positively regulates the activity of the Arabidopsis (Arabidopsis thaliana) cytosolic ascorbate peroxidase1 (APX1). We found that S-nitrosylation of APX1 at cysteine (Cys)-32 enhances its enzymatic activity of scavenging hydrogen peroxide, leading to the increased resistance to oxidative stress, whereas a substitution mutation at Cys-32 causes the reduction of ascorbate peroxidase activity and abolishes its responsiveness to the NO-enhanced enzymatic activity. Moreover, S-nitrosylation of APX1 at Cys-32 also plays an important role in regulating immune responses. These findings illustrate a unique mechanism by which NO regulates hydrogen peroxide homeostasis in plants, thereby establishing a molecular link between NO and ROS signaling pathways. PMID:25667317

  16. Beller Lectureship Talk: Active response of biological cells to mechanical stress

    NASA Astrophysics Data System (ADS)

    Safran, Samuel

    2009-03-01

    Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. We present a simple and generic theoretical model for the active response of biological cells to mechanical stress. The theory includes cell activity and mechanical forces as well as random forces as factors that determine the polarizability that relates cell orientation to stress. This allows us to explain the puzzling observation of parallel (or sometimes random) alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency and compare the theory with recent experiments. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material distinguishes cells whose activity is controlled by stress from those controlled by strain. We have extended the theory to generalize the treatment of elastic inclusions in solids to ''living'' inclusions (cells) whose active polarizability, analogous to the polarizability of non-living matter, results in the feedback of cellular forces that develop in response to matrix stresses. We use this to explain recent observations of the non-monotonic dependence of stress-fiber polarization in stem cells on matrix rigidity. These findings provide a mechanical correlate for the existence of an optimal substrate elasticity for cell differentiation and function. [3pt] *In collaboration with R. De (Brown University), Y. Biton (Weizmann Institute), and A. Zemel (Hebrew University) and the experimental groups: Max Planck Institute, Stuttgart: S. Jungbauer, R. Kemkemer, J. Spatz; University of Pennsylvania: A. Brown, D. Discher, F. Rehfeldt.

  17. PIM1 destabilization activates a p53-dependent response to ribosomal stress in cancer cells

    PubMed Central

    Sagar, Vinay; Caldarola, Sara; Aria, Valentina; Monteleone, Valentina; Fuoco, Claudia; Gargioli, Cesare; Cannata, Stefano; Loreni, Fabrizio

    2016-01-01

    Defects in ribosome biogenesis triggers a stress response (ribosomal stress) that can lead to growth arrest and apoptosis. Signaling pathways activated by ribosomal stress are specifically involved in the pathological mechanism of a group of disorders defined as ribosomopathies. However, more generally, the quality control of ribosome synthesis is part of the regulatory circuits that control cell metabolism. A number of studies identified tumor suppressor p53 as a central player in ribosomal stress. We have previously reported that the kinase PIM1 plays a role as a sensor for ribosome deficiency. In this report we address the relationship between PIM1 and p53 in cancer cell lines after depletion of a ribosomal protein. We identified a novel signaling pathway that includes the kinase AKT and the ubiquitin ligase MDM2. In fact, our results indicate that the lower level of PIM1, induced by ribosomal stress, causes inactivation of AKT, inhibition of MDM2 and a consequent p53 stabilization. Therefore, we propose that activation of p53 in response to ribosomal stress, is dependent on the pathway PIM1-AKT-MDM2. In addition, we report evidence that PIM1 level may be relevant to assess the sensitivity of cancer cells to chemotherapeutic drugs that induce ribosomal stress. PMID:26993775

  18. PIM1 destabilization activates a p53-dependent response to ribosomal stress in cancer cells.

    PubMed

    Sagar, Vinay; Caldarola, Sara; Aria, Valentina; Monteleone, Valentina; Fuoco, Claudia; Gargioli, Cesare; Cannata, Stefano; Loreni, Fabrizio

    2016-04-26

    Defects in ribosome biogenesis triggers a stress response (ribosomal stress) that can lead to growth arrest and apoptosis. Signaling pathways activated by ribosomal stress are specifically involved in the pathological mechanism of a group of disorders defined as ribosomopathies. However, more generally, the quality control of ribosome synthesis is part of the regulatory circuits that control cell metabolism. A number of studies identified tumor suppressor p53 as a central player in ribosomal stress. We have previously reported that the kinase PIM1 plays a role as a sensor for ribosome deficiency. In this report we address the relationship between PIM1 and p53 in cancer cell lines after depletion of a ribosomal protein. We identified a novel signaling pathway that includes the kinase AKT and the ubiquitin ligase MDM2. In fact, our results indicate that the lower level of PIM1, induced by ribosomal stress, causes inactivation of AKT, inhibition of MDM2 and a consequent p53 stabilization. Therefore, we propose that activation of p53 in response to ribosomal stress, is dependent on the pathway PIM1-AKT-MDM2. In addition, we report evidence that PIM1 level may be relevant to assess the sensitivity of cancer cells to chemotherapeutic drugs that induce ribosomal stress. PMID:26993775

  19. Stream mesocosm response sensitivities to simulated ion stress in produced waters from resource extraction activities

    EPA Science Inventory

    To increase the ecological relevance of laboratory exposures intent on determining species sensitivity to ion stress from resource extraction activities we have conducted several stream mesocosm dosing studies that pair single-species and community-level responses in-situ and all...

  20. Evidence for ACD5 ceramide kinase activity involvement in Arabidopsis response to cold stress.

    PubMed

    Dutilleul, Christelle; Chavarria, Heidy; Rézé, Nathalie; Sotta, Bruno; Baudouin, Emmanuel; Guillas, Isabelle

    2015-12-01

    Although sphingolipids emerged as important signals for plant response to low temperature, investigations have been limited so far to the function of long-chain base intermediates. The formation and function of ceramide phosphates (Cer-Ps) in chilled Arabidopsis were explored. Cer-Ps were analysed by thin layer chromatography (TLC) following in vivo metabolic radiolabelling. Ceramide kinase activity, gene expression and growth phenotype were determined in unstressed and cold-stressed wild type (WT) and Arabidopsis ceramide kinase mutant acd5. A rapid and transient formation of Cer-P occurs in cold-stressed WT Arabidopsis plantlets and cultured cells, which is strongly impaired in acd5 mutant. Although concomitant, Cer-P formation is independent of long-chain base phosphate (LCB-P) formation. No variation of ceramide kinase activity was measured in vitro in WT plantlets upon cold stress but the activity in acd5 mutant was further reduced by cold stress. At the seedling stage, acd5 response to cold was similar to that of WT. Nevertheless, acd5 seed germination was hypersensitive to cold and abscisic acid (ABA), and ABA-dependent gene expression was modified in acd5 seeds when germinated at low temperature. Our data involve for the first time Cer-P and ACD5 in low temperature response and further underline the complexity of sphingolipid signalling operating during cold stress.

  1. Activated mutant of Galpha(12) enhances the hyperosmotic stress response of NIH3T3 cells.

    PubMed

    Dermott, J M; Wadsworth, S J; van Rossum, G D; Dhanasekaran, N

    2001-01-01

    Heterotrimeric G protein G12 stimulates diverse physiological responses including the activities of Na+/H+ exchangers and Jun kinases. We have observed that the expression of the constitutively activated, GTPase-deficient mutant of Galpha(12) (Galpha(12)QL) accelerates the hyperosmotic response of NIH3T3 cells as monitored by the hyperosmotic stress-stimulated activity of JNK1. The accelerated response appears to be partly due to the increased basal activity of JNK since cell lines-such as NIH3T3 cells expressing JNK1-in which JNK activity is elevated, show a similar response. NIH3T3 cells expressing Galpha(12)QL also display heightened sensitivity to hyperosmotic stress. This is in contrast to JNK1-NIH3T3 cells that failed to enhance sensitivity although they do exhibit an accelerated hyperosmotic response. Reasoning that the increased sensitivity seen in Galpha(12)QL cells is due to a signaling component other than JNK, the effect of dimethyamiloride, an inhibitor of Na+/H+ exchanger in this response, was assessed. Treatment of vector control NIH3T3 cells with 50 microM dimethylamiloride potently inhibited their hyperosmotic response whereas the response was only partially inhibited in Galpha(12)QL-NIH3T3 cells. These results, for the first time, identify that NHEs are upstream of the JNK module in the hyperosmotic stress-signaling pathway and that Galpha(12) can enhance this response by modulating either or both of these components namely, JNKs and NHEs in NIH3T3 cells. PMID:11180393

  2. Modification of plasma membrane NADPH oxidase activity in cucumber seedling roots in response to cadmium stress.

    PubMed

    Jakubowska, Dagmara; Janicka-Russak, Małgorzata; Kabała, Katarzyna; Migocka, Magdalena; Reda, Małgorzata

    2015-05-01

    The aim of this study was to investigate the effect of cadmium on plasma membrane (PM) NADPH oxidase activity in cucumber roots. Plants were treated with cadmium for 1, 3 or 6 days. Some of the plants after 3-day exposure to cadmium were transferred to a medium without the heavy metal for the next 3 days. Treatment of plants with cadmium for 6 days stimulated the activity of NADPH oxidase. The highest stimulation of O2(•-) production by NADPH oxidase was observed in post-stressed plants, which was correlated with the stimulation of activity of PM H(+)-ATPase in the same conditions. In order to examine the effects of cadmium stresses on the expression level of genes encoding NADPH oxidase, putative cucumber homologs encoding RBOH proteins were selected and a real-time PCR assay was performed. NADPH is a substrate for oxidase; thus alterations in the activity of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, NADP-isocitrate dehydrogenase and NADP-malic enzyme under cadmium stress were studied. The activity of NADPH dehydrogenases was increased under cadmium stress. The results indicate that PM NADPH oxidase could be involved in plants' response to cadmium stress by affecting the activity of PM H(+)-ATPase, and NADPH-generating enzymes could play important roles in this process.

  3. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways.

    PubMed

    Stępiński, Dariusz

    2016-08-01

    Rapid growth and division of cells, including tumor ones, is correlated with intensive protein biosynthesis. The output of nucleoli, organelles where translational machineries are formed, depends on a rate of particular stages of ribosome production and on accessibility of elements crucial for their effective functioning, including substrates, enzymes as well as energy resources. Different factors that induce cellular stress also often lead to nucleolar dysfunction which results in ribosome biogenesis impairment. Such nucleolar disorders, called nucleolar or ribosomal stress, usually affect cellular functioning which in fact is a result of p53-dependent pathway activation, elicited as a response to stress. These pathways direct cells to new destinations such as cell cycle arrest, damage repair, differentiation, autophagy, programmed cell death or aging. In the case of impaired nucleolar functioning, nucleolar and ribosomal proteins mediate activation of the p53 pathways. They are also triggered as a response to oncogenic factor overexpression to protect tissues and organs against extensive proliferation of abnormal cells. Intentional impairment of any step of ribosome biosynthesis which would direct the cells to these destinations could be a strategy used in anticancer therapy. This review presents current knowledge on a nucleolus, mainly in relation to cancer biology, which is an important and extremely sensitive element of the mechanism participating in cellular stress reaction mediating activation of the p53 pathways in order to counteract stress effects, especially cancer development.

  4. Inhibition of TGFbeta1 Signaling Attenutates ATM Activity inResponse to Genotoxic Stress

    SciTech Connect

    Kirshner, Julia; Jobling, Michael F.; Pajares, Maria Jose; Ravani, Shraddha A.; Glick, Adam B.; Lavin, Martin J.; Koslov, Sergei; Shiloh, Yosef; Barcellos-Hoff, Mary Helen

    2006-09-15

    Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor {beta}1 (TGF{beta}), which is activated by radiation, is a potent and pleiotropic mediator of physiological and pathological processes. Here we show that TGF{beta} inhibition impedes the canonical cellular DNA damage stress response. Irradiated Tgf{beta}1 null murine epithelial cells or human epithelial cells treated with a small molecule inhibitor of TGF{beta} type I receptor kinase exhibit decreased phosphorylation of Chk2, Rad17 and p53, reduced {gamma}H2AX radiation-induced foci, and increased radiosensitivity compared to TGF{beta} competent cells. We determined that loss of TGF{beta} signaling in epithelial cells truncated ATM autophosphorylation and significantly reduced its kinase activity, without affecting protein abundance. Addition of TGF{beta} restored functional ATM and downstream DNA damage responses. These data reveal a heretofore undetected critical link between the microenvironment and ATM that directs epithelial cell stress responses, cell fate and tissue integrity. Thus, TGF{beta}1, in addition to its role in homoeostatic growth control, plays a complex role in regulating responses to genotoxic stress, the failure of which would contribute to the development of cancer; conversely, inhibiting TGF{beta} may be used to advantage in cancer therapy.

  5. Lateral prefrontal cortex activity during cognitive control of emotion predicts response to social stress in schizophrenia.

    PubMed

    Tully, Laura M; Lincoln, Sarah Hope; Hooker, Christine I

    2014-01-01

    LPFC dysfunction is a well-established neural impairment in schizophrenia and is associated with worse symptoms. However, how LPFC activation influences symptoms is unclear. Previous findings in healthy individuals demonstrate that lateral prefrontal cortex (LPFC) activation during cognitive control of emotional information predicts mood and behavior in response to interpersonal conflict, thus impairments in these processes may contribute to symptom exacerbation in schizophrenia. We investigated whether schizophrenia participants show LPFC deficits during cognitive control of emotional information, and whether these LPFC deficits prospectively predict changes in mood and symptoms following real-world interpersonal conflict. During fMRI, 23 individuals with schizophrenia or schizoaffective disorder and 24 healthy controls completed the Multi-Source Interference Task superimposed on neutral and negative pictures. Afterwards, schizophrenia participants completed a 21-day online daily-diary in which they rated the extent to which they experienced mood and schizophrenia-spectrum symptoms, as well as the occurrence and response to interpersonal conflict. Schizophrenia participants had lower dorsal LPFC activity (BA9) during cognitive control of task-irrelevant negative emotional information. Within schizophrenia participants, DLPFC activity during cognitive control of emotional information predicted changes in positive and negative mood on days following highly distressing interpersonal conflicts. Results have implications for understanding the specific role of LPFC in response to social stress in schizophrenia, and suggest that treatments targeting LPFC-mediated cognitive control of emotion could promote adaptive response to social stress in schizophrenia.

  6. Involvement of tissue plasminogen activator in stress responsivity during acute cocaine withdrawal in mice.

    PubMed

    Zhou, Yan; Maiya, Rajani; Norris, Erin H; Kreek, Mary Jeanne; Strickland, Sidney

    2010-11-01

    There is evidence that increased release of corticotropin-releasing factor (CRF) in the central nucleus of the amygdala (CeA) contributes to stress responsivity during cocaine withdrawal (WD). Recent studies suggest that tissue plasminogen activator (tPA) in the CeA is a downstream effector protein for CRF after acute "binge" cocaine administration. The purpose of this study was to determine if tPA modulates cocaine WD-induced stress responsivity. Wild-type (WT) and tPA-deficient (tPA - / - ) mice were subjected to chronic (14 days) "binge" cocaine (45 mg/kg per day) or its acute (1 day) WD. Extracellular tPA activity, CRF mRNA levels, and plasma corticosterone (CORT) levels were measured in tPA - / -  and WT mice. Extracellular tPA activity was reduced by 50% in the CeA and medial amygdala of WT mice after chronic cocaine and returned to basal levels after acute WD. Unlike WT mice, tPA - / -  mice did not display elevated amygdalar CRF mRNA levels during cocaine WD. In comparison to WT mice, tPA - / -  mice showed a blunted plasma CORT response during acute WD. These results demonstrate that tPA activity in the amygdala (Amy) is altered by chronic cocaine exposure, and further suggest an involvement of tPA in modulating amygdalar CRF stress responsive system and hypothalamic-pituitary-adrenal axis in response to acute cocaine WD.

  7. Involvement of tissue plasminogen activator in stress responsivity during acute cocaine withdrawal in mice

    PubMed Central

    Zhou, Yan; Maiya, Rajani; Norris, Erin H.; Kreek, Mary Jeanne; Strickland, Sidney

    2013-01-01

    There is evidence that increased release of corticotropin-releasing factor (CRF) in the central nucleus of the amygdala (CeA) contributes to stress responsivity during cocaine withdrawal (WD). Recent studies suggest that tissue plasminogen activator (tPA) in the CeA is a downstream effector protein for CRF after acute “binge” cocaine administration. The purpose of this study was to determine if tPA modulates cocaine WD-induced stress responsivity. Wild-type (WT) and tPA-deficient (tPA −/−) mice were subjected to chronic (14 days) “binge” cocaine (45 mg/kg per day) or its acute (1 day) WD. Extracellular tPA activity, CRF mRNA levels, and plasma corticosterone (CORT) levels were measured in tPA −/− and WT mice. Extracellular tPA activity was reduced by 50% in the CeA and medial amygdala of WT mice after chronic cocaine and returned to basal levels after acute WD. Unlike WT mice, tPA −/− mice did not display elevated amygdalar CRF mRNA levels during cocaine WD. In comparison to WT mice, tPA −/− mice showed a blunted plasma CORT response during acute WD. These results demonstrate that tPA activity in the amygdala (Amy) is altered by chronic cocaine exposure, and further suggest an involvement of tPA in modulating amygdalar CRF stress responsive system and hypothalamic–pituitary–adrenal axis in response to acute cocaine WD. PMID:20666641

  8. Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues

    PubMed Central

    Laing, Suzette; Wang, Guohui; Briazova, Tamara; Zhang, Chunbin; Wang, Aixia; Zheng, Ze; Gow, Alexander; Chen, Alex F.; Rajagopalan, Sanjay; Chen, Lung Chi; Sun, Qinghua

    2010-01-01

    Recent studies have suggested a link between inhaled particulate matter (PM) exposure and increased mortality and morbidity associated with pulmonary and cardiovascular diseases. However, a precise understanding of the biological mechanism underlying PM-associated toxicity and pathogenesis remains elusive. Here, we investigated the impact of PM exposure in intracellular stress signaling pathways with animal models and cultured cells. Inhalation exposure of the mice to environmentally relevant fine particulate matter (aerodynamic diameter < 2.5 μm, PM2.5) induces endoplasmic reticulum (ER) stress and activation of unfolded protein response (UPR) in the lung and liver tissues as well as in the mouse macrophage cell line RAW264.7. Ambient PM2.5 exposure activates double-strand RNA-activated protein kinase-like ER kinase (PERK), leading to phosphorylation of translation initiation factor eIF2α and induction of C/EBP homologous transcription factor CHOP/GADD153. Activation of PERK-mediated UPR pathway relies on the production of reactive oxygen species (ROS) and is critical for PM2.5-induced apoptosis. Furthermore, PM2.5 exposure can activate ER stress sensor IRE1α, but it decreases the activity of IRE1α in splicing the mRNA encoding the UPR trans-activator X-box binding protein 1 (XBP1). Together, our study suggests that PM2.5 exposure differentially activates the UPR branches, leading to ER stress-induced apoptosis through the PERK-eIF2α-CHOP UPR branch. This work provides novel insights into the cellular and molecular basis by which ambient PM2.5 exposure elicits its cytotoxic effects that may be related to air pollution-associated pathogenesis. PMID:20554909

  9. Effects of dietary yeast extract on turkey stress response and heterophil oxidative burst activity.

    PubMed

    Huff, G R; Dutta, V; Huff, W E; Rath, N C

    2011-08-01

    1. Effective nutritional approaches to counteract the negative effects of stress may provide food animal producers with useful alternatives to antibiotics. In this study, turkeys were fed on a standard diet, or the same diet supplemented with yeast extract (YE), to determine if YE would improve disease resistance in a stress model. 2. At 16 weeks of age, half of the birds were exposed to a bacterial challenge using a coarse spray of the pen environment. A subset of control and challenged birds was also treated with dexamethasone (Dex) prior to challenge (Dex/challenge). At 18 weeks, another subset was subjected to a 12?h transport stress protocol (Challenge/transport). All birds were bled and necropsied the morning after transport. The numbers and proportions of blood cells and the heterophil oxidative burst activity (OBA) were determined. Serum corticosterone (Cort) levels of male birds were measured using a commercial ELISA kit. Body weight and gain were increased by YE during week 1. 3. YE decreased mortality and bacterial isolation following Dex/challenge only in females. Cort levels in male turkeys were decreased by YE and Dex treatment. OBA was higher in males and in birds given YE and was reduced by challenge and transport. 4. These results suggest there may be gender differences in the turkey stress response and that dietary YE has potential for modulating the impact of stress on innate immunity of turkeys. PMID:21919572

  10. Streptozotocin induced activation of oxidative stress responsive splenic cell signaling pathways: Protective role of arjunolic acid

    SciTech Connect

    Manna, Prasenjit; Ghosh, Jyotirmoy; Das, Joydeep

    2010-04-15

    Present study investigates the beneficial role of arjunolic acid (AA) against the alteration in the cytokine levels and simultaneous activation of oxidative stress responsive signaling pathways in spleen under hyperglycemic condition. Diabetes was induced by injection of streptozotocin (STZ) (at a dose of 70 mg/kg body weight, injected in the tail vain). STZ administration elevated the levels of IL-2 as well as IFN-gamma and attenuated the level of TNF-alpha in the sera of diabetic animals. In addition, hyperglycemia is also associated with the increased production of intracellular reactive intermediates resulting with the elevation in lipid peroxidation, protein carbonylation and reduction in intracellular antioxidant defense. Investigating the oxidative stress responsive cell signaling pathways, increased expressions (immunoreactive concentrations) of phosphorylated p65 as well as its inhibitor protein phospho IkappaBalpha and phosphorylated mitogen activated protein kinases (MAPKs) have been observed in diabetic spleen tissue. Studies on isolated splenocytes revealed that hyperglycemia caused disruption of mitochondrial membrane potential, elevation in the concentration of cytosolic cytochrome c as well as activation of caspase 3 leading to apoptotic cell death. Histological examination revealed that diabetic induction depleted the white pulp scoring which is in agreement with the reduced immunological response. Treatment with AA prevented the hyperglycemia and its associated pathogenesis in spleen tissue. Results suggest that AA might act as an anti-diabetic and immunomodulatory agent against hyperglycemia.

  11. Transdermal neuromodulation of noradrenergic activity suppresses psychophysiological and biochemical stress responses in humans

    PubMed Central

    Tyler, William J.; Boasso, Alyssa M.; Mortimore, Hailey M.; Silva, Rhonda S.; Charlesworth, Jonathan D.; Marlin, Michelle A.; Aebersold, Kirsten; Aven, Linh; Wetmore, Daniel Z.; Pal, Sumon K.

    2015-01-01

    We engineered a transdermal neuromodulation approach that targets peripheral (cranial and spinal) nerves and utilizes their afferent pathways as signaling conduits to influence brain function. We investigated the effects of this transdermal electrical neurosignaling (TEN) method on sympathetic physiology under different experimental conditions. The TEN method involved delivering high-frequency pulsed electrical currents to ophthalmic and maxillary divisions of the right trigeminal nerve and cervical spinal nerve afferents. Under resting conditions, TEN significantly suppressed basal sympathetic tone compared to sham as indicated by functional infrared thermography of facial temperatures. In a different experiment, subjects treated with TEN reported significantly lower levels of tension and anxiety on the Profile of Mood States scale compared to sham. In a third experiment when subjects were experimentally stressed TEN produced a significant suppression of heart rate variability, galvanic skin conductance, and salivary α-amylase levels compared to sham. Collectively these observations demonstrate TEN can dampen basal sympathetic tone and attenuate sympathetic activity in response to acute stress induction. Our physiological and biochemical observations are consistent with the hypothesis that TEN modulates noradrenergic signaling to suppress sympathetic activity. We conclude that dampening sympathetic activity in such a manner represents a promising approach to managing daily stress. PMID:26353920

  12. Transdermal neuromodulation of noradrenergic activity suppresses psychophysiological and biochemical stress responses in humans.

    PubMed

    Tyler, William J; Boasso, Alyssa M; Mortimore, Hailey M; Silva, Rhonda S; Charlesworth, Jonathan D; Marlin, Michelle A; Aebersold, Kirsten; Aven, Linh; Wetmore, Daniel Z; Pal, Sumon K

    2015-01-01

    We engineered a transdermal neuromodulation approach that targets peripheral (cranial and spinal) nerves and utilizes their afferent pathways as signaling conduits to influence brain function. We investigated the effects of this transdermal electrical neurosignaling (TEN) method on sympathetic physiology under different experimental conditions. The TEN method involved delivering high-frequency pulsed electrical currents to ophthalmic and maxillary divisions of the right trigeminal nerve and cervical spinal nerve afferents. Under resting conditions, TEN significantly suppressed basal sympathetic tone compared to sham as indicated by functional infrared thermography of facial temperatures. In a different experiment, subjects treated with TEN reported significantly lower levels of tension and anxiety on the Profile of Mood States scale compared to sham. In a third experiment when subjects were experimentally stressed TEN produced a significant suppression of heart rate variability, galvanic skin conductance, and salivary α-amylase levels compared to sham. Collectively these observations demonstrate TEN can dampen basal sympathetic tone and attenuate sympathetic activity in response to acute stress induction. Our physiological and biochemical observations are consistent with the hypothesis that TEN modulates noradrenergic signaling to suppress sympathetic activity. We conclude that dampening sympathetic activity in such a manner represents a promising approach to managing daily stress. PMID:26353920

  13. Transdermal neuromodulation of noradrenergic activity suppresses psychophysiological and biochemical stress responses in humans.

    PubMed

    Tyler, William J; Boasso, Alyssa M; Mortimore, Hailey M; Silva, Rhonda S; Charlesworth, Jonathan D; Marlin, Michelle A; Aebersold, Kirsten; Aven, Linh; Wetmore, Daniel Z; Pal, Sumon K

    2015-01-01

    We engineered a transdermal neuromodulation approach that targets peripheral (cranial and spinal) nerves and utilizes their afferent pathways as signaling conduits to influence brain function. We investigated the effects of this transdermal electrical neurosignaling (TEN) method on sympathetic physiology under different experimental conditions. The TEN method involved delivering high-frequency pulsed electrical currents to ophthalmic and maxillary divisions of the right trigeminal nerve and cervical spinal nerve afferents. Under resting conditions, TEN significantly suppressed basal sympathetic tone compared to sham as indicated by functional infrared thermography of facial temperatures. In a different experiment, subjects treated with TEN reported significantly lower levels of tension and anxiety on the Profile of Mood States scale compared to sham. In a third experiment when subjects were experimentally stressed TEN produced a significant suppression of heart rate variability, galvanic skin conductance, and salivary α-amylase levels compared to sham. Collectively these observations demonstrate TEN can dampen basal sympathetic tone and attenuate sympathetic activity in response to acute stress induction. Our physiological and biochemical observations are consistent with the hypothesis that TEN modulates noradrenergic signaling to suppress sympathetic activity. We conclude that dampening sympathetic activity in such a manner represents a promising approach to managing daily stress.

  14. Activation of physiological stress responses by a natural reward: Novel vs. repeated sucrose intake.

    PubMed

    Egan, Ann E; Ulrich-Lai, Yvonne M

    2015-10-15

    Pharmacological rewards, such as drugs of abuse, evoke physiological stress responses, including increased heart rate and blood pressure, and activation of the hypothalamic-pituitary-adrenal (HPA) axis. It is not clear to what extent the natural reward of palatable foods elicits similar physiological responses. In order to address this question, HPA axis hormones, heart rate, blood pressure and brain pCREB immunolabeling were assessed following novel and repeated sucrose exposure. Briefly, adult, male rats with ad libitum food and water were given either a single (day 1) or repeated (twice-daily for 14 days) brief (up to 30 min) exposure to a second drink bottle containing 4 ml of 30% sucrose drink vs. water (as a control for bottle presentation). Sucrose-fed rats drank more than water-fed on all days of exposure, as expected. On day 1 of exposure, heart rate, blood pressure, plasma corticosterone, and locomotion were markedly increased by presentation of the second drink bottle regardless of drink type. After repeated exposure (day 14), these responses habituated to similar extents regardless of drink type and pCREB immunolabeling in the hypothalamic paraventricular nucleus (PVN) also did not vary with drink type, whereas basolateral amygdala pCREB was increased by sucrose intake. Taken together, these data suggest that while sucrose is highly palatable, physiological stress responses were evoked principally by the drink presentation itself (e.g., an unfamiliar intervention by the investigators), as opposed to the palatability of the offered drink.

  15. Stress-activated signaling responses leading to apoptosis following photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Oleinick, Nancy L.; He, Jin; Xue, Liang-yan; Separovic, Duska

    1998-05-01

    Photodynamic treatment with the phthalocyanine Pc 4, a mitochondrially localizing photosensitizer, is an efficient inducer of cell death by apoptosis, a cell suicide pathway that can be triggered by physiological stimuli as well as by various types of cellular damage. Upon exposure of the dye- loaded cells to red light, several stress signalling pathways are rapidly activated. In murine L5178Y-R lymphoblasts, caspase activation and other hallmarks of the final phase of apoptosis are observed within a few minutes post-PDT. In Chinese hamster CHO-K1 cells, the first signs of apoptosis are not observed for 1 - 2 hours. The possible involvement of three parallel mitogen-activated protein kinase (MAPK) signalling pathways has been investigated. The extracellular- regulated kinases (ERK-1 and ERK-2), that are thought to promote cell growth, are not appreciably altered by PDT. However, PDT causes marked activation of the stress-activated protein kinase (SAPK) cascade in both cell types and of the p38/HOG-type kinase in CHO cells. Both of these latter pathways have been demonstrated to be associated with apoptosis. A specific inhibitor of the ERK pathway did not alter PDT-induced apoptosis; however, an inhibitor of the p38 pathway partially blocked PDT-induced apoptosis. Blockage of the SAPK pathway is being pursued by a genetic approach. It appears that the SAPK and p38 pathways may participate in signaling apoptosis in response to PDT with Pc 4.

  16. Stress responses of bacteria.

    PubMed

    Marles-Wright, Jon; Lewis, Richard J

    2007-12-01

    Bacteria, irrespective of natural habitat, are exposed to constant fluctuations in their growth conditions. Consequently they have developed sophisticated responses, modulated by the re-modelling of protein complexes and by phosphorylation-dependent signal transduction systems, to adapt to and to survive a variety of insults. Ultimately these signalling systems affect transcriptional regulons either by activating an alternative sigma factor subunit of RNA polymerase, for example, sigma E (sigma(E)) of Escherichia coli and sigma B (sigma(B)) and sigma F (sigma(F)) in Bacillus subtilis or by activating DNA-binding two-component response regulators. Recent structure determinations, and systems biology analysis of key regulators in well-characterised stress-responsive pathways, illustrate conserved and novel mechanisms in these representative model bacteria.

  17. Occupational Styrene Exposure Induces Stress-Responsive Genes Involved in Cytoprotective and Cytotoxic Activities

    PubMed Central

    Strafella, Elisabetta; Bracci, Massimo; Staffolani, Sara; Manzella, Nicola; Giantomasi, Daniele; Valentino, Matteo; Amati, Monica; Tomasetti, Marco; Santarelli, Lory

    2013-01-01

    Objective The aim of this study was to evaluate the expression of a panel of genes involved in toxicology in response to styrene exposure at levels below the occupational standard setting. Methods Workers in a fiber glass boat industry were evaluated for a panel of stress- and toxicity-related genes and associated with biochemical parameters related to hepatic injury. Urinary styrene metabolites (MA+PGA) of subjects and environmental sampling data collected for air at workplace were used to estimate styrene exposure. Results Expression array analysis revealed massive upregulation of genes encoding stress-responsive proteins (HSPA1L, EGR1, IL-6, IL-1β, TNSF10 and TNFα) in the styrene-exposed group; the levels of cytokines released were further confirmed in serum. The exposed workers were then stratified by styrene exposure levels. EGR1 gene upregulation paralleled the expression and transcriptional protein levels of IL-6, TNSF10 and TNFα in styrene exposed workers, even at low level. The activation of the EGR1 pathway observed at low-styrene exposure was associated with a slight increase of hepatic markers found in highly exposed subjects, even though they were within normal range. The ALT and AST levels were not affected by alcohol consumption, and positively correlated with urinary styrene metabolites as evaluated by multiple regression analysis. Conclusion The pro-inflammatory cytokines IL-6 and TNFα are the primary mediators of processes involved in the hepatic injury response and regeneration. Here, we show that styrene induced stress responsive genes involved in cytoprotection and cytotoxicity at low-exposure, that proceed to a mild subclinical hepatic toxicity at high-styrene exposure. PMID:24086524

  18. Variability of corticosteroid responses during exercise stress in active and sedentary middle-aged males.

    PubMed

    White, J A; Ismail, A H; Bottoms, G D

    1975-04-01

    Two groups of middle-aged male subjects (both N=11), one active (mean age 44.6 years) and one sedentary (mean age 43.7 years), undertook a graded exercise stress test on a bicycle ergometer in the post-absorptive state. Blood serum corticosteroid levels were measured at the following stages of metabolism; at rest, under conditions of submaximal and "maximal' exercise and during recovery. The active group showed no significant change in mean serum corticosteroid levels from resting values, during exercise and recovery. However the sedentary group displayed a significant increase in mean serum corticosteroid levels from a resting value of 5.81 plus or minus 0.41 mub-g/100 ml. (mean plus or minus S.E.) to 7.83 plus or minus 0.71 mug/100 ml. during "maximal' exercise (p smaller than 0.05), which was maintained throughout recovery 7.82 plus or minus 0.70 ug/100 ml (p smaller than 0.05). Futhermore the active group demonstrated significantly lower mean serum corticosteroid levels compared with the sedentary group under conditions of submaximal (p smaller than 0.05) and "maximal' (p smaller than 0.01) exercise and during recovery (p smaller than 0.01). It was concluded that the variability in the response patterns of serum corticosteroids during exercise stress in active and sedentary middle-aged males, reflected the physiological differences observed between the two groups of subjects.

  19. Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.).

    PubMed

    Shi, Haitao; Ye, Tiantian; Chan, Zhulong

    2014-01-01

    Nitric oxide (NO) and hydrogen sulfide (H2S) are important gaseous molecules, serving as important secondary messengers in plant response to various biotic and abiotic stresses. However, the interaction between NO and H2S in plant stress response was largely unclear. In this study, endogenous NO and H2S were evidently induced by cadmium stress treatment in bermudagrass, and exogenous applications of NO donor (sodium nitroprusside, SNP) or H2S donor (sodium hydrosulfide, NaHS) conferred improved cadmium stress tolerance. Additionally, SNP and NaHS treatments alleviated cadmium stress-triggered plant growth inhibition, cell damage and reactive oxygen species (ROS) burst, partly via modulating enzymatic and non-enzymatic antioxidants. Moreover, SNP and NaHS treatments also induced the productions of both NO and H2S in the presence of Cd. Interestingly, combined treatments with inhibitors and scavengers of NO and H2S under cadmium stress condition showed that NO signal could be blocked by both NO and H2S inhibitors and scavengers, while H2S signal was specifically blocked by H2S inhibitors and scavengers, indicating that NO-activated H2S was essential for cadmium stress response. Taken together, we assigned the protective roles of endogenous and exogenous NO and H2S in bermudagrass response to cadmium stress, and speculated that NO-activated H2S might be essential for cadmium stress response in bermudagrass.

  20. Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root.

    PubMed

    Valenzuela, Camilo E; Acevedo-Acevedo, Orlando; Miranda, Giovanna S; Vergara-Barros, Pablo; Holuigue, Loreto; Figueroa, Carlos R; Figueroa, Pablo M

    2016-07-01

    Salinity is a severe abiotic stress that affects irrigated croplands. Jasmonate (JA) is an essential hormone involved in plant defense against herbivory and in responses to abiotic stress. However, the relationship between the salt stress response and the JA pathway in Arabidopsis thaliana is not well understood at molecular and cellular levels. In this work we investigated the activation of JA signaling by NaCl and its effect on primary root growth. We found that JA-responsive JAZ genes were up-regulated by salt stress in a COI1-dependent manner in the roots. Using a JA-Ile sensor we demonstrated that activation of JA signaling by salt stress occurs in the meristematic zone and stele of the differentiation zone and that this activation was dependent on JAR1 and proteasome functions. Another finding is that the elongation zone (EZ) and its cortical cells were significantly longer in JA-related mutants (AOS, COI1, JAZ3 and MYC2/3/4 genes) compared with wild-type plants under salt stress, revealing the participation of the canonical JA signaling pathway. Noteworthy, osmotic stress - a component of salt stress - inhibited cell elongation in the EZ in a COI1-dependent manner. We propose that salt stress triggers activation of the JA signaling pathway followed by inhibition of cell elongation in the EZ. We have shown that salt-inhibited root growth partially involves the jasmonate signaling pathway in Arabidopsis. PMID:27217545

  1. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress

    PubMed Central

    Courchet, Julien; Lewis, Tommy L.; Losón, Oliver C.; Hellberg, Kristina; Young, Nathan P.; Chen, Hsiuchen; Polleux, Franck; Chan, David C.; Shaw, Reuben J.

    2016-01-01

    Mitochondria undergo fragmentation in response to electron transport chain (ETC) poisons and mitochondrial DNA–linked disease mutations, yet how these stimuli mechanistically connect to the mitochondrial fission and fusion machinery is poorly understood. We found that the energy-sensing adenosine monophosphate (AMP)–activated protein kinase (AMPK) is genetically required for cells to undergo rapid mitochondrial fragmentation after treatment with ETC inhibitors. Moreover, direct pharmacological activation of AMPK was sufficient to rapidly promote mitochondrial fragmentation even in the absence of mitochondrial stress. A screen for substrates of AMPK identified mitochondrial fission factor (MFF), a mitochondrial outer-membrane receptor for DRP1, the cytoplasmic guanosine triphosphatase that catalyzes mitochondrial fission. Nonphosphorylatable and phosphomimetic alleles of the AMPK sites in MFF revealed that it is a key effector of AMPK-mediated mitochondrial fission. PMID:26816379

  2. VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression.

    PubMed

    Pitzschke, Andrea; Djamei, Armin; Teige, Markus; Hirt, Heribert

    2009-10-27

    The plant pathogen Agrobacterium tumefaciens transforms plant cells by delivering its T-DNA into the plant cell nucleus where it integrates into the plant genome and causes tumor formation. A key role of VirE2-interacting protein 1 (VIP1) in the nuclear import of T-DNA during Agrobacterium-mediated plant transformation has been unravelled and VIP1 was shown to undergo nuclear localization upon phosphorylation by the mitogen-activated protein kinase MPK3. Here, we provide evidence that VIP1 encodes a functional bZIP transcription factor that stimulates stress-dependent gene expression by binding to VIP1 response elements (VREs), a DNA hexamer motif. VREs are overrepresented in promoters responding to activation of the MPK3 pathway such as Trxh8 and MYB44. Accordingly, plants overexpressing VIP1 accumulate high levels of Trxh8 and MYB44 transcripts, whereas stress-induced expression of these genes is impaired in mpk3 mutants. Trxh8 and MYB44 promoters are activated by VIP1 in a VRE-dependent manner. VIP1 strongly enhances expression from a synthetic promoter harboring multiple VRE copies and directly interacts with VREs in vitro and in vivo. Chromatin immunoprecipitation assays of the MYB44 promoter confirm that VIP1 binding to VREs is enhanced under conditions of MPK3 pathway stimulation. These results provide molecular insight into the cellular mechanism of target gene regulation by the MPK3 pathway. PMID:19820165

  3. The stress response neuropeptide CRF increases amyloid-β production by regulating γ-secretase activity

    PubMed Central

    Park, Hyo-Jin; Ran, Yong; Jung, Joo In; Holmes, Oliver; Price, Ashleigh R; Smithson, Lisa; Ceballos-Diaz, Carolina; Han, Chul; Wolfe, Michael S; Daaka, Yehia; Ryabinin, Andrey E; Kim, Seong-Hun; Hauger, Richard L; Golde, Todd E; Felsenstein, Kevin M

    2015-01-01

    The biological underpinnings linking stress to Alzheimer's disease (AD) risk are poorly understood. We investigated how corticotrophin releasing factor (CRF), a critical stress response mediator, influences amyloid-β (Aβ) production. In cells, CRF treatment increases Aβ production and triggers CRF receptor 1 (CRFR1) and γ-secretase internalization. Co-immunoprecipitation studies establish that γ-secretase associates with CRFR1; this is mediated by β-arrestin binding motifs. Additionally, CRFR1 and γ-secretase co-localize in lipid raft fractions, with increased γ-secretase accumulation upon CRF treatment. CRF treatment also increases γ-secretase activityin vitro, revealing a second, receptor-independent mechanism of action. CRF is the first endogenous neuropeptide that can be shown to directly modulate γ-secretase activity. Unexpectedly, CRFR1 antagonists also increased Aβ. These data collectively link CRF to increased Aβ through γ-secretase and provide mechanistic insight into how stress may increase AD risk. They also suggest that direct targeting of CRF might be necessary to effectively modulate this pathway for therapeutic benefit in AD, as CRFR1 antagonists increase Aβ and in some cases preferentially increase Aβ42 via complex effects on γ-secretase. PMID:25964433

  4. Acute Exercise-Induced Mitochondrial Stress Triggers an Inflammatory Response in the Myocardium via NLRP3 Inflammasome Activation with Mitophagy.

    PubMed

    Li, Haiying; Miao, Weiguo; Ma, Jingfen; Xv, Zhen; Bo, Hai; Li, Jianyu; Zhang, Yong; Ji, Li Li

    2016-01-01

    Increasing evidence has indicated that acute strenuous exercise can induce a range of adverse reactions including oxidative stress and tissue inflammation. However, little is currently known regarding the mechanisms that underlie the regulation of the inflammatory response in the myocardium during acute heavy exercise. This study evaluated the mitochondrial function, NLRP3 inflammasome activation, and mitochondrial autophagy-related proteins to investigate the regulation and mechanism of mitochondrial stress regarding the inflammatory response of the rat myocardium during acute heavy exercise. The results indicated that the mitochondrial function of the myocardium was adaptively regulated to meet the challenge of stress during acute exercise. The exercise-induced mitochondrial stress also enhanced ROS generation and triggered an inflammatory reaction via the NLRP3 inflammasome activation. Moreover, the mitochondrial autophagy-related proteins including Beclin1, LC3, and Bnip3 were all significantly upregulated during acute exercise, which suggests that mitophagy was stimulated in response to the oxidative stress and inflammatory response in the myocardium. Taken together, our data suggest that, during acute exercise, mitochondrial stress triggers the rat myocardial inflammatory response via NLRP3 inflammasome activation and activates mitophagy to minimize myocardial injury.

  5. Disturbance of wildlife by outdoor winter recreation: allostatic stress response and altered activity-energy budgets.

    PubMed

    Arlettaz, Raphaël; Nusslé, Sébastien; Baltic, Marjana; Vogel, Peter; Palme, Rupert; Jenni-Eiermann, Susanne; Patthey, Patrick; Genoud, Michel

    2015-07-01

    Anthropogenic disturbance of wildlife is of growing conservation concern, but we lack comprehensive approaches of its multiple negative effects. We investigated several effects of disturbance by winter outdoor sports on free-ranging alpine Black Grouse by simultaneously measuring their physiological and behavioral responses. We experimentally flushed radio-tagged Black Grouse from their snow burrows, once a day, during several successive days, and quantified their stress hormone levels (corticosterone metabolites in feces [FCM] collected. from individual snow burrows). We also measured feeding time allocation (activity budgets reconstructed from radio-emitted signals) in response to anthropogenic disturbance. Finally, we estimated the related extra energy expenditure that may be incurred: based on activity budgets, energy expenditure was modeled from measures of metabolism obtained from captive birds subjected to different ambient temperatures. The pattern of FCM excretion indicated the existence of a funneling effect as predicted by the allostatic theory of stress: initial stress hormone concentrations showed a wide inter-individual variation, which decreased during experimental flushing. Individuals with low initial pre-flushing FCM values augmented their concentration, while individuals with high initial FCM values lowered it. Experimental disturbance resulted in an extension of feeding duration during the following evening foraging bout, confirming the prediction that Black Grouse must compensate for the extra energy expenditure elicited by human disturbance. Birds with low initial baseline FCM concentrations were those that spent more time foraging. These FCM excretion and foraging patterns suggest that birds with high initial FCM concentrations might have been experiencing a situation of allostatic overload. The energetic model provides quantitative estimates of extra energy expenditure. A longer exposure to ambient temperatures outside the shelter of snow

  6. Jasmonate signaling in plant stress responses and development - active and inactive compounds.

    PubMed

    Wasternack, Claus; Strnad, Miroslav

    2016-09-25

    Jasmonates (JAs) are lipid-derived signals mediating plant responses to biotic and abiotic stresses and in plant development. Following the elucidation of each step in their biosynthesis and the important components of perception and signaling, several activators, repressors and co-repressors have been identified which contribute to fine-tuning the regulation of JA-induced gene expression. Many of the metabolic reactions in which JA participates, such as conjugation with amino acids, glucosylation, hydroxylation, carboxylation, sulfation and methylation, lead to numerous compounds with different biological activities. These metabolites may be highly active, partially active in specific processes or inactive. Hydroxylation, carboxylation and sulfation inactivate JA signaling. The precursor of JA biosynthesis, 12-oxo-phytodienoic acid (OPDA), has been identified as a JA-independent signaling compound. An increasing number of OPDA-specific processes is being identified. To conclude, the numerous JA compounds and their different modes of action allow plants to respond specifically and flexibly to alterations in the environment.

  7. Defense/stress responses activated by chitosan in sycamore cultured cells.

    PubMed

    Malerba, Massimo; Crosti, Paolo; Cerana, Raffaella

    2012-01-01

    Chitosan (CHT) is a natural, non-toxic, and inexpensive compound obtained by partial alkaline deacetylation of chitin, the main component of the exoskeleton of crustaceans and other arthropods. The unique physiological and biological properties of CHT make this polymer useful for a wide range of industries. In agriculture, CHT is used to control numerous pre- and postharvest diseases on various horticultural commodities. In recent years, much attention has been devoted to CHT as an elicitor of defense responses in plants, which include raising of cytosolic Ca(2+), activation of MAP kinases, callose apposition, oxidative burst, hypersensitive response, synthesis of abscisic acid, jasmonate, phytoalexins, and pathogenesis-related proteins. In this work, we investigated the effects of different CHT concentrations on some defense/stress responses of sycamore (Acer pseudoplatanus L.) cultured cells. CHT induced accumulation of dead cells, and of cells with fragmented DNA, production of H(2)O(2) and nitric oxide, release of cytochrome c from the mitochondrion, accumulation of regulative 14-3-3 proteins in the cytosol and of HSP70 molecular chaperone binding protein in the endoplasmic reticulum, accompanied by marked modifications in the architecture of this cell organelle.

  8. Activation of the cnidarian oxidative stress response by ultraviolet radiation, polycyclic aromatic hydrocarbons and crude oil

    PubMed Central

    Tarrant, A. M.; Reitzel, A. M.; Kwok, C. K.; Jenny, M. J.

    2014-01-01

    Organisms are continuously exposed to reactive chemicals capable of causing oxidative stress and cellular damage. Antioxidant enzymes, such as superoxide dismutases (SODs) and catalases, are present in both prokaryotes and eukaryotes and provide an important means of neutralizing such oxidants. Studies in cnidarians have previously documented the occurrence of antioxidant enzymes (transcript expression, protein expression and/or enzymatic activity), but most of these studies have not been conducted in species with sequenced genomes or included phylogenetic analyses, making it difficult to compare results across species due to uncertainties in the relationships between genes. Through searches of the genome of the sea anemone Nematostella vectensis Stephenson, one catalase gene and six SOD family members were identified, including three copper/zinc-containing SODs (CuZnSODs), two manganese-containing SODs (MnSODs) and one copper chaperone of SOD (CCS). In 24 h acute toxicity tests, juvenile N. vectensis showed enhanced sensitivity to combinations of ultraviolet radiation (UV) and polycyclic aromatic hydrocarbons (PAHs, specifically pyrene, benzo[a]pyrene and fluoranthene) relative to either stressor alone. Adult N. vectensis exhibited little or no mortality following UV, benzo[a]pyrene or crude oil exposure but exhibited changes in gene expression. Antioxidant enzyme transcripts were both upregulated and downregulated following UV and/or chemical exposure. Expression patterns were most strongly affected by UV exposure but varied between experiments, suggesting that responses vary according to the intensity and duration of exposure. These experiments provide a basis for comparison with other cnidarian taxa and for further studies of the oxidative stress response in N. vectensis. PMID:24436378

  9. The Adaptogens Rhodiola and Schizandra Modify the Response to Immobilization Stress in Rabbits by Suppressing the Increase of Phosphorylated Stress-activated Protein Kinase, Nitric Oxide and Cortisol

    PubMed Central

    Panossian, Alexander; Hambardzumyan, Marina; Hovhanissyan, Areg; Wikman, Georg

    2007-01-01

    Adaptogens possess anti-fatigue and anti-stress activities that can increase mental and physical working performance against a background of fatigue or stress. The aim of the present study was to ascertain which mediators of stress response are significantly involved in the mechanisms of action of adaptogens, and to determine their relevance as biochemical markers for evaluating anti-stress effects in rabbits subjected to restraint stress. Blood levels of stress-activated protein kinase (SAPK/JNK), the phosphorylated kinase p-SAPK/p-JNK, nitric oxide (NO), cortisol, testosterone, prostaglandin E2, leukotriene B4 and thromboxane B2 were determined in groups of animals prior to daily oral administration of placebo, rhodioloside or extracts of Eleutherococcus senticosus, Schizandra chinensis, Rhodiola rosea, Bryonia alba and Panax ginseng over a 7 day period. Ten minutes after the final treatment, animals were immobilized for 2 hours and blood levels of the markers re-determined. In the placebo group, only p-SAPK/p-JNK, NO and cortisol were increased significantly (by 200–300% cf basal levels) following restraint stress, whilst in animals that had received multiple doses of adaptogens/stress-protectors, the levels of NO and cortisol remained practically unchanged after acute stress. Rhodioloside and extracts of S. chinensis and R. rosea were the most active inhibitors of stress-induced p-SAPK/p-JNK. E. senticosus, B. alba and P. ginseng exerted little effect on p-SAPK/p-JNK levels. It is suggested that the inhibitory effects of R. rosea and S. chinensis on p-SAPK/p-JNK activation may be associated with their antidepressant activity as well as their positive effects on mental performance under stress. PMID:21901061

  10. Stress response and cardiac activity of term and preterm calves in the perinatal period.

    PubMed

    Nagel, Christina; Aurich, Jörg; Trenk, Lisa; Ille, Natascha; Drillich, Marc; Pohl, Werner; Aurich, Christine

    2016-10-01

    This study tested the hypothesis of gestational age affecting fetal cardiac activity and the stress response at birth. Heart rate (HR), heart rate variability variables, SD of the beat-to-beat interval and root mean square of successive beat-to-beat differences, and postnatal salivary cortisol concentration were studied in calves born at term (Term, n = 7, gestation length 286.3 ± 2.1 days) or after induction of parturition (Preterm, n = 7, gestation length 279.6 ± 0.2 days). Observation periods covered the last month of gestation (phase A), the last hours before birth including the first stage of labor (phase B), and the neonatal period (phase C). Fetal HR decreased in phase A (P < 0.001) and did not differ between groups. During phase B, HR increased (P < 0.05) and was higher in Preterm than in Term calves in phases B (P < 0.05) and C (P < 0.01). In Term calves, heart rate variability increased from Day 6 until birth (P < 0.05). At birth, SD of the beat-to-beat interval was higher in Term than in Preterm calves (P < 0.01). On Day 1 after birth (phase C), HR accelerations were more frequent in Term than Preterm calves (P < 0.01), whereas decelerations were more frequent in Preterm calves (P < 0.05). Cortisol concentration increased postnatally (P < 0.001) and was correlated with gestation length (r ≥ 0.68, P < 0.01). Because of a certain degree of immaturity, the ability to cope with the stress of birth may be impaired in calves born 1 week before term. PMID:27312949

  11. Failure to upregulate Agrp and Orexin in response to activity based anorexia in weight loss vulnerable rats characterized by passive stress coping and prenatal stress experience.

    PubMed

    Boersma, Gretha J; Liang, Nu-Chu; Lee, Richard S; Albertz, Jennifer D; Kastelein, Anneke; Moody, Laura A; Aryal, Shivani; Moran, Timothy H; Tamashiro, Kellie L

    2016-05-01

    We hypothesize that anorexia nervosa (AN) poses a physiological stress. Therefore, the way an individual copes with stress may affect AN vulnerability. Since prenatal stress (PNS) exposure alters stress responsivity in offspring this may increase their risk of developing AN. We tested this hypothesis using the activity based anorexia (ABA) rat model in control and PNS rats that were characterized by either proactive or passive stress-coping behavior. We found that PNS passively coping rats ate less and lost more weight during the ABA paradigm. Exposure to ABA resulted in higher baseline corticosterone and lower insulin levels in all groups. However, leptin levels were only decreased in rats with a proactive stress-coping style. Similarly, ghrelin levels were increased only in proactively coping ABA rats. Neuropeptide Y (Npy) expression was increased and proopiomelanocortin (Pomc) expression was decreased in all rats exposed to ABA. In contrast, agouti-related peptide (Agrp) and orexin (Hctr) expression were increased in all but the PNS passively coping ABA rats. Furthermore, DNA methylation of the orexin gene was increased after ABA in proactive coping rats and not in passive coping rats. Overall our study suggests that passive PNS rats have innate impairments in leptin and ghrelin in responses to starvation combined with prenatal stress associated impairments in Agrp and orexin expression in response to starvation. These impairments may underlie decreased food intake and associated heightened body weight loss during ABA in the passively coping PNS rats. PMID:26907996

  12. The Aging Stress Response

    PubMed Central

    Haigis, Marcia C.; Yankner, Bruce A.

    2010-01-01

    Aging is the outcome of a balance between damage and repair. The rate of aging and the appearance of age-related pathology are modulated by stress response and repair pathways that gradually decline, including the proteostasis and DNA damage repair networks and mitochondrial respiratory metabolism. Highly conserved insulin/IGF-1, TOR, and sirtuin signaling pathways in turn, control these critical cellular responses. The coordinated action of these signaling pathways maintains cellular and organismal homeostasis in the face of external perturbations, such as changes in nutrient availability, temperature and oxygen level, as well as internal perturbations, such as protein misfolding and DNA damage. Studies in model organisms suggest that changes in signaling can augment these critical stress response systems, increasing lifespan and reducing age-related pathology. The systems biology of stress response signaling thus provides a new approach to the understanding and potential treatment of age-related diseases. PMID:20965426

  13. Positive correlation between PSI response and oxidative pentose phosphate pathway activity during salt stress in an intertidal macroalga.

    PubMed

    Huan, Li; Xie, Xiujun; Zheng, Zhenbing; Sun, Feifei; Wu, Songcui; Li, Moyang; Gao, Shan; Gu, Wenhui; Wang, Guangce

    2014-08-01

    Studies have demonstrated that photosynthetic limitations and starch degradation are responses to stress; however, the relationship between the two is seldom described in detail. In this article, the effects of salt stress on photosynthesis, the levels of NADPH and total RNA, the starch content and the activities of glucose-6-phosphate dehydrogenase (G6PDH) and ribulose-5-phosphate kinase (RPK) were evaluated. In thalli that underwent salt treatments, the cyclic electron flow through PSI showed greater stress tolerance than the flow through PSII. Even though the linear electron flow was suppressed by DCMU, the cyclic electron flow still operated. The electron transport rate I (ETRI) increased as the salinity increased when the thalli recovered in seawater containing DCMU. These results suggested that PSI receives electrons from a source other than PSII. Furthermore, the starch content and RPK activity decreased, while the content of NADPH and total RNA, and the activity of G6PDH increased under salt stress. Soluble sugar from starch degradation may enter the oxidative pentose phosphate pathway (OPPP) to produce NADPH and ribose 5-phosphate. Data analysis suggests that NADPH provides electrons for PSI in Ulva prolifera during salt stress, the OPPP participates in the stress response and total RNA is synthesized in excess to assist recovery.

  14. Neuronal Responses to Physiological Stress

    PubMed Central

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger

    2012-01-01

    Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, due to an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level. PMID:23112806

  15. The yeast mitogen-activated protein kinase Slt2 is involved in the cellular response to genotoxic stress

    PubMed Central

    2012-01-01

    Background The maintenance of genomic integrity is essential for cell viability. Complex signalling pathways (DNA integrity checkpoints) mediate the response to genotoxic stresses. Identifying new functions involved in the cellular response to DNA-damage is crucial. The Saccharomyces cerevisiae SLT2 gene encodes a member of the mitogen-activated protein kinase (MAPK) cascade whose main function is the maintenance of the cell wall integrity. However, different observations suggest that SLT2 may also have a role related to DNA metabolism. Results This work consisted in a comprehensive study to connect the Slt2 protein to genome integrity maintenance in response to genotoxic stresses. The slt2 mutant strain was hypersensitive to a variety of genotoxic treatments, including incubation with hydroxyurea (HU), methylmetanosulfonate (MMS), phleomycin or UV irradiation. Furthermore, Slt2 was activated by all these treatments, which suggests that Slt2 plays a central role in the cellular response to genotoxic stresses. Activation of Slt2 was not dependent on the DNA integrity checkpoint. For MMS and UV, Slt2 activation required progression through the cell cycle. In contrast, HU also activated Slt2 in nocodazol-arrested cells, which suggests that Slt2 may respond to dNTP pools alterations. However, neither the protein level of the distinct ribonucleotide reductase subunits nor the dNTP pools were affected in a slt2 mutant strain. An analysis of the checkpoint function revealed that Slt2 was not required for either cell cycle arrest or the activation of the Rad53 checkpoint kinase in response to DNA damage. However, slt2 mutant cells showed an elongated bud and partially impaired Swe1 degradation after replicative stress, indicating that Slt2 could contribute, in parallel with Rad53, to bud morphogenesis control after genotoxic stresses. Conclusions Slt2 is activated by several genotoxic treatments and is required to properly cope with DNA damage. Slt2 function is important

  16. Inhibition of mitochondrial genome expression triggers the activation of CHOP-10 by a cell signaling dependent on the integrated stress response but not the mitochondrial unfolded protein response.

    PubMed

    Michel, Sebastien; Canonne, Morgane; Arnould, Thierry; Renard, Patricia

    2015-03-01

    Mitochondria-to-nucleus communication, known as retrograde signaling, is important to adjust the nuclear gene expression in response to organelle dysfunction. Among the transcription factors described to respond to mitochondrial stress, CHOP-10 is activated by respiratory chain inhibition, mitochondrial accumulation of unfolded proteins and mtDNA mutations. In this study, we show that altered/impaired expression of mtDNA induces CHOP-10 expression in a signaling pathway that depends on the eIF2α/ATF4 axis of the integrated stress response rather than on the mitochondrial unfolded protein response.

  17. Assessing Sources of Stress to Aquatic Ecosystems: Using Biomarkers and Bioindicators to Characterize Exodure-Response Profiles of Anthropogenic Activities

    SciTech Connect

    Adams, S.M.

    1999-03-29

    Establishing causal relationships between sources of environmental stressors and aquatic ecosystem health if difficult because of the many biotic and abiotic factors which can influence or modify responses of biological systems to stress, the orders of magnitude involved in extrapolation over both spatial and temporal scales, and compensatory mechanisms such as density-dependent responses that operate in populations. To address the problem of establishing causality between stressors and effects on aquatic systems, a diagnostic approach, based on exposure-response profiles for various anthropogenic activities, was developed to help identify sources of stress responsible for effects on aquatic systems at ecological significant levels of biological organization (individual, population, community). To generate these exposure-effects profiles, biomarkers of exposure were plotted against bioindicators of corresponding effects for several major anthropogenic activities including petrochemical , pulp and paper, domestic sewage, mining operations, land-development activities, and agricultural activities. Biomarkers of exposure to environmental stressors varied depending on the type of anthropogenic activity involved. Bioindicator effects, however, including histopathological lesions, bioenergetic status, individual growth, reproductive impairment, and community-level responses were similar among many of the major anthropogenic activities. This approach is valuable to help identify and diagnose sources of stressors in environments impacted by multiple stressors. By identifying the types and sources of environmental stressors, aquatic ecosystems can be more effectively protected and managed to maintain acceptable levels of environmental quality and ecosystem fitness.

  18. Glutathione-Mediated Regulation of ATP Sulfurylase Activity, SO42- Uptake, and Oxidative Stress Response in Intact Canola Roots.

    PubMed

    Lappartient, A. G.; Touraine, B.

    1997-05-01

    The dual role of glutathione as a transducer of S status (A.G. Lappartient and B. Touraine [1996] Plant Physiol 111: 147-157) and as an antioxidant was examined by comparing the effects of S deprivation, glutathione feeding, and H2O2 (oxidative stress) on SO42- uptake and ATP sulfurylase activity in roots of intact canola (Brassica napus L.). ATP sulfurylase activity increased and SO42- uptake rate severely decreased in roots exposed to 10 mM H2O2, whereas both increased in S-starved plants. In split-root experiments, an oxidative stress response was induced in roots remote from H2O2 exposure, as revealed by changes in the reduced glutathione (GSH) level and the GSH/oxidized glutathione (GSSG) ratio, but there was only a small decrease in SO42- uptake rate and no effect on ATP sulfurylase activity. Feeding plants with GSH increased GSH, but did not affect the GSH/GSSG ratio, and both ATP sulfurylase activity and SO42- uptake were inhibited. The responses of the H2O2-scavenging enzymes ascorbate peroxidase and glutathione reductase to S starvation, GSH treatment, and H2O2 treatment were not to glutathione-mediated S demand regulatory process. We conclude that the regulation of ATP sulfurylase activity and SO42- uptake by S demand is related to GSH rather than to the GSH/GSSG ratio, and is distinct from the oxidative stress response. PMID:12223697

  19. Dual role of superoxide dismutase 2 induced in activated microglia: oxidative stress tolerance and convergence of inflammatory responses.

    PubMed

    Ishihara, Yasuhiro; Takemoto, Takuya; Itoh, Kouichi; Ishida, Atsuhiko; Yamazaki, Takeshi

    2015-09-11

    Microglia are activated quickly in response to external pathogens or cell debris and clear these substances via the inflammatory response. However, excessive activation of microglia can be harmful to host cells due to the increased production of reactive oxygen species and proinflammatory cytokines. Superoxide dismutase 2 (SOD2) is reportedly induced under various inflammatory conditions in the central nervous system. We herein demonstrated that activated microglia strongly express SOD2 and examined the role of SOD2, focusing on regulation of the microglial activity and the susceptibility of microglia to oxidative stress. When rat primary microglia were treated with LPS, poly(I:C), peptidoglycan, or CpG oligodeoxynucleotide, respectively, the mRNA and protein levels of SOD2 largely increased. However, an increased expression of SOD2 was not detected in the primary neurons or astrocytes, indicating that SOD2 is specifically induced in microglia under inflammatory conditions. The activated microglia showed high tolerance to oxidative stress, whereas SOD2 knockdown conferred vulnerability to oxidative stress. Interestingly, the production of proinflammatory cytokines was increased in the activated microglia treated with SOD2 siRNA compared with that observed in the control siRNA-treated cells. Pretreatment with NADPH oxidase inhibitors, diphenylene iodonium and apocynin, decreased in not only reactive oxygen species generation but also the proinflammatory cytokine expression. Notably, SOD2 knockdown largely potentiated the nuclear factor κB activity in the activated microglia. Taken together, increased SOD2 conferred tolerance to oxidative stress in the microglia and decreased proinflammatory cytokine production by attenuating the nuclear factor κB activity. Therefore, SOD2 might regulate neuroinflammation by controlling the microglial activities.

  20. Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae

    PubMed Central

    Jacquet, Michel; Renault, Georges; Lallet, Sylvie; De Mey, Jan; Goldbeter, Albert

    2003-01-01

    Msn2 and Msn4 are two related transcriptional activators that mediate a general response to stress in yeast Saccharomyces cerevisiae by eliciting the expression of specific sets of genes. In response to stress or nutritional limitation, Msn2 and Msn4 migrate from the cytoplasm to the nucleus. Using GFP-tagged constructs and high-resolution time-lapse video microscopy on single cells, we show that light emitted by the microscope also triggers this migration. Unexpectedly, the population of Msn2 or Msn4 molecules shuttles repetitively into and out of the nucleus with a periodicity of a few minutes. A large heterogeneity in the oscillatory response to stress is observed between individual cells. This periodic behavior, which can be induced by various types of stress, at intermediate stress levels, is not dependent upon protein synthesis and persists when the DNA-binding domain of Msn2 is removed. The cAMP–PKA pathway controls the sensitivity of the oscillatory nucleocytoplasmic shuttling. In the absence of PKA, Msn4 continues to oscillate while Msn2 is maintained in the nucleus. We show that a computational model based on the possibility that Msn2 and Msn4 participate in autoregulatory loops controlling their subcellular localization can account for the oscillatory behavior of the two transcription factors. PMID:12732613

  1. [Endoplasmic reticulum stress response in osteogenesis].

    PubMed

    Saito, Atsushi; Imaizumi, Kazunori

    2013-11-01

    Various cellular conditions such as synthesis of abundant proteins, expressions of mutant proteins and oxidative stress lead to accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) lumen. This type of stress is called ER stress. The excessive ER stress causes cellular damages followed by apoptosis. When ER stress occurs, cells are activated ER stress response (unfolded protein response) to avoid cellular damages. Recently, it has been clear that ER stress response plays crucial roles not only in cell survival after ER stress but also in regulating various cellular functions and tissue formations. In particular, ER stress and ER stress response regulate protein quality control, secretory protein production, and smooth secretion of proteins in the cells such as osteoblasts which synthesize and secrete enormous matrix proteins.

  2. Ethanol metabolism and oxidative stress are required for unfolded protein response activation and steatosis in zebrafish with alcoholic liver disease

    PubMed Central

    Tsedensodnom, Orkhontuya; Vacaru, Ana M.; Howarth, Deanna L.; Yin, Chunyue; Sadler, Kirsten C.

    2013-01-01

    SUMMARY Secretory pathway dysfunction and lipid accumulation (steatosis) are the two most common responses of hepatocytes to ethanol exposure and are major factors in the pathophysiology of alcoholic liver disease (ALD). However, the mechanisms by which ethanol elicits these cellular responses are not fully understood. Recent data indicates that activation of the unfolded protein response (UPR) in response to secretory pathway dysfunction can cause steatosis. Here, we examined the relationship between alcohol metabolism, oxidative stress, secretory pathway stress and steatosis using zebrafish larvae. We found that ethanol was immediately internalized and metabolized by larvae, such that the internal ethanol concentration in 4-day-old larvae equilibrated to 160 mM after 1 hour of exposure to 350 mM ethanol, with an average ethanol metabolism rate of 56 μmol/larva/hour over 32 hours. Blocking alcohol dehydrogenase 1 (Adh1) and cytochrome P450 2E1 (Cyp2e1), the major enzymes that metabolize ethanol, prevented alcohol-induced steatosis and reduced induction of the UPR in the liver. Thus, we conclude that ethanol metabolism causes ALD in zebrafish. Oxidative stress generated by Cyp2e1-mediated ethanol metabolism is proposed to be a major culprit in ALD pathology. We found that production of reactive oxygen species (ROS) increased in larvae exposed to ethanol, whereas inhibition of the zebrafish CYP2E1 homolog or administration of antioxidants reduced ROS levels. Importantly, these treatments also blocked ethanol-induced steatosis and reduced UPR activation, whereas hydrogen peroxide (H2O2) acted as a pro-oxidant that synergized with low doses of ethanol to induce the UPR. Collectively, these data demonstrate that ethanol metabolism and oxidative stress are conserved mechanisms required for the development of steatosis and hepatic dysfunction in ALD, and that these processes contribute to ethanol-induced UPR activation and secretory pathway stress in hepatocytes. PMID

  3. Oxidative stress responses of rats exposed to Roundup and its active ingredient glyphosate.

    PubMed

    El-Shenawy, Nahla S

    2009-11-01

    Glyphosate is the active ingredient and polyoxyethyleneamine, the major component, is the surfactant present in the herbicide Roundup formulation. The objective of this study was to analyze potential cytotoxicity of the Roundup and its fundamental substance (glyphosate). Albino male rats were intraperitoneally treated with sub-lethal concentration of Roundup (269.9mg/kg) or glyphosate (134.95mg/kg) each 2 days, during 2 weeks. Hepatotoxicity was monitored by quantitative analysis of the serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities, total protein, albumin, triglyceride and cholesterol. Creatinine and urea were used as the biochemical markers of kidney damages. The second aim of this study to investigate how glyphosate alone or included in herbicide Roundup affected hepatic reduced glutathione (GSH) and lipid peroxidation (LPO) levels of animals as an index of antioxidant status and oxidative stress, respectively, as well as the serum nitric oxide (NO) and alpha tumour necrosis factor (TNF-α) were measured. Treatment of animals with Roundup induced the leakage of hepatic intracellular enzymes, ALT, AST and ALP suggesting irreversible damage in hepatocytes starting from the first week. It was found that the effects were different on the enzymes in Roundup and glyphosate-treated groups. Significant time-dependent depletion of GSH levels and induction of oxidative stress in liver by the elevated levels of LPO, further confirmed the potential of Roundup to induce oxidative stress in hepatic tissue. However, glyphosate caused significant increases in NO levels more than Roundup after 2 weeks of treatment. Both treatments increased the level of TNF-α by the same manner. The results suggest that excessive antioxidant disruptor and oxidative stress is induced with Roundup than glyphosate.

  4. Stress Responses of Shewanella

    PubMed Central

    Yin, Jianhua; Gao, Haichun

    2011-01-01

    The shewanellae are ubiquitous in aquatic and sedimentary systems that are chemically stratified on a permanent or seasonal basis. In addition to their ability to utilize a diverse array of terminal electron acceptors, the microorganisms have evolved both common and unique responding mechanisms to cope with various stresses. This paper focuses on the response and adaptive mechanism of the shewanellae, largely based on transcriptional data. PMID:21912550

  5. Maternal soothing and infant stress responses: soothing, crying and adrenocortical activity during inoculation.

    PubMed

    Braarud, Hanne Cecilie; Stormark, Kjell Morten

    2006-01-01

    The relation between maternal soothing and infant stress response during inoculation was examined in a sample of 37 mothers and their 3-month-old infants. The mothers' soothing and the infants' cry vocalizations and the mothers' and the infants' salivary cortisol level pre- and post-injection were analysed. There was a positive relation between infants' cry vocalization post-injection and maternal soothing pre- and post-injection. The sample was divided in two sub-groups depending on whether the mothers evidenced most soothing of the infants in the period before (Preparatory group; n=20) or after (Contingent group; n=17) the syringe injection. In the Preparatory group, the duration of infant cry vocalizations was related to amount of maternal soothing before and after the injection, while cry vocalizations in the Contingent group was related to amount of maternal soothing after the injection. The Contingent infants responded to the injection with a significant increase in cortisol, while there was no increase in the Preparatory infants. The Preparatory infants evidenced significantly longer duration of looking at the target stimuli in a visual marking task, suggesting greater difficulties in disengaging attention. These findings indicate that 3-month-olds' stress responses and their mothers' situational behaviour are mutually regulated.

  6. Bacterial persistence is an active σS stress response to metabolic flux limitation.

    PubMed

    Radzikowski, Jakub Leszek; Vedelaar, Silke; Siegel, David; Ortega, Álvaro Dario; Schmidt, Alexander; Heinemann, Matthias

    2016-09-21

    While persisters are a health threat due to their transient antibiotic tolerance, little is known about their phenotype and what actually causes persistence. Using a new method for persister generation and high-throughput methods, we comprehensively mapped the molecular phenotype of Escherichia coli during the entry and in the state of persistence in nutrient-rich conditions. The persister proteome is characterized by σ(S)-mediated stress response and a shift to catabolism, a proteome that starved cells tried to but could not reach due to absence of a carbon and energy source. Metabolism of persisters is geared toward energy production, with depleted metabolite pools. We developed and experimentally verified a model, in which persistence is established through a system-level feedback: Strong perturbations of metabolic homeostasis cause metabolic fluxes to collapse, prohibiting adjustments toward restoring homeostasis. This vicious cycle is stabilized and modulated by high ppGpp levels, toxin/anti-toxin systems, and the σ(S)-mediated stress response. Our system-level model consistently integrates past findings with our new data, thereby providing an important basis for future research on persisters.

  7. Bacterial persistence is an active σS stress response to metabolic flux limitation.

    PubMed

    Radzikowski, Jakub Leszek; Vedelaar, Silke; Siegel, David; Ortega, Álvaro Dario; Schmidt, Alexander; Heinemann, Matthias

    2016-01-01

    While persisters are a health threat due to their transient antibiotic tolerance, little is known about their phenotype and what actually causes persistence. Using a new method for persister generation and high-throughput methods, we comprehensively mapped the molecular phenotype of Escherichia coli during the entry and in the state of persistence in nutrient-rich conditions. The persister proteome is characterized by σ(S)-mediated stress response and a shift to catabolism, a proteome that starved cells tried to but could not reach due to absence of a carbon and energy source. Metabolism of persisters is geared toward energy production, with depleted metabolite pools. We developed and experimentally verified a model, in which persistence is established through a system-level feedback: Strong perturbations of metabolic homeostasis cause metabolic fluxes to collapse, prohibiting adjustments toward restoring homeostasis. This vicious cycle is stabilized and modulated by high ppGpp levels, toxin/anti-toxin systems, and the σ(S)-mediated stress response. Our system-level model consistently integrates past findings with our new data, thereby providing an important basis for future research on persisters. PMID:27655400

  8. Age and sex-dependent differences in activity, plasticity and response to stress in the dentate gyrus.

    PubMed

    Zitman, F M P; Richter-Levin, G

    2013-09-26

    In the last decade, early-onset of affective illness has been recognized as a major public health problem. However, clinical studies indicate that although children experience the symptoms of anxiety and depression in much the same way as adults, they display and react to those symptoms differently (Bostic et al., 2005). Recently, we have demonstrated that similar differences in symptoms are found also between adult and juvenile rats (Jacobson-Pick and Richter-Levin, 2010). Especially the hippocampus is believed to be vulnerable to stress-related illness, as this brain region has a high density of corticoid receptors. The hippocampus is known to finalize its development, and particularly that of GABA-related functions, into adolescence (Bergmann et al., 1991; Harris et al., 1992; Nurse and Lacaille, 1999; Lopez-Tellez et al., 2004; Jacobson-Pick et al., 2008) and may thus be differentially sensitive to environmental challenges in childhood and in adulthood. In this study we explored the differences in activity and plasticity of the dentate gyrus between pre-pubertal and adult rats in vivo. Furthermore, we have examined the impact of exposure to stress either during pre-puberty or in adulthood on dentate gyrus electrophysiology. In both male and female rats, marked differences were found for intrinsic excitability and local circuit activity between pre-pubertal and adult animals. Exposure to forced swim stress resulted in significant alterations of dentate gyrus activity and plasticity in male rats with differences between adult and pre-pubertal animals. Stress had far less impact on females' dentate electrophysiology. The results are in agreement with the differences in behavioral response to stress between pre-pubertal and adult rats, and with reported differences for the sensitivity of male and female rats in performing hippocampus-dependent tasks under stress, such as the active avoidance task.

  9. Activation of Nrf2-mediated oxidative stress response in macrophages by hypochlorous acid

    SciTech Connect

    Pi Jingbo Zhang Qiang; Woods, Courtney G.; Wong, Victoria; Collins, Sheila; Andersen, Melvin E.

    2008-02-01

    Hypochlorous acid (HOCl), a potent oxidant generated when chlorine gas reacts with water, is important in the pathogenesis of many disorders. Transcription factor Nrf2-mediated antioxidant response represents a critical cellular defense mechanism that serves to maintain intracellular redox homeostasis and limit oxidative damage. In the present study, the effect of HOCl on Nrf2 activation was investigated in macrophages, one of the target cells of chlorine gas exposure. Exposure of RAW 264.7 macrophages to HOCl resulted in increased protein levels of Nrf2 in nuclear extractions, as well as a time- and dose-dependent increase in the expression of Nrf2 target genes, including heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1 (NQO-1), glutamate cysteine ligase catalytic subunit (GCLC), and glutathione synthetase (GS). Additionally, intracellular glutathione (GSH), which is the prime scavenger for HOCl in cells, decreased within the first hour of HOCl exposure. The decline was followed by a GSH rebound that surpassed the initial basal levels by up to 4-fold. This reversal in GSH levels closely correlated with the gene expression profile of GCLC and GS. To study the mechanisms of Nrf2 activation in response to HOCl exposure, we examined the effects of several antioxidants on Nrf2-mediated response. Pretreatment with cell-permeable catalase, N-acetyl-L-cysteine or GSH-monoethyl ester markedly reduced expression of NQO-1 and GCLC under HOCl challenge conditions, suggesting intracellular ROS-scavenging capacity affects HOCl-induced Nrf2 activation. Importantly, pre-activation of Nrf2 with low concentrations of pro-oxidants protected the cells against HOCl-induced cell damage. Taken together, we provide direct evidence that HOCl activates Nrf2-mediated antioxidant response, which protects cells from oxidative damage.

  10. Endoplasmic reticulum stress responses in plants.

    PubMed

    Howell, Stephen H

    2013-01-01

    Endoplasmic reticulum (ER) stress is of considerable interest to plant biologists because it occurs in plants subjected to adverse environmental conditions. ER stress responses mitigate the damage caused by stress and confer levels of stress tolerance to plants. ER stress is activated by misfolded proteins that accumulate in the ER under adverse environmental conditions. Under these conditions, the demand for protein folding exceeds the capacity of the system, which sets off the unfolded protein response (UPR). Two arms of the UPR signaling pathway have been described in plants: one that involves two ER membrane-associated transcription factors (bZIP17 and bZIP28) and another that involves a dual protein kinase (RNA-splicing factor IRE1) and its target RNA (bZIP60). Under mild or short-term stress conditions, signaling from IRE1 activates autophagy, a cell survival response. But under severe or chronic stress conditions, ER stress can lead to cell death.

  11. Biological role of Trichoderma harzianum-derived platelet-activating factor acetylhydrolase (PAF-AH) on stress response and antagonism.

    PubMed

    Yu, Chuanjin; Fan, Lili; Wu, Qiong; Fu, Kehe; Gao, Shigang; Wang, Meng; Gao, Jinxin; Li, Yaqian; Chen, Jie

    2014-01-01

    We investigated the properties of platelet-activating factor acetylhydrolase (PAF-AH) derived from Trichoderma harzianum. The enzyme, comprised of 572 amino acids, shares high homology with PAF-AH proteins from T. koningii and other microbial species. The optimum enzymatic activity of PAF-AH occurred at pH 6 in the absence of Ca2+ and it localized in the cytoplasm, and we observed the upregulation of PAF-AH expression in response to carbon starvation and strong heat shock. Furthermore, PAF-AH knockout transformant growth occurred more slowly than wild type cells and over-expression strains grown in SM medium at 37°C and 42°C. In addition, PAF-AH expression significantly increased under a series of maize root induction assay. Eicosanoic acid and ergosterol levels decreased in the PAF-AH knockouts compared to wild type cells, as revealed by GC/MS analysis. We also determined stress responses mediated by PAF-AH were related to proteins HEX1, Cu/Zn superoxide dismutase, and cytochrome c. Finally, PAF-AH exhibited antagonistic activity against Rhizoctonia solani in plate confrontation assays. Our results indicate PAF-AH may play an important role in T. harzianum stress response and antagonism under diverse environmental conditions.

  12. Involvement of Clp protease activity in modulating the Bacillus subtilissigmaw stress response.

    PubMed

    Zellmeier, Stephan; Schumann, Wolfgang; Wiegert, Thomas

    2006-09-01

    The induction of Bacillus subtilis genes controlled by the extracytoplasmic function alternative sigma factor sigmaW is strongly impaired in a strain deleted for the ClpP peptidase gene and in a double knockout of the ClpX and ClpE ATPase genes. Truncated soluble forms of the sigmaW anti-sigma factor RsiW are stabilized in a clpP minus strain as revealed by the green fluorescent reporter protein fused to the N-terminus of RsiW and by pulse-chase experiments. Conserved alanine residues are present in the transmembrane region of RsiW, and mutations in these positions abolish induction of sigmaW-controlled genes. Following alkaline shock, a truncated cytoplasmic form of RsiW is detectable in a strain expressing a triple alanine mutant allele of rsiW. These data point to a mechanism where the trans-membrane segment of RsiW contains a cryptic proteolytic tag that is uncovered as a result of intramembrane proteolysis of RsiW by RasP (YluC). After RasP-clipped RsiW is detached from the membrane, this proteolytic tag becomes crucial for the complete degradation of RsiW by cytoplasmic proteases and the release of sigmaW. ClpXP plays a major role in this third proteolytic step of stress-induced degradation of RsiW. Overexpression of SsrA-tagged green fluorescent protein as a ClpXP substrate protein reduces alkali induction of a sigmaW-controlled gene by a factor of about three, indicating that a titration mechanism is able to tune the sigmaW-mediated stress response to the cellular state. PMID:16899079

  13. Overexpression of the CBF2 transcriptional activator in Arabidopsis suppresses the responsiveness of leaf tissue to the stress hormone ethylene.

    PubMed

    Sharabi-Schwager, M; Samach, A; Porat, R

    2010-07-01

    The plant hormone ethylene affects myriad developmental processes ranging from seed germination to organ senescence, and plays a crucial role in plant resistance to environmental stresses. The C-repeat/dehydration-responsive element binding factor genes (CBF1-3) are transcriptional activators involved in plant low-temperatures responses; their overexpression enhances frost tolerance, but also has various pleiotropic effects on growth and development, mainly growth retardation and delay of flowering and senescence. We found that overexpression of CBF2 in Arabidopsis suppressed leaf tissue responsiveness to ethylene as compared with wild-type plants, as manifested in significantly delayed senescence and chlorophyll degradation. In wild-type plants, exposure to ethylene at 0.1 microl.l(-1) for 48 h caused 50% reduction in chlorophyll levels as compared to leaves held in air alone, whereas CBF2-overexpressing plants required an ethylene concentration of 10.0 microl.l(-1) to cause the same effect. Furthermore, continuous exposure to ethylene at 1.0 microl.l(-1) reduced chlorophyll content in wild-type leaves by 50% after 42 h but took 72 h in CBF2-overexpressing plants. Transcript profiling of ethylene receptors and signal transduction genes in leaves of wild-type and CBF2-overexpressing plants, by means of the Affymetrix ATH1 genome array, revealed only minor differences in gene expression patterns - insufficient to explain the observed responsiveness differences. Nevertheless, we found that overexpression of CBF2 significantly increased transcript levels of 17 ABA biosynthetic and responsive genes and, thus, may have affected leaf responsiveness to ethylene via contrasting interactions with other hormones, mainly ABA. Overall, the current findings suggest that overexpression of the CBF2 transcriptional activator in Arabidopsis may, at least in part, contribute to the observed delay of leaf senescence and enhanced plant fitness by suppressing leaf responsiveness to

  14. Stress protein response and catalase activity in freshwater planarian Dugesia (Girardia) schubarti exposed to copper.

    PubMed

    Guecheva, Temenouga N; Erdtmann, Bernardo; Benfato, Mara S; Henriques, João A P

    2003-11-01

    The hsp60 expression pattern and catalase activity in the freshwater planarian Dugesia schubarti exposed to copper under laboratory conditions were investigated. In the hsp60 induction experiments, planarians were exposed to a range of copper concentrations (0-960 microgCu/L) for 4 or 24h, to concentrations of 50 or 100 microgCu/L for 2, 4, 8, and 24h at 19 degrees C, and to heat shock at 27 degrees C for 24h. The concentrations of hsp60 in whole-body homogenates were determined immunochemically by Western blotting. Stress protein induction was detected only after 24h treatment at 27 degrees C. The tissue concentration of hsp60 remained unaltered in Cu-exposed planarians under the experimental conditions used. Catalase activity was significantly induced at concentrations of 40, 80, and 160 microgCu/L after 24h exposure. Our results suggest that catalase levels in planarians could represent biomarkers of interest for the estimation of copper effects in freshwater ecosystems.

  15. The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation

    PubMed Central

    Zou, Zhongju; Sumpter, Rhea; Su, Minfei; Zang, Xiao; Sinha, Sangita; Gaestel, Matthias; Levine, Beth

    2015-01-01

    Autophagy is a fundamental adaptive response to amino acid starvation orchestrated by conserved gene products, the autophagy (ATG) proteins. However, the cellular cues that activate the function of ATG proteins during amino acid starvation are incompletely understood. Here we show that two related stress-responsive kinases, members of the p38 mitogen-activated protein kinase (MAPK) signaling pathway MAPKAPK2 (MK2) and MAPKAPK3 (MK3), positively regulate starvation-induced autophagy by phosphorylating an essential ATG protein, Beclin 1, at serine 90, and that this phosphorylation site is essential for the tumor suppressor function of Beclin 1. Moreover, MK2/MK3-dependent Beclin 1 phosphorylation (and starvation-induced autophagy) is blocked in vitro and in vivo by BCL2, a negative regulator of Beclin 1. Together, these findings reveal MK2/MK3 as crucial stress-responsive kinases that promote autophagy through Beclin 1 S90 phosphorylation, and identify the blockade of MK2/3-dependent Beclin 1 S90 phosphorylation as a mechanism by which BCL2 inhibits the autophagy function of Beclin 1. DOI: http://dx.doi.org/10.7554/eLife.05289.001 PMID:25693418

  16. Active Traction Force Response to Long-Term Cyclic Stretch Is Dependent on Cell Pre-stress.

    PubMed

    Cirka, Heather; Monterosso, Melissa; Diamantides, Nicole; Favreau, John; Wen, Qi; Billiar, Kristen

    2016-04-26

    Mechanical stimulation is recognized as a potent modulator of cellular behaviors such as proliferation, differentiation, and extracellular matrix assembly. However, the study of how cell-generated traction force changes in response to stretch is generally limited to short-term stimulation. The goal of this work is to determine how cells actively alter their traction force in response to long-term physiological cyclic stretch as a function of cell pre-stress. We have developed, to our knowledge, a novel method to assess traction force after long-term (24 h) uniaxial or biaxial cyclic stretch under conditions of high cell pre-stress with culture on stiff (7.5 kPa) polyacrylamide gels (with or without transforming growth factor β1 (TGF-β1)) and low pre-stress by treating with blebbistatin or culture on soft gels (0.6 kPa). In response to equibiaxial stretch, valvular interstitial cells on stiff substrates decreased their traction force (from 300 nN to 100 nN) and spread area (from 3000 to 2100 μm(2)). With uniaxial stretch, the cells had similar decreases in traction force and area and reoriented perpendicular to the stretch. TGF-β1-treated valvular interstitial cells had higher pre-stress (1100 nN) and exhibited a larger drop in traction force with uniaxial stretch, but the percentage changes in force and area with stretch were similar to the non-TGF-β1-treated group. Cells with inhibited myosin II motors increased traction force (from 41 nN to 63 nN) and slightly reoriented toward the stretch direction. In contrast, cells cultured on soft gels increased their traction force significantly, from 15 nN to 45 nN, doubled their spread area, elongated from an initially rounded morphology, and reoriented perpendicular to the uniaxial stretch. Contractile-moment measurements provided results consistent with total traction force measurements. The combined results indicate that the change in traction force in response to external cyclic stretch is dependent upon the

  17. COP1 Controls Abiotic Stress Responses by Modulating AtSIZ1 Function through Its E3 Ubiquitin Ligase Activity

    PubMed Central

    Kim, Joo Y.; Jang, In-Cheol; Seo, Hak S.

    2016-01-01

    Ubiquitination and sumoylation are essential post-translational modifications that regulate growth and development processes in plants, including control of hormone signaling mechanisms and responses to stress. This study showed that COP1 (Constitutive photomorphogenic 1) regulated the activity of Arabidopsis E3 SUMO (Small ubiquitin-related modifier) ligase AtSIZ1 through its E3 ubiquitin ligase activity. Yeast two hybrid analysis demonstrated that COP1 and AtSIZ1 directly interacted with one another, and subcellular localization assays indicated that COP1 and AtSIZ1 co-localized in nuclear bodies. Analysis of ubiquitination showed that AtSIZ1 was polyubiquitinated by COP1. The AtSIZ1 level was higher in cop1-4 mutants than in wild-type seedlings under light or dark conditions, and overexpression of a dominant-negative (DN)-COP1 mutant led to a substantial increase in AtSIZ1 accumulation. In addition, under drought, cold, and high salt conditions, SUMO-conjugate levels were elevated in DN-COP1-overexpressing plants and cop1-4 mutant plants compared to wild-type plants. Taken together, our results indicate that COP1 controls responses to abiotic stress by modulation of AtSIZ1 levels and activity. PMID:27536318

  18. COP1 Controls Abiotic Stress Responses by Modulating AtSIZ1 Function through Its E3 Ubiquitin Ligase Activity.

    PubMed

    Kim, Joo Y; Jang, In-Cheol; Seo, Hak S

    2016-01-01

    Ubiquitination and sumoylation are essential post-translational modifications that regulate growth and development processes in plants, including control of hormone signaling mechanisms and responses to stress. This study showed that COP1 (Constitutive photomorphogenic 1) regulated the activity of Arabidopsis E3 SUMO (Small ubiquitin-related modifier) ligase AtSIZ1 through its E3 ubiquitin ligase activity. Yeast two hybrid analysis demonstrated that COP1 and AtSIZ1 directly interacted with one another, and subcellular localization assays indicated that COP1 and AtSIZ1 co-localized in nuclear bodies. Analysis of ubiquitination showed that AtSIZ1 was polyubiquitinated by COP1. The AtSIZ1 level was higher in cop1-4 mutants than in wild-type seedlings under light or dark conditions, and overexpression of a dominant-negative (DN)-COP1 mutant led to a substantial increase in AtSIZ1 accumulation. In addition, under drought, cold, and high salt conditions, SUMO-conjugate levels were elevated in DN-COP1-overexpressing plants and cop1-4 mutant plants compared to wild-type plants. Taken together, our results indicate that COP1 controls responses to abiotic stress by modulation of AtSIZ1 levels and activity. PMID:27536318

  19. Proteolytic activation of both components of the cation stress-responsive Slt pathway in Aspergillus nidulans.

    PubMed

    Mellado, Laura; Arst, Herbert N; Espeso, Eduardo A

    2016-08-15

    Tolerance of Aspergillus nidulans to alkalinity and elevated cation concentrations requires both SltA and SltB. Transcription factor SltA and the putative pseudokinase/protease signaling protein SltB comprise a regulatory pathway specific to filamentous fungi. In vivo, SltB is proteolytically cleaved into its two principal domains. Mutational analysis defines a chymotrypsin-like serine protease domain that mediates SltB autoproteolysis and proteolytic cleavage of SltA. The pseudokinase domain might modulate the protease activity of SltB. Three forms of the SltA transcription factor coexist in cells: a full-length, 78-kDa version and a processed, 32-kDa form, which is found in phosphorylated and unphosphorylated states. The SltA32kDa version mediates transcriptional regulation of sltB and, putatively, genes required for tolerance to cation stress and alkalinity. The full-length form, SltA78kDa, apparently has no transcriptional function. In the absence of SltB, only the primary product of SltA is detectable, and its level equals that of SltA78kDa. Mutations in sltB selected as suppressors of null vps alleles and resulting in cation/alkalinity sensitivity either reduced or eliminated SltA proteolysis. There is no evidence for cation or alkalinity regulation of SltB cleavage, but activation of sltB expression requires SltA. This work identifies the molecular mechanisms governing the Slt pathway. PMID:27307585

  20. Thinking of attachments reduces noradrenergic stress response.

    PubMed

    Bryant, Richard A; Chan, Lilian

    2015-10-01

    Although there is much evidence that activating mental representations of attachments figure is beneficial for psychological health and can reduce stress response, no research has directly investigated whether attachment activation can ameliorate hormonal stress response. This study investigated whether activating an attachment figure or a non-attachment figure following administration of a socially evaluated cold pressor test to elicit stress impacted on glucocorticoid and noradrenergic response. Participants (N = 61) provided baseline salivary samples, underwent a cold pressor test, then imagined an attachment or non-attachment figure, and finally provided subsequent saliva samples. Participants who imagined a non-attachment figure had greater noradrenergic response following the stressor than those who imagined an attachment figure. These findings highlight that activating attachment representations can ameliorate the immediate noradrenergic stress response.

  1. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    SciTech Connect

    Kiran, Shashi; Oddi, Vineesha; Ramakrishna, Gayatri

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  2. Endoplasmic reticulum stress-independent activation of unfolded protein response kinases by a small molecule ATP-mimic

    PubMed Central

    Mendez, Aaron S; Alfaro, Jennifer; Morales-Soto, Marisol A; Dar, Arvin C; McCullagh, Emma; Gotthardt, Katja; Li, Han; Acosta-Alvear, Diego; Sidrauski, Carmela; Korennykh, Alexei V; Bernales, Sebastian; Shokat, Kevan M; Walter, Peter

    2015-01-01

    Two ER membrane-resident transmembrane kinases, IRE1 and PERK, function as stress sensors in the unfolded protein response. IRE1 also has an endoribonuclease activity, which initiates a non-conventional mRNA splicing reaction, while PERK phosphorylates eIF2α. We engineered a potent small molecule, IPA, that binds to IRE1's ATP-binding pocket and predisposes the kinase domain to oligomerization, activating its RNase. IPA also inhibits PERK but, paradoxically, activates it at low concentrations, resulting in a bell-shaped activation profile. We reconstituted IPA-activation of PERK-mediated eIF2α phosphorylation from purified components. We estimate that under conditions of maximal activation less than 15% of PERK molecules in the reaction are occupied by IPA. We propose that IPA binding biases the PERK kinase towards its active conformation, which trans-activates apo-PERK molecules. The mechanism by which partial occupancy with an inhibitor can activate kinases may be wide-spread and carries major implications for design and therapeutic application of kinase inhibitors. DOI: http://dx.doi.org/10.7554/eLife.05434.001 PMID:25986605

  3. The temperature response of CO2 assimilation, photochemical activities and Rubisco activation in Camelina sativa, a potential bioenergy crop with limited capacity for acclimation to heat stress.

    PubMed

    Carmo-Silva, A Elizabete; Salvucci, Michael E

    2012-11-01

    The temperature optimum of photosynthesis coincides with the average daytime temperature in a species' native environment. Moderate heat stress occurs when temperatures exceed the optimum, inhibiting photosynthesis and decreasing productivity. In the present study, the temperature response of photosynthesis and the potential for heat acclimation was evaluated for Camelina sativa, a bioenergy crop. The temperature optimum of net CO(2) assimilation rate (A) under atmospheric conditions was 30-32 °C and was only slightly higher under non-photorespiratory conditions. The activation state of Rubisco was closely correlated with A at supra-optimal temperatures, exhibiting a parallel decrease with increasing leaf temperature. At both control and elevated temperatures, the modeled response of A to intercellular CO(2) concentration was consistent with Rubisco limiting A at ambient CO(2). Rubisco activation and photochemical activities were affected by moderate heat stress at lower temperatures in camelina than in the warm-adapted species cotton and tobacco. Growth under conditions that imposed a daily interval of moderate heat stress caused a 63 % reduction in camelina seed yield. Levels of cpn60 protein were elevated under the higher growth temperature, but acclimation of photosynthesis was minimal. Inactivation of Rubisco in camelina at temperatures above 35 °C was consistent with the temperature response of Rubisco activase activity and indicated that Rubisco activase was a prime target of inhibition by moderate heat stress in camelina. That photosynthesis exhibited no acclimation to moderate heat stress will likely impact the development of camelina and other cool season Brassicaceae as sources of bioenergy in a warmer world.

  4. Differential coral bleaching-Contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress.

    PubMed

    Krueger, Thomas; Hawkins, Thomas D; Becker, Susanne; Pontasch, Stefanie; Dove, Sophie; Hoegh-Guldberg, Ove; Leggat, William; Fisher, Paul L; Davy, Simon K

    2015-12-01

    Mass coral bleaching due to thermal stress represents a major threat to the integrity and functioning of coral reefs. Thermal thresholds vary, however, between corals, partly as a result of the specific type of endosymbiotic dinoflagellate (Symbiodinium sp.) they harbour. The production of reactive oxygen species (ROS) in corals under thermal and light stress has been recognised as one mechanism that can lead to cellular damage and the loss of their symbiont population (Oxidative Theory of Coral Bleaching). Here, we compared the response of symbiont and host enzymatic antioxidants in the coral species Acropora millepora and Montipora digitata at 28°C and 33°C. A. millepora at 33°C showed a decrease in photochemical efficiency of photosystem II (PSII) and increase in maximum midday excitation pressure on PSII, with subsequent bleaching (declining photosynthetic pigment and symbiont density). M. digitata exhibited no bleaching response and photochemical changes in its symbionts were minor. The symbiont antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and catalase peroxidase showed no significant upregulation to elevated temperatures in either coral, while only catalase was significantly elevated in both coral hosts at 33°C. Increased host catalase activity in the susceptible coral after 5days at 33°C was independent of antioxidant responses in the symbiont and preceded significant declines in PSII photochemical efficiencies. This finding suggests a potential decoupling of host redox mechanisms from symbiont photophysiology and raises questions about the importance of symbiont-derived ROS in initiating coral bleaching.

  5. Differential coral bleaching-Contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress.

    PubMed

    Krueger, Thomas; Hawkins, Thomas D; Becker, Susanne; Pontasch, Stefanie; Dove, Sophie; Hoegh-Guldberg, Ove; Leggat, William; Fisher, Paul L; Davy, Simon K

    2015-12-01

    Mass coral bleaching due to thermal stress represents a major threat to the integrity and functioning of coral reefs. Thermal thresholds vary, however, between corals, partly as a result of the specific type of endosymbiotic dinoflagellate (Symbiodinium sp.) they harbour. The production of reactive oxygen species (ROS) in corals under thermal and light stress has been recognised as one mechanism that can lead to cellular damage and the loss of their symbiont population (Oxidative Theory of Coral Bleaching). Here, we compared the response of symbiont and host enzymatic antioxidants in the coral species Acropora millepora and Montipora digitata at 28°C and 33°C. A. millepora at 33°C showed a decrease in photochemical efficiency of photosystem II (PSII) and increase in maximum midday excitation pressure on PSII, with subsequent bleaching (declining photosynthetic pigment and symbiont density). M. digitata exhibited no bleaching response and photochemical changes in its symbionts were minor. The symbiont antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and catalase peroxidase showed no significant upregulation to elevated temperatures in either coral, while only catalase was significantly elevated in both coral hosts at 33°C. Increased host catalase activity in the susceptible coral after 5days at 33°C was independent of antioxidant responses in the symbiont and preceded significant declines in PSII photochemical efficiencies. This finding suggests a potential decoupling of host redox mechanisms from symbiont photophysiology and raises questions about the importance of symbiont-derived ROS in initiating coral bleaching. PMID:26310104

  6. Reactive oxygen and nitrogen species in defense/stress responses activated by chitosan in sycamore cultured cells.

    PubMed

    Malerba, Massimo; Cerana, Raffaella

    2015-01-29

    Chitosan (CHT) is a non-toxic and inexpensive compound obtained by deacetylation of chitin, the main component of the exoskeleton of arthropods as well as of the cell walls of many fungi. In agriculture CHT is used to control numerous diseases on various horticultural commodities but, although different mechanisms have been proposed, the exact mode of action of CHT is still unknown. In sycamore (Acer pseudoplatanus L.) cultured cells, CHT induces a set of defense/stress responses that includes production of H2O2 and nitric oxide (NO). We investigated the possible signaling role of these reactive molecules in some CHT-induced responses by means of inhibitors of production and/or scavengers. The results show that both reactive nitrogen and oxygen species are not only a mere symptom of stress conditions but are involved in the responses induced by CHT in sycamore cells. In particular, NO appears to be involved in a cell death form induced by CHT that shows apoptotic features like DNA fragmentation, increase in caspase-3-like activity and release of cytochrome c from the mitochondrion. On the contrary, reactive oxygen species (ROS) appear involved in a cell death form induced by CHT that does not show these apoptotic features but presents increase in lipid peroxidation.

  7. Reactive oxygen and nitrogen species in defense/stress responses activated by chitosan in sycamore cultured cells.

    PubMed

    Malerba, Massimo; Cerana, Raffaella

    2015-01-01

    Chitosan (CHT) is a non-toxic and inexpensive compound obtained by deacetylation of chitin, the main component of the exoskeleton of arthropods as well as of the cell walls of many fungi. In agriculture CHT is used to control numerous diseases on various horticultural commodities but, although different mechanisms have been proposed, the exact mode of action of CHT is still unknown. In sycamore (Acer pseudoplatanus L.) cultured cells, CHT induces a set of defense/stress responses that includes production of H2O2 and nitric oxide (NO). We investigated the possible signaling role of these reactive molecules in some CHT-induced responses by means of inhibitors of production and/or scavengers. The results show that both reactive nitrogen and oxygen species are not only a mere symptom of stress conditions but are involved in the responses induced by CHT in sycamore cells. In particular, NO appears to be involved in a cell death form induced by CHT that shows apoptotic features like DNA fragmentation, increase in caspase-3-like activity and release of cytochrome c from the mitochondrion. On the contrary, reactive oxygen species (ROS) appear involved in a cell death form induced by CHT that does not show these apoptotic features but presents increase in lipid peroxidation. PMID:25642757

  8. Activation of the Nrf2-regulated antioxidant cell response inhibits HEMA-induced oxidative stress and supports cell viability.

    PubMed

    Gallorini, Marialucia; Petzel, Christine; Bolay, Carola; Hiller, Karl-Anton; Cataldi, Amelia; Buchalla, Wolfgang; Krifka, Stephanie; Schweikl, Helmut

    2015-07-01

    Oxidative stress due to increased formation of reactive oxygen species (ROS) in target cells of dental resin monomers like 2-hydroxyethyl methacrylate (HEMA) is a major mechanism underlying the disturbance of vital cell functions including mineralization and differentiation, responses of the innate immune system, and the induction of cell death via apoptosis. Although a shift in the equilibrium between cell viability and apoptosis is related to the non-enzymatic antioxidant glutathione (GSH) in HEMA-exposed cells, the major mechanisms of adaptive antioxidant cell responses to maintain cellular redox homeostasis are still unknown. The present study provides insight into the induction of a communicating network of pathways under the control of the redox-sensitive transcription factor Nrf2, a major transcriptional activator of genes coding for enzymatic antioxidants. Here, oxidative stress was indicated by DCF fluorescence in cells after a short exposure (1 h) to HEMA, while DHR123 fluorescence significantly increased about 1.8-fold after a long exposure period (24 h) showing the formation of hydrogen peroxide (H2O2). The corresponding expression of Nrf2 was activated immediately after HEMA exposure (1 h) and remained constant up to 24 h. Nrf2-regulated expression of enzymes of the glutathione metabolism (glutathione peroxidase 1/2, glutathione reductase) decreased in HEMA-exposed cells as a result of GSH depletion, and superoxide dismutase expression was downregulated after H2O2 overproduction. However, the expression of Nrf2-controlled enzymatic antioxidants (catalase, peroxiredoxin, thioredoxin 1, thioredoxin reductase, heme oxygenase-1) and the NADPH-regenerating system (glucose 6-phosphate dehydrogenase, transaldolase) was increased. Phenolic tert-butylhydroquinone (tBHQ), a classic inducer of the Nrf2 pathway, reduced oxidative stress and protected cells from HEMA-induced cell death through a shift in the number of cells in necrosis to apoptosis. The

  9. Exposure to inhaled particulate matter activates early markers of oxidative stress, inflammation and unfolded protein response in rat striatum

    PubMed Central

    Guerra, R.; Vera-Aguilar, E.; Uribe-Ramirez, M.; Gookin, G.; Camacho, J.; Osornio-Vargas, A.R.; Mugica-Alvarez, V.; Angulo-Olais, R.; Campbell, A.; Froines, J.; Kleinman, T.M.; De Vizcaya-Ruiz, A.

    2014-01-01

    To study central nervous system airborne PM related subchronic toxicity, SD male rats were exposed for eight weeks to either coarse (32 µg/m3), fine (178 µg/m3) or ultrafine (107 µg/m3) concentrated PM or filtered air. Different brain regions (olfactory bulb, frontal cortex, striatum and hippocampus), were harvested from the rats following exposure to airborne PM. Subsequently, prooxidant (HO-1 and SOD-2), and inflammatory markers (IL-1β and TNFα), apoptotic (caspase 3), and unfolded protein response (UPR) markers (XBP-1S and BiP), were also measured using real-time PCR. Activation of nuclear transcription factors Nrf-2 and NF-κB, associated with antioxidant and inflammation processes, respectively, were also analyzed by GSMA. Ultrafine PM increased HO-1 and SOD-2 mRNA levels in the striatum and hippocampus, in the presence of Nrf-2 activation. Also, ultrafine PM activated NF-κB and increased IL-1β and TNFα in the striatum. Activation of UPR was observed after exposure to coarse PM through the increment of XBP-1S and BiP in the striatum, accompanied by an increase in antioxidant response markers HO-1 and SOD-2. Our results indicate that exposure to different size fractions of PM may induce physiological changes (in a neuroanatomical manner) in the central nervous system (CNS), specifically within the striatum, where inflammation, oxidative stress and UPR signals were effectively activated. PMID:23892126

  10. Staphylococcal response to oxidative stress

    PubMed Central

    Gaupp, Rosmarie; Ledala, Nagender; Somerville, Greg A.

    2012-01-01

    Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria's interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host. PMID:22919625

  11. Stress responses and pre-eclampsia.

    PubMed

    Redman, C W G

    2013-04-01

    Biological stress may affect individual cells, tissues or whole organisms, arising from disturbed homoeostasis of any cause. Stress is rarely localised. Because biological systems are closely integrated, it spreads to involve other systems. Stress responses are highly integrated and work to restore homoeostasis. Different response pathways overlap and interlink. If the responses fail or decompensate, distress ensues, of which the end-stage is death. Pre-eclampsia results from a series of biological stresses, possibly from conception, which become established by abnormal placentation and affect the mother, her foetus and her placenta. The stresses involve dialogue between mother and placenta. Even a normal placenta imposes substantial stress on maternal systems. When placental growth and perfusion is abnormal (poor placentation) then the placenta, particularly its outer trophoblast layer, becomes stressed - loosely denoted hypoxic damage or oxidative stress. Signals from the placenta spread the stress to the mother, who develops signs of pre-eclampsia. Cellular stress sensors initiate stress responses. Different stresses may trigger similar responses in specific cell types. The first cell response is reduced protein synthesis. However some synthetic pathways are spared or activated to produce stress signals. In relation to pre-eclampsia and the placenta, an excessive release of sFlt-1 a soluble decoy receptor for vascular endothelial growth factor (VEGF) is a trophoblast related stress signal. SFlt1 perturbs the angiogenic balance in the maternal circulation and is considered to cause many of the specific features of the maternal syndrome in pre-eclampsia. Three key points will be emphasised. First, multiple stressors, not simply hypoxia, stimulate the release of sFlt-1 from trophoblast. Second, sFlt-1 is only one of the group of stress signals delivered by trophoblast to the mother. Third, sFlt-1 is not the only trophoblast derived factor to perturb the maternal

  12. Effects of dietary yeast extract on turkey stress response and heterophil oxidative burst activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effective nutritional approaches to counteract the negative effects of stress would both improve human health and provide food animal producers with useful alternatives to antibiotics. In this study, turkeys were fed a standard diet or the same diet supplemented with yeast extract (Alphamune™, YE), ...

  13. Stress Responsive Proteins Are Actively Regulated during Rice (Oryza sativa) Embryogenesis as Indicated by Quantitative Proteomics Analysis

    PubMed Central

    Zi, Jin; Zhang, Jiyuan; Wang, Quanhui; Zhou, Baojin; Zhong, Junyan; Zhang, Chaoliang; Qiu, Xuemei; Wen, Bo; Zhang, Shenyan; Fu, Xiqin; Lin, Liang; Liu, Siqi

    2013-01-01

    Embryogenesis is the initial step in a plant’s life, and the molecular changes that occur during embryonic development are largely unknown. To explore the relevant molecular events, we used the isobaric tags for relative and absolute quantification (iTRAQ) coupled with the shotgun proteomics technique (iTRAQ/Shotgun) to study the proteomic changes of rice embryos during embryogenesis. For the first time, a total of 2 165 unique proteins were identified in rice embryos, and the abundances of 867 proteins were actively changed based on the statistical evaluation of the quantitative MS/MS signals. The quantitative data were then confirmed using multiple reactions monitoring (MRM) and were also supported by our previous study based on two-dimensional gel electrophoresis (2 DE). Using the proteome at 6 days after pollination (DAP) as a reference, cluster analysis of these differential proteins throughout rice embryogenesis revealed that 25% were up-regulated and 75% were down-regulated. Gene Ontology (GO) analysis implicated that most of the up-regulated proteins were functionally categorized as stress responsive, mainly including heat shock-, lipid transfer-, and reactive oxygen species-related proteins. The stress-responsive proteins were thus postulated to play an important role during seed maturation. PMID:24058531

  14. Activation of γ-aminobutyrate production by chloroplastic H(2)O(2) is associated with the oxidative stress response.

    PubMed

    Maruta, Takanori; Ojiri, Megumi; Noshi, Masahiro; Tamoi, Masahiro; Ishikawa, Takahiro; Shigeoka, Shigeru

    2013-01-01

    We isolated an Arabidopsis knockout line lacking glutamate decarboxylase 1 (GAD1), one that produced γ-aminobutyrate (GABA), as an oxidative stress-insensitive mutant, and found that chloroplastic H(2)O(2) enhances GAD1 expression and GABA levels. This suggests a possible relationship between GABA metabolism and the chloroplastic H(2)O(2)-mediated stress response.

  15. Fiber networks amplify active stress

    NASA Astrophysics Data System (ADS)

    Lenz, Martin; Ronceray, Pierre; Broedersz, Chase

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. While fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. I will present a comprehensive theoretical study of force transmission in these networks. I will show that the linear, small-force response of the networks is remarkably simple, as the macroscopic active stress depends only on the geometry of the force-exerting unit. In contrast, as non-linear buckling occurs around these units, local active forces are rectified towards isotropic contraction and strongly amplified. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. I will show that our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks, and that they shed light on the role of the network microstructure in shaping active stresses in cells and tissue.

  16. A variant on the kappa opioid receptor gene (OPRK1) is associated with stress response and related drug craving, limbic brain activation and cocaine relapse risk.

    PubMed

    Xu, K; Seo, D; Hodgkinson, C; Hu, Y; Goldman, D; Sinha, R

    2013-01-01

    Stress increases drug craving and relapse risk. The kappa opioid receptor gene (OPRK1) mediates stress responses. Here, we examined whether the OPRK1 rs6989250 C>G affects stress-induced cocaine craving and cortisol responses, subsequent cocaine relapse risk and the neural response to stress using functional magnetic resonance imaging (fMRI) in cocaine dependence. Sixty-seven treatment-engaged, abstinent cocaine-dependent African-Americans were genotyped (CG: N=10; CC: N=57) and participated in a 3-day experiment in which they were exposed to personalized script-driven imagery of stress, drug cues and neutral scenarios, one condition per day, randomly assigned and counterbalanced across subjects. Repeated measures of craving and cortisol were obtained. The subjects were followed prospectively for 90 days to assess relapse risk. A follow-up preliminary fMRI experiment assessed neural responses to stress, drug cue and neutral conditions in matched CG (N=5) and CC (N=8) subgroups. We found greater stress-induced craving (P=0.019), higher cortisol during stress and cue relative to the neutral condition (P's<0.003), and increased cocaine relapse risk (P=0.0075) in the CG compared with the CC group. The CG relative to the CC group also showed greater activation of limbic and midbrain regions during stress and cues relative to the neutral condition with additional stress-induced activation in the right amygdala/hippocampus (P<0.05, whole-brain corrected). These results suggest that OPRK1 is associated with stress-induced craving and cortisol, hyperactive hypothalamus/thalamus-midbrain-cerebellum responses, and also associated with greater subsequent cocaine relapse risk. Future studies to replicate these findings in a larger sample size are warranted. PMID:23962922

  17. A variant on the kappa opioid receptor gene (OPRK1) is associated with stress response and related drug craving, limbic brain activation and cocaine relapse risk

    PubMed Central

    Xu, K; Seo, D; Hodgkinson, C; Hu, Y; Goldman, D; Sinha, R

    2013-01-01

    Stress increases drug craving and relapse risk. The kappa opioid receptor gene (OPRK1) mediates stress responses. Here, we examined whether the OPRK1 rs6989250 C>G affects stress-induced cocaine craving and cortisol responses, subsequent cocaine relapse risk and the neural response to stress using functional magnetic resonance imaging (fMRI) in cocaine dependence. Sixty-seven treatment-engaged, abstinent cocaine-dependent African-Americans were genotyped (CG: N=10; CC: N=57) and participated in a 3-day experiment in which they were exposed to personalized script-driven imagery of stress, drug cues and neutral scenarios, one condition per day, randomly assigned and counterbalanced across subjects. Repeated measures of craving and cortisol were obtained. The subjects were followed prospectively for 90 days to assess relapse risk. A follow-up preliminary fMRI experiment assessed neural responses to stress, drug cue and neutral conditions in matched CG (N=5) and CC (N=8) subgroups. We found greater stress-induced craving (P=0.019), higher cortisol during stress and cue relative to the neutral condition (P's<0.003), and increased cocaine relapse risk (P=0.0075) in the CG compared with the CC group. The CG relative to the CC group also showed greater activation of limbic and midbrain regions during stress and cues relative to the neutral condition with additional stress-induced activation in the right amygdala/hippocampus (P<0.05, whole-brain corrected). These results suggest that OPRK1 is associated with stress-induced craving and cortisol, hyperactive hypothalamus/thalamus–midbrain–cerebellum responses, and also associated with greater subsequent cocaine relapse risk. Future studies to replicate these findings in a larger sample size are warranted. PMID:23962922

  18. A variant on the kappa opioid receptor gene (OPRK1) is associated with stress response and related drug craving, limbic brain activation and cocaine relapse risk.

    PubMed

    Xu, K; Seo, D; Hodgkinson, C; Hu, Y; Goldman, D; Sinha, R

    2013-08-20

    Stress increases drug craving and relapse risk. The kappa opioid receptor gene (OPRK1) mediates stress responses. Here, we examined whether the OPRK1 rs6989250 C>G affects stress-induced cocaine craving and cortisol responses, subsequent cocaine relapse risk and the neural response to stress using functional magnetic resonance imaging (fMRI) in cocaine dependence. Sixty-seven treatment-engaged, abstinent cocaine-dependent African-Americans were genotyped (CG: N=10; CC: N=57) and participated in a 3-day experiment in which they were exposed to personalized script-driven imagery of stress, drug cues and neutral scenarios, one condition per day, randomly assigned and counterbalanced across subjects. Repeated measures of craving and cortisol were obtained. The subjects were followed prospectively for 90 days to assess relapse risk. A follow-up preliminary fMRI experiment assessed neural responses to stress, drug cue and neutral conditions in matched CG (N=5) and CC (N=8) subgroups. We found greater stress-induced craving (P=0.019), higher cortisol during stress and cue relative to the neutral condition (P's<0.003), and increased cocaine relapse risk (P=0.0075) in the CG compared with the CC group. The CG relative to the CC group also showed greater activation of limbic and midbrain regions during stress and cues relative to the neutral condition with additional stress-induced activation in the right amygdala/hippocampus (P<0.05, whole-brain corrected). These results suggest that OPRK1 is associated with stress-induced craving and cortisol, hyperactive hypothalamus/thalamus-midbrain-cerebellum responses, and also associated with greater subsequent cocaine relapse risk. Future studies to replicate these findings in a larger sample size are warranted.

  19. General Stress Responses in the Honey Bee

    PubMed Central

    Even, Naïla; Devaud, Jean-Marc; Barron, Andrew B.

    2012-01-01

    The biological concept of stress originated in mammals, where a “General Adaptation Syndrome” describes a set of common integrated physiological responses to diverse noxious agents. Physiological mechanisms of stress in mammals have been extensively investigated through diverse behavioral and physiological studies. One of the main elements of the stress response pathway is the endocrine hypothalamo-pituitary-adrenal (HPA) axis, which underlies the “fight-or-flight” response via a hormonal cascade of catecholamines and corticoid hormones. Physiological responses to stress have been studied more recently in insects: they involve biogenic amines (octopamine, dopamine), neuropeptides (allatostatin, corazonin) and metabolic hormones (adipokinetic hormone, diuretic hormone). Here, we review elements of the physiological stress response that are or may be specific to honey bees, given the economical and ecological impact of this species. This review proposes a hypothetical integrated honey bee stress pathway somewhat analogous to the mammalian HPA, involving the brain and, particularly, the neurohemal organ corpora cardiaca and peripheral targets, including energy storage organs (fat body and crop). We discuss how this system can organize rapid coordinated changes in metabolic activity and arousal, in response to adverse environmental stimuli. We highlight physiological elements of the general stress responses that are specific to honey bees, and the areas in which we lack information to stimulate more research into how this fascinating and vital insect responds to stress. PMID:26466739

  20. Stress response and apoptosis in pro- and antiinflammatory macrophages.

    PubMed

    Malyshev, I Yu; Kruglov, S V; Bakhtina, L Yu; Malysheva, E V; Zubin, M; Norkin, M

    2004-08-01

    We showed that stress response and apoptosis in macrophages depend on the phenotype of their secretory activity and specific biological and physical characteristics of the factor inducing stress-response or apoptosis.

  1. Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response

    PubMed Central

    Sidrauski, Carmela; Tsai, Jordan C; Kampmann, Martin; Hearn, Brian R; Vedantham, Punitha; Jaishankar, Priyadarshini; Sokabe, Masaaki; Mendez, Aaron S; Newton, Billy W; Tang, Edward L; Verschueren, Erik; Johnson, Jeffrey R; Krogan, Nevan J; Fraser, Christopher S; Weissman, Jonathan S; Renslo, Adam R; Walter, Peter

    2015-01-01

    The general translation initiation factor eIF2 is a major translational control point. Multiple signaling pathways in the integrated stress response phosphorylate eIF2 serine-51, inhibiting nucleotide exchange by eIF2B. ISRIB, a potent drug-like small molecule, renders cells insensitive to eIF2α phosphorylation and enhances cognitive function in rodents by blocking long-term depression. ISRIB was identified in a phenotypic cell-based screen, and its mechanism of action remained unknown. We now report that ISRIB is an activator of eIF2B. Our reporter-based shRNA screen revealed an eIF2B requirement for ISRIB activity. Our results define ISRIB as a symmetric molecule, show ISRIB-mediated stabilization of activated eIF2B dimers, and suggest that eIF2B4 (δ-subunit) contributes to the ISRIB binding site. We also developed new ISRIB analogs, improving its EC50 to 600 pM in cell culture. By modulating eIF2B function, ISRIB promises to be an invaluable tool in proof-of-principle studies aiming to ameliorate cognitive defects resulting from neurodegenerative diseases. DOI: http://dx.doi.org/10.7554/eLife.07314.001 PMID:25875391

  2. Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response.

    PubMed

    Sidrauski, Carmela; Tsai, Jordan C; Kampmann, Martin; Hearn, Brian R; Vedantham, Punitha; Jaishankar, Priyadarshini; Sokabe, Masaaki; Mendez, Aaron S; Newton, Billy W; Tang, Edward L; Verschueren, Erik; Johnson, Jeffrey R; Krogan, Nevan J; Fraser, Christopher S; Weissman, Jonathan S; Renslo, Adam R; Walter, Peter

    2015-04-15

    The general translation initiation factor eIF2 is a major translational control point. Multiple signaling pathways in the integrated stress response phosphorylate eIF2 serine-51, inhibiting nucleotide exchange by eIF2B. ISRIB, a potent drug-like small molecule, renders cells insensitive to eIF2α phosphorylation and enhances cognitive function in rodents by blocking long-term depression. ISRIB was identified in a phenotypic cell-based screen, and its mechanism of action remained unknown. We now report that ISRIB is an activator of eIF2B. Our reporter-based shRNA screen revealed an eIF2B requirement for ISRIB activity. Our results define ISRIB as a symmetric molecule, show ISRIB-mediated stabilization of activated eIF2B dimers, and suggest that eIF2B4 (δ-subunit) contributes to the ISRIB binding site. We also developed new ISRIB analogs, improving its EC50 to 600 pM in cell culture. By modulating eIF2B function, ISRIB promises to be an invaluable tool in proof-of-principle studies aiming to ameliorate cognitive defects resulting from neurodegenerative diseases.

  3. Assessing Behavioral Responses to Stress.

    ERIC Educational Resources Information Center

    Chandler, Louis A.; Shermis, Mark D.

    1985-01-01

    This paper advocates the use of a stress paradigm in the assessment of children with behavior disorders. The Stress Response Scale, designed to assess such behavioral patterns, is presented and discussed. Data are presented which describe the most frequently found patterns among a population of school-aged children. (Author/LMO)

  4. Stress response in Drosophila subobscura: DNA-RNA hybrids and transcriptional activity.

    PubMed

    Arbona, M; Cuenca, J B; de Frutos, R

    1992-01-01

    Immunofluorescent techniques have been used in the analysis of DNA-RNA hybrids occurrence and its relationship to transcriptional events on polytene chromosomes of Drosophila subobscura. We have studied the distribution of these hybrids on uninduced/induced chromosomes. Two different indirect immunofluorescence methods for the detection of DNA-RNA hybrids were used. Our data confirm the positive correlation between localization of DNA-RNA hybrids and transcriptional activity by following the Büsen et al procedure (1982). Using the other protocol, which allows chromosomal DNA-RNA to denature and renature, makes DNA-RNA hybrids detectable not exclusively in active chromosomal regions. Taking Büsen as method of choice, this technique allowed to localize the exact transcriptional active sites on puffs: hybrid fluorescence was restricted to marginal or central puff areas. Moreover, no correlation between fluorescence and puffs size was found. However, our studies on induced chromosomes indicate that: 1) the 15DE puff, previously described as t-puff, was not really a heat shock puff, since no transcriptional activity was detected; 2) hybrid fluorescence at 2C and 31CD regions was observed. No labelling was found in these loci in the autoradiography data, reported by other authors.

  5. Regulated cell death and adaptive stress responses.

    PubMed

    Galluzzi, Lorenzo; Bravo-San Pedro, José Manuel; Kepp, Oliver; Kroemer, Guido

    2016-06-01

    Eukaryotic cells react to potentially dangerous perturbations of the intracellular or extracellular microenvironment by activating rapid (transcription-independent) mechanisms that attempt to restore homeostasis. If such perturbations persist, cells may still try to cope with stress by activating delayed and robust (transcription-dependent) adaptive systems, or they may actively engage in cellular suicide. This regulated form of cell death can manifest with various morphological, biochemical and immunological correlates, and constitutes an ultimate attempt of stressed cells to maintain organismal homeostasis. Here, we dissect the general organization of adaptive cellular responses to stress, their intimate connection with regulated cell death, and how the latter operates for the preservation of organismal homeostasis.

  6. Boron influences immune and antioxidant responses by modulating hepatic superoxide dismutase activity under calcium deficit abiotic stress in Wistar rats.

    PubMed

    Bhasker, T Vijay; Gowda, N K S; Mondal, S; Krishnamoorthy, P; Pal, D T; Mor, A; Bhat, S Karthik; Pattanaik, A K

    2016-07-01

    The influence of Boron (B) supplementation on immune and antioxidant status of rats with or without abiotic stress induced by dietary calcium (Ca) restriction was studied in a feeding trial of 90 days. Wistar strain rats (3-4 wk age, n=84) were divided into 7 dietary groups (4 replicates of 3 each) viz., normal-calcium (100%) basal diet alone (NC, control) or supplemented with B at 5 (NCB-5), 10 (NCB-10), 20 (NCB-20) and 40ppm (NCB-40) levels; low-calcium (50%) basal diet alone (LC) or supplemented with 40ppm B (LCB-40). After 75 days of experimental feeding, rats were challenged with intraperitoneal injection of sheep RBCs to assess their humoral immunity. At the end of the trial, cell-mediated immunity was assessed as foot pad reaction to sheep RBCs injected into the hind leg paws. Eight rats from each group were sacrificed to collect blood for estimation of minerals and total antioxidant activity, and liver for superoxide dismutase gene expression analysis. Supplementation of graded levels of B (5, 10, 20 and 40ppm) as borax in NC diets significantly increased (P<0.01) the footpad thickness and serum total antioxidant activity, hepatic expression levels of both Cu-Zn SOD (SOD1) and Mn-SOD (SOD2) mRNAs. The erythrocytic SOD activity and humoral response did not differ significantly among the dietary groups. In Ca restricted groups, humoral immune response was significantly decreased (P<0.01) compared to control but increased (P<0.05) with 40ppm B supplementation. Serum levels of copper (Cu) and zinc (Zn) remained similar among the dietary groups, while the manganese (Mn) content was significantly decreased (P<0.01) with increased levels of dietary B. In conclusion, B supplementation increased the hepatic mRNA expression levels of both SOD isoenzymes, thereby improving the immune and antioxidant status. PMID:27259355

  7. Victim-Offender Relationship Status Moderates the Relationships of Peritraumatic Emotional Responses, Active Resistance, and Posttraumatic Stress Symptomatology in Female Rape Survivors

    PubMed Central

    Feinstein, Brian A.; Humphreys, Kathryn L.; Bovin, Michelle J.; Marx, Brian P.; Resick, Patricia A.

    2010-01-01

    This study examined whether the level of victim-offender relationship (VOR) moderated the relationship between peritraumatic fear and active resistance as well as the relationship between peritraumatic fear and posttraumatic stress symptom severity in a community sample of female rape survivors. One hundred thirty-five participants were interviewed about their emotional and behavioral responses during the rape and assessed for posttraumatic stress symptomatology within one month of the assault. Results indicated that peritraumatic fear was positively associated with active resistance, but only among survivors of acquaintance rape. Additionally, peritraumatic fear was positively associated with posttraumatic stress symptom severity, but only among survivors of intimate partner rape. These results suggest that VOR may be an important contextual factor that influences emotional and behavioral responses during rape as well as posttraumatic stress symptomatology in its aftermath. PMID:21731797

  8. Requirement for pectin methyl esterase and preference for fragmented over native pectins for wall-associated kinase-activated, EDS1/PAD4-dependent stress response in Arabidopsis.

    PubMed

    Kohorn, Bruce D; Kohorn, Susan L; Saba, Nicholas J; Martinez, Victoriano Meco

    2014-07-01

    The wall-associated kinases (WAKs) have a cytoplasmic protein kinase domain that spans the plasma membrane and binds pectin in the extracellular matrix of plants. WAKs are required for cell expansion during Arabidopsis seedling development but are also an integral part of the response to pathogens and stress that present oligogalacturonides (OGs), which subsequently bind to WAKs and activate a MPK6 (mitogen-activated protein kinase)-dependent pathway. It was unclear how WAKs distinguish native pectin polymers and OGs to activate one or the other of these two pathways. A dominant allele of WAK2 constitutively activates the stress response, and we show here that the effect is dependent upon EDS1 and PAD4, transcriptional activators involved in the pathogen response. Moreover, the WAK2 dominant allele is suppressed by a null allele of a pectin methyl esterase (PME3) whose activity normally leads to cross-linking of pectins in the cell wall. Although OGs activate a transcriptional response in wild type, the response is enhanced in a pme3/pme3 null, consistent with a competition by OG and native polymers for activation of WAKs. This provides a plausible mechanism for WAKs to distinguish an expansion from a stress pathway.

  9. Peroxidase Activity and Involvement in the Oxidative Stress Response of Roseobacter denitrificans Truncated Hemoglobin

    PubMed Central

    Wang, Yaya; Barbeau, Xavier; Bilimoria, Astha; Lagüe, Patrick; Couture, Manon; Tang, Joseph Kuo-Hsiang

    2015-01-01

    Roseobacter denitrificans is a member of the widespread marine Roseobacter genus. We report the first characterization of a truncated hemoglobin from R. denitrificans (Rd. trHb) that was purified in the heme-bound form from heterologous expression of the protein in Escherichia coli. Rd. trHb exhibits predominantly alpha-helical secondary structure and absorbs light at 412, 538 and 572 nm. The phylogenetic classification suggests that Rd. trHb falls into group II trHbs, whereas sequence alignments indicate that it shares certain important heme pocket residues with group I trHbs in addition to those of group II trHbs. The resonance Raman spectra indicate that the isolated Rd. trHb contains a ferric heme that is mostly 6-coordinate low-spin and that the heme of the ferrous form displays a mixture of 5- and 6-coordinate states. Two Fe-His stretching modes were detected, notably one at 248 cm-1, which has been reported in peroxidases and some flavohemoglobins that contain an Fe-His-Asp (or Glu) catalytic triad, but was never reported before in a trHb. We show that Rd. trHb exhibits a significant peroxidase activity with a (kcat/Km) value three orders of magnitude higher than that of bovine Hb and only one order lower than that of horseradish peroxidase. This enzymatic activity is pH-dependent with a pKa value ~6.8. Homology modeling suggests that residues known to be important for interactions with heme-bound ligands in group II trHbs from Mycobacterium tuberculosis and Bacillus subtilis are pointing toward to heme in Rd. trHb. Genomic organization and gene expression profiles imply possible functions for detoxification of reactive oxygen and nitrogen species in vivo. Altogether, Rd. trHb exhibits some distinctive features and appears equipped to help the bacterium to cope with reactive oxygen/nitrogen species and/or to operate redox biochemistry. PMID:25658318

  10. The Chlamydomonas heat stress response.

    PubMed

    Schroda, Michael; Hemme, Dorothea; Mühlhaus, Timo

    2015-05-01

    Heat waves occurring at increased frequency as a consequence of global warming jeopardize crop yield safety. One way to encounter this problem is to genetically engineer crop plants toward increased thermotolerance. To identify entry points for genetic engineering, a thorough understanding of how plant cells perceive heat stress and respond to it is required. Using the unicellular green alga Chlamydomonas reinhardtii as a model system to study the fundamental mechanisms of the plant heat stress response has several advantages. Most prominent among them is the suitability of Chlamydomonas for studying stress responses system-wide and in a time-resolved manner under controlled conditions. Here we review current knowledge on how heat is sensed and signaled to trigger temporally and functionally grouped sub-responses termed response elements to prevent damage and to maintain cellular homeostasis in plant cells.

  11. Activation of GABAA or 5HT1A receptors in the raphé pallidus abolish the cardiovascular responses to exogenous stress in conscious rats.

    PubMed

    Pham-Le, Nhut Minh; Cockburn, Chelsea; Nowell, Katherine; Brown, Justin

    2011-11-25

    Dysfunction in serotonin (5HT) neurotransmission in the brainstem of infants may disrupt protective responses to stress and increase the risk for Sudden Infant Death Syndrome (SIDS). The raphé pallidus (NRP) and other brainstem nuclei are rich in 5HT and are thought to mediate stress responses, including increases in blood pressure (BP) and heart rate (HR). Determining how 5HT neurotransmission in the brainstem mediates responses to stress will help to explain how dysfunction in neurotransmission could increase the risk of SIDS. It was hypothesized that alterations in neurotransmission in the NRP, specifically activation of the 5HT(1A) receptor subtype, would block cardiovascular responses to various types of exogenous stress. Using aseptic techniques, male Sprague-Dawley rats were instrumented with radiotelemetry probes which enabled non-invasive measurement of BP and HR. An indwelling microinjection cannula was also stereotaxically implanted into the NRP for injection of drugs that altered local 5HT neurotransmission. Following a one week recovery period, rats were microinjected with either muscimol (GABA(A) receptor agonist), 8-OH-DPAT (agonist to the inhibitory 5HT(1A) receptor), or a vehicle control (artificial cerebral spinal fluid; ACSF) immediately prior to exposure to one of three stressors: handling, air jet, or restraint. Physical handling and restraint of the animal were designed to elicit a mild and a maximal stress response respectively; while an air jet directed at the rat's face was used to provoke a psychological stress that did not require physical contact. All three stressors elicited similar and significant elevations in HR and BP following ACSF that persisted for at least 15 min with BP and HR elevated by ∼14.0 mmHg and ∼56.3 bpm respectively. The similarity in the stress responses suggest even mild handling of a rat elicits a maximal sympathoexcitatory response. The stress response was abolished following 8-OH-DPAT or muscimol

  12. Endocannabinoids and the cardiovascular response to stress.

    PubMed

    O'Sullivan, Saoirse E; Kendall, Patrick J; Kendall, David A

    2012-01-01

    Stress activates the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic nervous system (SNS), resulting in cardiovascular responses. The endocannabinoid system (ECS), a ubiquitously expressed lipid signalling system, modulates both HPA and SNS activity. The purpose of this review is to explore the possible involvement/role of the ECS in the cardiovascular response to stress. The ECS has numerous cardiovascular effects including modulation of blood pressure, heart rate, the baroreflex, and direct vascular actions. It is also involved in a protective manner in response to stressors in cardiac preconditioning, and various stressors (for example, pain, orthostasis and social stress) increase plasma levels of endocannabinoids. Given the multitude of vascular effects of endocannabinoids, this is bound to have consequences. Beneficial effects of ECS upregulation could include cardioprotection, vasodilatation, CB(2)-mediated anti-inflammatory effects and activation of peroxisome proliferator-activated receptors. Negative effects of endocannabinoids could include mediation of the effects of glucocorticoids, CB(1)-mediated metabolic changes, and metabolism to vasoconstrictor products. It is also likely that there is a central role for the ECS in modulating cardiovascular activity via the HPA and SNS. However, much more work is required to fully integrate the role of the ECS in mediating many of the physiological responses to stress, including cardiovascular responses.

  13. Auxin response under osmotic stress.

    PubMed

    Naser, Victoria; Shani, Eilon

    2016-08-01

    The phytohormone auxin (indole-3-acetic acid, IAA) is a small organic molecule that coordinates many of the key processes in plant development and adaptive growth. Plants regulate the auxin response pathways at multiple levels including biosynthesis, metabolism, transport and perception. One of the most striking aspects of plant plasticity is the modulation of development in response to changing growth environments. In this review, we explore recent findings correlating auxin response-dependent growth and development with osmotic stresses. Studies of water deficit, dehydration, salt, and other osmotic stresses point towards direct and indirect molecular perturbations in the auxin pathway. Osmotic stress stimuli modulate auxin responses by affecting auxin biosynthesis (YUC, TAA1), transport (PIN), perception (TIR/AFB, Aux/IAA), and inactivation/conjugation (GH3, miR167, IAR3) to coordinate growth and patterning. In turn, stress-modulated auxin gradients drive physiological and developmental mechanisms such as stomata aperture, aquaporin and lateral root positioning. We conclude by arguing that auxin-mediated growth inhibition under abiotic stress conditions is one of the developmental and physiological strategies to acclimate to the changing environment. PMID:27052306

  14. Auxin response under osmotic stress.

    PubMed

    Naser, Victoria; Shani, Eilon

    2016-08-01

    The phytohormone auxin (indole-3-acetic acid, IAA) is a small organic molecule that coordinates many of the key processes in plant development and adaptive growth. Plants regulate the auxin response pathways at multiple levels including biosynthesis, metabolism, transport and perception. One of the most striking aspects of plant plasticity is the modulation of development in response to changing growth environments. In this review, we explore recent findings correlating auxin response-dependent growth and development with osmotic stresses. Studies of water deficit, dehydration, salt, and other osmotic stresses point towards direct and indirect molecular perturbations in the auxin pathway. Osmotic stress stimuli modulate auxin responses by affecting auxin biosynthesis (YUC, TAA1), transport (PIN), perception (TIR/AFB, Aux/IAA), and inactivation/conjugation (GH3, miR167, IAR3) to coordinate growth and patterning. In turn, stress-modulated auxin gradients drive physiological and developmental mechanisms such as stomata aperture, aquaporin and lateral root positioning. We conclude by arguing that auxin-mediated growth inhibition under abiotic stress conditions is one of the developmental and physiological strategies to acclimate to the changing environment.

  15. p38α Activates Purine Metabolism to Initiate Hematopoietic Stem/Progenitor Cell Cycling in Response to Stress.

    PubMed

    Karigane, Daiki; Kobayashi, Hiroshi; Morikawa, Takayuki; Ootomo, Yukako; Sakai, Mashito; Nagamatsu, Go; Kubota, Yoshiaki; Goda, Nobuhito; Matsumoto, Michihiro; Nishimura, Emi K; Soga, Tomoyoshi; Otsu, Kinya; Suematsu, Makoto; Okamoto, Shinichiro; Suda, Toshio; Takubo, Keiyo

    2016-08-01

    Hematopoietic stem cells (HSCs) maintain quiescence by activating specific metabolic pathways, including glycolysis. We do not yet have a clear understanding of how this metabolic activity changes during stress hematopoiesis, such as bone marrow transplantation. Here, we report a critical role for the p38MAPK family isoform p38α in initiating hematopoietic stem and progenitor cell (HSPC) proliferation during stress hematopoiesis in mice. We found that p38MAPK is immediately phosphorylated in HSPCs after a hematological stress, preceding increased HSPC cycling. Conditional deletion of p38α led to defective recovery from hematological stress and a delay in initiation of HSPC proliferation. Mechanistically, p38α signaling increases expression of inosine-5'-monophosphate dehydrogenase 2 in HSPCs, leading to altered levels of amino acids and purine-related metabolites and changes in cell-cycle progression in vitro and in vivo. Our studies have therefore uncovered a p38α-mediated pathway that alters HSPC metabolism to respond to stress and promote recovery. PMID:27345838

  16. Mitogen-Activated Protein Kinases 3 and 6 Are Required for Full Priming of Stress Responses in Arabidopsis thaliana[W][OA

    PubMed Central

    Beckers, Gerold J.M.; Jaskiewicz, Michal; Liu, Yidong; Underwood, William R.; He, Sheng Yang; Zhang, Shuqun; Conrath, Uwe

    2009-01-01

    In plants and animals, induced resistance (IR) to biotic and abiotic stress is associated with priming of cells for faster and stronger activation of defense responses. It has been hypothesized that cell priming involves accumulation of latent signaling components that are not used until challenge exposure to stress. However, the identity of such signaling components has remained elusive. Here, we show that during development of chemically induced resistance in Arabidopsis thaliana, priming is associated with accumulation of mRNA and inactive proteins of mitogen-activated protein kinases (MPKs), MPK3 and MPK6. Upon challenge exposure to biotic or abiotic stress, these two enzymes were more strongly activated in primed plants than in nonprimed plants. This elevated activation was linked to enhanced defense gene expression and development of IR. Strong elicitation of stress-induced MPK3 and MPK6 activity is also seen in the constitutive priming mutant edr1, while activity was attenuated in the priming-deficient npr1 mutant. Moreover, priming of defense gene expression and IR were lost or reduced in mpk3 or mpk6 mutants. Our findings argue that prestress deposition of the signaling components MPK3 and MPK6 is a critical step in priming plants for full induction of defense responses during IR. PMID:19318610

  17. Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance.

    PubMed

    Brotman, Yariv; Landau, Udi; Cuadros-Inostroza, Álvaro; Tohge, Takayuki; Takayuki, Tohge; Fernie, Alisdair R; Chet, Ilan; Viterbo, Ada; Willmitzer, Lothar

    2013-03-01

    Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L.) plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated antioxidative capacity.

  18. Plant Responses to Nanoparticle Stress

    PubMed Central

    Hossain, Zahed; Mustafa, Ghazala; Komatsu, Setsuko

    2015-01-01

    With the rapid advancement in nanotechnology, release of nanoscale materials into the environment is inevitable. Such contamination may negatively influence the functioning of the ecosystems. Many manufactured nanoparticles (NPs) contain heavy metals, which can cause soil and water contamination. Proteomic techniques have contributed substantially in understanding the molecular mechanisms of plant responses against various stresses by providing a link between gene expression and cell metabolism. As the coding regions of genome are responsible for plant adaptation to adverse conditions, protein signatures provide insights into the phytotoxicity of NPs at proteome level. This review summarizes the recent contributions of plant proteomic research to elaborate the complex molecular pathways of plant response to NPs stress. PMID:26561803

  19. Work stress and innate immune response.

    PubMed

    Boscolo, P; Di Gioacchino, M; Reale, M; Muraro, R; Di Giampaolo, L

    2011-01-01

    Several reports highlight the relationship between blood NK cytotoxic activity and life style. Easy life style, including physical activity, healthy dietary habits as well as good mental health are characterized by an efficient immune response. Life style is related to the type of occupational activity since work has a central part in life either as source of income or contributing to represent the social identity. Not only occupational stress, but also job loss or insecurity are thus considered serious stressful situations, inducing emotional disorders which may affect both neuroendocrine and immune systems; reduced reactivity to mitogens and/or decreased blood NK cytotoxic activity was reported in unemployed workers or in those with a high perception of job insecurity and/or job stress. Although genetic factors have a key role in the pathogenesis of autoimmune disorders, occupational stress (as in night shifts) was reported associated to an increased incidence of autoimmune disorders. Monitoring blood NK response may thus be included in the health programs as an indirect index of stressful job and/or poor lifestyle.

  20. Inhibition of Transforming Growth Factor-Beta1 SignalingAttenuates Ataxia Telangiectasia Mutated Activity in Response toGenotoxic Stress

    SciTech Connect

    Kirshner, Julia; Jobling, Michael F.; Pajares, Maria Jose; Ravani, Shraddha A.; Glick, Adam; Lavin, Martin F.; Koslov, Sergei; Shiloh, Yosef; Barcellos-Hoff, Mary Helen

    2006-01-01

    Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor {beta} (TGF{beta})-1, which is activated by radiation, is a potent and pleiotropic mediator of physiologic and pathologic processes. Here we show that TGF{beta} inhibition impedes the canonical cellular DNA damage stress response. Irradiated Tgf{beta}I null murine epithelial cells or human epithelial cells treated with a small-molecule inhibitor of TGF{beta} type I receptor kinase exhibit decreased phosphorylation of Chk2, Rad17, and p53; reduced H2AX radiation-induced foci; and increased radiosensitivity compared with TGF{beta} competent cells. We determined that loss of TGF{beta} signaling in epithelial cells truncated ATM autophosphorylation and significantly reduced its kinase activity, without affecting protein abundance. Addition of TGF{beta} restored functional ATM and downstream DNA damage responses. These data reveal a heretofore undetected critical link between the microenvironment and ATM, which directs epithelial cell stress responses, cell fate, and tissue integrity. Thus, Tgf{beta}I, in addition to its role in homoeostatic growth control, plays a complex role in regulating responses to genotoxic stress, the failure of which would contribute to the development of cancer; conversely, inhibiting TGF{beta} may be used to advantage in cancer therapy.

  1. Expression of xCT and activity of system xc(-) are regulated by NRF2 in human breast cancer cells in response to oxidative stress.

    PubMed

    Habib, Eric; Linher-Melville, Katja; Lin, Han-Xin; Singh, Gurmit

    2015-08-01

    Cancer cells adapt to high levels of oxidative stress in order to survive and proliferate by activating key transcription factors. One such master regulator, the redox sensitive transcription factor NF E2 Related Factor 2 (NRF2), controls the expression of cellular defense genes including those encoding intracellular redox-balancing proteins involved in glutathione (GSH) synthesis. Under basal conditions, Kelch-like ECH-associated protein 1 (KEAP1) targets NRF2 for ubiquitination. In response to oxidative stress, NRF2 dissociates from KEAP1, entering the nucleus and binding to the antioxidant response element (ARE) in the promoter of its target genes. Elevated reactive oxygen species (ROS) production may deplete GSH levels within cancer cells. System xc(-), an antiporter that exports glutamate while importing cystine to be converted into cysteine for GSH synthesis, is upregulated in cancer cells in response to oxidative stress. Here, we provided evidence that the expression of xCT, the light chain subunit of system xc(-), is regulated by NRF2 in representative human breast cancer cells. Hydrogen peroxide (H2O2) treatment increased nuclear translocation of NRF2, also increasing levels of xCT mRNA and protein and extracellular glutamate release. Overexpression of NRF2 up-regulated the activity of the xCT promoter, which contains a proximal ARE. In contrast, overexpression of KEAP1 repressed promoter activity and decreased xCT protein levels, while siRNA knockdown of KEAP1 up-regulated xCT protein levels and transporter activity. These results demonstrate the importance of the KEAP1/NRF2 pathway in balancing oxidative stress in breast cancer cells through system xc(-). We have previously shown that xCT is upregulated in various cancer cell lines under oxidative stress. In the current investigation, we focused on MCF-7 cells as a model for mechanistic studies.

  2. Human cardiovascular responses to passive heat stress.

    PubMed

    Crandall, Craig G; Wilson, Thad E

    2015-01-01

    Heat stress increases human morbidity and mortality compared to normothermic conditions. Many occupations, disease states, as well as stages of life are especially vulnerable to the stress imposed on the cardiovascular system during exposure to hot ambient conditions. This review focuses on the cardiovascular responses to heat stress that are necessary for heat dissipation. To accomplish this regulatory feat requires complex autonomic nervous system control of the heart and various vascular beds. For example, during heat stress cardiac output increases up to twofold, by increases in heart rate and an active maintenance of stroke volume via increases in inotropy in the presence of decreases in cardiac preload. Baroreflexes retain the ability to regulate blood pressure in many, but not all, heat stress conditions. Central hypovolemia is another cardiovascular challenge brought about by heat stress, which if added to a subsequent central volumetric stress, such as hemorrhage, can be problematic and potentially dangerous, as syncope and cardiovascular collapse may ensue. These combined stresses can compromise blood flow and oxygenation to important tissues such as the brain. It is notable that this compromised condition can occur at cardiac outputs that are adequate during normothermic conditions but are inadequate in heat because of the increased systemic vascular conductance associated with cutaneous vasodilation. Understanding the mechanisms within this complex regulatory system will allow for the development of treatment recommendations and countermeasures to reduce risks during the ever-increasing frequency of severe heat events that are predicted to occur.

  3. Human Cardiovascular Responses to Passive Heat Stress

    PubMed Central

    Crandall, Craig G.; Wilson, Thad E.

    2016-01-01

    Heat stress increases human morbidity and mortality compared to normothermic conditions. Many occupations, disease states, as well as stages of life are especially vulnerable to the stress imposed on the cardiovascular system during exposure to hot ambient conditions. This review focuses on the cardiovascular responses to heat stress that are necessary for heat dissipation. To accomplish this regulatory feat requires complex autonomic nervous system control of the heart and various vascular beds. For example, during heat stress cardiac output increases up to twofold, by increases in heart rate and an active maintenance of stroke volume via increases in inotropy in the presence of decreases in cardiac preload. Baroreflexes retain the ability to regulate blood pressure in many, but not all, heat stress conditions. Central hypovolemia is another cardiovascular challenge brought about by heat stress, which if added to a subsequent central volumetric stress, such as hemorrhage, can be problematic and potentially dangerous, as syncope and cardiovascular collapse may ensue. These combined stresses can compromise blood flow and oxygenation to important tissues such as the brain. It is notable that this compromised condition can occur at cardiac outputs that are adequate during normothermic conditions but are inadequate in heat because of the increased systemic vascular conductance associated with cutaneous vasodilation. Understanding the mechanisms within this complex regulatory system will allow for the development of treatment recommendations and countermeasures to reduce risks during the ever-increasing frequency of severe heat events that are predicted to occur. PMID:25589263

  4. Dysfunctional stress responses in chronic pain.

    PubMed

    Woda, Alain; Picard, Pascale; Dutheil, Frédéric

    2016-09-01

    Many dysfunctional and chronic pain conditions overlap. This review describes the different modes of chronic deregulation of the adaptive response to stress which may be a common factor for these conditions. Several types of dysfunction can be identified within the hypothalamo-pituitary-adrenal axis: basal hypercortisolism, hyper-reactivity, basal hypocortisolism and hypo-reactivity. Neuroactive steroid synthesis is another component of the adaptive response to stress. Dehydroepiandrosterone (DHEA) and its sulfated form DHEA-S, and progesterone and its derivatives are synthetized in cutaneous, nervous, and adipose cells. They are neuroactive factors that act locally. They may have a role in the localization of the symptoms and their levels can vary both in the central nervous system and in the periphery. Persistent changes in neuroactive steroid levels or precursors can induce localized neurodegeneration. The autonomic nervous system is another component of the stress response. Its dysfunction in chronic stress responses can be expressed by decreased basal parasympathethic activity, increased basal sympathetic activity or sympathetic hyporeactivity to a stressful stimulus. The immune and genetic systems also participate. The helper-T cells Th1 secrete pro-inflammatory cytokines such as IL-1-β, IL-2, IL-6, IL-8, IL-12, IFN-γ, and TNF-α, whereas Th2 secrete anti-inflammatory cytokines: IL-4, IL-10, IGF-10, IL-13. Chronic deregulation of the Th1/Th2 balance can occur in favor of anti- or pro-inflammatory direction, locally or systemically. Individual vulnerability to stress can be due to environmental factors but can also be genetically influenced. Genetic polymorphisms and epigenetics are the main keys to understanding the influence of genetics on the response of individuals to constraints. PMID:27262345

  5. Cardiovascular reactivity, stress, and physical activity

    PubMed Central

    Huang, Chun-Jung; Webb, Heather E.; Zourdos, Michael C.; Acevedo, Edmund O.

    2013-01-01

    Psychological stress has been proposed as a major contributor to the progression of cardiovascular disease (CVD). Acute mental stress can activate the sympathetic-adrenal-medullary (SAM) axis, eliciting the release of catecholamines (NE and EPI) resulting in the elevation of heart rate (HR) and blood pressure (BP). Combined stress (psychological and physical) can exacerbate these cardiovascular responses, which may partially contribute to the elevated risk of CVD and increased proportionate mortality risks experienced by some occupations (e.g., firefighting and law enforcement). Studies have supported the benefits of physical activity on physiological and psychological health, including the cardiovascular response to acute stress. Aerobically trained individuals exhibit lower sympathetic nervous system (e.g., HR) reactivity and enhanced cardiovascular efficiency (e.g., lower vascular reactivity and decreased recovery time) in response to physical and/or psychological stress. In addition, resistance training has been demonstrated to attenuate cardiovascular responses and improve mental health. This review will examine stress-induced cardiovascular reactivity and plausible explanations for how exercise training and physical fitness (aerobic and resistance exercise) can attenuate cardiovascular responses to stress. This enhanced functionality may facilitate a reduction in the incidence of stroke and myocardial infarction. Finally, this review will also address the interaction of obesity and physical activity on cardiovascular reactivity and CVD. PMID:24223557

  6. Assessment of Antioxidant Enzyme Activity and Mineral Nutrients in Response to NaCl Stress and its Amelioration Through Glutathione in Chickpea.

    PubMed

    Shankar, Vinay; Kumar, Dinesh; Agrawal, Veena

    2016-01-01

    Salinity stress has been reckoned as one of the major threat towards crop productivity as it causes significant decline in the yield. The impact of NaCl stress (0, 1, 10, 50, 100 and 200 mg L(-1)) as well as glutathione (10 mg L(-1)) either alone or in combination has been evaluated on the induction of multiple shoots, antioxidant enzymes' activity, lipid peroxidation, relative permeability, concentration of nutrients, photosynthetic pigments, protein and proline content of nodal segments of chickpea after 14 days of culture. The antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and glutathione reductase (GR) were found to be increased under salt stress as well as glutathione-supplemented medium. A significant decrease in the concentrations of chlorophylls a, b, total chlorophyll and carotenoid was observed under salt stress. Concentrations of nitrogen, phosphorus, potassium, calcium, carbon, magnesium and sulphur showed an initial increase up to 10 mg L(-1) NaCl, but a decline was seen at higher NaCl levels. Proline content and malondialdehyde concentration were found to be increased under salt stress. Three isoforms of SOD, one of CAT and four of GPX were expressed during native polyacrylamide gel electrophoresis (PAGE) analysis. However, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the stressed nodal explants revealed the over-expression of several polypeptide bands related to NaCl stress. These findings for the first time suggest that glutathione (GSH) helps in ameliorating NaCl stress in nodal explants of chickpea by manipulating various biochemical and physiological responses of plants. PMID:26440314

  7. Promoter regions of the extA extensin gene from Brassica napus control activation in response to wounding and tensile stress.

    PubMed

    Elliott, K A; Shirsat, A H

    1998-07-01

    To identify controlling cis acting promoter regions in the B. napus extA extensin gene, expression in transgenic tobacco of 5' - 159, -433, -664, -789 and -940 bp promoter truncations linked to the uidA (B-glucuronidase) reporter coding sequence were analysed. The - 159 and -433 bp truncations directed non specific expression in all cell types within the plant. An activator region which increased expression levels 10 fold in all cell types was located between - 159 to -433 bp. A repressor region was found between -664 to -789 bp; removal of this region resulted in a 15 fold increase in expression. Histochemical analysis showed that transgenics containing the -664, -789 and -940 bp truncations directed expression of the fusion gene only in the phloem. A negative regulatory region located between -433 to -664 bp repressed expression in non-phloem cell types. In areas of the plant subject to tensile stress, the repression exerted by the negative regulatory region was overcome, allowing expression in all cell types. The quantitative repressor and activator regions which controlled absolute expression levels in all cell types were separate from the negative regulatory region which controlled cell type specific expression in response to tensile stress. A wound responsive region was found to be located between -940 to -3500 bp. Thus, the extA gene is under complex control, being regulated by 4 sets of positively and negatively acting cis regions, which control wound inducibility, activation in response to tensile stress, and quantitative expression levels. PMID:9687071

  8. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress

    NASA Technical Reports Server (NTRS)

    Go, Y. M.; Boo, Y. C.; Park, H.; Maland, M. C.; Patel, R.; Pritchard, K. A. Jr; Fujio, Y.; Walsh, K.; Darley-Usmar, V.; Jo, H.

    2001-01-01

    Laminar shear stress activates c-Jun NH(2)-terminal kinase (JNK) by the mechanisms involving both nitric oxide (NO) and phosphatidylinositide 3-kinase (PI3K). Because protein kinase B (Akt), a downstream effector of PI3K, has been shown to phosphorylate and activate endothelial NO synthase, we hypothesized that Akt regulates shear-dependent activation of JNK by stimulating NO production. Here, we examined the role of Akt in shear-dependent NO production and JNK activation by expressing a dominant negative Akt mutant (Akt(AA)) and a constitutively active mutant (Akt(Myr)) in bovine aortic endothelial cells (BAEC). As expected, pretreatment of BAEC with the PI3K inhibitor (wortmannin) prevented shear-dependent stimulation of Akt and NO production. Transient expression of Akt(AA) in BAEC by using a recombinant adenoviral construct inhibited the shear-dependent stimulation of NO production and JNK activation. However, transient expression of Akt(Myr) by using a recombinant adenoviral construct did not induce JNK activation. This is consistent with our previous finding that NO is required, but not sufficient on its own, to activate JNK in response to shear stress. These results and our previous findings strongly suggest that shear stress triggers activation of PI3K, Akt, and endothelial NO synthase, leading to production of NO, which (along with O(2-), which is also produced by shear) activates Ras-JNK pathway. The regulation of Akt, NO, and JNK by shear stress is likely to play a critical role in its antiatherogenic effects.

  9. Activation of violaxanthin cycle in darkness is a common response to different abiotic stresses: a case study in Pelvetia canaliculata

    PubMed Central

    2011-01-01

    Background In the violaxanthin (V) cycle, V is de-epoxidized to zeaxanthin (Z) when strong light or light combined with other stressors lead to an overexcitation of photosystems. However, plants can also suffer stress in darkness and recent reports have shown that dehydration triggers V-de-epoxidation in the absence of light. In this study, we used the highly stress-tolerant brown alga Pelvetia canaliculata as a model organism, due to its lack of lutein and its non-photochemical quenching independent of the transthylakoidal-ΔpH, to study the triggering of the V-cycle in darkness induced by abiotic stressors. Results We have shown that besides desiccation, other factors such as immersion, anoxia and high temperature also induced V-de-epoxidation in darkness. This process was reversible once the treatments had ceased (with the exception of heat, which caused lethal damage). Irrespective of the stressor applied, the resulting de-epoxidised xanthophylls correlated with a decrease in Fv/Fm, suggesting a common function in the down-regulation of photosynthetical efficiency. The implication of the redox-state of the plastoquinone-pool and of the differential activity of V-cycle enzymes on V-de-epoxidation in darkness was also examined. Current results suggest that both violaxanthin de-epoxidase (VDE) and zeaxanthin-epoxidase (ZE) have a basal constitutive activity even in darkness, being ZE inhibited under stress. This inhibition leads to Z accumulation. Conclusion This study demonstrates that V-cycle activity is triggered by several abiotic stressors even when they occur in an absolute absence of light, leading to a decrease in Fv/Fm. This finding provides new insights into an understanding of the regulation mechanism of the V-cycle and of its ecophysiological roles. PMID:22269024

  10. Styrene induces an inflammatory response in human lung epithelial cells via oxidative stress and NF-{kappa}B activation

    SciTech Connect

    Roeder-Stolinski, Carmen Fischaeder, Gundula Oostingh, Gertie Janneke Feltens, Ralph Kohse, Franziska; Bergen, Martin von Moerbt, Nora Eder, Klaus Duschl, Albert Lehmann, Irina

    2008-09-01

    Styrene is a volatile organic compound (VOC) that is widely used as a solvent in many industrial settings. Chronic exposure to styrene can result in irritation of the mucosa of the upper respiratory tract. Contact of styrene with epithelial cells stimulates the expression of a variety of inflammatory mediators, including the chemotactic cytokine monocyte chemoattractant protein-1 (MCP-1). To characterise the underlying mechanisms of the induction of inflammatory signals by styrene, we investigated the influence of this compound on the induction of oxidative stress and the activation of the nuclear factor-kappa B (NF-{kappa}B) signalling pathway in human lung epithelial cells (A549). The results demonstrate that styrene-induced MCP-1 expression, as well as the expression of the oxidative stress marker glutathione S-transferase (GST), is associated with a concentration dependent pattern of NF-{kappa}B activity. An inhibitor of NF-{kappa}B, IKK-NBD, and the anti-inflammatory antioxidant N-acetylcysteine (NAC) were both effective in suppressing styrene-induced MCP-1 secretion. In addition, NAC was capable of inhibiting the upregulation of GST expression. Our findings suggest that the activation of the NF-{kappa}B signalling pathway by styrene is mediated via a redox-sensitive mechanism.

  11. Nitric oxide and iron modulate heme oxygenase activity as a long distance signaling response to salt stress in sunflower seedling cotyledons.

    PubMed

    Singh, Neha; Bhatla, Satish C

    2016-02-29

    Nitric oxide is a significant component of iron signaling in plants. Heme is one of the iron sensors in plants. Free heme is highly toxic and can cause cell damage as it catalyzes the formation of reactive oxygen species (ROS). Its catabolism is carried out by heme oxygenase (HOs; EC 1.14.99.3) which uses heme both as a prosthetic group and as a substrate. Two significant events, which accompany adaptation to salt stress in sunflower seedlings, are accumulation of ROS and enhanced production of nitric oxide (NO) in roots and cotyledons. Present investigations on the immunolocalization of heme oxygenase distribution in sunflower seedling cotyledons by confocal laser scanning microscopic (CLSM) imaging provide new information on the differential spatial distribution of the inducible form of HO (HO-1) as a long distance in response to NaCl stress. The enzyme is abundantly distributed in the specialized cells around the secretory canals (SCs) in seedling cotyledons. Abundance of tyrosine nitrated proteins has also been observed in the specialized cells around the secretory canals in cotyledons derived from salt stressed seedlings. The spatial distribution of tyrosine nitrated proteins and HO-1 expression further correlates with the abundance of mitochondria in these cells. Present findings, thus, highlight a link among distribution of HO-1 expression, abundance of tyrosine nitrated proteins and mitochondria in specialized cells around the secretory canal as a long distance mechanism of salt stress tolerance in sunflower seedlings. Enhanced spatial distribution of HO-1 in response to NaCl stress in seedling cotyledons is in congruence with the observed increase in specific activity of HO-1 in NaCl stressed conditions. The enzyme activity is further enhanced by hemin (HO-1 inducer) both in the absence or presence of NaCl stress and inhibited by zinc protoporphyrin. Western blot analysis of cotyledon homogenates using anti-HO-1 polyclonal antibody shows one major band (29

  12. Energy Crisis. Teaching Resources. A Special Publication Suggesting School Activities Which Stress Individual Responsibility Towards Energy Crisis Problems.

    ERIC Educational Resources Information Center

    Curry, Wendell; And Others

    This handbook provides public school teachers and administrators of Oregon with teaching ideas and information about the energy crisis. Suggested activities are intended to inform students (kindergarten through community college) about their responsibility toward the energy crisis and to motivate energy conservation. The handbook is divided into…

  13. A Mutation in Caenorhabditis elegans NDUF-7 Activates the Mitochondrial Stress Response and Prolongs Lifespan via ROS and CED-4.

    PubMed

    Rauthan, Manish; Ranji, Parmida; Abukar, Ragda; Pilon, Marc

    2015-06-01

    The mevalonate pathway is responsible for the synthesis of cholesterol, coenzyme Q, and prenyl groups essential for small GTPase modification and function, and for the production of dolichols important for protein glycosylation. Statins, i.e., cholesterol-lowering drugs that inhibit the rate-limiting enzyme in the mevalonate pathway, HMG-CoA reductase, are lethal to Caenorhabditis elegans even though this animal lacks the branch of the mevalonate pathway that leads to cholesterol synthesis. To better understand the effects of statins that are not related to cholesterol, we have adopted the strategy of isolating statin-resistant C. elegans mutants. Previously, we showed that such mutants often have gain-of-function mutations in ATFS-1, a protein that activates the mitochondrial unfolded protein response. Here, we describe the isolation of a statin-resistant mutant allele of the NDUF-7 protein, which is a component of complex I in the mitochondrial electron transport chain. The novel nduf-7(et19) mutant also exhibits constitutive and ATFS-1-dependent activation of the mitochondrial unfolded protein response (UPR(mt)) and prolonged life span, both of which are mediated through production of ROS. Additionally, lifespan extension, but not activation, of the mitochondrial unfolded protein response was dependent on the pro-apoptotic gene ced-4. We conclude that the nduf-7(et19) mutant allele causes an increase in reactive oxygen species that activate ATFS-1, hence UPR(mt)-mediated statin resistance, and extends life span via CED-4.

  14. Induction of ER stress in response to oxygen-glucose deprivation of cortical cultures involves the activation of the PERK and IRE-1 pathways and of caspase-12

    PubMed Central

    Badiola, N; Penas, C; Miñano-Molina, A; Barneda-Zahonero, B; Fadó, R; Sánchez-Opazo, G; Comella, J X; Sabriá, J; Zhu, C; Blomgren, K; Casas, C; Rodríguez-Alvarez, J

    2011-01-01

    Disturbance of calcium homeostasis and accumulation of misfolded proteins in the endoplasmic reticulum (ER) are considered contributory components of cell death after ischemia. However, the signal-transducing events that are activated by ER stress after cerebral ischemia are incompletely understood. In this study, we show that caspase-12 and the PERK and IRE pathways are activated following oxygen-glucose deprivation (OGD) of mixed cortical cultures or neonatal hypoxia–ischemia (HI). Activation of PERK led to a transient phosphorylation of eIF2α, an increase in ATF4 levels and the induction of gadd34 (a subunit of an eIF2α-directed phosphatase). Interestingly, the upregulation of ATF4 did not lead to an increase in the levels of CHOP. Additionally, IRE1 activation was mediated by the increase in the processed form of xbp1, which would be responsible for the observed expression of edem2 and the increased levels of the chaperones GRP78 and GRP94. We were also able to detect caspase-12 proteolysis after HI or OGD. Processing of procaspase-12 was mediated by NMDA receptor and calpain activation. Moreover, our data suggest that caspase-12 activation is independent of the unfolded protein response activated by ER stress. PMID:21525936

  15. The leukocyte response to fluid stress

    PubMed Central

    Moazzam, Fariborz; DeLano, Frank A.; Zweifach, Benjamin W.; Schmid-Schönbein, Geert W.

    1997-01-01

    Leukocyte migration from a hemopoietic pool across marrow endothelium requires active pseudopod formation and adhesion. Leukocytes rarely show pseudopod formation while in circulation. At question then is the mechanism that serves to minimize leukocyte pseudopod formation in the circulation. We tested the hypothesis that fluid shear stress acts to prevent pseudopod formation. When individual human leukocytes (neutrophils, monocytes) spreading on glass surfaces in vitro were subjected to fluid shear stress (≈1 dyn/cm2), an instantaneous retraction of pseudopods was observed. Removal of the fluid shear stress in turn led to the return of pseudopod projection and cell spreading. When steady shear stress was prolonged over several minutes, leukocyte swelling occurs together with an enhanced random motion of cytoplasmic granules and a reduction of cytoplasmic stiffness. The response to shear stress could be suppressed by K+ channel blockers and chelation of external Ca2+. In rat mesentery microvessels after occlusion, circulating leukocytes project pseudopods in free suspension or when attached to the endothelium, even though immediately after occlusion only few pseudopods were present. When flow was restored, pseudopods on adhering leukocytes were retracted and then the cells began to roll and detach from the endothelium. In conclusion, plasma shear stress in the circulation serves to reduce pseudopod projection and adhesion of circulating leukocytes and vice versa reduction of shear stress leads to pseudopod projection and spreading of leukocytes on the endothelium. PMID:9144238

  16. Responses to Fiscal Stress in Higher Education.

    ERIC Educational Resources Information Center

    Wilson, Robert A., Ed.

    Proceedings of the 1981 University of Arizona conference on responses to fiscal stress in higher education are presented. Topics include the impact of the federal government on higher education, state and institutional responses to new federal policies, developing responses to fiscal stress, alternate perspectives on fiscal stress, and tactical…

  17. Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response.

    PubMed

    Haberzettl, Petra; Hill, Bradford G

    2013-01-01

    Excessive production of unsaturated aldehydes from oxidized lipoproteins and membrane lipids is a characteristic feature of cardiovascular disease. Our previous studies show that unsaturated lipid peroxidation-derived aldehydes such as 4-hydroxy-trans-2-nonenal (HNE) promote autophagy in rat aortic smooth muscle cells (RASMC). In this study, we examined the mechanism by which HNE induces autophagy. Exposure of RASMC to HNE led to the modification of several proteins, most of which were identified by mass spectrometry and confocal microscopy to be localized to the endoplasmic reticulum (ER). HNE stimulated the phosphorylation of PKR-like ER kinase and eukaryotic initiation factor 2α and increased heme oxygenase-1 (HO-1) abundance. HNE treatment also increased LC3-II formation and the phosphorylation of JNK and p38. Pharmacological inhibition of JNK, but not p38, prevented HNE-induced HO-1 expression and LC3-II formation. Inhibition of JNK increased cell death in HNE-treated cells. Pretreatment with the chemical chaperone phenylbutryic acid prevented LC3-II formation as well as JNK phosphorylation and HO-1 induction. Taken together, these data suggest that autophagic responses triggered by unsaturated aldehydes could be attributed, in part, to ER stress, which stimulates autophagy by a JNK-dependent mechanism and promotes cell survival during oxidative stress.

  18. Acute Activation of Oxidative Pentose Phosphate Pathway as First-Line Response to Oxidative Stress in Human Skin Cells.

    PubMed

    Kuehne, Andreas; Emmert, Hila; Soehle, Joern; Winnefeld, Marc; Fischer, Frank; Wenck, Horst; Gallinat, Stefan; Terstegen, Lara; Lucius, Ralph; Hildebrand, Janosch; Zamboni, Nicola

    2015-08-01

    Integrity of human skin is endangered by exposure to UV irradiation and chemical stressors, which can provoke a toxic production of reactive oxygen species (ROS) and oxidative damage. Since oxidation of proteins and metabolites occurs virtually instantaneously, immediate cellular countermeasures are pivotal to mitigate the negative implications of acute oxidative stress. We investigated the short-term metabolic response in human skin fibroblasts and keratinocytes to H2O2 and UV exposure. In time-resolved metabolomics experiments, we observed that within seconds after stress induction, glucose catabolism is routed to the oxidative pentose phosphate pathway (PPP) and nucleotide synthesis independent of previously postulated blocks in glycolysis (i.e., of GAPDH or PKM2). Through ultra-short (13)C labeling experiments, we provide evidence for multiple cycling of carbon backbones in the oxidative PPP, potentially maximizing NADPH reduction. The identified metabolic rerouting in oxidative and non-oxidative PPP has important physiological roles in stabilization of the redox balance and ROS clearance. PMID:26190262

  19. Acute Activation of Oxidative Pentose Phosphate Pathway as First-Line Response to Oxidative Stress in Human Skin Cells.

    PubMed

    Kuehne, Andreas; Emmert, Hila; Soehle, Joern; Winnefeld, Marc; Fischer, Frank; Wenck, Horst; Gallinat, Stefan; Terstegen, Lara; Lucius, Ralph; Hildebrand, Janosch; Zamboni, Nicola

    2015-08-01

    Integrity of human skin is endangered by exposure to UV irradiation and chemical stressors, which can provoke a toxic production of reactive oxygen species (ROS) and oxidative damage. Since oxidation of proteins and metabolites occurs virtually instantaneously, immediate cellular countermeasures are pivotal to mitigate the negative implications of acute oxidative stress. We investigated the short-term metabolic response in human skin fibroblasts and keratinocytes to H2O2 and UV exposure. In time-resolved metabolomics experiments, we observed that within seconds after stress induction, glucose catabolism is routed to the oxidative pentose phosphate pathway (PPP) and nucleotide synthesis independent of previously postulated blocks in glycolysis (i.e., of GAPDH or PKM2). Through ultra-short (13)C labeling experiments, we provide evidence for multiple cycling of carbon backbones in the oxidative PPP, potentially maximizing NADPH reduction. The identified metabolic rerouting in oxidative and non-oxidative PPP has important physiological roles in stabilization of the redox balance and ROS clearance.

  20. Long term environmental tobacco smoke activates nuclear transcription factor-kappa B, activator protein-1, and stress responsive kinases in mouse brain.

    PubMed

    Manna, Sunil K; Rangasamy, Thirumalai; Wise, Kimberly; Sarkar, Shubhashish; Shishodia, Shishir; Biswal, Shyam; Ramesh, Govindarajan T

    2006-05-28

    Environmental tobacco smoke (ETS) is a key mediator of several diseases. Tobacco smoke contains a mixture of over 4700 chemical components many of which are toxic and have been implicated in the etiology of oxidative stress related diseases such as chronic obstructive pulmonary disease, Parkinson's disease, asthma, cancer and cardiovascular disease. However, the mechanism of action of cigarette smoke in the onset of these diseases is still largely unknown. Previous studies have revealed that the free radicals generated by cigarette smoke may contribute to many of these chronic health problems and this study sought to address the role of environmental tobacco smoke in oxidative stress related damage in different regions of the mouse brain. In this study, male mice were exposed for 7h/day, 7 days/week, for 6 months. Our results show that tobacco smoke led to increased generation of reactive oxygen species with an increase in NF-kappaB activation. Gel shift analysis also revealed the elevated level of the oxidative stress sensitive proinflammatory nuclear transcription factor-kappa B and activator protein-1 in different regions of the brain of cigarette smoke exposed mice. Tobacco smoke led to activation of COX-2 in all the regions of the brain. Activation of mitogen activated protein kinase and c-Jun N-terminal kinase were also observed in various regions of brain of ETS exposed mice. Overall our results indicate that exposure to long-term cigarette smoke induces oxidative stress leading to activation of stress induced kinases and activation of proinflammatory transcription factors.

  1. The SrkA Kinase Is Part of the SakA Mitogen-Activated Protein Kinase Interactome and Regulates Stress Responses and Development in Aspergillus nidulans

    PubMed Central

    Jaimes-Arroyo, Rafael; Lara-Rojas, Fernando; Bayram, Özgür; Valerius, Oliver; Braus, Gerhard H.

    2015-01-01

    Fungi and many other eukaryotes use specialized mitogen-activated protein kinases (MAPK) of the Hog1/p38 family to transduce environmental stress signals. In Aspergillus nidulans, the MAPK SakA and the transcription factor AtfA are components of a central multiple stress-signaling pathway that also regulates development. Here we characterize SrkA, a putative MAPK-activated protein kinase, as a novel component of this pathway. ΔsrkA and ΔsakA mutants share a derepressed sexual development phenotype. However, ΔsrkA mutants are not sensitive to oxidative stress, and in fact, srkA inactivation partially suppresses the sensitivity of ΔsakA mutant conidia to H2O2, tert-butyl-hydroperoxide (t-BOOH), and menadione. In the absence of stress, SrkA shows physical interaction with nonphosphorylated SakA in the cytosol. We show that H2O2 induces a drastic change in mitochondrial morphology consistent with a fission process and the relocalization of SrkA to nuclei and mitochondria, depending on the presence of SakA. SakA-SrkA nuclear interaction is also observed during normal asexual development in dormant spores. Using SakA and SrkA S-tag pulldown and purification studies coupled to mass spectrometry, we found that SakA interacts with SrkA, the stress MAPK MpkC, the PPT1-type phosphatase AN6892, and other proteins involved in cell cycle regulation, DNA damage response, mRNA stability and protein synthesis, mitochondrial function, and other stress-related responses. We propose that oxidative stress induces DNA damage and mitochondrial fission and that SakA and SrkA mediate cell cycle arrest and regulate mitochondrial function during stress. Our results provide new insights into the mechanisms by which SakA and SrkA regulate the remodelling of cell physiology during oxidative stress and development. PMID:25820520

  2. Bifactor Item Response Theory Model of Acute Stress Response

    PubMed Central

    Zhang, Ying; Jiang, Yuan; Tang, Jingjing; Zhu, Xia; Miao, Danmin

    2013-01-01

    Background Better understanding of acute stress responses is important for revision of DSM-5. However, the latent structure and relationship between different aspects of acute stress responses haven’t been clarified comprehensively. Bifactor item response model may help resolve this problem. Objective The purpose of this study is to develop a statistical model of acute stress responses, based on data from earthquake rescuers using Acute Stress Response Scale (ASRS). Through this model, we could better understand acute stress responses comprehensively, and provide preliminary information for computerized adaptive testing of stress responses. Methods Acute stress responses of earthquake rescuers were evaluated using ASRS, and state/trait anxiety were assessed using State-trait Anxiety Inventory (STAI). A hierarchical item response model (bifactor model) was used to analyze the data. Additionally, we tested this hierarchical model with model fit comparisons with one-dimensional and five-dimensional models. The correlations among acute stress responses and state/trait anxiety were compared, based on both the five-dimensional and bifactor models. Results Model fit comparisons showed bifactor model fit the data best. Item loadings on general and specific factors varied greatly between different aspects of stress responses. Many symptoms (40%) of physiological responses had positive loadings on general factor, and negative loadings on specific factor of physiological responses, while other stress responses had positive loadings on both general and specific factors. After extracting general factor of stress responses using bifactor analysis, significant positive correlations between physiological responses and state/trait anxiety (r = 0.185/0.112, p<0.01) changed into negative ones (r = −0.177/−0.38, p<0.01). Conclusion Our results demonstrated bifactor structure of acute stress responses, and positive and negative correlations between physiological responses

  3. The influence of hostility and family history of cardiovascular disease on autonomic activation in response to controllable versus noncontrollable stress, anger imagery induction, and relaxation imagery.

    PubMed

    Nelson, Charles; Franks, Susan; Brose, Andrea; Raven, Peter; Williamson, Jon; Shi, Xiangrong; McGill, Jerry; Harrell, Ernest

    2005-06-01

    Autonomic activation in response to controllable versus noncontrollable stress, anger imagery induction, and relaxation imagery was studied among 80 participants between the ages of 18 and 34 years. Participants differed in level of trait hostility and family history of cardiovascular disease. Results were obtained through power spectral analyses of electrocardiograph R-R intervals, which produced an index of autonomic nervous system activation. For both male and female populations, parasympathetic regulation was diminished during anger induction for individuals with high levels of trait hostility and having a family history of cardiovascular disease. Similar results were obtained for women during the uncontrolled stress condition. Based on family history of cardiovascular disease and trait hostility, men responded differentially to relaxation imagery induction, whereas no differences were found among females. PMID:16015455

  4. Roles of stress-activated protein kinases in the replication of Singapore grouper iridovirus and regulation of the inflammatory responses in grouper cells.

    PubMed

    Huang, Xiaohong; Huang, Youhua; OuYang, Zhengliang; Cai, Jia; Yan, Yang; Qin, Qiwei

    2011-06-01

    Stress-activated protein kinases (SAPKs), including p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK), are usually activated in response to different environmental stimuli, including virus infection. In the present study, the roles of SAPKs during Singapore grouper iridovirus (SGIV) infection were investigated in fish cells. The results showed that increased phosphorylation of JNK1/2 and p38 MAPK occurred during active replication of SGIV in grouper cell cultures. Moreover, downstream effectors (c-Jun, MAPK-activated protein kinase 2, p53, activator protein 1, Myc and nuclear factor of activated T cells) were activated after SGIV infection, suggesting that SGIV replication activated the JNK and p38 MAPK signalling pathways. Notably, using specific inhibitors, it was found that viral gene transcripts, protein expression and viral titres were not affected by inhibition of p38 MAPK but were suppressed significantly by inhibiting JNK1/2 activation. In addition, transcription of grouper immune genes including interferon regulatory factor 1, interleukin-8 and tumour necrosis factor alpha (TNF-α) were regulated by JNK, whilst only TNF-α was regulated by p38 MAPK. It is proposed that the JNK pathway is important for SGIV replication and modulates the inflammatory responses during virus infection.

  5. Enzyme activities associated with oxidative stress in Metarhizium anisopliae during germination, mycelial growth, and conidiation and in response to near-UV irradiation.

    PubMed

    Miller, Charles D; Rangel, Drauzio; Braga, Gilberto U L; Flint, Stephan; Kwon, Sun-Il; Messias, Claudio L; Roberts, Donald W; Anderson, Anne J

    2004-01-01

    Metarhizium anisopliae isolates have a wide insect host range, but an impediment to their commercial use as a biocontrol agent of above-ground insects is the high susceptibility of spores to the near-UV present in solar irradiation. To understand stress responses in M. anisopliae, we initiated studies of enzymes that protect against oxidative stress in two strains selected because their spores differed in sensitivity to UV-B. Spores of the more near-UV resistant strain in M. anisopliae 324 displayed different isozyme profiles for catalase-peroxidase, glutathione reductase, and superoxide dismutase when compared with the less resistant strain 2575. A transient loss in activity of catalase-peroxidase and glutathione reductase was observed during germination of the spores, whereas the intensity of isozymes displaying superoxide dismutase did not change as the mycelium developed. Isozyme composition for catalase-peroxidases and glutathione reductase in germlings changed with growth phase. UV-B exposure from lamps reduced the activity of isozymes displaying catalase-peroxidase and glutathione reductase activities in 2575 more than in 324. The major effect of solar UV-A plus UV-B also was a reduction in catalase-peroxidases isozyme level, a finding confirmed by measurement of catalase specific activity. Impaired growth of M. anisopliae after near-UV exposure may be related to reduced abilities to handle oxidative stress. PMID:15052320

  6. Responses of succulents to plant water stress.

    PubMed

    Hanscom, Z; Ting, I P

    1978-03-01

    Experiments were performed to test the hypothesis that succulents "shift" their method of photosynthetic metabolism in response to environmental change. Our data showed that there were at least three different responses of succulents to plant water status. When plant water status of Portulacaria afra (L.) Jacq. was lowered either by withholding water or by irrigating with 2% NaCl, a change from C(3)-photosynthesis to Crassulacean acid metabolism (CAM) occurred. Fluctuation of titratable acidity and nocturnal CO(2) uptake was induced in the stressed plants. Stressed Peperomia obtusifolia A. Dietr. plants showed a change from C(3)-photosynthesis to internal cycling of CO(2). Acid fluctuation commenced in response to stress but exogenous CO(2) uptake did not occur. Zygocactus truncatus Haworth plants showed a pattern of acid fluctuation and nocturnal CO(2) uptake typical of CAM even when well irrigated. The cacti converted from CAM to an internal CO(2) cycle similar to Peperomia when plants were water-stressed. Reverse phase gas exchange in succulents results in low water loss to carbon gain. Water is conserved and low levels of metabolic activity are maintained during drought periods by complete stomatal closure and continual fluctuation of organic acids.

  7. Contribution of S6K1/MAPK Signaling Pathways in the Response to Oxidative Stress: Activation of RSK and MSK by Hydrogen Peroxide

    PubMed Central

    Schneider, Taiane; Bonan, Carla Denise; Bartrons, Ramon; Ventura, Francesc; Rodrigues de Oliveira, Jarbas; Rosa, Jose Luis

    2013-01-01

    Cells respond to different kind of stress through the coordinated activation of signaling pathways such as MAPK or p53. To find which molecular mechanisms are involved, we need to understand their cell adaptation. The ribosomal protein, S6 kinase 1 (S6K1), is a common downstream target of signaling by hormonal or nutritional stress. Here, we investigated the initial contribution of S6K1/MAPK signaling pathways in the cell response to oxidative stress produced by hydrogen peroxide (H2O2). To analyze S6K1 activation, we used the commercial anti-phospho-Thr389-S6K1 antibody most frequently mentioned in the bibliography. We found that this antibody detected an 80-90 kDa protein that was rapidly phosphorylated in response to H2O2 in several human cells. Unexpectedly, this phosphorylation was insensitive to both mTOR and PI3K inhibitors, and knock-down experiments showed that this protein was not S6K1. RSK and MSK proteins were candidate targets of this phosphorylation. We demonstrated that H2O2 stimulated phosphorylation of RSK and MSK kinases at residues that are homologous to Thr389 in S6K1. This phosphorylation required the activity of either p38 or ERK MAP kinases. Kinase assays showed activation of RSK and MSK by H2O2. Experiments with mouse embryonic fibroblasts from p38 animals’ knockout confirmed these observations. Altogether, these findings show that the S6K1 signaling pathway is not activated under these conditions, clarify previous observations probably misinterpreted by non-specific detection of proteins RSK and MSK by the anti-phospho-Thr389-S6K1 antibody, and demonstrate the specific activation of MAPK signaling pathways through ERK/p38/RSK/MSK by H2O2. PMID:24058693

  8. Cancer Microenvironment and Endoplasmic Reticulum Stress Response

    PubMed Central

    Giampietri, Claudia; Petrungaro, Simonetta; Conti, Silvia; Facchiano, Antonio; Filippini, Antonio; Ziparo, Elio

    2015-01-01

    Different stressful conditions such as hypoxia, nutrient deprivation, pH changes, or reduced vascularization, potentially able to act as growth-limiting factors for tumor cells, activate the unfolded protein response (UPR). UPR is therefore involved in tumor growth and adaptation to severe environments and is generally cytoprotective in cancer. The present review describes the molecular mechanisms underlying UPR and able to promote survival and proliferation in cancer. The critical role of UPR activation in tumor growth promotion is discussed in detail for a few paradigmatic tumors such as prostate cancer and melanoma. PMID:26491226

  9. Evolutionarily conserved IMPACT impairs various stress responses that require GCN1 for activating the eIF2 kinase GCN2

    SciTech Connect

    Cambiaghi, Tavane D.; Pereira, Catia M.; Shanmugam, Renuka; Bolech, Michael; Wek, Ronald C.; Sattlegger, Evelyn; Castilho, Beatriz A.

    2014-01-10

    Highlights: •GCN1 is required for mammalian and yeast GCN2 function in a variety of conditions. •Mammalian IMPACT competes with GCN2 for GCN1 binding. •IMPACT and its yeast counterpart YIH1 downregulate GCN1-dependent GCN2 activation. -- Abstract: In response to a range of environmental stresses, phosphorylation of the alpha subunit of the translation initiation factor 2 (eIF2α) represses general protein synthesis coincident with increased translation of specific mRNAs, such as those encoding the transcription activators GCN4 and ATF4. The eIF2α kinase GCN2 is activated by amino acid starvation by a mechanism involving GCN2 binding to an activator protein GCN1, along with association with uncharged tRNA that accumulates during nutrient deprivation. We previously showed that mammalian IMPACT and its yeast ortholog YIH1 bind to GCN1, thereby preventing GCN1 association with GCN2 and stimulation of this eIF2α kinase during amino acid depletion. GCN2 activity is also enhanced by other stresses, including proteasome inhibition, UV irradiation and lack of glucose. Here, we provide evidence that IMPACT affects directly and specifically the activation of GCN2 under these stress conditions in mammalian cells. We show that activation of mammalian GCN2 requires its interaction with GCN1 and that IMPACT promotes the dissolution of the GCN2–GCN1 complex. To a similar extent as the overexpression of YIH1, overexpression of IMPACT in yeast cells inhibited growth under all stress conditions that require GCN2 and GCN1 for cell survival, including exposure to acetic acid, high levels of NaCl, H{sub 2}O{sub 2} or benomyl. This study extends our understanding of the roles played by GCN1 in GCN2 activation induced by a variety of stress arrangements and suggests that IMPACT and YIH1 use similar mechanisms for regulating this eIF2α kinase.

  10. The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean

    PubMed Central

    Xu, Zhaolong; Ali, Zulfiqar; Xu, Ling; He, Xiaolan; Huang, Yihong; Yi, Jinxin; Shao, Hongbo; Ma, Hongxiang; Zhang, Dayong

    2016-01-01

    Plant basic-leucine zipper (bZIP) transcription factors play important roles in many biological processes and are involved in the regulation of salt stress tolerance. Previously, our lab generated digital gene expression profiling (DGEP) data to identify differentially expressed genes in a salt-tolerant genotype of Glycine soja (STGoGS) and a salt-sensitive genotype of Glycine max (SSGoGM). This DGEP data revealed that the expression (log2 ratio) of GmbZIP110 was up-regulated 2.76-fold and 3.38-fold in SSGoGM and STGoGS, respectively. In the present study, the salt inducible gene GmbZIP110 was cloned and characterized through phylogenetic analysis, subcellular localization and in silico transcript abundance analysis in different tissues. The functional role of this gene in salt tolerance was studied through transactivation analysis, DNA binding ability, expression in soybean composite seedlings and transgenic Arabidopsis, and the effect of GmbZIP110 on the expression of stress-related genes in transgenic Arabidopsis was investigated. We found that GmbZIP110 could bind to the ACGT motif, impact the expression of many stress-related genes and the accumulation of proline, Na+ and K+, and enhanced the salt tolerance of composite seedlings and transgenic Arabidopsis. Integrating all these results, we propose that GmbZIP110 plays a critical role in the response to salinity stress in soybean and has high potential usefulness in crop improvement. PMID:26837841

  11. Drought stress tolerance in grapevine involves activation of polyamine oxidation contributing to improved immune response and low susceptibility to Botrytis cinerea.

    PubMed

    Hatmi, Saloua; Gruau, Charlotte; Trotel-Aziz, Patricia; Villaume, Sandra; Rabenoelina, Fanja; Baillieul, Fabienne; Eullaffroy, Philippe; Clément, Christophe; Ferchichi, Ali; Aziz, Aziz

    2015-02-01

    Environmental factors including drought stress may modulate plant immune responses and resistance to pathogens. However, the relationship between mechanisms of drought tolerance and resistance to pathogens remained unknown. In this study, the effects of drought stress on polyamine (PA) homeostasis and immune responses were investigated in two grapevine genotypes differing in their drought tolerance; Chardonnay (CHR), as sensitive and Meski (MSK), as tolerant. Under drought conditions, MSK plants showed the lowest leaf water loss and reduction of photosynthetic efficiency, and expressed a lower level of NCED2, a gene involved in abscisic acid biosynthesis, compared with CHR plants. The improved drought tolerance in MSK was also coincident with the highest change in free PAs and up-regulation of the genes encoding arginine decarboxylase (ADC), copper amine-oxidase (CuAO), and PA-oxidases (PAO) and their corresponding enzyme activities. MSK plants also accumulated the highest level of amino acids, including Arg, Glu, Gln, Pro, and GABA, emphasizing the participation of PA-related amino acid homeostasis in drought tolerance. Importantly, drought-tolerant plants also exhibited enhanced phytoalexin accumulation and up-regulation of PR genes, especially PR-2 and Chit4c, compared with the sensitive plants. This is consistent with a lower susceptibility of MSK than CHR to Botrytis cinerea. Data suggest a possible connection between water stress tolerance and immune response in grapevine. Pharmacological experiments revealed that under drought conditions CuAO and PAO pathways were involved in the regulation of photosynthetic efficiency, and also of immune response and resistance of grapevine to a subsequent pathogen attack. These results open new views to improve our understanding of crosstalk between drought tolerance mechanisms and immune response.

  12. Bacterial responses to photo-oxidative stress

    PubMed Central

    Ziegelhoffer, Eva C.; Donohue, Timothy J.

    2009-01-01

    Singlet oxygen is one of several reactive oxygen species that can destroy biomolecules, microorganisms and other cells. Traditionally, the response to singlet oxygen has been termed photo-oxidative stress, as light-dependent processes in photosynthetic cells are major biological sources of singlet oxygen. Recent work identifying a core set of singlet oxygen stress response genes across various bacterial species highlights the importance of this response for survival by both photosynthetic and non-photosynthetic cells. Here, we review how bacterial cells mount a transcriptional response to photo-oxidative stress in the context of what is known about bacterial stress responses to other reactive oxygen species. PMID:19881522

  13. Both immanently high active iron contents and increased root ferrous uptake in response to low iron stress contribute to the iron deficiency tolerance in Malus xiaojinensis.

    PubMed

    Zha, Qian; Wang, Yi; Zhang, Xin-Zhong; Han, Zhen-Hai

    2014-01-01

    To better understand the mechanism of low-iron stress tolerance in Malus xiaojinensis, the differences in physiological parameters and gene expression between an iron deficiency-sensitive species, Malus baccata, and an iron deficiency-tolerant species, M. xiaojinensis were investigated under low-iron (4 μM Fe) conditions. Under iron sufficient conditions, the expressions of iron uptake- and transport-related genes, i.e. FIT1, IRT1, CS1, FRD3 and NRMAP1, and the immanent leaf and root active iron contents were higher in M. xiaojinensis than those in M. baccata. However, on the first three days of low iron stress, the rhizospheric pH decreased and the root ferric chelate reductase (FCR) activity and the expression of ferrous uptake- and iron transport-related genes in the roots increased significantly only in M. xiaojinensis. Leaf chlorosis occurred on the 3rd and the 9th day after low-iron treatment in M. baccata and M. xiaojinensis, respectively. The expression of iron relocalization-related genes, such as NAS1, FRD3 and NRMAP3, increased after the 5th or 6th day of low iron stress in leaves of M. xiaojinensis, whereas the expression of NAS1, FRD3 and NRMAP3 in the leaves of M. baccata increased immediately after the onset of low iron treatment. Conclusively, the relative high active iron contents caused by the immanently active root ferrous uptake and the increased root ferrous uptake in response to low iron stress were the dominant mechanisms for the tolerance to iron deficiency in M. xiaojinensis.

  14. Medial hypothalamic 5-hydroxytryptamine (5-HT)1A receptors regulate neuroendocrine responses to stress and exploratory locomotor activity: application of recombinant adenovirus containing 5-HT1A sequences.

    PubMed

    Li, Qian; Holmes, Andrew; Ma, Li; Van de Kar, Louis D; Garcia, Francisca; Murphy, Dennis L

    2004-12-01

    Our previous studies found that serotonin transporter (SERT) knock-out mice showed increased sensitivity to minor stress and increased anxiety-like behavior but reduced locomotor activity. These mice also showed decreased density of 5-hydroxytryptamine (5-HT1A) receptors in the hypothalamus, amygdala, and dorsal raphe. To evaluate the contribution of hypothalamic 5-HT1A receptors to these phenotypes of SERT knock-out mice, two studies were conducted. Recombinant adenoviruses containing 5-HT1A sense and antisense sequences (Ad-1AP-sense and Ad-1AP-antisense) were used to manipulate 5-HT1A receptors in the hypothalamus. The expression of the 5-HT1A genes is controlled by the 5-HT1A promoter, so that they are only expressed in 5-HT1A receptor-containing cells. (1) Injection of Ad-1AP-sense into the hypothalamus of SERT knock-out mice restored 5-HT1A receptors in the medial hypothalamus; this effect was accompanied by elimination of the exaggerated adrenocorticotropin responses to a saline injection (minor stress) and reduced locomotor activity but not by a change in increased exploratory anxiety-like behavior. (2) To further confirm the observation in SERT-/- mice, Ad-1AP-antisense was injected into the hypothalamus of normal mice. The density and the function of 5-HT1A receptors in the medial hypothalamus were significantly reduced in Ad-1AP-antisense-treated mice. Compared with the control group (injected with Ad-track), Ad-1A-antisense-treated mice showed a significant reduction in locomotor activity, but again no changes in exploratory anxiety-like behaviors, tested by elevated plus-maze and open-field tests. Thus, the present results demonstrate that medial hypothalamic 5-HT1A receptors regulate stress responses and locomotor activity but may not regulate exploratory anxiety-like behaviors. PMID:15574737

  15. A chaperone function of NO CATALASE ACTIVITY1 is required to maintain catalase activity and for multiple stress responses in Arabidopsis.

    PubMed

    Li, Jing; Liu, Juntao; Wang, Guoqiang; Cha, Joon-Yung; Li, Guannan; Chen, She; Li, Zhen; Guo, Jinghua; Zhang, Caiguo; Yang, Yongqing; Kim, Woe-Yeon; Yun, Dae-Jin; Schumaker, Karen S; Chen, Zhongzhou; Guo, Yan

    2015-03-01

    Catalases are key regulators of reactive oxygen species homeostasis in plant cells. However, the regulation of catalase activity is not well understood. In this study, we isolated an Arabidopsis thaliana mutant, no catalase activity1-3 (nca1-3) that is hypersensitive to many abiotic stress treatments. The mutated gene was identified by map-based cloning as NCA1, which encodes a protein containing an N-terminal RING-finger domain and a C-terminal tetratricopeptide repeat-like helical domain. NCA1 interacts with and increases catalase activity maximally in a 240-kD complex in planta. In vitro, NCA1 interacts with CATALASE2 (CAT2) in a 1:1 molar ratio, and the NCA1 C terminus is essential for this interaction. CAT2 activity increased 10-fold in the presence of NCA1, and zinc ion binding of the NCA1 N terminus is required for this increase. NCA1 has chaperone protein activity that may maintain the folding of catalase in a functional state. NCA1 is a cytosol-located protein. Expression of NCA1 in the mitochondrion of the nca1-3 mutant does not rescue the abiotic stress phenotypes of the mutant, while expression in the cytosol or peroxisome does. Our results suggest that NCA1 is essential for catalase activity.

  16. A Chaperone Function of NO CATALASE ACTIVITY1 Is Required to Maintain Catalase Activity and for Multiple Stress Responses in Arabidopsis

    PubMed Central

    Li, Jing; Liu, Juntao; Wang, Guoqiang; Cha, Joon-Yung; Li, Guannan; Chen, She; Li, Zhen; Guo, Jinghua; Zhang, Caiguo; Yang, Yongqing; Kim, Woe-Yeon; Yun, Dae-Jin; Schumaker, Karen S.; Chen, Zhongzhou; Guo, Yan

    2015-01-01

    Catalases are key regulators of reactive oxygen species homeostasis in plant cells. However, the regulation of catalase activity is not well understood. In this study, we isolated an Arabidopsis thaliana mutant, no catalase activity1-3 (nca1-3) that is hypersensitive to many abiotic stress treatments. The mutated gene was identified by map-based cloning as NCA1, which encodes a protein containing an N-terminal RING-finger domain and a C-terminal tetratricopeptide repeat-like helical domain. NCA1 interacts with and increases catalase activity maximally in a 240-kD complex in planta. In vitro, NCA1 interacts with CATALASE2 (CAT2) in a 1:1 molar ratio, and the NCA1 C terminus is essential for this interaction. CAT2 activity increased 10-fold in the presence of NCA1, and zinc ion binding of the NCA1 N terminus is required for this increase. NCA1 has chaperone protein activity that may maintain the folding of catalase in a functional state. NCA1 is a cytosol-located protein. Expression of NCA1 in the mitochondrion of the nca1-3 mutant does not rescue the abiotic stress phenotypes of the mutant, while expression in the cytosol or peroxisome does. Our results suggest that NCA1 is essential for catalase activity. PMID:25700484

  17. ZnO nanoparticles impose a panmetabolic toxic effect along with strong necrosis, inducing activation of the envelope stress response in Salmonella enterica serovar Enteritidis.

    PubMed

    Vidovic, Sinisa; Elder, Jeff; Medihala, Prabhakara; Lawrence, John R; Predicala, Bernardo; Zhang, Haixia; Korber, Darren R

    2015-01-01

    In this study, we tested the antimicrobial activity of three metal nanoparticles (NPs), ZnO, MgO, and CaO NPs, against Salmonella enterica serovar Enteritidis in liquid medium and on solid surfaces. Out of the three tested metal NPs, ZnO NPs exhibited the most significant antimicrobial effect both in liquid medium and when embedded on solid surfaces. Therefore, we focused on revealing the mechanisms of surface-associated ZnO biocidal activity. Using the global proteome approach, we report that a great majority (79%) of the altered proteins in biofilms formed by Salmonella enterica serovar Enteritidis were downregulated, whereas a much smaller fraction (21%) of proteins were upregulated. Intriguingly, all downregulated proteins were enzymes involved in a wide range of the central metabolic pathways, including translation; amino acid biosynthetic pathways; nucleobase, nucleoside, and nucleotide biosynthetic processes; ATP synthesis-coupled proton transport; the pentose phosphate shunt; and carboxylic acid metabolic processes, indicating that ZnO NPs exert a panmetabolic toxic effect on this prokaryotic organism. In addition to their panmetabolic toxicity, ZnO NPs induced profound changes in cell envelope morphology, imposing additional necrotic effects and triggering the envelope stress response of Salmonella serovar Enteritidis. The envelope stress response effect activated periplasmic chaperones and proteases, transenvelope complexes, and regulators, thereby facilitating protection of this prokaryotic organism against ZnO NPs. PMID:25801570

  18. Physiological Responses to Thermal Stress and Exercise

    NASA Astrophysics Data System (ADS)

    Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi

    The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.

  19. The Mitogen-Activated Protein Kinase Kinase VdPbs2 of Verticillium dahliae Regulates Microsclerotia Formation, Stress Response, and Plant Infection

    PubMed Central

    Tian, Longyan; Wang, Yonglin; Yu, Jun; Xiong, Dianguang; Zhao, Hengjun; Tian, Chengming

    2016-01-01

    Verticillium dahliae, a ubiquitous phytopathogenic fungus, forms resting structures, known as microsclerotia that play crucial roles in Verticillium wilt diseases. VdHog1, a mitogen-activated protein kinase (MAPK), controls microsclerotia formation, virulence, and stress response in V. dahliae. In this study, we present detailed evidence that the conserved upstream component of VdHog1, VdPbs2, is a key regulator of microsclerotia formation, oxidative stress and fungicide response and plant virulence in V. dahliae. We identified VdPbs2, homologous to the yeast MAPK kinase Pbs2. Similar to the VdHog1 deletion mutant, VdPbs2 deletion strains exhibited delayed melanin synthesis and reduced formation of microsclerotia. When exposed to stresses, VdPbs2 mutants were more sensitive than the wild type to osmotic agents and peroxide, but more resistant to inhibitors of cell wall synthesis and some fungicides. Finally, VdPbs2 deletion mutants exhibited reduced virulence on smoke tree and tobacco seedlings. When taken together, we implicate that VdPbs2 and VdHog1 function in a cascade that regulates microsclerotia formation and virulence, but not all VdHog1 dependent functions are VdPbs2 regulated. This study thus provides novel insights into the signal transduction mechanisms that regulate microsclerotia formation and pathogenesis in this fungus. PMID:27729908

  20. Activation of the endoplasmic reticulum stress response in skeletal muscle of G93A*SOD1 amyotrophic lateral sclerosis mice

    PubMed Central

    Chen, Dapeng; Wang, Yan; Chin, Eva R.

    2015-01-01

    Mutations in Cu/Zn superoxide dismutase (SOD1) are one of the genetic causes of Amyotrophic Lateral Sclerosis (ALS). Although the primary symptom of ALS is muscle weakness, the link between SOD1 mutations, cellular dysfunction and muscle atrophy and weakness is not well understood. The purpose of this study was to characterize cellular markers of ER stress in skeletal muscle across the lifespan of G93A*SOD1 (ALS-Tg) mice. Muscles were obtained from ALS-Tg and age-matched wild type (WT) mice at 70d (pre-symptomatic), 90d and 120–140d (symptomatic) and analyzed for ER stress markers. In white gastrocnemius (WG) muscle, ER stress sensors PERK and IRE1α were upregulated ~2-fold at 70d and remained (PERK) or increased further (IRE1α) at 120–140d. Phospho-eIF2α, a downstream target of PERK and an inhibitor of protein translation, was increased by 70d and increased further to 12.9-fold at 120–140d. IRE1α upregulation leads to increased splicing of X-box binding protein 1 (XBP-1) to the XBP-1s isoform. XBP-1s transcript was increased at 90d and 120–140d indicating activation of IRE1α signaling. The ER chaperone/heat shock protein Grp78/BiP was upregulated 2-fold at 70d and 90d and increased to 6.1-fold by 120–140d. The ER-stress-specific apoptotic signaling protein CHOP was upregulated 2-fold at 70d and 90d and increased to 13.3-fold at 120–140d indicating progressive activation of an apoptotic signal in muscle. There was a greater increase in Grp78/BiP and CHOP in WG vs. the more oxidative red gastrocnemius (RG) ALS-Tg at 120–140d indicating greater ER stress and apoptosis in fast glycolytic muscle. These data show that the ER stress response is activated in skeletal muscle of ALS-Tg mice by an early pre-symptomatic age and increases with disease progression. These data suggest a mechanism by which myocellular ER stress leads to reduced protein translation and contributes to muscle atrophy and weakness in ALS. PMID:26041991

  1. The role of biological activity of hydrohumate, produced from peat, in formation of adaptive response of rats under influence of chronic stress

    NASA Astrophysics Data System (ADS)

    Lyanna, O. L.; Chorna, V. I.; Stepchenko, L. M.

    2009-04-01

    It is well known that humic compounds are the most distributed in nature among the organic matter. It is believed that humic polyphenol preparations, produced from the peat, represent adaptogenes and immunomodulators. But the total mechanism of their adaptogenic action is still completely unclear. In response to extraordinary irritant action, one of the most sensitive to stress and highly reactive systems of organism, endosomal-lysosomal cellular apparatus takes part. It is believed that humic compounds are able to penetrate through plasmatic membrane and by this way to affect on lysosomal proteases function. Among the wide range of lysosomal proteases, cysteine cathepsin L (EC 3.4.22.15) was in interest due to its powerful endopeptidase activity and widespread localization. Purpose. The aim of the work was to investigate the influence of humic acids on intracellular proteolysis in blood plasma and heart muscle of rats in adaptive-restorative processes developing in rat organisms as a result of chronic stress action. The experiment was held on Wistar's rats (160-200 g weight) which were divided into 4 groups: 1 - the control group; 2 - the animals which were received the hydrohumate with water (10 mg hydrohumate (0,1% solution) per 1 kg of weight) during 3 weeks; 3 - the group of stressed rats (test "forced swimming" for 2 hours); 4 - the stressed rats which received the hydrohumate. The activity of lysosomal cysteine cathepsin L was determined spectrophotometrically by usage 1% azocasein, denaturated by 3 M urea, as substrate. It was obtained that under hydrohumate influence the activity of lysosomal cysteine cathepsin L in rat blood plasma changed on 20% in comparison with control group that is suggested to be caused by leakage of tissue cathepsins from organs and tissues and kidneys' filtration of these cysteine enzymes in urine. In rat heart tissues it was obtained that cathepsin L activity level was on 26,8% higher in rats which were under stress influence in

  2. ONC201 kills solid tumor cells by triggering an integrated stress response dependent on ATF4 activation by specific eIF2α kinases

    PubMed Central

    Kline, C. Leah B.; Van den Heuvel, A. Pieter J.; Allen, Joshua E.; Prabhu, Varun V.; Dicker, David T.; El-Deiry, Wafik S.

    2016-01-01

    ONC201 (also called TIC10) is a small molecule that inactivates the cell proliferation- and cell survival-promoting kinases AKT and ERK and induces cell death through the pro-apoptotic protein TRAIL. ONC201 is currently in early phase clinical testing for various malignancies. Here, we found through gene expression and protein analyses that ONC201 triggered an increase in TRAIL abundance and cell death through an integrated stress response (ISR) involving the transcription factor ATF4, the transactivator CHOP, and the TRAIL receptor DR5. ATF4 was not activated in ONC201-resistant cancer cells, and in ONC201-sensitive cells, knockdown of ATF4 or CHOP partially abrogated ONC201-induced cytotoxicity and diminished the ONC201-stimulated increase in DR5 abundance. The activation of ATF4 in response to ONC201 required the kinases HRI and PKR, which phosphorylate and activate the translation initiation factor eIF2α. ONC201 rapidly triggered cell cycle arrest, which was associated with decreased abundance of cyclin D1, decreased activity of the kinase complex mTORC1, and dephosphorylation of the retinoblastoma (Rb) protein. The abundance of X-linked inhibitor of apoptosis protein (XIAP) negatively correlated with the extent of apoptosis in response to ONC201. These effects of ONC201 were independent of whether cancer cells had normal or mutant p53. Thus, ONC201 induces cell death through the coordinated induction of TRAIL by an ISR pathway. PMID:26884600

  3. Oxidative stress in deep scattering layers: Heat shock response and antioxidant enzymes activities of myctophid fishes thriving in oxygen minimum zones

    NASA Astrophysics Data System (ADS)

    Lopes, Ana Rita; Trübenbach, Katja; Teixeira, Tatiana; Lopes, Vanessa M.; Pires, Vanessa; Baptista, Miguel; Repolho, Tiago; Calado, Ricardo; Diniz, Mário; Rosa, Rui

    2013-12-01

    Diel vertical migrators, such as myctophid fishes, are known to encounter oxygen minimum zones (OMZ) during daytime in the Eastern Pacific Ocean and, therefore, have to cope with temperature and oxidative stress that arise while ascending to warmer, normoxic surface waters at night-time. The aim of this study was to investigate the antioxidant defense strategies and heat shock response (HSR) in two myctophid species, namely Triphoturus mexicanus and Benthosema panamense, at shallow and warm surface waters (21 kPa, 20-25 °C) and at hypoxic, cold (≤1 kPa, 10 °C) mesopelagic depths. More specifically, we quantified (i) heat shock protein concentrations (HSP70/HSC70) (ii) antioxidant enzyme activities [including superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST)], and (iii) lipid peroxidation [malondialdehyde (MDA) levels]. HSP70/HSC70 levels increased in both myctophid species at warmer, well-oxygenated surface waters probably to prevent cellular damage (oxidative stress) due to increased oxygen demand under elevated temperatures and reactive oxygen species (ROS) formation. On the other hand, CAT and GST activities were augmented under hypoxic conditions, probably as preparatory response to a burst of oxyradicals during the reoxygenation phase (while ascending). SOD activity decreased under hypoxia in B. panamense, but was kept unchanged in T. mexicanus. MDA levels in B. panamense did not change between the surface and deep-sea conditions, whereas T. mexicanus showed elevated MDA and HSP70/HSC70 concentrations at warmer surface waters. This indicated that T. mexicanus seems to be not so well tuned to temperature and oxidative stress associated to diel vertical migrations. The understanding of such physiological strategies that are linked to oxygen deprivation and reoxygenation phases may provide valuable information about how different species might respond to the impacts of environmental stressors (e.g. expanding mesopelagic hypoxia

  4. Computations of uncertainty mediate acute stress responses in humans.

    PubMed

    de Berker, Archy O; Rutledge, Robb B; Mathys, Christoph; Marshall, Louise; Cross, Gemma F; Dolan, Raymond J; Bestmann, Sven

    2016-03-29

    The effects of stress are frequently studied, yet its proximal causes remain unclear. Here we demonstrate that subjective estimates of uncertainty predict the dynamics of subjective and physiological stress responses. Subjects learned a probabilistic mapping between visual stimuli and electric shocks. Salivary cortisol confirmed that our stressor elicited changes in endocrine activity. Using a hierarchical Bayesian learning model, we quantified the relationship between the different forms of subjective task uncertainty and acute stress responses. Subjective stress, pupil diameter and skin conductance all tracked the evolution of irreducible uncertainty. We observed a coupling between emotional and somatic state, with subjective and physiological tuning to uncertainty tightly correlated. Furthermore, the uncertainty tuning of subjective and physiological stress predicted individual task performance, consistent with an adaptive role for stress in learning under uncertain threat. Our finding that stress responses are tuned to environmental uncertainty provides new insight into their generation and likely adaptive function.

  5. Computations of uncertainty mediate acute stress responses in humans.

    PubMed

    de Berker, Archy O; Rutledge, Robb B; Mathys, Christoph; Marshall, Louise; Cross, Gemma F; Dolan, Raymond J; Bestmann, Sven

    2016-01-01

    The effects of stress are frequently studied, yet its proximal causes remain unclear. Here we demonstrate that subjective estimates of uncertainty predict the dynamics of subjective and physiological stress responses. Subjects learned a probabilistic mapping between visual stimuli and electric shocks. Salivary cortisol confirmed that our stressor elicited changes in endocrine activity. Using a hierarchical Bayesian learning model, we quantified the relationship between the different forms of subjective task uncertainty and acute stress responses. Subjective stress, pupil diameter and skin conductance all tracked the evolution of irreducible uncertainty. We observed a coupling between emotional and somatic state, with subjective and physiological tuning to uncertainty tightly correlated. Furthermore, the uncertainty tuning of subjective and physiological stress predicted individual task performance, consistent with an adaptive role for stress in learning under uncertain threat. Our finding that stress responses are tuned to environmental uncertainty provides new insight into their generation and likely adaptive function. PMID:27020312

  6. Computations of uncertainty mediate acute stress responses in humans

    PubMed Central

    de Berker, Archy O.; Rutledge, Robb B.; Mathys, Christoph; Marshall, Louise; Cross, Gemma F.; Dolan, Raymond J.; Bestmann, Sven

    2016-01-01

    The effects of stress are frequently studied, yet its proximal causes remain unclear. Here we demonstrate that subjective estimates of uncertainty predict the dynamics of subjective and physiological stress responses. Subjects learned a probabilistic mapping between visual stimuli and electric shocks. Salivary cortisol confirmed that our stressor elicited changes in endocrine activity. Using a hierarchical Bayesian learning model, we quantified the relationship between the different forms of subjective task uncertainty and acute stress responses. Subjective stress, pupil diameter and skin conductance all tracked the evolution of irreducible uncertainty. We observed a coupling between emotional and somatic state, with subjective and physiological tuning to uncertainty tightly correlated. Furthermore, the uncertainty tuning of subjective and physiological stress predicted individual task performance, consistent with an adaptive role for stress in learning under uncertain threat. Our finding that stress responses are tuned to environmental uncertainty provides new insight into their generation and likely adaptive function. PMID:27020312

  7. Serotonin regulation of the human stress response.

    PubMed

    Hood, Sean D; Hince, Dana A; Robinson, Hayley; Cirillo, Melita; Christmas, David; Kaye, Joey M

    2006-10-01

    Acute tryptophan depletion (ATD) is a technique that has been used to evaluate the effects on humans of acutely reducing serotonin neurotransmission. We have developed a model using a single breath of 35% CO(2) that activates the hormonal axis and produces autonomic and behavioural arousal, thus modelling a stress response. This study combines ATD and single breath 35% CO(2) inhalation to study stress responses in volunteers. A randomised, double-blinded, placebo-controlled, cross-over trial involving 14 healthy adult volunteers aged between 18 and 65 years was undertaken. Subjects underwent double-blind tryptophan depletion over 2 days and were then crossed over 1 week later. During each study day, at the time of peak depletion, participants were single blinded to receive a single breath of 35% CO(2) or air. This was followed 40 min later by the other gas. Psychological outcomes were assessed with the Spielberger State Anxiety Inventory (SSAI), Visual Analogue Scales (VAS), Panic Inventory (PI), Panic and Agoraphobia Scale (PSI) and Beck Depression Inventory (BDI). Physiological outcome was measured by serial plasma cortisol, prolactin and tryptophan levels, pulse and blood pressure. Tryptophan depletion did not exacerbate 35% CO(2) inhalation effects on anxiety symptoms. Single breath CO(2) robustly increased plasma cortisol levels in comparison to an air inhalation; this was less certain for prolactin levels. ATD influenced the HPA axis (associated with higher cortisol levels), apparently independent of CO(2) or air inhalation stressors. ATD and 35% CO(2) inhalation both induced a pressor response and bradycardia in these normal volunteers. Thirty-five percent CO(2) inhalation and ATD independently activate the human stress response, but do not appear to produce synergistic effects when combined, at least for the conditions produced in this study.

  8. Stress Generation and Adolescent Depression: Contribution of Interpersonal Stress Responses

    PubMed Central

    Flynn, Megan; Rudolph, Karen D.

    2011-01-01

    This research examined the proposal that ineffective responses to common interpersonal problems disrupt youths’ relationships, which, in turn, contributes to depression during adolescence. Youth (86 girls, 81 boys; M age = 12.41, SD = 1.19) and their primary female caregivers participated in a three-wave longitudinal study. Youth completed a measure assessing interpersonal stress responses; youth and caregivers completed semi-structured interviews assessing youths’ life stress and psychopathology. Consistent with the hypothesized model, ineffective stress responses (low levels of effortful engagement, high levels of involuntary engagement and disengagement) predicted the generation of subsequent interpersonal stress, which partially accounted for the association between stress responses and depression over time. Moreover, results revealed that self-generated interpersonal, but not noninterpersonal stress, predicted depression, and that this explanatory model was specific to the prediction of depression but not anxiety. This research builds on interpersonal stress generation models of depression, and highlights the importance of implementing depression-focused intervention programs that promote effective stress responses and adaptive interpersonal relationships during adolescence. PMID:21647600

  9. Strigolactone analogues induce apoptosis through activation of p38 and the stress response pathway in cancer cell lines and in conditionally reprogramed primary prostate cancer cells.

    PubMed Central

    Pollock, Claire B; McDonough, Sara; Wang, Victor S.; Lee, Hyojung; Ringer, Lymor; Li, Xin; Prandi, Cristina; Lee, Richard J.; Feldman, Adam S.; Koltai, Hinanit; Kapulnik, Yoram; Rodriguez, Olga C; Schlegel, Richard; Albanese, Christopher; Yarden, Ronit I.

    2014-01-01

    Strigolactones are a novel class of plant hormones produced in roots and regulate shoot and root development. We have previously shown that synthetic strigolactone analogues potently inhibit growth of breast cancer cells and breast cancer stem cells. Here we show that strigolactone analogues inhibit the growth and survival of an array of cancer-derived cell lines representing solid and non-solid cancer cells including: prostate, colon, lung, melanoma, osteosarcoma and leukemic cell lines, while normal cells were minimally affected. Treatment of cancer cells with strigolactone analogues was hallmarked by activation of the stress-related MAPKs: p38 and JNK and induction of stress-related genes; cell cycle arrest and apoptosis evident by increased percentages of cells in the sub-G1 fraction and Annexin V staining. In addition, we tested the response of patient-matched conditionally reprogrammed primary prostate normal and cancer cells. The tumor cells exhibited significantly higher sensitivity to the two most potent SL analogues with increased apoptosis confirmed by PARP1 cleavage compared to their normal counterpart cells. Thus, Strigolactone analogues are promising candidates for anticancer therapy by their ability to specifically induce cell cycle arrest, cellular stress and apoptosis in tumor cells with minimal effects on growth and survival of normal cells. PMID:24742967

  10. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework.

    PubMed

    Calabrese, Edward J; Bachmann, Kenneth A; Bailer, A John; Bolger, P Michael; Borak, Jonathan; Cai, Lu; Cedergreen, Nina; Cherian, M George; Chiueh, Chuang C; Clarkson, Thomas W; Cook, Ralph R; Diamond, David M; Doolittle, David J; Dorato, Michael A; Duke, Stephen O; Feinendegen, Ludwig; Gardner, Donald E; Hart, Ronald W; Hastings, Kenneth L; Hayes, A Wallace; Hoffmann, George R; Ives, John A; Jaworowski, Zbigniew; Johnson, Thomas E; Jonas, Wayne B; Kaminski, Norbert E; Keller, John G; Klaunig, James E; Knudsen, Thomas B; Kozumbo, Walter J; Lettieri, Teresa; Liu, Shu-Zheng; Maisseu, Andre; Maynard, Kenneth I; Masoro, Edward J; McClellan, Roger O; Mehendale, Harihara M; Mothersill, Carmel; Newlin, David B; Nigg, Herbert N; Oehme, Frederick W; Phalen, Robert F; Philbert, Martin A; Rattan, Suresh I S; Riviere, Jim E; Rodricks, Joseph; Sapolsky, Robert M; Scott, Bobby R; Seymour, Colin; Sinclair, David A; Smith-Sonneborn, Joan; Snow, Elizabeth T; Spear, Linda; Stevenson, Donald E; Thomas, Yolene; Tubiana, Maurice; Williams, Gary M; Mattson, Mark P

    2007-07-01

    Many biological subdisciplines that regularly assess dose-response relationships have identified an evolutionarily conserved process in which a low dose of a stressful stimulus activates an adaptive response that increases the resistance of the cell or organism to a moderate to severe level of stress. Due to a lack of frequent interaction among scientists in these many areas, there has emerged a broad range of terms that describe such dose-response relationships. This situation has become problematic because the different terms describe a family of similar biological responses (e.g., adaptive response, preconditioning, hormesis), adversely affecting interdisciplinary communication, and possibly even obscuring generalizable features and central biological concepts. With support from scientists in a broad range of disciplines, this article offers a set of recommendations we believe can achieve greater conceptual harmony in dose-response terminology, as well as better understanding and communication across the broad spectrum of biological disciplines.

  11. The reductase activity of the Arabidopsis caleosin RESPONSIVE TO DESSICATION20 mediates gibberellin-dependent flowering time, abscisic acid sensitivity, and tolerance to oxidative stress.

    PubMed

    Blée, Elizabeth; Boachon, Benoît; Burcklen, Michel; Le Guédard, Marina; Hanano, Abdulsamie; Heintz, Dimitri; Ehlting, Jürgen; Herrfurth, Cornelia; Feussner, Ivo; Bessoule, Jean-Jacques

    2014-09-01

    Contrasting with the wealth of information available on the multiple roles of jasmonates in plant development and defense, knowledge about the functions and the biosynthesis of hydroxylated oxylipins remains scarce. By expressing the caleosin RESPONSIVE TO DESSICATION20 (RD20) in Saccharomyces cerevisiae, we show that the recombinant protein possesses an unusual peroxygenase activity with restricted specificity toward hydroperoxides of unsaturated fatty acid. Accordingly, Arabidopsis (Arabidopsis thaliana) plants overexpressing RD20 accumulate the product 13-hydroxy-9,11,15-octadecatrienoic acid, a linolenate-derived hydroxide. These plants exhibit elevated levels of reactive oxygen species (ROS) associated with early gibberellin-dependent flowering and abscisic acid hypersensitivity at seed germination. These phenotypes are dependent on the presence of active RD20, since they are abolished in the rd20 null mutant and in lines overexpressing RD20, in which peroxygenase was inactivated by a point mutation of a catalytic histidine residue. RD20 also confers tolerance against stress induced by Paraquat, Rose Bengal, heavy metal, and the synthetic auxins 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid. Under oxidative stress, 13-hydroxy-9,11,15-octadecatrienoic acid still accumulates in RD20-overexpressing lines, but this lipid oxidation is associated with reduced ROS levels, minor cell death, and delayed floral transition. A model is discussed where the interplay between fatty acid hydroxides generated by RD20 and ROS is counteracted by ethylene during development in unstressed environments. PMID:25056921

  12. The Reductase Activity of the Arabidopsis Caleosin RESPONSIVE TO DESSICATION20 Mediates Gibberellin-Dependent Flowering Time, Abscisic Acid Sensitivity, and Tolerance to Oxidative Stress1[W

    PubMed Central

    Blée, Elizabeth; Boachon, Benoît; Burcklen, Michel; Le Guédard, Marina; Hanano, Abdulsamie; Heintz, Dimitri; Ehlting, Jürgen; Herrfurth, Cornelia; Feussner, Ivo; Bessoule, Jean-Jacques

    2014-01-01

    Contrasting with the wealth of information available on the multiple roles of jasmonates in plant development and defense, knowledge about the functions and the biosynthesis of hydroxylated oxylipins remains scarce. By expressing the caleosin RESPONSIVE TO DESSICATION20 (RD20) in Saccharomyces cerevisiae, we show that the recombinant protein possesses an unusual peroxygenase activity with restricted specificity toward hydroperoxides of unsaturated fatty acid. Accordingly, Arabidopsis (Arabidopsis thaliana) plants overexpressing RD20 accumulate the product 13-hydroxy-9,11,15-octadecatrienoic acid, a linolenate-derived hydroxide. These plants exhibit elevated levels of reactive oxygen species (ROS) associated with early gibberellin-dependent flowering and abscisic acid hypersensitivity at seed germination. These phenotypes are dependent on the presence of active RD20, since they are abolished in the rd20 null mutant and in lines overexpressing RD20, in which peroxygenase was inactivated by a point mutation of a catalytic histidine residue. RD20 also confers tolerance against stress induced by Paraquat, Rose Bengal, heavy metal, and the synthetic auxins 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid. Under oxidative stress, 13-hydroxy-9,11,15-octadecatrienoic acid still accumulates in RD20-overexpressing lines, but this lipid oxidation is associated with reduced ROS levels, minor cell death, and delayed floral transition. A model is discussed where the interplay between fatty acid hydroxides generated by RD20 and ROS is counteracted by ethylene during development in unstressed environments. PMID:25056921

  13. Cellular Stress Responses: Cell Survival and Cell Death

    PubMed Central

    Fulda, Simone; Gorman, Adrienne M.; Hori, Osamu; Samali, Afshin

    2010-01-01

    Cells can respond to stress in various ways ranging from the activation of survival pathways to the initiation of cell death that eventually eliminates damaged cells. Whether cells mount a protective or destructive stress response depends to a large extent on the nature and duration of the stress as well as the cell type. Also, there is often the interplay between these responses that ultimately determines the fate of the stressed cell. The mechanism by which a cell dies (i.e., apoptosis, necrosis, pyroptosis, or autophagic cell death) depends on various exogenous factors as well as the cell's ability to handle the stress to which it is exposed. The implications of cellular stress responses to human physiology and diseases are manifold and will be discussed in this review in the context of some major world health issues such as diabetes, Parkinson's disease, myocardial infarction, and cancer. PMID:20182529

  14. Stressor specificity of sex differences in hypothalamo-pituitary-adrenal axis activity: cortisol responses to exercise, endotoxin, wetting, and isolation/restraint stress in gonadectomized male and female sheep.

    PubMed

    Turner, A I; Rivalland, E T A; Clarke, I J; Tilbrook, A J

    2010-09-01

    Sex differences in the stress-induced activity of the hypothalamo-pituitary-adrenal axis in sheep appear to be dependent on the stressor encountered and occur irrespective of the presence of gonadal steroids. We tested the hypotheses that cortisol responses to exercise, endotoxin, wetting (experiment 1), and isolation/restraint (experiment 2) stress differ between gonadectomized male and female sheep. At weekly intervals (in experiment 1), we subjected gonadectomized rams and ewes (n = 6/group) to control conditions, to exercise stress, to iv injection of endotoxin, and to wetting stress. In a second experiment (experiment 2), we subjected gonadectomized rams and ewes (n = 5/group) to control conditions or to isolation/restraint stress. In both experiments, we measured plasma concentrations of cortisol before, during, and after stress at a frequency of at least 15 min with samples collected (from an indwelling jugular catheter) at a greater frequency around the time of the stressor. Cortisol responses to wetting (experiment 1) and isolation/restraint (experiment 2) stress were significantly higher in females compared with males but in response to exercise (experiment 1) and endotoxin (experiment 1) stress, there were no differences between the sexes. For some stressors, there are sex differences in sheep in the stress-induced activity of the hypothalamo-pituitary-adrenal axis that are independent of the presence of the sex steroids, but the existence of these sex differences and the direction of these sex differences differs, depending on the stressor imposed. PMID:20668025

  15. Response of plants to water stress.

    PubMed

    Osakabe, Yuriko; Osakabe, Keishi; Shinozaki, Kazuo; Tran, Lam-Son P

    2014-01-01

    Water stress adversely impacts many aspects of the physiology of plants, especially photosynthetic capacity. If the stress is prolonged, plant growth, and productivity are severely diminished. Plants have evolved complex physiological and biochemical adaptations to adjust and adapt to a variety of environmental stresses. The molecular and physiological mechanisms associated with water-stress tolerance and water-use efficiency have been extensively studied. The systems that regulate plant adaptation to water stress through a sophisticated regulatory network are the subject of the current review. Molecular mechanisms that plants use to increase stress tolerance, maintain appropriate hormone homeostasis and responses and prevent excess light damage, are also discussed. An understanding of how these systems are regulated and ameliorate the impact of water stress on plant productivity will provide the information needed to improve plant stress tolerance using biotechnology, while maintaining the yield and quality of crops.

  16. Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Pérez-Pérez, María Esther; Lemaire, Stéphane D; Crespo, José L

    2014-10-01

    The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes.

  17. Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Pérez-Pérez, María Esther; Lemaire, Stéphane D; Crespo, José L

    2014-10-01

    The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes. PMID:25143584

  18. Heat shock protein 90 (HSP90) inhibitors activate the heat shock factor 1 (HSF1) stress response pathway and improve glucose regulation in diabetic mice.

    PubMed

    Lee, Jee-Hyung; Gao, Jiaping; Kosinski, Penelope A; Elliman, Stephen J; Hughes, Thomas E; Gromada, Jesper; Kemp, Daniel M

    2013-01-18

    The cytoprotective stress response factor HSF1 regulates the transcription of the chaperone HSP70, which exhibits anti-inflammatory effects and improves insulin sensitivity. We tested the therapeutic potential of this pathway in rodent models of diabetes using pharmacological tools. Activation of the HSF1 pathway was achieved using potent inhibitors of the upstream regulatory protein, HSP90. Treatment with AUY922, a selective HSP90 inhibitor led to robust inhibition of JNK1 phosphorylation, cytoprotection and improved insulin signaling in cells, consistent with effects observed with HSP70 treatment. Chronic dosing with HSP90 inhibitors reversed hyperglycemia in the diabetic db/db mouse model, and improved insulin sensitivity in the diet-induced obese mouse model of insulin resistance, further supporting the concept that the HSF1 pathway is a potentially viable anti-diabetes target. PMID:23261432

  19. Regulation of the hypothalamic-pituitary-adrenocortical stress response

    PubMed Central

    Herman, James P.; McKlveen, Jessica M.; Ghosal, Sriparna; Kopp, Brittany; Wulsin, Aynara; Makinson, Ryan; Scheimann, Jessie; Myers, Brent

    2016-01-01

    The hypothalamo-pituitary-adrenocortical (HPA axis) is required for stress adaptation. Activation of the HPA axis causes secretion of glucocorticoids, which act on multiple organ systems to redirect energy resources to meet real or anticipated demand. The HPA stress response is driven primarily by neural mechanisms, invoking corticotrophin releasing hormone (CRH) release from hypothalamic paraventricular nucleus (PVN) neurons. Pathways activating CRH release are stressor dependent: reactive responses to homeostatic disruption frequently involve direct noradrenergic or peptidergic drive of PVN neurons by sensory relays, whereas anticipatory responses use oligosynaptic pathways originating in upstream limbic structures. Anticipatory responses are driven largely by disinhibition, mediated by trans-synaptic silencing of tonic PVN inhibition via GABAergic neurons in the amygdala. Stress responses are inhibited by negative feedback mechanisms, whereby glucocorticoids act to diminish drive (brainstem), promote trans-synaptic inhibition by limbic structures (e.g, hippocampus). Glucocorticoids also act at the PVN to rapidly inhibit CRH neuronal activity via membrane glucocorticoid receptors. Chronic stress-induced activation of the HPA axis takes many forms (chronic basal hypersecretion, sensitized stress responses, even adrenal exhaustion), with manifestation dependent upon factors such as stressor chronicity, intensity, frequency and modality. Neural mechanisms driving chronic stress responses can be distinct from those controlling acute reactions, including recruitment of novel limbic, hypothalamic and brainstem circuits. Importantly, an individual’s response to acute or chronic stress is determined by numerous factors, including genetics, early life experience, environmental conditions, sex and age. The context in which stressors occur will determine whether an individual’s acute or chronic stress responses are adaptive or maladaptive (pathological). PMID:27065163

  20. Stress Response and Perinatal Reprogramming: Unraveling (Mal)adaptive Strategies

    PubMed Central

    Musazzi, Laura; Marrocco, Jordan

    2016-01-01

    Environmental stressors induce coping strategies in the majority of individuals. The stress response, involving the activation of the hypothalamic-pituitary-adrenocortical axis and the consequent release of corticosteroid hormones, is indeed aimed at promoting metabolic, functional, and behavioral adaptations. However, behavioral stress is also associated with fast and long-lasting neurochemical, structural, and behavioral changes, leading to long-term remodeling of glutamate transmission, and increased susceptibility to neuropsychiatric disorders. Of note, early-life events, both in utero and during the early postnatal life, trigger reprogramming of the stress response, which is often associated with loss of stress resilience and ensuing neurobehavioral (mal)adaptations. Indeed, adverse experiences in early life are known to induce long-term stress-related neuropsychiatric disorders in vulnerable individuals. Here, we discuss recent findings about stress remodeling of excitatory neurotransmission and brain morphology in animal models of behavioral stress. These changes are likely driven by epigenetic factors that lie at the core of the stress-response reprogramming in individuals with a history of perinatal stress. We propose that reprogramming mechanisms may underlie the reorganization of excitatory neurotransmission in the short- and long-term response to stressful stimuli. PMID:27057367

  1. Process Control Minitoring by Stress Response

    SciTech Connect

    Hazen, Terry C.; Stahl, David A.

    2006-04-17

    Environmental contamination with a variety of pollutants hasprompted the development of effective bioremediation strategies. But howcan these processes be best monitored and controlled? One avenue underinvestigation is the development of stress response systems as tools foreffective and general process control. Although the microbial stressresponse has been the subject of intensive laboratory investigation, theenvironmental reflection of the laboratory response to specific stresseshas been little explored. However, it is only within an environmentalcontext, in which microorganisms are constantly exposed to multiplechanging environmental stresses, that there will be full understanding ofmicrobial adaptive resiliency. Knowledge of the stress response in theenvironment will facilitate the control of bioremediation and otherprocesses mediated by complex microbial communities.

  2. Transcriptional activation of LON Gene by a new form of mitochondrial stress: A role for the nuclear respiratory factor 2 in StAR overload response (SOR).

    PubMed

    Bahat, Assaf; Perlberg, Shira; Melamed-Book, Naomi; Isaac, Sara; Eden, Amir; Lauria, Ines; Langer, Thomas; Orly, Joseph

    2015-06-15

    High output of steroid hormone synthesis in steroidogenic cells of the adrenal cortex and the gonads requires the expression of the steroidogenic acute regulatory protein (StAR) that facilitates cholesterol mobilization to the mitochondrial inner membrane where the CYP11A1/P450scc enzyme complex converts the sterol to the first steroid. Earlier studies have shown that StAR is active while pausing on the cytosolic face of the outer mitochondrial membrane while subsequent import of the protein into the matrix terminates the cholesterol mobilization activity. Consequently, during repeated activity cycles, high level of post-active StAR accumulates in the mitochondrial matrix. To prevent functional damage due to such protein overload effect, StAR is degraded by a sequence of three to four ATP-dependent proteases of the mitochondria protein quality control system, including LON and the m-AAA membranous proteases AFG3L2 and SPG7/paraplegin. Furthermore, StAR expression in both peri-ovulatory ovarian cells, or under ectopic expression in cell line models, results in up to 3-fold enrichment of the mitochondrial proteases and their transcripts. We named this novel form of mitochondrial stress as StAR overload response (SOR). To better understand the SOR mechanism at the transcriptional level we analyzed first the unexplored properties of the proximal promoter of the LON gene. Our findings suggest that the human nuclear respiratory factor 2 (NRF-2), also known as GA binding protein (GABP), is responsible for 88% of the proximal promoter activity, including the observed increase of transcription in the presence of StAR. Further studies are expected to reveal if common transcriptional determinants coordinate the SOR induced transcription of all the genes encoding the SOR proteases.

  3. Post-stress rumination predicts HPA axis responses to repeated acute stress.

    PubMed

    Gianferante, Danielle; Thoma, Myriam V; Hanlin, Luke; Chen, Xuejie; Breines, Juliana G; Zoccola, Peggy M; Rohleder, Nicolas

    2014-11-01

    Failure of the hypothalamus-pituitary-adrenal (HPA) axis to habituate to repeated stress exposure is related with adverse health outcomes, but our knowledge of predictors of non-habituation is limited. Rumination, defined as repetitive and unwanted past-centered negative thinking, is related with exaggerated HPA axis stress responses and poor health outcomes. The aim of this study was to test whether post-stress rumination was related with non-habituation of cortisol to repeated stress exposure. Twenty-seven participants (n=13 females) were exposed to the Trier Social Stress Test (TSST) twice on consecutive afternoons. Post-stress rumination was measured after the first TSST, and HPA axis responses were assessed by measuring salivary cortisol 1 min before, and 1, 10, 20, 60, and 120 min after both TSSTs. Stress exposure induced HPA axis activation on both days, and this activation showed habituation indicated by lower responses to the second TSST (F=3.7, p=0.015). Post-stress rumination after the first TSST was associated with greater cortisol reactivity after the initial stress test (r=0.45, p<0.05) and with increased cortisol responses to the second TSST (r=0.51, p<0.01), indicating non-habituation, independently of age, sex, depressive symptoms, perceived life stress, and trait rumination. In summary, results showed that rumination after stress predicted non-habituation of HPA axis responses. This finding implicates rumination as one possible mechanism mediating maladaptive stress response patterns, and it might also offer a pathway through which rumination might lead to negative health outcomes.

  4. Inhibition of the oxidative stress response by heat stress in Caenorhabditis elegans.

    PubMed

    Crombie, Timothy A; Tang, Lanlan; Choe, Keith P; Julian, David

    2016-07-15

    It has long been recognized that simultaneous exposure to heat stress and oxidative stress shows a synergistic interaction that reduces organismal fitness, but relatively little is known about the mechanisms underlying this interaction. We investigated the role of molecular stress responses in driving this synergistic interaction using the nematode Caenorhabditis elegans To induce oxidative stress, we used the pro-oxidant compounds acrylamide, paraquat and juglone. As expected, we found that heat stress and oxidative stress interact synergistically to reduce survival. Compared with exposure to each stressor alone, during simultaneous sublethal exposure to heat stress and oxidative stress the normal induction of key oxidative-stress response (OxSR) genes was generally inhibited, whereas the induction of key heat-shock response (HSR) genes was not. Genetically activating the SKN-1-dependent OxSR increased a marker for protein aggregation and decreased whole-worm survival during heat stress alone, with the latter being independent of HSF-1. In contrast, compared with wild-type worms, inactivating the HSR by HSF-1 knockdown, which would be expected to decrease basal heat shock protein expression, increased survival during oxidative stress alone. Taken together, these data suggest that, in C. elegans, the HSR and OxSR cannot be simultaneously activated to the same extent that each can be activated during a single stressor exposure. We conclude that the observed synergistic reduction in survival during combined exposure to heat stress and oxidative stress is due, at least in part, to inhibition of the OxSR during activation of the HSR.

  5. ENHANCED ACTIVITY OF STROBILURIN AND FLUDIOXONIL BY TARGETING FUNGAL ANTIOXIDATIVE STRESS RESPONSE WITH BERBERINE AND PHENOLIC SYNERGISTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antifungal activity of strobilurins was tested using berberine hemisulfate and different phenolic compounds. With berberine, the most effective phenolic was veratraldehyde. The sod2delta mutant of Saccharomyces cerevisiae was highly sensitive to berberine and veratraldehyde. Functional complementati...

  6. The hyperosmotic stress response of Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hyperosmotic stress response of Campylobacter jejuni: The diarrheal pathogen Campylobacter jejuni and other gastrointestinal bacteria encounter changes in osmolarity in the environment, through exposure to food processing, or upon entering host organisms, where osmotic adaptation can be associa...

  7. Stress, stress-induced cortisol responses, and eyewitness identification performance.

    PubMed

    Sauerland, Melanie; Raymaekers, Linsey H C; Otgaar, Henry; Memon, Amina; Waltjen, Thijs T; Nivo, Maud; Slegers, Chiel; Broers, Nick J; Smeets, Tom

    2016-07-01

    In the eyewitness identification literature, stress and arousal at the time of encoding are considered to adversely influence identification performance. This assumption is in contrast with findings from the neurobiology field of learning and memory, showing that stress and stress hormones are critically involved in forming enduring memories. This discrepancy may be related to methodological differences between the two fields of research, such as the tendency for immediate testing or the use of very short (1-2 hours) retention intervals in eyewitness research, while neurobiology studies insert at least 24 hours. Other differences refer to the extent to which stress-responsive systems (i.e., the hypothalamic-pituitary-adrenal axis) are stimulated effectively under laboratory conditions. The aim of the current study was to conduct an experiment that accounts for the contemporary state of knowledge in both fields. In all, 123 participants witnessed a live staged theft while being exposed to a laboratory stressor that reliably elicits autonomic and glucocorticoid stress responses or while performing a control task. Salivary cortisol levels were measured to control for the effectiveness of the stress induction. One week later, participants attempted to identify the thief from target-present and target-absent line-ups. According to regression and receiver operating characteristic analyses, stress did not have robust detrimental effects on identification performance. Copyright © 2016 John Wiley & Sons, Ltd. © 2016 The Authors Behavioral Sciences & the Law Published by John Wiley & Sons Ltd. PMID:27417874

  8. Effect of simulated microgravity on nitric oxide synthase activity of osteocyte-like cell line MLO-Y4 in response to fluid shear stress

    NASA Astrophysics Data System (ADS)

    Sun, Lian-Wen; Yang, Xiao; Fan, Yu-Bo

    It is well known that microgravity could induce bone loss. However, the mechanism remains poorly understood. Osteocytes are extremely sensitive to fluid shear stress, even more than osteobleasts. The effect of simulated microgravity on osteocytes in response to fluid shear was investigated in this study in order to see if the mechanosensibility of osteocytes changed under simulated microgravity. The osteocyte-like cell line, MLO-Y4, was cultured and divided into four groups, including control (CON), control and shear (CONS), rotary (RT), rotary and shear (RTS). In RT and RTS, the cells were cultured in the rotary cell culture system to simulate microgravity condition. After 5 days, the cells in RTS and CONS were subjected to flow shear for 15 min. Then nitric oxide synthase (NOS) activity in the cells was measured using assay kit. The results showed that NOS activity in respond to fluid shear decreased significantly in RTS compared with CONS. In addition, there was significant difference in NOS activity between CONS and CON while no significant difference between RTS and RT. These indicates that the mechanosensibility of osteocytes decreased under simulated microgravity and this maybe the partly causes of the poor effect of exercise to counter microgravity-induced-bone loss. However, further research need to be done to support this finding.

  9. Endocrine activities and cellular stress responses in the marsh frog Pelophylax ridibundus exposed to cobalt, zinc and their organic nanocomplexes.

    PubMed

    Falfushynska, Halina; Gnatyshyna, Lesya; Fedoruk, Olga; Sokolova, Inna M; Stoliar, Oksana

    2016-01-01

    Metal-containing materials are extensively used in industry, personal care products and medicine, and their release in the environment causes concern for the potential impacts on aquatic organisms. We assessed endocrine disrupting potential of N-vinyl-2-pyrrolidone-based nanoparticles (Me-PSs) containing cobalt (Co(2+)) or zinc (Zn(2+)), using the marsh frog Pelophylax ridibundus as a model. Adult males were exposed for 14 days to waterborne Co(2+) (50μg/L), Zn(2+) (100μg/L) or corresponding concentrations of Co-PS, Zn-PS, or parental polymeric compound (PS). The indices of thyroid activity, vitellogenesis, cytochrome P450-dependent monooxygenases activity (EROD) and cytotoxicity markers were evaluated. Exposure to Co(2+) led to the elevation of serum thyrotropin (TSH) and hepatic deiodinase activities accompanied by the up-regulation of EROD activity. In contrast, the action of the polymer-containing substances (Co-PS, Zn-PS and PS) as well as free Zn(2+) caused a prominent decrease of EROD activity and a decrease in serum cortisol and TSH concentrations. Exposures to Zn(2+), Zn-PS and PS upregulated vitellogenesis in males. All exposures except Co(2+) caused neurotoxicity as indicated by the depletion of cholinesterase. These results demonstrate toxicity of Co- and Zn-containing Me-PSs and their parental compounds (Zn(2+) and PS) in frogs and indicate distinct mechanisms of Co(2+) action. Broad disruption of the hormonal pathways and reduced capacity for organic xenobiotic detoxification may have deleterious impacts on amphibian populations from habitats exposed to metallorganic pollution. PMID:26624501

  10. Endocrine activities and cellular stress responses in the marsh frog Pelophylax ridibundus exposed to cobalt, zinc and their organic nanocomplexes.

    PubMed

    Falfushynska, Halina; Gnatyshyna, Lesya; Fedoruk, Olga; Sokolova, Inna M; Stoliar, Oksana

    2016-01-01

    Metal-containing materials are extensively used in industry, personal care products and medicine, and their release in the environment causes concern for the potential impacts on aquatic organisms. We assessed endocrine disrupting potential of N-vinyl-2-pyrrolidone-based nanoparticles (Me-PSs) containing cobalt (Co(2+)) or zinc (Zn(2+)), using the marsh frog Pelophylax ridibundus as a model. Adult males were exposed for 14 days to waterborne Co(2+) (50μg/L), Zn(2+) (100μg/L) or corresponding concentrations of Co-PS, Zn-PS, or parental polymeric compound (PS). The indices of thyroid activity, vitellogenesis, cytochrome P450-dependent monooxygenases activity (EROD) and cytotoxicity markers were evaluated. Exposure to Co(2+) led to the elevation of serum thyrotropin (TSH) and hepatic deiodinase activities accompanied by the up-regulation of EROD activity. In contrast, the action of the polymer-containing substances (Co-PS, Zn-PS and PS) as well as free Zn(2+) caused a prominent decrease of EROD activity and a decrease in serum cortisol and TSH concentrations. Exposures to Zn(2+), Zn-PS and PS upregulated vitellogenesis in males. All exposures except Co(2+) caused neurotoxicity as indicated by the depletion of cholinesterase. These results demonstrate toxicity of Co- and Zn-containing Me-PSs and their parental compounds (Zn(2+) and PS) in frogs and indicate distinct mechanisms of Co(2+) action. Broad disruption of the hormonal pathways and reduced capacity for organic xenobiotic detoxification may have deleterious impacts on amphibian populations from habitats exposed to metallorganic pollution.

  11. Protein Degradation and the Stress Response

    PubMed Central

    Flick, Karin; Kaiser, Peter

    2012-01-01

    Environmental stresses are manifold and so are the responses they elicit. This is particularly true for higher eukaryotes where various tissues and cell types are differentially affected by the insult. Type and scope of the stress response can therefore differ greatly among cell types. Given the importance of the Ubiquitin Proteasome System (UPS) for most cellular processes, it comes as no surprise that the UPR plays a pivotal role in counteracting the effects of stressors. Here we outline contributions of the UPS to stress sensing, signaling, and response pathways. We make no claim to comprehensiveness but choose selected examples to illustrate concepts and mechanisms by which protein modification with ubiquitin and proteasomal degradation of key regulators ensures cellular integrity during stress situations. PMID:22414377

  12. Stress response and virulence of heat-stressed Campylobacter jejuni.

    PubMed

    Klančnik, Anja; Vučković, Darinka; Jamnik, Polona; Abram, Maja; Možina, Sonja Smole

    2014-01-01

    Thermotolerant Campylobacter spp. frequently cause bacterial gastroenteritis in humans commonly infected through the consumption of undercooked poultry meat. We examined Campylobacter jejuni heat-stress responses in vitro after exposure to 48°C and 55°C. The in vivo modulation of its pathogenicity was also investigated using BALB/c mice intravenously infected with stressed C. jejuni. Regardless of the bacterial growth phase, the culturability and viability of C. jejuni in vitro was reduced after exposure to 55°C. This correlated with the altered protein profile and decreased virulence properties observed in vivo. Heat stress at 48°C elicited the transition to more resistant bacterial forms, independent of morphological changes or the appearance of shorter spiral and coccoid cells. This treatment did not cause marked changes in bacterial virulence properties in vivo. These results indicated that the characteristics and pathogenicity of C. jejuni in response to heat stress are temperature dependent. Further studies on the responses of C. jejuni to stresses used during food processing, as well as the modulation of its virulence, are important for a better understanding of its contamination and infective cycle, and will, thus, contribute to improved safety in the food production chain.

  13. Expression of a Yersinia pseudotuberculosis Type VI Secretion System Is Responsive to Envelope Stresses through the OmpR Transcriptional Activator

    PubMed Central

    Gueguen, Erwan; Durand, Eric; Zhang, Xiang Y.; d’Amalric, Quentin; Journet, Laure; Cascales, Eric

    2013-01-01

    The Type VI secretion system (T6SS) is a macromolecular complex widespread in Gram-negative bacteria. Although several T6SS are required for virulence towards host models, most are necessary to eliminate competitor bacteria. Other functions, such as resistance to amoeba predation, biofilm formation or adaptation to environmental conditions have also been reported. This multitude of functions is reflected by the large repertoire of regulatory mechanisms shown to control T6SS expression, production or activation. Here, we demonstrate that one T6SS gene cluster encoded within the Yersinia pseudotuberculosis genome, T6SS-4, is regulated by OmpR, the response regulator of the two-component system EnvZ-OmpR. We first identified OmpR in a transposon mutagenesis screen. OmpR does not control the expression of the four other Y. pseudotuberculosis T6SS gene clusters and of an isolated vgrG gene, and responds to osmotic stresses to bind to and activate the T6SS-4 promoter. Finally, we show that T6SS-4 promotes Y. pseudotuberculosis survival in high osmolarity conditions and resistance to deoxycholate. PMID:23840509

  14. Direct Activation of Ribosome-Associated Double-Stranded RNA-Dependent Protein Kinase (PKR) by Deoxynivalenol, Anisomycin and Ricin: A New Model for Ribotoxic Stress Response Induction

    PubMed Central

    Zhou, Hui-Ren; He, Kaiyu; Landgraf, Jeff; Pan, Xiao; Pestka, James J.

    2014-01-01

    Double-stranded RNA (dsRNA)-activated protein kinase (PKR) is a critical upstream mediator of the ribotoxic stress response (RSR) to the trichothecene deoxynivalenol (DON) and other translational inhibitors. Here, we employed HeLa cell lysates to: (1) characterize PKR’s interactions with the ribosome and ribosomal RNA (rRNA); (2) demonstrate cell-free activation of ribosomal-associated PKR and (3) integrate these findings in a unified model for RSR. Robust PKR-dependent RSR was initially confirmed in intact cells. PKR basally associated with 40S, 60S, 80S and polysome fractions at molar ratios of 7, 2, 23 and 3, respectively. Treatment of ATP-containing HeLa lysates with DON or the ribotoxins anisomycin and ricin concentration-dependently elicited phosphorylation of PKR and its substrate eIF2α. These phosphorylations could be blocked by PKR inhibitors. rRNA immunoprecipitation (RNA-IP) of HeLa lysates with PKR-specific antibody and sequencing revealed that in the presence of DON or not, the kinase associated with numerous discrete sites on both the 18S and 28S rRNA molecules, a number of which contained double-stranded hairpins. These findings are consistent with a sentinel model whereby multiple PKR molecules basally associate with the ribosome positioning them to respond to ribotoxin-induced alterations in rRNA structure by dimerizing, autoactivating and, ultimately, evoking RSR. PMID:25521494

  15. Anti-Candida-biofilm activity of micafungin is attenuated by voriconazole but restored by pharmacological inhibition of Hsp90-related stress responses.

    PubMed

    Kaneko, Yukihiro; Ohno, Hideaki; Fukazawa, Hidesuke; Murakami, Yuko; Imamura, Yoshifumi; Kohno, Shigeru; Miyazaki, Yoshitsugu

    2010-06-01

    We have conducted an in vitro evaluation of the efficacy of a voriconazole-micafungin combination against Candida albicans. When used alone, both micafungin and voriconazole decreased the metabolic activity of planktonic cells, but only micafungin displayed potent anti-biofilm activity. Their combination appeared to have an additive effect against planktonic cells. However, voriconazole significantly antagonized the fungicidal effect of micafungin against Candida biofilms. Time-lag experiments showed that pre-treatment with voriconazole induced resistance to micafungin in Candida biofilms. The micafungin-antagonizing effect of voriconazole persisted even when the biofilm was no longer exposed to voriconazole. In contrast, voriconazole addition after 24 h of micafungin treatment did not alter micafungin sensitivity. To investigate the mechanism of antagonism, we used inhibitors of Hsp90 and its effectors because Hsp90 seems to be implicated in the resistance to micafungin. These molecules reversed the voriconazole-induced resistance to micafungin which suggests that Hsp90-related stress responses are involved in the antagonism. Our results may provide clues as to the mechanism of increased drug resistance in Candida biofilms and raises concerns about the use of the voriconazole-micafungin combination in clinical settings. PMID:19958255

  16. Response of Desulfovibrio vulgaris to Alkaline Stress

    SciTech Connect

    Stolyar, S.; He, Q.; He, Z.; Yang, Z.; Borglin, S.E.; Joyner, D.; Huang, K.; Alm, E.; Hazen, T.C.; Zhou, J.; Wall, J.D.; Arkin, A.P.; Stahl, D.A.

    2007-11-30

    The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included three ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).

  17. A Vacuolar β-Glucosidase Homolog That Possesses Glucose-Conjugated Abscisic Acid Hydrolyzing Activity Plays an Important Role in Osmotic Stress Responses in Arabidopsis[W

    PubMed Central

    Xu, Zheng-Yi; Lee, Kwang Hee; Dong, Ting; Jeong, Jae Cheol; Jin, Jing Bo; Kanno, Yuri; Kim, Dae Heon; Kim, Soo Youn; Seo, Mitsunori; Bressan, Ray A.; Yun, Dae-Jin; Hwang, Inhwan

    2012-01-01

    The phytohormone abscisic acid (ABA) plays a critical role in various physiological processes, including adaptation to abiotic stresses. In Arabidopsis thaliana, ABA levels are increased both through de novo biosynthesis and via β-glucosidase homolog1 (BG1)-mediated hydrolysis of Glc-conjugated ABA (ABA-GE). However, it is not known how many different β-glucosidase proteins produce ABA from ABA-GE and how the multiple ABA production pathways are coordinated to increase ABA levels. Here, we report that a previously undiscovered β-glucosidase homolog, BG2, produced ABA by hydrolyzing ABA-GE and plays a role in osmotic stress response. BG2 localized to the vacuole as a high molecular weight complex and accumulated to high levels under dehydration stress. BG2 hydrolyzed ABA-GE to ABA in vitro. In addition, BG2 increased ABA levels in protoplasts upon application of exogenous ABA-GE. Overexpression of BG2 rescued the bg1 mutant phenotype, as observed for the overexpression of NCED3 in bg1 mutants. Multiple Arabidopsis bg2 alleles with a T-DNA insertion in BG2 were more sensitive to dehydration and NaCl stress, whereas BG2 overexpression resulted in enhanced resistance to dehydration and NaCl stress. Based on these observations, we propose that, in addition to the de novo biosynthesis, ABA is produced in multiple organelles by organelle-specific β-glucosidases in response to abiotic stresses. PMID:22582100

  18. Interactive effects of CO₂ and trace metals on the proteasome activity and cellular stress response of marine bivalves Crassostrea virginica and Mercenaria mercenaria.

    PubMed

    Götze, Sandra; Matoo, Omera B; Beniash, Elia; Saborowski, Reinhard; Sokolova, Inna M

    2014-04-01

    Increased anthropogenic emission of CO2 changes the carbonate chemistry and decreases the pH of the ocean. This can affect the speciation and the bioavailability of metals in polluted habitats such as estuaries. However, the effects of acidification on metal accumulation and stress response in estuarine organisms including bivalves are poorly understood. We studied the interactive effects of CO2 and two common metal pollutants, copper (Cu) and cadmium (Cd), on metal accumulation, intracellular ATP/ubiquitin-dependent protein degradation, stress response and energy metabolism in two common estuarine bivalves-Crassostrea virginica (eastern oyster) and Mercenaria mercenaria (hard shell clam). Bivalves were exposed for 4-5 weeks to clean seawater (control) and to either 50 μg L(-1) Cu or 50 μg L(-1) Cd at one of three partial pressures of CO2 ( [Formula: see text] ∼ 395, ∼ 800 and ∼ 1500 μatm) representative of the present-day conditions and projections of the Intergovernmental Panel for Climate Change (IPCC) for the years 2100 and 2250, respectively. Clams accumulated lower metal burdens than oysters, and elevated [Formula: see text] enhanced the Cd and Cu accumulation in mantle tissues in both species. Higher Cd and Cu burdens were associated with elevated mRNA expression of metal binding proteins metallothionein and ferritin. In the absence of added metals, proteasome activities of clams and oysters were robust to elevated [Formula: see text] , but [Formula: see text] modulated the proteasome response to metals. Cd exposure stimulated the chymotrypsin-like activity of the oyster proteasome at all CO2 levels. In contrast, trypsin- and caspase-like activities of the oyster proteasome were slightly inhibited by Cd exposure in normocapnia but this inhibition was reversed at elevated [Formula: see text] . Cu exposure inhibited the chymotrypsin-like activity of the oyster proteasome regardless of the exposure [Formula: see text] . The effects of metal exposure on

  19. Stress-induced asymmetric frontal brain activity and aggression risk.

    PubMed

    Verona, Edelyn; Sadeh, Naomi; Curtin, John J

    2009-02-01

    Impersonal stressors, not only interpersonal provocation, can instigate aggression through an associative network linking negative emotions to behavioral activation (L. Berkowitz, 1990). Research has not examined the brain mechanisms that are engaged by different types of stress and serve to promote hostility and aggression. The present study examined whether stress exposure elicits more left than right frontal brain activity implicated in behavioral approach motivation and whether this lateralized brain activity predicts stress-induced aggression and hostile/aggressive tendencies. Results showed that (a) participants in the impersonal (assigned to stress by a computer) and interpersonal (assigned to stress by a provoking confederate) stress conditions both showed more left than right frontal electroencephalogram activity after condition assignment and stress exposure and (b) the 2 stress groups exhibited subsequent increases in aggression relative to the no-stress group. Importantly, left frontal asymmetry in response to stress exposure predicted increases in subsequent aggressive behavior, a finding that did not emerge in the no-stress condition. Thus, both the interpersonal and impersonal stressors impacted state changes in brain activity related to behavioral approach, suggesting that stress reactivity involving approach activation represents risk for behavioral dysregulation.

  20. Anger responses to psychosocial stress predict heart rate and cortisol stress responses in men but not women.

    PubMed

    Lupis, Sarah B; Lerman, Michelle; Wolf, Jutta M

    2014-11-01

    While previous research has suggested that anger and fear responses to stress are linked to distinct sympathetic nervous system (SNS) stress responses, little is known about how these emotions predict hypothalamus-pituitary-adrenal (HPA) axis reactivity. Further, earlier research primarily relied on retrospective self-report of emotion. The current study aimed at addressing both issues in male and female individuals by assessing the role of anger and fear in predicting heart rate and cortisol stress responses using both self-report and facial coding analysis to assess emotion responses. We exposed 32 healthy students (18 female; 19.6±1.7 yr) to an acute psychosocial stress paradigm (TSST) and measured heart rate and salivary cortisol levels throughout the protocol. Anger and fear before and after stress exposure was assessed by self-report, and video recordings of the TSST were assessed by a certified facial coder to determine emotion expression (FACS). Self-reported emotions and emotion expressions did not correlate (all p>.23). Increases in self-reported fear predicted blunted cortisol responses in men (β=0.41, p=.04). Also for men, longer durations of anger expression predicted exaggerated cortisol responses (β=0.67 p=.004), and more anger incidences predicted exaggerated cortisol and heart rate responses (β=0.51, p=.033; β=0.46, p=.066, resp.). Anger and fear did not predict SNS or HPA activity for females (all p>.23). The current differential self-report and facial coding findings support the use of multiple modes of emotion assessment. Particularly, FACS but not self-report revealed a robust anger-stress association that could have important downstream health effects for men. For women, future research may clarify the role of other emotions, such as self-conscious expressions of shame, for physiological stress responses. A better understanding of the emotion-stress link may contribute to behavioral interventions targeting health-promoting ways of

  1. EATING BEHAVIOR IN RESPONSE TO ACUTE STRESS.

    PubMed

    Mocanu, Veronica; Bontea, Amalia; Anton-Păduraru, Dana-teodora

    2016-01-01

    Obesity is a medical and social problem with a dramatically increasing prevalence. It is important to take action since childhood to prevent and treat obesity and metabolic syndrome. Infantile obesity affects all body systems starting in childhood and continuing to adulthood. Understanding the impact of stressors on weight status may be especially important for preventing obesity. The relationship between stress, eating behavior and obesity is not fully understood. However, there is evidence that stress causes disorders in hypothalamic-pituitary-adrenal (HPA) axis, system that regulates both stress and feeding responses. Also, the response is different depending on the type of stressors. Chronic stress, especially when people live in a palatable food environment, induces HPA stimulation, excess glucocorticoids, insulin resistance, which lead to inhibition of lipid mobilization, accumulation of triglyceride and retention of abdominal fat. PMID:27483696

  2. Sympathoneural and adrenomedullary responses to mental stress.

    PubMed

    Carter, Jason R; Goldstein, David S

    2015-01-01

    This concept-based review provides historical perspectives and updates about sympathetic noradrenergic and sympathetic adrenergic responses to mental stress. The topic of this review has incited perennial debate, because of disagreements over definitions, controversial inferences, and limited availability of relevant measurement tools. The discussion begins appropriately with Cannon's "homeostasis" and his pioneering work in the area. This is followed by mental stress as a scientific idea and the relatively new notions of allostasis and allostatic load. Experimental models of mental stress in rodents and humans are discussed, with particular attention to ethical constraints in humans. Sections follow on sympathoneural responses to mental stress, reactivity of catecholamine systems, clinical pathophysiologic states, and the cardiovascular reactivity hypothesis. Future advancement of the field will require integrative approaches and coordinated efforts between physiologists and psychologists on this interdisciplinary topic.

  3. High activity of the stress promoter contributes to susceptibility to stress in the tree shrew

    PubMed Central

    Fang, Hui; Sun, Yun-Jun; Lv, Yan-Hong; Ni, Rong-Jun; Shu, Yu-Mian; Feng, Xiu-Yu; Wang, Yu; Shan, Qing-Hong; Zu, Ya-Nan; Zhou, Jiang-Ning

    2016-01-01

    Stress is increasingly present in everyday life in our fast-paced society and involved in the pathogenesis of many psychiatric diseases. Corticotrophin-releasing-hormone (CRH) plays a pivotal role in regulating the stress responses. The tree shrews are highly vulnerable to stress which makes them the promising animal models for studying stress responses. However, the mechanisms underlying their high stress-susceptibility remained unknown. Here we confirmed that cortisol was the dominate corticosteroid in tree shrew and was significantly increased after acute stress. Our study showed that the function of tree shrew CRH - hypothalamic-pituitary-adrenal (HPA) axis was nearly identical to human that contributed little to their hyper-responsiveness to stress. Using CRH transcriptional regulation analysis we discovered a peculiar active glucocorticoid receptor response element (aGRE) site within the tree shrew CRH promoter, which continued to recruit co-activators including SRC-1 (steroid receptor co-activator-1) to promote CRH transcription under basal or forskolin/dexamethasone treatment conditions. Basal CRH mRNA increased when the aGRE was knocked into the CRH promoter in human HeLa cells using CAS9/CRISPR. The aGRE functioned critically to form the “Stress promoter” that contributed to the higher CRH expression and susceptibility to stress. These findings implicated novel molecular bases of the stress-related diseases in specific populations. PMID:27125313

  4. Hormonal control of cold stress responses in plants.

    PubMed

    Eremina, Marina; Rozhon, Wilfried; Poppenberger, Brigitte

    2016-02-01

    Cold stress responses in plants are highly sophisticated events that alter the biochemical composition of cells for protection from damage caused by low temperatures. In addition, cold stress has a profound impact on plant morphologies, causing growth repression and reduced yields. Complex signalling cascades are utilised to induce changes in cold-responsive gene expression that enable plants to withstand chilling or even freezing temperatures. These cascades are governed by the activity of plant hormones, and recent research has provided a better understanding of how cold stress responses are integrated with developmental pathways that modulate growth and initiate other events that increase cold tolerance. Information on the hormonal control of cold stress signalling is summarised to highlight the significant progress that has been made and indicate gaps that still exist in our understanding.

  5. Reproduction elevates the corticosterone stress response in common fruit bats.

    PubMed

    Klose, Stefan M; Smith, Carolynn L; Denzel, Andrea J; Kalko, Elisabeth K V

    2006-04-01

    Changes in reproductive state or the environment may affect the sensitivity of the hypothalamic-pituitary-andrenal (HPA) axis. However, little is known about the dynamics of the resulting corticosteroid stress response, in particular in tropical mammals. In this study, we address the modulation of corticosterone release in response to different reproductive conditions and seasonality in 326 free-living common fruit-eating bats (Artibeus jamaicensis) on Barro Colorado Island in Panama during dry and wet seasons. We present strong evidence that stress sensitivity is primarily modulated by reproductive condition. In reproductively active females, corticosterone increases were more rapid and reached higher levels, but also decreased significantly faster than in inactive females. The corticosterone response was weaker in reproducing males than in females and delayed compared to non-reproductive males. Testes volume in reproductively active males was negatively correlated with corticosterone concentrations. Our findings suggest differentiated dynamics in the corticosterone stress response between sexes, potentially reflecting conflicting ecological demands. In females, a strong acute corticosterone response may represent high stress- and risk-sensitivity that facilitates escape and thus helps to protect reproduction. In males, suppression during reproductive activity could reflect lowered stress sensitivity to avoid chronically elevated corticosterone levels in times of frequent aggressive and therefore costly inter-male encounters.

  6. Transcript changes in Vibrio cholerae in response to salt stress.

    PubMed

    Fu, Xiuping; Liang, Weili; Du, Pengcheng; Yan, Meiying; Kan, Biao

    2014-01-01

    Vibrio cholerae, which is a serious human intestinal pathogen, often resides and thrives in estuaries but requires major self-regulation to overcome intestinal hyperosmotic stress or high salt stress in water and food. In the present study, we selected multiple O1 and O139 group V. cholerae strains that were isolated from different regions and during different years to study their salt tolerance. Based on the mechanisms that other bacteria use to respond to high salt stress, we selected salt stress-response related genes to study the mechanisms which V. cholerae responds to high salt stress. V. cholerae strains showed salt-resistance characteristics that varied in salt concentrations from 4% to 6%. However, group O1 and group O139 showed no significant difference in the degree of salt tolerance. The primary responses of bacteria to salt stress, including Na(+) exclusion, K(+) uptake and glutamate biosynthesis, were observed in V. cholerae strains. In addition, some sigma factors were up-regulated in V. cholerae strains, suggesting that V. cholerae may recruit common sigma factors to achieve an active salt stress response. However, some changes in gene transcript levels in response to salt stress in V. cholerae were strain-specific. In particular, hierarchical clustering of differentially expressed genes indicated that transcript levels of these genes were correlated with the degree of salt tolerance. Therefore, elevated transcript levels of some genes, including sigma factors and genes involved in peptidoglycan biosynthesis, may be due to the salt tolerance of strains. In addition, high salt-tolerant strains may recruit common as well as additional sigma factors to activate the salt stress response. PMID:25589902

  7. Dynamic neural activity during stress signals resilient coping.

    PubMed

    Sinha, Rajita; Lacadie, Cheryl M; Constable, R Todd; Seo, Dongju

    2016-08-01

    Active coping underlies a healthy stress response, but neural processes supporting such resilient coping are not well-known. Using a brief, sustained exposure paradigm contrasting highly stressful, threatening, and violent stimuli versus nonaversive neutral visual stimuli in a functional magnetic resonance imaging (fMRI) study, we show significant subjective, physiologic, and endocrine increases and temporally related dynamically distinct patterns of neural activation in brain circuits underlying the stress response. First, stress-specific sustained increases in the amygdala, striatum, hypothalamus, midbrain, right insula, and right dorsolateral prefrontal cortex (DLPFC) regions supported the stress processing and reactivity circuit. Second, dynamic neural activation during stress versus neutral runs, showing early increases followed by later reduced activation in the ventrolateral prefrontal cortex (VLPFC), dorsal anterior cingulate cortex (dACC), left DLPFC, hippocampus, and left insula, suggested a stress adaptation response network. Finally, dynamic stress-specific mobilization of the ventromedial prefrontal cortex (VmPFC), marked by initial hypoactivity followed by increased VmPFC activation, pointed to the VmPFC as a key locus of the emotional and behavioral control network. Consistent with this finding, greater neural flexibility signals in the VmPFC during stress correlated with active coping ratings whereas lower dynamic activity in the VmPFC also predicted a higher level of maladaptive coping behaviors in real life, including binge alcohol intake, emotional eating, and frequency of arguments and fights. These findings demonstrate acute functional neuroplasticity during stress, with distinct and separable brain networks that underlie critical components of the stress response, and a specific role for VmPFC neuroflexibility in stress-resilient coping. PMID:27432990

  8. Molecular and biochemical responses of Volvox carteri to oxidative stress

    NASA Astrophysics Data System (ADS)

    Lingappa, U.; Rankin-Gee, E. K.; Lera, M.; Bebour, B.; Marcu, O.

    2014-03-01

    Understanding the intracellular response to environmental stresses is a key aspect to understanding the limits of habitability for life as we know it. A wide range of relevant stressors, from heat shock to radiation, result in the intracellular production of reactive oxygen species (ROS). ROS are used physiologically as signaling molecules to cause changes in gene expression and metabolism. However, ROS, including superoxide (O2-) and peroxides, are also highly reactive molecules that cause oxidative damage to proteins, lipids and DNA. Here we studied stress response in the multicellular, eukaryotic green alga Volvox carteri, after exposure to heat shock conditions. We show that the ROS response to heat stress is paralleled by changes in photosynthetic metabolism, antioxidant enzyme activity and gene expression, and fluctuations in the elemental composition of cells. Metabolism, as measured by pulse amplitude modulated (PAM) fluorometry over two hours of heat stress, showed a linear decrease in the photosynthetic efficiency of Volvox. ROS quantification uncovered an increase in ROS in the culture medium, paralleled by a decrease in ROS within the Volvox colonies, suggesting an export mechanism is utilized to mitigate stress. Enzyme kinetics indicated an increase in superoxide dismutase (SOD) activity over the heat stress timecourse. Using X-ray fluorescence (XRF) at the Stanford Synchrotron Radiation Lightsource, we show that these changes coincide with cell-specific import/export and intracellular redistribution of transition elements and halides, suggesting that the cellular metallome is also engaged in mediating oxidative stress in Volvox.

  9. Role of chromatin in water stress responses in plants.

    PubMed

    Han, Soon-Ki; Wagner, Doris

    2014-06-01

    As sessile organisms, plants are exposed to environmental stresses throughout their life. They have developed survival strategies such as developmental and morphological adaptations, as well as physiological responses, to protect themselves from adverse environments. In addition, stress sensing triggers large-scale transcriptional reprogramming directed at minimizing the deleterious effect of water stress on plant cells. Here, we review recent findings that reveal a role of chromatin in water stress responses. In addition, we discuss data in support of the idea that chromatin remodelling and modifying enzymes may be direct targets of stress signalling pathways. Modulation of chromatin regulator activity by these signaling pathways may be critical in minimizing potential trade-offs between growth and stress responses. Alterations in the chromatin organization and/or in the activity of chromatin remodelling and modifying enzymes may furthermore contribute to stress memory. Mechanistic insight into these phenomena derived from studies in model plant systems should allow future engineering of broadly drought-tolerant crop plants that do not incur unnecessary losses in yield or growth.

  10. Juvenile stress impairs body temperature regulation and augments anticipatory stress-induced hyperthermia responses in rats.

    PubMed

    Yee, Nicole; Plassmann, Kerstin; Fuchs, Eberhard

    2011-09-01

    Clinical studies have implicated adolescence as an important and vulnerable period during which traumatic experiences can predispose individuals to anxiety and mood disorders. As such, a stress model in juvenile rats (age 27-29 d) was previously developed to investigate the long-term effects of stress exposure during adolescence on behavior and physiology. This paradigm involves exposing rats to different stressors on consecutive days over a 3-day period. Here, we studied the effects of juvenile stress on long-term core body temperature regulation and acute stress-induced hyperthermia (SIH) responses using telemetry. We found no differences between control and juvenile stress rats in anxiety-related behavior on the elevated plus maze, which we attribute to stress associated with surgical implantation of telemetry devices. This highlights the severe impact of surgical stress on the results of subsequent behavioral measurements. Nonetheless, juvenile stress disrupted the circadian rhythmicity of body temperature and decreased circadian amplitude. It also induced chronic hypothermia during the dark phase of the day, when rats are most active. When subjected to acute social defeat stress as adults, juvenile stress had no impact on the SIH response relative to controls. However, 24 h later, juvenile stress rats displayed an elevated SIH response in anticipation of social defeat when re-exposed to the social defeat environment. Taken together, our findings indicate that juvenile stress can induce long-term alterations in body temperature regulation and heighten the increase in temperature associated with anticipation of social defeat. The outcomes of behavioral measurements in these experiments, however, are severely affected by surgical stress. PMID:21557956

  11. Modulation of immune responses in stress by Yoga.

    PubMed

    Arora, Sarika; Bhattacharjee, Jayashree

    2008-07-01

    Stress is a constant factor in today's fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS) and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.

  12. ROS Regulation During Abiotic Stress Responses in Crop Plants

    PubMed Central

    You, Jun; Chan, Zhulong

    2015-01-01

    Abiotic stresses such as drought, cold, salt and heat cause reduction of plant growth and loss of crop yield worldwide. Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anions (O2•-), hydroxyl radical (OH•) and singlet oxygen (1O2) are by-products of physiological metabolisms, and are precisely controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS are significantly accumulated under abiotic stress conditions, which cause oxidative damage and eventually resulting in cell death. Recently, ROS have been also recognized as key players in the complex signaling network of plants stress responses. The involvement of ROS in signal transduction implies that there must be coordinated function of regulation networks to maintain ROS at non-toxic levels in a delicate balancing act between ROS production, involving ROS generating enzymes and the unavoidable production of ROS during basic cellular metabolism, and ROS-scavenging pathways. Increasing evidence showed that ROS play crucial roles in abiotic stress responses of crop plants for the activation of stress-response and defense pathways. More importantly, manipulating ROS levels provides an opportunity to enhance stress tolerances of crop plants under a variety of unfavorable environmental conditions. This review presents an overview of current knowledge about homeostasis regulation of ROS in crop plants. In particular, we summarize the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation. Finally, the challenges toward the improvement of abiotic stress tolerance through ROS regulation in crops are discussed. PMID:26697045

  13. Reactive oxygen species in response of plants to gravity stress

    NASA Astrophysics Data System (ADS)

    Jadko, Sergiy

    2016-07-01

    Reactive oxygen species (ROS) as second messengers can induce stress response of plants. Thioredoxins (Trx) and peroxiredoxins (Prx) can function as sensors and transmitters of the ROS in stress signaling and antioxidant response. 12-14 days old tissue culture of Arabidopsis thaliana have been investigated. Hypergravity stress was induced by centrifugation at 10 and 20 g during 30 and 90 min and than intensity of spontaneous chemiluminescence (SChL/ROS content), Trx and Prx activities were determined. All experiments were repeated from 3 to 5 times and the obtained data were statistically treated. In the tissue culture under development of the stress there were an increase in intensity of SChL and Trx and Prx activities. Thus, under hypergravity stress in the plant occurred early increase in the ROS level and the ROS induced the increase in the Trx and Prx activities. Prx and Trx can also participate in the formation of stress respons as acceptors and transducers of the redox signals. Increase in the activity of these enzymes primarily aimed at increasing of the total antioxidant activity in the cells to prevent of the plant to development of oxidative degradation by ROS.

  14. The peroxide stress response of Bacillus licheniformis.

    PubMed

    Schroeter, Rebecca; Voigt, Birgit; Jürgen, Britta; Methling, Karen; Pöther, Dierk-Christoph; Schäfer, Heinrich; Albrecht, Dirk; Mostertz, Jörg; Mäder, Ulrike; Evers, Stefan; Maurer, Karl-Heinz; Lalk, Michael; Mascher, Thorsten; Hecker, Michael; Schweder, Thomas

    2011-07-01

    The oxidative stress response of Bacillus licheniformis after treatment with hydrogen peroxide was investigated at the transcriptome, proteome and metabolome levels. In this comprehensive study, 84 proteins and 467 transcripts were found to be up or downregulated in response to the stressor. Among the upregulated genes were many that are known to have important functions in the oxidative stress response of other organisms, such as catalase, alkylhydroperoxide reductase or the thioredoxin system. Many of these genes could be grouped into putative regulons by genomic mining. The occurrence of oxidative damage to proteins was analyzed by a 2-DE-based approach. In addition, we report the induction of genes with hitherto unknown functions, which may be important for the specific oxidative stress response of B. licheniformis. The genes BLi04114 and BLi04115, that are located adjacent to the catalase gene, were massively induced during peroxide stress. Furthermore, the genes BLi04207 and BLi04208, which encode proteins homologous to glyoxylate cycle enzymes, were also induced by peroxide. Metabolomic analyses support the induction of the glyoxylate cycle during oxidative stress in B. licheniformis.

  15. Thermodynamic Modeling and Analysis of Human Stress Response

    NASA Technical Reports Server (NTRS)

    Boregowda, S. C.; Tiwari, S. N.

    1999-01-01

    A novel approach based on the second law of thermodynamics is developed to investigate the psychophysiology and quantify human stress level. Two types of stresses (thermal and mental) are examined. A Unified Stress Response Theory (USRT) is developed under the new proposed field of study called Engineering Psychophysiology. The USRT is used to investigate both thermal and mental stresses from a holistic (human body as a whole) and thermodynamic viewpoint. The original concepts and definitions are established as postulates which form the basis for thermodynamic approach to quantify human stress level. An Objective Thermal Stress Index (OTSI) is developed by applying the second law of thermodynamics to the human thermal system to quantify thermal stress or dis- comfort in the human body. The human thermal model based on finite element method is implemented. It is utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal stress responses under different environmental conditions. An innovative hybrid technique is developed to analyze human thermal behavior based on series of human-environment interaction simulations. Continuous monitoring of thermal stress is demonstrated with the help of OTSI. It is well established that the human thermal system obeys the second law of thermodynamics. Further, the OTSI is validated against the experimental data. Regarding mental stress, an Objective Mental Stress Index (OMSI) is developed by applying the Maxwell relations of thermodynamics to the combined thermal and cardiovascular system in the human body. The OMSI is utilized to demonstrate the technique of monitoring mental stress continuously and is validated with the help of series of experimental studies. Although the OMSI indicates the level of mental stress, it provides a strong thermodynamic and mathematical relationship between activities of thermal and cardiovascular systems of the human body.

  16. Orientational Polarizability and Stress Response of Biological Cells

    NASA Astrophysics Data System (ADS)

    Safran, S. A.; de, R.; Zemel, A.

    We present a theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes random forces as well as forces that arise from the deformation of the matrix and those due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate both the static and high frequency limits of the orientational response in terms of the cellular polarizability. For systems in which the forces due to regulation and activity dominate the mechanical forces, we show that there is a non-linear dynamical response which, in the high frequency limit, causes the cell to orient nearly perpendicular to the direction of the applied stress.

  17. Stress in Atlantic salmon: response to unpredictable chronic stress.

    PubMed

    Madaro, Angelico; Olsen, Rolf E; Kristiansen, Tore S; Ebbesson, Lars O E; Nilsen, Tom O; Flik, Gert; Gorissen, Marnix

    2015-08-01

    Combinations of stressors occur regularly throughout an animal's life, especially in agriculture and aquaculture settings. If an animal fails to acclimate to these stressors, stress becomes chronic, and a condition of allostatic overload arises with negative results for animal welfare. In the current study, we describe effects of exposing Atlantic salmon parr to an unpredictable chronic stressor (UCS) paradigm for 3 weeks. The paradigm involves exposure of fish to seven unpredictable stressors three times a day. At the end of the trial, experimental and control fish were challenged with yet another novel stressor and sampled before and 1 h after that challenge. Plasma cortisol decreased steadily over time in stressed fish, indicative of exhaustion of the endocrine stress axis. This was confirmed by a lower cortisol response to the novel stressor at the end of the stress period in chronically stressed fish compared with the control group. In the preoptic area (POA) and pituitary gland, chronic stress resulted in decreased gene expression of 11βhsd2, gr1 and gr2 in the POA and increased expression of those genes in the pituitary gland. POA crf expression and pituitary expression of pomcs and mr increased, whereas interrenal gene expression was unaffected. Exposure to the novel stressor had no effect on POA and interrenal gene expression. In the pituitary, crfr1, pomcs, 11βhsd2, grs and mr were down-regulated. In summary, our results provide a novel overview of the dynamic changes that occur at every level of the hypothalamic-pituitary gland-interrenal gland (HPI) axis as a result of chronic stress in Atlantic salmon. PMID:26056242

  18. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants.

    PubMed

    Sun, Ai-Zhen; Guo, Fang-Qing

    2016-01-01

    It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants. PMID:27066042

  19. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants

    PubMed Central

    Sun, Ai-Zhen; Guo, Fang-Qing

    2016-01-01

    It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants. PMID:27066042

  20. Nrf2 activators modulate oxidative stress responses and bioenergetic profiles of human retinal epithelial cells cultured in normal or high glucose conditions.

    PubMed

    Foresti, Roberta; Bucolo, Claudio; Platania, Chiara Maria Bianca; Drago, Filippo; Dubois-Randé, Jean-Luc; Motterlini, Roberto

    2015-09-01

    Retinal pigment epithelial cells exert an important supporting role in the eye and develop adaptive responses to oxidative stress or high glucose levels, as observed during diabetes. Endogenous antioxidant defences are mainly regulated by Nrf2, a transcription factor that is activated by naturally-derived and electrophilic compounds. Here we investigated the effect of the Nrf2 activators dimethylfumarate (DMF) and carnosol on antioxidant pathways, oxygen consumption rate and wound healing in human retinal pigment epithelial cells (ARPE-19) cultured in medium containing normal (NG, 5mM) or high (HG, 25 mM) glucose levels. We also assessed wound healing using an in vivo corneal epithelial injury model. We found that Nrf2 nuclear translocation and heme oxygenase activity increased in ARPE cells treated with 10 μM DMF or carnosol irrespective of glucose culture conditions. However, HG rendered retinal cells more sensitive to regulators of glutathione synthesis or inhibition and caused a decrease of both cellular and mitochondrial reactive oxygen species. Culture in HG also reduced ATP production and mitochondrial function as measured with the Seahorse XF analyzer and electron microscopy analysis revealed morphologically damaged mitochondria. Acute treatment with DMF or carnosol did not restore mitochondrial function in HG cells; conversely, the compounds reduced cellular maximal respiratory and reserve capacity, which were completely prevented by N-acetylcysteine thus suggesting the involvement of thiols in this effect. Interestingly, the scratch assay showed that wound closure was faster in cells cultured in HG than NG and was accelerated by carnosol. This effect was reversed by an inhibitor of heme oxygenase activity. Moreover, topical application of carnosol to the cornea of diabetic rats significantly accelerated wound healing. In summary, these data indicate that culture of retinal epithelial cells in HG does not affect the activation of the Nrf2/heme oxygenase

  1. Sertraline behavioral response associates closer and dose-dependently with cortical rather than hippocampal serotonergic activity in the rat forced swim stress.

    PubMed

    Mikail, Hudu G; Dalla, Christina; Kokras, Nikolaos; Kafetzopoulos, Vasilios; Papadopoulou-Daifoti, Z

    2012-09-10

    The rat Forced Swim Test (FST) is widely used to investigate the response to antidepressant treatment. Selective serotonin reuptake inhibitors (SSRIs) elongate swimming duration during the FST, while climbing duration is unaffected. In the present study, we aimed to correlate behavioral effects of the SSRI sertraline in the FST with respective changes in the serotonergic activity of the hippocampus and the prefrontal cortex. Male rats were subjected to the standard FST (two swim sessions in two consecutive days) and between the two sessions they received three i.p. injections of sertraline (10 mg/kg or 40 mg/kg) or vehicle. All rats were killed immediately after the second FST session. Unstressed animals received the same administration schemes and were killed in equivalent time-points. Serotonin and its metabolite 5-HIAA were assayed in the hippocampus and the prefrontal cortex with the use of high-performance liquid chromatography (HPLC-ED) and their ratio 5-HIAA/5-HT was calculated. Sertraline enhanced swimming and decreased immobility duration at both doses. Serotonergic activity was not altered by the 2-day swim stress in either brain region, while subchronic sertraline treatment enhanced 5-HT levels and decreased 5-HIAA/5-HT in the hippocampus and the prefrontal cortex. The serotonin turnover rate (5-HIAA/5-HT ratio) decrease is probably indicative of reduced 5-HT metabolism, as a result of 5-HT reuptake inhibition. This effect was significant in the prefrontal cortex of unstressed rats only after a higher dose of sertraline. In the prefrontal cortex, but not in the hippocampus, immobility duration was negatively correlated with 5-HT tissue levels, whereas swimming duration was positively correlated with 5-HT. These results indicate that after antidepressant treatment, behavior during the FST can be predictive of respective serotonergic changes, especially in the prefrontal cortex.

  2. Stress response in medically important Mucorales.

    PubMed

    Singh, Pankaj; Paul, Saikat; Shivaprakash, M Rudramurthy; Chakrabarti, Arunaloke; Ghosh, Anup K

    2016-10-01

    Mucorales are saprobes, ubiquitously distributed and able to infect a heterogeneous population of human hosts. The fungi require robust stress responses to survive in human host. We tested the growth of Mucorales in the presence of different abiotic stress. Eight pathogenic species of Mucorales, including Rhizopus arrhizus, Rhizopus microsporus, Rhizomucor pusillus, Apophysomyces elegans, Licthemia corymbifera, Cunninghamella bertholletiae, Syncephalastrum racemosum and Mucor racemosus, were exposed to different stress inducers: osmotic (sodium chloride and d-sorbitol), oxidative (hydrogen peroxide and menadione), pH, cell wall and metal ions (Cu, Zn, Fe and Mg). Wide variation in stress responses was noted: R. arrhizus showed maximum resistance to both osmotic and oxidative stresses, whereas R. pusillus and M. indicus were relatively sensitive. Rhizopus arrhizus and R. microsporus showed maximum resistance to alkaline pH, whereas C. bertholletiae, L. corymbifera, M. racemosus and A. elegans were resistant to acidic pH. Maximum tolerance was noted in R. microsporus to Cu, R. microsporus and R. arrhizus to Fe and C. bertholletiae to Zn. In contrast, L. corymbifera, A. elegans and M. indicus were sensitive to Cu, Zn and Fe respectively. In conclusion, R. arrhizus showed high stress tolerance in comparison to other species of Mucorales, and this could be the possible reason for high pathogenic potential of this fungi. PMID:27292160

  3. Hyperosmotic Stress Response of Campylobacter jejuni

    PubMed Central

    Cameron, Andrew; Frirdich, Emilisa; Huynh, Steven; Parker, Craig T.

    2012-01-01

    The diarrheal pathogen Campylobacter jejuni and other gastrointestinal bacteria encounter changes in osmolarity in the environment, through exposure to food processing, and upon entering host organisms, where osmotic adaptation can be associated with virulence. In this study, growth profiles, transcriptomics, and phenotypic, mutant, and single-cell analyses were used to explore the effects of hyperosmotic stress exposure on C. jejuni. Increased growth inhibition correlated with increased osmotic concentration, with both ionic and nonionic stressors inhibiting growth at 0.620 total osmol liter−1. C. jejuni adaptation to a range of osmotic stressors and concentrations was accompanied by severe filamentation in subpopulations, with microscopy indicating septum formation and phenotypic diversity between individual cells in a filament. Population heterogeneity was also exemplified by the bifurcation of colony morphology into small and large variants on salt stress plates. Flow cytometry of C. jejuni harboring green fluorescent protein (GFP) fused to the ATP synthase promoter likewise revealed bimodal subpopulations under hyperosmotic stress. We also identified frequent hyperosmotic stress-sensitive variants within the clonal wild-type population propagated on standard laboratory medium. Microarray analysis following hyperosmotic upshift revealed enhanced expression of heat shock genes and genes encoding enzymes for synthesis of potential osmoprotectants and cross-protective induction of oxidative stress genes. The capsule export gene kpsM was also upregulated, and an acapsular mutant was defective for growth under hyperosmotic stress. For C. jejuni, an organism lacking most conventional osmotic response factors, these data suggest an unusual hyperosmotic stress response, including likely “bet-hedging” survival strategies relying on the presence of stress-fit individuals in a heterogeneous population. PMID:22961853

  4. Multiple abiotic stress responsive rice cyclophilin

    PubMed Central

    Trivedi, Dipesh Kumar; Ansari, Mohammad Wahid; Tuteja, Narendra

    2013-01-01

    Cyclophilins (CYP), a member of immunophillin group of proteins, are more often conserved in all genera including plants. Here, we report on the identification of a new cyclophilin gene OsCYP-25 (LOC_Os09 g39780) from rice which found to be upregulated in response to various abiotic stresses viz., salinity, cold, heat and drought. It has an ORF of 540 bp, encoding a protein of 179 amino acids, consisting of PPIase domain, which is highly conserved. The OsCYP-25 promoter analysis revealed that different cis-regulatory elements (e.g., MYBCORE, MYC, CBFHV, GT1GMSCAM4, DRECRTCOREAT, CCAATBOX1, WRKY71OS and WBOXATNPR1) are involved to mediate OsCYP-25 response under stress. We have also predicted interacting partners by STRING software. In interactome, protein partners includes WD domain containing protein, the 60S ribosome subunit biogenesis protein, the ribosomal protein L10, the DEAD-box helicase, the EIF-2α, YT521-B protein, the 60S ribosomal protein and the PPR repeat domain containing protein. The in silico analysis showed that OsCYP-25 interacts with different proteins involved in cell growth, differentiation, ribosome biogenesis, RNA metabolism, RNA editing, gene expression, signal transduction or stress response. These findings suggest that OsCYP-25 might perform an important function in mediating wide range of cellular response under multiple abiotic stresses. PMID:24265852

  5. The Adaptive Calibration Model of stress responsivity

    PubMed Central

    Ellis, Bruce J.; Shirtcliff, Elizabeth A.

    2010-01-01

    This paper presents the Adaptive Calibration Model (ACM), an evolutionary-developmental theory of individual differences in the functioning of the stress response system. The stress response system has three main biological functions: (1) to coordinate the organism’s allostatic response to physical and psychosocial challenges; (2) to encode and filter information about the organism’s social and physical environment, mediating the organism’s openness to environmental inputs; and (3) to regulate the organism’s physiology and behavior in a broad range of fitness-relevant areas including defensive behaviors, competitive risk-taking, learning, attachment, affiliation and reproductive functioning. The information encoded by the system during development feeds back on the long-term calibration of the system itself, resulting in adaptive patterns of responsivity and individual differences in behavior. Drawing on evolutionary life history theory, we build a model of the development of stress responsivity across life stages, describe four prototypical responsivity patterns, and discuss the emergence and meaning of sex differences. The ACM extends the theory of biological sensitivity to context (BSC) and provides an integrative framework for future research in the field. PMID:21145350

  6. Stretching the stress boundary: Linking air pollution health effects to a neurohormonal stress response.

    PubMed

    Kodavanti, Urmila P

    2016-12-01

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer's and diabetes. A neurohormonal stress response (referred to here as a systemic response produced by activation of the sympathetic nervous system and hypothalamus-pituitary-adrenal (HPA)-axis) has been implicated in a variety of psychological and physical stresses, which involves immune and metabolic homeostatic mechanisms affecting all organs in the body. In this review, we provide new evidence for the involvement of this well-characterized neurohormonal stress response in mediating systemic and pulmonary effects of a prototypic air pollutant - ozone. A plethora of systemic metabolic and immune effects are induced in animals exposed to inhaled pollutants, which could result from increased circulating stress hormones. The release of adrenal-derived stress hormones in response to ozone exposure not only mediates systemic immune and metabolic responses, but by doing so, also modulates pulmonary injury and inflammation. With recurring pollutant exposures, these effects can contribute to multi-organ chronic conditions associated with air pollution. This review will cover, 1) the potential mechanisms by which air pollutants can initiate the relay of signals from respiratory tract to brain through trigeminal and vagus nerves, and activate stress responsive regions including hypothalamus; and 2) the contribution of sympathetic and HPA-axis activation in mediating systemic homeostatic metabolic and immune effects of ozone in various organs. The potential contribution of chronic environmental stress in cardiovascular, neurological, reproductive and metabolic diseases, and the knowledge gaps are also discussed. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.

  7. Nuclear versus cytosolic activity of the yeast Hog1 MAP kinase in response to osmotic and tunicamycin-induced ER stress.

    PubMed

    García-Marqués, Sara; Randez-Gil, Francisca; Prieto, Jose A

    2015-07-22

    We examined the physiological significance of the nuclear versus cytosolic localization of the MAPK Hog1p in the ability of yeast cells to cope with osmotic and ER (endoplasmic reticulum) stress. Our results indicate that nuclear import of Hog1p is not critical for osmoadaptation. Plasma membrane-anchored Hog1p is still able to induce increased expression of GPD1 and glycerol accumulation. This is a key osmoregulatory event, although a small production of the osmolyte coupled with the nuclear import of Hog1p is sufficient to provide osmoresistance. On the contrary, the nuclear activity of Hog1p is dispensable for ER stress adaptation.

  8. Endoplasmic reticulum stress response in yeast and humans

    PubMed Central

    Wu, Haoxi; Ng, Benjamin S. H.; Thibault, Guillaume

    2014-01-01

    Stress pathways monitor intracellular systems and deploy a range of regulatory mechanisms in response to stress. One of the best-characterized pathways, the UPR (unfolded protein response), is an intracellular signal transduction pathway that monitors ER (endoplasmic reticulum) homoeostasis. Its activation is required to alleviate the effects of ER stress and is highly conserved from yeast to human. Although metazoans have three UPR outputs, yeast cells rely exclusively on the Ire1 (inositol-requiring enzyme-1) pathway, which is conserved in all Eukaryotes. In general, the UPR program activates hundreds of genes to alleviate ER stress but it can lead to apoptosis if the system fails to restore homoeostasis. In this review, we summarize the major advances in understanding the response to ER stress in Sc (Saccharomyces cerevisiae), Sp (Schizosaccharomyces pombe) and humans. The contribution of solved protein structures to a better understanding of the UPR pathway is discussed. Finally, we cover the interplay of ER stress in the development of diseases. PMID:24909749

  9. Endogenous nociceptin system involvement in stress responses and anxiety behavior.

    PubMed

    Fulford, Allison Jane

    2015-01-01

    The mechanisms underpinning stress-related behavior and dysfunctional events leading to the expression of neuropsychiatric disorders remain incompletely understood. Novel candidates involved in the neuromodulation of stress, mediated both peripherally and centrally, provide opportunities for improved understanding of the neurobiological basis of stress disorders and may represent targets for novel therapeutic development. This chapter provides an overview of the mechanisms by which the opioid-related peptide, nociceptin, regulates the neuroendocrine stress response and stress-related behavior. In our research, we have employed nociceptin receptor antagonists to investigate endogenous nociceptin function in tonic control over stress-induced activity of the hypothalamo-pituitary-adrenal axis. Nociceptin demonstrates a wide range of functions, including modulation of psychological and inflammatory stress responses, modulation of neurotransmitter release, immune homeostasis, in addition to anxiety and cognitive behaviors. Greater appreciation of the complexity of limbic-hypothalamic neuronal networks, together with attention toward gender differences and the roles of steroid hormones, provides an opportunity for deeper understanding of the importance of the nociceptin system in the context of the neurobiology of stress and behavior.

  10. Engineers and Active Responsibility.

    PubMed

    Pesch, Udo

    2015-08-01

    Knowing that technologies are inherently value-laden and systemically interwoven with society, the question is how individual engineers can take up the challenge of accepting the responsibility for their work? This paper will argue that engineers have no institutional structure at the level of society that allows them to recognize, reflect upon, and actively integrate the value-laden character of their designs. Instead, engineers have to tap on the different institutional realms of market, science, and state, making their work a 'hybrid' activity combining elements from the different institutional realms. To deal with this institutional hybridity, engineers develop routines and heuristics in their professional network, which do not allow societal values to be expressed in a satisfactory manner. To allow forms of 'active' responsibility, there have to be so-called 'accountability forums' that guide moral reflections of individual actors. The paper will subsequently look at the methodologies of value-sensitive design (VSD) and constructive technology assessment (CTA) and explore whether and how these methodologies allow engineers to integrate societal values into the design technological artifacts and systems. As VSD and CTA are methodologies that look at the process of technological design, whereas the focus of this paper is on the designer, they can only be used indirectly, namely as frameworks which help to identify the contours of a framework for active responsibility of engineers.

  11. Plant Heat Adaptation: priming in response to heat stress

    PubMed Central

    Bäurle, Isabel

    2016-01-01

    Abiotic stress is a major threat to crop yield stability. Plants can be primed by heat stress, which enables them to subsequently survive temperatures that are lethal to a plant in the naïve state. This is a rapid response that has been known for many years and that is highly conserved across kingdoms. Interestingly, recent studies in Arabidopsis and rice show that this thermo-priming lasts for several days at normal growth temperatures and that it is an active process that is genetically separable from the priming itself. This is referred to as maintenance of acquired thermotolerance or heat stress memory. Such a memory conceivably has adaptive advantages under natural conditions, where heat stress often is chronic or recurring. In this review, I will focus on recent advances in the mechanistic understanding of heat stress memory. PMID:27134736

  12. Adaptive Patterns of Stress Responsivity: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Del Giudice, Marco; Hinnant, J. Benjamin; Ellis, Bruce J.; El-Sheikh, Mona

    2012-01-01

    The adaptive calibration model (ACM) is an evolutionary-developmental theory of individual differences in stress responsivity. In this article, we tested some key predictions of the ACM in a middle childhood sample (N = 256). Measures of autonomic nervous system activity across the sympathetic and parasympathetic branches validated the 4-pattern…

  13. Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response

    PubMed Central

    Negi, Pooja; Rai, Archana N.; Suprasanna, Penna

    2016-01-01

    The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original ‘Controlling Element’ hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as “distributed genomic control modules.” According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement. PMID:27777577

  14. Oxidative stress response pathways: Fission yeast as archetype.

    PubMed

    Papadakis, Manos A; Workman, Christopher T

    2015-01-01

    Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the transcriptional response of fission yeast cells to elevated levels of hydrogen peroxide. Particular attention is paid to the mechanisms that yeast cells employ to promote cell survival in conditions of intermediate and acute oxidative stress. The role of the Sty1/Spc1/Phh1 mitogen-activated protein kinase in regulating gene expression at multiple levels is discussed in detail.

  15. Chronic Stress Decreases Cerebrovascular Responses During Rat Hindlimb Electrical Stimulation

    PubMed Central

    Lee, Sohee; Kang, Bok-Man; Shin, Min-Kyoo; Min, Jiwoong; Heo, Chaejeong; Lee, Yubu; Baeg, Eunha; Suh, Minah

    2015-01-01

    Repeated stress is one of the major risk factors for cerebrovascular disease, including stroke, and vascular dementia. However, the functional alterations in the cerebral hemodynamic response induced by chronic stress have not been clarified. Here, we investigated the in vivo cerebral hemodynamic changes and accompanying cellular and molecular changes in chronically stressed rats. After 3 weeks of restraint stress, the elicitation of stress was verified by behavioral despair in the forced swimming test and by physical indicators of stress. The evoked changes in the cerebral blood volume and pial artery responses following hindpaw electrical stimulation were measured using optical intrinsic signal imaging. We observed that, compared to the control group, animals under chronic restraint stress exhibited a decreased hemodynamic response, with a smaller pial arterial dilation in the somatosensory cortex during hindpaw electrical stimulation. The effect of chronic restraint stress on vasomodulator enzymes, including neuronal nitric oxide synthase (nNOS) and heme oxygenase-2 (HO-2), was assessed in the somatosensory cortex. Chronic restraint stress downregulated nNOS and HO-2 compared to the control group. In addition, we examined the subtypes of cells that can explain the environmental changes due to the decreased vasomodulators. The expression of parvalbumin in GABAergic interneurons and glutamate receptor-1 in neurons were decreased, whereas the microglial activation was increased. Our results suggest that the chronic stress-induced alterations in cerebral vascular function and the modulations of the cellular expression in the neuro-vasomodulatory system may be crucial contributing factors in the development of various vascular-induced conditions in the brain. PMID:26778944

  16. Stress Reactivity and Corticolimbic Response to Emotional Faces in Adolescents

    PubMed Central

    Liu, Jie; Chaplin, Tara; Wang, Fei; Sinha, Rajita; Mayes, Linda C.; Blumberg, Hilary P.

    2012-01-01

    Objective Adolescence is a critical period in the development of lifelong patterns of responding to stress. Understanding underpinnings of variations in stress-reactivity in adolescents is important, as adolescents with altered stress-reactivity are vulnerable to negative risk-taking behaviors including substance use, and have increased lifelong risk for psychopathology. While both endocrinological and corticolimbic neural system mechanisms are implicated in the development of stress-reactivity patterns, the roles of these systems and interactions between the systems in reactivity to social stimuli in adolescents are not clear. We investigated the relationship between cortisol response to a lab-based social stressor and regional brain responses to emotional face stimuli in adolescents. Method Changes in cortisol levels following the Trier Social Stress Test-Child version (TSST-C) were measured in twenty-three disadvantaged and chronically stressed adolescents who also participated in functional magnetic resonance imaging during processing of emotional faces and structural magnetic resonance imaging. The relationships between changes in cortisol following the TSST-C with regional brain activation during face processing, as well as with regional brain morphology, were assessed. Results Cortisol change on the TSST-C showed a significant inverse relationship with left hippocampus to fearful faces (p<0.05, corrected); significant associations to volume were not observed. Conclusions Increased cortisol response to the Trier social stressor was associated with diminished response of the left hippocampus to faces depicting fear. This suggests HPA-corticolimbic system mechanisms may underlie vulnerability to maladaptive responses to stress in adolescents that may contribute to development of stress-related disorders. PMID:22365466

  17. Lipid Biosynthesis Coordinates a Mitochondrial-to-Cytosolic Stress Response.

    PubMed

    Kim, Hyun-Eui; Grant, Ana Rodrigues; Simic, Milos S; Kohnz, Rebecca A; Nomura, Daniel K; Durieux, Jenni; Riera, Celine E; Sanchez, Melissa; Kapernick, Erik; Wolff, Suzanne; Dillin, Andrew

    2016-09-01

    Defects in mitochondrial metabolism have been increasingly linked with age-onset protein-misfolding diseases such as Alzheimer's, Parkinson's, and Huntington's. In response to protein-folding stress, compartment-specific unfolded protein responses (UPRs) within the ER, mitochondria, and cytosol work in parallel to ensure cellular protein homeostasis. While perturbation of individual compartments can make other compartments more susceptible to protein stress, the cellular conditions that trigger cross-communication between the individual UPRs remain poorly understood. We have uncovered a conserved, robust mechanism linking mitochondrial protein homeostasis and the cytosolic folding environment through changes in lipid homeostasis. Metabolic restructuring caused by mitochondrial stress or small-molecule activators trigger changes in gene expression coordinated uniquely by both the mitochondrial and cytosolic UPRs, protecting the cell from disease-associated proteins. Our data suggest an intricate and unique system of communication between UPRs in response to metabolic changes that could unveil new targets for diseases of protein misfolding. PMID:27610574

  18. Identification and prediction of abiotic stress responsive transcription factors involved in abiotic stress signaling in soybean.

    PubMed

    Tran, Lam-Son Phan; Mochida, Keiichi

    2010-03-01

    Abiotic stresses such as extreme temperature, drought, high salinity, cold and waterlogging often result in significant losses to the yields of economically important crops such as soybean (Glycine max L.). Transcription factors (TFs) which bind to DNA through specific cis-regulatory sequences either activate or repress gene transcription have been reported to act as control switches in stress signaling. Recent completion of the soybean genomic sequence has open wide opportunities for large-scale identification and annotations of regulatory TFs in soybean for functional studies. Within the soybean genome, we identified 5,035 TF models which grouped into 61 families. Detailed annotations of soybean TF genes can be accessed at SoybeanTFDB (soybeantfdb.psc.riken.jp). Moreover, we have reported a new idea of high throughput prediction and selection of abiotic stress responsive TFs based on the existence of known stress responsive cis-element(s) located in the promoter regions of respective TFs and GO annotations. We, therefore, have provided a basic platform for the genome-wide analysis of regulatory mechanisms underlying abiotic stress responses and a reliable tool for prediction and selection of stress responsive TFs for further functional studies and genetic engineering.

  19. Ineffective Phosphorylation of Mitogen-Activated Protein Kinase Hog1p in Response to High Osmotic Stress in the Yeast Kluyveromyces lactis.

    PubMed

    Velázquez-Zavala, Nancy; Rodríguez-González, Miriam; Navarro-Olmos, Rocío; Ongay-Larios, Laura; Kawasaki, Laura; Torres-Quiroz, Francisco; Coria, Roberto

    2015-09-01

    When treated with a hyperosmotic stimulus, Kluyveromyces lactis cells respond by activating the mitogen-activated protein kinase (MAPK) K. lactis Hog1 (KlHog1) protein via two conserved branches, SLN1 and SHO1. Mutants affected in only one branch can cope with external hyperosmolarity by activating KlHog1p by phosphorylation, except for single ΔKlste11 and ΔKlste50 mutants, which showed high sensitivity to osmotic stress, even though the other branch (SLN1) was intact. Inactivation of both branches by deletion of KlSHO1 and KlSSK2 also produced sensitivity to high salt. Interestingly, we have observed that in ΔKlste11 and ΔKlsho1 ΔKlssk2 mutants, which exhibit sensitivity to hyperosmotic stress, and contrary to what would be expected, KlHog1p becomes phosphorylated. Additionally, in mutants lacking both MAPK kinase kinases (MAPKKKs) present in K. lactis (KlSte11p and KlSsk2p), the hyperosmotic stress induced the phosphorylation and nuclear internalization of KlHog1p, but it failed to induce the transcriptional expression of KlSTL1 and the cell was unable to grow in high-osmolarity medium. KlHog1p phosphorylation via the canonical HOG pathway or in mutants where the SHO1 and SLN1 branches have been inactivated requires not only the presence of KlPbs2p but also its kinase activity. This indicates that when the SHO1 and SLN1 branches are inactivated, high-osmotic-stress conditions activate an independent input that yields active KlPbs2p, which, in turn, renders KlHog1p phosphorylation ineffective. Finally, we found that KlSte11p can alleviate the sensitivity to hyperosmotic stress displayed by a ΔKlsho1 ΔKlssk2 mutant when it is anchored to the plasma membrane by adding the KlSho1p transmembrane segments, indicating that this chimeric protein can substitute for KlSho1p and KlSsk2p. PMID:26150414

  20. Ineffective Phosphorylation of Mitogen-Activated Protein Kinase Hog1p in Response to High Osmotic Stress in the Yeast Kluyveromyces lactis

    PubMed Central

    Velázquez-Zavala, Nancy; Rodríguez-González, Miriam; Navarro-Olmos, Rocío; Ongay-Larios, Laura; Kawasaki, Laura; Torres-Quiroz, Francisco

    2015-01-01

    When treated with a hyperosmotic stimulus, Kluyveromyces lactis cells respond by activating the mitogen-activated protein kinase (MAPK) K. lactis Hog1 (KlHog1) protein via two conserved branches, SLN1 and SHO1. Mutants affected in only one branch can cope with external hyperosmolarity by activating KlHog1p by phosphorylation, except for single ΔKlste11 and ΔKlste50 mutants, which showed high sensitivity to osmotic stress, even though the other branch (SLN1) was intact. Inactivation of both branches by deletion of KlSHO1 and KlSSK2 also produced sensitivity to high salt. Interestingly, we have observed that in ΔKlste11 and ΔKlsho1 ΔKlssk2 mutants, which exhibit sensitivity to hyperosmotic stress, and contrary to what would be expected, KlHog1p becomes phosphorylated. Additionally, in mutants lacking both MAPK kinase kinases (MAPKKKs) present in K. lactis (KlSte11p and KlSsk2p), the hyperosmotic stress induced the phosphorylation and nuclear internalization of KlHog1p, but it failed to induce the transcriptional expression of KlSTL1 and the cell was unable to grow in high-osmolarity medium. KlHog1p phosphorylation via the canonical HOG pathway or in mutants where the SHO1 and SLN1 branches have been inactivated requires not only the presence of KlPbs2p but also its kinase activity. This indicates that when the SHO1 and SLN1 branches are inactivated, high-osmotic-stress conditions activate an independent input that yields active KlPbs2p, which, in turn, renders KlHog1p phosphorylation ineffective. Finally, we found that KlSte11p can alleviate the sensitivity to hyperosmotic stress displayed by a ΔKlsho1 ΔKlssk2 mutant when it is anchored to the plasma membrane by adding the KlSho1p transmembrane segments, indicating that this chimeric protein can substitute for KlSho1p and KlSsk2p. PMID:26150414

  1. Comparative transcriptome analysis of grapevine in response to copper stress.

    PubMed

    Leng, Xiangpeng; Jia, Haifeng; Sun, Xin; Shangguan, Lingfei; Mu, Qian; Wang, Baoju; Fang, Jinggui

    2015-01-01

    Grapevine is one of the most economically important and widely cultivated fruit crop worldwide. With the industrialization and the popular application of cupric fungicides in grape industry, copper stress and copper pollution are also the factors affecting grape production and berry and wine quality. Here, 3,843 transcripts were significantly differently expressed genes in response to Cu stress by RNA-seq, which included 1,892 up-regulated and 1,951 down-regulated transcripts. During this study we found many known and novel Cu-induced and -repressed genes. Biological analysis of grape samples were indicated that exogenous Cu can influence chlorophylls metabolism and photosynthetic activities of grapevine. Most ROS detoxification systems, including antioxidant enzyme, stress-related proteins and secondary metabolites were strongly induced. Concomitantly, abscisic acid functioned as a negative regulator in Cu stress, in opposite action to ethylene, auxin, jasmonic acid, and brassinolide. This study also identified a set of Cu stress specifically activated genes coding copper transporter, P1B-type ATPase, multidrug transporters. Overall, this work was carried out to gain insights into the copper-regulated and stress-responsive mechanisms in grapevine at transcriptome level. This research can also provide some genetic information that can help us in better vinery management and breeding Cu-resistant grape cultivars. PMID:26673527

  2. Comparative transcriptome analysis of grapevine in response to copper stress

    PubMed Central

    Leng, Xiangpeng; Jia, Haifeng; Sun, Xin; Shangguan, Lingfei; Mu, Qian; Wang, Baoju; Fang, Jinggui

    2015-01-01

    Grapevine is one of the most economically important and widely cultivated fruit crop worldwide. With the industrialization and the popular application of cupric fungicides in grape industry, copper stress and copper pollution are also the factors affecting grape production and berry and wine quality. Here, 3,843 transcripts were significantly differently expressed genes in response to Cu stress by RNA-seq, which included 1,892 up-regulated and 1,951 down-regulated transcripts. During this study we found many known and novel Cu-induced and -repressed genes. Biological analysis of grape samples were indicated that exogenous Cu can influence chlorophylls metabolism and photosynthetic activities of grapevine. Most ROS detoxification systems, including antioxidant enzyme, stress-related proteins and secondary metabolites were strongly induced. Concomitantly, abscisic acid functioned as a negative regulator in Cu stress, in opposite action to ethylene, auxin, jasmonic acid, and brassinolide. This study also identified a set of Cu stress specifically activated genes coding copper transporter, P1B-type ATPase, multidrug transporters. Overall, this work was carried out to gain insights into the copper-regulated and stress-responsive mechanisms in grapevine at transcriptome level. This research can also provide some genetic information that can help us in better vinery management and breeding Cu-resistant grape cultivars. PMID:26673527

  3. TORC2 mediates the heat stress response in Drosophila by promoting the formation of stress granules

    PubMed Central

    Jevtov, Irena; Zacharogianni, Margarita; van Oorschot, Marinke M.; van Zadelhoff, Guus; Aguilera-Gomez, Angelica; Vuillez, Igor; Braakman, Ineke; Hafen, Ernst; Stocker, Hugo; Rabouille, Catherine

    2015-01-01

    ABSTRACT The kinase TOR is found in two complexes, TORC1, which is involved in growth control, and TORC2, whose roles are less well defined. Here, we asked whether TORC2 has a role in sustaining cellular stress. We show that TORC2 inhibition in Drosophila melanogaster leads to a reduced tolerance to heat stress, whereas sensitivity to other stresses is not affected. Accordingly, we show that upon heat stress, both in the animal and Drosophila cultured S2 cells, TORC2 is activated and is required for maintaining the level of its known target, Akt1 (also known as PKB). We show that the phosphorylation of the stress-activated protein kinases is not modulated by TORC2 nor is the heat-induced upregulation of heat-shock proteins. Instead, we show, both in vivo and in cultured cells, that TORC2 is required for the assembly of heat-induced cytoprotective ribonucleoprotein particles, the pro-survival stress granules. These granules are formed in response to protein translation inhibition imposed by heat stress that appears to be less efficient in the absence of TORC2 function. We propose that TORC2 mediates heat resistance in Drosophila by promoting the cell autonomous formation of stress granules. PMID:26054799

  4. Stress Sensitive Healthy Females Show Less Left Amygdala Activation in Response to Withdrawal-Related Visual Stimuli under Passive Viewing Conditions

    ERIC Educational Resources Information Center

    Baeken, Chris; Van Schuerbeek, Peter; De Raedt, Rudi; Vanderhasselt, Marie-Anne; De Mey, Johan; Bossuyt, Axel; Luypaert, Robert

    2012-01-01

    The amygdalae are key players in the processing of a variety of emotional stimuli. Especially aversive visual stimuli have been reported to attract attention and activate the amygdalae. However, as it has been argued that passively viewing withdrawal-related images could attenuate instead of activate amygdalae neuronal responses, its role under…

  5. ERK2 mediates metabolic stress response to regulate cell fate

    PubMed Central

    Shin, Sejeong; Buel, Gwen R.; Wolgamott, Laura; Plas, David R.; Asara, John M.; Blenis, John; Yoon, Sang-Oh

    2015-01-01

    Insufficient nutrients disrupt physiological homeostasis resulting in diseases and even death. Considering the physiological and pathological consequences of this metabolic stress, the adaptive responses that cells utilize under this condition are of great interest. We show that under low glucose conditions, cells initiate adaptation followed by apoptosis responses using PERK/Akt and MEK1/ERK2 signaling, respectively. For adaptation, cells engage the endoplasmic reticulum stress-induced unfolded protein response, which results in PERK/Akt activation and cell survival. Sustained and extreme energetic stress promotes a switch to isoform-specific MEK1/ERK2 signaling, induction of GCN2/eIF2α phosphorylation and ATF4 expression, which overrides PERK/Akt-mediated adaptation and induces apoptosis through ATF4-dependent expression of pro-apoptotic factors including Bid and Trb3. ERK2 activation during metabolic stress contributes to changes in TCA cycle and amino acid metabolism, and cell death, which is suppressed by glutamate and α-ketoglutarate supplementation. Taken together, our results reveal promising targets to protect cells or tissues from metabolic stress. PMID:26190261

  6. The stress protein response: A potential indicator of general stress

    SciTech Connect

    Sanders, B.M. )

    1988-09-01

    Organisms have evolved a carefully regulated system at the cellular level that increases their tolerance to sub-optimal conditions in their environment. This highly conserved system involves the coordinated synthesis of a suite of stress proteins and is referred to as the heat-shock or stress protein response (SPR). The SPR can be elicited by a wide variety of stressors and correlates with subsequent thermotolerance and tolerance to other environmental stressors. They are conducting a series of experiments in collaboration with the US EPA to determine if the SPR may provide a basis for a biomonitoring tool to diagnose the extent to which an organism is stressed. Thus their experiments are designed to determine if the SPR: (1) could be induced by a wide variety of stressors at environmentally relevant concentrations, (2) was correlated with important organismic and population parameters, and (3) could be demonstrated in organisms exposed to contaminants in the field. They will present an overview of the data sets generated from both in vitro and in vivo experiments to examine the kinetics of SPR induction and recovery upon exposure to heat-shock, trace metal and xenobiotic stressors and discuss the feasibility of this approach.

  7. Oxytocin in the cardiovascular responses to stress.

    PubMed

    Wsol, A; Cudnoch-Jedrzejewska, A; Szczepanska-Sadowska, E; Kowalewski, S; Puchalska, L

    2008-12-01

    The present study was designed to determine the role of central oxytocin (OXY) in regulation of the cardiovascular responses to the alarming stress. Three groups of male, normotensive Sprague Dawley rats, received intracerebroventricular (i.c.v.) infusion of one of the following: 1) vehicle, 2) OXY or 3) OXY antagonist (OXANT). Mean arterial blood pressure (MABP) and heart rate (HR) were recorded at rest, during and after application of the alarming stressor (air jet). Under resting conditions the i.c.v. infusions of vehicle, OXY or OXYANT did not influence the cardiovascular parameters. The alarming stressor evoked significant increases in MABP and HR that were significantly greater in the rats receiving i.c.v. infusion of oxytocin antagonist than in those receiving vehicle or OXY. The study provides evidence that stimulation of the brain oxytocin receptors by endogenous oxytocin plays significant role in inhibition of cardiovascular responses to stress.

  8. Quorum sensing regulates the osmotic stress response in Vibrio harveyi.

    PubMed

    van Kessel, Julia C; Rutherford, Steven T; Cong, Jian-Ping; Quinodoz, Sofia; Healy, James; Bassler, Bonnie L

    2015-01-01

    Bacteria use a chemical communication process called quorum sensing to monitor cell density and to alter behavior in response to fluctuations in population numbers. Previous studies with Vibrio harveyi have shown that LuxR, the master quorum-sensing regulator, activates and represses >600 genes. These include six genes that encode homologs of the Escherichia coli Bet and ProU systems for synthesis and transport, respectively, of glycine betaine, an osmoprotectant used during osmotic stress. Here we show that LuxR activates expression of the glycine betaine operon betIBA-proXWV, which enhances growth recovery under osmotic stress conditions. BetI, an autorepressor of the V. harveyi betIBA-proXWV operon, activates the expression of genes encoding regulatory small RNAs that control quorum-sensing transitions. Connecting quorum-sensing and glycine betaine pathways presumably enables V. harveyi to tune its execution of collective behaviors to its tolerance to stress.

  9. Activity of antioxidant enzymes in response to atmospheric pressure induced physiological stress in deep-sea hydrothermal vent mussel Bathymodiolus azoricus.

    PubMed

    Martins, Inês; Romão, Célia V; Goulart, Joana; Cerqueira, Teresa; Santos, Ricardo S; Bettencourt, Raul

    2016-03-01

    Deep sea hydrothermal Bathymodiolus azoricus mussels from Portuguese EEZ Menez Gwen hydrothermal field possess the remarkable ability to overcome decompression and survive successfully at atmospheric pressure conditions. We investigated the potential use of antioxidant defense enzymes in mussel B. azoricus as biomarkers of oxidative stress induced by long term acclimatization to atmospheric pressure conditions. Mussels collected at Menez Gwen hydrothermal field were acclimatized for two weeks in three distinct conditions suitable of promoting physiological stress, (i) in plain seawater for concomitant endosymbiont bacteria loss, (ii) in plain seawater under metal iron exposure, (iii) constant bubbling methane and pumped sulfide for endosymbiont bacteria survival. The enzymatic activities of superoxide dismutase (SOD), catalase (CAT), and iron storage proteins in addition to electrophoretic profiles were examined in vent mussel gills and digestive gland. Gills showed approximately 3 times more SOD specific activity than digestive glands. On the other hand, digestive glands showed approximately 6 times more CAT specific activity than gills. Iron storage proteins were identified in gill extracts from all experimental conditions mussels. However, in digestive gland extracts only fresh collected mussels and after 2 weeks in FeSO4 showed the presence of iron storage proteins. The differences between SOD, CAT specific activities and the presence of iron storage proteins in the examined tissues reflect dissimilar metabolic and antioxidant activities, as a result of tissue specificities and acclimatization conditions influences on the organism. PMID:26790096

  10. Cognitive activation theory of stress (CATS).

    PubMed

    Ursin, Holger; Eriksen, Hege R

    2010-05-01

    The cognitive activation theory of stress (CATS) is based on a long series of experiments on animals and on humans, in the laboratory, and in real life situations. From the common sense coping concept formulated by Seymour Levine; coping is when my "tommy" does not hurt, we have advanced to a systematic theory for what is behind the relaxed and happy coping rat (and cat). We also cover the translational leap to humans, starting with the now classic parachutist study. The bridge is based on formal and symbolic definitions, a theoretical short cut that Levine actually never really accepted. The essential pathophysiological concept is the potential pathological effects of sustained activation, which may occur in the absence of coping (positive response outcome expectancy). We review the current status of CATS in Behavioural Medicine by discussing its potential explanatory power in epidemiology, prevention and treatment of "subjective health complaints".

  11. Genome-Wide Investigation of Hsf Genes in Sesame Reveals Their Segmental Duplication Expansion and Their Active Role in Drought Stress Response

    PubMed Central

    Dossa, Komivi; Diouf, Diaga; Cissé, Ndiaga

    2016-01-01

    Sesame is a survivor crop cultivated for ages in arid areas under high temperatures and limited water conditions. Since its entire genome has been sequenced, revealing evolution, and functional characterization of its abiotic stress genes became a hot topic. In this study, we performed a whole-genome identification and analysis of Hsf gene family in sesame. Thirty genes encoding Hsf domain were found and classified into 3 major classes A, B, and C. The class A members were the most representative one and Hsf genes were distributed in 12 of the 16 linkage groups (except the LG 8, 9, 13, and 16). Evolutionary analysis revealed that, segmental duplication events which occurred around 67 MYA, were the primary force underlying Hsf genes expansion in sesame. Comparative analysis also suggested that sesame has retained most of its Hsf genes while its relatives viz. tomato and potato underwent extensive gene losses during evolution. Continuous purifying selection has played a key role in the maintenance of Hsf genes in sesame. Expression analysis of the Hsf genes in sesame revealed their putative involvement in multiple tissue-/developmental stages. Time-course expression profiling of Hsf genes in response to drought stress showed that 90% Hsfs are drought responsive. We infer that classes B-Hsfs might be the primary regulators of drought response in sesame by cooperating with some class A genes. This is the first insight into this gene family and the results provide some gene resources for future gene cloning and functional studies toward the improvement in stress tolerance of sesame. PMID:27790233

  12. Brain activation induced by psychological stress in patients with schizophrenia.

    PubMed

    Castro, M N; Villarreal, M F; Bolotinsky, N; Papávero, E; Goldschmidt, M G; Costanzo, E Y; Drucaroff, L; Wainsztein, A; de Achával, D; Pahissa, J; Bär, K-J; Nemeroff, C B; Guinjoan, S M

    2015-10-01

    Environmental influences are critical for the expression of genes putatively related to the behavioral and cognitive phenotypes of schizophrenia. Among such factors, psychosocial stress has been proposed to play a major role in the expression of symptoms. However, it is unsettled how stress interacts with pathophysiological pathways to produce the disease. We studied 21 patients with schizophrenia and 21 healthy controls aged 18 to 50years with 3T-fMRI, in which a period of 6min of resting state acquisition was followed by a block design, with three blocks of 1-min control-task, 1-min stress-task and 1-min rest after-task. Self-report of stress and PANSS were measured. Limbic structures were activated in schizophrenia patients by simple tasks and remained active during, and shortly after stress. In controls, stress-related brain activation was more time-focused, and restricted to the stressful task itself. Negative symptom severity was inversely related to activation of anterior cingulum and orbitofrontal cortex. Results might represent the neurobiological aspect of hyper-reactivity to normal stressful situations previously described in schizophrenia, thus providing evidence on the involvement of limbic areas in the response to stress in schizophrenia. Patients present a pattern of persistent limbic activation probably contributing to hypervigilance and subsequent psychotic thought distortions.

  13. Erythropoietin action in stress response, tissue maintenance and metabolism.

    PubMed

    Zhang, Yuanyuan; Wang, Li; Dey, Soumyadeep; Alnaeeli, Mawadda; Suresh, Sukanya; Rogers, Heather; Teng, Ruifeng; Noguchi, Constance Tom

    2014-01-01

    Erythropoietin (EPO) regulation of red blood cell production and its induction at reduced oxygen tension provides for the important erythropoietic response to ischemic stress. The cloning and production of recombinant human EPO has led to its clinical use in patients with anemia for two and half decades and has facilitated studies of EPO action. Reports of animal and cell models of ischemic stress in vitro and injury suggest potential EPO benefit beyond red blood cell production including vascular endothelial response to increase nitric oxide production, which facilitates oxygen delivery to brain, heart and other non-hematopoietic tissues. This review discusses these and other reports of EPO action beyond red blood cell production, including EPO response affecting metabolism and obesity in animal models. Observations of EPO activity in cell and animal model systems, including mice with tissue specific deletion of EPO receptor (EpoR), suggest the potential for EPO response in metabolism and disease. PMID:24918289

  14. Methylation of NR3C1 is related to maternal PTSD, parenting stress and maternal medial prefrontal cortical activity in response to child separation among mothers with histories of violence exposure

    PubMed Central

    Schechter, Daniel S.; Moser, Dominik A.; Paoloni-Giacobino, Ariane; Stenz, Ludwig; Gex-Fabry, Marianne; Aue, Tatjana; Adouan, Wafae; Cordero, María I.; Suardi, Francesca; Manini, Aurelia; Sancho Rossignol, Ana; Merminod, Gaëlle; Ansermet, Francois; Dayer, Alexandre G.; Rusconi Serpa, Sandra

    2015-01-01

    Prior research has shown that mothers with Interpersonal violence-related posttraumatic stress disorder (IPV-PTSD) report greater difficulty in parenting their toddlers. Relative to their frequent early exposure to violence and maltreatment, these mothers display dysregulation of their hypothalamic pituitary adrenal axis (HPA-axis), characterized by hypocortisolism. Considering methylation of the promoter region of the glucocorticoid receptor gene NR3C1 as a marker for HPA-axis functioning, with less methylation likely being associated with less circulating cortisol, the present study tested the hypothesis that the degree of methylation of this gene would be negatively correlated with maternal IPV-PTSD severity and parenting stress, and positively correlated with medial prefrontal cortical (mPFC) activity in response to video-stimuli of stressful versus non-stressful mother–child interactions. Following a mental health assessment, 45 mothers and their children (ages 12–42 months) participated in a behavioral protocol involving free-play and laboratory stressors such as mother–child separation. Maternal DNA was extracted from saliva. Interactive behavior was rated on the CARE-Index. During subsequent fMRI scanning, mothers were shown films of free-play and separation drawn from this protocol. Maternal PTSD severity and parenting stress were negatively correlated with the mean percentage of methylation of NR3C1. Maternal mPFC activity in response to video-stimuli of mother–child separation versus play correlated positively to NR3C1 methylation, and negatively to maternal IPV-PTSD and parenting stress. Among interactive behavior variables, child cooperativeness in play was positively correlated with NR3C1 methylation. Thus, the present study is the first published report to our knowledge, suggesting convergence of behavioral, epigenetic, and neuroimaging data that form a psychobiological signature of parenting-risk in the context of early life stress and PTSD

  15. Dopamine signaling promotes the xenobiotic stress response and protein homeostasis.

    PubMed

    Joshi, Kishore K; Matlack, Tarmie L; Rongo, Christopher

    2016-09-01

    Multicellular organisms encounter environmental conditions that adversely affect protein homeostasis (proteostasis), including extreme temperatures, toxins, and pathogens. It is unclear how they use sensory signaling to detect adverse conditions and then activate stress response pathways so as to offset potential damage. Here, we show that dopaminergic mechanosensory neurons in C. elegans release the neurohormone dopamine to promote proteostasis in epithelia. Signaling through the DA receptor DOP-1 activates the expression of xenobiotic stress response genes involved in pathogenic resistance and toxin removal, and these genes are required for the removal of unstable proteins in epithelia. Exposure to a bacterial pathogen (Pseudomonas aeruginosa) results in elevated removal of unstable proteins in epithelia, and this enhancement requires DA signaling. In the absence of DA signaling, nematodes show increased sensitivity to pathogenic bacteria and heat-shock stress. Our results suggest that dopaminergic sensory neurons, in addition to slowing down locomotion upon sensing a potential bacterial feeding source, also signal to frontline epithelia to activate the xenobiotic stress response so as to maintain proteostasis and prepare for possible infection. PMID:27261197

  16. Integrated metabolomics for abiotic stress responses in plants.

    PubMed

    Nakabayashi, Ryo; Saito, Kazuki

    2015-04-01

    Plants are considered to biosynthesize specialized (traditionally called secondary) metabolites to adapt to environmental stresses such as biotic and abiotic stresses. The majority of specialized metabolites induced by abiotic stress characteristically exhibit antioxidative activity in vitro, but their function in vivo is largely yet to be experimentally confirmed. In this review, we highlight recent advances in the identification of the role of abiotic stress-responsive specialized metabolites with an emphasis on flavonoids. Integrated 'omics' analysis, centered on metabolomics with a series of plant resources differing in their flavonoid accumulation, showed experimentally that flavonoids play a major role in antioxidation in vivo. In addition, the results also suggest the role of flavonoids in the vacuole. To obtain more in-depth insights, chemical and biological challenges need to be addressed for the identification of unknown specialized metabolites and their in vivo functions.

  17. Sleep duration and cardiovascular responses to stress in undergraduate men.

    PubMed

    Mezick, Elizabeth J; Matthews, Karen A; Hall, Martica H; Richard Jennings, J; Kamarck, Thomas W

    2014-01-01

    Short sleep has been related to incident cardiovascular disease, but physiological mechanisms accounting for this relationship are largely unknown. This study examines sleep duration and cardiovascular stress responses in 79 healthy, young men. Sleep duration was assessed by wrist actigraphy for seven nights. Participants then completed a series of laboratory stress tasks while heart rate and blood pressure were monitored. Shorter total sleep time was related to a greater reduction in high-frequency heart rate variability during stress tasks, and to prolonged elevations in heart rate and diastolic pressure following tasks. Associations were independent of age, race, body mass index, caffeine intake, and smoking status. In sum, healthy young men with shorter actigraphy-assessed sleep exhibit less cardiac vagal activity, and poorer heart rate and diastolic blood pressure recovery, upon encountering stressful stimuli, than those with longer sleep. PMID:24016263

  18. Enterovirus Control of Translation and RNA Granule Stress Responses

    PubMed Central

    Lloyd, Richard E.

    2016-01-01

    Enteroviruses such as poliovirus (PV) and coxsackievirus B3 (CVB3) have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs) and processing bodies (P-bodies, PBs), which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation. PMID:27043612

  19. Epigenetic transgenerational inheritance of altered stress responses.

    PubMed

    Crews, David; Gillette, Ross; Scarpino, Samuel V; Manikkam, Mohan; Savenkova, Marina I; Skinner, Michael K

    2012-06-01

    Ancestral environmental exposures have previously been shown to promote epigenetic transgenerational inheritance and influence all aspects of an individual's life history. In addition, proximate life events such as chronic stress have documented effects on the development of physiological, neural, and behavioral phenotypes in adulthood. We used a systems biology approach to investigate in male rats the interaction of the ancestral modifications carried transgenerationally in the germ line and the proximate modifications involving chronic restraint stress during adolescence. We find that a single exposure to a common-use fungicide (vinclozolin) three generations removed alters the physiology, behavior, metabolic activity, and transcriptome in discrete brain nuclei in descendant males, causing them to respond differently to chronic restraint stress. This alteration of baseline brain development promotes a change in neural genomic activity that correlates with changes in physiology and behavior, revealing the interaction of genetics, environment, and epigenetic transgenerational inheritance in the shaping of the adult phenotype. This is an important demonstration in an animal that ancestral exposure to an environmental compound modifies how descendants of these progenitor individuals perceive and respond to a stress challenge experienced during their own life history.

  20. The role of thyroid hormones in stress response of fish.

    PubMed

    Peter, M C Subhash

    2011-06-01

    Thyroxine (T(4)) and triiodothyronine (T(3)), the principal thyroid hormones (THs) secreted from the hypothalamic-pituitary-thyroid (HPT) axis, produce a plethora of physiologic actions in fish. The diverse actions of THs in fishes are primarily due to the sensitivity of thyroid axis to many physical, chemical and biological factors of both intrinsic and extrinsic origins. The regulation of THs homeostasis becomes more complex due to extrathyroidal deiodination pathways by which the delivery of biologically active T(3) to target cells has been controlled. As primary stress hormones and the end products of hypothalamic-pituitary-interrenal (HPI) and brain-sympathetic-chromaffin (BSC) axes, cortisol and adrenaline exert its actions on its target tissues where it promote and integrate osmotic and metabolic competence. Despite possessing specific osmoregulatory and metabolic actions at cellular and whole-body levels, THs may fine-tune these processes in accordance with the actions of hormones like cortisol and adrenaline. Evidences are presented that THs can modify the pattern and magnitude of stress response in fishes as it modifies either its own actions or the actions of stress hormones. In addition, multiple lines of evidence indicate that hypothalamic and pituitary hormones of thyroid and interrenal axes can interact with each other which in turn may regulate THs/cortisol-mediated actions. Even though it is hard to define these interactions, the magnitude of stress response in fish has been shown to be modified by the changes in the status of THs, pointing to its functional relationship with endocrine stress axes particularly with the interrenal axis. The fine-tuned mechanism that operates in fish during stressor-challenge drives the THs to play both fundamental and modulator roles in stress response by controlling osmoregulation and metabolic regulation. A major role of THs in stress response is thus evident in fish.

  1. Anger responses to psychosocial stress predict heart rate and cortisol stress responses in men but not women

    PubMed Central

    Lupis, Sarah B.; Lerman, Michelle; Wolf, Jutta M.

    2014-01-01

    While previous research has suggested that anger and fear responses to stress are linked to distinct sympathetic nervous system (SNS) stress responses, little is known about how these emotions predict hypothalamus-pituitary-adrenal (HPA) axis reactivity. Further, earlier research primarily relied on retrospective self-report of emotion. The current study aimed at addressing both issues in male and female individuals by assessing the role of anger and fear in predicting heart rate and cortisol stress responses using both self-report and facial coding analysis to assess emotion responses. We exposed 32 healthy students (18 female; 19.6+/−1.7 yrs.) to an acute psychosocial stress paradigm (TSST) and measured heart rate and salivary cortisol levels throughout the protocol. Anger and fear before and after stress exposure was assessed by self-report, and video recordings of the TSST were assessed by a certified facial coder to determine emotion expression (FACS). Self-reported emotions and emotion expressions did not correlate (all p > .23). Increases in self-reported fear predicted blunted cortisol responses in men (β = 0.41, p = .04). Also for men, longer durations of anger expression predicted exaggerated cortisol responses (β = 0.67 p = .004), and more anger incidences predicted exaggerated cortisol and heart rate responses (β = 0.51, p = .033; β = 0.46, p = .066, resp.). Anger and fear did not predict SNS or HPA activity for females (all p > .23). The current differential self-report and facial coding findings support the use of multiple modes of emotion assessment. Particularly, FACS but not self-report revealed a robust anger-stress association that could have important downstream health effects for men. For women, future research may clarify the role of other emotions, such as self-conscious expressions of shame, for physiological stress responses. A better understanding of the emotion-stress link may contribute to behavioral interventions targeting health

  2. Ecl1 is activated by the transcription factor Atf1 in response to H2O2 stress in Schizosaccharomyces pombe.

    PubMed

    Shimasaki, Takafumi; Ohtsuka, Hokuto; Naito, Chikako; Murakami, Hiroshi; Aiba, Hirofumi

    2014-08-01

    The Ecl1 family genes extend the lifespan of fission yeast when overexpressed. They also cause resistance against H(2)O(2) stress. In this study, we found that the bZip transcription factor Atf1 is a direct activator of the induction of extender of chronological lifespan (ecl1 (+)) by H(2)O(2) stress. Based on ChIP analysis, we identified that Atf1 binds to the upstream DNA region of ecl1(+). Previously, we reported that overexpression of ecl1(+) increased the expression of the catalase-encoding ctt1(+). This ecl1(+)-dependent increase of ctt1(+) expression occurred in ∆atf1 mutant. On the other hand, the activation of ctt1 (+) caused by the ∆pyp1 mutation, which enhances Sty1-Atf1 activity, could occur in ∆ecl1 mutant. Based on these results, we propose that Atf1 can regulate ctt1(+) in both an Ecl1-dependent and an Ecl1-independent manner.

  3. Determinants of timing and amplitude in the plant general stress response.

    PubMed

    Bjornson, Marta; Dandekar, Abhaya; Dehesh, Katayoon

    2016-02-01

    Plants have evolved intricate signaling cascades to rapidly and effectively respond to biotic and abiotic challenges. The precise timing of these responses enables optimal resource reallocation to maintain the balance between stress adaptation and growth. Thus, an in-depth understanding of the immediate and long-term mechanisms regulating resource allocation is critical in deciphering how plants withstand environmental challenges. To date however, understanding of this tradeoff has focused on the amplitude of long-term responses, rather than the timing of rapid stress responses. This review presents current knowledge on kinetics of secondary messengers involved in regulation of rapid and general stress responses, followed by rapid stress responsive transduction machinery, and finally the transcriptional response of a functional general stress responsive cis-element. Within this context we discuss the role of timing of initial peak activation and later oscillating peak responses, and explore hormonal and stress signaling crosstalk confounding greater understanding of these cascades.

  4. Aldehyde Dehydrogenases in Cellular Responses to Oxidative/electrophilic Stress

    PubMed Central

    Singh, Surendra; Brocker, Chad; Koppaka, Vindhya; Ying, Chen; Jackson, Brian; Matsumoto, Akiko; Thompson, David C.; Vasiliou, Vasilis

    2013-01-01

    Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors like dehydration and ultraviolet radiation. The ability to act as an ‘aldehyde scavenger’ during lipid peroxidation is another ostensibly universal ALDH function found across species. Up-regulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation) and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that significantly contributes to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, underscoring the fundamental importance of these enzymes in physiological and pathological processes. PMID:23195683

  5. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress.

    PubMed

    Singh, Surendra; Brocker, Chad; Koppaka, Vindhya; Chen, Ying; Jackson, Brian C; Matsumoto, Akiko; Thompson, David C; Vasiliou, Vasilis

    2013-03-01

    Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single-celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors such as dehydration and ultraviolet radiation. The ability to act as an "aldehyde scavenger" during lipid peroxidation is another ostensibly universal ALDH function found across species. Upregulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity, and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation), and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane, and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that contributes significantly to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, highlighting the fundamental importance of these enzymes in physiological and pathological processes. PMID:23195683

  6. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress.

    PubMed

    Singh, Surendra; Brocker, Chad; Koppaka, Vindhya; Chen, Ying; Jackson, Brian C; Matsumoto, Akiko; Thompson, David C; Vasiliou, Vasilis

    2013-03-01

    Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single-celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors such as dehydration and ultraviolet radiation. The ability to act as an "aldehyde scavenger" during lipid peroxidation is another ostensibly universal ALDH function found across species. Upregulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity, and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation), and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane, and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that contributes significantly to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, highlighting the fundamental importance of these enzymes in physiological and pathological processes.

  7. Cds1 Controls the Release of Cdc14-like Phosphatase Flp1 from the Nucleolus to Drive Full Activation of the Checkpoint Response to Replication Stress in Fission Yeast

    PubMed Central

    Díaz-Cuervo, Helena

    2008-01-01

    The Cdc14p-like phosphatase Flp1p (also known as Clp1p) is regulated by cell cycle-dependent changes in its subcellular localization. Flp1p is restricted to the nucleolus and spindle pole body until prophase, when it is dispersed throughout the nucleus, mitotic spindle, and medial ring. Once released, Flp1p antagonizes Cdc2p/cyclin activity by reverting Cdc2p-phosphorylation sites on Cdc25p. On replication stress, ataxia-telangiectasia mutated/ATM/Rad3-related kinase Rad3p activates Cds1p, which phosphorylates key proteins ensuring the stability of stalled DNA replication forks. Here, we show that replication stress induces changes in the subcellular localization of Flp1p in a checkpoint-dependent manner. Active Cds1p checkpoint kinase is required to release Flp1p into the nucleus. Consistently, a Flp1p mutant (flp1-9A) lacking all potential Cds1p phosphorylation sites fails to relocate in response to replication blocks and, similarly to cells lacking flp1 (Δflp1), presents defects in checkpoint response to replication stress. Δflp1 cells accumulate reduced levels of a less active Cds1p kinase in hydroxyurea (HU), indicating that nuclear Flp1p regulates Cds1p full activation. Consistently, Δflp1 and flp1-9A have an increased percentage of Rad22p-recombination foci during HU treatment. Together, our data show that by releasing Flp1p into the nucleus Cds1p checkpoint kinase modulates its own full activation during replication stress. PMID:18385517

  8. Cannibalism stress response in Bacillus subtilis.

    PubMed

    Höfler, Carolin; Heckmann, Judith; Fritsch, Anne; Popp, Philipp; Gebhard, Susanne; Fritz, Georg; Mascher, Thorsten

    2016-01-01

    When faced with carbon source limitation, the Gram-positive soil organism Bacillus subtilis initiates a survival strategy called sporulation, which leads to the formation of highly resistant endospores that allow B. subtilis to survive even long periods of starvation. In order to avoid commitment to this energy-demanding and irreversible process, B. subtilis employs another strategy called 'cannibalism' to delay sporulation as long as possible. Cannibalism involves the production and secretion of two cannibalism toxins, sporulation delaying protein (SDP) and sporulation killing factor (SKF), which are able to lyse sensitive siblings. The lysed cells are thought to then provide nutrients for the cannibals to slow down or even prevent them from entering sporulation. In this study, we uncovered the role of the cell envelope stress response (CESR), especially the Bce-like antimicrobial peptide detoxification modules, in the cannibalism stress response during the stationary phase. SDP and SKF specifically induce Bce-like systems and some extracytoplasmic function σ factors in stationary-phase cultures, but only the latter provide some degree of protection. A full Bce response is only triggered by mature toxins, and not by toxin precursors. Our study provides insights into the close relationship between stationary-phase survival and the CESR of B. subtilis. PMID:26364265

  9. Paternal Experience and Stress Responses in California Mice (Peromyscus californicus)

    PubMed Central

    Bardi, Massimo; Franssen, Catherine L; Hampton, Joseph E; Shea, Eleanor A; Fanean, Amanda P; Lambert, Kelly G

    2011-01-01

    Paternal behavior greatly affects the survival, social development, and cognitive development of infants. Nevertheless, little research has been done to assess how paternal experience modifies the behavioral characteristics of fathers, including fear and stress responses to a novel environment. We investigated long-term behavioral and physiologic effects of parental experience in mice (Peromyscus californicus) and how this response activates the hypothalamic–pituitary–adrenal axis (as measured by corticosterone and dehydroepiandrosterone [DHEA] levels) and interacts with anxiety-related behaviors. Three groups of adult males were tested—fathers exposed to pups, virgins exposed to pups, and virgins never exposed to pups—in 2 environments designed to elicit anxiety response: an open field with a novel object placed in the center and a closed cage containing a sample of a component of fox feces. Behavioral responses were measured by using traditional methods (duration and frequency) and behavioral-chain sequences. Results indicated that paternal experience significantly modifies a male mouse's behavioral and physiologic responses to stress-provoking stimuli. Compared with inexperienced male mice, experienced male mice had a significant decrease in the occurrence of incomplete behavioral chains during the exposure to the novel object, an index of reduced stress. Further, even moderate pup exposure induced behavioral modifications in virgin male mice. These behavioral responses were correlated with changes in corticosterone and DHEA levels. Together, these data provide evidence that interactions between male mice and offspring may have mutually beneficial long-term behavioral and physiologic effects. PMID:21819678

  10. Roles of horseradish peroxidase in response to terbium stress.

    PubMed

    Zhang, Xuanbo; Wang, Lihong; Zhou, Qing

    2014-10-01

    The pollution of the environment by rare earth elements (REEs) causes deleterious effects on plants. Peroxidase plays important roles in plant response to various environmental stresses. Here, to further understand the overall roles of peroxidase in response to REE stress, the effects of the REE terbium ion (Tb(3+)) on the peroxidase activity and H2O2 and lignin contents in the leaves and roots of horseradish during different growth stages were simultaneously investigated. The results showed that after 24 and 48 h of Tb(3+) treatment, the peroxidase activity in horseradish leaves decreased, while the H2O2 and lignin contents increased. After a long-term (8 and 16 days) treatment with Tb(3+), these effects were also observed in the roots. The analysis of the changes in peroxidase activity and H2O2 and lignin contents revealed that peroxidase plays important roles in not only reactive oxygen species scavenging but also cell wall lignification in horseradish under Tb(3+) stress. These roles were closely related to the dose of Tb(3+), duration of stress, and growth stages of horseradish.

  11. Waterborne Risperidone Decreases Stress Response in Zebrafish

    PubMed Central

    Kalichak, Fabiana; Rosa, João Gabriel Santos; de Oliveira, Tiago Acosta; Koakoski, Gessi; Gusso, Darlan; de Abreu, Murilo Sander; Giacomini, Ana Cristina Varrone; Barcellos, Heloísa Helena de Alcântara

    2015-01-01

    The presence of drugs and their metabolites in surface waters and municipal effluents has been reported in several studies, but its impacts on aquatic organisms are not yet well understood. This study investigated the effects of acute exposure to the antipsychotic risperidone on the stress and behavioral responses in zebrafish. It became clear that intermediate concentration of risperidone inhibited the hypothalamic-pituitary-interrenal axis and displayed anxiolytic-like effects in zebrafish. The data presented here suggest that the presence of this antipsychotic in aquatic environments can alter neuroendocrine and behavior profiles in zebrafish. PMID:26473477

  12. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    SciTech Connect

    Christen, Verena; Capelle, Martinus; Fent, Karl

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes.

  13. Oxidative Stress Contributes to Autophagy Induction in Response to Endoplasmic Reticulum Stress in Chlamydomonas reinhardtii1[W

    PubMed Central

    Pérez-Martín, Marta; Pérez-Pérez, María Esther; Lemaire, Stéphane D.; Crespo, José L.

    2014-01-01

    The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes. PMID:25143584

  14. Stress-Induced Out-of-Context Activation of Memory

    PubMed Central

    Ježek, Karel; Lee, Benjamin B.; Kelemen, Eduard; McCarthy, Katharine M.; McEwen, Bruce S.; Fenton, André A.

    2010-01-01

    Inappropriate recollections and responses in stressful conditions are hallmarks of post-traumatic stress disorder and other anxiety and mood disorders, but how stress contributes to the disorders is unclear. Here we show that stress itself reactivates memories even if the memory is unrelated to the stressful experience. Forced-swim stress one day after learning enhanced memory recall. One-day post-learning amnestic treatments were ineffective unless administered soon after the swim, indicating that a stressful experience itself can reactivate unrelated consolidated memories. The swim also triggered inter-hemispheric transfer of a lateralized memory, confirming stress reactivates stable memories. These novel effects of stress on memory required the hippocampus although the memories themselves did not, indicating hippocampus-dependent modulation of extrahippocampal memories. These findings that a stressful experience itself can activate memory suggest the novel hypothesis that traumatic stress reactivates pre-trauma memories, linking them to memory for the trauma and pathological facilitation of post-traumatic recall. PMID:21203585

  15. Neuroendocrine responses to psychological stress in eumenorrheic and oligomenorrheic women.

    PubMed

    McComb, Jacalyn J Robert; Qian, Xu-Ping; Veldhuis, Johannes D; J McGlone, John; Norman, Reid L

    2006-03-01

    Neuroendocrine adaptive responses to psychological stress include activation of the hypothalamic-pituitary-adrenal (HPA) axis and sometimes suppression of the hypothalamic-pituitary-gonadal (HPG) axis. In women who experience chronic stress, these responses are probably responsible for disturbances in the menstrual cycle. In the present experiment, we investigated the effect of an acutely stressful situation on the physiological and neuroendocrine responses in college age women. We hypothesized that females who are experiencing some degree of abnormal menstrual function or women who have less-robust cycles (oligomenorrheic females) would exhibit differences in gonadotropin secretion from eumenorrheic females when exposed to psychological stressors. Fifteen women completed this study: eumenorrheic (n = 5) and oligomenorrheic women (n = 5) who experienced a series of psychological stressors, and eumenorrheic controls (n = 5). Blood samples were taken at 10 min intervals for 8 h (09:00-17:00) in each woman during the mid-follicular phase of the menstrual cycle. The psychological stressors were administered for 1 h beginning at 13:00 h. Luteinizing hormone (LH), growth hormone (GH) and cortisol were measured in each sample to assess the effect of stress on secretion of these hormones. Deconvolution analysis was used to analyze pulsatile hormone secretion and the approximate entropy (ApEn) statistic analyzed the regularity of release of each hormone. Although, there were significant changes in heart rate (HR), skin resistance (SR) and cortisol levels in the stressed women during the psychological stressor compared to resting baseline values but not in the controls, there was no difference in either LH or GH secretion between women who experienced stress and those who did not. Furthermore, there were no differences in the LH or GH secretion patterns in the oligomenorrheic and eumenorrheic women exposed to the psychological stressor.

  16. Chronic psychological stress activates BMP4-dependent extramedullary erythropoiesis.

    PubMed

    Vignjević, Sanja; Budeč, Mirela; Marković, Dragana; Dikić, Dragoslava; Mitrović, Olivera; Mojsilović, Slavko; Durić, Sanja Vranješ; Koko, Vesna; Cokić, Bojana Beleslin; Cokić, Vladan; Jovčić, Gordana

    2014-01-01

    Psychological stress affects different physiological processes including haematopoiesis. However, erythropoietic effects of chronic psychological stress remain largely unknown. The adult spleen contains a distinct microenvironment favourable for rapid expansion of erythroid progenitors in response to stressful stimuli, and emerging evidence suggests that inappropriate activation of stress erythropoiesis may predispose to leukaemic transformation. We used a mouse model to study the influence of chronic psychological stress on erythropoiesis in the spleen and to investigate potential mediators of observed effects. Adult mice were subjected to 2 hrs daily restraint stress for 7 or 14 consecutive days. Our results showed that chronic exposure to restraint stress decreased the concentration of haemoglobin in the blood, elevated circulating levels of erythropoietin and corticosterone, and resulted in markedly increased number of erythroid progenitors and precursors in the spleen. Western blot analysis revealed significantly decreased expression of both erythropoietin receptor and glucocorticoid receptor in the spleen of restrained mice. Furthermore, chronic stress enhanced the expression of stem cell factor receptor in the red pulp. Moreover, chronically stressed animals exhibited significantly increased expression of bone morphogenetic protein 4 (BMP4) in the red pulp as well as substantially enhanced mRNA expression levels of its receptors in the spleen. These findings demonstrate for the first time that chronic psychological stress activates BMP4-dependent extramedullary erythropoiesis and leads to the prolonged activation of stress erythropoiesis pathways. Prolonged activation of these pathways along with an excessive production of immature erythroid cells may predispose chronically stressed subjects to a higher risk of leukaemic transformation. PMID:24283209

  17. Left brain cortical activity modulates stress effects on social behavior

    PubMed Central

    Lee, Eunee; Hong, Jiso; Park, Young-Gyun; Chae, Sujin; Kim, Yong; Kim, Daesoo

    2015-01-01

    When subjected to stress, some individuals develop maladaptive symptoms whereas others retain normal behavior. The medial prefrontal cortex (mPFC) is known to control these adaptive responses to stress. Here, we show that mPFC neurons in the left hemisphere control stress effects on social behavior. Mice made socially avoidant by the stress of chronic social defeats showed depressed neural activity in the left mPFC. Photoactivation of these neurons reversed social avoidance and restored social activity. Despite social defeats, resilient mice with normal sociability showed normal firing rates in the left mPFC; however, photoinhibition of these neurons induced social avoidance. The same photomodulation administered to the right mPFC caused no significant effects. These results explain how stressed individuals develop maladaptive behaviors through left cortical depression, as reported in mood and anxiety disorders. PMID:26302668

  18. Role of various hormones in photosynthetic responses of green plants under environmental stresses.

    PubMed

    Poonam; Bhardwaj, Renu; Kaur, Ravdeep; Bali, Shagun; Kaur, Parminder; Sirhindi, Geetika; Thukral, Ashwani K; Ohri, Puja; Vig, Adarsh P

    2015-01-01

    Environmental stress includes adverse factors like water deficit, high salinity, enhanced temperature and heavy metals etc. These stresses alter the normal growth and metabolic processes of plants including photosynthesis. Major photosynthetic responses under various stresses include inhibition of photosystems (I and II), changes in thylakoid complexes, decreased photosynthetic activity and modifications in structure and functions of chloroplasts etc. Various defense mechanisms are triggered inside the plants in response to these stresses that are regulated by plant hormones or plant growth regulators. These phytohormones include abscisic acid, auxins, cytokinins, ethylene, brassinosteroids, jasmonates and salicylic acid etc. The present review focuses on stress protective effects of plants hormones on the photosynthetic responses.

  19. Xenohormesis: health benefits from an eon of plant stress response evolution

    PubMed Central

    Hooper, Paul L.; Tytell, Michael; Vígh, Lászlo

    2010-01-01

    Xenohormesis is a biological principle that explains how environmentally stressed plants produce bioactive compounds that can confer stress resistance and survival benefits to animals that consume them. Animals can piggyback off products of plants' sophisticated stress response which has evolved as a result of their stationary lifestyle. Factors eliciting the plant stress response can judiciously be employed to maximize yield of health-promoting plant compounds. The xenohormetic plant compounds can, when ingested, improve longevity and fitness by activating the animal's cellular stress response and can be applied in drug discovery, drug production, and nutritional enhancement of diet. PMID:20524162

  20. Brain 5-HT deficiency increases stress vulnerability and impairs antidepressant responses following psychosocial stress.

    PubMed

    Sachs, Benjamin D; Ni, Jason R; Caron, Marc G

    2015-02-24

    Brain serotonin (5-HT) deficiency and exposure to psychosocial stress have both been implicated in the etiology of depression and anxiety disorders, but whether 5-HT deficiency influences susceptibility to depression- and anxiety-like phenotypes induced by psychosocial stress has not been formally established. Most clinically effective antidepressants increase the extracellular levels of 5-HT, and thus it has been hypothesized that antidepressant responses result from the reversal of endogenous 5-HT deficiency, but this hypothesis remains highly controversial. Here we evaluated the impact of brain 5-HT deficiency on stress susceptibility and antidepressant-like responses using tryptophan hydroxylase 2 knockin (Tph2KI) mice, which display 60-80% reductions in brain 5-HT. Our results demonstrate that 5-HT deficiency leads to increased susceptibility to social defeat stress (SDS), a model of psychosocial stress, and prevents the fluoxetine (FLX)-induced reversal of SDS-induced social avoidance, suggesting that 5-HT deficiency may impair antidepressant responses. In light of recent clinical and preclinical studies highlighting the potential of inhibiting the lateral habenula (LHb) to achieve antidepressant and antidepressant-like responses, we also examined whether LHb inhibition could achieve antidepressant-like responses in FLX-insensitive Tph2KI mice subjected to SDS. Our data reveal that using designer receptors exclusively activated by designer drugs (DREADDs) to inhibit LHb activity leads to reduced SDS-induced social avoidance behavior in both WT and Tph2KI mice. This observation provides additional preclinical evidence that inhibiting the LHb might represent a promising alternative therapeutic approach under conditions in which selective 5-HT reuptake inhibitors are ineffective.

  1. The Role of Mitogen-Activated Protein (MAP) Kinase Signaling Components in the Fungal Development, Stress Response and Virulence of the Fungal Cereal Pathogen Bipolaris sorokiniana

    PubMed Central

    Leng, Yueqiang; Zhong, Shaobin

    2015-01-01

    Mitogen-activated protein kinases (MAPKs) have been demonstrated to be involved in fungal development, sexual reproduction, pathogenicity and/or virulence in many filamentous plant pathogenic fungi, but genes for MAPKs in the fungal cereal pathogen Bipolaris sorokiniana have not been characterized. In this study, orthologues of three MAPK genes (CsSLT2, CsHOG1 and CsFUS3) and one MAPK kinase kinase (MAPKKK) gene (CsSTE11) were identified in the whole genome sequence of the B. sorokiniana isolate ND90Pr, and knockout mutants were generated for each of them. The ∆Csfus3 and ∆Csste11 mutants were defective in conidiation and formation of appressoria-like structures, showed hypersensitivity to oxidative stress and lost pathogenicity on non-wounded leaves of barley cv. Bowman. When inoculated on wounded leaves of Bowman, the ∆Csfus3 and ∆Csste11 mutants were reduced in virulence compared to the wild type. No morphological changes were observed in the ∆Cshog1 mutants in comparison with the wild type; however, they were slightly reduced in growth under oxidative stress and were hypersensitive to hyperosmotic stress. The ∆Cshog1 mutants formed normal appressoria-like structures but were reduced in virulence when inoculated on Bowman leaves. The ∆Csslt2 mutants produced more vegetative hyphae, had lighter pigmentation, were more sensitive to cell wall degrading enzymes, and were reduced in virulence on Bowman leaves, although they formed normal appressoria like the wild type. Root infection assays indicated that the ∆Cshog1 and ∆Csslt2 mutants were able to infect barley roots while the ∆Csfus3 and ∆Csste11 failed to cause any symptoms. However, no significant difference in virulence was observed for ∆Cshog1 mutants while ∆Csslt2 mutants showed significantly reduced virulence on barley roots in comparison with the wild type. Our results indicated that all of these MAPK and MAPKKK genes are involved in the regulation of fungal development under

  2. The Role of Mitogen-Activated Protein (MAP) Kinase Signaling Components in the Fungal Development, Stress Response and Virulence of the Fungal Cereal Pathogen Bipolaris sorokiniana.

    PubMed

    Leng, Yueqiang; Zhong, Shaobin

    2015-01-01

    Mitogen-activated protein kinases (MAPKs) have been demonstrated to be involved in fungal development, sexual reproduction, pathogenicity and/or virulence in many filamentous plant pathogenic fungi, but genes for MAPKs in the fungal cereal pathogen Bipolaris sorokiniana have not been characterized. In this study, orthologues of three MAPK genes (CsSLT2, CsHOG1 and CsFUS3) and one MAPK kinase kinase (MAPKKK) gene (CsSTE11) were identified in the whole genome sequence of the B. sorokiniana isolate ND90Pr, and knockout mutants were generated for each of them. The ∆Csfus3 and ∆Csste11 mutants were defective in conidiation and formation of appressoria-like structures, showed hypersensitivity to oxidative stress and lost pathogenicity on non-wounded leaves of barley cv. Bowman. When inoculated on wounded leaves of Bowman, the ∆Csfus3 and ∆Csste11 mutants were reduced in virulence compared to the wild type. No morphological changes were observed in the ∆Cshog1 mutants in comparison with the wild type; however, they were slightly reduced in growth under oxidative stress and were hypersensitive to hyperosmotic stress. The ∆Cshog1 mutants formed normal appressoria-like structures but were reduced in virulence when inoculated on Bowman leaves. The ∆Csslt2 mutants produced more vegetative hyphae, had lighter pigmentation, were more sensitive to cell wall degrading enzymes, and were reduced in virulence on Bowman leaves, although they formed normal appressoria like the wild type. Root infection assays indicated that the ∆Cshog1 and ∆Csslt2 mutants were able to infect barley roots while the ∆Csfus3 and ∆Csste11 failed to cause any symptoms. However, no significant difference in virulence was observed for ∆Cshog1 mutants while ∆Csslt2 mutants showed significantly reduced virulence on barley roots in comparison with the wild type. Our results indicated that all of these MAPK and MAPKKK genes are involved in the regulation of fungal development under

  3. Osmotic stress response in the wine yeast Dekkera bruxellensis.

    PubMed

    Galafassi, Silvia; Toscano, Marco; Vigentini, Ileana; Piškur, Jure; Compagno, Concetta

    2013-12-01

    Dekkera bruxellensis is mainly associated with lambic beer fermentation and wine production and may contribute in a positive or negative manner to the flavor development. This yeast is able to produce phenolic compounds, such as 4-ethylguaiacol and 4-ethylphenol which could spoil the wine, depending on their concentration. In this work we have investigated how this yeast responds when exposed to conditions causing osmotic stress, as high sorbitol or salt concentrations. We observed that osmotic stress determined the production and accumulation of intracellular glycerol, and the expression of NADH-dependent glycerol-3-phosphate dehydrogenase (GPD) activity was elevated. The involvement of the HOG MAPK pathway in response to this stress condition was also investigated. We show that in D. bruxellensis Hog1 protein is activated by phosphorylation under hyperosmotic conditions, highlighting the conserved role of HOG MAP kinase signaling pathway in the osmotic stress response. Gene Accession numbers in GenBank: DbHOG1: JX65361, DbSTL1: JX965362.

  4. Cytokinin cross-talking during biotic and abiotic stress responses

    PubMed Central

    O’Brien, José A.; Benková, Eva

    2013-01-01

    As sessile organisms, plants have to be able to adapt to a continuously changing environment. Plants that perceive some of these changes as stress signals activate signaling pathways to modulate their development and to enable them to survive. The complex responses to environmental cues are to a large extent mediated by plant hormones that together orchestrate the final plant response. The phytohormone cytokinin is involved in many plant developmental processes. Recently, it has been established that cytokinin plays an important role in stress responses, but does not act alone. Indeed, the hormonal control of plant development and stress adaptation is the outcome of a complex network of multiple synergistic and antagonistic interactions between various hormones. Here, we review the recent findings on the cytokinin function as part of this hormonal network. We focus on the importance of the crosstalk between cytokinin and other hormones, such as abscisic acid, jasmonate, salicylic acid, ethylene, and auxin in the modulation of plant development and stress adaptation. Finally, the impact of the current research in the biotechnological industry will be discussed. PMID:24312105

  5. The cellular response to curvature-induced stress

    NASA Astrophysics Data System (ADS)

    Biton, Y. Y.; Safran, S. A.

    2009-12-01

    We present a theoretical model to explain recent observations of the orientational response of cells to unidirectional curvature. Experiments show that some cell types when plated on a rigid cylindrical surface tend to reorient their shape and stress fibers along the axis of the cylinder, while others align their stress fibers perpendicular to that axis. Our model focuses on the competition of the shear stress—that results from cell adhesion and active contractility—and the anisotropic bending stiffness of the stress fibers. We predict the cell orientation angle that results from the balance of these two forces in a mechanical equilibrium. The conditions under which the different experimental observations can be obtained are discussed in terms of the theory.

  6. Personality traits modulate emotional and physiological responses to stress.

    PubMed

    Childs, Emma; White, Tara L; de Wit, Harriet

    2014-09-01

    An individual's susceptibility to psychological and physical disorders associated with chronic stress exposure, for example, cardiovascular and infectious disease, may also be predicted by their reactivity to acute stress. One factor associated with both stress resilience and health outcomes is personality. An understanding of how personality influences responses to acute stress may shed light upon individual differences in susceptibility to chronic stress-linked disease. This study examined the relationships between personality and acute responses to stress in 125 healthy adults, using hierarchical linear regression. We assessed personality traits using the Multidimensional Personality Questionnaire (MPQ-BF), and responses to acute stress (cortisol, heart rate, blood pressure, mood) using a standardized laboratory psychosocial stress task, the Trier Social Stress Test. Individuals with high Negative Emotionality exhibited greater emotional distress and lower blood pressure responses to the Trier Social Stress Test. Individuals with high agentic Positive Emotionality exhibited prolonged heart rate responses to stress, whereas those with high communal Positive Emotionality exhibited smaller cortisol and blood pressure responses. Separate personality traits differentially predicted emotional, cardiovascular, and cortisol responses to a psychosocial stressor in healthy volunteers. Future research investigating the association of personality with chronic stress-related disease may provide further clues to the relationship between acute stress reactivity and susceptibility to disease.

  7. Long-term moderate exercise accelerates the recovery of stress-evoked cardiovascular responses.

    PubMed

    Hsu, Yuan-Chang; Tsai, Sheng-Feng; Yu, Lung; Chuang, Jih-Ing; Wu, Fong-Sen; Jen, Chauying J; Kuo, Yu-Min

    2016-01-01

    Psychological stress is an important global health problem. It is well documented that stress increases the incidences of various cardiovascular disorders. Regular exercise is known to reduce resting blood pressure (BP) and heart rate (HR). This study was designed to clarify the effects of long-term exercise on stress-evoked cardiovascular responses and to emphasize post-stress recovery effects. Male Wistar rats underwent 8 weeks of moderate treadmill training, with cardiovascular responses, autonomic nervous system activities and local Fos reactivity changes in the cardiovascular regulation center were monitored before, during and after immobilization stress. A spectral analysis of cardiovascular parameters was used to examine autonomic nervous activities. We found that long-term exercise (i) lowered resting BP, HR and sympathetic activity, but increased resting parasympathetic activity and baroreflex sensitivity (BRS); (ii) accelerated post-stress recovery of stress-evoked cardiovascular and sympathetic responses along with increased BRS and (iii) accelerated post-stress recovery of stress-evoked neuron activations in the paraventricular nucleus, but delayed it in the nucleus of the tractus solitarius. We conclude that, in rats, long-term exercise accelerated recovery of stress-evoked cardiovascular responses differentially altering hypothalamic and medullar neuron activities.

  8. Ubiquitin-proteasome pathway and cellular responses to oxidative stress

    PubMed Central

    Taylor, Allen

    2011-01-01

    The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Substrate proteins of the canonical UPP are first tagged by multiple ubiquitin molecules and then degraded by the 26S proteasome. However, in non-canonical UPP, proteins can be degraded by the 26S or the 20S proteasome without being ubiquitinated. It is clear that a proteasome is responsible for selective degradation of oxidized proteins, but the extent to which ubiquitination is involved in this process remains a subject of debate. While many publications suggest that the 20S proteasome degrades oxidized proteins independent of ubiquitin, there is also solid evidence indicating that ubiquitin and ubiquitination are involved in degradation of some forms of oxidized proteins. A fully functional UPP is required for cells to cope with oxidative stress and the activity of the UPP is also modulated by cellular redox status. Mild or transient oxidative stress up-regulates the ubiquitination system and proteasome activity in cells and tissues and transiently enhances intracellular proteolysis. Severe or sustained oxidative stress impairs the function of the UPP and decreases intracellular proteolysis. Both the ubiquitin conjugation enzymes and the proteasome can be inactivated by sustained oxidative stress, especially the 26S proteasome. Differential susceptibilities of the ubiquitin conjugation enzymes and the 26S proteasome to oxidative damage lead to an accumulation of ubiquitin conjugates in cells in response to mild oxidative stress. Thus, increased levels of ubiquitin conjugates in cells appear to be an indicator of mild oxidative stress. PMID:21530648

  9. A Network Biology Approach to Decipher Stress Response in Bacteria Using Escherichia coli As a Model.

    PubMed

    Nagar, Shashwat Deepali; Aggarwal, Bhavye; Joon, Shikha; Bhatnagar, Rakesh; Bhatnagar, Sonika

    2016-05-01

    The development of drug-resistant pathogenic bacteria poses challenges to global health for their treatment and control. In this context, stress response enables bacterial populations to survive extreme perturbations in the environment but remains poorly understood. Specific modules are activated for unique stressors with few recognized global regulators. The phenomenon of cross-stress protection strongly suggests the presence of central proteins that control the diverse stress responses. In this work, Escherichia coli was used to model the bacterial stress response. A Protein-Protein Interaction Network was generated by integrating differentially expressed genes in eight stress conditions of pH, temperature, and antibiotics with relevant gene ontology terms. Topological analysis identified 24 central proteins. The well-documented role of 16 central proteins in stress indicates central control of the response, while the remaining eight proteins may have a novel role in stress response. Cluster analysis of the generated network implicated RNA binding, flagellar assembly, ABC transporters, and DNA repair as important processes during response to stress. Pathway analysis showed crosstalk of Two Component Systems with metabolic processes, oxidative phosphorylation, and ABC transporters. The results were further validated by analysis of an independent cross-stress protection dataset. This study also reports on the ways in which bacterial stress response can progress to biofilm formation. In conclusion, we suggest that drug targets or pathways disrupting bacterial stress responses can potentially be exploited to combat antibiotic tolerance and multidrug resistance in the future. PMID:27195968

  10. Oxytocin links mothering received, mothering bestowed and adult stress responses.

    PubMed

    Pedersen, Cort A; Boccia, Maria L

    2002-12-01

    We review recent discoveries that implicate oxytocin in the intergenerational transmission of similar levels of maternal behavior and acute stress responses in female rats. First, ICV-infused oxytocin antagonist decreased the display by nursing dams of pup-licking (PL) and arched-back nursing (ABN), but not other components of maternal behavior, and increased maternal self-grooming suggesting that oxytocin may shift the balance of oral grooming by dams away from themselves and toward pups. Second, oxytocin receptor concentrations in areas of the adult brain where oxytocin stimulates maternal behavior or diminishes anxiety and adrenal axis responses to acute stress were positively related to PL-ABN received during infancy. Third, oxytocin and oxytocin antagonist treatments of pups on postnatal days 2-10, respectively increased and decreased PL by the treated rats when adult and themselves nursing dams. This indicates that oxytocin activity in female pups, which may be regulated by PL-ABN received from their mothers, influences their adult levels of PL. These three lines of evidence suggest that oxytocin selectively enhances PL-ABN by rat dams, which then increases oxytocin activity in female pups and, thereby, facilitates their expression of central oxytocin receptors (and perhaps other aspects of central oxytocin systems) and, consequently, their adult PL-ABN frequencies and acute stress responses.

  11. Pythium infection activates conserved plant defense responses in mosses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The moss Physcomitrella patens (P. patens) is a useful model to study abiotic stress responses since it is highly tolerant to drought, salt and osmotic stress. However, little is known about the defense mechanisms activated in this moss after pathogen assault. Here the induction of defense responses...

  12. Transition from stress-driven to thermally activated stress relaxation in metallic glasses

    NASA Astrophysics Data System (ADS)

    Qiao, J. C.; Wang, Yun-Jiang; Zhao, L. Z.; Dai, L. H.; Crespo, D.; Pelletier, J. M.; Keer, L. M.; Yao, Y.

    2016-09-01

    The short-range ordered but long-range disordered structure of metallic glasses yields strong structural and dynamic heterogeneities. Stress relaxation is a technique to trace the evolution of stress in response to a fixed strain, which reflects the dynamic features phenomenologically described by the Kohlrausch-Williams-Watts (KWW) equation. The KWW equation describes a broad distribution of relaxation times with a small number of empirical parameters, but it does not arise from a particular physically motivated mechanistic picture. Here we report an anomalous two-stage stress relaxation behavior in a Cu46Zr46Al8 metallic glass over a wide temperature range and generalize the findings in other compositions. Thermodynamic analysis identifies two categories of processes: a fast stress-driven event with large activation volume and a slow thermally activated event with small activation volume, which synthetically dominates the stress relaxation dynamics. Discrete analyses rationalize the transition mechanism induced by stress and explain the anomalous variation of the KWW characteristic time with temperature. Atomistic simulations reveal that the stress-driven event involves virtually instantaneous short-range atomic rearrangement, while the thermally activated event is the percolation of the fast event accommodated by the long-range atomic diffusion. The insights may clarify the underlying physical mechanisms behind the phenomenological description and shed light on correlating the hierarchical dynamics and structural heterogeneity of amorphous solids.

  13. Effects of chlorpyrifos on the transcription of CYP3A cDNA, activity of acetylcholinesterase, and oxidative stress response of goldfish (Carassius auratus).

    PubMed

    Ma, Junguo; Liu, Yang; Niu, Daichun; Li, Xiaoyu

    2015-04-01

    Chlorpyrifos (CPF) is the widely used organophosphate pesticide in agriculture throughout the world. It has been found that CPF is relatively safe to human but highly toxic to fish. In this study, acute toxicity of CPF on goldfish was determined and then the transcription of goldfish cytochrome P450 (CYP) 3A was evaluated after 96 h of CPF exposure at concentrations of 15.3 [1/10 50% lethal concentration (LC50 )] or 51 μg L(-1) (1/3 LC50 ) of CPF. Meanwhile, the enzymatic activities of acetylcholinesterase (AChE), superoxide dismutase (SOD), and catalase (CAT), total antioxidant activity (T-AOC), and the contents of malondialdehyde (MDA) in the liver or brain of goldfish were also determined. The results of acute toxicity testing showed that the 96-h LC50 of CPF to the goldfish was 153 μg L(-1) . Moreover, a length sequence of 1243 bp CYP3A cDNA encoding for 413 amino acids from goldfish liver was cloned. Polymerase chain reaction results reveal that CPF exposure downregulates CYP 3A transcription in goldfish liver, suggesting that goldfish CYP 3A may be not involved in CPF bioactivation. Finally, the results of biochemical assays indicate that 96 h of CPF exposure remarkably inhibits AChE activity in fish liver or brain, alters hepatic antioxidant enzyme activities, decreases brain T-AOC, and causes lipid peroxidation in fish liver. These results suggest that oxidative stress might be involved in CPF toxicity on goldfish.

  14. Severe Injury Is Associated With Insulin Resistance, Endoplasmic Reticulum Stress Response, and Unfolded Protein Response

    PubMed Central

    Jeschke, Marc G.; Finnerty, Celeste C.; Herndon, David N.; Song, Juquan; Boehning, Darren; Tompkins, Ronald G.; Baker, Henry V.; Gauglitz, Gerd G.

    2012-01-01

    Objective We determined whether postburn hyperglycemia and insulin resistance are associated with endoplasmic reticulum (ER) stress/unfolded protein response (UPR) activation leading to impaired insulin receptor signaling. Background Inflammation and cellular stress, hallmarks of severely burned and critically ill patients, have been causally linked to insulin resistance in type 2 diabetes via induction of ER stress and the UPR. Methods Twenty severely burned pediatric patients were compared with 36 nonburned children. Clinical markers, protein, and GeneChip analysis were used to identify transcriptional changes in ER stress and UPR and insulin resistance–related signaling cascades in peripheral blood leukocytes, fat, and muscle at admission and up to 466 days postburn. Results Burn-induced inflammatory and stress responses are accompanied by profound insulin resistance and hyperglycemia. Genomic and protein analysis revealed that burn injury was associated with alterations in the signaling pathways that affect insulin resistance, ER/sarcoplasmic reticulum stress, inflammation, and cell growth/apoptosis up to 466 days postburn. Conclusion Burn-induced insulin resistance is associated with persistent ER/sarcoplasmic reticulum stress/UPR and subsequent suppressed insulin receptor signaling over a prolonged period of time. PMID:22241293

  15. Lower Electrodermal Activity to Acute Stress in Caregivers of People with Autism Spectrum Disorder: An Adaptive Habituation to Stress

    ERIC Educational Resources Information Center

    Ruiz-Robledillo, Nicolás; Moya-Albiol, Luis

    2015-01-01

    Caring for a relative with autism spectrum disorder (ASD) entails being under chronic stress that could alter body homeostasis. Electrodermal activity (EDA) is an index of the sympathetic activity of the autonomic nervous system related to emotionality and homeostasis. This study compares EDA in response to acute stress in the laboratory between…

  16. Oxalic acid-mediated stress responses in Brassica napus L.

    PubMed

    Liang, Yue; Strelkov, Stephen E; Kav, Nat N V

    2009-06-01

    Oxalic acid (OA) occurs extensively in nature and plays diverse roles, especially in pathogenic processes involving various plant pathogens. However, proteome changes and modifications of signaling and oxidative network of plants in response to OA are not well understood. In order to investigate the responses of Brassica napus toward OA, a proteome analysis was conducted employing 2-DE with MS/MS. A total of 37 proteins were identified as responding to OA stress, of which 13 were up-regulated and 24 were down-regulated. These proteins were categorized into several functional groups including protein processing, RNA processing, photosynthesis, signal transduction, stress response, and redox homeostasis. Investigation of the effect of OA on phytohormone signaling and oxidative responses revealed that jasmonic acid-, ethylene-, and abscisic acid-mediated signaling pathways appear to increase at later time points, whereas those pathways mediated by salicylic acid appear to be suppressed. Moreover, the activities of the antioxidant enzymes catalase, peroxidase, superoxide dismutase and oxalic acid oxidase, but not NADPH oxidase, were suppressed by OA stress. Our findings are discussed within the context of the proposed role(s) of OA during infection by Sclerotinia sclerotiorum and subsequent disease progression. PMID:19526549

  17. Stress and Androgen Activity During Fetal Development.

    PubMed

    Barrett, Emily S; Swan, Shanna H

    2015-10-01

    Prenatal stress is known to alter hypothalamic-pituitary-adrenal axis activity, and more recent evidence suggests that it may also affect androgen activity. In animal models, prenatal stress disrupts the normal surge of testosterone in the developing male, whereas in females, associations differ by species. In humans, studies show that (1) associations between prenatal stress and child outcomes are often sex-dependent, (2) prenatal stress predicts several disorders with notable sex differences in prevalence, and (3) prenatal exposure to stressful life events may be associated with masculinized reproductive tract development and play behavior in girls. In this minireview, we examine the existing literature on prenatal stress and androgenic activity and present new, preliminary data indicating that prenatal stress may also modify associations between prenatal exposure to diethylhexyl phthalate, (a synthetic, antiandrogenic chemical) and reproductive development in infant boys. Taken together, these data support the hypothesis that prenatal exposure to both chemical and nonchemical stressors may alter sex steroid pathways in the maternal-placental-fetal unit and ultimately alter hormone-dependent developmental endpoints. PMID:26241065

  18. Stress and Androgen Activity During Fetal Development

    PubMed Central

    Swan, Shanna H.

    2015-01-01

    Prenatal stress is known to alter hypothalamic-pituitary-adrenal axis activity, and more recent evidence suggests that it may also affect androgen activity. In animal models, prenatal stress disrupts the normal surge of testosterone in the developing male, whereas in females, associations differ by species. In humans, studies show that (1) associations between prenatal stress and child outcomes are often sex-dependent, (2) prenatal stress predicts several disorders with notable sex differences in prevalence, and (3) prenatal exposure to stressful life events may be associated with masculinized reproductive tract development and play behavior in girls. In this minireview, we examine the existing literature on prenatal stress and androgenic activity and present new, preliminary data indicating that prenatal stress may also modify associations between prenatal exposure to diethylhexyl phthalate, (a synthetic, antiandrogenic chemical) and reproductive development in infant boys. Taken together, these data support the hypothesis that prenatal exposure to both chemical and nonchemical stressors may alter sex steroid pathways in the maternal-placental-fetal unit and ultimately alter hormone-dependent developmental endpoints. PMID:26241065

  19. Tolerant and Susceptible Sesame Genotypes Reveal Waterlogging Stress Response Patterns

    PubMed Central

    Wang, Linhai; Li, Donghua; Zhang, Yanxin; Gao, Yuan; Yu, Jingyin; Wei, Xin; Zhang, Xiurong

    2016-01-01

    Waterlogging is a common adverse environmental condition that limits plant growth. Sesame (Sesamum indicum) is considered a drought-tolerant oil crop but is typically susceptible to harmful effects from waterlogging. The present study used comparative analysis to explore the waterlogging stress response associated with two sesame genotypes. The RNA-seq dataset generated during a time course of 0, 3, 9 and 15 h of waterlogging as well as 20 h post-drainage indicated that stress gradually suppressed the expression of sesame genes, with 9 h as the critical time point for the response of sesame to waterlogging stress. Of the 19,316 genes expressed during waterlogging, 72.1% were affected significantly. Sesame of both tolerant and susceptible genotypes showed decreased numbers of upregulated differentially expressed genes (DEGs) but increased numbers of downregulated DEGs at the onset of waterlogging. However, the tolerant-genotype sesame exhibited 25.5% more upregulated DEGs and 29.7% fewer downregulated DEGs than those of the susceptible-genotype strain between 3 and 15 h. The results indicated that the tolerant sesame displayed a more positive gene response to waterlogging. A total of 1,379 genes were significantly induced and commonly expressed in sesame under waterlogging conditions from 3 to 15 h regardless of tolerance level; of these genes, 98 are known homologous stress responsive genes, while the remaining 1,281 are newly reported here. This gene set may represent the core genes that function in response to waterlogging, including those related mainly to energy metabolism and phenylpropanoid biosynthesis. Furthermore, a set of 3,016 genes functioning in energy supply and cell repair or formation was activated in sesame recovery from waterlogging stress. A comparative analysis between sesame of the tolerant and susceptible genotypes revealed 66 genes that may be candidates for improving sesame tolerance to waterlogging. This study provided a comprehensive

  20. Stress responses in probiotic Lactobacillus casei.

    PubMed

    Hosseini Nezhad, Marzieh; Hussain, Malik Altaf; Britz, Margaret Lorraine

    2015-01-01

    Survival in harsh environments is critical to both the industrial performance of lactic acid bacteria (LAB) and their competitiveness in complex microbial ecologies. Among the LAB, members of the Lactobacillus casei group have industrial applications as acid-producing starter cultures for milk fermentations and as specialty cultures for the intensification and acceleration of flavor development in certain bacterial-ripened cheese varieties. They are amongst the most common organisms in the gastrointestinal (GI) tract of humans and other animals, and have the potential to function as probiotics. Whether used in industrial or probiotic applications, environmental stresses will affect the physiological status and properties of cells, including altering their functionality and biochemistry. Understanding the mechanisms of how LAB cope with different environments is of great biotechnological importance, from both a fundamental and applied perspective: hence, interaction between these strains and their environment has gained increased interest in recent years. This paper presents an overview of the important features of stress responses in Lb. casei, and related proteomic or gene expression patterns that may improve their use as starter cultures and probiotics.

  1. Personality traits modulate emotional and physiological responses to stress

    PubMed Central

    Childs, Emma; White, Tara L.; de Wit, Harriet

    2014-01-01

    An individual’s susceptibility to psychological and physical disorders associated with chronic stress exposure e.g., cardiovascular and infectious disease, may also be predicted by their reactivity to acute stress. One factor associated with both stress resilience and health outcomes is personality. An understanding of how personality influences responses to acute stress may shed light upon individual differences in susceptibility to chronic stress-linked disease. This study examined relationships between personality and acute responses to stress in 125 healthy adults, using hierarchical linear regression. We assessed personality traits using the Multidimensional Personality Questionnaire (MPQ-BF), and responses to acute stress (cortisol, heart rate, blood pressure, mood) using a standardised laboratory psychosocial stress task, the Trier Social Stress Test (TSST). Individuals with high Negative Emotionality exhibited greater emotional distress and lower blood pressure responses to the TSST. Individuals with high Agentic Positive Emotionality exhibited prolonged heart rate responses to stress, whereas those with high Communal Positive Emotionality exhibited smaller cortisol and blood pressure responses. Separate personality traits differentially predicted emotional, cardiovascular, and cortisol responses to a psychosocial stressor in healthy volunteers. Future research investigating the association of personality with chronic stress-related disease may provide further clues to the relationship between acute stress reactivity and susceptibility to disease. PMID:25036730

  2. The Hippo pathway promotes cell survival in response to chemical stress.

    PubMed

    Di Cara, F; Maile, T M; Parsons, B D; Magico, A; Basu, S; Tapon, N; King-Jones, K

    2015-09-01

    Cellular stress defense mechanisms have evolved to maintain homeostasis in response to a broad variety of environmental challenges. Stress signaling pathways activate multiple cellular programs that range from the activation of survival pathways to the initiation of cell death when cells are damaged beyond repair. To identify novel players acting in stress response pathways, we conducted a cell culture RNA interference (RNAi) screen using caffeine as a xenobiotic stress-inducing agent, as this compound is a well-established inducer of detoxification response pathways. Specifically, we examined how caffeine affects cell survival when Drosophila kinases and phosphatases were depleted via RNAi. Using this approach, we identified and validated 10 kinases and 4 phosphatases that are essential for cell survival under caffeine-induced stress both in cell culture and living flies. Remarkably, our screen yielded an enrichment of Hippo pathway components, indicating that this pathway regulates cellular stress responses. Indeed, we show that the Hippo pathway acts as a potent repressor of stress-induced cell death. Further, we demonstrate that Hippo activation is necessary to inhibit a pro-apoptotic program triggered by the interaction of the transcriptional co-activator Yki with the transcription factor p53 in response to a range of stress stimuli. Our in vitro and in vivo loss-of-function data therefore implicate Hippo signaling in the transduction of cellular survival signals in response to chemical stress.

  3. RNA-seq analysis of stress response in rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fish under intensive rearing conditions experience various stress conditions, which have negative impacts on survival, growth and fillet quality. Understanding the molecular mechanisms underlying stress responses will facilitate improvement of animal welfare and production efficiency. Our objective ...

  4. Estrogen Receptor-β Agonist Diarylpropionitrile: Biological Activities of R- and S-Enantiomers on Behavior and Hormonal Response to Stress

    PubMed Central

    Weiser, Michael J.; Wu, T. John; Handa, Robert J.

    2009-01-01

    Estrogens have been shown to have positive and negative effects on anxiety and depressive-like behaviors, perhaps explained by the existence of two distinct estrogen receptor (ER) systems, ERα and ERβ. The ERβ agonist, diarylpropionitrile (DPN) has been shown to have anxiolytic properties in rats. DPN exists as a racemic mixture of two enantiomers, R-DPN and S-DPN. In this study, we compared R-DPN and S-DPN for their in vitro binding affinity, ability to activate transcription in vitro at an estrogen response element, and in vivo endocrine and behavioral responses. In vitro binding studies using recombinant rat ERβ revealed that S-DPN has a severalfold greater relative binding affinity for ERβ than does R-DPN. Furthermore, cotransfection of N-38 immortalized hypothalamic cells with an estrogen response element-luc reporter and ERβ revealed that S-DPN is a potent activator of transcription in vitro, whereas R-DPN is not. Subsequently, we examined anxiety-like behaviors using the open-field test and elevated plus maze or depressive-like behaviors, using the forced swim test. Ovariectomized young adult female Sprague Dawley rats treated with racemic DPN, S-DPN, and the ERβ agonist, WAY-200070, showed significantly decreased anxiety-like behaviors in both the open-field and elevated plus maze and significantly less depressive-like behaviors in the forced swim test compared with vehicle-, R-DPN-, or propylpyrazoletriol (ERα agonist)-treated animals. In concordance with the relative binding affinity and transcriptional potency, these results demonstrate that the S-enantiomer is the biologically active form of DPN. These studies also indicate that estrogen's positive effects on mood, including its anxiolytic and antidepressive actions, are due to its actions at ERβ. PMID:19074580

  5. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses

    PubMed Central

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention. PMID:26904076

  6. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses.

    PubMed

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.

  7. A Fluorescent Reporter of AMPK activity and Cellular Energy Stress

    PubMed Central

    Tsou, Peiling; Zheng, Bin; Hsu, Chia-Hsien; Sasaki, Atsuo T; Cantley, Lewis C.

    2011-01-01

    SUMMARY AMP-activated protein kinase (AMPK) is activated when the AMP/ATP ratio in cells is elevated due to energy stress. Here we describe a biosensor, AMPKAR, which exhibits enhanced fluorescence resonance energy transfer (FRET) in response to phosphorylation by AMPK, allowing spatio-temporal monitoring of AMPK activity in single cells. We show that this reporter responds to a variety of stimuli that are known to induce energy stress and that the response is dependent on AMPK α1 & α2 and on the upstream kinase, LKB1. Interestingly we found that AMPK activation is confined to the cytosol in response to energy stress but can be observed in both the cytosol and nucleus in response to calcium elevation. Finally, using this probe with U2OS cells in a microfluidics device, we observed a very high cell-to-cell variability in the amplitude and time course of AMPK activation and recovery in response to pulses of glucose deprivation. PMID:21459332

  8. Responses of neurons to extreme osmomechanical stress.

    PubMed

    Wan, X; Harris, J A; Morris, C E

    1995-05-01

    Neurons are often regarded as fragile cells, easily destroyed by mechanical and osmotic insult. The results presented here demonstrate that this perception needs revision. Using extreme osmotic swelling, we show that molluscan neurons are astonishingly robust. In distilled water, a heterogeneous population of Lymnaea stagnalis CNS neurons swelled to several times their initial volume, yet had a ST50 (survival time for 50% of cells) > 60 min. Cells that were initially bigger survived longer. On return to normal medium, survivors were able, over the next 24 hr, to rearborize. Reversible membrane capacitance changes corresponding to about 0.7 muF/cm2 of apparent surface area accompanied neuronal swelling and shrinking in hypo- and hyperosmotic solutions; reversible changes in cell surface area evidently contributed to the neurons' ability to accommodate hydrostatic pressures then recover. The reversible membrane area/capacitance changes were not dependent on extracellular Ca2+. Neurons were monitored for potassium currents during direct mechanical inflation and during osmotically driven inflation. The latter but not the former stimulus routinely elicited small potassium currents, suggesting that tension increases activate the currents only if additional disruption of the cortex has occurred. Under stress in distilled water, a third of the neurons displayed a quite unexpected behavior: prolonged writhing of peripheral regions of the soma. This suggested that a plasma membrane-linked contractile machinery (presumably actomyosin) might contribute to the neurons' mechano-osmotic robustness by restricting water influx. Consistent with this possibility, 1 mM N-ethyl-maleimide, which inhibits myosin ATPase, decreased the ST50 to 18 min, rendered the survival time independent of initial size, and abolished writhing activity. For neurons, active mechanical resistance of the submembranous cortex, along with the mechanical compliance supplied by insertion or eversion of membrane

  9. Oxidative stress responses in the human fungal pathogen, Candida albicans.

    PubMed

    Dantas, Alessandra da Silva; Day, Alison; Ikeh, Mélanie; Kos, Iaroslava; Achan, Beatrice; Quinn, Janet

    2015-01-01

    Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen. PMID:25723552

  10. Gene Expression Dynamics Accompanying the Sponge Thermal Stress Response

    PubMed Central

    Guzman, Christine; Conaco, Cecilia

    2016-01-01

    Marine sponges are important members of coral reef ecosystems. Thus, their responses to changes in ocean chemistry and environmental conditions, particularly to higher seawater temperatures, will have potential impacts on the future of these reefs. To better understand the sponge thermal stress response, we investigated gene expression dynamics in the shallow water sponge, Haliclona tubifera (order Haplosclerida, class Demospongiae), subjected to elevated temperature. Using high-throughput transcriptome sequencing, we show that these conditions result in the activation of various processes that interact to maintain cellular homeostasis. Short-term thermal stress resulted in the induction of heat shock proteins, antioxidants, and genes involved in signal transduction and innate immunity pathways. Prolonged exposure to thermal stress affected the expression of genes involved in cellular damage repair, apoptosis, signaling and transcription. Interestingly, exposure to sublethal temperatures may improve the ability of the sponge to mitigate cellular damage under more extreme stress conditions. These insights into the potential mechanisms of adaptation and resilience of sponges contribute to a better understanding of sponge conservation status and the prediction of ecosystem trajectories under future climate conditions. PMID:27788197

  11. Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans

    PubMed Central

    da Silva Dantas, Alessandra; Day, Alison; Ikeh, Mélanie; Kos, Iaroslava; Achan, Beatrice; Quinn, Janet

    2015-01-01

    Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen. PMID:25723552

  12. Effects of cold pressor stress on the human startle response.

    PubMed

    Deuter, Christian E; Kuehl, Linn K; Blumenthal, Terry D; Schulz, André; Oitzl, Melly S; Schachinger, Hartmut

    2012-01-01

    Both emotion and attention are known to influence the startle response. Stress influences emotion and attention, but the impact of stress on the human startle response remains unclear. We used an established physiological stressor, the Cold Pressor Test (CPT), to induce stress in a non-clinical human sample (24 student participants) in a within-subjects design. Autonomic (heart rate and skin conductance) and somatic (eye blink) responses to acoustic startle probes were measured during a pre-stress baseline, during a three minutes stress intervention, and during the subsequent recovery period. Startle skin conductance and heart rate responses were facilitated during stress. Compared to baseline, startle eye blink responses were not affected during the intervention but were diminished afterwards. These data describe a new and unique startle response pattern during stress: facilitation of autonomic stress responses but no such facilitation of somatic startle eye blink responses. The absence of an effect of stress on startle eye blink responsiveness may illustrate the importance of guaranteeing uninterrupted visual input during periods of stress. PMID:23166784

  13. Effects of cold pressor stress on the human startle response.

    PubMed

    Deuter, Christian E; Kuehl, Linn K; Blumenthal, Terry D; Schulz, André; Oitzl, Melly S; Schachinger, Hartmut

    2012-01-01

    Both emotion and attention are known to influence the startle response. Stress influences emotion and attention, but the impact of stress on the human startle response remains unclear. We used an established physiological stressor, the Cold Pressor Test (CPT), to induce stress in a non-clinical human sample (24 student participants) in a within-subjects design. Autonomic (heart rate and skin conductance) and somatic (eye blink) responses to acoustic startle probes were measured during a pre-stress baseline, during a three minutes stress intervention, and during the subsequent recovery period. Startle skin conductance and heart rate responses were facilitated during stress. Compared to baseline, startle eye blink responses were not affected during the intervention but were diminished afterwards. These data describe a new and unique startle response pattern during stress: facilitation of autonomic stress responses but no such facilitation of somatic startle eye blink responses. The absence of an effect of stress on startle eye blink responsiveness may illustrate the importance of guaranteeing uninterrupted visual input during periods of stress.

  14. Cortisol modulates men's affiliative responses to acute social stress.

    PubMed

    Berger, Justus; Heinrichs, Markus; von Dawans, Bernadette; Way, Baldwin M; Chen, Frances S

    2016-01-01

    The dominant characterization of the physiological and behavioral human stress reaction is the fight-or-flight response. On the other hand, it has been suggested that social affiliation during stressful times ("tend-and-befriend") also represents a common adaptive response to stress, particularly for women. In the current study, we investigate the extent to which men may also show affiliative responses following acute stress. In addition, we examine a potential neuroendocrine modulator of the hypothesized affiliative response. Eighty male students (forty dyads) were recruited to undergo either the Trier Social Stress Test for Groups (TSST-G) or a non-stressful control situation. Subsequently, participants completed a dyadic interaction task and were then asked to report their feelings of psychological closeness to their interaction partner. Although participants assigned to the stress condition did not differ overall on psychological closeness from participants assigned to the control condition, participants with high cortisol responses to the stressor showed significantly higher ratings of psychological closeness to their interaction partner than participants with low cortisol responses. Our findings suggest that men may form closer temporary bonds following stressful situations that are accompanied by a significant cortisol response. We suggest that the traditional characterization of the male stress response in terms of "fight-or-flight" may be incomplete, and that social affiliation may in fact represent a common, adaptive response to stress in men.

  15. Chronic variable stress activates hematopoietic stem cells

    PubMed Central

    Courties, Gabriel; Dutta, Partha; Iwamoto, Yoshiko; Zaltsman, Alex; von zur Muhlen, Constantin; Bode, Christoph; Fricchione, Gregory L.; Denninger, John; Lin, Charles P.; Vinegoni, Claudio; Libby, Peter; Swirski, Filip K.; Weissleder, Ralph; Nahrendorf, Matthias

    2014-01-01

    Exposure to psychosocial stress is a risk factor for many diseases, including atherosclerosis1,2. While incompletely understood, interaction between the psyche and the immune system provides one potential mechanism linking stress and disease inception and progression. Known crosstalk between the brain and immune system includes the hypothalamic–pituitary–adrenal axis, which centrally drives glucocorticoid production in the adrenal cortex, and the sympathetic–adrenal–medullary axis, which controls stress–induced catecholamine release in support of the fight–or–flight reflex3,4. It remains unknown however if chronic stress changes hematopoietic stem cell activity. Here we show that stress increases proliferation of these most primitive progenitors, giving rise to higher levels of disease–promoting inflammatory leukocytes. We found that chronic stress induced monocytosis and neutrophilia in humans. While investigating the source of leukocytosis in mice, we discovered that stress activates upstream hematopoietic stem cells. Sympathetic nerve fibers release surplus noradrenaline, which uses the β3 adrenergic receptor to signal bone marrow niche cells to decrease CXCL12 levels. Consequently, elevated hematopoietic stem cell proliferation increases output of neutrophils and inflammatory monocytes. When atherosclerosis–prone ApoE−/− mice encounter chronic stress, accelerated hematopoiesis promotes plaque features associated with vulnerable lesions that cause myocardial infarction and stroke in humans. PMID:24952646

  16. Arabidopsis PHOSPHOTYROSYL PHOSPHATASE ACTIVATOR is essential for PROTEIN PHOSPHATASE 2A holoenzyme assembly and plays important roles in hormone signaling, salt stress response, and plant development.

    PubMed

    Chen, Jian; Hu, Rongbin; Zhu, Yinfeng; Shen, Guoxin; Zhang, Hong

    2014-11-01

    PROTEIN PHOSPHATASE 2A (PP2A) is a major group of serine/threonine protein phosphatases in eukaryotes. It is composed of three subunits: scaffolding subunit A, regulatory subunit B, and catalytic subunit C. Assembly of the PP2A holoenzyme in Arabidopsis (Arabidopsis thaliana) depends on Arabidopsis PHOSPHOTYROSYL PHOSPHATASE ACTIVATOR (AtPTPA). Reduced expression of AtPTPA leads to severe defects in plant development, altered responses to abscisic acid, ethylene, and sodium chloride, and decreased PP2A activity. In particular, AtPTPA deficiency leads to decreased methylation in PP2A-C subunits (PP2Ac). Complete loss of PP2Ac methylation in the suppressor of brassinosteroid insensitive1 mutant leads to 30% reduction of PP2A activity, suggesting that PP2A with a methylated C subunit is more active than PP2A with an unmethylated C subunit. Like AtPTPA, PP2A-A subunits are also required for PP2Ac methylation. The interaction between AtPTPA and PP2Ac is A subunit dependent. In addition, AtPTPA deficiency leads to reduced interactions of B subunits with C subunits, resulting in reduced functional PP2A holoenzyme formation. Thus, AtPTPA is a critical factor for committing the subunit A/subunit C dimer toward PP2A heterotrimer formation.

  17. YoeB toxin is activated during thermal stress

    PubMed Central

    Janssen, Brian D; Garza-Sánchez, Fernando; Hayes, Christopher S

    2015-01-01

    Type II toxin-antitoxin (TA) modules are thought to mediate stress-responses by temporarily suppressing protein synthesis while cells redirect transcription to adapt to environmental change. Here, we show that YoeB, a ribosome-dependent mRNase toxin, is activated in Escherichia coli cells grown at elevated temperatures. YoeB activation is dependent on Lon protease, suggesting that thermal stress promotes increased degradation of the YefM antitoxin. Though YefM is efficiently degraded in response to Lon overproduction, we find that Lon antigen levels do not increase during heat shock, indicating that another mechanism accounts for temperature-induced YefM proteolysis. These observations suggest that YefM/YoeB functions in adaptation to temperature stress. However, this response is distinct from previously described models of TA function. First, YoeB mRNase activity is maintained over several hours of culture at 42°C, indicating that thermal activation is not transient. Moreover, heat-activated YoeB does not induce growth arrest nor does it suppress global protein synthesis. In fact, E. coli cells proliferate more rapidly at elevated temperatures and instantaneously accelerate their growth rate in response to acute heat shock. We propose that heat-activated YoeB may serve a quality control function, facilitating the recycling of stalled translation complexes through ribosome rescue pathways. PMID:26147890

  18. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants

    PubMed Central

    Kovtun, Yelena; Chiu, Wan-Ling; Tena, Guillaume; Sheen, Jen

    2000-01-01

    Despite the recognition of H2O2 as a central signaling molecule in stress and wounding responses, pathogen defense, and regulation of cell cycle and cell death, little is known about how the H2O2 signal is perceived and transduced in plant cells. We report here that H2O2 is a potent activator of mitogen-activated protein kinases (MAPKs) in Arabidopsis leaf cells. Using epitope tagging and a protoplast transient expression assay, we show that H2O2 can activate a specific Arabidopsis mitogen-activated protein kinase kinase kinase, ANP1, which initiates a phosphorylation cascade involving two stress MAPKs, AtMPK3 and AtMPK6. Constitutively active ANP1 mimics the H2O2 effect and initiates the MAPK cascade that induces specific stress-responsive genes, but it blocks the action of auxin, a plant mitogen and growth hormone. The latter observation provides a molecular link between oxidative stress and auxin signal transduction. Finally, we show that transgenic tobacco plants that express a constitutively active tobacco ANP1 orthologue, NPK1, display enhanced tolerance to multiple environmental stress conditions without activating previously described drought, cold, and abscisic acid signaling pathways. Thus, manipulation of key regulators of an oxidative stress signaling pathway, such as ANP1/NPK1, provides a strategy for engineering multiple stress tolerance that may greatly benefit agriculture. PMID:10717008

  19. Rethinking stress: the role of mindsets in determining the stress response.

    PubMed

    Crum, Alia J; Salovey, Peter; Achor, Shawn

    2013-04-01

    This article describes 3 studies that explore the role of mindsets in the context of stress. In Study 1, we present data supporting the reliability and validity of an 8-item instrument, the Stress Mindset Measure (SMM), designed to assess the extent to which an individual believes that the effects of stress are either enhancing or debilitating. In Study 2, we demonstrate that stress mindsets can be altered by watching short, multimedia film clips presenting factual information biased toward defining the nature of stress in 1 of 2 ways (stress-is-enhancing vs. stress-is-debilitating). In Study 3, we demonstrate the effect of stress mindset on physiological and behavioral outcomes, showing that a stress-is-enhancing mindset is associated with moderate cortisol reactivity and high desire for feedback under stress. Together, these 3 studies suggest that stress mindset is a distinct and meaningful variable in determining the stress response.

  20. Stressed stem cells: Temperature response in aged mesenchymal stem cells.

    PubMed

    Stolzing, Alexandra; Sethe, Sebastian; Scutt, Andrew M

    2006-08-01

    Mesenchymal stem cells (MSCs) derived from young (6 week) and aged (56 week) Wistar rats were cultured at standard (37 degrees C) and reduced (32 degrees C) temperature and compared for age markers and stress levels. (ROS, NO, TBARS, carbonyls, lipofuscin, SOD, GPx, apoptosis, proteasome activity) and heat shock proteins (HSP27, -60, -70, -90). Aged MSCs display many of the stress markers associated with aging in other cell types, but results vary across marker categories and are temperature dependant. In young MSCs, culturing at reduced temperature had a generally beneficial effect: the anti-apoptotic heat shock proteins HSP 27, HSP70, and HSP90 were up-regulated; pro-apoptotic HSP60 was downregulated; SOD, GPx increased; and levels in ROS, NO, TBARS, carbonyl, and lipofuscin were diminished. Apoptosis was reduced, but also proteasome activity. In contrast, in aged MSCs, culturing at reduced temperature generally produced no 'beneficial' changes in these parameters, and can even have detrimental effects. Implications for tissue engineering and for stem cell gerontology are discussed. The results suggest that a 'hormesis' theory of stress response can be extended to MSCs, but that cooling cultivation temperature stress produces positive effects in young cells only.

  1. Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response

    PubMed Central

    Oskvig, Devon B.; Elkahloun, Abdel G.; Johnson, Kory R.; Phillips, Terry M.; Herkenham, Miles

    2012-01-01

    Maternal immune activation (MIA) is a risk factor for the development of schizophrenia and autism. Infections during pregnancy activate the mother’s immune system and alter the fetal environment, with consequential effects on CNS function and behavior in the offspring, but the cellular and molecular links between infection-induced altered fetal development and risk for neuropsychiatric disorders are unknown. We investigated the immunological, molecular, and behavioral effects of MIA in the offspring of pregnant Sprague-Dawley rats given an intraperitoneal (0.25 mg/kg) injection of lipopolysaccharide (LPS) on gestational day 15. LPS significantly elevated pro-inflammatory cytokine levels in maternal serum, amniotic fluid, and fetal brain at 4 h, and levels decreased but remained elevated at 24 h. Offspring born to LPS-treated dams exhibited reduced social preference and exploration behaviors as juveniles and young adults. Whole genome microarray analysis of the fetal brain at 4 h post maternal LPS was performed to elucidate the possible molecular mechanisms by which MIA affects the fetal brain. We observed dysregulation of 3,285 genes in restricted functional categories, with increased mRNA expression of cellular stress and cell death genes and reduced expression of developmentally-regulated and brain-specific genes, specifically those that regulate neuronal migration of GABAergic interneurons, including the Distal-less (Dlx) family of transcription factors required for tangential migration from progenitor pools within the ganglionic eminences into the cerebral cortex. Our results provide a novel mechanism by which MIA induces the widespread down-regulation of critical neurodevelopmental genes, including those previously associated with autism. PMID:22310921

  2. Enhanced Oxidative Stress Is Responsible for TRPV4-Induced Neurotoxicity

    PubMed Central

    Hong, Zhiwen; Tian, Yujing; Yuan, Yibiao; Qi, Mengwen; Li, Yingchun; Du, Yimei; Chen, Lei; Chen, Ling

    2016-01-01

    Transient receptor potential vanilloid 4 (TRPV4) has been reported to be responsible for neuronal injury in pathological conditions. Excessive oxidative stress can lead to neuronal damage, and activation of TRPV4 increases the production of reactive oxygen species (ROS) and nitric oxide (NO) in many types of cells. The present study explored whether TRPV4-induced neuronal injury is mediated through enhancing oxidative stress. We found that intracerebroventricular injection of the TRPV4 agonist GSK1016790A increased the content of methane dicarboxylic aldehyde (MDA) and NO in the hippocampus, which was blocked by administration of the TRPV4 specific antagonist HC-067047. The activities of catalase (CAT) and glutathione peroxidase (GSH-Px) were decreased by GSK1016790A, whereas the activity of superoxide dismutase (SOD) remained unchanged. Moreover, the protein level and activity of neuronal nitric oxide synthase (nNOS) were increased by GSK1016790A, and the GSK1016790A-induced increase in NO content was blocked by an nNOS specific antagonist ARL-17477. The GSK1016790A-induced modulations of CAT, GSH-Px and nNOS activities and the protein level of nNOS were significantly inhibited by HC-067047. Finally, GSK1016790A-induced neuronal death and apoptosis in the hippocampal CA1 area were markedly attenuated by administration of a ROS scavenger Trolox or ARL-17477. We conclude that activation of TRPV4 enhances oxidative stress by inhibiting CAT and GSH-Px and increasing nNOS, which is responsible, at least in part, for TRPV4-induced neurotoxicity. PMID:27799895

  3. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress

    PubMed Central

    Spiers, Jereme G.; Chen, Hsiao-Jou Cortina; Sernia, Conrad; Lavidis, Nickolas A.

    2015-01-01

    Glucocorticoids released from the adrenal gland in response to stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis induce activity in the cellular reduction-oxidation (redox) system. The redox system is a ubiquitous chemical mechanism allowing the transfer of electrons between donor/acceptors and target molecules during oxidative phosphorylation while simultaneously maintaining the overall cellular environment in a reduced state. The objective of this review is to present an overview of the current literature discussing the link between HPA axis-derived glucocorticoids and increased oxidative stress, particularly focussing on the redox changes observed in the hippocampus following glucocorticoid exposure. PMID:25646076

  4. Scolopendin 2 leads to cellular stress response in Candida albicans.

    PubMed

    Lee, Heejeong; Hwang, Jae-Sam; Lee, Dong Gun

    2016-07-01

    Centipedes, a kind of arthropod, have been reported to produce antimicrobial peptides as part of an innate immune response. Scolopendin 2 (AGLQFPVGRIGRLLRK) is a novel antimicrobial peptide derived from the body of the centipede Scolopendra subspinipes mutilans by using RNA sequencing. To investigate the intracellular responses induced by scolopendin 2, reactive oxygen species (ROS) and glutathione accumulation and lipid peroxidation were monitored over sublethal and lethal doses. Intracellular ROS and antioxidant molecule levels were elevated and lipids were peroxidized at sublethal concentrations. Moreover, the Ca(2+) released from the endoplasmic reticulum accumulated in the cytosol and mitochondria. These stress responses were considered to be associated with yeast apoptosis. Candida albicans cells exposed to scolopendin 2 were identified using diagnostic markers of apoptotic response. Various responses such as phosphatidylserine externalization, chromatin condensation, and nuclear fragmentation were exhibited. Scolopendin 2 disrupted the mitochondrial membrane potential and activated metacaspase, which was mediated by cytochrome c release. In conclusion, treatment of C. albicans with scolopendin 2 induced the apoptotic response at sublethal doses, which in turn led to mitochondrial dysfunction, metacaspase activation, and cell death. The cationic antimicrobial peptide scolopendin 2 from the centipede is a potential antifungal peptide, triggering the apoptotic response. PMID:27207682

  5. WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants

    PubMed Central

    Phukan, Ujjal J.; Jeena, Gajendra S.; Shukla, Rakesh K.

    2016-01-01

    Plants in their natural habitat have to face multiple stresses simultaneously. Evolutionary adaptation of developmental, physiological, and biochemical parameters give advantage over a single window of stress but not multiple. On the other hand transcription factors like WRKY can regulate diverse responses through a complicated network of genes. So molecular orchestration of WRKYs in plant may provide the most anticipated outcome of simultaneous multiple responses. Activation or repression through W-box and W-box like sequences is regulated at transcriptional, translational, and domain level. Because of the tight regulation involved in specific recognition and binding of WRKYs to downstream promoters, they have become promising candidate for crop improvement. Epigenetic, retrograde and proteasome mediated regulation enable WRKYs to attain the dynamic cellular homeostatic reprograming. Overexpression of several WRKYs face the paradox of having several beneficial affects but with some unwanted traits. These overexpression-associated undesirable phenotypes need to be identified and removed for proper growth, development and yeild. Taken together, we have highlighted the diverse regulation and multiple stress response of WRKYs in plants along with the future prospects in this field of research. PMID:27375634

  6. Silicon stress/strain activities at JPL

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1986-01-01

    In-house Jet Propulsion Laboratory (JPL) work is described for silicon stress/strain, including the study of fracture mechanics, and on the high-temperature test program in which the low-strain response of silicon sheet materials above 1000 C is being measured and high temperature material property data are being determined.

  7. Activity of a Bacterial Cell Envelope Stress Response Is Controlled by the Interaction of a Protein Binding Domain with Different Partners*

    PubMed Central

    Flores-Kim, Josué; Darwin, Andrew J.

    2015-01-01

    The bacterial phage shock protein (Psp) system is a highly conserved cell envelope stress response required for virulence in Yersinia enterocolitica and Salmonella enterica. In non-inducing conditions the transcription factor PspF is inhibited by an interaction with PspA. In contrast, PspA associates with the cytoplasmic membrane proteins PspBC during inducing conditions. This has led to the proposal that PspBC exists in an OFF state, which cannot recruit PspA, or an ON state, which can. However, nothing was known about the difference between these two states. Here, we provide evidence that it is the C-terminal domain of Y. enterocolitica PspC (PspCCT) that interacts directly with PspA, both in vivo and in vitro. Site-specific photocross-linking revealed that this interaction occurred only during Psp-inducing conditions in vivo. Importantly, we have also discovered that PspCCT can interact with the C-terminal domain of PspB (PspCCT·PspBCT). However, the PspCCT·PspBCT and PspCCT·PspA interactions were mutually exclusive in vitro. Furthermore, in vivo, PspCCT contacted PspBCT in the OFF state, whereas it contacted PspA in the ON state. These findings provide the first description of the previously proposed PspBC OFF and ON states and reveal that the regulatory switch is centered on a PspCCT partner-switching mechanism. PMID:25802329

  8. Undrained poroelastic response of sandstones to deviatoric stress change

    USGS Publications Warehouse

    Lockner, D.A.; Stanchits, S.A.

    2002-01-01

    Deformation of porous crustal rock through diagenesis, tectonic loading, or other processes can change pore volume and affect fluid pressure. The largest stress-induced pore pressure changes occur when fluid is trapped in pores in an "undrained" condition. We have measured the undrained poroelastic response of two sandstones to changes in mean and deviatoric stress. Pore pressure was found to respond to mean stress ??m in the usual manner: ??p = B ?? ??m (B ranging from 0.4 to 0.7), nearly independent of the ambient deviatoric stress state. However, variations in deviatoric stress (??d = (??1 - ??3)/2) at constant mean stress were also found to induce a reversible (elastic) pore pressure response to stress levels up to and exceeding 80% failure stress (i.e., ??p = ??????d/??m = const.). The coefficient ?? became more negative with increasing deviatoric stress level in sandstone and Ottawa sand samples. That is, ?? represents a dilatant response where increased deviatoric stress causes a decrease in pore pressure. The poroelastic response to deviatoric stress is explained in terms of anisotropic matrix stiffening due to closure of crack-like pore space or flattening of grain contacts at high ambient stress levels and can be important in calculations of earthquake stress transfer.

  9. HCV Causes Chronic Endoplasmic Reticulum Stress Leading to Adaptation and Interference with the Unfolded Protein Response

    PubMed Central

    Merquiol, Emmanuelle; Uzi, Dotan; Mueller, Tobias; Goldenberg, Daniel; Nahmias, Yaakov; Xavier, Ramnik J.

    2011-01-01

    Background The endoplasmic reticulum (ER) is the cellular site for protein folding. ER stress occurs when protein folding capacity is exceeded. This stress induces a cyto-protective signaling cascades termed the unfolded protein response (UPR) aimed at restoring homeostasis. While acute ER stress is lethal, chronic sub-lethal ER stress causes cells to adapt by attenuation of UPR activation. Hepatitis C virus (HCV), a major human pathogen, was shown to cause ER stress, however it is unclear whether HCV induces chronic ER stress, and if so whether adaptation mechanisms are initiated. We wanted to characterize the kinetics of HCV-induced ER stress during infection and assess adaptation mechanisms and their significance. Methods and Findings The HuH7.5.1 cellular system and HCV-transgenic (HCV-Tg) mice were used to characterize HCV-induced ER stress/UPR pathway activation and adaptation. HCV induced a wave of acute ER stress peaking 2–5 days post-infection, which rapidly subsided thereafter. UPR pathways were activated including IRE1 and EIF2α phosphorylation, ATF6 cleavage and XBP-1 splicing. Downstream target genes including GADD34, ERdj4, p58ipk, ATF3 and ATF4 were upregulated. CHOP, a UPR regulated protein was activated and translocated to the nucleus. Remarkably, UPR activity did not return to baseline but remained elevated for up to 14 days post infection suggesting that chronic ER stress is induced. At this time, cells adapted to ER stress and were less responsive to further drug-induced ER stress. Similar results were obtained in HCV-Tg mice. Suppression of HCV by Interferon-α 2a treatment, restored UPR responsiveness to ER stress tolerant cells. Conclusions Our study shows, for the first time, that HCV induces adaptation to chronic ER stress which was reversed upon viral suppression. These finding represent a novel viral mechanism to manipulate cellular response pathways. PMID:21949742

  10. Vascular response to stress in health and disease.

    PubMed

    Plante, Gérard E

    2002-06-01

    The body's vasculature plays a critical role in the development of functional and structural alterations responsible for tissue and organ damage in laboratory animals and human subjects during illness and senescence, and in response to stress. Components of the vasculature, namely, major arteries such as the aorta, smaller arteries, arterioles, capillaries, post-capillary venules, and collecting central veins, all serve as conduits through which vital substrates are delivered to cellular masses and/or waste products are removed. A number of physical and neurohumoral agents known to be responsive to stress stimuli exert functional control over the vasculature. Both physical and emotional stress have been found to cause significant hemodynamic alterations. Large artery rigidity, for instance, develops rapidly following stress-induced activation of the autonomic nervous system. Associated with this process is increased release into the circulation of catecholamines and angiotensin-II. At the same time, insulin resistance develops, accompanied by nitric oxide release and changes in the immune system. The response of large arterial conduits to stress is characterized by increased pulse pressure, which in turn affects the endothelium of the arterial vessels responsible for determining total peripheral resistance. Microcirculation networks, where a large fraction of the blood volume is contained, are affected as well, and the blood in them is subject to redistribution into adjacent interstitial fluid compartments. Changes in endothelial permeability, secondary to variations in pulse pressure, can lead to interstitial edema and changes in the physicochemical properties of interstitial compartments. These changes give rise to alterations in the traffic of substrates and waste products between blood and cells. This sequence of events also takes place in the vasa vasorum microcirculation that nourishes large arteries, and likely contributes to remodeling of the vascular wall

  11. A High-Throughput Screen Identifies 2,9-Diazaspiro[5.5]Undecanes as Inducers of the Endoplasmic Reticulum Stress Response with Cytotoxic Activity in 3D Glioma Cell Models.

    PubMed

    Martinez, Natalia J; Rai, Ganesha; Yasgar, Adam; Lea, Wendy A; Sun, Hongmao; Wang, Yuhong; Luci, Diane K; Yang, Shyh-Ming; Nishihara, Kana; Takeda, Shunichi; Sagor, Mohiuddin; Earnshaw, Irina; Okada, Tetsuya; Mori, Kazutoshi; Wilson, Kelli; Riggins, Gregory J; Xia, Menghang; Grimaldi, Maurizio; Jadhav, Ajit; Maloney, David J; Simeonov, Anton

    2016-01-01

    The endoplasmic reticulum (ER) is involved in Ca2+ signaling and protein folding. ER Ca2+ depletion and accumulation of unfolded proteins activate the molecular chaperone GRP78 (glucose-regulated protein 78) which in turn triggers the ER stress response (ERSR) pathway aimed to restore ER homeostasis. Failure to adapt to stress, however, results in apoptosis. We and others have shown that malignant cells are more susceptible to ERSR-induced apoptosis than their normal counterparts, implicating the ERSR as a potential target for cancer therapeutics. Predicated on these findings, we developed an assay that uses a GRP78 biosensor to identify small molecule activators of ERSR in glioma cells. We performed a quantitative high-throughput screen (qHTS) against a collection of ~425,000 compounds and a comprehensive panel of orthogonal secondary assays was formulated for stringent compound validation. We identified novel activators of ERSR, including a compound with a 2,9-diazaspiro[5.5]undecane core, which depletes intracellular Ca2+ stores and induces apoptosis-mediated cell death in several cancer cell lines, including patient-derived and 3D cultures of glioma cells. This study demonstrates that our screening platform enables the identification and profiling of ERSR inducers with cytotoxic activity and advocates for characterization of these compound in in vivo models. PMID:27570969

  12. A High-Throughput Screen Identifies 2,9-Diazaspiro[5.5]Undecanes as Inducers of the Endoplasmic Reticulum Stress Response with Cytotoxic Activity in 3D Glioma Cell Models

    PubMed Central

    Yasgar, Adam; Lea, Wendy A.; Sun, Hongmao; Wang, Yuhong; Luci, Diane K.; Yang, Shyh-Ming; Nishihara, Kana; Takeda, Shunichi; Sagor, Mohiuddin; Earnshaw, Irina; Okada, Tetsuya; Mori, Kazutoshi; Wilson, Kelli; Riggins, Gregory J.; Xia, Menghang; Grimaldi, Maurizio; Jadhav, Ajit; Maloney, David J.; Simeonov, Anton

    2016-01-01

    The endoplasmic reticulum (ER) is involved in Ca2+ signaling and protein folding. ER Ca2+ depletion and accumulation of unfolded proteins activate the molecular chaperone GRP78 (glucose-regulated protein 78) which in turn triggers the ER stress response (ERSR) pathway aimed to restore ER homeostasis. Failure to adapt to stress, however, results in apoptosis. We and others have shown that malignant cells are more susceptible to ERSR-induced apoptosis than their normal counterparts, implicating the ERSR as a potential target for cancer therapeutics. Predicated on these findings, we developed an assay that uses a GRP78 biosensor to identify small molecule activators of ERSR in glioma cells. We performed a quantitative high-throughput screen (qHTS) against a collection of ~425,000 compounds and a comprehensive panel of orthogonal secondary assays was formulated for stringent compound validation. We identified novel activators of ERSR, including a compound with a 2,9-diazaspiro[5.5]undecane core, which depletes intracellular Ca2+ stores and induces apoptosis-mediated cell death in several cancer cell lines, including patient-derived and 3D cultures of glioma cells. This study demonstrates that our screening platform enables the identification and profiling of ERSR inducers with cytotoxic activity and advocates for characterization of these compound in in vivo models. PMID:27570969

  13. Origins of asymmetric stress-strain response in phase transformations

    SciTech Connect

    Sehitoglu, H.; Gall, K.

    1997-12-31

    It has been determined that the transformation stress-strain behavior of CuZnAl and NiTi shape memory alloys is dependent on the applied stress state. The uniaxial compressive stress necessary to macroscopically trigger the transformation is approximately 34% (CuZnAl) and 26% (NiTi) larger than the required uniaxial tensile stress. For three dimensional stress states, the response of either alloy system is dependent on the directions of the dominant principal stresses along with the hydrostatic stress component of the stress state. The stress state effects are dominated by the favored growth and nucleation of more martensite plates in tension versus compression. The effect of different hydrostatic pressure levels between stress states on martensite plates volume change is considered small.

  14. Adulthood stress responses in rats are variably altered as a factor of adolescent stress exposure.

    PubMed

    Moore, Nicole L T; Altman, Daniel E; Gauchan, Sangeeta; Genovese, Raymond F

    2016-05-01

    Stress exposure during development may influence adulthood stress response severity. The present study investigates persisting effects of two adolescent stressors upon adulthood response to predator exposure (PE). Rats were exposed to underwater trauma (UWT) or PE during adolescence, then to PE after reaching adulthood. Rats were then exposed to predator odor (PO) to test responses to predator cues alone. Behavioral and neuroendocrine assessments were conducted to determine acute effects of each stress experience. Adolescent stress altered behavioral response to adulthood PE. Acoustic startle response was blunted. Bidirectional changes in plus maze exploration were revealed as a factor of adolescent stress type. Neuroendocrine response magnitude did not predict severity of adolescent or adult stress response, suggesting that different adolescent stress events may differentially alter developmental outcomes regardless of acute behavioral or neuroendocrine response. We report that exposure to two different stressors in adolescence may differentially affect stress response outcomes in adulthood. Acute response to an adolescent stressor may not be consistent across all stressors or all dependent measures, and may not predict alterations in developmental outcomes pertaining to adulthood stress exposure. Further studies are needed to characterize factors underlying long-term effects of a developmental stressor.

  15. Plant cell organelle proteomics in response to abiotic stress.

    PubMed

    Hossain, Zahed; Nouri, Mohammad-Zaman; Komatsu, Setsuko

    2012-01-01

    Proteomics is one of the finest molecular techniques extensively being used for the study of protein profiling of a given plant species experiencing stressed conditions. Plants respond to a stress by alteration in the pattern of protein expression, either by up-regulating of the existing protein pool or by the synthesizing novel proteins primarily associated with plants antioxidative defense mechanism. Improved protein extraction protocols and advance techniques for identification of novel proteins have been standardized in different plant species at both cellular and whole plant level for better understanding of abiotic stress sensing and intracellular stress signal transduction mechanisms. In contrast, an in-depth proteome study of subcellular organelles could generate much detail information about the intrinsic mechanism of stress response as it correlates the possible relationship between the protein abundance and plant stress tolerance. Although a wealth of reviews devoted to plant proteomics are available, review articles dedicated to plant cell organelle proteins response under abiotic stress are very scanty. In the present review, an attempt has been made to summarize all significant contributions related to abiotic stresses and their impacts on organelle proteomes for better understanding of plants abiotic stress tolerance mechanism at protein level. This review will not only provide new insights into the plants stress response mechanisms, which are necessary for future development of genetically engineered stress tolerant crop plants for the benefit of humankind, but will also highlight the importance of studying changes in protein abundance within the cell organelles in response to abiotic stress.

  16. Maternal Influences on Youth Responses to Peer Stress

    ERIC Educational Resources Information Center

    Abaied, Jamie L.; Rudolph, Karen D.

    2011-01-01

    Understanding how youths develop particular styles of responding to stress is critical for promoting effective coping. This research examined the prospective, interactive contribution of maternal socialization of coping and peer stress to youth responses to peer stress. A sample of 144 early adolescents (mean age = 12.44 years, SD = 1.22) and…

  17. Exogenous progesterone exacerbates running response of adolescent female mice to repeated food restriction stress by changing α4-GABAA receptor activity of hippocampal pyramidal cells.

    PubMed

    Wable, G S; Chen, Y-W; Rashid, S; Aoki, C

    2015-12-01

    Adolescent females are particularly vulnerable to mental illnesses with co-morbidity of anxiety, such as anorexia nervosa (AN). We used an animal model of AN, called activity-based anorexia (ABA), to investigate the neurobiological basis of vulnerability to repeated, food restriction (FR) stress-evoked anxiety. Twenty-one of 23 adolescent female mice responded to the 1st FR with increased wheel-running activity (WRA), even during the limited period of food access, thereby capturing AN's symptoms of voluntary FR and over-exercise. Baseline WRA was an excellent predictor of FR-elicited WRA (severity of ABA, SOA), with high baseline runners responding to FR with minimal SOA (i.e., negative correlation). Nine gained resistance to ABA following the 1st FR. Even though allopregnanolone (3α-OH-5α-pregnan-20-one, THP), the metabolite of progesterone (P4), is a well-recognized anxiolytic agent, subcutaneous P4 to these ABA-resistant animals during the 2nd FR was exacerbative, evoking greater WRA than the counterpart resistant group that received oil vehicle, only. Moreover, P4 had no WRA-reducing effect on animals that remained ABA-vulnerable. To explain the sensitizing effect of P4 upon the resistant mice, we examined the relationship between P4 treatment and levels of the α4 subunit of GABAARs at spines of pyramidal cells of the hippocampal CA1, a parameter previously shown to correlate with resistance to ABA. α4 levels at spine membrane correlated strongly and negatively with SOA during the 1st ABA (prior to P4 injection), confirming previous findings. α4 levels were greater among P4-treated animals that had gained resistance than of vehicle-treated resistant animals or of the vulnerable animals with or without P4. We propose that α4-GABAARs play a protective role by counterbalancing the ABA-induced increase in excitability of CA1 pyramidal neurons, and although exogenous P4's metabolite, THP, enhances α4 expression, especially among those that can gain resistance

  18. The Stress Response Regulator AflSkn7 Influences Morphological Development, Stress Response, and Pathogenicity in the Fungus Aspergillus flavus.

    PubMed

    Zhang, Feng; Xu, Gaopo; Geng, Longpo; Lu, Xiaoyan; Yang, Kunlong; Yuan, Jun; Nie, Xinyi; Zhuang, Zhenhong; Wang, Shihua

    2016-01-01

    This study focused on AflSkn7, which is a stress response regulator in the aflatoxin-producing Aspergillus flavus. The ΔAflSkn7 mutants exhibited partially defective conidial formation and a complete inability to generate sclerotia, indicating AflSkn7 affects A. flavus asexual and sexual development. The mutants tolerated osmotic stress but were partially susceptible to the effects of cell wall stress. Additionally, the ΔAflSkn7 mutants were especially sensitive to oxidative stress. These observations confirmed that AflSkn7 influences oxidative stress responses rather than osmotic stress responses. Additionally, AflSkn7 was observed to increase aflatoxin biosynthesis and seed infection rates. These results indicate AflSkn7 affects A. flavus morphological development, stress response, aflatoxin production, and pathogenicity. The results of this study may facilitate the development of new methods to manage A. flavus infections. PMID:27399770

  19. The Stress Response Regulator AflSkn7 Influences Morphological Development, Stress Response, and Pathogenicity in the Fungus Aspergillus flavus

    PubMed Central

    Zhang, Feng; Xu, Gaopo; Geng, Longpo; Lu, Xiaoyan; Yang, Kunlong; Yuan, Jun; Nie, Xinyi; Zhuang, Zhenhong; Wang, Shihua

    2016-01-01

    This study focused on AflSkn7, which is a stress response regulator in the aflatoxin-producing Aspergillus flavus. The ΔAflSkn7 mutants exhibited partially defective conidial formation and a complete inability to generate sclerotia, indicating AflSkn7 affects A. flavus asexual and sexual development. The mutants tolerated osmotic stress but were partially susceptible to the effects of cell wall stress. Additionally, the ΔAflSkn7 mutants were especially sensitive to oxidative stress. These observations confirmed that AflSkn7 influences oxidative stress responses rather than osmotic stress responses. Additionally, AflSkn7 was observed to increase aflatoxin biosynthesis and seed infection rates. These results indicate AflSkn7 affects A. flavus morphological development, stress response, aflatoxin production, and pathogenicity. The results of this study may facilitate the development of new methods to manage A. flavus infections. PMID:27399770

  20. Nitrogen stress response and stringent response are coupled in Escherichia coli

    PubMed Central

    Brown, Daniel R.; Barton, Geraint; Pan, Zhensheng; Buck, Martin; Wigneshweraraj, Sivaramesh

    2014-01-01

    Assimilation of nitrogen is an essential process in bacteria. The nitrogen regulation stress response is an adaptive mechanism used by nitrogen-starved Escherichia coli to scavenge for alternative nitrogen sources and requires the global transcriptional regulator NtrC. In addition, nitrogen-starved E. coli cells synthesize a signal molecule, guanosine tetraphosphate (ppGpp), which serves as an effector molecule of many processes including transcription to initiate global physiological changes, collectively termed the stringent response. The regulatory mechanisms leading to elevated ppGpp levels during nutritional stresses remain elusive. Here, we show that transcription of relA, a key gene responsible for the synthesis of ppGpp, is activated by NtrC during nitrogen starvation. The results reveal that NtrC couples these two major bacterial stress responses to manage conditions of nitrogen limitation, and provide novel mechanistic insights into how a specific nutritional stress leads to elevating ppGpp levels in bacteria. PMID:24947454

  1. Nitrogen stress response and stringent response are coupled in Escherichia coli.

    PubMed

    Brown, Daniel R; Barton, Geraint; Pan, Zhensheng; Buck, Martin; Wigneshweraraj, Sivaramesh

    2014-01-01

    Assimilation of nitrogen is an essential process in bacteria. The nitrogen regulation stress response is an adaptive mechanism used by nitrogen-starved Escherichia coli to scavenge for alternative nitrogen sources and requires the global transcriptional regulator NtrC. In addition, nitrogen-starved E. coli cells synthesize a signal molecule, guanosine tetraphosphate (ppGpp), which serves as an effector molecule of many processes including transcription to initiate global physiological changes, collectively termed the stringent response. The regulatory mechanisms leading to elevated ppGpp levels during nutritional stresses remain elusive. Here, we show that transcription of relA, a key gene responsible for the synthesis of ppGpp, is activated by NtrC during nitrogen starvation. The results reveal that NtrC couples these two major bacterial stress responses to manage conditions of nitrogen limitation, and provide novel mechanistic insights into how a specific nutritional stress leads to elevating ppGpp levels in bacteria. PMID:24947454

  2. Oxidative stress response and Nrf2 signaling in aging

    PubMed Central

    Zhang, Hongqiao; Davies, Kelvin J. A.; Forman, Henry Jay

    2015-01-01

    Increasing oxidative stress, a major characteristic of aging, has been implicated in variety of age-related pathologies. In aging, oxidant production from several sources is increased while antioxidant enzymes, the primary lines of defense, are decreased. Repair systems, including the proteasomal degradation of damaged proteins also declines. Importantly, the adaptive response to oxidative stress declines with aging. Nrf2/EpRE signaling regulates the basal and inducible expression of many antioxidant enzymes and the proteasome. Nrf2/EpRE activity is regulated at several levels including transcription, post-translation, and interaction with other proteins. This review summarizes current studies on age-related impairment of Nrf2/EpRE function and discusses the change of Nrf2 regulatory mechanisms with aging. PMID:26066302

  3. Regulation of Stress Responses and Translational Control by Coronavirus

    PubMed Central

    Fung, To Sing; Liao, Ying; Liu, Ding Xiang

    2016-01-01

    Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER) results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed. PMID:27384577

  4. Hormonal modulation of the heat shock response: insights from fish with divergent cortisol stress responses.

    PubMed

    LeBlanc, Sacha; Höglund, Erik; Gilmour, Kathleen M; Currie, Suzanne

    2012-01-01

    Acute temperature stress in animals results in increases in heat shock proteins (HSPs) and stress hormones. There is evidence that stress hormones influence the magnitude of the heat shock response; however, their role is equivocal. To determine whether and how stress hormones may affect the heat shock response, we capitalized on two lines of rainbow trout specifically bred for their high (HR) and low (LR) cortisol response to stress. We predicted that LR fish, with a low cortisol but high catecholamine response to stress, would induce higher levels of HSPs after acute heat stress than HR trout. We found that HR fish have significantly higher increases in both catecholamines and cortisol compared with LR fish, and LR fish had no appreciable stress hormone response to heat shock. This unexpected finding prevented further interpretation of the hormonal modulation of the heat shock response but provided insight into stress-coping styles and environmental stress. HR fish also had a significantly greater and faster heat shock response and less oxidative protein damage than LR fish. Despite these clear differences in the physiological and cellular responses to heat shock, there were no differences in the thermal tolerance of HR and LR fish. Our results support the hypothesis that responsiveness to environmental change underpins the physiological differences in stress-coping styles. Here, we demonstrate that the heat shock response is a distinguishing feature of the HR and LR lines and suggest that it may have been coselected with the hormonal responses to stress.

  5. The stress response system of proteins: Implications for bioreactor scaleup

    NASA Technical Reports Server (NTRS)

    Goochee, Charles F.

    1988-01-01

    Animal cells face a variety of environmental stresses in large scale bioreactors, including periodic variations in shear stress and dissolved oxygen concentration. Diagnostic techniques were developed for identifying the particular sources of environmental stresses for animal cells in a given bioreactor configuration. The mechanisms by which cells cope with such stresses was examined. The individual concentrations and synthesis rates of hundreds of intracellular proteins are affected by the extracellular environment (medium composition, dissolved oxygen concentration, ph, and level of surface shear stress). Techniques are currently being developed for quantifying the synthesis rates and concentrations of the intracellular proteins which are most sensitive to environmental stress. Previous research has demonstrated that a particular set of stress response proteins are synthesized by mammalian cells in response to temperature fluctuations, dissolved oxygen deprivation, and glucose deprivation. Recently, it was demonstrated that exposure of human kidney cells to high shear stress results in expression of a completely distinct set of intracellular proteins.

  6. Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation

    PubMed Central

    Muralidharan, Sujatha; Mandrekar, Pranoti

    2013-01-01

    Extensive research in the past decade has identified innate immune recognition receptors and intracellular signaling pathways that culminate in inflammatory responses. Besides its role in cytoprotection, the importance of cell stress in inflammation and host defense against pathogens is emerging. Recent studies have shown that proteins in cellular stress responses, including the heat shock response, ER stress response, and DNA damage response, interact with and regulate signaling intermediates involved in the activation of innate and adaptive immune responses. The effect of such regulation by cell stress proteins may dictate the inflammatory profile of the immune response during infection and disease. In this review, we describe the regulation of innate immune cell activation by cell stress pathways, present detailed descriptions of the types of stress response proteins and their crosstalk with immune signaling intermediates that are essential in host defense, and illustrate the relevance of these interactions in diseases characteristic of aberrant immune responses, such as chronic inflammatory diseases, autoimmune disorders, and cancer. Understanding the crosstalk between cellular stress proteins and immune signaling may have translational implications for designing more effective regimens to treat immune disorders. PMID:23990626

  7. Oxidative stress responses and NRF2 in human leukaemia.

    PubMed

    Abdul-Aziz, Amina; MacEwan, David J; Bowles, Kristian M; Rushworth, Stuart A

    2015-01-01

    Oxidative stress as a result of elevated levels of reactive oxygen species (ROS) has been observed in almost all cancers, including leukaemia, where they contribute to disease development and progression. However, cancer cells also express increased levels of antioxidant proteins which detoxify ROS. This includes glutathione, the major antioxidant in human cells, which has recently been identified to have dysregulated metabolism in human leukaemia. This suggests that critical balance of intracellular ROS levels is required for cancer cell function, growth, and survival. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcription factor plays a dual role in cancer. Primarily, NRF2 is a transcription factor functioning to protect nonmalignant cells from malignant transformation and oxidative stress through transcriptional activation of detoxifying and antioxidant enzymes. However, once malignant transformation has occurred within a cell, NRF2 functions to protect the tumour from oxidative stress and chemotherapy-induced cytotoxicity. Moreover, inhibition of the NRF2 oxidative stress pathway in leukaemia cells renders them more sensitive to cytotoxic chemotherapy. Our improved understanding of NRF2 biology in human leukaemia may permit mechanisms by which we could potentially improve future cancer therapies. This review highlights the mechanisms by which leukaemic cells exploit the NRF2/ROS response to promote their growth and survival.

  8. Cardiac oxidative stress and inflammatory cytokines response after myocardial infarction.

    PubMed

    Neri, Margherita; Fineschi, Vittorio; Di Paolo, Marco; Pomara, Cristoforo; Riezzo, Irene; Turillazzi, Emanuela; Cerretani, Daniela

    2015-01-01

    Oxidative stress in heart failure or during ischemia/reperfusion occurs as a result of the excessive generation or accumulation of free radicals or their oxidation products. Free radicals formed during oxidative stress can initiate lipid peroxidation, oxidize proteins to inactive states and cause DNA strand breaks. Oxidative stress is a condition in which oxidant metabolites exert toxic effects because of their increased production or an altered cellular mechanism of protection. In the early phase of acute heart ischemia cytokines have the feature to be functional pleiotropy and redundancy, moreover, several cytokines exert similar and overlapping actions on the same cell type and one cytokine shows a wide range of biological effects on various cell types. Activation of cytokine cascades in the infarcted myocardium was established in numerous studies. In experimental models of myocardial infarction, induction and release of the pro-inflammatory cytokines like TNF-α (Tumor Necrosis Factor α), IL-1β (Interleukin- 1β) and IL-6 (Interleukin-6) and chemokines are steadily described. The current review examines the role of oxidative stress and pro-inflammatory cytokines response following acute myocardial infarction and explores the inflammatory mechanisms of cardiac injury.

  9. Oxidative Stress Responses and NRF2 in Human Leukaemia

    PubMed Central

    Abdul-Aziz, Amina; MacEwan, David J.; Bowles, Kristian M.; Rushworth, Stuart A.

    2015-01-01

    Oxidative stress as a result of elevated levels of reactive oxygen species (ROS) has been observed in almost all cancers, including leukaemia, where they contribute to disease development and progression. However, cancer cells also express increased levels of antioxidant proteins which detoxify ROS. This includes glutathione, the major antioxidant in human cells, which has recently been identified to have dysregulated metabolism in human leukaemia. This suggests that critical balance of intracellular ROS levels is required for cancer cell function, growth, and survival. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcription factor plays a dual role in cancer. Primarily, NRF2 is a transcription factor functioning to protect nonmalignant cells from malignant transformation and oxidative stress through transcriptional activation of detoxifying and antioxidant enzymes. However, once malignant transformation has occurred within a cell, NRF2 functions to protect the tumour from oxidative stress and chemotherapy-induced cytotoxicity. Moreover, inhibition of the NRF2 oxidative stress pathway in leukaemia cells renders them more sensitive to cytotoxic chemotherapy. Our improved understanding of NRF2 biology in human leukaemia may permit mechanisms by which we could potentially improve future cancer therapies. This review highlights the mechanisms by which leukaemic cells exploit the NRF2/ROS response to promote their growth and survival. PMID:25918581

  10. Transcriptomic Characterization of Temperature Stress Responses in Larval Zebrafish

    PubMed Central

    Long, Yong; Li, Linchun; Li, Qing; He, Xiaozhen; Cui, Zongbin

    2012-01-01

    Temperature influences nearly all biochemical, physiological and life history activities of fish, but the molecular mechanisms underlying the temperature acclimation remains largely unknown. Previous studies have identified many temperature-regulated genes in adult tissues; however, the transcriptional responses of fish larvae to temperature stress are not well understood. In this study, we characterized the transcriptional responses in larval zebrafish exposed to cold or heat stress using microarray analysis. In comparison with genes expressed in the control at 28°C, a total of 2680 genes were found to be affected in 96 hpf larvae exposed to cold (16°C) or heat (34°C) for 2 and 48h and most of these genes were expressed in a temperature-specific and temporally regulated manner. Bioinformatic analysis identified multiple temperature-regulated biological processes and pathways. Biological processes overrepresented among the earliest genes induced by temperature stress include regulation of transcription, nucleosome assembly, chromatin organization and protein folding. However, processes such as RNA processing, cellular metal ion homeostasis and protein transport and were enriched in genes up-regulated under cold exposure for 48 h. Pathways such as mTOR signalling, p53 signalling and circadian rhythm were enriched among cold-induced genes, while adipocytokine signalling, protein export and arginine and praline metabolism were enriched among heat-induced genes. Although most of these biological processes and pathways were specifically regulated by cold or heat, common responses to both cold and heat stresses were also found. Thus, these findings provide new interesting clues for elucidation of mechanisms underlying the temperature acclimation in fish. PMID:22666345

  11. Relation between stress-precipitated seizures and the stress response in childhood epilepsy.

    PubMed

    van Campen, Jolien S; Jansen, Floor E; Pet, Milou A; Otte, Willem M; Hillegers, Manon H J; Joels, Marian; Braun, Kees P J

    2015-08-01

    The majority of patients with epilepsy report that seizures are sometimes triggered or provoked. Stress is the most frequently self-reported seizure-precipitant. The mechanisms underlying stress-sensitivity of seizures are currently unresolved. We hypothesized that stress-sensitivity of seizures relates to alteration of the stress response, which could affect neuronal excitability and hence trigger seizures. To study this, children with epilepsy between 6 and 17 years of age and healthy controls, with similar age, sex and intelligence, were exposed to a standardized acute psychosocial stressor (the Trier Social Stress Test for Children), during which salivary cortisol and sympathetic parameters were measured. Beforehand, the relation between stress and seizures in children with epilepsy was assessed by (i) a retrospective questionnaire; and (ii) a prospective 6-week diary on stress and seizure occurrence. Sixty-four children with epilepsy and 40 control subjects were included in the study. Of all children with epilepsy, 49% reported that seizures were precipitated by acute stress. Diary analysis showed a positive association between acute stress and seizures in 62% of children who experienced at least one seizure during the diary period. The acute social stress test was completed by 56 children with epilepsy and 37 control subjects. Children with sensitivity of seizures for acute stress, either determined by the questionnaire or by the prospective diary, showed a blunted cortisol response to stress compared with patients without acute stress-precipitated seizures and healthy controls (questionnaire-based F = 2.74, P = 0.018; diary-based F = 4.40, P = 0.007). No baseline differences in cortisol were observed, nor differences in sympathetic stress response. The relation between acute stress-sensitivity of seizures and the cortisol response to stress remained significant in multivariable analysis (β = -0.30, P = 0.03). Other variables associated with the acute stress

  12. Induction of the cellular stress response in Chironomus (Diptera)

    SciTech Connect

    Pardalis, G.; Hudson, L.A.; Ciborowski, J.J.H.; Day, K.E.; Robinson, R.D.; Solomon, K.R.

    1995-12-31

    The accumulation of stress or heat shock proteins is involved in the protection and defense of a cell from environmentally induced damage. Under stressful conditions, cytoplasmic stress protein 70 migrates to the nucleus where it assists in the restoration of the nucleolar function. The authors have demonstrated a dose-response relationship between incidence of decreased nucleolar size in chironomid salivary glands and degree of sediment contamination. Reduced nucleolar size is indicative of reduced nucleolar function. The relationship between nucleolus size and stress protein accumulation is being explored. They are conducting experiments on chironomids to characterize the response elicited by heat shock and PAH exposure in the laboratory to determine if the simultaneous action of more than one stressor can significantly alter the stress response. Simultaneous studies are being conducted to validate these biomarkers in mesocosm caging experiments. Aspects of the response will be useful as biomarkers of general stress.

  13. Respiratory Syncytial Virus and Cellular Stress Responses: Impact on Replication and Physiopathology

    PubMed Central

    Cervantes-Ortiz, Sandra L.; Zamorano Cuervo, Natalia; Grandvaux, Nathalie

    2016-01-01

    Human respiratory syncytial virus (RSV), a member of the Paramyxoviridae family, is a major cause of severe acute lower respiratory tract infection in infants, elderly and immunocompromised adults. Despite decades of research, a complete integrated picture of RSV-host interaction is still missing. Several cellular responses to stress are involved in the host-response to many virus infections. The endoplasmic reticulum stress induced by altered endoplasmic reticulum (ER) function leads to activation of the unfolded-protein response (UPR) to restore homeostasis. Formation of cytoplasmic stress granules containing translationally stalled mRNAs is a means to control protein translation. Production of reactive oxygen species is balanced by an antioxidant response to prevent oxidative stress and the resulting damages. In recent years, ongoing research has started to unveil specific regulatory interactions of RSV with these host cellular stress responses. Here, we discuss the latest findings regarding the mechanisms evolved by RSV to induce, subvert or manipulate the ER stress, the stress granule and oxidative stress responses. We summarize the evidence linking these stress responses with the regulation of RSV replication and the associated pathogenesis. PMID:27187445

  14. Respiratory Syncytial Virus and Cellular Stress Responses: Impact on Replication and Physiopathology.

    PubMed

    Cervantes-Ortiz, Sandra L; Zamorano Cuervo, Natalia; Grandvaux, Nathalie

    2016-01-01

    Human respiratory syncytial virus (RSV), a member of the Paramyxoviridae family, is a major cause of severe acute lower respiratory tract infection in infants, elderly and immunocompromised adults. Despite decades of research, a complete integrated picture of RSV-host interaction is still missing. Several cellular responses to stress are involved in the host-response to many virus infections. The endoplasmic reticulum stress induced by altered endoplasmic reticulum (ER) function leads to activation of the unfolded-protein response (UPR) to restore homeostasis. Formation of cytoplasmic stress granules containing translationally stalled mRNAs is a means to control protein translation. Production of reactive oxygen species is balanced by an antioxidant response to prevent oxidative stress and the resulting damages. In recent years, ongoing research has started to unveil specific regulatory interactions of RSV with these host cellular stress responses. Here, we discuss the latest findings regarding the mechanisms evolved by RSV to induce, subvert or manipulate the ER stress, the stress granule and oxidative stress responses. We summarize the evidence linking these stress responses with the regulation of RSV replication and the associated pathogenesis. PMID:27187445

  15. Measuring Physiological Stress Responses in Children: Lessons from a Novice

    ERIC Educational Resources Information Center

    Quas, Jodi A.

    2011-01-01

    In this article the author describes challenges associated with integrating physiological measures of stress into developmental research, especially in the domains of memory and cognition. An initial critical challenge concerns how to define stress, which can refer to one or a series of events, a response, the consequence of that response, an…

  16. Heterogeneity in Pseudomonas aeruginosa Biofilms Includes Expression of Ribosome Hibernation Factors in the Antibiotic-Tolerant Subpopulation and Hypoxia-Induced Stress Response in the Metabolically Active Population

    PubMed Central

    Williamson, Kerry S.; Richards, Lee A.; Perez-Osorio, Ailyn C.; Pitts, Betsey; McInnerney, Kathleen; Stewart, Philip S.

    2012-01-01

    Bacteria growing in biofilms are physiologically heterogeneous, due in part to their adaptation to local environmental conditions. Here, we characterized the local transcriptome responses of Pseudomonas aeruginosa growing in biofilms by using a microarray analysis of isolated biofilm subpopulations. The results demonstrated that cells at the top of the biofilms had high mRNA abundances for genes involved in general metabolic functions, while mRNA levels for these housekeeping genes were low in cells at the bottom of the biofilms. Selective green fluorescent protein (GFP) labeling showed that cells at the top of the biofilm were actively dividing. However, the dividing cells had high mRNA levels for genes regulated by the hypoxia-induced regulator Anr. Slow-growing cells deep in the biofilms had little expression of Anr-regulated genes and may have experienced long-term anoxia. Transcripts for ribosomal proteins were associated primarily with the metabolically active cell fraction, while ribosomal RNAs were abundant throughout the biofilms, indicating that ribosomes are stably maintained even in slowly growing cells. Consistent with these results was the identification of mRNAs for ribosome hibernation factors (the rmf and PA4463 genes) at the bottom of the biofilms. The dormant biofilm cells of a P. aeruginosa Δrmf strain had decreased membrane integrity, as shown by propidium iodide staining. Using selective GFP labeling and cell sorting, we show that the dividing cells are more susceptible to killing by tobramycin and ciprofloxacin. The results demonstrate that in thick P. aeruginosa biofilms, cells are physiologically distinct spatially, with cells deep in the biofilm in a viable but antibiotic-tolerant slow-growth state. PMID:22343293

  17. Swim Pressure: Stress Generation in Active Matter

    NASA Astrophysics Data System (ADS)

    Takatori, S. C.; Yan, W.; Brady, J. F.

    2014-07-01

    We discover a new contribution to the pressure (or stress) exerted by a suspension of self-propelled bodies. Through their self-motion, all active matter systems generate a unique swim pressure that is entirely athermal in origin. The origin of the swim pressure is based upon the notion that an active body would swim away in space unless confined by boundaries—this confinement pressure is precisely the swim pressure. Here we give the micromechanical basis for the swim stress and use this new perspective to study self-assembly and phase separation in active soft matter. The swim pressure gives rise to a nonequilibrium equation of state for active matter with pressure-volume phase diagrams that resemble a van der Waals loop from equilibrium gas-liquid coexistence. Theoretical predictions are corroborated by Brownian dynamics simulations. Our new swim stress perspective can help analyze and exploit a wide class of active soft matter, from swimming bacteria to catalytic nanobots to molecular motors that activate the cellular cytoskeleton.

  18. Swim pressure: stress generation in active matter.

    PubMed

    Takatori, S C; Yan, W; Brady, J F

    2014-07-11

    We discover a new contribution to the pressure (or stress) exerted by a suspension of self-propelled bodies. Through their self-motion, all active matter systems generate a unique swim pressure that is entirely athermal in origin. The origin of the swim pressure is based upon the notion that an active body would swim away in space unless confined by boundaries-this confinement pressure is precisely the swim pressure. Here we give the micromechanical basis for the swim stress and use this new perspective to study self-assembly and phase separation in active soft matter. The swim pressure gives rise to a nonequilibrium equation of state for active matter with pressure-volume phase diagrams that resemble a van der Waals loop from equilibrium gas-liquid coexistence. Theoretical predictions are corroborated by Brownian dynamics simulations. Our new swim stress perspective can help analyze and exploit a wide class of active soft matter, from swimming bacteria to catalytic nanobots to molecular motors that activate the cellular cytoskeleton.

  19. AMPK-independent inhibition of human macrophage ER stress response by AICAR

    PubMed Central

    Boß, Marcel; Newbatt, Yvette; Gupta, Sahil; Collins, Ian; Brüne, Bernhard; Namgaladze, Dmitry

    2016-01-01

    Obesity-associated insulin resistance is driven by inflammatory processes in response to metabolic overload. Obesity-associated inflammation can be recapitulated in cell culture by exposing macrophages to saturated fatty acids (SFA), and endoplasmic reticulum (ER) stress responses essentially contribute to pro-inflammatory signalling. AMP-activated protein kinase (AMPK) is a central metabolic regulator with established anti-inflammatory actions. Whether pharmacological AMPK activation suppresses SFA-induced inflammation in a human system is unclear. In a setting of hypoxia-potentiated inflammation induced by SFA palmitate, we found that the AMP-mimetic AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) potently suppressed upregulation of ER stress marker mRNAs and pro-inflammatory cytokines. Furthermore, AICAR inhibited macrophage ER stress responses triggered by ER-stressors thapsigargin or tunicamycin. Surprisingly, AICAR acted independent of AMPK or AICAR conversion to 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl monophosphate (ZMP) while requiring intracellular uptake via the equilibrative nucleoside transporter (ENT) ENT1 or the concentrative nucleoside transporter (CNT) CNT3. AICAR did not affect the initiation of the ER stress response, but inhibited the expression of major ER stress transcriptional effectors. Furthermore, AICAR inhibited autophosphorylation of the ER stress sensor inositol-requiring enzyme 1α (IRE1α), while activating its endoribonuclease activity in vitro. Our results suggest that AMPK-independent inhibition of ER stress responses contributes to anti-inflammatory and anti-diabetic effects of AICAR. PMID:27562249

  20. AMPK-independent inhibition of human macrophage ER stress response by AICAR.

    PubMed

    Boß, Marcel; Newbatt, Yvette; Gupta, Sahil; Collins, Ian; Brüne, Bernhard; Namgaladze, Dmitry

    2016-01-01

    Obesity-associated insulin resistance is driven by inflammatory processes in response to metabolic overload. Obesity-associated inflammation can be recapitulated in cell culture by exposing macrophages to saturated fatty acids (SFA), and endoplasmic reticulum (ER) stress responses essentially contribute to pro-inflammatory signalling. AMP-activated protein kinase (AMPK) is a central metabolic regulator with established anti-inflammatory actions. Whether pharmacological AMPK activation suppresses SFA-induced inflammation in a human system is unclear. In a setting of hypoxia-potentiated inflammation induced by SFA palmitate, we found that the AMP-mimetic AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) potently suppressed upregulation of ER stress marker mRNAs and pro-inflammatory cytokines. Furthermore, AICAR inhibited macrophage ER stress responses triggered by ER-stressors thapsigargin or tunicamycin. Surprisingly, AICAR acted independent of AMPK or AICAR conversion to 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl monophosphate (ZMP) while requiring intracellular uptake via the equilibrative nucleoside transporter (ENT) ENT1 or the concentrative nucleoside transporter (CNT) CNT3. AICAR did not affect the initiation of the ER stress response, but inhibited the expression of major ER stress transcriptional effectors. Furthermore, AICAR inhibited autophosphorylation of the ER stress sensor inositol-requiring enzyme 1α (IRE1α), while activating its endoribonuclease activity in vitro. Our results suggest that AMPK-independent inhibition of ER stress responses contributes to anti-inflammatory and anti-diabetic effects of AICAR. PMID:27562249

  1. Mechanical Stress Induces Biotic and Abiotic Stress Responses via a Novel cis-Element

    PubMed Central

    Walley, Justin W; Coughlan, Sean; Hudson, Matthew E; Covington, Michael F; Kaspi, Roy; Banu, Gopalan; Harmer, Stacey L; Dehesh, Katayoon

    2007-01-01

    Plants are continuously exposed to a myriad of abiotic and biotic stresses. However, the molecular mechanisms by which these stress signals are perceived and transduced are poorly understood. To begin to identify primary stress signal transduction components, we have focused on genes that respond rapidly (within 5 min) to stress signals. Because it has been hypothesized that detection of physical stress is a mechanism common to mounting a response against a broad range of environmental stresses, we have utilized mechanical wounding as the stress stimulus and performed whole genome microarray analysis of Arabidopsis thaliana leaf tissue. This led to the identification of a number of rapid wound responsive (RWR) genes. Comparison of RWR genes with published abiotic and biotic stress microarray datasets demonstrates a large overlap across a wide range of environmental stresses. Interestingly, RWR genes also exhibit a striking level and pattern of circadian regulation, with induced and repressed genes displaying antiphasic rhythms. Using bioinformatic analysis, we identified a novel motif overrepresented in the promoters of RWR genes, herein designated as the Rapid Stress Response Element (RSRE). We demonstrate in transgenic plants that multimerized RSREs are sufficient to confer a rapid response to both biotic and abiotic stresses in vivo, thereby establishing the functional involvement of this motif in primary transcriptional stress responses. Collectively, our data provide evidence for a novel cis-element that is distributed across the promoters of an array of diverse stress-responsive genes, poised to respond immediately and coordinately to stress signals. This structure suggests that plants may have a transcriptional network resembling the general stress signaling pathway in yeast and that the RSRE element may provide the key to this coordinate regulation. PMID:17953483

  2. Stress responses of spring rape plants to soil flooding

    NASA Astrophysics Data System (ADS)

    Balakhnina, T.; Bennicelli, R.; Stêpniewska, Z.; Stêpniewski, W.; Borkowska, A.; Fomina, I.

    2012-10-01

    Stress responses of spring rape to soil hypoxia were investigated during 8-days flooding. Soil air-filled porosity decreased from 25-30% to 0%, oxygen diffusion rate - from 2.6-3.5 to 0.34 μmol O2 m-2 s-1, and redox potential - from 460 to 150mVwithin few hours. Alcohol dehydrogenase activity in roots increased up to 7-fold after one day of flooding and then decreased to 170% of control. Superoxide dismutase activity in roots increased by 27% during first 3 days and then dropped to 60% of control; in the leaves superoxide dismutase activity increased in average by 44%. Ascorbate peroxidase activity in leaves increased by 37% during first 3 days and then decreased to control value. Glutathione reductase activity increased by 45% in roots of flooded plants but did not change in leaves. Proline concentration in leaves increased up to 4-fold on the 3d day of flooding and then decreased to control value. Thus soil flooding induces increase of alcohol dehydrogenase activity and subsequent increase of superoxide dismutase and glutathione reductase activities in roots while the leaves display a few days increase of free proline concentration and ascorbate peroxidase activity, and a long-term increase of superoxide dismutase activity.

  3. Child Anxiety Symptoms Related to Longitudinal Cortisol Trajectories and Acute Stress Responses: Evidence of Developmental Stress Sensitization

    PubMed Central

    Laurent, Heidemarie K.; Gilliam, Kathryn S.; Wright, Dorianne B.; Fisher, Philip A.

    2015-01-01

    Cross-sectional research suggests that individuals at risk for internalizing disorders show differential activation levels and/or dynamics of stress-sensitive physiological systems, possibly reflecting a process of stress sensitization. However, there is little longitudinal research to clarify how the development of these systems over time relates to activation during acute stress, and how aspects of such activation map onto internalizing symptoms. We investigated children’s (n=107) diurnal hypothalamic-pituitary-adrenal activity via salivary cortisol (morning and evening levels) across 29 assessments spanning 6+ years, and related longitudinal patterns to acute stress responses at the end of this period (age 9–10). Associations with child psychiatric symptoms at age 10 were also examined to determine internalizing risk profiles. Increasing morning cortisol levels across assessments predicted less of a cortisol decline following interpersonal stress at age 9, and higher cortisol levels during performance stress at age 10. These same profiles of high and/or sustained cortisol elevation during psychosocial stress were associated with child anxiety symptoms. Results suggest developmental sensitization to stress—reflected in rising morning cortisol and eventual hyperactivation during acute stress exposure—may distinguish children at risk for internalizing disorders. PMID:25688433

  4. Helicobacter bilis Gamma-Glutamyltranspeptidase Enhances Inflammatory Stress Response via Oxidative Stress in Colon Epithelial Cells

    PubMed Central

    Javed, Sundus; Mejías-Luque, Raquel; Kalali, Behnam; Bolz, Christian; Gerhard, Markus

    2013-01-01

    Helicobacter bilis (H. bilis) infection is associated with cases of inflammatory bowel Disease, thyphlocolitis, hepatitis and cholecystitis. However, little is known about the bacterial virulence determinants or the molecular mechanisms involved. Recently, H. bilis γ-glutamyltranspeptidase (HBgGT) was shown to be a virulence factor decreasing host cell viability. Bacterial gGTs play a key role in synthesis and degradation of glutathione and enables the bacteria to utilize extracellular glutamine and glutathione as sources of glutamate. gGT-mediated loss of cell viability has so far been linked to DNA damage via oxidative stress, but the signaling cascades involved herein have not been described. In this study, we identified enhanced ROS production induced by HBgGT as a central factor involved in the activation of the oxidative stress response cascades, which finally activate CREB, AP-1 and NF-κB in H. bilis infected colon cancer cells. IL-8, an important pro-inflammatory chemokine that is a common downstream target of these transcription factors, was up-regulated upon H. bilis infection in an HBgGT dependent manner. Moreover, the induction of these signaling responses and inflammatory cytokine production in host cells could be linked to HBgGT-mediated glutamine deprivation. This study implicates for the first time HBgGT as an important regulator of signaling cascades regulating inflammation in H. bilis infected host epithelial cells that could be responsible for induction of inflammatory disorders by the bacterium. PMID:24009737

  5. NAC transcription factors in plant abiotic stress responses.

    PubMed

    Nakashima, Kazuo; Takasaki, Hironori; Mizoi, Junya; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2012-02-01

    Abiotic stresses such as drought and high salinity adversely affect the growth and productivity of plants, including crops. The development of stress-tolerant crops will be greatly advantageous for modern agriculture in areas that are prone to such stresses. In recent years, several advances have been made towards identifying potential stress related genes which are capable of increasing the tolerance of plants to abiotic stress. NAC proteins are plant-specific transcription factors and more than 100 NAC genes have been identified in Arabidopsis and rice to date. Phylogenetic analyses indicate that the six major groups were already established at least in an ancient moss lineage. NAC transcription factors have a variety of important functions not only in plant development but also in abiotic stress responses. Stress-inducible NAC genes have been shown to be involved in abiotic stress tolerance. Transgenic Arabidopsis and rice plants overexpressing stress-responsive NAC (SNAC) genes have exhibited improved drought tolerance. These studies indicate that SNAC factors have important roles for the control of abiotic stress tolerance and that their overexpression can improve stress tolerance via biotechnological approaches. Although these transcription factors can bind to the same core NAC recognition sequence, recent studies have demonstrated that the effects of NAC factors for growth are different. Moreover, the NAC proteins are capable of functioning as homo- or hetero-dimer forms. Thus, SNAC factors can be useful for improving stress tolerance in transgenic plants, although the mechanism for mediating the stress tolerance of these homologous factors is complex in plants. Recent studies also suggest that crosstalk may exist between stress responses and plant growth. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.

  6. Effects of orthostasis on endocrine responses to psychosocial stress.

    PubMed

    Nater, Urs M; Ditzen, Beate; Strahler, Jana; Ehlert, Ulrike

    2013-12-01

    Standardized psychological procedures have been designed to induce physiological stress responses. However, the impact of standing (orthostasis) on the physiological reaction after psychological stress remains unclear. The purpose of the current analysis was to examine and quantify the relative contribution of orthostasis to the physiological stress response by comparing a "standing with stress" to a "standing without stress" condition. We investigated the effect of standing with and without stress on responses of the sympathetic-adrenomedullary (SAM) system and the hypothalamic-pituitary-adrenal (HPA) axis using a standardized psychosocial stress protocol (Trier Social Stress Test) and a non-stress condition in a repeated measures design. Subjects (N=30) were exposed to both conditions in randomized order and had to maintain a standing, upright position for 10minutes. In the "standing with stress" condition, significant increases in repeatedly assessed plasma norepinephrine (NE) and epinephrine (EP), as well as in saliva cortisol were found, while in the "standing without stress" condition, no significant changes in plasma epinephrine and saliva cortisol were observed. Calculations of the relative contribution of orthostasis to physiological stress responses revealed that 25.61% of the NE increase, 82.94% of the EP increase, and 68.91% of the cortisol increase, could be attributed to psychosocial stress adjusted for the effects of orthostasis and basal endocrine output. Although these results are indicative for a marked endocrine reaction that is caused by psychosocial stress alone, our findings show that the contribution of orthostasis must be taken into account when interpreting endocrine data collected in a psychosocial stress test.

  7. The unfolded protein response regulates an angiogenic response by the kidney epithelium during ischemic stress.

    PubMed

    Bouvier, Nicolas; Fougeray, Sophie; Beaune, Philippe; Thervet, Eric; Pallet, Nicolas

    2012-04-27

    Ischemic injuries permanently affect kidney tissue and challenge cell viability, promoting inflammation and fibrogenesis. Ischemia results in nutrient deprivation, which triggers endoplasmic reticulum stress, ultimately resulting in the unfolded protein response (UPR). The aim of this study was to test whether the UPR could promote an angiogenic response independently of the HIF-1α pathway during ischemic stress in the human kidney epithelium. Glucose deprivation induced the secretion of vascular endothelial growth factor A (VEGFA), basic fibroblast growth factor (bFGF) and angiogenin (ANG) in human kidney epithelial cells independently of HIF-1α. Glucose deprivation, but not hypoxia, triggered endoplasmic reticulum stress and activated the UPR. RNA interference-mediated inhibition of the gene encoding the kinase PERK decreased VEGFA and bFGF expression, but neither gene was affected by the inhibition of IRE1α or ATF6. Furthermore, we show that the expression of angiogenin, which inhibits protein synthesis, is regulated by both IRE1α and PERK, which could constitute a complementary function of the UPR in the repression of translation. In a rat model of acute ischemic stress, we show that the UPR is activated in parallel with VEGFA, bFGF, and ANG expression and independently of HIF-1α. PMID:22403402

  8. Involvement of plant C(2)H(2)-type zinc finger transcription factors in stress responses.

    PubMed

    Kiełbowicz-Matuk, Agnieszka

    2012-04-01

    Abiotic and biotic stresses frequently impose constraints on plant distribution and affect agricultural productivity. Various aspects of the multiplicity and the complexity of stress responsive gene networks have been previously studied. Many of individual transcription factors in plants and their family classes that regulate the expression of several genes in responses to environmental stresses have been identified. One such class of transcription regulators is the C(2)H(2) class of zinc finger proteins. Numerous members of the C(2)H(2)-type zinc finger family have been shown to play diverse roles in the plant stress response and the hormone signal transduction. Transcription profiling analyses have demonstrated that the transcript level of many C(2)H(2)-type zinc finger proteins is elevated under different abiotic stress conditions such as low temperature, salt, drought, osmotic stress and oxidative stress. Some C(2)H(2)-type proteins are additionally involved in the biotic stress signaling pathway. Moreover, it has been reported that overexpression of some C(2)H(2)-type zinc finger protein genes resulted in both the activation of some stress-related genes and enhanced tolerance to various stresses. Current genetic studies have focused on possible interactions between different zinc finger transcription factors during stresses to regulate transcription. This review highlights the role of the C(2)H(2) class of the zinc finger proteins in regulating abiotic and biotic stress tolerance in the plants.

  9. Variations of physiological and innate immunological responses in goldfish (Carassius auratus) subjected to recurrent acute stress.

    PubMed

    Eslamloo, Khalil; Akhavan, Sobhan R; Fallah, Farzin Jamalzad; Henry, Morgane A

    2014-03-01

    This study was undertaken to investigate the influence of repeated acute stress on the physiological status and non-specific immune response of goldfish, Carassius auratus. The acute stress was a succession of a 3 min-chasing period followed by a 2 min-air exposure. The goldfish in triplicate tanks were subjected 3 times daily to this stress for one (S3) or three (S9) days. A separate group of unstressed fish was used as control for each sampling time. Blood samples were collected 12, 48 and 120 h after the last stress procedure. Variations of globulin levels, plasma anti-protease and bactericidal activities were not significant in the present study. The haematological parameters and plasma total protein and albumin strongly declined in S9 fish 12 h post-stress compared to control fish. However, plasma cortisol, glucose and lactate levels in both S3 and S9 transiently increased compared to the control fish. Similarly, plasma peroxidase activity transiently increased in both stressed groups 12 h after stress. An increase in plasma lysozyme and complement activities suggested a hormesis-like effect with one-day acute stress improving the immunological response of goldfish while an extension of the stress period to three days impaired physiology and immunity for up to 5 days. This study revealed that recurrent acute stress could immunosuppress goldfish as usually expected of chronic stress.

  10. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress

    PubMed Central

    Picard, Martin; McManus, Meagan J.; Gray, Jason D.; Nasca, Carla; Moffat, Cynthia; Kopinski, Piotr K.; Seifert, Erin L.; McEwen, Bruce S.; Wallace, Douglas C.

    2015-01-01

    The experience of psychological stress triggers neuroendocrine, inflammatory, metabolic, and transcriptional perturbations that ultimately predispose to disease. However, the subcellular determinants of this integrated, multisystemic stress response have not been defined. Central to stress adaptation is cellular energetics, involving mitochondrial energy production and oxidative stress. We therefore hypothesized that abnormal mitochondrial functions would differentially modulate the organism’s multisystemic response to psychological stress. By mutating or deleting mitochondrial genes encoded in the mtDNA [NADH dehydrogenase 6 (ND6) and cytochrome c oxidase subunit I (COI)] or nuclear DNA [adenine nucleotide translocator 1 (ANT1) and nicotinamide nucleotide transhydrogenase (NNT)], we selectively impaired mitochondrial respiratory chain function, energy exchange, and mitochondrial redox balance in mice. The resulting impact on physiological reactivity and recovery from restraint stress were then characterized. We show that mitochondrial dysfunctions altered the hypothalamic–pituitary–adrenal axis, sympathetic adrenal–medullary activation and catecholamine levels, the inflammatory cytokine IL-6, circulating metabolites, and hippocampal gene expression responses to stress. Each mitochondrial defect generated a distinct whole-body stress-response signature. These results demonstrate the role of mitochondrial energetics and redox balance as modulators of key pathophysiological perturbations previously linked to disease. This work establishes mitochondria as stress-response modulators, with implications for understanding the mechanisms of stress pathophysiology and mitochondrial diseases. PMID:26627253

  11. [Traumatic events and stress responses: the role of oxytocin and attachment].

    PubMed

    Torrisi, R; Pierrehumbert, B; Halfon, O

    2013-09-18

    Being repeatedly confronted to very difficult situations since childhood influences the way indivuals will later respond to even mildly stressful events. The hypothalamic-pituitary-adrenal axis (HPA) is a complex system implicated in regulating neuroendocrine responses to stress. Its activation produces among others the <stress hormonea, cortisol. However, the regulation of the physiological response to stress depends on psychological factors linked with the representations that individuals develop regarding their close relationships i.e. attachment. Furthermore, attachment representations seem to be associated with oxytocin, a hormone involved both in cortisol reduction and in positive social behaviours.

  12. Gender affects sympathetic and hemodynamic response to postural stress

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. K.; Hogeman, C. S.; Khan, M.; Kimmerly, D. S.; Sinoway, L. I.

    2001-01-01

    We tested the hypothesis that differences in sympathetic reflex responses to head-up tilt (HUT) between males (n = 9) and females (n = 8) were associated with decrements in postural vasomotor responses in women. Muscle sympathetic nerve activity (MSNA; microneurography), heart rate, stroke volume (SV; Doppler), and blood pressure (Finapres) were measured during a progressive HUT protocol (5 min at each of supine, 20 degrees, 40 degrees, and 60 degrees ). MSNA and hemodynamic responses were also measured during the cold pressor test (CPT) to examine nonbaroreflex neurovascular control. SV was normalized to body surface area (SV(i)) to calculate the index of cardiac output (Q(i)), and total peripheral resistance (TPR). During HUT, heart rate increased more in females versus males (P < 0.001) and SV(i) and Q(i) decreased similarly in both groups. Mean arterial pressure (MAP) increased to a lesser extent in females versus males in the HUT (P < 0.01) but increases in TPR during HUT were similar. MSNA burst frequency was lower in females versus males in supine (P < 0.03) but increased similarly during HUT. Average amplitude/burst increased in 60 degrees HUT for males but not females. Both males and females demonstrated an increase in MAP as well as MSNA burst frequency, mean burst amplitude, and total MSNA during the CPT. However, compared with females, males demonstrated a greater neural response (DeltaTotal MSNA) due to a larger increase in mean burst amplitude (P < 0.05). Therefore, these data point to gender-specific autonomic responses to cardiovascular stress. The different MSNA response to postural stress between genders may contribute importantly to decrements in blood pressure control during HUT in females.

  13. Gender affects sympathetic and hemodynamic response to postural stress.

    PubMed

    Shoemaker, J K; Hogeman, C S; Khan, M; Kimmerly, D S; Sinoway, L I

    2001-11-01

    We tested the hypothesis that differences in sympathetic reflex responses to head-up tilt (HUT) between males (n = 9) and females (n = 8) were associated with decrements in postural vasomotor responses in women. Muscle sympathetic nerve activity (MSNA; microneurography), heart rate, stroke volume (SV; Doppler), and blood pressure (Finapres) were measured during a progressive HUT protocol (5 min at each of supine, 20 degrees, 40 degrees, and 60 degrees ). MSNA and hemodynamic responses were also measured during the cold pressor test (CPT) to examine nonbaroreflex neurovascular control. SV was normalized to body surface area (SV(i)) to calculate the index of cardiac output (Q(i)), and total peripheral resistance (TPR). During HUT, heart rate increased more in females versus males (P < 0.001) and SV(i) and Q(i) decreased similarly in both groups. Mean arterial pressure (MAP) increased to a lesser extent in females versus males in the HUT (P < 0.01) but increases in TPR during HUT were similar. MSNA burst frequency was lower in females versus males in supine (P < 0.03) but increased similarly during HUT. Average amplitude/burst increased in 60 degrees HUT for males but not females. Both males and females demonstrated an increase in MAP as well as MSNA burst frequency, mean burst amplitude, and total MSNA during the CPT. However, compared with females, males demonstrated a greater neural response (DeltaTotal MSNA) due to a larger increase in mean burst amplitude (P < 0.05). Therefore, these data point to gender-specific autonomic responses to cardiovascular stress. The different MSNA response to postural stress between genders may contribute importantly to decrements in blood pressure control during HUT in females. PMID:11668064

  14. Stress-induced flowering: the third category of flowering response.

    PubMed

    Takeno, Kiyotoshi

    2016-09-01

    The switch from vegetative growth to reproductive growth, i.e. flowering, is the critical event in a plant's life. Flowering is regulated either autonomously or by environmental factors; photoperiodic flowering, which is regulated by the duration of the day and night periods, and vernalization, which is regulated by low temperature, have been well studied. Additionally, it has become clear that stress also regulates flowering. Diverse stress factors can induce or accelerate flowering, or inhibit or delay it, in a wide range of plant species. This article focuses on the positive regulation of flowering via stress, i.e. the induction or acceleration of flowering in response to stress that is known as stress-induced flowering - a new category of flowering response. This review aims to clarify the concept of stress-induced flowering and to summarize the full range of characteristics of stress-induced flowering from a predominately physiological perspective. PMID:27382113

  15. Sex differences in how stress affects brain activity during face viewing.

    PubMed

    Mather, Mara; Lighthall, Nichole R; Nga, Lin; Gorlick, Marissa A

    2010-10-01

    Under stress, men tend to withdraw socially whereas women seek social support. This functional magnetic resonance imaging study indicates that stress also affects brain activity while viewing emotional faces differently for men and women. Fusiform face area response to faces was diminished by acute stress in men but increased by stress in women. Furthermore, among stressed men viewing angry faces, brain regions involved in interpreting and understanding others' emotions (the insula, temporal pole, and inferior frontal gyrus) showed reduced coordination with the fusiform face area and the amygdala, whereas the functional connectivity among these regions increased with stress for women. These findings suggest that stress influences emotional perception differently for men and women.

  16. Bacterial stimulus perception and signal transduction: response to osmotic stress.

    PubMed

    Krämer, Reinhard

    2010-08-01

    When exposed to osmotic stress from the environment, bacteria act to maintain cell turgor and hydration by responding both on the level of gene transcription and protein activity. Upon a sudden decrease in external osmolality, internal solutes are released by the action of membrane embedded mechanosensitive channels. In response to an osmotic upshift, the concentration of osmolytes in the cytoplasm is increased both by de novo synthesis and by active uptake. In order to coordinate these processes of osmoregulation, cells are equipped with systems and mechanisms of sensing physical stimuli correlated to changes in the external osmolality (osmosensing), with pathways to transduce these stimuli into useful signals which can be processed in the cell (signal transduction), and mechanisms of regulating proper responses in the cell to recover from the environmental stress and to maintain all necessary physiological functions (osmoregulation). These processes will be described by a number of representative examples, mainly of osmoreactive transport systems with a focus on available data of their molecular mechanism.

  17. Global transcriptomic profiling of Schizosaccharomyces pombe in response to nitrosative stress.

    PubMed

    Biswas, Pranjal; Ghosh, Sanjay

    2015-03-10

    Excess production of nitric oxide (NO) and reactive nitrogen intermediates (RNIs) cause nitrosative stress on cells. Schizosaccharomyces pombe was used as a model to study nitrosative stress response. This is the first report on the global gene expression profile in response to NO in S. pombe using microarray. Among the 4824 genes reported for S. pombe, 818 were differentially expressed by at least 2-fold upon NO donor treatment. We previously showed that Pap1, the Activator Protein 1 transcription factor is required to combat nitrosative stress. In this study, the transcriptional response to NO in a null mutant for pap1 identified 45 genes that seem to be controlled by Pap1. Surprisingly, Pap1 regulated genes in S. pombe were distinctly different under nitrosative stress than those reported under oxidative stress. Genes of the pathway meiosis, cell cycle, spliceosome and oxidative phosphorylation were mostly affected under nitrosative stress in the fission yeast.

  18. Late Phase of the Endoplasmic Reticulum Stress Response Pathway Is Regulated by Hog1 MAP Kinase*

    PubMed Central

    Bicknell, Alicia A.; Tourtellotte, Joel; Niwa, Maho

    2010-01-01

    When unfolded proteins accumulate in the endoplasmic reticulum (ER) causing ER stress, the unfolded protein response (UPR) responds rapidly to induce a transcriptional program that functions to alleviate the stress. However, under extreme conditions, when UPR activation is not sufficient to alleviate ER stress, the stress may persist long term. Very little is known about how the cell responds to persistent ER stress that is not resolved by the immediate activation of the UPR. We show that Hog1 MAP kinase becomes phosphorylated during the late stage of ER stress and helps the ER regain homeostasis. Although Hog1 is well known to function in osmotic stress and cell wall integrity pathways, we show that the activation mechanism for Hog1 during ER stress is distinct from both of these pathways. During late stage ER stress, upon phosphorylation, Hog1 translocates into the nucleus and regulates gene expression. Subsequently, Hog1 returns to the cytoplasm, where its phosphorylation levels remain high. From its cytoplasmic location, Hog1 contributes to the activation of autophagy by enhancing the stability of Atg8, a critical autophagy protein. Thus, Hog1 coordinates a multifaceted response to persistent ER stress. PMID:20382742

  19. Blunted Hypothalamo-pituitary Adrenal Axis Response to Predator Odor Predicts High Stress Reactivity

    PubMed Central

    Whitaker, Annie M.; Gilpin, Nicholas W.

    2015-01-01

    Individuals with trauma- and stress-related disorders exhibit increases in avoidance of trauma-related stimuli, heightened anxiety and altered neuroendocrine stress responses. Our laboratory uses a rodent model of stress that mimics the avoidance symptom cluster associated with stress-related disorders. Animals are classified as ‘Avoiders’ or Non-Avoiders' post-stress based on avoidance of predator-odor paired context. Utilizing this model, we are able to examine subpopulation differences in stress reactivity. Here, we used this predator odor model of stress to examine differences in anxiety-like behavior and hypothalamo-pituitary adrenal (HPA) axis function in animals that avoid a predator-paired context relative to those that do not. Rats were exposed to predator odor stress paired with a context and tested for avoidance (24 hours and 11 days), anxiety-like behavior (48 hours and 5 days) and HPA activation following stress. Control animals were exposed to room air. Predator odor stress produced avoidance in approximately 65% of the animals at 24 hours that persisted 11 days post-stress. Both Avoiders and Non-Avoiders exhibited heightened anxiety-like behavior at 48 hours and 5 days post-stress when compared to unstressed Controls. Non-Avoiders exhibited significant increases in circulating adrenocorticotropin hormone (ACTH) and corticosterone (CORT) concentrations immediately following predator odor stress compared to Controls and this response was significantly attenuated in Avoiders. There was an inverse correlation between circulating ACTH/CORT concentrations and avoidance, indicating that lower levels of ACTH/CORT predicted higher levels of avoidance. These results suggest that stress effects on HPA stress axis activation predict long-term avoidance of stress-paired stimuli, and builds on previous data showing the utility of this model for exploring the neurobiological mechanisms of trauma- and stress-related disorders. PMID:25824191

  20. Molecular mechanisms of the plant heat stress response

    SciTech Connect

    Qu, Ai-Li; Ding, Yan-Fei; Jiang, Qiong; Zhu, Cheng

    2013-03-08

    Highlights: ► This review elaborates the response networks of heat stress in plants. ► It elaborates proteins responding to heat stress in special physiological period. ► The proteins and pathways have formed a basic network of the heat stress response. ► Achievements of the various technologies are also combined. -- Abstract: High temperature has become a global concern, which seriously affects the growth and production of plants, particularly crops. Thus, the molecular mechanism of the heat stress response and breeding of heat-tolerant plants is necessary to protect food production and ensure crop safety. This review elaborates on the response networks of heat stress in plants, including the Hsf and Hsp response pathways, the response of ROS and the network of the hormones. In addition, the production of heat stress response elements during particular physiological periods of the plant is described. We also discuss the existing problems and future prospects concerning the molecular mechanisms of the heat stress response in plants.

  1. Effects of beacon on the rat pituitary-adrenocortical axis response to stress.

    PubMed

    Rucinski, Marcin; Spinazzi, Raffaella; Ziolkowska, Agnieszka; Nussdorfer, Gastone G; Malendowicz, Ludwik K

    2005-08-01

    Beacon is a peptide expressed in the rat hypothalamus and adrenal cortex, which is involved in the central regulation of feeding and inhibits basal and agonist-stimulated glucocorticoid secretion from adrenocortical cells. In vivo studies on beacon have not yet been carried out, and therefore we investigated the effects of a subcutaneous (sc) injection of beacon on the response of rat hypothalamo-pituitary-adrenal axis to stress. Handling and sc injection per se elicited a moderate increase in the plasma concentrations of ACTH and corticosterone, which was counteracted by beacon. Similarly, beacon dampened ACTH and corticosterone responses to ether stress. In contrast, beacon did not affect ACTH response to cold stress, although it was able to induce a moderate lowering in the corticosterone response. Taken together, these findings allow us to draw the following conclusions: i) beacon inhibits handling/injection- and ether stress-activated, but not cold stress-activated, neural mechanism(s) responsible for stimulation of ACTH secretion and the ensuing increase in corticosterone production; and ii) the beacon-induced dampening in corticosterone response to stress also involves a direct inhibitory effect on the adrenal-cortex secretory activity. The physiological relevance of beacon as endogenous anti-stress agent remains to be evaluated.

  2. Type A behavior, personality hardiness, and cardiovascular responses to stress.

    PubMed

    Contrada, R J

    1989-11-01

    Type A behavior and hardiness were examined as predictors of cardiovascular responses to stress in 68 male undergraduates. Systolic and diastolic blood pressure (SBP and DBP) and heart rate were monitored while subjects performed a difficult mirror-tracing task. Type A assessments based on the Structured Interview, but not those based on the Jenkins Activity Survey, were associated with significantly enhanced SBP and DBP elevations. Hardiness was associated with significantly reduced DBP responsiveness. In addition, a significant interaction indicated that the Type B-high hardiness group showed the least DBP reactivity. A near-significant interaction (p = .06) suggested that Type B-high hardiness subjects also reported the least anger. Further exploration of the data indicated that the challenge component of hardiness accounted for its relationship to DBP reactivity. These results have implications both for the psychophysiologic study of Type A behavior and for understanding the health-promoting effects of hardiness.

  3. RESEARCH: Conceptualizing Environmental Stress: A Stress-Response Model of Coastal Sandy Barriers.

    PubMed

    Gabriel; Kreutzwiser

    2000-01-01

    / The purpose of this paper is to develop and apply a conceptual framework of environmental stress-response for a geomorphic system. Constructs and methods generated from the literature were applied in the development of an integrative stress-response framework using existing environmental assessment techniques: interaction matrices and a systems diagram. Emphasis is on the interaction between environmental stress and the geomorphic environment of a sandy barrier system. The model illustrates a number of stress concepts pertinent to modeling environmental stress-response, including those related to stress-dependency, frequency-recovery relationships, environmental heterogeneity, spatial hierarchies and linkages, and temporal change. Sandy barrier stress-response and recovery are greatly impacted by fluctuating water levels, stress intensity and frequency, as well as environmental gradients such as differences in sediment storage and supply. Aspects of these stress-response variables are articulated in terms of three main challenges to management: dynamic stability, spatial integrity, and temporal variability. These in turn form the framework for evaluative principles that may be applied to assess how policies and management practices reflect key biophysical processes and human stresses identified by the model.

  4. Metabolic response to the stress of critical illness.

    PubMed

    Preiser, J-C; Ichai, C; Orban, J-C; Groeneveld, A B J

    2014-12-01

    The metabolic response to stress is part of the adaptive response to survive critical illness. Several mechanisms are well preserved during evolution, including the stimulation of the sympathetic nervous system, the release of pituitary hormones, a peripheral resistance to the effects of these and other anabolic factors, triggered to increase the provision of energy substrates to the vital tissues. The pathways of energy production are altered and alternative substrates are used as a result of the loss of control of energy substrate utilization by their availability. The clinical consequences of the metabolic response to stress include sequential changes in energy expenditure, stress hyperglycaemia, changes in body composition, and psychological and behavioural problems. The loss of muscle proteins and function is a major long-term consequence of stress metabolism. Specific therapeutic interventions, including hormone supplementation, enhanced protein intake, and early mobilization, are investigated. This review aims to summarize the pathophysiological mechanisms, the clinical consequences, and therapeutic implications of the metabolic response to stress.

  5. Cellular Stress Responses Elicited by Engineered Nanomaterials

    EPA Science Inventory

    Engineered nanomaterials are being incorporated continuously into consumer products, resulting in increased human exposures. The study of engineered nanomaterials has focused largely on oxidative stress and inflammation endpoints without further investigation of underlying pathwa...

  6. Plant molecular stress responses face climate change.

    PubMed

    Ahuja, Ishita; de Vos, Ric C H; Bones, Atle M; Hall, Robert D

    2010-12-01

    Environmental stress factors such as drought, elevated temperature, salinity and rising CO₂ affect plant growth and pose a growing threat to sustainable agriculture. This has become a hot issue due to concerns about the effects of climate change on plant resources, biodiversity and global food security. Plant adaptation to stress involves key changes in the '-omic' architecture. Here, we present an overview of the physiological and molecular programs in stress adaptation focusing on how genes, proteins and metabolites change after individual and multiple environmental stresses. We address the role which '-omics' research, coupled to systems biology approaches, can play in future research on plants seemingly unable to adapt as well as those which can tolerate climatic change.

  7. Seismic stress responses of soybean to different photosynthetic photon flux

    NASA Technical Reports Server (NTRS)

    Jones, R. S.; Coe, L. L.; Montgomery, L.; Mitchell, C. A.

    1990-01-01

    Physical agitation applied as periodic seismic stress (shaking) reduced stem elongation, leaf expansion, and biomass accumulation by vegetative soybeans. Level of photon flux (PPF) influenced the type and extent of plant response to mechanical stress. Plant parts responded differently as PPF varied between 135 and 592 micromoles m-2 s-1. Stem length was significantly reduced by seismic stress at 135 micromoles m-2 s-1 but this effect was insignificant at higher PPFs. Reduced stem length resulted from an inhibition of internode elongation. Stem diameter was unaffected by stress at the PPFs tested. In contrast to effects on stem elongation, leaf area was insensitive to stress treatments at 135 micromoles m-2 s-1 but was progressively inhibited by stress as PPF increased. Statistically significant reductions in shoot f. wt and d. wt by seismic stress occurred only at 295 micromoles m-2 s-1. Root biomass accumulation was not affected by seismic stress at any PPF used in this study.

  8. Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin.

    PubMed

    Ortells, M Carmen; Morancho, Beatriz; Drews-Elger, Katherine; Viollet, Benoit; Laderoute, Keith R; López-Rodríguez, Cristina; Aramburu, Jose

    2012-05-01

    Although stress can suppress growth and proliferation, cells can induce adaptive responses that allow them to maintain these functions under stress. While numerous studies have focused on the inhibitory effects of stress on cell growth, less is known on how growth-promoting pathways influence stress responses. We have approached this question by analyzing the effect of mammalian target of rapamycin (mTOR), a central growth controller, on the osmotic stress response. Our results showed that mammalian cells exposed to moderate hypertonicity maintained active mTOR, which was required to sustain their cell size and proliferative capacity. Moreover, mTOR regulated the induction of diverse osmostress response genes, including targets of the tonicity-responsive transcription factor NFAT5 as well as NFAT5-independent genes. Genes sensitive to mTOR-included regulators of stress responses, growth and proliferation. Among them, we identified REDD1 and REDD2, which had been previously characterized as mTOR inhibitors in other stress contexts. We observed that mTOR facilitated transcription-permissive conditions for several osmoresponsive genes by enhancing histone H4 acetylation and the recruitment of RNA polymerase II. Altogether, these results reveal a previously unappreciated role of mTOR in regulating transcriptional mechanisms that control gene expression during cellular stress responses. PMID:22287635

  9. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses

    PubMed Central

    Bonnavion, Patricia; Jackson, Alexander C.; Carter, Matthew E.; de Lecea, Luis

    2015-01-01

    The hypothalamic–pituitary–adrenal (HPA) axis functions to coordinate behavioural and physiological responses to stress in a manner that depends on the behavioural state of the organism. However, the mechanisms through which arousal and metabolic states influence the HPA axis are poorly understood. Here using optogenetic approaches in mice, we show that neurons that produce hypocretin (Hcrt)/orexin in the lateral hypothalamic area (LHA) regulate corticosterone release and a variety of behaviours and physiological hallmarks of the stress response. Interestingly, we found that Hcrt neuronal activity and Hcrt-mediated stress responses were inhibited by the satiety hormone leptin, which acts, in part, through a network of leptin-sensitive neurons in the LHA. These data demonstrate how peripheral metabolic signals interact with hypothalamic neurons to coordinate stress and arousal and suggest one mechanism through which hyperarousal or altered metabolic states may be linked with abnormal stress responses. PMID:25695914

  10. Maternal Sensitivity and Infant Autonomic and Endocrine Stress Responses

    PubMed Central

    Enlow, Michelle Bosquet; King, Lucy; Schreier, Hannah; Howard, Jamie M.; Rosenfield, David; Ritz, Thomas; Wright, Rosalind J.

    2014-01-01

    Background Early environmental exposures may help shape the development of the autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) axis, influencing vulnerability for health problems across the lifespan. Little is known about the role of maternal sensitivity in influencing the development of the ANS in early life. Aims To examine associations among maternal sensitivity and infant behavioral distress and ANS and HPA axis reactivity to the Repeated Still-Face Paradigm (SFP-R), a dyadic stress task. Study Design Observational repeated measures study. Subjects Thirty-five urban, sociodemographically diverse mothers and their 6-month-old infants. Outcome Measures Changes in infant affective distress, heart rate, respiratory sinus arrhythmia (RSA), and T-wave amplitude (TWA) across episodes of the SFP-R were assessed. A measure of cortisol output (area under the curve) in the hour following cessation of the SFP-R was also obtained. Results Greater maternal insensitivity was associated with greater infant sympathetic activation (TWA) during periods of stress and tended to be associated with greater cortisol output following the SFP-R. There was also evidence for greater affective distress and less parasympathetic activation (RSA) during the SFP-R among infants of predominantly insensitive mothers. Conclusions Caregiving quality in early life may influence the responsiveness of the sympathetic and parasympathetic branches of the ANS as well as the HPA axis. Consideration of the ANS and HPA axis systems together provides a fuller representation of adaptive versus maladaptive stress responses. The findings highlight the importance of supporting high quality caregiving in the early years of life, which is likely to promote later health. PMID:24794304

  11. Plant core environmental stress response genes are systemically coordinated during abiotic stresses.

    PubMed

    Hahn, Achim; Kilian, Joachim; Mohrholz, Anne; Ladwig, Friederike; Peschke, Florian; Dautel, Rebecca; Harter, Klaus; Berendzen, Kenneth W; Wanke, Dierk

    2013-01-01

    Studying plant stress responses is an important issue in a world threatened by global warming. Unfortunately, comparative analyses are hampered by varying experimental setups. In contrast, the AtGenExpress abiotic stress experiment displays intercomparability. Importantly, six of the nine stresses (wounding, genotoxic, oxidative, UV-B light, osmotic and salt) can be examined for their capacity to generate systemic signals between the shoot and root, which might be essential to regain homeostasis in Arabidopsis thaliana. We classified the systemic responses into two groups: genes that are regulated in the non-treated tissue only are defined as type I responsive and, accordingly, genes that react in both tissues are termed type II responsive. Analysis of type I and II systemic responses suggest distinct functionalities, but also significant overlap between different stresses. Comparison with salicylic acid (SA) and methyl-jasmonate (MeJA) responsive genes implies that MeJA is involved in the systemic stress response. Certain genes are predominantly responding in only one of the categories, e.g., WRKY genes respond mainly non-systemically. Instead, genes of the plant core environmental stress response (PCESR), e.g., ZAT10, ZAT12, ERD9 or MES9, are part of different response types. Moreover, several PCESR genes switch between the categories in a stress-specific manner.

  12. Proteomic analyses of the response of cyanobacteria to different stress conditions.

    PubMed

    Castielli, Ornella; De la Cerda, Berta; Navarro, José A; Hervás, Manuel; De la Rosa, Miguel A

    2009-06-01

    Cyanobacteria are significant contributors to global photosynthetic productivity, thus making it relevant to study how the different environmental stresses can alter their physiological activities. Here, we review the current research work on the response of cyanobacteria to different kinds of stress, mainly focusing on their response to metal stress as studied by using the modern proteomic tools. We also report a proteomic analysis of plastocyanin and cytochrome c(6) deletion mutants of the cyanobacterium Synechocystis sp. PCC 6803 grown under copper or iron deprivation, as compared to wild-type cells, so as to get a further understanding of the metal homeostasis in cyanobacteria and their response to changing environmental conditions.

  13. How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory.

    PubMed

    Nguyen, Duy; Rieu, Ivo; Mariani, Celestina; van Dam, Nicole M

    2016-08-01

    Adaptive plant responses to specific abiotic stresses or biotic agents are fine-tuned by a network of hormonal signaling cascades, including abscisic acid (ABA), ethylene, jasmonic acid (JA) and salicylic acid. Moreover, hormonal cross-talk modulates plant responses to abiotic stresses and defenses against insect herbivores when they occur simultaneously. How such interactions affect plant responses under multiple stresses, however, is less understood, even though this may frequently occur in natural environments. Here, we review our current knowledge on how hormonal signaling regulates abiotic stress responses and defenses against insects, and discuss the few recent studies that attempted to dissect hormonal interactions occurring under simultaneous abiotic stress and herbivory. Based on this we hypothesize that drought stress enhances insect resistance due to synergistic interactions between JA and ABA signaling. Responses to flooding or waterlogging involve ethylene signaling, which likely reduces plant resistance to chewing herbivores due to its negative cross-talk with JA. However, the outcome of interactions between biotic and abiotic stress signaling is often plant and/or insect species-dependent and cannot simply be predicted based on general knowledge on the involvement of signaling pathways in single stress responses. More experimental data on non-model plant and insect species are needed to reveal general patterns and better understand the molecular mechanisms allowing plants to optimize their responses in complex environments. PMID:27095445

  14. Overexpression of a Cytosolic Abiotic Stress Responsive Universal Stress Protein (SbUSP) Mitigates Salt and Osmotic Stress in Transgenic Tobacco Plants

    PubMed Central

    Udawat, Pushpika; Jha, Rajesh K.; Sinha, Dinkar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    The universal stress protein (USP) is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologs of intron less SbUSP gene which encodes for salt and osmotic responsive USP. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control [wild-type (WT) and vector control (VC)] plants under different abiotic stress condition. Transgenic lines (T1) exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability, and lower electrolyte leakage and lipid peroxidation (malondialdehyde content) under stress treatments than control (WT and VC) plants. Lower accumulation of H2O2 and O2− radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant. PMID:27148338

  15. Acute Stress Reduces Reward Responsiveness: Implications for Depression

    PubMed Central

    Bogdan, Ryan; Pizzagalli, Diego A.

    2008-01-01

    Background Stress, one of the strongest risk factors for depression, has been linked to “anhedonic” behavior and dysfunctional reward-related neural circuitry in preclinical models. Methods To test if acute stress reduces reward responsiveness (i.e., the ability to modulate behavior as a function of past reward), a signal-detection task coupled with a differential reinforcement schedule was utilized. Eighty female participants completed the task under both a stress condition, either threat-of-shock (n = 38) or negative performance feedback (n = 42), and a no-stress condition. Results Stress increased negative affect and anxiety. As hypothesized based on preclinical findings, stress, particularly the threat-of-shock condition, impaired reward responsiveness. Regression analyses indicate that self-report measures of anhedonia predicted stress-induced hedonic deficits even after controlling for anxiety symptoms. Conclusions These findings indicate that acute stress reduces reward responsiveness, particularly in individuals with anhedonic symptoms. Stress-induced hedonic deficit is a promising candidate mechanism linking stressful experiences to depression. PMID:16806107

  16. Insights into genomics of salt stress response in rice.

    PubMed

    Kumar, Kundan; Kumar, Manu; Kim, Seong-Ryong; Ryu, Hojin; Cho, Yong-Gu

    2013-01-01

    Plants, as sessile organisms experience various abiotic stresses, which pose serious threat to crop production. Plants adapt to environmental stress by modulating their growth and development along with the various physiological and biochemical changes. This phenotypic plasticity is driven by the activation of specific genes encoding signal transduction, transcriptional regulation, ion transporters and metabolic pathways. Rice is an important staple food crop of nearly half of the world population and is well known to be a salt sensitive crop. The completion and enhanced annotations of rice genome sequence has provided the opportunity to study functional genomics of rice. Functional genomics aids in understanding the molecular and physiological basis to improve the salinity tolerance for sustainable rice production. Salt tolerant transgenic rice plants have been produced by incorporating various genes into rice. In this review we present the findings and investigations in the field of rice functional genomics that includes supporting genes and networks (ABA dependent and independent), osmoprotectants (proline, glycine betaine, trehalose, myo-inositol, and fructans), signaling molecules (Ca2+, abscisic acid, jasmonic acid, brassinosteroids) and transporters, regulating salt stress response in rice. PMID:24280112

  17. Neural activation during response competition

    NASA Technical Reports Server (NTRS)

    Hazeltine, E.; Poldrack, R.; Gabrieli, J. D.

    2000-01-01

    The flanker task, introduced by Eriksen and Eriksen [Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143--149], provides a means to selectively manipulate the presence or absence of response competition while keeping other task demands constant. We measured brain activity using functional magnetic resonance imaging (fMRI) during performance of the flanker task. In accordance with previous behavioral studies, trials in which the flanking stimuli indicated a different response than the central stimulus were performed significantly more slowly than trials in which all the stimuli indicated the same response. This reaction time effect was accompanied by increases in activity in four regions: the right ventrolateral prefrontal cortex, the supplementary motor area, the left superior parietal lobe, and the left anterior parietal cortex. The increases were not due to changes in stimulus complexity or the need to overcome previously learned associations between stimuli and responses. Correspondences between this study and other experiments manipulating response interference suggest that the frontal foci may be related to response inhibition processes whereas the posterior foci may be related to the activation of representations of the inappropriate responses.

  18. Detection of early plant stress responses in hyperspectral images

    NASA Astrophysics Data System (ADS)

    Behmann, Jan; Steinrücken, Jörg; Plümer, Lutz

    2014-07-01

    Early stress detection in crop plants is highly relevant, but hard to achieve. We hypothesize that close range hyperspectral imaging is able to uncover stress related processes non-destructively in the early stages which are invisible to the human eye. We propose an approach which combines unsupervised and supervised methods in order to identify several stages of progressive stress development from series of hyperspectral images. Stress of an entire plant is detected by stress response levels at pixel scale. The focus is on drought stress in barley (Hordeum vulgare). Unsupervised learning is used to separate hyperspectral signatures into clusters related to different stages of stress response and progressive senescence. Whereas all such signatures may be found in both, well watered and drought stressed plants, their respective distributions differ. Ordinal classification with Support Vector Machines (SVM) is used to quantify and visualize the distribution of progressive stages of senescence and to separate well watered from drought stressed plants. For each senescence stage a distinctive set of most relevant Vegetation Indices (VIs) is identified. The method has been applied on two experiments involving potted barley plants under well watered and drought stress conditions in a greenhouse. Drought stress is detected up to ten days earlier than using NDVI. Furthermore, it is shown that some VIs have overall relevance, while others are specific to particular senescence stages. The transferability of the method to the field is illustrated by an experiment on maize (Zea mays).

  19. A NAP-Family Histone Chaperone Functions in Abiotic Stress Response and Adaptation1[OPEN

    PubMed Central

    Pareek, Ashwani; Singla-Pareek, Sneh Lata

    2016-01-01

    Modulation of gene expression is one of the most significant molecular mechanisms of abiotic stress response in plants. Via altering DNA accessibility, histone chaperones affect the transcriptional competence of genomic loci. However, in contrast to other factors affecting chromatin dynamics, the role of plant histone chaperones in abiotic stress response and adaptation remains elusive. Here, we studied the physiological function of a stress-responsive putative rice (Oryza sativa) histone chaperone of the NAP superfamily: OsNAPL6. We show that OsNAPL6 is a nuclear-localized H3/H4 histone chaperone capable of assembling a nucleosome-like structure. Utilizing overexpression and knockdown approaches, we found a positive correlation between OsNAPL6 expression levels and adaptation to multiple abiotic stresses. Results of comparative transcriptome profiling and promoter-recruitment studies indicate that OsNAPL6 functions during stress response via modulation of expression of various genes involved in diverse functions. For instance, we show that OsNAPL6 is recruited to OsRad51 promoter, activating its expression and leading to more efficient DNA repair and abrogation of programmed cell death under salinity and genotoxic stress conditions. These results suggest that the histone chaperone OsNAPL6 may serve a regulatory role in abiotic stress physiology possibly via modulating nucleosome dynamics at various stress-associated genomic loci. Taken together, our findings establish a hitherto unknown link between histone chaperones and abiotic stress response in plants. PMID:27342307

  20. Ethylene responsive factors in the orchestration of stress responses in monocotyledonous plants

    PubMed Central

    Dey, Sanjukta; Corina Vlot, A.

    2015-01-01

    The APETALA2/Ethylene-Responsive Factor (AP2/ERF) superfamily of transcription factors (TFs) regulates physiological, developmental and stress responses. Most of the AP2/ERF TFs belong to the ERF family in both dicotyledonous and monocotyledonous plants. ERFs are implicated in the responses to both biotic and abiotic stress and occasionally impart multiple stress tolerance. Studies have revealed that ERF gene function is conserved in dicots and monocots. Moreover, successful stress tolerance phenotypes are observed on expression in heterologous systems, making ERFs promising candidates for engineering stress tolerance in plants. In this review, we summarize the role of ERFs in general stress tolerance, including responses to biotic and abiotic stress factors, and endeavor to understand the cascade of ERF regulation resulting in successful signal-to-response translation in monocotyledonous plants. PMID:26379679

  1. Corticosterone mitigates the stress response in an animal model of PTSD.

    PubMed

    Jia, Min; Smerin, Stanley E; Zhang, Lei; Xing, Guoqiang; Li, Xiaoxia; Benedek, David; Ursano, Robert; Li, He

    2015-01-01

    Activation of glucocorticoid receptor signaling in the stress response to traumatic events has been implicated in the pathogenesis of stress-associated psychiatric disorders such as post-traumatic stress disorder (PTSD). Elevated startle response and hyperarousal are hallmarks of PTSD, and are generally considered to evince fear (DSM V). To further examine the efficacy of corticosterone in treating hyperarousal and elevated fear, the present study utilized a learned helplessness stress model in which rats are restrained and subjected to tail shock for three days. These stressed rats develop a delayed long-lasting exaggeration of the acoustic startle response (ASR) and retarded body weight growth, similar to symptoms of PTSD patients (Myers et al., 2005; Speed et al., 1989). We demonstrate that both pre-stress and post-stress administration of corticosterone (3 mg/kg/day) mitigates a subsequent exaggeration of the ASR measured 14 days after cessation of the stress protocol. Furthermore, the mitigating efficacy of pre-stress administration of corticosterone (3 mg/kg/day for three days) appeared to last significantly longer, up to 21 days after the cessation of the stress protocol, in comparison to that of post-stress administration of corticosterone. However, pre-stress administration of corticosterone at 0.3 mg/kg/day for three days did not mitigate stress-induced exaggeration of the ASR measured at both 14 and 21 days after the cessation of the stress protocol. In addition, pre-stress administration of corticosterone (3 mg/kg/day for three days) mitigates the retardation of body weight growth otherwise resulting from the stress protocol. Congruently, co-administration of the corticosterone antagonist RU486 (40 mg/kg/day for three days) with corticosterone (3 mg/kg/day) prior to stress diminished the mitigating efficacy of the exogenous corticosterone on exaggerated ASR and stress-retarded body weight. The relative efficacy of pre versus post administration of

  2. Stress Response and Translation Control in Rotavirus Infection

    PubMed Central

    López, Susana; Oceguera, Alfonso; Sandoval-Jaime, Carlos

    2016-01-01

    The general stress and innate immune responses are closely linked and overlap at many levels. The outcomes of these responses serve to reprogram host expression patterns to prevent viral invasions. In turn, viruses counter attack these cell responses to ensure their replication. The mechanisms by which viruses attempt to control host cell responses are as varied as the number of different virus families. One of the most recurrent strategies used by viruses to control the antiviral response of the cell is to hijack the translation machinery of the host, such that viral proteins are preferentially synthesized, while the expression of the stress and antiviral responses of the cell are blocked at the translation level. Here, we will review how rotaviruses, an important agent of acute severe gastroenteritis in children, overcome the stress responses of the cell to establish a productive infectious cycle. PMID:27338442

  3. Psychosocial versus physiological stress - Meta-analyses on deactivations and activations of the neural correlates of stress reactions.

    PubMed

    Kogler, Lydia; Müller, Veronika I; Chang, Amy; Eickhoff, Simon B; Fox, Peter T; Gur, Ruben C; Derntl, Birgit

    2015-10-01

    Stress is present in everyday life in various forms and situations. Two stressors frequently investigated are physiological and psychosocial stress. Besides similar subjective and hormonal responses, it has been suggested that they also share common neural substrates. The current study used activation-likelihood-estimation meta-analysis to test this assumption by integrating results of previous neuroimaging studies on stress processing. Reported results are cluster-level FWE corrected. The inferior frontal gyrus (IFG) and the anterior insula (AI) were the only regions that demonstrated overlapping activation for both stressors. Analysis of physiological stress showed consistent activation of cognitive and affective components of pain processing such as the insula, striatum, or the middle cingulate cortex. Contrarily, analysis across psychosocial stress revealed consistent activation of the right superior temporal gyrus and deactivation of the striatum. Notably, parts of the striatum appeared to be functionally specified: the dorsal striatum was activated in physiological stress, whereas the ventral striatum was deactivated in psychosocial stress. Additional functional connectivity and decoding analyses further characterized this functional heterogeneity and revealed higher associations of the dorsal striatum with motor regions and of the ventral striatum with reward processing. Based on our meta-analytic approach, activation of the IFG and the AI seems to indicate a global neural stress reaction. While physiological stress activates a motoric fight-or-flight reaction, during psychosocial stress attention is shifted towards emotion regulation and goal-directed behavior, and reward processing is reduced. Our results show the significance of differentiating physiological and psychosocial stress in neural engagement. Furthermore, the assessment of deactivations in addition to activations in stress research is highly recommended. PMID:26123376

  4. Psychosocial versus physiological stress - Meta-analyses on deactivations and activations of the neural correlates of stress reactions.

    PubMed

    Kogler, Lydia; Müller, Veronika I; Chang, Amy; Eickhoff, Simon B; Fox, Peter T; Gur, Ruben C; Derntl, Birgit

    2015-10-01

    Stress is present in everyday life in various forms and situations. Two stressors frequently investigated are physiological and psychosocial stress. Besides similar subjective and hormonal responses, it has been suggested that they also share common neural substrates. The current study used activation-likelihood-estimation meta-analysis to test this assumption by integrating results of previous neuroimaging studies on stress processing. Reported results are cluster-level FWE corrected. The inferior frontal gyrus (IFG) and the anterior insula (AI) were the only regions that demonstrated overlapping activation for both stressors. Analysis of physiological stress showed consistent activation of cognitive and affective components of pain processing such as the insula, striatum, or the middle cingulate cortex. Contrarily, analysis across psychosocial stress revealed consistent activation of the right superior temporal gyrus and deactivation of the striatum. Notably, parts of the striatum appeared to be functionally specified: the dorsal striatum was activated in physiological stress, whereas the ventral striatum was deactivated in psychosocial stress. Additional functional connectivity and decoding analyses further characterized this functional heterogeneity and revealed higher associations of the dorsal striatum with motor regions and of the ventral striatum with reward processing. Based on our meta-analytic approach, activation of the IFG and the AI seems to indicate a global neural stress reaction. While physiological stress activates a motoric fight-or-flight reaction, during psychosocial stress attention is shifted towards emotion regulation and goal-directed behavior, and reward processing is reduced. Our results show the significance of differentiating physiological and psychosocial stress in neural engagement. Furthermore, the assessment of deactivations in addition to activations in stress research is highly recommended.

  5. Psychosocial versus physiological stress – meta-analyses on deactivations and activations of the neural correlates of stress reactions

    PubMed Central

    Kogler, Lydia; Mueller, Veronika I.; Chang, Amy; Eickhoff, Simon B.; Fox, Peter T.; Gur, Ruben C.; Derntl, Birgit

    2015-01-01

    Stress is present in everyday life in various forms and situations. Two stressors frequently investigated are physiological and psychosocial stress. Besides similar subjective and hormonal responses, it has been suggested that they also share common neural substrates. The current study used activation-likelihood-estimation meta-analysis to test this assumption by integrating results of previous neuroimaging studies on stress processing. Reported results are cluster-level FWE corrected. The inferior frontal gyrus (IFG) and the anterior insula (AI) were the only regions that demonstrated overlapping activation for both stressors. Analysis of physiological stress showed consistent activation of cognitive and affective components of pain processing such as the insula, striatum, or the middle cingulate cortex. Contrarily, analysis across psychosocial stress revealed consistent activation of the right superior temporal gyrus and deactivation of the striatum. Notably, parts of the striatum appeared to be functionally specified: the dorsal striatum was activated in physiological stress, whereas the ventral striatum was deactivated in psychosocial stress. Additional functional connectivity and decoding analyses further characterized this functional heterogeneity and revealed higher associations of the dorsal striatum with motor regions and of the ventral striatum with reward processing. Based on our meta-analytic approach, activation of the IFG and the AI seems to indicate a global neural stress reaction. While physiological stress activates a motoric fight-or-flight reaction, during psychosocial stress attention is shifted towards emotion regulation and goal-directed behavior, and reward processing is reduced. Our results show the significance of differentiating physiological and psychosocial stress in neural engagement. Furthermore, the assessment of deactivations in addition to activations in stress research is highly recommended. PMID:26123376

  6. The dopaminergic response to acute stress in health and psychopathology: A systematic review.

    PubMed

    Vaessen, Thomas; Hernaus, Dennis; Myin-Germeys, Inez; van Amelsvoort, Thérèse

    2015-09-01

    Previous work in animals has shown that dopamine (DA) in cortex and striatum plays an essential role in stress processing. For the first time, we systematically reviewed the in vivo evidence for DAergic stress processing in health and psychopathology in humans. All studies included (n studies=25, n observations=324) utilized DA D2/3 positron emission tomography and measured DAergic activity during an acute stress challenge. The evidence in healthy volunteers (HV) suggests that physiological, but not psychological, stress consistently increases striatal DA release. Instead, increased medial prefrontal cortex (mPFC) DAergic activity in HV was observed during psychological stress. Across brain regions, stress-related DAergic activity was correlated with the physiological and psychological intensity of the stressor. The magnitude of stress-induced DA release was dependent on rearing conditions, personality traits and genetic variations in several SNPs. In psychopathology, preliminary evidence was found for stress-related dorsal striatal DAergic hyperactivity in psychosis spectrum and a blunted response in chronic cannabis use and pain-related disorders, but results were inconsistent. Physiological stress-induced DAergic activity in striatum in HV may reflect somatosensory properties of the stressor and readiness for active fight-or-flight behavior. DAergic activity in HV in the ventral striatum and mPFC may be more related to expectations about the stressor and threat evaluation, respectively. Future studies with increased sample size in HV and psychopathology assessing the functional relevance of stress-induced DAergic activity, the association between cortical and subcortical DAergic activity and the direct comparison of different stressors are necessary to conclusively elucidate the role of the DA system in the stress response.

  7. Stress Generation and Adolescent Depression: Contribution of Interpersonal Stress Responses

    ERIC Educational Resources Information Center

    Flynn, Megan; Rudolph, Karen D.

    2011-01-01

    This research examined the proposal that ineffective responses to common interpersonal problems disrupt youths' relationships, which, in turn, contributes to depression during adolescence. Youth (86 girls, 81 boys; M age = 12.41, SD = 1.19) and their primary female caregivers participated in a three-wave longitudinal study. Youth completed a…

  8. Antioxidant responses of wheat plants under stress

    PubMed Central

    Caverzan, Andréia; Casassola, Alice; Brammer, Sandra Patussi

    2016-01-01

    Abstract Currently, food security depends on the increased production of cereals such as wheat (Triticum aestivum L.), which is an important source of calories and protein for humans. However, cells of the crop have suffered from the accumulation of reactive oxygen species (ROS), which can cause severe oxidative damage to the plants, due to environmental stresses. ROS are toxic molecules found in various subcellular compartments. The equilibrium between the production and detoxification of ROS is sustained by enzymatic and nonenzymatic antioxidants. In the present review, we offer a brief summary of antioxidant defense and hydrogen peroxide (H2O2) signaling in wheat plants. Wheat plants increase antioxidant defense mechanisms under abiotic stresses, such as drought, cold, heat, salinity and UV-B radiation, to alleviate oxidative damage. Moreover, H2O2 signaling is an important factor contributing to stress tolerance in cereals. PMID:27007891

  9. Middle East Respiratory Coronavirus Accessory Protein 4a Inhibits PKR-Mediated Antiviral Stress Responses

    PubMed Central

    Rabouw, Huib H.; Canton, Javier; Sola, Isabel; Enjuanes, Luis; Bredenbeek, Peter J.; Kikkert, Marjolein; de Groot, Raoul J.; van Kuppeveld, Frank J. M.

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory infections that can be life-threatening. To establish an infection and spread, MERS-CoV, like most other viruses, must navigate through an intricate network of antiviral host responses. Besides the well-known type I interferon (IFN-α/β) response, the protein kinase R (PKR)-mediated stress response is being recognized as an important innate response pathway. Upon detecting viral dsRNA, PKR phosphorylates eIF2α, leading to the inhibition of cellular and viral translation and the formation of stress granules (SGs), which are increasingly recognized as platforms for antiviral signaling pathways. It is unknown whether cellular infection by MERS-CoV activates the stress response pathway or whether the virus has evolved strategies to suppress this infection-limiting pathway. Here, we show that cellular infection with MERS-CoV does not lead to the formation of SGs. By transiently expressing the MERS-CoV accessory proteins individually, we identified a role of protein 4a (p4a) in preventing activation of the stress response pathway. Expression of MERS-CoV p4a impeded dsRNA-mediated PKR activation, thereby rescuing translation inhibition and preventing SG formation. In contrast, p4a failed to suppress stress response pathway activation that is independent of PKR and dsRNA. MERS-CoV p4a is a dsRNA binding protein. Mutation of the dsRNA binding motif in p4a disrupted its PKR antagonistic activity. By inserting p4a in a picornavirus lacking its natural PKR antagonist, we showed that p4a exerts PKR antagonistic activity also under infection conditions. However, a recombinant MERS-CoV deficient in p4a expression still suppressed SG formation, indicating the expression of at least one other stress response antagonist. This virus also suppressed the dsRNA-independent stress response pathway. Thus, MERS-CoV interferes with antiviral stress responses using at least two different mechanisms, with p4a

  10. Cumulative Adversity Sensitizes Neural Response to Acute Stress: Association with Health Symptoms

    PubMed Central

    Seo, Dongju; Tsou, Kristen A; Ansell, Emily B; Potenza, Marc N; Sinha, Rajita

    2014-01-01

    Cumulative adversity (CA) increases stress sensitivity and risk of adverse health outcomes. However, neural mechanisms underlying these associations in humans remain unclear. To understand neural responses underlying the link between CA and adverse health symptoms, the current study assessed brain activity during stress and neutral-relaxing states in 75 demographically matched, healthy individuals with high, mid, and low CA (25 in each group), and their health symptoms using the Cornell Medical Index. CA was significantly associated with greater adverse health symptoms (P=0.01) in all participants. Functional magnetic resonance imaging results indicated significant associations between CA scores and increased stress-induced activity in the lateral prefrontal cortex, insula, striatum, right amygdala, hippocampus, and temporal regions in all 75 participants (p<0.05, whole-brain corrected). In addition to these regions, the high vs low CA group comparison revealed decreased stress-induced activity in the medial orbitofrontal cortex (OFC) in the high CA group (p<0.01, whole-brain corrected). Specifically, hypoactive medial OFC and hyperactive right hippocampus responses to stress were each significantly associated with greater adverse health symptoms (p<0.01). Furthermore, an inverse correlation was found between activity in the medial OFC and right hippocampus (p=0.01). These results indicate that high CA sensitizes limbic–striatal responses to acute stress and also identifies an important role for stress-related medial OFC and hippocampus responses in the effects of CA on increasing vulnerability to adverse health consequences. PMID:24051900

  11. Molecular biology of the stress response in the early embryo and its stem cells.

    PubMed

    Puscheck, Elizabeth E; Awonuga, Awoniyi O; Yang, Yu; Jiang, Zhongliang; Rappolee, Daniel A

    2015-01-01

    to zygotic genome activation, the large mRNA program initiated at compaction, ion pumping required for cavitation, the differentiation of the first lineages, integration with the uterine environment at implantation, rapid proliferation of stem cells, and production of certain lineages which require the highest energy and are most sensitive to mitochondrial inhibition. Stress response mechanisms insure that stem cells for the early embryo and placenta survive at lower stress exposures, and that the organism survives through compensatory and prioritized stem cell differentiation, at higher stress exposures. These servomechanisms include a small set of stress enzymes from the 500 protein kinases in the kinome; the part of the genome coding for protein kinases that hierarchically regulate the activity of other proteins and enzymes. Important protein kinases that mediate the stress response of embryos and their stem cells are SAPK, p38MAPK, AMPK, PI3K, Akt, MEK1/2, MEKK4, PKA, IRE1 and PERK. These stress enzymes have cytosolic function in cell survival at low stress exposures and nuclear function in modifying transcription factor activity at higher stress exposures. Some of the transcription factors (TFs) that are most important in the stress response are JunC, JunB, MAPKAPs, ATF4, XBP1, Oct1, Oct4, HIFs, Nrf2/KEAP, NFKB, MT1, Nfat5, HSF1/2 and potency-maintaining factors Id2, Cdx2, Eomes, Sox2, Nanog, Rex1, and Oct4. Clearly the stress enzymes have a large number of cytosolic and nuclear substrates and the TFs regulate large numbers of genes. The interaction of stress enzymes and TFs in the early embryo and its stem cells are a continuing central focus of research. In vitro regulation of TFs by stress enzymes leads to reprogramming of the stem cell when stress diminishes stem cell accumulation. Since more differentiated product is produced by fewer cells, the process compensates for fewer cells. Coupled with stress-induced compensatory differentiation of stem cells is a

  12. Involvement of lignin and hormones in the response of woody poplar taproots to mechanical stress.

    PubMed

    Trupiano, Dalila; Di Iorio, Antonino; Montagnoli, Antonio; Lasserre, Bruno; Rocco, Mariapina; Grosso, Alessandro; Scaloni, Andrea; Marra, Mauro; Chiatante, Donato; Scippa, Gabriella S

    2012-09-01

    Mechanical stress is a widespread condition caused by numerous environmental factors that severely affect plant stability. In response to mechanical stress, plants have evolved complex response pathways able to detect mechanical perturbations and inducing a suite of modifications in order to improve anchorage. The response of woody roots to mechanical stresses has been studied mainly at the morphological and biomechanical level, whereas investigations on the factors triggering these important alterations are still at the initial stage. Populus has been widely used to study the response of stem to different mechanical stresses and, since it has the first forest tree genome to be decoded, represents a model woody plant for addressing questions on the mechanisms controlling adaptation of woody roots to changing environments. In this study, a morphological and physiological analysis was used to investigate factors controlling modifications in Populus nigra woody taproots subjected to mechanical stress. An experimental model analyzing spatial and temporal mechanical force distribution along the woody taproot axis enabled us to compare the events occurring in its above-, central- and below-bending sectors. Different morphogenetic responses and local variations of lignin and plant hormones content have been observed, and a relation with the distribution of the mechanical forces along the stressed woody taproots is hypothesized. We investigated the differences of the response to mechanical stress induction during the time; in this regard, we present data referring to the effect of mechanical stress on plant transition from its condition of winter dormancy to that of full vegetative activity.

  13. Stress and parental care: Prolactin responses to acute stress throughout the breeding cycle in a long-lived bird.

    PubMed

    Riou, Samuel; Chastel, Olivier; Lacroix, André; Hamer, Keith C

    2010-08-01

    While the role of corticosterone in mediating the response of birds to acute stress is well established, it has recently been proposed that a decrease in prolactin levels following stress may complement corticosterone in redirecting resources away from breeding activities and towards behaviors promoting immediate survival. Here, for the first time, we detail changes in the prolactin stress response of birds throughout the breeding cycle. We then discuss the modulation of the corticosterone and prolactin stress responses over successive stages of breeding, differing in reproductive value and parental effort. In a long-lived Procellariiform seabird, the Manx shearwater Puffinus puffinus, we found that prolactin levels decreased in response to acute stress during incubation and mid chick-rearing but increased in response to stress during late chick-rearing and in non parenting birds, a pattern similar to that previously described for mammals. The high corticosterone stress response in pre-breeders was consistent with predictions based on reproductive value, but a similar response during late chick-rearing was not. This probably reflected foraging effort and a heightened importance of the parents' own nutritional status at this stage of the season, in advance of post-breeding migration. We also found that baseline prolactin levels were maintained at high levels during chick-rearing and were only slightly lower during late chick-rearing and in failed breeders and non-breeders. These data suggest that prolactin may play a role in nestling care long beyond the brooding phase, that this is not due to birds spending long periods away from the colony and that prolactin secretion may be necessary for nest-guarding behavior.

  14. Habitual Response to Stress in Recovering Adolescent Anorexic Patients

    ERIC Educational Resources Information Center

    Miller, Samantha P.; Erickson, Sarah J.; Branom, Christina; Steiner, Hans

    2009-01-01

    Objective: Although previous research has investigated the stress response in acutely anorexic patients, there is currently little research addressing this response in recovering adolescent anorexic girls. Therefore, this study investigated partially and fully weight-restored anorexic adolescent girls' psychological and physiological response to a…

  15. Stress and thermoregulation: different sympathetic responses and different effects on experimental pain.

    PubMed

    Fechir, M; Schlereth, T; Kritzmann, S; Balon, S; Pfeifer, N; Geber, C; Breimhorst, M; Eberle, T; Gamer, M; Birklein, F

    2009-10-01

    Stress and thermoregulation both activate the sympathetic nervous system (SNS) but might differently affect pain. Studies investigating possible interactions in patients are problematic because of the high prevalence of SNS disturbances in patients. We therefore analyzed the influence of these different sympathetic challenges on experimentally-induced pain in healthy subjects. SNS was activated in two different ways: by mental stress (Stroop task, mental arithmetic task), and by thermoregulatory stimulation using a water-perfused thermal suit (7 degrees C, 32 degrees C, or 50 degrees C). Attentional effects of the mental stress tasks were controlled by using easy control tasks. Both, stress and thermoregulatory stimuli, robustly activated SNS parameters. However, the patterns of activation were different. While stress co-activated heart rate, blood pressure, peripheral vasoconstriction and sweating, thermal stimulation either increased blood pressure (cold) or heart rate and sweating (warm). Only stress was able to induce a significant reduction of pain. The control tasks neither activated the SNS nor altered pain perception. Our results suggest that (1) different patterns of sympathetic activation can be recorded after stress and thermoregulatory challenges and (2) that only stress is able to interfere with sensation of experimental pain. Whether SNS activation is causally responsible for analgesia needs to be further investigated.

  16. Cell Wall Metabolism in Response to Abiotic Stress.

    PubMed

    Le Gall, Hyacinthe; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  17. Cell Wall Metabolism in Response to Abiotic Stress

    PubMed Central

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  18. Cell Wall Metabolism in Response to Abiotic Stress.

    PubMed

    Le Gall, Hyacinthe; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-02-16

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

  19. Refining the multisystem view of the stress response: coordination among cortisol, alpha-amylase, and subjective stress in response to relationship conflict.

    PubMed

    Laurent, Heidemarie K; Powers, Sally I; Granger, Douglas A

    2013-07-01

    This study investigated associations among young adults' hypothalamic-pituitary-adrenal axis activity, autonomic nervous system activity, and subjective stress in response to interpersonal conflict to better characterize coordination across stress systems. Seven saliva samples were collected from 199 young adult opposite-sex couples before, during, and after they discussed an unresolved relationship conflict. Samples were later assayed for cortisol and alpha-amylase (sAA). Couples rated anticipatory stress prior to the conflict and perceived stress immediately following the task. Growth curve modeling was used to examine two possible levels of within-person coordination across physiological systems: alignment between cortisol and sAA responses throughout the sampling period ("matched phase coordination"), and association between overall levels of cortisol and sAA in response to conflict ("average level coordination"). Whereas both partners showed the former type of coordination, only women showed the latter type. Positive anticipation of the stressor predicted stronger cortisol-sAA matched phase coordination for women. Pre-task ratings related to women's sAA, and post-task ratings related to both partners' cortisol responses. Implications for a multisystem interpretation of normal and pathological responses to daily stress are discussed.

  20. Personality, Stressful Life Events, and Treatment Response in Major Depression

    ERIC Educational Resources Information Center

    Bulmash, Eric; Harkness, Kate L.; Stewart, Jeremy G.; Bagby, R. Michael

    2009-01-01

    The current study examined whether the personality traits of self-criticism or dependency moderated the effect of stressful life events on treatment response. Depressed outpatients (N = 113) were randomized to 16 weeks of cognitive-behavioral therapy, interpersonal psychotherapy, or antidepressant medication (ADM). Stressful life events were…

  1. Traumatic Experience in Infancy: How Responses to Stress Affect Development

    ERIC Educational Resources Information Center

    Witten, Molly Romer

    2010-01-01

    Responses to traumatic stress during the earliest years of life can change quickly and can be difficult to identify because of the young child's rapid rate of development. The symptoms of traumatic stress will depend on the child's developmental level and individual coping styles, as well as the quality and nature of the child's most important…

  2. Plant responsiveness to root–root communication of stress cues

    PubMed Central

    Falik, Omer; Mordoch, Yonat; Ben-Natan, Daniel; Vanunu, Miriam; Goldstein, Oron; Novoplansky, Ariel

    2012-01-01

    Background and Aims Phenotypic plasticity is based on the organism's ability to perceive, integrate and respond to multiple signals and cues informative of environmental opportunities and perils. A growing body of evidence demonstrates that plants are able to adapt to imminent threats by perceiving cues emitted from their damaged neighbours. Here, the hypothesis was tested that unstressed plants are able to perceive and respond to stress cues emitted from their drought- and osmotically stressed neighbours and to induce stress responses in additional unstressed plants. Methods Split-root Pisum sativum, Cynodon dactylon, Digitaria sanguinalis and Stenotaphrum secundatum plants were subjected to osmotic stress or drought while sharing one of their rooting volumes with an unstressed neighbour, which in turn shared its other rooting volume with additional unstressed neighbours. Following the kinetics of stomatal aperture allowed testing for stress responses in both the stressed plants and their unstressed neighbours. Key Results In both P. sativum plants and the three wild clonal grasses, infliction of osmotic stress or drought caused stomatal closure in both the stressed plants and in their unstressed neighbours. While both continuous osmotic stress and drought induced prolonged stomatal closure and limited acclimation in stressed plants, their unstressed neighbours habituated to the stress cues and opened their stomata 3–24 h after the beginning of stress induction. Conclusions The results demonstrate a novel type of plant communication, by which plants might be able to increase their readiness to probable future osmotic and drought stresses. Further work is underway to decipher the identity and mode of operation of the involved communication vectors and to assess the potential ecological costs and benefits of emitting and perceiving drought and osmotic stress cues under various ecological scenarios. PMID:22408186

  3. Disrupted glucocorticoid--Immune interactions during stress response in schizophrenia.

    PubMed

    Chiappelli, Joshua; Shi, Qiaoyun; Kodi, Priyadurga; Savransky, Anya; Kochunov, Peter; Rowland, Laura M; Nugent, Katie L; Hong, L Elliot

    2016-01-01

    Glucocorticoid and immune pathways typically interact dynamically to optimize adaptation to stressful environmental challenges. We tested the hypothesis that a dysfunctional glucocorticoid-immune relationship contributes to abnormal stress response in schizophrenia. Saliva samples from 34 individuals with schizophrenia (20 male, 14 female) and 40 healthy controls (20 male, 20 female) were collected prior to and at 3 time points following completion of a computerized psychological challenge meant to be frustrating. Salivary concentrations of cortisol and interleukin-6 (IL-6) and their response to the challenge were examined. Both cortisol and IL-6 significantly increased in response to stress in the combined sample (both p<.05). In controls, the rise in cortisol following the challenge was negatively correlated to the subsequent changes in IL-6 (r=-.461, p=.003), such that rise of cortisol immediately after stress predicts subsequently lower IL-6 levels. In contrast, this relationship was positive in schizophrenia patients (r=.379, p=.027). The trends were significantly different (Z=3.7, p=.0002). This stress paradigm induces a rise in both cortisol and IL-6. In healthy controls, a more robust acute cortisol response was associated with a steeper decline of IL-6 levels following stress, corresponding to the expected anti-inflammatory effects of cortisol. Patients exhibited the opposite relationship, suggesting an inability to down-regulate inflammatory responses to psychological stress in schizophrenia; or even a paradoxical increase of IL-6 response. This finding may partially underlie abnormalities in inflammatory and stress pathways previously found in the illness, implicating dysregulated stress response in the chronic inflammatory state in schizophrenia.

  4. Stressed to Death: Targeting Endoplasmic Reticulum Stress Response Induced Apoptosis in Gliomas

    PubMed Central

    Johnson, Guyla G.; White, Misti C.; Grimaldi, Maurizio

    2012-01-01

    Glial tumors are the main primary adult brain tumor. Even with the most advanced treatments, which include stereotactic microscope aided surgical resection, internal and external radiation therapy and local and systemic chemotherapy, median survival time for patients diagnosed with these malignancies is about 12 months. We explore here the possibility that the endoplasmic reticulum stress response (ERSR) could be a possible target to develop chemotherapeutic agents to induce toxicity in glioma cells. ERSR has the dual capacity of activating repair and/or cytotoxic mechanisms. ERSR is triggered by the accumulation of unfolded proteins in the ER. The presence of unfolded proteins in the ER regulates, via a complex biochemical cascade, the upregulation of molecular chaperones, inhibition of protein synthesis, and an increase of proteasome mediated unfolded protein degradation. ERSR in particular conditions can also contribute to cell death via activation of programmed cell death. Apoptosis activation during ERSR is usually caused by the activation of one or a combination of three biochemical cascades. Induction of these pathways ultimately leads to caspase 3 activation culminating in apoptosis. Glioma cells are in a condition of constant low grade ERSR, which possibly contributes to their resistance to treatment protocols. It is conceivable that small molecules that interact with this phenomenon ultimately could be used to modulate the system to activate apoptosis and cause gliotoxicity. We will discuss here ERSR biochemically relevant features to death mechanisms and already identified small molecules that by modulating ERSR are able to activate glioma cell death. PMID:21348829

  5. Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory.

    PubMed

    Atsak, Piray; Guenzel, Friederike M; Kantar-Gok, Deniz; Zalachoras, Ioannis; Yargicoglu, Piraye; Meijer, Onno C; Quirarte, Gina L; Wolf, Oliver T; Schwabe, Lars; Roozendaal, Benno

    2016-05-01

    Acute stress and elevated glucocorticoid hormone levels are well known to impair the retrieval of hippocampus-dependent 'declarative' memory. Recent findings suggest that stress might also impair the retrieval of non-hippocampal memories. In particular, stress shortly before retention testing was shown to impair the retrieval of striatal stimulus-response associations in humans. However, the mechanism underlying this stress-induced retrieval impairment of non-hippocampal stimulus-response memory remains elusive. In the present study, we investigated whether an acute elevation in glucocorticoid levels mediates the impairing effects of stress on retrieval of stimulus-response memory. Male Sprague-Dawley rats were trained on a stimulus-response task in an eight-arm radial maze until they learned to associate a stimulus, i.e., cue, with a food reward in one of the arms. Twenty-four hours after successful acquisition, they received a systemic injection of vehicle, corticosterone (1mg/kg), the corticosterone-synthesis inhibitor metyrapone (35mg/kg) or were left untreated 1h before retention testing. We found that the corticosterone injection impaired the retrieval of stimulus-response memory. We further found that the systemic injection procedure per se was stressful as the vehicle administration also increased plasma corticosterone levels and impaired the retrieval of stimulus-response memory. However, memory retrieval was not impaired when rats were tested 2min after the systemic vehicle injection, before any stress-induced elevation in corticosterone levels had occurred. Moreover, metyrapone treatment blocked the effect of injection stress on both plasma corticosterone levels and memory retrieval impairment, indicating that the endogenous corticosterone response mediates the stress-induced memory retrieval impairment. None of the treatments affected rats' locomotor activity or motivation to search for the food reward within the maze. These findings show that stress

  6. Autophagy as a Stress Response Pathway in the Immune System.

    PubMed

    Bhattacharya, Abhisek; Eissa, N Tony

    2015-01-01

    Macroautophagy, hereafter, referred to as autophagy, has long been regarded as a housekeeping pathway involved in intracellular degradation and energy recycling. These housekeeping and homeostatic functions are especially important during cellular stress, such as periods of nutrient deprivation. However, importance of autophagy extends far beyond its degradative functions. Recent evidence shows that autophagy plays an essential role in development, organization and functions of the immune system, and defects in autophagy lead to several diseases, including cancer and autoimmunity. In the immune system, autophagy is important in regulation of the innate and adaptive immune responses. This review focuses on the roles of autophagy in the adaptive immune system. We first introduce the autophagy pathway and provide a brief description of the major molecular players involved in autophagy. We then discuss the importance of autophagy as a stress integrator mechanism and provide relevant examples of this role of autophagy in adaptive immune cells. Then we proceed to describe how autophagy regulates development, activation and functions of different adaptive immune cells. In these contexts, we mention both degradative and non-degradative roles of autophagy, and illustrate their importance. We also discuss role of autophagy in antigen presenting cells, which play critical roles in the activation of adaptive immune cells. Further, we describe how autophagy regulates functions of different adaptive immune cells during infection, inflammation and autoimmunity.

  7. The Response of Maize Seedlings of Different Ages to Hypoxic and Anoxic Stress (Changes in Induction of Adh1 mRNA, ADH Activity, and Survival of Anoxia).

    PubMed Central

    Andrews, D. L.; Drew, M. C.; Johnson, J. R.; Cobb, B. G.

    1994-01-01

    Previously we showed that there is only a transient induction of alcohol dehydrogenase 1 (Adh1) transcripts and only a small induction of alcohol dehydrogenase (ADH) enzyme activity in root tips of maize (Zea mays L.) seedlings subjected to strict anaerobiosis without prior acclimation by exposure to low O2 (D.L. Andrews, B.G. Cobb, J.R. Johnson, M.C. Drew [1993] Plant Physiol 101: 403-414). Acclimation of root tips of seedlings by low O2 before anoxia appeared to be necessary for full induction of ADH. Here we have examined the effect of seedling age on changes in the protein content, induction of Adh1 transcripts, and ADH enzyme activity in 5-mm root tips, root axes, and shoots of maize (cv TX5855). Their ability to survive anoxia was also recorded. Some seedlings were sparged with 4% O2 for 6 or 18 h (a hypoxic pretreatment) followed by anoxia (sparged with N2) for up to 48 h. Other seedlings were not acclimated before anoxia. In general, younger seedlings had higher initial (aerobic) levels of total protein, Adh1 transcripts, and ADH activity than did seedlings that were 2 d older. For younger seedlings, anoxia alone induced Adh1 transcripts, which reached a peak within 6 to 12 h, whereas ADH activity increased throughout the 48-h treatment. For older seedlings, anoxia caused only a small, transient induction of Adh1 transcripts or ADH activity. For seedlings of either age, hypoxia induced Adh1 transcripts and ADH activity, both of which were increased further by subsequent anoxia in the younger seedlings but to a lesser extent in the older seedlings. Despite differences in ADH activity, roots of seedlings of either age showed a similar resistance to anoxia. Thus, acclimation of maize seedlings to survive anoxia does not appear to be related to induction of high levels of ADH activity. PMID:12232185

  8. Importance of the glucocorticoid stress response in a changing world: theory, hypotheses and perspectives.

    PubMed

    Angelier, Frédéric; Wingfield, John C

    2013-09-01

    In this perspective paper, we emphasize the importance that integrative mechanisms, and especially the GC (glucocorticoid) stress response, can play in the ability of vertebrates to cope with ongoing global change. The GC stress response is an essential mediator of allostasis (i.e., the responses of an organism to a perturbation) that aims at maintaining stability (homeostasis) despite changing conditions. The GC stress response is a complex mechanism that depends on several physiological components and aims at promoting immediate survival at the expense of other life-history components (e.g., reproduction) when a labile perturbation factor (LPF) occurs. Importantly, this mechanism is somewhat flexible and its degree of activation can be adjusted to the fitness costs and benefits that result from the GC stress response. Therefore, this GC stress response mediates life-history decisions and is involved in the regulation of important life-history trade-offs. By inducing abrupt and rapid changes in the regime of LPFs, we believe that global change can affect the efficiency of the GC stress response to maintain homeostasis and to appropriately regulate these trades-offs. This dysfunction may result in an important mismatch between new LPFs and the associated GC stress response and, thus, in the inability of vertebrates to cope with a changing world. In that context, it is essential to better understand how the GC stress response can be adjusted to new LPFs through micro-evolution, phenotypic plasticity and phenotypic flexibility (habituation and sensitization). This paper sets up a theoretical framework, hypotheses and new perspectives that will allow testing and better understanding how the GC stress response can help or constrain individuals, populations and species to adjust to ongoing global change.

  9. Oxidative stress responses in Escherichia coli and Salmonella typhimurium.

    PubMed Central

    Farr, S B; Kogoma, T

    1991-01-01

    Oxidative stress is strongly implicated in a number of diseases, such as rheumatoid arthritis, inflammatory bowel disorders, and atherosclerosis, and its emerging as one of the most important causative agents of mutagenesis, tumorigenesis, and aging. Recent progress on the genetics and molecular biology of the cellular responses to oxidative stress, primarily in Escherichia coli and Salmonella typhimurium, is summarized. Bacteria respond to oxidative stress by invoking two distinct stress responses, the peroxide stimulon and the superoxide stimulon, depending on whether the stress is mediated by peroxides or the superoxide anion. The two stimulons each contain a set of more than 30 genes. The expression of a subset of genes in each stimulon is under the control of a positive regulatory element; these genes constitute the OxyR and SoxRS regulons. The schemes of regulation of the two regulons by their respective regulators are reviewed in detail, and the overlaps of these regulons with other stress responses such as the heat shock and SOS responses are discussed. The products of Oxy-R- and SoxRS-regulated genes, such as catalases and superoxide dismutases, are involved in the prevention of oxidative damage, whereas others, such as endonuclease IV, play a role in the repair of oxidative damage. The potential roles of these and other gene products in the defense against oxidative damage in DNA, proteins, and membranes are discussed in detail. A brief discussion of the similarities and differences between oxidative stress responses in bacteria and eukaryotic organisms concludes this review. PMID:1779927

  10. Antioxidant responses and cellular adjustments to oxidative stress

    PubMed Central

    Espinosa-Diez, Cristina; Miguel, Verónica; Mennerich, Daniela; Kietzmann, Thomas; Sánchez-Pérez, Patricia; Cadenas, Susana; Lamas, Santiago

    2015-01-01

    Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases. PMID:26233704

  11. Induction of activation of the antioxidant response element and stabilization of Nrf2 by 3-(3-pyridylmethylidene)-2-indolinone (PMID) confers protection against oxidative stress-induced cell death

    SciTech Connect

    Yao, Jia-Wei; Liu, Jing; Kong, Xiang-Zhen; Zhang, Shou-Guo; Wang, Xiao-Hui; Yu, Miao; Zhan, Yi-Qun; Li, Wei; Xu, Wang-Xiang; Tang, Liu-Jun; Ge, Chang-Hui; Wang, Lin; Li, Chang-Yan; Yang, Xiao-Ming

    2012-03-01

    The antioxidant response elements (ARE) are a cis-acting enhancer sequence located in regulatory regions of antioxidant and detoxifying genes. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a member of the Cap ‘n’ Collar family of transcription factors that binds to the ARE and regulates the transcription of specific ARE-containing genes. Under oxidative stress, Nrf2/ARE induction is fundamental to defense against reactive oxygen species (ROS) and serves as a key factor in the protection against toxic xenobiotics. 3-(3-Pyridylmethylidene)-2-Indolinone (PMID) is a derivative of 2-indolinone compounds which act as protein kinase inhibitors and show anti-tumor activity. However, the role of PMID in the oxidative stress remains unknown. In the present study, we showed that PMID induced the activation of ARE-mediated transcription, increased the DNA-binding activity of Nrf2 and then up-regulated the expression of antioxidant genes such as HO-1, SOD, and NQO1. The level of Nrf2 protein was increased in cells treated with PMID by a post-transcriptional mechanism. Under CHX treatment, the stability of Nrf2 protein was enhanced by PMID with decreased turnover rate. We showed that PMID reduced the ubiquitination of Nrf2 and disrupted the Cullin3 (Cul3)-Keap1 interaction. Furthermore, cells treated with PMID showed resistance to cytotoxicity by H{sub 2}O{sub 2} and pro-oxidant 6-OHDA. PMID also up-regulated the antioxidant level in BALB/c mice. Taken together, the compound PMID induces the ARE-mediated gene expression through stabilization of Nrf2 protein and activation of Nrf2/ARE pathway and protects against oxidative stress-mediated cell death. -- Highlights: ► PMID up-regulates ARE-mediated antioxidant gene expression in vitro and in vivo. ► PMID enhances the stabilization of Nrf2 protein, decreasing Nrf2 turnover rate. ► PMID disrupted the Cullin3 (Cul3)-Keap1 interaction. ► PMID protects against cell death induced by H{sub 2}O{sub 2} and pro-oxidant 6

  12. Stress, and pathogen response gene expression in modeled microgravity

    NASA Technical Reports Server (NTRS)

    Sundaresan, Alamelu; Pellis, Neal R.

    2006-01-01

    Purpose: Immune suppression in microgravity has been well documented. With the advent of human exploration and long-term space travel, the immune system of the astronaut must be optimally maintained. It is important to investigate the expression patterns of cytokine genes, because they are directly related to immune response. Heat shock proteins (HSPs), also called stress proteins, are a group of proteins that are present in the cells of every life form. These proteins are induced when a cell responds to stressors such as heat, cold and oxygen deprivation. Microgravity is another stressor that may regulate HSPs. Heat shock proteins trigger immune response through activities that occur both inside the cell (intracellular) and outside the cell (extracellular). Knowledge about these two gene groups could lead to establishment of a blueprint of the immune response and adaptation-related genes in the microgravity environment. Methods: Human peripheral blood cells were cultured in 1g (T flask) and modeled microgravity (MMG, rotating-wall vessel) for 24 and 72 hours. Cell samples were collected and subjected to gene array analysis using the Affymetrix HG_U95 array. Data was collected and subjected to a two-way analysis of variance. The genes related to immune and stress responses were analyzed. Results and Conclusions: HSP70 was up-regulated by more than two fold in microgravity culture, while HSP90 was significantly down-regulated. HSP70 is not typically expressed in all kinds of cells, but it is expressed at high levels in stress conditions. HSP70 participates in translation, protein translocation, proteolysis and protein folding, suppressing aggregation and reactivating denatured proteins. Increased serum HSP70 levels correlate with a better outcome for heat-stroke or severe trauma patients. At the same time, elevated serum levels of HSP70 have been detected in patients with peripheral or renal vascular disease. HSP90 has been identified in the cytosol, nucleus and

  13. Characterization of stress response in human retinal epithelial cells

    PubMed Central

    Giansanti, Vincenzo; Villalpando Rodriguez, Gloria E; Savoldelli, Michelle; Gioia, Roberta; Forlino, Antonella; Mazzini, Giuliano; Pennati, Marzia; Zaffaroni, Nadia; Scovassi, Anna Ivana; Torriglia, Alicia

    2013-01-01

    The pathogenesis of age-related macular degeneration (AMD) involves demise of the retinal pigment epithelium and death of photoreceptors. In this article, we investigated the response of human adult retinal pigmented epithelial (ARPE-19) cells to 5-(N,N-hexamethylene)amiloride (HMA), an inhibitor of Na+/H+ exchangers. We observed that ARPE-19 cells treated with HMA are unable to activate ‘classical’ apoptosis but they succeed to activate autophagy. In the first 2 hrs of HMA exposure, autophagy is efficient in protecting cells from death. Thereafter, autophagy is impaired, as indicated by p62 accumulation, and this