Science.gov

Sample records for activated t-cells c1

  1. Direct Binding of Hepatitis C Virus Core to gC1qR on CD4+ and CD8+ T Cells Leads to Impaired Activation of Lck and Akt

    PubMed Central

    Yao, Zhi Qiang; Eisen-Vandervelde, Audrey; Waggoner, Stephen N.; Cale, Evan M.; Hahn, Young S.

    2004-01-01

    Complement plays a pivotal role in the regulation of innate and adaptive immunity. It has been shown that the binding of C1q, a natural ligand of gC1qR, on T cells inhibits their proliferation. Here, we demonstrate that direct binding of the hepatitis C virus (HCV) core to gC1qR on T cells leads to impaired Lck/Akt activation and T-cell function. The HCV core associates with the surface of T cells specifically via gC1qR, as this binding is inhibited by the addition of either anti-gC1qR antibody or soluble gC1qR. The binding affinity constant of core protein for gC1qR, as determined by BIAcore analysis, is 3.8 × 10−7 M. The specificity of the HCV core-gC1qR interaction is confirmed by reduced core binding on Molt-4 T cells treated with gC1qR-silencing small interfering RNA and enhanced core binding on GPC-16 guinea pig cells transfected with human gC1qR. Interestingly, gC1qR is expressed at higher levels on CD8+ than on CD4+ T cells, resulting in more severe core-induced suppression of the CD8+-T-cell population. Importantly, T-cell receptor-mediated activation of the Src kinases Lck and ZAP-70 but not Fyn and the phosphorylation of Akt are impaired by the HCV core, suggesting that it inhibits the very early events of T-cell activation. PMID:15163734

  2. Glycogen synthase kinase 3{beta} regulation of nuclear factor of activated T-cells isoform c1 in the vascular smooth muscle cell response to injury

    SciTech Connect

    Chow Winsion; Hou Guangpei; Bendeck, Michelle P.

    2008-10-01

    The migration and proliferation of vascular smooth muscle cells (vSMCs) are critical events in neointima formation during atherosclerosis and restenosis. The transcription factor nuclear factor of activated T-cells-isoform c1 (NFATc1) is regulated by atherogenic cytokines, and has been implicated in the migratory and proliferative responses of vSMCs through the regulation of gene expression. In T-cells, calcineurin de-phosphorylates NFATc1, leading to its nuclear import, while glycogen synthase kinase 3 {beta} (GSK3{beta}) phosphorylates NFATc1 and promotes its nuclear export. However, the relationship between NFATc1 and GSK3{beta} has not been studied during SMC migration and proliferation. We investigated this by scrape wounding vSMCs in vitro, and studying wound repair. NFATc1 protein was transiently increased, reaching a peak at 8 h after wounding. Cell fractionation and immunocytochemistry revealed that NFATc1 accumulation in the nucleus was maximal at 4 h after injury, and this was coincident with a significant 9 fold increase in transcriptional activity. Silencing NFATc1 expression with siRNA or inhibition of NFAT with cyclosporin A (CsA) attenuated wound closure by vSMCs. Phospho-GSK3{beta} (inactive) increased to a peak at 30 min after injury, preceding the nuclear accumulation of NFATc1. Overexpression of a constitutively active mutant of GSK3{beta} delayed the nuclear accumulation of NFATc1, caused a 50% decrease in NFAT transcriptional activity, and attenuated vSMC wound repair. We conclude that NFATc1 promotes the vSMC response to injury, and that inhibition of GSK3{beta} is required for the activation of NFAT during wound repair.

  3. Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway.

    PubMed

    Baek, Jong Min; Park, Sun-Hyang; Cheon, Yoon-Hee; Ahn, Sung-Jun; Lee, Myeung Su; Oh, Jaemin; Kim, Ju-Young

    2015-05-29

    Esculetin exerts various biological effects on anti-oxidation, anti-tumors, and anti-inflammation. However, the involvement of esculetin in the bone metabolism process, particularly osteoclast differentiation has not yet been investigated. In the present study, we first confirmed the inhibitory effect of esculetin on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. We then revealed the relationship between esculetin and the expression of osteoclast-specific molecules to elucidate its underlying mechanisms. Esculetin interfered with the expression of c-Fos and nuclear factor of activated T cell c1 (NFATc1) both at the mRNA and protein level with no involvement in osteoclast-associated early signaling pathways, suppressing the expression of various transcription factors exclusively expressed in osteoclasts such as tartrate-resistant acid phosphatase (Trap), osteoclast-associated receptor (Oscar), dendritic cell-specific transmembrane protein (Dcstamp), osteoclast stimulatory transmembrane protein (Ocstamp), cathepsin K, αvβ3 integrin, and calcitonin receptor (Ctr). Additionally, esculetin inhibited the formation of filamentous actin (F-actin) ring-positive osteoclasts during osteoclast differentiation. However, the development of F-actin structures and subsequent bone resorbing activity of mature osteoclasts, which are observed in osteoclast/osteoblast co-culture systems were not affected by esculetin. Taken together, our results indicate for the first time that esculetin inhibits RANKL-mediated osteoclastogenesis via direct suppression of c-Fos and NFATc1 expression and exerts an inhibitory effect on actin ring formation during osteoclastogenesis.

  4. Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway

    SciTech Connect

    Baek, Jong Min; Park, Sun-Hyang; Cheon, Yoon-Hee; Ahn, Sung-Jun; Lee, Myeung Su; Oh, Jaemin; Kim, Ju-Young

    2015-05-29

    Esculetin exerts various biological effects on anti-oxidation, anti-tumors, and anti-inflammation. However, the involvement of esculetin in the bone metabolism process, particularly osteoclast differentiation has not yet been investigated. In the present study, we first confirmed the inhibitory effect of esculetin on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. We then revealed the relationship between esculetin and the expression of osteoclast-specific molecules to elucidate its underlying mechanisms. Esculetin interfered with the expression of c-Fos and nuclear factor of activated T cell c1 (NFATc1) both at the mRNA and protein level with no involvement in osteoclast-associated early signaling pathways, suppressing the expression of various transcription factors exclusively expressed in osteoclasts such as tartrate-resistant acid phosphatase (Trap), osteoclast-associated receptor (Oscar), dendritic cell-specific transmembrane protein (Dcstamp), osteoclast stimulatory transmembrane protein (Ocstamp), cathepsin K, αvβ3 integrin, and calcitonin receptor (Ctr). Additionally, esculetin inhibited the formation of filamentous actin (F-actin) ring-positive osteoclasts during osteoclast differentiation. However, the development of F-actin structures and subsequent bone resorbing activity of mature osteoclasts, which are observed in osteoclast/osteoblast co-culture systems were not affected by esculetin. Taken together, our results indicate for the first time that esculetin inhibits RANKL-mediated osteoclastogenesis via direct suppression of c-Fos and NFATc1 expression and exerts an inhibitory effect on actin ring formation during osteoclastogenesis. - Highlights: • We first investigated the effects of esculetin on osteoclast differentiation and function. • Our data demonstrate for the first time that esculetin can suppress osteoclastogenesis in vitro. • Esculetin acts as an inhibitor of c-Fos and NFATc1 activation.

  5. Tracking and treating activated T cells

    PubMed Central

    Kim, N.H.; Nadithe, V.; Elsayed, M.; Merkel, O.M.

    2014-01-01

    Upon activation, T cells of various subsets are the most important mediators in cell-mediated immune responses. Activated T cells play an important role in immune system related diseases such as chronic inflammatory diseases, viral infections, autoimmune disease, transplant rejection, Crohn disease, diabetes, and many more. Therefore, efforts have been made to both visualize and treat activated T cells specifically. This review summarizes imaging approaches and selective therapeutics for activated T cells and gives an outlook on how tracking and treating can be combined into theragnositc agents for activated T cells. PMID:24660025

  6. Kinetic discrimination in T-cell activation.

    PubMed Central

    Rabinowitz, J D; Beeson, C; Lyons, D S; Davis, M M; McConnell, H M

    1996-01-01

    We propose a quantitative model for T-cell activation in which the rate of dissociation of ligand from T-cell receptors determines the agonist and antagonist properties of the ligand. The ligands are molecular complexes between antigenic peptides and proteins of the major histocompatibility complex on the surfaces of antigen-presenting cells. Binding of ligand to receptor triggers a series of biochemical reactions in the T cell. If the ligand dissociates after these reactions are complete, the T cell receives a positive activation signal. However, dissociation of ligand after completion of the first reaction but prior to generation of the final products results in partial T-cell activation, which acts to suppress a positive response. Such a negative signal is brought about by T-cell ligands containing the variants of antigenic peptides referred to as T-cell receptor antagonists. Results of recent experiments with altered peptide ligands compare favorably with T-cell responses predicted by this model. PMID:8643643

  7. Kinetic Discrimination in T-Cell Activation

    NASA Astrophysics Data System (ADS)

    Rabinowitz, Joshua D.; Beeson, Craig; Lyons, Daniel S.; Davis, Mark M.; McConnell, Harden M.

    1996-02-01

    We propose a quantitative model for T-cell activation in which the rate of dissociation of ligand from T-cell receptors determines the agonist and antagonist properties of the ligand. The ligands are molecular complexes between antigenic peptides and proteins of the major histocompatibility complex on the surfaces of antigen-presenting cells. Binding of ligand to receptor triggers a series of biochemical reactions in the T cell. If the ligand dissociates after these reactions are complete, the T cell receives a positive activation signal. However, dissociation of ligand after completion of the first reaction but prior to generation of the final products results in partial T-cell activation, which acts to suppress a positive response. Such a negative signal is brought about by T-cell ligands containing the variants of antigenic peptides referred to as T-cell receptor antagonists. Results of recent experiments with altered peptide ligands compare favorably with T-cell responses predicted by this model.

  8. Phenotypic models of T cell activation.

    PubMed

    Lever, Melissa; Maini, Philip K; van der Merwe, P Anton; Dushek, Omer

    2014-09-01

    T cell activation is a crucial checkpoint in adaptive immunity, and this activation depends on the binding parameters that govern the interactions between T cell receptors (TCRs) and peptide-MHC complexes (pMHC complexes). Despite extensive experimental studies, the relationship between the TCR-pMHC binding parameters and T cell activation remains controversial. To make sense of conflicting experimental data, a variety of verbal and mathematical models have been proposed. However, it is currently unclear which model or models are consistent or inconsistent with experimental data. A key problem is that a direct comparison between the models has not been carried out, in part because they have been formulated in different frameworks. For this Analysis article, we reformulated published models of T cell activation into phenotypic models, which allowed us to directly compare them. We find that a kinetic proofreading model that is modified to include limited signalling is consistent with the majority of published data. This model makes the intriguing prediction that the stimulation hierarchy of two different pMHC complexes (or two different TCRs that are specific for the same pMHC complex) may reverse at different pMHC concentrations.

  9. SOCS1 and SOCS3 Are Targeted by Hepatitis C Virus Core/gC1qR Ligation To Inhibit T-Cell Function

    PubMed Central

    Yao, Zhi Qiang; Waggoner, Stephen N.; Cruise, Michael W.; Hall, Caroline; Xie, Xuefang; Oldach, David W.; Hahn, Young S.

    2005-01-01

    T cells play an important role in the control of hepatitis C virus (HCV) infection. We have previously demonstrated that the HCV core inhibits T-cell responses through interaction with gC1qR. We show here that core proteins from chronic and resolved HCV patients differ in sequence, gC1qR-binding ability, and T-cell inhibition. Specifically, chronic core isolates bind to gC1qR more efficiently and inhibit T-cell proliferation as well as gamma interferon (IFN-γ) production more profoundly than resolved core isolates. This inhibition is mediated by the disruption of STAT phosphorylation through the induction of SOCS molecules. Silencing either SOCS1 or SOCS3 by small interfering RNA dramatically augments the production of IFN-γ in T cells, thereby abrogating the inhibitory effect of core. Additionally, the ability of core proteins from patients with chronic infections to induce SOCS proteins and suppress STAT activation greatly exceeds that of core proteins from patients with resolved infections. These results suggest that the HCV core/gC1qR-induced T-cell dysfunction involves the induction of SOCS, a powerful inhibitor of cytokine signaling, which represents a novel mechanism by which a virus usurps the host machinery for persistence. PMID:16306613

  10. Genome-wide approaches reveal functional vascular endothelial growth factor (VEGF)-inducible nuclear factor of activated T cells (NFAT) c1 binding to angiogenesis-related genes in the endothelium.

    PubMed

    Suehiro, Jun-ichi; Kanki, Yasuharu; Makihara, Chihiro; Schadler, Keri; Miura, Mai; Manabe, Yuuka; Aburatani, Hiroyuki; Kodama, Tatsuhiko; Minami, Takashi

    2014-10-17

    VEGF is a key regulator of endothelial cell migration, proliferation, and inflammation, which leads to activation of several signaling cascades, including the calcineurin-nuclear factor of activated T cells (NFAT) pathway. NFAT is not only important for immune responses but also for cardiovascular development and the pathogenesis of Down syndrome. By using Down syndrome model mice and clinical patient samples, we showed recently that the VEGF-calcineurin-NFAT signaling axis regulates tumor angiogenesis and tumor metastasis. However, the connection between genome-wide views of NFAT-mediated gene regulation and downstream gene function in the endothelium has not been studied extensively. Here we performed comprehensive mapping of genome-wide NFATc1 binding in VEGF-stimulated primary cultured endothelial cells and elucidated the functional consequences of VEGF-NFATc1-mediated phenotypic changes. A comparison of the NFATc1 ChIP sequence profile and epigenetic histone marks revealed that predominant NFATc1-occupied peaks overlapped with promoter-associated histone marks. Moreover, we identified two novel NFATc1 regulated genes, CXCR7 and RND1. CXCR7 knockdown abrogated SDF-1- and VEGF-mediated cell migration and tube formation. siRNA treatment of RND1 impaired vascular barrier function, caused RhoA hyperactivation, and further stimulated VEGF-mediated vascular outgrowth from aortic rings. Taken together, these findings suggest that dynamic NFATc1 binding to target genes is critical for VEGF-mediated endothelial cell activation. CXCR7 and RND1 are NFATc1 target genes with multiple functions, including regulation of cell migration, tube formation, and barrier formation in endothelial cells.

  11. γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation.

    PubMed

    Daley, Donnele; Zambirinis, Constantinos Pantelis; Seifert, Lena; Akkad, Neha; Mohan, Navyatha; Werba, Gregor; Barilla, Rocky; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu Raj Kumar; Avanzi, Antonina; Tippens, Daniel; Narayanan, Rajkishen; Jang, Jung-Eun; Newman, Elliot; Pillarisetty, Venu Gopal; Dustin, Michael Loran; Bar-Sagi, Dafna; Hajdu, Cristina; Miller, George

    2016-09-01

    Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk.

  12. γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation.

    PubMed

    Daley, Donnele; Zambirinis, Constantinos Pantelis; Seifert, Lena; Akkad, Neha; Mohan, Navyatha; Werba, Gregor; Barilla, Rocky; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu Raj Kumar; Avanzi, Antonina; Tippens, Daniel; Narayanan, Rajkishen; Jang, Jung-Eun; Newman, Elliot; Pillarisetty, Venu Gopal; Dustin, Michael Loran; Bar-Sagi, Dafna; Hajdu, Cristina; Miller, George

    2016-09-01

    Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk. PMID:27569912

  13. Identification of MAGE-C1 (CT-7) epitopes for T-cell therapy of multiple myeloma

    PubMed Central

    Anderson, Larry D.; Cook, Danielle R.; Yamamoto, Tori N.; Berger, Carolina; Maloney, David G.; Riddell, Stanley R.

    2011-01-01

    Multiple myeloma is incurable with standard therapies but is susceptible to a T-cell-mediated graft versus myeloma effect after allogeneic stem cell transplantation. We sought to identify myeloma-specific antigens that might be used for T-cell immunotherapy of myeloma. MAGE-C1 (CT-7) is a cancer-testis antigen that is expressed by tumor cells in >70% of myeloma patients and elicits a humoral response in up to 93% of patients with CT-7+ myeloma. No CD8+ T-cell epitopes have been described for CT-7, so we used a combination of reverse immunology and immunization of HLA-A2 transgenic mice with a novel cell-based vaccine to identify three immunogenic epitopes of CT-7 that are recognized by human CD8+ T-cells. CT-7-specific T-cells recognizing two of these peptides are able to recognize myeloma cells as well as CT-7 gene-transduced tumor cells, demonstrating that these epitopes are naturally processed and presented by tumor cells. This is the first report of the identification of immunogenic CD8+ T-cell epitopes of MAGE-C1 (CT-7), which is the most commonly expressed cancer-testis antigen found in myeloma, and these epitopes may be promising candidate targets for vaccination or T-cell therapy of myeloma or other CT-7+ malignancies. PMID:21461886

  14. gC1qR expression in chimpanzees with resolved and chronic infection: Potential role of HCV core/gC1qR-mediated T cell suppression in the outcome of HCV infection

    SciTech Connect

    Yao Zhiqang; Shata, Mohamed Tarek; Tricoche, Nancy; Shan, M.M.; Brotman, Betsy; Pfahler, Wolfram; Hahn, Young S. . E-mail: ysh5e@virginia.edu; Prince, Alfred M.

    2006-03-15

    Chimpanzee is a unique animal model for HCV infection, in which about 50% of infections resolve spontaneously. It has been reported that the magnitude of T cell responses to HCV core in recovered chimpanzees is greater than that in chronically infected ones. However, the mechanism(s) by which the chimpanzees with resolved infection overcome core-mediated immunosuppression remains unknown. In this study, we examined the effect of HCV core on T cell responsiveness in chimpanzees with resolved and chronic HCV infection. We found that core protein strongly inhibited T cell activation and proliferation in chimpanzees with chronic infection, while this inhibition was limited in chimpanzees with resolved infection. Notably, the level of gC1qR, as well as the binding of core protein, on the surface of T cells was lower in recovered chimpanzees when compared to chimpanzees with chronic HCV infection. Intriguingly, the observed differences in gC1qR expression levels and susceptibility to core-induced suppression amongst HCV-chronically infected and recovered chimpanzees were observed prior to HCV challenge, suggesting a possible genetic determination of the outcome of infection. These findings suggest that gC1qR expression on the surface of T cells is crucial for HCV core-mediated T cell suppression and viral clearance, and that represents a novel mechanism by which a virus usurps host machinery for persistence.

  15. HCV core/gC1qR interaction arrests T cell cycle progression through stabilization of the cell cycle inhibitor p27Kip1.

    PubMed

    Yao, Zhi Qiang; Eisen-Vandervelde, Audrey; Ray, Suma; Hahn, Young S

    2003-09-15

    Hepatitis C virus (HCV) is efficient in the establishment of persistent infection. We have previously shown that HCV core protein inhibits T cell proliferation through its interaction with the complement receptor, gC1qR. Here we show that HCV core-induced inhibition of T cell proliferation involves a G(0)/G(1) cell cycle arrest, which is reversible upon addition of anti-gC1qR antibody. Correspondingly, the expression of cyclin-dependent kinases (Cdk) 2/4 and cyclin E/D, as well as subsequent phosphorylation of retinoblastoma (pRb), is reduced in core-treated T cells in response to mitogenic stimulation. Remarkably, degradation of p27(Kip1), a negative regulator of both Cdk4/cyclin D and Cdk2/cyclin E complexes, is significantly diminished in T cells treated with HCV core upon mitogenic stimulation. These data indicate that the stability of p27(Kip1) by HCV core is associated with blocking activated T cells for the G(1) to S phase transition and inhibiting T cell proliferation.

  16. T-Cell Tumor Elimination as a Result of T-Cell Receptor-Mediated Activation

    NASA Astrophysics Data System (ADS)

    Ashwell, Jonathan D.; Longo, Dan L.; Bridges, Sandra H.

    1987-07-01

    It has recently been shown that activation of murine T-cell hybridomas with antigen inhibits their growth in vitro. The ``suicide'' of these neoplastic T cells upon stimulation with antigen suggested the possibility that activation via the antigen-specific receptor could also inhibit the growth of neoplastic T cells in vivo. To test this, mice were subcutaneously inoculated with antigen-specific T-cell hybridomas and then treated intraperitoneally with antigen. Administration of the appropriate antigen immediately after inoculation with the T-cell hybridoma abrogated tumor formation; antigen administered after tumors had become established decreased the tumor burden and, in a substantial fraction of animals, led to long-term survival. The efficacy of antigen therapy was due to both a direct inhibitory effect on tumor growth and the induction of host immunity. These studies demonstrate the utility of cellular activation as a means of inhibiting neoplastic T-cell growth in vivo and provide a rationale for studying the use of less selective reagents that can mimic the activating properties of antigen, such as monoclonal antibodies, in the treatment of T-cell neoplasms of unknown antigen specificity.

  17. Hyperoxia Inhibits T Cell Activation in Mice

    NASA Astrophysics Data System (ADS)

    Hughes-Fulford, M.; Meissler, J.; Aguayo, E. T.; Globus, R.; Aguado, J.; Candelario, T.

    2013-02-01

    , spleens were removed and the splenocytes were isolated and kept as individual biological samples. We have also examined transcription factors (JASPAR) and pathways of the immune system to help us understand the mechanism of regulation. Results: Our recent mouse immunology experiment aboard STS-131 suggests that the early T cell immune response was inhibited in animals that have been exposed to spaceflight, even 24 hours after return to earth. Moreover, recent experiments in hyperoxic mice show that many of the same genes involved in early T cell activation were altered. Specifically, expression of IL-2Rα, Cxcl2, TNFα, FGF2, LTA and BCL2 genes are dysregulated in mice exposed to hyperoxia. Conclusions: If these hyperoxia-induced changes of gene expression in early T cell activation are additive to the changes seen in the microgravity of spaceflight, there could be an increased infection risk to EVA astronauts, which should be addressed prior to conducting a Mars or other long-term mission.

  18. Magnetic Field-Induced T Cell Receptor Clustering by Nanoparticles Enhances T Cell Activation and Stimulates Antitumor Activity

    PubMed Central

    2015-01-01

    Iron–dextran nanoparticles functionalized with T cell activating proteins have been used to study T cell receptor (TCR) signaling. However, nanoparticle triggering of membrane receptors is poorly understood and may be sensitive to physiologically regulated changes in TCR clustering that occur after T cell activation. Nano-aAPC bound 2-fold more TCR on activated T cells, which have clustered TCR, than on naive T cells, resulting in a lower threshold for activation. To enhance T cell activation, a magnetic field was used to drive aggregation of paramagnetic nano-aAPC, resulting in a doubling of TCR cluster size and increased T cell expansion in vitro and after adoptive transfer in vivo. T cells activated by nano-aAPC in a magnetic field inhibited growth of B16 melanoma, showing that this novel approach, using magnetic field-enhanced nano-aAPC stimulation, can generate large numbers of activated antigen-specific T cells and has clinically relevant applications for adoptive immunotherapy. PMID:24564881

  19. Clustering of T cell ligands on artificial APC membranes influences T cell activation and protein kinase C theta translocation to the T cell plasma membrane.

    PubMed

    Giannoni, Francesca; Barnett, Joellen; Bi, Kun; Samodal, Rodrigo; Lanza, Paola; Marchese, Patrizia; Billetta, Rosario; Vita, Randi; Klein, Mark R; Prakken, Berent; Kwok, William W; Sercarz, Eli; Altman, Amnon; Albani, Salvatore

    2005-03-15

    T cell activation is associated with active clustering of relevant molecules in membrane microdomains defined as the supramolecular activation cluster. The contact area between these regions on the surface of T cells and APC is defined as the immunological synapse. It has been recently shown that preclustering of MHC-peptide complexes in membrane microdomains on the APC surface affects the efficiency of immune synapse formation and the related T cell activation. Disruption of such clusters may reduce the efficiency of stimulation. We describe here an entirely artificial system for Ag-specific, ex vivo stimulation of human polyclonal T cells (artificial APC (aAPC)). aAPC are based on artificial membrane bilayers containing discrete membrane microdomains encompassing T cell ligands (i.e., appropriate MHC-peptide complexes in association with costimulatory molecules). We show here that preclustering of T cell ligands triggered a degree of T cell activation significantly higher than the one achieved when we used either soluble tetramers or aAPC in which MHC-peptide complexes were uniformly distributed within artificial bilayer membranes. This increased efficiency in stimulation was mirrored by increased translocation from the cytoplasm to the membrane of protein kinase theta, a T cell signaling molecule that colocalizes with the TCR within the supramolecular activation cluster, thus indicating efficient engagement of T cell activation pathways. Engineered aAPC may have immediate application for basic and clinical immunology studies pertaining to modulation of T cells ex vivo.

  20. Multivalent Antigens for Promoting B and T Cell Activation

    PubMed Central

    Bennett, Nitasha R.; Zwick, Daniel B.; Courtney, Adam H.; Kiessling, Laura L.

    2015-01-01

    Efficacious vaccines require antigens that elicit productive immune system activation. Antigens that afford robust antibody production activate both B and T cells. Elucidating the antigen properties that enhance B–T cell communication is difficult with traditional antigens. We therefore used ring-opening metathesis polymerization to access chemically defined, multivalent antigens containing both B and T cell epitopes to explore how antigen structure impacts B cell and T cell activation and communication. The bifunctional antigens were designed so that the backbone substitution level of each antigenic epitope could be quantified using 19F NMR. The T cell peptide epitope was appended so that it could be liberated in B cells via the action of the endosomal protease cathepsin D, and this design feature was critical for T cell activation. Antigens with high BCR epitope valency induce greater BCR-mediated internalization and T cell activation than did low valency antigens, and these high-valency polymeric antigens were superior to protein antigens. We anticipate that these findings can guide the design of more effective vaccines. PMID:25970017

  1. Decrease in T Cell Activation and Calcium Flux during Clinorotation

    NASA Technical Reports Server (NTRS)

    Sams, Clarence; Holtzclaw, J. David

    2006-01-01

    We investigated the effect of altered gravitational environments on T cell activation. We isolated human, naive T cells (CD3+CD14-CD19-CD16-CD56-CD25-CD69-CD45RA-) following IRB approved protocols. These purified T cells were then incubated with 6 mm polystyrene beads coated with OKT3 (Ortho Biotech, Raritan, NJ) and antiCD28 (Becton Dickinson (BD), San Jose, CA) at 37 C for 24 hours. Antibodies were at a 1:1 ratio and the bead-to-cell ratio was 2:1. Four incubation conditions existed: 1) static or "1g"; 2) centrifugation at 10 relative centrifugal force (RCF) or "10g"; 3) clinorotation at 25 RPM (functional weightlessness or "0g"); and 4) clinorotation at 80 RPM ("1g" plus net shear force approx.30 dynes/sq cm). Following incubation, T cells were stained for CD25 expression (BD) and intracellular calcium (ratio of Fluo4 to Fura Red, Molecular Probes, Eugene, OR) and analyzed by flow cytometry (Coulter EPICS XL, Miami, FL). Results: Static or "1g" T cells had the highest level of CD25 expression and intracellular calcium. T cells centrifuged at 10 RCF ("10g") had lower CD25 expression and calcium levels compared to the static control. However, cells centrifuged at 10 RCF had higher CD25 expression and calcium levels than those exposed to 24 RPM clinorotation ("0g"). T cells exposed to 24 RPM clinorotation had lower CD25 expression, but the approximately the same calcium levels than T cells exposed to 80 RPM clinorotation. These data suggest that stress-activated calcium channel exist in T cells and may play a role during T cell activation.

  2. Remote Control of T Cell Activation Using Magnetic Janus Particles.

    PubMed

    Lee, Kwahun; Yi, Yi; Yu, Yan

    2016-06-20

    We report a strategy for using magnetic Janus microparticles to control the stimulation of T cell signaling with single-cell precision. To achieve this, we designed Janus particles that are magnetically responsive on one hemisphere and stimulatory to T cells on the other side. By manipulating the rotation and locomotion of Janus particles under an external magnetic field, we could control the orientation of the particle-cell recognition and thereby the initiation of T cell activation. This study demonstrates a step towards employing anisotropic material properties of Janus particles to control single-cell activities without the need of complex magnetic manipulation devices.

  3. PLZF+ Innate T Cells Support the TGF-β-Dependent Generation of Activated/Memory-Like Regulatory T Cells

    PubMed Central

    Kang, Byung Hyun; Park, Hyo Jin; Park, Hi Jung; Lee, Jae-II; Park, Seong Hoe; Jung, Kyeong Cheon

    2016-01-01

    PLZF-expressing invariant natural killer T cells and CD4 T cells are unique subsets of innate T cells. Both are selected via thymocyte-thymocyte interaction, and they contribute to the generation of activated/memory-like CD4 and CD8 T cells in the thymus via the production of IL-4. Here, we investigated whether PLZF+ innate T cells also affect the development and function of Foxp3+ regulatory CD4 T cells. Flow cytometry analysis of the thymus and spleen from both CIITA transgenic C57BL/6 and wild-type BALB/c mice, which have abundant PLZF+ CD4 T cells and invariant natural killer T cells, respectively, revealed that Foxp3+ T cells in these mice exhibited a CD103+ activated/memory-like phenotype. The frequency of CD103+ regulatory T cells was considerably decreased in PLZF+ cell-deficient CIITATgPlzflu/lu and BALB/c.CD1d−/− mice as well as in an IL-4-deficient background, such as in CIITATgIL-4−/− and BALB/c.lL-4−/− mice, indicating that the acquisition of an activated/memory-like phenotype was dependent on PLZF+ innate T cells and IL-4. Using fetal thymic organ culture, we further demonstrated that IL-4 in concert with TGF-β enhanced the acquisition of the activated/memory-like phenotype of regulatory T cells. In functional aspects, the activated/memory-like phenotype of Treg cells was directly related to their suppressive function; regulatory T cells of CIITATgPIV−/− mice more efficiently suppressed ovalbumin-induced allergic airway inflammation compared with their counterparts from wild-type mice. All of these findings suggest that PLZF+ innate T cells also augmented the generation of activated/memory-like regulation via IL-4 production. PMID:27101876

  4. Malignant T cells express lymphotoxin α and drive endothelial activation in cutaneous T cell lymphoma

    PubMed Central

    Lauenborg, Britt; Christensen, Louise; Ralfkiaer, Ulrik; Kopp, Katharina L.; Jønson, Lars; Dabelsteen, Sally; Bonefeld, Charlotte M.; Geisler, Carsten; Gjerdrum, Lise Mette R.; Zhang, Qian; Wasik, Mariusz A.; Ralfkiaer, Elisabeth; Ødum, Niels; Woetmann, Anders

    2015-01-01

    Lymphotoxin α (LTα) plays a key role in the formation of lymphatic vasculature and secondary lymphoid structures. Cutaneous T cell lymphoma (CTCL) is the most common primary lymphoma of the skin and in advanced stages, malignant T cells spreads through the lymphatic to regional lymph nodes to internal organs and blood. Yet, little is known about the mechanism of the CTCL dissemination. Here, we show that CTCL cells express LTα in situ and that LTα expression is driven by aberrantly activated JAK3/STAT5 pathway. Importantly, via TNF receptor 2, LTα functions as an autocrine factor by stimulating expression of IL-6 in the malignant cells. LTα and IL-6, together with VEGF promote angiogenesis by inducing endothelial cell sprouting and tube formation. Thus, we propose that LTα plays a role in malignant angiogenesis and disease progression in CTCL and may serve as a therapeutic target in this disease. PMID:25915535

  5. Transgelin-2 in B-Cells Controls T-Cell Activation by Stabilizing T Cell - B Cell Conjugates

    PubMed Central

    Chae, Myoung-Won; Kim, Hye-Ran; Kim, Chang-Hyun; Jun, Chang-Duk; Park, Zee-Yong

    2016-01-01

    The immunological synapse (IS), a dynamic and organized junction between T-cells and antigen presenting cells (APCs), is critical for initiating adaptive immunity. The actin cytoskeleton plays a major role in T-cell reorganization during IS formation, and we previously reported that transgelin-2, an actin-binding protein expressed in T-cells, stabilizes cortical F-actin, promoting T-cell activation in response to antigen stimulation. Transgelin-2 is also highly expressed in B-cells, although no specific function has been reported. In this study, we found that deficiency in transgelin-2 (TAGLN2-/-) in B-cells had little effect on B-cell development and activation, as measured by the expression of CD69, MHC class II molecules, and CD80/86. Nevertheless, in B-cells, transgelin-2 accumulated in the IS during the interaction with T-cells. These results led us to hypothesize that transgelin-2 may also be involved in IS stability in B-cells, thereby influencing T-cell function. Notably, we found that transgelin-2 deficiency in B-cells reduced T-cell activation, as determined by the release of IL-2 and interferon-γ and the expression of CD69. Furthermore, the reduced T-cell activation was correlated with reduced B-cell–T-cell conjugate formation. Collectively, these results suggest that actin stability in B-cells during IS formation is critical for the initiation of adaptive T-cell immunity. PMID:27232882

  6. T cell-activating protein on murine lymphocytes.

    PubMed

    Yeh, E T; Reiser, H; Benacerraf, B; Rock, K L

    1986-12-01

    A functional T cell surface molecule, T cell-activating protein (TAP), has been identified on murine lymphocytes. TAP is a protein with an apparent molecular mass of 10-12 kilodaltons (kDa) nonreduced, 16-17 kDa reduced. Cross-linking of TAP can result in profound activation of T lymphocytes to produce lymphokines and to enter the cell cycle. Furthermore, antibody binding to TAP can modulate antigen-driven T cell stimulation. Current data suggest that TAP is physically distinct from the T cell receptor complex. On unstimulated lymphocytes, TAP is expressed on T cells and defines heterogeneity within the major T cell subsets. Its profile of expression is rapidly altered on cell activation. Ontologically, it is first detected in the thymus, where it is found on both the most immature and the most mature cell subsets, and it is functional on both. Together, these TAP+ cells constitute a small fraction of thymocytes. TAP expression, however, defines the immunocompetent compartment of the thymus, and thus could be involved in functional maturation. Finally, the gene controlling TAP expression has been mapped, and is tightly linked to a locus of hematopoietic antigens (Ly-6). TAP is molecularly distinct from these antigens. Furthermore, all of these proteins show a markedly distinct developmental regulation in their cell surface expression.

  7. T Cells

    MedlinePlus

    ... or turn off the immune response. Cytotoxic or “killer” T cells directly attack and destroy cells bearing ... involve selective activation of helper T cells and killer T cells, with a corresponding decrease in regulatory ...

  8. Regulation of T cell-dendritic cell interactions by IL-7 governs T-cell activation and homeostasis

    PubMed Central

    Saini, Manoj; Pearson, Claire

    2009-01-01

    Interleukin-7 (IL-7) plays a central role in the homeostasis of the T-cell compartment by regulating T-cell survival and proliferation. Whether IL-7 can influence T-cell receptor (TCR) signaling in T cells remains controversial. Here, using IL-7–deficient hosts and TCR-transgenic T cells that conditionally express IL-7R, we examined antigen-specific T-cell responses in vitro and in vivo to viral infection and lymphopenia to determine whether IL-7 signaling influences TCR-triggered cell division events. In vitro, we could find no evidence that IL-7 signaling could costimulate T-cell activation over a broad range of conditions, suggesting that IL-7 does not directly tune TCR signaling. In vivo, however, we found an acute requirement for IL-7 signaling for efficiently triggering T-cell responses to influenza A virus challenge. Furthermore, we found that IL-7 was required for the enhanced homeostatic TCR signaling that drives lymphopenia-induced proliferation by a mechanism involving efficient contacts of T cells with dendritic cells. Consistent with this, saturating antigen-presenting capacity in vivo overcame the triggering defect in response to cognate peptide. Thus, we demonstrate a novel role for IL-7 in regulating T cell–dendritic cell interactions that is essential for both T-cell homeostasis and activation in vivo. PMID:19357399

  9. T cell Ig and mucin 1 (TIM-1) is expressed on in vivo-activated T cells and provides a costimulatory signal for T cell activation.

    PubMed

    de Souza, Anjali J; Oriss, Timothy B; O'malley, Katherine J; Ray, Anuradha; Kane, Lawrence P

    2005-11-22

    Polymorphisms in TIM-1, a member of the T cell Ig and mucin (TIM) domain family, are associated with relative susceptibility to the development of T helper 2-dominated immune responses such as in allergic asthma. Recent data have also suggested that ligation of TIM-1 can augment T cell activation. We have found that the TIM-1 protein is expressed on CD4(+) T cells in vivo after intranasal immunization. Ectopic expression of TIM-1 during T cell differentiation results in a significant increase in the number of cells producing IL-4 but not IFN-gamma. Furthermore, TIM-1 expression provides a costimulatory signal that increases transcription from the IL-4 promoter and from isolated nuclear factor of activated T cells/activating protein-1 (NFAT/AP-1) elements. Finally, we provide evidence that TIM-1 can be phosphorylated on tyrosine and that TIM-1 costimulation requires its cytoplasmic tail and the conserved tyrosine within that domain. These results constitute evidence that TIM-1 directly couples to phosphotyrosine-dependent intracellular signaling pathways.

  10. T Cell Activation Thresholds are Affected by Gravitational

    NASA Technical Reports Server (NTRS)

    Adams, Charley; Gonzalez, M.; Nelman-Gonzalez, M.

    1999-01-01

    T cells stimulated in space flight by various mitogenic signals show a dramatic reduction in proliferation and expression of early activation markers. Similar results are also obtained in a ground based model of microgravity, clinorotation, which provides a vector-averaged reduction of the apparent gravity on cells without significant shear force. Here we demonstrate that T cell inhibition is due to an increase in the required threshold for activation. Dose response curves indicate that cells activated during clinorotation require higher stimulation to achieve the same level of activation, as measured by CD69 expression. Interleukin 2 receptor expression, and DNA synthesis. The amount of stimulation necessary for 50% activation is 5 fold in the clinostat relative to static. Correlation of TCR internalization with activation also exhibit a dramatic right shift in clinorotation, demonstrating unequivocally that signal transduction mechanism independent of TCR triggering account for the increased activation threshold. Previous results from space flight experiments are consistent with the dose response curves obtained for clinorotation. Activation thresholds are important aspects of T cell memory, autoimmunity and tolerance Clinorotation is a useful, noninvasive tool for the study of cellular and biochemical event regulating T cell activation threshold and the effects of gravitation forces on these systems.

  11. Activation requirements and responses to TLR ligands in human CD4+ T cells: comparison of two T cell isolation techniques.

    PubMed

    Lancioni, Christina L; Thomas, Jeremy J; Rojas, Roxana E

    2009-05-15

    Direct regulation of T cell function by microbial ligands through Toll-like receptors (TLR) is an emerging area of T cell biology. Currently either immunomagnetic cell sorting (IMACS) or fluorescence-activated cell sorting (FACS), are utilized to isolate T-cell subsets for such studies. However, it is unknown to what extent differences in T cell purity between these isolation techniques influence T cell functional assays. We compared the purity, response to mitogen, activation requirements, and response to TLR ligands between human CD4(+) T cells isolated either by IMACS (IMACS-CD4(+)) or by IMACS followed by FACS (IMACS/FACS-CD4(+)). As expected, IMACS-CD4(+) were less pure than IMACS/FACS-CD4(+) (92.5%+/-1.4% versus 99.7%+/-0.2%, respectively). Consequently, IMACS-CD4(+) proliferated and produced cytokines in response to mitogen alone and had lower activation requirements compared to IMACS/FACS-CD4(+). In addition IMACS-CD4(+) but not IMACS/FACS-CD4(+) responses were upregulated by the TLR-4 ligand lipopolysaccharide (LPS). On the other hand, TLR-2 and TLR-5 engagement induced costimulation in both IMACS-CD4(+) and highly purified IMACS-/FACS-CD4(+). Altogether these results indicate that small differences in cell purity can significantly alter T cell responses to TLR ligands. This study stresses the importance of a stringent purification method when investigating the role of microbial ligands in T cell function. PMID:19272393

  12. Oligomeric Procyanidins Interfere with Glycolysis of Activated T Cells. A Novel Mechanism for Inhibition of T Cell Function.

    PubMed

    Goto, Masao; Wakagi, Manabu; Shoji, Toshihiko; Takano-Ishikawa, Yuko

    2015-01-01

    Procyanidins, which are flavonoids that are found in a variety of plant species, reduce or prevent immune disorders, such as allergy and autoimmune diseases, through an unknown mechanism. In the present study, we investigated the effects of procyanidins on the T cell receptor (TCR)-mediated responses of CD4⁺ T cells in vitro. Apple procyanidins strongly suppressed the proliferation of splenic CD4⁺ T cells that were stimulated by an anti-CD3ε antibody, as well as splenocytes stimulated by antigen, but did not alter interleukin (IL)-2 secretion from these cells. Furthermore, we found that oligomeric procyanidins strongly suppressed, in a degree of polymerization dependent manner, the proliferation of activated CD4⁺ T cells, as well as their production of effector cytokines, including glycolysis associated-cytokines, without affecting IL-2 secretion. Additionally, we investigated the inhibitory effects of oligomeric procyanidins on the glycolytic activity of activated CD4⁺ T cells. We show that pentameric procyanidin suppressed L-lactate production and glucose uptake in activated CD4⁺ T cells. These results suggest that oligomeric procyanidins suppress the functions of activated CD4⁺ T cells by interfering with glycolysis. PMID:26492229

  13. Activated CD8+ T cells induce expansion of Vβ5+ regulatory T cells via TNFR2 signaling

    PubMed Central

    Joedicke, Jara J; Myers, Lara; Carmody, Aaron B; Messer, Ronald J; Wajant, Harald; Lang, Karl S; Lang, Philipp A; Mak, Tak W; Hasenkrug, Kim J; Dittmer, Ulf

    2014-01-01

    Vβ5+ regulatory T cells (Tregs), which are specific for a mouse endogenous retroviral superantigen, become activated and proliferate in response to Friend retrovirus (FV) infection. We previously reported that FV-induced expansion of this Treg subset was dependent on CD8+ T cells and TNFα, but independent of IL-2. We now show that the inflammatory milieu associated with FV infection is not necessary for induction of Vβ5+ Treg expansion. Rather, it is the presence of activated CD8+ T cells that is critical for their expansion. The data indicate that the mechanism involves signaling between the membrane-bound form of TNFα (memTNFα) on activated CD8+ T cells and TNF receptor 2 (TNFR2) on Tregs. CD8+ T cells expressing memTNFα but no soluble TNFα (solTNFα) remained competent to induce strong Vβ5+ Treg expansion in vivo. In addition, Vβ5+ Tregs expressing only TNFR2 but no TNFR1 were still responsive to expansion. Finally, treatment of naïve mice with solTNFα did not induce Vβ5+ Treg expansion, but treatment with a TNFR2-specific agonist did. These results reveal a new mechanism of intercellular communication between activated CD8+ T cell effectors and Tregs that results in the activation and expansion of a Treg subset that subsequently suppresses CD8+ T cell functions. PMID:25098294

  14. Effect of age on proteasomal activity of T cells and macrophages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    T cell function is impaired with aging. Proteasome activity in T cells is important for T cell activation and its activity in macrophages is required for processing antigens in order to be presented via class I major histocompatibility complex to CD8+ T cells. Since studies have demonstrated that pr...

  15. Dependence on nuclear factor of activated T-cells (NFAT) levels discriminates conventional T cells from Foxp3+ regulatory T cells.

    PubMed

    Vaeth, Martin; Schliesser, Ulrike; Müller, Gerd; Reissig, Sonja; Satoh, Kazuki; Tuettenberg, Andrea; Jonuleit, Helmut; Waisman, Ari; Müller, Martin R; Serfling, Edgar; Sawitzki, Birgit S; Berberich-Siebelt, Friederike

    2012-10-01

    Several lines of evidence suggest nuclear factor of activated T-cells (NFAT) to control regulatory T cells: thymus-derived naturally occurring regulatory T cells (nTreg) depend on calcium signals, the Foxp3 gene harbors several NFAT binding sites, and the Foxp3 (Fork head box P3) protein interacts with NFAT. Therefore, we investigated the impact of NFAT on Foxp3 expression. Indeed, the generation of peripherally induced Treg (iTreg) by TGF-β was highly dependent on NFAT expression because the ability of CD4(+) T cells to differentiate into iTreg diminished markedly with the number of NFAT family members missing. It can be concluded that the expression of Foxp3 in TGF-β-induced iTreg depends on the threshold value of NFAT rather than on an individual member present. This is specific for iTreg development, because frequency of nTreg remained unaltered in mice lacking NFAT1, NFAT2, or NFAT4 alone or in combination. Different from expectation, however, the function of both nTreg and iTreg was independent on robust NFAT levels, reflected by less nuclear NFAT in nTreg and iTreg. Accordingly, absence of one or two NFAT members did not alter suppressor activity in vitro or during colitis and transplantation in vivo. This scenario emphasizes an inhibition of high NFAT activity as treatment for autoimmune diseases and in transplantation, selectively targeting the proinflammatory conventional T cells, while keeping Treg functional.

  16. T Cell–dependent Immune Response in C1q-deficient Mice: Defective Interferon γ Production by Antigen-specific T Cells

    PubMed Central

    Cutler, Antony J.; Botto, Marina; van Essen, Dominic; Rivi, Roberta; Davies, Kevin A.; Gray, David; Walport, Mark J.

    1998-01-01

    The role of the classical complement pathway in humoral immune responses was investigated in gene-targeted C1q-deficient mice (C1qA−/−). Production of antigen-specific immunoglobulin (Ig)G2a and IgG3 in primary and secondary responses to T cell–dependent antigen was significantly reduced, whereas IgM, IgG1, and IgG2b responses were similar in control and C1qA−/− mice. Despite abnormal humoral responses, B cells from C1qA−/− mice proliferated normally to a number of stimuli in vitro. Immune complex localization to follicular dendritic cells within splenic follicles was lacking in C1qA−/− mice. The precursor frequency of antigen-specific T cells was similar in C1qA−/− and wild-type mice. However, analysis of cytokine production by primed T cells in response to keyhole limpet hemocyanin revealed a significant reduction in interferon-γ production in C1qA−/− mice compared with control mice, whereas interleukin 4 secretion was equivalent. These data suggest that the classical pathway of complement may influence the cytokine profile of antigen-specific T lymphocytes and the subsequent immune response. PMID:9607920

  17. A novel T cell receptor single-chain signaling complex mediates antigen-specific T cell activity and tumor control

    PubMed Central

    Stone, Jennifer D.; Harris, Daniel T.; Soto, Carolina M.; Chervin, Adam S.; Aggen, David H.; Roy, Edward J.; Kranz, David M.

    2014-01-01

    Adoptive transfer of genetically modified T cells to treat cancer has shown promise in several clinical trials. Two main strategies have been applied to redirect T cells against cancer: 1) introduction of a full-length T cell receptor (TCR) specific for a tumor-associated peptide-MHC, or 2) introduction of a chimeric antigen receptor (CAR), including an antibody fragment specific for a tumor cell surface antigen, linked intracellularly to T cell signaling domains. Each strategy has advantages and disadvantages for clinical applications. Here, we present data on the in vitro and in vivo effectiveness of a single-chain signaling receptor incorporating a TCR variable fragment as the targeting element (referred to as TCR-SCS). This receptor contained a single-chain TCR (Vβ-linker-Vα) from a high-affinity TCR called m33, linked to the intracellular signaling domains of CD28 and CD3ζ. This format avoided mispairing with endogenous TCR chains, and mediated specific T cell activity when expressed in either CD4 or CD8 T cells. TCR-SCS-transduced CD8-negative cells showed an intriguing sensitivity, compared to full-length TCRs, to higher densities of less stable pepMHC targets. T cells that expressed this peptide-specific receptor persisted in vivo, and exhibited polyfunctional responses. Growth of metastatic antigen-positive tumors was significantly inhibited by T cells that expressed this receptor, and tumor cells that escaped were antigen loss variants. TCR-SCS receptors represent an alternative targeting receptor strategy that combines the advantages of single-chain expression, avoidance of TCR chain mispairing, and targeting of intracellular antigens presented in complex with MHC proteins. PMID:25082071

  18. In situ activation of helper T cells in the lung.

    PubMed

    Raju, B; Tung, C F; Cheng, D; Yousefzadeh, N; Condos, R; Rom, W N; Tse, D B

    2001-08-01

    To better understand the lung and systemic responses of helper T cells mediating memory immunity to Mycobacterium tuberculosis, we used three- and four-color flow cytometry to study the surface phenotype of CD4(+) lymphocytes. Bronchoalveolar lavage (BAL) fluid and peripheral blood (PB) samples were obtained from a total of 25 subjects, including 10 tuberculosis (TB)-infected subjects, 8 purified-protein-derivative-negative subjects, and 7 purified-protein-derivative-positive subjects. In marked contrast to CD4(+) lymphocytes from PB (9% +/- 5% expressing CD45RA and CD29), the majority (55% +/- 16%) of CD4(+) lymphocytes in BAL (ALs) simultaneously expressed CD45RA, a naïve T-cell marker, and CD29, members of the very late activation family. Further evaluation revealed that CD4(+) ALs expressed both CD45RA and CD45RO, a memory T-cell marker. In addition, the proportion of CD4(+) lymphocytes expressing CD69, an early activation marker, was drastically increased in BAL fluid (83% +/- 9%) compared to PB (1% +/- 1%), whereas no significant difference was seen in the expression of CD25, the low-affinity interleukin 2 receptor (34% +/- 15% versus 40% +/- 16%). More importantly, we identified a minor population of CD69(bright) CD25(bright) CD4(+) lymphocytes in BAL (10% +/- 6%) that were consistently absent from PB (1% +/- 1%). Thus, CD4(+) lymphocytes in the lung paradoxically coexpress surface molecules characteristic of naïve and memory helper T cells as well as surface molecules commonly associated with early and late stages of activation. No difference was observed for ALs obtained from TB-infected and uninfected lung segments in this regard. It remains to be determined if these surface molecules are induced by the alveolar environment or if CD4(+) lymphocytes coexpressing this unusual combination of surface molecules are selectively recruited from the circulation. Our data suggest that ex vivo experiments on helper T-cell subsets that display distinctive

  19. T-cell activation and early gene response in dogs.

    PubMed

    Mortlock, Sally-Anne; Wei, Jerry; Williamson, Peter

    2015-01-01

    T-cells play a crucial role in canine immunoregulation and defence against invading pathogens. Proliferation is fundamental to T-cell differentiation, homeostasis and immune response. Initiation of proliferation following receptor mediated stimuli requires a temporally programmed gene response that can be identified as immediate-early, mid- and late phases. The immediate-early response genes in T-cell activation engage the cell cycle machinery and promote subsequent gene activation events. Genes involved in this immediate-early response in dogs are yet to be identified. The present study was undertaken to characterise the early T-cell gene response in dogs to improve understanding of the genetic mechanisms regulating immune function. Gene expression profiles were characterised using canine gene expression microarrays and quantitative reverse transcription PCR (qRT-PCR), and paired samples from eleven dogs. Significant functional annotation clusters were identified following stimulation with phytohemagluttinin (PHA) (5μg/ml), including the Toll-like receptor signaling pathway and phosphorylation pathways. Using strict statistical criteria, 13 individual genes were found to be differentially expressed, nine of which have ontologies that relate to proliferation and cell cycle control. These included, prostaglandin-endoperoxide synthase 2 (PTGS2/COX2), early growth response 1 (EGR1), growth arrest and DNA damage-inducible gene (GADD45B), phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1), V-FOS FBJ murine osteosarcoma viral oncogene homolog (FOS), early growth response 2 (EGR2), hemogen (HEMGN), polo-like kinase 2 (PLK2) and polo-like kinase 3 (PLK3). Differential gene expression was re-examined using qRT-PCR, which confirmed that EGR1, EGR2, PMAIP1, PTGS2, FOS and GADD45B were significantly upregulated in stimulated cells and ALAS2 downregulated. PTGS2 and EGR1 showed the highest levels of response in these dogs. Both of these genes are involved in cell cycle

  20. Effect Of Simulated Microgravity On Activated T Cell Gene Transcription

    NASA Technical Reports Server (NTRS)

    Morrow, Maureen A.

    2003-01-01

    Studies of T lymphocytes under the shear stress environment of clinorotation have demonstrated an inhibition of activation in response to TCR mediated signaling. These results mimic those observed during space flight. This work investigates the molecular signaling events of T lymphocyte activation with clinorotation. Purified human T lymphocytes and the T cell clone Jurkat exhibit an uncoupling of signaling as mediated through the TCR. Activation of the transcription factor AP-1 is inhibited while activation of NFAT occurs. NFAT dephosphorylation and activation is dependent on sustained Ca(++) influx. Alternatively, AP-1, which consists of two transcription factors, jun and fos, is activated by PKC and Ras mediated pathways. TCR signaling is known to be dependent on cytoskeletal rearrangements, in particular, raft aggregation is critical. Raft aggregation, as mediated through GM, crosslinking, overcomes the inhibition of T lymphocyte activation with clinorotation, indicating that the block is occurring upstream of raft aggregation. Clinorotation is shown to have an effect similar to a weak TCR signal.

  1. 5-HT3 receptor-channels coupled with Na+ influx in human T cells: role in T cell activation.

    PubMed

    Khan, N A; Poisson, J P

    1999-09-01

    The study was conducted on a human (Jurkat) T cell line, loaded with a Na+ fluorescent probe, SBFI/AM. Serotonin and an agonist of 5-HT3 receptor-channels, 2-methyl-5HT, evoked Na+ influx, whereas the agonists of other serotonergic receptor subtypes, i.e., 5-HT1A and 5-HT1B receptors, failed to induce Na+ influx in these cells. By using 3H-BRL43694, an agonist of 5-HT3 receptor-channels, we characterized 5-HT3 lymphocyte receptors which exhibited a density (Bmax) of 300 +/- 20 fmol/10(6) cells and a Kd of 30 nM in Jurkat T cells. The T-cell 5-HT3 receptor-channel is not regulated either by the protein kinase C or by the free intracellular calcium concentrations as the agents known to activate the PKC and to induce increases in intracellular free calcium concentrations failed to influence the free intracellular Na+ concentrations, [Na+]i, in these cells. Furthermore, an increase in [Na+]i, induced by 2-methyl-5HT, via 5-HT3 receptor-channels seems to stimulate T-cell activation by facilitating the progression of T cells from S to G2/M phase of the cell cycle.

  2. Regulation of HIV-1 Latency by T-cell Activation

    PubMed Central

    Williams, Samuel A.; Greene, Warner C.

    2007-01-01

    HIV infected patients harbor ~105–106 memory CD4 T-cells that contain fully integrated but transcriptionally silent HIV proviruses. While small in number, these latently infected cells form a drug-insensitive reservoir that importantly contributes to the life-long persistence of HIV despite highly effective antiviral therapy. In tissue culture, latent HIV proviruses can be activated when their cellular hosts are exposed to select proinflammatory cytokines or their T-cell receptors are ligated. However, due to a lack of potency and/or dose-limiting toxicity, attempts to purge virus from this latent reservoir in vivo with immune-activating agents including anti-CD3 antibodies and IL-2 have failed. A deeper understanding of the molecular underpinnings of HIV latency is clearly required, including determining whether viral latency is actively reinforced by transcriptional repressors, defining which inducible host transcription factors most effectively antagonize latency, and elucidating the role of chromatin in viral latency. Only through such an improved understanding will it be possible to identify combination therapies that might allow complete purging of the latent reservoir and realization of the difficult and elusive goal of complete eradication of HIV in infected patients. PMID:17643313

  3. Phosphatidylinositol-3-kinase regulates PKCtheta activity in cytotoxic T cells.

    PubMed

    Puente, Lawrence G; Mireau, Laura R; Lysechko, Tara L; Ostergaard, Hanne L

    2005-06-01

    Protein kinase C (PKC) theta plays a crucial role in T cell activation. We, therefore, examined the regulation of PKCtheta activity in cytotoxic T lymphocytes (CTL). We demonstrated that PMA did not stimulate PKCtheta activation and phospholipase C inhibition did not block anti-CD3-stimulated PKCtheta activation in a CTL clone. This suggests that diacylglycerol is neither sufficient nor required for PKCtheta activation. Furthermore, PKCtheta was only activated in a CTL clone stimulated with plate-bound anti-CD3 but not soluble anti-CD3. However, PMA or cross-linked anti-CD3 stimulated phosphorylation of PKCtheta as measured by a migratory shift, suggesting that phosphorylation was not sufficient for activity. Phosphatidylinositol 3-kinase activity was required for anti-CD3, but not PMA, stimulated phosphorylation and for immobilized anti-CD3-triggered PKCtheta activity. A substantial fraction of PKCtheta was constitutively membrane associated and PMA or CD3 stimulation did not significantly increase membrane association. Our data indicate that phosphorylation of PKCtheta is not a suitable surrogate measurement for PKCtheta activity and that additional, yet to be defined steps, are required for the regulation of PKCtheta enzymatic activity in CTL.

  4. CD1 and mycobacterial lipids activate human T cells

    PubMed Central

    Van Rhijn, Ildiko; Moody, D. Branch

    2014-01-01

    Summary For decades, proteins were thought to be the sole or at least the dominant source of antigens for T cells. Studies in the 1990s demonstrated that CD1 proteins and mycobacterial lipids form specific targets of human αβ T cells. The molecular basis by which T-cell receptors (TCRs) recognize CD1-lipid complexes is now well understood. Many types of mycobacterial lipids function as antigens in the CD1 system, and new studies done with CD1 tetramers identify T-cell populations in the blood of tuberculosis patients. In human populations, a fundamental difference between the CD1 and major histocompatibility complex systems is that all humans express nearly identical CD1 proteins. Correspondingly, human CD1 responsive T cells show evidence of conserved TCRs. In addition to natural killer T cells and mucosal-associated invariant T (MAIT cells), conserved TCRs define other subsets of human T cells, including germline-encoded mycolyl-reactive (GEM) T cells. The simple immunogenetics of the CD1 system and new investigative tools to measure T-cell responses in humans now creates a situation in which known lipid antigens can be developed as immunodiagnostic and immunotherapeutic reagents for tuberculosis disease. PMID:25703557

  5. CD8+CD122+CD49dlow regulatory T cells maintain T-cell homeostasis by killing activated T cells via Fas/FasL-mediated cytotoxicity.

    PubMed

    Akane, Kazuyuki; Kojima, Seiji; Mak, Tak W; Shiku, Hiroshi; Suzuki, Haruhiko

    2016-03-01

    The Fas/FasL (CD95/CD178) system is required for immune regulation; however, it is unclear in which cells, when, and where Fas/FasL molecules act in the immune system. We found that CD8(+)CD122(+) cells, which are mostly composed of memory T cells in comparison with naïve cells in the CD8(+)CD122(-) population, were previously shown to include cells with regulatory activity and could be separated into CD49d(low) cells and CD49d(high) cells. We established in vitro and in vivo experimental systems to evaluate the regulatory activity of CD122(+) cells. Regulatory activity was observed in CD8(+)CD122(+)CD49d(low) but not in CD8(+)CD122(+)CD49d(high) cells, indicating that the regulatory cells in the CD8(+)CD122(+) population could be narrowed down to CD49d(low) cells. CD8(+)CD122(-) cells taken from lymphoproliferation (lpr) mice were resistant to regulation by normal CD122(+) Tregs. CD122(+) Tregs taken from generalized lymphoproliferative disease (gld) mice did not regulate wild-type CD8(+)CD122(-) cells, indicating that the regulation by CD122(+) Tregs is Fas/FasL-dependent. CD122(+) Tregs taken from IL-10-deficient mice could regulate CD8(+)CD122(-) cells as equally as wild-type CD122(+) Tregs both in vitro and in vivo. MHC class I-missing T cells were not regulated by CD122(+) Tregs in vitro. CD122(+) Tregs also regulated CD4(+) cells in a Fas/FasL-dependent manner in vitro. These results suggest an essential role of Fas/FasL as a terminal effector of the CD122(+) Tregs that kill activated T cells to maintain immune homeostasis. PMID:26869716

  6. Peroxisome Proliferator-Activated Receptor γ Deficiency in T Cells Accelerates Chronic Rejection by Influencing the Differentiation of CD4+ T Cells and Alternatively Activated Macrophages

    PubMed Central

    Ye, Ping; Cheng, Chao; Wu, Jie; Wang, Sihua; Sun, Yuan; Liu, Zheng; Xie, Aini; Xia, Jiahong

    2014-01-01

    Background In a previous study, activation of the peroxisome proliferator–activated receptor γ (PPARγ) inhibited chronic cardiac rejection. However, because of the complexity of chronic rejection and the fact that PPARγ is widely expressed in immune cells, the mechanism of the PPARγ - induced protective effect was unclear. Materials and Methods A chronic rejection model was established using B6.C-H-2bm12KhEg (H-2bm12) mice as donors, and MHC II-mismatched T-cell-specific PPARγ knockout mice or wild type (WT) littermates as recipients. The allograft lesion was assessed by histology and immunohistochemistry. T cells infiltrates in the allograft were isolated, and cytokines and subpopulations were detected using cytokine arrays and flow cytometry. Transcription levels in the allograft were measured by RT-PCR. In vitro, the T cell subset differentiation was investigated after culture in various polarizing conditions. PPARγ-deficient regularory T cells (Treg) were cocultured with monocytes to test their ability to induce alternatively activated macrophages (AAM). Results T cell-specific PPARγ knockout recipients displayed reduced cardiac allograft survival and an increased degree of pathology compared with WT littermates. T cell-specific PPARγ knockout resulted in more CD4+ T cells infiltrating into the allograft and altered the Th1/Th2 and Th17/Treg ratios. The polarization of AAM was also reduced by PPARγ deficiency in T cells through the action of Th2 and Treg. PPARγ-deficient T cells eliminated the pioglitazone-induced polarization of AAM and reduced allograft survival. Conclusions PPARγ-deficient T cells influenced the T cell subset and AAM polarization in chronic allograft rejection. The mechanism of PPARγ activation in transplantation tolerance could yield a novel treatment without side effects. PMID:25383620

  7. Cutting Edge: Engineering Active IKKβ in T Cells Drives Tumor Rejection.

    PubMed

    Evaristo, César; Spranger, Stefani; Barnes, Sarah E; Miller, Michelle L; Molinero, Luciana L; Locke, Frederick L; Gajewski, Thomas F; Alegre, Maria-Luisa

    2016-04-01

    Acquired dysfunction of tumor-reactive T cells is one mechanism by which tumors can evade the immune system. Identifying and correcting pathways that contribute to such dysfunction should enable novel anticancer therapy design. During cancer growth, T cells show reduced NF-κB activity, which is required for tumor rejection. Impaired T cell-intrinsic NF-κB may create a vicious cycle conducive to tumor progression and further T cell dysfunction. We hypothesized that forcing T cell-intrinsic NF-κB activation might break this cycle and induce tumor elimination. NF-κB was activated in T cells by inducing the expression of a constitutively active form of the upstream activator IκB kinase β (IKKβ). T cell-restricted constitutively active IKKβ augmented the frequency of functional tumor-specific CD8(+) T cells and improved tumor control. Transfer of constitutively active IKKβ-transduced T cells also boosted endogenous T cell responses that controlled pre-established tumors. Our results demonstrate that driving T cell-intrinsic NF-κB can result in tumor control, thus identifying a pathway with potential clinical applicability. PMID:26903482

  8. The antihistamine olopatadine regulates T cell activation in palladium allergy.

    PubMed

    Iguchi, Naohiko; Takeda, Yuri; Sato, Naoki; Ukichi, Kenichirou; Katakura, Akira; Ueda, Kyosuke; Narushima, Takayuki; Higuchi, Shigehito; Ogasawara, Kouetsu

    2016-06-01

    Because of its corrosion resistance palladium (Pd) has been widely used in many consumer products ranging from fashion accessories to dental materials. Recently, however, an increase in Pd allergy cases has been reported. Metal allergy is categorized as a Type IV allergy, which is characterized as a delayed-type hypersensitivity reaction in which T cells are known to play an important role; however, the precise mechanism of their action remains unclear. Here we defined the relationship between histamine and the Pd allergic reaction specifically with respect to T cell responses. To verify the effects of histamine on T cells, we examined whether there is a change in IFN-γ production following stimulation of histamine or the antihistamine, olopatadine hydrochloride (OLP), in vitro. In addition, we assessed whether OLP administration affected the degree of footpad swelling or IFN-γ production during the Pd allergy response in mice. We found that histamine stimulation increased IFN-γ production in T cells, specifically enhancing IFN-γ production in CD8(+) T cells compared with CD4(+) T cells. Interestingly, OLP suppressed the production of IFN-γ in CD8(+) T cells, and this compound inhibited footpad swelling and IFN-γ production in mice with Pd allergy. These results suggest that histamine promotes the Type IV allergic reaction and thus, the histamine 1 receptor (H1R) might be useful therapeutic target for treatment of metal allergy.

  9. The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4+ T cells

    PubMed Central

    Bertin, Samuel; Aoki-Nonaka, Yukari; de Jong, Petrus Rudolf; Stanwood, Shawna R.; Srikanth, Sonal; Lee, Jihyung; To, Keith; Abramson, Lior; Yu, Timothy; Han, Tiffany; Touma, Ranim; Li, Xiangli; González-Navajas, José M.; Herdman, Scott; Corr, Maripat; Fu, Guo; Dong, Hui; Gwack, Yousang; Franco, Alessandra; Jefferies, Wilfred A.; Raz, Eyal

    2016-01-01

    TRPV1 is a Ca2+-permeable channel mostly studied as a pain receptor in sensory neurons. However, its role in other cell types is poorly understood. Here, we demonstrate that TRPV1 is functionally expressed in CD4+ T cells where it acts as a non-store-operated Ca2+ channel and contributes to T cell receptor (TCR)-induced Ca2+ influx, TCR signaling and T cell activation. In models of T cell-mediated colitis, TRPV1 promotes colitogenic T cell responses and intestinal inflammation. Furthermore, genetic and pharmacological inhibition of TRPV1 in human CD4+ T cells recapitulates the phenotype of murine Trpv1−/− CD4+ T cells. These findings suggest that TRPV1 inhibition could represent a new therapeutic strategy to restrain proinflammatory T cell responses. PMID:25282159

  10. Expression of CD39 on Activated T Cells Impairs their Survival in Older Individuals.

    PubMed

    Fang, Fengqin; Yu, Mingcan; Cavanagh, Mary M; Hutter Saunders, Jessica; Qi, Qian; Ye, Zhongde; Le Saux, Sabine; Sultan, William; Turgano, Emerson; Dekker, Cornelia L; Tian, Lu; Weyand, Cornelia M; Goronzy, Jörg J

    2016-02-01

    In an immune response, CD4(+) T cells expand into effector T cells and then contract to survive as long-lived memory cells. To identify age-associated defects in memory cell formation, we profiled activated CD4(+) T cells and found an increased induction of the ATPase CD39 with age. CD39(+) CD4(+) T cells resembled effector T cells with signs of metabolic stress and high susceptibility to undergo apoptosis. Pharmacological inhibition of ATPase activity dampened effector cell differentiation and improved survival, suggesting that CD39 activity influences T cell fate. Individuals carrying a low-expressing CD39 variant responded better to vaccination with an increase in vaccine-specific memory T cells. Increased inducibility of CD39 after activation may contribute to the impaired vaccine response with age. PMID:26832412

  11. Chronic activation of the kinase IKKβ impairs T cell function and survival

    PubMed Central

    Krishna, Sruti; Xie, Danli; Gorentla, Balachandra; Shin, Jinwook; Gao, Jimin; Zhong, Xiao-Ping

    2012-01-01

    Activation of the transcription factor NF-κB is critical for cytokine production and T cell survival after T cell receptor (TCR) engagement. The effects of persistent NF-κB activity on T cell function and survival are poorly understood. In this study, using a murine model that expresses a constitutively active form of inhibitor of κB kinase β(caIKKβ) in a T-cell specific manner, we demonstrate that chronic IKKβ signaling promotes T cell apoptosis, attenuates responsiveness to TCR-mediated stimulation in vitro, and impairs T cell responses to bacterial infection in vivo. CaIKKβ T cells showed increased FasL expression and caspase-8 activation, and blocking Fas/FasL interactions enhanced cell survival. T cell unresponsiveness was associated with defects in TCR proximal signaling, and elevated levels of Blimp1, a transcriptional repressor that promotes T cell exhaustion. CaIKKβ T cells also showed a defect in IL-2 production, and addition of exogenous IL-2 enhanced their survival and proliferation. Conditional deletion of Blimp1 partially rescued sensitivity of caIKKβ T cells to TCR triggering. Furthermore, adoptively transferred caIKKβ T cells showed diminished expansion and increased contraction in response to infection with Listeria monocytogenes expressing a cognate antigen. Despite their functional defects, caIKKβ T cells readily produced pro-inflammatory cytokines and mice developed autoimmunity. In contrast to NF-κB's critical role in T cell activation and survival, our study demonstrates that persistent IKK-NF-κB signaling is sufficient to impair both T cell function and survival. PMID:22753932

  12. Transcriptomic analysis of mouse EL4 T cells upon T cell activation and in response to protein synthesis inhibition via cycloheximide treatment.

    PubMed

    Lim, Pek Siew; Hardy, Kristine; Peng, Kaiman; Shannon, Frances M

    2016-03-01

    T cell activation involves the recognition of a foreign antigen complexed to the major histocompatibility complex on the antigen presenting T cell to the T cell receptor. This leads to activation of signaling pathways, which ultimately leads to induction of key cytokine genes responsible for eradication of foreign antigens. We used the mouse EL4 T cell as a model system to study genes that are induced as a result of T cell activation using phorbol myristate acetate (PMA) and calcium ionomycin (I) as stimuli. We were also interested to examine the importance of new protein synthesis in regulating the expression of genes involved in T cell activation. Thus we have pre-treated mouse EL4 T cells with cycloheximide, a protein synthesis inhibitor, and left the cells unstimulated or stimulated with PMA/I for 4 h. We performed microarray expression profiling of these cells to correlate the gene expression with chromatin state of T cells upon T cell activation [1]. Here, we detail further information and analysis of the microarray data, which shows that T cell activation leads to differential expression of genes and inducible genes can be further classified as primary and secondary response genes based on their protein synthesis dependency. The data is available in the Gene Expression Omnibus under accession number GSE13278. PMID:26981393

  13. A role for Peroxisome Proliferator-Activated Receptor Beta in T cell development

    PubMed Central

    Mothe-Satney, Isabelle; Murdaca, Joseph; Sibille, Brigitte; Rousseau, Anne-Sophie; Squillace, Raphaëlle; Le Menn, Gwenaëlle; Rekima, Akila; Larbret, Frederic; Pelé, Juline; Verhasselt, Valérie; Grimaldi, Paul A.; Neels, Jaap G.

    2016-01-01

    Metabolism plays an important role in T cell biology and changes in metabolism drive T cell differentiation and fate. Most research on the role of metabolism in T lymphocytes focuses on mature T cells while only few studies have investigated the role of metabolism in T cell development. In this study, we report that activation or overexpression of the transcription factor Peroxisome Proliferator-Activated Receptor β (PPARβ) increases fatty acid oxidation in T cells. Furthermore, using both in vivo and in vitro models, we demonstrate that PPARβ activation/overexpression inhibits thymic T cell development by decreasing proliferation of CD4−CD8− double-negative stage 4 (DN4) thymocytes. These results support a model where PPARβ activation/overexpression favours fatty acid- instead of glucose-oxidation in developing T cells, thereby hampering the proliferative burst normally occurring at the DN4 stage of T cell development. As a consequence, the αβ T cells that are derived from DN4 thymocytes are dramatically decreased in peripheral lymphoid tissues, while the γδ T cell population remains untouched. This is the first report of a direct role for a member of the PPAR family of nuclear receptors in the development of T cells. PMID:27680392

  14. Cutting Edge: Localization of linker for activation of T cells to lipid rafts is not essential in T cell activation and development.

    PubMed

    Zhu, Minghua; Shen, Shudan; Liu, Yan; Granillo, Olivia; Zhang, Weiguo

    2005-01-01

    It has been proposed that upon T cell activation, linker for activation of T cells (LAT), a transmembrane adaptor protein localized to lipid rafts, orchestrates formation of multiprotein complexes and activates signaling cascades in lipid rafts. However, whether lipid rafts really exist or function remains controversial. To address the importance of lipid rafts in LAT function, we generated a fusion protein to target LAT to nonraft fractions using the transmembrane domain from a nonraft protein, linker for activation of X cells (LAX). Surprisingly, this fusion protein functioned well in TCR signaling. It restored MAPK activation, calcium flux, and NFAT activation in LAT-deficient cells. To further study the function of this fusion protein in vivo, we generated transgenic mice that express this protein. Analysis of these mice indicated that it was fully capable of replacing LAT in thymocyte development and T cell function. Our results demonstrate that LAT localization to lipid rafts is not essential during normal T cell activation and development.

  15. Global Analysis of O-GlcNAc Glycoproteins in Activated Human T Cells

    PubMed Central

    Lund, Peder J.; Elias, Joshua E.

    2016-01-01

    T cell activation in response to Ag is largely regulated by protein posttranslational modifications. Although phosphorylation has been extensively characterized in T cells, much less is known about the glycosylation of serine/threonine residues by O-linked N-acetylglucosamine (O-GlcNAc). Given that O-GlcNAc appears to regulate cell signaling pathways and protein activity similarly to phosphorylation, we performed a comprehensive analysis of O-GlcNAc during T cell activation to address the functional importance of this modification and to identify the modified proteins. Activation of T cells through the TCR resulted in a global elevation of O-GlcNAc levels and in the absence of O-GlcNAc, IL-2 production and proliferation were compromised. T cell activation also led to changes in the relative expression of O-GlcNAc transferase (OGT) isoforms and accumulation of OGT at the immunological synapse of murine T cells. Using a glycoproteomics approach, we identified >200 O-GlcNAc proteins in human T cells. Many of the identified proteins had a functional relationship to RNA metabolism, and consistent with a connection between O-GlcNAc and RNA, inhibition of OGT impaired nascent RNA synthesis upon T cell activation. Overall, our studies provide a global analysis of O-GlcNAc dynamics during T cell activation and the first characterization, to our knowledge, of the O-GlcNAc glycoproteome in human T cells. PMID:27655845

  16. Differential requirement of RasGRP1 for γδ T cell development and activation

    PubMed Central

    Chen, Yong; Ci, Xinxin; Gorentla, Balachandra; Sullivan, Sarah A.; Stone, James C.; Zhang, Weiguo; Pereira, Pablo; Lu, Jianxin; Zhong, Xiao-Ping

    2012-01-01

    γδ T cells (γδT) belong to a distinct T cell lineage that performs immune functions different from αβ T cells (αβT). Previous studies have established that Erk1/2 MAPKs are critical for positive selection of αβT cells. Additional evidence also suggests that elevated Erk1/2 activity promotes γδT cell generation. RasGRP1, a guanine nucleotide releasing factor for Ras, plays an important role in positive selection of αβT cells by activating the Ras-Erk1/2 pathway. In this report, we demonstrate that RasGRP1 is critical for TCR-induced Erk1/2 activation in γδT cells but exerts different roles for γδT cell generation and activation. Deficiency of RasGRP1 does not obviously affect γδT cell numbers in the thymus but leads to increased γδT cells, particularly CD4−CD8+ γδT cells, in the peripheral lymphoid organs. The virtually unhindered γδT cell development in the RasGRP1−/− thymus proved to be cell intrinsic, while the increase in CD8+ γδT cells is caused by non-cell-intrinsic mechanisms. Our data provides genetic evidence that decreased Erk1/2 activation in the absence of RasGRP1 is compatible for γδT cell generation. Although RasGRP1 is dispensable for γδT cell generation, RasGRP1-deficient γδT cells are defective in proliferation following TCR stimulation. Additionally, RasGRP1-deficient γδT cells are impaired to produce IL-17 but not IFNγ. Together, these observations have revealed that RasGRP1 plays differential roles for γδ and αβ T cell development but is critical for γδT cell proliferation and production of IL-17. PMID:22623331

  17. T cell-expressed CD40L potentiates the bone anabolic activity of intermittent PTH treatment.

    PubMed

    Robinson, Jerid W; Li, Jau-Yi; Walker, Lindsey D; Tyagi, Abdul Malik; Reott, Michael A; Yu, Mingcan; Adams, Jonathan; Weitzmann, M Neale; Pacifici, Roberto

    2015-04-01

    T cells are known to potentiate the bone anabolic activity of intermittent parathyroid hormone (iPTH) treatment. One of the involved mechanisms is increased T cell secretion of Wnt10b, a potent osteogenic Wnt ligand that activates Wnt signaling in stromal cells (SCs). However, additional mechanisms might play a role, including direct interactions between surface receptors expressed by T cells and SCs. Here we show that iPTH failed to promote SC proliferation and differentiation into osteoblasts (OBs) and activate Wnt signaling in SCs of mice with a global or T cell-specific deletion of the T cell costimulatory molecule CD40 ligand (CD40L). Attesting to the relevance of T cell-expressed CD40L, iPTH induced a blunted increase in bone formation and failed to increase trabecular bone volume in CD40L(-/-) mice and mice with a T cell-specific deletion of CD40L. CD40L null mice exhibited a blunted increase in T cell production of Wnt10b and abrogated CD40 signaling in SCs in response to iPTH treatment. Therefore, expression of the T cell surface receptor CD40L enables iPTH to exert its bone anabolic activity by activating CD40 signaling in SCs and maximally stimulating T cell production of Wnt10b.

  18. Alternative splicing of MALT1 controls signalling and activation of CD4+ T cells

    PubMed Central

    Meininger, Isabel; Griesbach, Richard A.; Hu, Desheng; Gehring, Torben; Seeholzer, Thomas; Bertossi, Arianna; Kranich, Jan; Oeckinghaus, Andrea; Eitelhuber, Andrea C.; Greczmiel, Ute; Gewies, Andreas; Schmidt-Supprian, Marc; Ruland, Jürgen; Brocker, Thomas; Heissmeyer, Vigo; Heyd, Florian; Krappmann, Daniel

    2016-01-01

    MALT1 channels proximal T-cell receptor (TCR) signalling to downstream signalling pathways. With MALT1A and MALT1B two conserved splice variants exist and we demonstrate here that MALT1 alternative splicing supports optimal T-cell activation. Inclusion of exon7 in MALT1A facilitates the recruitment of TRAF6, which augments MALT1 scaffolding function, but not protease activity. Naive CD4+ T cells express almost exclusively MALT1B and MALT1A expression is induced by TCR stimulation. We identify hnRNP U as a suppressor of exon7 inclusion. Whereas selective depletion of MALT1A impairs T-cell signalling and activation, downregulation of hnRNP U enhances MALT1A expression and T-cell activation. Thus, TCR-induced alternative splicing augments MALT1 scaffolding to enhance downstream signalling and to promote optimal T-cell activation. PMID:27068814

  19. Cytokine treatment of macrophage suppression of T cell activation.

    PubMed

    Silberman, Daniel; Bucknum, Amanda; Kozlowski, Megan; Matlack, Robin; Riggs, James

    2010-01-01

    High Mphi:T cell ratios suppress the immune response to the retroviral superantigen Mls by IFNgamma-triggered production of the arg- and trp-consuming enzymes iNOS and IDO. Attempts to reverse suppression by treatment with pro-inflammatory cytokines revealed that IL-6 improved the T cell response to Mls and the pro-hematopoietic cyokines IL-3 and GM-CSF increased suppression. GM-CSF treatment increased Mphi expression of CD80, a ligand for the immune suppressive B7H1 and CTLA-4 receptors. These results illustrate potential strategies for reversing the suppression of cell-mediated immunity characteristic of the high Mphi:T cell ratios found in many tumors.

  20. Activated human T cells accomplish MHC class II expression through T cell-specific occupation of class II transactivator promoter III.

    PubMed

    Holling, Tjadine M; van der Stoep, Nienke; Quinten, Edwin; van den Elsen, Peter J

    2002-01-15

    Activated human T cells express HLA-DR, HLA-DQ, and HLA-DP on their surface, but the regulation and functioning of MHC class II molecules in T lymphocytes are poorly understood. Because the MHC class II transactivator (CIITA) is essential for MHC class II expression, we have investigated transcriptional activation of CIITA in activated T cells. In this study, we show that in human activated CD4(+) T cells, CIITA promoter III (CIITA-PIII) drives the expression of CIITA. The in vivo genomic footprint analysis revealed activated T cell-specific occupation of CIITA-PIII. Subsequent EMSA analysis of several promoter regions showed differences in banding pattern among activated T cells, naive T cells, primary B cells, and Raji B cells. Activating response element (ARE)-1 is shown to interact with the acute myeloid leukemia 2 transcription factor in nuclear extracts derived from both T and B cells. Interestingly, the acute myeloid leukemia 3 transcription factor was bound in nuclear extracts of T cells only. The ARE-2 sequence is able to bind CREB/activating transcription factor family members in both T and B cells. In addition, a yet unidentified Ets family member was found to interact with site C in activated T cells, whereas in B cells site C was bound by PU.1 and Pip/IFN regulatory factor 4/IFN consensus sequence binding protein for activated T cells. In Jurkat T cells, both ARE-1 and ARE-2 are crucial for CIITA-PIII activity, similar to Raji B cells. The differential banding pattern in in vivo genomic footprinting and transcription factor binding at the ARE-1 and site C between T cells and B cells probably reflects differences in CIITA-PIII activation pathways employed by these cell types. PMID:11777970

  1. T Cells Expressing Constitutively Active Akt Resist Multiple Tumor-associated Inhibitory Mechanisms

    PubMed Central

    Sun, Jiali; Dotti, Gianpietro; Huye, Leslie E; Foster, Aaron E; Savoldo, Barbara; Gramatges, Maria M; Spencer, David M; Rooney, Cliona M

    2010-01-01

    Adoptive transfer of antigen-specific cytotoxic T lymphocytes has shown promise for the therapy of cancer. However, tumor-specific T cells are susceptible to diverse inhibitory signals from the tumor microenvironment. The Akt/protein kinase B plays a central role in T-cell proliferation, function, and survival and we hypothesized that expression of constitutively active Akt (caAkt) in T cells could provide resistance to many of these tumor-associated inhibitory mechanisms. caAkt expression in activated human T cells increased proliferation and cytokine production, a likely result of their sustained expression of nuclear factor-κB (NF-κB) and provided resistance to apoptosis by upregulating antiapoptotic molecules. caAkt expressing T cells (caAkt-T-cells) were also relatively resistant to suppression by and conversion into regulatory T cells (Tregs). These characteristics provided a survival advantage to T cells cocultured with tumor cells in vitro; CD3/28-stimulated T cells expressing a chimeric antigen receptor (CAR) specific for disialoganglioside (GD2) that redirected their activity to the immunosuppressive, GD2-expressing neuroblastoma cell line, LAN-1, resisted tumor-induced apoptosis when co-expressing transgenic caAkt. In conclusion, caAkt-transduced T cells showed resistance to several evasion strategies employed by tumors and may therefore enhance the antitumor activity of adoptively transferred T lymphocytes. PMID:20842106

  2. Selective activation of T cells in newly diagnosed insulin-dependent diabetic patients: evidence for heterogeneity of T cell receptor usage.

    PubMed Central

    Kontiainen, S; Toomath, R; Lowder, J; Feldmann, M

    1991-01-01

    Cell surface phenotyping of 58 newly diagnosed diabetic children and 25 controls confirmed the presence of activated T cells, expressing HLA class II antigens or receptors for interleukin-2 (IL-2R, CD25) in the majority of the patients. Some of these cells putatively include those involved in islet cell destruction, as reported previously. Monoclonal antibodies recognizing three families of the variable regions of the beta chain (V beta) of the T cell receptor were used to determine the percentage of peripheral blood cells expressing those specific gene segment products. The number of the activated T cells from each V beta family was compared with that of the resting T cells of the same family in the patients and the controls. In 18 out of 58 (31%) of these patients there was evidence of oligoclonal proliferation of activated T cells as judged by marked increases in cells expressing a V beta family in the IL-2R+ T cell pool, compared with the total T cell pool. However, different V beta families were augmented in individual patients, indicating considerable heterogeneity of T cell activation in different patients. These results are in contrast to murine models of autoimmunity, where virtually monoclonal T cell activation, restricted to a single V beta family has been reported. PMID:1825939

  3. Activation of Human T Cells in Hypertension: Studies of Humanized Mice and Hypertensive Humans.

    PubMed

    Itani, Hana A; McMaster, William G; Saleh, Mohamed A; Nazarewicz, Rafal R; Mikolajczyk, Tomasz P; Kaszuba, Anna M; Konior, Anna; Prejbisz, Aleksander; Januszewicz, Andrzej; Norlander, Allison E; Chen, Wei; Bonami, Rachel H; Marshall, Andrew F; Poffenberger, Greg; Weyand, Cornelia M; Madhur, Meena S; Moore, Daniel J; Harrison, David G; Guzik, Tomasz J

    2016-07-01

    Emerging evidence supports an important role for T cells in the genesis of hypertension. Because this work has predominantly been performed in experimental animals, we sought to determine whether human T cells are activated in hypertension. We used a humanized mouse model in which the murine immune system is replaced by the human immune system. Angiotensin II increased systolic pressure to 162 versus 116 mm Hg for sham-treated animals. Flow cytometry of thoracic lymph nodes, thoracic aorta, and kidney revealed increased infiltration of human leukocytes (CD45(+)) and T lymphocytes (CD3(+) and CD4(+)) in response to angiotensin II infusion. Interestingly, there was also an increase in the memory T cells (CD3(+)/CD45RO(+)) in the aortas and lymph nodes. Prevention of hypertension using hydralazine and hydrochlorothiazide prevented the accumulation of T cells in these tissues. Studies of isolated human T cells and monocytes indicated that angiotensin II had no direct effect on cytokine production by T cells or the ability of dendritic cells to drive T-cell proliferation. We also observed an increase in circulating interleukin-17A producing CD4(+) T cells and both CD4(+) and CD8(+) T cells that produce interferon-γ in hypertensive compared with normotensive humans. Thus, human T cells become activated and invade critical end-organ tissues in response to hypertension in a humanized mouse model. This response likely reflects the hypertensive milieu encountered in vivo and is not a direct effect of the hormone angiotensin II.

  4. Activation of Human T Cells in Hypertension: Studies of Humanized Mice and Hypertensive Humans.

    PubMed

    Itani, Hana A; McMaster, William G; Saleh, Mohamed A; Nazarewicz, Rafal R; Mikolajczyk, Tomasz P; Kaszuba, Anna M; Konior, Anna; Prejbisz, Aleksander; Januszewicz, Andrzej; Norlander, Allison E; Chen, Wei; Bonami, Rachel H; Marshall, Andrew F; Poffenberger, Greg; Weyand, Cornelia M; Madhur, Meena S; Moore, Daniel J; Harrison, David G; Guzik, Tomasz J

    2016-07-01

    Emerging evidence supports an important role for T cells in the genesis of hypertension. Because this work has predominantly been performed in experimental animals, we sought to determine whether human T cells are activated in hypertension. We used a humanized mouse model in which the murine immune system is replaced by the human immune system. Angiotensin II increased systolic pressure to 162 versus 116 mm Hg for sham-treated animals. Flow cytometry of thoracic lymph nodes, thoracic aorta, and kidney revealed increased infiltration of human leukocytes (CD45(+)) and T lymphocytes (CD3(+) and CD4(+)) in response to angiotensin II infusion. Interestingly, there was also an increase in the memory T cells (CD3(+)/CD45RO(+)) in the aortas and lymph nodes. Prevention of hypertension using hydralazine and hydrochlorothiazide prevented the accumulation of T cells in these tissues. Studies of isolated human T cells and monocytes indicated that angiotensin II had no direct effect on cytokine production by T cells or the ability of dendritic cells to drive T-cell proliferation. We also observed an increase in circulating interleukin-17A producing CD4(+) T cells and both CD4(+) and CD8(+) T cells that produce interferon-γ in hypertensive compared with normotensive humans. Thus, human T cells become activated and invade critical end-organ tissues in response to hypertension in a humanized mouse model. This response likely reflects the hypertensive milieu encountered in vivo and is not a direct effect of the hormone angiotensin II. PMID:27217403

  5. IFT20 controls LAT recruitment to the immune synapse and T-cell activation in vivo.

    PubMed

    Vivar, Omar I; Masi, Giulia; Carpier, Jean-Marie; Magalhaes, Joao G; Galgano, Donatella; Pazour, Gregory J; Amigorena, Sebastian; Hivroz, Claire; Baldari, Cosima T

    2016-01-12

    Biogenesis of the immune synapse at the interface between antigen-presenting cells and T cells assembles and organizes a large number of membrane proteins required for effective signaling through the T-cell receptor. We showed previously that the intraflagellar transport protein 20 (IFT20), a component of the intraflagellar transport system, controls polarized traffic during immune synapse assembly. To investigate the role of IFT20 in primary CD4(+) T cells in vitro and in vivo, we generated mice bearing a conditional defect of IFT20 expression in T cells. We show that in the absence of IFT20, although cell spreading and the polarization of the centrosome were unaffected, T-cell receptor (TCR)-mediated signaling and recruitment of the signaling adaptor LAT (linker for activation of T cells) at the immune synapse were reduced. As a consequence, CD4(+) T-cell activation and proliferation were also defective. In vivo, conditional IFT20-deficient mice failed to mount effective antigen-specific T-cell responses, and their T cells failed to induce colitis after adoptive transfer to Rag(-/-) mice. IFT20 is therefore required for the delivery of the intracellular pool of LAT to the immune synapse in naive primary T lymphocytes and for effective T-cell responses in vivo. PMID:26715756

  6. IFT20 controls LAT recruitment to the immune synapse and T-cell activation in vivo

    PubMed Central

    Vivar, Omar I.; Masi, Giulia; Carpier, Jean-Marie; Magalhaes, Joao G.; Galgano, Donatella; Pazour, Gregory J.; Amigorena, Sebastian; Hivroz, Claire; Baldari, Cosima T.

    2016-01-01

    Biogenesis of the immune synapse at the interface between antigen-presenting cells and T cells assembles and organizes a large number of membrane proteins required for effective signaling through the T-cell receptor. We showed previously that the intraflagellar transport protein 20 (IFT20), a component of the intraflagellar transport system, controls polarized traffic during immune synapse assembly. To investigate the role of IFT20 in primary CD4+ T cells in vitro and in vivo, we generated mice bearing a conditional defect of IFT20 expression in T cells. We show that in the absence of IFT20, although cell spreading and the polarization of the centrosome were unaffected, T-cell receptor (TCR)-mediated signaling and recruitment of the signaling adaptor LAT (linker for activation of T cells) at the immune synapse were reduced. As a consequence, CD4+ T-cell activation and proliferation were also defective. In vivo, conditional IFT20-deficient mice failed to mount effective antigen-specific T-cell responses, and their T cells failed to induce colitis after adoptive transfer to Rag−/− mice. IFT20 is therefore required for the delivery of the intracellular pool of LAT to the immune synapse in naive primary T lymphocytes and for effective T-cell responses in vivo. PMID:26715756

  7. Bystander Activation and Anti-Tumor Effects of CD8+ T Cells Following Interleukin-2 Based Immunotherapy Is Independent of CD4+ T Cell Help

    PubMed Central

    Grossenbacher, Steven K.; Hsiao, Hui-Hua; Zamora, Anthony E.; Mirsoian, Annie; Koehn, Brent; Blazar, Bruce R.; Weiss, Jonathan M.; Wiltrout, Robert H.; Sckisel, Gail D.; Murphy, William J.

    2014-01-01

    We have previously demonstrated that immunotherapy combining agonistic anti-CD40 and IL-2 (IT) results in synergistic anti-tumor effects. IT induces expansion of highly cytolytic, antigen-independent “bystander-activated” (CD8+CD44high) T cells displaying a CD25−NKG2D+ phenotype in a cytokine dependent manner, which were responsible for the anti-tumor effects. While much attention has focused on CD4+ T cell help for antigen-specific CD8+ T cell expansion, little is known regarding the role of CD4+ T cells in antigen-nonspecific bystander-memory CD8+ T cell expansion. Utilizing CD4 deficient mouse models, we observed a significant expansion of bystander-memory T cells following IT which was similar to the non-CD4 depleted mice. Expanded bystander-memory CD8+ T cells upregulated PD-1 in the absence of CD4+ T cells which has been published as a hallmark of exhaustion and dysfunction in helpless CD8+ T cells. Interestingly, compared to CD8+ T cells from CD4 replete hosts, these bystander expanded cells displayed comparable (or enhanced) cytokine production, lytic ability, and in vivo anti-tumor effects suggesting no functional impairment or exhaustion and were enriched in an effector phenotype. There was no acceleration of the post-IT contraction phase of the bystander memory CD8+ response in CD4-depleted mice. The response was independent of IL-21 signaling. These results suggest that, in contrast to antigen-specific CD8+ T cell expansion, CD4+ T cell help is not necessary for expansion and activation of antigen-nonspecific bystander-memory CD8+ T cells following IT, but may play a role in regulating conversion of these cells from a central memory to effector phenotype. Additionally, the expression of PD-1 in this model appears to be a marker of effector function and not exhaustion. PMID:25119341

  8. The Us3 Protein of Herpes Simplex Virus 1 Inhibits T Cell Signaling by Confining Linker for Activation of T Cells (LAT) Activation via TRAF6 Protein*

    PubMed Central

    Yang, Yin; Wu, Songfang; Wang, Yu; Pan, Shuang; Lan, Bei; Liu, Yaohui; Zhang, Liming; Leng, Qianli; Chen, Da; Zhang, Cuizhu; He, Bin; Cao, Youjia

    2015-01-01

    Herpes simplex virus 1 (HSV-1) is the most prevalent human virus and causes global morbidity because the virus is able to infect multiple cell types. Remarkably, HSV infection switches between lytic and latent cycles, where T cells play a critical role. However, the precise way of virus-host interactions is incompletely understood. Here we report that HSV-1 productively infected Jurkat T-cells and inhibited antigen-induced T cell receptor activation. We discovered that HSV-1-encoded Us3 protein interrupted TCR signaling and interleukin-2 production by inactivation of the linker for activation of T cells. This study unveils a mechanism by which HSV-1 intrudes into early events of TCR-mediated cell signaling and may provide novel insights into HSV infection, during which the virus escapes from host immune surveillance. PMID:25907557

  9. Homocysteine activates T cells by enhancing endoplasmic reticulum-mitochondria coupling and increasing mitochondrial respiration.

    PubMed

    Feng, Juan; Lü, Silin; Ding, Yanhong; Zheng, Ming; Wang, Xian

    2016-06-01

    Hyperhomocysteinemia (HHcy) accelerates atherosclerosis by increasing proliferation and stimulating cytokine secretion in T cells. However, whether homocysteine (Hcy)-mediated T cell activation is associated with metabolic reprogramming is unclear. Here, our in vivo and in vitro studies showed that Hcy-stimulated splenic T-cell activation in mice was accompanied by increased levels of mitochondrial reactive oxygen species (ROS) and calcium, mitochondrial mass and respiration. Inhibiting mitochondrial ROS production and calcium signals or blocking mitochondrial respiration largely blunted Hcy-induced T-cell interferon γ (IFN-γ) secretion and proliferation. Hcy also enhanced endoplasmic reticulum (ER) stress in T cells, and inhibition of ER stress with 4-phenylbutyric acid blocked Hcy-induced T-cell activation. Mechanistically, Hcy increased ER-mitochondria coupling, and uncoupling ER-mitochondria by the microtubule inhibitor nocodazole attenuated Hcy-stimulated mitochondrial reprogramming, IFN-γ secretion and proliferation in T cells, suggesting that juxtaposition of ER and mitochondria is required for Hcy-promoted mitochondrial function and T-cell activation. In conclusion, Hcy promotes T-cell activation by increasing ER-mitochondria coupling and regulating metabolic reprogramming.

  10. Diacylglycerol Kinases (DGKs): Novel Targets for Improving T Cell Activity in Cancer

    PubMed Central

    Riese, Matthew J.; Moon, Edmund K.; Johnson, Bryon D.; Albelda, Steven M.

    2016-01-01

    Diacylglycerol kinases (DGKs) are a family of enzymes that catalyze the metabolism of diacylglycerol (DAG). Two isoforms of DGK, DGKα, and DGKζ, specifically regulate the pool of DAG that is generated as a second messenger after stimulation of the T cell receptor (TCR). Deletion of either isoform in mouse models results in T cells bearing a hyperresponsive phenotype and enhanced T cell activity against malignancy. Whereas, DGKζ appears to be the dominant isoform in T cells, rationale exists for targeting both isoforms individually or coordinately. Additional work is needed to rigorously identify the molecular changes that result from deletion of DGKs in order to understand how DAG contributes to T cell activation, the effect of DGK inhibition in human T cells, and to rationally develop combined immunotherapeutic strategies that target DGKs. PMID:27800476

  11. The effects of Cyclosporine A and azathioprine on human T cells activated by different costimulatory signals

    PubMed Central

    Leitner, Judith; Drobits, Karin; Pickl, Winfried F.; Majdic, Otto; Zlabinger, Gerhard; Steinberger, Peter

    2011-01-01

    Immunosuppression is an important treatment modality in transplantation and human diseases that are associated with aberrant T cell activation. There are considerable differences regarding the cellular processes targeted by the immunosuppressive drugs that are in clinical use. Drugs like azathioprine (Aza) mainly act by halting proliferation of fast dividing cells, whereas others like cyclosporine A (CsA) specifically target signaling pathways in T cells. Since the outcome of T cell responses critically depends on the quality and strength of costimulatory signals, this study has addressed the interplay between costimulation and the immunosuppressive agents CsA and Aza during the in vitro activation of human T cells. We used an experimental system that allows analyzing T cells activated in the presence of selected costimulatory ligands to study T cells stimulated via CD28, CD2, LFA-1, ICOS or 4-1BB. The mean inhibitory concentrations (IC50) for Aza and CsA were determined for the proliferation of T cells receiving different costimulatory signals as well as for T cells activated in the absence of costimulation. CD28 signals but not costimulation via CD2, 4-1BB, ICOS or LFA-1 greatly increased the IC50 for CsA. By contrast, the inhibitory effects of Aza were not influenced by T cell costimulatory signals. Our results might have implications for combining standard immunosuppressive drugs with CTLA-4Ig fusion proteins, which act by blocking CD28 costimulation. PMID:21756939

  12. The BMP Pathway Participates in Human Naive CD4+ T Cell Activation and Homeostasis

    PubMed Central

    Martínez, Víctor G.; Sacedón, Rosa; Hidalgo, Laura; Valencia, Jaris; Fernández-Sevilla, Lidia M.; Hernández-López, Carmen

    2015-01-01

    Bone Morphogenetic Proteins (BMPs) form a group of secreted factors that belongs to the TGF-β superfamily. Among different roles in a number of immune cell types, BMPs are known to regulate T cell development within the thymus, although the role of BMP signaling in human mature T cells remains elusive. In this study, we demonstrate that canonical BMP signaling is necessary during two critical events that regulate the size and function of human naive CD4+ T cell population: activation and homeostasis. Upon stimulation via TCR, naive CD4+ T cells upregulate the expression of BMP ligands triggering canonical BMP signaling in CD25+ cells. Blockade of BMP signaling severely impairs CD4+ T cell proliferation after activation mainly through regulation of IL-2, since the addition of this cytokine recuperates normal T cell expansion after inhibition of BMP signaling. Similarly, activation of canonical BMP pathway is required for both the maintenance of cell survival and the homeostatic proliferation induced by IL-7, a key factor for T cell homeostasis. Moreover, upregulation of two critical receptors for T cell homeostasis, CXCR4 and CCR9, triggered by IL-7 is also abrogated in the absence of BMP signaling. Collectively, we describe important roles of the canonical BMP signaling in human naive CD4+ T cell activation and homeostasis that could be valuable for clinical application. PMID:26110906

  13. Complement protein C1q bound to apoptotic cells suppresses human macrophage and dendritic cell-mediated Th17 and Th1 T cell subset proliferation

    PubMed Central

    Clarke, Elizabeth V.; Weist, Brian M.; Walsh, Craig M.; Tenner, Andrea J.

    2015-01-01

    A complete genetic deficiency of the complement protein C1q results in SLE with nearly 100% penetrance in humans, but the molecular mechanisms responsible for this association have not yet been fully determined. C1q opsonizes ACs for enhanced ingestion by phagocytes, such as Mϕ and iDCs, avoiding the extracellular release of inflammatory DAMPs upon loss of the membrane integrity of the dying cell. We previously showed that human monocyte-derived Mϕ and DCs ingesting autologous, C1q-bound LALs (C1q-polarized Mϕ and C1q-polarized DCs), enhance the production of anti-inflammatory cytokines, and reduce proinflammatory cytokines relative to Mϕ or DC ingesting LAL alone. Here, we show that C1q-polarized Mϕ have elevated PD-L1 and PD-L2 and suppressed surface CD40, and C1q-polarized DCs have higher surface PD-L2 and less CD86 relative to Mϕ or DC ingesting LAL alone, respectively. In an MLR, C1q-polarized Mϕ reduced allogeneic and autologous Th17 and Th1 subset proliferation and demonstrated a trend toward increased Treg proliferation relative to Mϕ ingesting LAL alone. Moreover, relative to DC ingesting AC in the absence of C1q, C1q-polarized DCs decreased autologous Th17 and Th1 proliferation. These data demonstrate that a functional consequence of C1q-polarized Mϕ and DC is the regulation of Teff activation, thereby “sculpting” the adaptive immune system to avoid autoimmunity, while clearing dying cells. It is noteworthy that these studies identify novel target pathways for therapeutic intervention in SLE and other autoimmune diseases. PMID:25381385

  14. Immune activation induces immortalization of HTLV-1 LTR-Tax transgenic CD4+ T cells.

    PubMed

    Swaims, Alison Y; Khani, Francesca; Zhang, Yingyu; Roberts, Arthur I; Devadas, Satish; Shi, Yufang; Rabson, Arnold B

    2010-10-21

    Infection with the human T-cell leukemia virus-1 (HTLV-1) results in a variety of diseases including adult T-cell leukemia/lymphoma (ATL). Although the pathogenesis of these disorders is poorly understood, it involves complex interactions with the host immune system. Activation of infected T cells may play an important role in disease pathogenesis through induction of the oncogenic HTLV-1 Tax transactivator protein. To test this hypothesis, we employed transgenic mice in which Tax is regulated by the HTLV-1 LTR. T-cell receptor stimulation of LTR-Tax CD4(+) T cells induced Tax expression, hyper-proliferation, and immortalization in culture. The transition to cellular immortalization was accompanied by markedly increased expression of the antiapoptotic gene, mcl-1, previously implicated as important in T-cell survival. Immortalized cells exhibited a CD4(+)CD25(+)CD3(-) phenotype commonly observed in ATL. Engraftment of activated LTR-Tax CD4(+) T cells into NOD/Shi-scid/IL-2Rγ null mice resulted in a leukemia-like phenotype with expansion and tissue infiltration of Tax(+), CD4(+) lymphocytes. We suggest that immune activation of infected CD4(+) T cells plays an important role in the induction of Tax expression, T-cell proliferation, and pathogenesis of ATL in HTLV-1-infected individuals. PMID:20634377

  15. IL-15 promotes activation and expansion of CD8+ T cells in HIV-1 infection

    PubMed Central

    Younes, Souheil-Antoine; Freeman, Michael L.; Mudd, Joseph C.; Shive, Carey L.; Reynaldi, Arnold; Estes, Jacob D.; Deleage, Claire; Lucero, Carissa; Anderson, Jodi; Schacker, Timothy W.; Davenport, Miles P.; McCune, Joseph M.; Hunt, Peter W.; Lee, Sulggi A.; Debernardo, Robert L.; Jacobson, Jeffrey M.; Canaday, David H.; Sekaly, Rafick-Pierre; Sieg, Scott F.; Lederman, Michael M.

    2016-01-01

    In HIV-1–infected patients, increased numbers of circulating CD8+ T cells are linked to increased risk of morbidity and mortality. Here, we identified a bystander mechanism that promotes CD8 T cell activation and expansion in untreated HIV-1–infected patients. Compared with healthy controls, untreated HIV-1–infected patients have an increased population of proliferating, granzyme B+, CD8+ T cells in circulation. Vβ expression and deep sequencing of CDR3 revealed that in untreated HIV-1 infection, cycling memory CD8 T cells possess a broad T cell repertoire that reflects the repertoire of the resting population. This suggests that cycling is driven by bystander activation, rather than specific antigen exposure. Treatment of peripheral blood mononuclear cells with IL-15 induced a cycling, granzyme B+ phenotype in CD8+ T cells. Moreover, elevated IL-15 expression in the lymph nodes of untreated HIV-1–infected patients correlated with circulating CD8+ T cell counts and was normalized in these patients following antiretroviral therapy. Together, these results suggest that IL-15 drives bystander activation of CD8+ T cells, which predicts disease progression in untreated HIV-1–infected patients and suggests that elevated IL-15 may also drive CD8+ T cell expansion that is linked to increased morbidity and mortality in treated patients. PMID:27322062

  16. Kindlin-3 regulates integrin activation and adhesion reinforcement of effector T cells.

    PubMed

    Moretti, Federico A; Moser, Markus; Lyck, Ruth; Abadier, Michael; Ruppert, Raphael; Engelhardt, Britta; Fässler, Reinhard

    2013-10-15

    Activated T cells use very late antigen-4/α4β1 integrin for capture, rolling on, and firm adhesion to endothelial cells, and use leukocyte function-associated antigen-1/αLβ2 integrin for subsequent crawling and extravasation. Inhibition of α4β1 is sufficient to prevent extravasation of activated T cells and is successfully used to combat autoimmune diseases, such as multiple sclerosis. Here we show that effector T cells lacking the integrin activator Kindlin-3 extravasate and induce experimental autoimmune encephalomyelitis in mice immunized with autoantigen. In sharp contrast, adoptively transferred autoreactive T cells from Kindlin-3-deficient mice fail to extravasate into the naïve CNS. Mechanistically, autoreactive Kindlin-3-null T cells extravasate when the CNS is inflamed and the brain microvasculature expresses high levels of integrin ligands. Flow chamber assays under physiological shear conditions confirmed that Kindlin-3-null effector T cells adhere to high concentrations of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1, albeit less efficiently than WT T cells. Although these arrested T cells polarize and start crawling, only few remain firmly adherent over time. Our data demonstrate that the requirement of Kindlin-3 for effector T cells to induce α4β1 and αLβ2 integrin ligand binding and stabilization of integrin-ligand bonds is critical when integrin ligand levels are low, but of less importance when integrin ligand levels are high. PMID:24089451

  17. Essential role of CD11a in CD8+ T-cell accumulation and activation in adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    T-cells, particularly CD8+ T-cells, are major participants in obesity-linked adipose tissue inflammation. We examined the mechanisms of CD8+ T-cell accumulation and activation in adipose tissue and the role of CD11a, a beta2 integrin. CD8+ T-cells in adipose tissue of obese mice showed activated phe...

  18. Antigen conformation determines processing requirements for T-cell activation.

    PubMed Central

    Streicher, H Z; Berkower, I J; Busch, M; Gurd, F R; Berzofsky, J A

    1984-01-01

    We studied the difference in requirements for processing and presentation to a single T-cell clone of four different forms of the same epitope of sperm whale myoglobin--namely, on the native protein, on two conformationally altered forms of the protein, or as a 22-residue antigenic peptide fragment. The T-cell clone was I-Ed-restricted and specific for an epitope on the CNBr fragment 132-153 involving Lys-140. As inhibitors of macrophage processing of antigen, we used several agents that inhibit lysosomal function: the weak bases chloroquine and NH4Cl, the cationic ionophore monensin, and the competitive protease inhibitor leupeptin. When these agents were used to inhibit processing of antigen by presenting cells and then washed out before T cells were added to culture, they inhibited the presentation of native antigen but not of fragment 132-153. To our surprise, the intact but denatured form, S-methylmyoglobin, behaved like the fragment not like the native protein. Apomyoglobin was intermediate in susceptibility to inhibition. Thus, native myoglobin requires a processing step that appears to involve lysosomal proteolysis, which is not required by fragment 132-153 or the denatured unfolded forms. For an antigen the size of myoglobin (Mr 17,800), it appears that unfolding of the native conformation, rather than further reduction in size, is the critical parameter determining the need for processing. Since a major difference between native myoglobin and the other forms is the greater accessibility in the latter of sites, such as hydrophobic residues, buried in the native protein, we propose that processing may be necessary to expose these sites, perhaps for interaction with the cell membrane or the Ia of the antigen-presenting cell. PMID:6333686

  19. Complement receptor type 1 (CR1/CD35) expressed on activated human CD4+ T cells contributes to generation of regulatory T cells.

    PubMed

    Török, Katalin; Dezső, Balázs; Bencsik, András; Uzonyi, Barbara; Erdei, Anna

    2015-04-01

    The role of complement in the regulation of T cell immunity has been highlighted recently by several groups. We were prompted to reinvestigate the role of complement receptor type 1 (CR1, CD35) [corrected] in human T cells based on our earlier data showing that activated human T cells produce C3 (Torok et al. (2012) [48]) and also by results demonstrating that engagement of Membrane Cofactor Protein (MCP, CD46) induces a switch of anti-CD35-activated [corrected] helper T cells into regulatory T cells (Kemper et al. (2003) [17]). We demonstrate here that co-ligation of CD46 and CD35, [corrected] the two C3b-binding structures present on activated CD4+ human T cells significantly enhances CD25 expression, elevates granzyme B production and synergistically augments cell proliferation. The role of CR1 in the development of the Treg phenotype was further confirmed by demonstrating that its engagement enhances IL-10 production and reduces IFNγ release by the activated CD4+ T cells in the presence of excess IL-2. The functional in vivo relevance of our findings was highlighted by the immunohistochemical staining of tonsils, revealing the presence of CD4/CD35 [corrected] double positive lymphocytes mainly in the inter-follicular regions where direct contact between CD4+ T cells and B lymphocytes occurs. Regarding the in vivo relevance of the complement-dependent generation of regulatory T cells in secondary lymphoid organs we propose a scenario shown in the figure. The depicted process involves the sequential binding of locally produced C3 fragments to CD46 and CD35 [corrected] expressed on activated T cells, which - in the presence of excess IL-2 - leads to the development of Treg cells.

  20. Transmission of survival signals through Delta-like 1 on activated CD4+ T cells

    PubMed Central

    Furukawa, Takahiro; Ishifune, Chieko; Tsukumo, Shin-ichi; Hozumi, Katsuto; Maekawa, Yoichi; Matsui, Naoko; Kaji, Ryuji; Yasutomo, Koji

    2016-01-01

    Notch expressed on CD4+ T cells transduces signals that mediate their effector functions and survival. Although Notch signaling is known to be cis-inhibited by Notch ligands expressed on the same cells, the role of Notch ligands on T cells remains unclear. In this report we demonstrate that the CD4+ T cell Notch ligand Dll1 transduces signals required for their survival. Co-transfer of CD4+ T cells from Dll1−/− and control mice into recipient mice followed by immunization revealed a rapid decline of CD4+ T cells from Dll1−/− mice compared with control cells. Dll1−/− mice exhibited lower clinical scores of experimental autoimmune encephalitis than control mice. The expression of Notch target genes in CD4+ T cells from Dll1−/− mice was not affected, suggesting that Dll1 deficiency in T cells does not affect cis Notch signaling. Overexpression of the intracellular domain of Dll1 in Dll1-deficient CD4+ T cells partially rescued impaired survival. Our data demonstrate that Dll1 is an independent regulator of Notch-signaling important for the survival of activated CD4+ T cells, and provide new insight into the physiological roles of Notch ligands as well as a regulatory mechanism important for maintaining adaptive immune responses. PMID:27659682

  1. CD4+ T cell activation in multiple sclerosis.

    PubMed

    Verselis, S J; Goust, J M

    1987-02-01

    Interleukin-2 (IL-2) production by CD4-enriched T cells from multiple sclerosis (MS) patients and normal individuals stimulated with concanavalin A (conA) and/or autologous and allogeneic B lymphoid cell lines (B-LCL) was evaluated 24, 48 and 96 h after stimulation. ConA-stimulated CD4+ cells from MS patients did not produce significantly more IL-2 than normal CD4+ cells. In contrast, autologous B-LCL-induced IL-2 production by MS CD4+ cells significantly (P = 0.026) exceeded that produced by normal CD4+ cells identically stimulated after 24 h in culture. Differences in IL-2 production by CD4+ cells from MS patients reached highest significance using allogeneic B-LCL, whose stimulatory capacity was similar, whether established from normal individuals or MS patients. This increased IL-2 production in response to B-LCL may represent a supranormal response of CD4+ cells from MS patients to class II major histocompatibility (MHC)-associated stimuli. It suggests that the deficiency of suppressor T cell functions postulated to play a role in MS does not arise from a lack of IL-2 induction and might indicate that bursts of IL-2 production could play a role in MS. PMID:3492511

  2. Activated human B lymphocytes express three CTLA-4 counterreceptors that costimulate T-cell activation.

    PubMed Central

    Boussiotis, V A; Freeman, G J; Gribben, J G; Daley, J; Gray, G; Nadler, L M

    1993-01-01

    Signaling via the T-cell receptor complex is necessary but not sufficient to induce antigen-specific T lymphocytes to expand clonally. To proliferate, T cells must receive one or more costimulatory signals provided by antigen presenting cells (APCs). One such critical costimulatory signal is delivered by the CD28/CTLA-4 counterreceptor, B7, expressed on APCs. B7 costimulation induces CD28 signaling, resulting in interleukin 2 (IL-2) secretion, and T-cell proliferation. Conversely, T-cell receptor signaling in the absence of B7 costimulation results in induction of antigen-specific tolerance. Here, we show that activated human B lymphocytes express two additional CTLA-4 counterreceptors also capable of providing T-cell costimulation. At 24 hr postactivation, B cells express a CTLA-4 counterreceptor not recognized by anti-B7 or -BB-1 monoclonal antibodies (mAbs), which induces detectable IL-2 secretion and T-cell proliferation. At 48 and 72 hr postactivation, B cells express both B7 and a third CTLA-4 counterreceptor identified by the anti-BB-1 mAb. BB-1 appears to be a molecule distinct from B7 by its expression on B7- cells and its capacity to induce T cells to proliferate without significant accumulation of IL-2. As observed for B7, costimulatory signals mediated by these alternative CTLA-4/CD28 counterreceptors are likely to be essential for generation of an immune response and their absence may result in antigen-specific tolerance. We propose the following terminology for these CTLA-4 counterreceptors: (i) B7, B7-1; (ii) early CTLA-4 binding counterreceptor, B7-2; and (iii) BB-1, B7-3. PMID:7504293

  3. Versatile strategy for controlling the specificity and activity of engineered T cells.

    PubMed

    Ma, Jennifer S Y; Kim, Ji Young; Kazane, Stephanie A; Choi, Sei-Hyun; Yun, Hwa Young; Kim, Min Soo; Rodgers, David T; Pugh, Holly M; Singer, Oded; Sun, Sophie B; Fonslow, Bryan R; Kochenderfer, James N; Wright, Timothy M; Schultz, Peter G; Young, Travis S; Kim, Chan Hyuk; Cao, Yu

    2016-01-26

    The adoptive transfer of autologous T cells engineered to express a chimeric antigen receptor (CAR) has emerged as a promising cancer therapy. Despite impressive clinical efficacy, the general application of current CAR-T--cell therapy is limited by serious treatment-related toxicities. One approach to improve the safety of CAR-T cells involves making their activation and proliferation dependent upon adaptor molecules that mediate formation of the immunological synapse between the target cancer cell and T-cell. Here, we describe the design and synthesis of structurally defined semisynthetic adaptors we refer to as "switch" molecules, in which anti-CD19 and anti-CD22 antibody fragments are site-specifically modified with FITC using genetically encoded noncanonical amino acids. This approach allows the precise control over the geometry and stoichiometry of complex formation between CD19- or CD22-expressing cancer cells and a "universal" anti-FITC-directed CAR-T cell. Optimization of this CAR-switch combination results in potent, dose-dependent in vivo antitumor activity in xenograft models. The advantage of being able to titrate CAR-T-cell in vivo activity was further evidenced by reduced in vivo toxicity and the elimination of persistent B-cell aplasia in immune-competent mice. The ability to control CAR-T cell and cancer cell interactions using intermediate switch molecules may expand the scope of engineered T-cell therapy to solid tumors, as well as indications beyond cancer therapy. PMID:26759368

  4. Interleukin-13 interferes with activation-induced t-cell apoptosis by repressing p53 expression

    PubMed Central

    Yang, Li; Xu, Ling-Zhi; Liu, Zhi-Qiang; Yang, Gui; Geng, Xiao-Rui; Mo, Li-Hua; Liu, Zhi-Gang; Zheng, Peng-Yuan; Yang, Ping-Chang

    2016-01-01

    The etiology and the underlying mechanism of CD4+ T-cell polarization are unclear. This study sought to investigate the mechanism by which interleukin (IL)-13 prevents the activation-induced apoptosis of CD4+ T cells. Here we report that CD4+ T cells expressed IL-13 receptor α2 in the intestine of sensitized mice. IL-13 suppressed both the activation-induced apoptosis of CD4+ T cells and the expression of p53 and FasL. Exposure to recombinant IL-13 inhibited activation-induced cell death (AICD) along with the expression of p53, caspase 3, and tumor necrosis factor-α in CD4+ T cells. Administration of an anti-IL-13 antibody enhanced the effect of specific immunotherapy on allergic inflammation in the mouse intestine, enforced the expression of p53 in intestinal CD4+ T cells, and enhanced the frequency of CD4+ T-cell apoptosis upon challenge with specific antigens. In summary, blocking IL-13 enhances the therapeutic effect of antigen-specific immunotherapy by regulating apoptosis and thereby enforcing AICD in CD4+ T cells. PMID:26189367

  5. Form and pattern of MUC1 expression on T cells activated in vivo or in vitro suggests a function in T-cell migration

    PubMed Central

    Correa, Isabel; Plunkett, Tim; Vlad, Anda; Mungul, Arron; Candelora-Kettel, Jessica; Burchell, Joy M; Taylor–papadimitriou, Joyce; Finn, Olivera J

    2003-01-01

    MUC1 is a transmembrane mucin that is expressed on ductal epithelial cells and epithelial malignancies and has been proposed as a target antigen for immunotherapy. The expression of MUC1 has recently been reported on T and B cells. In this study we demonstrate that following activation in vivo or activation by different stimuli in vitro, human T cells expressed MUC1 at the cell surface. However, the level of expression in activated human T cells was significantly lower than that seen on normal epithelial cells or on breast cancer cells. In contrast, resting T cells did not bind MUC1-specific monoclonal antibodies (mAbs), nor was MUC1 mRNA detectable by reverse transcription–polymerase chain reaction (RT–PCR) or Northern blot analysis in these cells. The profile of activated T-cell reactivity with different MUC1-specific antibodies suggested that the glycoform of MUC1 expressed by the activated T cells carried core 2-based O-glycans, as opposed to the core 1 structures that dominate in the cancer-associated mucin. Confocal microscopy revealed that MUC1 was uniformly distributed on the surface of activated T cells. However, when the cells were polarized in response to a migratory chemokine, MUC1 was found on the leading edge rather than on the uropod, where other large mucin-like molecules on T cells are trafficked. The concentration of MUC1 at the leading edge of polarized activated human T cells suggests that MUC1 could be involved in early interactions between T cells and endothelial cells at inflammatory sites. PMID:12519300

  6. Toward immunotherapy with redirected T cells in a large animal model: ex vivo activation, expansion, and genetic modification of canine T cells.

    PubMed

    Mata, Melinda; Vera, Juan F; Gerken, Claudia; Rooney, Cliona M; Miller, Tasha; Pfent, Catherine; Wang, Lisa L; Wilson-Robles, Heather M; Gottschalk, Stephen

    2014-10-01

    Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) has shown promising antitumor activity in early phase clinical studies, especially for hematological malignancies. However, most preclinical models do not reliably mimic human disease. We reasoned that developing an adoptive T-cell therapy approach for spontaneous osteosarcoma (OS) occurring in dogs would more closely reproduce the condition in human cancer. To generate CAR-expressing canine T cells, we developed expansion and transduction protocols that allow for the generation of sufficient numbers of CAR-expressing canine T cells for future clinical studies in dogs within 2 weeks of ex vivo culture. To evaluate the functionality of CAR-expressing canine T cells, we targeted HER2(+) OS. We demonstrate that canine OS is positive for HER2, and that canine T cells expressing a HER2-specific CAR with human-derived transmembrane and CD28.ζ signaling domains recognize and kill HER2(+) canine OS cell lines in an antigen-dependent manner. To reduce the potential immunogenicity of the CAR, we evaluated a CAR with canine-derived transmembrane and signaling domains, and found no functional difference between human and canine CARs. Hence, we have successfully developed a strategy to generate CAR-expressing canine T cells for future preclinical studies in dogs. Testing T-cell therapies in an immunocompetent, outbred animal model may improve our ability to predict their safety and efficacy before conducting studies in humans.

  7. Halofuginone inhibits NF-kappaB and p38 MAPK in activated T cells.

    PubMed

    Leiba, M; Cahalon, L; Shimoni, A; Lider, O; Zanin-Zhorov, A; Hecht, I; Sela, U; Vlodavsky, I; Nagler, A

    2006-08-01

    Halofuginone, a low molecular weight plant alkaloid, inhibits collagen alpha1 (I) gene expression in several animal models and in patients with fibrotic disease, including scleroderma and graft-versus-host disease. In addition, halofuginone has been shown to inhibit angiogenesis and tumor progression. It was demonstrated recently that halofuginone inhibits transforming growth factor-beta (TGF-beta), an important immunomodulator. The present study was undertaken to explore the effects of halofuginone on activated T cells. Peripheral blood T cells were activated by anti-CD3 monoclonal antibodies in the absence and presence of halofuginone and assessed for nuclear factor (NF)-kappaB activity, production of tumor necrosis factor alpha (TNF-alpha) and interferon-gamma (IFN-gamma), T cell apoptosis, chemotaxis, and phosphorylation of p38 mitogen-activated protein kinase (MAPK). A delayed-type hypersensitivity (DTH) model was applied to investigate the effect of halofuginone on T cells in vivo. Preincubation of activated peripheral blood T cells with 10-40 ng/ml halofuginone resulted in a significant dose-dependent decrease in NF-kappaB activity (80% inhibition following incubation with 40 ng halofuginone, P = 0.002). In addition, 40 ng/ml halofuginone inhibited secretion of TNF-alpha, IFN-gamma, interleukin (IL)-4, IL-13, and TGF-beta (P < 0.005). Similarly, halofuginone inhibited the phosphorylation of p38 MAPK and apoptosis in activated T cells (P = 0.0001 and 0.005, respectively). In contrast, T cell chemotaxis was not affected. Halofuginone inhibited DTH response in mice, indicating suppression of T cell-mediated inflammation in vivo. Halofuginone inhibits activated peripheral blood T cell functions and proinflammatory cytokine production through inhibition of NF-kappaB activation and p38 MAPK phosphorylation. It also inhibited DTH response in vivo, making it an attractive immunomodulator and anti-inflammatory agent. PMID:16769768

  8. Signals involved in T cell activation. I. Phorbol esters enhance responsiveness but cannot replace intact accessory cells in the induction of mitogen-stimulated T cell proliferation

    SciTech Connect

    Davis, L.; Lipsky, P.E.

    1985-11-01

    The role of accessory cells (AC) in the initiation of mitogen-induced T cell proliferation was examined by comparing the effect of intact macrophages (M phi) with that of 4-..beta..-phorbol 12-myristate 13-acetate (PMA). In high-density cultures, purified guinea pig T cells failed to proliferate in response to stimulation with phytohemagglutinin (PHA), concanavalin A (Con A), or PMA alone. The addition of M phi to PHA or Con A but not PMA-stimulated cultures restored T cell proliferation. The addition of PMA to high-density T cell cultures stimulated with PHA or Con A also permitted (/sup 3/H)thymidine incorporation, but was less effective than intact M phi in this regard. This action of PMA was dependent on the small number of Ac contaminating the T cell cultures as evidenced by the finding that PMA could not support mitogen responsiveness of T cells that had been depleted of Ia-bearing cells by panning, even when these cells were cultured at high density. A low-density culture system was used to examine in greater detail the possibility that PMA could completely substitute for M phi in promoting T cells activation. In low-density cultures, mitogen-induced T cell proliferation required intact M phi. These results support a model of T cell activation in which AC play at least two distinct roles. The initiation of the response requires a signal conveyed by an intact M phi, which cannot be provided by either a M phi supernatant factor or PMA. The response can be amplified by additional M phi or M phi supernatant factors. PMA can substitute for M phi in this regard and can provide the signal necessary for amplification of T cell proliferation supported by small numbers of intact AC.

  9. CD4(+) T cells from lupus-prone mice are hyperresponsive to T cell receptor engagement with low and high affinity peptide antigens: a model to explain spontaneous T cell activation in lupus.

    PubMed

    Vratsanos, G S; Jung, S; Park, Y M; Craft, J

    2001-02-01

    Polyclonal CD4(+) T cell activation is characteristic of spontaneous lupus. As a potential explanation for this phenotype, we hypothesized that T cells from lupus-prone mice are intrinsically hyperresponsive to stimulation with antigen, particularly to those peptide ligands having a low affinity for the T cell receptor (TCR). To test this hypothesis, we backcrossed the alpha and beta chain genes of the AND TCR specific for amino acids 88-104 of pigeon cytochrome C (PCC) to the Fas-intact MRL/Mp(+)(Fas-lpr) and to the H-2(k)-matched control backgrounds B10.BR and CBA/CaJ (MRL.AND, B10.AND, and CBA.AND, respectively), and assessed naive CD4(+) TCR transgenic T cell activation in vitro after its encounter with cognate antigen and lower affinity altered peptide ligands (APLs). MRL.AND T cells, compared with control B10.AND and CBA.AND cells, proliferated more when stimulated with agonist antigen. More strikingly, MRL.AND T cells proliferated significantly more and produced more interleukin 2 when stimulated with the APLs of PCC 88-104, having lower affinity for the transgenic TCR. These results imply that one of the forces driving polyclonal activation of alpha/beta T cells in lupus is an intrinsically heightened response to peptide antigen, particularly those with low affinity for the TCR, independent of the nature of the antigen-presenting cell and degree of costimulation.

  10. A C1-inhibitor-complex assay (INCA): a method to detect C1 activation in vitro and in vivo.

    PubMed

    Hack, C E; Hannema, A J; Eerenberg-Belmer, A J; Out, T A; Aalberse, R C

    1981-10-01

    A radioimmunoassay (the C1-inhibitor-complex assay, INCA) is described for the detection of complexes that are composed of at least C1s and C1-inhibitor. This INCA is based on demonstrating that C1s and C1-inhibitor (C1-In) are linked: after an incubation with anti-C1s-Sepharose, bound C1sC1-In complexes are detected by 125I-anti-C1-In. C1sC1-In complexes were prepared by the addition of a slight excess of C1s to normal human serum (NHS). As little as 2 ng C1-In bound to C1s was detected. Additional free C1s in serum hardly influenced the detection of C1sC1-In complexes. Complexes presumably composed of C1rC1s(C1-In)2 were generated by the addition of aggregated IgG to NHS. This generation was inhibited by lowering the temperature to 0 degrees C, and by EDTA, and depended on the concentration of aggregated IgG. These complexes had a sedimentation value of approximately 9S. Complexes of C1s and C1-In were also generated in NHS by the addition of DNP-albumin and protein A, but not by zymosan. The INCA was applied to blood samples from normal donors and patients. Sixteen out of 19 samples from patients with acute glomerulonephritis contained increased amounts of C1rC1s(C1-In)2 complexes as compared with the amounts in blood samples from normal donors. The INCA provides a useful tool to assess the activation of C1 in the presence of C1-In, both in vitro and in vivo.

  11. Role of monocyte fucose-receptors in T-cell fibronectin activity.

    PubMed Central

    Donson, J; Mandy, K; Feng, Z H; Mandy, S; Brown, E J; Godfrey, H P

    1991-01-01

    T-cell fibronectin (FN) is a lymphokine produced by antigen- and mitogen-activated T cells that agglutinates human monocytes at femtomolar concentrations. This extreme degree of activity derives from co-operative interactions between multiple FN domains and multiple monocyte integrin protein receptors. T-cell FN, like other FN, is a glycoprotein. The role interactions between T-cell FN carbohydrate and lectin-like monocyte surface receptors play in mediating T-cell FN activity was studied by determining the ability of monosaccharides to inhibit T-cell FN activity. L-Fucose and L-rhamnose significantly inhibited T-cell FN-mediated monocyte agglutination at concentrations as low as 0.01 mM; D-glucose, D- or L-galactose, D- or L-mannose and D-fucose were not inhibitory at 10-100 mM. This inhibition appeared to be due to interference with the binding of T-cell FN fucose residues to monocyte fucose receptors since: (i) treatment of T-cell FN with alpha-L-fucosidase abolished its agglutinating activity for human monocytes, while treatment with beta-D-galactosidase or with alpha-L-fucosidase in the presence of L-fucose had no effect; (ii) treatment of monocytes with alpha-L-fucosidase did not affect their response to T-cell FN; and (iii) L-fucose or L-rhamnose did not alter the expression of monocyte integrin FN receptors under conditions where T-cell FN-mediated monocyte agglutination was completely inhibited. In vivo, 1 mumol intracutaneous L-fucose inhibited expression of delayed hypersensitivity by 30% (P much less than 0.001); similar doses of L-rhamnose inhibited responses by 10% (P less than 0.02). These data implicate a fucose receptor in monocyte response to T-cell FN, and suggest that T-cell FN is only one of the mediators involved in initiating delayed hypersensitivity reactions in vivo. PMID:1769694

  12. Expression of T-cell-activating protein in peripheral lymphocyte subsets.

    PubMed Central

    Yeh, E T; Reiser, H; Benacerraf, B; Rock, K L

    1986-01-01

    T-cell-activating protein (TAP) is an allelic 12-kDa membrane protein that participates in T-cell activation. Soluble anti-TAP monoclonal antibodies can trigger antigen-specific, major histocompatibility complex-restricted T-cell hybridomas to produce interleukin 2 and are mitogenic for normal T cells and thymocytes. TAP is expressed on 10% of thymocytes, which are mainly cortisone-resistant and mature. In the periphery, TAP is expressed on 70% of resting T cells but not on resting B cells. In this report, we analyze in detail the nature of TAP expression on peripheral lymphocyte subsets by immunofluorescence techniques. We show that all inducer (L3T4+) T cells are TAP+. In contrast, only 50% of Lyt-2+ T cells express detectable TAP. Functional studies demonstrated that at least part of the heterogeneity of TAP expression is present in the Lyt-2+ cytolytic T-cell (CTL) subset. Unstimulated CTL precursors are TAP- but are induced to express TAP in the effector state. Furthermore, this reflects actual synthesis of TAP, as TAP is detectable on activated Lyt-2+ CTLs passaged in vitro under conditions where passive acquisition can be ruled out. To extend this observation, we have studied the expression of TAP on activated T and B cells. Upon activation, all T and B cells became TAP+. Furthermore, the TAP molecules on B and T cells are indistinguishable by NaDodSO4/polyacrylamide gel electrophoresis. This suggests that TAP expression defines further heterogeneity of lymphocytes, with activation being one parameter influencing its expression. Images PMID:3020545

  13. Bam32: a novel mediator of Erk activation in T cells.

    PubMed

    Sommers, Connie L; Gurson, Jordan M; Surana, Rishi; Barda-Saad, Mira; Lee, Jan; Kishor, Aparna; Li, Wenmei; Gasser, Adam J; Barr, Valarie A; Miyaji, Michihiko; Love, Paul E; Samelson, Lawrence E

    2008-07-01

    Bam32 (B lymphocyte adapter molecule of 32 kDa) is an adapter protein expressed in some hematopoietic cells including B and T lymphocytes. It was previously shown that Bam32-deficient mice have defects in various aspects of B cell activation including B cell receptor (BCR)-induced Erk activation, BCR-induced proliferation and T-independent antibody responses. In this study, we have examined the role of Bam32 in T cell activation using Bam32-deficient mice. By comparing CD4(+) T cells from lymph nodes of wild-type and Bam32-deficient mice, we found that Bam32 was required for optimal TCR-induced Erk activation, cytokine production, proliferation and actin-mediated spreading of CD4(+) T cells. These results indicate a novel pathway to Erk activation in T cells involving the adapter protein Bam32.

  14. Bam32: a novel mediator of Erk activation in T cells

    PubMed Central

    Sommers, Connie L.; Gurson, Jordan M.; Surana, Rishi; Barda-Saad, Mira; Lee, Jan; Kishor, Aparna; Li, WenMei; Gasser, Adam J.; Barr, Valarie A.; Miyaji, Michihiko; Love, Paul E.; Samelson, Lawrence E.

    2009-01-01

    Bam32 (B lymphocyte adapter molecule of 32 kDa) is an adapter protein expressed in some hematopoietic cells including B and T lymphocytes. It was previously shown that Bam32-deficient mice have defects in various aspects of B cell activation including B cell receptor (BCR)-induced Erk activation, BCR-induced proliferation and T-independent antibody responses. In this study, we have examined the role of Bam32 in T cell activation using Bam32-deficient mice. By comparing CD4+ T cells from lymph nodes of wild-type and Bam32-deficient mice, we found that Bam32 was required for optimal TCR-induced Erk activation, cytokine production, proliferation and actin-mediated spreading of CD4+ T cells. These results indicate a novel pathway to Erk activation in T cells involving the adapter protein Bam32. PMID:18448454

  15. A Combined Omics Approach to Generate the Surface Atlas of Human Naive CD4+ T Cells during Early T-Cell Receptor Activation*

    PubMed Central

    Graessel, Anke; Hauck, Stefanie M.; von Toerne, Christine; Kloppmann, Edda; Goldberg, Tatyana; Koppensteiner, Herwig; Schindler, Michael; Knapp, Bettina; Krause, Linda; Dietz, Katharina; Schmidt-Weber, Carsten B.; Suttner, Kathrin

    2015-01-01

    Naive CD4+ T cells are the common precursors of multiple effector and memory T-cell subsets and possess a high plasticity in terms of differentiation potential. This stem-cell-like character is important for cell therapies aiming at regeneration of specific immunity. Cell surface proteins are crucial for recognition and response to signals mediated by other cells or environmental changes. Knowledge of cell surface proteins of human naive CD4+ T cells and their changes during the early phase of T-cell activation is urgently needed for a guided differentiation of naive T cells and may support the selection of pluripotent cells for cell therapy. Periodate oxidation and aniline-catalyzed oxime ligation technology was applied with subsequent quantitative liquid chromatography-tandem MS to generate a data set describing the surface proteome of primary human naive CD4+ T cells and to monitor dynamic changes during the early phase of activation. This led to the identification of 173 N-glycosylated surface proteins. To independently confirm the proteomic data set and to analyze the cell surface by an alternative technique a systematic phenotypic expression analysis of surface antigens via flow cytometry was performed. This screening expanded the previous data set, resulting in 229 surface proteins, which were expressed on naive unstimulated and activated CD4+ T cells. Furthermore, we generated a surface expression atlas based on transcriptome data, experimental annotation, and predicted subcellular localization, and correlated the proteomics result with this transcriptional data set. This extensive surface atlas provides an overall naive CD4+ T cell surface resource and will enable future studies aiming at a deeper understanding of mechanisms of T-cell biology allowing the identification of novel immune targets usable for the development of therapeutic treatments. PMID:25991687

  16. GAD65-reactive T cells are activated in patients with autoimmune type 1a diabetes

    PubMed Central

    Viglietta, Vissia; Kent, Sally C.; Orban, Tihamer; Hafler, David A.

    2002-01-01

    Insulin-dependent type 1 diabetes is an autoimmune disease mediated by T lymphocytes recognizing pancreatic islet cell antigens. Glutamic acid decarboxylase 65 (GAD65) appears to be an important autoantigen in the disease. However, T cells from both patients with type 1 diabetes and healthy subjects vigorously proliferate in response to GAD65 stimulation ex vivo, leading us to postulate that the critical event in the onset of human diabetes is the activation of autoreactive T cells. Thus, we investigated whether GAD65-reactive T cells in patients with diabetes functioned as previously activated memory T cells, no longer requiring a second, costimulatory signal for clonal expansion. We found that in patients with new-onset type 1 diabetes, GAD65-reactive T cells were strikingly less dependent on CD28 and B7-1 costimulation to enter into cell cycle and proliferate than were equivalent cells derived from healthy controls. We hypothesize that these autoreactive T cells have been activated in vivo and have differentiated into memory cells, suggesting a pathogenic role in type 1 diabetes. In addition, we observed different effects with selective blockade of either B7-1 or B7-2 molecules; B7-1 appears to deliver a negative signal by engaging CTLA-4, while B7-2 engagement of CD28 upregulates T cell proliferation and cytokine secretion. PMID:11927616

  17. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression

    PubMed Central

    Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-01

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  18. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression.

    PubMed

    Pinton, Laura; Solito, Samantha; Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-12

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression.

  19. Unexpected T cell regulatory activity of anti-histone H1 autoantibody: Its mode of action in regulatory T cell-dependent and -independent manners

    SciTech Connect

    Takaoka, Yuki; Kawamoto, Seiji; Katayama, Akiko; Nakano, Toshiaki; Yamanaka, Yasushi; Takahashi, Miki; Shimada, Yayoi; Chiang, Kuei-Chen; Ohmori, Naoya; Aki, Tsunehiro; Goto, Takeshi; Sato, Shuji; Goto, Shigeru; Chen, Chao-Long; Ono, Kazuhisa

    2013-02-08

    Highlights: ► Anti-histone H1 autoantibody (anti-H1) acts on T cells to inhibit their activation. ► Anti-H1 suppresses T cell activation in Treg cell-dependent and -independent manners. ► Suboptimal dose of anti-H1 enhances suppressor function of Treg cells. ► High dose of anti-H1 directly inhibits T cell receptor signaling. -- Abstract: Induction of anti-nuclear antibodies against DNA or histones is a hallmark of autoimmune disorders, but their actual contribution to disease predisposition remains to be clarified. We have previously reported that autoantibodies against histone H1 work as a critical graft survival factor in a rat model of tolerogeneic liver transplantation. Here we show that an immunosuppressive anti-histone H1 monoclonal antibody (anti-H1 mAb) acts directly on T cells to inhibit their activation in response to T cell receptor (TCR) ligation. Intriguingly, the T cell activation inhibitory activity of anti-H1 mAb under suboptimal dosages required regulatory T (Treg) cells, while high dose stimulation with anti-H1 mAb triggered a Treg cell-independent, direct negative regulation of T cell activation upon TCR cross-linking. In the Treg cell-dependent mode of immunosuppressive action, anti-H1 mAb did not induce the expansion of CD4{sup +}Foxp3{sup +} Treg cells, but rather potentiated their regulatory capacity. These results reveal a previously unappreciated T cell regulatory role of anti-H1 autoantibody, whose overproduction is generally thought to be pathogenic in the autoimmune settings.

  20. Metabolic control of T-cell activation and death in SLE

    PubMed Central

    Fernandez, David; Perl, Andras

    2009-01-01

    Systemic lupus erythematosus (SLE) is characterized by abnormal T-cell activation and death, processes which are crucially dependent on the controlled production of reactive oxygen intermediates (ROI) and of ATP in mitochondria. The mitochondrial transmembrane potential (Δψm) has conclusively emerged as a critical checkpoint of ATP synthesis and cell death. Lupus T cells exhibit persistent elevation of Δψm or mitochondrial hyperpolarization (MHP) as well as depletion of ATP and glutathione which decrease activation-induced apoptosis and instead predispose T cells for necrosis, thus stimulating inflammation in SLE. NO-induced mitochondrial biogenesis in normal T cells accelerates the rapid phase and reduces the plateau of Ca2+ influx upon CD3/CD28 co-stimulation, thus mimicking the Ca2+ signaling profile of lupus T cells. Treatment of SLE patients with rapamycin improves disease activity, normalizes CD3/CD28-induced Ca2+ fluxing but fails to affect MHP, suggesting that altered Ca2+ fluxing is downstream or independent of mitochondrial dysfunction. Understanding the molecular basis and consequences of MHP is essential for controlling T-cell activation and death signaling in SLE. Lupus T cells exhibit mitochondrial dysfunctionMitochondrial hyperpolarization (MHP) and ATP depletion predispose lupus T cells to death by necrosis which is pro-inflammatoryMHP is caused by depletion of glutathione and exposure to nitric oxide (NO)NO-induced mitochondrial biogenesis regenerates the Ca2+ signaling profile of lupus T cellsRapamycin treatment normalizes Ca2+ fluxing but not MHP, suggesting that the mammalian target of rapamycin, acts as a sensor and effector of MHP in SLE PMID:18722557

  1. Interleukin-7 and Toll-Like Receptor 7 Induce Synergistic B Cell and T Cell Activation

    PubMed Central

    Bikker, Angela; Kruize, Aike A.; van der Wurff-Jacobs, Kim M. G.; Peters, Rogier P.; Kleinjan, Marije; Redegeld, Frank; de Jager, Wilco; Lafeber, Floris P. J. G.; van Roon, Joël A. G.

    2014-01-01

    Objectives To investigate the potential synergy of IL-7-driven T cell-dependent and TLR7-mediated B cell activation and to assess the additive effects of monocyte/macrophages in this respect. Methods Isolated CD19 B cells and CD4 T cells from healthy donors were co-cultured with TLR7 agonist (TLR7A, Gardiquimod), IL-7, or their combination with or without CD14 monocytes/macrophages (T/B/mono; 1 : 1 : 0,1). Proliferation was measured using 3H-thymidine incorporation and Ki67 expression. Activation marker (CD19, HLA-DR, CD25) expression was measured by FACS analysis. Immunoglobulins were measured by ELISA and release of cytokines was measured by Luminex assay. Results TLR7-induced B cell activation was not associated with T cell activation. IL-7-induced T cell activation alone and together with TLR7A synergistically increased numbers of both proliferating (Ki67+) B cells and T cells, which was further increased in the presence of monocytes/macrophages. This was associated by up regulation of activation markers on B cells and T cells. Additive or synergistic induction of production of immunoglobulins by TLR7 and IL-7 was associated by synergistic induction of T cell cytokines (IFNγ, IL-17A, IL-22), which was only evident in the presence of monocytes/macrophages. Conclusions IL-7-induced CD4 T cell activation and TLR7-induced B cell activation synergistically induce T helper cell cytokine and B cell immunoglobulin production, which is critically dependent on monocytes/macrophages. Our results indicate that previously described increased expression of IL-7 and TLR7 together with increased numbers of macrophages at sites of inflammation in autoimmune diseases like RA and pSS significantly contributes to enhanced lymphocyte activation. PMID:24740301

  2. Chronic ethanol consumption by mice results in activated splenic T cells.

    PubMed

    Song, Kejing; Coleman, Ruth A; Zhu, Xiaoyan; Alber, Carol; Ballas, Zuhair K; Waldschmidt, Thomas J; Cook, Robert T

    2002-12-01

    Previous studies have shown that T cells from human alcoholics overexpress activation or memory markers such as human leukocyte antigen-DR, CD45RO, CD57, and CD11b and may have reduced levels of CD62L. In those studies, we demonstrated that the increased CD57(+) T cell population rapidly produces interferon-gamma (IFN-gamma) and tumor necrosis factor alpha, independent of a second signal requirement, consistent with an increased effector T cell population. In contrast to the length of alcohol abuse by human alcoholics, most work with mice has involved 2-week ethanol exposures or less, which result in decreased IFN-gamma responses. In the present work, we have evaluated C57Bl/6 or BALB/c mice, which were administered 20% w/v ethanol in water for 3-13 weeks. In these mice, rapid cytoplasmic IFN-gamma expression by T cells after stimulation through the T cell receptor was significantly increased versus normals. Studies of surface-activation markers showed that T cells from chronically ethanol-fed mice had reduced CD62L expression and an increased percentage of CD44(hi) T cells. The CD44(hi) subset was largely second signal-independent for secreted IFN-gamma and interleukin (IL)-4 production at early times after stimulation. The enriched T cells of chronic ethanol mice secreted more IFN-gamma and IL-4 than controls and equivalent IL-2 at early times after stimulation (6-24 h). The overall results support the concept that in humans and mice, chronic alcohol exposure of sufficient duration results in T cell activation or sensitization in vivo and an increased percentage of the effector/memory subset.

  3. Azithromycin suppresses CD4+ T-cell activation by direct modulation of mTOR activity

    PubMed Central

    Ratzinger, F.; Haslacher, H.; Poeppl, W.; Hoermann, G.; Kovarik, J. J.; Jutz, S.; Steinberger, P.; Burgmann, H.; Pickl, W. F.; Schmetterer, K. G.

    2014-01-01

    Advanced macrolides, such as azithromycin (AZM) or clarithromycin (CLM), are antibiotics with immunomodulatory properties. Here we have sought to evaluate their in vitro influence on the activation of CD4+ T-cells. Isolated CD4+ T-cells were stimulated with agonistic anti-CD3/anti-CD28 monoclonal antibodies in the presence of 0.6 mg/L, 2.5 mg/L, 10 mg/L or 40 mg/L AZM or CLM. Cell proliferation, cytokine level in supernatants and cell viability was assessed. Intracellular signaling pathways were evaluated using reporter cell lines, FACS analysis, immunoblotting and in vitro kinase assays. AZM inhibited cell proliferation rate and cytokine secretion of CD4+ T-cells in a dose-dependent manner. Similarly, high concentrations of CLM (40 mg/L) also suppressed these T-cell functions. Analysis of molecular signaling pathways revealed that exposure to AZM reduced the phosphorylation of the S6 ribosomal protein, a downstream target of mTOR. This effect was also observed at 40 mg/L CLM. In vitro kinase studies using recombinant mTOR showed that AZM inhibited mTOR activity. In contrast to rapamycin, this inhibition was independent of FKBP12. We show for the first time that AZM and to a lesser extent CLM act as immunosuppressive agents on CD4+ T-cells by inhibiting mTOR activity. Our results might have implications for the clinical use of macrolides. PMID:25500904

  4. Janus particles as artificial antigen-presenting cells for T cell activation.

    PubMed

    Chen, Bo; Jia, Yilong; Gao, Yuan; Sanchez, Lucero; Anthony, Stephen M; Yu, Yan

    2014-01-01

    Here we show that the multifunctionality of Janus particles can be exploited for in vitro T cell activation. We engineer bifunctional Janus particles on which the spatial distribution of two ligands, anti-CD3 and fibronectin, mimics the "bull's eye" protein pattern formed in the membrane junction between a T cell and an antigen-presenting cell. Different levels of T cell activation can be achieved by simply switching the spatial distribution of the two ligands on the surfaces of the "bull's eye" particles. We find that the ligand pattern also affects clustering of intracellular proteins. This study demonstrates that anisotropic particles, such as Janus particles, can be developed as artificial antigen-presenting cells for modulating T cell activation. PMID:25343426

  5. Loss of interferon-induced Stat1 phosphorylation in activated T cells.

    PubMed

    Van De Wiele, C Justin; Marino, Julie H; Whetsell, Michael E; Vo, Stephen S; Masengale, Rhonda M; Teague, T Kent

    2004-03-01

    Modulation of cytokine responsiveness following T cell activation represents an important mechanism that shapes the fate of T cells after encounters with antigens. We activated T cells in mice with superantigen and assessed their ability to phosphorylate Stat1 in response to interferon-gamma (IFN-gamma) and IFN-alpha. After 4 h of activation in vivo, T cells became deficient in their ability to phosphorylate Stat1 in response to either cytokine. The loss of IFN sensitivity was accompanied by increased mRNA transcription for multiple suppressors of cytokine signaling (SOCS) genes (SOCS1, SOCS3, and SOCS7). The transcript levels of these SOCS were elevated only during the early hours after activation and were at or below normal levels by 60 h. Likewise, the activation-induced inhibition of IFN-alpha signaling was transient, and sensitivity was restored by 3 days postactivation. The loss of sensitivity to IFN-gamma persisted, however, and was still evident at 3 days. These data suggest that SOCS-independent mechanisms specific for inhibition of IFN-gamma signaling may be present at later stages of the T cell response. The loss of Stat1 signaling may be a factor in differentiation of T cells during and after activation, and it could also represent a protective mechanism against the toxic effects of IFN-gamma during immune responses.

  6. Epigenetic mechanisms, T-cell activation, and CCR5 genetics interact to regulate T-cell expression of CCR5, the major HIV-1 coreceptor

    PubMed Central

    Gornalusse, German G.; Mummidi, Srinivas; Gaitan, Alvaro A.; Jimenez, Fabio; Ramsuran, Veron; Picton, Anabela; Rogers, Kristen; Manoharan, Muthu Saravanan; Avadhanam, Nymisha; Murthy, Krishna K.; Martinez, Hernan; Molano Murillo, Angela; Chykarenko, Zoya A.; Hutt, Richard; Daskalakis, Demetre; Shostakovich-Koretskaya, Ludmila; Abdool Karim, Salim; Martin, Jeffrey N.; Deeks, Steven G.; Hecht, Frederick; Sinclair, Elizabeth; Clark, Robert A.; Okulicz, Jason; Valentine, Fred T.; Martinson, Neil; Tiemessen, Caroline Tanya; Ndung’u, Thumbi; Hunt, Peter W.; He, Weijing; Ahuja, Sunil K.

    2015-01-01

    T-cell expression levels of CC chemokine receptor 5 (CCR5) are a critical determinant of HIV/AIDS susceptibility, and manifest wide variations (i) between T-cell subsets and among individuals and (ii) in T-cell activation-induced increases in expression levels. We demonstrate that a unifying mechanism for this variation is differences in constitutive and T-cell activation-induced DNA methylation status of CCR5 cis-regulatory regions (cis-regions). Commencing at an evolutionarily conserved CpG (CpG −41), CCR5 cis-regions manifest lower vs. higher methylation in T cells with higher vs. lower CCR5 levels (memory vs. naïve T cells) and in memory T cells with higher vs. lower CCR5 levels. HIV-related and in vitro induced T-cell activation is associated with demethylation of these cis-regions. CCR5 haplotypes associated with increased vs. decreased gene/surface expression levels and HIV/AIDS susceptibility magnify vs. dampen T-cell activation-associated demethylation. Methylation status of CCR5 intron 2 explains a larger proportion of the variation in CCR5 levels than genotype or T-cell activation. The ancestral, protective CCR5-HHA haplotype bears a polymorphism at CpG −41 that is (i) specific to southern Africa, (ii) abrogates binding of the transcription factor CREB1 to this cis-region, and (iii) exhibits a trend for overrepresentation in persons with reduced susceptibility to HIV and disease progression. Genotypes lacking the CCR5-Δ32 mutation but with hypermethylated cis-regions have CCR5 levels similar to genotypes heterozygous for CCR5-Δ32. In HIV-infected individuals, CCR5 cis-regions remain demethylated, despite restoration of CD4+ counts (≥800 cells per mm3) with antiretroviral therapy. Thus, methylation content of CCR5 cis-regions is a central epigenetic determinant of T-cell CCR5 levels, and possibly HIV-related outcomes. PMID:26307764

  7. Epigenetic mechanisms, T-cell activation, and CCR5 genetics interact to regulate T-cell expression of CCR5, the major HIV-1 coreceptor.

    PubMed

    Gornalusse, German G; Mummidi, Srinivas; Gaitan, Alvaro A; Jimenez, Fabio; Ramsuran, Veron; Picton, Anabela; Rogers, Kristen; Manoharan, Muthu Saravanan; Avadhanam, Nymisha; Murthy, Krishna K; Martinez, Hernan; Molano Murillo, Angela; Chykarenko, Zoya A; Hutt, Richard; Daskalakis, Demetre; Shostakovich-Koretskaya, Ludmila; Abdool Karim, Salim; Martin, Jeffrey N; Deeks, Steven G; Hecht, Frederick; Sinclair, Elizabeth; Clark, Robert A; Okulicz, Jason; Valentine, Fred T; Martinson, Neil; Tiemessen, Caroline Tanya; Ndung'u, Thumbi; Hunt, Peter W; He, Weijing; Ahuja, Sunil K

    2015-08-25

    T-cell expression levels of CC chemokine receptor 5 (CCR5) are a critical determinant of HIV/AIDS susceptibility, and manifest wide variations (i) between T-cell subsets and among individuals and (ii) in T-cell activation-induced increases in expression levels. We demonstrate that a unifying mechanism for this variation is differences in constitutive and T-cell activation-induced DNA methylation status of CCR5 cis-regulatory regions (cis-regions). Commencing at an evolutionarily conserved CpG (CpG -41), CCR5 cis-regions manifest lower vs. higher methylation in T cells with higher vs. lower CCR5 levels (memory vs. naïve T cells) and in memory T cells with higher vs. lower CCR5 levels. HIV-related and in vitro induced T-cell activation is associated with demethylation of these cis-regions. CCR5 haplotypes associated with increased vs. decreased gene/surface expression levels and HIV/AIDS susceptibility magnify vs. dampen T-cell activation-associated demethylation. Methylation status of CCR5 intron 2 explains a larger proportion of the variation in CCR5 levels than genotype or T-cell activation. The ancestral, protective CCR5-HHA haplotype bears a polymorphism at CpG -41 that is (i) specific to southern Africa, (ii) abrogates binding of the transcription factor CREB1 to this cis-region, and (iii) exhibits a trend for overrepresentation in persons with reduced susceptibility to HIV and disease progression. Genotypes lacking the CCR5-Δ32 mutation but with hypermethylated cis-regions have CCR5 levels similar to genotypes heterozygous for CCR5-Δ32. In HIV-infected individuals, CCR5 cis-regions remain demethylated, despite restoration of CD4+ counts (≥800 cells per mm(3)) with antiretroviral therapy. Thus, methylation content of CCR5 cis-regions is a central epigenetic determinant of T-cell CCR5 levels, and possibly HIV-related outcomes.

  8. Phosphoantigen Burst upon Plasmodium falciparum Schizont Rupture Can Distantly Activate Vγ9Vδ2 T Cells.

    PubMed

    Guenot, Marianne; Loizon, Séverine; Howard, Jennifer; Costa, Giulia; Baker, David A; Mohabeer, Shaneel Y; Troye-Blomberg, Marita; Moreau, Jean-François; Déchanet-Merville, Julie; Mercereau-Puijalon, Odile; Mamani-Matsuda, Maria; Behr, Charlotte

    2015-10-01

    Malaria induces potent activation and expansion of the Vγ9Vδ2 subpopulation of γδT cells, which inhibit the Plasmodium falciparum blood cycle through soluble cytotoxic mediators, abrogating merozoite invasion capacity. Intraerythrocytic stages efficiently trigger Vγ9Vδ2 T-cell activation and degranulation through poorly understood mechanisms. P. falciparum blood-stage extracts are known to contain phosphoantigens able to stimulate Vγ9Vδ2 T cells, but how these are presented by intact infected red blood cells (iRBCs) remains elusive. Here we show that, unlike activation by phosphoantigen-expressing cells, Vγ9Vδ2 T-cell activation by intact iRBCs is independent of butyrophilin expression by the iRBC, and contact with an intact iRBC is not required. Moreover, blood-stage culture supernatants proved to be as potent activators of Vγ9Vδ2 T cells as iRBCs. Bioactivity in the microenvironment is attributable to phosphoantigens, as it is dependent on the parasite DOXP pathway, on Vγ9Vδ2 TCR signaling, and on butyrophilin expression by Vγ9Vδ2 T cells. Kinetic studies showed that the phosphoantigens were released at the end of the intraerythrocytic cycle at the time of parasite egress. We document exquisite sensitivity of Vγ9Vδ2 T cells, which respond to a few thousand parasites. These data unravel a novel framework, whereby release of phosphoantigens into the extracellular milieu by sequestered parasites likely promotes activation of distant Vγ9Vδ2 T cells that in turn exert remote antiparasitic functions.

  9. Reduced Frequency of Memory T Cells and Increased Th17 Responses in Patients with Active Tuberculosis

    PubMed Central

    Marín, Nancy D.; París, Sara C.; Rojas, Mauricio

    2012-01-01

    Phenotypic and functional alterations in Mycobacterium tuberculosis T cell subsets have been reported in patients with active tuberculosis. A better understanding of these alterations will increase the knowledge about immunopathogenesis and also may contribute to the development of new diagnostics and prophylactic strategies. Here, the ex vivo phenotype of CD4+ and CD8+ T cells and the frequency and phenotype of gamma interferon (IFN-γ)- and interleukin 17 (IL-17)-producing cells elicited in short-term and long-term cultures following CFP-10 and purified protein derivative (PPD) stimulation were determined in noninfected persons (non-TBi), latently infected persons (LTBi), and patients with active tuberculosis (ATB). Phenotypic characterization of T cells was done based on the expression of CD45RO and CD27. Results show that ATB had a reduced frequency of circulating CD4+ CD45RO+ CD27+ T cells and an increased frequency of CD4+ CD45RO− CD27+ T cells. ATB also had a higher frequency of circulating IL-17-producing CD4+ T cells than did LTBi after PPD stimulation, whereas LTBi had more IFN-γ-producing CD4+ T cells than did non-TBi. The phenotype of IFN-γ-producing cells at 24 h differs from the phenotype of IL-17-producing cells with no differences between LTBi and ATB. At 144 h, IFN-γ- and IL-17-producing cells were mainly CD45RO+ CD27+ T cells and they were more frequent in ATB. These results suggest that M. tuberculosis infection induces alterations in T cells which interfere with an adequate specific immune response. PMID:22914361

  10. Reduced frequency of memory T cells and increased Th17 responses in patients with active tuberculosis.

    PubMed

    Marín, Nancy D; París, Sara C; Rojas, Mauricio; García, Luis F

    2012-10-01

    Phenotypic and functional alterations in Mycobacterium tuberculosis T cell subsets have been reported in patients with active tuberculosis. A better understanding of these alterations will increase the knowledge about immunopathogenesis and also may contribute to the development of new diagnostics and prophylactic strategies. Here, the ex vivo phenotype of CD4(+) and CD8(+) T cells and the frequency and phenotype of gamma interferon (IFN-γ)- and interleukin 17 (IL-17)-producing cells elicited in short-term and long-term cultures following CFP-10 and purified protein derivative (PPD) stimulation were determined in noninfected persons (non-TBi), latently infected persons (LTBi), and patients with active tuberculosis (ATB). Phenotypic characterization of T cells was done based on the expression of CD45RO and CD27. Results show that ATB had a reduced frequency of circulating CD4(+) CD45RO(+) CD27(+) T cells and an increased frequency of CD4(+) CD45RO(-) CD27(+) T cells. ATB also had a higher frequency of circulating IL-17-producing CD4(+) T cells than did LTBi after PPD stimulation, whereas LTBi had more IFN-γ-producing CD4(+) T cells than did non-TBi. The phenotype of IFN-γ-producing cells at 24 h differs from the phenotype of IL-17-producing cells with no differences between LTBi and ATB. At 144 h, IFN-γ- and IL-17-producing cells were mainly CD45RO(+) CD27(+) T cells and they were more frequent in ATB. These results suggest that M. tuberculosis infection induces alterations in T cells which interfere with an adequate specific immune response.

  11. Ectonucleotidase activity and immunosuppression in astrocyte-CD4 T cell bidirectional signaling

    PubMed Central

    Filipello, Fabia; Romagnani, Andrea; Mazzitelli, Sonia; Matteoli, Michela; Verderio, Claudia; Grassi, Fabio

    2016-01-01

    Astrocytes play a crucial role in neuroinflammation as part of the glia limitans, which regulates infiltration of the brain parenchyma by leukocytes. The signaling pathways and molecular events, which result from the interaction of activated T cells with astrocytes are poorly defined. Here we show that astrocytes promote the expression and enzymatic activity of CD39 and CD73 ectonucleotidases in recently activated CD4 cells by a contact dependent mechanism that is independent of T cell receptor interaction with class II major histocompatibility complex (MHC). Transforming growth factor-β (TGF-β) is robustly upregulated and sufficient to promote ectonucleotidases expression. T cell adhesion to astrocyte results in differentiation to an immunosuppressive phenotype defined by expression of the transcription factor Rorγt, which characterizes the CD4 T helper 17 subset. CD39 activity in T cells in turn inhibits spontaneous calcium oscillations in astrocytes that correlated with enhanced and reduced transcription of CCL2 chemokine and Sonic hedgehog (Shh), respectively. We hypothesize this TCR-independent interaction promote an immunosuppressive program in T cells to control possible brain injury by deregulated T cell activation during neuroinflammation. On the other hand, the increased secretion of CCL2 with concomitant reduction of Shh might promote leukocytes extravasation into the brain parenchyma. PMID:26784253

  12. The glycosyl phosphatidylinositol anchor is critical for Ly-6A/E- mediated T cell activation

    PubMed Central

    1991-01-01

    Ly-6E, a glycosyl phosphatidylinositol (GPI)-anchored murine alloantigen that can activate T cells upon antibody cross-linking, has been converted into an integral membrane protein by gene fusion. This fusion product, designated Ly-6EDb, was characterized in transiently transfected COS cells and demonstrated to be an integral cell surface membrane protein. Furthermore, the fusion antigen can be expressed on the surface of the BW5147 class "E" mutant cell line, which only expresses integral membrane proteins but not GPI-anchored proteins. The capability of this fusion antigen to activate T cells was examined by gene transfer studies in D10G4.1, a type 2 T cell helper clones. When transfected into D10 cells, the GPI-anchored Ly-6E antigen, as well as the endogenous GPI-anchored Ly-6A antigen, can initiate T cell activation upon antibody cross-linking. In contrast, the transmembrane anchored Ly-6EDb antigen was unable to mediate T cell activation. Our results demonstrate that the GPI-anchor is critical to Ly-6A/E-mediated T cell activation. PMID:1825084

  13. CD4 T cell activation by B cells in human Leishmania (Viannia) infection

    PubMed Central

    2014-01-01

    Background An effective adaptive immune response requires activation of specific CD4 T cells. The capacity of B cells to activate CD4 T cells in human cutaneous leishmaniasis caused by Leishmania (Viannia) has not been evaluated. Methods CD4 T cell activation by B cells of cutaneous leishmaniasis patients was evaluated by culture of PBMCs or purified B cells and CD4 T cells with Leishmania panamensis antigens. CD4 T cell and B cell activation markers were evaluated by flow cytometry and 13 cytokines were measured in supernatants with a bead-based capture assay. The effect of Leishmania antigens on BCR-mediated endocytosis of ovalbumin was evaluated in the Ramos human B cell line by targeting the antigen with anti-IgM-biotin and anti-biotin-ovalbumin-FITC. Results Culture of PBMCs from cutaneous leishmaniasis patients with Leishmania antigens resulted in upregulation of the activation markers CD25 and CD69 as well as increased frequency of CD25hiCD127- cells among CD4 T cells. Concomitantly, B cells upregulated the costimulatory molecule CD86. These changes were not observed in PBMCs from healthy subjects, indicating participation of Leishmania-specific lymphocytes expanded in vivo. Purified B cells from these patients, when interacting with purified CD4 T cells and Leishmania antigens, were capable of inducing significant increases in CD25 and CD69 expression and CD25hiCD127- frequency in CD4 T cells. These changes were associated with upregulation of CD86 in B cells. Comparison of changes in CD4 T cell activation parameters between PBMC and B cell/CD4 T cell cultures showed no statistically significant differences; further, significant secretion of IFN-γ, TNF-α, IL-6 and IL-13 was induced in both types of cultures. Additionally, culture with Leishmania antigens enhanced BCR-mediated endocytosis of ovalbumin in Ramos human B cells. Conclusions The capacity of B cells specific for Leishmania antigens in peripheral blood of cutaneous leishmaniasis patients to

  14. Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection

    PubMed Central

    Agrati, C; Castilletti, C; Casetti, R; Sacchi, A; Falasca, L; Turchi, F; Tumino, N; Bordoni, V; Cimini, E; Viola, D; Lalle, E; Bordi, L; Lanini, S; Martini, F; Nicastri, E; Petrosillo, N; Puro, V; Piacentini, M; Di Caro, A; Kobinger, G P; Zumla, A; Ippolito, G; Capobianchi, M R

    2016-01-01

    Data on immune responses during human Ebola virus disease (EVD) are scanty, due to limitations imposed by biosafety requirements and logistics. A sustained activation of T-cells was recently described but functional studies during the acute phase of human EVD are still missing. Aim of this work was to evaluate the kinetics and functionality of T-cell subsets, as well as the expression of activation, autophagy, apoptosis and exhaustion markers during the acute phase of EVD until recovery. Two EVD patients admitted to the Italian National Institute for Infectious Diseases, Lazzaro Spallanzani, were sampled sequentially from soon after symptom onset until recovery and analyzed by flow cytometry and ELISpot assay. An early and sustained decrease of CD4 T-cells was seen in both patients, with an inversion of the CD4/CD8 ratio that was reverted during the recovery period. In parallel with the CD4 T-cell depletion, a massive T-cell activation occurred and was associated with autophagic/apoptotic phenotype, enhanced expression of the exhaustion marker PD-1 and impaired IFN-gamma production. The immunological impairment was accompanied by EBV reactivation. The association of an early and sustained dysfunctional T-cell activation in parallel to an overall CD4 T-cell decline may represent a previously unknown critical point of Ebola virus (EBOV)-induced immune subversion. The recent observation of late occurrence of EBOV-associated neurological disease highlights the importance to monitor the immuno-competence recovery at discharge as a tool to evaluate the risk of late sequelae associated with resumption of EBOV replication. Further studies are required to define the molecular mechanisms of EVD-driven activation/exhaustion and depletion of T-cells. PMID:27031961

  15. Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection.

    PubMed

    Agrati, C; Castilletti, C; Casetti, R; Sacchi, A; Falasca, L; Turchi, F; Tumino, N; Bordoni, V; Cimini, E; Viola, D; Lalle, E; Bordi, L; Lanini, S; Martini, F; Nicastri, E; Petrosillo, N; Puro, V; Piacentini, M; Di Caro, A; Kobinger, G P; Zumla, A; Ippolito, G; Capobianchi, M R

    2016-01-01

    Data on immune responses during human Ebola virus disease (EVD) are scanty, due to limitations imposed by biosafety requirements and logistics. A sustained activation of T-cells was recently described but functional studies during the acute phase of human EVD are still missing. Aim of this work was to evaluate the kinetics and functionality of T-cell subsets, as well as the expression of activation, autophagy, apoptosis and exhaustion markers during the acute phase of EVD until recovery. Two EVD patients admitted to the Italian National Institute for Infectious Diseases, Lazzaro Spallanzani, were sampled sequentially from soon after symptom onset until recovery and analyzed by flow cytometry and ELISpot assay. An early and sustained decrease of CD4 T-cells was seen in both patients, with an inversion of the CD4/CD8 ratio that was reverted during the recovery period. In parallel with the CD4 T-cell depletion, a massive T-cell activation occurred and was associated with autophagic/apoptotic phenotype, enhanced expression of the exhaustion marker PD-1 and impaired IFN-gamma production. The immunological impairment was accompanied by EBV reactivation. The association of an early and sustained dysfunctional T-cell activation in parallel to an overall CD4 T-cell decline may represent a previously unknown critical point of Ebola virus (EBOV)-induced immune subversion. The recent observation of late occurrence of EBOV-associated neurological disease highlights the importance to monitor the immuno-competence recovery at discharge as a tool to evaluate the risk of late sequelae associated with resumption of EBOV replication. Further studies are required to define the molecular mechanisms of EVD-driven activation/exhaustion and depletion of T-cells.

  16. Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection.

    PubMed

    Agrati, C; Castilletti, C; Casetti, R; Sacchi, A; Falasca, L; Turchi, F; Tumino, N; Bordoni, V; Cimini, E; Viola, D; Lalle, E; Bordi, L; Lanini, S; Martini, F; Nicastri, E; Petrosillo, N; Puro, V; Piacentini, M; Di Caro, A; Kobinger, G P; Zumla, A; Ippolito, G; Capobianchi, M R

    2016-01-01

    Data on immune responses during human Ebola virus disease (EVD) are scanty, due to limitations imposed by biosafety requirements and logistics. A sustained activation of T-cells was recently described but functional studies during the acute phase of human EVD are still missing. Aim of this work was to evaluate the kinetics and functionality of T-cell subsets, as well as the expression of activation, autophagy, apoptosis and exhaustion markers during the acute phase of EVD until recovery. Two EVD patients admitted to the Italian National Institute for Infectious Diseases, Lazzaro Spallanzani, were sampled sequentially from soon after symptom onset until recovery and analyzed by flow cytometry and ELISpot assay. An early and sustained decrease of CD4 T-cells was seen in both patients, with an inversion of the CD4/CD8 ratio that was reverted during the recovery period. In parallel with the CD4 T-cell depletion, a massive T-cell activation occurred and was associated with autophagic/apoptotic phenotype, enhanced expression of the exhaustion marker PD-1 and impaired IFN-gamma production. The immunological impairment was accompanied by EBV reactivation. The association of an early and sustained dysfunctional T-cell activation in parallel to an overall CD4 T-cell decline may represent a previously unknown critical point of Ebola virus (EBOV)-induced immune subversion. The recent observation of late occurrence of EBOV-associated neurological disease highlights the importance to monitor the immuno-competence recovery at discharge as a tool to evaluate the risk of late sequelae associated with resumption of EBOV replication. Further studies are required to define the molecular mechanisms of EVD-driven activation/exhaustion and depletion of T-cells. PMID:27031961

  17. Distinct fates of monocytes and T cells directly activated by Pseudomonas aeruginosa exoenzyme S.

    PubMed

    Epelman, Slava; Neely, Graham G; Ma, Ling Ling; Gjomarkaj, Mark; Pace, Elisabetta; Melis, Mario; Woods, Donald E; Mody, Christopher H

    2002-03-01

    Gram-negative infections can cause overwhelming inflammatory responses. Although factors other than LPS are clearly involved, these factors and their mechanisms of action have been poorly defined. During studies of LPS-independent inflammatory responses of the gram-negative pathogen Pseudomonas aeruginosa, an important virulence factor (exoenzyme S) was shown to be a potent mitogen for T cells. The current work demonstrates that exoenzyme S selectively induced transcription and secretion of biologically active cytokines and chemokines (chemotactic for neutrophils and T cells) from monocytes. Exoenzyme S stimulated highly purified monocytes independent of T cells. In addition, exoenzyme S stimulated T cells directly; neither T-cell activation (CD69) nor apoptosis (hypodiploidy) required the presence of monocytes. However, T-cell activation was enhanced via a noncontact-dependent mechanism as a result of the secretion of TNF-alpha and IL-6. This study identifies a unique property of a gram-negative-derived microbial product capable of activating multiple cell types and suggests a mechanism by which exoenzyme S contributes to the immunopathogenesis of cystic fibrosis and sepsis in patients infected with P. aeruginosa. PMID:11867683

  18. Friend of GATA-1 Represses GATA-3–dependent Activity in CD4+ T Cells

    PubMed Central

    Zhou, Meixia; Ouyang, Wenjun; Gong, Qian; Katz, Samuel G.; White, J. Michael; Orkin, Stuart H.; Murphy, Kenneth M.

    2001-01-01

    The development of naive CD4+ T cells into a T helper (Th) 2 subset capable of producing interleukin (IL)-4, IL-5, and IL-13 involves a signal transducer and activator of transcription (Stat)6-dependent induction of GATA-3 expression, followed by Stat6-independent GATA-3 autoactivation. The friend of GATA (FOG)-1 protein regulates GATA transcription factor activity in several stages of hematopoietic development including erythrocyte and megakaryocyte differentiation, but whether FOG-1 regulates GATA-3 in T cells is uncertain. We show that FOG-1 can repress GATA-3–dependent activation of the IL-5 promoter in T cells. Also, FOG-1 overexpression during primary activation of naive T cells inhibited Th2 development in CD4+ T cells. FOG-1 fully repressed GATA-3–dependent Th2 development and GATA-3 autoactivation, but not Stat6-dependent induction of GATA-3. FOG-1 overexpression repressed development of Th2 cells from naive T cells, but did not reverse the phenotype of fully committed Th2 cells. Thus, FOG-1 may be one factor capable of regulating the Th2 development. PMID:11714753

  19. Necroptosis of Dendritic Cells Promotes Activation of γδ T Cells.

    PubMed

    Collins, Cheryl C; Bashant, Kathleen; Erikson, Cuixia; Thwe, Phyu Myat; Fortner, Karen A; Wang, Hong; Morita, Craig T; Budd, Ralph C

    2016-01-01

    γδ T cells function at the interface between innate and adaptive immunity and have well-demonstrated roles in response to infection, autoimmunity and tumors. A common characteristic of these seemingly disparate conditions may be cellular stress or death. However, the conditions under which ligands for γδ T cells are induced or exposed remain largely undefined. We observed that induction of necroptosis of murine or human dendritic cells (DC) by inhibition of caspase activity paradoxically augments their ability to activate γδ T cells. Furthermore, upregulation of the stabilizer of caspase-8 activity, c-FLIP, by IL-4, not only greatly reduced the susceptibility of DC to necroptosis, but also considerably decreased their ability to activate γδ T cells. Collectively, these findings suggest that the induction of necroptosis in DC upregulates or exposes the expression of γδ T cell ligands, and they support the view that γδ T cells function in the immune surveillance of cell stress. PMID:27431410

  20. Tissue signatures influence the activation of intrahepatic CD8+ T cells against malaria sporozoites

    PubMed Central

    Morrot, Alexandre; Rodrigues, Maurício M.

    2014-01-01

    Plasmodium sporozoites and liver stages express antigens that are targeted to the MHC-Class I antigen-processing pathway. After the introduction of Plasmodium sporozoites by Anopheles mosquitoes, bone marrow-derived dendritic cells in skin-draining lymph nodes are the first cells to cross-present parasite antigens and elicit specific CD8+ T cells. One of these antigens is the immunodominant circumsporozoite protein (CSP). The CD8+ T cell-mediated protective immune response against CSP is dependent on the interleukin loop involving IL-4 receptor expression on CD8+ cells and IL-4 secretion by CD4+ T cell helpers. In a few days, these CD8+ T cells re-circulate to secondary lymphoid organs and the liver. In the liver, the hepatic sinusoids are enriched with cells, such as dendritic, sinusoidal endothelial and Kupffer cells, that are able to cross-present MHC class I antigens to intrahepatic CD8+ T cells. Specific CD8+ T cells actively find infected hepatocytes and target intra-cellular parasites through mechanisms that are both interferon-γ-dependent and -independent. Immunity is mediated by CD8+ T effector or effector-memory cells and, when present in high numbers, these cells can provide sterilizing immunity. Human vaccination trials with recombinant formulations or attenuated sporozoites have yet to achieve the high numbers of specific effector T cells that are required for sterilizing immunity. In spite of the limited number of specific CD8+ T cells, attenuated sporozoites provided multiple times by the endovenous route provided a high degree of protective immunity. These observations highlight that CD8+ T cells may be useful for improving antibody-mediated protective immunity to pre-erythrocytic stages of malaria parasites. PMID:25202304

  1. Cish actively silences TCR signaling in CD8+ T cells to maintain tumor tolerance

    PubMed Central

    Guittard, Geoffrey C.; Franco, Zulmarie; Crompton, Joseph G.; Eil, Robert L.; Patel, Shashank J.; Ji, Yun; Van Panhuys, Nicholas; Klebanoff, Christopher A.; Sukumar, Madhusudhanan; Clever, David; Chichura, Anna; Roychoudhuri, Rahul; Varma, Rajat; Wang, Ena; Gattinoni, Luca; Marincola, Francesco M.; Balagopalan, Lakshmi; Samelson, Lawrence E.

    2015-01-01

    Improving the functional avidity of effector T cells is critical in overcoming inhibitory factors within the tumor microenvironment and eliciting tumor regression. We have found that Cish, a member of the suppressor of cytokine signaling (SOCS) family, is induced by TCR stimulation in CD8+ T cells and inhibits their functional avidity against tumors. Genetic deletion of Cish in CD8+ T cells enhances their expansion, functional avidity, and cytokine polyfunctionality, resulting in pronounced and durable regression of established tumors. Although Cish is commonly thought to block STAT5 activation, we found that the primary molecular basis of Cish suppression is through inhibition of TCR signaling. Cish physically interacts with the TCR intermediate PLC-γ1, targeting it for proteasomal degradation after TCR stimulation. These findings establish a novel targetable interaction that regulates the functional avidity of tumor-specific CD8+ T cells and can be manipulated to improve adoptive cancer immunotherapy. PMID:26527801

  2. Interleukin-7 induces HIV replication in primary naive T cells through a nuclear factor of activated T cell (NFAT)-dependent pathway

    SciTech Connect

    Managlia, Elizabeth Z. . E-mail: lalharth@rush.edu

    2006-07-05

    Interleukin (IL)-7 plays several roles critical to T cell maturation, survival, and homeostasis. Because of these functions, IL-7 is under investigation as an immune-modulator for therapeutic use in lymphopenic clinical conditions, including HIV. We reported that naive T cells, typically not permissive to HIV, can be productively infected when pre-treated with IL-7. We evaluated the mechanism by which IL-7-mediates this effect. IL-7 potently up-regulated the transcriptional factor NFAT, but had no effect on NF{kappa}B. Blocking NFAT activity using a number of reagents, such as Cyclosporin A, FK-506, or the NFAT-specific inhibitor known as VIVIT peptide, all markedly reduced IL-7-mediated induction of HIV replication in naive T cells. Additional neutralization of cytokines present in IL-7-treated cultures and/or those that have NFAT-binding sequences within their promotors indicated that IL-10, IL-4, and most significantly IFN{gamma}, all contribute to IL-7-induction of HIV productive replication in naive T cells. These data clarify the mechanism by which IL-7 can overcome the block to HIV productive infection in naive T cells, despite their quiescent cell status. These findings are relevant to the treatment of HIV disease and understanding HIV pathogenesis in the naive CD4+ T cell compartment, especially in light of the vigorous pursuit of IL-7 as an in vivo immune modulator.

  3. T-cell activation or tolerization: the Yin and Yang of bacterial superantigens

    PubMed Central

    Sähr, Aline; Förmer, Sandra; Hildebrand, Dagmar; Heeg, Klaus

    2015-01-01

    Bacterial superantigens (SAg) are exotoxins from pathogens which interact with innate and adaptive immune cells. The paradox that SAgs cause activation and inactivation/anergy of T-cells was soon recognized. The structural and molecular events following SAg binding to antigen presenting cells (APCs) followed by crosslinking of T-cell receptors were characterized in detail. Activation, cytokine burst and T-cell anergy have been described in vitro and in vivo. Later it became clear that SAg-induced T-cell anergy is in part caused by SAg-dependent activation of T-regulatory cells (Tregs). Although the main focus of analyses was laid on T-cells, it was also shown that SAg binding to MHC class II molecules on APCs induces a signal, which leads to activation and secretion of pro-inflammatory cytokines. Accordingly APCs are mandatory for T-cell activation. So far it is not known, whether APCs play a role during SAg-triggered activation of Tregs. We therefore tested whether in SAg (Streptococcal pyrogenic exotoxin A) -treated APCs an anti-inflammatory program is triggered in addition. We show here that not only the anti-inflammatory cytokine IL-10 and the co-inhibitory surface molecule PD-L1 (CD274) but also inhibitory effector systems like indoleamine 2,3-dioxygenase (IDO) or intracellular negative feedback loops (suppressor of cytokine signaling molecules, SOCS) are induced by SAgs. Moreover, cyclosporine A completely prevented induction of this program. We therefore propose that APCs triggered by SAgs play a key role in T-cell activation as well as inactivation and induction of Treg cells. PMID:26539181

  4. Astragaloside II triggers T cell activation through regulation of CD45 protein tyrosine phosphatase activity

    PubMed Central

    Wan, Chun-ping; Gao, Li-xin; Hou, Li-fei; Yang, Xiao-qian; He, Pei-lan; Yang, Yi-fu; Tang, Wei; Yue, Jian-min; Li, Jia; Zuo, Jian-ping

    2013-01-01

    Aim: To investigate the immunomodulating activity of astragalosides, the active compounds from a traditional tonic herb Astragalus membranaceus Bge, and to explore the molecular mechanisms underlying the actions, focusing on CD45 protein tyrosine phosphatase (CD45 PTPase), which plays a critical role in T lymphocyte activation. Methods: Primary splenocytes and T cells were prepared from mice. CD45 PTPase activity was assessed using a colorimetric assay. Cell proliferation was measured using a [3H]-thymidine incorporation assay. Cytokine proteins and mRNAs were examined with ELISA and RT-PCR, respectively. Activation markers, including CD25 and CD69, were analyzed using flow cytometry. Activation of LCK (Tyr505) was detected using Western blot analysis. Mice were injected with the immunosuppressant cyclophosphamide (CTX, 80 mg/kg), and administered astragaloside II (50 mg/kg). Results: Astragaloside I, II, III, and IV concentration-dependently increased the CD45-mediated of pNPP/OMFP hydrolysis with the EC50 values ranged from 3.33 to 10.42 μg/mL. Astragaloside II (10 and 30 nmol/L) significantly enhanced the proliferation of primary splenocytes induced by ConA, alloantigen or anti-CD3. Astragaloside II (30 nmol/L) significantly increased IL-2 and IFN-γ secretion, upregulated the mRNA levels of IFN-γ and T-bet in primary splenocytes, and promoted CD25 and CD69 expression on primary CD4+ T cells upon TCR stimulation. Furthermore, astragaloside II (100 nmol/L) promoted CD45-mediated dephosphorylation of LCK (Tyr505) in primary T cells, which could be blocked by a specific CD45 PTPase inhibitor. In CTX-induced immunosuppressed mice, oral administration of astragaloside II restored the proliferation of splenic T cells and the production of IFN-γ and IL-2. However, astragaloside II had no apparent effects on B cell proliferation. Conclusion: Astragaloside II enhances T cell activation by regulating the activity of CD45 PTPase, which may explain why Astragalus

  5. Frequency of IFNγ-producing T cells correlates with seroreactivity and activated T cells during canine Trypanosoma cruzi infection.

    PubMed

    Hartley, Ashley N; Cooley, Gretchen; Gwyn, Sarah; Orozco, Marcela M; Tarleton, Rick L

    2014-01-01

    Vaccines to prevent Trypanosoma cruzi infection in humans or animals are not available, and in many settings, dogs are an important source of domestic infection for the insect vector. Identification of infected canines is crucial for evaluating peridomestic transmission dynamics and parasite control strategies. As immune control of T. cruzi infection is dependent on humoral and cell-mediated immune responses, we aimed to define a serodiagnostic assay and T cell phenotypic markers for identifying infected dogs and studying the canine T. cruzi-specific immune response. Plasma samples and peripheral blood mononuclear cells (PBMCs) were obtained from forty-two dogs living in a T. cruzi-endemic region. Twenty dogs were known to be seropositive and nine seronegative by conventional serologic tests two years prior to our study. To determine canine seroreactivity, we tested sera or plasma samples in a multiplex bead array against eleven recombinant T. cruzi proteins. Ninety-four percent (17/18) of dogs positive by multiplex serology were initially positive by conventional serology. The frequency of IFNγ-producing cells in PBMCs responding to T. cruzi correlated to serological status, identifying 95% of multiplex seropositive dogs. Intracellular staining identified CD4+ and CD8+ T cell populations as the sources of T. cruzi lysate-induced IFNγ. Low expression of CCR7 and CD62L on CD4+ and CD8+ T cells suggested a predominance of effector/effector memory T cells in seropositive canines. These results are the first, to our knowledge, to correlate T. cruzi-specific antibody responses with T cell responses in naturally infected dogs and validate these methods for identifying dogs exposed to T. cruzi. PMID:24456537

  6. Allopurinol reduces antigen-specific and polyclonal activation of human T cells

    PubMed Central

    Pérez-Mazliah, Damián; Albareda, María C.; Alvarez, María G.; Lococo, Bruno; Bertocchi, Graciela L.; Petti, Marcos; Viotti, Rodolfo J.; Laucella, Susana A.

    2012-01-01

    Allopurinol is the most popular commercially available xanthine oxidase inhibitor and it is widely used for treatment of symptomatic hyperuricaemia, or gout. Although, several anti-inflammatory actions of allopurinol have been demonstrated in vivo and in vitro, there have been few studies on the action of allopurinol on T cells. In the current study, we have assessed the effect of allopurinol on antigen-specific and mitogen-driven activation and cytokine production in human T cells. Allopurinol markedly decreased the frequency of IFN-γ and IL-2-producing T cells, either after polyclonal or antigen-specific stimulation with Herpes Simplex virus 1, Influenza (Flu) virus, tetanus toxoid and Trypanosoma cruzi-derived antigens. Allopurinol attenuated CD69 upregulation after CD3 and CD28 engagement and significantly reduced the levels of spontaneous and mitogen-induced intracellular reactive oxygen species in T cells. The diminished T cell activation and cytokine production in the presence of allopurinol support a direct action of allopurinol on human T cells, offering a potential pharmacological tool for the management of cell-mediated inflammatory diseases. PMID:23049532

  7. LYSOPHOSPHATIDIC ACID INHIBITS CD8 T CELL ACTIVATION AND CONTROL OF TUMOR PROGRESSION

    PubMed Central

    Oda, Shannon K.; Strauch, Pamela; Fujiwara, Yuko; Al-Shami, Amin; Oravecz, Tamas; Tigyi, Gabor; Pelanda, Roberta; Torres, Raul M.

    2013-01-01

    CD8 T lymphocytes are able to eliminate nascent tumor cells through a process referred to as immune surveillance. However, multiple inhibitory mechanisms within the tumor microenvironment have been described that impede tumor rejection by CD8 T cells, including increased signaling by inhibitory receptors. Lysophosphatidic acid (LPA) is a bioactive lysophospholipid that has been shown repeatedly to promote diverse cellular processes benefiting tumorigenesis. Accordingly, the increased expression of LPA and LPA receptors is a common feature of diverse tumor cell lineages and can result in elevated systemic LPA levels. LPA is recognized by at least 6 distinct G-protein-coupled receptors and several of which are expressed by T cells, although the precise role of LPA signaling in CD8 T cell activation and function has not been defined. Here, we demonstrate that LPA signaling via the LPA5 receptor expressed by CD8 T cells suppresses antigen receptor signaling, cell activation and proliferation in vitro and in vivo. Importantly, in a mouse melanoma model tumor-specific CD8 T cells that are LPA5-deficient are able to control tumor growth significantly better than wild-type tumor-specific CD8 T cells. Together, these data suggest that the production of LPA by tumors serves not only in an autocrine manner to promote tumorigenesis but also as a mechanism to suppress adaptive immunity and highlights a potential novel target for cancer treatment. PMID:24455753

  8. B7-H4 Treatment of T Cells Inhibits ERK, JNK, p38, and AKT Activation

    PubMed Central

    Wang, Xiaojie; Hao, Jianqiang; Metzger, Daniel L.; Ao, Ziliang; Chen, Lieping; Ou, Dawei; Verchere, C. Bruce; Mui, Alice; Warnock, Garth L.

    2012-01-01

    B7-H4 is a newly identified B7 homolog that plays an important role in maintaining T-cell homeostasis by inhibiting T-cell proliferation and lymphokine-secretion. In this study, we investigated the signal transduction pathways inhibited by B7-H4 engagement in mouse T cells. We found that treatment of CD3+ T cells with a B7-H4.Ig fusion protein inhibits anti-CD3 elicited T-cell receptor (TCR)/CD28 signaling events, including phosphorylation of the MAP kinases, ERK, p38, and JNK. B7-H4.Ig treatment also inhibited the phosphorylation of AKT kinase and impaired its kinase activity as assessed by the phosphorylation of its endogenous substrate GSK-3. Expression of IL-2 is also reduced by B7-H4. In contrast, the phosphorylation state of the TCR proximal tyrosine kinases ZAP70 and lymphocyte-specific protein tyrosine kinase (LCK) are not affected by B7-H4 ligation. These results indicate that B7-H4 inhibits T-cell proliferation and IL-2 production through interfering with activation of ERK, JNK, and AKT, but not of ZAP70 or LCK. PMID:22238573

  9. Lysophosphatidic acid inhibits CD8 T cell activation and control of tumor progression.

    PubMed

    Oda, Shannon K; Strauch, Pamela; Fujiwara, Yuko; Al-Shami, Amin; Oravecz, Tamas; Tigyi, Gabor; Pelanda, Roberta; Torres, Raul M

    2013-10-01

    CD8 T lymphocytes are able to eliminate nascent tumor cells through a process referred to as immune surveillance. However, multiple inhibitory mechanisms within the tumor microenvironment have been described that impede tumor rejection by CD8 T cells, including increased signaling by inhibitory receptors. Lysophosphatidic acid (LPA) is a bioactive lysophospholipid that has been shown repeatedly to promote diverse cellular processes benefiting tumorigenesis. Accordingly, the increased expression of LPA and LPA receptors is a common feature of diverse tumor cell lineages and can result in elevated systemic LPA levels. LPA is recognized by at least 6 distinct G-protein-coupled receptors and several of which are expressed by T cells, although the precise role of LPA signaling in CD8 T cell activation and function has not been defined. Here, we demonstrate that LPA signaling via the LPA5 receptor expressed by CD8 T cells suppresses antigen receptor signaling, cell activation and proliferation in vitro and in vivo. Importantly, in a mouse melanoma model tumor-specific CD8 T cells that are LPA5-deficient are able to control tumor growth significantly better than wild-type tumor-specific CD8 T cells. Together, these data suggest that the production of LPA by tumors serves not only in an autocrine manner to promote tumorigenesis but also as a mechanism to suppress adaptive immunity and highlights a potential novel target for cancer treatment. PMID:24455753

  10. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies.

    PubMed

    Rodgers, David T; Mazagova, Magdalena; Hampton, Eric N; Cao, Yu; Ramadoss, Nitya S; Hardy, Ian R; Schulman, Andrew; Du, Juanjuan; Wang, Feng; Singer, Oded; Ma, Jennifer; Nunez, Vanessa; Shen, Jiayin; Woods, Ashley K; Wright, Timothy M; Schultz, Peter G; Kim, Chan Hyuk; Young, Travis S

    2016-01-26

    Chimeric antigen receptor T (CAR-T) cell therapy has produced impressive results in clinical trials for B-cell malignancies. However, safety concerns related to the inability to control CAR-T cells once infused into the patient remain a significant challenge. Here we report the engineering of recombinant antibody-based bifunctional switches that consist of a tumor antigen-specific Fab molecule engrafted with a peptide neo-epitope, which is bound exclusively by a peptide-specific switchable CAR-T cell (sCAR-T). The switch redirects the activity of the bio-orthogonal sCAR-T cells through the selective formation of immunological synapses, in which the sCAR-T cell, switch, and target cell interact in a structurally defined and temporally controlled manner. Optimized switches specific for CD19 controlled the activity, tissue-homing, cytokine release, and phenotype of sCAR-T cells in a dose-titratable manner in a Nalm-6 xenograft rodent model of B-cell leukemia. The sCAR-T-cell dosing regimen could be tuned to provide efficacy comparable to the corresponding conventional CART-19, but with lower cytokine levels, thereby offering a method of mitigating cytokine release syndrome in clinical translation. Furthermore, we demonstrate that this methodology is readily adaptable to targeting CD20 on cancer cells using the same sCAR-T cell, suggesting that this approach may be broadly applicable to heterogeneous and resistant tumor populations, as well as other liquid and solid tumor antigens. PMID:26759369

  11. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies

    PubMed Central

    Rodgers, David T.; Mazagova, Magdalena; Hampton, Eric N.; Cao, Yu; Ramadoss, Nitya S.; Hardy, Ian R.; Schulman, Andrew; Du, Juanjuan; Wang, Feng; Singer, Oded; Ma, Jennifer; Nunez, Vanessa; Shen, Jiayin; Woods, Ashley K.; Wright, Timothy M.; Schultz, Peter G.; Kim, Chan Hyuk; Young, Travis S.

    2016-01-01

    Chimeric antigen receptor T (CAR-T) cell therapy has produced impressive results in clinical trials for B-cell malignancies. However, safety concerns related to the inability to control CAR-T cells once infused into the patient remain a significant challenge. Here we report the engineering of recombinant antibody-based bifunctional switches that consist of a tumor antigen-specific Fab molecule engrafted with a peptide neo-epitope, which is bound exclusively by a peptide-specific switchable CAR-T cell (sCAR-T). The switch redirects the activity of the bio-orthogonal sCAR-T cells through the selective formation of immunological synapses, in which the sCAR-T cell, switch, and target cell interact in a structurally defined and temporally controlled manner. Optimized switches specific for CD19 controlled the activity, tissue-homing, cytokine release, and phenotype of sCAR-T cells in a dose-titratable manner in a Nalm-6 xenograft rodent model of B-cell leukemia. The sCAR–T-cell dosing regimen could be tuned to provide efficacy comparable to the corresponding conventional CART-19, but with lower cytokine levels, thereby offering a method of mitigating cytokine release syndrome in clinical translation. Furthermore, we demonstrate that this methodology is readily adaptable to targeting CD20 on cancer cells using the same sCAR-T cell, suggesting that this approach may be broadly applicable to heterogeneous and resistant tumor populations, as well as other liquid and solid tumor antigens. PMID:26759369

  12. Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation.

    PubMed

    Liszewski, M Kathryn; Kolev, Martin; Le Friec, Gaelle; Leung, Marilyn; Bertram, Paula G; Fara, Antonella F; Subias, Marta; Pickering, Matthew C; Drouet, Christian; Meri, Seppo; Arstila, T Petteri; Pekkarinen, Pirkka T; Ma, Margaret; Cope, Andrew; Reinheckel, Thomas; Rodriguez de Cordoba, Santiago; Afzali, Behdad; Atkinson, John P; Kemper, Claudia

    2013-12-12

    Complement is viewed as a critical serum-operative component of innate immunity, with processing of its key component, C3, into activation fragments C3a and C3b confined to the extracellular space. We report here that C3 activation also occurred intracellularly. We found that the T cell-expressed protease cathepsin L (CTSL) processed C3 into biologically active C3a and C3b. Resting T cells contained stores of endosomal and lysosomal C3 and CTSL and substantial amounts of CTSL-generated C3a. While "tonic" intracellular C3a generation was required for homeostatic T cell survival, shuttling of this intracellular C3-activation-system to the cell surface upon T cell stimulation induced autocrine proinflammatory cytokine production. Furthermore, T cells from patients with autoimmune arthritis demonstrated hyperactive intracellular complement activation and interferon-γ production and CTSL inhibition corrected this deregulated phenotype. Importantly, intracellular C3a was observed in all examined cell populations, suggesting that intracellular complement activation might be of broad physiological significance. PMID:24315997

  13. Recurrent activating mutations of CD28 in peripheral T-cell lymphomas.

    PubMed

    Rohr, J; Guo, S; Huo, J; Bouska, A; Lachel, C; Li, Y; Simone, P D; Zhang, W; Gong, Q; Wang, C; Cannon, A; Heavican, T; Mottok, A; Hung, S; Rosenwald, A; Gascoyne, R; Fu, K; Greiner, T C; Weisenburger, D D; Vose, J M; Staudt, L M; Xiao, W; Borgstahl, G E O; Davis, S; Steidl, C; McKeithan, T; Iqbal, J; Chan, W C

    2016-05-01

    Peripheral T-cell lymphomas (PTCLs) comprise a heterogeneous group of mature T-cell neoplasms with a poor prognosis. Recently, mutations in TET2 and other epigenetic modifiers as well as RHOA have been identified in these diseases, particularly in angioimmunoblastic T-cell lymphoma (AITL). CD28 is the major co-stimulatory receptor in T cells which, upon binding ligand, induces sustained T-cell proliferation and cytokine production when combined with T-cell receptor stimulation. We have identified recurrent mutations in CD28 in PTCLs. Two residues-D124 and T195-were recurrently mutated in 11.3% of cases of AITL and in one case of PTCL, not otherwise specified (PTCL-NOS). Surface plasmon resonance analysis of mutations at these residues with predicted differential partner interactions showed increased affinity for ligand CD86 (residue D124) and increased affinity for intracellular adaptor proteins GRB2 and GADS/GRAP2 (residue T195). Molecular modeling studies on each of these mutations suggested how these mutants result in increased affinities. We found increased transcription of the CD28-responsive genes CD226 and TNFA in cells expressing the T195P mutant in response to CD3 and CD86 co-stimulation and increased downstream activation of NF-κB by both D124V and T195P mutants, suggesting a potential therapeutic target in CD28-mutated PTCLs. PMID:26719098

  14. Metabolic reprogramming of alloantigen-activated T cells after hematopoietic cell transplantation

    PubMed Central

    Nguyen, Hung D.; Chatterjee, Shilpak; Haarberg, Kelley M.K.; Wu, Yongxia; Bastian, David; Heinrichs, Jessica; Fu, Jianing; Daenthanasanmak, Anusara; Schutt, Steven; Shrestha, Sharad; Liu, Chen; Wang, Honglin; Chi, Hongbo; Mehrotra, Shikhar

    2016-01-01

    Alloreactive donor T cells are the driving force in the induction of graft-versus-host disease (GVHD), yet little is known about T cell metabolism in response to alloantigens after hematopoietic cell transplantation (HCT). Here, we have demonstrated that donor T cells undergo metabolic reprograming after allogeneic HCT. Specifically, we employed a murine allogeneic BM transplant model and determined that T cells switch from fatty acid β-oxidation (FAO) and pyruvate oxidation via the tricarboxylic (TCA) cycle to aerobic glycolysis, thereby increasing dependence upon glutaminolysis and the pentose phosphate pathway. Glycolysis was required for optimal function of alloantigen-activated T cells and induction of GVHD, as inhibition of glycolysis by targeting mTORC1 or 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) ameliorated GVHD mortality and morbidity. Together, our results indicate that donor T cells use glycolysis as the predominant metabolic process after allogeneic HCT and suggest that glycolysis has potential as a therapeutic target for the control of GVHD. PMID:26950421

  15. Structure-activity relationship between carboxylic acids and T cell cycle blockade.

    PubMed

    Gilbert, Kathleen M; DeLoose, Annick; Valentine, Jimmie L; Fifer, E Kim

    2006-04-01

    This study was designed to examine the potential structure-activity relationship between carboxylic acids, histone acetylation and T cell cycle blockade. Toward this goal a series of structural homologues of the short-chain carboxylic acid n-butyrate were studied for their ability to block the IL-2-stimulated proliferation of cloned CD4+ T cells. The carboxylic acids were also tested for their ability to inhibit histone deacetylation. In addition, Western blotting was used to examine the relative capacity of the carboxlic acids to upregulate the cyclin kinase-dependent inhibitor p21cip1 in T cells. As shown earlier n-butyrate effectively inhibited histone deacetylation. The increased acetylation induced by n-butyrate was associated with the upregulation of the cyclin-dependent kinase inhibitor p21cip1 and the cell cycle blockade of CD4+ T cells. Of the other carboxylic acids studied, the short chain acids, C3-C5, without branching were the best inhibitors of histone deacetylase. This inhibition correlated with increased expression of the cell cycle blocker p21cip1, and the associated suppression of CD4+ T cell proliferation. The branched-chain carboxylic acids tested were ineffective in all the assays. These results underline the relationship between the ability of a carboxylic acid to inhibit histone deacetylation, and their ability to block T cell proliferation, and suggests that branching inhibits these effects.

  16. Bromelain treatment reduces CD25 expression on activated CD4+ T cells in vitro.

    PubMed

    Secor, Eric R; Singh, Anurag; Guernsey, Linda A; McNamara, Jeff T; Zhan, Lijun; Maulik, Nilanjana; Thrall, Roger S

    2009-03-01

    Bromelain (Br), an extract from pineapple stem with cysteine protease activity, exerts anti-inflammatory effects in a number of inflammatory models. We have previously shown that Br treatment decreased activated CD4(+) T cells and has a therapeutic role in an ovalbumin-induced murine model of allergic airway disease. The current study was designed to determine the effect of Br on CD4(+) T cell activation, specifically the expression of CD25 in vitro. CD25 is up regulated upon T cell activation, found as a soluble fraction (sCD25) and is a therapeutic target in inflammation, autoimmunity and allergy. Br treatment of anti-CD3 stimulated CD4(+) T cells reduced CD25 expression in a dose and time dependent manner. This reduction of CD25 was dependent on the proteolytic action of Br as the addition of E64 (a cysteine protease inhibitor) abrogated this response. The concentration of sCD25 was increased in supernatants of Br treated activated CD4(+) T cells as compared to control cells, suggesting that Br proteolytically cleaved cell-surface CD25. This novel mechanism of action identifies how Br may exert its therapeutic benefits in inflammatory conditions.

  17. Micro-adhesion rings surrounding TCR microclusters are essential for T cell activation.

    PubMed

    Hashimoto-Tane, Akiko; Sakuma, Machie; Ike, Hiroshi; Yokosuka, Tadashi; Kimura, Yayoi; Ohara, Osamu; Saito, Takashi

    2016-07-25

    The immunological synapse (IS) formed at the interface between T cells and antigen-presenting cells represents a hallmark of initiation of acquired immunity. T cell activation is initiated at T cell receptor (TCR) microclusters (MCs), in which TCRs and signaling molecules assemble at the interface before IS formation. We found that each TCR-MC was transiently bordered by a ring structure made of integrin and focal adhesion molecules in the early phase of activation, which is similar in structure to the IS in microscale. The micro-adhesion ring is composed of LFA-1, focal adhesion molecules paxillin and Pyk2, and myosin II (MyoII) and is supported by F-actin core and MyoII activity through LFA-1 outside-in signals. The formation of the micro-adhesion ring was transient but especially sustained upon weak TCR stimulation to recruit linker for activation of T cells (LAT) and SLP76. Perturbation of the micro-adhesion ring induced impairment of TCR-MC development and resulted in impaired cellular signaling and cell functions. Thus, the synapse-like structure composed of the core TCR-MC and surrounding micro-adhesion ring is a critical structure for initial T cell activation through integrin outside-in signals.

  18. CIP2A Promotes T-Cell Activation and Immune Response to Listeria monocytogenes Infection.

    PubMed

    Côme, Christophe; Cvrljevic, Anna; Khan, Mohd Moin; Treise, Irina; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Au-Yeung, Byron; Sittig, Eleonora; Laajala, Teemu Daniel; Chen, Yiling; Oeder, Sebastian; Calzada-Wack, Julia; Horsch, Marion; Aittokallio, Tero; Busch, Dirk H; Ollert, Markus W; Neff, Frauke; Beckers, Johannes; Gailus-Durner, Valerie; Fuchs, Helmut; Hrabě de Angelis, Martin; Chen, Zhi; Lahesmaa, Riitta; Westermarck, Jukka

    2016-01-01

    The oncoprotein Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is overexpressed in most malignancies and is an obvious candidate target protein for future cancer therapies. However, the physiological importance of CIP2A-mediated PP2A inhibition is largely unknown. As PP2A regulates immune responses, we investigated the role of CIP2A in normal immune system development and during immune response in vivo. We show that CIP2A-deficient mice (CIP2AHOZ) present a normal immune system development and function in unchallenged conditions. However when challenged with Listeria monocytogenes, CIP2AHOZ mice display an impaired adaptive immune response that is combined with decreased frequency of both CD4+ T-cells and CD8+ effector T-cells. Importantly, the cell autonomous effect of CIP2A deficiency for T-cell activation was confirmed. Induction of CIP2A expression during T-cell activation was dependent on Zap70 activity. Thus, we reveal CIP2A as a hitherto unrecognized mediator of T-cell activation during adaptive immune response. These results also reveal CIP2AHOZ as a possible novel mouse model for studying the role of PP2A activity in immune regulation. On the other hand, the results also indicate that CIP2A targeting cancer therapies would not cause serious immunological side-effects.

  19. CIP2A Promotes T-Cell Activation and Immune Response to Listeria monocytogenes Infection

    PubMed Central

    Cvrljevic, Anna; Khan, Mohd Moin; Treise, Irina; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Au-Yeung, Byron; Sittig, Eleonora; Laajala, Teemu Daniel; Chen, Yiling; Oeder, Sebastian; Calzada-Wack, Julia; Horsch, Marion; Aittokallio, Tero; Busch, Dirk H.; Ollert, Markus W.; Neff, Frauke; Beckers, Johannes; Gailus-Durner, Valerie; Fuchs, Helmut; de Angelis, Martin Hrabě; Chen, Zhi; Lahesmaa, Riitta; Westermarck, Jukka

    2016-01-01

    The oncoprotein Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is overexpressed in most malignancies and is an obvious candidate target protein for future cancer therapies. However, the physiological importance of CIP2A-mediated PP2A inhibition is largely unknown. As PP2A regulates immune responses, we investigated the role of CIP2A in normal immune system development and during immune response in vivo. We show that CIP2A-deficient mice (CIP2AHOZ) present a normal immune system development and function in unchallenged conditions. However when challenged with Listeria monocytogenes, CIP2AHOZ mice display an impaired adaptive immune response that is combined with decreased frequency of both CD4+ T-cells and CD8+ effector T-cells. Importantly, the cell autonomous effect of CIP2A deficiency for T-cell activation was confirmed. Induction of CIP2A expression during T-cell activation was dependent on Zap70 activity. Thus, we reveal CIP2A as a hitherto unrecognized mediator of T-cell activation during adaptive immune response. These results also reveal CIP2AHOZ as a possible novel mouse model for studying the role of PP2A activity in immune regulation. On the other hand, the results also indicate that CIP2A targeting cancer therapies would not cause serious immunological side-effects. PMID:27100879

  20. Mechanisms of T Cell Activation and Pathways of Hypertension

    PubMed Central

    Abais-Battad, Justine M.; Rudemiller, Nathan P.; Mattson, David L.

    2015-01-01

    Summary Significant advancements have been made in the search for antigens and pathways responsible for activation of the adaptive immune response, furthering our understanding of the factors contributing to hypertension and potentially leading to the development of new and more effective therapies. PMID:26125645

  1. Recruitment of Slp-76 to the Membrane and Glycolipid-Enriched Membrane Microdomains Replaces the Requirement for Linker for Activation of T Cells in T Cell Receptor Signaling

    PubMed Central

    Boerth, Nancy J.; Sadler, Jeffrey J.; Bauer, Daniel E.; Clements, James L.; Gheith, Shereen M.; Koretzky, Gary A.

    2000-01-01

    Two hematopoietic-specific adapters, src homology 2 domain–containing leukocyte phosphoprotein of 76 kD (SLP-76) and linker for activation of T cells (LAT), are critical for T cell development and T cell receptor (TCR) signaling. Several studies have suggested that SLP-76 and LAT function coordinately to promote downstream signaling. In support of this hypothesis, we find that a fraction of SLP-76 localizes to glycolipid-enriched membrane microdomains (GEMs) after TCR stimulation. This recruitment of SLP-76 requires amino acids 224–244. The functional consequences of targeting SLP-76 to GEMs for TCR signaling are demonstrated using a LAT/SLP-76 chimeric protein. Expression of this construct reconstitutes TCR-inducted phospholipase Cγ1 phosphorylation, extracellular signal–regulated kinase activation, and nuclear factor of activated T cells (NFAT) promoter activity in LAT-deficient Jurkat T cells (J.CaM2). Mutation of the chimeric construct precluding its recruitment to GEMs diminishes but does not eliminate its ability to support TCR signaling. Expression of a chimera that lacks SLP-76 amino acids 224–244 restores NFAT promoter activity, suggesting that if localized, SLP-76 does not require an association with Gads to promote T cell activation. In contrast, mutation of the protein tyrosine kinase phosphorylation sites of SLP-76 in the context of the LAT/SLP-76 chimera abolishes reconstitution of TCR function. Collectively, these experiments show that optimal TCR signaling relies on the compartmentalization of SLP-76 and that one critical function of LAT is to bring SLP-76 and its associated proteins to the membrane. PMID:11015445

  2. Complexity of the primary genetic response to mitogenic activation of human T cells

    SciTech Connect

    Zipfel, P.F.; Siebenlist, U. ); Irving, S.G.; Kelly, K. )

    1989-03-01

    The authors describe the isolation and characterization of more than 60 novel cDNA clones that constitute part of the immediate genetic response to resting human peripheral blood T cells after mitogen activation. This primary response was highly complex, both in the absolute number of inducible genes and in the diversity of regulation. Although most of the genes expressed in activated T cells were shared with the activation response of normal human fibroblasts, a significant number were more restricted in tissue specificity and thus likely encode or effect the differentiated functions of activated T cells. The activatable genes could be further differentiated on the basis of kinetics of induction, response to cycloheximide, and sensitivity to the immunosuppressive drug cylcosporin A. It is of note that cyclosporin A inhibited the expression of more than 10 inducible genes, which suggests that this drug has a broad genetic mechanism of action.

  3. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination.

    PubMed

    Hu, Hongbo; Wang, Hui; Xiao, Yichuan; Jin, Jin; Chang, Jae-Hoon; Zou, Qiang; Xie, Xiaoping; Cheng, Xuhong; Sun, Shao-Cong

    2016-03-01

    Signal transduction from the T cell receptor (TCR) is crucial for T cell-mediated immune responses and, when deregulated, also contributes to the development of autoimmunity. How TCR signaling is regulated is incompletely understood. In this study, we demonstrate a ubiquitin-dependent mechanism in which the deubiquitinase Otud7b has a crucial role in facilitating TCR signaling. Upon TCR ligation, Otud7b is rapidly recruited to the tyrosine kinase Zap70, a central mediator of TCR-proximal signaling. Otud7b deficiency attenuates the activation of Zap70 and its downstream pathways and impairs T cell activation and differentiation, rendering mice refractory to T cell-mediated autoimmune and inflammatory responses. Otud7b facilitated Zap70 activation by deubiquitinating Zap70, thus preventing the association of Zap70 with the negative-regulatory phosphatases Sts1 and Sts2. These findings establish Otud7b as a positive regulator of TCR-proximal signaling and T cell activation, highlighting the importance of deubiquitination in regulating Zap70 function. PMID:26903241

  4. βig-h3 Represses T-Cell Activation in Type 1 Diabetes.

    PubMed

    Patry, Maeva; Teinturier, Romain; Goehrig, Delphine; Zetu, Cornelia; Ripoche, Doriane; Kim, In-San; Bertolino, Philippe; Hennino, Ana

    2015-12-01

    βig-h3/TGF-βi is a secreted protein capable of binding to both extracellular matrix and cells. Human genetic studies recently revealed that in the tgfbi gene encoding for βig-h3, three single nucleotide polymorphisms were significantly associated with type 1 diabetes (T1D) risk. Pancreatic islets express βig-h3 in physiological conditions, but this expression is reduced in β-cell insult in T1D. Since the integrity of islets is destroyed by autoimmune T lymphocytes, we thought to investigate the impact of βig-h3 on T-cell activation. We show here that βig-h3 inhibits T-cell activation markers as well as cytotoxic molecule production as granzyme B and IFN-γ. Furthermore, βig-h3 inhibits early T-cell receptor signaling by repressing the activation of the early kinase protein Lck. Moreover, βig-h3-treated T cells are unable to induce T1D upon transfer in Rag2 knockout mice. Our study demonstrates for the first time that T-cell activation is modulated by βig-h3, an islet extracellular protein, in order to efficiently avoid autoimmune response.

  5. Mechanism for macrophage activation against Corynebacterium parvum--participation of T cells and its lymphokines.

    PubMed

    Mori, H; Mihara, M; Uesugi, Y; Nagai, H; Koda, A

    1994-01-01

    It is well known that Corynebacterium parvum activates macrophages to produce tumor necrosis factor (TNF). It is suspected that the activation of macrophages by C. parvum requires T-cell participation. The purpose of this study was to confirm that T cells participate in the activation of macrophages by C. parvum. TNF production in vitro from the spleen cells of BALB/c(-)+/+ mice was abrogated completely by the pre-treatment of spleen cells with anti-Ia antiserum and complement, indicating that Ia+ cells are the source of TNF. TNF production was not elicited at all in BALB/c-nu/nu mice. However, there was an increase in the number of Ia+ cells as well as an increase in the weight of spleen and liver. Supernatant from a culture of spleen cells stimulated with phytohemagglutinin-P (a PHA-induced lymphokine) made it possible for BALB/c-nu/nu mice to produce TNF, associated with an induction of Lyt-1+ cells and Lyt-2+ cells. However, treatment with the lymphokine did not augment the increases of Ia+ cells or liver and spleen weights. These results suggest that increasing the number of Ia+ cells is not sufficient to bring about TNF production; Ia+ cells must also be stimulated by T cells or T-cell lymphokines in order to produce TNF. These results suggest that T cells play an essential role in the activation of Ia+ cells against C. parvum. PMID:7723692

  6. Ipilimumab augments antitumor activity of bispecific antibody-armed T cells

    PubMed Central

    2014-01-01

    Background Ipilimumab is an antagonistic monoclonal antibody against cytotoxic T-lymphocyte antigen-4 (CTLA-4) that enhances antitumor immunity by inhibiting immunosuppressive activity of regulatory T cells (Treg). In this study, we investigated whether inhibiting Treg activity with ipilimumab during ex vivo T cell expansion could augment anti-CD3-driven T cell proliferation and enhance bispecific antibody (BiAb)-redirected antitumor cytotoxicity of activated T cells (ATC). Methods PBMC from healthy individuals were stimulated with anti-CD3 monoclonal antibody with or without ipilimumab and expanded for 10-14 days. ATC were harvested and armed with anti-CD3 x anti-EGFR BiAb (EGFRBi) or anti-CD3 x anti-CD20 BiAb (CD20Bi) to test for redirected cytotoxicity against COLO356/FG pancreatic cancer cell line or Burkitt’s lymphoma cell line (Daudi). Results In PBMC from healthy individuals, the addition of ipilimumab at the initiation of culture significantly enhanced T cell proliferation (p = 0.0029). ATC grown in the presence of ipilimumab showed significantly increased mean tumor-specific cytotoxicity at effector:target (E:T) ratio of 25:1 directed at COLO356/FG and Daudi by 37.71% (p < 0.0004) and 27.5% (p < 0.0004), respectively, and increased the secretion of chemokines (CCL2, CCL3, CCL4,CCL5, CXCL9, and granulocyte-macrophage colony stimulating factor(GM-CSF)) and cytokines (IFN-γ, IL-2R, IL-12, and IL-13), while reducing IL-10 secretion. Conclusions Expansion of ATC in the presence of ipilimumab significantly improves not only the T cell proliferation but it also enhances cytokine secretion and the specific cytotoxicity of T cells armed with bispecific antibodies. PMID:25008236

  7. T cell activation regulates CD6 alternative splicing by transcription dynamics and SRSF1.

    PubMed

    da Glória, Vânia G; Martins de Araújo, Mafalda; Mafalda Santos, Ana; Leal, Rafaela; de Almeida, Sérgio F; Carmo, Alexandre M; Moreira, Alexandra

    2014-07-01

    The T cell-surface glycoprotein CD6 is a modulator of cellular responses and has been implicated in several autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and psoriasis. During Ag presentation, CD6 is targeted to the immunological synapse in a ligand binding-dependent manner, in which CD6 domain 3 directly contacts CD166, expressed on the APC. T cell activation results in the induction of CD6Δd3, an alternatively spliced isoform that lacks the ligand-binding domain and thus no longer localizes at the immunological synapse. In this study, we investigated the molecular mechanisms regulating the expression of CD6Δd3 upon human primary T cell activation. Using chromatin immunoprecipitation, we observed an increase in RNA polymerase II occupancy along the CD6 gene and augmented CD6 transcription. We showed that activation leads to transcription-related chromatin modifications, revealed by higher CD6 acetylation levels. Modulation of chromatin conformation using a histone deacetylase inhibitor that increases transcription rate causes an increase of exon 5 skipping. We further showed that the splicing factor SRSF1 binds to a regulatory element in CD6 intron 4, activating exon 5 splicing and promoting exon 5 inclusion. Concomitant with T cell activation-induced exon 5 skipping, we observed a downregulation of SRSF1. Using RNA immunoprecipitation, we showed that in activated T cells, SRSF1 recruitment to the CD6 transcript is impaired by increased chromatin acetylation levels. We propose that upon T cell activation, SRSF1 becomes limiting, and its function in CD6 exon 5 splicing is countered by an increase in CD6 transcription, dependent on chromatin acetylation.

  8. Wasp recruitment to the T cell:APC contact site occurs independently of Cdc42 activation.

    PubMed

    Cannon, J L; Labno, C M; Bosco, G; Seth, A; McGavin, M H; Siminovitch, K A; Rosen, M K; Burkhardt, J K

    2001-08-01

    Cdc42 and WASP are critical regulators of actin polymerization whose function during T cell signaling is poorly understood. Using a novel reagent that specifically detects Cdc42-GTP in fixed cells, we found that activated Cdc42 localizes to the T cell:APC contact site in an antigen-dependent manner. TCR signaling alone was sufficient to induce localization of Cdc42-GTP, and functional Lck and Zap-70 kinases were required. WASP also localized to the T cell:APC contact site in an antigen-dependent manner. Surprisingly, WASP localization was independent of the Cdc42 binding domain but required the proline-rich domain. Our results indicate that localized WASP activation requires the integration of multiple signals: WASP is recruited via interaction with SH3 domain-containing proteins and is activated by Cdc42-GTP concentrated at the same site. PMID:11520460

  9. Selective NFAT targeting in T cells ameliorates GvHD while maintaining antitumor activity.

    PubMed

    Vaeth, Martin; Bäuerlein, Carina A; Pusch, Tobias; Findeis, Janina; Chopra, Martin; Mottok, Anja; Rosenwald, Andreas; Beilhack, Andreas; Berberich-Siebelt, Friederike

    2015-01-27

    Graft-versus-host disease (GvHD) is a life-threatening immunological complication after allogenic hematopoietic stem cell transplantation (allo-HCT). The intrinsic graft-versus-leukemia (GvL) effect, however, is the desirable curative benefit. Patients with acute GvHD are treated with cyclosporine A (CsA) or tacrolimus (FK506), which not only often causes severe adverse effects, but also interferes with the anticipated GvL. Both drugs inhibit calcineurin, thus at first suppressing activation of the nuclear factor of activated T cells (NFAT). Therefore, we explored the specific contribution of individual NFAT factors in donor T cells in animal models of GvHD and GvL. Ablation of NFAT1, NFAT2, or a combination of both resulted in ameliorated GvHD, due to reduced proliferation, target tissue homing, and impaired effector function of allogenic donor T cells. In contrast, the frequency of Foxp3(+) regulatory T (Treg) cells was increased and NFAT-deficient Tregs were fully protective in GvHD. CD8(+) T-cell recall response and, importantly, the beneficial antitumor activity were largely preserved in NFAT-deficient effector T cells. Thus, specific inhibition of NFAT opens an avenue for an advanced therapy of GvHD maintaining protective GvL.

  10. Early Gag Immunodominance of the HIV-Specific T-Cell Response during Acute/Early Infection Is Associated with Higher CD8+ T-Cell Antiviral Activity and Correlates with Preservation of the CD4+ T-Cell Compartment

    PubMed Central

    Ghiglione, Yanina; Falivene, Juliana; Socias, María Eugenia; Laufer, Natalia; Coloccini, Romina Soledad; Rodriguez, Ana María; Ruiz, María Julia; Pando, María Ángeles; Giavedoni, Luis David; Cahn, Pedro; Sued, Omar; Salomon, Horacio; Gherardi, María Magdalena

    2013-01-01

    The important role of the CD8+ T-cell response on HIV control is well established. Moreover, the acute phase of infection represents a proper scenario to delineate the antiviral cellular functions that best correlate with control. Here, multiple functional aspects (specificity, ex vivo viral inhibitory activity [VIA] and polyfunctionality) of the HIV-specific CD8+ T-cell subset arising early after infection, and their association with disease progression markers, were examined. Blood samples from 44 subjects recruited within 6 months from infection (primary HIV infection [PHI] group), 16 chronically infected subjects, 11 elite controllers (EC), and 10 healthy donors were obtained. Results indicated that, although Nef dominated the anti-HIV response during acute/early infection, a higher proportion of early anti-Gag T cells correlated with delayed progression. Polyfunctional HIV-specific CD8+ T cells were detected at early time points but did not associate with virus control. Conversely, higher CD4+ T-cell set points were observed in PHI subjects with higher HIV-specific CD8+ T-cell VIA at baseline. Importantly, VIA levels correlated with the magnitude of the anti-Gag cellular response. The advantage of Gag-specific cells may result from their enhanced ability to mediate lysis of infected cells (evidenced by a higher capacity to degranulate and to mediate VIA) and to simultaneously produce IFN-γ. Finally, Gag immunodominance was associated with elevated plasma levels of interleukin 2 (IL-2) and macrophage inflammatory protein 1β (MIP-1β). All together, this study underscores the importance of CD8+ T-cell specificity in the improved control of disease progression, which was related to the capacity of Gag-specific cells to mediate both lytic and nonlytic antiviral mechanisms at early time points postinfection. PMID:23616666

  11. PD-L1/PD-1 Co-Stimulation, a Brake for T cell Activation and a T cell Differentiation Signal.

    PubMed

    Liechtenstein, Therese; Dufait, Ines; Bricogne, Christopher; Lanna, Alessio; Pen, Joeri; Breckpot, Karine; Escors, David

    2012-10-30

    For T cell activation, three signals have to be provided from the antigen presenting cell; Signal 1 (antigen recognition), signal 2 (co-stimulation) and signal 3 (cytokine priming). Blocking negative co-stimulation during antigen presentation to T cells is becoming a promising therapeutic strategy to enhance cancer immunotherapy. Here we will focus on interference with PD-1/PD-L1 negative co-stimulation during antigen presentation to T cells as a therapeutic approach. We will discuss the potential mechanisms and the therapeutic consequences by which interference/inhibition with this interaction results in anti-tumour immunity. Particularly, we will comment on whether blocking negative co-stimulation provides differentiation signals to T cells undergoing antigen presentation. A major dogma in immunology states that T cell differentiation signals are given by cytokines and chemokines (signal 3) rather than co-stimulation (signal 2). We will discuss whether this is the case when blocking PD-L1/PD-1 negative co-stimulation.

  12. Amplification of the polyclonal activation of human T cells. I. Null-cell products promote the polyclonal proliferation of T cells.

    PubMed Central

    Caraux, J; Klein, B; Thierry, C; Serrou, B

    1982-01-01

    Synergy can be observed in the proliferative response to mitogens of cultures containing human T and Null cells when compared with those containing only highly purified cells of those two types. This synergy was analysed (i) by evaluation of the proliferative response at each step of the purification process leading to separation of T and Null cells; (ii) by back-mixing T and Nul cells at different rations; and (iii) by evaluation of the proliferative response of free suspension cultures of T cells overlaying a semi-solid layer containing Null cells, or of free suspension cultures of Null cells over a semi-solid culture layer of T cells. The following conclusions were reached: (i) purified Null cells are unresponsive to mitogen when cultured alone or in the presence of diffusible T-cell products; (ii) the T cells are less responsive when cultured alone than in the presence of Null cells or diffusible Null cell products. Thus the synergistic effect observed between T and Null cells is not due to the promotion of Null-cell proliferation by T -cell products but can be accounted for by diffusible Null-cell products enhancing the process of T lymphocyte activation by mitogens. PMID:6977479

  13. Expression of CD11c Is Associated with Unconventional Activated T Cell Subsets with High Migratory Potential.

    PubMed

    Qualai, Jamal; Li, Lin-Xi; Cantero, Jon; Tarrats, Antoni; Fernández, Marco Antonio; Sumoy, Lauro; Rodolosse, Annie; McSorley, Stephen J; Genescà, Meritxell

    2016-01-01

    CD11c is an α integrin classically employed to define myeloid dendritic cells. Although there is little information about CD11c expression on human T cells, mouse models have shown an association of CD11c expression with functionally relevant T cell subsets. In the context of genital tract infection, we have previously observed increased expression of CD11c in circulating T cells from mice and women. Microarray analyses of activated effector T cells expressing CD11c derived from naïve mice demonstrated enrichment for natural killer (NK) associated genes. Here we find that murine CD11c+ T cells analyzed by flow cytometry display markers associated with non-conventional T cell subsets, including γδ T cells and invariant natural killer T (iNKT) cells. However, in women, only γδ T cells and CD8+ T cells were enriched within the CD11c fraction of blood and cervical tissue. These CD11c+ cells were highly activated and had greater interferon (IFN)-γ secretory capacity than CD11c- T cells. Furthermore, circulating CD11c+ T cells were associated with the expression of multiple adhesion molecules in women, suggesting that these cells have high tissue homing potential. These data suggest that CD11c expression distinguishes a population of circulating T cells during bacterial infection with innate capacity and mucosal homing potential. PMID:27119555

  14. Expression of CD11c Is Associated with Unconventional Activated T Cell Subsets with High Migratory Potential

    PubMed Central

    Cantero, Jon; Tarrats, Antoni; Fernández, Marco Antonio; Sumoy, Lauro; Rodolosse, Annie; McSorley, Stephen J.

    2016-01-01

    CD11c is an α integrin classically employed to define myeloid dendritic cells. Although there is little information about CD11c expression on human T cells, mouse models have shown an association of CD11c expression with functionally relevant T cell subsets. In the context of genital tract infection, we have previously observed increased expression of CD11c in circulating T cells from mice and women. Microarray analyses of activated effector T cells expressing CD11c derived from naïve mice demonstrated enrichment for natural killer (NK) associated genes. Here we find that murine CD11c+ T cells analyzed by flow cytometry display markers associated with non-conventional T cell subsets, including γδ T cells and invariant natural killer T (iNKT) cells. However, in women, only γδ T cells and CD8+ T cells were enriched within the CD11c fraction of blood and cervical tissue. These CD11c+ cells were highly activated and had greater interferon (IFN)-γ secretory capacity than CD11c- T cells. Furthermore, circulating CD11c+ T cells were associated with the expression of multiple adhesion molecules in women, suggesting that these cells have high tissue homing potential. These data suggest that CD11c expression distinguishes a population of circulating T cells during bacterial infection with innate capacity and mucosal homing potential. PMID:27119555

  15. Immune complexes that contain HIV antigens activate peripheral blood T cells.

    PubMed

    Korolevskaya, L B; Shmagel, K V; Saidakova, E V; Shmagel, N G; Chereshnev, V A

    2016-07-01

    Uninfected donor T cells were treated in vitro by model immune complexes that contained either HIV or hepatitis C virus (HCV) antigens. Unlike HCV antigen-containing complexes, the immune complexes that contained HIV antigens have been shown to activate peripheral blood T cells of uninfected donors under in vitro conditions. Both the antiviral antibodies and HIV antigen were involved in the activation process. The unique properties of the immune complexes formed by HIV antigens and antiviral antibodies are believed to result from the virus-specific antibody properties and molecular conformation of the antigen-antibody complex. PMID:27595830

  16. Antiproliferative Activity of T. welwitschii Extract on Jurkat T Cells In Vitro

    PubMed Central

    Moyo, Batanai; Mukanganyama, Stanley

    2015-01-01

    Triumfetta welwitschii is a plant used traditionally for the treatment of fever and diarrhoea. Previous work has shown that T. welwitschii has antibacterial activity. The purpose of this study was to investigate T. welwitschii extract for anticancer activity against Jurkat T cells. The Jurkat T cell line is used to study acute T cell leukaemia. An antiproliferation assay, determination of induction of apoptosis, the determination of the effect of the combination of the extract and GSH, and effects of the extract on DNA leakage were conducted. T. welwitschii was found to decrease cell viability in a dose- and time-dependent manner. T. welwitschii caused apoptosis in the Jurkat T cells as shown by DNA fragmentation. When T. welwitschii was combined with reduced GSH, it was found that the growth of the Jurkat T cells was significantly reduced compared to untreated cells after 72 h of treatment. This was unexpected, as cancer cells have elevated levels of GSH compared to normal cells. The results of this study show that T. welwitschii is a potential source of compounds that may serve as leads for anticancer compounds. PMID:26557698

  17. Mucosal Regulatory T Cells and T Helper 17 Cells in HIV-Associated Immune Activation

    PubMed Central

    Pandiyan, Pushpa; Younes, Souheil-Antoine; Ribeiro, Susan Pereira; Talla, Aarthi; McDonald, David; Bhaskaran, Natarajan; Levine, Alan D.; Weinberg, Aaron; Sekaly, Rafick P.

    2016-01-01

    Residual mucosal inflammation along with chronic systemic immune activation is an important feature in individuals infected with human immunodeficiency virus (HIV), and has been linked to a wide range of co-morbidities, including malignancy, opportunistic infections, immunopathology, and cardiovascular complications. Although combined antiretroviral therapy (cART) can reduce plasma viral loads to undetectable levels, reservoirs of virus persist, and increased mortality is associated with immune dysbiosis in mucosal lymphoid tissues. Immune-based therapies are pursued with the goal of improving CD4+ T-cell restoration, as well as reducing chronic immune activation in cART-treated patients. However, the majority of research on immune activation has been derived from analysis of circulating T cells. How immune cell alterations in mucosal tissues contribute to HIV immune dysregulation and the associated risk of non-infectious chronic complications is less studied. Given the significant differences between mucosal T cells and circulating T cells, and the immediate interactions of mucosal T cells with the microbiome, more attention should be devoted to mucosal immune cells and their contribution to systemic immune activation in HIV-infected individuals. Here, we will focus on mucosal immune cells with a specific emphasis on CD4+ T lymphocytes, such as T helper 17 cells and CD4+Foxp3+ regulatory T cells (Tregs), which play crucial roles in maintaining mucosal barrier integrity and preventing inflammation, respectively. We hypothesize that pro-inflammatory milieu in cART-treated patients with immune activation significantly contributes to enhanced loss of Th17 cells and increased frequency of dysregulated Tregs in the mucosa, which in turn may exacerbate immune dysfunction in HIV-infected patients. We also present initial evidence to support this hypothesis. A better comprehension of how pro-inflammatory milieu impacts these two types of cells in the mucosa will shed light

  18. Asynchronous combinatorial action of four regulatory factors activates Bcl11b for T cell commitment.

    PubMed

    Kueh, Hao Yuan; Yui, Mary A; Ng, Kenneth K H; Pease, Shirley S; Zhang, Jingli A; Damle, Sagar S; Freedman, George; Siu, Sharmayne; Bernstein, Irwin D; Elowitz, Michael B; Rothenberg, Ellen V

    2016-08-01

    During T cell development, multipotent progenitors relinquish competence for other fates and commit to the T cell lineage by turning on Bcl11b, which encodes a transcription factor. To clarify lineage commitment mechanisms, we followed developing T cells at the single-cell level using Bcl11b knock-in fluorescent reporter mice. Notch signaling and Notch-activated transcription factors collaborate to activate Bcl11b expression irrespectively of Notch-dependent proliferation. These inputs work via three distinct, asynchronous mechanisms: an early locus 'poising' function dependent on TCF-1 and GATA-3, a stochastic-permissivity function dependent on Notch signaling, and a separate amplitude-control function dependent on Runx1, a factor already present in multipotent progenitors. Despite their necessity for Bcl11b expression, these inputs act in a stage-specific manner, providing a multitiered mechanism for developmental gene regulation. PMID:27376470

  19. Gene encoding T-cell-activating protein TAP maps to the Ly-6 locus.

    PubMed Central

    Reiser, H; Yeh, E T; Gramm, C F; Benacerraf, B; Rock, K L

    1986-01-01

    Recently we described two murine T-cell membrane proteins, TAP (T-cell-activating protein) and TAPa (TAP-associated protein). Previous experiments suggested that TAP is involved in physiologic T-cell activation. The subject of this report is a genetic analysis of these molecules. TAP and TAPa map to the Ly-6 locus. The relationship of these molecules to other antigens encoded in this locus is examined. Based on tissue distribution, molecular structure, and functional properties, TAP is distinct from any previously described Ly-6 antigen, whereas TAPa is probably identical to the 34-11-3 antigen. TAP and TAPa are coexpressed on all cell types examined so far. Moreover, comparative studies demonstrate a complex developmentally regulated pattern in the expression of molecules encoded in this locus. Images PMID:3010324

  20. Activated platelet–T-cell conjugates in peripheral blood of patients with HIV infection: coupling coagulation/inflammation and T cells

    PubMed Central

    Green, Samantha A.; Smith, Mindy; Hasley, Rebecca B.; Stephany, David; Harned, Adam; Nagashima, Kunio; Abdullah, Shahed; Pittaluga, Stefania; Imamichi, Tomozumi; Qin, Jing; Rupert, Adam; Ober, Alex; Lane, H. Clifford; Catalfamo, Marta

    2015-01-01

    Background: Despite successfully suppressed viremia by treatment, patients with high levels of biomarkers of coagulation/inflammation are at an increased risk of developing non-AIDS defining serious illnesses such as cardiovascular diseases. Thus, there is a relationship between persistent immune activation and coagulation/inflammation, although the mechanisms are poorly understood. Platelets play an important role in this process. Although interactions between platelets and elements of the innate immune system, such as monocytes, are well described, little is known about the interaction between platelets and the adaptive immune system. Design: We investigated the interaction of a component of the coagulation system, platelets, and the adaptive immune system T cells. Methods: Healthy controls and combination antiretroviral therapy (cART)-treated HIV-infected patients with viral loads of less than 40 copies/ml for more than 15 months were analysed for platelet–T-cell conjugate formation. Results: Platelets can form conjugates with T cells and were preferentially seen in CD4+ and CD8+ T-cell subsets with more differentiated phenotypes [memory, memory/effector and terminal effector memory (TEM)]. Compared with healthy controls, these conjugates in patients with HIV infection were more frequent, more often composed of activated platelets (CD42b+CD62P+), and were significantly associated with the D-dimer serum levels. Conclusion: These data support a model in which platelet–T-cell conjugates may play a critical role in the fast recruitment of antigen-experienced T cells to the place of injury. This mechanism can contribute in maintaining a state of coagulation/inflammation observed in these patients contributing to the pathology of the disease. PMID:26002800

  1. Exhaustion of Activated CD8 T Cells Predicts Disease Progression in Primary HIV-1 Infection

    PubMed Central

    Hickling, Stephen; Hurst, Jacob; Meyerowitz, Jodi; Willberg, Christian B.; Robinson, Nicola; Brown, Helen; Kinloch, Sabine; Babiker, Abdel; Nwokolo, Nneka; Fox, Julie; Fidler, Sarah; Phillips, Rodney; Frater, John

    2016-01-01

    The rate at which HIV-1 infected individuals progress to AIDS is highly variable and impacted by T cell immunity. CD8 T cell inhibitory molecules are up-regulated in HIV-1 infection and associate with immune dysfunction. We evaluated participants (n = 122) recruited to the SPARTAC randomised clinical trial to determine whether CD8 T cell exhaustion markers PD-1, Lag-3 and Tim-3 were associated with immune activation and disease progression. Expression of PD-1, Tim-3, Lag-3 and CD38 on CD8 T cells from the closest pre-therapy time-point to seroconversion was measured by flow cytometry, and correlated with surrogate markers of HIV-1 disease (HIV-1 plasma viral load (pVL) and CD4 T cell count) and the trial endpoint (time to CD4 count <350 cells/μl or initiation of antiretroviral therapy). To explore the functional significance of these markers, co-expression of Eomes, T-bet and CD39 was assessed. Expression of PD-1 on CD8 and CD38 CD8 T cells correlated with pVL and CD4 count at baseline, and predicted time to the trial endpoint. Lag-3 expression was associated with pVL but not CD4 count. For all exhaustion markers, expression of CD38 on CD8 T cells increased the strength of associations. In Cox models, progression to the trial endpoint was most marked for PD-1/CD38 co-expressing cells, with evidence for a stronger effect within 12 weeks from confirmed diagnosis of PHI. The effect of PD-1 and Lag-3 expression on CD8 T cells retained statistical significance in Cox proportional hazards models including antiretroviral therapy and CD4 count, but not pVL as co-variants. Expression of ‘exhaustion’ or ‘immune checkpoint’ markers in early HIV-1 infection is associated with clinical progression and is impacted by immune activation and the duration of infection. New markers to identify exhausted T cells and novel interventions to reverse exhaustion may inform the development of novel immunotherapeutic approaches. PMID:27415828

  2. Exhaustion of Activated CD8 T Cells Predicts Disease Progression in Primary HIV-1 Infection.

    PubMed

    Hoffmann, Matthias; Pantazis, Nikos; Martin, Genevieve E; Hickling, Stephen; Hurst, Jacob; Meyerowitz, Jodi; Willberg, Christian B; Robinson, Nicola; Brown, Helen; Fisher, Martin; Kinloch, Sabine; Babiker, Abdel; Weber, Jonathan; Nwokolo, Nneka; Fox, Julie; Fidler, Sarah; Phillips, Rodney; Frater, John

    2016-07-01

    The rate at which HIV-1 infected individuals progress to AIDS is highly variable and impacted by T cell immunity. CD8 T cell inhibitory molecules are up-regulated in HIV-1 infection and associate with immune dysfunction. We evaluated participants (n = 122) recruited to the SPARTAC randomised clinical trial to determine whether CD8 T cell exhaustion markers PD-1, Lag-3 and Tim-3 were associated with immune activation and disease progression. Expression of PD-1, Tim-3, Lag-3 and CD38 on CD8 T cells from the closest pre-therapy time-point to seroconversion was measured by flow cytometry, and correlated with surrogate markers of HIV-1 disease (HIV-1 plasma viral load (pVL) and CD4 T cell count) and the trial endpoint (time to CD4 count <350 cells/μl or initiation of antiretroviral therapy). To explore the functional significance of these markers, co-expression of Eomes, T-bet and CD39 was assessed. Expression of PD-1 on CD8 and CD38 CD8 T cells correlated with pVL and CD4 count at baseline, and predicted time to the trial endpoint. Lag-3 expression was associated with pVL but not CD4 count. For all exhaustion markers, expression of CD38 on CD8 T cells increased the strength of associations. In Cox models, progression to the trial endpoint was most marked for PD-1/CD38 co-expressing cells, with evidence for a stronger effect within 12 weeks from confirmed diagnosis of PHI. The effect of PD-1 and Lag-3 expression on CD8 T cells retained statistical significance in Cox proportional hazards models including antiretroviral therapy and CD4 count, but not pVL as co-variants. Expression of 'exhaustion' or 'immune checkpoint' markers in early HIV-1 infection is associated with clinical progression and is impacted by immune activation and the duration of infection. New markers to identify exhausted T cells and novel interventions to reverse exhaustion may inform the development of novel immunotherapeutic approaches. PMID:27415828

  3. Circulating gamma delta T cells are activated and depleted during progression of high-grade gliomas: Implications for gamma delta T cell therapy of GBM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glioblastoma multiforme (GBM) remains frustratingly impervious to any existing therapy. We have previously shown that GBM is sensitive to recognition and lysis by ex vivo activated gamma delta T cells, a minor subset of lymphocytes that innately recognize autologous stress-associated target antigens...

  4. CD4 ligands inhibit the formation of multifunctional transduction complexes involved in T cell activation.

    PubMed

    Jabado, N; Pallier, A; Le Deist, F; Bernard, F; Fischer, A; Hivroz, C

    1997-01-01

    Ligands binding to the CD4 molecule can inhibit TCR-mediated T cell activation. We have previously reported that transcription factors regulating the expression of the IL-2 gene, NF-AT, NF-kappaB, and AP-1, are targets of this inhibitory effect in an in vitro model using peripheral human CD4+ T cells activated by a CD3 mAb. Two T cell activation pathways involved in the regulation of these transcription factors, calcium flux and the p21ras pathway, were investigated as potential targets. Binding of HIV envelope glycoprotein gp160/gp120 or a CD4 mAb to the CD4+ T cells, prior to TCR/CD3 activation, inhibited the intracellular calcium elevation. This event strongly suggested an inhibition of PLCgamma1 activity. Tyrosine phosphorylation of PLCgamma1, induced by CD3 activation, was not affected, but its association with tyrosine-phosphorylated proteins, including a 62-kDa protein, was disrupted. This PLCgamma1-associated p62 was found to be immunoreactive to p62-Sam68 Abs. The activation-induced phosphorylation of two p21ras effectors, Raf-1 and Erk2, was inhibited by the CD4 ligands, indirectly pointing to inhibition of the p21ras activation pathway. In addition, we demonstrate that TCR activation of normal CD4+ T cells induced the formation of p120GAP and PLCgamma1-containing complexes. These complexes also contain other unidentified proteins. CD4 ligand binding induced a defective formation of these transduction complexes. This may result in inefficient signaling, partially accounting for the inhibitory effects of the CD4 ligands on both p21ras and calcium-activation pathways.

  5. Nickel differentially regulates NFAT and NF-{kappa}B activation in T cell signaling

    SciTech Connect

    Saito, Rumiko; Hirakawa, Satoshi; Ohara, Hiroshi; Yasuda, Makoto; Yamazaki, Tomomi; Nishii, Shigeaki; Aiba, Setsuya

    2011-08-01

    Nickel is a potent hapten that induces contact hypersensitivity in human skin. While nickel induces the maturation of dendritic cells via NF-{kappa}B and p38 MAPK activation, it also exerts immunosuppressive effects on T cells through an unknown mechanism. To elucidate the molecular mechanisms of its effects on T cells, we examined the effects of NiCl{sub 2} on mRNA expression in human CD3+ T cells stimulated with CD3 and CD28 antibodies. Using a DNA microarray and Gene Ontology, we identified 70 up-regulated (including IL-1{beta}, IL-6 and IL-8) and 61 down-regulated (including IL-2, IL-4, IL-10 and IFN-{gamma}) immune responsive genes in NiCl{sub 2}-treated T cells. The DNA microarray results were verified using real-time PCR and a Bio-Plex{sup TM} suspension protein array. Suppression of IL-2 and IFN-{gamma} gene transcription by NiCl{sub 2} was also confirmed using Jurkat T cells transfected with IL-2 or IFN-{gamma} luciferase reporter genes. To explore the NiCl{sub 2}-regulated signaling pathway, we examined the binding activity of nuclear proteins to NFAT, AP-1, and NF-{kappa}B consensus sequences. NiCl{sub 2} significantly and dose-dependently suppressed NFAT- and AP-1-binding activity, but augmented NF-{kappa}B-binding activity. Moreover, NiCl{sub 2} decreased nuclear NFAT expression in stimulated T cells. Using Jurkat T cells stimulated with PMA/ionomycin, we demonstrated that NiCl{sub 2} significantly suppressed stimulation-evoked cytosolic Ca{sup 2+} increases, suggesting that NiCl{sub 2} regulates NFAT signals by acting as a blocker of Ca{sup 2+} release-activated Ca{sup 2+} (CRAC) channels. These data showed that NiCl{sub 2} decreases NFAT and increases NF-{kappa}B signaling in T cells. These results shed light on the effects of nickel on the molecular regulation of T cell signaling. - Graphical Abstract: Nickel suppresses stimulation-evoked cytosolic Ca{sup 2+} increase, which results in the suppression of NFAT signals. On the other hand, Ni rather

  6. Mechanism of Activation-Induced Downregulation of Mitofusin 2 in Human Peripheral Blood T Cells.

    PubMed

    Dasgupta, Asish; Chen, Kuang-Hueih; Munk, Rachel B; Sasaki, Carl Y; Curtis, Jessica; Longo, Dan L; Ghosh, Paritosh

    2015-12-15

    Mitofusin 2 (Mfn2), a mitochondrial protein, was shown to have antiproliferative properties when overexpressed. In this article, we show that activation of resting human peripheral blood T cells caused downregulation of Mfn2 levels. This downregulation of Mfn2 was blocked by different inhibitors (mTOR inhibitor rapamycin, PI3K inhibitor LY294002, and Akt inhibitor A443654), producing cells that were arrested in the G0/G1 stage of the cell cycle. Furthermore, the activation-induced downregulation of Mfn2 preceded the entry of the cells into the cell cycle, suggesting that Mfn2 downregulation is a prerequisite for activated T cell entry into the cell cycle. Accordingly, small interfering RNA-mediated knockdown of Mfn2 resulted in increased T cell proliferation. Overexpression of constitutively active AKT resulted in the downregulation of Mfn2, which can be blocked by a proteasome inhibitor. Akt-mediated downregulation of Mfn2 was via the mTORC1 pathway because this downregulation was blocked by rapamycin, and overexpression of wild-type, but not kinase-dead mTOR, caused Mfn2 downregulation. Our data suggested that activation-induced reactive oxygen species production plays an important role in the downregulation of Mfn2. Collectively, our data suggest that the PI3K-AKT-mTOR pathway plays an important role in activation-induced downregulation of Mfn2 and subsequent proliferation of resting human T cells. PMID:26566676

  7. Murine T cell activation is regulated by surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide)

    SciTech Connect

    Warford, Jordan; Doucette, Carolyn D.; Hoskin, David W.; Easton, Alexander S.

    2014-01-10

    Highlights: •Surfen is the first inhibitor of glycosaminoglycan function to be studied in murine T cells. •Surfen reduces T cell proliferation stimulated in vitro and in vivo. •Surfen reduces CD25 expression in T cells activated in vivo but not in vitro. •Surfen increases T cell proliferation when T cell receptor activation is bypassed. •Surfen’s effects are blocked by co-administration of heparin sulfate. -- Abstract: Surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide) binds to glycosaminoglycans (GAGs) and has been shown to influence their function, and the function of proteoglycans (complexes of GAGs linked to a core protein). T cells synthesize, secrete and express GAGs and proteoglycans which are involved in several aspects of T cell function. However, there are as yet no studies on the effect of GAG-binding agents such as surfen on T cell function. In this study, surfen was found to influence murine T cell activation. Doses between 2.5 and 20 μM produced a graduated reduction in the proliferation of T cells activated with anti-CD3/CD28 antibody-coated T cell expander beads. Surfen (20 mg/kg) was also administered to mice treated with anti-CD3 antibody to activate T cells in vivo. Lymphocytes from surfen-treated mice also showed reduced proliferation and lymph node cell counts were reduced. Surfen reduced labeling with a cell viability marker (7-ADD) but to a much lower extent than its effect on proliferation. Surfen also reduced CD25 (the α-subunit of the interleukin (IL)-2 receptor) expression with no effect on CD69 expression in T cells treated in vivo but not in vitro. When receptor activation was bypassed by treating T cells in vitro with phorbyl myristate acetate (10 ng/ml) and ionomycin (100 ng/ml), surfen treatment either increased proliferation (10 μM) or had no effect (2.5, 5 and 20 μM). In vitro treatment of T cells with surfen had no effect on IL-2 or interferon-γ synthesis and did not alter proliferation of the IL-2 dependent cell

  8. Increased per cell IFN-γ productivity indicates recent in vivo activation of T cells

    PubMed Central

    Schlingmann, Tobias R.; Shive, Carey L.; Targoni, Oleg S.; Tary-Lehmann, Magdalena; Lehmann, Paul V.

    2009-01-01

    Immunization with vaccinia virus causes long-term immunity. Efforts have been made to characterize the T cells responsible for this protection. Recently, T cell subsets were described that not only co-express multiple cytokines, but also show increased per cell cytokine productivity. These highly productive cells are often considered to be the most protective. We used ELISPOT assays to measure per cell IFN-γ productivity of vaccinia specific T cells in childhood immunized adults immediately before and at different time points after vaccinia re-vaccination. Apart from an increase in frequency, we found a marked increase of IFN-γ productivity following vaccinia re-vaccination. However, these changes were short-lived as both parameters quickly returned to baseline values within 22 days after re-vaccination. Therefore, increased per cell IFN-γ productivity seems to be a sign of recent in vivo T cell activation rather than a stable marker of a distinct T cell subset responsible for long-term immune protection. PMID:19427634

  9. Microbial antigen mimics activate diabetogenic CD8 T cells in NOD mice.

    PubMed

    Tai, Ningwen; Peng, Jian; Liu, Fuqiang; Gulden, Elke; Hu, Youjia; Zhang, Xiaojun; Chen, Li; Wong, F Susan; Wen, Li

    2016-09-19

    Both animal model and human studies indicate that commensal bacteria may modify type 1 diabetes (T1D) development. However, the underlying mechanisms by which gut microbes could trigger or protect from diabetes are not fully understood, especially the interaction of commensal bacteria with pathogenic CD8 T cells. In this study, using islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-reactive CD8 T cell receptor NY8.3 transgenic nonobese diabetic mice, we demonstrated that MyD88 strongly modulates CD8(+) T cell-mediated T1D development via the gut microbiota. Some microbial protein peptides share significant homology with IGRP. Both the microbial peptide mimic of Fusobacteria and the bacteria directly activate IGRP-specific NY8.3 T cells and promote diabetes development. Thus, we provide evidence of molecular mimicry between microbial antigens and an islet autoantigen and a novel mechanism by which the diabetogenicity of CD8(+) T cells can be regulated by innate immunity and the gut microbiota. PMID:27621416

  10. Multiple Receptor-Ligand Interactions Direct Tissue-Resident γδ T Cell Activation

    PubMed Central

    Witherden, Deborah. A.; Ramirez, Kevin; Havran, Wendy L.

    2014-01-01

    γδ T cells represent a major T cell population in epithelial tissues, such as skin, intestine, and lung, where they function in maintenance of the epithelium and provide a crucial first line defense against environmental and pathogenic insults. Despite their importance, the molecular mechanisms directing their activation and function have remained elusive. Epithelial-resident γδ T cells function through constant communication with neighboring cells, either via direct cell-to-cell contact or cell-to-matrix interactions. These intimate relationships allow γδ T cells to facilitate the maintenance of epithelial homeostasis, tissue repair following injury, inflammation, and protection from malignancy. Recent studies have identified a number of molecules involved in these complex interactions, under both homeostatic conditions, as well as following perturbation of these barrier tissues. These interactions are crucial to the timely production of cytokines, chemokines, growth factors, and extracellular matrix proteins for restoration of homeostasis. In this review, we discuss recent advances in understanding the mechanisms directing epithelial-T cell crosstalk and the distinct roles played by individual receptor-ligand pairs of cell surface molecules in this process. PMID:25505467

  11. Analysis of T Cell Responses during Active Varicella-Zoster Virus Reactivation in Human Ganglia

    PubMed Central

    Steain, Megan; Sutherland, Jeremy P.; Rodriguez, Michael; Cunningham, Anthony L.; Slobedman, Barry

    2014-01-01

    ABSTRACT Varicella-zoster virus (VZV) is responsible for both varicella (chickenpox) and herpes zoster (shingles). During varicella, the virus establishes latency within the sensory ganglia and can reactivate to cause herpes zoster, but the immune responses that occur in ganglia during herpes zoster have not previously been defined. We examined ganglia obtained from individuals who, at the time of death, had active herpes zoster. Ganglia innervating the site of the cutaneous herpes zoster rash showed evidence of necrosis, secondary to vasculitis, or localized hemorrhage. Despite this, there was limited evidence of VZV antigen expression, although a large inflammatory infiltrate was observed. Characterization of the infiltrating T cells showed a large number of infiltrating CD4+ T cells and cytolytic CD8+ T cells. Many of the infiltrating T cells were closely associated with neurons within the reactivated ganglia, yet there was little evidence of T cell-induced neuronal apoptosis. Notably, an upregulation in the expression of major histocompatibility complex class I (MHC-I) and MHC-II molecules was observed on satellite glial cells, implying these cells play an active role in directing the immune response during herpes zoster. This is the first detailed characterization of the interaction between T cells and neuronal cells within ganglia obtained from patients suffering herpes zoster at the time of death and provides evidence that CD4+ and cytolytic CD8+ T cell responses play an important role in controlling VZV replication in ganglia during active herpes zoster. IMPORTANCE VZV is responsible for both varicella (chickenpox) and herpes zoster (shingles). During varicella, the virus establishes a life-long dormant infection within the sensory ganglia and can reawaken to cause herpes zoster, but the immune responses that occur in ganglia during herpes zoster have not previously been defined. We examined ganglia obtained from individuals who, at the time of death, had

  12. Non-Canonical Notch Signaling Drives Activation and Differentiation of Peripheral CD4+ T Cells

    PubMed Central

    Dongre, Anushka; Surampudi, Lalitha; Lawlor, Rebecca G.; Fauq, Abdul H.; Miele, Lucio; Golde, Todd E.; Minter, Lisa M.; Osborne, Barbara A.

    2014-01-01

    Cleavage of the Notch receptor via a γ-secretase, results in the release of the active intra-cellular domain of Notch that migrates to the nucleus and interacts with RBP-Jκ, resulting in the activation of downstream target genes. This canonical Notch signaling pathway has been documented to influence T cell development and function. However, the mechanistic details underlying this process remain obscure. In addition to RBP-Jκ, the intra-cellular domain of Notch also interacts with other proteins in the cytoplasm and nucleus, giving rise to the possibility of an alternate, RBP-Jκ independent Notch pathway. However, the contribution of such RBP-Jκ independent, “non-canonical” Notch signaling in regulating peripheral T cell responses is unknown. In this report, we specifically demonstrate the requirement of Notch1 for regulating signal strength and signaling events distal to the T cell receptor in peripheral CD4+ T cells. By using mice with a conditional deletion in Notch1 or RBP-Jκ, we show that Notch1 regulates activation and proliferation of CD4+ T cells independently of RBP-Jκ. Furthermore, differentiation to TH1 and iTreg lineages although Notch dependent, is RBP-Jκ independent. Our striking observations demonstrate that many of the cell-intrinsic functions of Notch occur independently of RBP-Jκ. Such non-canonical regulation of these processes likely occurs through NF-κ B. This reveals a previously unknown, novel role of non-canonical Notch signaling in regulating peripheral T cell responses. PMID:24611064

  13. Regulatory Activity of Polyunsaturated Fatty Acids in T-Cell Signaling

    PubMed Central

    Kim, Wooki; Khan, Naim A.; McMurray, David N.; Prior, Ian A.; Wang, Naisyin; Chapkin, Robert S.

    2010-01-01

    n-3 polyunsaturated fatty acids (PUFA) are considered to be authentic immunosuppressors and appear to exert beneficial effects with respect to certain immune-mediated diseases. In addition to promoting T-helper 1 (Th1) cell to T-helper 2 (Th2) cell effector T-cell differentiation, n-3 PUFA may also exert anti-inflammatory actions by inducing apoptosis in Th1 cells. With respect to mechanisms of action, effects range from the modulation of membrane receptors to gene transcription via perturbation of a number of second messenger cascades. In this review, the putative targets of anti-inflammatory n-3 PUFA, activated during early and late events of T-cell activation will be discussed. Studies have demonstrated that these fatty acids alter plasma membrane micro-organization (lipid rafts) at the immunological synapse, the site where T-cells and antigen presenting cells (APC) form a physical contact for antigen initiated T-cell signaling. In addition, the production of diacylglycerol and the activation of different isoforms of protein kinase C (PKC), mitogen activated protein kinase (MAPK), calcium signaling, and nuclear translocation/activation of transcriptional factors, can be modulated by n-3 PUFA. Advantages and limitations of diverse methodologies to study the membrane lipid raft hypothesis, as well as apparent contradictions regarding the effect of n-3 PUFA on lipid rafts will be critically presented. PMID:20176053

  14. The SWI/SNF chromatin-remodeling complex modulates peripheral T cell activation and proliferation by controlling AP-1 expression.

    PubMed

    Jeong, Seung Min; Lee, Changjin; Lee, Sung Kyu; Kim, Jieun; Seong, Rho Hyun

    2010-01-22

    The SWI/SNF chromatin-remodeling complex has been implicated in the activation and proliferation of T cells. After T cell receptor signaling, the SWI/SNF complex rapidly associates with chromatin and controls gene expression in T cells. However, the process by which the SWI/SNF complex regulates peripheral T cell activation has not been elucidated. In this study, we show that the SWI/SNF complex regulates cytokine production and proliferation of T cells. During T cell activation, the SWI/SNF complex is recruited to the promoter of the transcription factor AP-1, and it increases the expression of AP-1. Increased expression of the SWI/SNF complex resulted in enhanced AP-1 activity, cytokine production, and proliferation of peripheral T cells, whereas knockdown of the SWI/SNF complex expression impaired the AP-1 expression and reduced the activation and proliferation of T cells. Moreover, mice that constitutively expressed the SWI/SNF complex in T cells were much more susceptible to experimentally induced autoimmune encephalomyelitis than the normal mice were. These results suggest that the SWI/SNF complex plays a critical role during T cell activation and subsequent immune responses.

  15. A CB2-Selective Cannabinoid Suppresses T-cell Activities and Increases Tregs and IL-10

    PubMed Central

    Robinson, Rebecca H.; Meissler, Joseph J.; Fan, Xiaoxuan; Yu, Daohai; Adler, Martin W.; Eisenstein, Toby K.

    2015-01-01

    We have previously shown that agonists selective for the cannabinoid receptor 2 (CB2), including O-1966, inhibit the Mixed Lymphocyte Reaction (MLR), an in vitro correlate of organ graft rejection, predominantly through effects on T-cells. Current studies explored the mechanism of this immunosuppression by O-1966 using mouse spleen cells. Treatment with O-1966 dose-relatedly decreased levels of the active nuclear forms of the transcription factors NF-κB and NFAT in wild-type T-cells, but not T-cells from CB2 knockout (CB2R k/o) mice. Additionally, a gene expression profile of purified T-cells from MLR cultures generated using a PCR T-cell activation array showed that O-1966 decreased mRNA expression of CD40 ligand and CyclinD3, and increased mRNA expression of Src-like-adaptor 2 (SLA2), Suppressor of Cytokine Signaling 5 (SOCS5), and IL-10. The increase in IL-10 was confirmed by measuring IL-10 protein levels in MLR culture supernatants. Further, an increase in the percentage of regulatory T-cells (Tregs) was observed in MLR cultures. Pretreatment with anti-IL-10 resulted in a partial reversal of the inhibition of proliferation and blocked the increase of Tregs. Additionally, O-1966 treatment caused a dose-related decrease in the expression of CD4 in MLR cultures from wild-type, but not CB2R k/o, mice. These data support the potential of CB2-selective agonists as useful therapeutic agents to prolong graft survival in transplant patients, and strengthens their potential as a new class of immunosuppressive agents with broader applicability. PMID:25980325

  16. Increased prevalence of late stage T cell activation antigen (VLA-1) in active juvenile chronic arthritis.

    PubMed Central

    Odum, N; Morling, N; Platz, P; Hofmann, B; Ryder, L P; Heilmann, C; Pedersen, F K; Nielsen, L P; Friis, J; Svejgaard, A

    1987-01-01

    The presence of activated T cells as judged from the reaction with monoclonal antibodies (MoAb) against (a) a late stage T cell activation antigen (VLA-1), (b) the interleukin 2 (IL2) receptor (CD25), and (c) four different HLA class II molecules (HLA-DR, DRw52, DQ, and DP) was studied in 15 patients with active juvenile chronic arthritis (JCA), 10 patients with JCA in remission, and 11 age matched, healthy controls. In addition, the distribution of T 'helper/inducer' (CD4+), T 'suppressor/inducer' (CD4+, Leu8+), T 'suppressor/cytotoxic' (CD8+), and 'natural killer' (NK) cells (CD16+) was studied. Twenty patients and six controls were investigated for the capability to stimulate alloreactivated primed lymphocytes. The prevalence of VLA-1 positive, large cells was significantly increased to 5% (median value) in active JCA as compared with JCA in remission (2%, p less than 0.05) and controls (1%, p less than 0.05), whereas no significant difference between JCA in remission and controls was observed. Except for two patients with active JCA, less than 1% IL2 receptor bearing cells were found in patients with JCA and controls. No significant difference in the prevalence and expression of the various HLA class II antigens was observed between the groups. Similarly, no significant differences in stimulatory capability in secondary mixed lymphocyte culture (MLC) were seen. The distribution of T helper/inducer (CD4+), T suppressor/cytotoxic (CD8+), and NK cells was similar in active JCA, JCA in remission, and controls. The prevalence of T suppressor/inducer (CD4+,Leu8+) cells was higher in remission JCA (17%) than in active JCA (11%) and controls (10%). This increase, however, did not reach statistical significance. In conclusion, late stage but not early stage T cell activation antigens were increased in patients with active JCA as compared with patients with JCA in remission and control, whereas some patients in remission had an increased prevalence of T suppressor

  17. Targeting human CD27 with an agonist antibody stimulates T-cell activation and antitumor immunity.

    PubMed

    Thomas, Lawrence J; He, Li-Zhen; Marsh, Henry; Keler, Tibor

    2014-01-01

    CD27 is an important co-stimulatory receptor of T cells that can potentially be exploited for immunotherapy. We developed a human IgG1 antibody that targets human CD27, and demonstrated its immunostimulatory and antineoplastic activity in various preclinical models. Currently, the antibody (1F5, CDX-1127) is being tested in patients affected by advanced malignancies. PMID:24605266

  18. Endogenous n-3 Polyunsaturated Fatty Acids Attenuate T Cell-Mediated Hepatitis via Autophagy Activation.

    PubMed

    Li, Yanli; Tang, Yuan; Wang, Shoujie; Zhou, Jing; Zhou, Jia; Lu, Xiao; Bai, Xiaochun; Wang, Xiang-Yang; Chen, Zhengliang; Zuo, Daming

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A) was administered intravenously to wild-type (WT) and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase activity, and inhibited production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-17A, and IFN-γ). In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism and could be exploited as a new therapeutic approach for autoimmune hepatitis.

  19. Endogenous n-3 Polyunsaturated Fatty Acids Attenuate T Cell-Mediated Hepatitis via Autophagy Activation

    PubMed Central

    Li, Yanli; Tang, Yuan; Wang, Shoujie; Zhou, Jing; Zhou, Jia; Lu, Xiao; Bai, Xiaochun; Wang, Xiang-Yang; Chen, Zhengliang; Zuo, Daming

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A) was administered intravenously to wild-type (WT) and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase activity, and inhibited production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-17A, and IFN-γ). In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism and could be exploited as a new therapeutic approach for autoimmune hepatitis.

  20. Dietary fish oil increases CD8+ T-cells and decreases autoreactive T-cell activity in autoimmune NZB/W F1 mice.

    PubMed

    Wu, W M; Chiang, B L; Chang, S C; Lin, B F

    2001-03-01

    To further elucidate the effect of different dietary fats on the pathogenesis of autoimmune diseases, five groups of New Zealand black/white (NZB/W) F1 mice were fed diets containing 200 g of different dietary fats including palm oil, lard-soybean oil (1:1, w/w), soybean oil, canola oil or fish oil. Serum levels of anti-DNA antibodies, proteinuria were followed every month and life span of the mice was determined. After 5 months of the respective diets, mice were killed at the age of 7 months and phenotypic analysis of splenic cells and peritoneal resident cells was performed. The pattern of production of cytokines in splenic T-cells was also investigated. The peritoneal resident cells were isolated for measurement of prostaglandin E2 (PGE2) levels. Significantly lower immunoglobulin G (IgG) anti-single-stranded DNA (ssDNA) and anti-double-stranded DNA (dsDNA) antibody levels were associated with less severe proteinuria and prolonged life span in mice fed dietary fish oil compared to mice fed other dietary oils. Phenotypic analysis of spleen cells showed increased CD8+ T-cells in the mice fed dietary fish oil compared to mice of the other dietary groups, and the percentage of natural killer (NK) cells in the mice fed dietary fish oil was also higher compared to the other dietary groups. The peritoneal resident cells produced lower PGE2 in mice fed fish oil compared to mice in the other dietary groups. To further investigate the effect of fish oil on autoreactive T-cells, splenic T-cells purified using a nylon wool column were stimulated with non-T-cells of young NZB/W F1 mice. Our data suggest that the anti-DNA antibody augmentation ability of T-cells in mice fed dietary fish oil was significantly decreased compared to mice in the other dietary groups. These data indicate that dietary fish oil might maintain the existence of CD8+ T-cells, decrease autoreactive T-cell activity and alleviate subsequent autoimmune processes in autoimmune prone NZB/W F1 mice. PMID

  1. Human T cell activation. III. Induction of an early activation antigen, EA 1 by TPA, mitogens and antigens

    SciTech Connect

    Hara, T.; Jung, L.K.L.; FU, S.M.

    1986-03-01

    With human T cells activated for 12 hours by 12-o-tetradecanoyl phorbol-13-acetate (TPA) as immunogen, an IgG/sub 2a/ monoclonal antibody, mAb Ea 1, has been generated to a 60KD phosphorylated protein with 32KD and 28KD subunits. The antigen, Ea 1, is readily detected on 60% of isolated thymocytes by indirect immunofluorescence. A low level of Ea 1 expression is detectable on 2-6% of blood lymphocytes. Isolated T cells have been induced to express Ea 1 by TPA, mitogens and anitgens. TPA activated T cells express Ea 1 as early as 1 hour after activation. By 4 hours, greater than 95% of the T cells stain with mAb Ea 1. About 50% of the PHA or Con A activated T cells express Ea 1 with a similar kinetics. Ea 1 expression proceeds that of IL-2 receptor in these activation processes. T cells activated by soluble antigens (tetanus toxoid and PPD) and alloantigens in MLR also express Ea 1 after a long incubation. About 20% of the T cells stain for Ea 1 at day 6. Ea 1 expression is not limited to activated T cells. B cells activated by TPA or anti-IgM Ab plus B cell growth factor express Ea 1. The kinetics of Ea 1 expression is slower and the staining is less intense. Repeated attempts to detect Ea 1 on resting and activated monocytes and granulocytes have not been successful. Ea 1 expression is due to de novo synthesis for its induction is blocked by cycloheximide and actinomycin D. Ea 1 is the earliest activation antigen detectable to-date.

  2. MiR-16 regulates mouse peritoneal macrophage polarization and affects T-cell activation.

    PubMed

    Jia, Xiaoqin; Li, Xiaomin; Shen, Yating; Miao, Junjun; Liu, Hao; Li, Guoli; Wang, Zhengbing

    2016-10-01

    MiR-16 is a tumour suppressor that is down-regulated in certain human cancers. However, little is known on its activity in other cell types. In this study, we examined the biological significance and underlying mechanisms of miR-16 on macrophage polarization and subsequent T-cell activation. Mouse peritoneal macrophages were isolated and induced to undergo either M1 polarization with 100 ng/ml of interferon-γ and 20 ng/ml of lipopolysaccharide, or M2 polarization with 20 ng/ml of interleukin (IL)-4. The identity of polarized macrophages was determined by profiling cell-surface markers by flow cytometry and cytokine production by ELISA. Macrophages were infected with lentivirus-expressing miR-16 to assess the effects of miR-16. Effects on macrophage-T cell interactions were analysed by co-culturing purified CD4(+) T cells with miR-16-expressing peritoneal macrophages, and measuring activation marker CD69 by flow cytometry and cytokine secretion by ELISA. Bioinformatics analysis was applied to search for potential miR-16 targets and understand its underlying mechanisms. MiR-16-induced M1 differentiation of mouse peritoneal macrophages from either the basal M0- or M2-polarized state is indicated by the significant up-regulation of M1 marker CD16/32, repression of M2 marker CD206 and Dectin-1, and increased secretion of M1 cytokine IL-12 and nitric oxide. Consistently, miR-16-expressing macrophages stimulate the activation of purified CD4(+) T cells. Mechanistically, miR-16 significantly down-regulates the expression of PD-L1, a critical immune suppressor that controls macrophage-T cell interaction and T-cell activation. MiR-16 plays an important role in shifting macrophage polarization from M2 to M1 status, and functionally activating CD4(+) T cells. This effect is potentially mediated through the down-regulation of immune suppressor PD-L1.

  3. Nuclear Factor of Activated T Cells Transcription Factor Nfatp Controls Superantigen-Induced Lethal Shock

    PubMed Central

    Tsytsykova, Alla V.; Goldfeld, Anne E.

    2000-01-01

    Tumor necrosis factor α (TNF-α) is the key mediator of superantigen-induced T cell lethal shock. Here, we show that nuclear factor of activated T cells transcription factor, NFATp, controls susceptibility to superantigen-induced lethal shock in mice through its activation of TNF-α gene transcription. In NFATp-deficient mice, T cell stimulation leads to delayed induction and attenuation of TNF-α mRNA levels, decreased TNF-α serum levels, and resistance to superantigen-induced lethal shock. By contrast, after lipopolysaccharide (LPS) challenge, serum levels of TNF-α and susceptibility to shock are unaffected. These results demonstrate that NFATp is an essential activator of immediate early TNF-α gene expression in T cells and they present in vivo evidence of the inducer- and cell type–specific regulation of TNF-α gene expression. Furthermore, they suggest NFATp as a potential selective target in the treatment of superantigen-induced lethal shock. PMID:10952728

  4. Positive and negative regulation of T-cell activation through kinases and phosphatases.

    PubMed Central

    Mustelin, Tomas; Taskén, Kjetil

    2003-01-01

    The sequence of events in T-cell antigen receptor (TCR) signalling leading to T-cell activation involves regulation of a number of protein tyrosine kinases (PTKs) and the phosphorylation status of many of their substrates. Proximal signalling pathways involve PTKs of the Src, Syk, Csk and Tec families, adapter proteins and effector enzymes in a highly organized tyrosine-phosphorylation cascade. In intact cells, tyrosine phosphorylation is rapidly reversible and generally of a very low stoichiometry even under induced conditions due to the fact that the enzymes removing phosphate from tyrosine-phosphorylated substrates, the protein tyrosine phosphatases (PTPases), have a capacity that is several orders of magnitude higher than that of the PTKs. It follows that a relatively minor change in the PTK/PTPase balance can have a major impact on net tyrosine phosphorylation and thereby on activation and proliferation of T-cells. This review focuses on the involvement of PTKs and PTPases in positive and negative regulation of T-cell activation, the emerging theme of reciprocal regulation of each type of enzyme by the other, as well as regulation of phosphotyrosine turnover by Ser/Thr phosphorylation and regulation of localization of signal components. PMID:12485116

  5. T-cell activation is an immune correlate of risk in BCG vaccinated infants

    PubMed Central

    Fletcher, Helen A.; Snowden, Margaret A.; Landry, Bernard; Rida, Wasima; Satti, Iman; Harris, Stephanie A.; Matsumiya, Magali; Tanner, Rachel; O'Shea, Matthew K.; Dheenadhayalan, Veerabadran; Bogardus, Leah; Stockdale, Lisa; Marsay, Leanne; Chomka, Agnieszka; Harrington-Kandt, Rachel; Manjaly-Thomas, Zita-Rose; Naranbhai, Vivek; Stylianou, Elena; Darboe, Fatoumatta; Penn-Nicholson, Adam; Nemes, Elisa; Hatherill, Mark; Hussey, Gregory; Mahomed, Hassan; Tameris, Michele; McClain, J Bruce; Evans, Thomas G.; Hanekom, Willem A.; Scriba, Thomas J.; McShane, Helen

    2016-01-01

    Vaccines to protect against tuberculosis (TB) are urgently needed. We performed a case–control analysis to identify immune correlates of TB disease risk in Bacille Calmette–Guerin (BCG) immunized infants from the MVA85A efficacy trial. Among 53 TB case infants and 205 matched controls, the frequency of activated HLA-DR+ CD4+ T cells associates with increased TB disease risk (OR=1.828, 95% CI=1.25–2.68, P=0.002, FDR=0.04, conditional logistic regression). In an independent study of Mycobacterium tuberculosis-infected adolescents, activated HLA-DR+ CD4+ T cells also associate with increased TB disease risk (OR=1.387, 95% CI=1.068–1.801, P=0.014, conditional logistic regression). In infants, BCG-specific T cells secreting IFN-γ associate with reduced risk of TB (OR=0.502, 95% CI=0.29–0.86, P=0.013, FDR=0.14). The causes and impact of T-cell activation on disease risk should be considered when designing and testing TB vaccine candidates for these populations. PMID:27068708

  6. Simvastatin requires activation in accessory cells to modulate T-cell responses in asthma and COPD.

    PubMed

    Knobloch, Jürgen; Yakin, Yakup; Körber, Sandra; Grensemann, Barbara; Bendella, Zeynep; Boyaci, Niyazi; Gallert, Willem-Jakob; Yanik, Sarah Derya; Jungck, David; Koch, Andrea

    2016-10-01

    T-cell-dependent airway and systemic inflammation triggers the progression of chronic obstructive pulmonary disease (COPD) and asthma. Retrospective studies suggest that simvastatin has anti-inflammatory effects in both diseases but it is unclear, which cell types are targeted. We hypothesized that simvastatin modulates T-cell activity. Circulating CD4+ and CD8+ T-cells, either pure, co-cultured with monocytes or alveolar macrophages (AM) or in peripheral blood mononuclear cells (PBMCs), were ex vivo activated towards Th1/Tc1 or Th2/Tc2 and incubated with simvastatin. Markers for Th1/Tc1 (IFNγ) and Th2/Tc2 (IL-5, IL-13) were measured by ELISA; with PBMCs this was done comparative between 11 healthy never-smokers, 11 current smokers without airflow limitation, 14 smokers with COPD and 11 never-smokers with atopic asthma. T-cell activation induced IFNγ, IL-5 and IL-13 in the presence and absence of accessory cells. Simvastatin did not modulate cytokine expression in pure T-cell fractions. β-hydroxy-simvastatin acid (activated simvastatin) suppressed IL-5 and IL-13 in pure Th2- and Tc2-cells. Simvastatin suppressed IL-5 and IL-13 in Th2-cells co-cultivated with monocytes or AM, which was partially reversed by the carboxylesterase inhibitor benzil. Simvastatin suppressed IL-5 production of Th2/Tc2-cells in PBMCs without differences between cohorts and IL-13 stronger in never-smokers and asthma compared to COPD. Simvastatin induced IFNγ in Th1/Tc1-cells in PBMCs of all cohorts except asthmatics. Simvastatin requires activation in accessory cells likely by carboxylesterase to suppress IL-5 and IL-13 in Th2/Tc2-cells. The effects on Il-13 are partially reduced in COPD. Asthma pathogenesis prevents simvastatin-induced IFNγ up-regulation. Simvastatin has anti-inflammatory effects that could be of interest for asthma therapy.

  7. Virulent Salmonella enterica serovar typhimurium evades adaptive immunity by preventing dendritic cells from activating T cells.

    PubMed

    Tobar, Jaime A; Carreño, Leandro J; Bueno, Susan M; González, Pablo A; Mora, Jorge E; Quezada, Sergio A; Kalergis, Alexis M

    2006-11-01

    Dendritic cells (DCs) constitute the link between innate and adaptive immunity by directly recognizing pathogen-associated molecular patterns (PAMPs) in bacteria and by presenting bacterial antigens to T cells. Recognition of PAMPs renders DCs as professional antigen-presenting cells able to prime naïve T cells and initiate adaptive immunity against bacteria. Therefore, interfering with DC function would promote bacterial survival and dissemination. Understanding the molecular mechanisms that have evolved in virulent bacteria to evade activation of adaptive immunity requires the characterization of virulence factors that interfere with DC function. Salmonella enterica serovar Typhimurium, the causative agent of typhoid-like disease in the mouse, can prevent antigen presentation to T cells by avoiding lysosomal degradation in DCs. Here, we show that this feature of virulent Salmonella applies in vivo to prevent activation of adaptive immunity. In addition, this attribute of virulent Salmonella requires functional expression of a type three secretion system (TTSS) and effector proteins encoded within the Salmonella pathogenicity island 2 (SPI-2). In contrast to wild-type virulent Salmonella, mutant strains carrying specific deletions of SPI-2 genes encoding TTSS components or effectors proteins are targeted to lysosomes and are no longer able to prevent DCs from activating T cells in vitro or in vivo. SPI-2 mutant strains are attenuated in vivo, showing reduced tissue colonization and enhanced T-cell activation, which confers protection against a challenge with wild-type virulent Salmonella. Our data suggest that impairment of DC function by the activity of SPI-2 gene products is crucial for Salmonella pathogenesis.

  8. The Helicobacter pylori Vacuolating Toxin Inhibits T Cell Activation by Two Independent Mechanisms

    PubMed Central

    Boncristiano, Marianna; Paccani, Silvia Rossi; Barone, Silvia; Ulivieri, Cristina; Patrussi, Laura; Ilver, Dag; Amedei, Amedeo; D'Elios, Mario Milco; Telford, John L.; Baldari, Cosima T.

    2003-01-01

    Helicobacter pylori toxin, VacA, damages the gastric epithelium by erosion and loosening of tight junctions. Here we report that VacA also interferes with T cell activation by two different mechanisms. Formation of anion-specific channels by VacA prevents calcium influx from the extracellular milieu. The transcription factor NF-AT thus fails to translocate to the nucleus and activate key cytokine genes. A second, channel-independent mechanism involves activation of intracellular signaling through the mitogen-activated protein kinases MKK3/6 and p38 and the Rac-specific nucleotide exchange factor, Vav. As a consequence of aberrant Rac activation, disordered actin polymerization is stimulated. The resulting defects in T cell activation may help H. pylori to prevent an effective immune response leading to chronic colonization of its gastric niche. PMID:14676300

  9. A Functionalized Sphingolipid Analogue for Studying Redistribution during Activation in Living T Cells.

    PubMed

    Collenburg, Lena; Walter, Tim; Burgert, Anne; Müller, Nora; Seibel, Jürgen; Japtok, Lukasz; Kleuser, Burkhard; Sauer, Markus; Schneider-Schaulies, Sibylle

    2016-05-01

    Sphingolipids are major components of the plasma membrane. In particular, ceramide serves as an essential building hub for complex sphingolipids, but also as an organizer of membrane domains segregating receptors and signalosomes. Sphingomyelin breakdown as a result of sphingomyelinase activation after ligation of a variety of receptors is the predominant source of ceramides released at the plasma membrane. This especially applies to T lymphocytes where formation of ceramide-enriched membrane microdomains modulates TCR signaling. Because ceramide release and redistribution occur very rapidly in response to receptor ligation, novel tools to further study these processes in living T cells are urgently needed. To meet this demand, we synthesized nontoxic, azido-functionalized ceramides allowing for bio-orthogonal click-reactions to fluorescently label incorporated ceramides, and thus investigate formation of ceramide-enriched domains. Azido-functionalized C6-ceramides were incorporated into and localized within plasma membrane microdomains and proximal vesicles in T cells. They segregated into clusters after TCR, and especially CD28 ligation, indicating efficient sorting into plasma membrane domains associated with T cell activation; this was abolished upon sphingomyelinase inhibition. Importantly, T cell activation was not abrogated upon incorporation of the compound, which was efficiently excluded from the immune synapse center as has previously been seen in Ab-based studies using fixed cells. Therefore, the functionalized ceramides are novel, highly potent tools to study the subcellular redistribution of ceramides in the course of T cell activation. Moreover, they will certainly also be generally applicable to studies addressing rapid stimulation-mediated ceramide release in living cells. PMID:27036914

  10. T Cell Dynamic Activation and Functional Analysis in Nanoliter Droplet Microarray

    PubMed Central

    Sarkar, Saheli; Motwani, Vinny; Sabhachandani, Pooja; Cohen, Noa; Konry, Tania

    2015-01-01

    Objective Characterization of the heterogeneity in immune reactions requires assessing dynamic single cell responses as well as interactions between the various immune cell subsets. Maturation and activation of effector cells is regulated by cell contact-dependent and soluble factor-mediated paracrine signalling. Currently there are few methods available that allow dynamic investigation of both processes simultaneously without physically constraining non-adherent cells and eliminating crosstalk from neighboring cell pairs. We describe here a microfluidic droplet microarray platform that permits rapid functional analysis of single cell responses and co-encapsulation of heterotypic cell pairs, thereby allowing us to evaluate the dynamic activation state of primary T cells. Methods The microfluidic droplet platform enables generation and docking of monodisperse nanoliter volume (0.523 nl) droplets, with the capacity of monitoring a thousand droplets per experiment. Single human T cells were encapsulated in droplets and stimulated on-chip with the calcium ionophore ionomycin. T cells were also co-encapsulated with dendritic cells activated by ovalbumin peptide, followed by dynamic calcium signal monitoring. Results Ionomycin-stimulated cells depicted fluctuation in calcium signalling compared to control. Both cell populations demonstrated marked heterogeneity in responses. Calcium signalling was observed in T cells immediately following contact with DCs, suggesting an early activation signal. T cells further showed non-contact mediated increase in calcium level, although this response was delayed compared to contact-mediated signals. Conclusions Our results suggest that this nanoliter droplet array-based microfluidic platform is a promising technique for assessment of heterogeneity in various types of cellular responses, detection of early/delayed signalling events and live cell phenotyping of immune cells. PMID:26613065

  11. Whole Blood Activation Results in Altered T Cell and Monocyte Cytokine Production Profiles by Flow Cytometry

    NASA Technical Reports Server (NTRS)

    Crucian, Brian E.; Sams, Clarence F.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry, a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a whole-blood activation culture has been described. In this study, whole blood activation was compared to traditional PBMC activation and the individual cytokine secretion patterns for both T cells, T cell subsets and monocytes was determined by flow cytometry. RESULTS: For T cell cytokine assessment (IFNg/IL-10 and IL-21/L-4) following PMA +ionomycin activation: (1) a Significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture and (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. Four-color analysiS was used to allow assessment of cytokine production by specific T cell subsets. It was found that IFNgamma production was significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were Significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines (IL-1a/IL-12 and TNFa/IL-10) in conjunction with CD14. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFa. equally well in both culture systems, however monocyte production of IL-10 was significantly elevated in whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and TNFa producing

  12. Inhibition of Th2 cytokine production in T cells by monascin via PPAR-γ activation.

    PubMed

    Hsu, Wei-Hsuan; Lee, Bao-Hong; Hsu, Ya-Wen; Pan, Tzu-Ming

    2013-08-28

    Yellow pigment monascin (MS) is a secondary metabolite isolated from Monascus -fermented products and has numerous physiological activities. However, the potential use of MS for immunomodulation remains unclear. We showed that MS and the synthetic peroxisome proliferator-activated receptor (PPAR)-γ ligand rosiglitazone (RG) significantly inhibited the production of Th2 cytokines, including IL-4, IL-5, and IL-13, in PMA/ionomycin-activated mouse EL-4 T cells. Moreover, we showed that this was due to cellular PPAR-γ translocation. These results indicate that MS and RG promote PPAR-γ-DNA interactions and suggest that the regulatory effects of MS and RG on Th2 cytokine production could be abolished with PPAR-γ antagonist treatment. MS and RG also suppressed Th2 transcription factor translocation (e.g., GATA-3 and nuclear factor of activated T cells) by preventing the phosphorylation of protein kinase C and signal transducer and activator of transcription 6. PMID:23848565

  13. Aurora A drives early signalling and vesicle dynamics during T-cell activation

    PubMed Central

    Blas-Rus, Noelia; Bustos-Morán, Eugenio; Pérez de Castro, Ignacio; de Cárcer, Guillermo; Borroto, Aldo; Camafeita, Emilio; Jorge, Inmaculada; Vázquez, Jesús; Alarcón, Balbino; Malumbres, Marcos; Martín-Cófreces, Noa B.; Sánchez-Madrid, Francisco

    2016-01-01

    Aurora A is a serine/threonine kinase that contributes to the progression of mitosis by inducing microtubule nucleation. Here we have identified an unexpected role for Aurora A kinase in antigen-driven T-cell activation. We find that Aurora A is phosphorylated at the immunological synapse (IS) during TCR-driven cell contact. Inhibition of Aurora A with pharmacological agents or genetic deletion in human or mouse T cells severely disrupts the dynamics of microtubules and CD3ζ-bearing vesicles at the IS. The absence of Aurora A activity also impairs the activation of early signalling molecules downstream of the TCR and the expression of IL-2, CD25 and CD69. Aurora A inhibition causes delocalized clustering of Lck at the IS and decreases phosphorylation levels of tyrosine kinase Lck, thus indicating Aurora A is required for maintaining Lck active. These findings implicate Aurora A in the propagation of the TCR activation signal. PMID:27091106

  14. Calmodulin-dependent phosphatase, kinases, and transcriptional corepressors involved in T-cell activation

    PubMed Central

    Liu, Jun O.

    2009-01-01

    Summary The second messenger calcium plays an essential role in mediating the TCR signaling pathway leading to cytokine production and T cell clonal expansion. The immunosuppressive drugs cyclosproin A (CsA) and FK506 have served both as therapeutic agents and as molecular probes for unraveling the protein phosphatase calcineurin as a rate-limiting enzyme involved in the transmission of calcium signal from the cytosol into the nucleus to reprogram gene expression. The use of mouse knockout models has helped to verify and further elucidate the functions of different isoforms of calcineurin in both helper T cell activation and thymocyte development. In addition to calcineurin, three other classes of calmodulin-binding proteins have also been shown to play important roles in calcium signaling in T cells. Thus, Cabin1 and class II HDACs have been found to constitute a novel calcium-signaling module in conjunction with the transcription factor myocyte enhance factor family and the transcriptional coactivator p300 to suppress and activate cytokine gene transcription in a calcium-dependent manner. The calmodulin-dependent protein kinases (CaMK) II and IV were also shown to play negative and positive regulatory functions, respectively, in TCR-mediated cytokine production. The crosstalks among these and other signal transducers in T cells form an extensive non-linear signaling network that dictates the final outcome of the TCR signaling pathway. PMID:19290928

  15. Inhibition of caspase-8 activity reduces IFN-gamma expression by T cells from Leishmania major infection.

    PubMed

    Pereira, Wânia F; Guillermo, Landi V C; Ribeiro-Gomes, Flávia L; Lopes, Marcela F

    2008-03-01

    Following infection with Leishmania major, T cell activation and apoptosis can be detected in draining lymph nodes of C57BL/6-infected mice. We investigated the mechanisms involved in apoptosis and cytokine expression following T cell activation. After two weeks of infection, apoptotic T cells were not detected in draining lymph nodes but activation with anti-CD3 induced apoptosis in both CD4 and CD8 T cells. Treatment with anti-Fas Ligand, caspase-8 or caspase- 9 inhibitors did not block activation-induced T-cell death. We also investigated whether the blockade of caspase-8 activity would affect the expression of type-1 or type-2 cytokines. At early stages of infection, both CD4 and CD8 T cells expressed IFN-gamma upon activation. Treatment with the caspase-8 inhibitor zIETD-fmk (benzyl-oxycarbonyl-Ile- Glu(OMe)-Thr-Asp(OMe)-fluoromethyl ketone) reduced the proportion of CD8 T cells and IFN-gamma expression in both CD4 and CD8 T cells. We conclude that a non apoptotic role of caspase-8 activity may be required for T cell-mediated type-1 responses during L. major infection.

  16. Reconstitution of CD4 T Cells in Bronchoalveolar Lavage Fluid after Initiation of Highly Active Antiretroviral Therapy▿

    PubMed Central

    Knox, Kenneth S.; Vinton, Carol; Hage, Chadi A.; Kohli, Lisa M.; Twigg, Homer L.; Klatt, Nichole R.; Zwickl, Beth; Waltz, Jeffrey; Goldman, Mitchell; Douek, Daniel C.; Brenchley, Jason M.

    2010-01-01

    The massive depletion of gastrointestinal-tract CD4 T cells is a hallmark of the acute phase of HIV infection. In contrast, the depletion of the lower-respiratory-tract mucosal CD4 T cells as measured in bronchoalveolar lavage (BAL) fluid is more moderate and similar to the depletion of CD4 T cells observed in peripheral blood (PB). To understand better the dynamics of disease pathogenesis and the potential for the reconstitution of CD4 T cells in the lung and PB following the administration of effective antiretroviral therapy, we studied cell-associated viral loads, CD4 T-cell frequencies, and phenotypic and functional profiles of antigen-specific CD4 T cells from BAL fluid and blood before and after the initiation of highly active antiretroviral therapy (HAART). The major findings to emerge were the following: (i) BAL CD4 T cells are not massively depleted or preferentially infected by HIV compared to levels for PB; (ii) BAL CD4 T cells reconstitute after the initiation of HAART, and their infection frequencies decrease; (iii) BAL CD4 T-cell reconstitution appears to occur via the local proliferation of resident BAL CD4 T cells rather than redistribution; and (iv) BAL CD4 T cells are more polyfunctional than CD4 T cells in blood, and their functional profile is relatively unchanged after the initiation of HAART. Taken together, these data suggest mechanisms for mucosal CD4 T-cell depletion and interventions that might aid in the reconstitution of mucosal CD4 T cells. PMID:20610726

  17. Regulation of human tonsillar T-cell proliferation by the active metabolite of vitamin D3.

    PubMed Central

    Nunn, J D; Katz, D R; Barker, S; Fraher, L J; Hewison, M; Hendy, G N; O'Riordan, J L

    1986-01-01

    We have examined the effects of 1,25(OH)2D3 on T-cell populations isolated by buoyant density and E rosetting from human tonsils. Cell proliferation was assessed by measuring the incorporation of 125iododeoxyuridine; interleukin-2 (IL-2) production was measured using an IL-2-dependent cell line, and the number of 1,25(OH)2D3 receptors was measured by whole-cell nuclear association assay. At a concentration of 10(-7) M, 1,25(OH)2D3 inhibited mitogen-induced T-cell proliferation in all E+ T-cell populations. This effect was more pronounced in the cells from the intermediate and high density layers and was reflected both in cell proliferative responses and in relative IL-2 synthesis. By adding the 1,25(OH)2D3 during the course of the mitogen assay, we demonstrated that activation of the T cell precedes the 1,25(OH)2D3-mediated inhibition. Cells that had been preincubated with mitogen in the presence of the 1,25(OH)2D3 were refractory to further stimulation by mitogens. Receptors for 1,25(OH)2D3 could not be detected in unstimulated T cells. However, activation led to the expression of high-affinity receptors for 1,25(OH)2D3. Co-incubation of the cells with mitogen and 1,25(OH)2D3 increased the number of receptors compared with mitogen alone. The effects provide further evidence for the hypothesis that 1,25(OH)2D3 is an important potential modulator of the immune system through its action on T cells. Taking our observations in conjunction with the known capacity of monocytes to hydroxylate the precursor metabolite (and thus synthesize the active form of cholecalciferol), the results support the suggestion that 1,25(OH)2D3 plays a role as a local mediator of mononuclear phagocyte-T cell interaction in human lymphomedullary tissues. PMID:3026959

  18. Antiviral activity of human Vδ2 T-cells against WNV includes both cytolytic and non-cytolytic mechanisms.

    PubMed

    Agrati, Chiara; Castilletti, Concetta; Cimini, Eleonora; Romanelli, Antonella; Lapa, Daniele; Quartu, Serena; Martini, Federico; Capobianchi, Maria Rosaria

    2016-04-01

    West Nile virus (WNV) causes a severe central nervous system infection in humans, primarily in the elderly and immunocompromised subjects. Human γδ T-cells play a critical role in the immune response against viruses, and studies of WNV meningoencephalitis in laboratory mice described a role of γδ T-cells in the protective immune response. Aim of this study was to analyze the cytolytic and non-cytolytic antiviral activity of human Vδ2 T-cells against WNV replication. The anti-WNV activity of soluble factor released by zoledronic acid (ZA)-activated Vδ2 T-cell lines and the cytotoxic capability of Vδ2 T-cell lines against WNV-infected cells were tested in vitro. The activation of Vδ2 T-cell lines was able to inhibit WNV replication through the release of soluble factors. IFN-γ is massively released by activated Vδ2 T-cell lines and is involved in the anti-WNV activity. Moreover, the Vδ2 T-cell lines can efficiently kill WNV-infected cells possibly through perforin-mediated mechanism. Altogether, our results provide insight into the effector functions of human Vδ2 T-cells against WNV. The possibility to target these cells by ZA, a commercially available drug used in humans, could potentially offer a new immunotherapeutic strategy for WNV infection. PMID:27196553

  19. Dissection of macrophage tumoricidal and protozoacidal activities using T-cell hybridomas and recombinant lymphokines.

    PubMed Central

    Futch, W S; Schook, L B

    1985-01-01

    Macrophage (M phi) phenotype and function can be modulated by various T-cell lymphokines (LK). The alteration of M phi phenotype is a result of LK concentration, duration of exposure, and the level of M phi activation when obtained from in vivo sources through elicitation by either sterile irritants or cellular immune mechanisms. To dissect M phi activation into discrete signals, we constructed T-cell hybridomas by fusing hypoxanthine-aminopterin-thymidine-sensitive BW5147 cells with nylon wool-purified, concanavalin A-stimulated T cells. The resulting T-cell hybrids were screened for their ability to (i) protect M phi from the cytopathic effect of Naegleria lysates, (ii) induce class II major histocompatibility complex gene product (Ia antigen) expression, (iii) increase tumoricidal and cytostatic activity, and (iv) alter ectoenzyme profiles on either resident or thioglycolate-elicited M phi. Two hybridomas (T-3 and T-9) were selected for further evaluation because of their activity patterns. Supernatants from T-3 and T-9 were compared with cloned gamma-interferon (IFN-gamma) for alterations of biological activities. Both T-3 and T-9 were able to protect resident-M phi cells from Naegleria lysate but had no protective effect on thioglycolate-induced M phi. T-9 supernatant had patterns of activity similar to IFN-gamma, whereas T-3 patterns were different. The addition of anti- IFN-gamma removed T-9 cytostatic activity while not affecting T-3-induced activity. The LK inducing protection from the cytopathic effect of Naegleria lysate is not IFN-gamma but another molecular moiety. We conclude that the activation of M phi for the destruction of tumor cells and amoebae may occur via different mechanisms. PMID:2998999

  20. Hyaluronan synthesis is necessary for autoreactive T-cell trafficking, activation, and Th1 polarization

    PubMed Central

    Kuipers, Hedwich F.; Rieck, Mary; Gurevich, Irina; Nagy, Nadine; Negrin, Robert S.; Wight, Thomas N.; Steinman, Lawrence; Bollyky, Paul L.

    2016-01-01

    The extracellular matrix polysaccharide hyaluronan (HA) accumulates at sites of autoimmune inflammation, including white matter lesions in multiple sclerosis (MS), but its functional importance in pathogenesis is unclear. We have evaluated the impact of 4-methylumbelliferone (4-MU), an oral inhibitor of HA synthesis, on disease progression in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Treatment with 4-MU decreases the incidence of EAE, delays its onset, and reduces the severity of established disease. 4-MU inhibits the activation of autoreactive T cells and prevents their polarization toward a Th1 phenotype. Instead, 4-MU promotes polarization toward a Th2 phenotpye and induction of Foxp3+ regulatory T cells. Further, 4-MU hastens trafficking of T cells through secondary lymphoid organs, impairs the infiltration of T cells into the CNS parenchyma, and limits astrogliosis. Together, these data suggest that HA synthesis is necessary for disease progression in EAE and that treatment with 4-MU may be a potential therapeutic strategy in CNS autoimmunity. Considering that 4-MU is already a therapeutic, called hymecromone, that is approved to treat biliary spasm in humans, we propose that it could be repurposed to treat MS. PMID:26787861

  1. Phosphatidylinositol 4-Phosphate 5-Kinases in the Regulation of T Cell Activation

    PubMed Central

    Porciello, Nicla; Kunkl, Martina; Viola, Antonella; Tuosto, Loretta

    2016-01-01

    Phosphatidylinositol 4,5-biphosphate kinases (PIP5Ks) are critical regulators of T cell activation being the main enzymes involved in the synthesis of phosphatidylinositol 4,5-biphosphate (PIP2). PIP2 is indeed a pivotal regulator of the actin cytoskeleton, thus controlling T cell polarization and migration, stable adhesion to antigen-presenting cells, spatial organization of the immunological synapse, and co-stimulation. Moreover, PIP2 also serves as a precursor for the second messengers inositol triphosphate, diacylglycerol, and phosphatidylinositol 3,4,5-triphosphate, which are essential for the activation of signaling pathways regulating cytokine production, cell cycle progression, survival, metabolism, and differentiation. Here, we discuss the impact of PIP5Ks on several T lymphocyte functions with a specific focus on the role of CD28 co-stimulation in PIP5K compartimentalization and activation. PMID:27242793

  2. Phosphatidylinositol 4-Phosphate 5-Kinases in the Regulation of T Cell Activation.

    PubMed

    Porciello, Nicla; Kunkl, Martina; Viola, Antonella; Tuosto, Loretta

    2016-01-01

    Phosphatidylinositol 4,5-biphosphate kinases (PIP5Ks) are critical regulators of T cell activation being the main enzymes involved in the synthesis of phosphatidylinositol 4,5-biphosphate (PIP2). PIP2 is indeed a pivotal regulator of the actin cytoskeleton, thus controlling T cell polarization and migration, stable adhesion to antigen-presenting cells, spatial organization of the immunological synapse, and co-stimulation. Moreover, PIP2 also serves as a precursor for the second messengers inositol triphosphate, diacylglycerol, and phosphatidylinositol 3,4,5-triphosphate, which are essential for the activation of signaling pathways regulating cytokine production, cell cycle progression, survival, metabolism, and differentiation. Here, we discuss the impact of PIP5Ks on several T lymphocyte functions with a specific focus on the role of CD28 co-stimulation in PIP5K compartimentalization and activation.

  3. Phosphatidylinositol 4-Phosphate 5-Kinases in the Regulation of T Cell Activation.

    PubMed

    Porciello, Nicla; Kunkl, Martina; Viola, Antonella; Tuosto, Loretta

    2016-01-01

    Phosphatidylinositol 4,5-biphosphate kinases (PIP5Ks) are critical regulators of T cell activation being the main enzymes involved in the synthesis of phosphatidylinositol 4,5-biphosphate (PIP2). PIP2 is indeed a pivotal regulator of the actin cytoskeleton, thus controlling T cell polarization and migration, stable adhesion to antigen-presenting cells, spatial organization of the immunological synapse, and co-stimulation. Moreover, PIP2 also serves as a precursor for the second messengers inositol triphosphate, diacylglycerol, and phosphatidylinositol 3,4,5-triphosphate, which are essential for the activation of signaling pathways regulating cytokine production, cell cycle progression, survival, metabolism, and differentiation. Here, we discuss the impact of PIP5Ks on several T lymphocyte functions with a specific focus on the role of CD28 co-stimulation in PIP5K compartimentalization and activation. PMID:27242793

  4. Visualizing TCR-induced POLKADOTS formation and NF-κB activation in the D10 T-cell clone and mouse primary effector T cells.

    PubMed

    Paul, Suman; Schaefer, Brian C

    2015-01-01

    T cells are an immune cell lineage that play a central role in protection against pathogen infection. Antigen, in the form of pathogen-derived peptides, stimulates the T-cell receptor (TCR), leading to activation of the transcription factor, nuclear factor kappa B (NF-κB). The subsequent NF-κB-dependent gene expression program drives expansion and effector differentiation of antigen-specific T cells, leading to the adaptive anti-pathogen immune response. The cell surface TCR transmits activating signals to cytosolic NF-κB by a complex signaling cascade, in which the adapter protein Bcl10 plays a key role. We have previously demonstrated that TCR engagement leads to the formation of cytosolic Bcl10 clusters, called POLKADOTS, that provide a platform for the assembly of the terminal signaling complex that ultimately mediates NF-κB activation. In this chapter, we describe the methods utilized to visualize the formation of TCR-induced POLKADOTS and to study the temporal association between POLKADOTS formation and nuclear translocation of the NF-κB subunit, RelA/p65.

  5. In vitro exposure to the herbicide atrazine inhibits T cell activation, proliferation, and cytokine production and significantly increases the frequency of Foxp3+ regulatory T cells.

    PubMed

    Thueson, Lindsay E; Emmons, Tiffany R; Browning, Dianna L; Kreitinger, Joanna M; Shepherd, David M; Wetzel, Scott A

    2015-02-01

    The herbicide atrazine (2-chloro-4-[ethylamino]-6-[isopropylamino]-s-triazine) is the most common water contaminant in the United States. Atrazine is a phosphodiesterase inhibitor and is classified as an estrogen disrupting compound because it elevates estrogen levels via induction of the enzyme aromatase. Previous studies have shown that atrazine exposure alters the function of innate immune cells such as NK cells, DC, mast cells, and macrophages. In this study we have examined the impact of in vitro atrazine exposure on the activation, proliferation, and effector cytokine production by primary murine CD4(+) T lymphocytes. We found that atrazine exposure significantly inhibited CD4(+) T cell proliferation and accumulation as well as the expression of the activation markers CD25 and CD69 in a dose-dependent manner. Interestingly, the effects were more pronounced in cells from male animals. These effects were partially mimicked by pharmacological reagents that elevate intracellular cAMP levels and addition of exogenous rmIL-2 further inhibited proliferation and CD25 expression. Consistent with these findings, atrazine exposure during T cell activation resulted in a 2- to 5-fold increase in the frequency of Foxp3(+) CD4(+) T cells.

  6. Streptococcus induces circulating CLA(+) memory T-cell-dependent epidermal cell activation in psoriasis.

    PubMed

    Ferran, Marta; Galván, Ana B; Rincón, Catalina; Romeu, Ester R; Sacrista, Marc; Barboza, Erika; Giménez-Arnau, Ana; Celada, Antonio; Pujol, Ramon M; Santamaria-Babí, Luis F

    2013-04-01

    Streptococcal throat infection is associated with a specific variant of psoriasis and with HLA-Cw6 expression. In this study, activation of circulating psoriatic cutaneous lymphocyte-associated antigen (CLA)(+) memory T cells cultured together with epidermal cells occurred only when streptococcal throat extracts were added. This triggered the production of Th1, Th17, and Th22 cytokines, as well as epidermal cell mediators (CXCL8, CXCL9, CXCL10, and CXCL11). Streptococcal extracts (SEs) did not induce any activation with either CLA(-) cells or memory T cells cultured together with epidermal cells from healthy subjects. Intradermal injection of activated culture supernatants into mouse skin induced epidermal hyperplasia. SEs also induced activation when we used epidermal cells from nonlesional skin of psoriatic patients with CLA(+) memory T cells. Significant correlations were found between SE induced upregulation of mRNA expression for ifn-γ, il-17, il-22, ip-10, and serum level of antistreptolysin O in psoriatic patients. This study demonstrates the direct involvement of streptococcal infection in pathological mechanisms of psoriasis, such as IL-17 production and epidermal cell activation.

  7. Constitutive Lck Activity Drives Sensitivity Differences between CD8+ Memory T Cell Subsets.

    PubMed

    Moogk, Duane; Zhong, Shi; Yu, Zhiya; Liadi, Ivan; Rittase, William; Fang, Victoria; Dougherty, Janna; Perez-Garcia, Arianne; Osman, Iman; Zhu, Cheng; Varadarajan, Navin; Restifo, Nicholas P; Frey, Alan B; Krogsgaard, Michelle

    2016-07-15

    CD8(+) T cells develop increased sensitivity following Ag experience, and differences in sensitivity exist between T cell memory subsets. How differential TCR signaling between memory subsets contributes to sensitivity differences is unclear. We show in mouse effector memory T cells (TEM) that >50% of lymphocyte-specific protein tyrosine kinase (Lck) exists in a constitutively active conformation, compared with <20% in central memory T cells (TCM). Immediately proximal to Lck signaling, we observed enhanced Zap-70 phosphorylation in TEM following TCR ligation compared with TCM Furthermore, we observed superior cytotoxic effector function in TEM compared with TCM, and we provide evidence that this results from a lower probability of TCM reaching threshold signaling owing to the decreased magnitude of TCR-proximal signaling. We provide evidence that the differences in Lck constitutive activity between CD8(+) TCM and TEM are due to differential regulation by SH2 domain-containing phosphatase-1 (Shp-1) and C-terminal Src kinase, and we use modeling of early TCR signaling to reveal the significance of these differences. We show that inhibition of Shp-1 results in increased constitutive Lck activity in TCM to levels similar to TEM, as well as increased cytotoxic effector function in TCM Collectively, this work demonstrates a role for constitutive Lck activity in controlling Ag sensitivity, and it suggests that differential activities of TCR-proximal signaling components may contribute to establishing the divergent effector properties of TCM and TEM. This work also identifies Shp-1 as a potential target to improve the cytotoxic effector functions of TCM for adoptive cell therapy applications. PMID:27271569

  8. TAP, a novel T cell-activating protein involved in the stimulation of MHC-restricted T lymphocytes

    PubMed Central

    1986-01-01

    Five mAbs have been generated and used to characterize TAP (T cell activating protein) a novel, functional murine T cell membrane antigen. The TAP molecule is a 12-kD protein that is synthesized by T cells. By antibody crossblocking, it appears to be closely associated with a 16- kD protein on the T cell membrane also identified with a novel mAb. These molecules are clearly distinct from the major well-characterized murine T cell antigens previously described. Antibody binding to TAP can result in the activation of MHC-restricted, antigen-specific inducer T cell hybridomas that is equivalent in magnitude to maximal antigen or lectin stimulation. This is a direct effect of soluble antibody and does not require accessory cells or other factors. The activating anti-TAP mAbs are also mitogenic for normal heterogeneous T lymphocytes in the presence of accessory cells or IL-1. In addition, these antibodies are observed to modulate specific immune stimulation. Thus, the activating anti-TAP mAbs synergise with antigen-specific stimulation of T cells, while a nonactivating anti-TAP mAb inhibits antigen driven activation. These observations suggest that the TAP molecule may participate in physiologic T cell activation. The possible relationship of TAP to known physiologic triggering structures, the T3- T cell receptor complex, is considered. TAP is expressed on 70% of peripheral T cells and therefore defines a major T cell subset, making it perhaps the first example of a murine subset-specific activating protein. PMID:2418146

  9. Increased Caspase Activity Primes Human Lyme Arthritis Synovial γδ T cells for Proliferation and Death

    PubMed Central

    Thai, Phan T.; Collins, Cheryl C.; Fortner, Karen A.; Koenig, Andreas; Hayes, Sandra M.; Budd, Ralph C.

    2011-01-01

    γδ T cells function between the innate and adaptive immune responses, promoting antigen-presenting cell function, and manifesting cytolytic activity. Their numbers often increase during infections, such as HIV, and at sites of chronic inflammation. However, the turnover dynamics of human γδ T cells are poorly understood. Here we find that despite more rapid proliferation in vitro by human Lyme arthritis synovial γδ T cells of the Vδ1 subset, they have reduced surviving cell numbers compared to αβ T cells due to increased cell death by the γδ T cells. Because caspases are involved in cell proliferation and death, and signaling is more efficient through TCR-γδ than TCR-αβ, we examined the levels of active caspases during cell cycling and following TCR restimulation. We observed higher overall caspase activity in Borrelia-reactive γδ T cells than comparable αβ T cells. This was paralleled by greater spontaneous cell death and TCR restimulation-induced cell death of the γδ T cells, which was caspase dependent. Our current findings thus are consistent with a model where human γδ T cells evolved to function quickly and transiently, in an innate fashion. PMID:21983117

  10. Bystander stimulation of activated CD4+ T cells of unrelated specificity following a booster vaccination with tetanus toxoid.

    PubMed

    Di Genova, Gianfranco; Savelyeva, Natalia; Suchacki, Amy; Thirdborough, Stephen M; Stevenson, Freda K

    2010-04-01

    Antigen-specific CD4(+) T cells are central to natural and vaccine-induced immunity. An ongoing antigen-specific T-cell response can, however, influence surrounding T cells with unrelated antigen specificities. We previously observed this bystander effect in healthy human subjects following recall vaccination with tetanus toxoid (TT). Since this interplay could be important for maintenance of memory, we have moved to a mouse model for further analysis. We investigated whether boosting memory CD4(+) T cells against TT in vivo would influence injected CD4(+) TCR transgenic T cells (OT-II) specific for an unrelated OVA peptide. If OT-II cells were pre-activated with OVA peptide in vitro, these cells showed a bystander proliferative response during the ongoing parallel TT-specific response. Bystander proliferation was dependent on boosting of the TT-specific memory response in the recipients, with no effect in naive mice. Bystander stimulation was also proportional to the strength of the TT-specific memory T-cell response. T cells activated in vitro displayed functional receptors for IL-2 and IL-7, suggesting these as potential mediators. This crosstalk between a stimulated CD4(+) memory T-cell response and CD4(+) T cells activated by an unrelated antigen could be important in human subjects continually buffeted by environmental antigens.

  11. An inducible transcription factor activates expression of human immunodeficiency virus in T cells

    NASA Astrophysics Data System (ADS)

    Nabel, Gary; Baltimore, David

    1987-04-01

    Human immunodeficiency virus (HIV) production from latently infected T lymphocytes can be induced with compounds that activate the cells to secrete lymphokines1,2. The elements in the HIV genome which control activation are not known but expression might be regulated through a variety of DNA elements. The cis-acting control elements of the viral genome are enhancer and promoter regions. The virus also encodes trans-acting factors specified by the tat-III (refs 3-6) and art genes7. We have examined whether products specific to activated T cells might stimulate viral transcription by binding to regions on viral DNA. Activation of T cells, which increases HIV expression up to 50-fold, correlated with induction of a DNA binding protein indistinguishable from a recognized transcription factor, called NF-κB (ref. 8), with binding sites in the viral enhancer. Mutation of these binding sites abolished inducibility. That NF-κB acts in synergy with the viral tat-III gene product to enhance HIV expression in T cells may have implications for the pathogenesis of AIDS (acquired immune deficiency syndrome).

  12. Microglia Induce Neurotoxic IL-17+ γδ T Cells Dependent on TLR2, TLR4, and TLR9 Activation

    PubMed Central

    Derkow, Katja; Krüger, Christina; Dembny, Paul; Lehnardt, Seija

    2015-01-01

    Background Interleukin-17 (IL-17) acts as a key regulator in central nervous system (CNS) inflammation. γδ T cells are an important innate source of IL-17. Both IL-17+ γδ T cells and microglia, the major resident immune cells of the brain, are involved in various CNS disorders such as multiple sclerosis and stroke. Also, activation of Toll-like receptor (TLR) signaling pathways contributes to CNS damage. However, the mechanisms underlying the regulation and interaction of these cellular and molecular components remain unclear. Objective In this study, we investigated the crosstalk between γδ T cells and microglia activated by TLRs in the context of neuronal damage. To this end, co-cultures of IL-17+ γδ T cells, neurons, and microglia were analyzed by immunocytochemistry, flow cytometry, ELISA and multiplex immunoassays. Results We report here that IL-17+ γδ T cells but not naïve γδ T cells induce a dose- and time-dependent decrease of neuronal viability in vitro. While direct stimulation of γδ T cells with various TLR ligands did not result in up-regulation of CD69, CD25, or in IL-17 secretion, supernatants of microglia stimulated by ligands specific for TLR2, TLR4, TLR7, or TLR9 induced activation of γδ T cells through IL-1β and IL-23, as indicated by up-regulation of CD69 and CD25 and by secretion of vast amounts of IL-17. This effect was dependent on the TLR adaptor myeloid differentiation primary response gene 88 (MyD88) expressed by both γδ T cells and microglia, but did not require the expression of TLRs by γδ T cells. Similarly to cytokine-primed IL-17+ γδ T cells, IL-17+ γδ T cells induced by supernatants derived from TLR-activated microglia also caused neurotoxicity in vitro. While these neurotoxic effects required stimulation of TLR2, TLR4, or TLR9 in microglia, neuronal injury mediated by bone marrow-derived macrophages did not require TLR signaling. Neurotoxicity mediated by IL-17+ γδ T cells required a direct cell

  13. Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8 T cell differentiation

    PubMed Central

    Pollizzi, Kristen N.; Sun, Im-Hong; Patel, Chirag H.; Lo, Ying-Chun; Oh, Min-Hee; Waickman, Adam T.; Tam, Ada J.; Blosser, Richard L.; Wen, Jiayu; Delgoffe, Greg M.; Powell, Jonathan D.

    2016-01-01

    The asymmetric partitioning of fate determining proteins has been shown to contribute to the generation of effector and memory CD8+ T cell precursors. Here, we demonstrate the asymmetric partitioning of mTORC1 activity upon activation of naïve CD8+ T cells. This results in the generation of one daughter T cell with increased mTORC1 activity, increased glycolytic activity and increased expression of effector molecules. The other daughter T cell inherits relatively low levels of mTORC1 activity, possesses increased lipid metabolism, expresses increased anti-apoptotic molecules and subsequently displays enhanced long-term survival. Mechanistically, we demonstrate a link between TCR-induced asymmetric expression of amino acid transporters and RagC-mediated translocation of mTOR to the lysosomes. Overall, our data provide important insight into how mTORC1-mediated metabolic reprogramming affects the fate decisions of T cells. PMID:27064374

  14. Affinity and dose of TCR engagement yield proportional enhancer and gene activity in CD4+ T cells

    PubMed Central

    Allison, Karmel A; Sajti, Eniko; Collier, Jana G; Gosselin, David; Troutman, Ty Dale; Stone, Erica L; Hedrick, Stephen M; Glass, Christopher K

    2016-01-01

    Affinity and dose of T cell receptor (TCR) interaction with antigens govern the magnitude of CD4+ T cell responses, but questions remain regarding the quantitative translation of TCR engagement into downstream signals. We find that while the response of mouse CD4+ T cells to antigenic stimulation is bimodal, activated cells exhibit analog responses proportional to signal strength. Gene expression output reflects TCR signal strength, providing a signature of T cell activation. Expression changes rely on a pre-established enhancer landscape and quantitative acetylation at AP-1 binding sites. Finally, we show that graded expression of activation genes depends on ERK pathway activation, suggesting that an ERK-AP-1 axis plays an important role in translating TCR signal strength into proportional activation of enhancers and genes essential for T cell function. DOI: http://dx.doi.org/10.7554/eLife.10134.001 PMID:27376549

  15. T cells respond to heat shock protein 60 via TLR2: activation of adhesion and inhibition of chemokine receptors.

    PubMed

    Zanin-Zhorov, Alexandra; Nussbaum, Gabriel; Franitza, Susanne; Cohen, Irun R; Lider, Ofer

    2003-08-01

    Soluble 60 kDa heat shock protein (HSP60) activates macrophages via TLR4. We now report that soluble HSP60 activates T cells via the innate receptor TLR2. HSP60 activated T cell adhesion to fibronectin to a degree similar to other activators: IL-2, SDF-1alpha, and RANTES. T cell type and state of activation was important; nonactivated CD45RA+ and IL-2-activated CD45RO+ T cells responded optimally (1 h) at low concentrations (0.1-1 ng/ml), but nonactivated CD45RO+ T cells required higher concentrations (approximately 1 microg/ml) of HSP60. T cell HSP60 signaling was inhibited specifically by monoclonal antibodies (mAb) to TLR2 but not by a mAb to TLR4. Indeed, T cells from mice with mutated TLR4 could still respond to HSP60, whereas Chinese hamster T cells with mutated TLR2 did not respond. The human T cell response to soluble HSP60 depended on phosphatidylinositol 3-kinase and protein kinase C signaling and involved the phosphorylation of Pyk-2. Soluble HSP60 also inhibited actin polymerization and T cell chemotaxis through extracellular matrix-like gels toward the chemokines SDF-1alpha (CXCL12) or ELC (CCL19). Exposure to HSP60 for longer times (18 h) down-regulated chemokine receptor expression: CXCR4 and CCR7. These results suggest that soluble HSP60, through TLR2-dependent interactions, can regulate T cell behavior in inflammation. PMID:12824285

  16. CD27-CD70 interactions regulate B-cell activation by T cells.

    PubMed Central

    Kobata, T; Jacquot, S; Kozlowski, S; Agematsu, K; Schlossman, S F; Morimoto, C

    1995-01-01

    CD27, a member of the tumor necrosis factor (TNF) receptor family, binds to its ligand CD70, a member of the TNF family, and subsequently induces T-cell costimulation and B-cell activation. CD27 is expressed on resting T and B cells, whereas CD70 is expressed on activated T and B cells. Utilizing transfected murine pre-B-cell lines expressing human CD27 or CD70, we have examined the effect of such transfectant cells on human B-cell IgG production and B-cell proliferation. We show that the addition of CD27-transfected cells to a T-cell-dependent, pokeweed mitogen-driven B-cell IgG synthesis system resulted in marked inhibition of IgG production, whereas the addition of CD70-transfected cells enhanced IgG production. The inhibition and enhancement of pokeweed mitogen-driven IgG production by CD27 and CD70 transfectants were abrogated by pretreatment with anti-CD27 and anti-CD70 monoclonal antibodies, respectively. In contrast, little or no inhibition of IgG production and B-cell proliferation was noted with CD27-transfected cells or either anti-CD27 or CD70 monoclonal antibody in a T-cell-independent Staphylococcus aureus/interleukin 2-driven B-cell activation system. In this same system CD70-transfected cells enhanced B-cell IgG production and B-cell proliferation, and this enhancement could be gradually abrogated by addition of increasing numbers of CD27-transfected cells. These results clearly demonstrate that interactions among subsets of T cells expressing CD27 and CD70 play a key role in regulating B-cell activation and immunoglobulin synthesis. PMID:7479974

  17. Endogenous n-3 Polyunsaturated Fatty Acids Attenuate T Cell-Mediated Hepatitis via Autophagy Activation.

    PubMed

    Li, Yanli; Tang, Yuan; Wang, Shoujie; Zhou, Jing; Zhou, Jia; Lu, Xiao; Bai, Xiaochun; Wang, Xiang-Yang; Chen, Zhengliang; Zuo, Daming

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A) was administered intravenously to wild-type (WT) and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase activity, and inhibited production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-17A, and IFN-γ). In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism and could be exploited as a new therapeutic approach for autoimmune hepatitis. PMID:27679638

  18. Endogenous n-3 Polyunsaturated Fatty Acids Attenuate T Cell-Mediated Hepatitis via Autophagy Activation

    PubMed Central

    Li, Yanli; Tang, Yuan; Wang, Shoujie; Zhou, Jing; Zhou, Jia; Lu, Xiao; Bai, Xiaochun; Wang, Xiang-Yang; Chen, Zhengliang; Zuo, Daming

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A) was administered intravenously to wild-type (WT) and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase activity, and inhibited production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-17A, and IFN-γ). In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism and could be exploited as a new therapeutic approach for autoimmune hepatitis. PMID:27679638

  19. Modulation of both activator protein-1 and nuclear factor-kappa B signal transduction of human T cells by amiodarone

    PubMed Central

    Cheng, Shu-Meng; Lin, Wei-Hsiang; Lin, Chin-Sheng; Ho, Ling-Jun; Tsai, Tsung-Neng; Wu, Chun-Hsien; Lai, Jenn-Haung

    2015-01-01

    Amiodarone, a common and effective antiarrhythmic drug, has been reported to have anti-inflammatory effects such as reducing the activation and movement of neutrophils. However, its effects on human T cells remain unclear. The aim of this study was to elucidate the effects and possible underlying mechanisms of amiodarone on human T cells. We isolated human primary T cells from the peripheral blood of healthy volunteers and performed enzyme-linked immunosorbent assay (ELISA), flow cytometry, electrophoretic mobility shift assay, luciferase assay, and Western blotting to evaluate the modulatory effects of amiodarone on human T cells. We found that amiodarone dose dependently inhibited the production of cytokines, including interleukin-2 (IL-2), IL-4, tumor necrosis factor-alpha, and interferon-gamma in activated human T cells. By flow cytometry, we demonstrated that amiodarone suppressed the expression of IL-2 receptor-alpha (CD25) and CD69, the cell surface markers of activated T cells. Moreover, molecular investigations revealed that amiodarone down-regulated activator protein-1 (AP-1) and nuclear factor kappa-B (NF-κB) DNA-binding activities in activated human T cells and also inhibited DNA binding and transcriptional activities of both AP-1 and NF-κB in Jurkat cells. Finally, by Western blotting, we showed that amiodarone reduced the activation of c-Jun NH2-terminal protein kinase and P38 mitogen-activated protein kinase, and suppressed stimuli-induced I-kappa B-alpha degradation in activated human T cells. Through regulation of AP-1 and NF-κB signaling, amiodarone inhibits cytokine production and T cell activation. These results show the pleiotropic effects of amiodarone on human T cells and suggest its therapeutic potential in inflammation-related cardiovascular disorders. PMID:25073960

  20. Non-random pairing of CD46 isoforms with skewing towards BC2 and C2 in activated and memory/effector T cells

    PubMed Central

    Hansen, Aida S.; Bundgaard, Bettina B.; Møller, Bjarne K.; Höllsberg, Per

    2016-01-01

    CD46 is a glycoprotein with important functions in innate and adaptive immune responses. Functionally different isoforms are generated by alternative splicing at exons 7–9 (BC and C isoforms) and exon 13 (CYT-1 and CYT-2 isoforms) giving rise to BC1, BC2, C1 and C2. We developed a novel real-time PCR assay that allows quantitative comparisons between these isoforms. Their relative frequency in CD4+ T cells from 100 donors revealed a distribution with high interpersonally variability. Importantly, the distribution between the isoforms was not random and although splicing favoured inclusion of exon 8 (BC isoforms), exclusion of exon 8 (C isoforms) was significantly linked to exclusion of exon 13 (CYT-2 isoforms). Despite inter-individual differences, CD4+ and CD8+ T cells, B cells, NK cells and monocytes expressed similar isoform profiles intra-individually. However, memory/effector CD4+ T cells had a significantly higher frequency of CYT-2 when compared with naïve CD4+ T cells. Likewise, in vitro activation of naïve and total CD4+ T cells increased the expression of CYT-2. This indicates that although splicing factors determine a certain expression profile in an individual, the profile can be modulated by external stimuli. This suggests a mechanism by which alterations in CD46 isoforms may temporarily regulate the immune response. PMID:27739531

  1. Bone Morphogenetic Protein Signaling Regulates Development and Activation of CD4(+) T Cells.

    PubMed

    Kuczma, Michal; Kraj, Piotr

    2015-01-01

    Bone morphogenetic proteins (BMPs) are growth factors belonging to the TGF-β (transforming growth factor β) superfamily. BMPs were found to regulate multiple cell processes such as proliferation, survival, differentiation, and apoptosis. They were originally described to play a pivotal role in inducing bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites but were found to play a significant role in embryogenesis and development of multiple tissues and organs. Activities of BMPs are regulated by a number of secreted proteins, which modulate their availability to bind cellular receptors. The functions of individual BMPs are highly redundant due to binding the same receptors and inducing overlapping signal transduction pathways. Recently, BMPs were found to regulate cells of the innate and adaptive immune system. BMPs are involved in thymic development of T cells at the early, double negative, as well as later, double positive, stages of thymopoesis. They specifically modulate thymic development of regulatory T cells (T(reg)). In the periphery, BMPs affect T cell activation, promoting generation of T(reg) cells. We found that mice deficient for one of the receptors activated by BMPs demonstrated slower growth of transplantable melanoma tumors.

  2. The dendritic cell cytoskeleton promotes T cell adhesion and activation by constraining ICAM-1 mobility

    PubMed Central

    Comrie, William A.; Li, Shuixing; Boyle, Sarah

    2015-01-01

    Integrity of the dendritic cell (DC) actin cytoskeleton is essential for T cell priming, but the underlying mechanisms are poorly understood. We show that the DC F-actin network regulates the lateral mobility of intracellular cell adhesion molecule 1 (ICAM-1), but not MHCII. ICAM-1 mobility and clustering are regulated by maturation-induced changes in the expression and activation of moesin and α-actinin-1, which associate with actin filaments and the ICAM-1 cytoplasmic domain. Constrained ICAM-1 mobility is important for DC function, as DCs expressing a high-mobility ICAM-1 mutant lacking the cytoplasmic domain exhibit diminished antigen-dependent conjugate formation and T cell priming. These defects are associated with inefficient induction of leukocyte functional antigen 1 (LFA-1) affinity maturation, which is consistent with a model in which constrained ICAM-1 mobility opposes forces on LFA-1 exerted by the T cell cytoskeleton, whereas ICAM-1 clustering enhances valency and further promotes ligand-dependent LFA-1 activation. Our results reveal an important new mechanism through which the DC cytoskeleton regulates receptor activation at the immunological synapse. PMID:25666808

  3. Symptom Severity Predicts Degree of T Cell Activation In Adult Women Following Childhood Maltreatment

    PubMed Central

    Lemieux, Andrine; Coe, Christopher L.; Carnes, Molly

    2008-01-01

    Although depression is often associated with a reduction in cellular immune responses, other types of emotional disturbance and psychopathology can activate certain aspects of immunity. Activation markers on T cells, in particular, have been found to be elevated in post-traumatic stress states. However, little is known about the relationship between the severity of PTSD symptoms and the degree of change in T cell phenotypes, or about the potential role of neuroendocrine factors in mediating the association. Twenty-four women with a history of sexual trauma during childhood, including 11 who met diagnostic criteria for PTSD, were compared to 12 age-matched, healthy women without a history of maltreatment. The women provided fasted blood samples for enumeration of cell subsets by immunofluorescence and 24-hour urine samples for analysis of catecholamine and cortisol levels. The percent of T cells expressing CD45RA, an early activation marker, was higher in the PTSD diagnosed women, and the levels correlated positively with intrusive symptoms and negatively with avoidant symptoms. These alterations in cell surface markers did not appear to be mediated by norepinephrine (NE) or cortisol, making them a distinctive and independent biomarker of arousal and disturbance in PTSD. PMID:18396007

  4. Spaceflight alters expression of microRNA during T-cell activation.

    PubMed

    Hughes-Fulford, Millie; Chang, Tammy T; Martinez, Emily M; Li, Chai-Fei

    2015-12-01

    Altered immune function has been demonstrated in astronauts during spaceflights dating back to Apollo and Skylab; this could be a major barrier to long-term space exploration. We tested the hypothesis that spaceflight causes changes in microRNA (miRNA) expression. Human leukocytes were stimulated with mitogens on board the International Space Station using an onboard normal gravity control. Bioinformatics showed that miR-21 was significantly up-regulated 2-fold during early T-cell activation in normal gravity, and gene expression was suppressed under microgravity. This was confirmed using quantitative real-time PCR (n = 4). This is the first report that spaceflight regulates miRNA expression. Global microarray analysis showed significant (P < 0.05) suppression of 85 genes under microgravity conditions compared to normal gravity samples. EGR3, FASLG, BTG2, SPRY2, and TAGAP are biologically confirmed targets and are co-up-regulated with miR-21. These genes share common promoter regions with pre-mir-21; as the miR-21 matures and accumulates, it most likely will inhibit translation of its target genes and limit the immune response. These data suggest that gravity regulates T-cell activation not only by transcription promotion but also by blocking translation via noncoding RNA mechanisms. Moreover, this study suggests that T-cell activation itself may induce a sequence of gene expressions that is self-limited by miR-21. PMID:26276131

  5. Spaceflight alters expression of microRNA during T-cell activation.

    PubMed

    Hughes-Fulford, Millie; Chang, Tammy T; Martinez, Emily M; Li, Chai-Fei

    2015-12-01

    Altered immune function has been demonstrated in astronauts during spaceflights dating back to Apollo and Skylab; this could be a major barrier to long-term space exploration. We tested the hypothesis that spaceflight causes changes in microRNA (miRNA) expression. Human leukocytes were stimulated with mitogens on board the International Space Station using an onboard normal gravity control. Bioinformatics showed that miR-21 was significantly up-regulated 2-fold during early T-cell activation in normal gravity, and gene expression was suppressed under microgravity. This was confirmed using quantitative real-time PCR (n = 4). This is the first report that spaceflight regulates miRNA expression. Global microarray analysis showed significant (P < 0.05) suppression of 85 genes under microgravity conditions compared to normal gravity samples. EGR3, FASLG, BTG2, SPRY2, and TAGAP are biologically confirmed targets and are co-up-regulated with miR-21. These genes share common promoter regions with pre-mir-21; as the miR-21 matures and accumulates, it most likely will inhibit translation of its target genes and limit the immune response. These data suggest that gravity regulates T-cell activation not only by transcription promotion but also by blocking translation via noncoding RNA mechanisms. Moreover, this study suggests that T-cell activation itself may induce a sequence of gene expressions that is self-limited by miR-21.

  6. Increased numbers and functional activity of CD56⁺ T cells in healthy cytomegalovirus positive subjects.

    PubMed

    Almehmadi, Mazen; Flanagan, Brian F; Khan, Naeem; Alomar, Suliman; Christmas, Stephen E

    2014-06-01

    Human T cells expressing CD56 are capable of tumour cell lysis following activation with interleukin-2 but their role in viral immunity has been less well studied. Proportions of CD56(+) T cells were found to be highly significantly increased in cytomegalovirus-seropositive (CMV(+) ) compared with seronegative (CMV(-) ) healthy subjects (9.1 ± 1.5% versus 3.7 ± 1.0%; P < 0.0001). Proportions of CD56(+) T cells expressing CD28, CD62L, CD127, CD161 and CCR7 were significantly lower in CMV(+) than CMV(-) subjects but those expressing CD4, CD8, CD45RO, CD57, CD58, CD94 and NKG2C were significantly increased (P < 0.05), some having the phenotype of T effector memory cells. Levels of pro-inflammatory cytokines and CD107a were significantly higher in CD56(+) T cells from CMV(+) than CMV(-) subjects following stimulation with CMV antigens. This also resulted in higher levels of proliferation in CD56(+) T cells from CMV(+) than CMV(-) subjects. Using Class I HLA pentamers, it was found that CD56(+) T cells from CMV(+) subjects contained similar proportions of antigen-specific CD8(+) T cells to CD56(-) T cells in donors of several different HLA types. These differences may reflect the expansion and enhanced functional activity of CMV-specific CD56(+) memory T cells. In view of the link between CD56 expression and T-cell cytotoxic function, this strongly implicates CD56(+) T cells as being an important component of the cytotoxic T-cell response to CMV in healthy carriers.

  7. CD26 surface molecule involvement in T cell activation and lymphokine synthesis in rheumatoid and other inflammatory synovitis.

    PubMed

    Gerli, R; Muscat, C; Bertotto, A; Bistoni, O; Agea, E; Tognellini, R; Fiorucci, G; Cesarotti, M; Bombardieri, S

    1996-07-01

    T cell surface expression and the functional role of CD26 antigen (Ag), a surface ectoenzyme involved in T cell activation and migration across the extracellular matrix, were analyzed in the peripheral blood (PB) and synovial fluid (SF) from patients with inflammatory arthritides. CD26 membrane expression on T cells was detected by cytofluorometry using two different monoclonal antibodies, anti-Ta1 and anti-1F7, while cell proliferation and both IL-2 and IFN-gamma production were evaluated in anti-CD3- or anti-CD2-stimulated cell cultures after Ag surface modulation with anti-1F7. The results showed that Ta1 and 1F7 Ag expression were increased on T cells from PB of patients with active, but not inactive, rheumatoid arthritis (RA). Most SF T cells from RA or other inflammatory arthritides displayed the memory marker CD45R0 and the Ta1 Ag, but lacked the 1F7 molecule. In addition, in vitro 1F7 modulation, which enhanced RA PB T cell proliferation and both IL-2 and IFN-gamma synthesis, did not synergize with anti-CD3 or anti-CD2 in inducing IL-2-dependent activation of SF T cells, but reduced IFN-gamma production. A spontaneous reappearance of 1F7 Ag on the SF T cell surface was seen after 2-5 days in culture. Phorbol myristate acetate, able to accelerate its reexpression, also restored a normal response of SF T cells to anti-1F7 comitogenic effects. These data confirm a role of the CD26 surface molecule in regulating T cell activation and lymphokine synthesis. This observation may have important implications in the regulation of T cell activity at the joint level during chronic inflammatory processes. PMID:8674237

  8. Artificial antigen presenting cell (aAPC) mediated activation and expansion of natural killer T cells.

    PubMed

    East, James E; Sun, Wenji; Webb, Tonya J

    2012-01-01

    Natural killer T (NKT) cells are a unique subset of T cells that display markers characteristic of both natural killer (NK) cells and T cells(1). Unlike classical T cells, NKT cells recognize lipid antigen in the context of CD1 molecules(2). NKT cells express an invariant TCRα chain rearrangement: Vα14Jα18 in mice and Vα24Jα18 in humans, which is associated with Vβ chains of limited diversity(3-6), and are referred to as canonical or invariant NKT (iNKT) cells. Similar to conventional T cells, NKT cells develop from CD4-CD8- thymic precursor T cells following the appropriate signaling by CD1d (7). The potential to utilize NKT cells for therapeutic purposes has significantly increased with the ability to stimulate and expand human NKT cells with α-Galactosylceramide (α-GalCer) and a variety of cytokines(8). Importantly, these cells retained their original phenotype, secreted cytokines, and displayed cytotoxic function against tumor cell lines. Thus, ex vivo expanded NKT cells remain functional and can be used for adoptive immunotherapy. However, NKT cell based-immunotherapy has been limited by the use of autologous antigen presenting cells and the quantity and quality of these stimulator cells can vary substantially. Monocyte-derived DC from cancer patients have been reported to express reduced levels of costimulatory molecules and produce less inflammatory cytokines(9,10). In fact, murine DC rather than autologous APC have been used to test the function of NKT cells from CML patients(11). However, this system can only be used for in vitro testing since NKT cells cannot be expanded by murine DC and then used for adoptive immunotherapy. Thus, a standardized system that relies on artificial Antigen Presenting Cells (aAPC) could produce the stimulating effects of DC without the pitfalls of allo- or xenogeneic cells(12, 13). Herein, we describe a method for generating CD1d-based aAPC. Since the engagement of the T cell receptor (TCR) by CD1d-antigen complexes is

  9. Deletion of mTORC1 Activity in CD4+ T Cells Is Associated with Lung Fibrosis and Increased γδ T Cells

    PubMed Central

    Vigeland, Christine L.; Collins, Samuel L.; Chan-Li, Yee; Hughes, Andrew H.; Oh, Min-Hee; Powell, Jonathan D.; Horton, Maureen R.

    2016-01-01

    Pulmonary fibrosis is a devastating, incurable disease in which chronic inflammation and dysregulated, excessive wound healing lead to progressive fibrosis, lung dysfunction, and ultimately death. Prior studies have implicated the cytokine IL-17A and Th17 cells in promoting the development of fibrosis. We hypothesized that loss of Th17 cells via CD4-specific deletion of mTORC1 activity would abrogate the development of bleomycin-induced pulmonary fibrosis. However, in actuality loss of Th17 cells led to increased mortality and fibrosis in response to bleomycin. We found that in the absence of Th17 cells, there was continued production of IL-17A by γδ T cells. These IL-17A+ γδ T cells were associated with increased lung neutrophils and M2 macrophages, accelerated development of fibrosis, and increased mortality. These data elucidate the critical role of IL-17A+ γδ T cells in promoting chronic inflammation and fibrosis, and reveal a novel therapeutic target for treatment of pulmonary fibrosis. PMID:27649073

  10. Deletion of mTORC1 Activity in CD4+ T Cells Is Associated with Lung Fibrosis and Increased γδ T Cells.

    PubMed

    Vigeland, Christine L; Collins, Samuel L; Chan-Li, Yee; Hughes, Andrew H; Oh, Min-Hee; Powell, Jonathan D; Horton, Maureen R

    2016-01-01

    Pulmonary fibrosis is a devastating, incurable disease in which chronic inflammation and dysregulated, excessive wound healing lead to progressive fibrosis, lung dysfunction, and ultimately death. Prior studies have implicated the cytokine IL-17A and Th17 cells in promoting the development of fibrosis. We hypothesized that loss of Th17 cells via CD4-specific deletion of mTORC1 activity would abrogate the development of bleomycin-induced pulmonary fibrosis. However, in actuality loss of Th17 cells led to increased mortality and fibrosis in response to bleomycin. We found that in the absence of Th17 cells, there was continued production of IL-17A by γδ T cells. These IL-17A+ γδ T cells were associated with increased lung neutrophils and M2 macrophages, accelerated development of fibrosis, and increased mortality. These data elucidate the critical role of IL-17A+ γδ T cells in promoting chronic inflammation and fibrosis, and reveal a novel therapeutic target for treatment of pulmonary fibrosis. PMID:27649073

  11. T cell activation responses are differentially regulated during clinorotation and in spaceflight

    NASA Technical Reports Server (NTRS)

    Hashemi, B. B.; Penkala, J. E.; Vens, C.; Huls, H.; Cubbage, M.; Sams, C. F.

    1999-01-01

    Studies of T lymphocyte activation with mitogenic lectins during spaceflight have shown a dramatic inhibition of activation as measured by DNA synthesis at 72 h, but the mechanism of this inhibition is unknown. We have investigated the progression of cellular events during the first 24 h of activation using both spaceflight microgravity culture and a ground-based model system that relies on the low shear culture environment of a rotating clinostat (clinorotation). Stimulation of human peripheral blood mononuclear cells (PBMCs) with soluble anti-CD3 (Leu4) in clinorotation and in microgravity culture shows a dramatic reduction in surface expression of the receptor for IL-2 (CD25) and CD69. An absence of bulk RNA synthesis in clinorotation indicates that stimulation with soluble Leu4 does not induce transition of T cells from G0 to the G1 stage of the cell cycle. However, internalization of the TCR by T cells and normal levels of IL-1 synthesis by monocytes indicate that intercellular interactions that are required for activation occur during clinorotation. Complementation of TCR-mediated signaling by phorbol ester restores the ability of PBMCs to express CD25 in clinorotation, indicating that a PKC-associated pathway may be compromised under these conditions. Bypassing the TCR by direct activation of intracellular pathways with a combination of phorbol ester and calcium ionophore in clinorotation resulted in full expression of CD25; however, only partial expression of CD25 occurred in microgravity culture. Though stimulation of purified T cells with Bead-Leu4 in microgravity culture resulted in the engagement and internalization of the TCR, the cells still failed to express CD25. When T cells were stimulated with Bead-Leu4 in microgravity culture, they were able to partially express CD69, a receptor that is constitutively stored in intracellular pools and can be expressed in the absence of new gene expression. Our results suggest that the inhibition of T cell

  12. T cell receptor junctional regions of V gamma 9+/V delta 2+ T cell clones in relation to non-MHC restricted cytotoxic activity.

    PubMed

    Flanagan, B F; Wheatcroft, N J; Thornton, S M; Christmas, S E

    1993-05-01

    Human gamma delta T cell clones having V gamma 9JP and V delta 2DJ1 T cell receptor (TCR) gene rearrangements were isolated form an individual donor and tested for non-MHC restricted cytotoxicity against the B lymphoblastoid cell line, BSM. Most clones were highly cytotoxic but 3/9 clones had very low activity, comparable to that of CD4+ alpha beta T cell clones. Although there was a tendency for clones with low cytotoxic function to produce high levels of interferon-gamma and tumor necrosis factor-alpha, this correlation was not complete. TCR gamma and delta junctional sequences were obtained and were found to be different for all clones. There were no consistent structural differences between gamma delta TCRs of cytotoxic and non-cytotoxic clones, but gamma or delta junctional regions of all three non-cytotoxic clones had unusual features. One clone had a particularly short gamma chain junctional sequence, one had a short delta chain junctional sequence and the third clone was the only one of the panel which failed to utilise the D delta 3 segment. If the gamma delta TCR is involved in target cell recognition in this model of non-MHC restricted killing, such variations in receptor structure may be sufficient to inhibit recognition and thereby reduce the cytotoxic capacity of a minority of V gamma 9+/V delta 2+ clones. Also, a panel of gamma delta T cell clones expressing V gamma 8/V delta 3 isolated from a different donor, were all highly cytotoxic against BSM, indicating that these target cells can be recognised by effector cells expressing a TCR other than the V gamma 9/V delta 2 receptor. The possible influence of other cell surface molecules on non-MHC restricted cytotoxic function is discussed.

  13. Uncoupling complement C1s activation from C1q binding in apoptotic cell phagocytosis and immunosuppressive capacity.

    PubMed

    Colonna, Lucrezia; Parry, Graham C; Panicker, Sandip; Elkon, Keith B

    2016-02-01

    Complement activation contributes to inflammation in many diseases, yet it also supports physiologic apoptotic cells (AC) clearance and its downstream immunosuppressive effects. The roles of individual complement components in AC phagocytosis have been difficult to dissect with artificially depleted sera. Using human in vitro systems and the novel antibody complement C1s inhibitor TNT003, we uncoupled the role of the enzymatic activation of the classical pathway from the opsonizing role of C1q in mediating a) the phagocytosis of early and late AC, and b) the immunosuppressive capacity of early AC. We found that C1s inhibition had a small impact on the physiologic clearance of early AC, leaving their immunosuppressive properties entirely unaffected, while mainly inhibiting the phagocytosis of late apoptotic/secondary necrotic cells. Our data suggest that C1s inhibition may represent a valuable therapeutic strategy to control classical pathway activation without causing significant AC accumulation in diseases without defects in AC phagocytosis.

  14. Regulated vesicle fusion generates signaling nanoterritories that control T cell activation at the immunological synapse.

    PubMed

    Soares, Helena; Henriques, Ricardo; Sachse, Martin; Ventimiglia, Leandro; Alonso, Miguel A; Zimmer, Christophe; Thoulouze, Maria-Isabel; Alcover, Andrés

    2013-10-21

    How the vesicular traffic of signaling molecules contributes to T cell receptor (TCR) signal transduction at the immunological synapse remains poorly understood. In this study, we show that the protein tyrosine kinase Lck, the TCRζ subunit, and the adapter LAT traffic through distinct exocytic compartments, which are released at the immunological synapse in a differentially regulated manner. Lck vesicular release depends on MAL protein. Synaptic Lck, in turn, conditions the calcium- and synaptotagmin-7-dependent fusion of LAT and TCRζ containing vesicles. Fusion of vesicles containing TCRζ and LAT at the synaptic membrane determines not only the nanoscale organization of phosphorylated TCRζ, ZAP70, LAT, and SLP76 clusters but also the presence of phosphorylated LAT and SLP76 in interacting signaling nanoterritories. This mechanism is required for priming IL-2 and IFN-γ production and may contribute to fine-tuning T cell activation breadth in response to different stimulatory conditions.

  15. Premalignant Oral Lesion Cells Elicit Increased Cytokine Production and Activation of T-cells

    PubMed Central

    JOHNSON, SARA D.; LEVINGSTON, CORINNE; YOUNG, M. RITA I.

    2016-01-01

    Background Head and neck squamous cell carcinomas (HNSCC) are known to evade the host immune response. How premalignant oral lesions modulate the immune response, however, has yet to be elucidated. Materials and Methods A mouse model of oral carcinogenesis was used to determine how mediators from premalignant oral lesion cells vs. HNSCC cells impact on immune cytokine production and activation. Results Media conditioned by premalignant lesion cells elicited an increased production of T cell-associated cytokines and proinflammatory mediators from cervical lymph node cells compared to media conditioned by HNSCC cells or media alone. In the presence of premalignant lesion cell-conditioned media, CD4+ T cell expression of the IL-2 receptor CD25 and CD8+ T cell expression of the activation marker CD69 was greater, compared to what was induced in HNSCC cell-conditioned media or media alone. Conclusion Premalignant lesion cells promote a proinflammatory environment and induce immune changes before HNSCC tumors are established. PMID:27354582

  16. Tcf1 and Lef1 transcription factors establish CD8(+) T cell identity through intrinsic HDAC activity.

    PubMed

    Xing, Shaojun; Li, Fengyin; Zeng, Zhouhao; Zhao, Yunjie; Yu, Shuyang; Shan, Qiang; Li, Yalan; Phillips, Farrah C; Maina, Peterson K; Qi, Hank H; Liu, Chengyu; Zhu, Jun; Pope, R Marshall; Musselman, Catherine A; Zeng, Chen; Peng, Weiqun; Xue, Hai-Hui

    2016-06-01

    The CD4(+) and CD8(+) T cell dichotomy is essential for effective cellular immunity. How individual T cell identity is established remains poorly understood. Here we show that the high-mobility group (HMG) transcription factors Tcf1 and Lef1 are essential for repressing CD4(+) lineage-associated genes including Cd4, Foxp3 and Rorc in CD8(+) T cells. Tcf1- and Lef1-deficient CD8(+) T cells exhibit histone hyperacetylation, which can be ascribed to intrinsic histone deacetylase (HDAC) activity in Tcf1 and Lef1. Mutation of five conserved amino acids in the Tcf1 HDAC domain diminishes HDAC activity and the ability to suppress CD4(+) lineage genes in CD8(+) T cells. These findings reveal that sequence-specific transcription factors can utilize intrinsic HDAC activity to guard cell identity by repressing lineage-inappropriate genes. PMID:27111144

  17. Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas

    PubMed Central

    Mitchell, Tracey J; John, Susan

    2005-01-01

    Interaction of cytokines with their cognate receptors leads to the activation of latent transcription factors – the signal transducers and activators of transcription (STAT) proteins – whose biological activities ultimately regulate many critical aspects of cell growth, survival and differentiation. Dysregulation of the JAK-STAT pathway is frequently observed in many primary human tumours, reflecting the importance of this pathway in the maintenance of cellular integrity. Here we review the current progress in STAT structure and function, and the contribution of STAT signalling to the pathogenesis of T-cell lymphomas. PMID:15720432

  18. Magnetic-Activated Cell Sorting of TCR-Engineered T Cells, Using tCD34 as a Gene Marker, but Not Peptide–MHC Multimers, Results in Significant Numbers of Functional CD4+ and CD8+ T Cells

    PubMed Central

    Govers, Coen; Berrevoets, Cor; Treffers-Westerlaken, Elike; Broertjes, Marieke

    2012-01-01

    Abstract T cell-sorting technologies with peptide–MHC multimers or antibodies against gene markers enable enrichment of antigen-specific T cells and are expected to enhance the therapeutic efficacy of clinical T cell therapy. However, a direct comparison between sorting reagents for their ability to enrich T cells is lacking. Here, we compared the in vitro properties of primary human T cells gene-engineered with gp100280–288/HLA-A2-specific T cell receptor-αβ (TCRαβ) on magnetic-activated cell sorting (MACS) with various peptide–MHC multimers or an antibody against truncated CD34 (tCD34). With respect to peptide–MHC multimers, we observed that Streptamer®, when compared with pentamers and tetramers, improved T cell yield as well as level and stability of enrichment, of TCR-engineered T cells (>65% of peptide–MHC-binding T cells, stable for at least 6 weeks). In agreement with these findings, Streptamer, the only detachable reagent, revealed significant T cell expansion in the first week after MACS. Sorting TCR and tCD34 gene-engineered T cells with CD34 monoclonal antibody (mAb) resulted in the most significant T cell yield and enrichment of T cells (>95% of tCD34 T cells, stable for at least 6 weeks). Notably, T cells sorted with CD34 mAb, when compared with Streptamer, bound about 2- to 3-fold less peptide–MHC but showed superior antigen-specific upregulated expression of CD107a and production of interferon (IFN)-γ. Multiparametric flow cytometry revealed that CD4+ T cells, uniquely present in CD34 mAb-sorted T cells, contributed to enhanced IFN-γ production. Taken together, we postulate that CD34 mAb-based sorting of gene-marked T cells has benefits toward applications of T cell therapy, especially those that require CD4+ T cells. PMID:22871260

  19. Magnetic-activated cell sorting of TCR-engineered T cells, using tCD34 as a gene marker, but not peptide-MHC multimers, results in significant numbers of functional CD4+ and CD8+ T cells.

    PubMed

    Govers, Coen; Berrevoets, Cor; Treffers-Westerlaken, Elike; Broertjes, Marieke; Debets, Reno

    2012-06-01

    T cell-sorting technologies with peptide-MHC multimers or antibodies against gene markers enable enrichment of antigen-specific T cells and are expected to enhance the therapeutic efficacy of clinical T cell therapy. However, a direct comparison between sorting reagents for their ability to enrich T cells is lacking. Here, we compared the in vitro properties of primary human T cells gene-engineered with gp100(280-288)/HLA-A2-specific T cell receptor-αβ (TCRαβ) on magnetic-activated cell sorting (MACS) with various peptide-MHC multimers or an antibody against truncated CD34 (tCD34). With respect to peptide-MHC multimers, we observed that Streptamer(®), when compared with pentamers and tetramers, improved T cell yield as well as level and stability of enrichment, of TCR-engineered T cells (>65% of peptide-MHC-binding T cells, stable for at least 6 weeks). In agreement with these findings, Streptamer, the only detachable reagent, revealed significant T cell expansion in the first week after MACS. Sorting TCR and tCD34 gene-engineered T cells with CD34 monoclonal antibody (mAb) resulted in the most significant T cell yield and enrichment of T cells (>95% of tCD34 T cells, stable for at least 6 weeks). Notably, T cells sorted with CD34 mAb, when compared with Streptamer, bound about 2- to 3-fold less peptide-MHC but showed superior antigen-specific upregulated expression of CD107a and production of interferon (IFN)-γ. Multiparametric flow cytometry revealed that CD4(+) T cells, uniquely present in CD34 mAb-sorted T cells, contributed to enhanced IFN-γ production. Taken together, we postulate that CD34 mAb-based sorting of gene-marked T cells has benefits toward applications of T cell therapy, especially those that require CD4(+) T cells. PMID:22871260

  20. Staphylococcal enterotoxin A (SEA) stimulates STAT3 activation and IL-17 expression in cutaneous T-cell lymphoma

    PubMed Central

    Willerslev-Olsen, Andreas; Krejsgaard, Thorbjørn; Lindahl, Lise M.; Litvinov, Ivan V.; Fredholm, Simon; Petersen, David L.; Nastasi, Claudia; Gniadecki, Robert; Mongan, Nigel P.; Sasseville, Denis; Wasik, Mariusz A.; Bonefeld, Charlotte M.; Geisler, Carsten; Woetmann, Anders; Iversen, Lars; Kilian, Mogens; Koralov, Sergei B.

    2016-01-01

    Cutaneous T-cell lymphoma (CTCL) is characterized by proliferation of malignant T cells in a chronic inflammatory environment. With disease progression, bacteria colonize the compromised skin barrier and half of CTCL patients die of infection rather than from direct organ involvement by the malignancy. Clinical data indicate that bacteria play a direct role in disease progression, but little is known about the mechanisms involved. Here, we demonstrate that bacterial isolates containing staphylococcal enterotoxin A (SEA) from the affected skin of CTCL patients, as well as recombinant SEA, stimulate activation of signal transducer and activator of transcription 3 (STAT3) and upregulation of interleukin (IL)-17 in immortalized and primary patient–derived malignant and nonmalignant T cells. Importantly, SEA induces STAT3 activation and IL-17 expression in malignant T cells when cocultured with nonmalignant T cells, indicating an indirect mode of action. In accordance, malignant T cells expressing an SEA-nonresponsive T-cell receptor variable region β chain are nonresponsive to SEA in monoculture but display strong STAT3 activation and IL-17 expression in cocultures with SEA-responsive nonmalignant T cells. The response is induced via IL-2 receptor common γ chain cytokines and a Janus kinase 3 (JAK3)-dependent pathway in malignant T cells, and blocked by tofacitinib, a clinical-grade JAK3 inhibitor. In conclusion, we demonstrate that SEA induces cell cross talk–dependent activation of STAT3 and expression of IL-17 in malignant T cells, suggesting a mechanism whereby SEA-producing bacteria promote activation of an established oncogenic pathway previously implicated in carcinogenesis. PMID:26738536

  1. PKC-Theta is a Novel SC35 Splicing Factor Regulator in Response to T Cell Activation

    PubMed Central

    McCuaig, Robert Duncan; Dunn, Jennifer; Li, Jasmine; Masch, Antonia; Knaute, Tobias; Schutkowski, Mike; Zerweck, Johannes; Rao, Sudha

    2015-01-01

    Alternative splicing of nuclear pre-mRNA is essential for generating protein diversity and regulating gene expression. While many immunologically relevant genes undergo alternative splicing, the role of regulated splicing in T cell immune responses is largely unexplored, and the signaling pathways and splicing factors that regulate alternative splicing in T cells are poorly defined. Here, we show using a combination of Jurkat T cells, human primary T cells, and ex vivo naïve and effector virus-specific T cells isolated after influenza A virus infection that SC35 phosphorylation is induced in response to stimulatory signals. We show that SC35 colocalizes with RNA polymerase II in activated T cells and spatially overlaps with H3K27ac and H3K4me3, which mark transcriptionally active genes. Interestingly, SC35 remains coupled to the active histone marks in the absence of continuing stimulatory signals. We show for the first time that nuclear PKC-θ co-exists with SC35 in the context of the chromatin template and is a key regulator of SC35 in T cells, directly phosphorylating SC35 peptide residues at RNA recognition motif and RS domains. Collectively, our findings suggest that nuclear PKC-θ is a novel regulator of the key splicing factor SC35 in T cells. PMID:26594212

  2. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation.

    PubMed

    Bruno, Stefania; Grange, Cristina; Tapparo, Marta; Pasquino, Chiara; Romagnoli, Renato; Dametto, Ennia; Amoroso, Antonio; Tetta, Ciro; Camussi, Giovanni

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2) and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs), HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response. PMID:27127520

  3. Age-associated Failure to Adjust Type I Interferon Receptor Signaling Thresholds after T-cell Activation1

    PubMed Central

    Li, Guangjin; Ju, Jihang; Weyand, Cornelia M.; Goronzy, Jörg J.

    2015-01-01

    With increasing age, naïve CD4 T cells acquire intrinsic defects that compromise their ability to respond and differentiate. Type I IFNs, pervasive constituents of the environment in which adaptive immune responses occur, are known to regulate T cell differentiation and survival. Activated naïve CD4 T cells from older individuals have reduced responses to type I IFN, a defect that develops during activation and is not observed in quiescent naïve CD4 T cells. Naïve CD4 T cells from young adults upregulate the expression of STAT1 and STAT5 after activation, lowering their threshold to respond to type I IFN stimulation. The heightened STAT signaling is critical to maintain the expression of CD69 that regulates lymphocyte egress and the ability to produce IL-2 and to survive. Although activation of T cells from older adults also induces transcription of STAT1 and STAT5, failure to exclude SHP1 to the signaling complex blunts their type I IFN response. In summary, our data show that type I IFN signaling thresholds in naïve CD4 T cells after activation are dynamically regulated to respond environmental cues for clonal expansion and memory cell differentiation. Naïve CD4 T cells from older adults have a defect in this threshold calibration. Restoring their ability to respond to type I IFN emerges as a promising target to restore T cell responses and improve the induction of T cell memory. PMID:26091718

  4. Antigen-dependent and -independent contributions to primary memory CD8 T cell activation and protection following infection.

    PubMed

    Martin, Matthew D; Badovinac, Vladimir P

    2015-12-10

    Memory CD8 T-cell activation, including expression of IFN-γ and granzymeB, can be induced by antigen (Ag)-dependent signals through the T-cell-receptor, or by pathogen-derived inflammatory cytokines in an Ag-independent manner. Recent studies have come to conflicting results regarding the contributions of Ag and/or inflammation to memory CD8 T-cell activation. Additionally, research has indicated that inflammation-driven CD8 T-cell responses during un-related infections (bystander activation) have the potential to provide protection, but whether protection occurs in immuno-competent hosts is unclear. To investigate these questions, we examined activation of virus-specific memory CD8 T-cells following infection with L. monocytogenes either expressing or not cognate Ag. We show that Ag and inflammation act synergistically in vitro to induce memory activation. In vivo, we found that when memory CD8 T-cells significantly contribute to clearance of infection, early activation and continued responses by these cells are enhanced by cognate Ag recognition. Mechanistically, we show that bystander responses by memory are dependent upon the dose of infection and the amount of inflammation elicited following infection and are able to provide protection in IFN-γ deficient mice, but not in immuno-competent hosts. The data elucidate the requirements for memory CD8 T-cell activation and the protective role of bystander responses.

  5. Antigen-dependent and –independent contributions to primary memory CD8 T cell activation and protection following infection

    PubMed Central

    Martin, Matthew D.; Badovinac, Vladimir P.

    2015-01-01

    Memory CD8 T-cell activation, including expression of IFN-γ and granzymeB, can be induced by antigen (Ag)-dependent signals through the T-cell-receptor, or by pathogen-derived inflammatory cytokines in an Ag-independent manner. Recent studies have come to conflicting results regarding the contributions of Ag and/or inflammation to memory CD8 T-cell activation. Additionally, research has indicated that inflammation-driven CD8 T-cell responses during un-related infections (bystander activation) have the potential to provide protection, but whether protection occurs in immuno-competent hosts is unclear. To investigate these questions, we examined activation of virus-specific memory CD8 T-cells following infection with L. monocytogenes either expressing or not cognate Ag. We show that Ag and inflammation act synergistically in vitro to induce memory activation. In vivo, we found that when memory CD8 T-cells significantly contribute to clearance of infection, early activation and continued responses by these cells are enhanced by cognate Ag recognition. Mechanistically, we show that bystander responses by memory are dependent upon the dose of infection and the amount of inflammation elicited following infection and are able to provide protection in IFN-γ deficient mice, but not in immuno-competent hosts. The data elucidate the requirements for memory CD8 T-cell activation and the protective role of bystander responses. PMID:26658291

  6. Virion encapsidated HIV-1 Vpr induces NFAT to prime non-activated T cells for productive infection.

    PubMed

    Höhne, Kristin; Businger, Ramona; van Nuffel, Anouk; Bolduan, Sebastian; Koppensteiner, Herwig; Baeyens, Ann; Vermeire, Jolien; Malatinkova, Eva; Verhasselt, Bruno; Schindler, Michael

    2016-07-01

    The majority of T cells encountered by HIV-1 are non-activated and do not readily allow productive infection. HIV-1 Vpr is highly abundant in progeny virions, and induces signalling and HIV-1 LTR transcription. We hence hypothesized that Vpr might be a determinant of non-activated T-cell infection. Virion-delivered Vpr activated nuclear factor of activated T cells (NFAT) through Ca(2+) influx and interference with the NFAT export kinase GSK3β. This leads to NFAT translocation and accumulation within the nucleus and was required for productive infection of unstimulated primary CD4(+) T cells. A mutagenesis approach revealed correlation of Vpr-mediated NFAT activation with its ability to enhance LTR transcription and mediate cell cycle arrest. Upon NFAT inhibition, Vpr did not augment resting T-cell infection, and showed reduced G2/M arrest and LTR transactivation. Altogether, Vpr renders unstimulated T cells more permissive for productive HIV-1 infection and stimulates activation of productively infected as well as virus-exposed T cells. Therefore, it could be involved in the establishment and reactivation of HIV-1 from viral reservoirs and might have an impact on the levels of immune activation, which are determinants of HIV-1 pathogenesis.

  7. Virion encapsidated HIV-1 Vpr induces NFAT to prime non-activated T cells for productive infection

    PubMed Central

    Höhne, Kristin; Businger, Ramona; van Nuffel, Anouk; Bolduan, Sebastian; Koppensteiner, Herwig; Baeyens, Ann; Vermeire, Jolien; Malatinkova, Eva; Verhasselt, Bruno; Schindler, Michael

    2016-01-01

    The majority of T cells encountered by HIV-1 are non-activated and do not readily allow productive infection. HIV-1 Vpr is highly abundant in progeny virions, and induces signalling and HIV-1 LTR transcription. We hence hypothesized that Vpr might be a determinant of non-activated T-cell infection. Virion-delivered Vpr activated nuclear factor of activated T cells (NFAT) through Ca2+ influx and interference with the NFAT export kinase GSK3β. This leads to NFAT translocation and accumulation within the nucleus and was required for productive infection of unstimulated primary CD4+ T cells. A mutagenesis approach revealed correlation of Vpr-mediated NFAT activation with its ability to enhance LTR transcription and mediate cell cycle arrest. Upon NFAT inhibition, Vpr did not augment resting T-cell infection, and showed reduced G2/M arrest and LTR transactivation. Altogether, Vpr renders unstimulated T cells more permissive for productive HIV-1 infection and stimulates activation of productively infected as well as virus-exposed T cells. Therefore, it could be involved in the establishment and reactivation of HIV-1 from viral reservoirs and might have an impact on the levels of immune activation, which are determinants of HIV-1 pathogenesis. PMID:27383627

  8. Virion encapsidated HIV-1 Vpr induces NFAT to prime non-activated T cells for productive infection.

    PubMed

    Höhne, Kristin; Businger, Ramona; van Nuffel, Anouk; Bolduan, Sebastian; Koppensteiner, Herwig; Baeyens, Ann; Vermeire, Jolien; Malatinkova, Eva; Verhasselt, Bruno; Schindler, Michael

    2016-07-01

    The majority of T cells encountered by HIV-1 are non-activated and do not readily allow productive infection. HIV-1 Vpr is highly abundant in progeny virions, and induces signalling and HIV-1 LTR transcription. We hence hypothesized that Vpr might be a determinant of non-activated T-cell infection. Virion-delivered Vpr activated nuclear factor of activated T cells (NFAT) through Ca(2+) influx and interference with the NFAT export kinase GSK3β. This leads to NFAT translocation and accumulation within the nucleus and was required for productive infection of unstimulated primary CD4(+) T cells. A mutagenesis approach revealed correlation of Vpr-mediated NFAT activation with its ability to enhance LTR transcription and mediate cell cycle arrest. Upon NFAT inhibition, Vpr did not augment resting T-cell infection, and showed reduced G2/M arrest and LTR transactivation. Altogether, Vpr renders unstimulated T cells more permissive for productive HIV-1 infection and stimulates activation of productively infected as well as virus-exposed T cells. Therefore, it could be involved in the establishment and reactivation of HIV-1 from viral reservoirs and might have an impact on the levels of immune activation, which are determinants of HIV-1 pathogenesis. PMID:27383627

  9. Rac1 Protein Regulates Glycogen Phosphorylase Activation and Controls Interleukin (IL)-2-dependent T Cell Proliferation*

    PubMed Central

    Arrizabalaga, Onetsine; Lacerda, Hadriano M.; Zubiaga, Ana M.; Zugaza, José L.

    2012-01-01

    Small GTPases of the Rho family have been implicated in important cellular processes such as cell migration and adhesion, protein secretion, and/or gene transcription. In the lymphoid system, these GTPases participate in the signaling cascades that are activated after engagement of antigen receptors. However, little is known about the role that Rho GTPases play in IL-2-mediated responses. Here, we show that IL-2 induces Rac1 activation in Kit 225 T cells. We identified by mass spectrometry the muscle isoform of glycogen phosphorylase (PYGM) as a novel Rac1 effector molecule in IL-2-stimulated cells. The interaction between the active form of Rac1 (Rac1-GTP) and PYGM was established directly through a domain comprising amino acids 191–270 of PYGM that exhibits significant homology with the Rac binding domain of PAK1. The integrity of this region was crucial for PYGM activation. Importantly, IL-2-dependent cellular proliferation was inhibited upon blocking both the activation of Rac1 and the activity of PYGM. These results reveal a new role for Rac1 in cell signaling, showing that this GTPase triggers T cell proliferation upon IL-2 stimulation by associating with PYGM and modulating its enzymatic activity. PMID:22337875

  10. Intersection of population variation and autoimmunity genetics in human T cell activation.

    PubMed

    Ye, Chun Jimmie; Feng, Ting; Kwon, Ho-Keun; Raj, Towfique; Wilson, Michael T; Asinovski, Natasha; McCabe, Cristin; Lee, Michelle H; Frohlich, Irene; Paik, Hyun-il; Zaitlen, Noah; Hacohen, Nir; Stranger, Barbara; De Jager, Philip; Mathis, Diane; Regev, Aviv; Benoist, Christophe

    2014-09-12

    T lymphocyte activation by antigen conditions adaptive immune responses and immunopathologies, but we know little about its variation in humans and its genetic or environmental roots. We analyzed gene expression in CD4(+) T cells during unbiased activation or in T helper 17 (T(H)17) conditions from 348 healthy participants representing European, Asian, and African ancestries. We observed interindividual variability, most marked for cytokine transcripts, with clear biases on the basis of ancestry, and following patterns more complex than simple T(H)1/2/17 partitions. We identified 39 genetic loci specifically associated in cis with activated gene expression. We further fine-mapped and validated a single-base variant that modulates YY1 binding and the activity of an enhancer element controlling the autoimmune-associated IL2RA gene, affecting its activity in activated but not regulatory T cells. Thus, interindividual variability affects the fundamental immunologic process of T helper activation, with important connections to autoimmune disease.

  11. TLR activation excludes circulating naive CD8+ T cells from gut-associated lymphoid organs in mice.

    PubMed

    Heidegger, Simon; Kirchner, Sophie-Kathrin; Stephan, Nicolas; Bohn, Bernadette; Suhartha, Nina; Hotz, Christian; Anz, David; Sandholzer, Nadja; Stecher, Bärbel; Rüssmann, Holger; Endres, Stefan; Bourquin, Carole

    2013-05-15

    The trafficking of effector T cells is tightly regulated by the expression of site-specific sets of homing molecules. In contrast, naive T cells are generally assumed to express a uniform pattern of homing molecules and to follow a random distribution within the blood and secondary lymphoid organs. In this study, we demonstrate that systemic infection fundamentally modifies the trafficking of circulating naive CD8(+) T cells. We show that on naive CD8(+) T cells, the constitutive expression of the integrin α4β7 that effects their entry into GALT is downregulated following infection of mice with Salmonella typhimurium. We further show that this downregulation is dependent on TLR signaling, and that the TLR-activated naive CD8(+) T cells are blocked from entering GALT. This contrasts strongly with Ag-experienced effector T cells, for which TLR costimulation in the GALT potently upregulates α4β7 and enhances trafficking to intestinal tissues. Thus, TLR activation leads to opposite effects on migration of naive and effector CD8(+) T cells. Our data identify a mechanism that excludes noncognate CD8(+) T cells from selected immune compartments during TLR-induced systemic inflammation. PMID:23589622

  12. TLR activation excludes circulating naive CD8+ T cells from gut-associated lymphoid organs in mice.

    PubMed

    Heidegger, Simon; Kirchner, Sophie-Kathrin; Stephan, Nicolas; Bohn, Bernadette; Suhartha, Nina; Hotz, Christian; Anz, David; Sandholzer, Nadja; Stecher, Bärbel; Rüssmann, Holger; Endres, Stefan; Bourquin, Carole

    2013-05-15

    The trafficking of effector T cells is tightly regulated by the expression of site-specific sets of homing molecules. In contrast, naive T cells are generally assumed to express a uniform pattern of homing molecules and to follow a random distribution within the blood and secondary lymphoid organs. In this study, we demonstrate that systemic infection fundamentally modifies the trafficking of circulating naive CD8(+) T cells. We show that on naive CD8(+) T cells, the constitutive expression of the integrin α4β7 that effects their entry into GALT is downregulated following infection of mice with Salmonella typhimurium. We further show that this downregulation is dependent on TLR signaling, and that the TLR-activated naive CD8(+) T cells are blocked from entering GALT. This contrasts strongly with Ag-experienced effector T cells, for which TLR costimulation in the GALT potently upregulates α4β7 and enhances trafficking to intestinal tissues. Thus, TLR activation leads to opposite effects on migration of naive and effector CD8(+) T cells. Our data identify a mechanism that excludes noncognate CD8(+) T cells from selected immune compartments during TLR-induced systemic inflammation.

  13. Common γ-chain cytokine signaling is required for macroautophagy induction during CD4+ T-cell activation

    PubMed Central

    Botbol, Yair; Patel, Bindi; Macian, Fernando

    2015-01-01

    Macroautophagy is a cellular process that mediates degradation in the lysosome of cytoplasmic components including proteins and organelles. Previous studies have shown that macroautophagy is induced in activated T cells to regulate organelle homeostasis and the cell's energy metabolism. However, the signaling pathways that initiate and regulate activation-induced macroautophagy in T cells have not been identified. Here, we show that activation-induced macroautophagy in T cells depends on signaling from common γ-chain cytokines. Consequently, inhibition of signaling through JAK3, induced downstream of cytokine receptors containing the common γ-chain, prevents full induction of macroautophagy in activated T cells. Moreover, we found that common γ-chain cytokines are not only required for macroautophagy upregulation during T cell activation but can themselves induce macroautophagy. Our data also show that macroautophagy induction in T cells is associated with an increase of LC3 expression that is mediated by a post-transcriptional mechanism. Overall, our findings unveiled a new role for common γ-chain cytokines as a molecular link between autophagy induction and T-cell activation. PMID:26391567

  14. IL-33 Receptor-Expressing Regulatory T Cells Are Highly Activated, Th2 Biased and Suppress CD4 T Cell Proliferation through IL-10 and TGFβ Release

    PubMed Central

    Datsi, Angeliki; Hegazy, Ahmed N.; Varga, Domonkos V.; Holecska, Vivien; Saito, Hirohisa; Nakae, Susumu; Löhning, Max

    2016-01-01

    Immunomodulatory Foxp3+ regulatory T cells (Tregs) form a heterogeneous population consisting of subsets with different activation states, migratory properties and suppressive functions. Recently, expression of the IL-33 receptor ST2 was shown on Tregs in inflammatory settings. Here we report that ST2 expression identifies highly activated Tregs in mice even under homeostatic conditions. ST2+ Tregs preferentially accumulate at non-lymphoid sites, likely mediated by their high expression of several chemokine receptors facilitating tissue homing. ST2+ Tregs exhibit a Th2-biased character, expressing GATA-3 and producing the Th2 cytokines IL-5 and IL-13 –especially in response to IL-33. Yet, IL-33 is dispensable for the generation and maintenance of these cells in vivo. Furthermore, ST2+ Tregs are superior to ST2− Tregs in suppressing CD4+ T cell proliferation in vitro independent of IL-33. This higher suppressive capacity is partially mediated by enhanced production and activation of the anti-inflammatory cytokines IL-10 and TGFβ. Thus, ST2 expression identifies a highly activated, strongly suppressive Treg subset preferentially located in non-lymphoid tissues. Here ST2+ Tregs may be well positioned to immediately react to IL-33 alarm signals. Their specific properties may render ST2+ Tregs useful targets for immunomodulatory therapies. PMID:27548066

  15. IL-33 Receptor-Expressing Regulatory T Cells Are Highly Activated, Th2 Biased and Suppress CD4 T Cell Proliferation through IL-10 and TGFβ Release.

    PubMed

    Siede, Julia; Fröhlich, Anja; Datsi, Angeliki; Hegazy, Ahmed N; Varga, Domonkos V; Holecska, Vivien; Saito, Hirohisa; Nakae, Susumu; Löhning, Max

    2016-01-01

    Immunomodulatory Foxp3+ regulatory T cells (Tregs) form a heterogeneous population consisting of subsets with different activation states, migratory properties and suppressive functions. Recently, expression of the IL-33 receptor ST2 was shown on Tregs in inflammatory settings. Here we report that ST2 expression identifies highly activated Tregs in mice even under homeostatic conditions. ST2+ Tregs preferentially accumulate at non-lymphoid sites, likely mediated by their high expression of several chemokine receptors facilitating tissue homing. ST2+ Tregs exhibit a Th2-biased character, expressing GATA-3 and producing the Th2 cytokines IL-5 and IL-13 -especially in response to IL-33. Yet, IL-33 is dispensable for the generation and maintenance of these cells in vivo. Furthermore, ST2+ Tregs are superior to ST2- Tregs in suppressing CD4+ T cell proliferation in vitro independent of IL-33. This higher suppressive capacity is partially mediated by enhanced production and activation of the anti-inflammatory cytokines IL-10 and TGFβ. Thus, ST2 expression identifies a highly activated, strongly suppressive Treg subset preferentially located in non-lymphoid tissues. Here ST2+ Tregs may be well positioned to immediately react to IL-33 alarm signals. Their specific properties may render ST2+ Tregs useful targets for immunomodulatory therapies. PMID:27548066

  16. Identification of a novel gene expressed in activated natural killer cells and T cells

    SciTech Connect

    Dahl, C.A.; Schall, R.P.; He, H.; Cairns, J.S. )

    1992-01-15

    The authors have isolated a cDNA clone from a human activated NK cell-derived cDNA library that identifies a transcript [NK4] that is selectively expressed in lymphocytes. The expression of this transcript is increased after activation of T cells by mitogens or activation of NK cells by IL-2 (lymphokine-activated killer cells). The transcript levels demonstrated by Northern blot analysis increase by 12 h after activation, remain high for at least 48 h, and require protein synthesis for expression. Southern blot analysis of B lymphoblastoid lines derived from 18 unrelated individuals reveal variable banding patterns suggestive of polymorphism within the NK4 gene. No homology was found between the sequence of the coding region of this transcript and any sequences in the GenBank data base. Sequence homology to the U1 small nuclear RNA was found within the 3[prime] untranslated region immediately upstream of the site of polyadenylation, suggesting a possible role for U1 in the polyadenylation process. Sequence analysis indicates the transcript would encode a protein having a mass of 27 kDa. The presence of a signal sequence and lack of a transmembrane region suggests that the protein is secreted. In addition, the protein contains an RGD sequence that may be involved in cellular adhesion. This transcript appears to encode a novel product common to the activation pathways of both NK cells and T cells. 50 refs., 8 figs.

  17. Constitutive nuclear localization of NFAT in Foxp3+ regulatory T cells independent of calcineurin activity.

    PubMed

    Li, Qiuxia; Shakya, Arvind; Guo, Xiaohua; Zhang, Hongbo; Tantin, Dean; Jensen, Peter E; Chen, Xinjian

    2012-05-01

    Foxp3 plays an essential role in conferring suppressive functionality to CD4(+)/Foxp3(+) regulatory T cells (Tregs). Although studies showed that Foxp3 has to form cooperative complexes with NFAT to bind to target genes, it remains unclear whether NFAT is available in the nucleus of primary Tregs for Foxp3 access. It is generally believed that NFAT in resting cells resides in the cytoplasm, and its nuclear translocation depends on calcineurin (CN) activation. We report that a fraction of NFAT protein constitutively localizes in the nucleus of primary Tregs, where it selectively binds to Foxp3 target genes. Treating Tregs with CN inhibitor does not induce export of NFAT from the nucleus, indicating that its nuclear translocation is independent of CN activity. Consistently, Tregs are resistant to CN inhibitors in the presence of IL-2 and continue to proliferate in response to anti-CD3 stimulation, whereas proliferation of non-Tregs is abrogated by CN inhibitors. In addition, PMA, which activates other transcription factors required for T cell activation but not NFAT, selectively induces Treg proliferation in the absence of ionomycin. TCR interaction with self-MHC class II is not required for PMA-induced Treg proliferation. Tregs expanded by PMA or in the presence of CN inhibitors maintain Treg phenotype and functionality. These findings shed light on Treg biology, paving the way for strategies to selectively activate Tregs.

  18. Long-term kinetics of T cell production in HIV-infected subjects treated with highly active antiretroviral therapy

    PubMed Central

    Fleury, S.; Rizzardi, G. P.; Chapuis, A.; Tambussi, G.; Knabenhans, C.; Simeoni, E.; Meuwly, J.-Y.; Corpataux, J.-M.; Lazzarin, A.; Miedema, F.; Pantaleo, G.

    2000-01-01

    The long-term kinetics of T cell production following highly active antiretroviral therapy (HAART) were investigated in blood and lymph node in a group of HIV-infected subjects at early stage of established infection and prospectively studied for 72 wk. Before HAART, CD4 and CD8 T cell turnover was increased. However, the total number of proliferating CD4+ T lymphocytes, i.e., CD4+Ki67+ T lymphocytes, was not significantly different in HIV-infected (n = 73) and HIV-negative (n = 15) subjects, whereas proliferating CD8+Ki67+ T lymphocytes were significantly higher in HIV-infected subjects. After HAART, the total body number of proliferating CD4+Ki67+ T lymphocytes increased over time and was associated with an increase of both naive and memory CD4+ T cells. The maximal increase (2-fold) was observed at week 36, whereas at week 72 the number of proliferating CD4+ T cells dropped to baseline levels, i.e., before HAART. The kinetics of the fraction of proliferating CD4 and CD8 T cells were significantly correlated with the changes in the total body number of these T cell subsets. These results demonstrate a direct relationship between ex vivo measures of T cell production and quantitative changes in total body T lymphocyte populations. This study provides advances in the delineation of the kinetics of T cell production in HIV infection in the presence and/or in the absence of HAART. PMID:10805798

  19. Allogeneic lymphocyte-licensed DCs expand T cells with improved antitumor activity and resistance to oxidative stress and immunosuppressive factors

    PubMed Central

    Jin, Chuan; Yu, Di; Hillerdal, Victoria; Wallgren, AnnaCarin; Karlsson-Parra, Alex; Essand, Magnus

    2014-01-01

    Adoptive T-cell therapy of cancer is a treatment strategy where T cells are isolated, activated, in some cases engineered, and expanded ex vivo before being reinfused to the patient. The most commonly used T-cell expansion methods are either anti-CD3/CD28 antibody beads or the “rapid expansion protocol” (REP), which utilizes OKT-3, interleukin (IL)-2, and irradiated allogeneic feeder cells. However, REP-expanded or bead-expanded T cells are sensitive to the harsh tumor microenvironment and often short-lived after reinfusion. Here, we demonstrate that when irradiated and preactivated allosensitized allogeneic lymphocytes (ASALs) are used as helper cells to license OKT3-armed allogeneic mature dendritic cells (DCs), together they expand target T cells of high quality. The ASAL/DC combination yields an enriched Th1-polarizing cytokine environment (interferon (IFN)-γ, IL-12, IL-2) and optimal costimulatory signals for T-cell stimulation. When genetically engineered antitumor T cells were expanded by this coculture system, they showed better survival and cytotoxic efficacy under oxidative stress and immunosuppressive environment, as well as superior proliferative response during tumor cell killing compared to the REP protocol. Our result suggests a robust ex vivo method to expand T cells with improved quality for adoptive cancer immunotherapy. PMID:26015949

  20. Impaired CD4+CD25+ regulatory T cell activity in the peripheral blood of patients with autoimmune sensorineural hearing loss.

    PubMed

    Xia, Ming; Zhang, Han Bing; Liu, Fang; Yin, Hai Ying; Xu, An Ting

    2008-09-01

    CD4+CD25+ regulatory T cells exert an immune regulatory function and thus play an important role in the control of self-reactivity in the pathogenesis of autoimmune inflammatory conditions. The aim of the study presented here is to perform a quantitative and functional analyses of these cells in patients with autoimmune sensorineural hearing loss (ASNHL). T cell subsets (CD4+CD25+, CD4+CD25(high), CD4+, and CD8+) from the peripheral blood of 17 patients with ASNHL, 16 patients with noise induced hearing loss (NHL), and 100 normal controls were analyzed by flow cytometry. The CD4/CD8 ratio was also analyzed. In addition, the suppressive capability of CD4+CD25+ T cells was tested in vitro by measuring their ability to suppress the proliferation and IFN-gamma secretion of CD4+CD25- T cells. No significant difference was found in the T cell subsets of ASNHL patients compared to normal controls or NHL patients, except that the proportion of CD4+ T cells was elevated in ASNHL patients. However, we did observe defective regulatory function of CD4+CD25+ T cells in patients with ASNHL. Our data supported the idea that CD4+CD25+ regulatory T cells played an immunosuppressive function in the periphery. The impaired suppressive activity of these cells may be an important factor in the pathogenesis of ASNHL.

  1. Aberrant activation of nuclear factor of activated T cell 2 in lamina propria mononuclear cells in ulcerative colitis

    PubMed Central

    Shih, Tsung-Chieh; Hsieh, Sen-Yung; Hsieh, Yi-Yueh; Chen, Tse-Chin; Yeh, Chien-Yu; Lin, Chun-Jung; Lin, Deng-Yn; Chiu, Cheng-Tang

    2008-01-01

    AIM: To investigate the role of nuclear factor of activated T cell 2 (NFAT2), the major NFAT protein in peripheral T cells, in sustained T cell activation and intractable inflammation in human ulcerative colitis (UC). METHODS: We used two-dimensional gel-electrophoresis, immunohistochemistry, double immunohistochemical staining, and confocal microscopy to inspect the expression of NFAT2 in 107, 15, 48 and 5 cases of UC, Crohn’s disease (CD), non-specific colitis, and 5 healthy individuals, respectively. RESULTS: Up-regulation with profound nucleo-translocation/activation of NFAT2 of lamina propria mononuclear cells (LPMC) of colonic mucosa was found specifically in the affected colonic mucosa from patients with UC, as compared to CD or NC (P < 0.001, Kruskal-Wallis test). Nucleo-translocation/activation of NFAT2 primarily occurred in CD8+T, but was less prominent in CD4+ T cells or CD20+B cells. It was strongly associated with the disease activity, including endoscopic stage (τ = 0.2145, P = 0.0281) and histologic grade (τ = 0.4167, P < 0.001). CONCLUSION: We disclose for the first time the nucleo-translocation/activatin of NFAT2 in lamina propria mononuclear cells in ulcerative colitis. Activation of NFAT2 was specific for ulcerative colitis and highly associated with disease activity. Since activation of NFAT2 is implicated in an auto-regulatory positive feedback loop of sustained T-cell activation and NFAT proteins play key roles in the calcium/calcineurin signaling pathways, our results not only provide new insights into the mechanism for sustained intractable inflammation, but also suggest the calcium-calcineurin/NFAT pathway as a new therapeutic target for ulcerative colitis. PMID:18350607

  2. Ectonucleotidase CD38 Demarcates Regulatory, Memory-Like CD8+ T Cells with IFN-γ-Mediated Suppressor Activities

    PubMed Central

    Bollinger, Thomas; Orinska, Zane; Bulfone-Paus, Silvia

    2012-01-01

    Regulatory CD8+ T cells are critical for self-tolerance and restricting excessive immune responses. The variety of immune functions they fulfill, the heterogeneity of their phenotype, and the mechanism of action are still poorly understood. Here we describe that regulatory CD8+ T cells exhibiting immunosuppressive actions in vitro and in vivo are recognized as CD38high T cells and present in naive mice. CD38 is a glycosylated membrane protein with ectonucleotidase properties. CD8+CD38high (CD44+CD122+CD62Lhigh) lymphocytes suppress CD4+ effector T-cell proliferation in an antigen-non specific manner via IFN-γ. While direct cell-to-cell contact is needed for this suppressor activity, it is independent of membrane-bound TGF-β and granzyme B release. IL-15 potentiates the suppressive activity of CD8+CD38high T cells and controls their survival and expansion. In humans CD8+CD38high T cells inhibit CD4+ effector T cell proliferation. In vivo, CD8+CD38high, but not CD8+CD38− T cells mitigate murine experimental autoimmune encephalomyelitis (EAE) by reducing the clinical score and delaying disease occurrence. EAE suppression is enhanced by pre-treatment of CD8+CD38high T cells with IL-15. These findings add evidence that the expression of ectoenzyme receptor family members positively correlates with suppressor functions and identifies CD8+CD38high T cells as potential inhibitors of excessive immune responses. PMID:23028866

  3. Pharmacological inhibition of interleukin-1 activity on T cells by hydrocortisone, cyclosporine, prostaglandins, and cyclic nucleotides.

    PubMed

    Tracey, D E; Hardee, M M; Richard, K A; Paslay, J W

    1988-01-01

    The effects of a panel of hormones and pharmacological agents on the activation of T cells by a combination of interleukin-1 and phytohemagglutinin (IL-1/PHA) was studied. Pharmacological effects on various stages of IL-1/PHA-induced interleukin-2 (IL-2) production by the cloned murine thymoma cell line LBRM-33-1A5.7 were dissected using a multi-step assay procedure. A 4-h lag phase in the kinetics of IL-2 production allowed the operational definition of an early, IL-1-dependent programming stage, followed by an IL-2-production stage of the assay. A cell-washing procedure between these stages was introduced in order to distinguish IL-1 receptor antagonists from functional IL-1/PHA antagonists. Hydrocortisone and cyclosporine were potent inhibitors (active in the nM range) of both stages of IL-2 production, suggesting that neither is an IL-1 receptor antagonist. The cyclic adenosine monophosphate (cAMP)-elevating agents prostaglandin E2, dibutyryl cAMP, and theophylline inhibited IL-2 production during the early, IL-1-dependent programming stage. By contrast, prostaglandin F2 alpha and dibutyryl cyclic guanosine monophosphate did not appreciably inhibit IL-1/PHA activity. These results are discussed in relationship to the effects of these test agents in thymocyte IL-1 assays or mitogenesis assays and the implications toward understanding the mechanisms underlying IL-1/PHA activation of T cells.

  4. Dissociation of peripheral T cell responses from thymocyte negative selection by weak agonists supports a spare receptor model of T cell activation

    PubMed Central

    McNeil, Lisa K.; Evavold, Brian D.

    2002-01-01

    We have focused on stability of the peptide-MHC complex as a determining factor of ligand potency for thymocytes and peripheral CD4+ T cell responses. MHC variant peptides that have low affinities and fast dissociation rates are different in that they stimulate proliferation and cytolysis of mature T cells (classifying the variant peptides as weak agonists) but do not induce thymocyte negative selection. The MHC variant weak agonists require significant receptor reserve, because decreasing the level of T cell receptor on mature T cells blocks the proliferative response. These results demonstrate that peripheral T cells are more sensitive to MHC variant ligands by virtue of increased T cell receptor expression; in addition, the data support a T cell model of the spare receptor theory. PMID:11904393

  5. Investigation of biochemical property changes in activation-induced CD 8 + T cell apoptosis using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Young Ju; Ahn, Hyung Joon; Lee, Gi-Ja; Jung, Gyeong Bok; Lee, Gihyun; Kim, Dohyun; Shin, Jae-Ho; Jin, Kyung-Hyun; Park, Hun-Kuk

    2015-07-01

    The study was to investigate the changes in biochemical properties of activated mature CD8+ T cells related to apoptosis at a molecular level. We confirmed the activation and apoptosis of CD8+ T cells by fluorescence-activated cell sorting and atomic force microscopy and then performed Raman spectral measurements on activated mature CD8+ T cells and cellular deoxyribose nucleic acid (DNA). In the activated mature CD8+ T cells, there were increases in protein spectra at 1002 and 1234 cm-1. In particular, to assess the apoptosis-related DNA spectral signatures, we investigated the spectra of the cellular DNA isolated from resting and activated mature CD8+ T cells. Raman spectra at 765 to 786 cm-1 and 1053 to 1087 cm-1 were decreased in activated mature DNA. In addition, we analyzed Raman spectrum using the multivariate statistical method including principal component analysis. Raman spectra of activated mature DNA are especially well-discriminated from those of resting DNA. Our findings regarding the biochemical and structural changes associated with apoptosis in activated mature T cells and cellular DNA according to Raman spectroscopy provide important insights into allospecific immune responses generated after organ transplantation, and may be useful for therapeutic manipulation of the immune response.

  6. Activated CD69+ T cells foster immune privilege by regulating IDO expression in tumor-associated macrophages.

    PubMed

    Zhao, Qiyi; Kuang, Dong-Ming; Wu, Yan; Xiao, Xiao; Li, Xue-Feng; Li, Tuan-Jie; Zheng, Limin

    2012-02-01

    Substantial evidence indicates that immune activation at stroma can be rerouted in a tumor-promoting direction. CD69 is an immunoregulatory molecule expressed by early-activated leukocytes at sites of chronic inflammation, and CD69(+) T cells have been found to promote human tumor progression. In this study, we showed that, upon encountering autologous CD69(+) T cells, tumor macrophages (MΦs) acquired the ability to produce much greater amounts of IDO protein in cancer nests. The T cells isolated from the hepatocellular carcinoma tissues expressed significantly more CD69 molecules than did those on paired circulating and nontumor-infiltrating T cells; these tumor-derived CD69(+) T cells could induce considerable IDO in monocytes. Interestingly, the tumor-associated monocytes/MΦs isolated from hepatocellular carcinoma tissues or generated by in vitro culture effectively activated circulating T cells to express CD69. IL-12 derived from tumor MΦs was required for early T cell activation and subsequent IDO expression. Moreover, we found that conditioned medium from IDO(+) MΦs effectively suppressed T cell responses in vitro, an effect that could be reversed by adding extrinsic IDO substrate tryptophan or by pretreating MΦs with an IDO inhibitor 1-methyl-DL-tryptophan. These data revealed a fine-tuned collaborative action between different types of immune cells to counteract T cell responses in tumor microenvironment. Such an active induction of immune tolerance should be considered for the rational design of effective immune-based anticancer therapies.

  7. Magnitude and kinetics of CD8+ T cell activation during hyperacute HIV infection impacts viral set point

    PubMed Central

    Ndhlovu, Zaza; Kamya, Philomena; Mewalal, Nikoshia; Kløverpris, Henrik N.; Nkosi, Thandeka; Pretorius, Karyn; Laher, Faatima; Ogunshola, Funsho; Chopera, Denis; Shekhar, Karthik; Ghebremichael, Musie; Ismail, Nasreen; Moodley, Amber; Malik, Amna; Leslie, Alasdair; Goulder, Philip J.R; Buus, Søren; Chakraborty, Arup; Dong, Krista; Ndung’u, Thumbi; Walker, Bruce D.

    2015-01-01

    Summary CD8+ T cells contribute to the control of HIV, but it is not clear whether initial immune responses modulate the viral set point. We screened high-risk uninfected women twice a week for plasma HIV RNA and identified twelve hyperacute infections. Onset of viremia elicited a massive HIV-specific CD8+ T cell response, with limited bystander activation of non-HIV memory CD8+ T cells. HIV-specific CD8+ T cells secreted little interferon-γ, underwent rapid apoptosis and failed to upregulate the interleukin 7 receptor, known to be important for T cell survival. The rapidity to peak CD8+ T cell activation and the absolute magnitude of activation induced by the exponential rise in viremia were inversely correlated with set point viremia. These data indicate that rapid, high magnitude HIV-induced CD8+ T cell responses are crucial for subsequent immune control of acute infection, which has important implications for HIV vaccine design. PMID:26362266

  8. HIV-1 transgenic rat CD4+ T cells develop decreased CD28 responsiveness and suboptimal Lck tyrosine dephosphorylation following activation

    SciTech Connect

    Yadav, Anjana; Pati, Shibani; Nyugen, Anhthu; Barabitskaja, Oxana; Mondal, Prosanta; Anderson, Michael; Gallo, Robert C.; Huso, David L.; Reid, William . E-mail: reid@umbi.umd.edu

    2006-09-30

    Impaired CD4+ T cell responses, resulting in dysregulated T-helper 1 (Th1) effector and memory responses, are a common result of HIV-1 infection. These defects are often preceded by decreased expression and function of the {alpha}/{beta} T cell receptor (TCR)-CD3 complex and of co-stimulatory molecules including CD28, resulting in altered T cell proliferation, cytokine secretion and cell survival. We have previously shown that HIV Tg rats have defective development of T cell effector function and generation of specific effector/memory T cell subsets. Here we identify abnormalities in activated HIV-1 Tg rat CD4+ T cells that include decreased pY505 dephosphorylation of Lck (required for Lck activation), decreased CD28 function, reduced expression of the anti-apoptotic molecule Bcl-xL, decreased secretion of the mitogenic lympokine interleukin-2 (IL-2) and increased activation induced apoptosis. These events likely lead to defects in antigen-specific signaling and may help explain the disruption of Th1 responses and the generation of specific effector/memory subsets in transgenic CD4+ T cells.

  9. Human T lymphocytes express N-methyl-D-aspartate receptors functionally active in controlling T cell activation

    SciTech Connect

    Miglio, Gianluca; Varsaldi, Federica; Lombardi, Grazia . E-mail: lombardi@pharm.unipmn.it

    2005-12-30

    The aim of this study was to investigate the expression and the functional role of N-methyl-D-aspartate (NMDA) receptors in human T cells. RT-PCR analysis showed that human resting peripheral blood lymphocytes (PBL) and Jurkat T cells express genes encoding for both NR1 and NR2B subunits: phytohemagglutinin (PHA)-activated PBL also expresses both these genes and the NR2A and NR2D genes. Cytofluorimetric analysis showed that NR1 expression increases as a consequence of PHA (10 {mu}g/ml) treatment. D-(-)-2-Amino-5-phosphonopentanoic acid (D-AP5), and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine [(+)-MK 801], competitive and non-competitive NMDA receptor antagonists, respectively, inhibited PHA-induced T cell proliferation, whereas they did not affect IL-2 (10 U/ml)-induced proliferation of PHA blasts. These effects were due to the prevention of T cell activation (inhibition of cell aggregate formation and CD25 expression), but not to cell cycle arrest or death. These results demonstrate that human T lymphocytes express NMDA receptors, which are functionally active in controlling cell activation.

  10. Stimulatory activities of a T cell proteoglycan fraction (T-PGF)

    SciTech Connect

    Levitt, D.; Olmstead, L.

    1986-03-01

    The authors had demonstrated previously that T lymphocytes synthesize and secrete chondroitin sulfate proteoglycan (PG). To analyze whether this PG possessed immunoregulatory activity, mouse T cell hybridomas were created and screened for secretion of /sup 35/S-PG. The PG secreted by high producer lines was purified primarily by anion exchange chromatography. Analysis of isolated material indicated the presence of uronic acid, a major sugar in glycosaminoglycans. SDS-PAGE of radio-iodinated T-PGF revealed two bands at 70 kd and 50 kd, which was confirmed by silver staining. The T-PGF stimulated mouse splenic B cell fractions to proliferate and differentiate into plaque-forming cells; no induction or costimulation (with Con A) of T cells fraction or thymocyte proliferation was detected. The T-PGF stimulated activated (Percoll low density, increased forward light scattering) B cells better than resting populations; induction of resting cells could be enhanced by simultaneous addition of low concentrations of a protein mitogen, STM. Biochemically and functionally, T-PGF co-migrates with PG in the void volume of Sephacryl S-200 columns. The precise nature of the relationship between B cell stimulatory activity and PG is unknown; however, the recent production of monoclonal antibodies against T-PGF should help clarify these questions.

  11. Particle shape dependence of CD8+ T cell activation by artificial antigen presenting cells.

    PubMed

    Sunshine, Joel C; Perica, Karlo; Schneck, Jonathan P; Green, Jordan J

    2014-01-01

    Previous work developing particle-based acellular, artificial antigen presenting cells (aAPCs) has focused exclusively on spherical platforms. To explore the role of shape, we generated ellipsoidal PLGA microparticles with varying aspect ratios (ARs) and synthesized aAPCs from them. The ellipsoidal biomimetic aAPCs with high-AR showed significantly enhanced in vitro and in vivo activity above spherical aAPCs with particle volume and antigen content held constant. Confocal imaging indicates that CD8+ T cells preferentially migrate to and are activated by interaction with the long axis of the aAPC. Importantly, enhanced activity of high-AR aAPCs was seen in a mouse melanoma model, with high-AR aAPCs improving melanoma survival compared to non-cognate aAPCs (p = 0.004) and cognate spherical aAPCs (p = 0.05). These findings indicate that particle geometry is a critical design criterion in the generation of aAPCs, and may offer insight into the essential role of geometry in the interaction between CD8+ T cells and biological APCs. PMID:24099710

  12. Immune activation promotes evolutionary conservation of T-cell epitopes in HIV-1.

    PubMed

    Sanjuán, Rafael; Nebot, Miguel R; Peris, Joan B; Alcamí, José

    2013-01-01

    The immune system should constitute a strong selective pressure promoting viral genetic diversity and evolution. However, HIV shows lower sequence variability at T-cell epitopes than elsewhere in the genome, in contrast with other human RNA viruses. Here, we propose that epitope conservation is a consequence of the particular interactions established between HIV and the immune system. On one hand, epitope recognition triggers an anti-HIV response mediated by cytotoxic T-lymphocytes (CTLs), but on the other hand, activation of CD4(+) helper T lymphocytes (TH cells) promotes HIV replication. Mathematical modeling of these opposite selective forces revealed that selection at the intrapatient level can promote either T-cell epitope conservation or escape. We predict greater conservation for epitopes contributing significantly to total immune activation levels (immunodominance), and when TH cell infection is concomitant to epitope recognition (trans-infection). We suggest that HIV-driven immune activation in the lymph nodes during the chronic stage of the disease may offer a favorable scenario for epitope conservation. Our results also support the view that some pathogens draw benefits from the immune response and suggest that vaccination strategies based on conserved TH epitopes may be counterproductive.

  13. Cloning and expression of a cDNA for the T-cell-activating protein TAP.

    PubMed Central

    Reiser, H; Coligan, J; Palmer, E; Benacerraf, B; Rock, K L

    1988-01-01

    The T-cell-activating protein TAP is a murine phosphatidylinositol-anchored glycoprotein whose expression is controlled by the Ly-6 locus. Previous studies have suggested an important role for this protein in physiological T-cell activation. Using oligonucleotide probes, we have now isolated a cDNA clone whose predicted sequence would encode a protein with an NH2-terminal sequence identical to that of the TAP molecule. Further analysis of the predicted protein sequence revealed a cysteine-rich protein with a hydrophobic domain at the COOH terminus and without N-linked glycosylation sites--all features consistent with our previous analysis of the TAP protein. In Southern blot analysis, the Ly-6.2 cDNA clone detects a multigene family and a restriction fragment length polymorphism that maps precisely to the Ly-6 locus. Expression of the cDNA clone in COS cells demonstrates that it codes for TAP and clarifies the relationship between the epitopes recognized by various alpha Ly-6 monoclonal antibodies. Finally, we have studied the expression of Ly-6 mRNA in a variety of cell lineages. Ly-6 transcripts were detected in all organs examined, including spleen, kidney, lung, brain, and heart. This demonstrates that the Ly-6 locus is transcriptionally active in a wide range of organs and suggests that the role of TAP or TAP-like proteins might extend to other tissues. Images PMID:2895473

  14. Activated inflammatory T cells correlate with lesion size in human cutaneous leishmaniasis.

    PubMed

    Antonelli, Lis R V; Dutra, Walderez O; Almeida, Roque P; Bacellar, Olivia; Carvalho, Edgar M; Gollob, Kenneth J

    2005-11-15

    Leishmaniasis is an important parasitic disease affecting millions worldwide. In attempts to understand the clinical relevance of immunological measurements as determined using flow cytometry, several immunological phenotypes were determined for a group of well defined human leishmaniasis patients and correlated with clinical measurements of the disease (Montenegro skin test (MST) and lesion area). The analysis demonstrated a positive correlation between the MST size and the frequency of ex vivo recent activated CD4(+) T cells. In contrast, higher frequencies of recent activated CD8(+) T cells were correlated with a smaller MST size. Moreover, a positive correlation was observed between the lesion total area and the frequency of activated CD69(+) (ex vivo) and CD40L(+) (cultured with Leishmania soluble antigen (SLA)) T lymphocytes. Finally, larger lesions were also correlated with a higher frequency of SLA specific inflammatory cytokine (IFN-gamma or TNF-alpha) producing lymphocytes. These studies demonstrate that immunological markers are correlated with clinical indicators of human leishmaniasis and serve to better understand the evolution of this important parasitic disease.

  15. Dermal γδ T-Cells Can Be Activated by Mitochondrial Damage-Associated Molecular Patterns

    PubMed Central

    Schwacha, Martin G.; Rani, Meenakshi; Nicholson, Susannah E.; Lewis, Aaron M.; Holloway, Travis L.; Sordo, Salvador; Cap, Andrew P.

    2016-01-01

    Background Gamma delta T-cells have been shown to be important to the early immunoinflammatory response to injury, independent of infection. This unique T-cell population acts to regulate cell trafficking and the release of cytokines and growth factors. We propose this sterile inflammatory response is in part associated with damage associated molecular patterns (DAMPs) generated by major injury, such as burn, and mediated via toll-like receptors (TLRs). It is unknown whether DAMPs can activate resident γδ T-cells that reside in skin. Methods Gamma delta T-cells were isolated from the skin of male C57BL/6 mice by enzymatic digestion. Mitochondrial DAMPs (MTDs) were generated from mitochondria isolated from mouse livers by sonication and centrifugation. Dermal γδ T-cells were incubated with MTDs (0–500 μg/ml) for 24 hr and cells and supernatants were collected for analysis. Results MTDs activated dermal γδ T-cells, as evidenced by increased TLR2 and TLR4 expression following in vitro exposure. MTDs also induced the production of inflammatory cytokines (IL-1β, IL-6), and growth factors (PDGF and VEGF) by γδ T-cells. Conclusions These findings herein support the concept that MTDs released after tissue/cellular injury are capable of activating dermal γδ T-cells. We propose that the activation of this unique T-cell population is central in the initiation of sterile inflammation and also contributes to the subsequent healing processes. PMID:27403524

  16. A passive-flow microfluidic device for imaging latent HIV activation dynamics in single T cells

    PubMed Central

    Gearhart, Larisa M.; Miller-Jensen, Kathryn

    2015-01-01

    Quantifying cell-to-cell variability in drug response dynamics is important when evaluating therapeutic efficacy. For example, optimizing latency reversing agents (LRAs) for use in a clinical “activate-and-kill” strategy to purge the latent HIV reservoir in patients requires minimizing heterogeneous viral activation dynamics. To evaluate how heterogeneity in latent HIV activation varies across a range of LRAs, we tracked drug-induced response dynamics in single cells via live-cell imaging using a latent HIV–GFP reporter virus in a clonal Jurkat T cell line. To enable these studies in suspension cells, we designed a simple method to capture an array of single Jurkat T cells using a passive-flow microfluidic device. Our device, which does not require external pumps or tubing, can trap hundreds of cells within minutes with a high retention rate over 12 hours of imaging. Using this device, we quantified heterogeneity in viral activation stimulated by transcription factor (TF) activators and histone deacetylase (HDAC) inhibitors. Generally, TF activators resulted in both faster onset of viral activation and faster rates of production, while HDAC inhibitors resulted in more uniform onset times, but more heterogeneous rates of production. Finally, we demonstrated that while onset time of viral gene expression and rate of viral production together predict total HIV activation, rate and onset time were not correlated within the same individual cell, suggesting that these features are regulated independently. Overall, our results reveal drug-specific patterns of noisy HIV activation dynamics not previously identified in static single-cell assays, which may require consideration for the most effective activate-and-kill regime. PMID:26138068

  17. A passive-flow microfluidic device for imaging latent HIV activation dynamics in single T cells.

    PubMed

    Ramji, Ramesh; Wong, Victor C; Chavali, Arvind K; Gearhart, Larisa M; Miller-Jensen, Kathryn

    2015-09-01

    Quantifying cell-to-cell variability in drug response dynamics is important when evaluating therapeutic efficacy. For example, optimizing latency reversing agents (LRAs) for use in a clinical "activate-and-kill" strategy to purge the latent HIV reservoir in patients requires minimizing heterogeneous viral activation dynamics. To evaluate how heterogeneity in latent HIV activation varies across a range of LRAs, we tracked drug-induced response dynamics in single cells via live-cell imaging using a latent HIV-GFP reporter virus in a clonal Jurkat T cell line. To enable these studies in suspension cells, we designed a simple method to capture an array of single Jurkat T cells using a passive-flow microfluidic device. Our device, which does not require external pumps or tubing, can trap hundreds of cells within minutes with a high retention rate over 12 hours of imaging. Using this device, we quantified heterogeneity in viral activation stimulated by transcription factor (TF) activators and histone deacetylase (HDAC) inhibitors. Generally, TF activators resulted in both faster onset of viral activation and faster rates of production, while HDAC inhibitors resulted in more uniform onset times, but more heterogeneous rates of production. Finally, we demonstrated that while onset time of viral gene expression and rate of viral production together predict total HIV activation, rate and onset time were not correlated within the same individual cell, suggesting that these features are regulated independently. Overall, our results reveal drug-specific patterns of noisy HIV activation dynamics not previously identified in static single-cell assays, which may require consideration for the most effective activate-and-kill regime.

  18. Nuclear factor of activated T-cells (NFAT) plays a role in SV40 infection

    SciTech Connect

    Manley, Kate; O'Hara, Bethany A.; Atwood, Walter J.

    2008-03-01

    Recent evidence highlighted a role for the transcription factor, nuclear factor of activated T-cells (NFAT), in the transcription of the human polyomavirus JCV. Here we show that NFAT is also important in the transcriptional control of the related polyomavirus, Simian Virus 40 (SV40). Inhibition of NFAT activity reduced SV40 infection of Vero, 293A, and HeLa cells, and this block occurred at the stage of viral transcription. Both NFAT3 and NFAT4 bound to the SV40 promoter through {kappa}B sites located within the 72 bp repeated enhancer region. In Vero cells, NFAT was involved in late transcription, but in HeLa and 293A cells both early and late viral transcription required NFAT activity. SV40 large T-Ag was found to increase NFAT activity and provided a positive feedback loop to transactivate the SV40 promoter.

  19. Markers of activated T cells on synovial fluid lymphocytes in rheumatoid arthritis.

    PubMed

    Mathieu, A

    1979-01-31

    Membrane markers of activated T lymphocytes of synovial fluid of two groups of patients with various forms of arthritis were studied. The first group (group A) concerns patients affected by rheumatoid arthritis (RA), and the other (group B) includes those affected by not immunologically-mediated arthropathies as osteoarthrosis, crystal synovitis, post-traumatic arthritis. Some other arthropathies included in a third group (group C) have been considered separately. Both the receptor for human group O Rh negative erythrocytes (H rosettes forming cells) and the receptor able to bind at 37 degrees C sheep red blood cells (stable-E-rosette forming cells) respectively were used as markers for the identification of activated T lymphocytes. The results show a marked increase of activated T cells in group A in comparison to group B. So the possible causes of this lymphocyte activation in rheumatoid patients are suggested.

  20. Grassypeptolides As Natural Inhibitors of Dipeptidyl Peptidase 8 and T-Cell Activation

    PubMed Central

    Kwan, Jason C.; Liu, Yanxia; Ratnayake, Ranjala; Hatano, Ryo; Kuribara, Akiko; Morimoto, Chiko; Ohnuma, Kei; Paul, Valerie J.; Ye, Tao

    2014-01-01

    Natural products made by marine cyanobacteria are often highly modified peptides and depsipeptides that have the potential to act as inhibitors for proteases. In the interest of finding novel protease inhibition activity and selectivity grassypeptolide A (1) was screened against a panel of proteases and found to selectively inhibit DPP8 over DPP4. Grassypeptolides were also found to inhibit IL-2 production and proliferation in activated T-cells, consistent with a putative role of DPP8 in the immune system. These effects were also observed in Jurkat cells, and DPP activity in Jurkat cell cytosol was shown to be inhibited by grassypeptolides. In silico docking suggests two possible binding modes of grassypeptolides – both at the active site of DPP8 and at one of the entrances to the internal cavity. Collectively these results suggest that grassypeptolides may be useful tool compounds in the study of DPP8 function. PMID:24591193

  1. The adaptor molecules LAT and SLP-76 are specifically targeted by Yersinia to inhibit T cell activation

    PubMed Central

    Gerke, Christiane; Falkow, Stanley; Chien, Yueh-hsiu

    2005-01-01

    T cell responses are critical to the survival of Yersinia-infected animals. Yersinia have the ability to directly suppress T lymphocyte activation through the virulence factor YopH, a tyrosine phosphatase. Using single cell video microscopy and FACS analysis, here we show that even an average of one Yersinia per T cell is sufficient to inhibit or alter T cell responses. This efficient inhibition is traced to specific targeting by YopH of the adaptor proteins, linker for activation of T cells (LAT) and SH2-domain–containing leukocyte protein of 76 kD (SLP-76), which are crucial for T cell antigen receptor (TCR) signaling. A catalytically inactive YopH translocated via the type III secretory pathway from the bacteria into T cells primarily binds to LAT and SLP-76. Furthermore, among the proteins of the TCR signaling pathway, the tyrosine phosphorylation levels of LAT and SLP-76 are the most affected in T cells exposed to low numbers of Yersinia pseudotuberculosis. This is the first example showing that a pathogen targets these adaptor proteins in the TCR signaling pathway, suggesting a novel mechanism by which pathogens may efficiently alter T cell–mediated immune responses. PMID:15699071

  2. Targeted suppression of autoreactive CD8+ T-cell activation using blocking anti-CD8 antibodies

    PubMed Central

    Clement, Mathew; Pearson, James A.; Gras, Stephanie; van den Berg, Hugo A.; Lissina, Anya; Llewellyn-Lacey, Sian; Willis, Mark D.; Dockree, Tamsin; McLaren, James E.; Ekeruche-Makinde, Julia; Gostick, Emma; Robertson, Neil P.; Rossjohn, Jamie; Burrows, Scott R.; Price, David A.; Wong, F. Susan; Peakman, Mark; Skowera, Ania; Wooldridge, Linda

    2016-01-01

    CD8+ T-cells play a role in the pathogenesis of autoimmune diseases such as multiple sclerosis and type 1 diabetes. However, drugs that target the entire CD8+ T-cell population are not desirable because the associated lack of specificity can lead to unwanted consequences, most notably an enhanced susceptibility to infection. Here, we show that autoreactive CD8+ T-cells are highly dependent on CD8 for ligand-induced activation via the T-cell receptor (TCR). In contrast, pathogen-specific CD8+ T-cells are relatively CD8-independent. These generic differences relate to an intrinsic dichotomy that segregates self-derived and exogenous antigen-specific TCRs according to the monomeric interaction affinity with cognate peptide-major histocompatibility complex class I (pMHCI). As a consequence, “blocking” anti-CD8 antibodies can suppress autoreactive CD8+ T-cell activation in a relatively selective manner. These findings provide a rational basis for the development and in vivo assessment of novel therapeutic strategies that preferentially target disease-relevant autoimmune responses within the CD8+ T-cell compartment. PMID:27748447

  3. Recombinant interferon alfa-2a, an active agent in advanced cutaneous T-cell lymphomas.

    PubMed

    Bunn, P A; Ihde, D C; Foon, K A

    1987-01-01

    The cutaneous T-cell lymphomas including mycosis fungoides and the Sézary syndrome, are indolent lymphomas with early systemic dissemination. Like the indolent B-cell lymphomas, they cannot be cured by currently available systemic chemotherapy so new systemic therapies need to be developed. A study of very high-dose recombinant interferon alfa-2a was, therefore, initiated in 20 patients with advanced cutaneous T-cell lymphoma (5 in stage II, 2 in stage III and 13 in stage IV). All patients were refractory to at least 2 standard therapies, including topical nitrogen mustard (18 patients), psoralens and ultraviolet A light (12 patients), total skin electron irradiation (14 patients) and systemic chemotherapy (16 patients). Nine out of 20 patients (45%; 95% confidence interval 25-69%) had either objective partial or complete responses within 3 months of starting treatment. Maximal response, however, often did not occur for at least one year. The median duration of response was 5.5 months and all complete responses lasted more than 2 years. Response frequencies were equal at both cutaneous and extracutaneous sites and in patients with or without prior chemotherapy. Toxicity was exhibited primarily as a flu-like syndrome consisting of fever, malaise, fatigue, anorexia and weight loss which necessitated dose reductions in all patients. Transient elevations in liver function and decreases in renal function and granulocyte counts occurred in some patients. It is concluded that interferon alfa-2a is highly active against advanced cutaneous T-cell lymphomas and that it should be studied in its early stages. It should also be evaluated in combination with other biological agents and with chemotherapy.

  4. In silico identified CCR4 antagonists target regulatory T cells and exert adjuvant activity in vaccination.

    PubMed

    Bayry, Jagadeesh; Tchilian, Elma Z; Davies, Matthew N; Forbes, Emily K; Draper, Simon J; Kaveri, Srini V; Hill, Adrian V S; Kazatchkine, Michel D; Beverley, Peter C L; Flower, Darren R; Tough, David F

    2008-07-22

    Adjuvants are substances that enhance immune responses and thus improve the efficacy of vaccination. Few adjuvants are available for use in humans, and the one that is most commonly used (alum) often induces suboptimal immunity for protection against many pathogens. There is thus an obvious need to develop new and improved adjuvants. We have therefore taken an approach to adjuvant discovery that uses in silico modeling and structure-based drug-design. As proof-of-principle we chose to target the interaction of the chemokines CCL22 and CCL17 with their receptor CCR4. CCR4 was posited as an adjuvant target based on its expression on CD4(+)CD25(+) regulatory T cells (Tregs), which negatively regulate immune responses induced by dendritic cells (DC), whereas CCL17 and CCL22 are chemotactic agents produced by DC, which are crucial in promoting contact between DC and CCR4(+) T cells. Molecules identified by virtual screening and molecular docking as CCR4 antagonists were able to block CCL22- and CCL17-mediated recruitment of human Tregs and Th2 cells. Furthermore, CCR4 antagonists enhanced DC-mediated human CD4(+) T cell proliferation in an in vitro immune response model and amplified cellular and humoral immune responses in vivo in experimental models when injected in combination with either Modified Vaccinia Ankara expressing Ag85A from Mycobacterium tuberculosis (MVA85A) or recombinant hepatitis B virus surface antigen (rHBsAg) vaccines. The significant adjuvant activity observed provides good evidence supporting our hypothesis that CCR4 is a viable target for rational adjuvant design. PMID:18621704

  5. Distinct activation thresholds of human conventional and innate-like memory T cells

    PubMed Central

    Slichter, Chloe K.; Miller, Hannah W.; Seymour, Brenda J.; McNevin, John P.; Diaz, Gabriela; Czartoski, Julie L.; McElrath, M. Juliana; Gottardo, Raphael

    2016-01-01

    Conventional memory CD8+ T cells and mucosal-associated invariant T cells (MAIT cells) are found in blood, liver, and mucosal tissues and have similar effector potential following activation, specifically expression of IFN-γ and granzyme B. To better understand each subset’s unique contributions to immunity and pathology, we interrogated inflammation- and TCR-driven activation requirements using human memory CD8+ T and MAIT cells isolated from blood and mucosal tissue biopsies in ex vivo functional assays and single cell gene expression experiments. We found that MAIT cells had a robust IFN-γ and granzyme B response to inflammatory signals but limited responsiveness when stimulated directly via their TCR. Importantly, this is not due to an overall hyporesponsiveness to TCR signals. When delivered together, TCR and inflammatory signals synergize to elicit potent effector function in MAIT cells. This unique control of effector function allows MAIT cells to respond to the same TCR signal in a dichotomous and situation-specific manner. We propose that this could serve to prevent responses to antigen in noninflamed healthy mucosal tissue, while maintaining responsiveness and great sensitivity to inflammation-eliciting infections. We discuss the implications of these findings in context of inflammation-inducing damage to tissues such as BM transplant conditioning or HIV infection. PMID:27331143

  6. Differential effects of polysulfated polysaccharide on experimental encephalomyelitis, proliferation of autoimmune T cells, and inhibition of heparanase activity.

    PubMed

    Hershkoviz, R; Mor, F; Miao, H Q; Vlodavsky, I; Lider, O

    1995-10-01

    The extravasation of activated T lymphocytes through blood vessel walls and their migration to inflammatory loci are associated with secretion of extracellular matrix (ECM)-degrading enzymes, such as heparanase, which degrades heparan sulfate (HS) moieties of the ECM. The HS-degrading activity of heparanase was found to be inhibited by HS and heparin. Since induction of experimental autoimmune encephalomyelitis (EAE) requires extravasation and migration of autoimmune T cells, degradation of ECM by heparanase is expected to be involved in induction of the disease. Herein, we examined whether laminarin sulfate, a polysulfated polysaccharide (PSS) isolated from the cell walls of seaweeds and subjected to chemical sulfation, could inhibit ECM degradation by mammalian heparanase, and could prevent EAE. PSS was a more potent inhibitor of heparanase-mediated degradation of ECM than heparin. In-vivo, PSS, injected once a week, inhibited the severity of actively-induced EAE in rats. However, inhibition of EAE was not due to an overall suppression of autoimmune T cells, since PSS enhanced the proliferation of myelin basic protein (MBP)-specific, encephalitogenic T cells. PSS-activated autoimmune T cells, but not MBP-activated cells, failed to induce EAE in recipient rats. Moreover, rats injected with PSS-activated T cells were resistant to induction of EAE by anti-MBP CD4+ T cells. Thus, PSS may have potential clinical applications in the treatment of autoimmune diseases. PMID:8579728

  7. Zizyphus lotus L. (Desf.) modulates antioxidant activity and human T-cell proliferation

    PubMed Central

    2010-01-01

    Background Zizyphus lotus L. (Desf.) also known as Jujube, is a deciduous shrub which belongs to Rhamnaceae family. This plant is used in Algerian traditional medicine for its anti-diabetic, sedative, analgesic, anti-inflammatory and hypoglycaemic activities. In the present study, we determined the concentrations of different vitamins (vitamin A, C and E) and fatty acids in root, stem, leaves, fruit pulp and seed of Zizyphus lotus L. (Desf.) and assessed the effects of their aqueous extracts on antioxidant status and human T-cell proliferation. Methods Aqueous filtrates from different parts, i.e, root, leaf, stem, fruit pulp and seed, of Zizyphus lotus L. (Desf.) were prepared. Vitamin C levels were determined by precipitating with 10% trichloroacetic acid and vitamin A and E were assessed by HPLC. Lipid composition of these extracts was determined by gas-liquid chromatography. Anti-oxidant capacity was evaluated by using anti-radical resistance kit [Kit Radicaux Libres (KRL@; Kirial International SA, Couternon, France)]. T-cell blastogenesis was assessed by the incorporation of 3H-thymidine. IL-2 gene expression was evaluated by RT-qPCR. Results Our results show that fruit pulp contained higher vitamin A and C contents than other parts of the plant. Furthermore, the fruit pulp was the richest source of linoleic acid (18:2n-6), a precursor of n-6 fatty acids. Fruit seeds possessed higher vitamin C levels than leaves, roots and stem. The leaves were the richest source of vitamin E and linolenic acid (18:3n-3), a precursor of n-3 fatty acids. The antioxidant capacity of the different extracts, measured by KRL@ test, was as follows: pulp < seedT-cell proliferation is concerned, we observed that the different extracts of Zizyphus lotus L. (Desf.) exerted immunosuppressive effects. Conclusion Seed extracts exerted the most potent immunosuppressive effects on T cell proliferation and IL-2 mRNA expression. The results of the present study are

  8. Cellular and molecular basis of human gamma delta T cell activation. Role of accessory molecules in alloactivation.

    PubMed Central

    Takamizawa, M; Fagnoni, F; Mehta-Damani, A; Rivas, A; Engleman, E G

    1995-01-01

    Although gamma delta T cell receptor-bearing lymphocytes (gamma delta T cells) constitute a significant minority of circulating and tissue-associated T lymphocytes, the mechanism responsible for the activation of these cells is unknown. To address this question, resting gamma delta TCR+, CD3+, CD4-, CD8- cells isolated from the blood of healthy volunteers were cultured with allogeneic dendritic cells (DC) or monocytes, and their proliferative response measured. DC alone induced gamma delta T cells to proliferate, with a peak response on the sixth day of culture. Pretreatment of DC with an anti-HLA-DR mAb, but not anti-HLA class I or anti-CD1 mAbs, inhibited the response of gamma delta T cells. Antibodies to gamma delta T cell receptor, CD2, CD3, or CD11a were also inhibitory, whereas antibodies to alpha beta T cell receptor, CD4, CD5, and CD8 had no effect. Although only 40-60% of freshly isolated gamma delta T cells expressed CD28, mAbs directed against CD28 or its ligand, CD80, were markedly inhibitory. Moreover, removal of CD28+ cells from the gamma delta T cell population nearly abrogated the response to DC. These results demonstrate that resting gamma delta T cells recognize and respond to MHC class II determinants on allogeneic DC in a manner that is highly dependent on the CD28 activation pathway as well as molecules such as CD2 and CD11a that mediate cell-to-cell adhesion. Images PMID:7814628

  9. Humulus scandens exhibits immunosuppressive effects in vitro and in vivo by suppressing CD4(+) T cell activation.

    PubMed

    Feng, Jinjin; Wu, Yingchun; Yang, Yang; Jiang, Weiqi; Hu, Shaoping; Li, Yiming; Yang, Yifu

    2014-01-01

    Humulus scandens, rich in flavonoids, is a traditional Chinese medicine. It is widely used in China to treat tuberculosis, dysentery and chronic colitis. In this study, the major active faction of Humulus scandens (H.S) was prepared. Then, its immunosuppressive effects and underlying mechanisms on T cell activation were investigated in vitro and in vivo. Results showed that H.S significantly inhibited the proliferation of splenocytes induced by concanavalin A, lipopolysaccharides, and mixed-lymphocyte reaction in vitro. Additionally, H.S could dramatically suppress the proliferation and interferon-γ (IFN-γ) production from T cells stimulated by anti-CD3 and anti-CD28. Flow cytometric results confirmed that H.S could suppress the differentiation of IFN-γ-producing type 1 helper T cells (Th1). Furthermore, using ovalbumin immunization-induced T cell reaction and CD4(+) T-cell-mediated delayed type hypersensitivity reaction, H.S the immunosuppressive effects of H.S was also demonstrated in vivo. Western blot results showed that H.S could impede the activation of both Erk1/2 and P38 in primary T cells triggered by anti-CD3/28. Collectively, the active fraction of H.S showed promising immunosuppressive activities both in vitro and in vivo. PMID:25004883

  10. Complete TCR-α gene locus control region activity in T cells derived in vitro from embryonic stem cells.

    PubMed

    Lahiji, Armin; Kucerová-Levisohn, Martina; Lovett, Jordana; Holmes, Roxanne; Zúñiga-Pflücker, Juan Carlos; Ortiz, Benjamin D

    2013-07-01

    Locus control regions (LCRs) are cis-acting gene regulatory elements with the unique, integration site-independent ability to transfer the characteristics of their locus-of-origin's gene expression pattern to a linked transgene in mice. LCR activities have been discovered in numerous T cell lineage-expressed gene loci. These elements can be adapted to the design of stem cell gene therapy vectors that direct robust therapeutic gene expression to the T cell progeny of engineered stem cells. Currently, transgenic mice provide the only experimental approach that wholly supports all the critical aspects of LCR activity. In this study, we report the manifestation of all key features of mouse TCR-α gene LCR function in T cells derived in vitro from mouse embryonic stem cells. High-level, copy number-related TCR-α LCR-linked reporter gene expression levels are cell type restricted in this system, and upregulated during the expected stage transition of T cell development. We also report that de novo introduction of TCR-α LCR-linked transgenes into existing T cell lines yields incomplete LCR activity. These data indicate that establishing full TCR-α LCR activity requires critical molecular events occurring prior to final T lineage determination. This study also validates a novel, tractable, and more rapid approach for the study of LCR activity in T cells, and its translation to therapeutic genetic engineering.

  11. Inhibition of NAMPT pathway by FK866 activates the function of p53 in HEK293T cells

    SciTech Connect

    Thakur, Basant Kumar; Dittrich, Tino; Chandra, Prakash; Becker, Annette; Lippka, Yannick; Selvakumar, Divakarvel; Klusmann, Jan-Henning; Reinhardt, Dirk; Welte, Karl

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer In 293T cells, p53 is considered to be inactive due to its interaction with the large T-antigen. Black-Right-Pointing-Pointer Acetylation of p53 at lysine 382 is important for its functional activation. Black-Right-Pointing-Pointer First evidence to document the presence of a functional p53 in 293T cells. Black-Right-Pointing-Pointer Inhibition of NAMPT/SIRT pathway by FK866 in 293T cells increases the functional activity of p53. Black-Right-Pointing-Pointer This activation of p53 involves reversible acetylation of p53 at lysine 382. -- Abstract: Inactivation of p53 protein by endogenous and exogenous carcinogens is involved in the pathogenesis of different human malignancies. In cancer associated with SV-40 DNA tumor virus, p53 is considered to be non-functional mainly due to its interaction with the large T-antigen. Using the 293T cell line (HEK293 cells transformed with large T antigen) as a model, we provide evidence that p53 is one of the critical downstream targets involved in FK866-mediated killing of 293T cells. A reduced rate of apoptosis and an increased number of cells in S-phase was accompanied after knockdown of p53 in these cells. Inhibition of NAMPT by FK866, or inhibition of SIRT by nicotinamide decreased proliferation and triggered death of 293T cells involving the p53 acetylation pathway. Additionally, knockdown of p53 attenuated the effect of FK866 on cell proliferation, apoptosis, and cell cycle arrest. The data presented here shed light on two important facts: (1) that p53 in 293T cells is active in the presence of FK866, an inhibitor of NAMPT pathway; (2) the apoptosis induced by FK866 in 293T cells is associated with increased acetylation of p53 at Lys382, which is required for the functional activity of p53.

  12. GITR ligand-costimulation activates effector and regulatory functions of CD4{sup +} T cells

    SciTech Connect

    Igarashi, Hanna; Cao, Yujia; Iwai, Hideyuki; Piao, Jinhua; Kamimura, Yosuke; Hashiguchi, Masaaki; Amagasa, Teruo; Azuma, Miyuki

    2008-05-16

    Engagement of glucocorticoid-induced TNFR-related protein (GITR) enables the costimulation of both CD25{sup -}CD4{sup +} effector (Teff) and CD25{sup +}CD4{sup +} regulatory (Treg) cells; however, the effects of GITR-costimulation on Treg function remain controversial. In this study, we examined the effects of GITR ligand (GITRL) binding on the respective functions of CD4{sup +} T cells. GITRL-P815 transfectants efficiently augmented anti-CD3-induced proliferation and cytokine production by Teff cells. Proliferation and IL-10 production in Treg were also enhanced by GITRL transfectants when exogenous IL-2 and stronger CD3 stimulation was provided. Concomitant GITRL-costimulation of Teff and Treg converted the anergic state of Treg into a proliferating state, maintaining and augmenting their function. Thus, GITRL-costimulation augments both effector and regulatory functions of CD4{sup +} T cells. Our results suggest that highly activated and increased ratios of Treg reverse the immune-enhancing effects of GITRL-costimulation in Teff, which may be problematic for therapeutic applications using strong GITR agonists.

  13. Rac1-Rab11-FIP3 regulatory hub coordinates vesicle traffic with actin remodeling and T-cell activation.

    PubMed

    Bouchet, Jérôme; Del Río-Iñiguez, Iratxe; Lasserre, Rémi; Agüera-Gonzalez, Sonia; Cuche, Céline; Danckaert, Anne; McCaffrey, Mary W; Di Bartolo, Vincenzo; Alcover, Andrés

    2016-06-01

    The immunological synapse generation and function is the result of a T-cell polarization process that depends on the orchestrated action of the actin and microtubule cytoskeleton and of intracellular vesicle traffic. However, how these events are coordinated is ill defined. Since Rab and Rho families of GTPases control intracellular vesicle traffic and cytoskeleton reorganization, respectively, we investigated their possible interplay. We show here that a significant fraction of Rac1 is associated with Rab11-positive recycling endosomes. Moreover, the Rab11 effector FIP3 controls Rac1 intracellular localization and Rac1 targeting to the immunological synapse. FIP3 regulates, in a Rac1-dependent manner, key morphological events, like T-cell spreading and synapse symmetry. Finally, Rab11-/FIP3-mediated regulation is necessary for T-cell activation leading to cytokine production. Therefore, Rac1 endosomal traffic is key to regulate T-cell activation.

  14. CD4 T-Cell Responses in Primary HIV Infection: Interrelationship with Immune Activation and Virus Burden

    PubMed Central

    Chevalier, Mathieu F.; Didier, Céline; Girard, Pierre-Marie; Manea, Maria E.; Campa, Pauline; Barré-Sinoussi, Françoise; Scott-Algara, Daniel; Weiss, Laurence

    2016-01-01

    Early events during primary HIV infection (PHI) are thought to influence disease outcome. Although a growing body of evidence suggests a beneficial role of HIV-specific CD4 help in HIV infection, it is unclear how early viral replication, systemic immune activation, and antiretroviral therapy (ART) may shape CD4 T-cell responses during PHI, and whether HIV-specific CD4 responses contribute to the high immune activation observed in PHI. Twenty-seven patients with early PHI were included in a prospective longitudinal study and 12 of them received ART after enrollment. Fresh peripheral blood mononuclear cells were used for measurement of ex vivo T-cell activation and of cytokine-producing CD4 T-cells following stimulation with PMA/ionomycin or HIV-1-gag-p24 antigen. Patients were segregated based on CD8 T-cell activation level (i.e., % HLA-DR+CD38+ CD8 T-cells) at baseline (BL). Patients with lower immune activation exhibited higher frequency of bulk CD4 T-cells producing IFN-γ or IL-17 and higher effector-to-regulatory cell ratios. No differences were found in HIV-specific CD4 T-cell frequencies. In contrast, segregation of patients based on plasma viral load (pVL) revealed that patients with higher pVL showed higher cytokine-producing HIV-specific CD4 responses. Of note, the frequency of IFN-γ+ HIV-specific CD4 T cells significantly diminished between BL and month 6 only in ART-treated patients. However, early treatment initiation was associated with better maintenance of HIV-specific IFN-γ+ CD4 T-cells. These data suggest that HIV-specific CD4 responses do not fuel systemic T-cell activation and are driven by viral replication but not able to contribute to its control in the early phase of infection. Moreover, our data also suggest a benefit of early treatment for the maintenance of HIV-specific CD4 T-cell help. PMID:27746782

  15. EphB and Ephrin-B Interactions Mediate Human Mesenchymal Stem Cell Suppression of Activated T-Cells

    PubMed Central

    Nguyen, Thao M.; Arthur, Agnes; Hayball, John D.

    2013-01-01

    Mesenchymal stromal/stem cells (MSC) express the contact-dependent erythropoietin-producing hepatocellular (Eph) receptor tyrosine kinase family and their cognate ephrin ligands, which are known to regulate thymocyte maturation and selection, T-cell transendothelial migration, activation, co-stimulation, and proliferation. However, the contribution of Eph/ephrin molecules in mediating human MSC suppression of activated T-cells remains to be determined. In the present study, we showed that EphB2 and ephrin-B2 are expressed by ex vivo expanded MSC, while the corresponding ligands, ephrin-B1 and EphB4, respectively, are highly expressed by T-cells. Initial studies demonstrated that EphB2-Fc and ephrin-B2-Fc molecules suppressed T-cell proliferation in allogeneic mixed lymphocyte reaction (MLR) assays compared with human IgG-treated controls. While the addition of a third-party MSC population demonstrated dramatic suppression of T-cell proliferation responses in the MLR, blocking the function of EphB2 or EphB4 receptors using inhibitor binding peptides significantly increased T-cell proliferation. Consistent with these observations, shRNA EphB2 or ephrin-B2 knockdown expression in MSC reduced their ability to inhibit T-cell proliferation. Importantly, the expression of immunosuppressive factors, indoleamine 2, 3-dioxygenase, transforming growth factor-β1, and inducible nitric oxide synthase expressed by MSC, was up-regulated after stimulation with EphB4 and ephrin-B1 in the presence of interferon (IFN)-γ, compared with untreated controls. Conversely, key factors involved in T-cell activation and proliferation, such as interleukin (IL)-2, IFN-γ, tumor necrosis factor-α, and IL-17, were down-regulated by T-cells treated with EphB2 or ephrin-B2 compared with untreated controls. Studies utilizing signaling inhibitors revealed that inhibition of T-cell proliferation is partly mediated through EphB2-induced ephrin-B1 reverse signaling or ephrin-B2-mediated EphB4 forward

  16. Failure of antigen-stimulated gammadelta T cells and CD4+ T cells from sensitized cattle to upregulate nitric oxide and mycobactericidal activity of autologous Mycobacterium avium subsp. paratuberculosis-infected macrophages.

    PubMed

    Simutis, Frank J; Jones, Douglas E; Hostetter, Jesse M

    2007-03-15

    The function of gammadelta T cells during ruminant paratuberculosis (Johne's disease) is presently unknown. An ex vivo system was used to test the hypothesis that gammadelta T cells are capable of activating Mycobacterium avium subsp. paratuberculosis-(M. paratuberculosis)-infected macrophages. Peripheral blood-derived macrophages were infected in vitro with live M. paratuberculosis, and autologous LN-derived gammadelta T cells or CD4+ T cells were co-cultured with infected macrophages for 48h, at which time bacterial survival as well as production of nitrites and IFN-gamma was evaluated. Incubation of M. paratuberculosis-infected macrophages with autologous gammadelta T cells did not result in reduced intracellular bacterial viability compared to infected macrophage cultures without added T cells. IFN-gamma production by-infected cultures containing added gammadelta T cells was not enhanced compared to that of infected macrophages alone. Although infection of macrophage cultures caused increased production of nitrites at both post-infection day (PID) 0 and PID 60, the addition of gammadelta T cells did not further increase nitrite production. In contrast, addition of PPD-stimulated CD4+ T cells obtained at PID 60 to M. paratuberculosis-infected macrophages resulted in significantly increased IFN-gamma production compared to cultures without added T cells or cultures containing unstimulated CD4+ T cells or unstimulated or antigen-stimulated gammadelta T cells. However, the increased production of IFN-gamma by co-cultures containing PPD-stimulated CD4+ T cells did not result in increased bacterial killing or increased production of nitrites compared to cultures without added T cells. In additional in vitro experiments, M. paratuberculosis-infected macrophages, but not uninfected macrophages, were unable to increase nitrite production when stimulated with recombinant IFN-gamma. Taken together, the data suggest that (1) gammadelta T cells do not produce significant

  17. Allo-antigen stimulated CD8+ T-cells suppress NF-κB and Ets-1 DNA binding activity, and inhibit phosphorylated NF-κB p65 nuclear localization in CD4+ T-cells.

    PubMed

    Nagashima, Ryuichi; Kawakami, Fumitaka; Takahashi, Shinichiro; Obata, Fumiya; Kubo, Makoto

    2014-08-01

    CD8+ T-cells of asymptomatic HIV-1 carriers (AC) suppress human immunodeficiency virus type 1 (HIV-1) replication in a class I major histocompatibility complex (MHC-I)-restricted and -unrestricted manner. In order to investigate the mechanism of MHC-I-unrestricted CD8+ T-cell-mediated HIV-1 suppression, we previously established allo-antigen stimulated CD8+T-cells from HIV-1-uninfected donors. These allo-antigen stimulated CD8+ T-cells suppressed HIV-1 replication in acutely infected autologous CD4+ T-cells when directly co-cultured. To elucidate the mechanism of HIV-1 replication suppression, we analyzed DNA-binding activity and phosphorylation of transcriptional factors associated with HIV-1 replication by electrophoresis mobility shift assay and Western blotting. When CD4+ T-cells were cultured with allo-antigen stimulated CD8+ T-cells, the reduction of NF-κB and Ets-1 DNA-binding activity was observed. Nuclear localization of NF-κB p65 and Ets-1 was suppressed in CD4+ T-cells. Although NF-κB p65 and Ets-1 are known to be regulated by protein kinase A (PKA), no difference was observed in the expression and phosphorylation of the PKA catalytic subunit in CD4+ T-cells cultured with PHA-treated CD8+ T-cells or allo-antigen stimulated CD8+ T-cells. Cyclic AMP is also known to enter through gap junctions, but the suppression of HIV-1 replication mediated by allo-antigen stimulated CD8+ T-cells was not affected by the gap junction inhibitor. The nuclear transport of phosphorylated NF-κB p65 (Ser276) was inhibited only in CD4+ T-cells cultured with allo-antigen stimulated CD8+ T-cells. Our results indicate that allo-antigen stimulated CD8+ T-cells suppress the transcriptional activity of NF-κB p65 or Ets-1 in an antigen-nonspecific manner, and inhibit the nuclear transport of phosphorylated NF-κB p65 (Ser276).

  18. Id1 expression promotes peripheral CD4{sup +} T cell proliferation and survival upon TCR activation without co-stimulation

    SciTech Connect

    Liu, Chen; Jin, Rong; Wang, Hong-Cheng; Tang, Hui; Liu, Yuan-Feng; Qian, Xiao-Ping; Sun, Xiu-Yuan; Ge, Qing; Sun, Xiao-Hong; Zhang, Yu

    2013-06-21

    Highlights: •Id1 expression enables naïve T cell proliferation without anti-CD28 co-stimulation. •Id1 expression facilitates T cells survival when stimulated with anti-CD3. •Elevation of IL-2 production by Id1 contributes increased proliferation and survival. •Id1 potentiates NF-κB activation by anti-CD3 stimulation. -- Abstract: Although the role of E proteins in the thymocyte development is well documented, much less is known about their function in peripheral T cells. Here we demonstrated that CD4 promoter-driven transgenic expression of Id1, a naturally occurring dominant-negative inhibitor of E proteins, can substitute for the co-stimulatory signal delivered by CD28 to facilitate the proliferation and survival of naïve CD4{sup +} cells upon anti-CD3 stimulation. We next discovered that IL-2 production and NF-κB activity after anti-CD3 stimulation were significantly elevated in Id1-expressing cells, which may be, at least in part, responsible for the augmentation of their proliferation and survival. Taken together, results from this study suggest an important role of E and Id proteins in peripheral T cell activation. The ability of Id proteins to by-pass co-stimulatory signals to enable T cell activation has significant implications in regulating T cell immunity.

  19. Measurement of Ligand-Induced Activation in Single Viable T Cells Using the lacZ Reporter Gene

    NASA Astrophysics Data System (ADS)

    Karttunen, Jaana; Shastri, Nilabh

    1991-05-01

    We have used the bacterial β-galactosidase gene (lacZ) as a reporter gene for the rapid measurement of T-cell antigen receptor (TCR)-mediated activation of individual T cells. The reporter construct contained the lacZ gene under the control of the nuclear factor of activated T cells (NF-AT) element of the human interleukin 2 enhancer [Fiering, S., Northrop, J. P., Nolan, G. P., Matilla, P., Crabtree, G. R. & Herzenberg, L. A. (1990) Genes Dev. 4, 1823-1834]. The activity of the intracellular lacZ enzyme was analyzed by flow cytometric measurement of fluorescein accumulation in cells loaded with the fluorogenic β-galactosidase substrate fluorescein di-β-D-galactopyranoside. As a model system, the T-cell hybridoma BO4H9.1, which is specific for the lysozyme peptide (amino acids 74-88)/A^b complex, was transfected with the NF-AT-lacZ construct. lacZ activity was induced in 50-100% of the transfectant cells following exposure to pharmacological agents, to the physiological peptide/major histocompatibility complex ligand, or to other TCR-specific stimuli. Interestingly, increasing concentrations of the stimulus increased the fraction of lacZ^+ cells, but not the level of lacZ activity per cell. Even under widely varying levels of stimulus, the level of lacZ activity in individual lacZ^+ cells remained within a remarkably narrow range. These results demonstrate that TCR-mediated activation can be readily measured in single T cells and strongly suggest that, once committed to activation, the level of NF-AT transcriptional activity in individual T cells is independent of the form or concentration of stimulus. This assay is likely to prove useful for the study of early activation events in individual T cells and of TCR ligands.

  20. Preserved Activity of CD20-Specific Chimeric Antigen Receptor-Expressing T Cells in the Presence of Rituximab.

    PubMed

    Rufener, Gregory A; Press, Oliver W; Olsen, Philip; Lee, Sang Yun; Jensen, Michael C; Gopal, Ajay K; Pender, Barbara; Budde, Lihua E; Rossow, Jeffrey K; Green, Damian J; Maloney, David G; Riddell, Stanley R; Till, Brian G

    2016-06-01

    CD20 is an attractive immunotherapy target for B-cell non-Hodgkin lymphomas, and adoptive transfer of T cells genetically modified to express a chimeric antigen receptor (CAR) targeting CD20 is a promising strategy. A theoretical limitation is that residual serum rituximab might block CAR binding to CD20 and thereby impede T cell-mediated anti-lymphoma responses. The activity of CD20 CAR-modified T cells in the presence of various concentrations of rituximab was tested in vitro and in vivo CAR-binding sites on CD20(+) tumor cells were blocked by rituximab in a dose-dependent fashion, although at 37°C blockade was incomplete at concentrations up to 200 μg/mL. T cells with CD20 CARs also exhibited modest dose-dependent reductions in cytokine secretion and cytotoxicity, but not proliferation, against lymphoma cell lines. At rituximab concentrations of 100 μg/mL, CAR T cells retained ≥50% of baseline activity against targets with high CD20 expression, but were more strongly inhibited when target cells expressed low CD20. In a murine xenograft model using a rituximab-refractory lymphoma cell line, rituximab did not impair CAR T-cell activity, and tumors were eradicated in >85% of mice. Clinical residual rituximab serum concentrations were measured in 103 lymphoma patients after rituximab therapy, with the median level found to be only 38 μg/mL (interquartile range, 19-72 μg/mL). Thus, despite modest functional impairment in vitro, the in vivo activity of CD20-targeted CAR T cells remains intact at clinically relevant levels of rituximab, making use of these T cells clinically feasible. Cancer Immunol Res; 4(6); 509-19. ©2016 AACRSee related Spotlight by Sadelain, p. 473.

  1. CD4+ T cells with an activated and exhausted phenotype distinguish immunodeficiency during aviremic HIV-2 infection

    PubMed Central

    Buggert, Marcus; Frederiksen, Juliet; Lund, Ole; Betts, Michael R.; Biague, Antonio; Nielsen, Morten; Tauriainen, Johanna; Norrgren, Hans; Medstrand, Patrik; Karlsson, Annika C.; Jansson, Marianne

    2016-01-01

    Objective: HIV type 2 (HIV-2) represents an attenuated form of HIV, in which many infected individuals remain ‘aviremic’ without antiretroviral therapy. However, aviremic HIV-2 disease progression exists, and in the current study, we therefore aimed to examine if specific pathological characteristics of CD4+ T cells are linked to such outcome. Design: HIV-seronegative (n = 25), HIV type 1 (HIV-1) (n = 33), HIV-2 (n = 39, of whom 26 were aviremic), and HIV-1/2 dually (HIV-D) (n = 13)-infected study participants were enrolled from an occupational cohort in Guinea-Bissau. Methods: CD4+ T-cell differentiation, activation, exhaustion, senescence, and transcription factors were assessed by polychromatic flow cytometry. Multidimensional clustering bioinformatic tools were used to identify CD4+ T-cell subpopulations linked to infection type and disease stage. Results: HIV-2-infected individuals had early and late-differentiated CD4+ T-cell clusters with lower activation (CD38+HLA-DR+) and exhaustion programmed death-1 (PD-1) than HIV-1 and HIV-D-infected individuals. We also noted that aviremic HIV-2-infected individuals possessed fewer individuals. CD4+ T cells with pathological signs compared to other HIV-infected groups. Still, compared to HIV-seronegative individuals, aviremic HIV-2-infected individuals had T-bet+ CD4+ T cells that showed elevated immune activation/exhaustion, and particularly the frequencies of PD-1+ cells were associated with a suboptimal percentage of CD4+ T cells. Conclusion: Increased frequencies of CD4+ T cells with an activated/exhausted phenotype correlate with exacerbated immunodeficiency in aviremic HIV-2-infected individuals. Thus, these findings encourage studies on the introduction of antiretroviral therapy also to individuals with aviremic HIV-2 infection. PMID:27525551

  2. Regulatory T Cell Responses to High-Dose Methylprednisolone in Active Systemic Lupus Erythematosus

    PubMed Central

    Chader, Driss; Cohen-Aubart, Fleur; Haroche, Julien; Fadlallah, Jehane; Claër, Laetitia; Musset, Lucile; Gorochov, Guy; Amoura, Zahir; Miyara, Makoto

    2015-01-01

    Background/Purpose A slight increase in the proportion of circulating regulatory T (Treg) cells has been reported in systemic lupus erythematosus (SLE) patients taking oral prednisone. The effects of intravenous (IV) high dose methylprednisolone (MP) on Tregs have not yet been described, especially in active SLE. Methods We prospectively analyzed the proportion of circulating CD4+ Treg cell subsets defined as follows: (1) naïve Treg (nTreg) FoxP3lowCD45RA+ cells; (2) effector Treg (eTreg) FoxP3highCD45RA− cells; and (3) non-suppressive FoxP3lowCD45RA− cells (non-regulatory Foxp3low T cells). Peripheral blood mononuclear cells of patients with active SLE were analyzed before the first infusion of IV high dose MP (day 0) and the following days (day 1, day 2, ±day 3 and ±day 8). The activity of SLE was assessed by the SLEDAI score. Results Seventeen patients were included. Following MP infusions, the median (range) percentage of eTregs significantly increased from 1.62% (0.53–8.43) at day 0 to 2.80% (0.83–14.60) at day 1 (p = 0.003 versus day 0), 4.64% (0.50–12.40) at day 2 (p = 0.06 versus day 1) and 7.50% (1.02–20.70) at day 3 (p = 0.008 versus day 2), and declined to baseline values at day 8. Expanding eTreg cells were actively proliferating, as they expressed Ki-67. The frequency of non-regulatory FoxP3low T cells decreased from 6.39% (3.20–17.70) at day 0 to 4.74% (1.03–9.72) at day 2 (p = 0.005); nTreg frequency did not change. All patients clinically improved immediately after MP pulses. The absence of flare after one year of follow up was associated with a higher frequency of eTregs at day 2. Conclusion IV high dose MP induces a rapid, dramatic and transient increase in circulating regulatory T cells. This increase may participate in the preventive effect of MP on subsequent flares in SLE. PMID:26629828

  3. Continuous Activation of Autoreactive CD4+ CD25+ Regulatory T Cells in the Steady State

    PubMed Central

    Fisson, Sylvain; Darrasse-Jèze, Guillaume; Litvinova, Elena; Septier, Franck; Klatzmann, David; Liblau, Roland; Salomon, Benoît L.

    2003-01-01

    Despite a growing interest in CD4+ CD25+ regulatory T cells (Treg) that play a major role in self-tolerance and immunoregulation, fundamental parameters of the biology and homeostasis of these cells are poorly known. Here, we show that this population is composed of two Treg subsets that have distinct phenotypes and homeostasis in normal unmanipulated mice. In the steady state, some Treg remain quiescent and have a long lifespan, in the order of months, whereas the other Treg are dividing extensively and express multiple activation markers. After adoptive transfer, tissue-specific Treg rapidly divide and expand preferentially in lymph nodes draining their target self-antigens. These results reveal the existence of a cycling Treg subset composed of autoreactive Treg that are continuously activated by tissue self-antigens. PMID:12939344

  4. A specific CD4 epitope bound by tregalizumab mediates activation of regulatory T cells by a unique signaling pathway.

    PubMed

    Helling, Bianca; König, Martin; Dälken, Benjamin; Engling, Andre; Krömer, Wolfgang; Heim, Katharina; Wallmeier, Holger; Haas, Jürgen; Wildemann, Brigitte; Fritz, Brigitte; Jonuleit, Helmut; Kubach, Jan; Dingermann, Theodor; Radeke, Heinfried H; Osterroth, Frank; Uherek, Christoph; Czeloth, Niklas; Schüttrumpf, Jörg

    2015-04-01

    CD4(+)CD25(+) regulatory T cells (Tregs) represent a specialized subpopulation of T cells, which are essential for maintaining peripheral tolerance and preventing autoimmunity. The immunomodulatory effects of Tregs depend on their activation status. Here we show that, in contrast to conventional anti-CD4 monoclonal antibodies (mAbs), the humanized CD4-specific monoclonal antibody tregalizumab (BT-061) is able to selectively activate the suppressive properties of Tregs in vitro. BT-061 activates Tregs by binding to CD4 and activation of signaling downstream pathways. The specific functionality of BT-061 may be explained by the recognition of a unique, conformational epitope on domain 2 of the CD4 molecule that is not recognized by other anti-CD4 mAbs. We found that, due to this special epitope binding, BT-061 induces a unique phosphorylation of T-cell receptor complex-associated signaling molecules. This is sufficient to activate the function of Tregs without activating effector T cells. Furthermore, BT-061 does not induce the release of pro-inflammatory cytokines. These results demonstrate that BT-061 stimulation via the CD4 receptor is able to induce T-cell receptor-independent activation of Tregs. Selective activation of Tregs via CD4 is a promising approach for the treatment of autoimmune diseases where insufficient Treg activity has been described. Clinical investigation of this new approach is currently ongoing. PMID:25512343

  5. The distortive mechanism for the activation of complement component C1 supported by studies with a monoclonal antibody against the "arms" of C1q.

    PubMed

    Hoekzema, R; Martens, M; Brouwer, M C; Hack, C E

    1988-05-01

    A mouse monoclonal antibody (IgG1 isotype) against human C1q (MAb 130) is presented that activates C1 in serum through its antigen-binding sites at an optimal molar ratio of 3 MAbs:1 C1q. The antibody does not inhibit binding of C1q to IgG. Experiments with pepsin- and collagenase-digested C1q showed that MAb 130 binds to the fibril-like strands (arms) of C1q, close to the globular heads. Bivalency of MAb 130 was a requirement for C1-activation, but not for binding to C1q. Increasing the segmental flexibility of the intact antibody by reduction and alkylation destroyed its capacity to activate C1. A MAb against the globular heads of C1q completely inhibited C1-activation by aggregated IgG (AHG), but did not prevent activation by MAb 130. C1, reconstituted by adding C1q-stalks that lack the globular heads to C1q-depleted serum was not activated by AHG, whereas activation by MAb 130 was not affected. Activation of serum-C1 by AHG and MAb 130 was inhibited by addition of excess purified C1-inhibitor in a comparable and dose-dependent manner. Sucrose-gradient analysis indicated a predominance of stable complexes of a single C1q-molecule with three MAbs at the optimal activating ratio. When isolated and added to C1q-depleted serum, these complexes activated C1 efficiently. A mechanism for activation by MAb 130 is proposed that supports the "distortive" model of C1-activation.

  6. Itk Signals Promote Neuroinflammation by Regulating CD4+ T-Cell Activation and Trafficking

    PubMed Central

    Kannan, Arun K.; Kim, Do-Geun

    2015-01-01

    Here we demonstrate that interleukin-2-inducible T-cell kinase (Itk) signaling in cluster of differentiation 4-positive (CD4+) T cells promotes experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). We show that Itk−/− mice exhibit reduced disease severity, and transfer of Itk−/− CD4+ T cells into T cell-deficient recipients results in lower disease severity. We observed a significant reduction of CD4+ T cells in the CNS of Itk−/− mice or recipients of Itk−/− CD4+ T cells during EAE, which is consistent with attenuated disease. Itk−/− CD4+ T cells exhibit defective response to myelin antigen stimulation attributable to displacement of filamentous actin from the CD4+ coreceptor. This results in inadequate transmigration of Itk−/− CD4+ T cells into the CNS and across brain endothelial barriers in vitro. Finally, Itk−/− CD4+ T cells show significant reduction in production of T-helper 1 (Th1) and Th17 cytokines and exhibit skewed T effector/T regulatory cell ratios. These results indicate that signaling by Itk promotes autoimmunity and CNS inflammation, suggesting that it may be a viable target for treatment of MS. PMID:25568116

  7. Monosomy 1p36 uncovers a role for OX40 in survival of activated CD4+ T cells.

    PubMed

    Suhoski, M M; Perez, E E; Heltzer, M L; Laney, A; Shaffer, L G; Saitta, S; Nachman, S; Spinner, N B; June, C H; Orange, J S

    2008-08-01

    Monosomy 1p36 is a subtelomeric deletion syndrome associated with congenital anomalies presumably due to haploinsufficiency of multiple genes. Although immunodeficiency has not been reported, genes encoding costimulatory molecules of the TNF receptor superfamily (TNFRSF) are within 1p36 and may be affected. In one patient with monosomy 1p36, comparative genome hybridization and fluorescence in- situ hybridization confirmed that TNFRSF member OX40 was included within the subtelomeric deletion. T cells from this patient had decreased OX40 expression after stimulation. Specific, ex vivo T cell activation through OX40 revealed enhanced proliferation, and reduced viability of patient CD4+ T cells, providing evidence for the association of monosomy 1p36 with reduced OX40 expression, and decreased OX40-induced T cell survival. These results support a role for OX40 in human immunity, and calls attention to the potential for haploinsufficiency deletions of TNFRSF costimulatory molecules in monosomy 1p36.

  8. Activation of resting T cells: distinct roles of intact accessory cells, phorbol myristate acetate and interleukin 1

    SciTech Connect

    Davis, L.; Lipsky, P.E.

    1986-03-05

    The accessory cell (AC) signals involved in the activation of resting guinea pig T lymphocytes stimulated with mitogen (PHA), or the calcium ionophore, ionomycin (Ion) were examined. Activation of T cells was assessed by cell cycle analysis after acridine orange staining and /sup 3/H-thymidine incorporation. PHA-stimulated T cells depleted of all AC were unable to respond in the presence of phorbol myristate acetate (PMA), and/or interleukin 1 (IL 1). With suboptimal numbers of AC, PMA greatly augmented the number of T cells activated by PHA to enter and progress through the cell cycle, but only when present during the first few hours of culture. By contrast, IL 1 had little effect on the number of cells entering the cell cycle, although it enhanced S phase entry of the activated cells. IL 1 augmented DNA synthesis when added initially or later in culture. In contrast to the effects noted with PHA, PMA promoted activation and DNA synthesis of the majority of Ion stimulated cells in the complete absence of AC. IL 1 alone could not support Ion induced T cell activation although it enhanced T cell DNA synthesis in cultures stimulated by PMA and Ion. These studies indicate that intact AC, IL 1 and PMA-like signals play distinct roles in the progression of T cells through the initial cell cycle. Stimulation by Ion requires only PMA whereas PHA responses require intact AC and can be amplified by PMA. The major effect of IL 1 is to promote S phase entry of activated T cells.

  9. Activation of CD1d-independent NK1.1+ T cells in the large intestine by Lactobacilli.

    PubMed

    Takahashi, Satoshi; Kawamura, Toshihiko; Kanda, Yasuhiro; Taniguchi, Tomoyo; Nishizawa, Tetsuro; Iiai, Tsuneo; Hatakeyama, Katsuyoshi; Abo, Toru

    2006-01-15

    Among digestive organs, the liver and the large intestine are abundant in T cells expressing NK1.1. NK1.1+ T cells in the liver are mostly CD1d-dependent whereas those in the large intestine are CD1d-independent. In this study, we investigated the effects of Lactobacilli on NK1.1+ T cells in the digestive organs of mice. C57BL/6 mice were orally given a dietary supplement prepared from mixed cultures of eight strains of Lactobacilli. Oral administration of Lactobacilli to mice resulted in the selective expansion of NK1.1+ T cells in the large intestine. These colon NK1.1+ T cells activated by Lactobacilli were found to express IFN-gamma mRNA. The level of IFN-gamma in the serum was also elevated by the administration of Lactobacilli. Our results suggest that Lactobacilli selectively activate CD1d-independent NK1.1+ T cells in the large intestine to produce IFN-gamma and therefore modulate Th1 immune responses.

  10. GD2-specific CAR T Cells Undergo Potent Activation and Deletion Following Antigen Encounter but can be Protected From Activation-induced Cell Death by PD-1 Blockade.

    PubMed

    Gargett, Tessa; Yu, Wenbo; Dotti, Gianpietro; Yvon, Eric S; Christo, Susan N; Hayball, John D; Lewis, Ian D; Brenner, Malcolm K; Brown, Michael P

    2016-06-01

    Chimeric antigen receptor (CAR) T cells have shown great promise in the treatment of hematologic malignancies but more variable results in the treatment of solid tumors and the persistence and expansion of CAR T cells within patients has been identified as a key correlate of antitumor efficacy. Lack of immunological "space", functional exhaustion, and deletion have all been proposed as mechanisms that hamper CAR T-cell persistence. Here we describe the events following activation of third-generation CAR T cells specific for GD2. CAR T cells had highly potent immediate effector functions without evidence of functional exhaustion in vitro, although reduced cytokine production reversible by PD-1 blockade was observed after longer-term culture. Significant activation-induced cell death (AICD) of CAR T cells was observed after repeated antigen stimulation, and PD-1 blockade enhanced both CAR T-cell survival and promoted killing of PD-L1(+) tumor cell lines. Finally, we assessed CAR T-cell persistence in patients enrolled in the CARPETS phase 1 clinical trial of GD2-specific CAR T cells in the treatment of metastatic melanoma. Together, these data suggest that deletion also occurs in vivo and that PD-1-targeted combination therapy approaches may be useful to augment CAR T-cell efficacy and persistence in patients.

  11. Heparin-disaccharide affects T cells: inhibition of NF-kappaB activation, cell migration, and modulation of intracellular signaling.

    PubMed

    Hecht, Iris; Hershkoviz, Rami; Shivtiel, Shoham; Lapidot, Tzvi; Cohen, Irun R; Lider, Ofer; Cahalon, Liora

    2004-06-01

    We previously reported that disaccharides (DS), generated by enzymatic degradation of heparin or heparan sulfate, inhibit T cell-mediated immune reactions in rodents and regulate cytokine [tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-8, and IL-1beta] secretion by T cells, macrophages, or intestinal epithelial cells. Here, we investigated the effects of a trisulfated heparin DS (3S-DS) on two aspects of T cell function: secretion of proinflammatory cytokines and migration to an inflamed site. 3S-DS down-regulated nuclear factor-kappaB activity and reduced the secretion of TNF-alpha and interferon-gamma (IFN-gamma) by anti-CD3-activated T cells. In addition, 3S-DS inhibited CXC chemokine ligand 12 (CXCL12; stromal cell-derived factor-1alpha)-dependent migration in vitro and in vivo and decreased CXCL12-induced T cell adhesion to the extracellular matrix glycoprotein, fibronectin (FN). This inhibition was accompanied by attenuation of CXCL12-induced Pyk2 phosphorylation but did not involve internalization of the CXCL12 receptor, CXCR4, or phosphorylation of extracellular-regulated kinase. Despite inhibiting CXCL12-induced adhesion, 3S-DS, on its own, induced T cell adhesion to FN, which was accompanied by phosphorylation of Pyk2. A monosulfated DS showed no effect. Taken together, these data provide evidence that 3S-DS can regulate inflammation by inducing and modulating T cell-signaling events, desensitizing CXCR4, and modulating T cell receptor-induced responses. PMID:15020655

  12. A lectin-binding, protease-resistant mycobacterial ligand specifically activates V gamma 9+ human gamma delta T cells.

    PubMed

    Pfeffer, K; Schoel, B; Plesnila, N; Lipford, G B; Kromer, S; Deusch, K; Wagner, H

    1992-01-15

    Bacterial (exogeneous) superantigens have been defined as bifunctional proteinaceous molecules. They bind to class II MHC molecules of presenting cells and engage with particular TCR-V beta gene elements, thereby activating alpha beta T cells in a V beta-oriented fashion. In previous studies we have elucidated that gamma delta T cells exhibit a propensity to vigorously respond toward mycobacterial Ag. Intrigued by this finding we now analyzed whether mycobacteria express a superantigen for a subset of human gamma delta T cells definable by the selective use of TCR-V gene elements. Here we describe that a protease-resistant, low m.w. (1 to 3 kDa) component of mycobacteria selectively activates gamma delta T cells expressing TCR-V gamma 9 gene segments. Contained in mycobacterial lysates it stimulates TCR-V gamma 9-positive gamma delta T cells at a frequency of 1/6. Stimulation is critically dependent on the presence of class II MHC-positive presenting cells, the important structure being HLA-DR molecules. The fine specificity of the V gamma 9 seeking mycobacterial ligand differs from the gamma delta T cell-stimulating structures expressed by Daudi cells. In addition, the mycobacterial, V gamma 9-seeking ligand is bound selectively to lectins such as UEAI, SBA, and DBA. We conclude that mycobacteria contain a component that acts as a superantigen for human gamma delta T cells and we believe it is this property that explains the vigorous participation of gamma delta T cells in mycobacterial infections.

  13. High-Dose Nicotinamide Suppresses ROS Generation and Augments Population Expansion during CD8+ T Cell Activation

    PubMed Central

    Choi, Ho Jin; Jang, So-Young; Hwang, Eun Seong

    2015-01-01

    During T cell activation, mitochondrial content increases to meet the high energy demand of rapid cell proliferation. With this increase, the level of reactive oxygen species (ROS) also increases and causes the rapid apoptotic death of activated cells, thereby facilitating T cell homeostasis. Nicotinamide (NAM) has previously been shown to enhance mitochondria quality and extend the replicative life span of human fibroblasts. In this study, we examined the effect of NAM on CD8+ T cell activation. NAM treatment attenuated the increase of mitochondrial content and ROS in T cells activated by CD3/CD28 antibodies. This was accompanied by an accelerated and higher-level clonal expansion resulting from attenuated apoptotic death but not increased division of the activated cells. Attenuation of ROS-triggered pro-apoptotic events and upregulation of Bcl-2 expression appeared to be involved. Although cells activated in the presence of NAM exhibited compromised cytokine gene expression, our results suggest a means to augment the size of T cell expansion during activation without consuming their limited replicative potential. PMID:26442863

  14. High-Dose Nicotinamide Suppresses ROS Generation and Augments Population Expansion during CD8(+) T Cell Activation.

    PubMed

    Choi, Ho Jin; Jang, So-Young; Hwang, Eun Seong

    2015-10-01

    During T cell activation, mitochondrial content increases to meet the high energy demand of rapid cell proliferation. With this increase, the level of reactive oxygen species (ROS) also increases and causes the rapid apoptotic death of activated cells, thereby facilitating T cell homeostasis. Nicotinamide (NAM) has previously been shown to enhance mitochondria quality and extend the replicative life span of human fibroblasts. In this study, we examined the effect of NAM on CD8(+) T cell activation. NAM treatment attenuated the increase of mitochondrial content and ROS in T cells activated by CD3/CD28 antibodies. This was accompanied by an accelerated and higher-level clonal expansion resulting from attenuated apoptotic death but not increased division of the activated cells. Attenuation of ROS-triggered pro-apoptotic events and upregulation of Bcl-2 expression appeared to be involved. Although cells activated in the presence of NAM exhibited compromised cytokine gene expression, our results suggest a means to augment the size of T cell expansion during activation without consuming their limited replicative potential. PMID:26442863

  15. The chemokine CCL5 regulates glucose uptake and AMP kinase signaling in activated T cells to facilitate chemotaxis.

    PubMed

    Chan, Olivia; Burke, J Daniel; Gao, Darrin F; Fish, Eleanor N

    2012-08-24

    Recruitment of effector T cells to sites of infection or inflammation is essential for an effective adaptive immune response. The chemokine CCL5 (RANTES) activates its cognate receptor, CCR5, to initiate cellular functions, including chemotaxis. In earlier studies, we reported that CCL5-induced CCR5 signaling activates the mTOR/4E-BP1 pathway to directly modulate mRNA translation. Specifically, CCL5-mediated mTOR activation contributes to T cell chemotaxis by initiating the synthesis of chemotaxis-related proteins. Up-regulation of chemotaxis-related proteins may prime T cells for efficient migration. It is now clear that mTOR is also a central regulator of nutrient sensing and glycolysis. Herein we describe a role for CCL5-mediated glucose uptake and ATP accumulation to meet the energy demands of chemotaxis in activated T cells. We provide evidence that CCL5 is able to induce glucose uptake in an mTOR-dependent manner. CCL5 treatment of ex vivo activated human CD3(+) T cells also induced the activation of the nutrient-sensing kinase AMPK and downstream substrates ACC-1, PFKFB-2, and GSK-3β. Using 2-deoxy-d-glucose, an inhibitor of glucose uptake, and compound C, an inhibitor of AMPK, experimental data are presented that demonstrate that CCL5-mediated T cell chemotaxis is dependent on glucose, as these inhibitors inhibit CCL5-mediated chemotaxis in a dose-dependent manner. Altogether, these findings suggest that both glycolysis and AMPK signaling are required for efficient T cell migration in response to CCL5. These studies extend the role of CCL5 mediated CCR5 signaling beyond lymphocyte chemotaxis and demonstrate a role for chemokines in promoting glucose uptake and ATP production to match energy demands of migration.

  16. CD43 deficiency has no impact in competitive in vivo assays of neutrophil or activated T cell recruitment efficiency.

    PubMed

    Carlow, Douglas A; Ziltener, Hermann J

    2006-11-01

    Using noncompetitive methodologies comparing CD43(+/+) and CD43(-/-) mice, it has been reported that CD43(-/-) leukocytes exhibit reduced recruitment efficiency to sites of inflammation. More recent analyses demonstrate that CD43 on activated T cells can function as an E-selectin ligand (E-SelL) in vitro, suggesting that CD43 might promote rolling interactions during recruitment of leukocytes and account for the reported recruitment deficits in CD43(-/-) T cells and neutrophils in vivo. Internally controlled competitive in vivo methods using fluorescent tracking dyes were applied to compare recruitment efficiency of CD43(+/+) vs CD43(-/-) activated T cells to inflamed skin and of peripheral blood neutrophils to inflamed peritoneum. A simple CFSE perfusion method was developed to distinguish arterial/venous vasculature and confirm appropriate extravasation through venules in a Con A-induced cutaneous inflammation model. In vivo recruitment of peripheral blood neutrophils to inflamed peritoneum was core 2 GlcNAcT-I dependent, but recruitment efficiency was not influenced by absence of CD43. There were also no significant differences in core 2 GlcNAcT-I-dependent, selectin-dependent, cutaneous recruitment of activated T cells from CD43(+/+) and congenic CD43(-/-) mice in either B6 or P-selectin(-/-) recipients despite biochemical confirmation that a CD43-specific E-SelL was present on activated T cells. We conclude that recruitment of neutrophils and activated T cells in these in vivo models is not influenced by CD43 expression and that if CD43 on activated T cells performs an E-SelL function in vivo, it contributes in a limited physiological context.

  17. Protein kinase C modulates cytosolic free calcium by stimulating calcium pump activity in Jurkat T cells.

    PubMed

    Balasubramanyam, M; Gardner, J P

    1995-12-01

    Although protein kinase C (PKC) activation has been shown to inhibit Ca2+ influx in T lymphocytes, the role of PKC on Ca2+ sequestration or extrusion processes has not been fully explored. We examined the effect of CD3 stimulation and PKC activators on cytosolic Ca2+ (Ca2+i) extrusion and 45Ca2+ efflux in human leukemic Jurkat T cells. Treatment of Fura-2 loaded cells with phorbol 12-myristate 13-acetate (PMA) or thymeleatoxin (THYM) resulted in a decrease in Ca2+i both in the presence and absence of extracellular Ca2+, whereas inactive phorbol esters had no effect. PKC activators added at the peak of a Ca2+i transient induced by anti-CD3 mAb, ionomycin or thapsigargin (TG) stimulated the rate and extent of return of Ca2+i to basal levels by 17-53%. PKC stimulation of the Ca2+i decline was not enhanced by the presence of Na+, indicating that PKC activators increase Ca2+ pump activity rather than a Na+/Ca2+ exchange mechanism. As CD3 receptor activation enhanced the Ca2+i decline in TG-treated cells, antigen-mediated activation of phospholipase C (PLC) signaling includes enhanced Ca2+ extrusion at the plasma membrane. The effect of PKC activators on parameters of Ca2+i extrusion were further explored. PMA significantly increased the rate of Ca2+ extrusion in TG-treated cells from 0.28 +/- 0.02 to 0.35 +/- 0.03 s-1 (mean +/- SEM) and stimulated the initial rate of 45Ca2+ efflux by 69% compared to inactive phorbol ester treated cells. The effects of PKC activation on the Ca2+i decline were eliminated by PKC inhibitors, PKC down regulation (24 h PMA pretreatment), ATP-depletion and conditions that inhibited the Ca2+ pump. In contrast, pretreatment of cells with okadaic acid enhanced the PMA-stimulated response. We suggest that Jurkat T cells contain a PKC-sensitive Ca2+ extrusion mechanism likely to be the Ca2+ pump. In lymphocytes, receptor/PLC-linked PKC activation modulates Ca2+i not only by inhibiting Ca2+ influx but also by stimulating plasma membrane Ca2+i

  18. Approximate smooth solutions of a mathematical model for the activation and clonal expansion of T cells.

    PubMed

    Criaco, D; Dolfin, M; Restuccia, L

    2013-02-01

    In a previous paper a mathematical model was developed for the dynamics of activation and clonal expansion of T cells during the immune response to a single type of antigen challenge, constructed phenomenologically in the macroscopic framework of a thermodynamic theory of continuum mechanics for reacting and proliferating fluid mixtures. The present contribution deals with approximate smooth solutions, called asymptotic waves, of the system of PDEs describing the introduced model, obtained using a suitable perturbative method. In particular, in the one-dimensional case, after deriving the expression of the velocity along the characteristic rays and the equation of the wave front, the transport equation for the first perturbation term of the asymptotic solution is obtained. Finally, it is shown that this transport equation can be reduced to an equation similar to Burgers equation.

  19. Definition of a minimal activation domain in human T-cell leukemia virus type I Tax.

    PubMed

    Semmes, O J; Jeang, K T

    1995-03-01

    Fourteen mutants were used to delineate a minimal activation domain in the Tax protein of human T-cell leukemia virus type I. In an assay using a Gal4-Tax (GalTx) fusion protein and a responsive promoter containing Gal4 consensus binding sites, we found that activation was "squelched" by coexpression of wild-type Tax protein in trans. When Tax mutants were tested for squelching, many competed effectively against GalTx. However, those containing changes in amino acids 289 to 322 failed to inhibit activity. In particular, three mutants that were expressed stably, with changes at amino acids 289, 296, and 320 respectively, did not squelch GalTx activity. On the other hand, mutants with individual changes at amino acid 3, 9, 29, 41, 273, and 337 efficiently inhibited GalTx function. Three other mutants failed to be stably expressed. In separate experiments, when fused alone to the DNA-binding domain of Gal4, amino acids 289 to 322 of Tax conferred trans activation ability. This fusion protein was able to activate a core promoter. These findings suggest that amino acids 289 to 322 define a region that contacts an essential transcription factor and that this region is a modular activation domain. PMID:7853523

  20. A Subset of Protective γ9δ2 T Cells Is Activated by Novel Mycobacterial Glycolipid Components

    PubMed Central

    Xia, Mei; Hesser, Danny C.; De, Prithwiraj; Sakala, Isaac G.; Spencer, Charles T.; Kirkwood, Jay S.; Abate, Getahun; Chatterjee, Delphi

    2016-01-01

    γ9δ2 T cells provide a natural bridge between innate and adaptive immunity, rapidly and potently respond to pathogen infection in mucosal tissues, and are prominently induced by both tuberculosis (TB) infection and bacillus Calmette Guérin (BCG) vaccination. Mycobacterium-expanded γ9δ2 T cells represent only a subset of the phosphoantigen {isopentenyl pyrophosphate [IPP] and (E)-4-hydroxy-3-methyl-but-2-enylpyrophosphate [HMBPP]}-responsive γ9δ2 T cells, expressing an oligoclonal set of T cell receptor (TCR) sequences which more efficiently recognize and inhibit intracellular Mycobacterium tuberculosis infection. Based on this premise, we have been searching for M. tuberculosis antigens specifically capable of inducing a unique subset of mycobacterium-protective γ9δ2 T cells. Our screening strategy includes the identification of M. tuberculosis fractions that expand γ9δ2 T cells with biological functions capable of inhibiting intracellular mycobacterial replication. Chemical treatments of M. tuberculosis whole-cell lysates (MtbWL) ruled out protein, nucleic acid, and nonpolar lipids as the M. tuberculosis antigens inducing protective γ9δ2 T cells. Mild acid hydrolysis, which transforms complex carbohydrate to monomeric residues, abrogated the specific activity of M. tuberculosis whole-cell lysates, suggesting that a polysaccharide was required for biological activity. Extraction of MtbWL with chloroform-methanol-water (10:10:3) resulted in a polar lipid fraction with highly enriched specific activity; this activity was further enriched by silica gel chromatography. A combination of mass spectrometry and nuclear magnetic resonance analysis of bioactive fractions indicated that 6-O-methylglucose-containing lipopolysaccharides (mGLP) are predominant components present in this active fraction. These results have important implications for the development of new immunotherapeutic approaches for prevention and treatment of TB. PMID:27297390

  1. A Subset of Protective γ9δ2 T Cells Is Activated by Novel Mycobacterial Glycolipid Components.

    PubMed

    Xia, Mei; Hesser, Danny C; De, Prithwiraj; Sakala, Isaac G; Spencer, Charles T; Kirkwood, Jay S; Abate, Getahun; Chatterjee, Delphi; Dobos, Karen M; Hoft, Daniel F

    2016-09-01

    γ9δ2 T cells provide a natural bridge between innate and adaptive immunity, rapidly and potently respond to pathogen infection in mucosal tissues, and are prominently induced by both tuberculosis (TB) infection and bacillus Calmette Guérin (BCG) vaccination. Mycobacterium-expanded γ9δ2 T cells represent only a subset of the phosphoantigen {isopentenyl pyrophosphate [IPP] and (E)-4-hydroxy-3-methyl-but-2-enylpyrophosphate [HMBPP]}-responsive γ9δ2 T cells, expressing an oligoclonal set of T cell receptor (TCR) sequences which more efficiently recognize and inhibit intracellular Mycobacterium tuberculosis infection. Based on this premise, we have been searching for M. tuberculosis antigens specifically capable of inducing a unique subset of mycobacterium-protective γ9δ2 T cells. Our screening strategy includes the identification of M. tuberculosis fractions that expand γ9δ2 T cells with biological functions capable of inhibiting intracellular mycobacterial replication. Chemical treatments of M. tuberculosis whole-cell lysates (MtbWL) ruled out protein, nucleic acid, and nonpolar lipids as the M. tuberculosis antigens inducing protective γ9δ2 T cells. Mild acid hydrolysis, which transforms complex carbohydrate to monomeric residues, abrogated the specific activity of M. tuberculosis whole-cell lysates, suggesting that a polysaccharide was required for biological activity. Extraction of MtbWL with chloroform-methanol-water (10:10:3) resulted in a polar lipid fraction with highly enriched specific activity; this activity was further enriched by silica gel chromatography. A combination of mass spectrometry and nuclear magnetic resonance analysis of bioactive fractions indicated that 6-O-methylglucose-containing lipopolysaccharides (mGLP) are predominant components present in this active fraction. These results have important implications for the development of new immunotherapeutic approaches for prevention and treatment of TB. PMID:27297390

  2. Curcumin induces apoptotic cell death of activated human CD4+ T cells via increasing endoplasmic reticulum stress and mitochondrial dysfunction.

    PubMed

    Zheng, Min; Zhang, Qinggao; Joe, Yeonsoo; Lee, Bong Hee; Ryu, Do Gon; Kwon, Kang Beom; Ryter, Stefan W; Chung, Hun Taeg

    2013-03-01

    Curcumin, a natural polyphenolic antioxidant compound, exerts well-known anti-inflammatory and immunomodulatory effects, the latter which can influence the activation of immune cells including T cells. Furthermore, curcumin can inhibit the expression of pro-inflammatory cytokines and chemokines, through suppression of the NF-κB signaling pathway. The beneficial effects of curcumin in diseases such as arthritis, allergy, asthma, atherosclerosis, diabetes and cancer may be due to its immunomodulatory properties. We studied the potential of curcumin to modulate CD4+ T cells-mediated autoimmune disease, by examining the effects of this compound on human CD4+ lymphocyte activation. Stimulation of human T cells with PHA or CD3/CD28 induced IL-2 mRNA expression and activated the endoplasmic reticulum (ER) stress response. The treatment of T cells with curcumin induced the unfolded protein response (UPR) signaling pathway, initiated by the phosphorylation of PERK and IRE1. Furthermore, curcumin increased the expression of the ER stress associated transcriptional factors XBP-1, cleaved p50ATF6α and C/EBP homologous protein (CHOP) in human CD4+ and Jurkat T cells. In PHA-activated T cells, curcumin further enhanced PHA-induced CHOP expression and reduced the expression of the anti-apoptotic protein Bcl-2. Finally, curcumin treatment induced apoptotic cell death in activated T cells via eliciting an excessive ER stress response, which was reversed by the ER-stress inhibitor 4-phenylbutyric acid or transfection with CHOP-specific siRNA. These results suggest that curcumin can impact both ER stress and mitochondria functional pathways, and thereby could be used as a promising therapy in the context of Th1-mediated autoimmune diseases. PMID:23415873

  3. Endothelial nitric oxide synthase regulates N-Ras activation on the Golgi complex of antigen-stimulated T cells

    PubMed Central

    Ibiza, Sales; Pérez-Rodríguez, Andrea; Ortega, Ángel; Martínez-Ruiz, Antonio; Barreiro, Olga; García-Domínguez, Carlota A.; Víctor, Víctor M.; Esplugues, Juan V.; Rojas, José M.; Sánchez-Madrid, Francisco; Serrador, Juan M.

    2008-01-01

    Ras/ERK signaling plays an important role in T cell activation and development. We recently reported that endothelial nitric oxide synthase (eNOS)-derived NO regulates T cell receptor (TCR)-dependent ERK activation by a cGMP-independent mechanism. Here, we explore the mechanisms through which eNOS exerts this regulation. We have found that eNOS-derived NO positively regulates Ras/ERK activation in T cells stimulated with antigen on antigen-presenting cells (APCs). Intracellular activation of N-, H-, and K-Ras was monitored with fluorescent probes in T cells stably transfected with eNOS-GFP or its G2A point mutant, which is defective in activity and cellular localization. Using this system, we demonstrate that eNOS selectively activates N-Ras but not K-Ras on the Golgi complex of T cells engaged with APC, even though Ras isoforms are activated in response to NO from donors. We further show that activation of N-Ras involves eNOS-dependent S-nitrosylation on Cys118, suggesting that upon TCR engagement, eNOS-derived NO directly activates N-Ras on the Golgi. Moreover, wild-type but not C118S N-Ras increased TCR-dependent apoptosis, suggesting that S-nitrosylation of Cys118 contributes to activation-induced T cell death. Our data define a signaling mechanism for the regulation of the Ras/ERK pathway based on the eNOS-dependent differential activation of N-Ras and K-Ras at specific cell compartments. PMID:18641128

  4. Studies on the haemolytic activity of circulating C1q-C3/C4 complexes.

    PubMed

    Wouters, Diana; Brouwer, Mieke C; Daha, Mohamed R; Hack, C Erik

    2008-04-01

    During classical complement pathway activation, the internal thio-ester of both C3 and C4 becomes exposed which enables C3 and C4 to bind covalently to nearby molecules. Recently, we described that C3 and C4 bind to C1q, the recognition molecule of the classical pathway, upon activation of this pathway. Covalently linked complexes between C1q and activated C4 (C1q-C4 complexes) are specific markers for classical complement pathway activation. In the present study we further investigated the molecular characteristics of complexes between C1q and activated C3 or C4 that occur in vivo. In human serum only complexes of C1q with C3d or C4d fragments were detected but not those with the larger C3b/bi or C4b/bi fragments. We identified that C1q-C4 complexes circulate as part of the intact C1 complex instead of as free C1q. Finally, we investigated whether deposited C3d or C4d affect C1 haemolytic activity. We observed that both C1q-C3 and C1q-C4 complexes are significantly (P<0.05) less active in a C1q-haemolytic assay than non-complexed C1q. Thus, the dominant types of C1q complexes that circulate in vivo are C1q-C3d and C1q-C4d complexes. These complexes are still able to interact with C1r and C1s to form a C1 complex, but seem to have a reduced activity as compared to C1q not carrying C3- or C4-fragments.

  5. Lack of activation of C1, despite circulating immune complexes detected by two C1q methods, in patients with rheumatoid arthritis.

    PubMed

    Hack, C E; Eerenberg-Belmer, A J; Lim, U G; Haverman, J; Aalberse, R C

    1984-01-01

    The activation of C1 by circulating immune complexes in patients with rheumatoid arthritis was investigated. C1rC1s(C1-In)2 complexes in EDTA-plasma, reflecting C1 activation in vivo, were slightly raised in 35 of 57 patients with rheumatoid arthritis, though most patients had elevated levels of circulating immune complexes as measured with either the 125I-C1q binding test or the C1q solid phase assay. The activation of C1 by circulating immune complexes in vitro was investigated by measuring the generation of C1rC1s(C1-In)2 complexes during 60 minutes at 37 degrees C in diluted recalcified EDTA-plasma. In 16 of the 57 patients, a slightly increased C1 activation in vitro was observed. These patients tended to have high levels of circulating immune complexes. However, the majority of the patients with high levels of circulating immune complexes showed a normal C1 activation in vitro. Therefore, it was concluded that measurement of circulating immune complexes by either of the two C1q methods in patients with rheumatoid arthritis does not imply that these circulating immune complexes are able to activate C1.

  6. Impaired T cell protein kinase C delta activation decreases ERK pathway signaling in idiopathic and hydralazine-induced lupus.

    PubMed

    Gorelik, Gabriela; Fang, Jing Yuan; Wu, Ailing; Sawalha, Amr H; Richardson, Bruce

    2007-10-15

    T cells from patients with lupus or treated with the lupus-inducing drug hydralazine have defective ERK phosphorylation. The reason for the impaired signal transduction is unknown but important to elucidate, because decreased T cell ERK pathway signaling causes a lupus-like disease in animal models by decreasing DNA methyltransferase expression, leading to DNA hypomethylation and overexpression of methylation-sensitive genes with subsequent autoreactivity and autoimmunity. We therefore analyzed the PMA stimulated ERK pathway phosphorylation cascade in CD4(+) T cells from patients with lupus and in hydralazine-treated cells. The defect in these cells localized to protein kinase C (PKC)delta. Pharmacologic inhibition of PKCdelta or transfection with a dominant negative PKCdelta mutant caused demethylation of the TNFSF7 (CD70) promoter and CD70 overexpression similar to lupus and hydralazine-treated T cells. These results suggest that defective T cell PKCdelta activation may contribute to the development of idiopathic and hydralazine-induced lupus through effects on T cell DNA methylation.

  7. Determination of the Absolute Number of Cytokine mRNA Molecules within Individual Activated Human T Cells

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Marshall, Gwen; Hockett, Richard D.; Bucy, R. Pat; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A primary function of activated T cells is the expression and subsequent secretion of cytokines, which orchestrate the differentiation of other lymphocytes, modulate antigen presenting cell activity, and alter vascular endothelium to mediate an immune response. Since many features of immune regulation probably result from modest alterations of endogenous rates of multiple interacting processes, quantitative analysis of the frequency and specific activity of individual T cells is critically important. Using a coordinated set of quantitative methods, the absolute number of molecules of several key cytokine mRNA species in individual T cells has been determined. The frequency of human blood T cells activated in vitro by mitogens and recall protein antigens was determined by intracellular cytokine protein staining, in situ hybridization for cytokine mRNA, and by limiting dilution analysis for cytokine mRNA+ cells. The absolute number of mRNA molecules was simultaneously determined in both homogenates of the entire population of cells and in individual cells obtained by limiting dilution, using a quantitative, competitive RT-PCR assay. The absolute numbers of mRNA molecules in a population of cells divided by the frequency of individual positive cells, yielded essentially the same number of mRNA molecules per cell as direct analysis of individual cells by limiting dilution analysis. Mean numbers of mRNA per positive cell from both mitogen and antigen activated T cells, using these stimulation conditions, were 6000 for IL-2, 6300 for IFN-gamma, and 1600 for IL-4.

  8. Active immunotherapy facilitates Aβ plaque removal following through microglial activation without obvious T cells infiltrating the CNS.

    PubMed

    Sha, Sha; Xing, Xiao-Na; Cao, Yun-Peng

    2014-09-15

    Immunization of AD mouse models with Aβ reduced Aβ deposits and improved memory and learning deficits, but some clinical trials of immunization with Aβ were halted due to brain inflammation which was presumably induced by a T cell-mediated autoimmune response. We have developed a "possibly safer" vaccine. Our results demonstrate that pcDNA3.1 vector encoding ten repeats of Aβ3-10 fragments elicited high titers of antibodies which reacted well with not only monomeric but also oligomeric and fibrillar forms of Aβ42 peptide. Induced antibodies strongly reacted with amyloid plaques in the brain, demonstrating functional activity of the antibodies. Immunohistochemical and immunofluorescence showed there was significantly less plaque deposition accomplied with less microglia activation as detected both in the frontal cortex and hippocampus. These data suggested that microglial activation is necessary for efficient removal of compact amyloid deposits with immunotherapy. No obvious inflammation T cell and Prussian blue positive cell was found indicated that inflammation T cell infiltration and microhemmorage can be avoided or at least reduced to the minimum level. PMID:25087756

  9. T Cells in Fish

    PubMed Central

    Nakanishi, Teruyuki; Shibasaki, Yasuhiro; Matsuura, Yuta

    2015-01-01

    Cartilaginous and bony fish are the most primitive vertebrates with a thymus, and possess T cells equivalent to those in mammals. There are a number of studies in fish demonstrating that the thymus is the essential organ for development of T lymphocytes from early thymocyte progenitors to functionally competent T cells. A high number of T cells in the intestine and gills has been reported in several fish species. Involvement of CD4+ and CD8α+ T cells in allograft rejection and graft-versus-host reaction (GVHR) has been demonstrated using monoclonal antibodies. Conservation of CD4+ helper T cell functions among teleost fishes has been suggested in a number studies employing mixed leukocyte culture (MLC) and hapten/carrier effect. Alloantigen- and virus-specific cytotoxicity has also been demonstrated in ginbuna and rainbow trout. Furthermore, the important role of cell-mediated immunity rather than humoral immunity has been reported in the protection against intracellular bacterial infection. Recently, the direct antibacterial activity of CD8α+, CD4+ T-cells and sIgM+ cells in fish has been reported. In this review, we summarize the recent progress in T cell research focusing on the tissue distribution and function of fish T cells. PMID:26426066

  10. Coordinated integrin activation by actin-dependent force during T-cell migration

    PubMed Central

    Nordenfelt, Pontus; Elliott, Hunter L.; Springer, Timothy A.

    2016-01-01

    For a cell to move forward it must convert chemical energy into mechanical propulsion. Force produced by actin polymerization can generate traction across the plasma membrane by transmission through integrins to their ligands. However, the role this force plays in integrin activation is unknown. Here we show that integrin activity and cytoskeletal dynamics are reciprocally linked, where actin-dependent force itself appears to regulate integrin activity. We generated fluorescent tension-sensing constructs of integrin αLβ2 (LFA-1) to visualize intramolecular tension during cell migration. Using quantitative imaging of migrating T cells, we correlate tension in the αL or β2 subunit with cell and actin dynamics. We find that actin engagement produces tension within the β2 subunit to induce and stabilize an active integrin conformational state and that this requires intact talin and kindlin motifs. This supports a general mechanism where localized actin polymerization can coordinate activation of the complex machinery required for cell migration. PMID:27721490

  11. Dissection of signals controlling T cell function and activation: H7, an inhibitor of protein kinase C, blocks induction of primary T cell proliferation by suppressing interleukin (IL)2 receptor expression without affecting IL2 production.

    PubMed

    Hengel, H; Allig, B; Wagner, H; Heeg, K

    1991-07-01

    T cell activation induced via cross-linking of the T cell receptor (TcR) stimulates hydrolysis of phosphatidylinositol to the second messengers diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). DAG is necessary for the activation and function of protein kinase C (PKC) which is suggested to play a key role in the cascade of signal transduction when translocated from the cytosol to the cell membrane. In this report, we investigated responses of resting vs. activated Ly-2+ and L3T4+ T lymphocytes in the presence of the PKC inhibitor H7 [1-(5-isoquinolinylsulfonyl)-2-methylpiperazine]. H7 inhibited the induction of primary T cell proliferation, while interleukin 2 (IL 2) production was fully retained. The effect of the PKC inhibitor on primary T cells depended on the type of ligand interacting with the TcR: increasing doses of concanavalin A or of immobilized anti-CD3 monoclonal antibody (mAb), but not of anti-V beta 8 or of anti-TcR alpha/beta mAb, partly overcame the blockade, indicating a differential signaling compared to the former stimuli. The blockade of T cell proliferation by H7 was not due to an inhibition of PKC translocation, but occurred even 4-8 h after T cell induction and correlated with a significant reduction of IL 2 receptor (IL 2R) expression. In contrast, the mRNA levels of IL 2R and the cellular proto-oncogenes c-fos and c-myc were not affected. On activated T cells, H7 neither blocked proliferation nor IL2R expression. Consequently, H7 dissects the signal resulting in T cell proliferation from those governing the triggering of other T cell functions, i.e. IL 2 production, during primary responses of Ly-2+ or L3T4+ murine T lymphocytes.

  12. Probiotic Lactobacilli Modulate Staphylococcus aureus-Induced Activation of Conventional and Unconventional T cells and NK Cells

    PubMed Central

    Johansson, Maria A.; Björkander, Sophia; Mata Forsberg, Manuel; Qazi, Khaleda Rahman; Salvany Celades, Maria; Bittmann, Julia; Eberl, Matthias; Sverremark-Ekström, Eva

    2016-01-01

    Lactobacilli are probiotic commensal bacteria and potent modulators of immunity. When present in the gut or supplemented as probiotics, they beneficially modulate ex vivo immune responsiveness. Further, factors derived from several lactobacilli strains act immune regulatory in vitro. In contrast, Staphylococcus aureus (S. aureus) is known to induce excessive T cell activation. In this study, we aimed to investigate S. aureus-induced activation of human mucosal-associated invariant T cells (MAIT cells), γδ T cells, NK cells, as well as of conventional CD4+ and CD8+ T cells in vitro. Further, we investigated if lactobacilli-derived factors could modulate their activation. PBMC were cultured with S. aureus 161:2 cell-free supernatants (CFS), staphylococcal enterotoxin A or CD3/CD28-beads alone, or in combination with Lactobacillus rhamnosus GG-CFS or Lactobacillus reuteri DSM 17938-CFS and activation of T and NK cells was evaluated. S. aureus-CFS induced IFN-γ and CD107a expression as well as proliferation. Costimulation with lactobacilli-CFS dampened lymphocyte-activation in all cell types analyzed. Preincubation with lactobacilli-CFS was enough to reduce subsequent activation, and the absence of APC or APC-derived IL-10 did not prevent lactobacilli-mediated dampening. Finally, lactate selectively dampened activation of unconventional T cells and NK cells. In summary, we show that molecules present in the lactobacilli-CFS are able to directly dampen in vitro activation of conventional and unconventional T cells and of NK cells. This study provides novel insights on the immune-modulatory nature of probiotic lactobacilli and suggests a role for lactobacilli in the modulation of induced T and NK cell activation. PMID:27462316

  13. Probiotic Lactobacilli Modulate Staphylococcus aureus-Induced Activation of Conventional and Unconventional T cells and NK Cells.

    PubMed

    Johansson, Maria A; Björkander, Sophia; Mata Forsberg, Manuel; Qazi, Khaleda Rahman; Salvany Celades, Maria; Bittmann, Julia; Eberl, Matthias; Sverremark-Ekström, Eva

    2016-01-01

    Lactobacilli are probiotic commensal bacteria and potent modulators of immunity. When present in the gut or supplemented as probiotics, they beneficially modulate ex vivo immune responsiveness. Further, factors derived from several lactobacilli strains act immune regulatory in vitro. In contrast, Staphylococcus aureus (S. aureus) is known to induce excessive T cell activation. In this study, we aimed to investigate S. aureus-induced activation of human mucosal-associated invariant T cells (MAIT cells), γδ T cells, NK cells, as well as of conventional CD4(+) and CD8(+) T cells in vitro. Further, we investigated if lactobacilli-derived factors could modulate their activation. PBMC were cultured with S. aureus 161:2 cell-free supernatants (CFS), staphylococcal enterotoxin A or CD3/CD28-beads alone, or in combination with Lactobacillus rhamnosus GG-CFS or Lactobacillus reuteri DSM 17938-CFS and activation of T and NK cells was evaluated. S. aureus-CFS induced IFN-γ and CD107a expression as well as proliferation. Costimulation with lactobacilli-CFS dampened lymphocyte-activation in all cell types analyzed. Preincubation with lactobacilli-CFS was enough to reduce subsequent activation, and the absence of APC or APC-derived IL-10 did not prevent lactobacilli-mediated dampening. Finally, lactate selectively dampened activation of unconventional T cells and NK cells. In summary, we show that molecules present in the lactobacilli-CFS are able to directly dampen in vitro activation of conventional and unconventional T cells and of NK cells. This study provides novel insights on the immune-modulatory nature of probiotic lactobacilli and suggests a role for lactobacilli in the modulation of induced T and NK cell activation.

  14. Probiotic Lactobacilli Modulate Staphylococcus aureus-Induced Activation of Conventional and Unconventional T cells and NK Cells.

    PubMed

    Johansson, Maria A; Björkander, Sophia; Mata Forsberg, Manuel; Qazi, Khaleda Rahman; Salvany Celades, Maria; Bittmann, Julia; Eberl, Matthias; Sverremark-Ekström, Eva

    2016-01-01

    Lactobacilli are probiotic commensal bacteria and potent modulators of immunity. When present in the gut or supplemented as probiotics, they beneficially modulate ex vivo immune responsiveness. Further, factors derived from several lactobacilli strains act immune regulatory in vitro. In contrast, Staphylococcus aureus (S. aureus) is known to induce excessive T cell activation. In this study, we aimed to investigate S. aureus-induced activation of human mucosal-associated invariant T cells (MAIT cells), γδ T cells, NK cells, as well as of conventional CD4(+) and CD8(+) T cells in vitro. Further, we investigated if lactobacilli-derived factors could modulate their activation. PBMC were cultured with S. aureus 161:2 cell-free supernatants (CFS), staphylococcal enterotoxin A or CD3/CD28-beads alone, or in combination with Lactobacillus rhamnosus GG-CFS or Lactobacillus reuteri DSM 17938-CFS and activation of T and NK cells was evaluated. S. aureus-CFS induced IFN-γ and CD107a expression as well as proliferation. Costimulation with lactobacilli-CFS dampened lymphocyte-activation in all cell types analyzed. Preincubation with lactobacilli-CFS was enough to reduce subsequent activation, and the absence of APC or APC-derived IL-10 did not prevent lactobacilli-mediated dampening. Finally, lactate selectively dampened activation of unconventional T cells and NK cells. In summary, we show that molecules present in the lactobacilli-CFS are able to directly dampen in vitro activation of conventional and unconventional T cells and of NK cells. This study provides novel insights on the immune-modulatory nature of probiotic lactobacilli and suggests a role for lactobacilli in the modulation of induced T and NK cell activation. PMID:27462316

  15. C3d adjuvant effects are mediated through the activation of C3d-specific autoreactive T cells.

    PubMed

    De Groot, Anne S; Ross, Ted M; Levitz, Lauren; Messitt, Timothy J; Tassone, Ryan; Boyle, Christine M; Vincelli, Amber J; Moise, Leonard; Martin, William; Knopf, Paul M

    2015-02-01

    Complement fragment C3d covalently attached to antigens enhances immune responses, particularly for antigens lacking T-cell epitopes. Enhancement has been attributed to receptor cross-linking between complement receptor CR2 (CD21) and polysaccharide antigen to surface IgM on naïve B cells. Paradoxically, C3d has still been shown to increase immune responses in CD21 knockout mice, suggesting that an auxiliary activation pathway exists. In prior studies, we demonstrated the CD21-independent C3d adjuvant effect might be due to T-cell recognition of C3d T-helper epitopes processed and presented by major histocompatibility complex class II on the B-cell surface. C3d peptide sequences containing concentrated clusters of putative human C3 T-cell epitopes were identified using the epitope-mapping algorithm, EpiMatrix. These peptide sequences were synthesized and shown in vitro to bind multiple human leukocyte antigen (HLA)-DR alleles with high affinity, and induce interferon-γ responses in healthy donor peripheral blood mononuclear cells. In the present studies, we establish further correlations between HLA binding and HLA-specific lymphocyte reactions with select epitope clusters. In addition, we show that the T-cell phenotype of C3d-specific reactive T cells is CD4(+)CD45RO(+) memory T cells. Finally, mutation of a single T-cell epitope residing within the P28 peptide segment of C3d resulted in significantly diminished adjuvant activity in BALB/c mice. Collectively, these studies support the hypothesis that the paradoxical enhancement of immune responses by C3d in the absence of CD21 is due to internalization and processing of C3d into peptides that activate autoreactive CD4(+) T-helper cells in the context of HLA class II.

  16. C3d adjuvant effects are mediated through the activation of C3d-specific autoreactive T cells.

    PubMed

    De Groot, Anne S; Ross, Ted M; Levitz, Lauren; Messitt, Timothy J; Tassone, Ryan; Boyle, Christine M; Vincelli, Amber J; Moise, Leonard; Martin, William; Knopf, Paul M

    2015-02-01

    Complement fragment C3d covalently attached to antigens enhances immune responses, particularly for antigens lacking T-cell epitopes. Enhancement has been attributed to receptor cross-linking between complement receptor CR2 (CD21) and polysaccharide antigen to surface IgM on naïve B cells. Paradoxically, C3d has still been shown to increase immune responses in CD21 knockout mice, suggesting that an auxiliary activation pathway exists. In prior studies, we demonstrated the CD21-independent C3d adjuvant effect might be due to T-cell recognition of C3d T-helper epitopes processed and presented by major histocompatibility complex class II on the B-cell surface. C3d peptide sequences containing concentrated clusters of putative human C3 T-cell epitopes were identified using the epitope-mapping algorithm, EpiMatrix. These peptide sequences were synthesized and shown in vitro to bind multiple human leukocyte antigen (HLA)-DR alleles with high affinity, and induce interferon-γ responses in healthy donor peripheral blood mononuclear cells. In the present studies, we establish further correlations between HLA binding and HLA-specific lymphocyte reactions with select epitope clusters. In addition, we show that the T-cell phenotype of C3d-specific reactive T cells is CD4(+)CD45RO(+) memory T cells. Finally, mutation of a single T-cell epitope residing within the P28 peptide segment of C3d resulted in significantly diminished adjuvant activity in BALB/c mice. Collectively, these studies support the hypothesis that the paradoxical enhancement of immune responses by C3d in the absence of CD21 is due to internalization and processing of C3d into peptides that activate autoreactive CD4(+) T-helper cells in the context of HLA class II. PMID:25385064

  17. Neisseria gonorrhoeae enhances HIV-1 infection of primary resting CD4+ T cells through TLR2 activation.

    PubMed

    Ding, Jian; Rapista, Aprille; Teleshova, Natalia; Mosoyan, Goar; Jarvis, Gary A; Klotman, Mary E; Chang, Theresa L

    2010-03-15

    Sexually transmitted infections increase the likelihood of HIV-1 transmission. We investigated the effect of Neisseria gonorrheae (gonococcus [GC]) exposure on HIV replication in primary resting CD4(+) T cells, a major HIV target cell during the early stage of sexual transmission of HIV. GC and TLR2 agonists, such as peptidylglycan (PGN), Pam(3)CSK(4), and Pam(3)C-Lip, a GC-derived synthetic lipopeptide, but not TLR4 agonists including LPS or GC lipooligosaccharide enhanced HIV-1 infection of primary resting CD4(+) T cells after viral entry. Pretreatment of CD4(+) cells with PGN also promoted HIV infection. Anti-TLR2 Abs abolished the HIV enhancing effect of GC and Pam(3)C-Lip, indicating that GC-mediated enhancement of HIV infection of resting CD4(+) T cells was through TLR2. IL-2 was required for TLR2-mediated HIV enhancement. PGN and GC induced cell surface expression of T cell activation markers and HIV coreceptors, CCR5 and CXCR4. The maximal postentry HIV enhancing effect was achieved when PGN was added immediately after viral exposure. Kinetic studies and analysis of HIV DNA products indicated that GC exposure and TLR2 activation enhanced HIV infection at the step of nuclear import. We conclude that GC enhanced HIV infection of primary resting CD4(+) T cells through TLR2 activation, which both increased the susceptibility of primary CD4(+) T cells to HIV infection as well as enhanced HIV-infected CD4(+) T cells at the early stage of HIV life cycle after entry. This study provides a molecular mechanism by which nonulcerative sexually transmitted infections mediate enhancement of HIV infection and has implication for HIV prevention and therapeutics. PMID:20147631

  18. Enhancing of anti-viral activity against HIV-1 by stimulation of CD8+ T cells with thymic peptides

    PubMed Central

    MÜLLER, H; MAYER, G; BEHNKE, B; HEIMÜLLER, E; HAMSCHER, G; IMMLER, D; SIETHOFF, C; MEYER, HE; SCHREIBER, M

    1999-01-01

    HIV-1 can be neutralized by soluble factors produced and secreted by activated CD8+ T cells. Production of such anti-viral CD8 factors (including chemokines) can be induced with IL-2 or phytohaemagglutinin (PHA). In addition to PHA or IL-2, we have co-stimulated CD8+ T cells with PHA/IL-2 and a mixture of thymic peptides (TP) of molecular weights below 10 kD. For the activation, CD8+ T cells were purified from peripheral blood mononuclear cells of HIV-1− individuals and any resultant anti-viral activity was monitored using an HIV-1 neutralization assay. Using HIV-1 isolates highly resistant to chemokine inhibition we detected significantly higher levels of HIV-1 neutralizing activity in CD8+ T cell culture supernatants which had been co-activated with TP. When the TP-induced anti-viral activity was monitored, neutralization of both non-syncytia-inducing (NSI) and syncytia-inducing (SI) patient isolates was enhanced by 38% (NSI, PHA +/− TP), 66% (SI, PHA +/− TP), 28% (NSI, IL-2 +/− TP), and 57% (SI, IL-2 +/− TP) compared with the anti-viral activity present in supernatants from CD8+ T cell cultures stimulated only with PHA or IL-2. Peptide sequence analysis of purified TP showed that the TP mixture predominantly contains peptides with homology to human histone and collagen sequences. Our data demonstrate that CD8+ T cells are additionally activated by a mixture of TP. In this way, the production of HIV-1 neutralizing CD8 factors can be enhanced. PMID:10403919

  19. Microglia activity modulated by T cell Ig and mucin domain protein 3 (Tim-3).

    PubMed

    Wang, Hong-wei; Zhu, Xin-li; Qin, Li-ming; Qian, Hai-jun; Wang, Yiner

    2015-01-01

    Microglia are the main innate immune cells in the central nervous system that are actively involved in maintaining brain homeostasis and diseases. T cell Ig and mucin domain protein 3 (Tim-3) plays critical roles in both the adaptive and the innate immune system and is an emerging therapeutic target for treatment of various disorders. In the brain Tim-3 is specifically expressed on microglia but its functional role is unclear. Here, we showed that Tim-3 was up-regulated on microglia by ATP or LPS stimulation. Tim-3 activation with antibodies increased microglia expression of TGF-β, TNF-α and IL-1β. Blocking of Tim-3 with antibodies decreased the microglial phagocytosis of apoptotic neurons. Tim-3 blocking alleviated the detrimental effect of microglia on neurons and promoted NG2 cell differentiation in co-cultures. Finally, MAPKs namely ERK1/2 and JNK proteins were phosphorylated upon Tim-3 activation in microglia. Data indicated that Tim-3 modulates microglia activity and regulates the interaction of microglia-neural cells.

  20. Synthetic glycolipid activators of natural killer T cells as immunotherapeutic agents

    PubMed Central

    Carreño, Leandro J; Saavedra-Ávila, Noemí A; Porcelli, Steven A

    2016-01-01

    Certain types of glycolipids have been found to have remarkable immunomodulatory properties as a result of their ability to activate specific T lymphocyte populations with an extremely wide range of immune effector properties. The most extensively studied glycolipid reactive T cells are known as invariant natural killer T (iNKT) cells. The antigen receptors of these cells specifically recognize certain glycolipids, most notably glycosphingolipids with α-anomeric monosaccharides, presented by the major histocompatibility complex class I-like molecule CD1d. Once activated, iNKT cells can secrete a very diverse array of pro- and anti-inflammatory cytokines to modulate innate and adaptive immune responses. Thus, glycolipid-mediated activation of iNKT cells has been explored for immunotherapy in a variety of disease states, including cancer and a range of infections. In this review, we discuss the design of synthetic glycolipid activators for iNKT cells, their impact on adaptive immune responses and their use to modulate iNKT cell responses to improve immunity against infections and cancer. Current challenges in translating results from preclinical animal studies to humans are also discussed. PMID:27195112

  1. The chemokine SLC is expressed in T cell areas of lymph nodes and mucosal lymphoid tissues and attracts activated T cells via CCR7.

    PubMed

    Willimann, K; Legler, D F; Loetscher, M; Roos, R S; Delgado, M B; Clark-Lewis, I; Baggiolini, M; Moser, B

    1998-06-01

    Secondary lymphoid-tissue chemokine, SLC, also known as exodus-2 and 6Ckine, is a novel CC chemokine with selectivity for T lymphocytes and preferential expression in lymphoid tissues. We have studied its production, receptor usage and biological activities. High levels of SLC mRNA were detected in lymph nodes, the gastrointestinal tract and several gland tissues, but no expression was found by Northern blot analysis in freshly isolated or stimulated blood monocytes and lymphocytes, or neutrophils and eosinophils. In situ hybridization revealed constitutive expression of SLC in the T cell areas and the marginal zone of follicles in lymph nodes and the mucosa-associated lymphoid tissue, but not in B cell areas or sinuses. Comparison with immunocytochemical staining showed similarity between the in situ expression of SLC and the distribution of interdigitating dendritic cells but not with sinus-lining dendritic cells, macrophages or T lymphocytes. SLC induced chemotaxis of T lymphocytes and its activity increased considerably when the cells were conditioned with IL-2 or phytohemagglutinin (PHA). Under optimal conditions SLC had unusually high efficacy and induced the migration of up to 50 % of input T lymphocytes. SLC also induced Ca2+ mobilization in these cells. Similar responses were obtained with EBI1 ligand chemokine (ELC), and sequential stimulation with both chemokines led to cross-desensitization, suggesting that SLC acts via the ELC receptor, CCR7. This was confirmed using murine pre-B cells stably transfected with CCR7 which bound SLC with high affinity and showed chemotaxis and Ca2+ mobilization in response to both SLC and ELC. In T lymphocytes PHA and IL-2, which enhanced chemotactic responsiveness, also markedly enhanced CCR7 expression. In contrast to all known chemokine receptors, up-regulation of CCR7 by IL-2 was transient. A maximum was reached in 2-3 days and expression returned to initial levels within 8-10 days. The present study shows that SLC is

  2. Specific T-cell tolerance may reflect selective activation of lymphokine synthesis.

    PubMed Central

    Vidard, L; Colarusso, L J; Benacerraf, B

    1995-01-01

    Selective T-cell unresponsiveness, as measured by interleukin 2 (IL-2) synthesis upon challenge with antigen, was induced in SJL mice by ovalbumin (OVA) in incomplete or complete Freund's adjuvant administered i.p. or s.c. Ten days later, the mice were given booster injections of 100 micrograms of OVA/complete Freund's adjuvant. On day 20, lymph node and spleen cells were challenged in vitro with serial dilutions of OVA. There was an antigen-specific dose-dependent down regulation of IL-2 production and T-cell proliferation in lymph node T cells. Concomitantly, 100 micrograms of OVA up regulated IL-4 and, to a lesser extent, interferon gamma (IFN-gamma) production, particularly by spleen T cells. Altogether, these data indicate that the drop of IL-2 production and T-cell proliferation, as well as the up regulation of IL-4 and IFN-gamma production, are complex manifestations of an evolving T-cell response. The maturation of the T-cell response leads to the production of different patterns of lymphokines, which may be significantly affected, as desired, by dosage, timing, and route of immunization, as well as by the choice of adjuvants. PMID:7892258

  3. Invariant chain as a vehicle to load antigenic peptides on human MHC class I for cytotoxic T-cell activation.

    PubMed

    Wälchli, Sébastien; Kumari, Shraddha; Fallang, Lars-Egil; Sand, Kine M K; Yang, Weiwen; Landsverk, Ole J B; Bakke, Oddmund; Olweus, Johanna; Gregers, Tone F

    2014-03-01

    Protective T-cell responses depend on efficient presentation of antigen (Ag) in the context of major histocompatibility complex class I (MHCI) and class II (MHCII) molecules. Invariant chain (Ii) serves as a chaperone for MHCII molecules and mediates trafficking to the endosomal pathway. The genetic exchange of the class II-associated Ii peptide (CLIP) with antigenic peptides has proven efficient for loading of MHCII and activation of specific CD4(+) T cells. Here, we investigated if Ii could similarly activate human CD8(+) T cells when used as a vehicle for cytotoxic T-cell (CTL) epitopes. The results show that wild type Ii, and Ii in which CLIP was replaced by known CTL epitopes from the cancer targets MART-1 or CD20, coprecipitated with HLA-A*02:01 and mediated colocalization in the endosomal pathway. Furthermore, HLA-A*02:01-positive cells expressing CLIP-replaced Ii efficiently activated Ag-specific CD8(+) T cells in a TAP- and proteasome-independent manner. Finally, dendritic cells transfected with mRNA encoding IiMART-1 or IiCD20 primed naïve CD8(+) T cells. The results show that Ii carrying antigenic peptides in the CLIP region can promote efficient presentation of the epitopes to CTLs independently of the classical MHCI peptide loading machinery, facilitating novel vaccination strategies against cancer.

  4. CD107a as a marker of activation in chicken cytotoxic T cells.

    PubMed

    Wattrang, Eva; Dalgaard, Tina S; Norup, Liselotte R; Kjærup, Rikke B; Lundén, Anna; Juul-Madsen, Helle R

    2015-04-01

    The study aimed to evaluate cell surface mobilisation of CD107a as a general activation marker on chicken cytotoxic T cells (CTL). Experiments comprised establishment of an in vitro model for activation-induced CD107a mobilisation and design of a marker panel for the detection of CD107a mobilisation on chicken CTL isolated from different tissues. Moreover, CD107a mobilisation was analysed on CTL isolated from airways of infectious bronchitis virus (IBV)-infected birds direct ex vivo and upon in vitro stimulation. Results showed that phorbol 12-myristate 13-acetate (PMA) in combination with ionomycin was a consistent inducer of CD107a cell surface mobilisation on chicken CTL in a 4h cell culture model. In chickens experimentally infected with IBV, higher frequencies of CTL isolated from respiratory tissues were positive for CD107a on the cell surface compared to those from uninfected control chickens indicating in vivo activation. Moreover, upon in vitro PMA+ ionomycin stimulation, higher proportions of CTL isolated from the airways of IBV-infected chickens showed CD107a mobilisation compared to those from uninfected control chickens. Monitoring of CD107a cell surface mobilisation may thus be a useful tool for studies of chicken CTL cytolytic potential both in vivo and in vitro.

  5. Functional analysis of the CD4(+) T-cell response to Epstein-Barr virus: T-cell-mediated activation of resting B cells and induction of viral BZLF1 expression.

    PubMed

    Fu, Z; Cannon, M J

    2000-07-01

    In contrast to the major role played by Epstein-Barr virus (EBV)-specific CD8(+) cytotoxic T-cell responses in immunosurveillance, recent studies have offered the apparently paradoxical suggestion that development of EBV-driven human B-cell lymphoproliferative disorders and tumors in SCID/hu mice is dependent on the presence of T cells, in particular CD4(+) T cells. This study presents a functional analysis of the CD4(+) T-cell response to EBV and shows that while CD4(+) T cells may be cytotoxic, they also express Th2 cytokines and CD40 ligand (gp39) and possess B-cell helper function. We show that EBV-specific CD4(+) T cells can provide non-HLA-restricted help for activation of resting B cells via a gp39-CD40-dependent pathway and are able to induce expression of BZLF1, a viral lytic cycle transactivator in latently infected resting B cells, ultimately resulting in rapid outgrowth of transformed B-cell colonies. These results support the proposal that CD4(+) T cells may play a key role in reactivation of latent EBV infection and may thus contribute to the pathogenesis of EBV-driven lymphoproliferative disorders.

  6. Turned on by danger: activation of CD1d-restricted invariant natural killer T cells.

    PubMed

    Lawson, Victoria

    2012-09-01

    CD1d-restricted invariant natural killer T (iNKT) cells bear characteristics of innate and adaptive lymphocytes, which allow them to bridge the two halves of the immune response and play roles in many disease settings. Recent work has characterized precisely how their activation is initiated and regulated. Novel antigens from important pathogens have been identified, as has an abundant self-antigen, β-glucopyranosylcaramide, capable of mediating an iNKT-cell response. Studies of the iNKT T-cell receptor (TCR)-antigen-CD1d complex show how docking between CD1d-antigen and iNKT TCR is highly conserved, and how small sequence differences in the TCR establish intrinsic variation in iNKT TCR affinity. The sequence of the TCR CDR3β loop determines iNKT TCR affinity for ligand-CD1d, independent of ligand identity. CD1d ligands can promote T helper type 1 (Th1) or Th2 biased cytokine responses, depending on the composition of their lipid tails. Ligands loaded into CD1d on the cell surface promote Th2 responses, whereas ligands with long hydrophobic tails are loaded endosomally and promote Th1 responses. This information is informing the design of synthetic iNKT-cell antigens. The iNKT cells may be activated by exogenous antigen, or by a combination of dendritic cell-derived interleukin-12 and iNKT TCR-self-antigen-CD1d engagement. The iNKT-cell activation is further modulated by recent foreign or self-antigen encounter. Activation of dendritic cells through pattern recognition receptors alters their antigen presentation and cytokine production, strongly influencing iNKT-cell activation. In a range of bacterial infections, dendritic cell-dependent innate activation of iNKT cells through interleukin-12 is the dominant influence on their activity.

  7. GRB2 Nucleates T Cell Receptor-Mediated LAT Clusters That Control PLC-γ1 Activation and Cytokine Production.

    PubMed

    Bilal, Mahmood Yousif; Houtman, Jon C D

    2015-01-01

    GRB2 is a ubiquitously expressed adaptor protein required for signaling downstream of multiple receptors. To address the role of GRB2 in receptor-mediated signaling, the expression of GRB2 was suppressed in human CD4+ T cells and its role downstream of the T cell receptor (TCR) was examined. Interestingly, GRB2 deficient T cells had enhanced signaling from complexes containing the TCR. However, GRB2 deficient T cells had substantially reduced production of IL-2 and IFN-γ. This defect was attributed to diminished formation of linker for activation of T cells (LAT) signaling clusters, which resulted in reduced MAP kinase activation, calcium flux, and PLC-γ1 recruitment to LAT signaling clusters. Add back of wild-type GRB2, but not a novel N-terminal SH3 domain mutant, rescued LAT microcluster formation, calcium mobilization, and cytokine release, providing the first direct evidence that GRB2, and its ability to bind to SH3 domain ligands, is required for establishing LAT microclusters. Our data demonstrate that the ability of GRB2 to facilitate protein clusters is equally important in regulating TCR-mediated functions as its capacity to recruit effector proteins. This highlights that GRB2 regulates signaling downstream of adaptors and receptors by both recruiting effector proteins and regulating the formation of signaling complexes.

  8. Aberrant TAL1 activation is mediated by an interchromosomal interaction in human T-cell acute lymphoblastic leukemia.

    PubMed

    Patel, B; Kang, Y; Cui, K; Litt, M; Riberio, M S J; Deng, C; Salz, T; Casada, S; Fu, X; Qiu, Y; Zhao, K; Huang, S

    2014-02-01

    Long-range chromatin interactions control metazoan gene transcription. However, the involvement of intra- and interchromosomal interactions in development and oncogenesis remains unclear. TAL1/SCL is a critical transcription factor required for the development of all hematopoietic lineages; yet, aberrant TAL1 transcription often occurs in T-cell acute lymphoblastic leukemia (T-ALL). Here, we report that oncogenic TAL1 expression is regulated by different intra- and interchromosomal loops in normal hematopoietic and leukemic cells, respectively. These intra- and interchromosomal loops alter the cell-type-specific enhancers that interact with the TAL1 promoter. We show that human SET1 (hSET1)-mediated H3K4 methylations promote a long-range chromatin loop, which brings the +51 enhancer in close proximity to TAL1 promoter 1 in erythroid cells. The CCCTC-binding factor (CTCF) facilitates this long-range enhancer/promoter interaction of the TAL1 locus in erythroid cells while blocking the same enhancer/promoter interaction of the TAL1 locus in human T-cell leukemia. In human T-ALL, a T-cell-specific transcription factor c-Maf-mediated interchromosomal interaction brings the TAL1 promoter into close proximity with a T-cell-specific regulatory element located on chromosome 16, activating aberrant TAL1 oncogene expression. Thus, our study reveals a novel molecular mechanism involving changes in three-dimensional chromatin interactions that activate the TAL1 oncogene in human T-cell leukemia. PMID:23698277

  9. VacA’s Induction of VacA-Containing Vacuoles (VCVs) and Their Immunomodulatory Activities on Human T Cells

    PubMed Central

    Utsch, Ciara; Haas, Rainer

    2016-01-01

    Vacuolating cytotoxin A (VacA) is a secreted pore-forming toxin and one of the major virulence factors of Helicobacter pylori (H. pylori), which actively supports the persistence and survival of the bacteria in the special ecological niche of the human stomach. H. pylori genomes harbor different allelic forms of the vacA gene, which translate into functionally distinct VacA toxin types. VacA internalizes into various cell types via membrane or specific receptor interactions finally forming acidic endocytic VacA-containing vacuoles (VCVs). In this review, we focus on different characteristics of VacA, its interaction with host cells, the formation and protein content of VCVs and their intracellular transport into human T cells, which finally leads to the immunosuppressive phenotype of VacA. Immunomodulatory activities of VacA on human T cells are discussed with a focus on T-cell proliferation and calcium signaling. PMID:27322323

  10. The use of growth factors to modulate the activities of antigen–specific CD8+ T cells in vitro

    PubMed Central

    Alenzi, FQ; Alenazi, FA; Al-Kaabi, Y; Salem, ML

    2011-01-01

    Rationale: Adoptive T cell therapy depends on the harvesting of the cells from the host, their activation in vitro, and their infusion back to the same host. The way of activating the T cells in vitro is a critical factor for their homing, survival and function in vivo. Sustaining T cell homing molecules, particularly CD62L, is benefic for the trafficking of the adoptive transferred cells. Objective: The aim of the present study is to test whether insulin–like growth factor–1 (IGF–1), thymosin– α1 (T–α1) as well as all–trans retinoid acid (ATRA) alone or in combination with IL–2, IL–12, IL–15 can enhance the activation and survival phenotypes of antigen-activated T cells in vitro. Methods & Results: To this end, OT–1 transgenic T cells were used as a model. These CD8+ T cells recognize OVA peptide presented by MHC class–I. The results showed that antigen stimulation of OT1 cells resulted in their activation as evidenced by the decrease in surface expression of CD62L, analyzed for 3 days after antigen stimulation and was more pronounced on day 5. The addition of IL–12 or IGF–1 alone but not of IL–2, IL–15 augmented OT–1 cell activation measured on day 5. Interestingly, the combination of IL–12 with IGF–1 sustained the expression of CD62L on OT1 cells. Although the addition of ATRA alone or in combination with IL–12 resulted in decreases in CD62L expression on day 3, they showed a dose–dependent effect on the restoration of CD62L expression on day 5. The analysis of the activation–induced cell death (apoptosis) of OT1 cells showed an increased rate of death on day 5 than on day 3–post antigen stimulation. The addition of only IL–12 or IGF–1 alone, but not of IL–2, IL–15 or T– α1, decreased OT1 cell apoptosis on day 3. These anti–apoptotic effects of IL–12 and IGF– 1, however, were recovered on day 5–post stimulation. Discussion: In conclusion, these results indicate that the activation phenotype and the

  11. Mast cells and dendritic cells form synapses that facilitate antigen transfer for T cell activation

    PubMed Central

    Carroll-Portillo, Amanda; Cannon, Judy L.; te Riet, Joost; Holmes, Anna; Kawakami, Yuko; Kawakami, Toshiaki; Cambi, Alessandra

    2015-01-01

    Mast cells (MCs) produce soluble mediators such as histamine and prostaglandins that are known to influence dendritic cell (DC) function by stimulating maturation and antigen processing. Whether direct cell–cell interactions are important in modulating MC/DC function is unclear. In this paper, we show that direct contact between MCs and DCs occurs and plays an important role in modulating the immune response. Activation of MCs through FcεRI cross-linking triggers the formation of stable cell–cell interactions with immature DCs that are reminiscent of the immunological synapse. Direct cellular contact differentially regulates the secreted cytokine profile, indicating that MC modulation of DC populations is influenced by the nature of their interaction. Synapse formation requires integrin engagement and facilitates the transfer of internalized MC-specific antigen from MCs to DCs. The transferred material is ultimately processed and presented by DCs and can activate T cells. The physiological outcomes of the MC–DC synapse suggest a new role for intercellular crosstalk in defining the immune response. PMID:26304724

  12. Normal T-Cell Turnover in Sooty Mangabeys Harboring Active Simian Immunodeficiency Virus Infection

    PubMed Central

    Chakrabarti, Lisa A.; Lewin, Sharon R.; Zhang, Linqi; Gettie, Agegnehu; Luckay, Amara; Martin, Louis N.; Skulsky, Eva; Ho, David D.; Cheng-Mayer, Cecilia; Marx, Preston A.

    2000-01-01

    Sooty mangabeys naturally infected with simian immunodeficiency virus (SIV) remain healthy though they harbor viral loads comparable to those in rhesus macaques that progress to AIDS. To assess the immunologic basis of disease resistance in mangabeys, we compared the effect of SIV infection on T-cell regeneration in both monkey species. Measurement of the proliferation marker Ki-67 by flow cytometry showed that mangabeys harbored proliferating T cells at a level of 3 to 4% in peripheral blood irrespective of their infection status. In contrast, rhesus macaques demonstrated a naturally high fraction of proliferating T cells (7%) that increased two- to threefold following SIV infection. Ki-67+ T cells were predominantly CD45RA−, indicating increased proliferation of memory cells in macaques. Quantitation of an episomal DNA product of T-cell receptor α rearrangement (termed α1 circle) showed that the concentration of recent thymic emigrants in blood decreased with age over a 2-log unit range in both monkey species, consistent with age-related thymic involution. SIV infection caused a limited decrease of α1 circle numbers in mangabeys as well as in macaques. Dilution of α1 circles by T-cell proliferation likely contributed to this decrease, since α1 circle numbers and Ki-67+ fractions correlated negatively. These findings are compatible with immune exhaustion mediated by abnormal T-cell proliferation, rather than with early thymic failure, in SIV-infected macaques. Normal T-cell turnover in SIV-infected mangabeys provides an explanation for the long-term maintenance of a functional immune system in these hosts. PMID:10627531

  13. Activation of decidual invariant natural killer T cells promotes lipopolysaccharide-induced preterm birth.

    PubMed

    Li, Liping; Yang, Jing; Jiang, Yao; Tu, Jiaoqin; Schust, Danny J

    2015-04-01

    Invariant natural killer T (iNKT) cells are crucial for host defense against a variety of microbial pathogens, but the underlying mechanisms of iNKT cells activation by microbes are not fully explained. In this study, we investigated the molecular mechanisms of iNKT cell activation in lipopolysaccharide (LPS)-stimulated preterm birth using an adoptive transfer system and diverse neutralizing antibodies (Abs) and inhibitors. We found that adoptive transfer of decidual iNKT cells to LPS-stimulated iNKT cell deficient Jα18(-/-) mice that lack invariant Vα14Jα281T cell receptor (TCR) expression significantly decreased the time to delivery and increased the percentage of decidual iNKT cells. Neutralizing Abs against Toll-like receptor 4 (TLR-4), CD1d, interleukin (IL)-12 and IL-18, and inhibitors blocking the activation of nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK) p38 and extracellular signal-regulated kinase (ERK) significantly reduced in vivo percentages of decidual iNKT cells, their intracellular interferon (IFN)-γ production and surface CD69 expression. In vitro, in the presence of the same Abs and inhibitors used as in vivo, decidual iNKT cells co-cultured with LPS-pulsed dendritic cells (DCs) showed significantly decreased extracellular and intracellular IFN-γ secretion and surface CD69 expression. Our data demonstrate that the activation of decidual iNKT cells plays an important role in inflammation-induced preterm birth. Activation of decidual iNKT cells also requires TLR4-mediated NF-κB, MAPK p38 and ERK pathways, the proinflammatory cytokines IL-12 and IL-18, and endogenous glycolipid antigens presented by CD1d.

  14. DNA Repair Cofactors ATMIN and NBS1 Are Required to Suppress T Cell Activation.

    PubMed

    Prochazkova, Jana; Sakaguchi, Shinya; Owusu, Michel; Mazouzi, Abdelghani; Wiedner, Marc; Velimezi, Georgia; Moder, Martin; Turchinovich, Gleb; Hladik, Anastasiya; Gurnhofer, Elisabeth; Hayday, Adrian; Behrens, Axel; Knapp, Sylvia; Kenner, Lukas; Ellmeier, Wilfried; Loizou, Joanna I

    2015-11-01

    Proper development of the immune system is an intricate process dependent on many factors, including an intact DNA damage response. The DNA double-strand break signaling kinase ATM and its cofactor NBS1 are required during T cell development and for the maintenance of genomic stability. The role of a second ATM cofactor, ATMIN (also known as ASCIZ) in T cells is much less clear, and whether ATMIN and NBS1 function in synergy in T cells is unknown. Here, we investigate the roles of ATMIN and NBS1, either alone or in combination, using murine models. We show loss of NBS1 led to a developmental block at the double-positive stage of T cell development, as well as reduced TCRα recombination, that was unexpectedly neither exacerbated nor alleviated by concomitant loss of ATMIN. In contrast, loss of both ATMIN and NBS1 enhanced DNA damage that drove spontaneous peripheral T cell hyperactivation, proliferation as well as excessive production of proinflammatory cytokines and chemokines, leading to a highly inflammatory environment. Intriguingly, the disease causing T cells were largely proficient for both ATMIN and NBS1. In vivo this resulted in severe intestinal inflammation, colitis and premature death. Our findings reveal a novel model for an intestinal bowel disease phenotype that occurs upon combined loss of the DNA repair cofactors ATMIN and NBS1.

  15. DNA Repair Cofactors ATMIN and NBS1 Are Required to Suppress T Cell Activation

    PubMed Central

    Prochazkova, Jana; Sakaguchi, Shinya; Owusu, Michel; Mazouzi, Abdelghani; Wiedner, Marc; Velimezi, Georgia; Moder, Martin; Turchinovich, Gleb; Hladik, Anastasiya; Gurnhofer, Elisabeth; Hayday, Adrian; Behrens, Axel; Knapp, Sylvia; Kenner, Lukas; Ellmeier, Wilfried; Loizou, Joanna I.

    2015-01-01

    Proper development of the immune system is an intricate process dependent on many factors, including an intact DNA damage response. The DNA double-strand break signaling kinase ATM and its cofactor NBS1 are required during T cell development and for the maintenance of genomic stability. The role of a second ATM cofactor, ATMIN (also known as ASCIZ) in T cells is much less clear, and whether ATMIN and NBS1 function in synergy in T cells is unknown. Here, we investigate the roles of ATMIN and NBS1, either alone or in combination, using murine models. We show loss of NBS1 led to a developmental block at the double-positive stage of T cell development, as well as reduced TCRα recombination, that was unexpectedly neither exacerbated nor alleviated by concomitant loss of ATMIN. In contrast, loss of both ATMIN and NBS1 enhanced DNA damage that drove spontaneous peripheral T cell hyperactivation, proliferation as well as excessive production of proinflammatory cytokines and chemokines, leading to a highly inflammatory environment. Intriguingly, the disease causing T cells were largely proficient for both ATMIN and NBS1. In vivo this resulted in severe intestinal inflammation, colitis and premature death. Our findings reveal a novel model for an intestinal bowel disease phenotype that occurs upon combined loss of the DNA repair cofactors ATMIN and NBS1. PMID:26544571

  16. Central Muscarinic Cholinergic Activation Alters Interaction between Splenic Dendritic Cell and CD4+CD25- T Cells in Experimental Colitis

    PubMed Central

    Pavlov, Valentin A.; Tracey, Kevin J.; Khafipour, Ehsan; Ghia, Jean-Eric

    2014-01-01

    Background The cholinergic anti-inflammatory pathway (CAP) is based on vagus nerve (VN) activity that regulates macrophage and dendritic cell responses in the spleen through alpha-7 nicotinic acetylcholine receptor (a7nAChR) signaling. Inflammatory bowel disease (IBD) patients present dysautonomia with decreased vagus nerve activity, dendritic cell and T cell over-activation. The aim of this study was to investigate whether central activation of the CAP alters the function of dendritic cells (DCs) and sequential CD4+/CD25−T cell activation in the context of experimental colitis. Methods The dinitrobenzene sulfonic acid model of experimental colitis in C57BL/6 mice was used. Central, intracerebroventricular infusion of the M1 muscarinic acetylcholine receptor agonist McN-A-343 was used to activate CAP and vagus nerve and/or splenic nerve transection were performed. In addition, the role of α7nAChR signaling and the NF-kB pathway was studied. Serum amyloid protein (SAP)-A, colonic tissue cytokines, IL-12p70 and IL-23 in isolated splenic DCs, and cytokines levels in DC-CD4+CD25−T cell co-culture were determined. Results McN-A-343 treatment reduced colonic inflammation associated with decreased pro-inflammatory Th1/Th17 colonic and splenic cytokine secretion. Splenic DCs cytokine release was modulated through α7nAChR and the NF-kB signaling pathways. Cholinergic activation resulted in decreased CD4+CD25−T cell priming. The anti-inflammatory efficacy of central cholinergic activation was abolished in mice with vagotomy or splenic neurectomy. Conclusions Suppression of splenic immune cell activation and altered interaction between DCs and T cells are important aspects of the beneficial effect of brain activation of the CAP in experimental colitis. These findings may lead to improved therapeutic strategies in the treatment of IBD. PMID:25295619

  17. Human intestinal epithelial cell-induced CD8+ T cell activation is mediated through CD8 and the activation of CD8-associated p56lck

    PubMed Central

    1995-01-01

    The activation of CD8+ suppressor T cells by normal intestinal epithelial cells in antigen-specific or allogeneic mixed cell culture systems has significant implications for the regulation of mucosal immune responses. In this study, we found that the capacity of epithelial cells to induce CD8+ suppressor T cell activation appeared to be linked to the binding of CD8 molecules on the T cell surface. This appears to be mediated by a non-class I molecule expressed on the epithelial cell surface, which binds to CD8 and results in the activation of the CD8-associated src-like tyrosine kinase, p56lck. Epithelial cell-stimulated p56lck activation is an early event (in contrast to monocytes) and is essential for T cell activation, since proliferation could be completely abrogated by pretreatment of T cells with genestein or herbamycin, both of which are protein tyrosine kinase inhibitors. Pretreatment of T cells with anti-CD8 or of intestinal epithelial cells with an anti-epithelial cell mAb B9 inhibited p56lck activation and further confirmed that CD8 on the T cell and a CD8 ligand on the epithelial cell were involved in this T cell activation event. The specificity of this reaction was confirmed in experiments in which murine transfectants 3G4 and 3G8, expressing CD4 or CD8, respectively, were used. Coculture of 3G8 with epithelial cells but not with monocytes activated p56lck in this cell line, whereas p56lck was preferentially activated in 3G4 cells when monocytes were used as the stimulator cells. Although stimulation through CD8- and CD8-associated p56lck was important for epithelial cell-induced T cell activation, T cell proliferation could not be induced by cross-linking CD8 alone with monoclonal antibody anti-CD8. These data suggest that a second signal, possibly through the T cell antigen receptor since activation of the T cell receptor-associated kinase fyn was also seen, is required for epithelial cell-driven T cell proliferation. PMID:7561681

  18. T cells signaled by NF-kappa B- dendritic cells are sensitized not anergic to subsequent activation.

    PubMed

    Thompson, Angus G; O'Sullivan, Brendan J; Beamish, Heather; Thomas, Ranjeny

    2004-08-01

    Paradoxically, while peripheral self-tolerance exists for constitutively presented somatic self Ag, self-peptide recognized in the context of MHC class II has been shown to sensitize T cells for subsequent activation. We have shown that MHC class II(+)CD86(+)CD40(-) DC, which can be generated from bone marrow in the presence of an NF-kappa B inhibitor, and which constitutively populate peripheral tissues and lymphoid organs in naive animals, can induce Ag-specific tolerance. In this study, we show that CD40(-) human monocyte-derived dendritic cells (DC), generated in the presence of an NF-kappa B inhibitor, signal phosphorylation of TCR zeta, but little proliferation or IFN-gamma in vitro. Proliferation is arrested in the G(1)/G(0) phase of the cell cycle. Surprisingly, responding T cells are neither anergic nor regulatory, but are sensitized for subsequent IFN-gamma production. The data indicate that signaling through NF-kappa B determines the capacity of DC to stimulate T cell proliferation. Functionally, NF-kappa B(-)CD40(-)class II(+) DC may either tolerize or sensitize T cells. Thus, while CD40(-) DC appear to "prime" or prepare T cells, the data imply that signals derived from other cells drive the generation either of Ag-specific regulatory or effector cells in vivo.

  19. The peroxisome-proliferator activated receptor-γ agonist pioglitazone modulates aberrant T cell responses in systemic lupus erythematosus.

    PubMed

    Zhao, Wenpu; Berthier, Celine C; Lewis, Emily E; McCune, W Joseph; Kretzler, Matthias; Kaplan, Mariana J

    2013-10-01

    PPAR-γ agonists can suppress autoimmune responses and renal inflammation in murine lupus but the mechanisms implicated in this process remain unclear. We tested the effect of the PPAR-γ agonist pioglitazone in human lupus and control PBMCs with regard to gene regulation and various functional assays. By Affymetrix microarray analysis, several T cell-related pathways were significantly highlighted in pathway analysis in lupus PBMCs. Transcriptional network analysis showed IFN-γ as an important regulatory node, with pioglitazone treatment inducing transcriptional repression of various genes implicated in T cell responses. Confirmation of these suppressive effects was observed specifically in purified CD4+ T cells. Pioglitazone downregulated lupus CD4+ T cell effector proliferation and activation, while it significantly increased proliferation and function of lupus T regulatory cells. We conclude that PPAR-γ agonists selectively modulate CD4+ T cell function in SLE supporting the concept that pioglitazone and related,-agents should be explored as potential therapies in this disease.

  20. A cytoplasmic activator of DNA replication is involved in signal transduction in antigen-specific T cell lines.

    PubMed

    Wong, R L; Clark, R B; Gutowski, J K; Katz, M E; Fresa, K L; Cohen, S

    1990-05-01

    Cytoplasmic extracts prepared from T cell lines undergoing antigen-specific, interleukin-2 (IL-2)-dependent proliferation were tested for their ability to induce DNA synthesis in isolated, quiescent nuclei. A tetanus toxoid (TET)-specific T cell line, established from peripheral blood of a normal human volunteer, was stimulated in the presence of relevant antigen and 1 unit/ml IL-2. Cytoplasmic extracts prepared from these cells were capable of inducing DNA synthesis in isolated, quiescent nuclei. The ability of cytoplasmic extracts to induce DNA synthesis in isolated, quiescent nuclei. The ability of cytoplasmic extracts to induce DNA synthesis in isolated nuclei correlated positively with the degree of proliferation induced in these cells. In contrast, incubation of this T cell line in the absence of antigen failed to induce proliferation and cytoplasmic extracts prepared from these cells induced little to no DNA synthesis in isolated, quiescent nuclei. The factor present in the cytoplasm of T cells stimulated with relevant antigen in the presence of IL-2 is similar, if not identical, to a factor which we have previously demonstrated in cytoplasmic extracts prepared from transformed lymphoblastoid cell lines and from mitogenically stimulated normal human peripheral blood mononuclear cells. This factor, which we have called activator of DNA replication (ADR) is a heat-labile protein, and is inactivated by treatment with protease inhibitors, including aprotinin. The ability of cytoplasmic extracts from T cells undergoing antigen-specific, IL-2-dependent proliferation to induce DNA synthesis in isolated, quiescent nuclei was markedly inhibited in the presence of aprotinin, providing strong evidence that a cytoplasmic activator of DNA replication, ADR, is involved in the signal transduction process for antigen-specific, IL-2-dependent T cell proliferation. ADR may represent a common intracellular mediator of DNA synthesis in activated and transformed lymphocytes

  1. Carbon monoxide inhibits T cell activation in target organs during systemic lupus erythematosus

    PubMed Central

    Mackern-Oberti, J P; Obreque, J; Méndez, G P; Llanos, C; Kalergis, A M

    2015-01-01

    Systemic lupus erythematosus is characterized by the presence of circulating anti-nuclear antibodies (ANA) and systemic damage that includes nephritis, haematological manifestations and pulmonary compromise, among others. Although major progress has been made in elucidating the molecular mechanisms responsible for autoimmunity, current therapies for lupus have not improved considerably. Because the exposure of carbon monoxide (CO) has been shown to display beneficial immunoregulatory properties in different immune-mediated diseases, we investigated whether CO therapy improves lupus-related kidney injury in lupus mice. MRL-Faslpr lupus mice were exposed to CO and disease progression was evaluated. ANA, leucocyte-infiltrating populations in spleen, kidney and lung and kidney lesions, were measured. CO therapy significantly decreased the frequency of activated B220+ CD4− CD8− T cells in kidneys and lungs, as well as serum levels of ANA. Furthermore, we observed that CO therapy reduced kidney injury by decreasing proliferative glomerular damage and immune complexes deposition, decreased proinflammatory cytokine production and finally delayed the impairment of kidney function. CO exposure ameliorates kidney and lung leucocyte infiltration and delays kidney disease in MRL-Faslpr lupus mice. Our data support the notion that CO could be explored as a potential new therapy for lupus nephritis. PMID:26095291

  2. Carbon monoxide inhibits T cell activation in target organs during systemic lupus erythematosus.

    PubMed

    Mackern-Oberti, J P; Obreque, J; Méndez, G P; Llanos, C; Kalergis, A M

    2015-10-01

    Systemic lupus erythematosus is characterized by the presence of circulating anti-nuclear antibodies (ANA) and systemic damage that includes nephritis, haematological manifestations and pulmonary compromise, among others. Although major progress has been made in elucidating the molecular mechanisms responsible for autoimmunity, current therapies for lupus have not improved considerably. Because the exposure of carbon monoxide (CO) has been shown to display beneficial immunoregulatory properties in different immune-mediated diseases, we investigated whether CO therapy improves lupus-related kidney injury in lupus mice. MRL-Fas(lpr) lupus mice were exposed to CO and disease progression was evaluated. ANA, leucocyte-infiltrating populations in spleen, kidney and lung and kidney lesions, were measured. CO therapy significantly decreased the frequency of activated B220(+) CD4(-) CD8(-) T cells in kidneys and lungs, as well as serum levels of ANA. Furthermore, we observed that CO therapy reduced kidney injury by decreasing proliferative glomerular damage and immune complexes deposition, decreased proinflammatory cytokine production and finally delayed the impairment of kidney function. CO exposure ameliorates kidney and lung leucocyte infiltration and delays kidney disease in MRL-Fas(lpr) lupus mice. Our data support the notion that CO could be explored as a potential new therapy for lupus nephritis.

  3. Hybrid spreading mechanisms and T cell activation shape the dynamics of HIV-1 infection.

    PubMed

    Zhang, Changwang; Zhou, Shi; Groppelli, Elisabetta; Pellegrino, Pierre; Williams, Ian; Borrow, Persephone; Chain, Benjamin M; Jolly, Clare

    2015-04-01

    HIV-1 can disseminate between susceptible cells by two mechanisms: cell-free infection following fluid-phase diffusion of virions and by highly-efficient direct cell-to-cell transmission at immune cell contacts. The contribution of this hybrid spreading mechanism, which is also a characteristic of some important computer worm outbreaks, to HIV-1 progression in vivo remains unknown. Here we present a new mathematical model that explicitly incorporates the ability of HIV-1 to use hybrid spreading mechanisms and evaluate the consequences for HIV-1 pathogenenesis. The model captures the major phases of the HIV-1 infection course of a cohort of treatment naive patients and also accurately predicts the results of the Short Pulse Anti-Retroviral Therapy at Seroconversion (SPARTAC) trial. Using this model we find that hybrid spreading is critical to seed and establish infection, and that cell-to-cell spread and increased CD4+ T cell activation are important for HIV-1 progression. Notably, the model predicts that cell-to-cell spread becomes increasingly effective as infection progresses and thus may present a considerable treatment barrier. Deriving predictions of various treatments' influence on HIV-1 progression highlights the importance of earlier intervention and suggests that treatments effectively targeting cell-to-cell HIV-1 spread can delay progression to AIDS. This study suggests that hybrid spreading is a fundamental feature of HIV infection, and provides the mathematical framework incorporating this feature with which to evaluate future therapeutic strategies. PMID:25837979

  4. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity.

    PubMed

    Li, Chia-Wei; Lim, Seung-Oe; Xia, Weiya; Lee, Heng-Huan; Chan, Li-Chuan; Kuo, Chu-Wei; Khoo, Kay-Hooi; Chang, Shih-Shin; Cha, Jong-Ho; Kim, Taewan; Hsu, Jennifer L; Wu, Yun; Hsu, Jung-Mao; Yamaguchi, Hirohito; Ding, Qingqing; Wang, Yan; Yao, Jun; Lee, Cheng-Chung; Wu, Hsing-Ju; Sahin, Aysegul A; Allison, James P; Yu, Dihua; Hortobagyi, Gabriel N; Hung, Mien-Chie

    2016-01-01

    Extracellular interaction between programmed death ligand-1 (PD-L1) and programmed cell death protein-1 (PD-1) leads to tumour-associated immune escape. Here we show that the immunosuppression activity of PD-L1 is stringently modulated by ubiquitination and N-glycosylation. We show that glycogen synthase kinase 3β (GSK3β) interacts with PD-L1 and induces phosphorylation-dependent proteasome degradation of PD-L1 by β-TrCP. In-depth analysis of PD-L1 N192, N200 and N219 glycosylation suggests that glycosylation antagonizes GSK3β binding. In this regard, only non-glycosylated PD-L1 forms a complex with GSK3β and β-TrCP. We also demonstrate that epidermal growth factor (EGF) stabilizes PD-L1 via GSK3β inactivation in basal-like breast cancer. Inhibition of EGF signalling by gefitinib destabilizes PD-L1, enhances antitumour T-cell immunity and therapeutic efficacy of PD-1 blockade in syngeneic mouse models. Together, our results link ubiquitination and glycosylation pathways to the stringent regulation of PD-L1, which could lead to potential therapeutic strategies to enhance cancer immune therapy efficacy. PMID:27572267

  5. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity

    PubMed Central

    Li, Chia-Wei; Lim, Seung-Oe; Xia, Weiya; Lee, Heng-Huan; Chan, Li-Chuan; Kuo, Chu-Wei; Khoo, Kay-Hooi; Chang, Shih-Shin; Cha, Jong-Ho; Kim, Taewan; Hsu, Jennifer L.; Wu, Yun; Hsu, Jung-Mao; Yamaguchi, Hirohito; Ding, Qingqing; Wang, Yan; Yao, Jun; Lee, Cheng-Chung; Wu, Hsing-Ju; Sahin, Aysegul A.; Allison, James P.; Yu, Dihua; Hortobagyi, Gabriel N.; Hung, Mien-Chie

    2016-01-01

    Extracellular interaction between programmed death ligand-1 (PD-L1) and programmed cell death protein-1 (PD-1) leads to tumour-associated immune escape. Here we show that the immunosuppression activity of PD-L1 is stringently modulated by ubiquitination and N-glycosylation. We show that glycogen synthase kinase 3β (GSK3β) interacts with PD-L1 and induces phosphorylation-dependent proteasome degradation of PD-L1 by β-TrCP. In-depth analysis of PD-L1 N192, N200 and N219 glycosylation suggests that glycosylation antagonizes GSK3β binding. In this regard, only non-glycosylated PD-L1 forms a complex with GSK3β and β-TrCP. We also demonstrate that epidermal growth factor (EGF) stabilizes PD-L1 via GSK3β inactivation in basal-like breast cancer. Inhibition of EGF signalling by gefitinib destabilizes PD-L1, enhances antitumour T-cell immunity and therapeutic efficacy of PD-1 blockade in syngeneic mouse models. Together, our results link ubiquitination and glycosylation pathways to the stringent regulation of PD-L1, which could lead to potential therapeutic strategies to enhance cancer immune therapy efficacy. PMID:27572267

  6. Quantitative evaluation of T-cell response after specific antigen stimulation in active and latent tuberculosis infection in adults and children.

    PubMed

    Latorre, Irene; De Souza-Galvão, Malú; Ruiz-Manzano, Juan; Lacoma, Alicia; Prat, Cristina; Fuenzalida, Loreto; Altet, Neus; Ausina, Vicente; Domínguez, Jose

    2009-11-01

    We have evaluated the quantitative T-cell response after specific Mycobacterium tuberculosis antigen stimulation in active tuberculosis (TB) and latent TB infection (LTBI) patients. In adults, the median number of T cells after RD1 antigen stimulation was significantly higher in active TB patients than in LTBI patients. In children, the number of responder T cells against the specific antigens was higher in active TB than in LTBI patients, although the differences were not significant. In summary, in patients with suspected clinical TB, although there is overlapping in the number of responder T cells between both groups, a T-cell count above the described threshold could suggest active TB, especially in patients with a high probability of having active TB and low probability of having LTBI. In addition, the results are consistent with the current evidence that T-cell response may indicate mycobacterial burden and disease activity.

  7. Proteinase-activated receptor-1 mediates allogeneic CD8(+) T cell-induced apoptosis of vascular endothelial cells.

    PubMed

    Quan, Li; Jian, Zhang; Ping, Zou; Weiming, Li

    2009-12-01

    Vascular endothelial-cells injury plays a pivotal role in the pathogenesis of graft-versus-host disease (GVHD) and transplant-associated endothelial injury syndrome. Vascular endothelial cells are an exposed target tissue for immune-mediated injury during GVHD. Early endothelial injury syndromes share common features with acute GVHD. Chronic GVHD leads to a rarefaction of microvessels caused by the infiltration of alloreactive cytotoxic T lymphocytes. In this context, allogeneic reactive cytotoxic T cell may contribute to apoptosis of vascular endothelial cells. The involvement of proteinase-activated receptor (PAR-1) in regulation of apoptosis has been recently recognized in many cell types. We hypothesized that apoptosis of vascular endothelial cells induced by allogeneic cytotoxic T cell are mediated via the PAR-1. Allogeneic CD8(+) T cell, PAR-1 agonist peptide (SFLLRN) induced apoptosis of human umbilical vein endothelial cells (HUVECs) and human dermal microvascular endothelial cells (HDMECs) as assessed by AnnexinV-FITC labeling. To ascertain the mechanism of endothelial apoptosis, we determined that allogeneic CD8(+) T cell, SFLLRN enhanced cleavage of caspase-3 and led to p38MAPK activation as assessed by Western blot. The effects of allogeneic CD8(+) T cell and SFLLRN on apoptosis of vascular endothelial cells were largely prevented by a cleavage-blocking anti-human PAR-1-antibody (ATAP2) and a specific inhibitor of p38MAPK. In concert, these observations provide strong evidence that allogeneic CD8(+) T cell induces apoptosis of human vascular endothelial cells through PAR-1-dependent modulation of intrinsic apoptotic pathway via alterations of p38MAPK and caspase-3. PMID:19082770

  8. Human T-cell activation by 14- and 18-kilodalton nuclear proteins of Leishmania infantum.

    PubMed Central

    Suffia, I; Quaranta, J F; Eulalio, M C; Ferrua, B; Marty, P; Le Fichoux, Y; Kubar, J

    1995-01-01

    Leishmanial antigens which stimulate T lymphocytes from primed individuals may be candidates for a vaccine. We recently found a significant concordance between the humoral response specific for two proteins from Leishmania infantum promastigotes, p14 and p18, and a positive leishmanin delayed-type hypersensitivity reaction, testifying to the occurrence of cell-mediated immunity. In this communication, we describe a partial characterization of these antigens and an in vitro analysis of their capacity to activate primed human T cells. We showed, by immunofluorescent staining and through analysis of subcellular fractions by Western immunoblotting, that in stationary-phase promastigotes, p14 and p18 were located only in the parasite nuclei; in the middle of the log phase, a transitory and only weak expression outside the nucleus was detected. We then showed that p14 and p18 antigens shared a common epitope(s). Finally, we analyzed the in vitro proliferation and interleukin-2 production induced by leishmanial proteins in human peripheral blood mononuclear cells from sensitized subjects. We showed that in some individuals who have been exposed to L. infantum the specific response to the whole lysate was mostly due to the nuclear antigens. We demonstrated directly the capacity of nitrocellulose-bound p14 and p18 to activate in vitro all of the tested primed peripheral blood mononuclear cells, which contrasted with a lack of stimulatory activity of other membrane-bound leishmanial proteins. Taken together, our results suggest that an antigenic determinant(s) dominant for some individuals might exist on both antigens. PMID:7558278

  9. Oxaliplatin antagonizes HIV-1 latency by activating NF-κB without causing global T cell activation

    SciTech Connect

    Zhu, Xiaoli; Liu, Sijie; Wang, Pengfei; Qu, Xiying; Wang, Xiaohui; Zeng, Hanxian; Chen, Huabiao; Zhu, Huanzhang

    2014-07-18

    Highlights: • The chemotherapeutic drug oxaliplatin reactivates latent HIV-1 in this cell line model of HIV-1 latency. • Reactivation is synergized when oxaliplatin is used in combination with valproic acid. • Oxaliplatin reactivates latent HIV-1 through activation of NF-kB and does not induce T cell activation. - Abstract: Reactivation of latent HIV-1 is a promising strategy for the clearance of the viral reservoirs. Because of the limitations of current agents, identification of new latency activators is urgently required. Using an established model of HIV-1 latency, we examined the effect of Oxaliplatin on latent HIV-1 reactivation. We showed that Oxaliplatin, alone or in combination with valproic acid (VPA), was able to reactivate HIV-1 without inducing global T cell activation. We also provided evidence that Oxaliplatin reactivated HIV-1 expression by inducing nuclear factor kappa B (NF-κB) nuclear translocation. Our results indicated that Oxaliplatin could be a potential drug candidate for anti-latency therapies.

  10. HIV-1 trans-activator of transcription substitutes for oxidative signaling in activation-induced T cell death.

    PubMed

    Gülow, Karsten; Kaminski, Marcin; Darvas, Katalin; Süss, Dorothee; Li-Weber, Min; Krammer, Peter H

    2005-05-01

    Termination of an immune response requires elimination of activated T lymphocytes by activation-induced cell death (AICD). In AICD, CD95 (Apo-1/Fas) ligand (L) triggers apoptosis of CD95-positive activated T lymphocytes. In AIDS patients, AICD is strongly enhanced and accelerated. We and others have previously shown that HIV-1 trans-activator of transcription (HIV-1 Tat) sensitizes T cells toward CD95-mediated apoptosis and up-regulates CD95L expression by affecting the cellular redox balance. In this study, we show that it is hydrogen peroxide (H(2)O(2)) that functions as an essential second messenger in TCR signaling. The H(2)O(2) signal combined with simultaneous calcium (Ca(2+)) influx into the cytosol constitutes the minimal requirement for induction of CD95L expression. Either signal alone is insufficient. We further show that HIV-1 Tat interferes with TCR signaling and induces a H(2)O(2) signal. H(2)O(2) generated by HIV-1 Tat combines with CD4-dependent calcium influx and causes massive T cell apoptosis. Thus, our data provide an explanation for CD4(+) T lymphocyte depletion during progression of AIDS.

  11. Green Tea Catechin Metabolites Exert Immunoregulatory Effects on CD4(+) T Cell and Natural Killer Cell Activities.

    PubMed

    Kim, Yoon Hee; Won, Yeong-Seon; Yang, Xue; Kumazoe, Motofumi; Yamashita, Shuya; Hara, Aya; Takagaki, Akiko; Goto, Keiichi; Nanjo, Fumio; Tachibana, Hirofumi

    2016-05-11

    Tea catechins, such as (-)-epigallocatechin-3-O-gallate (EGCG), have been shown to effectively enhance immune activity and prevent cancer, although the underlying mechanism is unclear. Green tea catechins are instead converted to catechin metabolites in the intestine. Here, we show that these green tea catechin metabolites enhance CD4(+) T cell activity as well as natural killer (NK) cell activity. Our data suggest that the absence of a 4'-hydroxyl on this phenyl group (B ring) is important for the effect on immune activity. In particular, 5-(3',5'-dihydroxyphenyl)-γ-valerolactone (EGC-M5), a major metabolite of EGCG, not only increased the activity of CD4(+) T cells but also enhanced the cytotoxic activity of NK cells in vivo. These data suggest that EGC-M5 might show immunostimulatory activity. PMID:27112424

  12. Epigenetic regulation of Kcna3-encoding Kv1.3 potassium channel by cereblon contributes to regulation of CD4+ T-cell activation.

    PubMed

    Kang, Jung-Ah; Park, Sang-Heon; Jeong, Sang Phil; Han, Min-Hee; Lee, Cho-Rong; Lee, Kwang Min; Kim, Namhee; Song, Mi-Ryoung; Choi, Murim; Ye, Michael; Jung, Guhung; Lee, Won-Woo; Eom, Soo Hyun; Park, Chul-Seung; Park, Sung-Gyoo

    2016-08-01

    The role of cereblon (CRBN) in T cells is not well understood. We generated mice with a deletion in Crbn and found cereblon to be an important antagonist of T-cell activation. In mice lacking CRBN, CD4(+) T cells show increased activation and IL-2 production on T-cell receptor stimulation, ultimately resulting in increased potassium flux and calcium-mediated signaling. CRBN restricts T-cell activation via epigenetic modification of Kcna3, which encodes the Kv1.3 potassium channel required for robust calcium influx in T cells. CRBN binds directly to conserved DNA elements adjacent to Kcna3 via a previously uncharacterized DNA-binding motif. Consequently, in the absence of CRBN, the expression of Kv1.3 is derepressed, resulting in increased Kv1.3 expression, potassium flux, and CD4(+) T-cell hyperactivation. In addition, experimental autoimmune encephalomyelitis in T-cell-specific Crbn-deficient mice was exacerbated by increased T-cell activation via Kv1.3. Thus, CRBN limits CD4(+) T-cell activation via epigenetic regulation of Kv1.3 expression. PMID:27439875

  13. Whole Blood Activation Results in Enhanced Detection of T Cell and Monocyte Cytokine Production by Flow Cytometry

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Crucian, Brian E.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a wholeblood activation culture has been described. We compared whole blood culture to standard PBMC culture and determined the individual cytokine secretion patterns for both T cells and monocytes via flow cytometry. For T cells cytokine assessment following PMA +ionomycin activation: (1) a significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture; (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. In addition, a four-color cytometric analysis was used to allow accurate phenotyping and quantitation of cytokine producing lymphocyte populations. Using this technique we found IFNgamma production to be significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines in conjunction with CD 14. The cytokine pairs used for analysis were IL-1a/IL-12, and IL-10ITNFa. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFalpha equally well in both culture systems. Monocyte production of IL-10 was significantly elevated following whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and

  14. The Glucose Transporter Glut1 is Selectively Essential for CD4 T Cell Activation and Effector Function

    PubMed Central

    Nichols, Amanda G.; Michalek, Ryan D.; Rudolph, Michael C.; Deoliveira, Divino; Anderson, Steven M.; Abel, E. Dale; Chen, Benny J.; Hale, Laura P.; Rathmell, Jeffrey C.

    2014-01-01

    SUMMARY CD4 T cell activation leads to rapid proliferation and differentiation into effector (Teff) or regulatory (Treg) cells that mediate or control immunity. While Teff and Treg prefer distinct glycolytic or oxidative metabolic programs in vitro, requirements and mechanisms that control T cell glucose uptake and metabolism in vivo are poorly understood. Despite expression of multiple glucose transporters, Glut1-deficiency selectively impaired metabolism and function of thymocytes and Teff. Resting T cells were normal until activated, when Glut1-deficiency prevented increased glucose uptake and glycolysis, growth, proliferation, and decreased cell survival and Teff differentiation. Importantly, Glut1-deficiency decreased Teff expansion and ability to induce inflammatory disease in vivo. Treg, in contrast, were enriched in vivo and appeared functionally unaffected by Glut1-deficiency and able to suppress Teff irrespective of Glut1 expression. These data show a selective in vivo requirement for Glut1 in metabolic reprogramming of CD4 T cell activation and Teff expansion and survival. PMID:24930970

  15. Major histocompatibility complex-unrestricted cytolytic activity of human T cells: analysis of precursor frequency and effector phenotype

    SciTech Connect

    Patel, S.S.; Thiele, D.L.; Lipsky, P.E.

    1987-12-01

    The frequency and phenotype of human T cells that mediate major histocompatibility complex (MHC)-unrestricted cytolysis were analyzed. T cell clones were generated by culturing adherent cell-depleted peripheral blood mononuclear cells at a density of 0.3 cell/well with phytohemagglutinin, recombinant interleukin 2 (rIL-2), and irradiated autologous peripheral blood mononuclear cells and/or Epstein-Barr virus-transformed lymphoblastoid cell lines. All of the 198 clones generated by this method were T cells (CD2/sup +/, CD3/sup +/, CD4/sup +/ or CD2/sup +/, CD3/sup +/, CD8/sup +/) that possessed potent lytic activity against K562, an erythroleukemia line sensitive to lysis by human natural killer cells, and Cur, a renal carcinoma cell line resistant to human natural killer activity. Cytolysis, measured by /sup 51/Cr release, was MHC-unrestricted, since the clones were able to lyse MHC class I or class II negative targets, as well as MHC class I and class II negative targets. Although the clones produced tissue necrosis factor/lymphotoxin-like molecules, lysis of Cur of K562 was not mediated by a soluble factor secreted by the clones. These data indicate that the capacity for MHC-unrestricted tumoricidal activity and expression of NKH1 and CD11b, but not CD 16, are properties common to all or nearly all human peripheral blood-derived T cell clones regardless of CD4 or CD8 phenotype.

  16. Sitagliptin treatment of patients with type 2 diabetes does not affect CD4+ T-cell activation.

    PubMed

    White, Perrin C; Chamberlain-Shea, Heidi; de la Morena, Maria-Teresa

    2010-01-01

    Dipeptidyl peptidase IV (DPP4) inhibitors have recently become widely used for treating type 2 diabetes, but in meta-analyses are associated with a mildly increased risk of all-cause infections. CD26 is a cell-surface form of DPP4 which can costimulate T-cell proliferation, raising the possibility that DPP4 inhibitors might adversely affect immune function. To address this issue in an observational study, two groups of 20 subjects each were recruited from a private endocrinology practice; one group consisted of type 2 diabetes patients treated for at least 6 months with the DPP4 inhibitor, sitagliptin, whereas patients in the other group had never been treated with this agent. The groups were similar with regard to sex and racial composition, body mass index, hemoglobin A(1c), and use of other medications for diabetes, but the sitagliptin group was slightly older. A blood sample from each patient was analyzed for CD4+ T-cell activation in response to phytohemagglutinin using adenosine triphosphate (ATP)-stimulated bioluminescence. There was not a significant difference in T-cell activation between the treatment groups (median, 419 and 481 ng/ml ATP in the groups that were and were not treated with sitagliptin, respectively). Thus the observed increased rate of infection in diabetic patients treated with sitagliptin cannot be explained by a major effect on T-cell activation. Randomized studies, preferably using several assays of immune function, should be performed to confirm and extend these findings.

  17. Signals involved in T cell activation. II. Distinct roles of intact accessory cells, phorbol esters, and interleukin 1 in activation and cell cycle progression of resting T lymphocytes

    SciTech Connect

    Davis, L.; Lipsky, P.E.

    1986-05-15

    The signals involved in the initiation of mitogen-induced activation of resting guinea pig T cells were examined. The combination of phytohemagglutinin (PHA) and 4..beta..-phorbol 12-myristate 13-acetate (PMA) stimulated DNA synthesis by accessory cell (AC)-depleted T cells cultured at high density, but the use of low density cultures indicated that intact AC were absolutely necessary for PHA-stimulated T cell DNA synthesis even in the presence of PMA, interleukin 1 (IL 1), or interleukin 2 (IL 2). In contrast, AC-depleted T cells were able to respond to the combination of the calcium ionophore, ionomycin, and PMA regardless of the cell density at which they were cultured. Results of cell cycle analysis support the conclusion that intact AC, IL 1, and a PMA-like signal play distinct roles in the progression of mitogen stimulated T cells through the first round of the cell cycle.

  18. Pulmonary T cell activation in response to chronic particulate air pollution

    PubMed Central

    Deiuliis, Jeffrey A.; Kampfrath, Thomas; Zhong, Jixin; Oghumu, Steve; Maiseyeu, Andrei; Chen, Lung Chi; Sun, Qinghua; Satoskar, Abhay R.

    2012-01-01

    The purpose of this study was to investigate the effects of chronically inhaled particulate matter <2.5 μm (PM2.5) on inflammatory cell populations in the lung and systemic circulation. A prominent component of air pollution exposure is a systemic inflammatory response that may exaggerate chronic diseases such as atherosclerosis and insulin resistance. T cell response was measured in wild-type C57B/L6, Foxp3-green fluorescent protein (GFP) “knockin,” and chemokine receptor 3 knockout (CXCR3−/−) mice following 24–28 wk of PM2.5 or filtered air. Chronic PM2.5 exposure resulted in increased CXCR3-expressing CD4+ and CD8+ T cells in the lungs, spleen, and blood with elevation in CD11c+ macrophages in the lung and oxidized derivatives of 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine in wild-type mice. CXCR3 deficiency decreased T cells in the lung. GFP+ regulatory T cells increased with PM2.5 exposure in the spleen and blood of Foxp3-GFP mice but were present at very low levels in the lung irrespective of PM2.5 exposure. Mixed lymphocyte cultures using primary, PM2.5-treated macrophages demonstrated enhanced T cell proliferation. Our experiments indicate that PM2.5 potentiates a proinflammatory Th1 response involving increased homing of CXCR3+ T effector cells to the lung and modulation of systemic T cell populations. PMID:22160305

  19. Activation Outcomes Induced in Naïve CD8 T-Cells by Macrophages Primed via “Phagocytic” and Nonphagocytic Pathways

    PubMed Central

    Olazabal, Isabel María; Martín-Cofreces, Noa Beatriz; Mittelbrunn, María; Martínez del Hoyo, Gloria; Alarcón, Balbino

    2008-01-01

    The array of phagocytic receptors expressed by macrophages make them very efficient at pathogen clearance, and the phagocytic process links innate with adaptive immunity. Primary macrophages modulate antigen cross-presentation and T-cell activation. We assessed ex vivo the putative role of different phagocytic receptors in immune synapse formation with CD8 naïve T-cells from OT-I transgenic mice and compared this with the administration of antigen as a soluble peptide. Macrophages that have phagocytosed antigen induce T-cell microtubule-organizing center and F-actin cytoskeleton relocalization to the contact site, as well as the recruitment of proximal T-cell receptor signals such as activated Vav1 and PKCθ. At the same doses of loaded antigen (1 μM), “phagocytic” macrophages were more efficient than peptide-antigen–loaded macrophages at forming productive immune synapses with T-cells, as indicated by active T-cell TCR/CD3 conformation, LAT phosphorylation, IL-2 production, and T-cell proliferation. Similar T-cell proliferation efficiency was obtained when low doses of soluble peptide (3–30 nM) were loaded on macrophages. These results suggest that the pathway used for antigen uptake may modulate the antigen density presented on MHC-I, resulting in different signals induced in naïve CD8 T-cells, leading either to CD8 T-cell activation or anergy. PMID:18077558

  20. Indoleamine 2,3-dioxygenase (IDO) activity during the primary immune response to influenza infection modifies the memory T cell response to influenza challenge.

    PubMed

    Sage, Leo K; Fox, Julie M; Mellor, Andrew L; Tompkins, Stephen M; Tripp, Ralph A

    2014-04-01

    The generation of a heterosubtypic memory T cell response is important for cross-protective immunity against unrelated strains of influenza virus. One way to facilitate the generation of the memory T cell population is to control the activity of immune modulatory agents. The enzyme, indoleamine 2,3-dioxygenase (IDO), is upregulated during influenza infection by the interferon response where IDO activity depletes tryptophan required in T cell response. In this study, IDO activity was pharmacologically inhibited with 1-methyl-tryptophan (1MT) during the primary response to influenza virus infection and the effect on the memory T cell response was evaluated. 1MT treatment improved the memory T cell response to influenza virus challenge by increasing interferon gamma expression by CD4 and CD8 T cells, and numbers of lung virus-specific CD8+ T cells, and increased the Th1 response as well as modifying the immunodominance hierarchy to increase the number of subdominant epitope specific CD8+ T cells, a feature which may be linked to decreased regulatory T cell function. These changes also accompanied evidence of accelerated lung tissue repair upon virus challenge. These findings suggest that modulation of IDO activity could be exploited in influenza vaccine development to enhance memory T cell responses and reduce disease burden. PMID:24702331

  1. Similar disturbances in B cell activity and regulatory T cell function in Henoch-Schonlein purpura and systemic lupus erythematosus

    SciTech Connect

    Beale, M.G.; Nash, G.S.; Bertovich, M.J.; MacDermott, R.P.

    1982-01-01

    The immunoglobulin synthesizing activities of peripheral mononuclear cells (MNC) from five patients with Henoch-Schonlein purpura (HSP) and eight patients with active systemic lupus erythematosus (SLE) were compared. Cumulative amounts of IgM, IgG, and IgA synthesized and secreted by unstimulated and PWM-stimulated patient cells over a 12-day period were determied in a solid-phase radioimmunoassay. In unstimulated control cultures mean rates of IgM, IgG, and IgA synthesis were less than 250 ng/ml. The synthetic activities of patient MNC were markedly increased. In HSP cultures IgA was the major immunoglobulin class produced (2810 x/divide 1.33 ng/ml) followed by IgG (1754 x/divide 1.32 ng/ml) and IgM (404 x/divide 1.16 ng/ml). In SLE cultures IgA and IgG syntheses were equally elevated (4427 x/divide 1.20 and 4438 x/divide 1.49 ng/ml, respectively) whereas IgM synthesis averaged 967 x/divide 1.66 ng/ml. PWM stimulation of pateient MNC caused a sharp decline in the synthesis of all three immunoglobulin classes. After T cell depletion B cell-enriched fractions from HSP and SLE patients maintained high levels of IgA and IgG synthesis that were inhibited by PWM and by normal allogeneic but not autologous T cells. In PWM-stimulted co-cultures, patient T cells nonspecifically suppressed the synthetic activities of autologous and control B cells. in contrast patient B cells achieved normal levels of immunoglobulin synthesis when cultured with control T cells plus PWM. In longitudinal studies patient B and T cell disturbances persisted despite clinical improvement.

  2. Selective inhibition of the p38 alternative activation pathway in infiltrating T cells inhibits pancreatic cancer progression

    PubMed Central

    Alam, Muhammad S.; Gaida, Matthias M.; Bergmann, Frank; Lasitschka, Felix; Giese, Thomas; Giese, Nathalia A.; Hackert, Thilo; Hinz, Ulf; Hussain, S. Perwez; Kozlov, Serguei V.; Ashwell, Jonathan D.

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive neoplasm characterized by a marked fibro-inflammatory microenvironment1, the presence of which can promote both cancer induction and growth2–4. Therefore, selective manipulation of local cytokines is an attractive if unrealized therapeutic approach. T cells possess a unique mechanism of activation of p38 MAPK downstream of T cell receptor (TCR) engagement by phosphorylation of Tyr-323 (pY323). This alternative p38 activation pathway is required for pro-inflammatory cytokine production5,6. Here we show in human PDAC that a high percentage of infiltrating pY323+ T cells was associated with large numbers of TNFα and IL-17-producing CD4+ tumor-infiltrating lymphocytes (TIL) and aggressive disease. The growth of murine pancreatic tumors was inhibited by genetic ablation of the alternative p38 pathway, and transfer of wild type CD4+ T cells but not those lacking the alternative pathway enhanced tumor growth in T cell-deficient mice. Strikingly, a plasma membrane-permeable peptide derived from Gadd45α, the naturally-occurring inhibitor of p38 pY323+ (ref. 7), reduced CD4+ TIL production of TNFα, IL-17A, IL-10, and secondary cytokines, halted growth of implanted tumors, and inhibited progression of spontaneous K-ras-driven adenocarcinoma in mice. Thus, TCR-mediated activation of CD4+ TIL results in alternative p38 activation and production of pro-tumorigenic factors, and can be targeted for therapeutic benefit. PMID:26479921

  3. Active and suppressor T cells: diminution in a patient with dyskeratosis congenita and in first-degree relatives.

    PubMed

    Fudenberg, H H; Goust, J M; Vesole, D H; Salinas, C F

    1979-01-01

    Active, total and nonspecific suppressor T cells were studied in a 15-year-old black male with dyskeratosis congenita syndrome, a precancerous mucosal disease, and in 7 siblings and several other relatives in three generations. The propositus and 1 elder sister, products of a second-cousin marriage, died with dyskeratosis congenita. The mother had dermatomyositis, and the maternal grandmother and her sister reportedly had rheumatoid arthritis. Studies of available siblings, father, and grandparents revealed a high incidence of deficiency in number of active and/or suppressor T cells, sometimes severe enough to result in a decrease in total T cells. The patient had many stigmata of precocious aging, as did the sibling who died with the same syndrome. The laboratory data suggest that a defect in cell-mediated immunity, involving mainly or exclusively suppressor T cells, is associated with, and is presumably the cause of, precocious aging; perhaps an abiotrophy in this cell subpopulation results in physiologic aging. PMID:313356

  4. Dual B- and T-cell de-immunization of recombinant immunotoxin targeting mesothelin with high cytotoxic activity.

    PubMed

    Mazor, Ronit; Onda, Masanori; Park, Dong; Addissie, Selamawit; Xiang, Laiman; Zhang, Jingli; Hassan, Raffit; Pastan, Ira

    2016-05-24

    Recombinant immunotoxins (RITs) are genetically engineered proteins being developed to treat cancer. They are composed of an Fv that targets a cancer antigen and a portion of a protein toxin. Their clinical success is limited by their immunogenicity. Our goal is to produce a new RIT that targets mesothelin and is non-immunogenic by combining mutations that decrease B- and T-cell epitopes. Starting with an immunotoxin that has B-cell epitopes suppressed, we added mutations step-wise that suppress T-cell epitopes. The final protein (LMB-T14) has greatly reduced antigenicity as assessed by binding to human anti-sera and a greatly decreased ability to activate helper T-cells evaluated in a T-cell activation assay. It is very cytotoxic to mesothelioma cells from patients, and to cancer cell lines. LMB-T14 produces complete remissions of a mesothelin expressing cancer (A431/H9) xenograft. The approach used here can be used to de-immunize other therapeutic foreign proteins. PMID:27167198

  5. Effect of reactive site loop elongation on the inhibitory activity of C1-inhibitor.

    PubMed

    Bos, Ineke G A; Lubbers, Yvonne T P; Eldering, Eric; Abrahams, Jan Pieter; Hack, C Erik

    2004-06-01

    The serine protease inhibitor C1-Inhibitor (C1-Inh) inhibits several complement- and contact-system proteases, which play an important role in inflammation. C1-Inh has a short reactive site loop (RSL) compared to other serpins. RSL length determines the inhibitory activity of serpins. We investigated the effect of RSL elongation on inhibitory activity of C1-Inh by insertion of one or two alanine residues in the RSL. One of five mutants had an increased association rate with kallikrein, but was nevertheless a poor inhibitor because of a simultaneous high stoichiometry of inhibition (>10). The association rate of the other variants was lower than that of wild-type C1-Inh. These data suggest that the relatively weak inhibitory activity of C1-Inh is not the result of its short RSL. The short RSL of C1-Inh has, surprisingly, the optimal length for inhibition.

  6. Murine B7 antigen provides an efficient costimulatory signal for activation of murine T lymphocytes via the T-cell receptor/CD3 complex.

    PubMed Central

    Reiser, H; Freeman, G J; Razi-Wolf, Z; Gimmi, C D; Benacerraf, B; Nadler, L M

    1992-01-01

    We demonstrate that the murine B7 (mB7) protein is a potent costimulatory molecule for the activation of resting murine CD4+ T cells through the T-cell receptor (TCR)/CD3 complex. Stable mB7-transfected Chinese hamster ovary cells, but not vector-transfected controls, synergize with anti-CD3 monoclonal antibody and Con A-induced T-cell activation, resulting ultimately in proliferation. mB7 exerted its effect by inducing production of interleukin 2 and expression of the interleukin 2 receptor. Thus, mB7 costimulates T-cell activation through the TCR/CD3 complex by positively modulating the normal pathway of T-cell expansion. In contrast to the pronounced effect of mB7 on the activation of T cells through the TCR/CD3 complex, the mB7-transfected CHO cell line costimulated T-cell activation via the glycosylphosphatidylinositol-anchored proteins Thy-1 and Ly-6A.2 only inefficiently. Finally, the combination of a calcium ionophore and mB7 is not sufficient to cause T-cell proliferation, while the combination of a calcium ionophore and phorbol 12-myristate 13-acetate (PMA) stimulates T cells efficiently. The signals that mB7 and PMA provide for murine T lymphocyte activation are therefore not interchangeable, although both costimulate activation through the TCR/CD3 complex. Images PMID:1370349

  7. Antigen-specific activation and cytokine-facilitated expansion of naive, human CD8+ T cells

    PubMed Central

    Wölfl, Matthias; Greenberg, Philip D

    2014-01-01

    Antigen-specific priming of human, naïve T-cells has been difficult to assess. Due to the low initial frequency in the naïve cell pool of specific T-cell precursors, such an analysis has been obscured by the requirements for repeated stimulations and prolonged culture time. In this protocol, we describe how to rapidly evaluate antigen-specific priming of CD8+ -cells following a single stimulation. The assay provides reference conditions, which result in the expansion of a significant population of antigen-specific T-cells from the naïve repertoire. Various conditions and modifications during the priming process (e.g. testing new cytokines, costimulators, etc.) can now be directly compared to the reference conditions. Factors relevant to achieving effective priming include the dendritic cell preparation, the T-cell preparation, the cell ratio at the time of priming, the serum source used for the experiment, and the timing of addition and concentration of the cytokines used for expansion. This protocol is relevant for human immunology, vaccine biology and drug development. PMID:24675735

  8. Instructing the instructor: tissue-resident T cells activate innate immunity.

    PubMed

    Slütter, Bram; Harty, John T

    2014-10-01

    A small number of tissue-resident memory T cells (Trm) provide potent protection against infections. Three recent studies by Ariotti et al. (2014), Schenkel et al. (2014a), and Iijima and Iwasaki (2014) report that Trm rapidly produce cytokines after infection and initiate a tissue-wide anti-viral state by instructing innate immune cells.

  9. Profiling T cell activation using single-molecule fluorescence in situ hybridization and flow cytometry.

    PubMed

    Bushkin, Yuri; Radford, Felix; Pine, Richard; Lardizabal, Alfred; Mangura, Bonita T; Gennaro, Maria Laura; Tyagi, Sanjay

    2015-01-15

    Flow cytometric characterization of Ag-specific T cells typically relies on detection of protein analytes. Shifting the analysis to detection of RNA would provide several significant advantages, which we illustrate by developing a new host immunity-based platform for detection of infections. Cytokine mRNAs synthesized in response to ex vivo stimulation with pathogen-specific Ags are detected in T cells with single-molecule fluorescence in situ hybridization followed by flow cytometry. Background from pre-existing in vivo analytes is lower for RNAs than for proteins, allowing greater sensitivity for detection of low-frequency cells. Moreover, mRNA analysis reveals kinetic differences in cytokine expression that are not apparent at the protein level but provide novel insights into gene expression programs expected to define different T cell subsets. The utility of probing immunological memory of infections is demonstrated by detecting T cells that recognize mycobacterial and viral Ags in donors exposed to the respective pathogens. PMID:25505292

  10. Non-genomic immunosuppressive actions of progesterone inhibits PHA-induced alkalinization and activation in T cells.

    PubMed

    Chien, Eileen Jea; Chang, Ching-Pang; Lee, Wen-Feng; Su, Tsung-Hsien; Wu, Chia-Hsun

    2006-09-01

    Progesterone is an endogenous immunomodulator, and can suppress T-cell activation during pregnancy. When analyzed under a genome time scale, the classic steroid receptor pathway does not have any effect on ion fluxes. Therefore, the aim of this study was to investigate whether the non-genomic effects on ion fluxes by progesterone could immunosuppress phytohemagglutinin (PHA)-induced human peripheral T-cell activation. The new findings indicated that, first, only progesterone stimulated both [Ca2+]i elevation and pHi decrease; in contrast, estradiol or testosterone stimulated [Ca2+]i elevation and hydrocortisone or dexamethasone stimulated pHi decrease. Secondly, the [Ca2+]i increase by progesterone was dependent on Ca2+ influx, and the acidification was blocked by Na+/H+ exchange (NHE) inhibitor, 3-methylsulphonyl-4-piperidinobenzoyl, guanidine hydrochloride (HOE-694) but not by 5-(N,N-dimethyl)-amiloride (DMA). Thirdly, progesterone blocked phorbol 12-myristate 13-acetate (PMA) or PHA-induced alkalinization, but PHA did not prevent progesterone-induced acidification. Fourthly, progesterone did not induce T-cell proliferation; however, co-stimulation progesterone with PHA was able to suppress PHA-induced IL-2 or IL-4 secretion and proliferation. When progesterone was applied 72 h after PHA stimulation, progesterone could suppress PHA-induced T-cell proliferation. Finally, immobilization of progesterone by conjugation to a large carrier molecule (BSA) also stimulated a rapid [Ca2+]i elevation, pHi decrease, and suppressed PHA-induced proliferation. These results suggested that the non-genomic effects of progesterone, especially acidification, are exerted via plasma membrane sites and suppress the genomic responses to PHA. Progesterone might act directly through membrane specific nonclassical steroid receptors to cause immunomodulation and suppression of T-cell activation during pregnancy.

  11. Activation of hypoxia-inducible factor 1 in human T-cell leukaemia virus type 1-infected cell lines and primary adult T-cell leukaemia cells

    PubMed Central

    Tomita, Mariko; Semenza, Gregg L.; Michiels, Canine; Matsuda, Takehiro; Uchihara, Jun-Nosuke; Okudaira, Taeko; Tanaka, Yuetsu; Taira, Naoya; Ohshiro, Kazuiku; Mori, Naoki

    2007-01-01

    HTLV-1 (human T-cell leukaemia virus type 1) is the causative agent for ATL (adult T-cell leukaemia). HTLV-1 Tax can activate the PI3K (phosphoinositide 3-kinase)/Akt signalling pathway, which is responsible for survival of HTLV-1-infected T-cells. HIFs (hypoxia-inducible factors) are transcriptional regulators that play a central role in the response to hypoxia. Overexpression of HIF-1α in many cancers is associated with a poor response to treatment and increased patient mortality. Our objectives in the present study were to investigate whether HIF-1 was activated in HTLV-1-infected T-cells and to elucidate the molecular mechanisms of HIF-1 activation by focusing on the PI3K/Akt signalling pathway. We detected a potent pathway that activated HIF-1 in the HTLV-1-infected T-cells under a normal oxygen concentration. Enhanced HIF-1α protein expression and HIF-1 DNA-binding activity were exhibited in HTLV-1-infected T-cell lines. Knockdown of HIF-1α by siRNA (small interfering RNA) suppressed the growth and VEGF (vascular endothelial growth factor) expression of the HTLV-1-infected T-cell line. HIF-1 protein accumulation and transcriptional activity were enhanced by Tax, which was inhibited by dominant-negative Akt. Importantly, mutant forms of Tax that are defective in activation of the PI3K/Akt pathway failed to induce HIF-1 transcriptional activity. The PI3K inhibitor LY294002 suppressed HIF-1α protein expression, HIF-1 DNA-binding and HIF-1 transcriptional activity in HTLV-1-infected T-cell lines. In primary ATL cells, HIF-1α protein levels were strongly correlated with levels of phosphorylated Akt. The results of the present study suggest that PI3K/Akt activation induced by Tax leads to activation of HIF-1. As HIF-1 plays a major role in tumour progression, it may represent a molecular target for the development of novel ATL therapeutics. PMID:17576198

  12. Human regulatory T cells control TCR signaling and susceptibility to suppression in CD4+ T cells.

    PubMed

    Chellappa, Stalin; Lieske, Nora V; Hagness, Morten; Line, Pål D; Taskén, Kjetil; Aandahl, Einar M

    2016-07-01

    Human CD4(+)CD25(hi)FOXP3(+) regulatory T cells maintain immunologic tolerance and prevent autoimmune and inflammatory immune responses. Regulatory T cells undergo a similar activation cycle as conventional CD4(+) T cells upon antigen stimulation. Here, we demonstrate that T cell receptors and costimulation are required to activate the regulatory T cell suppressive function. Regulatory T cells suppressed the T cell receptor signaling in effector T cells in a time-dependent manner that corresponded with inhibition of cytokine production and proliferation. Modulation of the activation level and thereby the suppressive capacity of regulatory T cells imposed distinct T cell receptor signaling signatures and hyporesponsiveness in suppressed and proliferating effector T cells and established a threshold for effector T cell proliferation. The immune suppression of effector T cells was completely reversible upon removal of regulatory T cells. However, the strength of prior immune suppression by regulatory T cells and corresponding T cell receptor signaling in effector T cells determined the susceptibility to suppression upon later reexposure to regulatory T cells. These findings demonstrate how the strength of the regulatory T cell suppressive function determines intracellular signaling, immune responsiveness, and the later susceptibility of effector T cells to immune suppression and contribute to unveiling the complex interactions between regulatory T cells and effector T cells. PMID:26715685

  13. Human immunodeficiency virus (HIV) type 1 Vpr induces differential regulation of T cell costimulatory molecules: Direct effect of Vpr on T cell activation and immune function

    SciTech Connect

    Venkatachari, Narasimhan J.; Majumder, Biswanath; Ayyavoo, Velpandi . E-mail: velpandi@pitt.edu

    2007-02-20

    Human immunodeficiency virus type 1 (HIV-1) viral proteins disrupt the normal host cellular immune pathways thus exploiting the cellular machinery for replication, survival and to escape host immune attack. Here we evaluated the direct effects of HIV-1 Vpr-mediated immune modulation of infected T cells. Vpr specifically downregulated the expression of CD28 and increased the expression of CTLA-4, whereas no significant difference in the expression of CD25 and HLA-DR was observed. Interferon gamma (IFN-{gamma}) production in T cells was evaluated as a measure of the downstream effector functions. Results indicate that Vpr significantly inhibited IFN-{gamma} production and this may, in part, due to Vpr's ability to inhibit the nuclear translocation of NF-{kappa}B, and its transcriptional regulation. Together these results support that HIV-1 Vpr selectively dysregulates the immune functions at multiple levels and exerts its inhibitory effects in the presence of other viral proteins.

  14. Staphylococcus-mediated T-cell activation and spontaneous natural killer cell activity in the absence of major histocompatibility complex class II molecules

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Hoynowski, S. M.; Woods, K. M.; Armstrong, J. W.; Beharka, A. A.; Iandolo, J. J.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    We used major histocompatibility complex class II antigen-deficient transgenic mice to show that in vitro natural killer cell cytotoxicity and T-cell activation by staphylococcal exotoxins (superantigens) are not dependent upon the presence of major histocompatibility complex class II molecules. T cells can be activated by exotoxins in the presence of exogenously added interleukin 1 or 2 or in the presence of specific antibody without exogenously added cytokines.

  15. Staphylococcus-mediated T-cell activation and spontaneous natural killer cell activity in the absence of major histocompatibility complex class II molecules.

    PubMed Central

    Chapes, S K; Hoynowski, S M; Woods, K M; Armstrong, J W; Beharka, A A; Iandolo, J J

    1993-01-01

    We used major histocompatibility complex class II antigen-deficient transgenic mice to show that in vitro natural killer cell cytotoxicity and T-cell activation by staphylococcal exotoxins (superantigens) are not dependent upon the presence of major histocompatibility complex class II molecules. T cells can be activated by exotoxins in the presence of exogenously added interleukin 1 or 2 or in the presence of specific antibody without exogenously added cytokines. PMID:8359928

  16. Constitutive expression of CCR7 directs effector CD8 T cells into the splenic white pulp and impairs functional activity.

    PubMed

    Unsoeld, Heike; Voehringer, David; Krautwald, Stefan; Pircher, Hanspeter

    2004-09-01

    Antigenic stimulation down-regulates CCR7 on effector T cells. To analyze the importance of CCR7 down-regulation, transgenic (tg) mice constitutively expressing CCR7 were generated. CD8 T cells with defined Ag specificity were obtained by breeding CCR7-tg mice with P14 TCR-tg mice specific for lymphocytic choriomeningitis virus. Transgenic CCR7 expression did not impair proliferation of P14.CCR7 T cells induced by lymphocytic choriomeningitis virus infection, but prevented CCR7 down-regulation. Compared with wild-type P14 effector cells, P14.CCR7 effector cells, expressing the CCR7 transgene, were increased in the spleen, but decreased in blood and peripheral tissues. Moreover, P14.CCR7 effector cells localized almost exclusively in the splenic white pulp, whereas P14 effector cells were excluded from splenic white pulp cords and were found preferentially in the red pulp. Functional experiments further revealed that P14.CCR7 effector cells were impaired in rapid viral clearance and in inducing Ag-specific delayed-type hypersensitivity reactions. Thus, the present study demonstrates that down-regulation of CCR7 during CD8 T cell activation is important to release effector cells from the white pulp of the spleen, and highlights the importance of effector cell localization in providing rapid immunity. PMID:15322160

  17. The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells

    PubMed Central

    Ichiyama, Kenji; Chen, Tingting; Wang, Xiaohu; Yan, Xiaowei; Kim, Byung-Seok; Tanaka, Shinya; Ndiaye-Lobry, Delphine; Deng, Yuhua; Zou, Yanli; Zheng, Pan; Tian, Qiang; Aifantis, Iannis; Wei, Lai; Dong, Chen

    2015-01-01

    Summary Epigenetic regulation of lineage-specific genes is important for the differentiation and function of T cell. Ten-eleven translocation (Tet) proteins catalyze 5-methylcytosine (5mC) conversion to 5-hydroxymethylcytosine (5hmC) to mediate DNA demethylation. However, the roles of Tet proteins in the immune response are unknown. Here, we characterized the genome-wide distribution of 5hmC in CD4+ T cells and found 5hmC marks putative regulatory elements in signature genes associated with effector cell differentiation. Moreover, Tet2 protein was recruited to 5hmC-containing regions, dependent on lineage-specific transcription factors. Deletion of the Tet2 gene in T cells decreased their cytokine expression, associated with reduced p300 recruitment. In vivo, Tet2 plays a critical role in the control of cytokine gene expression in autoimmune disease. Collectively, our findings suggest that Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells. PMID:25862091

  18. Granulocyte colony-stimulating factor impairs CD8(+) T cell functionality by interfering with central activation elements.

    PubMed

    Bunse, C E; Tischer, S; Lahrberg, J; Oelke, M; Figueiredo, C; Blasczyk, R; Eiz-Vesper, B

    2016-07-01

    Besides mobilizing stem cells into the periphery, granulocyte colony-stimulating factor (G-CSF) has been shown to influence various types of innate and adaptive immune cells. For example, it impairs the effector function of cytotoxic T lymphocytes (CTLs). It is assumed that this effect is mediated indirectly by monocytes, regulatory T cells and immunomodulatory cytokines influenced by G-CSF. In this study, isolated G-CSF-treated CD8(+) T cells were stimulated antigen-dependently with peptide-major histocompatibility complex (pMHC)-coupled artificial antigen-presenting cells (aAPCs) or stimulated antigen-independently with anti-CD3/CD28 stimulator beads. By measuring the changes in interferon (IFN)-γ and granzyme B expression at the mRNA and protein level, we showed for the first time that G-CSF has a direct effect on CD8(+) CTLs, which was confirmed based on the reduced production of IFN-γ and granzyme B by the cytotoxic T cell line TALL-104 after G-CSF treatment. By investigating further elements affected by G-CSF in CTLs from stem cell donors and untreated controls, we found a decreased phosphorylation of extracellular-regulated kinase (ERK)1/2, lymphocyte-specific protein tyrosine kinase (Lck) and CD3ζ after G-CSF treatment. Additionally, miRNA-155 and activation marker expression levels were reduced. In summary, our results show that G-CSF directly influences the effector function of cytotoxic CD8(+) T cells and affects various elements of T cell activation. PMID:26990855

  19. Epigenetic regulation of Kcna3-encoding Kv1.3 potassium channel by cereblon contributes to regulation of CD4+ T-cell activation

    PubMed Central

    Kang, Jung-Ah; Park, Sang-Heon; Jeong, Sang Phil; Han, Min-Hee; Lee, Cho-Rong; Lee, Kwang Min; Kim, Namhee; Song, Mi-Ryoung; Choi, Murim; Ye, Michael; Jung, Guhung; Lee, Won-Woo; Eom, Soo Hyun; Park, Chul-Seung; Park, Sung-Gyoo

    2016-01-01

    The role of cereblon (CRBN) in T cells is not well understood. We generated mice with a deletion in Crbn and found cereblon to be an important antagonist of T-cell activation. In mice lacking CRBN, CD4+ T cells show increased activation and IL-2 production on T-cell receptor stimulation, ultimately resulting in increased potassium flux and calcium-mediated signaling. CRBN restricts T-cell activation via epigenetic modification of Kcna3, which encodes the Kv1.3 potassium channel required for robust calcium influx in T cells. CRBN binds directly to conserved DNA elements adjacent to Kcna3 via a previously uncharacterized DNA-binding motif. Consequently, in the absence of CRBN, the expression of Kv1.3 is derepressed, resulting in increased Kv1.3 expression, potassium flux, and CD4+ T-cell hyperactivation. In addition, experimental autoimmune encephalomyelitis in T-cell–specific Crbn-deficient mice was exacerbated by increased T-cell activation via Kv1.3. Thus, CRBN limits CD4+ T-cell activation via epigenetic regulation of Kv1.3 expression. PMID:27439875

  20. microRNA-mediated regulation of mTOR complex components facilitates discrimination between activation and anergy in CD4 T cells

    PubMed Central

    Marcais, Antoine; Blevins, Rory; Graumann, Johannes; Feytout, Amelie; Dharmalingam, Gopuraja; Carroll, Thomas; Amado, Inês F.; Bruno, Ludovica; Lee, Keunwook; Walzer, Thierry; Mann, Matthias; Freitas, Antonio A.; Boothby, Mark; Fisher, Amanda G.

    2014-01-01

    T cell receptor (TCR) signals can elicit full activation with acquisition of effector functions or a state of anergy. Here, we ask whether microRNAs affect the interpretation of TCR signaling. We find that Dicer-deficient CD4 T cells fail to correctly discriminate between activating and anergy-inducing stimuli and produce IL-2 in the absence of co-stimulation. Excess IL-2 production by Dicer-deficient CD4 T cells was sufficient to override anergy induction in WT T cells and to restore inducible Foxp3 expression in Il2-deficient CD4 T cells. Phosphorylation of Akt on S473 and of S6 ribosomal protein was increased and sustained in Dicer-deficient CD4 T cells, indicating elevated mTOR activity. The mTOR components Mtor and Rictor were posttranscriptionally deregulated, and the microRNAs Let-7 and miR-16 targeted the Mtor and Rictor mRNAs. Remarkably, returning Mtor and Rictor to normal levels by deleting one allele of Mtor and one allele of Rictor was sufficient to reduce Akt S473 phosphorylation and to reduce co-stimulation–independent IL-2 production in Dicer-deficient CD4 T cells. These results show that microRNAs regulate the expression of mTOR components in T cells, and that this regulation is critical for the modulation of mTOR activity. Hence, microRNAs contribute to the discrimination between T cell activation and anergy. PMID:25311506

  1. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection

    PubMed Central

    Tatituri, Raju V.V.; Watts, Gerald F.M.; Bhowruth, Veemal; Leadbetter, Elizabeth A.; Barton, Nathaniel; Cohen, Nadia R.; Hsu, Fong-Fu; Besra, Gurdyal S.

    2011-01-01

    Invariant natural killer T cells (iNKT cells) are critical for host defense against a variety of microbial pathogens. However, the central question of how iNKT cells are activated by microbes has not been fully explained. The example of adaptive MHC-restricted T cells, studies using synthetic pharmacological α-galactosylceramides, and the recent discovery of microbial iNKT cell ligands have all suggested that recognition of foreign lipid antigens is the main driver for iNKT cell activation during infection. However, when we compared the role of microbial antigens versus innate cytokine-driven mechanisms, we found that iNKT cell interferon-γ production after in vitro stimulation or infection with diverse bacteria overwhelmingly depended on toll-like receptor–driven IL-12. Importantly, activation of iNKT cells in vivo during infection with Sphingomonas yanoikuyae or Streptococcus pneumoniae, pathogens which are known to express iNKT cell antigens and which require iNKT cells for effective protection, also predominantly depended on IL-12. Constitutive expression of high levels of IL-12 receptor by iNKT cells enabled instant IL-12–induced STAT4 activation, demonstrating that among T cells, iNKT cells are uniquely equipped for immediate, cytokine-driven activation. These findings reveal that innate and cytokine-driven signals, rather than cognate microbial antigen, dominate in iNKT cell activation during microbial infections. PMID:21555485

  2. Four molecular pathways of T cell adhesion to endothelial cells: roles of LFA-1, VCAM-1, and ELAM-1 and changes in pathway hierarchy under different activation conditions

    PubMed Central

    1991-01-01

    T cell adhesion to endothelium is critical to lymphocyte recirculation and influx into sites of inflammation. We have systematically analyzed the role of four receptor/ligand interactions that mediate adhesion of peripheral human CD4+ T cells to cultured human umbilical vein endothelial cells (HUVEC): T cell LFA-1 binding to ICAM-1 and an alternative ligand ("ICAM-X"), T cell VLA-4 binding to VCAM-1, and T cell binding to ELAM-1. Contributions of these four pathways depend on the activation state of both the T cell and HUVEC, and the differentiation state of the T cell. ELAM-1 plays a significant role in mediating adhesion of resting CD4+ T cells to activated HUVEC. LFA-1 adhesion dominates with PMA-activated T cells but the strength and predominant LFA-1 ligand is determined by the activation state of the HUVEC; while ICAM-1 is the dominant ligand on IL-1-induced HUVEC, "ICAM- X" dominates binding to uninduced HUVEC. Adhesion via VLA-4 depends on induction of its ligand VCAM-1 on activated HUVEC; PMA activation of T cells augments VLA-4-mediated adhesion, both in the model of T/HUVEC binding and in a simplified model of T cell adhesion to VCAM-1- transfected L cells. Unlike LFA-1 and VLA-4, ELAM-1-mediated adhesion is not increased by T cell activation. Differential expression of adhesion molecules on CD4+ T cell subsets understood to be naive and memory cells also regulates T/HUVEC adhesion. Naive T cell adhesion to HUVEC is mediated predominantly by LFA-1 with little or no involvement of the VLA-4 and ELAM-1 pathways. In contrast, memory T cells bind better to HUVEC and utilize all four pathways. These studies demonstrate that there are at least four molecular pathways mediating T/HUVEC adhesion and that the dominance/hierarchy of these pathways varies dramatically with the activation state of the interacting cells and the differentiation state of the T cell. PMID:1710227

  3. Combined use of an immunotoxin and cyclosporine to prevent both activated and quiescent peripheral blood T cells from producing type 1 human immunodeficiency virus.

    PubMed Central

    Bell, K D; Ramilo, O; Vitetta, E S

    1993-01-01

    Two different populations of infected T cells are present in human immunodeficiency virus (HIV)-infected individuals: activated cells that produce virions and quiescent cells that harbor the viral genome but are unable to produce virus unless they are activated. Using an in vitro model of acute HIV infection, we have evaluated the effect of depleting activated T cells with an immunotoxin and subsequently inhibiting activation of quiescent T cells with an immunosuppressive agent. CD25 (Tac, p55), the alpha chain of the interleukin 2 receptor, is expressed on activated, but not quiescent, T cells. An anti-CD25-ricin A chain immunotoxin eliminated activated, CD25+ HIV-infected cells and, thereby, inhibited viral production by these cells. Subsequent addition of cyclosporine to the residual CD25- cells prevented their activation and thereby suppressed their ability to produce virus and to propagate the infection to uninfected T cells. Images PMID:8434001

  4. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4⁺ T cells.

    PubMed

    Arbore, Giuseppina; West, Erin E; Spolski, Rosanne; Robertson, Avril A B; Klos, Andreas; Rheinheimer, Claudia; Dutow, Pavel; Woodruff, Trent M; Yu, Zu Xi; O'Neill, Luke A; Coll, Rebecca C; Sher, Alan; Leonard, Warren J; Köhl, Jörg; Monk, Pete; Cooper, Matthew A; Arno, Matthew; Afzali, Behdad; Lachmann, Helen J; Cope, Andrew P; Mayer-Barber, Katrin D; Kemper, Claudia

    2016-06-17

    The NLRP3 inflammasome controls interleukin-1β maturation in antigen-presenting cells, but a direct role for NLRP3 in human adaptive immune cells has not been described. We found that the NLRP3 inflammasome assembles in human CD4(+) T cells and initiates caspase-1-dependent interleukin-1β secretion, thereby promoting interferon-γ production and T helper 1 (T(H)1) differentiation in an autocrine fashion. NLRP3 assembly requires intracellular C5 activation and stimulation of C5a receptor 1 (C5aR1), which is negatively regulated by surface-expressed C5aR2. Aberrant NLRP3 activity in T cells affects inflammatory responses in human autoinflammatory disease and in mouse models of inflammation and infection. Our results demonstrate that NLRP3 inflammasome activity is not confined to "innate immune cells" but is an integral component of normal adaptive T(H)1 responses. PMID:27313051

  5. Murine lymph node-derived stromal cells effectively support survival but induce no activation/proliferation of peripheral resting T cells in vitro

    PubMed Central

    Zhou, Yan-wen; Aritake, Sayoko; Tri Endharti, Agustina; Wu, Jianghong; Hayakawa, Akemi; Nakashima, Izumi; Suzuki, Haruhiko

    2003-01-01

    Little is known about the homeostatic mechanisms by which the levels of peripheral lymphocytes are maintained. The survival of naïve T cells in vivo must be maintained by some factors that have not been characterized in an in vitro culture system. In this study, we established a culture system of stromal cells derived from murine lymph nodes and investigated the action of the stromal cells in supporting the survival of resting T cells in vitro. Most of the T cells cocultured with the stromal cells did not die, and the supernatant of cultured stromal cells increase the viability of T cells. This T-cell survival-supporting activity was maintained for more than 7 days. Although interleukin (IL)-4, IL-6, IL-7, and interferon-β also rescued peripheral T cells from spontaneous cell death, medium-soluble and heat-sensitive factor(s) derived from the stromal cells supported the survival of T cells more effectively and for a longer time than did these cytokines. T cells maintained in the culture system with the stromal cells appeared to remain in a resting G0/G1 state and did not show remarkable DNA synthesis. From these results, it is presumed that some soluble factor(s) other than the tested cytokines that have been identified as supporting T-cell survival are produced from lymph node stromal cells. These factor(s) play an important role in maintenance of resting T cells. PMID:12871215

  6. SHP2-interacting Transmembrane Adaptor Protein (SIT), A Novel Disulfide-linked Dimer Regulating Human T Cell Activation

    PubMed Central

    Marie-Cardine, Anne; Kirchgessner, Henning; Bruyns, Eddy; Shevchenko, Andrej; Mann, Matthias; Autschbach, Frank; Ratnofsky, Sheldon; Meuer, Stefan; Schraven, Burkhart

    1999-01-01

    T lymphocytes express several low molecular weight transmembrane adaptor proteins that recruit src homology (SH)2 domain–containing intracellular molecules to the cell membrane via tyrosine-based signaling motifs. We describe here a novel molecule of this group termed SIT (SHP2 interacting transmembrane adaptor protein). SIT is a d