Science.gov

Sample records for activated transforming growth

  1. Transforming growth factor-beta requires its target plasminogen activator inhibitor-1 for cytostatic activity.

    PubMed

    Kortlever, Roderik M; Nijwening, Jeroen H; Bernards, René

    2008-09-01

    The cytokine transforming growth factor beta (TGFbeta) has strong antiproliferative activity in most normal cells but contributes to tumor progression in the later stages of oncogenesis. It is not fully understood which TGFbeta target genes are causally involved in mediating its cytostatic activity. We report here that suppression of the TGFbeta target gene encoding plasminogen activator inhibitor-1 (PAI-1) by RNA interference leads to escape from the cytostatic activity of TGFbeta both in human keratinocytes (HaCaTs) and primary mouse embryo fibroblasts. Consistent with this, PAI-1 knock-out mouse embryo fibroblasts are also resistant to TGFbeta growth arrest. Conversely, we show that ectopic expression of PAI-1 in proliferating HaCaT cells induces a growth arrest. PAI-1 knockdown does not interfere with canonical TGFbeta signaling as judged by SMAD phosphorylation and induction of bona fide TGFbeta target genes. Instead, knockdown of PAI-1 results in sustained activation of protein kinase B. Significantly, we find that constitutive protein kinase B activity leads to evasion of the growth-inhibitory action of TGFbeta. Our data are consistent with a model in which induction of PAI-1 by TGFbeta is critical for the induction of proliferation arrest.

  2. Sustained activation of fibroblast transforming growth factor-beta/Smad signaling in a murine model of scleroderma.

    PubMed

    Takagawa, Shinsuke; Lakos, Gabriella; Mori, Yasuji; Yamamoto, Toshiyuki; Nishioka, Kiyoshi; Varga, John

    2003-07-01

    Transforming growth factor-beta is responsible for triggering a cascade of events leading to fibrosis in scleroderma. The Smads are intracellular signal transducers recently shown to mediate fibroblast activation and other profibrotic responses elicited by transforming growth factor-betain vitro. To understand better the involvement of Smads in the pathogenesis of fibrosis, we examined Smad expression and activation in situ in a murine model of scleroderma. Bleomycin injections induced striking dermal infiltration with macrophages by 3 d, and progressive fibrosis by 2 wk. Infiltrating macrophages and resident fibroblasts expressed Smad3, the positive mediator for transforming growth factor-beta responses. Importantly, in bleomycin-injected skin, fibroblasts showed predominantly nuclear localization of Smad3 and intense staining for phospho-Smad2/3. Furthermore, phosphorylated Smad2/3 in fibroblasts was detected even after the resolution of inflammation. Expression of Smad7, the endogenous inhibitor of transforming growth factor-beta/Smad signaling, was strongly induced in dermal cells by transforming growth factor-beta, but not by bleomycin injections. Collectively, these results indicate that bleomycin-induced murine scleroderma is associated with rapid and sustained induction of transforming growth factor-beta/Smad signaling in resident dermal fibroblasts. Despite apparent activation of the intracellular transforming growth factor-beta signaling pathway in the lesional dermis, the expression of transforming growth factor-beta-inducible Smad7 was not upregulated. In light of the critical function of Smad7 as an endogenous inhibitor of Smad signaling that restricts the duration and magnitude of transforming growth factor-beta responses, and as a mediator of apoptosis, relative Smad7 deficiency observed in the present studies may account for sustained activation of transforming growth factor-beta/Smad signaling in lesional tissues. These findings raise the

  3. Immunocytochemical localization of latent transforming growth factor-beta1 activation by stimulated macrophages

    NASA Technical Reports Server (NTRS)

    Chong, H.; Vodovotz, Y.; Cox, G. W.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1999-01-01

    Transforming growth factor-beta1 (TGF-beta) is secreted in a latent form consisting of mature TGF-beta noncovalently associated with its amino-terminal propeptide, which is called latency associated peptide (LAP). Biological activity depends upon the release of TGF-beta from the latent complex following extracellular activation, which appears to be the key regulatory mechanism controlling TGF-beta action. We have identified two events associated with latent TGF-beta (LTGF-beta) activation in vivo: increased immunoreactivity of certain antibodies that specifically detect TGF-beta concomitant with decreased immunoreactivity of antibodies to LAP. Macrophages stimulated in vitro with interferon-gamma and lipopolysaccharide reportedly activate LTGF-beta via cell membrane-bound protease activity. We show through dual immunostaining of paraformaldehyde-fixed macrophages that such physiological TGF-beta activation is accompanied by a loss of LAP immunoreactivity with concomitant revelation of TGF-beta epitopes. The induction of TGF-beta immunoreactivity colocalized with immunoreactive betaglycan/RIII in activated macrophages, suggesting that LTGF-beta activation occurs on the cell surface. Confocal microscopy of metabolically active macrophages incubated with antibodies to TGF-beta and betaglycan/RIII prior to fixation supported the localization of activation to the cell surface. The ability to specifically detect and localize LTGF-beta activation provides an important tool for studies of its regulation.

  4. Redox-mediated activation of latent transforming growth factor-beta 1

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Dix, T. A.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    Transforming growth factor beta 1 (TGF beta) is a multifunctional cytokine that orchestrates response to injury via ubiquitous cell surface receptors. The biological activity of TGF beta is restrained by its secretion as a latent complex (LTGF beta) such that activation determines the extent of TGF beta activity during physiological and pathological events. TGF beta action has been implicated in a variety of reactive oxygen-mediated tissue processes, particularly inflammation, and in pathologies such as reperfusion injury, rheumatoid arthritis, and atherosclerosis. It was recently shown to be rapidly activated after in vivo radiation exposure, which also generates reactive oxygen species (ROS). In the present studies, the potential for redox-mediated LTGF beta activation was investigated using a cell-free system in which ROS were generated in solution by ionizing radiation or metal ion-catalyzed ascorbate reaction. Irradiation (100 Gray) of recombinant human LTGF beta in solution induced 26% activation compared with that elicited by standard thermal activation. Metal-catalyzed ascorbate oxidation elicited extremely efficient recombinant LTGF beta activation that matched or exceeded thermal activation. The efficiency of ascorbate activation depended on ascorbate concentrations and the presence of transition metal ions. We postulate that oxidation of specific amino acids in the latency-conferring peptide leads to a conformation change in the latent complex that allows release of TGF beta. Oxidative activation offers a novel route for the involvement of TGF beta in tissue processes in which ROS are implicated and endows LTGF beta with the ability to act as a sensor of oxidative stress and, by releasing TGF beta, to function as a signal for orchestrating the response of multiple cell types. LTGF beta redox sensitivity is presumably directed toward recovery of homeostasis; however, oxidation may also be a mechanism of LTGF beta activation that can be deleterious during

  5. Immunohistochemical detection of active transforming growth factor-beta in situ using engineered tissue

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Ehrhart, E. J.; Kalia, M.; Jirtle, R.; Flanders, K.; Tsang, M. L.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    The biological activity of transforming growth factor-beta 1 (TGF-beta) is governed by dissociation from its latent complex. Immunohistochemical discrimination of active and latent TGF-beta could provide insight into TGF-beta activation in physiological and pathological processes. However, evaluation of immunoreactivity specificity in situ has been hindered by the lack of tissue in which TGF-beta status is known. To provide in situ analysis of antibodies to differentiate between these functional forms, we used xenografts of human tumor cells modified by transfection to overexpress latent TGF-beta or constitutively active TGF-beta. This comparison revealed that, whereas most antibodies did not differentiate between TGF-beta activation status, the immunoreactivity of some antibodies was activation dependent. Two widely used peptide antibodies to the amino-terminus of TGF-beta, LC(1-30) and CC(1-30) showed marked preferential immunoreactivity with active TGF-beta versus latent TGF-beta in cryosections. However, in formalin-fixed, paraffin-embedded tissue, discrimination of active TGF-beta by CC(1-30) was lost and immunoreactivity was distinctly extracellular, as previously reported for this antibody. Similar processing-dependent extracellular localization was found with a neutralizing antibody raised to recombinant TGF-beta. Antigen retrieval recovered cell-associated immunoreactivity of both antibodies. Two antibodies to peptides 78-109 showed mild to moderate preferential immunoreactivity with active TGF-beta only in paraffin sections. LC(1-30) was the only antibody tested that discriminated active from latent TGF-beta in both frozen and paraffin-embedded tissue. Thus, in situ discrimination of active versus latent TGF-beta depends on both the antibody and tissue preparation. We propose that tissues engineered to express a specific form of a given protein provide a physiological setting in which to evaluate antibody reactivity with specific functional forms of a

  6. Overexpressed homeobox B9 regulates oncogenic activities by transforming growth factor-β1 in gliomas

    SciTech Connect

    Fang, Liping; Xu, Yinghui; Zou, Lijuan

    2014-03-28

    Highlights: • HOXB9 is overexpressed in gliomas. • HOXB9 over expression had shorter survival time than down expression in gliomas. • HOXB9 stimulated the proliferation, migration and sphere formation of glioma cells. • Activation of TGF-β1 contributed to HOXB9-induced oncogenic activities. - Abstract: Glioma is the leading cause of deaths related to tumors in the central nervous system. The mechanisms of gliomagenesis remain elusive to date. Homeobox B9 (HOXB9) has a crucial function in the regulation of gene expression and cell survival, but its functions in glioma formation and development have yet to be elucidated. This study showed that HOXB9 expression in glioma tissues was significantly higher than that in nontumor tissues. Higher HOXB9 expression was also significantly associated with advanced clinical stage in glioma patients. HOXB9 overexpression stimulated the proliferation, migration, and sphere formation of glioma cells, whereas HOXB9 knockdown elicited an opposite effect. HOXB9 overexpression also increased the tumorigenicity of glioma cells in vivo. Moreover, the activation of transforming growth factor-β1 contributed to HOXB9-induced oncogenic activities. HOXB9 could be used as a predictable biomarker to be detected in different pathological and histological subtypes in glioma for diagnosis or prognosis.

  7. Diosgenin attenuates hepatic stellate cell activation through transforming growth factor-β/Smad signaling pathway

    PubMed Central

    Xie, Wei-Lin; Jiang, Rong; Shen, Xiao-Lu; Chen, Zhi-Yu; Deng, Xiao-Ming

    2015-01-01

    Activation of hepatic stellate cells (HSC) plays a pivotal role in the development of hepatic fibrosis. Transforming growth factor-β1 (TGF-β1) is considered to be the main stimuli factor responsible for the activation of HSC. Diosgenin is a steroidal saponin found in several plants including Solanum and Dioscorea species, and it inhibited high glucose-induced renal tubular fibrosis. However, the effects of diosgenin against hepatic fibrosis remain elusive. Therefore, in this study, we investigated the effects of diosgenin on TGF-β1-induced HSCs and elucidate the possible mechanism of its anti-fibrotic effect. Our results demonstrated that diosgenin inhibited TGF-β1-induced HSC proliferation, reduced the expression of collagen I and α-smooth muscle actin (α-SMA), as well as the expression of TGF-β receptor I (TGF-β RI) and II. Moreover, diosgenin suppressed TGF-β1-induced phosphorylation of Smad3 in HSCs. In conclusion, our data demonstrate that diosgenin inhibited HSC-T6 cell proliferation and activation, at least in part, via the TGF-β1/Smad signaling pathway. These results provide that diosgenin may have potential to treat liver fibrosis. PMID:26884947

  8. Diosgenin attenuates hepatic stellate cell activation through transforming growth factor-β/Smad signaling pathway.

    PubMed

    Xie, Wei-Lin; Jiang, Rong; Shen, Xiao-Lu; Chen, Zhi-Yu; Deng, Xiao-Ming

    2015-01-01

    Activation of hepatic stellate cells (HSC) plays a pivotal role in the development of hepatic fibrosis. Transforming growth factor-β1 (TGF-β1) is considered to be the main stimuli factor responsible for the activation of HSC. Diosgenin is a steroidal saponin found in several plants including Solanum and Dioscorea species, and it inhibited high glucose-induced renal tubular fibrosis. However, the effects of diosgenin against hepatic fibrosis remain elusive. Therefore, in this study, we investigated the effects of diosgenin on TGF-β1-induced HSCs and elucidate the possible mechanism of its anti-fibrotic effect. Our results demonstrated that diosgenin inhibited TGF-β1-induced HSC proliferation, reduced the expression of collagen I and α-smooth muscle actin (α-SMA), as well as the expression of TGF-β receptor I (TGF-β RI) and II. Moreover, diosgenin suppressed TGF-β1-induced phosphorylation of Smad3 in HSCs. In conclusion, our data demonstrate that diosgenin inhibited HSC-T6 cell proliferation and activation, at least in part, via the TGF-β1/Smad signaling pathway. These results provide that diosgenin may have potential to treat liver fibrosis. PMID:26884947

  9. Activity-dependent release of transforming growth factor-beta in a neuronal network in vitro.

    PubMed

    Lacmann, A; Hess, D; Gohla, G; Roussa, E; Krieglstein, K

    2007-12-12

    For neurotrophins and also for members of the transforming growth factor beta (TGF-beta) family an activity-dependent regulation of synthesis and release has been proposed. Together with the observation that the secretion of neurotransmitters is initiated by neurotrophic factors, it is reasonable to assume that they might act as retrograde modulators enhancing the efficacy and stabilization of synapses. In the present study, we have tested this hypothesis and studied the release and regulation of TGF-beta in vitro using mouse primary hippocampal neurons at embryonic day E16.5 as model. We show that neuronal activity regulates TGF-beta release and TGF-beta expression in vitro. Treatment of the cultures with KCl, 3-veratroylveracevine (veratridine), glutamate or carbamylcholine chloride (carbachol) increased the levels of secreted TGF-beta, as assessed by the MLEC/plasminogen activator inhibitor (PAI)-luciferase-assay, whereas TGF-beta release stimulated by KCl or veratridine was reduced in the presence of tetrodotoxin or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). In addition, application of glutamate significantly upregulated expression of TGF-beta2 and TGF-beta3 in the culture. Notably, KCl stimulation caused Smad (composite term from SMA (C. elegans) and MAD=mothers against dpp (Drosophila)) translocation into the nucleus and upregulated TGF-beta inducible early gene (Tieg1) expression, demonstrating that activity-dependent released TGF-beta may exert autocrine actions and thereby activate the TGF-beta-dependent signaling pathway. Together, these results suggest an activity-dependent release and gene transcription of TGF-beta from mouse hippocampal neurons in vitro as well as subsequent autocrine functions of the released TGF-beta within the hippocampal network.

  10. The recombinant proregion of transforming growth factor beta1 (latency-associated peptide) inhibits active transforming growth factor beta1 in transgenic mice.

    PubMed

    Böttinger, E P; Factor, V M; Tsang, M L; Weatherbee, J A; Kopp, J B; Qian, S W; Wakefield, L M; Roberts, A B; Thorgeirsson, S S; Sporn, M B

    1996-06-11

    All three isoforms of transforming growth factors beta (TGF-betal, TGF-beta2, and TGF-beta3) are secreted as latent complexes and activated extracellularly, leading to the release of the mature cytokines from their noncovalently associated proregions, also known as latency-associated peptides (LAPs). The LAP region of TGF-beta1 was expressed in a baculovirus expression system and purified to homogeneity. In vitro assays of growth inhibition and gene induction mediated by TGF-beta3 demonstrate that recombinant TGF-beta1 LAP is a potent inhibitor of the activities of TGF-betal, -beta2, and -beta3. Effective dosages of LAP for 50% neutralization of TGF-beta activities range from 4.7- to 80-fold molar excess depending on the TGF-beta isoform and activity examined. Using 125I-labeled LAP, we show that the intraperitoneal application route is effective for systemic administration of LAP. Comparison of concentrations of LAP in tissues shows a homogenous pattern in most organs with the exception of heart and muscle, in which levels of LAP are 4- to 8-fold lower. In transgenic mice with elevated hepatic levels of bioactive TGF-betal, treatment with recombinant LAP completely reverses suppression of the early proliferative response induced by TGF-beta1 in remnant livers after partial hepatectomy. The results suggest that recombinant LAP is a potent inhibitor of bioactive TGF-beta both in vitro and in vivo, after intraperitoneal administration. Recombinant LAP should be a useful tool for novel approaches to study and therapeutically modulate pathophysiological processes mediated by TGF-beta3.

  11. Amyloid beta-peptide possesses a transforming growth factor-beta activity.

    PubMed

    Huang, S S; Huang, F W; Xu, J; Chen, S; Hsu, C Y; Huang, J S

    1998-10-16

    Amyloid beta-peptide (Abeta) of 39-42 amino acid residues is a major constituent of Alzheimer's disease neurite plaques. Abeta aggregates (fibrils) are believed to be responsible for neuronal damage and dysfunction, as well as microglia and astrocyte activation in disease lesions by multiple mechanisms. Since Abeta aggregates possess the multiple valencies of an FAED motif (20th to 23rd amino acid residues), which resembles the putative transforming growth factor-beta (TGF-beta) active site motif, we hypothesize that Abeta monomers and Abeta aggregates may function as TGF-beta antagonists and partial agonists, analogous to previously described monovalent and multivalent TGF-beta peptide antagonists and agonists (Huang, S. S., Liu, Q., Johnson, F. E., Konish, Y., and Huang, J. S. (1997) J. Biol. Chem. 272, 27155-27159). Here, we report that the Abeta monomer, Abeta-(1-40) and its fragment, containing the motif inhibit radiolabeled TGF-beta binding to cell-surface TGF-beta receptors in mink lung epithelial cells (Mv1Lu cells). Abeta-(1-40)-bovine serum albumin conjugate (Abeta-(1-40)-BSA), a multivalent synthetic analogue of Abeta aggregates, exhibited cytotoxicity toward bovine cerebral endothelial cells and rat post-mitotic differentiated hippocampal neuronal cells (H19-7 cells) and inhibitory activities of radiolabeled TGF-beta binding to TGF-beta receptors and TGF-beta-induced plasminogen activator inhibitor-1 expression, that were approximately 100-670 times more potent than those of Abeta-(1-40) monomers. At less than micromolar concentrations, Abeta-(1-40)-BSA but not Abeta-(1-40) monomers inhibited proliferation of Mv1Lu cells. Since TGF-beta is an organizer of responses to neurodegeneration and is also found in neurite plaques, the TGF-beta antagonist and partial agonist activities of Abeta monomers and aggregates may play an important role in the pathogenesis of the disease.

  12. Inhibition of fatty acid oxidation activates transforming growth factor-beta in cerebrospinal fluid and decreases spontaneous motor activity.

    PubMed

    Fujikawa, Teppei; Fujita, Ryo; Iwaki, Yoko; Matsumura, Shigenobu; Fushiki, Tohru; Inoue, Kazuo

    2010-10-01

    We have previously reported that transforming growth factor (TGF)-beta in the cerebrospinal fluid (CSF) is involved in the mechanism underlying the regulation of spontaneous motor activity (SMA) by the central nervous system after exercise. However, it remained unclear what physiological condition triggers the activation of TGF-beta. We hypothesized that the shortage of energy derived from fatty acid (FA) oxidation observed in the early phase of exercise activated TGF-beta in the CSF. To test this hypothesis, we investigated whether mercaptoacetate (MA), an inhibitor of FA oxidation, could induce an activation of TGF-beta in the CSF and a decrease in SMA. Intraperitoneal (i.p.) administration of MA activated TGF-beta in CSF in rats and depressed SMA; 2-deoxyglucose, an inhibitor of carbohydrate oxidation, on the other hand, depressed SMA but failed to activate CSF TGF-beta. Intracisternal administration of anti-TGF-beta antibody abolished the depressive effect of MA on SMA. We also found that the depression of SMA and the activation of TGF-beta in the CSF by i.p. MA administration were eliminated by vagotomy. Our data suggest that TGF-beta in the CSF is activated by the inhibition of FA oxidation via the vagus nerve and that this subsequently induces depression of SMA.

  13. Growth habit and photo-synthetic activity of shoot cultures of Medicago sativa L. transformed with the oryzacystatin II gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In vitro maintained shoot cultures of alfalfa (Medicago sativa L. cv. Zajeÿarska 83) that were transformed with the oryzacystatin II (OCII) gene and propagated on growth regulator-free medium were subjected to analysis of morphological characteristics and photosynthetic activity. The most striking f...

  14. Production of Gastrointestinal Tumors in Mice by Modulating Latent Transforming Growth Factor Beta 1 Activation

    PubMed Central

    Shibahara, Kotaro; Ota, Mitsuhiko; Horiguchi, Masahito; Yoshinaga, Keiji; Melamed, Jonathan; Rifkin, Daniel B

    2012-01-01

    Transforming growth factor-β (TGF-β) and its signaling pathways are important mediators in the suppression of cancers of the gastrointestinal (GI) tract. TGF-β is released from cells in a latent complex consisting of TGF-β, the TGF-β propeptide (LAP) and a latent TGF-β binding protein (LTBP). We previously generated mice in which the LTBP-binding cysteine residues in LAP TGF-β1 were mutated to serine precluding covalent interactions with LTBP. These Tgfb1C33S/C33S mice develop multiorgan inflammation and tumors consistent with reduced TGF-β1 activity. To test whether further reduction in active TGF-β levels would yield additional tumors and a phenotype more similar to Tgfb1-/- mice, we generated mice that express TGF-β1C33S and are deficient in either integrin β8 or TSP-1, known activators of latent TGF-β1. In addition we generated mice that have one mutant allele and one null allele at the Tgfb1 locus, reasoning that these mice should synthesize half the total amount of TGF-β1 as Tgfb1C33S/C33S mice and the amount of active TGF-β1 would be correspondingly decreased compared to Tgfb1C33S/C33S mice. These compound mutant mice displayed more severe inflammation and higher tumor numbers than the parental Tgfb1C33S/C33S animals. The level of active TGF-β1 in compound mutant mice appeared to be decreased compared to Tgfb1C33S/C33S mice as determined from analyses of surrogate markers of active TGF-β, such as P-Smad2, C-Myc, KI-67, and markers of cell cycle traverse. We conclude that these mutant mice provide a useful system for modulating TGF-β levels in a manner that determines tumor number and inflammation within the GI tract. PMID:23117884

  15. Invasive candidiasis stimulates hepatocyte and monocyte production of active transforming growth factor beta.

    PubMed

    Letterio, J J; Lehrnbecher, T; Pollack, G; Walsh, T J; Chanock, S J

    2001-08-01

    Candida albicans is an opportunistic fungal pathogen and a major cause of morbidity and mortality in patients with compromised immune function. The cytokine response to tissue invasion by C. albicans can influence the differentiation and function of lymphocytes and other mononuclear cells that are critical components of the host response. While the production of transforming growth factor beta (TGF-beta) has been documented in mice infected with C. albicans and is known to suppress phagocyte function, the cellular source and role of this cytokine in the pathogenesis of systemic candidiasis are not well understood. We have investigated the source of production of TGF-beta by immunohistochemical studies in tissue samples from patients with an uncommon complication of lymphoreticular malignancy, chronic disseminated candidiasis (CDC), and from a neutropenic-rabbit model of CDC. Liver biopsy specimens from patients with documented CDC demonstrated intense staining for extracellular matrix-associated TGF-beta1 within inflammatory granulomas, as well as staining for TGF-beta1 and TGF-beta3 within adjacent hepatocytes. These results correlate with the immunolocalization of TGF-beta observed in livers of infected neutropenic rabbits, using a neutralizing antibody that recognizes the mature TGF-beta protein. Human peripheral blood monocytes incubated with C. albicans in vitro release large amounts of biologically active TGF-beta1. The data demonstrate that local production of active TGF-betas by hepatocytes and by infected mononuclear cells is a component of the response to C. albicans infection that most probably contributes to disease progression in the immunocompromised host.

  16. Transforming growth factor-1 promotes the transcriptional activation of plasminogen activator inhibitor type 1 in carcinoma-associated fibroblasts.

    PubMed

    Zhu, Yu; Yin, Wan-Le; Ba, Yu-Feng; Tian, Lin; Gu, Zhi-Qiang; Zhang, Ming-Sheng; Zhong, Chu-Nan

    2012-11-01

    Carcinoma-associated fibroblasts (CAFs) play a pivotal role in promoting the growth, invasion and metastasis of tumor cells. However, to date little is known about the oncogenic mechanisms of CAFs. This study aimed to identify the microenvironmental factors involved in tumor development and progression directed by CAFs in liver metastases. Tissue samples collected from 20 patients with colorectal liver metastases were used in this study. Histological and morphological characterization of the samples was performed using hybridization and immunohistological assays. The mRNA expression of α-smooth muscle actin (α-SMA) was measured by northern blotting. The expression of plasminogen activator inhibitor type 1 (PAI-1) was measured by enzyme-linked immunosorbent assay (ELISA). As a result, co-expression of Thy-1 (CD90) and α-SMA was identified in CAFs, while normal liver samples were negative for α-SMA and Thy-1. Compared with epidermal growth factor (EGF) and tumor necrosis factor (TNF) incubation, the expression of α-SMA increased significantly following transforming growth factor-1 (TGF-1) incubation (P<0.05), while platelet-derived growth factor (PDGF) caused a significant suppression of α-SMA expression (P<0.05). PAI-1 expression was significantly lower in unstimulated fibroblasts compared to TGF-1-treated fibroblasts (P<0.01). The levels of PAI-1 transcription were significantly higher in CAFs from the patient samples compared with the healthy controls. Taken together, our findings suggest that CAFs may be important in migration, matrix degradation, invasion and angiogenesis of tumors, and TGF-1 may promote the activation of PAI-1 transcription in CAFs.

  17. Urinary active transforming growth factor β in feline chronic kidney disease.

    PubMed

    Lawson, J S; Syme, H M; Wheeler-Jones, C P D; Elliott, J

    2016-08-01

    The cytokine transforming growth factor beta 1 (TGF-β1) has been widely implicated in the development and progression of renal fibrosis in chronic kidney disease (CKD) in humans and in experimental models. The aims of this study were to assess the association between urinary active TGF-β1 and (a) development of CKD in a cross-sectional study, (b) deterioration of renal function over 1 year in a longitudinal study, and (c) renal histopathological parameters in cats. A human active TGF-β1 ELISA was validated for use in feline urine. Cross-sectional analysis revealed no significant difference in urinary active TGF-β1:creatinine ratio (aTGF-β1:UCr) between groups with differing renal function. Longitudinally, non-azotaemic cats that developed CKD demonstrated a significant (P = 0.028) increase in aTGF-β1:UCr approximately 6 months before the development of azotaemia, which remained elevated (P = 0.046) at diagnosis (approximately 12 months prior, 8.4 pg/mg; approximately 6 months prior, 22.2 pg/mg; at CKD diagnosis, 24.6 pg/mg). In the histopathology study, aTGF-β1:UCr was significantly higher in cats with moderate (P = 0.02) and diffuse (P = 0.005) renal fibrosis than in cats without fibrosis. Cats with moderate renal inflammation had significantly higher urinary active aTGF-β1 concentrations than cats with mild (P = 0.035) or no inflammatory change (P = 0.004). The parameter aTGF-β1:UCr was independently associated with Log urine protein:creatinine ratio in a multivariable analysis of clinicopathological parameters and interstitial fibrosis score in a multivariable analysis of histopathological features. These results suggest that urinary aTGF-β1 reflects the severity of renal pathology. Increases in urinary aTGF-β1 followed longitudinally in individual cats may indicate the development of CKD. PMID:27387717

  18. Use of starvation promoters to limit growth and select for trichlorethylene and phenol transformation activity in recombinant esscherichia coli

    SciTech Connect

    Martin, A.; Little, C.D.; Fraley, C.D.; Keyhan, M.

    1995-09-01

    The expression of much useful bacterial activity is facilitated by rapid growth. This coupling can create problems in bacterial fermentations and in situ bioremediation. In the latter process, for example, it necessitates addition of large amounts of nutrients to contaminated environments, such as aquifers. This approach, termed biostimulation, can be technically difficult. Moreover, the resulting in situ bacterial biomass production can have undesirable consequences. In an attempt to minimize coupling between expression of biodegradative activity and growth, we used Escherichia coli starvation promoters to control toluene monoxygenase synthesis. This enzyme complex can degrade the environmental contaminants trichloroethylene (TCE) and phenol. Totally starving cell suspensions of such strains degraded phenol and TCE. Furthermore, rapid conversions occurred in the postexponential batch or very slow growth (dilution) rate chemostat cultures, and the nutrient demand and biomass formation for transforming a give amount of TCE or phenol were reduced by 60 to 90%. Strong starvation promoters have recently been cloned and characterized in environmentally relevant bacteria like Pseudomonas species; thus, starvation promoter-driven degradative systems can now be constructed in such bacteria and tested for in situ efficacy. 34 refs., 6 figs., 2 tabs.

  19. Synergistic and multidimensional regulation of plasminogen activator inhibitor type 1 expression by transforming growth factor type β and epidermal growth factor

    SciTech Connect

    Song, Xiaoling; Thalacker, F.W.; Nilsen-Hamilton, Marit

    2012-04-06

    The major physiological inhibitor of plasminogen activator, type I plasminogen activator inhibitor (PAI-1), controls blood clotting and tissue remodeling events that involve cell migration. Transforming growth factor type β (TGFβ) and epidermal growth factor (EGF) interact synergistically to increase PAI-1 mRNA and protein levels in human HepG2 and mink Mv1Lu cells. Other growth factors that activate tyrosine kinase receptors can substitute for EGF. EGF and TGFβ regulate PAI-1 by synergistically activating transcription, which is further amplified by a decrease in the rate of mRNA degradation, the latter being regulated only by EGF. The combined effect of transcriptional activation and mRNA stabilization results in a rapid 2-order of magnitude increase in the level of PAI-1. TGFβ also increases the sensitivity of the cells to EGF, thereby recruiting the cooperation of EGF at lower than normally effective concentrations. The contribution of EGF to the regulation of PAI-1 involves the MAPK pathway, and the synergistic interface with the TGFβ pathway is downstream of MEK1/2 and involves phosphorylation of neither ERK1/2 nor Smad2/3. Synergism requires the presence of both Smad and AP-1 recognition sites in the promoter. This work demonstrates the existence of a multidimensional cellular mechanism by which EGF and TGFβ are able to promote large and rapid changes in PAI-1 expression.

  20. Transformation phenotype of polyoma virus-transformed rat fibroblasts: plasminogen activator production is modulated by the growth state of the cells and regulated by the expression of an early viral gene function.

    PubMed Central

    Perbal, B

    1980-01-01

    The expression of two transformation parameters, namely, ability to grow in agar and plasminogen activator production, was studied in several rat fibroblasts transformed by either wild-type or thermo-sensitive (tsa and ts25) polyoma viruses. The production of plasminogen activator was found to be dependent upon the growth state of the infected cells during a period of several days after infection. The analysis of the transformed phenotype of 25 tsa transformants and of 19 ts25 transformants independently isolated under various growth conditions led to the conclusion that there is no correlation between the regulation processes involved in plasminogen activator production and ability to grow without anchorage. The results obtained also suggested that the production of plasminogen activator is under the control of a functional large T antigen. PMID:6255182

  1. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung.

    PubMed Central

    Sime, P J; Xing, Z; Graham, F L; Csaky, K G; Gauldie, J

    1997-01-01

    Transforming growth factor (TGF)-beta1 has been implicated in the pathogenesis of fibrosis based upon its matrix-inducing effects on stromal cells in vitro, and studies demonstrating increased expression of total TGF-beta1 in fibrotic tissues from a variety of organs. The precise role in vivo of this cytokine in both its latent and active forms, however, remains unclear. Using replication-deficient adenovirus vectors to transfer the cDNA of porcine TGF-beta1 to rat lung, we have been able to study the effect of TGF-beta1 protein in the respiratory tract directly. We have demonstrated that transient overexpression of active, but not latent, TGF-beta1 resulted in prolonged and severe interstitial and pleural fibrosis characterized by extensive deposition of the extracellular matrix (ECM) proteins collagen, fibronectin, and elastin, and by emergence of cells with the myofibroblast phenotype. These results illustrate the role of TGF-beta1 and the importance of its activation in the pulmonary fibrotic process, and suggest that targeting active TGF-beta1 and steps involved in TGF-beta1 activation are likely to be valuable antifibrogenic therapeutic strategies. This new and versatile model of pulmonary fibrosis can be used to study such therapies. PMID:9259574

  2. High glucose increases Cdk5 activity in podocytes via transforming growth factor-β1 signaling pathway

    SciTech Connect

    Zhang, Yue; Li, Hongbo; Hao, Jun; Zhou, Yi; Liu, Wei

    2014-08-15

    Podocytes are highly specialized and terminally differentiated glomerular cells that play a vital role in the development and progression of diabetic nephropathy (DN). Cyclin-dependent kinase 5 (Cdk5), who is an atypical but essential member of the Cdk family of proline-directed serine/threonine kinases, has been shown as a key regulator of podocyte differentiation, proliferation and morphology. Our previous studies demonstrated that the expression of Cdk5 was significantly increased in podocytes of diabetic rats, and was closely related with podocyte injury of DN. However, the mechanisms of how expression and activity of Cdk5 are regulated under the high glucose environment have not yet been fully elucidated. In this study, we showed that high glucose up-regulated the expression of Cdk5 and its co-activator p35 with a concomitant increase in Cdk5 kinase activity in conditionally immortalized mouse podocytes in vitro. When exposed to 30 mM glucose, transforming growth factor-β1 (TGF-β1) was activated. Most importantly, we found that SB431542, the Tgfbr1 inhibitor, significantly decreased the expression of Cdk5 and p35 and Cdk5 kinase activity in high glucose-treated podocytes. Moreover, high glucose increased the expression of early growth response-1 (Egr-1) via TGF-β1-ERK1/2 pathway in podocytes and inhibition of Egr-1 by siRNA decreased p35 expression and Cdk5 kinase activity. Furthermore, inhibition of Cdk5 kinase activity effectively alleviated podocyte apoptosis induced by high glucose or TGF-β1. Thus, the TGF-β1-ERK1/2-Egr-1 signaling pathway may regulate the p35 expression and Cdk5 kinase activity in high glucose-treated podocytes, which contributes to podocyte injury of DN. - Highlights: • HG up-regulated the expression of Cdk5 and p35, and Cdk5 activity in podocytes. • HG activated TGF-β1 pathway and SB431542 inhibited Cdk5 expression and activity. • HG increased the expression of Egr-1 via TGF-β1-ERK1/2 pathway. • Inhibition of Egr-1

  3. Transforming growth factor-beta activation in irradiated murine mammary gland.

    PubMed Central

    Barcellos-Hoff, M H; Derynck, R; Tsang, M L; Weatherbee, J A

    1994-01-01

    The biological activity of TGF-beta, an important modulator of cell proliferation and extracellular matrix formation, is governed by dissociation of mature TGF-beta from an inactive, latent TGF-beta complex in a process that is critical to its role in vivo. So far, it has not been possible to monitor activation in vivo since conventional immunohistochemical detection does not accurately discriminate latent versus active TGF-beta, nor have events associated with activation been defined well enough to serve as in situ markers of this process. We describe here a modified immunodetection method using differential antibody staining that allows the specific detection of active versus latent TGF-beta. Under these conditions, we report that an antibody raised to latency-associated peptide detects latent TGF-beta, and we demonstrate that LC(1-30) antibodies specifically recognize active TGF-beta 1 in tumor xenografts overproducing active TGF-beta 1, without cross-reactivity in tumors expressing similar levels of latent TGF-beta 1. We previously reported that TGF-beta immunoreactivity increases in murine mammary gland after whole-body 60Co-gamma radiation exposure. Using differential antibody staining we now show that radiation exposure specifically generates active TGF-beta 1. While latent TGF-beta 1 was widely distributed in unirradiated tissue, active TGF-beta 1 distribution was restricted. Active TGF-beta 1 increased significantly within 1 h of irradiation concomitant with decreased latent TGF-beta immunoreactivity. This rapid shift in immunoreactivity provides the first evidence for activation of TGF-beta in situ. This reciprocal pattern of expression persisted for 3 d and was accompanied by decreased recovery of latent TGF-beta 1 from irradiated tissue. Radiation-induced activation of TGF-beta may have profound implications for understanding tissue effects caused by radiation therapy. Images PMID:8113421

  4. Constitutive activation of transforming growth factor Beta receptor 1 in the mouse uterus impairs uterine morphology and function.

    PubMed

    Gao, Yang; Duran, Samantha; Lydon, John P; DeMayo, Francesco J; Burghardt, Robert C; Bayless, Kayla J; Bartholin, Laurent; Li, Qinglei

    2015-02-01

    Despite increasing evidence pointing to the essential involvement of the transforming growth factor beta (TGFB) superfamily in reproduction, a definitive role of TGFB signaling in the uterus remains to be unveiled. In this study, we generated a gain-of-function mouse model harboring a constitutively active (CA) TGFB receptor 1 (TGFBR1), the expression of which was conditionally induced by the progesterone receptor (Pgr)-Cre recombinase. Overactivation of TGFB signaling was verified by enhanced phosphorylation of SMAD2 and increased expression of TGFB target genes in the uterus. TGFBR1 Pgr-Cre CA mice were sterile. Histological, cellular, and molecular analyses demonstrated that constitutive activation of TGFBR1 in the mouse uterus promoted formation of hypermuscled uteri. Accompanying this phenotype was the upregulation of a battery of smooth muscle genes in the uterus. Furthermore, TGFB ligands activated SMAD2/3 and stimulated the expression of a smooth muscle maker gene, alpha smooth muscle actin (ACTA2), in human uterine smooth muscle cells. Immunofluorescence microscopy identified a marked reduction of uterine glands in TGFBR1 Pgr-Cre CA mice within the endometrial compartment that contained myofibroblast-like cells. Thus, constitutive activation of TGFBR1 in the mouse uterus caused defects in uterine morphology and function, as evidenced by abnormal myometrial structure, dramatically reduced uterine glands, and impaired uterine decidualization. These results underscore the importance of a precisely controlled TGFB signaling system in establishing a uterine microenvironment conducive to normal development and function.

  5. Constitutive Activation of Transforming Growth Factor Beta Receptor 1 in the Mouse Uterus Impairs Uterine Morphology and Function1

    PubMed Central

    Gao, Yang; Duran, Samantha; Lydon, John P.; DeMayo, Francesco J.; Burghardt, Robert C.; Bayless, Kayla J.; Bartholin, Laurent; Li, Qinglei

    2014-01-01

    ABSTRACT Despite increasing evidence pointing to the essential involvement of the transforming growth factor beta (TGFB) superfamily in reproduction, a definitive role of TGFB signaling in the uterus remains to be unveiled. In this study, we generated a gain-of-function mouse model harboring a constitutively active (CA) TGFB receptor 1 (TGFBR1), the expression of which was conditionally induced by the progesterone receptor (Pgr)-Cre recombinase. Overactivation of TGFB signaling was verified by enhanced phosphorylation of SMAD2 and increased expression of TGFB target genes in the uterus. TGFBR1 Pgr-Cre CA mice were sterile. Histological, cellular, and molecular analyses demonstrated that constitutive activation of TGFBR1 in the mouse uterus promoted formation of hypermuscled uteri. Accompanying this phenotype was the upregulation of a battery of smooth muscle genes in the uterus. Furthermore, TGFB ligands activated SMAD2/3 and stimulated the expression of a smooth muscle maker gene, alpha smooth muscle actin (ACTA2), in human uterine smooth muscle cells. Immunofluorescence microscopy identified a marked reduction of uterine glands in TGFBR1 Pgr-Cre CA mice within the endometrial compartment that contained myofibroblast-like cells. Thus, constitutive activation of TGFBR1 in the mouse uterus caused defects in uterine morphology and function, as evidenced by abnormal myometrial structure, dramatically reduced uterine glands, and impaired uterine decidualization. These results underscore the importance of a precisely controlled TGFB signaling system in establishing a uterine microenvironment conducive to normal development and function. PMID:25505200

  6. Transforming Growth Factor-β: Activation by Neuraminidase and Role in Highly Pathogenic H5N1 Influenza Pathogenesis

    PubMed Central

    Moser, Lindsey A.; O'Brien, Kevin B.; Cline, Troy D.; Jones, Jeremy C.; Tumpey, Terrence M.; Katz, Jacqueline M.; Kelley, Laura A.; Gauldie, Jack; Schultz-Cherry, Stacey

    2010-01-01

    Transforming growth factor-beta (TGF-β), a multifunctional cytokine regulating several immunologic processes, is expressed by virtually all cells as a biologically inactive molecule termed latent TGF-β (LTGF-β). We have previously shown that TGF-β activity increases during influenza virus infection in mice and suggested that the neuraminidase (NA) protein mediates this activation. In the current study, we determined the mechanism of activation of LTGF-β by NA from the influenza virus A/Gray Teal/Australia/2/1979 by mobility shift and enzyme inhibition assays. We also investigated whether exogenous TGF-β administered via a replication-deficient adenovirus vector provides protection from H5N1 influenza pathogenesis and whether depletion of TGF-β during virus infection increases morbidity in mice. We found that both the influenza and bacterial NA activate LTGF-β by removing sialic acid motifs from LTGF-β, each NA being specific for the sialic acid linkages cleaved. Further, NA likely activates LTGF-β primarily via its enzymatic activity, but proteases might also play a role in this process. Several influenza A virus subtypes (H1N1, H1N2, H3N2, H5N9, H6N1, and H7N3) except the highly pathogenic H5N1 strains activated LTGF-β in vitro and in vivo. Addition of exogenous TGF-β to H5N1 influenza virus–infected mice delayed mortality and reduced viral titers whereas neutralization of TGF-β during H5N1 and pandemic 2009 H1N1 infection increased morbidity. Together, these data show that microbe-associated NAs can directly activate LTGF-β and that TGF-β plays a pivotal role protecting the host from influenza pathogenesis. PMID:20949074

  7. Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation

    NASA Technical Reports Server (NTRS)

    Ehrhart, E. J.; Segarini, P.; Tsang, M. L.; Carroll, A. G.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    The biological activity of transforming growth factor beta1 (TGF-beta) is controlled by its secretion as a latent complex in which it is noncovalently associated with latency-associated peptide (LAP). Activation is the extracellular process in which TGF-beta is released from LAP, and is considered to be a primary regulatory control. We recently reported rapid and persistent changes in TGF-beta immunoreactivity in conjunction with extracellular matrix remodeling in gamma-irradiated mouse mammary gland. Our hypothesis is that these specific changes in immunoreactivity are indicative of latent TGF-beta activation. In the present study, we determined the radiation dose response and tested whether a functional relationship exists between radiation-induced TGF-beta and collagen type III remodeling. After radiation exposures as low as 0.1 Gy, we detected increased TGF-beta immunoreactivity in the mammary epithelium concomitant with decreased LAP immunostaining, which are events consistent with activation. Quantitative image analysis demonstrated a significant (P=0.0005) response at 0.1 Gy without an apparent threshold and a linear dose response to 5 Gy. However, in the adipose stroma, loss of LAP demonstrated a qualitative threshold at 0.5 Gy. Loss of LAP paralleled induction of collagen III immunoreactivity in this tissue compartment. We tested whether TGF-beta mediates collagen III expression by treating animals with TGF-beta panspecific monoclonal antibody, 1D11.16, administered i.p. shortly before irradiation. Radiation-induced collagen III staining in the adipose stroma was blocked in an antibody dose-dependent manner, which persisted through 7 days postirradiation. RNase protection assay revealed that radiation-induced elevation of total gland collagen III mRNA was also blocked by neutralizing antibody treatment. These data provide functional confirmation of the hypothesis that radiation exposure leads to latent TGF-beta activation, support our interpretation of the

  8. Vascular smooth muscle cells from injured rat aortas display elevated matrix production associated with transforming growth factor-beta activity.

    PubMed Central

    Rasmussen, L. M.; Wolf, Y. G.; Ruoslahti, E.

    1995-01-01

    The arterial response to injury is characterized by a short period of increased proliferation and migration of vascular smooth muscle cells, followed by an extended period of extracellular matrix accumulation in the intima. Transforming growth factor-beta (TGF-beta) has been implicated as a causative factor in the formation of extracellular matrix in this process, which leads to progressive thickening of the intima, known as intimal hyperplasia. In vitro analysis of vascular smooth muscle cells harvested from normal rat aortas and from aortas injured 14 days earlier showed that both types of cells attached equally well to culture dishes but that the initial spreading of the cells was increased in cells derived from injured vessels. Cells from the injured arteries produced more fibronectin and proteoglycans into the culture medium than the cells from normal arteries and contained more TGF-beta 1 mRNA. TGF-beta 1 increased proteoglycan synthesis by normal smooth muscle cells, and the presence of a neutralizing anti-TGF-beta 1 antibody reduced proteoglycan synthesis by the cells from injured arteries in culture. Fibronectin synthesis was not altered by these treatments. These results indicate that the accumulation of extracellular matrix components in neointimal lesions is at least partially caused by autocrine TGF-beta activity in vascular smooth muscle cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7573349

  9. Epithelial to mesenchymal transition in arsenic-transformed cells promotes angiogenesis through activating β-catenin–vascular endothelial growth factor pathway

    SciTech Connect

    Wang, Zhishan; Humphries, Brock; Xiao, Hua; Jiang, Yiguo; Yang, Chengfeng

    2013-08-15

    Arsenic exposure represents a major health concern increasing cancer risks, yet the mechanism of arsenic carcinogenesis has not been elucidated. We and others recently reported that cell malignant transformation by arsenic is accompanied by epithelial to mesenchymal transition (EMT). However, the role of EMT in arsenic carcinogenesis is not well understood. Although previous studies showed that short term exposure of endothelial cells to arsenic stimulated angiogenesis, it remains to be determined whether cells that were malignantly transformed by long term arsenic exposure have a pro-angiogenic effect. The objective of this study was to investigate the effect of arsenic-transformed human bronchial epithelial cells that underwent EMT on angiogenesis and the underlying mechanism. It was found that the conditioned medium from arsenic-transformed cells strongly stimulated tube formation by human umbilical vein endothelial cells (HUVECs). Moreover, enhanced angiogenesis was detected in mouse xenograft tumor tissues resulting from inoculation of arsenic-transformed cells. Mechanistic studies revealed that β-catenin was activated in arsenic-transformed cells up-regulating its target gene expression including angiogenic-stimulating vascular endothelial growth factor (VEGF). Stably expressing microRNA-200b in arsenic-transformed cells that reversed EMT inhibited β-catenin activation, decreased VEGF expression and reduced tube formation by HUVECs. SiRNA knockdown β-catenin decreased VEGF expression. Adding a VEGF neutralizing antibody into the conditioned medium from arsenic-transformed cells impaired tube formation by HUVECs. Reverse transcriptase-PCR analysis revealed that the mRNA levels of canonical Wnt ligands were not increased in arsenic-transformed cells. These findings suggest that EMT in arsenic-transformed cells promotes angiogenesis through activating β-catenin–VEGF pathway. - Highlights: • Arsenic-transformed cells that underwent EMT displayed a pro

  10. Kaiso depletion attenuates transforming growth factor-β signaling and metastatic activity of triple-negative breast cancer cells

    PubMed Central

    Bassey-Archibong, B I; Kwiecien, J M; Milosavljevic, S B; Hallett, R M; Rayner, L G A; Erb, M J; Crawford-Brown, C J; Stephenson, K B; Bédard, P-A; Hassell, J A; Daniel, J M

    2016-01-01

    Triple-negative breast cancers (TNBCs) represent a subset of breast tumors that are highly aggressive and metastatic, and are responsible for a disproportionate number of breast cancer-related deaths. Several studies have postulated a role for the epithelial-to-mesenchymal transition (EMT) program in the increased aggressiveness and metastatic propensity of TNBCs. Although EMT is essential for early vertebrate development and wound healing, it is frequently co-opted by cancer cells during tumorigenesis. One prominent signaling pathway involved in EMT is the transforming growth factor-β (TGFβ) pathway. In this study, we report that the novel POZ-ZF transcription factor Kaiso is highly expressed in TNBCs and correlates with a shorter metastasis-free survival. Notably, Kaiso expression is induced by the TGFβ pathway and silencing Kaiso expression in the highly invasive breast cancer cell lines, MDA-MB-231 (hereafter MDA-231) and Hs578T, attenuated the expression of several EMT-associated proteins (Vimentin, Slug and ZEB1), abrogated TGFβ signaling and TGFβ-dependent EMT. Moreover, Kaiso depletion attenuated the metastasis of TNBC cells (MDA-231 and Hs578T) in a mouse model. Although high Kaiso and high TGFβR1 expression is associated with poor overall survival in breast cancer patients, overexpression of a kinase-active TGFβR1 in the Kaiso-depleted cells was insufficient to restore the metastatic potential of these cells, suggesting that Kaiso is a key downstream component of TGFβ-mediated pro-metastatic responses. Collectively, these findings suggest a critical role for Kaiso in TGFβ signaling and the metastasis of TNBCs. PMID:26999717

  11. Kaiso depletion attenuates transforming growth factor-β signaling and metastatic activity of triple-negative breast cancer cells.

    PubMed

    Bassey-Archibong, B I; Kwiecien, J M; Milosavljevic, S B; Hallett, R M; Rayner, L G A; Erb, M J; Crawford-Brown, C J; Stephenson, K B; Bédard, P-A; Hassell, J A; Daniel, J M

    2016-01-01

    Triple-negative breast cancers (TNBCs) represent a subset of breast tumors that are highly aggressive and metastatic, and are responsible for a disproportionate number of breast cancer-related deaths. Several studies have postulated a role for the epithelial-to-mesenchymal transition (EMT) program in the increased aggressiveness and metastatic propensity of TNBCs. Although EMT is essential for early vertebrate development and wound healing, it is frequently co-opted by cancer cells during tumorigenesis. One prominent signaling pathway involved in EMT is the transforming growth factor-β (TGFβ) pathway. In this study, we report that the novel POZ-ZF transcription factor Kaiso is highly expressed in TNBCs and correlates with a shorter metastasis-free survival. Notably, Kaiso expression is induced by the TGFβ pathway and silencing Kaiso expression in the highly invasive breast cancer cell lines, MDA-MB-231 (hereafter MDA-231) and Hs578T, attenuated the expression of several EMT-associated proteins (Vimentin, Slug and ZEB1), abrogated TGFβ signaling and TGFβ-dependent EMT. Moreover, Kaiso depletion attenuated the metastasis of TNBC cells (MDA-231 and Hs578T) in a mouse model. Although high Kaiso and high TGFβR1 expression is associated with poor overall survival in breast cancer patients, overexpression of a kinase-active TGFβR1 in the Kaiso-depleted cells was insufficient to restore the metastatic potential of these cells, suggesting that Kaiso is a key downstream component of TGFβ-mediated pro-metastatic responses. Collectively, these findings suggest a critical role for Kaiso in TGFβ signaling and the metastasis of TNBCs.

  12. Dissecting the role of transforming growth factor-β1 in topmouth culter immunobiological activity: a fundamental functional analysis

    PubMed Central

    Qi, Pengzhi; Xie, Congxin; Guo, Baoying; Wu, Changwen

    2016-01-01

    Transforming growth factor-β1 (TGF-β1) has been proven to function primarily in mammalian immunobiological activity, but information regarding the immune role of TGF-β1 in teleosts is limited. In the present study, we describe the cDNA cloning and characterization of the TGF-β1 molecule in the topmouth culter. TGF-β1 is highly expressed in immune-related tissues of the culter, including the thymus, head kidney, and spleen. The recombinant culter TGF-β1 (cTGF-β1) was successfully expressed and purified in vitro, and the effects of cTGF-β1 on the mRNA expression of pro-inflammatory cytokines, such as TNF-α and IL-1β, in the absence or presence of LPS was determined in culter peripheral blood leukocytes. cTGF-β1 was found to have bipolar properties in inflammatory reactions. Additionally, to assess the immune role of teleost TGF-β1 in vivo, the expression of TGF-β1 in the culter thymus and spleen tissues induced by poly I:C were also examined. The expression of TGF-β1 was obviously up-regulated, as shown in the cell lines. However, the peak time of cTGF-β1 expression in the cell lines occurred significantly earlier than in the organic tissues under the same inducer, suggesting that the response of the teleost TGF-β1 molecule to exogenous infection depends on a more complicated signalling pathway in vivo than in vitro. PMID:27251472

  13. Dissecting the role of transforming growth factor-β1 in topmouth culter immunobiological activity: a fundamental functional analysis.

    PubMed

    Qi, Pengzhi; Xie, Congxin; Guo, Baoying; Wu, Changwen

    2016-06-02

    Transforming growth factor-β1 (TGF-β1) has been proven to function primarily in mammalian immunobiological activity, but information regarding the immune role of TGF-β1 in teleosts is limited. In the present study, we describe the cDNA cloning and characterization of the TGF-β1 molecule in the topmouth culter. TGF-β1 is highly expressed in immune-related tissues of the culter, including the thymus, head kidney, and spleen. The recombinant culter TGF-β1 (cTGF-β1) was successfully expressed and purified in vitro, and the effects of cTGF-β1 on the mRNA expression of pro-inflammatory cytokines, such as TNF-α and IL-1β, in the absence or presence of LPS was determined in culter peripheral blood leukocytes. cTGF-β1 was found to have bipolar properties in inflammatory reactions. Additionally, to assess the immune role of teleost TGF-β1 in vivo, the expression of TGF-β1 in the culter thymus and spleen tissues induced by poly I:C were also examined. The expression of TGF-β1 was obviously up-regulated, as shown in the cell lines. However, the peak time of cTGF-β1 expression in the cell lines occurred significantly earlier than in the organic tissues under the same inducer, suggesting that the response of the teleost TGF-β1 molecule to exogenous infection depends on a more complicated signalling pathway in vivo than in vitro.

  14. Glutathione levels discriminate between oxidative stress and transforming growth factor-beta signaling in activated rat hepatic stellate cells.

    PubMed

    De Bleser, P J; Xu, G; Rombouts, K; Rogiers, V; Geerts, A

    1999-11-26

    Reactive oxygen species are implicated in the pathogenesis of several diseases, including Alzheimer's disease, multiple sclerosis, human immunodeficiency virus, and liver fibrosis. With respect to liver fibrosis, we have investigated differences in antioxidant enzymes expression in stellate cells (SCs) and parenchymal cells from normal and CCl(4)-treated rat livers. We observed an increase in the expression of catalase in activated SCs. Treatment with transforming growth factor-beta (TGF-beta) increased the production of H(2)O(2). Treatment with catalase decreased TGF-beta expression. Addition of H(2)O(2) resulted in increased TGF-beta production. 3-Amino-1,2,4-triazole abolished the capacity of SCs to remove H(2)O(2). A paradoxical increase in capacity was observed when the cells were pretreated with diethyl maleate. Treatment with 3-amino-1, 2,4-triazole increased TGF-beta production. A paradoxical decrease of TGF-beta production was observed with diethyl maleate. Treatment of the cells with N-acetylcysteine resulted in increased TGF-beta production. TGF-beta decreased the capacity of the SCs to remove H(2)O(2.) An increase in the capacity to remove H(2)O(2) was observed when TGF-beta was removed by neutralizing antibodies. In conclusion, our results suggest: 1) a link between cellular GSH levels and TGF-beta production and 2) that cellular GSH levels discriminate whether H(2)O(2) is the result of oxidative stress or acts as second messenger in the TGF-beta signal transduction pathway.

  15. Biological evaluation of synthesized allicin and its transformation products obtained by microwaves in methanol: antioxidant activity and effect on cell growth

    PubMed Central

    Ilić, Dušica P.; Stojanović, Sanja; Najman, Stevo; Nikolić, Vesna D.; Stanojević, Ljiljana P.; Tačić, Ana; Nikolić, Ljubiša B.

    2015-01-01

    Allicin is the most biologically active substance present in garlic. It can be synthesized or obtained by extraction of fresh garlic. Transformation products of allicin are also biologically active. The aim of this study was to examine the antioxidant activity of synthesized allicin and its transformation products obtained using microwaves in methanol at 55 °C as well as their effect on HeLa cells growth. The antioxidant activity was determined by DPPH (2,2-diphenyl-1-picrylhydrazyl radical) test. The effect on HeLa cells growth was determined by MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) test. For MTT test, allicin and its transformation products were dispersed in carmellose sodium solution and examined in concentrations ranging from 0.3 μg/mL to 3 mg/mL. Allicin showed stronger antioxidant activity than the transformation products. A maximum degree of neutralization of DPPH radicals, about 90%, was reached when the concentration of allicin was 2 mg/mL, with an EC50 (concentration of sample which is required for reduction of the initial concentration DPPH radicals to 50%) value of 0.37 mg/mL. In our study, allicin and its transformation products were not cytotoxic to HeLa cells under the examined conditions. The highest concentration of allicin and its transformation products had a slight antiproliferative effect, with a more pronounced effect of allicin, which reflected on the morphology of HeLa cells. The examined substances are safe to use on epithelial cells at concentrations up to 3 mg/mL when applied in carmellose sodium solution. Using carmellose sodium as a dispersing agent could be recommended as a good approach for testing liposoluble substances in liquid cell cultures. PMID:26019632

  16. Collagen regulates transforming growth factor-β receptors of HL-1 cardiomyocytes through activation of stretch and integrin signaling.

    PubMed

    Lu, Yen-Yu; Lin, Yung-Kuo; Kao, Yu-Hsun; Chung, Cheng-Chih; Yeh, Yung-Hsin; Chen, Shih-Ann; Chen, Yi-Jen

    2016-10-01

    The extracellular matrix (ECM) and transforming growth factor-β (TGF)-β are important in cardiac fibrosis, however, the effects of the ECM on TGF‑β signaling remain to be fully elucidated. The aims of the present study were to evaluate the role of collagen in TGF‑β signaling and examine the underlying mechanisms. In the present study, western blot analysis was used to examine TGF‑β signaling in HL‑1 cells treated with and without (control) type I collagen (10 µg/ml), which was co‑administered with either an anti‑β1 integrin antibody (10 µg/ml) or a stretch‑activated channel inhibitor (gadolinium; 50 µM). Cell proliferation and adhesion assays were used to investigate the roles of integrin, mechanical stretch and mitogen‑activated protein kinases (MAPKs) on cell proliferation and adhesion. The type I collagen (10 µg/ml)‑treated HL‑1 cells were incubated with or without anti‑β1 integrin antibody (10 µg/ml), gadolinium (50 µM) or inhibitors of p38 (SB203580; 3 µM), extracellular signal‑regulated kinase (ERK; PD98059; 50 µM) and c‑Jun N‑terminal kinase (JNK; SP600125; 50 µM). Compared with the control cells, the collagen‑treated HL‑1 cells had lower expression levels of type I and type II TGF‑β receptors (TGFβRI and TGFβRII), with an increase in phosphorylated focal adhesion kinase (FAK), p38 and ERK1/2, and a decrease in JNK. Incubation with the anti‑β1 integrin antibody reversed the collagen‑induced downregulation of the expression of TGFβRII and phosphorylated FAK. Gadolinium downregulated the expression levels of TGFβRI and small mothers against decapentaplegic (Smad)2/3, and decreased the levels of phosphorylated p38, ERK1/2 and JNK. In addition, gadolinium reversed the collagen‑induced activation of p38 and ERK1/2. In the presence of gadolinium and anti‑β1 integrin antibody, collagen regulated the expression levels of TGFβRI, TGFβRII and Smad2/3, but did not alter the phosphorylation

  17. Constitutive Activation of Epidermal Growth Factor Receptor Promotes Tumorigenesis of Cr(VI)-transformed Cells through Decreased Reactive Oxygen Species and Apoptosis Resistance Development*

    PubMed Central

    Kim, Donghern; Dai, Jin; Fai, Leonard Yenwong; Yao, Hua; Son, Young-Ok; Wang, Lei; Pratheeshkumar, Poyil; Kondo, Kazuya; Shi, Xianglin; Zhang, Zhuo

    2015-01-01

    Hexavalent chromium (Cr(VI)) compounds are well-established lung carcinogens. Epidermal growth factor receptor (EGFR) is a tyrosine kinase transmembrane receptor that regulates cell survival, tumor invasion, and angiogenesis. Our results show that chronic exposure of human bronchial epithelial (BEAS-2B) cells to Cr(VI) is able to cause malignant cell transformation. These transformed cells exhibit apoptosis resistance with reduced poly ADP-ribose polymerase cleavage (C-PARP) and Bax expression and enhanced expressions of Bcl-2 and Bcl-xL. These transformed cells also exhibit reduced capacity of reactive oxygen species (ROS) generation along with elevated expression of antioxidant manganese superoxide dismutase 2 (SOD2). The expression of this antioxidant was also elevated in lung tumor tissue from a worker exposed to Cr(VI) for 19 years. EGFR was activated in Cr(VI)-transformed BEAS-2B cells, lung tissue from animals exposed to Cr(VI) particles, and human lung tumor tissue. Further study indicates that constitutive activation of EGFR in Cr(VI)-transformed cells was due to increased binding to its ligand amphiregulin (AREG). Inhibition of EGFR or AREG increased Bax expression and reduced Bcl-2 expression, resulting in reduced apoptosis resistance. Furthermore, inhibition of AREG or EGFR restored capacity of ROS generation and decreased SOD2 expression. PI3K/AKT was activated, which depended on EGFR in Cr(VI)-transformed BEAS-2B cells. Inhibition of PI3K/AKT increased ROS generation and reduced SOD2 expression, resulting in reduced apoptosis resistance with commitment increase in Bax expression and reduction of Bcl-2 expression. Xenograft mouse tumor study further demonstrates the essential role of EGFR in tumorigenesis of Cr(VI)-transformed cells. In summary, the present study suggests that ligand-dependent constitutive activation of EGFR causes reduced ROS generation and increased antioxidant expression, leading to development of apoptosis resistance, contributing

  18. Transforming growth factor-beta1-induced activation of the Raf-MEK-MAPK signaling pathway in rat lung fibroblasts via a PKC-dependent mechanism.

    PubMed

    Axmann, A; Seidel, D; Reimann, T; Hempel, U; Wenzel, K W

    1998-08-19

    In fibroblasts transforming growth factor-beta1 (TGF-beta1) regulates cell proliferation and turnover of macromolecular components of the extracellular matrix. Here, intracellular signaling events in growth-inhibited embryonic rat lung fibroblasts (RFL-6) upon stimulation with TGF-beta1 were investigated. TGF-beta1 rapidly induced the activation of c-Raf-1, MEK-1, and MAPK p42 and p44. The activation of this pathway by TGF-beta1 did not depend on autocrine platelet-derived growth factor (PDGF) or basic fibroblast growth factor (bFGF). Inhibition of the binding of growth factors to their tyrosine kinase receptors did not affect MAPK activation by TGF-beta1. Ras activation by TGF-beta1 was significantly lower compared to the activation by PDGF or bFGF. The intracellular transduction of the TGF-beta1 signal was completely suppressed by depletion or inhibition of protein kinase C (PKC). It is shown that calcium-dependent isoforms of PKC are required for MAPK activation by TGF-beta1. PMID:9712718

  19. Inhibition of transforming growth factor-β-activated kinase-1 blocks cancer cell adhesion, invasion, and metastasis

    PubMed Central

    Ray, D M; Myers, P H; Painter, J T; Hoenerhoff, M J; Olden, K; Roberts, J D

    2012-01-01

    Background: Tumour cell metastasis involves cell adhesion and invasion, processes that depend on signal transduction, which can be influenced by the tumour microenvironment. N-6 polyunsaturated fatty acids, found both in the diet and in response to inflammatory responses, are important components of this microenvironment. Methods: We used short hairpin RNA (shRNA) knockdown of TGF-β-activated kinase-1 (TAK1) in human tumour cells to examine its involvement in fatty acid-stimulated cell adhesion and invasion in vitro. An in vivo model of metastasis was developed in which cells, stably expressing firefly luciferase and either a control shRNA or a TAK1-specific shRNA, were injected into the mammary fat pads of mice fed diets, rich in n-6 polyunsaturated fatty acids. Tumour growth and spontaneous metastasis were monitored with in vivo and in situ imaging of bioluminescence. Results: Arachidonic acid activated TAK1 and downstream kinases in MDA-MB-435 breast cancer cells and led to increased adhesion and invasion. Knockdown of TAK1 blocked this activation and inhibited both cell adhesion and invasion in vitro. Tumour growth at the site of injection was not affected by TAK1 knockdown, but both the incidence and extent of metastasis to the lung were significantly reduced in mice injected with TAK1 knockdown cells compared with mice carrying control tumour cells. Conclusion: These data demonstrate the importance of TAK1 signalling in tumour metastasis in vivo and suggest an opportunity for antimetastatic therapies. PMID:22644295

  20. Transforming growth factor β signaling upregulates the expression of human GDP-fucose transporter by activating transcription factor Sp1.

    PubMed

    Xu, Yu-Xin; Ma, Anna; Liu, Li

    2013-01-01

    GDP-fucose transporter plays a crucial role in fucosylation of glycoproteins by providing activated fucose donor, GDP-fucose, for fucosyltransferases in the lumen of the Golgi apparatus. Fucose-containing glycans are involved in many biological processes, which are essential for growth and development. Mutations in the GDP-fucose transporter gene cause leukocyte adhesion deficiency syndrome II, a disease characterized by slow growth, mental retardation and immunodeficiency. However, no information is available regarding its transcriptional regulation. Here, by using human cells, we show that TGF-β1 specifically induces the GDP-fucose transporter expression, but not other transporters tested such as CMP-sialic acid transporter, suggesting a diversity of regulatory pathways for the expression of these transporters. The regulatory elements that are responsive to the TGF-β1 stimulation are present in the region between bp -330 and -268 in the GDP-fucose transporter promoter. We found that this region contains two identical octamer GC-rich motifs (GGGGCGTG) that were demonstrated to be essential for the transporter expression. We also show that the transcription factor Sp1 specifically binds to the GC-rich motifs in vitro and Sp1 coupled with phospho-Smad2 is associated with the promoter region covering the Sp1-binding motifs in vivo using chromatin immunoprecipitation (ChIP) assays. In addition, we further confirmed that Sp1 is essential for the GDP-fucose transporter expression stimulated by TGF-β1 using a luciferase reporter system. These results highlight the role of TGF-β signaling in regulation of the GDP-fucose transporter expression via activating Sp1. This is the first transcriptional study for any nucleotide sugar transporters that have been identified so far. Notably, TGF-β1 receptor itself is known to be modified by fucosylation. Given the essential role of GDP-fucose transporter in fucosylation, the finding that TGF-β1 stimulates the expression of

  1. Newly synthesized proteoglycans secreted by sequentially derived populations of cells from new-born rat calvaria: effects of transforming growth factor-beta and matrigenin activity.

    PubMed

    Chopra, R K; Li, Z M; Vickery, S; Anastassiades, T

    1990-10-01

    Three populations (1, 3 and 6) of bone cells, derived from rat calvaria by sequential enzymatic digestion, were cultured with [3H]glucosamine and [35S]sulfate, in the presence or absence of transforming growth factor-beta (TGF-beta) or bone-derived matrigenin activity. Population 6 synthesized a chondroitin sulfate proteoglycan (PG) and responded to the addition of the factors by increased rates of synthesis of hyaluronic acid (HA) and PG and an increase in the size of the HA. Comparisons of populations 1, 3 and 6 showed an ordered, spontaneous increase in HA and PG synthesis. However, the addition of matrigenin activity resulted in a much greater stimulation of PG, but not HA, synthesis in population 1 compared to population 6, suggesting a cellular organization in the calvarium whose net effect would be to direct PG synthesis towards the periphery of the tissue.

  2. Adenoviral delivery of an antisense RNA complementary to the 3' coding sequence of transforming growth factor-beta1 inhibits fibrogenic activities of hepatic stellate cells.

    PubMed

    Arias, Monica; Lahme, Birgit; Van de Leur, Eddy; Gressner, Axel M; Weiskirchen, Ralf

    2002-06-01

    Liver fibrosis occurs as a consequence of the transdifferentiationof hepatic stellate cells into myofibroblasts and is associated with an increased expression and activation of transforming growth factor (TGF)-beta1. This pluripotent, profibrogenic cytokine stimulates matrix synthesis and decreases matrix degradation, resulting in fibrosis. Thus, blockade of synthesis or sequestering of mature TGF-beta1 is a primary target for the development of antifibrotic approaches. The purpose of this study was to investigate whether the administration of adenoviruses constitutively expressing an antisense mRNA complementary to the 3' coding sequence of TGF-beta1 is able to suppress the synthesis of TGF-beta1 in culture-activated hepatic stellate cells. We demonstrate that the adenoviral vehicle directs high-level expression of the transgene and proved that the transduced antisense is biologically active by immunoprecipitation, Western blot, quantitative TGF-beta1 ELISA, and cell proliferation assays. Additionally, the biological function of the transgene was confirmed by analysis of differential activity of TGF-beta1-responsive genes using cell ELISA, Northern blotting, and by microarray technology, respectively. Furthermore, we examined the effects of that transgene on the expression of TGF-beta2, TGF-beta3, collagen type alpha1(I), latent transforming growth factor binding protein 1, types I and II TGF-beta receptors, and alpha-smooth muscle actin. Our results indicate that the administration of antisense mRNA offers a feasible approach to block autocrine TGF-beta1 signaling in hepatic stellate cells and may be useful and applicable in future to the treatment of fibrosis in chronic liver diseases.

  3. Use of starvation promoters to limit growth and selectively enrich expression of trichloroethylene- and phenol-transforming activity in recombinant Escherichia coli [corrected

    PubMed Central

    Matin, A; Little, C D; Fraley, C D; Keyhan, M

    1995-01-01

    The expression of much useful bacterial activity is facilitated by rapid growth. This coupling can create problems in bacterial fermentations and in situ bioremediation. In the latter process, for example, it necessitates addition of large amounts of nutrients to contaminated environments, such as aquifers. This approach, termed biostimulation, can be technically difficult. Moreover, the resulting in situ bacterial biomass production can have undesirable consequences. In an attempt to minimize coupling between expression of biodegradative activity and growth, we used Escherichia coli starvation promoters to control toluene monooxygenase synthesis. This enzyme complex can degrade the environmental contaminants trichloroethylene (TCE) and phenol. Totally starving cell suspensions of such strains degraded phenol and TCE. Furthermore, rapid conversions occurred in the postexponential batch or very slow growth (dilution) rate chemostat cultures, and the nutrient demand and biomass formation for transforming a given amount of TCE or phenol were reduced by 60 to 90%. Strong starvation promoters have recently been clones and characterized in environmentally relevant bacteria like Pseudomonas species; thus, starvation promoter-driven degradative systems can now be constructed in such bacteria and tested for in situ efficacy. PMID:7574643

  4. Role of LncRNA-activated by transforming growth factor beta in the progression of hepatitis C virus-related liver fibrosis.

    PubMed

    Fu, Na; Niu, Xuemin; Wang, Yang; Du, Huijuan; Wang, Baoyu; Du, Jinghua; Li, Ya; Wang, Rongqi; Zhang, Yuguo; Zhao, Suxian; Sun, Dianxing; Qiao, Liang; Nan, Yuemin

    2016-08-01

    Long non-coding RNA (LncRNA)-activated by transforming growth factor-beta (LncRNA-ATB) is a key regulator of transforming growth factor-beta (TGF-β) signaling pathway, and is positively correlated with the development of liver cirrhosis and vascular invasion of hepatocellular carcinoma (HCC). However, the role of LncRNA-ATB in hepatitis C virus (HCV)-related liver fibrosis remains largely unknown. In the present study, we confirmed a high expression level of LncRNA-ATB in the liver tissues and plasma samples of patients with HCV-related hepatic fibrosis, and the plasma level of LncRNA-ATB was significantly correlated with liver fibrosis stages. Furthermore, increased expression level of LncRNA-ATB was also present in activated hepatic stellate cells (HSCs), and knockdown of LncRNA-ATB inhibited the expression of alpha-smooth muscle actin (α-SMA) and alpha-1 type I collagen (Col1A1). LncRNA-ATB was found to share the common miRNA responsive element of miR-425-5p with TGF-β type II receptor (TGF-βRII) and SMAD2. Ectopic expression of LncRNA-ATB in HSCs could upregulate the protein expression of TGF-βRII and SMAD2 by inhibiting the endogenous miR-425-5p. Moreover, overexpression of miR-425-5p could partly abrogate the expression of TGF-βRII and SMAD2 induced by LncRNA-ATB. Hence, we conclude that LncRNA-ATB promotes HCV-induced liver fibrogenesis by activating HSCs and increasing collagen I production through competitively binding to miR-425-5p. LncRNA-ATB may be a novel diagnostic biomarker and a potential therapeutic target for HCV-related hepatic fibrosis. PMID:27585228

  5. Inhibition of Transforming Growth Factor-Beta1 SignalingAttenuates Ataxia Telangiectasia Mutated Activity in Response toGenotoxic Stress

    SciTech Connect

    Kirshner, Julia; Jobling, Michael F.; Pajares, Maria Jose; Ravani, Shraddha A.; Glick, Adam; Lavin, Martin F.; Koslov, Sergei; Shiloh, Yosef; Barcellos-Hoff, Mary Helen

    2006-01-01

    Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor {beta} (TGF{beta})-1, which is activated by radiation, is a potent and pleiotropic mediator of physiologic and pathologic processes. Here we show that TGF{beta} inhibition impedes the canonical cellular DNA damage stress response. Irradiated Tgf{beta}I null murine epithelial cells or human epithelial cells treated with a small-molecule inhibitor of TGF{beta} type I receptor kinase exhibit decreased phosphorylation of Chk2, Rad17, and p53; reduced H2AX radiation-induced foci; and increased radiosensitivity compared with TGF{beta} competent cells. We determined that loss of TGF{beta} signaling in epithelial cells truncated ATM autophosphorylation and significantly reduced its kinase activity, without affecting protein abundance. Addition of TGF{beta} restored functional ATM and downstream DNA damage responses. These data reveal a heretofore undetected critical link between the microenvironment and ATM, which directs epithelial cell stress responses, cell fate, and tissue integrity. Thus, Tgf{beta}I, in addition to its role in homoeostatic growth control, plays a complex role in regulating responses to genotoxic stress, the failure of which would contribute to the development of cancer; conversely, inhibiting TGF{beta} may be used to advantage in cancer therapy.

  6. Thrombospondin-1 (TSP-1) Analogs ABT-510 and ABT-898 Inhibit Prolactinoma Growth and Recover Active Pituitary Transforming Growth Factor-β1 (TGF-β1)

    PubMed Central

    Recouvreux, M. Victoria; Camilletti, M. Andrea; Rifkin, Daniel B.; Becu-Villalobos, Damasia

    2012-01-01

    Prolactinomas are the most prevalent type of secreting pituitary tumors in humans and generally respond well to a medical therapy with dopamine agonists. However, for patients exhibiting resistance to dopaminergic drugs, alternative treatments are desired. Antiangiogenic strategies might represent a potential therapy for these tumors. Thrombospondin 1 (TSP-1) is a large multifunctional glycoprotein involved in multiple biological processes including angiogenesis, apoptosis, and activation of TGF-β1. Because tumors that overexpress TSP-1 grow more slowly, have fewer metastases, and have decreased angiogenesis, TSP-1 provides a novel target for cancer treatment. ABT-510 and ABT-898 are TSP-1 synthetic analogs that mimic its antiangiogenic action. In the present study, we explored the potential effect of ABT-510 and ABT-898 on experimental prolactinomas induced by chronic diethylstilbestrol (DES) treatment in female rats. We demonstrated that a 2-wk treatment with ABT-510 and ABT-898 counteracted the increase in pituitary size and serum prolactin levels as well as the pituitary proliferation rate induced by DES. These inhibitory effects on tumor growth could be mediated by the antiangiogenic properties of the drugs. We also demonstrated that ABT-510 and ABT-898, in addition to their described antiangiogenic effects, increased active TGF-β1 level in the tumors. We postulate that the recovery of the local cytokine activation participates in the inhibition of lactotrope function. These results place these synthetic TSP-1 analogs as potential alternative or complementary treatments in dopamine agonist-resistant prolactinomas. PMID:22700773

  7. A novel transcriptional factor with Ser/Thr kinase activity involved in the transforming growth factor (TGF)-beta signalling pathway.

    PubMed Central

    Ohta, S; Takeuchi, M; Deguchi, M; Tsuji, T; Gahara, Y; Nagata, K

    2000-01-01

    Transforming growth factor-beta (TGF-beta) shows a variety of biological activities in various organs or cells. Recently some factors such as Smads (Sma and Mad proteins) and TGF-beta activating kinase 1 ('TAK1') have been characterized as signalling molecules downstream of TGF-beta. Several TGF-beta response elements have been identified such as cAMP response element, Smad binding element, and recognition sites for activating protein-1 and stimulating protein-1 in various gene promoters. We also reported a TGF-beta response element in the human C-type natriuretic peptide (CNP) gene promoter. In this paper, we report on a novel factor which regulates the TGF-beta response promoter. This factor, named TSF1 (TGF-beta stimulated factor 1), possessed DNA-binding ability and activated the TGF-beta responsive CNP promoter or vascular endothelial growth factor gene promoter which possesses a sequence element analogous to the TGF-beta responsive GC-rich element of the CNP promoter. TSF1 did not directly activate a Smads-dependent promoter from plasminogen activator inhibitor 1 gene, but it showed enhancement in co-operation with Smad3 and Smad4. Interestingly, this factor had the structural features of a Ser/Thr kinase and actually exhibited protein kinase activity. TSF1 mRNA as well as its protein level were stimulated by TGF-beta treatment. Thus, TSF1 is an unique factor with two biological functions, transcriptional regulation and protein phosphorylation, that may be involved in TGF-beta signals. PMID:10947953

  8. Transforming growth factor-alpha-induced transcriptional activation of the vascular permeability factor (VPF/VEGF) gene requires AP-2-dependent DNA binding and transactivation.

    PubMed Central

    Gille, J; Swerlick, R A; Caughman, S W

    1997-01-01

    The endothelial cell-specific mitogen vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) represents a central regulator of cutaneous angiogenesis. Increased VPF/VEGF expression has recently been reported in psoriatic skin and healing wounds, both conditions in which transforming growth factor-alpha (TGF alpha) and its ligand, the epidermal growth factor receptor, are markedly up-regulated. Since TGF alpha strongly induces VPF/VEGF synthesis in keratinocytes, TGF alpha-mediated VPF/VEGF expression is likely to play a significant role in the initiation and maintenance of increased vascular hyperpermeability and hyperproliferation in skin biology. The objectives of the present studies were to determine the molecular mechanisms responsible for TGF alpha-induced transcriptional activation of the VPF/VEGF gene. We have identified a GC-rich TGF alpha-responsive region between -88 bp and -65 bp of the VPF/VEGF promoter that is necessary for constitutive and TGF alpha-inducible transcriptional activation. In electrophoretic mobility shift assays, this region binds Sp1-dependent protein complexes constitutively and an additional TGF alpha-inducible protein complex that is distinct from Sp1 protein. Both AP-2 and Egr-1 transcription factors were detected as components of the TGF alpha-inducible protein complex in supershift EMSA studies. In co-transfection studies, an AP-2 but not an Egr-1 expression vector activated VPF/VEGF transcription, thus indicating that AP-2 protein is functionally important in TGF alpha-induced VPF/VEGF gene expression. By clarifying regulatory mechanisms that are critical for angiogenic processes in the skin, these studies may form the basis for new therapeutic strategies to modulate VPF/VEGF expression in cutaneous inflammation and wound healing. PMID:9049304

  9. Inhibition of mitogen-activated protein kinase kinase, DNA methyltransferase, and transforming growth factor-β promotes differentiation of human induced pluripotent stem cells into enterocytes.

    PubMed

    Kodama, Nao; Iwao, Takahiro; Kabeya, Tomoki; Horikawa, Takashi; Niwa, Takuro; Kondo, Yuki; Nakamura, Katsunori; Matsunaga, Tamihide

    2016-06-01

    We previously reported that small-molecule compounds were effective in generating pharmacokinetically functional enterocytes from human induced pluripotent stem (iPS) cells. In this study, to determine whether the compounds promote the differentiation of human iPS cells into enterocytes, we investigated the effects of a combination of mitogen-activated protein kinase kinase (MEK), DNA methyltransferase (DNMT), and transforming growth factor (TGF)-β inhibitors on intestinal differentiation. Human iPS cells cultured on feeder cells were differentiated into endodermal cells by activin A. These endodermal-like cells were then differentiated into intestinal stem cells by fibroblast growth factor 2. Finally, the cells were differentiated into enterocyte cells by epidermal growth factor and small-molecule compounds. After differentiation, mRNA expression levels and drug-metabolizing enzyme activities were measured. The mRNA expression levels of the enterocyte marker sucrase-isomaltase and the major drug-metabolizing enzyme cytochrome P450 (CYP) 3A4 were increased by a combination of MEK, DNMT, and TGF-β inhibitors. The mRNA expression of CYP3A4 was markedly induced by 1α,25-dihydroxyvitamin D3. Metabolic activities of CYP1A1/2, CYP2B6, CYP2C9, CYP2C19, CYP3A4/5, UDP-glucuronosyltransferase, and sulfotransferase were also observed in the differentiated cells. In conclusion, MEK, DNMT, and TGF-β inhibitors can be used to promote the differentiation of human iPS cells into pharmacokinetically functional enterocytes.

  10. In vivo transformation of factor-dependent hemopoietic cells: role of intracisternal A-particle transposition for growth factor gene activation.

    PubMed Central

    Dührsen, U; Stahl, J; Gough, N M

    1990-01-01

    Cells of the granulocyte-macrophage colony stimulating factor (GM-CSF) or multi-lineage colony stimulating factor (Multi-CSF) dependent line FDC-P1 undergo leukemic transformation after injection into irradiated DBA/2 mice. About one third of factor-independent FDC-P1 variants isolated from leukemic animals express GM-CSF or Multi-CSF, assessed either by bioassay or by sensitive RNA detection using the polymerase chain reaction. All of the GM-CSF-secreting lines studied had a rearrangement in one allele of the GM-CSF gene, three of four Multi-CSF-secreting lines had Multi-CSF gene rearrangements, while factor-independent lines lacking evidence of growth factor production had no demonstrable CSF gene alterations. All rearrangements were characterized by insertions of novel DNA in the 5'-flanking regions of the CSF genes. The inserted segments of DNA varied in size between 0.35 and 6.5 kb and displayed restriction enzyme cleavage maps reminiscent of intracisternal A-particle (IAP) genomes. This was confirmed in two cases by molecular cloning and nucleotide sequence analysis. In these instances, the insertion consisted of solitary IAP long terminal repeats. The transformation system described provides a model for the study of IAP transpositions and their effects on gene activation. Images Fig. 2. Fig. 3. Fig. 4. Fig. 6. Fig. 9. PMID:2108861

  11. The mechanism and significance of synergistic induction of the expression of plasminogen activator inhibitor-1 by glucocorticoid and transforming growth factor beta in human ovarian cancer cells.

    PubMed

    Pan, Xiao-yu; Wang, Yan; Su, Jie; Huang, Gao-xiang; Cao, Dong-mei; Qu, Shen; Lu, Jian

    2015-05-15

    Plasminogen activator inhibitor-1 (PAI-1) plays a key role in tissue remodeling and tumor development by suppression of plasminogen activator function. Glucocorticoids (GCs) and transforming growth factor beta (TGF-β) signal pathways cross-talk to regulate gene expression, but the mechanism is poorly understood. Here we investigated the mechanism and significance of co-regulation of PAI-1 by TGF-β and dexamethasone (DEX), a synthetic glucocorticoid in ovarian cancer cells. We found that TGF-β and DEX showed rapidly synergistic induction of PAI-1 expression, which contributed to the early pro-adhesion effects. The synergistic induction effect was accomplished by several signal pathways, including GC receptor (GR) pathway and TGF-β-activated p38MAPK, ERK and Smad3 pathways. TGF-β-activated p38MAPK and ERK pathways cross-talked with GR pathway to augment the expression of PAI-1 through enhancing DEX-induced GR phosphorylation at Ser211 in ovarian cancer cells. These findings reveal possible novel mechanisms by which TGF-β pathways cooperatively cross-talk with GR pathway to regulate gene expression.

  12. Transforming Growth Factor-β-Activated Kinase 1 Is Required for Human FcγRIIIb-Induced Neutrophil Extracellular Trap Formation.

    PubMed

    Alemán, Omar Rafael; Mora, Nancy; Cortes-Vieyra, Ricarda; Uribe-Querol, Eileen; Rosales, Carlos

    2016-01-01

    Neutrophils (PMNs) are the most abundant leukocytes in the blood. PMN migrates from the circulation to sites of infection where they are responsible for antimicrobial functions. PMN uses phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. Several stimuli, including bacteria, fungi, and parasites, and some pharmacological compounds, such as Phorbol 12-myristate 13-acetate (PMA), are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. Recently, it was reported that FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. Direct cross-linking of FcγRIIA or integrins did not promote NET formation. FcγRIIIb-induced NET formation presented different kinetics from PMA-induced NET formation, suggesting differences in signaling. Because FcγRIIIb also induces a strong activation of extracellular signal-regulated kinase (ERK) and nuclear factor Elk-1, and the transforming growth factor-β-activated kinase 1 (TAK1) has recently been implicated in ERK signaling, in the present report, we explored the role of TAK1 in the signaling pathway activated by FcγRIIIb leading to NET formation. FcγRIIIb was stimulated by specific monoclonal antibodies, and NET formation was evaluated in the presence or absence of pharmacological inhibitors. The antibiotic LL Z1640-2, a selective inhibitor of TAK1 prevented FcγRIIIb-induced, but not PMA-induced NET formation. Both PMA and FcγRIIIb cross-linking induced phosphorylation of ERK. But, LL Z1640-2 only inhibited the FcγRIIIb-mediated activation of ERK. Also, only FcγRIIIb, similarly to transforming growth factor-β-induced TAK1 phosphorylation. A MEK (ERK kinase)-specific inhibitor was able to prevent ERK phosphorylation induced by both PMA and FcγRIIIb. These data show for the first time that FcγRIIIb cross-linking activates TAK1, and that this kinase is required for triggering the MEK/ERK signaling pathway to NETosis

  13. Transforming Growth Factor-β-Activated Kinase 1 Is Required for Human FcγRIIIb-Induced Neutrophil Extracellular Trap Formation

    PubMed Central

    Alemán, Omar Rafael; Mora, Nancy; Cortes-Vieyra, Ricarda; Uribe-Querol, Eileen; Rosales, Carlos

    2016-01-01

    Neutrophils (PMNs) are the most abundant leukocytes in the blood. PMN migrates from the circulation to sites of infection where they are responsible for antimicrobial functions. PMN uses phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. Several stimuli, including bacteria, fungi, and parasites, and some pharmacological compounds, such as Phorbol 12-myristate 13-acetate (PMA), are efficient inducers of NETs. Antigen–antibody complexes are also capable of inducing NET formation. Recently, it was reported that FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. Direct cross-linking of FcγRIIA or integrins did not promote NET formation. FcγRIIIb-induced NET formation presented different kinetics from PMA-induced NET formation, suggesting differences in signaling. Because FcγRIIIb also induces a strong activation of extracellular signal-regulated kinase (ERK) and nuclear factor Elk-1, and the transforming growth factor-β-activated kinase 1 (TAK1) has recently been implicated in ERK signaling, in the present report, we explored the role of TAK1 in the signaling pathway activated by FcγRIIIb leading to NET formation. FcγRIIIb was stimulated by specific monoclonal antibodies, and NET formation was evaluated in the presence or absence of pharmacological inhibitors. The antibiotic LL Z1640-2, a selective inhibitor of TAK1 prevented FcγRIIIb-induced, but not PMA-induced NET formation. Both PMA and FcγRIIIb cross-linking induced phosphorylation of ERK. But, LL Z1640-2 only inhibited the FcγRIIIb-mediated activation of ERK. Also, only FcγRIIIb, similarly to transforming growth factor-β-induced TAK1 phosphorylation. A MEK (ERK kinase)-specific inhibitor was able to prevent ERK phosphorylation induced by both PMA and FcγRIIIb. These data show for the first time that FcγRIIIb cross-linking activates TAK1, and that this kinase is required for triggering the MEK/ERK signaling pathway to

  14. The transcription factor EGR-1 suppresses transformation of human fibrosarcoma HT1080 cells by coordinated induction of transforming growth factor-beta1, fibronectin, and plasminogen activator inhibitor-1.

    PubMed

    Liu, C; Yao, J; de Belle, I; Huang, R P; Adamson, E; Mercola, D

    1999-02-12

    Re-expression of EGR-1 in fibrosarcoma HT1080 suppresses transformation including tumorigenicity (Huang, R.-P., Liu, C., Fan, Y., Mercola, D., and Adamson, E. (1995) Cancer Res. 55, 5054-5062) owing in part to up-regulation of the transforming growth factor (TGF)-beta1 promoter by EGR-1 which suppresses growth by an autocrine mechanism (Liu, C., Adamson, E., and Mercola, D. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 11831-11836). Here we show that enhanced cell attachment contributes to the suppression via increased secretion of fibronectin (FN) and also of plasminogen activator inhibitor-1 (PAI-1). The secretion of FN and PAI-1 is strongly correlated with EGR-1 expression (RPEARSON = 0.971 and 0. 985, respectively). Addition of authentic TGF-beta1 to parental cells greatly stimulated secretion of PAI-1 but not FN, whereas addition of TGF-beta antibody or lipofection with specific antisense TGF-beta1 oligonucleotides to EGR-1-regulated cells completely inhibits the secretion of PAI-1 but not FN. However, in gel mobility shift assays pure EGR-1 or nuclear extracts of EGR-1-regulated cells specifically bind to two GC-rich elements of the human FN promoter at positions -75/-52 and -4/+18, indicating that the increased secretion of FN is likely due to direct up-regulation by EGR-1. Moreover, adhesion was greatly enhanced in EGR-1-regulated cells and was reversed by treatment with Arg-Gly-Asp (RGD) or PAI-1 antibody indicating that the secreted proteins are functional. We conclude that EGR-1 regulates the coordinated expression of gene products important for cell attachment ("oikis" factor) and normal growth control.

  15. Transforming growth factor-beta1 induces activation of Ras, Raf-1, MEK and MAPK in rat hepatic stellate cells.

    PubMed

    Reimann, T; Hempel, U; Krautwald, S; Axmann, A; Scheibe, R; Seidel, D; Wenzel, K W

    1997-02-10

    The transdifferentiation of hepatic stellate cells into myofibroblast-like cells and the proliferation of the transdifferentiated cells are controlled by TGF-beta1. Little is known about the intracellular signal transducers of TGF-beta1. In this paper we show that in cultured hepatic stellate cells TGF-beta1 induces activation of Ras, Raf-1, MEK and MAPK p42 and p44. The activation of MAPK depends on the activation of MEK. Our data exclude that the observed effects are mediated by a bFGF or PDGF autocrine loop. PMID:9038360

  16. Cross-talk between human mast cells and bronchial epithelial cells in plasminogen activator inhibitor-1 production via transforming growth factor-β1.

    PubMed

    Cho, Seong H; Lee, Sun H; Kato, Atsushi; Takabayashi, Tetsuji; Kulka, Marianna; Shin, Soon C; Schleimer, Robert P

    2015-01-01

    Previous reports suggest that plasminogen activator inhibitor-1 (PAI-1) promotes airway remodeling and that human and mouse mast cells (MCs) are an important source of PAI-1. In the present study we investigated MC-epithelial cell (EC) interactions in the production of PAI-1. We stimulated the human MC line LAD2 with IgE-receptor cross-linking and collected the supernatants. We incubated the human bronchial EC line BEAS-2B with the LAD2 supernatants and measured the level of PAI-1. When the supernatants from IgE-stimulated LAD2 were added to BEAS-2B, there was a significant enhancement of PAI-1 production by BEAS-2B. When we treated the MC supernatants with a transforming growth factor (TGF)-β1 neutralizing antibody, the MC-derived induction of PAI-1 from BEAS-2B was completely abrogated. Although TGF-β1 mRNA was constitutively expressed in resting LAD2, it was not highly induced by IgE-mediated stimulation. Nonetheless, active TGF-β1 protein was significantly increased in LAD2 after IgE-mediated stimulation. Active TGF-β1 produced by primary cultured human MCs was significantly reduced in the presence of a chymase inhibitor, suggesting a role of MC chymase as an activator of latent TGF-β1. This study indicates that stimulation of human MCs by IgE receptor cross-linking triggers activation of TGF-β1, at least in part via chymase, which in turn induces the production of PAI-1 by bronchial ECs. Our data suggest that human MCs may play an important role in airway remodeling in asthma as a direct source of PAI-1 and by activating bronchial ECs to produce further PAI-1 via a TGF-β1-mediated activation pathway.

  17. Inhibition of transforming growth factor-beta-induced liver fibrosis by a retinoic acid derivative via the suppression of Col 1A2 promoter activity.

    PubMed

    Yang, Kun-Lin; Chang, Wen-Teng; Hung, Kuo-Chen; Li, Eric I C; Chuang, Chia-Chang

    2008-08-22

    Transforming growth factor-beta1 (TGF-beta1) mediates expression of collagen 1A2 (Col 1A2) gene via a synergistic cooperation between Smad2/Smad3 and Sp1, both act on the Col 1A2 gene promoter. In our previous study, we reported that a retinoic acid derivative obtained from Phellinus linteus (designated PL) antagonizes TGF-beta-induced liver fibrosis through regulation of ROS and calcium influx. In this continuing study we seek further the effect of PL on the Smad signaling pathway. We used a Col 1A2 promoter-luciferase construct to study the action of PL on Smad through TGF-beta. We found that PL decreases the promoter activity of Col 1A2, hinders the translocalization of phosphorylated Smad2/3-Smad 4 complex from cytosol into nucleus and inhibits Sp1 binding activity. These results suggest that PL inhibits TGF-beta1-induced Col 1A2 promoter activity through blocking ROS and calcium influx as well as impeding Sp1 binding and translocalization of pSmad 2/3-Smad4 complex into nucleus.

  18. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    SciTech Connect

    Yang, Bin; Li, Wei; Zheng, Qichang; Qin, Tao; Wang, Kun; Li, Jinjin; Guo, Bing; Yu, Qihong; Wu, Yuzhe; Gao, Yang; Cheng, Xiang; Hu, Shaobo; Kumar, Stanley Naveen; Liu, Sanguang; Song, Zifang

    2015-07-17

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negative effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation.

  19. Identification and characterization of transforming growth factor β-activated kinase 1 from Litopenaeus vannamei involved in anti-bacterial host defense.

    PubMed

    Wang, Sheng; Li, Haoyang; Lǚ, Kai; Qian, Zhe; Weng, Shaoping; He, Jianguo; Li, Chaozheng

    2016-05-01

    LvTAK1, a member of transforming growth factor β-activated kinase 1 (TAK1) families, has been identified from Litopenaeus vannamei in this study. The full length of LvTAK1 is 2670 bp, including a 2277 bp open reading frame (ORF) that encoded a putative protein of 758 amino acids with a calculated molecular weight of ∼83.4 kDa LvTAK1 expression was most abundant in muscles and was up-regulated in gills after LPS, Vibrio parahaemolyticus, Staphylococcus aureus, Poly (I:C) and WSSV challenge. Both in vivo and in vitro experiments indicated that LvTAK1 could activate the expression of several antimicrobial peptide genes (AMPs). In addition, the dsRNA-mediated knockdown of LvTAK1 enhanced the susceptibility of shrimps to Vibrio parahaemolyticus, a kind of Gram-negative bacteria. These results suggested LvTAK1 played important roles in anti-bacterial infection. CoIP and subcellular localization assay demonstrated that LvTAK1 could interact with its binding protein LvTAB2, a key component of IMD pathway. Moreover, over-expression of LvTAK1 in Drosophila S2 cell could strongly induce the promoter activity of Diptericin (Dpt), a typical AMP which is used to read out of the activation of IMD pathway. These findings suggested that LvTAK1 could function as a component of IMD pathway. Interestingly, with the over-expression of LvTAK1 in S2 cell, the promoter activity of Metchnikowin (Mtk), a main target gene of Toll/Dif pathway, was up-regulated over 30 times, suggesting that LvTAK1 may also take part in signal transduction of the Toll pathway. In conclusion, we provided some evidences that the involvement of LvTAK1 in the regulation of both Toll and IMD pathways, as well as innate immune against bacterial infection in shrimp.

  20. Increase in transforming growth factor-beta in the brain during infection is related to fever, not depression of spontaneous motor activity.

    PubMed

    Matsumura, S; Shibakusa, T; Fujikawa, T; Yamada, H; Inoue, K; Fushiki, T

    2007-02-01

    When viral infection occurs, this information is transmitted to the brain, and symptoms such as fever and tiredness are induced. One of the causes of these symptoms is the secretion of proinflammatory cytokines in blood and the brain. In this study, the i.p. administration of polyinosinic:polycytidylic acid (poly I:C), a synthetic double-stranded RNA, to rats was used as an infection model. Poly I:C decreased spontaneous motor activity (SMA) 2 h after i.p. administration, and this decrease was maintained thereafter. The concentration of active transforming growth factor-beta (TGF-beta) in cerebrospinal fluid (CSF) increased 1 h after the administration. This increase occurred earlier than those in the concentrations of other proinflammatory cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha), in serum. The intracisternal administration of an anti-TGF-beta antibody partially inhibited fever induced by poly I:C administration; however, this treatment did not affect the decrease in SMA. Furthermore, intracisternal administration of TGF-beta raised the body temperature. These results indicate that TGF-beta in the brain, which was increased by poly I:C administration, is associated with fever but not with a decrease in SMA.

  1. Latent transforming growth factor binding protein 4 regulates transforming growth factor beta receptor stability.

    PubMed

    Su, Chi-Ting; Huang, Jenq-Wen; Chiang, Chih-Kang; Lawrence, Elizabeth C; Levine, Kara L; Dabovic, Branka; Jung, Christine; Davis, Elaine C; Madan-Khetarpal, Suneeta; Urban, Zsolt

    2015-07-15

    Mutations in the gene for the latent transforming growth factor beta binding protein 4 (LTBP4) cause autosomal recessive cutis laxa type 1C. To understand the molecular disease mechanisms of this disease, we investigated the impact of LTBP4 loss on transforming growth factor beta (TGFβ) signaling. Despite elevated extracellular TGFβ activity, downstream signaling molecules of the TGFβ pathway, including pSMAD2 and pERK, were down-regulated in LTBP4 mutant human dermal fibroblasts. In addition, TGFβ receptors 1 and 2 (TGFBR1 and TGFBR2) were reduced at the protein but not at the ribonucleic acid level. Treatment with exogenous TGFβ1 led to an initially rapid increase in SMAD2 phosphorylation followed by a sustained depression of phosphorylation and receptor abundance. In mutant cells TGFBR1 was co-localized with lysosomes. Treatment with a TGFBR1 kinase inhibitor, endocytosis inhibitors or a lysosome inhibitor, normalized the levels of TGFBR1 and TGFBR2. Co-immunoprecipitation demonstrated a molecular interaction between LTBP4 and TGFBR2. Knockdown of LTBP4 reduced TGFβ receptor abundance and signaling in normal cells and supplementation of recombinant LTBP4 enhanced these measures in mutant cells. In a mouse model of Ltbp4 deficiency, reduced TGFβ signaling and receptor levels were normalized upon TGFBR1 kinase inhibitor treatment. Our results show that LTBP4 interacts with TGFBR2 and stabilizes TGFβ receptors by preventing their endocytosis and lysosomal degradation in a ligand-dependent and receptor kinase activity-dependent manner. These findings identify LTBP4 as a key molecule required for the stability of the TGFβ receptor complex, and a new mechanism by which the extracellular matrix regulates cytokine receptor signaling.

  2. Latent transforming growth factor binding protein 4 regulates transforming growth factor beta receptor stability

    PubMed Central

    Su, Chi-Ting; Huang, Jenq-Wen; Chiang, Chih-Kang; Lawrence, Elizabeth C.; Levine, Kara L.; Dabovic, Branka; Jung, Christine; Davis, Elaine C.; Madan-Khetarpal, Suneeta; Urban, Zsolt

    2015-01-01

    Mutations in the gene for the latent transforming growth factor beta binding protein 4 (LTBP4) cause autosomal recessive cutis laxa type 1C. To understand the molecular disease mechanisms of this disease, we investigated the impact of LTBP4 loss on transforming growth factor beta (TGFβ) signaling. Despite elevated extracellular TGFβ activity, downstream signaling molecules of the TGFβ pathway, including pSMAD2 and pERK, were down-regulated in LTBP4 mutant human dermal fibroblasts. In addition, TGFβ receptors 1 and 2 (TGFBR1 and TGFBR2) were reduced at the protein but not at the ribonucleic acid level. Treatment with exogenous TGFβ1 led to an initially rapid increase in SMAD2 phosphorylation followed by a sustained depression of phosphorylation and receptor abundance. In mutant cells TGFBR1 was co-localized with lysosomes. Treatment with a TGFBR1 kinase inhibitor, endocytosis inhibitors or a lysosome inhibitor, normalized the levels of TGFBR1 and TGFBR2. Co-immunoprecipitation demonstrated a molecular interaction between LTBP4 and TGFBR2. Knockdown of LTBP4 reduced TGFβ receptor abundance and signaling in normal cells and supplementation of recombinant LTBP4 enhanced these measures in mutant cells. In a mouse model of Ltbp4 deficiency, reduced TGFβ signaling and receptor levels were normalized upon TGFBR1 kinase inhibitor treatment. Our results show that LTBP4 interacts with TGFBR2 and stabilizes TGFβ receptors by preventing their endocytosis and lysosomal degradation in a ligand-dependent and receptor kinase activity-dependent manner. These findings identify LTBP4 as a key molecule required for the stability of the TGFβ receptor complex, and a new mechanism by which the extracellular matrix regulates cytokine receptor signaling. PMID:25882708

  3. Inhibition of transforming growth factor β-activated kinase 1 prevents inflammation-related cartilage degradation in osteoarthritis

    PubMed Central

    Cheng, Jin; Hu, Xiaoqing; Dai, Linghui; Zhang, Xin; Ren, Bo; Shi, Weili; Liu, Zhenlong; Duan, Xiaoning; Zhang, Jiying; Fu, Xin; Chen, Wenqing; Ao, Yingfang

    2016-01-01

    Osteoarthritis (OA) is a common debilitating joint disorder, there’s still no available disease-modifying drug for OA currently. This study aims to explore the role of TAK1 in OA pathogenesis and therapeutic efficiency of TAK1 inhibition for OA. The contribution of TAK1 to OA pathogenesis was investigated by intra-articular injection of TAK1-encoding adenovirus in rats. TAK1 inhibitor 5Z-7-induced expression changes of extracellular matrix (ECM)-related genes were detected by real-time PCR. The protective effect of 5Z-7 against OA progression was evaluated in a post-traumatic OA rat model. Our results showed that intra-articular injection of Ad-Tak1 induced cartilage destruction and OA-related cytokine secretion in rat joints. TAK1 inhibition by 5Z-7 efficiently blocked NF-κB, JNK and p38 pathways activation in OA chondrocytes and synoviocytes, Meanwhile, 5Z-7 significantly decreased the expression of matrix-degrading enzymes and pro-inflammatory cytokine, while increased ECM protein expression, which are all crucial components in OA. 5Z-7 also ameliorated ECM loss in OA cartilage explants. More importantly, 5Z-7 significantly protected against cartilage destruction in a rat model of OA. In conclusion, our findings provide the first in vivo evidence that TAK1 contributes to OA by disrupting cartilage homeostasis, thus represents an ideal target for OA treatment, with 5Z-7 as a candidate therapeutic. PMID:27682596

  4. Transforming Growth Factor β1 (TGF-β1) Activates Hepcidin mRNA Expression in Hepatocytes.

    PubMed

    Chen, Simeng; Feng, Teng; Vujić Spasić, Maja; Altamura, Sandro; Breitkopf-Heinlein, Katja; Altenöder, Jutta; Weiss, Thomas S; Dooley, Steven; Muckenthaler, Martina U

    2016-06-17

    The hepatic hormone hepcidin is the master regulator of systemic iron homeostasis. Its expression level is adjusted to alterations in iron levels, inflammatory cues, and iron requirements for erythropoiesis. Bone morphogenetic protein 6 (BMP6) contributes to the iron-dependent control of hepcidin. In addition, TGF-β1 may stimulate hepcidin mRNA expression in murine hepatocytes and human leukocytes. However, receptors and downstream signaling proteins involved in TGF-β1-induced hepcidin expression are still unclear. Here we show that TGF-β1 treatment of mouse and human hepatocytes, as well as ectopic expression of TGF-β1 in mice, increases hepcidin mRNA levels. The hepcidin response to TGF-β1 depends on functional TGF-β1 type I receptor (ALK5) and TGF-β1 type II receptor (TβRII) and is mediated by a noncanonical mechanism that involves Smad1/5/8 phosphorylation. Interestingly, increasing availability of canonical Smad2/3 decreases TGF-β1-induced hepcidin regulation, whereas the BMP6-hepcidin signal was enhanced, indicating a signaling component stoichiometry-dependent cross-talk between the two pathways. Although ALK2/3-dependent hepcidin activation by BMP6 can be modulated by each of the three hemochromatosis-associated proteins: HJV (hemojuvelin), HFE (hemochromatosis protein), and TfR2 (transferrin receptor 2), these proteins do not control the ALK5-mediated hepcidin response to TGF-β1. TGF-β1 mRNA levels are increased in mouse models of iron overload, indicating that TGF-β1 may contribute to hepcidin synthesis under these conditions. In conclusion, these data demonstrate that a complex regulatory network involving TGF-β1 and BMP6 may control the sensing of systemic and/or hepatic iron levels.

  5. The immunomodulatory activity of human amniotic fluid can be correlated with transforming growth factor-beta 1 (TGF-beta 1) and beta 2 activity.

    PubMed Central

    Lang, A K; Searle, R F

    1994-01-01

    The role of alphafetoprotein (AFP) in the immunomodulatory activity of amniotic fluids (AF) from normally progressing human pregnancy (weeks 14-16) was investigated. A panel of 42 AF (25% v/v) reduced significantly phytohaemagglutinin (PHA)-induced peripheral blood mononuclear cell (PBMC) proliferation in serum-free cultures with a mean per cent inhibition of 68.4 +/- 5.5%. In contrast, AFP preparations, with one exception (U.AFP), failed to display inhibitory activity. Pretreatment of AF with anti-TGF-beta 1 and beta 2 antibodies used alone resulted in the mean per cent loss of inhibition of 33.1 +/- 3.9% and 52.3 +/- 7.5%, respectively. A summative loss of AF-mediated inhibition was detected when anti-TGF-beta 1 and beta 2 antibodies were used in combination, but immunomodulation was rarely abolished 100% by this treatment. Anti-TGF-beta 2 antibody treatment, unlike anti-TGF-beta 1 antibody treatment, reversed the inhibitory activity of U.AFP. The amount of TGF-beta 1 and beta 2 contained in human AF was studied by growth inhibition of Mv1 Lu cells. The mean levels of TGF-beta 1 and beta 2 in AF were 11 +/- 0.9 U/ml and 2.3 +/- 0.4 U/ml, respectively, which corresponds with a mean per cent inhibition of 49 +/- 4.7%. U.AFP also significantly inhibited Mv1 Lu cell growth. To investigate the mechanism of AF-mediated inhibition, the effect of AF and AFP on IL-2 production by concanavalin A (Con A)-stimulated PBMC blasts was determined by the CTLL-2 cell bioassay. IL-2 production was reduced 55.5% in AF-treated blasts and 61% in U.AFP-treated blasts compared with controls. Our findings indicate that the immunomodulatory activity of human AF can be correlated with TGF-beta 1 and beta 2 and not with AFP, the inhibitory activity of U.AFP preparation reflecting copurifying TGF-beta 2 activity. PMID:7518368

  6. A Cationic-Independent Mannose 6-Phosphate Receptor Inhibitor (PXS64) Ameliorates Kidney Fibrosis by Inhibiting Activation of Transforming Growth Factor-β1

    PubMed Central

    Zhang, Jie; Wong, Muh Geot; Wong, May; Gross, Simon; Chen, Jason; Pollock, Carol; Saad, Sonia

    2015-01-01

    The activity of transforming growth factor-β1 (TGF-β1) is regulated by its conversion from the latent to the active form. We have previously shown that the conversion is at least in part mediated by the cationic-independent mannose 6-phosphate receptor (CI-M6PR), as the CI-M6PR inhibitor, PXS-25 has anti-fibrotic properties in human kidney tubular (HK-2) cells under high glucose conditions. However, its clinical use is limited by low bioavailability. Our aim was to determine the effects of PXS64, a pro-drug of PXS25, in in vitro and in vivo models of renal fibrosis. HK-2 cells were exposed to latent TGFβ1+/- PXS64 for 48 hours. The mRNA and protein levels of pro-fibrotic and pro-inflammatory markers were determined. A 7 day unilateral ureteric obstruction (UUO) model was used and the following experimental groups were studied: (i) Sham operated, (ii) UUO, (iii) UUO + telmisartan (iv) UUO + PSX64. HK-2 cells exposed to PXS64 reduced TGFβ mediated effects on collagen IV, fibronectin, macrophage chemotactic protein-1 (MCP-1) and phospho-smad2 protein expression, consistent with inhibition of the conversion of latent to active TGF-β1. PXS 64 treated UUO mice had a lower tubulointerstitial fibrosis index, collagen IV and fibronectin protein and mRNA expression when compared to untreated UUO mice. In addition, these animals had lower MCP-1 mRNA expression, reduced inflammarory cell infiltrate, as indicated by fewer CD45, F4/80 positive cells, and reduced phospho-Smad2 protein expression when compared to untreated UUO animals. Our data demonstrates that PSX64 is an effective anti-fibrotic agent by inhibiting the activation of latent TGF-β1. PMID:25658916

  7. Essential Roles of RNA-binding Protein HuR in Activation of Hepatic Stellate Cells Induced by Transforming Growth Factor-β1

    PubMed Central

    Ge, Jingjing; Chang, Na; Zhao, Zhongxin; Tian, Lei; Duan, Xianghui; Yang, Lin; Li, Liying

    2016-01-01

    RNA-binding protein HuR mediates transforming growth factor (TGF)-β1-induced profibrogenic actions. Up-regulation of Sphingosine kinase 1 (SphK1) is involved in TGF-β1-induced activation of hepatic stellate cells (HSCs) in liver fibrogenesis. However, the molecular mechanism of TGF-β1 regulates SphK1 remains unclear. This study was designed to investigate the role of HuR in TGF-β1-induced SphK1 expression and identify a new molecular mechanism in liver fibrogenensis. In vivo, HuR expression was increased, translocated to cytoplasm, and bound to SphK1 mRNA in carbon tetrachloride- and bile duct ligation-induced mouse fibrotic liver. HuR mRNA expression had a positive correlation with mRNA expressions of SphK1 and fibrotic markers, α-smooth muscle actin (α-SMA) and Collagen α1(I), respectively. In vitro, up-regulation of SphK1 and activation of HSCs stimulated by TGF-β1 depended on HuR cytoplasmic accumulation. The effects of TGF-β1 were diminished when HuR was silenced or HuR cytoplasmic translocation was blocked. Meanwhile, overexpression of HuR mimicked the effects of TGF-β1. Furthermore, TGF-β1 prolonged half-life of SphK1 mRNA by promoting its binding to HuR. Pharmacological or siRNA-induced SphK1 inhibition abrogated HuR-mediated HSC activation. In conclusion, our data suggested that HuR bound to SphK1 mRNA and played a crucial role in TGF-β1-induced HSC activation. PMID:26912347

  8. Essential Roles of RNA-binding Protein HuR in Activation of Hepatic Stellate Cells Induced by Transforming Growth Factor-β1.

    PubMed

    Ge, Jingjing; Chang, Na; Zhao, Zhongxin; Tian, Lei; Duan, Xianghui; Yang, Lin; Li, Liying

    2016-02-25

    RNA-binding protein HuR mediates transforming growth factor (TGF)-β1-induced profibrogenic actions. Up-regulation of Sphingosine kinase 1 (SphK1) is involved in TGF-β1-induced activation of hepatic stellate cells (HSCs) in liver fibrogenesis. However, the molecular mechanism of TGF-β1 regulates SphK1 remains unclear. This study was designed to investigate the role of HuR in TGF-β1-induced SphK1 expression and identify a new molecular mechanism in liver fibrogenensis. In vivo, HuR expression was increased, translocated to cytoplasm, and bound to SphK1 mRNA in carbon tetrachloride- and bile duct ligation-induced mouse fibrotic liver. HuR mRNA expression had a positive correlation with mRNA expressions of SphK1 and fibrotic markers, α-smooth muscle actin (α-SMA) and Collagen α1(I), respectively. In vitro, up-regulation of SphK1 and activation of HSCs stimulated by TGF-β1 depended on HuR cytoplasmic accumulation. The effects of TGF-β1 were diminished when HuR was silenced or HuR cytoplasmic translocation was blocked. Meanwhile, overexpression of HuR mimicked the effects of TGF-β1. Furthermore, TGF-β1 prolonged half-life of SphK1 mRNA by promoting its binding to HuR. Pharmacological or siRNA-induced SphK1 inhibition abrogated HuR-mediated HSC activation. In conclusion, our data suggested that HuR bound to SphK1 mRNA and played a crucial role in TGF-β1-induced HSC activation.

  9. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    SciTech Connect

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.; Fromigue, O.; Modrowski, D.; Zerath, E.; Marie, P.J. . E-mail: pierre.marie@larib.inserm.fr

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2 administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.

  10. Lactic Acid is Elevated in Idiopathic Pulmonary Fibrosis and Induces Myofibroblast Differentiation Via pH-Dependent Activation of Transforming Growth Factor-β

    SciTech Connect

    Kottman, R. M.; Kulkarni, Ajit A.; Smolnycki, Katie A.; Lyda, Elizabeth; Dahanayake, Thinesh; Salibi, Rami; Honnons, Sylvie; Jones, Carolyn; Isern, Nancy G.; Hu, Jian Z.; Nathan, Steven D.; Grant, Geraldine; Phipps, Richard P.; Sime, Patricia J.

    2012-10-15

    Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex disease for which the pathogenesis is poorly understood. In this study, we identified lactic acid as a metabolite that is elevated in the lung tissue of patients with IPF. Objectives: This study examines the effect of lactic acid on myofibroblast differentiation and pulmonary fibrosis. Methods:We used metabolomic analysis to examine cellular metabolism in lung tissuefrom patients with IPFanddeterminedthe effects of lactic acid and lactate dehydrogenase-5 (LDH5) overexpression on myofibroblast differentiation and transforming growth factor (TGF)-b activation in vitro. Measurements and Main Results: Lactic acid concentrations from healthy and IPF lung tissue were determined by nuclear magnetic resonance spectroscopy; a-smooth muscle actin, calponin, and LDH5 expression were assessed by Western blot of cell culture lysates. Lactic acid and LDH5 were significantly elevated in IPF lung tissue compared with controls. Physiologic concentrations of lactic acid induced myofibroblast differentiation via activation of TGF-b. TGF-b induced expression of LDH5 via hypoxia-inducible factor 1a (HIF1a). Importantly, overexpression of both HIF1a and LDH5 in human lung fibroblasts induced myofibroblast differentiation and synergized with low dose TGF-b to induce differentiation. Furthermore, inhibition of both HIF1a and LDH5 inhibited TGF-b–induced myofibroblast differentiation. Conclusions: We have identified the metabolite lactic acid as an important mediator of myofibroblast differentiation via a pHdependent activation of TGF-b. We propose that the metabolic milieu of the lung, and potentially other tissues, is an important driving force behind myofibroblast differentiation and potentially the initiation and progression of fibrotic disorders.

  11. Peroxisome proliferator-activated receptor γ agonist efatutazone impairs transforming growth factor β2-induced motility of epidermal growth factor receptor tyrosine kinase inhibitor-resistant lung cancer cells.

    PubMed

    Serizawa, Masakuni; Murakami, Haruyasu; Watanabe, Masaru; Takahashi, Toshiaki; Yamamoto, Nobuyuki; Koh, Yasuhiro

    2014-06-01

    Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI) are effective for non-small cell lung cancers (NSCLC) with EGFR-activating mutations. However, most responders develop resistance. Efatutazone, a novel peroxisome proliferator-activated receptor gamma (PPARγ) agonist, is currently under clinical evaluation; it has antiproliferative effects and induces cellular morphological changes and differentiation. The present study investigated the effects of efatutazone in EGFR-TKI-resistant NSCLC cells, while focusing on cell motility. The PC-9-derived NSCLC cell lines PC-9ER and PC-9ZD, resistant to EGFR-TKI due to v-crk avian sarcoma virus CT10 oncogene homolog-like (CRKL) amplification-induced phosphatidylinositol 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homolog (AKT) activation and an EGFR T790M mutation, respectively, were used. These cells exhibit enhanced cell motility due to transforming growth factor β (TGF-β)/Smad2 family member 2 (Smad2) pathway activation. Efatutazone had no growth-inhibitory effect on the tested cells but inhibited the motility of EGFR-TKI-resistant cells in wound closure and transwell assays. Efatutazone plus erlotinib treatment provided greater inhibition of PC-9ER cell migration than efatutazone or erlotinib alone. Efatutazone suppressed increased TGF-β2 secretion from both cell lines (shown by ELISA) and downregulation of TGF-β2 transcription (observed by quantitative RT-PCR). Immunoblot analysis and luciferase assays revealed that efatutazone suppressed Smad2 phosphorylation and its transcriptional activity. These results suggest that efatutazone inhibits cell motility by antagonizing the TGF-β/Smad2 pathway and effectively prevents metastasis in NSCLC patients with acquired resistance to EGFR-TKI regardless of the resistance mechanism.

  12. Angiotensin II-induced pro-fibrotic effects require p38MAPK activity and transforming growth factor beta 1 expression in skeletal muscle cells.

    PubMed

    Morales, María Gabriela; Vazquez, Yaneisi; Acuña, María José; Rivera, Juan Carlos; Simon, Felipe; Salas, José Diego; Alvarez Ruf, Joel; Brandan, Enrique; Cabello-Verrugio, Claudio

    2012-11-01

    Fibrotic disorders are typically characterised by excessive connective tissue and extracellular matrix (ECM) deposition that preclude the normal healing of different tissues. Several skeletal muscle dystrophies are characterised by extensive fibrosis. Among the factors involved in skeletal muscle fibrosis is angiotensin II (Ang-II), a key protein of the renin-angiotensin system (RAS). We previously demonstrated that myoblasts responded to Ang-II by increasing the ECM protein levels mediated by AT-1 receptors, implicating an Ang-II-induced reactive oxygen species (ROS) by a NAD(P)H oxidase-dependent mechanism. In this paper, we show that in myoblasts, Ang-II induced the increase of transforming growth factor beta 1 (TGF-β1) and connective tissue growth factor (CTGF) expression through its AT-1 receptor. This effect is dependent of the NAD(P)H oxidase (NOX)-induced ROS, as indicated by a decrease of the expression of both pro-fibrotic factors when the ROS production was inhibited via the NOX inhibitor apocynin. The increase in pro-fibrotic factors levels was paralleled by enhanced p38MAPK and ERK1/2 phosphorylation in response to Ang-II. However, only the p38MAPK activity was critical for the Ang-II-induced fibrotic effects, as indicated by the decrease in the Ang-II-induced TGF-β1 and CTGF expression and fibronectin levels by SB-203580, an inhibitor of the p38MAPK, but not by U0126, an inhibitor of ERK1/2 phosphorylation. Furthermore, we showed that the Ang-II-dependent p38MAPK activation, but not the ERK1/2 phosphorylation, was necessary for the NOX-derived ROS. In addition, we demonstrated that TGF-β1 expression was required for the Ang-II-induced pro-fibrotic effects evaluated by using SB-431542, an inhibitor of TGF-βRI kinase activity, and by knocking down TGF-β1 levels by shRNA technique. These results strongly suggest that the fibrotic response to Ang-II is mediated by the AT-1 receptor and requires the p38MAPK phosphorylation, NOX-induced ROS, and TGF

  13. Inhibition of Plasminogen Activator Inhibitor-1 Attenuates Transforming Growth Factor-β-Dependent Epithelial Mesenchymal Transition and Differentiation of Fibroblasts to Myofibroblasts

    PubMed Central

    Omori, Keitaro; Hattori, Noboru; Senoo, Tadashi; Takayama, Yusuke; Masuda, Takeshi; Nakashima, Taku; Iwamoto, Hiroshi; Fujitaka, Kazunori; Hamada, Hironobu; Kohno, Nobuoki

    2016-01-01

    Transforming growth factor-β (TGF-β) is central during the pathogenesis of pulmonary fibrosis, in which the plasminogen activator inhibitor-1 (PAI-1) also has an established role. TGF-β is also known to be the strongest inducer of PAI-1. To investigate the link between PAI-1 and TGF-β in fibrotic processes, we evaluated the effect of SK-216, a PAI-1-specific inhibitor, in TGF-β-dependent epithelial-mesenchymal transition (EMT) and fibroblast to myofibroblast differentiation. In human alveolar epithelial A549 cells, treatment with TGF-β induced EMT, whereas co-treatment with SK-216 attenuated the occurrence of EMT. The inhibition of TGF-β-induced EMT by SK-216 was also confirmed in the experiment using murine epithelial LA-4 cells. Blocking EMT by SK-216 inhibited TGF-β-induced endogenous production of PAI-1 and TGF-β in A549 cells as well. These effects of SK-216 were not likely mediated by suppressing either Smad or ERK pathways. Using human lung fibroblast MRC-5 cells, we demonstrated that SK-216 inhibited TGF-β-dependent differentiation of fibroblasts to myofibroblasts. We also observed this inhibition by SK-216 in human primary lung fibroblasts. Following these in vitro results, we tested oral administration of SK-216 into mice injected intratracheally with bleomycin. We found that SK-216 reduced the degree of bleomycin-induced pulmonary fibrosis in mice. Although the precise mechanisms underlying the link between TGF-β and PAI-1 regarding fibrotic process were not determined, PAI-1 seems to act as a potent downstream effector on the pro-fibrotic property of TGF-β. In addition, inhibition of PAI-1 activity by a PAI-1 inhibitor exerts an antifibrotic effect even in vivo. These data suggest that targeting PAI-1 as a downstream effector of TGF-β could be a promising therapeutic strategy for pulmonary fibrosis. PMID:26859294

  14. Inhibition of Plasminogen Activator Inhibitor-1 Attenuates Transforming Growth Factor-β-Dependent Epithelial Mesenchymal Transition and Differentiation of Fibroblasts to Myofibroblasts.

    PubMed

    Omori, Keitaro; Hattori, Noboru; Senoo, Tadashi; Takayama, Yusuke; Masuda, Takeshi; Nakashima, Taku; Iwamoto, Hiroshi; Fujitaka, Kazunori; Hamada, Hironobu; Kohno, Nobuoki

    2016-01-01

    Transforming growth factor-β (TGF-β) is central during the pathogenesis of pulmonary fibrosis, in which the plasminogen activator inhibitor-1 (PAI-1) also has an established role. TGF-β is also known to be the strongest inducer of PAI-1. To investigate the link between PAI-1 and TGF-β in fibrotic processes, we evaluated the effect of SK-216, a PAI-1-specific inhibitor, in TGF-β-dependent epithelial-mesenchymal transition (EMT) and fibroblast to myofibroblast differentiation. In human alveolar epithelial A549 cells, treatment with TGF-β induced EMT, whereas co-treatment with SK-216 attenuated the occurrence of EMT. The inhibition of TGF-β-induced EMT by SK-216 was also confirmed in the experiment using murine epithelial LA-4 cells. Blocking EMT by SK-216 inhibited TGF-β-induced endogenous production of PAI-1 and TGF-β in A549 cells as well. These effects of SK-216 were not likely mediated by suppressing either Smad or ERK pathways. Using human lung fibroblast MRC-5 cells, we demonstrated that SK-216 inhibited TGF-β-dependent differentiation of fibroblasts to myofibroblasts. We also observed this inhibition by SK-216 in human primary lung fibroblasts. Following these in vitro results, we tested oral administration of SK-216 into mice injected intratracheally with bleomycin. We found that SK-216 reduced the degree of bleomycin-induced pulmonary fibrosis in mice. Although the precise mechanisms underlying the link between TGF-β and PAI-1 regarding fibrotic process were not determined, PAI-1 seems to act as a potent downstream effector on the pro-fibrotic property of TGF-β. In addition, inhibition of PAI-1 activity by a PAI-1 inhibitor exerts an antifibrotic effect even in vivo. These data suggest that targeting PAI-1 as a downstream effector of TGF-β could be a promising therapeutic strategy for pulmonary fibrosis.

  15. Circulating levels of osteoclast activating cytokines, interleukin-11 and transforming growth factor-beta2, as valuable biomarkers for the assessment of bone turnover in postmenopausal osteoporosis.

    PubMed

    Shaarawy, Mohamed; Zaki, Sameh; Sheiba, Mamdouh; El-Minawi, Ahmad M

    2003-01-01

    The objective of this study was to evaluate the role of osteoclast activating cytokines, interleukin-11 (IL-11) and transforming growth factor-beta2 (TGF-beta2) in the assessment of bone turnover in postmenopausal osteoporosis (PO). Eighty postmenopausal osteoporotic women with lumbar spine bone mineral densities (BMD) as measured by DEXA that were more than 2.5 SD below the normal mean of healthy women (controls), participated in this study. Various therapeutic modalities (hormone replacement therapy, HRT, alendronate, calcitonin and 1alpha-hydroxyvitamin D (alfacalcidol) were administered for 12 months to 4 groups of postmenopausal osteoporotic patients. Fasting blood samples and two hour urine samples were collected from control subjects and from patients before and after treatment. Serum samples were assayed for IL-11, TGF-beta2, osteocalcin (OC) and bone alkaline phosphatase (B-ALP), whereas urine samples were assayed for N-telopeptide for type I collagen (NTX) and deoxypyridinoline (DPyr). The results demonstrated a significant increase of both IL-11 and TGF-beta2 in postmenopausal osteoporosis. Positive correlations exist between TGF-beta2 or IL-11 and markers of bone resorption (NTX and DPyr). Moreover, there was a significant positive correlation between TGF-beta2 and IL-11. Therapeutic modalities enhancing bone formation and/or with antiresorptive effect revealed a significant decrease in markers of bone resorption, formation and osteoclast activating cytokines, indicating a decrease in bone turnover. The decrease of IL-11 and TGF-beta2 may be attributed to a drug inhibitory effect of these cytokines on enhancing osteoblast mediated osteoid degradation. In conclusion, both serum IL-11 and TGF-beta2 determinations may be considered as biomarkers for the assessment of bone turnover and for monitoring antiresorptive therapy in postmenopausal osteoporosis.

  16. Inhibition of liver fibrosis by solubilized coenzyme Q10: Role of Nrf2 activation in inhibiting transforming growth factor-beta1 expression

    SciTech Connect

    Choi, Hoo-Kyun; Pokharel, Yuba Raj; Lim, Sung Chul; Han, Hyo-Kyung; Ryu, Chang Seon; Kim, Sang Kyum; Kwak, Mi Kyong; Kang, Keon Wook

    2009-11-01

    Coenzyme Q10 (CoQ10), an endogenous antioxidant, is important in oxidative phosphorylation in mitochondria. It has anti-diabetic and anti-cardiovascular disease effects, but its ability to protect against liver fibrosis has not been studied. Here, we assessed the ability of solubilized CoQ10 to improve dimethylnitrosamine (DMN)-induced liver fibrogenesis in mice. DMN treatments for 3 weeks produced a marked liver fibrosis as assessed by histopathological examination and tissue 4-hydroxyproline content. Solubilized CoQ10 (10 and 30 mg/kg) significantly inhibited both the increases in fibrosis score and 4-hydroxyproline content induced by DMN. Reverse transcription-polymerase chain reaction and Western blot analyses revealed that solubilized CoQ10 inhibited increases in the transforming growth factor-beta1 (TGF-beta1) mRNA and alpha-smooth muscle actin (alpha-SMA) protein by DMN. Interestingly, hepatic glutamate-cysteine ligase (GCL) and glutathione S-transferase A2 (GSTA2) were up-regulated in mice treated with CoQ10. Solubilized CoQ10 also up-regulated antioxidant enzymes such as catalytic subunits of GCL and GSTA2 via activating NF-E2 related factor2 (Nrf2)/antioxidant response element (ARE) in H4IIE hepatoma cells. Moreover, CoQ10's inhibition of alpha-SMA and TGF-beta1 expressions disappeared in Nrf2-null MEF cells. In contrast, Nrf2 overexpression significantly decreased the basal expression levels of alpha-SMA and TGF-beta1 in Nrf2-null MEF cells. These results demonstrated that solubilized CoQ10 inhibited DMN-induced liver fibrosis through suppression of TGF-beta1 expression via Nrf2/ARE activation.

  17. Phosphoinositide turnover in cell growth and transformation

    SciTech Connect

    Fleischman, L.F.

    1987-01-01

    Interaction of cells with various stimuli triggers a common signal transduction pathway involving breakdown and resynthesis of the minor membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP/sub 2/). Hydrolysis of PIP/sub 2/ by phospholipase C generates two key catabolites-inositol-1,4,5-trisphosphate (IP/sub 3/) and diacylglycerol (DAG)-which mediate and amplify cellular responses. These studies provide evidence for potential involvement of this pathway in oncogenic transformation and cell cycle progression. Altered levels of PIP/sub 2/ and its breakdown products were found in cells transformed by ras oncogenes, in contrast to untransformed counterparts. Steady-state levels of PIP/sub 2/, DAG and inositol phosphates were measured in NIH 3T3 and NRK cells metabolically labelled with /sup 3/H-glycerol and /sup 3/H-inositol. DAG and inositol phosphate levels were significantly elevated by 2.5-3 fold in the transformed cells while levels of PIP/sub 2/ were decreased. These findings suggest that the ras protein may activate phospholipase C. Elevated DAG content in the transformed cells was also measured by phosphorylation of DAG using a partially purified DAG kinase, indicating that the differences seen could not be attributed to differences in labelling between the cell lines.

  18. Phase transformation and growth of hygroscopic aerosols

    SciTech Connect

    Tang, I.N.

    1995-09-01

    Ambient aerosols frequently contain large portions of hygroscopic inorganic salts such as chlorides, nitrates, and sulfates in either pure or mixed forms. Such inorganic salt aerosols exhibit the properties of deliquescence and efflorescence in air. The phase transformation from a solid particle to a saline droplet usually occurs spontaneously when the relative humidity of the atmosphere reaches a level specific to the chemical composition of the aerosol particle. Conversely, when the relative humidity decreases and becomes low enough, the saline droplet will evaporate and suddenly crystallize, expelling all its water content. The phase transformation and growth of aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climate changes. In this chapter, an exposition of the underlying thermodynamic principles is given, and recent advances in experimental methods utilizing single-particle levitation are discussed. In addition, pertinent and available thermodynamic data, which are needed for predicting the deliquescence properties of single and multi-component aerosols, are compiled. This chapter is useful to research scientists who are either interested in pursuing further studies of aerosol thermodynamics, or required to model the dynamic behavior of hygroscopic aerosols in a humid environment.

  19. Role of Flightless-I (Drosophila) homolog in the transcription activation of type I collagen gene mediated by transforming growth factor beta

    SciTech Connect

    Lim, Mi-Sun; Jeong, Kwang Won

    2014-11-21

    Highlights: • FLII activates TGFβ-mediated expression of COL1A2 gene. • TGFβ induces the association of FLII with SMAD3 and BRG1 in A549 cells. • FLII is required for the recruitment of SWI/SNF complex and chromatin accessibility to COL1A2 promoter. - Abstract: Flightless-I (Drosophila) homolog (FLII) is a nuclear receptor coactivator that is known to interact with other transcriptional regulators such as the SWI/SNF complex, an ATP-dependent chromatin-remodeling complex, at the promoter or enhancer region of estrogen receptor (ER)-α target genes. However, little is known about the role of FLII during transcription initiation in the transforming growth factor beta (TGFβ)/SMAD-dependent signaling pathway. Here, we demonstrate that FLII functions as a coactivator in the expression of type I collagen gene induced by TGFβ in A549 cells. FLII activates the reporter gene driven by COL1A2 promoter in a dose-dependent manner. Co-expression of GRIP1, CARM1, or p300 did not show any synergistic activation of transcription. Furthermore, the level of COL1A2 expression correlated with the endogenous level of FLII mRNA level. Depletion of FLII resulted in a reduction of TGFβ-induced expression of COL1A2 gene. In contrast, over-expression of FLII caused an increase in the endogenous expression of COL1A2. We also showed that FLII is associated with Brahma-related gene 1 (BRG1) as well as SMAD in A549 cells. Notably, the recruitment of BRG1 to the COL1A2 promoter region was decreased in FLII-depleted A549 cells, suggesting that FLII is required for TGFβ-induced chromatin remodeling, which is carried out by the SWI/SNF complex. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments revealed that depletion of FLII caused a reduction in chromatin accessibility at the COL1A2 promoter. These results suggest that FLII plays a critical role in TGFβ/SMAD-mediated transcription of the COL1A2 gene

  20. Whey protein concentrate enhances intestinal integrity and influences transforming growth factor-β1 and mitogen-activated protein kinase signalling pathways in piglets after lipopolysaccharide challenge.

    PubMed

    Xiao, Kan; Jiao, Lefei; Cao, Shuting; Song, Zehe; Hu, Caihong; Han, Xinyan

    2016-03-28

    Whey protein concentrate (WPC) has been reported to have protective effects on the intestinal barrier. However, the molecular mechanisms involved are not fully elucidated. Transforming growth factor-β1 (TGF-β1) is an important component in the WPC, but whether TGF-β1 plays a role in these processes is not clear. The aim of this study was to investigate the protective effects of WPC on the intestinal epithelial barrier as well as whether TGF-β1 is involved in these protection processes in a piglet model after lipopolysaccharide (LPS) challenge. In total, eighteen weanling pigs were randomly allocated to one of the following three treatment groups: (1) non-challenged control and control diet; (2) LPS-challenged control and control diet; (3) LPS+5 %WPC diet. After 19 d of feeding with control or 5 %WPC diets, pigs were injected with LPS or saline. At 4 h after injection, pigs were killed to harvest jejunal samples. The results showed that WPC improved (P<0·05) intestinal morphology, as indicated by greater villus height and villus height:crypt depth ratio, and intestinal barrier function, which was reflected by increased transepithelial electrical resistance and decreased mucosal-to-serosal paracellular flux of dextran (4 kDa), compared with the LPS group. Moreover, WPC prevented the LPS-induced decrease (P<0·05) in claudin-1, occludin and zonula occludens-1 expressions in the jejunal mucosae. WPC also attenuated intestinal inflammation, indicated by decreased (P<0·05) mRNA expressions of TNF-α, IL-6, IL-8 and IL-1β. Supplementation with WPC also increased (P<0·05) TGF-β1 protein, phosphorylated-Smad2 expression and Smad4 and Smad7 mRNA expressions and decreased (P<0·05) the ratios of the phosphorylated to total c-jun N-terminal kinase (JNK) and p38 (phospho-JNK:JNK and p-p38:p38), whereas it increased (P<0·05) the ratio of extracellular signal-regulated kinase (ERK) (phospho-ERK:ERK). Collectively, these results suggest that dietary inclusion of WPC

  1. Transforming growth factor-β and fibrosis

    PubMed Central

    Verrecchia, Franck; Mauviel, Alain

    2007-01-01

    Transforming growth factor-β (TGF-β), a prototype of multifunctional cytokine, is a key regulator of extracellular matrix (ECM) assembly and remodeling. Specifically, TGF-β isoforms have the ability to induce the expression of ECM proteins in mesenchymal cells, and to stimulate the production of protease inhibitors that prevent enzymatic breakdown of the ECM. Elevated TGF-β expression in affected organs, and subsequent deregulation of TGF-β functions, correlates with the abnormal connective tissue deposition observed during the onset of fibrotic diseases. During the last few years, tremendous progress has been made in the understanding of the molecular aspects of intracellular signaling downstream of the TGF-β receptors. In particular, Smad proteins, TGF-β receptor kinase substrates that translocate into the cell nucleus to act as transcription factors, have been studied extensively. The role of Smad3 in the transcriptional regulation of typeIcollagen gene expression and in the development of fibrosis, demonstrated both in vitro and in animal models with a targeted deletion of Smad3, is of critical importance because it may lead to novel therapeutic strategies against these diseases. This review focuses on the mechanisms underlying Smad modulation of fibrillar collagen expression and how it relates to fibrotic processes. PMID:17589920

  2. Transforming growth factor beta1 and aldosterone

    PubMed Central

    Matsuki, Kota; Hathaway, Catherine K.; Chang, Albert S.; Smithies, Oliver; Kakoki, Masao

    2016-01-01

    Purpose of review It is well established that blocking renin-angiotensin II-aldosterone system (RAAS) is effective for the treatment of cardiovascular and renal complications in hypertension and diabetes mellitus. Although the induction of transforming growth factor beta1 (TGFbeta1) by components of RAAS mediates the hypertrophic and fibrogenic changes in cardiovascular-renal complications, it is still controversial as to whether TGFbeta1 can be a target to prevent such complications. Here we review recent findings on the role of TGFbeta1 in fluid homeostasis, focusing on the relationship with aldosterone. Recent findings TGFbeta1 suppresses adrenal production of aldosterone and renal tubular sodium reabsorption. We have generated mice with TGFbeta1 mRNA expression graded in five steps from 10% to 300% normal, and found that blood pressure and plasma volume are negatively regulated by TGFbeta1. Notably, the 10 % hypomorph exhibits primary aldosteronism and sodium and water retention due to markedly impaired urinary excretion of water and electrolytes. Summary These results identify TGFbeta signaling as an important counterregulatory system against aldosterone. Understanding the molecular mechanisms for the suppressive effects of TGFbeta1 on adrenocortical and renal function may further our understanding of primary aldosteronism as well as assist in the development of novel therapeutic strategies for hypertension. PMID:25587902

  3. Live imaging of transforming growth factor-β activated kinase 1 activation in Lewis lung carcinoma 3LL cells implanted into syngeneic mice and treated with polyinosinic:polycytidylic acid.

    PubMed

    Takaoka, Saori; Kamioka, Yuji; Takakura, Kanako; Baba, Ai; Shime, Hiroaki; Seya, Tsukasa; Matsuda, Michiyuki

    2016-05-01

    Transforming growth factor-β activated kinase 1 (TAK1) has been shown to play a crucial role in cell death, differentiation, and inflammation. Here, we live-imaged robust TAK1 activation in Lewis lung carcinoma 3LL cells implanted into the s.c. tissue of syngeneic C57BL/6 mice and treated with polyinosinic:polycytidylic acid (PolyI:C). First, we developed and characterized a Förster resonance energy transfer-based biosensor for TAK1 activity. The TAK1 biosensor, named Eevee-TAK1, responded to stress-inducing reagents such as anisomycin, tumor necrosis factor-α, and interleukin1-β. The anisomycin-induced increase in Förster resonance energy transfer was abolished by the TAK1 inhibitor (5z)-7-oxozeaenol. Activity of TAK1 in 3LL cells was markedly increased by PolyI:C in the presence of macrophages. 3LL cells expressing Eevee-TAK1 were implanted into mice and observed through imaging window by two-photon excitation microscopy. During the growth of tumor, the 3LL cells at the periphery of the tumor showed higher TAK1 activity than the 3LL cells located at the center of the tumor, suggesting that cells at the periphery of the tumor mass were under stronger stress. Injection of PolyI:C, which is known to induce regression of the implanted tumors, induced marked and homogenous TAK1 activation within the tumor tissues. The effect of PolyI:C faded within 4 days. These observations suggest that Eevee-TAK1 is a versatile tool to monitor cellular stress in cancer tissues. PMID:26931406

  4. Disruption of transforming growth factor-beta signaling through beta-spectrin ELF leads to hepatocellular cancer through cyclin D1 activation.

    PubMed

    Kitisin, K; Ganesan, N; Tang, Y; Jogunoori, W; Volpe, E A; Kim, S S; Katuri, V; Kallakury, B; Pishvaian, M; Albanese, C; Mendelson, J; Zasloff, M; Rashid, A; Fishbein, T; Evans, S R T; Sidawy, A; Reddy, E P; Mishra, B; Johnson, L B; Shetty, K; Mishra, L

    2007-11-01

    Transforming growth factor-beta (TGF-beta) signaling members, TGF-beta receptor type II (TBRII), Smad2, Smad4 and Smad adaptor, embryonic liver fodrin (ELF), are prominent tumor suppressors in gastrointestinal cancers. Here, we show that 40% of elf(+/-) mice spontaneously develop hepatocellular cancer (HCC) with markedly increased cyclin D1, cyclin-dependent kinase 4 (Cdk4), c-Myc and MDM2 expression. Reduced ELF but not TBRII, or Smad4 was observed in 8 of 9 human HCCs (P<0.017). ELF and TBRII are also markedly decreased in human HCC cell lines SNU-398 and SNU-475. Restoration of ELF and TBRII in SNU-398 cells markedly decreases cyclin D1 as well as hyperphosphorylated-retinoblastoma (hyperphosphorylated-pRb). Thus, we show that TGF-beta signaling and Smad adaptor ELF suppress human hepatocarcinogenesis, potentially through cyclin D1 deregulation. Loss of ELF could serve as a primary event in progression toward a fully transformed phenotype and could hold promise for new therapeutic approaches in human HCCs.

  5. Transforming growth factor-beta 1 and fibroblast growth factors in rat growth plate.

    PubMed

    Jingushi, S; Scully, S P; Joyce, M E; Sugioka, Y; Bolander, M E

    1995-09-01

    Chondrocytes in the growth plate progress in an orderly fashion from resting through proliferating to hypertrophic cells. In the region of hypertrophic chondrocytes, the cartilage is invaded by capillary loops and endochondral ossification is initiated. It is currently believed that growth factors may regulate the proliferation and maturation of chondrocytes and the synthesis of extracellular matrix in the growth plate. The ordered sequence of proliferation and differentiation observed in the growth plate provides a unique opportunity to study the role of acidic fibroblast growth factor, basic fibroblast growth factor, and transforming growth factor-beta 1 in the regulation of these processes. In this study, expression of the mRNA of these growth factors was examined using total RNA extracted from the physis and epiphysis of rat tibias. Transforming growth factor-beta 1 mRNA was detected by Northern hybridization. Expression of the genes encoding acidic and basic fibroblast growth factors was demonstrated by polymerase chain reaction amplification. In addition, using polyclonal antibodies against these growth factors, we localized them by immunohistochemical analysis. Strong intracellular staining with a predominantly nuclear pattern was observed in chondrocytes from the proliferating and upper hypertrophic zones. In contrast, chondrocytes in the resting zone stained only faintly for the presence of these growth factors. Some chondrocytes in the resting zone adjacent to the proliferating zone stained with these antibodies, and the antibodies also stained cells in the zone of Ranvier, which regulates latitudinal bone growth. Lastly, the location of transforming growth factor-beta 1 was examined further with use of a polyclonal antipeptide antibody specific for its extracellular epitope.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7472755

  6. Cumulin, an Oocyte-secreted Heterodimer of the Transforming Growth Factor-β Family, Is a Potent Activator of Granulosa Cells and Improves Oocyte Quality.

    PubMed

    Mottershead, David G; Sugimura, Satoshi; Al-Musawi, Sara L; Li, Jing-Jie; Richani, Dulama; White, Melissa A; Martin, Georgia A; Trotta, Andrew P; Ritter, Lesley J; Shi, Junyan; Mueller, Thomas D; Harrison, Craig A; Gilchrist, Robert B

    2015-09-25

    Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-specific growth factors with central roles in mammalian reproduction, regulating species-specific fecundity, ovarian follicular somatic cell differentiation, and oocyte quality. In the human, GDF9 is produced in a latent form, the mechanism of activation being an open question. Here, we produced a range of recombinant GDF9 and BMP15 variants, examined their in silico and physical interactions and their effects on ovarian granulosa cells (GC) and oocytes. We found that the potent synergistic actions of GDF9 and BMP15 on GC can be attributed to the formation of a heterodimer, which we have termed cumulin. Structural modeling of cumulin revealed a dimerization interface identical to homodimeric GDF9 and BMP15, indicating likely formation of a stable complex. This was confirmed by generation of recombinant heterodimeric complexes of pro/mature domains (pro-cumulin) and covalent mature domains (cumulin). Both pro-cumulin and cumulin exhibited highly potent bioactivity on GC, activating both SMAD2/3 and SMAD1/5/8 signaling pathways and promoting proliferation and expression of a set of genes associated with oocyte-regulated GC differentiation. Cumulin was more potent than pro-cumulin, pro-GDF9, pro-BMP15, or the two combined on GC. However, on cumulus-oocyte complexes, pro-cumulin was more effective than all other growth factors at notably improving oocyte quality as assessed by subsequent day 7 embryo development. Our results support a model of activation for human GDF9 dependent on cumulin formation through heterodimerization with BMP15. Oocyte-secreted cumulin is likely to be a central regulator of fertility in mono-ovular mammals.

  7. Cumulin, an Oocyte-secreted Heterodimer of the Transforming Growth Factor-β Family, Is a Potent Activator of Granulosa Cells and Improves Oocyte Quality*

    PubMed Central

    Mottershead, David G.; Sugimura, Satoshi; Al-Musawi, Sara L.; Li, Jing-Jie; Richani, Dulama; White, Melissa A.; Martin, Georgia A.; Trotta, Andrew P.; Ritter, Lesley J.; Shi, Junyan; Mueller, Thomas D.; Harrison, Craig A.; Gilchrist, Robert B.

    2015-01-01

    Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-specific growth factors with central roles in mammalian reproduction, regulating species-specific fecundity, ovarian follicular somatic cell differentiation, and oocyte quality. In the human, GDF9 is produced in a latent form, the mechanism of activation being an open question. Here, we produced a range of recombinant GDF9 and BMP15 variants, examined their in silico and physical interactions and their effects on ovarian granulosa cells (GC) and oocytes. We found that the potent synergistic actions of GDF9 and BMP15 on GC can be attributed to the formation of a heterodimer, which we have termed cumulin. Structural modeling of cumulin revealed a dimerization interface identical to homodimeric GDF9 and BMP15, indicating likely formation of a stable complex. This was confirmed by generation of recombinant heterodimeric complexes of pro/mature domains (pro-cumulin) and covalent mature domains (cumulin). Both pro-cumulin and cumulin exhibited highly potent bioactivity on GC, activating both SMAD2/3 and SMAD1/5/8 signaling pathways and promoting proliferation and expression of a set of genes associated with oocyte-regulated GC differentiation. Cumulin was more potent than pro-cumulin, pro-GDF9, pro-BMP15, or the two combined on GC. However, on cumulus-oocyte complexes, pro-cumulin was more effective than all other growth factors at notably improving oocyte quality as assessed by subsequent day 7 embryo development. Our results support a model of activation for human GDF9 dependent on cumulin formation through heterodimerization with BMP15. Oocyte-secreted cumulin is likely to be a central regulator of fertility in mono-ovular mammals. PMID:26254468

  8. Role of growth factors in the growth of normal and transformed cells

    SciTech Connect

    Lokeshwar, V.B.

    1989-01-01

    Growth factors play an important role in the growth of normal cells. However, their untimely and/or excess production leads to neoplastic transformation. The role of growth factors in the growth of normal cells was studied by investigating the mechanism of transmodulation of the cell surface EGF receptor number by protamine. Protamine increased the EGF stimulated mitogenic response in Swiss mouse 3T3 cells and A431 cells by increasing the number of functionally active EGF receptors. Protamine also increased EGF receptor number in plasma membranes and solubilized membranes. This was evidenced by an increase in both {sup 125}I-EGF-EGF-receptor complex and EGF stimulated phosphorylation of the EGF receptor. The solubilized EGF receptor was retained on a protamine-agarose gel indicating that protamine might increase EGF receptor number by directly activating cryptic EGF receptors in the plasma membranes. The role of growth factors in neoplastic transformation was studied by investigating the role of the oncogene v-sis in the growth of Simian sarcoma virus (SSV) transformed cells. The product of the oncogene v-sis is 94% homologous to the B chain of PDGF. This study found that (i) v-sis gene product is synthesized as a 32 kDa unglycosylated monomer which is glycosylated, dimerized and proteolytically processed into p36, p72, p68, p58, p44 and p27 mol. wt. species respectively. (ii) p36, p72, p68 and p58 are very likely formed in the endoplasmic reticulum and/or Golgi complex. A fraction of newly synthesized p72, p68 and p58 is degraded intracellularly at a fast rate. (iii) p44 is a secretory product which remains tightly associated with the cell surface. p44 is recaptured by the cells through interaction with cell surface PDGF receptors and degraded into p27. (iv) During long term cultures p44 is extracellularly cleaved into a 27 kDa product.

  9. The microbicidal activity of interferon-gamma-treated macrophages against Trypanosoma cruzi involves an L-arginine-dependent, nitrogen oxide-mediated mechanism inhibitable by interleukin-10 and transforming growth factor-beta.

    PubMed

    Gazzinelli, R T; Oswald, I P; Hieny, S; James, S L; Sher, A

    1992-10-01

    The present study was carried out to determine the effector mechanism of anti-Trypanosoma cruzi activity by interferon (IFN)-gamma plus lipopolysaccharide (LPS)-treated macrophages. A macrophage cell line (IC-21) that failed to mount an appreciable oxidative burst was nevertheless found able to control T. cruzi growth after exposure to IFN-gamma alone or IFN-gamma plus LPS. Moreover, microbicidal functions of both inflammatory macrophages and IC-21 against T. cruzi was found to be inhibited in the presence of NG-monomethyl-L-arginine (NGMMA), a competitive inhibitor of L-arginine. Addition of supplemental L-arginine to the culture overcame the capacity of NGMMA to block activated macrophage anti-T. cruzi functions. The ability of NGMMA to reverse both parasite growth inhibition and killing by IFN-gamma plus LPS-activated macrophages was found to correlate with the suppression of nitrite accumulation in the culture supernatants. Together, these results implicate the L-arginine-dependent production of nitric oxide in T. cruzi killing by activated macrophages. We also tested the ability of interleukin(IL)-10 and transforming growth factor (TGF)-beta, to block regulation of T. cruzi growth in this system. Both IL-10 and TGF-beta inhibited anti-parasite function by IFN-gamma-activated macrophages, with an optimal dose of 100 units/ml and 0.5 ng/ml, respectively. Moreover, when used in combination, suboptimal doses of IL-10 and TGF-beta were found to produce a synergistic inhibitory effect in the regulation of T. cruzi growth. The ability of IL-10 and TGF-beta to suppress microbicidal function was also positively correlated with inhibition of nitrite generation in macrophage culture supernatants. These results predict an in vivo role for IL-10 and TGF-beta in promoting parasite survival in the face of the host cell-mediated immune response. PMID:1396957

  10. The latent transforming growth factor beta binding protein (LTBP) family.

    PubMed Central

    Oklü, R; Hesketh, R

    2000-01-01

    The transforming growth factor beta (TGFbeta) cytokines are a multi-functional family that exert a wide variety of effects on both normal and transformed mammalian cells. The secretion and activation of TGFbetas is regulated by their association with latency-associated proteins and latent TGFbeta binding proteins (LTBPs). Over the past few years, three members of the LTBP family have been identified, in addition to the protoype LTBP1 first sequenced in 1990. Three of the LTBP family are expressed in a variety of isoforms as a consequence of alternative splicing. This review summarizes the differences between the isoforms in terms of the effects on domain structure and hence possible function. The close identity between LTBPs and members of the fibrillin family, mutations in which have been linked directly to Marfan's syndrome, suggests that anomalous expression of LTBPs may be associated with disease. Recent data indicating that differential expression of LTBP1 isoforms occurs during the development of coronary heart disease is considered, together with evidence that modulation of LTBP function, and hence of TGFbeta activity, is associated with a variety of cancers. PMID:11104663

  11. Hydrogen peroxide inhibits transforming growth factor-β1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway.

    PubMed

    Choi, Jiyeon; Park, Seong Ji; Jo, Eun Ji; Lee, Hui-Young; Hong, Suntaek; Kim, Seong-Jin; Kim, Byung-Chul

    2013-06-14

    Hydrogen peroxide (H2O2) functions as a second messenger in growth factor receptor-mediated intracellular signaling cascade and is tumorigenic by virtue of its ability to promote cell proliferation; however, the mechanisms underlying the growth stimulatory action of H2O2 are less understood. Here we report an important mechanism for antagonistic effects of H2O2 on growth inhibitory response to transforming growth factor-β1 (TGF-β1). In Mv1Lu and HepG2 cells, pretreatment of H2O2 (0.05-0.2 mM) completely blocked TGF-β1-mediated induction of p15(INK4B) expression and increase of its promoter activity. Interestingly, H2O2 selectively suppressed the transcriptional activation potential of Smad3, not Smad2, in the absence of effects on TGF-β1-induced phosphorylation of the COOH-tail SSXS motif of Smad3 and its nuclear translocation. Mechanism studies showed that H2O2 increases the phosphorylation of Smad3 at the middle linker region in a concentration- and time-dependent manner and this effect is mediated by activation of extracellular signal-activated kinase 1/2 through Akt. Furthermore, expression of a mutant Smad3 in which linker phosphorylation sites were ablated significantly abrogated the inhibitory effects of H2O2 on TGF-β1-induced increase of p15(INK4B)-Luc reporter activity and blockade of cell cycle progression from G1 to S phase. These findings for the first time define H2O2 as a signaling molecule that modulate Smad3 linker phosphorylation and its transcriptional activity, thus providing a potential mechanism whereby H2O2 antagonizes the cytostatic function of TGF-β1.

  12. Role of polypeptide growth factors in phenotypic transformation of normal rat kidney cells

    SciTech Connect

    van Zoelen, E.J.J.; van Oostwaard, T.M.J.; de Laat, S.W.

    1988-01-05

    A serum-free assay has been established for studying the role of polypeptide growth factors in inducing loss of density-dependent inhibition of growth of normal rat kidney (NRK) cells. The process has been characterized by measuring the time course of (/sup 3/H)thymidine incorporation into confluent, quiescent NRK cultures stimulated by defined polypeptide growth factors, in combination with cell counting studies, increases in DNA content, and cell cycle analysis by means of a fluorescence-activated cell sorter. It is shown that none of the growth factors tested is able to induce loss of density-dependent inhibition of growth by itself, but strong synergism was observed when combinations of growth factors were tested. None of the above factors was found to be essential, however, since any combination of three of the above four growth factors strongly induced the process. Strong parallels were observed between the growth factor requirements for inducing loss of density-dependent inhibition of growth under serum-free conditions and the requirements for induction of anchorage-independent proliferation under growth factor-defined assay conditions. This indicates that most likely the same cellular processes underlie these two aspects of phenotypic transformation, although data indicate that anchorage-independent proliferation may be a more restricted property of phenotypic transformation than loss of density dependence of proliferation. It is concluded that phenotypic transformation of NRK cells does not require specific polypeptide growth factors, but reflects the ability of these cells to respond to multiple growth factors.

  13. 17-Beta-estradiol inhibits transforming growth factor-beta signaling and function in breast cancer cells via activation of extracellular signal-regulated kinase through the G protein-coupled receptor 30.

    PubMed

    Kleuser, Burkhard; Malek, Daniela; Gust, Ronald; Pertz, Heinz H; Potteck, Henrik

    2008-12-01

    Breast cancer development and breast cancer progression involves the deregulation of growth factors leading to uncontrolled cellular proliferation, invasion and metastasis. Transforming growth factor (TGF)-beta plays a crucial role in breast cancer because it has the potential to act as either a tumor suppressor or a pro-oncogenic chemokine. A cross-communication between the TGF-beta signaling network and estrogens has been postulated, which is important for breast tumorigenesis. Here, we provide evidence that inhibition of TGF-beta signaling is associated with a rapid estrogen-dependent nongenomic action. Moreover, we were able to demonstrate that estrogens disrupt the TGF-beta signaling network as well as TGF-beta functions in breast cancer cells via the G protein-coupled receptor 30 (GPR30). Silencing of GPR30 in MCF-7 cells completely reduced the ability of 17-beta-estradiol (E2) to inhibit the TGF-beta pathway. Likewise, in GPR30-deficient MDA-MB-231 breast cancer cells, E2 achieved the ability to suppress TGF-beta signaling only after transfection with GPR30-encoding plasmids. It is most interesting that the antiestrogen fulvestrant (ICI 182,780), which possesses agonistic activity at the GPR30, also diminished TGF-beta signaling. Further experiments attempted to characterize the molecular mechanism by which activated GPR30 inhibits the TGF-beta pathway. Our results indicate that GPR30 induces the stimulation of the mitogen-activated protein kinases (MAPKs), which interferes with the activation of Smad proteins. Inhibition of MAPK activity prevented the ability of E2 from suppressing TGF-beta signaling. These findings are of great clinical relevance, because down-regulation of TGF-beta signaling is associated with the development of breast cancer resistance in response to antiestrogens.

  14. Partially transformed, anchorage-independent human diploid fibroblasts result from overexpression of the c-sis oncogene: Mitogenic activity of an apparent monomeric platelet-derived growth factor 2 species

    SciTech Connect

    Stevens, C.W.; Brondyk, W.H.; Burgess, J.A.; Manoharan, T.H.; Hane, B.G.; Fahl, W.E.

    1988-05-01

    A human c-sis cDNA in an expression vector was introduced into human diploid fibroblasts by transfection or electroporation. Fibroblast clones showing an aberrant, densely packed colony morphology were isolated and found to overexpress a 3.6-kilobase sis mRNA species and associated immunoprecipitable platelet-derived growth factor (PDGF) 2 proteins. Parallel analyses in cell clones of sis mRNA expression and colony formation in agar indicated that, above a threshold, a linear, positive correlation existed between sis overexpression and acquired anchorage independence. The sis-overexpressing cells formed transient, regressing tumor nodules when injected into nude mice, consistent with the finite life span which they retained. Protein products generated from the transfected c-sis construct in two overexpressing clones were immunoprecipitated with anti-human PDGF antibodies. One clone contained an apparent PDGF dimer of 21 kilodaltons; the second clone contained only on apparent PDGF monomer of 12 kilodaltons, which was shown to account for all of the mitogenic activity present in the cells, essentially all of which was concentrated in the membrane fraction. The results demonstrate a clear link between sis overexpression and acquisition of a partially transformed, anchorage-independent phenotype, and when combined with previous observations of sis overexpression in human tumors, clearly implicate sis overexpression as a genetic mechanism which contributes to human cell transformation.

  15. Early stimulation and late inhibition of peroxisome proliferator-activated receptor gamma (PPAR gamma) gene expression by transforming growth factor beta in human aortic smooth muscle cells: role of early growth-response factor-1 (Egr-1), activator protein 1 (AP1) and Smads.

    PubMed Central

    Fu, Mingui; Zhang, Jifeng; Lin, Yimin; Zhu, Xiaojun; Zhao, Luning; Ahmad, Mushtaq; Ehrengruber, Markus U; Chen, Yuqing E

    2003-01-01

    Transforming growth factor beta (TGF beta) and peroxisome proliferator-activated receptor gamma (PPAR gamma) play major roles in the development of vascular diseases. It has been documented that PPAR gamma activation inhibits the TGF beta signal pathway in vascular smooth muscle cells (VSMC). Here we examined whether TGF beta can regulate PPAR gamma expression. Northern blot analyses revealed that both TGF beta 1 and 2 exert a biphasic effect (early stimulation and late repression) on PPAR gamma gene expression in VSMC. TGF beta rapidly and transiently induced early growth-response factor-1 (Egr-1) expression through the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1 (MEK1)/ERK-mediated pathway. Inhibition of MEK1/ERK by PD98059 not only abrogated the induction of Egr-1 but also abolished the rapid and transient induction of PPAR gamma by TGF beta. Furthermore, overexpression of NAB2, a repressor of Egr-1 activation, also blocked the induction of PPAR gamma by TGF beta in VSMC, suggesting that Egr-1 mediates the rapid and transient induction of PPAR gamma by TGF beta. With regard to the TGF beta repression of PPAR gamma expression, activator protein 1 (AP1) and Smad3/4 dramatically inhibited the PPAR gamma promoter activity in transient-transfection studies. In contrast, adenovirus-mediated overexpression of a dominant-negative form of c-Jun partially rescued the TGF beta-induced PPAR gamma repression in VSMC. Taken together, our data demonstrate that Egr-1, AP1 and Smad are part components of the TGF beta signal transduction pathway that regulates PPAR gamma expression. PMID:12457461

  16. The actions of 2,3,7,8-tetrachlorodibenzo-p-dioxin on transforming growth factor-beta2 promoter activity are localized to the TATA box binding region and controlled through a tyrosine kinase-dependent pathway.

    PubMed

    Lee, D C; Barlow, K D; Gaido, K W

    1996-03-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a widespread environmental contaminant and suspected human carcinogen, is believed to act by altering expression of a number of genes involved in cell growth control. In a previous study, we demonstrated the transcriptional down regulation of transforming growth factor-beta2 (TGF-beta2) by TCDD. To identify the region of the TGF-beta2 promoter necessary for the observed down-regulation by TCDD, we studied the effect of TCDD on a series of TGF-beta2 gene promoter deletions ranging from 1391 to 64 base pairs upstream of the transcription start site. We demonstrate that the effect of TCDD on TGF-beta2 promoter activity is localized to the TATA box sequence. The effect of TCDD on TGF-beta2 transcription is dose-dependent, exhibiting saturation kinetics maximal by 10 nM. Time course experiments show that the maximum decrease (30-50%) in promoter activity by a 10 nM dose of TCDD is complete by 24 hr. DNAase I footprinting and gel shift experiments indicate a single shifted protein complex in this region that we conclude is the transcription initiation complex. TCDD does not appear to significantly alter this complex suggesting that gross alterations in the proteins associated with this sequence do not occur. Treatment of the cells with various protein kinase inhibitors had no significant effect on the TCDD-induced decrease in promoter activity with the exception of genistein, a tyrosine kinase inhibitor. Genistein reverses the effect of TCDD on TGF-beta2 promoter activity back to control levels. Thus, TCDD can modulate gene transcription by acting at the transcription initiation complex via a tyrosine kinase-dependent pathway.

  17. Transforming Growth Factor-β and the Hallmarks of Cancer

    PubMed Central

    Tian, Maozhen; Neil, Jason R.; Schiemann, William P.

    2010-01-01

    Tumorigenesis is in many respects a process of dysregulated cellular evolution that drives malignant cells to acquire six phenotypic hallmarks of cancer, including their ability to proliferate and replicate autonomously, to resist cytostatic and apoptotic signals, and to induce tissue invasion, metastasis, and angiogenesis. Transforming growth factor-β (TGF-β) is a potent pleiotropic cytokine that functions as a formidable barrier to the development of cancer hallmarks in normal cells and tissues. Paradoxically, tumorigenesis counteracts the tumor suppressing activities of TGF-β, thus enabling TGF-β to stimulate cancer invasion and metastasis. Fundamental gaps exist in our knowledge of how malignant cells overcome the cytostatic actions of TGF-β, and of how TGF-β stimulates the acquisition of cancer hallmarks by developing and progressing human cancers. Here we review the molecular and cellular mechanisms that underlie the ability of TGF-β to mediate tumor suppression in normal cells, and conversely, to facilitate cancer progression and disease dissemination in malignant cells. PMID:20940046

  18. The transcription factor paired-related homeobox 1 (Prrx1) inhibits adipogenesis by activating transforming growth factor-β (TGFβ) signaling.

    PubMed

    Du, Baowen; Cawthorn, William P; Su, Alison; Doucette, Casey R; Yao, Yao; Hemati, Nahid; Kampert, Sarah; McCoin, Colin; Broome, David T; Rosen, Clifford J; Yang, Gongshe; MacDougald, Ormond A

    2013-02-01

    Differentiation of adipocytes from preadipocytes contributes to adipose tissue expansion in obesity. Impaired adipogenesis may underlie the development of metabolic diseases such as insulin resistance and type 2 diabetes. Mechanistically, a well defined transcriptional network coordinates adipocyte differentiation. The family of paired-related homeobox transcription factors, which includes Prrx1a, Prrx1b, and Prrx2, is implicated with regulation of mesenchymal cell fate, including myogenesis and skeletogenesis; however, whether these proteins impact adipogenesis remains to be addressed. In this study, we identify Prrx1a and Prrx1b as negative regulators of adipogenesis. We show that Prrx1a and Prrx1b are down-regulated during adipogenesis in vitro and in vivo. Stable knockdown of Prrx1a/b enhances adipogenesis, with increased expression of peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein-α and FABP4 and increased secretion of the adipokines adiponectin and chemerin. Although stable low-level expression of Prrx1a, Prrx1b, or Prrx2 does not affect 3T3-L1 adipogenesis, transient overexpression of Prrx1a or Prrx1b inhibits peroxisome proliferator-activated receptor-γ activity. Prrx1 knockdown decreases expression of Tgfb2 and Tgfb3, and inhibition of TGFβ signaling during adipogenesis mimics the effects of Prrx1 knockdown. These data support the hypothesis that endogenous Prrx1 restrains adipogenesis by regulating expression of TGFβ ligands and thereby activating TGFβ signaling. Finally, we find that expression of Prrx1a or Prrx1b in adipose tissue increases during obesity and strongly correlates with Tgfb3 expression in BL6 mice. These observations suggest that increased Prrx1 expression may promote TGFβ activity in adipose tissue and thereby contribute to aberrant adipocyte function during obesity.

  19. Linagliptin but not Sitagliptin inhibited transforming growth factor-β2-induced endothelial DPP-4 activity and the endothelial-mesenchymal transition.

    PubMed

    Shi, Sen; Kanasaki, Keizo; Koya, Daisuke

    2016-02-26

    Dipeptidyl peptidase (DPP)-4 plays an important role in endothelial cell biology. We have shown that the DPP-4 inhibitor Linagliptin can inhibit the endothelial-mesenchymal transition (EndMT) and ameliorate diabetic kidney fibrosis associated with the suppression of DPP-4 protein levels via the induction of miR-29. The current study demonstrated that such effects of Linagliptin on endothelial cell profibrotic programs were drug-specific but not class effects. In the cell-free system, both Linagliptin and Sitagliptin inhibited recombinant DPP-4 activity in a concentration-dependent manner. Linagliptin can inhibit all of the following: DPP-4 activity and protein level, integrin β1 protein levels, EndMT, and DPP-4 3'UTR activity; Sitagliptin, however, inhibited none of these in the current study. Additionally, TGF-β2 induced both the induction of VEGF-R1 and the suppression of VEGF-R2 levels in endothelial cells, and both were inhibited by Linagliptin but not by Sitagliptin. miR-29, the miR that negatively regulates the 3'UTR of DPP-4 mRNA, was suppressed by TGF-β2 and restored by Linagliptin but not by Sitagliptin. Following the overexpression of pCMV-DPP-4-GFP and pCMV6-Myc-DPP-4 in endothelial cells, the proximity of Myc-DPP-4 and DPP-4-GFP was suppressed by Linagliptin but not by Sitagliptin, suggesting that only Linagliptin inhibited the homo-dimer formation of DPP-4 in endothelial cells; this difference in activity between the two gliptins could explain their diverse effects on endothelial cell biology. In conclusion, each of the DPP-4 inhibitors may have unique drug-specific effects. PMID:26826382

  20. Linagliptin but not Sitagliptin inhibited transforming growth factor-β2-induced endothelial DPP-4 activity and the endothelial-mesenchymal transition.

    PubMed

    Shi, Sen; Kanasaki, Keizo; Koya, Daisuke

    2016-02-26

    Dipeptidyl peptidase (DPP)-4 plays an important role in endothelial cell biology. We have shown that the DPP-4 inhibitor Linagliptin can inhibit the endothelial-mesenchymal transition (EndMT) and ameliorate diabetic kidney fibrosis associated with the suppression of DPP-4 protein levels via the induction of miR-29. The current study demonstrated that such effects of Linagliptin on endothelial cell profibrotic programs were drug-specific but not class effects. In the cell-free system, both Linagliptin and Sitagliptin inhibited recombinant DPP-4 activity in a concentration-dependent manner. Linagliptin can inhibit all of the following: DPP-4 activity and protein level, integrin β1 protein levels, EndMT, and DPP-4 3'UTR activity; Sitagliptin, however, inhibited none of these in the current study. Additionally, TGF-β2 induced both the induction of VEGF-R1 and the suppression of VEGF-R2 levels in endothelial cells, and both were inhibited by Linagliptin but not by Sitagliptin. miR-29, the miR that negatively regulates the 3'UTR of DPP-4 mRNA, was suppressed by TGF-β2 and restored by Linagliptin but not by Sitagliptin. Following the overexpression of pCMV-DPP-4-GFP and pCMV6-Myc-DPP-4 in endothelial cells, the proximity of Myc-DPP-4 and DPP-4-GFP was suppressed by Linagliptin but not by Sitagliptin, suggesting that only Linagliptin inhibited the homo-dimer formation of DPP-4 in endothelial cells; this difference in activity between the two gliptins could explain their diverse effects on endothelial cell biology. In conclusion, each of the DPP-4 inhibitors may have unique drug-specific effects.

  1. Regulation of intestinal epithelial cell growth by transforming growth factor type. beta

    SciTech Connect

    Barnard, J.A.; Beauchamp, R.D.; Coffey, R.J.; Moses, H.L. )

    1989-03-01

    A nontransformed rat jejunal crypt cell line (IEC-6) expresses transforming growth factor type {beta}1 (TGF-{beta}1) mRNA, secretes latent {sup 125}I-labeled TGF-{beta}1 to specific, high-affinity cell surface receptors. IEC-6 cell growth is markedly inhibited by TGF-{beta}1 and TGF-{beta}2 with half-maximal inhibition occurring between 0.1 and 1.0 ng of TGF-{beta}1 per ml. TGF-{beta}1-mediated growth inhibition is not associated with the appearance of biochemical markers of enterocyte differentiation such as alkaline phosphatase expression and sucrase activity. TGF-{beta}1 increases steady-state levels of its own mRNA expression within 8 hr of treatment of rapidly growing IEC-6 cells. In freshly isolated rat jejunal enterocytes that are sequentially eluted from the crypt villus axis, TGF-{beta}1 mRNA expression is most abundant in terminally differentiated villus tip cells and least abundant in the less differentiated, mitotically active crypt cells. The authors conclude that TGF-{beta}1 is an autoregulated growth inhibitor in IEC-6 cells that potentially functions in an autocrine manner. In the rat jejunal epithelium, TGF-{beta}1 expression is most prominently localized to the villus tip--i.e., the region of the crypt villus unit that is characterized by the terminally differentiated phenotype. These data suggest that TGF-{beta}1 may function in coordination of the rapid cell turnover typical for the intestinal epithelium.

  2. Defective retinal vascular endothelial cell development as a consequence of impaired integrin αVβ8-mediated activation of transforming growth factor-β.

    PubMed

    Arnold, Thomas D; Ferrero, Gina M; Qiu, Haiyan; Phan, Isabella T; Akhurst, Rosemary J; Huang, Eric J; Reichardt, Louis F

    2012-01-25

    Deletions of the genes encoding the integrin αVβ8 (Itgav, Itgb8) have been shown to result in abnormal vascular development in the CNS, including prenatal and perinatal hemorrhage. Other work has indicated that a major function of this integrin in vivo is to promote TGFβ activation. In this paper, we show that Itgb8 mRNA is strongly expressed in murine Müller glia and retinal ganglion cells, but not astrocytes. We further show that Itgb8 deletion in the entire retina severely perturbs development of the murine retinal vasculature, elevating vascular branch point density and vascular coverage in the superficial vascular plexus, while severely impairing formation of the deep vascular plexus. The stability of the mutant vasculature is also impaired as assessed by the presence of hemorrhage and vascular basal lamina sleeves lacking endothelial cells. Specific deletion of Itgb8 in Müller glia and neurons, but not deletion in astrocytes, recapitulates the phenotype observed following Itgb8 in the entire retina. Consistent with αVβ8's role in TGFβ1 activation, we show that retinal deletion of Tgfb1 results in very similar retinal vascular abnormalities. The vascular deficits appear to reflect impaired TGFβ signaling in vascular endothelial cells because retinal deletion of Itgb8 reduces phospho-SMAD3 in endothelial cells and endothelial cell-specific deletion of the TGFβRII gene recapitulates the major deficits observed in the Itgb8 and TGFβ1 mutants. Of special interest, the retinal vascular phenotypes observed in each mutant are remarkably similar to those of others following inhibition of neuropilin-1, a receptor previously implicated in TGFβ activation and signaling.

  3. Quantitative trait mapping reveals a regulatory axis involving peroxisome proliferator-activated receptors, PRDM16, transforming growth factor-β2 and FLT3 in hematopoiesis.

    PubMed

    Avagyan, Serine; Aguilo, Francesca; Kamezaki, Kenjiro; Snoeck, Hans-Willem

    2011-12-01

    Hematopoiesis is the process whereby BM HSCs renew to maintain their number or to differentiate into committed progenitors to generate all blood cells. One approach to gain mechanistic insight into this complex process is the investigation of quantitative genetic variation in hematopoietic function among inbred mouse strains. We previously showed that TGF-β2 is a genetically determined positive regulator of hematopoiesis. In the presence of unknown nonprotein serum factors TGF-β2, but not TGF-β1 or -β3, enhances progenitor proliferation in vitro, an effect that is subject to mouse strain-dependent variation mapping to a locus on chr.4, Tb2r1. TGF-β2-deficient mice show hematopoietic defects, demonstrating the physiologic role of this cytokine. Here, we show that TGF-β2 specifically and predominantly cell autonomously enhances signaling by FLT3 in vitro and in vivo. A coding polymorphism in Prdm16 (PR-domain-containing 16) underlies Tb2r1 and differentially regulates transcriptional activity of peroxisome proliferator-activated receptor-γ (PPARγ), identifying lipid PPAR ligands as the serum factors required for regulation of FLT3 signaling by TGF-β2. We furthermore show that PPARγ agonists play a FLT3-dependent role in stress responses of progenitor cells. These observations identify a novel regulatory axis that includes PPARs, Prdm16, and TGF-β2 in hematopoiesis.

  4. Ginsenoside F2 reduces hair loss by controlling apoptosis through the sterol regulatory element-binding protein cleavage activating protein and transforming growth factor-β pathways in a dihydrotestosterone-induced mouse model.

    PubMed

    Shin, Heon-Sub; Park, Sang-Yong; Hwang, Eun-Son; Lee, Don-Gil; Mavlonov, Gafurjon Turdalievich; Yi, Tae-Hoo

    2014-01-01

    This study was conducted to test whether ginsenoside F2 can reduce hair loss by influencing sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) and the transforming growth factor beta (TGF-β) pathway of apoptosis in dihydrotestosterone (DHT)-treated hair cells and in a DHT-induced hair loss model in mice. Results for ginsenoside F2 were compared with finasteride. DHT inhibits proliferation of hair cells and induces androgenetic alopecia and was shown to activate an apoptosis signal pathway both in vitro and in vivo. The cell-based 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the proliferation rates of DHT-treated human hair dermal papilla cells (HHDPCs) and HaCaTs increased by 48% in the ginsenoside F2-treated group and by 12% in the finasteride-treated group. Western blot analysis showed that ginsenoside F2 decreased expression of TGF-β2 related factors involved in hair loss. The present study suggested a hair loss related pathway by changing SCAP related apoptosis pathway, which has been known to control cholesterol metabolism. SCAP, sterol regulatory element-binding protein (SREBP) and caspase-12 expression in the ginsenoside F2-treated group were decreased compared to the DHT and finasteride-treated group. C57BL/6 mice were also prepared by injection with DHT and then treated with ginsenoside F2 or finasteride. Hair growth rate, density, thickness measurements and tissue histotological analysis in these groups suggested that ginsenoside F2 suppressed hair cell apoptosis and premature entry to catagen more effectively than finasteride. Our results indicated that ginsenoside F2 decreased the expression of TGF-β2 and SCAP proteins, which have been suggested to be involved in apoptosis and entry into catagen. This study provides evidence those factors in the SCAP pathway could be targets for hair loss prevention drugs.

  5. Micro-computed tomography of pulmonary fibrosis in mice induced by adenoviral gene transfer of biologically active transforming growth factor-β1

    PubMed Central

    2010-01-01

    Background Micro-computed tomography (micro-CT) is a novel tool for monitoring acute and chronic disease states in small laboratory animals. Its value for assessing progressive lung fibrosis in mice has not been reported so far. Here we examined the importance of in vivo micro-CT as non-invasive tool to assess progression of pulmonary fibrosis in mice over time. Methods Pulmonary fibrosis was induced in mice by intratracheal delivery of an adenoviral gene vector encoding biologically active TGF-ß1 (AdTGF-ß1). Respiratory gated and ungated micro-CT scans were performed at 1, 2, 3, and 4 weeks post pulmonary adenoviral gene or control vector delivery, and were then correlated with respective histopathology-based Ashcroft scoring of pulmonary fibrosis in mice. Visual assessment of image quality and consolidation was performed by 3 observers and a semi-automated quantification algorithm was applied to quantify aerated pulmonary volume as an inverse surrogate marker for pulmonary fibrosis. Results We found a significant correlation between classical Ashcroft scoring and micro-CT assessment using both visual assessment and the semi-automated quantification algorithm. Pulmonary fibrosis could be clearly detected in micro-CT, image quality values were higher for respiratory gated exams, although differences were not significant. For assessment of fibrosis no significant difference between respiratory gated and ungated exams was observed. Conclusions Together, we show that micro-CT is a powerful tool to assess pulmonary fibrosis in mice, using both visual assessment and semi-automated quantification algorithms. These data may be important in view of pre-clinical pharmacologic interventions for the treatment of lung fibrosis in small laboratory animals. PMID:21176193

  6. Positive and Transformative Technologies for Active Ageing.

    PubMed

    Riva, Giuseppe; Villani, Daniela; Cipresso, Pietro; Repetto, Claudia; Triberti, Stefano; Di Lernia, Daniele; Chirico, Alice; Serino, Silvia; Gaggioli, Andrea

    2016-01-01

    Due to advances in treatment and people's living longer, chronic diseases are becoming more common among our population. This is a leading contributor to the increasing burden on our current healthcare system. To reduce this burden and sufficiently meet the needs of this growing segment of the population, healthcare organizations must encourage the elderly to take a more active role in caring for their own health and well-being. Technology may offer a solution to this shortcoming. "Positive Technology" focuses on the use of technology for improving the quality of our personal experience, and it suggests specific strategies for modifying/improving each of the different dimensions involved - Emotional Quality (affect regulation); Engagement/Actualization (presence and flow); Connectdness (collective intentions and networked flow) - and for generating motivation and engagement in the process. "Transformative Technology" are technologically-mediated experiences that support positive, enduring transformation of the self-world. The transformative content is delivered through a set of experiential affordances, which are stimuli designed to elicit emotional and cognitive involvement in the designed experience: (i) emotional affordances; (ii) epistemic affordances. The paper discusses discuss the possible role of positive and transormative technologies for healthy living and active ageing by presenting different practical applications of this approach recently developed by our team. PMID:27046597

  7. Induction of an Epithelial Integrin αvβ6 in Human Cytomegalovirus-Infected Endothelial Cells Leads to Activation of Transforming Growth Factor-β1 and Increased Collagen Production

    PubMed Central

    Tabata, Takako; Kawakatsu, Hisaaki; Maidji, Ekaterina; Sakai, Takao; Sakai, Keiko; Fang-Hoover, June; Aiba, Motohiko; Sheppard, Dean; Pereira, Lenore

    2008-01-01

    Human cytomegalovirus (CMV) infection is a major cause of morbidity in immunosuppressed individuals, and congenital CMV infection is a leading cause of birth defects in newborns. Infection with pathogenic viral strains alters cell-cell and cell-matrix interactions, affecting extracellular matrix remodeling and endothelial cell migration. The multifunctional cytokine transforming growth factor (TGF)-β1 regulates cell proliferation, differentiation, and extracellular matrix remodeling. Secreted as a latent protein complex, TGF-β1 requires activation before binding to receptors that phosphorylate intracellular effectors. TGF-β1 is activated by integrin αvβ6, which is strongly induced in the epithelium by injury and inflammation but has not previously been found in endothelial cells. Here, we report that CMV infection induces integrin αvβ6 expression in endothelial cells, leading to activation of TGF-β1, signaling through its receptor ALK5, and phosphorylation of its intracellular effector Smad3. Infection of endothelial cells was also found to stimulate collagen synthesis through a mechanism dependent on both TGF-β1 and integrin αvβ6. Immunohistochemical analysis showed integrin αvβ6 up-regulation in capillaries proximal to foci of CMV infection in lungs, salivary glands, uterine decidua, and injured chorionic villi of the placenta, demonstrating both its induction in endothelium and up-regulation in epithelium in vivo. Our results suggest that activation of TGF-β1 by integrin αvβ6 contributes to pathological changes and may impair endothelial cell functions in tissues that are chronically infected with CMV. PMID:18349127

  8. Transforming growth factor-betas and vascular disorders.

    PubMed

    Bobik, Alex

    2006-08-01

    Transforming growth factor-beta (TGF-beta) superfamily members, TGF-beta and bone morphogenetic proteins (BMPs), are potent regulatory cytokines with diverse functions on vascular cells. They signal through heteromeric type I and II receptor complexes activating Smad-dependent and Smad-independent signals, which regulate proliferation, differentiation, and survival. They are potent regulators of vascular development and vessel remodeling and play key roles in atherosclerosis and restenosis, regulating endothelial, smooth muscle cell, macrophage, T cell, and probably vascular calcifying cell responses. In atherosclerosis, TGF-beta regulates lesion phenotype by controlling T-cell responses and stimulating smooth muscle cells to produce collagen. It contributes to restenosis by augmenting neointimal cell proliferation and collagen accumulation. Defective TGF-beta signaling in endothelial cells attributable to mutations in endoglin or the type I receptor ALK-1 leads to hereditary hemorrhagic telangiectasia, whereas defective BMP signaling attributable to mutations in the BMP receptor II has been associated with development of primary pulmonary hypertension. The development of mouse models with either cell type-specific or general inactivation of TGF-beta/BMP signaling has started to reveal the importance of the regulatory network of TGF-beta/BMP pathways in vivo and their significance for atherosclerosis, hereditary hemorrhagic telangiectasia, and primary pulmonary hypertension. This review highlights recent findings that have advanced our understanding of the roles of TGF-beta superfamily members in regulating vascular cell responses and provides likely avenues for future research that may lead to novel pharmacological therapies for the treatment or prevention of vascular disorders. PMID:16675726

  9. Graphene growth by a metal-catalyzed solid-state transformation of amorphous carbon.

    PubMed

    Rodríguez-Manzo, Julio A; Pham-Huu, Cuong; Banhart, Florian

    2011-02-22

    Single and few-layer graphene is grown by a solid-state transformation of amorphous carbon on a catalytically active metal. The process is carried out and monitored in situ in an electron microscope. It is observed that an amorphous carbon film is taken up by Fe, Co, or Ni crystals at temperatures above 600 °C. The nucleation and growth of graphene layers on the metal surfaces happen after the amorphous carbon film has been dissolved. It is shown that the transformation of the energetically less favorable amorphous carbon to the more favorable phase of graphene occurs by diffusion of carbon atoms through the catalytically active metal.

  10. Transforming growth factor-β1 induces cell cycle arrest by activating atypical cyclin-dependent kinase 5 through up-regulation of Smad3-dependent p35 expression in human MCF10A mammary epithelial cells.

    PubMed

    Park, Seong Ji; Yang, Sun Woo; Kim, Byung-Chul

    2016-04-01

    Cyclin-dependent kinases (Cdks) play important roles in control of cell division. Cdk5 is an atypical member of Cdk family with non-cyclin-like regulatory subunit, p35, but its role in cell cycle progression is still unclear. In the present study, we investigated the role of Cdk5/p35 on transforming growth factor-β1 (TGF-β1)-induced cell cycle arrest. In human MCF10A mammary epithelial cells, TGF-β1 induced cell cycle arrest at G1 phase and increased p27KIP1 expression. Interestingly, pretreatment with roscovitine, an inhibitor of Cdk5, or transfection with small interfering (si) RNAs specific to Cdk5 and p35 significantly attenuated the TGF-β1-induced p27KIP1 expression and cell cycle arrest. TGF-β1 increased Cdk5 activity via up-regulation of p35 gene at transcriptional level, and these effects were abolished by transfection with Smad3 siRNA or infection of adenovirus carrying Smad3 mutant at the C-tail (3SA). Chromatin immunoprecipitation assay further revealed that wild type Smad3, but not mutant Smad3 (3SA), binds to the region of the p35 promoter region (-1000--755) in a TGF-β1-dependent manner. These results for the first time demonstrate a role of Cdk5/p35 in the regulation of cell cycle progression modulated by TGF-β1. PMID:26966064

  11. Transforming growth factor-β1 induces cell cycle arrest by activating atypical cyclin-dependent kinase 5 through up-regulation of Smad3-dependent p35 expression in human MCF10A mammary epithelial cells.

    PubMed

    Park, Seong Ji; Yang, Sun Woo; Kim, Byung-Chul

    2016-04-01

    Cyclin-dependent kinases (Cdks) play important roles in control of cell division. Cdk5 is an atypical member of Cdk family with non-cyclin-like regulatory subunit, p35, but its role in cell cycle progression is still unclear. In the present study, we investigated the role of Cdk5/p35 on transforming growth factor-β1 (TGF-β1)-induced cell cycle arrest. In human MCF10A mammary epithelial cells, TGF-β1 induced cell cycle arrest at G1 phase and increased p27KIP1 expression. Interestingly, pretreatment with roscovitine, an inhibitor of Cdk5, or transfection with small interfering (si) RNAs specific to Cdk5 and p35 significantly attenuated the TGF-β1-induced p27KIP1 expression and cell cycle arrest. TGF-β1 increased Cdk5 activity via up-regulation of p35 gene at transcriptional level, and these effects were abolished by transfection with Smad3 siRNA or infection of adenovirus carrying Smad3 mutant at the C-tail (3SA). Chromatin immunoprecipitation assay further revealed that wild type Smad3, but not mutant Smad3 (3SA), binds to the region of the p35 promoter region (-1000--755) in a TGF-β1-dependent manner. These results for the first time demonstrate a role of Cdk5/p35 in the regulation of cell cycle progression modulated by TGF-β1.

  12. Transforming growth factor beta 1-responsive element: closely associated binding sites for USF and CCAAT-binding transcription factor-nuclear factor I in the type 1 plasminogen activator inhibitor gene.

    PubMed Central

    Riccio, A; Pedone, P V; Lund, L R; Olesen, T; Olsen, H S; Andreasen, P A

    1992-01-01

    Transforming growth factor beta (TGF-beta) is the name of a group of closely related polypeptides characterized by a multiplicity of effects, including regulation of extracellular proteolysis and turnover of the extracellular matrix. Its cellular mechanism of action is largely unknown. TGF-beta 1 is a strong and fast inducer of type 1 plasminogen activator inhibitor gene transcription. We have identified a TGF-beta 1-responsive element in the 5'-flanking region of the human type 1 plasminogen activator inhibitor gene and shown that it is functional both in its natural context and when fused to a heterologous nonresponsive promoter. Footprinting and gel retardation experiments showed that two different nuclear factors, present in extracts from both TGF-beta 1-treated and nontreated cells, bind to adjacent sequences contained in the responsive unit. A palindromic sequence binds a trans-acting factor(s) of the CCAAT-binding transcription factor-nuclear factor I family. A partially overlapping dyad symmetry interacts with a second protein that much evidence indicates to be USF. USF is a transactivator belonging to the basic helix-loop-helix family of transcription factors. Mutations which abolish the binding of either CCAAT-binding transcription factor-nuclear factor I or USF result in reduction of transcriptional activation upon exposure to TGF-beta 1, thus showing that both elements of the unit are necessary for the TGF-beta 1 response. We discuss the possible relationship of these findings to the complexity of the TGF-beta action. Images PMID:1549130

  13. The effect of pasteurization on transforming growth factor alpha and transforming growth factor beta 2 concentrations in human milk.

    PubMed

    McPherson, R J; Wagner, C L

    2001-01-01

    Transforming growth factor alpha (TGF-alpha) and beta 2 (TGF-beta2) are present in human milk and are involved in growth differentiation and repair of neonatal intestinal epithelia. Heat treatment at 56 degrees C has been shown effective for providing safe banked donor milk, with good retention of other biologically active factors. The purpose of our study was to determine the effect of heat sterilization on TGF-alpha and TGF-beta2 concentrations in human milk. Twenty milk samples were collected from 20 lactating mothers in polypropylene containers and frozen at -20 degrees C for transport or storage. Before heat treatment by holder pasteurization, the frozen milk was thawed and divided into 1-mL aliquots. All samples were heated in an accurately regulated water bath until a holding temperature was achieved, then held for 30 minutes using constant agitation. Holding temperature ranged from 56.5 degrees C to 56.9 degrees C. The milk was then stored at 4 degrees C overnight for analysis the following day. The concentration of TGF-alpha was measured by radioimmunoassay. Mean concentration +/- SD of TGF-alpha in raw milk samples was 119+/-50 pg/mL, range 57 to 234. The mean concentration +/- SD of TGF-alpha in heat treated samples was 113+/-50 pg/mL, range 51 to 227. TGF-alpha concentration was minimally affected by pasteurization, with an overall loss of 6.1%. Of 19 samples, 4 had increased and 15 had decreased concentrations after pasteurization (mean percent SEM: 94%+/-7% of raw milk, range 72%+/-107%). The concentration of acid-activated TGF-beta2 was measured by enzyme-linked immunosorbent assay. Mean concentration +/- SD of TGF-beta2 in raw milk samples was 5624+/-5038 pg/mL, range 195 to 15480. The mean concentration +/- SD of TGF-beta2 in heat-treated samples was 5073+/-4646 pg/mL, range 181 to 15140. TGF-beta2 survived with relatively little loss (0.6%): of 18 samples, 11 had increased and 7 had decreased concentrations after pasteurization (mean percent

  14. Nanowire growth by an electron beam induced massive phase transformation

    DOE PAGES

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stablemore » growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.« less

  15. Nanowire growth by an electron beam induced massive phase transformation

    SciTech Connect

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stable growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.

  16. Transforming growth factor (TGF)-. alpha. in human milk

    SciTech Connect

    Okada, Masaki; Wakai, Kae; Shizume, Kazuo ); Iwashita, Mitsutoshi ); Ohmura, Eiji; Kamiya, Yoshinobu; Murakami, Hitomi; Onoda, Noritaka; Tsushima, Toshio

    1991-01-01

    Transforming growth factor (TGF)-{alpha} and epidermal growth factor (EGF) were measured in human milk by means of homologous radioimmunoassay. As previously reported, EGF concentration in the colostrum was approximately 200 ng/ml and decreased to 50 ng/ml by day 7 postpartum. The value of immunoreactive (IR)-TGF-{alpha} was 2.2-7.2 ng/ml, much lower than that of EGF. In contrast to EGF, the concentration of IR-TGF-{alpha} was fairly stable during the 7 postpartum days. There was no relationship between the concentrations of IR-TGF-{alpha} and IR-EGF, suggesting that the regulatory mechanism in the release of the two growth factors is different. On gel-chromatography using a Sephadex G-50 column, IR-EGF appeared in the fraction corresponding to that of authentic human EGF, while 70%-80% of the IR-TGF-{alpha} was eluted as a species with a molecular weight greater than that of authentic human TGF-{alpha}. Although the physiological role of TGF-{alpha} in milk is not known, it is possible that it is involved in the development of the mammary gland and/or the growth of newborn infants.

  17. Levels of transforming growth factor beta and transforming growth factor beta receptors in rat liver during growth, regression by apoptosis and neoplasia.

    PubMed

    Grasl-Kraupp, B; Rossmanith, W; Ruttkay-Nedecky, B; Müllauer, L; Kammerer, B; Bursch, W; Schulte-Hermann, R

    1998-09-01

    Transforming growth factor beta1 (TGF-beta1) has been implicated as inhibitor of cell proliferation and a potent inducer of apoptosis in vitro and in vivo after the administration of high doses. To assess the role of endogenous TGF-beta1, we quantitated the cytokine and its receptors in rat liver during regenerative and hyperplastic growth, regression by apoptosis, and in hepatocellular carcinoma (HCC). This was accomplished by Northern blot analysis and by RNase protection assay of the messenger RNA (mRNA) of TGF-beta1 and TGF-beta receptors (TbetaR) types I to III and by an activity bioassay of the TGF-beta proteins. Untreated rat livers were found to contain 15.6 +/- 4.8 ng TGF-beta1 protein/g tissue; TGF-beta2 protein was not detected. To induce toxic cell death and subsequent regenerative DNA synthesis in the liver, rats were treated with a necrogenic dose of carbon tetrachloride (CCl4). After 24 and 48 hours, there was an upregulation of TGF-beta1 (mRNA, up to tenfold; protein, about twofold) and of TbetaRs (mRNA: two- to fourfold); that indicates an overall enhanced production of and sensitivity to TGF-beta1, which may serve to confine the regenerative response. Hyperplastic liver growth and regression of the hyperplasia were induced by treatment with cyproterone acetate (CPA) or nafenopin (NAF) followed by withdrawal; neither mRNAs of TGF-beta1 and TbetaR types I to III nor TGF-beta1 protein exhibited significant changes during the growth phase or during regression by apoptosis. We also studied neoplastic growth. HCC, obtained after long-term treatment with NAF, exhibited high rates of cell replication and apoptosis. The majority of lesions contained mRNA and protein of TGF-beta1 and mRNA of TbetaR types I to III at concentrations similar to those of the surrounding tissue. In conclusion, during liver regeneration there is a pronounced upregulation of expression of both TGF-beta1 and TbetaRs I to III, but not during mitogen-induced liver growth or

  18. Incisional wound healing in transforming growth factor-beta1 null mice.

    PubMed

    Koch, R M; Roche, N S; Parks, W T; Ashcroft, G S; Letterio, J J; Roberts, A B

    2000-01-01

    Expression of endogenous transforming growth factor-beta1 is reduced in many animal models of impaired wound healing, and addition of exogenous transforming growth factor-beta has been shown to improve healing. To test the hypothesis that endogenous transforming growth factor-beta1 is essential for normal wound repair, we have studied wound healing in mice in which the transforming growth factor-beta1 gene has been deleted by homologous recombination. No perceptible differences were observed in wounds made in 3-10-day-old neonatal transforming growth factor-beta1 null mice compared to wild-type littermates. To preclude interference from maternally transferred transforming growth factor-beta1, cutaneous wounds were also made on the backs of 30-day-old transforming growth factor-beta1 null and littermate control mice treated with rapamycin, which extends their lifetime and suppresses the inflammatory response characteristic of the transforming growth factor-beta1 null mice. Again, no impairment in healing was seen in transforming growth factor-beta1 null mice. Instead these wounds showed an overall reduction in the amount of granulation tissue and an increased rate of epithelialization compared to littermate controls. Our data suggest that release of transforming growth factor-beta1 from degranulating platelets or secretion by infiltrating macrophages and fibroblasts is not critical to initiation or progression of tissue repair and that endogenous transforming growth factor-beta1 may actually function to increase inflammation and retard wound closure.

  19. Transforming Growth Factor (TGF)-β1–producing Regulatory T Cells Induce Smad-mediated Interleukin 10 Secretion That Facilitates Coordinated Immunoregulatory Activity and Amelioration of TGF-β1–mediated Fibrosis

    PubMed Central

    Kitani, Atsushi; Fuss, Ivan; Nakamura, Kazuhiko; Kumaki, Fumiyuki; Usui, Takashi; Strober, Warren

    2003-01-01

    Interleukin (IL)-10 and transforming growth factor (TGF)-β1 are suppressor cytokines that frequently occur together during a regulatory T cell response. Here we used a one gene doxycycline (Dox)-inducible plasmid encoding TGF-β1 to analyze this association and test its utility. In initial studies, we showed that intranasal administration of this plasmid (along with Dox) led to the appearance of TGF-β1–producing cells (in spleen and lamina propria) and the almost concomitant appearance of IL-10–producing cells. Moreover, we showed that these cells exert Dox-regulated suppression of the T helper cell (Th)1-mediated inflammation in trinitrobenzene sulfonic acid colitis. In subsequent in vitro studies using retroviral TGF-β1 expression, we established that IL-10 production by Th1 cells occurs after exposure to TGF-β1 from either an endogenous or exogenous source. In addition, using a self-inactivating retrovirus luciferase reporter construct we showed that TGF-β1 induces Smad4, which then binds to and activates the IL-10 promoter. Furthermore, intranasal TGF-β1 plasmid administration ameliorates bleomycin-induced fibrosis in wild-type but not IL-10–deficient mice, strongly suggesting that the amelioration is IL-10 dependent and that IL-10 protects mice from TGF-β1–mediated fibrosis. Taken together, these findings suggest that the induction of IL-10 by TGF-β1 is not fortuitous, but instead fulfills important requirements of TGF-β1 function after its secretion by regulatory T cells. PMID:14557415

  20. [Activated Sludge Bacteria Transforming Cyanopyridines and Amides of Pyridinecarboxylic Acids].

    PubMed

    Demakov, V A; Vasil'ev, D M; Maksimova, Yu G; Pavlova, Yu A; Ovechkina, G V; Maksimov, A Yu

    2015-01-01

    Species diversity of bacteria from the activated sludge of Perm biological waste treatment facilities capable of transformation of cyanopyridines and amides of pyridinecarboxylic acids was investigated. Enrichment cultures in mineral media with 3-cyanopyridine as the sole carbon and nitrogen source were used to obtain 32 clones of gram-negative heterotrophic bacteria exhibiting moderate growth on solid and liquid media with 3- and 4-cyanopyridine. Sequencing of the 16S rRNA gene fragments revealed that the clones with homology of at least 99% belonged to the genera Acinetobacte, Alcaligenes, Delftia, Ochrobactrum, Pseudomonas, Stenotrophomonas, and Xanthobacter. PCR analysis showed that 13 out of 32 isolates contained the sequences (-1070 bp) homologous to the nitrilase genes reported previously in Alcaligenes faecalis JM3 (GenBank, D13419.1). Nine clones were capable of nitrile and amide transformation in minimal salt medium. Acinetobacter sp. 11 h and Alcaligenes sp. osv transformed 3-cyanopyridine to nicotinamide, while most of the clones possessed amidase activity (0.5 to 46.3 mmol/(g h) for acetamide and 0.1 to 5.6 mmol/(g h) for nicotinamide). Nicotinamide utilization by strain A. faecalis 2 was shown to result in excretion of a secondary metabolite, which was identified as dodecyl acrylate at 91% probability. PMID:26263697

  1. Transformation or Transformism: Engestrom's Version of Activity Theory?

    ERIC Educational Resources Information Center

    Avis, James

    2009-01-01

    The paper examines Engestrom's version of activity theory. It seeks to locate this within the socio-economic and theoretical context in which notions of co-configuration and knotworking are set. Although this theoretical approach offers radical possibilities it is limited by its neglect of the wider social context in which activity systems are…

  2. Transforming Growth Factor Beta and Excess Burden of Renal Disease

    PubMed Central

    August, Phyllis; Sharma, Vijay; Ding, Ruchuang; Schwartz, Joseph E.; Suthanthiran, Manikkam

    2009-01-01

    End-stage renal disease (ESRD) is more frequent in African Americans (blacks) compared to whites. Because renal fibrosis is a correlate of progressive renal failure and a dominant feature of ESRD, and because transforming growth factor beta 1 (TGF-β1) can induce fibrosis and renal insufficiency, we hypothesized that TGF-β1 hyperexpression is more frequent in blacks compared to whites. We measured circulating levels of TGF-β1 in black and white patients with ESRD, hypertension, and in normal patients. We demonstrated that circulating levels of TGF-β1 are higher in black ESRD patients, hypertensive patients, and normal control patients compared to their white counterparts. Our preliminary genetic analyses suggest that TGF-β1 DNA polymorphisms are different in blacks and whites. Our observations of hyperexpression of TGF-β1 in blacks suggest a mechanism for the increased prevalence of renal failure and hypertensive target organ damage in this population. PMID:19768163

  3. Divergent effects of epidermal growth factor and transforming growth factors on a human endometrial carcinoma cell line.

    PubMed

    Korc, M; Haussler, C A; Trookman, N S

    1987-09-15

    Epidermal growth factor (EGF), at concentrations ranging from 0.83 to 4.98 nM, markedly inhibited the proliferation of RL95-2 cells that were seeded at low plating densities (4.7 X 10(3) cells/cm2). Under the same incubation conditions, 16.6 pM EGF enhanced cell proliferation. At high plating densities (2.5 X 10(4) cells/cm2) 0.83 nM EGF also stimulated cell proliferation. Both the inhibitory and stimulatory effects of EGF were mimicked by transforming growth factor-alpha (TGF-alpha). However, the inhibitory action of TGF-alpha was always greater that of EGF. Binding studies with 125I-labeled TGF-alpha indicated that maximal cell surface binding of TGF-alpha occurred at 15 min, whereas maximal internalization occurred at 45 min. Both cell surface and internalized radioactivity declined sharply thereafter. Analysis of radioactivity released into the incubation medium during pulse-chase experiments indicated that RL95-2 cells extensively degraded both TGF-alpha and EGF. The lysosomotropic compound methylamine arrested the generation of low-molecular-weight degradation products of EGF, but not of TGF-alpha. In contrast to EGF and TGF-alpha, transforming growth factor-beta (TGF-beta) inhibited the proliferation of RL95-2 cells that were seeded at either low or high plating densities. Further, transforming growth factor-beta induced the appearance of large cuboidal cells that were readily distinguished from cells treated with either EGF or TGF-alpha. These findings point to complex regulatory actions of growth factors on the proliferation of RL95-2 cells and suggest that the processing of TGF-alpha following EGF receptor activation is distinct from the processing of EGF. PMID:3497713

  4. Transcriptional modulation of transin gene expression by epidermal growth factor and transforming growth factor beta

    SciTech Connect

    Machida, C.M.; Muldoon, L.L.; Rodland, K.D.; Magun, B.E.

    1988-06-01

    Transin is a transformation-associated gene which is expressed constitutively in rat fibroblasts transformed by a variety of oncogenes and in malignant mouse skin carcinomas but not benign papillomas or normal skin. It has been demonstrated that, in nontransformed Rat-1 cells, transin RNA expression is modulated positively by epidermal growth factor (EGF) and negatively by transforming growth factor beta (TGF-BETA); other peptide growth factors were found to have no effect on transin expression. Results presented here indicate that both protein synthesis and continuous occupancy of the EGF receptor by EGF were required for sustained induction of transin RNA. Treatment with TGF-BETA inhibited the ability of EGF to induce transin, whether assayed at the transcriptional level by nuclear run-on analysis or at the level of transin RNA accumulation by Northern (RNA) blot analysis of cellular RNA. TGF-BETA both blocked initial production of transin transcription by EGF and halted established production of transin transcripts during prolonged treatment. These results suggest that TGF-BETA acts at the transcriptional level to antagonize EGF-mediated induction of transin gene expression.

  5. [THE ROLE OF TRANSFORMING GROWTH FACTOR-B IN IMMUNOPATHOGENESIS OF DISEASES OF CONNECTIVE TISSUE].

    PubMed

    Rudoi, A S; Moskalev, A V; Sboitchakov, V B

    2016-02-01

    The recent studies of molecular physiology of fibrillin and pathophysiology of inherent disorders of structure and function of connective tissue such as dissection and aneurysm of aorta, myxomatously altered cusps and prolapses of mitral valve, syndrome of hyper-mobility of joints, demonstrated that important role in development of these malformations play alterations of transfer of signals by growth factors and matrix cellular interaction. These conditions under manifesting Marfan's syndrome can be a consequence of anomalies of fibrillin-1 which deficiency unbrakes process of activation of transforming growth factor-β (TGFβ). The involvement of TGFβ in pathogenesis of Marfan's syndrome permits consider antagonists of angiotensin-transforming enzymes as potential pharmaceuticals in therapy of this disease. The article presents analysis of publications' data related to this problem.

  6. [THE ROLE OF TRANSFORMING GROWTH FACTOR-B IN IMMUNOPATHOGENESIS OF DISEASES OF CONNECTIVE TISSUE].

    PubMed

    Rudoi, A S; Moskalev, A V; Sboitchakov, V B

    2016-02-01

    The recent studies of molecular physiology of fibrillin and pathophysiology of inherent disorders of structure and function of connective tissue such as dissection and aneurysm of aorta, myxomatously altered cusps and prolapses of mitral valve, syndrome of hyper-mobility of joints, demonstrated that important role in development of these malformations play alterations of transfer of signals by growth factors and matrix cellular interaction. These conditions under manifesting Marfan's syndrome can be a consequence of anomalies of fibrillin-1 which deficiency unbrakes process of activation of transforming growth factor-β (TGFβ). The involvement of TGFβ in pathogenesis of Marfan's syndrome permits consider antagonists of angiotensin-transforming enzymes as potential pharmaceuticals in therapy of this disease. The article presents analysis of publications' data related to this problem. PMID:27455564

  7. A functional connection between pRB and transforming growth factor beta in growth inhibition and mammary gland development.

    PubMed

    Francis, Sarah M; Bergsied, Jacqueline; Isaac, Christian E; Coschi, Courtney H; Martens, Alison L; Hojilla, Carlo V; Chakrabarti, Subrata; Dimattia, Gabriel E; Khoka, Rama; Wang, Jean Y J; Dick, Frederick A

    2009-08-01

    Transforming growth factor beta (TGF-beta) is a crucial mediator of breast development, and loss of TGF-beta-induced growth arrest is a hallmark of breast cancer. TGF-beta has been shown to inhibit cyclin-dependent kinase (CDK) activity, which leads to the accumulation of hypophosphorylated pRB. However, unlike other components of TGF-beta cytostatic signaling, pRB is thought to be dispensable for mammary development. Using gene-targeted mice carrying subtle missense changes in pRB (Rb1(DeltaL) and Rb1(NF)), we have discovered that pRB plays a critical role in mammary gland development. In particular, Rb1 mutant female mice have hyperplastic mammary epithelium and defects in nursing due to insensitivity to TGF-beta growth inhibition. In contrast with previous studies that highlighted the inhibition of cyclin/CDK activity by TGF-beta signaling, our experiments revealed that active transcriptional repression of E2F target genes by pRB downstream of CDKs is also a key component of TGF-beta cytostatic signaling. Taken together, our work demonstrates a unique functional connection between pRB and TGF-beta in growth control and mammary gland development.

  8. The growth hormone receptor: mechanism of activation and clinical implications.

    PubMed

    Brooks, Andrew J; Waters, Michael J

    2010-09-01

    Growth hormone is widely used clinically to promote growth and anabolism and for other purposes. Its actions are mediated via the growth hormone receptor, both directly by tyrosine kinase activation and indirectly by induction of insulin-like growth factor 1 (IGF-1). Insensitivity to growth hormone (Laron syndrome) can result from mutations in the growth hormone receptor and can be treated with IGF-1. This treatment is, however, not fully effective owing to the loss of the direct actions of growth hormone and altered availability of exogenous IGF-1. Excessive activation of the growth hormone receptor by circulating growth hormone results in gigantism and acromegaly, whereas cell transformation and cancer can occur in response to autocrine activation of the receptor. Advances in understanding the mechanism of receptor activation have led to a model in which the growth hormone receptor exists as a constitutive dimer. Binding of the hormone realigns the subunits by rotation and closer apposition, resulting in juxtaposition of the catalytic domains of the associated tyrosine-protein kinase JAK2 below the cell membrane. This change results in activation of JAK2 by transphosphorylation, then phosphorylation of receptor tyrosines in the cytoplasmic domain, which enables binding of adaptor proteins, as well as direct phosphorylation of target proteins. This model is discussed in the light of salient information from closely related class 1 cytokine receptors, such as the erythropoietin, prolactin and thrombopoietin receptors. PMID:20664532

  9. The Neuroprotective Functions of Transforming Growth Factor Beta Proteins

    PubMed Central

    Dobolyi, Arpád; Vincze, Csilla; Pál, Gabriella; Lovas, Gábor

    2012-01-01

    Transforming growth factor beta (TGF-β) proteins are multifunctional cytokines whose neural functions are increasingly recognized. The machinery of TGF-β signaling, including the serine kinase type transmembrane receptors, is present in the central nervous system. However, the 3 mammalian TGF-β subtypes have distinct distributions in the brain suggesting different neural functions. Evidence of their involvement in the development and plasticity of the nervous system as well as their functions in peripheral organs suggested that they also exhibit neuroprotective functions. Indeed, TGF-β expression is induced following a variety of types of brain tissue injury. The neuroprotective function of TGF-βs is most established following brain ischemia. Damage in experimental animal models of global and focal ischemia was shown to be attenuated by TGF-βs. In addition, support for their neuroprotective actions following trauma, sclerosis multiplex, neurodegenerative diseases, infections, and brain tumors is also accumulating. The review will also describe the potential mechanisms of neuroprotection exerted by TGF-βs including anti-inflammatory, -apoptotic, -excitotoxic actions as well as the promotion of scar formation, angiogenesis, and neuroregeneration. The participation of these mechanisms in the neuroprotective effects of TGF-βs during different brain lesions will also be discussed. PMID:22942700

  10. Impact of epidermal growth factor receptor and transforming growth factor-α on hepatitis C virus-induced hepatocarcinogenesis.

    PubMed

    Badawy, Afkar Abdel-Ghany; El-Hindawi, Ali; Hammam, Olfat; Moussa, Mona; Gabal, Samia; Said, Noha

    2015-10-01

    Epidermal growth factor receptor system plays a central hepato-protective and pro-regenerative role in liver. Transforming growth factor-α (TGF-α) is an important autocrine growth regulator of hepatocytes that plays a role in development of hepatocellular carcinoma (HCC) among patients with chronic hepatitis C (CHC). This study was done on 40 core liver biopsies from patients with CHC, 20 liver specimens from HCC cases on top of CHC as well as five normal controls. All were immunohistochemically stained with epidermal growth factor receptor (EGFR) and TGF-α antibodies. Some selected HCC cases were submitted for FISH technique to detect EGFR gene alteration. By immunohistochemistry EGFR and TGF-α were overexpressed in HCC and cirrhotic cases compared to CHC cases without cirrhosis. Also, their expression was stronger in CHC cases with higher grades of activity and stages of fibrosis compared to lower ones. FISH positive results for EGFR were detected in 33.3% of the examined HCC cases. EGFR and TGF-α can be used as predictive markers for activity, fibrosis, and carcinogenesis in CHC patients. Overexpression of EGFR in HCC patients can be promising in selecting those who can get benefit from anti-EGFR target therapy. PMID:26279457

  11. Effect of transforming growth factor-alpha on inositol phospholipid metabolism in human epidermoid carcinoma cells

    SciTech Connect

    Kato, M.; Takenawa, T.; Twardzik, D.R.

    1988-08-01

    Transforming growth factor-alpha (TGF-alpha) stimulates (in a dose-dependent manner) the incorporation of (/sup 32/P)Pi into phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2), and phosphatidic acid (PA) in the human epidermoid carcinoma cell line (A431). The effect of TGF-alpha on the incorporation was found to be similar to that of EGF. On the other hand, a striking difference in the activation of diacylglycerol (DG) kinase activity was seen between TGF-alpha and EGF. At least 100 times more TGF-alpha was required to achieve maximal stimulation of DG kinase activity relative to EGF. These results suggest that the activation of DG kinase by TGF-alpha may involve a mechanism independent from or subsequent to activation of the EGF receptor.

  12. Aqueous Date Flesh or Pits Extract Attenuates Liver Fibrosis via Suppression of Hepatic Stellate Cell Activation and Reduction of Inflammatory Cytokines, Transforming Growth Factor-β1 and Angiogenic Markers in Carbon Tetrachloride-Intoxicated Rats

    PubMed Central

    Al-Rasheed, Nouf M.; Attia, Hala A.; Mohamad, Raeesa A.; Al-Rasheed, Nawal M.; Al-Amin, Maha A.; AL-Onazi, Asma

    2015-01-01

    Previous data indicated the protective effect of date fruit extract on oxidative damage in rat liver. However, the hepatoprotective effects via other mechanisms have not been investigated. This study was performed to evaluate the antifibrotic effect of date flesh extract (DFE) or date pits extract (DPE) via inactivation of hepatic stellate cells (HSCs), reducing the levels of inflammatory, fibrotic and angiogenic markers. Coffee was used as reference hepatoprotective agent. Liver fibrosis was induced by injection of CCl4 (0.4 mL/kg) three times weekly for 8 weeks. DFE, DPE (6 mL/kg), coffee (300 mg/kg), and combination of coffee + DFE and coffee + DPE were given to CCl4-intoxicated rats daily for 8 weeks. DFE, DPE, and their combination with coffee attenuated the elevated levels of inflammatory cytokines including tumor necrosis factor-α, interleukin-6, and interleukin-1β. The increased levels of transforming growth factor-β1 and collagen deposition in injured liver were alleviated by both extracts. CCl4-induced expression of α-smooth muscle actin was suppressed indicating HSCs inactivation. Increased angiogenesis was ameliorated as revealed by reduced levels and expression of vascular endothelial growth factor and CD31. We concluded that DFE or DPE could protect liver via different mechanisms. The combination of coffee with DFE or DPE may enhance its antifibrotic effects. PMID:25945106

  13. Modulation of growth and differentiation in normal human keratinocytes by transforming growth factor-beta

    SciTech Connect

    Matsumoto, K.; Hashimoto, K.; Hashiro, M.; Yoshimasa, H.; Yoshikawa, K. )

    1990-10-01

    The effect of transforming growth factor-type beta 1(TGF-beta) on the growth and differentiation of normal human skin keratinocytes cultured in serum-free medium was investigated. TGF-beta markedly inhibited the growth of keratinocytes at the concentrations greater than 2 ng/ml under low Ca2+ conditions (0.1 mM). Growth inhibition was accompanied by changes in cell functions related to proliferation. Remarkable inhibition of DNA synthesis was demonstrated by the decrease of (3H)thymidine incorporation. The decrease of (3H)thymidine incorporation was observed as early as 3 hr after addition of TGF-beta. TGF-beta also decreased c-myc messenger RNA (mRNA) expression 30 min after addition of TGF-beta. This rapid reduction of c-myc mRNA expression by TGF-beta treatment is possibly one of the main factors in the process of TGF-beta-induced growth inhibition of human keratinocytes. Since growth inhibition and induction of differentiation are closely related in human keratinocytes, the growth-inhibitory effect of TGF-beta under high Ca2+ conditions was examined. TGF-beta inhibited the growth of keratinocytes under high Ca2+ conditions in the same manner as under low Ca2+ conditions, suggesting that it is a strong growth inhibitor in both low and high Ca2+ environments. The induction of keratinocyte differentiation was evaluated by measuring involucrin expression and cornified envelope formation: TGF-beta at 20 ng/ml increased involucrin expression from 9.3% to 18.8% under high Ca2+ conditions, while it decreased involucrin expression from 7.0% to 3.3% under low Ca2+ conditions. Cornified envelope formation was modulated in a similar way by addition of TGF-beta: TGF-beta at 20 ng/ml decreased cornified envelope formation by 53% under low Ca2+ conditions, while it enhanced cornified envelope formation by 30.7% under high Ca2+ conditions.

  14. Regulation of transglutaminase type II by transforming growth factor-beta 1 in normal and transformed human epidermal keratinocytes.

    PubMed

    George, M D; Vollberg, T M; Floyd, E E; Stein, J P; Jetten, A M

    1990-07-01

    This study examines the effect of transforming growth factor-beta 1 (TGF-beta 1) on the expression of Type I and II transglutaminase in normal human epidermal keratinocytes (NHEK cells). Treatment of undifferentiated NHEK cells with 100 pM TGF-beta 1 caused a 10- to 15-fold increase in the activity of a soluble transglutaminase. Based on its cellular distribution and immunoreactivity this transglutaminase was identified as Type II (tissue) transglutaminase. TGF-beta 1 did not enhance the levels of the membrane-bound Type I (epidermal) transglutaminase activity which is induced during squamous cell differentiation and did not increase Type II transglutaminase activity in differentiated NHEK cells. Several SV40 large T antigen-immortalized NHEK cell lines also exhibited a dramatic increase in transglutaminase Type II activity after TGF-beta 1 treatment; however, TGF-beta 1 did not induce any significant change in transglutaminase activity in the carcinoma-derived cell lines SCC-13, SCC-15, and SQCC/Y1. Half-maximal stimulation of transglutaminase Type II activity in NHEK cells occurred at a dose of 15 pM TGF-beta 1. TGF-beta 2 was about equally effective. This enhancement in transglutaminase activity was related to an increase in the amount of transglutaminase Type II protein as indicated by immunoblot analysis. Northern blot analyses using a specific cDNA probe for Type II transglutaminase showed that exposure of NHEK cells to TGF-beta 1 caused a marked increase in the mRNA levels of this enzyme which could be observed as early as 4 h after the addition of TGF-beta 1. Maximal induction of transglutaminase Type II mRNA occurred between 18 and 24 h. The increase in Type II transglutaminase mRNA levels was blocked by the presence of cycloheximide, suggesting that this increase in mRNA by TGF-beta 1 is dependent on protein synthesis. PMID:1972706

  15. Retinoic acid modulates rat Ito cell proliferation, collagen, and transforming growth factor beta production.

    PubMed Central

    Davis, B H; Kramer, R T; Davidson, N O

    1990-01-01

    Recent studies suggest that vitamin A plays an inhibitory role with respect to "activation" of the hepatic Ito cell, a likely effector of hepatic fibrogenesis. Ito cell "activation" during fibrogenesis is characterized by a decrease in intracellular vitamin A and an increase in cellular proliferation and collagen production. To explore the hypothesis that retinoids have the capacity to diminish Ito cell activation, cultured Ito cells were exposed to retinoic acid and its effects assessed on three key features: cell proliferation, collagen protein production and mRNA abundance, and transforming growth factor beta protein production. Retinoic acid was 100-1,000X more potent than retinol with respect to inhibition of Ito cell proliferation. Interstitial collagen and transforming growth factor beta production were also reduced by 10(-6) M retinoic acid. The relative abundance of type I collagen mRNA however, was not significantly altered. By contrast, retinoic acid administration to rats caused a marked reduction in the abundance of type I collagen mRNA in both total hepatic and purified Ito cell RNA. The relative abundance of rat hepatic fibronectin or apolipoprotein E mRNA was not significantly altered. These studies demonstrate that retinoic acid can differentially modulate several key features of hepatic fibrogenesis in vitro and in vivo. Images PMID:2254460

  16. Transforming growth factor beta mRNA increases during liver regeneration: a possible paracrine mechanism of growth regulation.

    PubMed Central

    Braun, L; Mead, J E; Panzica, M; Mikumo, R; Bell, G I; Fausto, N

    1988-01-01

    Transforming growth factor beta (TGF-beta) is a growth factor with multiple biological properties including stimulation and inhibition of cell proliferation. To determine whether TGF-beta is involved in hepatocyte growth responses in vivo, we measured the levels of TGF-beta mRNA in normal liver and during liver regeneration after partial hepatectomy in rats. TGF-beta mRNA increases in the regenerating liver and reaches a peak (about 8 times higher than basal levels) after the major wave of hepatocyte cell division and mitosis have taken place and after the peak expression of the ras protooncogenes. Although hepatocytes from normal and regenerating liver respond to TGF-beta, they do not synthesize TGF-beta mRNA. Instead, the message is present in liver nonparenchymal cells and is particularly abundant in cell fractions enriched for endothelial cells. TGF-beta inhibits epidermal growth factor-induced DNA synthesis in vitro in hepatocytes from normal or regenerating liver, although the dose-response curves vary according to the culture medium used. We conclude that TGF-beta may function as the effector of an inhibitory paracrine loop that is activated during liver regeneration, perhaps to prevent uncontrolled hepatocyte proliferation. Images PMID:3422749

  17. Heart and liver defects and reduced transforming growth factor beta2 sensitivity in transforming growth factor beta type III receptor-deficient embryos.

    PubMed

    Stenvers, Kaye L; Tursky, Melinda L; Harder, Kenneth W; Kountouri, Nicole; Amatayakul-Chantler, Supavadee; Grail, Dianne; Small, Clayton; Weinberg, Robert A; Sizeland, Andrew M; Zhu, Hong-Jian

    2003-06-01

    The type III transforming growth factor beta (TGFbeta) receptor (TbetaRIII) binds both TGFbeta and inhibin with high affinity and modulates the association of these ligands with their signaling receptors. However, the significance of TbetaRIII signaling in vivo is not known. In this study, we have sought to determine the role of TbetaRIII during development. We identified the predominant expression sites of TbetaRIII mRNA as liver and heart during midgestation and have disrupted the murine TbetaRIII gene by homologous recombination. Beginning at embryonic day 13.5, mice with mutations in TbetaRIII developed lethal proliferative defects in heart and apoptosis in liver, indicating that TbetaRIII is required during murine somatic development. To assess the effects of the absence of TbetaRIII on the function of its ligands, primary fibroblasts were generated from TbetaRIII-null and wild-type embryos. Our results indicate that TbetaRIII deficiency differentially affects the activities of TGFbeta ligands. Notably, TbetaRIII-null cells exhibited significantly reduced sensitivity to TGFbeta2 in terms of growth inhibition, reporter gene activation, and Smad2 nuclear localization, effects not observed with other ligands. These data indicate that TbetaRIII is an important modulator of TGFbeta2 function in embryonic fibroblasts and that reduced sensitivity to TGFbeta2 may underlie aspects of the TbetaRIII mutant phenotype.

  18. Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor beta.

    PubMed Central

    Coffey, R J; Bascom, C C; Sipes, N J; Graves-Deal, R; Weissman, B E; Moses, H L

    1988-01-01

    Transforming growth factor beta (TGF beta) is a potent inhibitor of epithelial cell proliferation. A nontumorigenic epidermal growth factor (EGF)-dependent epithelial cell line, BALB/MK, is reversibly growth arrested by TGF beta. TGF beta will also abrogate EGF-stimulated mitogenesis of quiescent BALB/MK cells. Increased levels of calcium (greater than 1.0 mM) will induce differentiation in BALB/MK cells; in contrast, TGF beta-mediated growth inhibition does not result in induction of terminal differentiation. In the present study, the effects of TGF beta and calcium on growth factor-inducible gene expression were examined. TGF beta markedly decreased c-myc and KC gene expression in rapidly growing BALB/MK cells and reduced the EGF induction of c-myc and KC in a quiescent population of cells. TGF beta exerted its control over c-myc expression at a posttranscriptional level, and this inhibitory effect was dependent on protein synthesis. TGF beta had no effect on c-fos gene expression, whereas 1.5 mM calcium attenuated EGF-induced c-fos expression in quiescent cells. Expression of beta-actin, however, was slightly increased in both rapidly growing and EGF-restimulated quiescent BALB/MK cells treated with TGF beta. Thus, in this system, TGF beta selectively reduced expression of certain genes associated with cell proliferation (c-myc and KC), and at least part of the TGF beta effect was at a posttranscriptional level. Images PMID:2463471

  19. Creating Activating Events for Transformative Learning in a Prison Classroom

    ERIC Educational Resources Information Center

    Keen, Cheryl H.; Woods, Robert

    2016-01-01

    In this article, we interpreted, in light of Mezirow's theory of transformative learning, interviews with 13 educators regarding their work with marginalized adult learners in prisons in the northeastern United States. Transformative learning may have been aided by the educators' response to unplanned activating events, humor, and respect, and…

  20. TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF)

    EPA Science Inventory

    TITLE:
    TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF). AUTHORS (ALL): Abbott, Barbara D.1; Best, Deborah S.1; Narotsky, Michael G.1. SPONSOR NAME: None INSTITUTIONS (ALL): 1. Repro Tox ...

  1. Hammerhead Ribozyme-Mediated Knockdown of mRNA for Fibrotic Growth Factors: Transforming Growth Factor-Beta 1 and Connective Tissue Growth Factor

    PubMed Central

    Robinson, Paulette M.; Blalock, Timothy D.; Yuan, Rong; Lewin, Alfred S.; Schultz, Gregory S.

    2013-01-01

    Excessive scarring (fibrosis) is a major cause of pathologies in multiple tissues, including lung, liver, kidney, heart, cornea, and skin. The transforming growth factor- β (TGF- β) system has been shown to play a key role in regulating the formation of scar tissue throughout the body. Furthermore, connective tissue growth factor (CTGF) has been shown to mediate most of the fibrotic actions of TGF- β, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. Currently, no approved drugs selectively and specifically regulate scar formation. Thus, there is a need for a drug that selectively targets the TGF- β cascade at the molecular level and has minimal off-target side effects. This chapter focuses on the design of hammerhead ribozymes, measurement of kinetic activity, and assessment of knockdown mRNAs of TGF- β and CTGF in cell cultures. PMID:22131029

  2. Effect of transforming growth factor beta (TGF-β) receptor I kinase inhibitor on prostate cancer bone growth.

    PubMed

    Wan, Xinhai; Li, Zhi-Gang; Yingling, Jonathan M; Yang, Jun; Starbuck, Michael W; Ravoori, Murali K; Kundra, Vikas; Vazquez, Elba; Navone, Nora M

    2012-03-01

    Transforming growth factor beta 1 (TGF-β1) has been implicated in the pathogenesis of prostate cancer (PCa) bone metastasis. In this study, we tested the antitumor efficacy of a selective TGF-β receptor I kinase inhibitor, LY2109761, in preclinical models. The effect of LY2109761 on the growth of MDA PCa 2b and PC-3 human PCa cells and primary mouse osteoblasts (PMOs) was assessed in vitro by measuring radiolabeled thymidine incorporation into DNA. In vivo, the right femurs of male SCID mice were injected with PCa cells. We monitored the tumor burden in control- and LY2109761-treated mice with MRI analysis and the PCa-induced bone response with X-ray and micro-CT analyses. Histologic changes in bone were studied by performing bone histomorphometric evaluations. PCa cells and PMOs expressed TGF-β receptor I. TGF-β1 induced pathway activation (as assessed by induced expression of p-Smad2) and inhibited cell growth in PC-3 cells and PMOs but not in MDA PCa 2b cells. LY2109761 had no effect on PCa cells but induced PMO proliferation in vitro. As expected, LY2109761 reversed the TGF-β1-induced pathway activation and growth inhibition in PC-3 cells and PMOs. In vivo, LY2109761 treatment for 6weeks resulted in increased volume in normal bone and increased osteoblast and osteoclast parameters. In addition, LY2109761 treatment significantly inhibited the growth of MDA PCa 2b and PC-3 in the bone of SCID mice (p<0.05); moreover, it resulted in significantly less bone loss and change in osteoclast-associated parameters in the PC-3 tumor-bearing bones than in the untreated mice. In summary, we report for the first time that targeting TGF-β receptors with LY2109761 can control PCa bone growth while increasing the mass of normal bone. This increased bone mass in nontumorous bone may be a desirable side effect of LY2109761 treatment for men with osteopenia or osteoporosis secondary to androgen-ablation therapy, reinforcing the benefit of effectively controlling PCa growth

  3. Effect of transforming growth factor beta (TGF-β) receptor I kinase inhibitor on prostate cancer bone growth.

    PubMed

    Wan, Xinhai; Li, Zhi-Gang; Yingling, Jonathan M; Yang, Jun; Starbuck, Michael W; Ravoori, Murali K; Kundra, Vikas; Vazquez, Elba; Navone, Nora M

    2012-03-01

    Transforming growth factor beta 1 (TGF-β1) has been implicated in the pathogenesis of prostate cancer (PCa) bone metastasis. In this study, we tested the antitumor efficacy of a selective TGF-β receptor I kinase inhibitor, LY2109761, in preclinical models. The effect of LY2109761 on the growth of MDA PCa 2b and PC-3 human PCa cells and primary mouse osteoblasts (PMOs) was assessed in vitro by measuring radiolabeled thymidine incorporation into DNA. In vivo, the right femurs of male SCID mice were injected with PCa cells. We monitored the tumor burden in control- and LY2109761-treated mice with MRI analysis and the PCa-induced bone response with X-ray and micro-CT analyses. Histologic changes in bone were studied by performing bone histomorphometric evaluations. PCa cells and PMOs expressed TGF-β receptor I. TGF-β1 induced pathway activation (as assessed by induced expression of p-Smad2) and inhibited cell growth in PC-3 cells and PMOs but not in MDA PCa 2b cells. LY2109761 had no effect on PCa cells but induced PMO proliferation in vitro. As expected, LY2109761 reversed the TGF-β1-induced pathway activation and growth inhibition in PC-3 cells and PMOs. In vivo, LY2109761 treatment for 6weeks resulted in increased volume in normal bone and increased osteoblast and osteoclast parameters. In addition, LY2109761 treatment significantly inhibited the growth of MDA PCa 2b and PC-3 in the bone of SCID mice (p<0.05); moreover, it resulted in significantly less bone loss and change in osteoclast-associated parameters in the PC-3 tumor-bearing bones than in the untreated mice. In summary, we report for the first time that targeting TGF-β receptors with LY2109761 can control PCa bone growth while increasing the mass of normal bone. This increased bone mass in nontumorous bone may be a desirable side effect of LY2109761 treatment for men with osteopenia or osteoporosis secondary to androgen-ablation therapy, reinforcing the benefit of effectively controlling PCa growth

  4. Effect of transforming growth factor beta (TGF-β) receptor I kinase inhibitor on prostate cancer bone growth

    PubMed Central

    Wan, Xinhai; Li, Zhi-Gang; Yingling, Jonathan M.; Yang, Jun; Starbuck, Michael W.; Ravoori, Murali K.; Kundra, Vikas; Vazquez, Elba; Navone, Nora M.

    2012-01-01

    Transforming growth factor beta 1 (TGF-β1) has been implicated in the pathogenesis of prostate cancer (PCa) bone metastasis. In this study, we tested the antitumor efficacy of a selective TGF-β receptor I kinase inhibitor, LY2109761, in preclinical models. The effect of LY2109761 on the growth of MDA PCa 2b and PC-3 human PCa cells and primary mouse osteoblasts (PMOs) was assessed in vitro by measuring radiolabeled thymidine incorporation into DNA. In vivo, the right femurs of male SCID mice were injected with PCa cells. We monitored the tumor burden in control- and LY2109761-treated mice with MRI analysis and the PCa-induced bone response with x-ray and micro-CT analyses. Histologic changes in bone were studied by performing bone histomorphometric evaluations. PCa cells and PMOs expressed TGF-β receptor I. TGF-β1 induced pathway activation (as assessed by induced expression of p-Smad2) and inhibited cell growth in PC-3 cells and PMOs but not in MDA PCa 2b cells. LY2109761 had no effect on PCa cells but induced PMO proliferation in vitro. As expected, LY2109761 reversed the TGF-β1–induced pathway activation and growth inhibition in PC-3 cells and PMOs. In vivo, LY2109761 treatment for 6 weeks resulted in increased volume in normal bone and increased osteoblast and osteoclast parameters. In addition, LY2109761 treatment significantly inhibited the growth of MDA PCa 2b and PC-3 in the bone of SCID mice (p < 0.05); moreover, it resulted in significantly less bone loss and change in osteoclast-associated parameters in the PC-3 tumor–bearing bones than in the untreated mice. In summary, we report for the first time that targeting TGF-β receptors with LY2109761 can control PCa bone growth while increasing the mass of normal bone. This increased bone mass in nontumorous bone may be a desirable side effect of LY2109761 treatment for men with osteopenia or osteoporosis secondary to androgen-ablation therapy, reinforcing the benefit of effectively controlling PCa

  5. Transforming growth factor-beta1 mediates cellular response to DNA damage in situ

    NASA Technical Reports Server (NTRS)

    Ewan, Kenneth B.; Henshall-Powell, Rhonda L.; Ravani, Shraddha A.; Pajares, Maria Jose; Arteaga, Carlos; Warters, Ray; Akhurst, Rosemary J.; Barcellos-Hoff, Mary Helen

    2002-01-01

    Transforming growth factor (TGF)-beta1 is rapidly activated after ionizing radiation, but its specific role in cellular responses to DNA damage is not known. Here we use Tgfbeta1 knockout mice to show that radiation-induced apoptotic response is TGF-beta1 dependent in the mammary epithelium, and that both apoptosis and inhibition of proliferation in response to DNA damage decrease as a function of TGF-beta1 gene dose in embryonic epithelial tissues. Because apoptosis in these tissues has been shown previously to be p53 dependent, we then examined p53 protein activation. TGF-beta1 depletion, by either gene knockout or by using TGF-beta neutralizing antibodies, resulted in decreased p53 Ser-18 phosphorylation in irradiated mammary gland. These data indicate that TGF-beta1 is essential for rapid p53-mediated cellular responses that mediate cell fate decisions in situ.

  6. Transforming Teacher Education, An Activity Theory Analysis

    ERIC Educational Resources Information Center

    McNicholl, Jane; Blake, Allan

    2013-01-01

    This paper explores the work of teacher education in England and Scotland. It seeks to locate this work within conflicting sociocultural views of professional practice and academic work. Drawing on an activity theory framework that integrates the analysis of these seemingly contradictory discourses with a study of teacher educators' practical…

  7. Production and response of a human prostatic cancer line to transforming growth factor-like molecules.

    PubMed Central

    MacDonald, A.; Chisholm, G. D.; Habib, F. K.

    1990-01-01

    Serum-free media conditioned by the androgen insensitive human prostate cancer cell line DU145 showed immunological transforming growth factor-alpha (TGF alpha) activity, as well as competing activity in epidermal growth factor (EGF) radioreceptor assays (RRA). Furthermore, there were factors in the conditioned media which inhibited and stimulated DNA synthesis by DU145 cells in a dose-dependent fashion. Fractionation of the concentrated conditioned media by reverse-phase high performance liquid chromatography revealed several peaks containing EGF-like competitive activity only one of which demonstrated TGF alpha activity. However, none of the peaks corresponded to immunoreactive EGF. Measurement of EGF receptors on DU145 cells by competition and saturation analysis revealed high levels of receptors (mean +/- s.d. = 2.5 +/- 1 x 10(5) surface receptors per cell) which were of high affinity (Kd +/- s.d. = 1.0 +/- 0.5 nmol l-1). Although DU145 cells express high levels of EGF receptors, DNA synthesis was only minimally affected by exogenous EGF and TGF alpha. PMID:2223575

  8. Capsaicin Inhibits Preferentially the NADH Oxidase and Growth of Transformed Cells in Culture

    NASA Astrophysics Data System (ADS)

    Morre, D. James; Chueh, Pin-Ju; Morre, Dorothy M.

    1995-03-01

    A hormone- and growth factor-stimulated NADH oxidase of the mammalian plasma membrane, constitutively activated in transformed cells, was inhibited preferentially in HeLa, ovarian carcinoma, mammary adenocarcinoma, and HL-60 cells, all of human origin, by the naturally occurring quinone analog capsaicin (8-methyl-N-vanillyl-6-noneamide), compared with plasma membranes from human mammary epithelial, rat liver, normal rat kidney cells, or HL-60 cells induced to differentiate with dimethyl sulfoxide. With cells in culture, capsaicin preferentially inhibited growth of HeLa, ovarian carcinoma, mammary adenocarcinoma, and HL-60 cells but was largely without effect on the mammary epithelial cells, rat kidney cells, or HL-60 cells induced to differentiate with dimethyl sulfoxide. Inhibited cells became smaller and cell death was accompanied by a condensed and fragmented appearance of the nuclear DNA, as revealed by fluorescence microscopy with 4',6-diamidino-2-phenylindole, suggestive of apoptosis. The findings correlate capsaicin inhibition of cell surface NADH oxidase activity and inhibition of growth that correlate with capsaicin-induced apoptosis.

  9. Evaluation of the antioxidant activity of non-transformed and transformed pineapple: a comparative study.

    PubMed

    Mhatre, Minal; Tilak-Jain, Jai; De, Strayo; Devasagayam, T P A

    2009-11-01

    Pineapple has several beneficial properties including antioxidant activity. We investigated the antioxidant effect of different extracts of non-transformed (S) and transformed pineapple (with the magainin gene construct, [TS], for disease resistance). They were examined using 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging, oxygen radical absorbance capacity (ORAC) and lipid peroxidation assays besides phenolic and flavonoid contents. HPLC analysis was carried out to identify the possible components responsible for the differences observed. The present study indicates that the ORAC values of extracts range from 9.5 to 26.4, similar to or higher than those for some fruits and vegetables. The HPLC analysis shows that the main compounds present are ascorbic acid, quercetin, flavone-3-ols, flavones, cinnamic acids. The TS core Et. extract exhibited slightly higher concentration of ascorbic acid and considerably higher concentration of flavon-3-ols. Our study, in general, indicates that the transformation event has caused only marginal difference in antioxidant activity. Moreover the TS samples showed more antioxidant activity in some aspects and also exhibit more flavonoid content. It appears that plant cell transformation has only caused minor and favourable changes in the overall chemical composition. Thus the TS pineapple variety may have potential applications in human health like its non-transformed counterpart.

  10. Harnessing High Density Lipoproteins to Block Transforming Growth Factor Beta and to Inhibit the Growth of Liver Tumor Metastases

    PubMed Central

    Medina-Echeverz, José; Fioravanti, Jessica; Díaz-Valdés, Nancy; Frank, Kathrin; Aranda, Fernando; Gomar, Celia; Ardaiz, Nuria; Dotor, Javier; Umansky, Viktor; Prieto, Jesús; Berraondo, Pedro

    2014-01-01

    Transforming growth factor β (TGF-β) is a powerful promoter of cancer progression and a key target for antitumor therapy. As cancer cells exhibit active cholesterol metabolism, high density lipoproteins (HDLs) appear as an attractive delivery system for anticancer TGFβ-inhibitory molecules. We constructed a plasmid encoding a potent TGF-β-blocking peptide (P144) linked to apolipoprotein A-I (ApoA-I) through a flexible linker (pApoLinkerP144). The ApoLinkerP144 sequence was then incorporated into a hepatotropic adeno-associated vector (AAVApoLinkerP144). The aim was to induce hepatocytes to produce HDLs containing a modified ApoA-I capable of blocking TGF-β. We observed that transduction of the murine liver with pApoLinkerP144 led to the appearance of a fraction of circulating HDL containing the fusion protein. These HDLs were able to attenuate TGF-β signaling in the liver and to enhance IL-12 -mediated IFN-γ production. Treatment of liver metastasis of MC38 colorectal cancer with AAVApoLinkerP144 resulted in a significant reduction of tumor growth and enhanced expression of IFN-γ and GM-CSF in cancerous tissue. ApoLinkerP144 also delayed MC38 liver metastasis in Rag2−/−IL2rγ−/− immunodeficient mice. This effect was associated with downregulation of TGF-β target genes essential for metastatic niche conditioning. Finally, in a subset of ret transgenic mice, a model of aggressive spontaneous metastatic melanoma, AAVApoLinkerP144 delayed tumor growth in association with increased CD8+ T cell numbers in regional lymph nodes. In conclusion, modification of HDLs to transport TGF-β-blocking molecules is a novel and promising approach to inhibit the growth of liver metastases by immunological and non-immunological mechanisms. PMID:24797128

  11. [Cytogenetic activity of the butylcaptax defoliant transformation product].

    PubMed

    Vesmanova, O Ia; Semykina, E E; Koblov, R K; Ergashev

    1989-01-01

    Cytogenetical activity of the product of metabolitic butylcaptax transformations in cells of cotton plants G. barbadense has been studied. It is shown that butylcaptax, with a significant mutagenicity, looses its mutagenic activity, metabolizing in low mutagenic 2-oxyamylthiobenzthiazole. Low water solubility prevents its concentration to exceed 0.005% in tissue liquids and to exert a mutagenic action on cotton plants. PMID:2773061

  12. [Cytogenetic activity of the butylcaptax defoliant transformation product].

    PubMed

    Vesmanova, O Ia; Semykina, E E; Koblov, R K; Ergashev

    1989-01-01

    Cytogenetical activity of the product of metabolitic butylcaptax transformations in cells of cotton plants G. barbadense has been studied. It is shown that butylcaptax, with a significant mutagenicity, looses its mutagenic activity, metabolizing in low mutagenic 2-oxyamylthiobenzthiazole. Low water solubility prevents its concentration to exceed 0.005% in tissue liquids and to exert a mutagenic action on cotton plants.

  13. Inhibition of transforming growth factor β signaling promotes epiblast formation in mouse embryos.

    PubMed

    Ghimire, Sabitri; Heindryckx, Björn; Van der Jeught, Margot; Neupane, Jitesh; O'Leary, Thomas; Lierman, Sylvie; De Vos, Winnok H; Chuva de Sousa Lopes, Susana; Deroo, Tom; De Sutter, Petra

    2015-02-15

    Early lineage segregation in preimplantation embryos and maintenance of pluripotency in embryonic stem cells (ESCs) are both regulated by specific signaling pathways. Small molecules have been shown to modulate these signaling pathways. We examined the influence of several small molecules and growth factors on second-lineage segregation of the inner cell mass toward hypoblast and epiblast lineage during mouse embryonic preimplantation development. We found that the second-lineage segregation is influenced by activation or inhibition of the transforming growth factor (TGF)β pathway. Inhibition of the TGFβ pathway from the two-cell, four-cell, and morula stages onward up to the blastocyst stage significantly increased the epiblast cell proliferation. The epiblast formed in the embryos in which TGFβ signaling was inhibited was fully functional as demonstrated by the potential of these epiblast cells to give rise to pluripotent ESCs. Conversely, activating the TGFβ pathway reduced epiblast formation. Inhibition of the glycogen synthase kinase (GSK)3 pathway and activation of bone morphogenetic protein 4 signaling reduced the formation of both epiblast and hypoblast cells. Activation of the protein kinase A pathway and of the Janus kinase/signal transducer and activator of transcription 3 pathway did not influence the second-lineage segregation in mouse embryos. The simultaneous inhibition of three pathways--TGFβ, GSK3β, and the fibroblast growth factor (FGF)/extracellular signal-regulated kinases (Erk)--significantly enhanced the proliferation of epiblast cells than that caused by inhibition of either TGFβ pathway alone or by combined inhibition of the GSK3β and FGF/Erk pathways only.

  14. Inhibition of Transforming Growth Factor β Signaling Promotes Epiblast Formation in Mouse Embryos

    PubMed Central

    Ghimire, Sabitri; Heindryckx, Björn; Van der Jeught, Margot; Neupane, Jitesh; O'Leary, Thomas; Lierman, Sylvie; De Vos, Winnok H.; Chuva de Sousa Lopes, Susana; Deroo, Tom

    2015-01-01

    Early lineage segregation in preimplantation embryos and maintenance of pluripotency in embryonic stem cells (ESCs) are both regulated by specific signaling pathways. Small molecules have been shown to modulate these signaling pathways. We examined the influence of several small molecules and growth factors on second-lineage segregation of the inner cell mass toward hypoblast and epiblast lineage during mouse embryonic preimplantation development. We found that the second-lineage segregation is influenced by activation or inhibition of the transforming growth factor (TGF)β pathway. Inhibition of the TGFβ pathway from the two-cell, four-cell, and morula stages onward up to the blastocyst stage significantly increased the epiblast cell proliferation. The epiblast formed in the embryos in which TGFβ signaling was inhibited was fully functional as demonstrated by the potential of these epiblast cells to give rise to pluripotent ESCs. Conversely, activating the TGFβ pathway reduced epiblast formation. Inhibition of the glycogen synthase kinase (GSK)3 pathway and activation of bone morphogenetic protein 4 signaling reduced the formation of both epiblast and hypoblast cells. Activation of the protein kinase A pathway and of the Janus kinase/signal transducer and activator of transcription 3 pathway did not influence the second-lineage segregation in mouse embryos. The simultaneous inhibition of three pathways—TGFβ, GSK3β, and the fibroblast growth factor (FGF)/extracellular signal-regulated kinases (Erk)—significantly enhanced the proliferation of epiblast cells than that caused by inhibition of either TGFβ pathway alone or by combined inhibition of the GSK3β and FGF/Erk pathways only. PMID:25245024

  15. Parabens enable suspension growth of MCF-10A immortalized, non-transformed human breast epithelial cells.

    PubMed

    Khanna, Sugandha; Darbre, Philippa D

    2013-05-01

    Parabens (alkyl esters of p-hydroxybenzoic acid) are used extensively as preservatives in consumer products, and intact esters have been measured in several human tissues. Concerns of a potential link between parabens and breast cancer have been raised, but mechanistic studies have centred on their oestrogenic activity and little attention has been paid to any carcinogenic properties. In the present study, we report that parabens can induce anchorage-independent growth of MCF-10A immortalized but non-transformed human breast epithelial cells, a property closely related to transformation and a predictor of tumour growth in vivo. In semi-solid methocel suspension culture, MCF-10A cells produced very few colonies and only of a small size but the addition of 5 × 10(-4) M methylparaben, 10(-5) M n-propylparaben or 10(-5) M n-butylparaben resulted in a greater number of colonies per dish (P < 0.05 in each case) and an increased average colony size (P < 0.001 in each case). Dose-responses showed that concentrations as low as 10(-6) M methylparaben, 10(-7) M n-propylparaben and 10(-7) M n-butylparaben could increase colony numbers (P = 0.016, P = 0.010, P = 0.008, respectively): comparison with a recent measurement of paraben concentrations in human breast tissue samples from 40 mastectomies (Barr et al., 2012) showed that 22/40 of the patients had at least one of the parabens at the site of the primary tumour at or above these concentrations. To our knowledge, this is the first study to report that parabens can induce a transformed phenotype in human breast epithelial cells in vitro, and further investigation is now justified into a potential link between parabens and breast carcinogenesis.

  16. Loss of responsiveness to transforming growth factor beta induces malignant transformation of nontumorigenic rat prostate epithelial cells.

    PubMed

    Tang, B; de Castro, K; Barnes, H E; Parks, W T; Stewart, L; Böttinger, E P; Danielpour, D; Wakefield, L M

    1999-10-01

    Transforming growth factor (TGF)-betas are multifunctional growth factors, the properties of which include the potent inhibition of epithelial cell growth. Expression patterns of TGF-betas and TGF-beta receptors in the normal prostate indicate that these growth regulators play key roles in prostatic development and proliferative homeostasis. Importantly, TGF-beta receptor levels are frequently diminished in malignant human prostate tissue. To test the hypothesis that loss of TGF-beta responsiveness is causally involved in the tumorigenic process, we have used retroviral transduction to introduce a dominant-negative mutant type II TGF-beta receptor (DNR) into the premalignant rat prostatic epithelial cell line, NRP-152. High-level expression of the DNR abolished the ability of TGF-beta to inhibit cell growth, to promote cell differentiation, and to induce apoptosis, and it partially blocked the induction of extracellular matrix gene expression. When injected into nude mice, NRP-152-DNR cells formed carcinomas at 13 of 34 sites, compared with 0 of 30 sites for parental and control cells (P = 0.0001). We conclude that the type II TGF-beta receptor is an important tumor suppressor in the prostate, and furthermore, that loss of TGF-beta responsiveness can contribute early in the tumorigenic process by causing the malignant transformation of preneoplastic cells.

  17. Wnt3a upregulates transforming growth factor-β-stimulated VEGF synthesis in osteoblasts.

    PubMed

    Natsume, Hideo; Tokuda, Haruhiko; Matsushima-Nishiwaki, Rie; Kato, Kenji; Yamakawa, Kengo; Otsuka, Takanobu; Kozawa, Osamu

    2011-07-01

    It is recognized that Wnt3a affects bone metabolism via the canonical Wnt/β-catenin signalling pathway. We have previously shown that transforming growth factor-β (TGF-β) stimulates the synthesis of vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) and p38 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of Wnt3a on TGF-β-stimulated VEGF synthesis in these cells. Wnt3a, which alone had little effect on the VEGF levels, significantly enhanced the TGF-β-stimulated VEGF release. Lithium chloride and SB216763, inhibitors of glycogen synthase kinase 3β, markedly amplified the TGF-β-stimulated VEGF release. Wnt3a failed to affect the TGF-β-induced phosphorylation of Smad2, p44/p42 MAP kinase, p38 MAP kinase or SAPK/JNK. Wnt3a and lithium chloride strengthened the VEGF mRNA expression induced by TGF-β. These results strongly suggest that Wnt3a upregulates VEGF synthesis stimulated by TGF-β via activation of the canonical pathway in osteoblasts.

  18. Potassium inhibits dietary salt-induced transforming growth factor-beta production.

    PubMed

    Ying, Wei-Zhong; Aaron, Kristal; Wang, Pei-Xuan; Sanders, Paul W

    2009-11-01

    Human and animal studies demonstrate an untoward effect of excess dietary NaCl (salt) intake on cardiovascular function and life span. The endothelium in particular augments the production of transforming growth factor (TGF)-beta, a fibrogenic growth factor, in response to excess dietary salt intake. This study explored the initiating mechanism that regulates salt-induced endothelial cell production of TGF-beta. Male Sprague-Dawley rats were given diets containing different amounts of NaCl and potassium for 4 days. A bioassay for TGF-beta demonstrated increased (35.2%) amounts of active TGF-beta in the medium of aortic ring segments from rats on the high-salt diet compared with rats maintained on a 0.3% NaCl diet. Inhibition of the large-conductance, calcium-activated potassium channel inhibited dietary salt-induced vascular production of TGF-beta but did not affect production of TGF-beta by ring segments from rats on the low-salt diet. Immunohistochemical and Western analyses demonstrated the alpha subunit of the calcium-activated potassium channel in endothelial cells. Increasing medium [K+] inhibited production of dietary salt-induced vascular production levels of total and active TGF-beta but did not alter TGF-beta production by aortic rings from rats on the 0.3% NaCl diet. Increasing dietary potassium content decreased urinary active TGF-beta in animals receiving the high-salt diet but did not change urinary active TGF-beta in animals receiving the low-salt diet. The findings demonstrated an interesting interaction between the dietary intake of potassium and excess NaCl and further showed the fundamental role of the endothelial calcium-activated potassium channel in the vascular response to excess salt intake.

  19. Transforming growth factor-beta 1 does not relate to hypertension in pre-eclampsia.

    PubMed

    Hennessy, A; Orange, S; Willis, N; Painter, D M; Child, A; Horvath, J S

    2002-11-01

    1. Pre-eclampsia is a human disease of pregnancy characterized by high blood pressure, proteinuria and end-organ damage, if severe. Pre-eclampsia is thought to be related to changes in early placental development, with the formation of a shallower than normal placental bed. 2. Transforming growth factor (TGF)-beta1 is a multifunctional fibrogenic growth factor involved in immune regulation that is elevated in some populations with a high risk of hypertensive end-organ disease related to increases in endothelin release. Transforming growth factor-beta1 is also an important factor in placental implantation. Alterations in TGF-beta1 may be related to abnormal placental development in early pregnancy and, thus, are a candidate for the development of hypertension in pre-eclampsia. 3. The aim of the present study was to examine the placental distribution and serum concentration of TGF-beta1 in patients with pre-eclampsia compared with normal pregnancy. 4. Patients with pre-eclampsia (n = 12) were compared with patients with normal pregnancy (n = 14). Transforming growth factor-beta1 was determined by TGF-beta1 Max ELISA (Promega, Madsion, WI, USA) after serum dilution (1/150) and acid activation. Placental distribution was determined by immunostaining with TGF-beta1 (Santa Cruz, Santa Cruz, CA, USA; 20 ng/mL) and the villi and decidual trophoblast were scored for intensity and extent of staining. 5. Patients with pre-eclampsia had a mean gestational age of 36 weeks, whereas those with a normal pregnancy had a mean gestational age of 39.0 +/- 0.4 weeks. There was no difference in TGF-beta1 concentration between the two groups (mean (+/-SEM) 27.1 +/- 1.0 vs 26.4 +/- 0.7 pg/mL for normal pregnancy and pre-eclampsia, respectively; P = 0.73, Mann-Whitney U-test). There was no correlation between systolic or diastolic blood pressure and TGF-beta1 concentration (regression analysis P = 0.4 and 0.2). Immunostaining was absent in the villous trophoblast cells and endovascular and

  20. TC21 and Ras share indistinguishable transforming and differentiating activities.

    PubMed

    Graham, S M; Oldham, S M; Martin, C B; Drugan, J K; Zohn, I E; Campbell, S; Der, C J

    1999-03-25

    Constitutively activated mutants of the Ras-related protein TC21/R-Ras2 cause tumorigenic transformation of NIH3T3 cells. However, unlike Ras, TC21 fails to bind to and activate the Raf-1 serine-threonine kinase. Thus, whereas Ras transformation is critically dependent on Raf-1 TC21 activity is promoted by activation of Raf-independent signaling pathways. In the present study, we have further compared the functions of Ras and TC21. First we determined the basis for the inability of TC21 to activate Raf-1. Whereas Ras can interact with the two distinct Ras-binding sequences in NH2-terminus of Raf-1, designated RBS1 and Raf-Cys, TC21 could only bind Raf-Cys. Thus, the inability of TC21 to bind to RBS1 may prevent it from promoting the translocation of Raf-1 to the plasma membrane. Second, we found that TC21 is an activator of the JNK and p38, but not ERK, mitogen-activated protein kinase cascades and that TC21 transforming activity was dependent on Rac function. Thus, like Ras, TC21 may activate a Rac/JNK pathway. Third, we determined if TC21 could cause the same biological consequences as Ras in three distinct cell types. Like Ras, activated TC21 caused transformation of RIE-1 rat intestinal epithelial cells and terminal differentiation of PC12 pheochromocytoma cells. Finally, activated TC21 blocked serum starvation-induced differentiation of C2 myoblasts, whereas dominant negative TC21 greatly accelerated this differentiation process. Therefore, TC21 and Ras share indistinguishable biological activities in all cell types that we have evaluated. These results support the importance of Raf-independent pathways in mediating the actions of Ras and TC21.

  1. Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-{beta} responsiveness

    SciTech Connect

    Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua; Warner-Blankenship, Matthew; Lyons, Karen M.

    2008-03-10

    Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-{beta} (TGF-{beta}) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-{beta}, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-{beta}. To explore this notion, we characterized TGF-{beta}-induced activation of fibroblasts from CCN2-null (CCN2{sup -/-}) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-{beta} signal transduction and regulation of collagen gene expression were examined in CCN2{sup -/-} MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2{sup -/-} MEFs was markedly reduced compared to wild type MEFs, TGF-{beta}-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2{sup -/-} MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-{beta}-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts.

  2. Role of transforming growth factor-beta (TGF) beta in the physiopathology of rheumatoid arthritis.

    PubMed

    Gonzalo-Gil, Elena; Galindo-Izquierdo, María

    2014-01-01

    Transforming growth factor-beta (TGF-β) is a cytokine with pleiotropic functions in hematopoiesis, angiogenesis, cell proliferation, differentiation, migration and apoptosis. Although its role in rheumatoid arthritis is not well defined, TGF-β activation leads to functional immunomodulatory effects according to environmental conditions. The function of TGF-β in the development of arthritis in murine models has been extensively studied with controversial results. Recent findings point to a non-relevant role for TGF-β in a mice model of collagen-induced arthritis. The study of TGF-β on T-cell responses has shown controversial results as an inhibitor or promoter of the inflammatory response. This paper presents a review of the role of TGF-β in animal models of arthritis.

  3. Effect of Cellulose Acetate Beads on the Release of Transforming Growth Factor-β.

    PubMed

    Nishise, Shoichi; Abe, Yasuhiko; Nomura, Eiki; Sato, Takeshi; Sasaki, Yu; Iwano, Daisuke; Yagi, Makoto; Sakuta, Kazuhiro; Shibuya, Rika; Mizumoto, Naoko; Kanno, Nana; Ueno, Yoshiyuki

    2015-08-01

    Transforming growth factor-β (TGF-β) is released by activated platelets and induces the differentiation of T-helper 17 from naïve T cells. Contact between blood and cellulose acetate (CA) beads induces cytokine release, although their inflammatory effects on TGF-β release are unclear. We aimed to clarify the effect of CA beads on the release of TGF-β in vitro. We incubated peripheral blood with and without CA beads and measured platelets and TGF-β. Compared with blood samples incubated without beads, the platelet count and amount of TGF-β significantly decreased in blood samples incubated with CA beads. In conclusion, CA beads inhibited the release of TGF-β from adsorbed platelets. The biological effects of this reduction of TGF-β release during platelet adsorption to CA beads need further clarification.

  4. Transforming growth factor Beta2 is required for valve remodeling during heart development.

    PubMed

    Azhar, Mohamad; Brown, Kristen; Gard, Connie; Chen, Hwudaurw; Rajan, Sudarsan; Elliott, David A; Stevens, Mark V; Camenisch, Todd D; Conway, Simon J; Doetschman, Thomas

    2011-09-01

    Although the function of transforming growth factor beta2 (TGFβ2) in epithelial mesenchymal transition (EMT) is well studied, its role in valve remodeling remains to be fully explored. Here, we used histological, morphometric, immunohistochemical and molecular approaches and showed that significant dysregulation of major extracellular matrix (ECM) components contributed to valve remodeling defects in Tgfb2(-/-) embryos. The data indicated that cushion mesenchymal cell differentiation was impaired in Tgfb2(-/-) embryos. Hyaluronan and cartilage link protein-1 (CRTL1) were increased in hyperplastic valves of Tgfb2(-/-) embryos, indicating increased expansion and diversification of cushion mesenchyme into the cartilage cell lineage during heart development. Finally, Western blot and immunohistochemistry analyses indicate that the activation of SMAD2/3 was decreased in Tgfb2(-/-) embryos during valve remodeling. Collectively, the data indicate that TGFβ2 promotes valve remodeling and differentiation by inducing matrix organization and suppressing cushion mesenchyme differentiation into cartilage cell lineage during heart development.

  5. Regulation of the transforming growth factor β pathway by reversible ubiquitylation.

    PubMed

    Al-Salihi, Mazin A; Herhaus, Lina; Sapkota, Gopal P

    2012-05-01

    The transforming growth factor β (TGFβ) signalling pathway plays a central role during embryonic development and in adult tissue homeostasis. It regulates gene transcription through a signalling cascade from cell surface receptors to intracellular SMAD transcription factors and their nuclear cofactors. The extent, duration and potency of signalling in response to TGFβ cytokines are intricately regulated by complex biochemical processes. The corruption of these regulatory processes results in aberrant TGFβ signalling and leads to numerous human diseases, including cancer. Reversible ubiquitylation of pathway components is a key regulatory process that plays a critical role in ensuring a balanced response to TGFβ signals. Many studies have investigated the mechanisms by which various E3 ubiquitin ligases regulate the turnover and activity of TGFβ pathway components by ubiquitylation. Moreover, recent studies have shed new light into their regulation by deubiquitylating enzymes. In this report, we provide an overview of current understanding of the regulation of TGFβ signalling by E3 ubiquitin ligases and deubiquitylases.

  6. Stromal inhibition of prostatic epithelial cell proliferation not mediated by transforming growth factor beta.

    PubMed Central

    Kooistra, A.; van den Eijnden-van Raaij, A. J.; Klaij, I. A.; Romijn, J. C.; Schröder, F. H.

    1995-01-01

    The paracrine influence of prostatic stroma on the proliferation of prostatic epithelial cells was investigated. Stromal cells from the human prostate have previously been shown to inhibit anchorage-dependent as well as anchorage-independent growth of the prostatic tumour epithelial cell lines PC-3 and LNCaP. Antiproliferative activity, mediated by a diffusible factor in the stromal cell conditioned medium, was found to be produced specifically by prostatic stromal cells. In the present study the characteristics of this factor were examined. It is demonstrated that prostate stroma-derived inhibiting factor is an acid- and heat-labile, dithiothreitol-sensitive protein. Although some similarities with type beta transforming growth factor (TGF-beta)-like inhibitors are apparent, evidence is presented that the factor is not identical to TGF-beta or to the TGF-beta-like factors activin and inhibin. Absence of TGF-beta activity was shown by the lack of inhibitory response of the TGF-beta-sensitive mink lung cell line CCL-64 to prostate stromal cell conditioned medium and to concentrated, partially purified preparations of the inhibitor. Furthermore, neutralising antibodies against TGF-beta 1 or TGF-beta 2 did not cause a decline in the level of PC-3 growth inhibition caused by partially purified inhibitor. Using Northern blot analyses, we excluded the involvement of inhibin or activin. It is concluded that the prostate stroma-derived factor may be a novel growth inhibitor different from any of the currently described inhibiting factors. Images Figure 5 PMID:7543773

  7. Inhibition of spermidine synthase gene expression by transforming growth factor-beta 1 in hepatoma cells.

    PubMed Central

    Nishikawa, Y; Kar, S; Wiest, L; Pegg, A E; Carr, B I

    1997-01-01

    We screened genes responsive to transforming growth factor-beta (TGF-beta 1) protein in a human hepatoma cell line (Hep3B) using a PCR-mediated differential display technique, in order to investigate the mechanisms involved in TGF-beta-induced growth suppression. We found a gene that was down-regulated by TGF-beta 1 to be completely identical in an approx. 620 bp segment to the gene for the enzyme spermidine synthase, which mediates the conversion of putrescine into spermidine. Both spermidine synthase mRNA expression and its enzyme activity were decreased after TGF-beta 1 treatment of Hep3B cells. The inhibition of spermidine synthase gene expression by TGF-beta 1 protein was also observed in other hepatoma cell lines. The expression of genes for other biosynthetic enzymes in polyamine metabolism (ornithine decarboxylase and S-adenosylmethionine decarboxylase) was also inhibited to the same extent as for spermidine synthase, while the gene expression of spermidine/spermine N1-acetyltransferase, a catabolic enzyme, was relatively resistant to TGF-beta 1. Spermine levels in Hep3B cells were decreased by TGF-beta 1 treatment, although the levels of spermidine and putrescine were unchanged, probably due to compensation by remaining spermidine/spermine N1-acetyltransferase activity. Exogenously added spermidine or spermine, but not putrescine, partially antagonized the growth-inhibitor effects of TGF-beta 1 on Hep3B cells. Our data suggest that down-regulation of gene expression of the enzymes involved in polyamine metabolism, including spermidine synthase, may be associated with the mechanism of TGF-beta-induced growth suppression. PMID:9020892

  8. Analysis of the transforming growth factor-beta 1 gene promoter polymorphisms in early osseointegrated implant failure.

    PubMed

    Dos Santos, Maria Cristina Leme Godoy; Campos, Maria Isabela Guimarães; Souza, Ana Paula; Scarel-Caminaga, Raquel Mantuaneli; Mazzonetto, Renato; Line, Sergio Roberto Peres

    2004-09-01

    Transforming growth factor-beta 1 is a multifunctional cytokine involved in extracellular matrix deposition, reduction of inflammation, and promotion of wound healing. Single nucleotide polymorphisms in the promoter region of human transforming growth factor-beta 1 gene, C-509T and G-800A, have been shown to increase the transcriptional activity of this cytokine and have been associated with a variety of diseases. The objective of this study was to investigate the possible association between these single nucleotide polymorphisms and the early implant failure. A sample of 68 nonsmoking patients was divided into two groups: a test group comprising 28 patients with one or more early failed implants and a control group consisting of 40 individuals with one or more healthy implants. Genomic DNA from oral mucosa was amplified by polymerase chain reaction and analyzed by restriction fragment length polymorphism. The significance of the differences in observed frequencies of single nucleotide polymorphisms was assessed using the chi square test and Fisher's exact test. The cited single nucleotide polymorphisms in transforming growth factor-beta 1 were analyzed in combination as haplotype using the computer program ARLEQUIN. The authors did not observe significant differences in the allele and genotypes to both single nucleotide polymorphisms of transforming growth factor-beta 1 gene (C-509T and G-800A) between control and early implant failure groups. The distribution of the haplotypes arranged as allele and genotypes were similar between control and test groups. These results indicate that C-509T and G-800A polymorphisms in the transforming growth factor-beta 1 gene are not associated separately or in haplotype combinations with early implant failure, suggesting that the presence of those single nucleotide polymorphisms alone do not constitute a genetic risk factor for early implant failure in the Brazilian population. PMID:15359164

  9. Regulation of growth and gene expression in human papillomavirus-transformed keratinocytes by transforming growth factor-beta: implications for the control of papillomavirus infection.

    PubMed

    Braun, L; Dürst, M; Mikumo, R; Crowley, A; Robinson, M

    1992-01-01

    Cervical carcinogenesis is a multistep process that appears to be initiated by infection of squamous epithelial cells in the cervix with one of a limited number of human papillomavirus (HPV) types. However, the mechanisms involved in the evolution of benign, HPV-induced lesions to malignancy have not yet been fully elucidated. Transforming growth factor-beta (TGF-beta), a multifunctional growth factor produced by cells in the skin, inhibits the proliferation of foreskin and cervical keratinocytes in vitro. We examined the effects of TGF-beta on growth and virus early-gene expression in cell lines immortalized by two HPV types associated with cervical carcinogenesis as well as the expression of TGF-beta 1 mRNA transcripts in normal and HPV-positive cells in vivo and in vitro. We found that normal and HPV-positive cells expressed similar levels of TGF-beta 1 mRNAs and exhibited similar patterns of responsiveness to three isoforms of TGF-beta in both monolayer and modified organotypic cultures. Of particular interest is our finding that the expression of the E6 and E7 early viral transforming regions of both HPV16 and HPV18 was reversibly and rapidly inhibited by TGF-beta. In one HPV16-positive cell line examined in detail, inhibition of HPV expression required protein synthesis and occurred at the level of transcription. HPV-immortalized cells selected for resistance to in vitro differentiation signals remained sensitive to TGF-beta-mediated growth inhibition. These results, showing that both growth and virus gene expression in HPV-transformed cells were responsive to TGF-beta, suggest that endogenous growth factors produced by different cell types in squamous epithelium may play a role in the progression of cervical neoplasia. PMID:1326988

  10. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells

    NASA Technical Reports Server (NTRS)

    Wang, H. B.; Dembo, M.; Wang, Y. L.

    2000-01-01

    One of the hallmarks of oncogenic transformation is anchorage-independent growth (27). Here we demonstrate that responses to substrate rigidity play a major role in distinguishing the growth behavior of normal cells from that of transformed cells. We cultured normal or H-ras-transformed NIH 3T3 cells on flexible collagen-coated polyacrylamide substrates with similar chemical properties but different rigidity. Compared with cells cultured on stiff substrates, nontransformed cells on flexible substrates showed a decrease in the rate of DNA synthesis and an increase in the rate of apoptosis. These responses on flexible substrates are coupled to decreases in cell spreading area and traction forces. In contrast, transformed cells maintained their growth and apoptotic characteristics regardless of substrate flexibility. The responses in cell spreading area and traction forces to substrate flexibility were similarly diminished. Our results suggest that normal cells are capable of probing substrate rigidity and that proper mechanical feedback is required for regulating cell shape, cell growth, and survival. The loss of this response can explain the unregulated growth of transformed cells.

  11. Transactivation of the TIEG1 confers growth inhibition of transforming growth factor-β-susceptible hepatocellular carcinoma cells

    PubMed Central

    Jiang, Lei; Lai, Yiu-Kay; Zhang, Jin-Fang; Chan, Chu-Yan; Lu, Gang; Lin, Marie CM; He, Ming-Liang; Li, Ji-Cheng; Kung, Hsiang-Fu

    2012-01-01

    AIM: To investigate the role of transforming growth factor (TGF)-β-inducible early gene 1 (TIEG1) in TGF-β-induced growth inhibition in hepatocellular carcinoma (HCC) cells. METHODS: Human hepatocyte and HCC cell lines with varied susceptibilities to TGF-β1 were tested by methylthiazoletetrazolium (MTT) assay. The expression changes of Smad2, Smad3, Smad4, Smad7, TIEG1 and TIEG2 gene following treatment with TGF-β1 in a TGF-β-sensitive hepatocyte cell line (MIHA), a TGF-β-sensitive hepatoma cell line (Hep3B) and two TGF-β-insensitive hepatoma cell lines (HepG2 and Bel7404) were examined. SiRNA targeting TIEG1 was transfected into Hep3B cells and the sensitivity of cells to TGF-β1 was examined. Overexpression of TIEG1 was induced by lentiviral-mediated transduction in TGF-β1-resistant hepatoma cell lines (Bel7404 and HepG2). MTT assay and 4’,6-Diamidino-2-phenylindole staining were used to identify cell viability and apoptosis, respectively. The expression level of stathmin was measured by reverse transcriptase polymerase chain reaction and Western-blotting analysis, and stathmin promoter activity by TIEG1 was monitored by a luciferase reporter gene system. RESULTS: TIEG1 was significantly upregulated by TGF-β1 in the TGF-β1-sensitive HCC cell line, Hep3B, but not in the resistant cell lines. The suppression of TIEG1 by siRNAs decreased the sensitivity of Hep3B cells to TGF-β1, whereas the overexpression of TIEG1 mediated growth inhibition and apoptosis in TGF-β1-resistant HCC cell lines, which resembled those of TGF-β1-sensitive HCC cells treated with TGF-β1. Our data further suggested that stathmin was a direct target of TIEG1, as stathmin was significantly downregulated by TIEG1 overexpression, and stathmin promoter activity was inhibited by TIEG1 in a dose-dependent manner. CONCLUSION: Our data suggest that transactivation of TIEG1 conferred growth inhibition of TGF-β-susceptible human HCC cells. PMID:22563190

  12. Structure-function analysis of synthetic and recombinant derivatives of transforming growth factor alpha.

    PubMed Central

    Defeo-Jones, D; Tai, J Y; Wegrzyn, R J; Vuocolo, G A; Baker, A E; Payne, L S; Garsky, V M; Oliff, A; Riemen, M W

    1988-01-01

    Transforming growth factor alpha (TGF-alpha) is a 50-amino-acid peptide that stimulates cell proliferation via binding to cell surface receptors. To identify the structural features of TGF-alpha that govern receptor-ligand interactions, we prepared synthetic peptide fragments and recombinant mutant proteins of TGF-alpha. These TGF-alpha derivatives were tested in receptor binding and mitogenesis assays. Synthetic peptides representing the N terminus, the C terminus, or the individual disulfide constrained rings of TGF-alpha did not exhibit receptor-binding or mitogenic activity. Replacement of the cysteines with alanines at positions 8 and 21, 16 and 32, and 34 and 43 or at positions 8 and 21 and 34 and 43 yielded inactive mutant proteins. However, mutant proteins containing substitutions or deletions in the N-terminal region retained significant biologic activity. Conservative amino acid changes at residue 29 or 38 or both and a nonconservative amino acid change at residue 12 had little effect on binding or mitogenesis. However, nonconservative amino acid changes at residues 15, 38, and 47 produced dramatic decreases in receptor binding (23- to 71-fold) and mitogenic activity (38- to 125-fold). These studies indicate that at least three distinct regions of TGF-alpha contribute to biologic activity. PMID:2850475

  13. Non-instantaneous growth characteristics of martensitic transformation in high Cr ferritic creep-resistant steel

    NASA Astrophysics Data System (ADS)

    Liu, Chenxi; Shao, Yi; Chen, Jianguo; Liu, Yongchang

    2016-08-01

    Microstructural observation and high-resolution dilatometry were employed to investigate kinetics of martensitic transformation in high Cr ferritic creep-resistant steel upon different quenching/cooling rates. By incorporating the classical athermal nucleation and impingement correction, a non-instantaneous growth model for martensitic transformation has been developed. The developed model describes austenite/martensite interface mobility during martensite growth. The growth rate of martensite is found to be varied from 1 × 10-6 to 3 × 10-6 m/s. The low interface mobility suggests that it is not appropriate to presume the instantaneous growth behavior of martensite. Moreover, based on the proposed model, nucleation rate of martensite under different cooling rates is found to be nearly the same, while the growth rate of martensite is promoted by increasing the cooling rate.

  14. Relation of the slow growth phenotype to neoplastic transformation: possible significance for human cancer.

    PubMed

    Chow, M; Rubin, H

    1999-09-01

    Deletions are widely distributed over the genome in the most frequently occurring human cancers and are the most abundant genetic lesion found there. Deletions are highly correlated with the slow growth phenotype of mutated animal and human cells and result in chromosomal transposition when the retained ends are joined. Transpositions are only a minor source of mutation in rapidly multiplying bacteria but are a major cause of mutations in stationary bacteria. The NIH 3T3 line of mouse cells undergoes neoplastic transformation during prolonged incubation in a stationary state and expresses the slow growth phenotype on serial subculture at low density, suggesting a relation between transformation and chromosomal deletions. To further explore the relation between neoplastic transformation and the slow growth phenotype as a surrogate for deletions, two sublines of the NIH 3T3 cells with differing competence for transformation were serially subcultured in the stationary state at confluence and tested at each subculture for transformation and growth rate. Cell death in a fraction of the population and a heritable slowdown in proliferation of most of the survivors became increasingly pronounced with successive rounds of confluence. The reduction in growth rate was not proportional to the degree of transformation of the cultures, but all of the transformed cultures were slow growers at low density. All of the discrete colonies from cloning transformed cultures developed at a lower initial rate than control colonies under optimal conditions for growth, but they continued to grow at later stages, forming multilayered colonies under conditions that inhibited the further growth of the control colonies. The results suggest that prolonged incubation of NIH 3T3 cells in the stationary state results in growth-impairing deletions over a wide range of sites in the genome, but more restricted subsets of such lesions are responsible for neoplastic transformation. These findings

  15. Cells transformed with a ts viral src mutant are temperature sensitive for in vivo growth.

    PubMed Central

    Chambers, A F; Wilson, S

    1985-01-01

    Studies on ts mutants of avian sarcoma viruses have previously implicated the src gene product (pp60src) kinase function in in vitro transformation. The role of src in vivo, however, has not been clearly defined. Using a sensitive and quantitative assay that was developed in chicken embryos (Chambers et al., Cancer Res. 42:4018-4025, 1982), we tested the in vivo tumorigenic properties of cells transformed with LA23, an avian sarcoma virus that is temperature sensitive for in vitro transformation. We found that the in vivo growth ability of these cells was temperature sensitive and that this in vivo behavior correlated with the in vitro transformation behavior (growth in soft agar and saturation density). PMID:3921824

  16. Learning Activities for the Growth Season.

    ERIC Educational Resources Information Center

    Darby, Linda, Ed.

    This poster, illustrated with a graphic of a caterpillar changing to a cocoon and emerging as a butterfly, presents learning activities for 7 weeks based on the seven stages of growth in the President's "Call to Action." Each week includes 5 days of activities based on seven themes: (1) "Reading on Your Own"; (2) "Getting Ready for Algebra"; (3)…

  17. The suppression of fibroblast growth factor 2/fibroblast growth factor 4-dependent tumour angiogenesis and growth by the anti-growth factor activity of dextran derivative (CMDB7).

    PubMed Central

    Bagheri-Yarmand, R.; Kourbali, Y.; Mabilat, C.; Morère, J. F.; Martin, A.; Lu, H.; Soria, C.; Jozefonvicz, J.; Crépin, M.

    1998-01-01

    Our previous studies showed that carboxymethyl benzylamide dextran (CMDB7) blocks basic fibroblast growth factor (FGF-2)-dependent cell proliferation of a human breast epithelial line (HBL100), suggesting its potential role as a potent antiangiogenic substance. The derived cell line (HH9), which was transformed with the hst/FGF4 gene, has been shown to be highly proliferative in vitro and to induce angiogenic tumours in nude mice. We show here that CMDB7 inhibits the mitogenic activities of the conditioned media from HBL 100 and HH9 cells in a dose-dependent manner. When HH9 cells were injected s.c. into nude mice, CMDB7 treatment (300 mg kg(-1) week(-1)) suppressed the tumour take and the tumour growth by about 50% and 80% respectively. Immunohistochemical analysis showed a highly significant decrease, by more than threefold, in the endothelial density of viable tumour regions, together with a significant increase in the necrosis area. This antiangiogenic activity of CMDB7 was further demonstrated by direct inhibition of calf pulmonary artery (CPAE) and human umbilical vein (HUVEC) endothelial cell proliferation and migration in vitro. In addition, we showed that CMDB7 inhibits specifically the mitogenic effects of the growth factors that bind to heparin such as FGF-2, FGF-4, platelet-derived growth factor (PDGF-BB) and transforming growth factor (TGF-beta1), but not those of epidermal growth factor (EGF) and insulin-like growth factor (IGF-1). These results demonstrate that CMDB7 inhibits FGF-2/FGF-4-dependent tumour growth and angiogenesis, most likely by disrupting the autocrine and paracrine effects of growth factors released from the tumour cells. Images Figure 4 PMID:9662260

  18. The growth and transformation of American ego psychology.

    PubMed

    Wallerstein, Robert S

    2002-01-01

    The roots of ego psychology trace back to Sigmund Freud's The Ego and the Id (1923) and "Inhibitions, Symptoms and Anxiety" (1926), works followed by two additional fundaments, Anna Freud's The Ego and the Mechanisms of Defense (1936) and Heinz Hartmann's Ego Psychology and the Problem of Adaptation (1939). It was brought to full flowering in post-World War II America by Hartmann and his many collaborators, and for over two decades it maintained a monolithic hegemony over American psychoanalysis. Within this framework the conceptions of the psychoanalytic psychotherapies evolved as specific modifications of psychoanalytic technique directed to the clinical needs of the spectrum of patients not amenable to psychoanalysis proper. This American consensus on the ego psychology paradigm and its array of technical implementations fragmented several decades ago, with the rise in America of Kohut's self psychology, geared to the narcissistic disorders, and with the importation from Britain of neo-Kleinian and object-relational perspectives, all coinciding with the rapid growth of the varieties of relational psychoanalysis, with its shift in focus to the two-person, interactive, and co-constructed transference-countertransference matrix. Implications of this intermingled theoretical pluralism (as contrasted with the unity of the once dominant ego psychology paradigm) for the evolution of the American ego psychology are spelled out.

  19. Aerobic activated sludge transformation of methotrexate: identification of biotransformation products.

    PubMed

    Kosjek, Tina; Negreira, Noelia; de Alda, Miren López; Barceló, Damià

    2015-01-01

    This study describes the biotransformation of cytostatic and immunosuppressive pharmaceutical methotrexate. Its susceptibility to microbiological breakdown was studied in a batch biotransformation system, in presence or absence of carbon source and at two activated sludge concentrations. The primary focus of the present study are methotrexate biotransformation products, which were tentatively identified by the ultra-high performance liquid chromatography-quadrupole--Orbitrap-MS. Data-dependent experiments, combining full-scan MS data with product ion spectra were acquired, in order to identify the molecular ions of methotrexate transformation products, to propose the molecular formulae and to elucidate their chemical structures. Among the identified transformation products 2,4-diamino-N10-methyl-pteroic acid is most abundant and persistent. Other biotransformation reactions involve demethylation, oxidative cleavage of amine, cleavage of C-N bond, aldehyde to carboxylate transformation and hydroxylation. Finally, a breakdown pathway is proposed, which shows that most of methotrexate breakdown products retain the diaminopteridine structural segment. In total we propose nine transformation products, among them eight are described as methotrexate transformation products for the first time.

  20. Development and application of fully functional epitope-tagged forms of transforming growth factor-beta.

    PubMed

    Wolfraim, Lawrence A; Alkemade, Gonnie M; Alex, Biju; Sharpe, Shellyann; Parks, W Tony; Letterio, John J

    2002-08-01

    Administration of transforming growth factor-beta (TGF-beta) has been found to be of therapeutic benefit in various mouse disease models and has potential clinical usefulness. However, the ability to track the distribution of exogenously administered, recombinant forms of these proteins has been restricted by cross-reactivity with endogenous TGF-beta and related TGF-beta isoforms. We describe novel FLAG- and hemagglutinin (HA)-tagged versions of mature TGF-beta1 that retain full biological activity as demonstrated by their ability to inhibit the growth of Mv1Lu epithelial cells, and to induce phosphorylation of the TGF-beta signaling intermediate, smad 2. Intracellular FLAG- and HA-TGF-beta1 can be detected in transfected cells by confocal immunofluorescence microscopy. We also describe sandwich ELISAs designed to specifically detect epitope-tagged TGF-beta and demonstrate the utility of these tagged ligands as probes for TGF-beta receptor expression by flow cytometry. The design of these fully functional epitope-tagged TGF-beta proteins should facilitate studies such as the evaluation of in vivo peptide pharmacodynamics and trafficking of TGF-beta ligand-receptor complexes.

  1. Demonstration of single crystal growth via solid-solid transformation of a glass

    DOE PAGES

    Savytskii, Dmytro; Knorr, Brian; Dierolf, Volkmar; Jain, Himanshu

    2016-03-18

    Many advanced technologies have relied on the availability of single crystals of appropriate material such as silicon for microelectronics or superalloys for turbine blades. Similarly, many promising materials could unleash their full potential if they were available in a single crystal form. However, the current methods are unsuitable for growing single crystals of these oftentimes incongruently melting, unstable or metastable materials. Here we demonstrate a strategy to overcome this hurdle by avoiding the gaseous or liquid phase, and directly converting glass into a single crystal. Specifically, Sb2S3 single crystals are grown in Sb-S-I glasses as an example of this approach.more » In this first unambiguous demonstration of an all-solid-state glass → crystal transformation, extraneous nucleation is avoided relative to crystal growth via spatially localized laser heating and inclusion of a suitable glass former in the composition. Lastly, the ability to fabricate patterned single-crystal architecture on a glass surface is demonstrated, providing a new class of micro-structured substrate for low cost epitaxial growth, active planar devices, etc.« less

  2. Demonstration of single crystal growth via solid-solid transformation of a glass

    NASA Astrophysics Data System (ADS)

    Savytskii, Dmytro; Knorr, Brian; Dierolf, Volkmar; Jain, Himanshu

    2016-03-01

    Many advanced technologies have relied on the availability of single crystals of appropriate material such as silicon for microelectronics or superalloys for turbine blades. Similarly, many promising materials could unleash their full potential if they were available in a single crystal form. However, the current methods are unsuitable for growing single crystals of these oftentimes incongruently melting, unstable or metastable materials. Here we demonstrate a strategy to overcome this hurdle by avoiding the gaseous or liquid phase, and directly converting glass into a single crystal. Specifically, Sb2S3 single crystals are grown in Sb-S-I glasses as an example of this approach. In this first unambiguous demonstration of an all-solid-state glass → crystal transformation, extraneous nucleation is avoided relative to crystal growth via spatially localized laser heating and inclusion of a suitable glass former in the composition. The ability to fabricate patterned single-crystal architecture on a glass surface is demonstrated, providing a new class of micro-structured substrate for low cost epitaxial growth, active planar devices, etc.

  3. Demonstration of single crystal growth via solid-solid transformation of a glass

    PubMed Central

    Savytskii, Dmytro; Knorr, Brian; Dierolf, Volkmar; Jain, Himanshu

    2016-01-01

    Many advanced technologies have relied on the availability of single crystals of appropriate material such as silicon for microelectronics or superalloys for turbine blades. Similarly, many promising materials could unleash their full potential if they were available in a single crystal form. However, the current methods are unsuitable for growing single crystals of these oftentimes incongruently melting, unstable or metastable materials. Here we demonstrate a strategy to overcome this hurdle by avoiding the gaseous or liquid phase, and directly converting glass into a single crystal. Specifically, Sb2S3 single crystals are grown in Sb-S-I glasses as an example of this approach. In this first unambiguous demonstration of an all-solid-state glass → crystal transformation, extraneous nucleation is avoided relative to crystal growth via spatially localized laser heating and inclusion of a suitable glass former in the composition. The ability to fabricate patterned single-crystal architecture on a glass surface is demonstrated, providing a new class of micro-structured substrate for low cost epitaxial growth, active planar devices, etc. PMID:26988919

  4. Demonstration of single crystal growth via solid-solid transformation of a glass.

    PubMed

    Savytskii, Dmytro; Knorr, Brian; Dierolf, Volkmar; Jain, Himanshu

    2016-01-01

    Many advanced technologies have relied on the availability of single crystals of appropriate material such as silicon for microelectronics or superalloys for turbine blades. Similarly, many promising materials could unleash their full potential if they were available in a single crystal form. However, the current methods are unsuitable for growing single crystals of these oftentimes incongruently melting, unstable or metastable materials. Here we demonstrate a strategy to overcome this hurdle by avoiding the gaseous or liquid phase, and directly converting glass into a single crystal. Specifically, Sb2S3 single crystals are grown in Sb-S-I glasses as an example of this approach. In this first unambiguous demonstration of an all-solid-state glass → crystal transformation, extraneous nucleation is avoided relative to crystal growth via spatially localized laser heating and inclusion of a suitable glass former in the composition. The ability to fabricate patterned single-crystal architecture on a glass surface is demonstrated, providing a new class of micro-structured substrate for low cost epitaxial growth, active planar devices, etc. PMID:26988919

  5. Transcription-dependent epidermal growth factor receptor activation by hepatocyte growth factor.

    PubMed

    Reznik, Thomas E; Sang, Yingying; Ma, Yongxian; Abounader, Roger; Rosen, Eliot M; Xia, Shuli; Laterra, John

    2008-01-01

    The mechanisms and biological implications of coordinated receptor tyrosine kinase coactivation remain poorly appreciated. Epidermal growth factor receptor (EGFR) and c-Met are frequently coexpressed in cancers, including those associated with hepatocyte growth factor (HGF) overexpression, such as malignant astrocytoma. In a previous analysis of the HGF-induced transcriptome, we found that two EGFR agonists, transforming growth factor-alpha and heparin-binding epidermal growth factor-like growth factor (HB-EGF), are prominently up-regulated by HGF in human glioma cells. We now report that stimulating human glioblastoma cells with recombinant HGF induces biologically relevant EGFR activation. EGFR phosphorylation at Tyr(845) and Tyr(1068) increased 6 to 24 h after cell stimulation with HGF and temporally coincided with the induction of transforming growth factor-alpha (~5-fold) and HB-EGF (~23-fold) expression. Tyr(845) and Tyr(1068) phosphorylation, in response to HGF, was inhibited by cycloheximide and actinomycin D, consistent with a requirement for DNA transcription and RNA translation. Specifically, blocking HB-EGF binding to EGFR with the antagonist CRM197 inhibited HGF-induced EGFR phosphorylation by 60% to 80% and inhibited HGF-induced S-G(2)-M transition. CRM197 also inhibited HGF-induced anchorage-dependent cell proliferation but had no effect on HGF-mediated cytoprotection. These findings establish that EGFR can be activated with functional consequences by HGF as a result of EGFR ligand expression. This transcription-dependent cross-talk between the HGF receptor c-Met and EGFR expands our understanding of receptor tyrosine kinase signaling networks and may have considerable consequences for oncogenic mechanisms and cancer therapeutics.

  6. Detecting transforming growth factor-β release from liver cells using an aptasensor integrated with microfluidics.

    PubMed

    Matharu, Zimple; Patel, Dipali; Gao, Yandong; Haque, Amranul; Zhou, Qing; Revzin, Alexander

    2014-09-01

    We developed a cell-culture/biosensor platform consisting of aptamer-modified Au electrodes integrated with reconfigurable microfluidics for monitoring of transforming growth factor-beta 1 (TGF-β1), an important inflammatory and pro-fibrotic cytokine. Aptamers were thiolated, labeled with redox reporters, and self-assembled on gold surfaces. The biosensor was determined to be specific for TGF-β1 with an experimental detection limit of 1 ng/mL and linear range extending to 250 ng/mL. Upon determining figures of merit, aptasensor was miniaturized and integrated with human hepatic stellate cells inside microfluidic devices. Reconfigurable microfluidics were developed to ensure that seeding of "sticky" stromal cells did not foul the electrode and compromise sensor performance. This microsystem with integrated aptasensors was used to monitor TGF-β1 release from activated stellate cells over the course of 20 h. The electrochemical response went down upon infusing anti-TGF-β1 antibodies into the microfluidic devices containing activated stellate cells. To further validate aptasensor responses, stellate cells were stained for markers of activation (e.g., alpha smooth muscle actin) and were also tested for presence of TGF-β1 using enzyme linked immunosorbent assay (ELISA). Given the importance of TGF-β1 as a fibrogenic signal, a microsystem with integrated biosensors for local and continuous detection of TGF-β1 may prove to be an important tool to study fibrosis of the liver and other organs.

  7. PML suppresses oncogenic transformation of NIH/3T3 cells by activated neu

    PubMed Central

    1995-01-01

    The chromosomal translocation t(15;17)(q22;q12) is a consistent feature of acute promyelocytic leukemia (APL) that results in the disruption of genes for the zinc finger transcription factor PML and the retinoic acid receptor alpha (RAR alpha). We have previously shown that PML is a growth suppressor and is able to suppress transformation of NIH/3T3 by activated neu oncogene. In the study presented here, the full-length PML cDNA was transfected into B104-1-1 cells (NIH/3T3 cells transformed by the activated neu oncogene) by retrovirally mediated gene transfer. We found that expression of PML could reverse phenotypes of B104-1-1 including morphology, contact-limiting properties, and growth rate in both transient-expression and stable transfectants. We also demonstrated that PML is able to suppress clonogenicity of B104-1-1 in soft agar assay and tumorigenicity in nude mice. These results strongly support our previous finding that PML is a transformation or growth suppressor. Our results further demonstrate that expression of PML in B104-1-1 cells has little effect on cell cycle distribution. Western blot analysis demonstrated that suppression of neu expression in B104-1- 1 by PML was insignificant in the transient transfection experiment but significant in the PML stable transfectants. This study suggests that PML may suppress neu expression and block signaling events associated with activated neu. This study supports our hypothesis that disruption of the normal function of PML, a growth or transformation suppressor, is a critical event in APL leukomogenesis. PMID:7759992

  8. The sublimation growth of AlN fibers: transformations in morphology & fiber direction

    NASA Astrophysics Data System (ADS)

    Bao, H. Q.; Chen, X. L.; Li, H.; Wang, G.; Song, B.; Wang, W. J.

    2009-01-01

    The growth of AlN fibers using sublimation method was investigated in the temperature range from 1600 °C to 2000 °C. Large-scale AlN fibers are obtained with diameters from 100 nm to 50 μm and lengths up to several millimeters. The fiber morphology and growth direction are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (SEM), high-resolution transmission electron microscopy (HRTEM), and Raman scattering. The fibers change from wire-like to prism-like in morphology and increase in diameter as rising temperatures, accompanying a transformation in axial direction from [10 bar{1}0 ] to [0001]. The transformation in the growth direction is discussed in terms of AlN structure and supersaturation of AlN gas species. These results provide useful information for controlling the growth of large-scale AlN fibers.

  9. On-line Monitoring and Active Control for Transformer Noise

    NASA Astrophysics Data System (ADS)

    Liang, Jiabi; Zhao, Tong; Tian, Chun; Wang, Xia; He, Zhenhua; Duan, Lunfeng

    This paper introduces the system for on-line monitoring and active noise control towards the transformer noise based on LabVIEW and the hardware equipment including the hardware and software. For the hardware part, it is mainly focused on the composition and the role of hardware devices, as well as the mounting location in the active noise control experiment. And the software part introduces the software flow chats, the measurement and analysis module for the sound pressure level including A, B, C weighting methods, the 1/n octave spectrum and the power spectrum, active noise control module and noise data access module.

  10. CDC42 and FGD1 Cause Distinct Signaling and Transforming Activities

    PubMed Central

    Whitehead, Ian P.; Abe, Karon; Gorski, Jerome L.; Der, Channing J.

    1998-01-01

    Activated forms of different Rho family members (CDC42, Rac1, RhoA, RhoB, and RhoG) have been shown to transform NIH 3T3 cells as well as contribute to Ras transformation. Rho family guanine nucleotide exchange factors (GEFs) (also known as Dbl family proteins) that activate CDC42, Rac1, and RhoA also demonstrate oncogenic potential. The faciogenital dysplasia gene product, FGD1, is a Dbl family member that has recently been shown to function as a CDC42-specific GEF. Mutations within the FGD1 locus cosegregate with faciogenital dysplasia, a multisystemic disorder resulting in extensive growth impairments throughout the skeletal and urogenital systems. Here we demonstrate that FGD1 expression is sufficient to cause tumorigenic transformation of NIH 3T3 fibroblasts. Although both FGD1 and constitutively activated CDC42 cooperated with Raf and showed synergistic focus-forming activity, both quantitative and qualitative differences in their functions were seen. FGD1 and CDC42 also activated common nuclear signaling pathways. However, whereas both showed comparable activation of c-Jun, CDC42 showed stronger activation of serum response factor and FGD1 was consistently a better activator of Elk-1. Although coexpression of FGD1 with specific inhibitors of CDC42 function demonstrated the dependence of FGD1 signaling activity on CDC42 function, FGD1 signaling activities were not always consistent with the direct or exclusive stimulation of CDC42 function. In summary, FGD1 and CDC42 signaling and transformation are distinct, thus suggesting that FGD1 may be mediating some of its biological activities through non-CDC42 targets. PMID:9671479

  11. Cloning the promoter for transforming growth factor-beta type III receptor. Basal and conditional expression in fetal rat osteoblasts

    NASA Technical Reports Server (NTRS)

    Ji, C.; Chen, Y.; McCarthy, T. L.; Centrella, M.

    1999-01-01

    Transforming growth factor-beta binds to three high affinity cell surface molecules that directly or indirectly regulate its biological effects. The type III receptor (TRIII) is a proteoglycan that lacks significant intracellular signaling or enzymatic motifs but may facilitate transforming growth factor-beta binding to other receptors, stabilize multimeric receptor complexes, or segregate growth factor from activating receptors. Because various agents or events that regulate osteoblast function rapidly modulate TRIII expression, we cloned the 5' region of the rat TRIII gene to assess possible control elements. DNA fragments from this region directed high reporter gene expression in osteoblasts. Sequencing showed no consensus TATA or CCAAT boxes, whereas several nuclear factors binding sequences within the 3' region of the promoter co-mapped with multiple transcription initiation sites, DNase I footprints, gel mobility shift analysis, or loss of activity by deletion or mutation. An upstream enhancer was evident 5' proximal to nucleotide -979, and a silencer region occurred between nucleotides -2014 and -2194. Glucocorticoid sensitivity mapped between nucleotides -687 and -253, whereas bone morphogenetic protein 2 sensitivity co-mapped within the silencer region. Thus, the TRIII promoter contains cooperative basal elements and dispersed growth factor- and hormone-sensitive regulatory regions that can control TRIII expression by osteoblasts.

  12. Inhibition of transforming growth factor α (TGF-α)-mediated growth effects in ovarian cancer cell lines by a tyrosine kinase inhibitor ZM 252868

    PubMed Central

    Simpson, B J B; Bartlett, J M S; Macleod, K G; Rabiasz, G; Miller, E P; Rae, A L; Gordge, P; Leake, R E; Miller, W R; Smyth, J; Langdon, S P

    1999-01-01

    The modulating effects of the epidermal growth factor (EGF) receptor-specific tyrosine kinase inhibitor ZM 252868 on cell growth and signalling have been evaluated in four ovarian carcinoma cell lines PE01, PE04, SKOV-3 and PE01CDDP. Transforming growth factor α (TGF-α)-stimulated growth was completely inhibited by concentrations ≥ 0.3 μM in the PE01 and PE04 cell lines and by ≥ 0.1 μM in SKOV-3 cells. TGF-α inhibition of PE01CDDP growth was reversed by concentrations ≥ 0.1 μM ZM 252868. TGF-α-stimulated tyrosine phosphorylation of both the EGF receptor and c-erbB2 receptor in all four cell lines. The inhibitor ZM 252868, at concentrations ≥ 0.3 μM, completely inhibited TGF-α-stimulated tyrosine phosphorylation of the EGF receptor and reduced phosphorylation of the c-erbB2 protein. EGF-activated EGF receptor tyrosine kinase activity was completely inhibited by 3 μM ZM 252868 in PE01, SKOV-3 and PE01CDDP cells. These data indicate that the EGF receptor-targeted TK inhibitor ZM 252868 can inhibit growth of ovarian carcinoma cells in vitro consistent with inhibition of tyrosine phosphorylation at the EGF receptor. © 1999 Cancer Research Campaign PMID:10098742

  13. Distinct roles for mammalian target of rapamycin complexes in the fibroblast response to transforming growth factor-beta.

    PubMed

    Rahimi, Rod A; Andrianifahanana, Mahefatiana; Wilkes, Mark C; Edens, Maryanne; Kottom, Theodore J; Blenis, John; Leof, Edward B

    2009-01-01

    Transforming growth factor-beta (TGF-beta) promotes a multitude of diverse biological processes, including growth arrest of epithelial cells and proliferation of fibroblasts. Although the TGF-beta signaling pathways that promote inhibition of epithelial cell growth are well characterized, less is known about the mechanisms mediating the positive response to this growth factor. Given that TGF-beta has been shown to promote fibrotic diseases and desmoplasia, identifying the fibroblast-specific TGF-beta signaling pathways is critical. Here, we investigate the role of mammalian target of rapamycin (mTOR), a known effector of phosphatidylinositol 3-kinase (PI3K) and promoter of cell growth, in the fibroblast response to TGF-beta. We show that TGF-beta activates mTOR complex 1 (mTORC1) in fibroblasts but not epithelial cells via a PI3K-Akt-TSC2-dependent pathway. Rapamycin, the pharmacologic inhibitor of mTOR, prevents TGF-beta-mediated anchorage-independent growth without affecting TGF-beta transcriptional responses or extracellular matrix protein induction. In addition to mTORC1, we also examined the role of mTORC2 in TGF-beta action. mTORC2 promotes TGF-beta-induced morphologic transformation and is required for TGF-beta-induced Akt S473 phosphorylation but not mTORC1 activation. Interestingly, both mTOR complexes are necessary for TGF-beta-mediated growth in soft agar. These results define distinct and overlapping roles for mTORC1 and mTORC2 in the fibroblast response to TGF-beta and suggest that inhibitors of mTOR signaling may be useful in treating fibrotic processes, such as desmoplasia. PMID:19117990

  14. Calycosin inhibits migration and invasion through modulation of transforming growth factor beta-mediated mesenchymal properties in U87 and U251 cells

    PubMed Central

    Nie, Xiao-hu; Ou-yang, Jia; Xing, Ying; Li, Dan-yan; Liu, Ru-en; Xu, Ru-xiang

    2016-01-01

    In this study, we investigated the potential anticancer effects of calycosin against human glioblastoma cells, including the impacts on cell proliferation, apoptosis, and cell cycle distribution. We further studied its inhibitory activity on migration and invasion in U87 and U251 cells. Furthermore, transforming growth factor beta-mediated reductions of mesenchymal-associated genes/activators, matrix metalloproteinases-2, and -9 were detected in this process. Administration of calycosin in a glioblastoma xenograft model showed that calycosin could not only reduce tumor volume but also suppress transforming growth factor beta as well as its downstream molecules. These results revealed calycosin as a potential antitumor agent in human glioblastoma. PMID:26955262

  15. Stable Glass Transformation to Supercooled Liquid via Surface-Initiated Growth Front

    SciTech Connect

    Swallen, Stephen F.; Traynor, Katherine; McMahon, Robert J.; Ediger, M. D.; Mates, Thomas E.

    2009-02-13

    Highly stable glasses of tris-naphthylbenzene transform into a liquid when annealed above the glass transition temperature T{sub g}. In contrast to the predictions of standard models, the observed transformation is spatially inhomogeneous. Secondary ion mass spectrometry experiments on isotopically labeled multilayer films show that the liquid grows into the stable glass with sharp growth fronts initiated at the free surface and at the interface with the substrate. For the free surface, the growth velocity is constant in time and has the same temperature dependence as self-diffusion in the equilibrium supercooled liquid. These stable glasses are packed so efficiently that surfaces and interfaces are required to initiate the transformation to the liquid even well above T{sub g}.

  16. 200-kV active optical fiber voltage transformer

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Luo, Sunan; Ye, Miaoyuan

    1999-02-01

    The report describes a 220kV Active Optical Fiber Voltage Transformer (AOVT). The transformer is different from the passive optical fiber voltage transformer, for no optical crystal is used in the 220kV AOVT. Its principle is that a low voltage is divided for the 220kV high voltage by a capacitive divider and then is converted into a digital signal. The optical fiber is used to transfer the measured digital signal and control signal. The 220kV AOVT consists of an outdoors-high voltage measurement unit and an indoors low voltage metering and controlling unit. The optical fiber connects these units. The low voltage is effectively isolated from the high voltage by means of the optical fiber and a special power supply method which is specially designed for the outdoor high voltage unit. As a result, the safe protection is reliable for the indoor low voltage equipment and the operation staff. Compared to the conventional voltage transformer, the advantages of the 220kV AOVT are high accuracy, low cost, excellent dynamic characteristics and immunity from electromagnetic interference. The 220kV AOVT has been tested, and its accuracy could achieve +/- 0.2 percent.

  17. Overview of Transforming Growth Factor β Superfamily Involvement in Glioblastoma Initiation and Progression.

    PubMed

    Nana, Andre Wendindonde; Yang, Pei-Ming; Lin, Hung-Yun

    2015-01-01

    Glioblastoma, also known as glioblastoma multiforme (GBM), is the most aggressive of human brain tumors and has a stunning progression with a mean survival of one year from the date of diagnosis. High cell proliferation, angiogenesis and/or necrosis are histopathological features of this cancer, which has no efficient curative therapy. This aggressiveness is associated with particular heterogeneity of the tumor featuring multiple genetic and epigenetic alterations, but also with implications of aberrant signaling driven by growth factors. The transforming growth factor β (TGFβ) superfamily is a large group of structurally related proteins including TGFβ subfamily members Nodal, Activin, Lefty, bone morphogenetic proteins (BMPs) and growth and differentiation factor (GDF). It is involved in important biological functions including morphogenesis, embryonic development, adult stem cell differentiation, immune regulation, wound healing and inflammation. This superfamily is also considered to impact on cancer biology including that of GBM, with various effects depending on the member. The TGFβ subfamily, in particular, is overexpressed in some GBM types which exhibit aggressive phenotypes. This subfamily impairs anti-cancer immune responses in several ways, including immune cells inhibition and major histocompatibility (MHC) class I and II abolishment. It promotes GBM angiogenesis by inducing angiogenic factors such as vascular endothelial growth factor (VEGF), plasminogen activator inhibitor (PAI-I) and insulin- like growth factor-binding protein 7 (IGFBP7), contributes to GBM progression by inducing metalloproteinases (MMPs), "pro-neoplastic" integrins (αvβ3, α5β1) and GBM initiating cells (GICs) as well as inducing a GBM mesenchymal phenotype. Equally, Nodal promotes GICs, induces cancer metabolic switch and supports GBM cell proliferation, but is negatively regulated by Lefty. Activin promotes GBM cell proliferation while GDF yields immune-escape function

  18. The isolation and characterization of growth regulatory factors produced by a herpes simplex virus Type 2 transformed mouse tumor cell line, H238

    SciTech Connect

    Stagg, R.B.

    1988-01-01

    This study was performed in an attempt to associate HSV-2-transformation with specific growth factors in order to develop a testable model for HSV-2-transformation. We report here the isolation and characterization of four growth regulatory factors produced by H238, an HSV-2-transformed mouse tumor cell line. These factors were separated from the H238-CM by heparin-sepharose affinity chromatography into three peaks of mitogenic activity and a fourth containing inhibitory activity for splenocytes. The three peaks of mitogenic activity have been identified based on physiochemical characteristics: the first supported the anchorage-independent growth of EGF treated NRK-c-49 cells and resembles transforming growth factor-{beta} (TGF-{beta}); the second bound to lectin-coated sepharose beads and was sensitive to trypsin, neuroaminidase, and the reducing agent dithiothreitol (DTT) and, resembled a platelet-derived growth factor (PDGF)-like factor; and the third displaced ({sup 125}I)-labeled basic fibroblast growth factor (bFGF) in a dose-dependent fashion when tested with a radioimmune assay. The fourth peak was inhibitory for a variety of splenocyte function assays. A model for the interaction of these factors in vivo is presented with an emphasis on testability.

  19. Platelet-derived growth factor-BB and transforming growth factor beta 1 selectively modulate glycosaminoglycans, collagen, and myofibroblasts in excisional wounds.

    PubMed Central

    Pierce, G. F.; Vande Berg, J.; Rudolph, R.; Tarpley, J.; Mustoe, T. A.

    1991-01-01

    Recombinant platelet-derived growth factor (PDGF) and transforming growth factor beta 1 (TGF-beta 1) influence the rate of extracellular matrix formed in treated incisional wounds. Because incisional healing processes are difficult to quantify, a full-thickness excisional wound model in the rabbit ear was developed to permit detailed analyses of growth-factor-mediated tissue repair. In the present studies, quantitative and qualitative differences in acute inflammatory cell influx, glycosaminoglycan (GAG) deposition, collagen formation, and myofibroblast generation in PDGF-BB (BB homodimer)- and TGF-beta 1-treated wounds were detected when analyzed histochemically and ultrastructurally. Although both growth factors significantly augmented extracellular matrix formation and healing in 10-day wounds compared with controls (P less than 0.002). PDGF-BB markedly increased macrophage influx and GAG deposition, whereas TGF-beta 1 selectively induced significantly more mature collagen bundles at the leading edge of new granulation tissue (P = 0.007). Transforming growth factor-beta 1-treated wound fibroblasts demonstrated active collagen fibrillogenesis and accretion of subfibrils at the ultrastructural level. Myofibroblasts, phenotypically modified fibroblasts considered responsible for wound contraction, were observed in control, but were absent in early growth-factor-treated granulating wounds. These results provide important insights into the mechanisms of soft tissue repair and indicate that 1) PDGF-BB induces an inflammatory response and provisional matrix synthesis within wounds that is qualitatively similar but quantitatively increased compared with normal wounds; 2) TGF-beta 1 preferentially triggers synthesis and more rapid maturation of collagen within early wounds; and 3) both growth factors inhibit the differentiation of fibroblasts into myofibroblasts, perhaps because wound contraction is not required, due to increased extracellular matrix synthesis. Images

  20. Altered regulation of Src tyrosine kinase by transforming growth factor beta1 in a human hepatoma cell line.

    PubMed

    Fukuda, K; Kawata, S; Tamura, S; Matsuda, Y; Inui, Y; Igura, T; Inoue, S; Kudara, T; Matsuzawa, Y

    1998-09-01

    Transforming growth factor betas (TGF-betas) are the potent growth inhibitors for various cell types. Certain transformed cells, however, show poor response to TGF-beta-induced growth inhibition, which contributes to their uncontrolled proliferation. Recently, we have reported that TGF-beta1 induces degradation of activated Src tyrosine kinase in rat fibroblasts. To elucidate the alteration in TGF-beta signaling pathway in tumor cells that cannot respond to the cytokine, we compared the effects of TGF-beta1 on Src kinase in two human hepatoma cell lines, TGF-beta1-insensitive Mahlavu cells and TGF-beta1-sensitive HepG2 cells. TGF-beta1 decreased Src kinase activity in HepG2 cells, but increased cellular Src levels and Src kinase activity in Mahlavu cells. Co-incubation of Mahlavu cells with TGF-beta1 and 12-O-tetradecanoyl phorbol 13-acetate (TPA) decreased Src protein levels and Src kinase activity, inducing TGF-beta1 sensitivity. TGF-beta1 induced tyrosine dephosphorylation of Ras guanosine triphosphatase-activating protein (Ras-GAP) and Ras inactivation in HepG2 cells, but induced Ras-GAP phosphorylation and Ras activation in Mahlavu cells. The Src kinase inhibitor abolished the increase of Src kinase activity in TGF-beta1-treated Mahlavu cells, and induced TGF-beta1 sensitivity. These findings suggest that regulation of Src kinase by TGF-beta1 is altered in Mahlavu cells. The altered regulation of Src may contribute to TGF-beta1 insensitivity in this cell line, at least in part through activation of Ras.

  1. Anthocyanidins inhibit activator protein 1 activity and cell transformation: structure-activity relationship and molecular mechanisms.

    PubMed

    Hou, De-Xing; Kai, Keiko; Li, Jian-Jian; Lin, Shigang; Terahara, Norihiko; Wakamatsu, Mika; Fujii, Makoto; Young, Mattew R; Colburn, Nancy

    2004-01-01

    Anthocyanins are the chemical components that give the intense color to many fruits and vegetables, such as blueberries, red cabbages and purple sweet potatoes. Extensive studies have indicated that anthocyanins have strong antioxidant activities. To investigate the mechanism of anthocyanidins as an anticancer food source, six kinds of anthocyanidins representing the aglycons of most anthocyanins, were used to examine their effects on tumor promotion in mouse JB6 cells, a validated model for screening cancer chemopreventive agents and elucidating the molecular mechanisms. Of the six anthocyanins tested, only those with an ortho-dihydroxyphenyl structure on the B-ring suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell transformation and activator protein-1 transactivation, suggesting that the ortho-dihydroxyphenyl may contribute to the inhibitory action. Delphinidin, but not peonidin, blocked the phosphorylation of protein kinases in the extracellular signal-regulated protein kinase (ERK) pathway at early times and the c-Jun N-terminal kinase (JNK) signaling pathway at later times. p38 kinase was not inhibited by delphinidin. Furthermore, two mitogen-activated protein kinase (MAPK) specific inhibitors (SP600125 for JNK and UO126 for ERK) could specifically block the activation of JNK and ERK and cell transformation. Those results demonstrate that anthocyanidins contribute to the inhibition of tumorigenesis by blocking activation of the MAPK pathway. These findings provide the first molecular basis for the anticarcinogenic action of anthocyanidins. PMID:14514663

  2. Anthocyanidins inhibit activator protein 1 activity and cell transformation: structure-activity relationship and molecular mechanisms.

    PubMed

    Hou, De-Xing; Kai, Keiko; Li, Jian-Jian; Lin, Shigang; Terahara, Norihiko; Wakamatsu, Mika; Fujii, Makoto; Young, Mattew R; Colburn, Nancy

    2004-01-01

    Anthocyanins are the chemical components that give the intense color to many fruits and vegetables, such as blueberries, red cabbages and purple sweet potatoes. Extensive studies have indicated that anthocyanins have strong antioxidant activities. To investigate the mechanism of anthocyanidins as an anticancer food source, six kinds of anthocyanidins representing the aglycons of most anthocyanins, were used to examine their effects on tumor promotion in mouse JB6 cells, a validated model for screening cancer chemopreventive agents and elucidating the molecular mechanisms. Of the six anthocyanins tested, only those with an ortho-dihydroxyphenyl structure on the B-ring suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell transformation and activator protein-1 transactivation, suggesting that the ortho-dihydroxyphenyl may contribute to the inhibitory action. Delphinidin, but not peonidin, blocked the phosphorylation of protein kinases in the extracellular signal-regulated protein kinase (ERK) pathway at early times and the c-Jun N-terminal kinase (JNK) signaling pathway at later times. p38 kinase was not inhibited by delphinidin. Furthermore, two mitogen-activated protein kinase (MAPK) specific inhibitors (SP600125 for JNK and UO126 for ERK) could specifically block the activation of JNK and ERK and cell transformation. Those results demonstrate that anthocyanidins contribute to the inhibition of tumorigenesis by blocking activation of the MAPK pathway. These findings provide the first molecular basis for the anticarcinogenic action of anthocyanidins.

  3. Phototransformation of sulfamethoxazole under simulated sunlight: Transformation products and their antibacterial activity toward Vibrio fischeri.

    PubMed

    Gmurek, M; Horn, H; Majewsky, M

    2015-12-15

    Sulfamethoxazole (SMX) is a bacteriostatic antibiotic ubiquitously found in the aquatic environment. Since conventional biological wastewater treatment is not efficient to remove SMX, photolysis in natural waters can represent an important transformation pathway. It was recently shown that SMX transformation products can retain antibiotic activity. Therefore, it is crucial to better understand photochemical processes occurring in natural water just as the formation of active transformation products (TPs). During long-term SMX photolysis experiments (one week), nine TPs were identified by reference standards. Moreover, five further TPs of photodecomposition of SMX were found. For the first time, a TP with m/z 271 [M+H](+) was observed during photolysis and tentatively confirmed as 4,x-dihydroxylated SMX. The DOC mass balance clearly showed that only around 5 to 10% were mineralized during the experiment emphasizing the need to elucidate the fate of TPs. Bacterial bioassays confirmed that the mixture retains its antibiotic toxicity toward luminescence (24h) and that there is no change over the treatment time on EC50. In contrast, growth inhibition activity was found to slightly decrease over the irradiation time. However, this decrease was not proportional to the transformation of the parent compound SMX. PMID:26298248

  4. A recessive cellular mutation in v-fes-transformed mink cells restores contact inhibition and anchorage-dependent growth.

    PubMed Central

    Haynes, J R; Downing, J R

    1988-01-01

    A contact-inhibited revertant of mink cells transformed by the Gardner-Arnstein strain of feline sarcoma virus was isolated by fluorescence-activated sorting of cells stained with the mitochondria-specific dye rhodamine 123. The revertant cell line exhibited a decrease in its proliferative rate and saturation density and a complete loss of its capacity for anchorage-independent growth, but it remained tumorigenic when inoculated into nude mice. The revertant cells retained a rescuable Gardner-Arnstein feline sarcoma provirus, expressed high levels of the v-fes oncogene product and its associated tyrosine kinase activity, manifested elevated levels of phosphotyrosine-containing cellular proteins similar to those observed in v-fes-transformed cells, and were refractory to retransformation by retroviruses containing the v-fes, v-fms, and v-ras oncogenes. Fusion of the revertant and parental cells generated somatic cell hybrids which formed colonies in semisolid medium, indicating that the block in transformation was recessive. These data together with the observation that the revertant phenotype is unstable in continuous culture suggest that the loss of transformation is due to the presence of limiting quantities of a gene product which functions downstream of the v-fes-coded kinase in the mitogenic pathway. Images PMID:3261387

  5. Althaea rosea Cavanil and Plantago major L. suppress neoplastic cell transformation through the inhibition of epidermal growth factor receptor kinase.

    PubMed

    Choi, Eun-Sun; Cho, Sung-Dae; Shin, Ji-Ae; Kwon, Ki Han; Cho, Nam-Pyo; Shim, Jung-Hyun

    2012-10-01

    For thousands of years in Asia, Althaea rosea Cavanil (ARC) and Plantago major L. (PML) have been used as powerful non-toxic therapeutic agents that inhibit inflammation. However, the anticancer mechanisms and molecular targets of ARC and PML are poorly understood, particularly in epidermal growth factor (EGF)-induced neoplastic cell transformation. The aim of this study was to evaluate the chemopreventive effects and mechanisms of the methanol extracts from ARC (MARC) and PML (MPML) in EGF-induced neoplastic cell transformation of JB6 P+ mouse epidermal cells using an MTS assay, anchorage-independent cell transformation assay and western blotting. Our results showed that MARC and MPML significantly suppressed neoplastic cell transformation by inhibiting the kinase activity of the EGF receptor (EGFR). The activation of EGFR by EGF was suppressed by MARC and MPML treatment in EGFR(+/+) cells, but not in EGFR(-/-) cells. In addition, MARC and MPML inhibited EGF-induced cell proliferation in EGFR-expressing murine embryonic fibroblasts (EGFR(+/+)). These results strongly indicate that EGFR targeting by MARC and MPML may be a good strategy for chemopreventive or chemotherapeutic applications. PMID:22767187

  6. Althaea rosea Cavanil and Plantago major L. suppress neoplastic cell transformation through the inhibition of epidermal growth factor receptor kinase.

    PubMed

    Choi, Eun-Sun; Cho, Sung-Dae; Shin, Ji-Ae; Kwon, Ki Han; Cho, Nam-Pyo; Shim, Jung-Hyun

    2012-10-01

    For thousands of years in Asia, Althaea rosea Cavanil (ARC) and Plantago major L. (PML) have been used as powerful non-toxic therapeutic agents that inhibit inflammation. However, the anticancer mechanisms and molecular targets of ARC and PML are poorly understood, particularly in epidermal growth factor (EGF)-induced neoplastic cell transformation. The aim of this study was to evaluate the chemopreventive effects and mechanisms of the methanol extracts from ARC (MARC) and PML (MPML) in EGF-induced neoplastic cell transformation of JB6 P+ mouse epidermal cells using an MTS assay, anchorage-independent cell transformation assay and western blotting. Our results showed that MARC and MPML significantly suppressed neoplastic cell transformation by inhibiting the kinase activity of the EGF receptor (EGFR). The activation of EGFR by EGF was suppressed by MARC and MPML treatment in EGFR(+/+) cells, but not in EGFR(-/-) cells. In addition, MARC and MPML inhibited EGF-induced cell proliferation in EGFR-expressing murine embryonic fibroblasts (EGFR(+/+)). These results strongly indicate that EGFR targeting by MARC and MPML may be a good strategy for chemopreventive or chemotherapeutic applications.

  7. TRANSFORMATION

    SciTech Connect

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  8. Handling Arabidopsis plants: growth, preservation of seeds, transformation, and genetic crosses.

    PubMed

    Rivero, Luz; Scholl, Randy; Holomuzki, Nicholas; Crist, Deborah; Grotewold, Erich; Brkljacic, Jelena

    2014-01-01

    Growing healthy plants is essential for the advancement of Arabidopsis thaliana (Arabidopsis) research. Over the last 20 years, the Arabidopsis Biological Resource Center (ABRC) has collected and developed a series of best-practice protocols, some of which are presented in this chapter. Arabidopsis can be grown in a variety of locations, growth media, and environmental conditions. Most laboratory accessions and their mutant or transgenic derivatives flower after 4-5 weeks and set seeds after 7-8 weeks, under standard growth conditions (soil, long day, 23 ºC). Some mutant genotypes, natural accessions, and Arabidopsis relatives require strict control of growth conditions best provided by growth rooms, chambers, or incubators. Other lines can be grown in less-controlled greenhouse settings. Although the majority of lines can be grown in soil, certain experimental purposes require utilization of sterile solid or liquid growth media. These include the selection of primary transformants, identification of homozygous lethal individuals in a segregating population, or bulking of a large amount of plant material. The importance of controlling, observing, and recording growth conditions is emphasized and appropriate equipment required to perform monitoring of these conditions is listed. Proper conditions for seed harvesting and preservation, as well as seed quality control, are also described. Plant transformation and genetic crosses, two of the methods that revolutionized Arabidopsis genetics, are introduced as well.

  9. Targeting the Transforming Growth Factor-β Signaling Pathway in Human Cancer

    PubMed Central

    Nagaraj, Nagathihalli S

    2009-01-01

    The transforming growth factor-β (TGF-β) signaling pathway plays a pivotal role in diverse cellular processes. TGF-β switches its role from tumor suppressor in normal or dysplastic cells to a tumor promoter in advanced cancers. It is widely believed that Smad-dependent pathway is involved in TGF-β tumor suppressive functions, whereas activation of Smad-independent pathways coupled with the loss of tumor suppressor functions of TGF-β is important for its pro-oncogenic functions. TGF-β signaling has been considered as a very suitable therapeutic target. The discovery of oncogenic actions of TGF-β has generated a great deal of enthusiasm for developing TGF-β signaling inhibitors for the treatment of cancer. The challenge is to identify the group of patients where targeted tumors are not only refractory to TGF-β-induced tumor suppressor functions but also responsive to tumor promoting effects of TGF-β. TGF-β pathway inhibitors including small and large molecules have now entered clinical trials. Preclinical studies with these inhibitors have shown promise in a variety of different tumor models. Here we emphasize on the mechanisms of signaling and specific targets of the TGF-β pathway that are critical effectors of tumor progression and invasion. This report also focuses on the therapeutic intervention of TGF-β signaling in human cancers. PMID:20001556

  10. Role of transforming growth factor-beta in the development of the mouse embryo

    PubMed Central

    1987-01-01

    Using immunohistochemical methods, we have investigated the role of transforming growth factor-beta (TGF-beta) in the development of the mouse embryo. For detection of TGF-beta in 11-18-d-old embryos, we have used a polyclonal antibody specific for TGF-beta type 1 and the peroxidase-antiperoxidase technique. Staining of TGF-beta is closely associated with mesenchyme per se or with tissues derived from mesenchyme, such as connective tissue, cartilage, and bone. TGF-beta is conspicuous in tissues derived from neural crest mesenchyme, such as the palate, larynx, facial mesenchyme, nasal sinuses, meninges, and teeth. Staining of all of these tissues is greatest during periods of morphogenesis. In many instances, intense staining is seen in mesenchyme when critical interactions with adjacent epithelium occur, as in the development of hair follicles, teeth, and the submandibular gland. Marked staining is also seen when remodeling of mesenchyme or mesoderm occurs, as during formation of digits from limb buds, formation of the palate, and formation of the heart valves. The presence of TGF-beta is often coupled with pronounced angiogenic activity. The histochemical results are discussed in terms of the known biochemical actions of TGF-beta, especially its ability to control both synthesis and degradation of both structural and adhesion molecules of the extracellular matrix. PMID:3320058

  11. Transforming Growth Factors β Coordinate Cartilage and Tendon Differentiation in the Developing Limb Mesenchyme*

    PubMed Central

    Lorda-Diez, Carlos I.; Montero, Juan A.; Martinez-Cue, Carmen; Garcia-Porrero, Juan A.; Hurle, Juan M.

    2009-01-01

    Transforming growth factor β (TGFβ) signaling has an increasing interest in regenerative medicine as a potential tool to repair cartilages, however the chondrogenic effect of this pathway in developing systems is controversial. Here we have analyzed the function of TGFβ signaling in the differentiation of the developing limb mesoderm in vivo and in high density micromass cultures. In these systems highest signaling activity corresponded with cells at stages preceding overt chondrocyte differentiation. Interestingly treatments with TGFβs shifted the differentiation outcome of the cultures from chondrogenesis to fibrogenesis. This phenotypic reprogramming involved down-regulation of Sox9 and Aggrecan and up-regulation of Scleraxis, and Tenomodulin through the Smad pathway. We further show that TGFβ signaling up-regulates Sox9 in the in vivo experimental model system in which TGFβ treatments induce ectopic chondrogenesis. Looking for clues explaining the dual role of TGFβ signaling, we found that TGFβs appear to be direct inducers of the chondrogenic gene Sox9, but the existence of transcriptional repressors of TGFβ signaling modulates this role. We identified TGF-interacting factor Tgif1 and SKI-like oncogene SnoN as potential candidates for this inhibitory function. Tgif1 gene regulation by TGFβ signaling correlated with the differential chondrogenic and fibrogenic effects of this pathway, and its expression pattern in the limb marks the developing tendons. In functional experiments we found that Tgif1 reproduces the profibrogenic effect of TGFβ treatments. PMID:19717568

  12. Transforming growth factor-β2 is sequestered in preterm human milk by chondroitin sulfate proteoglycans.

    PubMed

    Namachivayam, Kopperuncholan; Coffing, Hayley P; Sankaranarayanan, Nehru Viji; Jin, Yingzi; MohanKumar, Krishnan; Frost, Brandy L; Blanco, Cynthia L; Patel, Aloka L; Meier, Paula P; Garzon, Steven A; Desai, Umesh R; Maheshwari, Akhil

    2015-08-01

    Human milk contains biologically important amounts of transforming growth factor-β2 isoform (TGF-β2), which is presumed to protect against inflammatory gut mucosal injury in the neonate. In preclinical models, enterally administered TGF-β2 can protect against experimental necrotizing enterocolitis, an inflammatory bowel necrosis of premature infants. In this study, we investigated whether TGF-β bioactivity in human preterm milk could be enhanced for therapeutic purposes by adding recombinant TGF-β2 (rTGF-β2) to milk prior to feeding. Milk-borne TGF-β bioactivity was measured by established luciferase reporter assays. Molecular interactions of TGF-β2 were investigated by nondenaturing gel electrophoresis and immunoblots, computational molecular modeling, and affinity capillary electrophoresis. Addition of rTGF-β2 (20-40 nM) to human preterm milk samples failed to increase TGF-β bioactivity in milk. Milk-borne TGF-β2 was bound to chondroitin sulfate (CS) containing proteoglycan(s) such as biglycan, which are expressed in high concentrations in milk. Chondroitinase treatment of milk increased the bioactivity of both endogenous and rTGF-β2, and consequently, enhanced the ability of preterm milk to suppress LPS-induced NF-κB activation in macrophages. These findings provide a mechanism for the normally low bioavailability of milk-borne TGF-β2 and identify chondroitinase digestion of milk as a potential therapeutic strategy to enhance the anti-inflammatory effects of preterm milk.

  13. Genetic programs of epithelial cell plasticity directed by transforming growth factor-β

    PubMed Central

    Zavadil, Jiri; Bitzer, Markus; Liang, Dan; Yang, Yaw-Ching; Massimi, Aldo; Kneitz, Susanne; Piek, Ester; Böttinger, Erwin P.

    2001-01-01

    Epithelial–mesenchymal transitions (EMTs) are an essential manifestation of epithelial cell plasticity during morphogenesis, wound healing, and tumor progression. Transforming growth factor-β (TGF-β) modulates epithelial plasticity in these physiological contexts by inducing EMT. Here we report a transcriptome screen of genetic programs of TGF-β-induced EMT in human keratinocytes and propose functional roles for extracellular response kinase (ERK) mitogen-activated protein kinase signaling in cell motility and disruption of adherens junctions. We used DNA arrays of 16,580 human cDNAs to identify 728 known genes regulated by TGF-β within 4 hours after treatment. TGF-β-stimulated ERK signaling mediated regulation of 80 target genes not previously associated with this pathway. This subset is enriched for genes with defined roles in cell–matrix interactions, cell motility, and endocytosis. ERK-independent genetic programs underlying the onset of EMT involve key pathways and regulators of epithelial dedifferentiation, undifferentiated transitional and mesenchymal progenitor phenotypes, and mediators of cytoskeletal reorganization. The gene expression profiling approach delineates complex context-dependent signaling pathways and transcriptional events that determine epithelial cell plasticity controlled by TGF-β. Investigation of the identified pathways and genes will advance the understanding of molecular mechanisms that underlie tumor invasiveness and metastasis. PMID:11390996

  14. Overexpression of human insulin receptor substrate 1 induces cellular transformation with activation of mitogen-activated protein kinases.

    PubMed Central

    Ito, T; Sasaki, Y; Wands, J R

    1996-01-01

    The receptor insulin substrate 1 protein (IRS-1) is a specific substrate for insulin receptor tyrosine kinase. Expression and tyrosyl phosphorylation of IRS-1 play an important role during normal hepatocyte growth, and the gene is overexpressed in hepatocellular carcinoma tissue. We determined if IRS-1 overexpression directly contributes to cellular transformation. The human IRS-1 gene was subcloned into a mammalian expression vector driven by the cytomegalovirus early promoter. NIH 3T3 cells transiently transfected with this vector subsequently developed transformed foci. Several stably transfected cell lines were established, and they grew efficiently under low-serum conditions and formed colonies when plated in soft agar. Cell lines overexpressing IRS-1 displayed increased tyrosyl phosphorylation of IRS-1 and association with Grb2 but not with the p85 subunit of phosphatidylinositol 3' kinase. Since Grb2 is a component of the son-of-sevenless-Ras pathway and upstream in the mitogen-activated protein kinase (MAPK) cascade, enzymatic activities of the major components of this cascade, such as MAPK kinase and MAPK were evaluated and found to be substantially increased in three independent cell lines with IRS-1 protein overexpression. Such cells, when injected into nude mice, were highly tumorigenic, and there may be a correlation between the degree of MAPK activation and tumor growth rate. This report describes the generation of a transformed phenotype by overexpression of a molecule without a catalytic domain far upstream in the signal transduction cascade and suggests that prolonged activation of MAPKs by this mechanism may be one of the molecular events related to hepatocellular transformation. PMID:8622697

  15. Regulation of Transforming Growth Factor-β1–driven Lung Fibrosis by Galectin-3

    PubMed Central

    MacKinnon, Alison C.; Gibbons, Michael A.; Farnworth, Sarah L.; Leffler, Hakon; Nilsson, Ulf J.; Delaine, Tamara; Simpson, A. John; Forbes, Stuart J.; Hirani, Nik; Gauldie, Jack

    2012-01-01

    Rationale: Idiopathic pulmonary fibrosis (IPF) is a chronic dysregulated response to alveolar epithelial injury with differentiation of epithelial cells and fibroblasts into matrix-secreting myofibroblasts resulting in lung scaring. The prognosis is poor and there are no effective therapies or reliable biomarkers. Galectin-3 is a β-galactoside binding lectin that is highly expressed in fibrotic tissue of diverse etiologies. Objectives: To examine the role of galectin-3 in pulmonary fibrosis. Methods: We used genetic deletion and pharmacologic inhibition in well-characterized murine models of lung fibrosis. Further mechanistic studies were performed in vitro and on samples from patients with IPF. Measurements and Main Results: Transforming growth factor (TGF)-β and bleomycin-induced lung fibrosis was dramatically reduced in mice deficient in galectin-3, manifest by reduced TGF-β1–induced EMT and myofibroblast activation and collagen production. Galectin-3 reduced phosphorylation and nuclear translocation of β-catenin but had no effect on Smad2/3 phosphorylation. A novel inhibitor of galectin-3, TD139, blocked TGF-β–induced β-catenin activation in vitro and in vivo and attenuated the late-stage progression of lung fibrosis after bleomycin. There was increased expression of galectin-3 in the bronchoalveolar lavage fluid and serum from patients with stable IPF compared with nonspecific interstitial pneumonitis and controls, which rose sharply during an acute exacerbation suggesting that galectin-3 may be a marker of active fibrosis in IPF and that strategies that block galectin-3 may be effective in treating acute fibrotic exacerbations of IPF. Conclusions: This study identifies galectin-3 as an important regulator of lung fibrosis and provides a proof of principle for galectin-3 inhibition as a potential novel therapeutic strategy for IPF. PMID:22095546

  16. Transforming growth factor-β inhibits cystogenesis in human autosomal dominant polycystic kidney epithelial cells.

    PubMed

    Elberg, Dorit; Jayaraman, Siddarth; Turman, Martin A; Elberg, Gerard

    2012-08-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of kidney failure and characterized by the formation of multiple fluid-filled cysts in the kidneys. It is believed that environmental factors may play an important role in the disease progression. However, the molecular identity of autocrine/paracrine factors influencing cyst formation is largely unknown. In this study, we identified transforming growth factor-β2 (TGF-β2) secreted by normal human kidney (NHK) and ADPKD cells as an inhibitor of cystogenesis in 3D culture system using ADPKD cells from human kidneys. TGF-β2 was identified in conditioned media (CM) of NHK and ADPKD cells as a latent factor activated by heat in vitro. While all TGF-β isoforms recombinant proteins (TGF-β1, -β2, or -β3) displayed a similar inhibitory effect on cyst formation, TGF-β2 was the predominant isoform detected in CM. The involvement of TGF-β2 in the suppression of cyst formation was demonstrated by using a TGF-β2 specific blocking antibody and a TGF-β receptor I kinase inhibitor. TGF-β2 inhibited cyst formation by a mechanism other than activation of p38 mitogen-activated protein (MAP) kinase that mediated cell death in ADPKD cells. Further, we found that TGF-β2 modulated expression of various genes involved in cell-cell and cell-matrix interactions and extracellular matrix proteins that may play a role in the regulation of cystogenesis. Collectively, our results suggest that TGF-β2 secreted by renal epithelial cells may be an inhibitor of cystogenesis influencing the progression of ADPKD.

  17. Neuroprotection by glial metabotropic glutamate receptors is mediated by transforming growth factor-beta.

    PubMed

    Bruno, V; Battaglia, G; Casabona, G; Copani, A; Caciagli, F; Nicoletti, F

    1998-12-01

    The medium collected from cultured astrocytes transiently exposed to the group-II metabotropic glutamate (mGlu) receptor agonists (2S,1'R, 2'R,3'R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV) or (S)-4-carboxy-3-hydroxyphenylglycine (4C3HPG) is neuroprotective when transferred to mixed cortical cultures challenged with NMDA (). The following data indicate that this particular form of neuroprotection is mediated by transforming growth factor-beta (TGFbeta). (1) TGFbeta1 and -beta2 were highly neuroprotective against NMDA toxicity, and their action was less than additive with that produced by the medium collected from astrocytes treated with DCG-IV or 4C3HPG (GM/DCG-IV or GM/4C3HPG); (2) antibodies that specifically neutralized the actions of TGFbeta1 or -beta2 prevented the neuroprotective activity of DCG-IV or 4C3HPG, as well as the activity of GM/DCG-IV or GM/4C3HPG; and (3) a transient exposure of cultured astrocytes to either DCG-IV or 4C3HPG led to a delayed increase in both intracellular and extracellular levels of TGFbeta. We therefore conclude that a transient activation of group-II mGlu receptors (presumably mGlu3 receptors) in astrocytes leads to an increased formation and release of TGFbeta, which in turn protects neighbor neurons against excitotoxic death. These results offer a new strategy for increasing the local production of neuroprotective factors in the CNS. PMID:9822720

  18. Zoledronic acid suppresses transforming growth factor-β-induced fibrogenesis by human gingival fibroblasts

    PubMed Central

    KOMATSU, YUKO; IBI, MIHO; CHOSA, NAOYUKI; KYAKUMOTO, SEIKO; KAMO, MASAHARU; SHIBATA, TOSHIYUKI; SUGIYAMA, YOSHIKI; ISHISAKI, AKIRA

    2016-01-01

    Bisphosphonates (BPs) are analogues of pyro-phosphate that are known to prevent bone resorption by inhibiting osteoclast activity. Nitrogen-containing BPs, such as zoledronic acid (ZA), are widely used in the treatment of osteoporosis and bone metastasis. However, despite having benefits, ZA has been reported to induce BP-related osteonecrosis of the jaw (BRONJ) in cancer patients. The molecular pathological mechanisms responsible for the development of BRONJ, including necrotic bone exposure after tooth extraction, remain to be elucidated. In this study, we examined the effects of ZA on the transforming growth factor-β (TGF-β)-induced myofibroblast (MF) differentiation of human gingival fibroblasts (hGFs) and the migratory activity of hGFs, which are important for wound closure by fibrous tissue formation. The ZA maximum concentration in serum (Cmax) was found to be approximately 1.47 µM, which clinically, is found after the intravenous administration of 4 mg ZA, and ZA at this dose is considered appropriate for the treatment of cancer bone metastasis or bone diseases, such as Erdheim-Chester disease. At Cmax, ZA significantly suppressed i) the TGF-β-induced promotion of cell viability, ii) the TGF-β-induced expression of MF markers such as α-smooth muscle actin (α-SMA) and type I collagen, iii) the TGF-β-induced migratory activity of hGFs and iv) the expression level of TGF-β type I receptor on the surfaces of hGFs, as well as the TGF-β-induced phosphorylation of Smad2/3. Thus, ZA suppresses TGF-β-induced fibrous tissue formation by hGFs, possibly through the inhibition of Smad-dependent signal transduction. Our findings partly elucidate the molecular mechanisms underlying BRONJ and may prove to be beneficial to the identification of drug targets for the treatment of this symptom at the molecular level. PMID:27176567

  19. TRANSFORMER

    DOEpatents

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  20. Effects of microgravity on osteoblast growth activation.

    PubMed

    Hughes-Fulford, M; Lewis, M L

    1996-04-10

    Space flight is an environmental condition where astronauts can lose up to 19% of weight-bearing bone during long duration missions. We used the MC3T3-E1 osteoblast to investigate bone cell growth in microgravity (10(-6) to 10(-9)g). Osteoblasts were launched on the STS-56 shuttle flight in a quiescent state with 0.5% fetal calf serum (FCS) medium and growth activation was initiated by adding fresh medium with 10% FCS during microgravity exposure. Four days after serum activation, the cells were fixed before return to normal Earth gravity. Ground controls were treated in parallel with the flight samples in identical equipment. On landing, cell number, cell cytoskeleton, glucose utilization, and prostaglandin synthesis in flight (n = 4) and ground controls (n = 4) were examined. The flown osteoblasts grew slowly in microgravity with total cell number significantly reduced (55 +/- 6 vs 141 +/- 8 cells per microscopic field). The cytoskeleton of the flight osteoblasts had a reduced number of stress fibers and a unique abnormal morphology. Nuclei in the ground controls were large and round with punctate Hoechst staining of the DNA nucleosomes. The flight nuclei were 30% smaller than the controls (P < 0.0001) and oblong in shape, with fewer punctate areas. Due to their reduced numbers, the cells activated in microgravity used significantly less glucose than ground controls (80.2 +/- 0.7 vs 50.3 +/- 3.7 mg of glucose/dl remaining in the medium) and had reduced prostaglandin E2 (PGE2) synthesis when compared to controls (57.3 +/- 17 vs 138.3 +/- 41 pmol/ml). Cell viability was normal since, on a per-cell basis, glucose use and prostaglandin synthesis were comparable for flight and ground samples. Taken together, these data suggest that growth activation in microgravity results in reduced growth, causing reduced glucose utilization and reduced prostaglandin synthesis, with significantly altered actin cytoskeleton in osteoblasts.

  1. Effects of microgravity on osteoblast growth activation

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Lewis, M. L.

    1996-01-01

    Space flight is an environmental condition where astronauts can lose up to 19% of weight-bearing bone during long duration missions. We used the MC3T3-E1 osteoblast to investigate bone cell growth in microgravity (10(-6) to 10(-9)g). Osteoblasts were launched on the STS-56 shuttle flight in a quiescent state with 0.5% fetal calf serum (FCS) medium and growth activation was initiated by adding fresh medium with 10% FCS during microgravity exposure. Four days after serum activation, the cells were fixed before return to normal Earth gravity. Ground controls were treated in parallel with the flight samples in identical equipment. On landing, cell number, cell cytoskeleton, glucose utilization, and prostaglandin synthesis in flight (n = 4) and ground controls (n = 4) were examined. The flown osteoblasts grew slowly in microgravity with total cell number significantly reduced (55 +/- 6 vs 141 +/- 8 cells per microscopic field). The cytoskeleton of the flight osteoblasts had a reduced number of stress fibers and a unique abnormal morphology. Nuclei in the ground controls were large and round with punctate Hoechst staining of the DNA nucleosomes. The flight nuclei were 30% smaller than the controls (P < 0.0001) and oblong in shape, with fewer punctate areas. Due to their reduced numbers, the cells activated in microgravity used significantly less glucose than ground controls (80.2 +/- 0.7 vs 50.3 +/- 3.7 mg of glucose/dl remaining in the medium) and had reduced prostaglandin E2 (PGE2) synthesis when compared to controls (57.3 +/- 17 vs 138.3 +/- 41 pmol/ml). Cell viability was normal since, on a per-cell basis, glucose use and prostaglandin synthesis were comparable for flight and ground samples. Taken together, these data suggest that growth activation in microgravity results in reduced growth, causing reduced glucose utilization and reduced prostaglandin synthesis, with significantly altered actin cytoskeleton in osteoblasts.

  2. Endogenous growth of persistently active volcanoes

    NASA Astrophysics Data System (ADS)

    Francis, Peter; Oppenheimer, Clive; Stevenson, David

    1993-12-01

    LAVA lakes and active strombolian vents have persisted at some volcanoes for periods exceeding the historic record. They liberate prodigious amounts of volatiles and thermal energy but erupt little lava, a paradox that raises questions about how volcanoes grow. Although long-lasting surface manifestations can be sustained by convective exchange of magma with deeper reservoirs, residence times of magmas beneath several basaltic volcanoes are & sim10-100 years1,2, indicating that where surface activity continues for more than 100-1,000 years, the reservoirs are replenished by new magma. Endogenous growth of Kilauea volcano (Hawaii) through dyke intrusion and cumulate formation is a well-understood consequence of the steady supply of mantle-derived magma3,4. As we show here, inferred heat losses from the Halemaumau lava lake indicate a period of dominantly endogenous growth of Kilauea volcano during the nineteenth century. Moreover, heat losses and degassing rates for several other volcanoes, including Stromboli, also indicate cryptic influxes of magma that far exceed visible effluxes of lavas. We propose that persistent activity at Stromboli, and at other volcanoes in different tectonic settings, is evidence of endogenous growth, involving processes similar to those at Kilauea.

  3. Caerulomycin A Enhances Transforming Growth Factor-β (TGF-β)-Smad3 Protein Signaling by Suppressing Interferon-γ (IFN-γ)-Signal Transducer and Activator of Transcription 1 (STAT1) Protein Signaling to Expand Regulatory T Cells (Tregs)*

    PubMed Central

    Gurram, Rama Krishna; Kujur, Weshely; Maurya, Sudeep K.; Agrewala, Javed N.

    2014-01-01

    Cytokines play a very important role in the regulation of immune homeostasis. Regulatory T cells (Tregs) responsible for the generation of peripheral tolerance are under the tight regulation of the cytokine milieu. In this study, we report a novel role of a bipyridyl compound, Caerulomycin A (CaeA), in inducing the generation of Tregs. It was observed that CaeA substantially up-regulated the pool of Tregs, as evidenced by an increased frequency of CD4+ Foxp3+ cells. In addition, CaeA significantly suppressed the number of Th1 and Th17 cells, as supported by a decreased percentage of CD4+/IFN-γ+ and CD4+/IL-17+ cells, respectively. Furthermore, we established the mechanism and observed that CaeA interfered with IFN-γ-induced STAT1 signaling by augmenting SOCS1 expression. An increase in the TGF-β-mediated Smad3 activity was also noted. Furthermore, CaeA rescued Tregs from IFN-γ-induced inhibition. These results were corroborated by blocking Smad3 activity, which abolished the CaeA-facilitated generation of Tregs. In essence, our results indicate a novel role of CaeA in inducing the generation of Tregs. This finding suggests that CaeA has enough potential to be considered as a potent future drug for the treatment of autoimmunity. PMID:24811173

  4. Peroxisome proliferator-activated receptor-γ agonist troglitazone suppresses transforming growth factor-β1 signalling through miR-92b upregulation-inhibited Axl expression in human keloid fibroblasts in vitro

    PubMed Central

    Zhu, Hua-Yu; Bai, Wen-Dong; Li, Jun; Tao, Ke; Wang, Hong-Tao; Yang, Xue-Kang; Liu, Jia-Qi; Wang, Yun-Chuan; He, Ting; Xie, Song-Tao; Hu, Da-Hai

    2016-01-01

    Keloid, a skin benign tumor, is characterized by overgrowth of fibroblasts and the excessive deposition of extracellular matrix in wounded skin. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist was recently evaluated to inhibit fibrosis. This study explored the underlying mechanisms. Fibroblasts isolated from 25 keloid patients (KFs) and fibroblasts isolated from healthy controls (NSFBs) were also subjected to treatment with PPAR-γ agonist troglitazone and antagonist GW9662 or for transfection with miR-92 mimics or inhibitor, Axl siRNA, and miR-92b or Axl promoter constructs, as well as being subjected to qRT-PCR, ELISA, Western blot, protein array, luciferase, and ChIP assays. The data demonstrated that TGF-β1 and Axl proteins were significantly elevated in samples from keloid patients, while troglitazone treatment significantly reduced levels of TGF-β1 and Axl mRNA and proteins in KFs. Moreover, knockdown of Axl expression reduced expression of TGF-β1 and its pathway genes (such as α-SMA and Snail). PPAR-γ regulation of Axl expression was through transcriptional activation of miR-92b. miR-92b expression downregulated Axl expression at both mRNA and protein levels, whereas GW9662 completely reversed the inhibitory effects of miR-92b mimics on Axl expression. Gene ontology analysis of miR-92b targeting genes showed that TGF-β and Axl were both potential targets of miR-92b, as confirmed by luciferase assay. These findings demonstrated that PPAR-γ-induced miR-92b expression inhibited Axl expression and in turn reduced expression of TGF-β1 and the downstream genes in KFs, suggesting that targeting of this novel gene pathway may be useful for therapeutic control of fibrosis or keloid.

  5. Peroxisome proliferator-activated receptor-γ agonist troglitazone suppresses transforming growth factor-β1 signalling through miR-92b upregulation-inhibited Axl expression in human keloid fibroblasts in vitro.

    PubMed

    Zhu, Hua-Yu; Bai, Wen-Dong; Li, Jun; Tao, Ke; Wang, Hong-Tao; Yang, Xue-Kang; Liu, Jia-Qi; Wang, Yun-Chuan; He, Ting; Xie, Song-Tao; Hu, Da-Hai

    2016-01-01

    Keloid, a skin benign tumor, is characterized by overgrowth of fibroblasts and the excessive deposition of extracellular matrix in wounded skin. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist was recently evaluated to inhibit fibrosis. This study explored the underlying mechanisms. Fibroblasts isolated from 25 keloid patients (KFs) and fibroblasts isolated from healthy controls (NSFBs) were also subjected to treatment with PPAR-γ agonist troglitazone and antagonist GW9662 or for transfection with miR-92 mimics or inhibitor, Axl siRNA, and miR-92b or Axl promoter constructs, as well as being subjected to qRT-PCR, ELISA, Western blot, protein array, luciferase, and ChIP assays. The data demonstrated that TGF-β1 and Axl proteins were significantly elevated in samples from keloid patients, while troglitazone treatment significantly reduced levels of TGF-β1 and Axl mRNA and proteins in KFs. Moreover, knockdown of Axl expression reduced expression of TGF-β1 and its pathway genes (such as α-SMA and Snail). PPAR-γ regulation of Axl expression was through transcriptional activation of miR-92b. miR-92b expression downregulated Axl expression at both mRNA and protein levels, whereas GW9662 completely reversed the inhibitory effects of miR-92b mimics on Axl expression. Gene ontology analysis of miR-92b targeting genes showed that TGF-β and Axl were both potential targets of miR-92b, as confirmed by luciferase assay. These findings demonstrated that PPAR-γ-induced miR-92b expression inhibited Axl expression and in turn reduced expression of TGF-β1 and the downstream genes in KFs, suggesting that targeting of this novel gene pathway may be useful for therapeutic control of fibrosis or keloid. PMID:27648136

  6. Peroxisome proliferator-activated receptor-γ agonist troglitazone suppresses transforming growth factor-β1 signalling through miR-92b upregulation-inhibited Axl expression in human keloid fibroblasts in vitro

    PubMed Central

    Zhu, Hua-Yu; Bai, Wen-Dong; Li, Jun; Tao, Ke; Wang, Hong-Tao; Yang, Xue-Kang; Liu, Jia-Qi; Wang, Yun-Chuan; He, Ting; Xie, Song-Tao; Hu, Da-Hai

    2016-01-01

    Keloid, a skin benign tumor, is characterized by overgrowth of fibroblasts and the excessive deposition of extracellular matrix in wounded skin. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist was recently evaluated to inhibit fibrosis. This study explored the underlying mechanisms. Fibroblasts isolated from 25 keloid patients (KFs) and fibroblasts isolated from healthy controls (NSFBs) were also subjected to treatment with PPAR-γ agonist troglitazone and antagonist GW9662 or for transfection with miR-92 mimics or inhibitor, Axl siRNA, and miR-92b or Axl promoter constructs, as well as being subjected to qRT-PCR, ELISA, Western blot, protein array, luciferase, and ChIP assays. The data demonstrated that TGF-β1 and Axl proteins were significantly elevated in samples from keloid patients, while troglitazone treatment significantly reduced levels of TGF-β1 and Axl mRNA and proteins in KFs. Moreover, knockdown of Axl expression reduced expression of TGF-β1 and its pathway genes (such as α-SMA and Snail). PPAR-γ regulation of Axl expression was through transcriptional activation of miR-92b. miR-92b expression downregulated Axl expression at both mRNA and protein levels, whereas GW9662 completely reversed the inhibitory effects of miR-92b mimics on Axl expression. Gene ontology analysis of miR-92b targeting genes showed that TGF-β and Axl were both potential targets of miR-92b, as confirmed by luciferase assay. These findings demonstrated that PPAR-γ-induced miR-92b expression inhibited Axl expression and in turn reduced expression of TGF-β1 and the downstream genes in KFs, suggesting that targeting of this novel gene pathway may be useful for therapeutic control of fibrosis or keloid. PMID:27648136

  7. Transformation of the Herbicide Sulcotrione into a Root Growth Enhancer Compound by Sequential Photolysis and Hydrolysis.

    PubMed

    Goujon, Eric; Maruel, Sandra; Richard, Claire; Goupil, Pascale; Ledoigt, Gérard

    2016-01-27

    Xanthene-1,9-dione-3,4-dihydro-6-methylsulfonyl (1), the main product of sulcotrione phototransformation on plant leaves, was slowly hydrolyzed into 2-hydroxy-4-methylsulfonylbenzoic acid (2) and 1,3-cyclohexanedione (3) in aqueous solution. Interestingly, the rate of hydrolysis was significantly enhanced in the presence of roots of monocotyledonous plants, while the same treatment showed adverse effects on broadleaf weeds. Root growth enhancement varied according to the plant species and concentrations of compound 2, as shown with Zea mays roots. Compound 2 is a derivative of salicylic acid that is known to be a plant signaling messenger. Compound 2 was, therefore, able to mimic some known effects of this phytohormone. This work showed that a pesticide like sulcotrione was transformed into a compound exhibiting a positive impact on plant growth. This study exemplified a rarely reported situation where chemical and biological chain reactions transformed a xenobiotic into a compound exhibiting potential beneficial effects. PMID:26654319

  8. Mediation of wound-related Rous sarcoma virus tumorigenesis by TFG (transforming growth factor)-. beta

    SciTech Connect

    Sieweke, M.H.; Bissell, M.J. ); Thompson, N.L.; Sporn, M.B. )

    1990-06-29

    In Rous sarcoma virus (RSV)-infected chickens, wounding leads to tumor formation with nearly 100% frequency in tissues that would otherwise remain tumor-free. Identifying molecular mediators of this phenomenon should yield important clues to the mechanisms involved in RSV tumorigenesis. Immunohistochemical staining showed that TGF-{beta} is present locally shortly after wounding, but not in unwounded controls. In addition, subcutaneous administration of recombinant transforming growth factor {beta}1 (TGF-{beta}1) could substitute completely for wounding in tumor induction. A treatment protocol of four doses of 800 nanograms of TGF-{beta} resulted in v-src-expressing tumors with 100% frequency; four doses of only 10 nanograms still led to tumor formation in 80% of the animals. This effect was specific, as other growth factors with suggested roles in would healing did not elicit the same response. Epidermal growth factor (EGF) or TGF-{alpha} had no effect, and platelet-derived growth factor (PDGF) or insulin-like growth factor-1 (IGF-1) yielded only occasional tumors after longer latency. TGF-{beta} release during the would-healing response may thus be a critical event that creates a conducive environment for RSV tumorigenesis and may act as a cofactor for transformation in this system. 31 refs., 3 figs., 2 tabs.

  9. [Effects of nitrogen regulators on fertilizer nitrogen transformation in meadow cinnamon soil and on pakchoi growth].

    PubMed

    Sun, Zhi-Mei; Zhang, Kuo; Liu, Jian-Tao; Si, Huan-Sen; Wang, Yan-Qun

    2012-09-01

    Soil incubation test and pot experiment were conducted to investigate the effects of dicyandiamide (DCD) and its combination with nano-carbon on the transformation of fertilizers (urea and ammonium bicarbonate) nitrogen (N) in meadow cinnamon soil, a typical soil type in North China Plain, and on the growth of pakchoi (Brassica chinensis). In the first two weeks after applying urea and ammonium bicarbonate, the soil NH4+-N and NO3(-)-N contents varied greatly, but little variation was observed since then. The effects of the applied fertilizer N on the pakchoi growth and its N use efficiency differed significantly at early growth stages, but had little difference at harvesting stage. The DCD inhibited the transformation of the fertilizer N (especially ammonium bicarbonate N) into nitrate markedly, and this effect increased with increasing DCD dose. Under the conditions of our experiment, the optimal application rate of DCD was 1.0-1.5% of applied fertilize N, which could increase the pakchoi yield significantly, improve the leaf color, decrease the plant nitrate contents, and increase the fertilizer N use efficiency. The combination of DCD and nano-carbon exerted a synergistic effect on inhibiting soil ammonium oxidation, and also, promoted the pakchoi growth and N utilization at early growth stages significantly and decreased the plant nitrate level at harvesting stage.

  10. [Effects of nitrogen regulators on fertilizer nitrogen transformation in meadow cinnamon soil and on pakchoi growth].

    PubMed

    Sun, Zhi-Mei; Zhang, Kuo; Liu, Jian-Tao; Si, Huan-Sen; Wang, Yan-Qun

    2012-09-01

    Soil incubation test and pot experiment were conducted to investigate the effects of dicyandiamide (DCD) and its combination with nano-carbon on the transformation of fertilizers (urea and ammonium bicarbonate) nitrogen (N) in meadow cinnamon soil, a typical soil type in North China Plain, and on the growth of pakchoi (Brassica chinensis). In the first two weeks after applying urea and ammonium bicarbonate, the soil NH4+-N and NO3(-)-N contents varied greatly, but little variation was observed since then. The effects of the applied fertilizer N on the pakchoi growth and its N use efficiency differed significantly at early growth stages, but had little difference at harvesting stage. The DCD inhibited the transformation of the fertilizer N (especially ammonium bicarbonate N) into nitrate markedly, and this effect increased with increasing DCD dose. Under the conditions of our experiment, the optimal application rate of DCD was 1.0-1.5% of applied fertilize N, which could increase the pakchoi yield significantly, improve the leaf color, decrease the plant nitrate contents, and increase the fertilizer N use efficiency. The combination of DCD and nano-carbon exerted a synergistic effect on inhibiting soil ammonium oxidation, and also, promoted the pakchoi growth and N utilization at early growth stages significantly and decreased the plant nitrate level at harvesting stage. PMID:23286007

  11. Developmental tumours, early differentiation and the transforming growth factor beta superfamily.

    PubMed

    Mummery, C L; van den Eijnden-van Raaij, A J

    1999-01-01

    Embryonal carcinoma and embryonic stem cells have been very useful models for identifying some of the factors that regulate differentiation in early mammalian development. Here, we present a brief history of their original isolation and characterization and of their later introduction into the Hubrecht Laboratory. We illustrate in a review their contribution to our current understanding of the function of transforming growth factor beta and ligands binding to the receptors of a related factor, activin, in development with some of our own work.

  12. Differential regulation of mesothelial cell fibrinolysis by transforming growth factor beta 1.

    PubMed

    Falk, P; Ma, C; Chegini, N; Holmdahl, L

    2000-10-01

    Inflammation and tissue trauma during the surgical procedure reduce the peritoneal fibrinolytic capacity. These conditions promote adhesion formation, and are associated with increased expression of transforming growth factor beta 1 (TGF-beta1). The objective of the present study was to investigate whether TGF-beta1 regulates the expression of fibrinolytic components in peritoneal mesothelial cells. Human peritoneal mesothelial cells (HPMC) were cultured and treated with various concentrations of human recombinant TGF-beta1 (0.1, 1.0 and 10 ng/mL) for 24 h. Levels of tissue- and urokinase plasminogen activator (t-PA and uPA), plasminogen activator inhibitor type-1 (PAI-1) and type-2 (PAI-2) mRNA and protein were assessed by quantitative reverse transcriptase polymerase chain reaction (Q-RT-PCR) and ELISA, respectively. HPMC expressed these components at the gene and protein level. TGF-beta1 downregulated, dose-dependently t-PA mRNA and protein to about 50% of control values (p = 0.0010), and doubled PAI-1 protein production (p = 0.0008) compared to untreated controls. Although uPA gene expression increased in cells exposed to TGF-beta1, the corresponding protein concentration in conditioned media did not. PAI-2 was not affected, either at the gene or protein level. In conclusion, the results indicate that fibrinolytic capacity of mesothelial cells is reduced by TGF-beta1, suggesting that peritoneal adhesion formation induced by TGF-beta1 may be mediated, in part, through reduction in fibrin degradation capacity at an early stage of peritoneal tissue repair.

  13. Physical activity increases bone mass during growth

    PubMed Central

    Karlsson, Magnus K.; Nordqvist, Anders; Karlsson, Caroline

    2008-01-01

    Background The incidence of fragility fractures has increased during the last half of the 1990′s. One important determinant of fractures is the bone mineral content (BMC) or bone mineral density (BMD), the amount of mineralised bone. If we could increase peak bone mass (the highest value of BMC reached during life) and/or decrease the age-related bone loss, we could possibly improve the skeletal resistance to fracture. Objective This review evaluates the importance of exercise as a strategy to improve peak bone mass, including some aspects of nutrition. Design Publications within the field were searched through Medline (PubMed) using the search words: exercise, physical activity, bone mass, bone mineral content, bone mineral density, BMC, BMD, skeletal structure and nutrition. We included studies dealing with exercise during growth and young adolescence. We preferably based our inferences on randomised controlled trials (RCT), which provide the highest level of evidence. Results Exercise during growth increases peak bone mass. Moderate intensity exercise intervention programs are beneficial for the skeletal development during growth. Adequate nutrition must accompany the exercise to achieve the most beneficial skeletal effects by exercise. Conclusion Exercise during growth seems to enhance the building of a stronger skeleton through a higher peak bone mass and a larger bone size. PMID:19109652

  14. Doppler radar fall activity detection using the wavelet transform.

    PubMed

    Su, Bo Yu; Ho, K C; Rantz, Marilyn J; Skubic, Marjorie

    2015-03-01

    We propose in this paper the use of Wavelet transform (WT) to detect human falls using a ceiling mounted Doppler range control radar. The radar senses any motions from falls as well as nonfalls due to the Doppler effect. The WT is very effective in distinguishing the falls from other activities, making it a promising technique for radar fall detection in nonobtrusive inhome elder care applications. The proposed radar fall detector consists of two stages. The prescreen stage uses the coefficients of wavelet decomposition at a given scale to identify the time locations in which fall activities may have occurred. The classification stage extracts the time-frequency content from the wavelet coefficients at many scales to form a feature vector for fall versus nonfall classification. The selection of different wavelet functions is examined to achieve better performance. Experimental results using the data from the laboratory and real inhome environments validate the promising and robust performance of the proposed detector.

  15. Doppler radar fall activity detection using the wavelet transform.

    PubMed

    Su, Bo Yu; Ho, K C; Rantz, Marilyn J; Skubic, Marjorie

    2015-03-01

    We propose in this paper the use of Wavelet transform (WT) to detect human falls using a ceiling mounted Doppler range control radar. The radar senses any motions from falls as well as nonfalls due to the Doppler effect. The WT is very effective in distinguishing the falls from other activities, making it a promising technique for radar fall detection in nonobtrusive inhome elder care applications. The proposed radar fall detector consists of two stages. The prescreen stage uses the coefficients of wavelet decomposition at a given scale to identify the time locations in which fall activities may have occurred. The classification stage extracts the time-frequency content from the wavelet coefficients at many scales to form a feature vector for fall versus nonfall classification. The selection of different wavelet functions is examined to achieve better performance. Experimental results using the data from the laboratory and real inhome environments validate the promising and robust performance of the proposed detector. PMID:25376033

  16. Active states and structure transformations in accreting white dwarfs

    NASA Astrophysics Data System (ADS)

    Boneva, Daniela; Kaygorodov, Pavel

    2016-07-01

    Active states in white dwarfs are usually associated with light curve's effects that concern to the bursts, flickering or flare-up occurrences. It is common that a gas-dynamics source exists for each of these processes there. We consider the white dwarf binary stars with accretion disc around the primary. We suggest a flow transformation modeling of the mechanisms that are responsible for ability to cause some flow instability and bring the white dwarfs system to the outburst's development. The processes that cause the accretion rate to sufficiently increase are discussed. Then the transition from a quiescent to an active state is realized. We analyze a quasi-periodic variability in the luminosity of white dwarf binary stars systems. The results are supported with an observational data.

  17. Human brain tumor-associated urinary high molecular weight transforming growth factor: a high molecular weight form of epidermal growth factor.

    PubMed

    Stromberg, K; Hudgins, W R; Dorman, L S; Henderson, L E; Sowder, R C; Sherrell, B J; Mount, C D; Orth, D N

    1987-02-15

    Urinary protein obtained from a patient with a highly malignant brain tumor (astrocytoma, grade IV) was adsorbed to trimethylsilyl controlled-pore glass beads and selectively eluted with acetonitrile to yield a high molecular weight (HMW) human transforming growth factor (hTGF). This HMW hTGF promoted clonogenic cell growth in soft agar and competed for membrane receptors with mouse epidermal growth factor. After surgical resection of the tumor, no HMW hTGF was found in urine. HMW hTGF generated a human EGF (hEGF) radioimmunoassay competitive binding curve similar to that of hEGF and parallel to that of a highly purified HMW form of hEGF previously reported to be present in trace concentrations in normal human urine. Both hEGF and HMW hEGF were clonogenic in soft agar, and their clonogenic activity as well as that of HMW hTGF was inhibited by anti-hEGF serum. Both HMW hTGF and HMW hEGF had 20 to 25% of the radioreceptor binding activity of hEGF. HMW hTGF purified from the pooled urine of several patients with malignant astrocytomas and HMW hEGF purified from normal control urine comigrated at Mr 33,000. Thus, HMW hTGF was indistinguishable from HMW hEGF in terms of apparent molecular size, epidermal growth factor receptor binding activity, epidermal growth factor immunoreactivity, and clonogenic activity. Urinary HMW hEGF/hTGF may be of tumor cell origin or may represent a response of normal host tissues to the tumor or its products.

  18. Loss of Tumor Necrosis Factor α Potentiates Transforming Growth Factor β-mediated Pathogenic Tissue Response during Wound Healing

    PubMed Central

    Saika, Shizuya; Ikeda, Kazuo; Yamanaka, Osamu; Flanders, Kathleen C.; Okada, Yuka; Miyamoto, Takeshi; Kitano, Ai; Ooshima, Akira; Nakajima, Yuji; Ohnishi, Yoshitaka; Kao, Winston W.-Y.

    2006-01-01

    Animal cornea is an avascular transparent tissue that is suitable for research on wound healing-related scarring and neovascularization. Here we show that loss of tumor necrosis factor α (TNFα) potentiates the undesirable, pathogenic response of wound healing in an alkali-burned cornea in mice. Excessive invasion of macrophages and subsequent formation of a vascularized scar tissue were much more marked in TNFα-null knockout (KO) mice than in wild-type mice. Such an unfavorable outcome in KO mice was abolished by Smad7 gene introduction, indicating the involvement of transforming growth factor β or activin/Smad signaling. Bone marrow transplantation from wild-type mice normalized healing of the KO mice, suggesting the involvement of bone marrow-derived inflammatory cells in this phenomenon. Co-culture experiments showed that loss of TNFα in macrophages, but not in fibroblasts, augmented the fibroblast activation as determined by detection of α-smooth muscle actin, the hallmark of myofibroblast generation, mRNA expression of collagen Iα2 and connective tissue growth factor, and detection of collagen protein. TNFα in macrophages may be required to suppress undesirable excessive inflammation and scarring, both of which are promoted by transforming growth factor β, and for restoration of tissue architecture in a healing alkali-burned cornea in mice. PMID:16723700

  19. Transforming growth factor-beta1 upregulates myostatin expression in mouse C2C12 myoblasts.

    PubMed

    Budasz-Rwiderska, M; Jank, M; Motyl, T

    2005-06-01

    Myostatin (MSTN) and transforming growth factor-beta1 (TGF-beta1) belong to the same TGF-beta superfamily of proteins. They are involved in regulation of skeletal muscle growth and development as well as muscle catabolism. The aim of the present study was to investigate the relationship between MSTN and TGF-beta1 expression in proliferating and differentiating mouse C2C12 myoblasts cultured in normal and catabolic conditions and to evaluate the effect of exogenous TGF-beta1 as well as "knock down" of TGF-beta1 receptor type II on MSTN expression in proliferating and differentiating myogenic cells. The direct effect of TGF-beta1 on myostatin was also examined. Myostatin expression increased gradually with cell confluency in proliferating cultures, while the level of TGF-beta1, detected in the form of a 100 kDa small latent complex diminished. Myostatin expression was accompanied by a partial cell cycle arrest. Three forms of myostatin were found: a 52 kDa precursor, a 40 kDa latency associated propeptide, and a 26 kDa active peptide. A decrease in myostatin and TGF-beta1 levels was observed during the first three days of differentiation, which was subsequently followed by significant increase of their expression during next three to four days of differentiation. Catabolic state induced by dexamethasone significantly increased the level of all forms of myostatin as well as latent (100 kDa) and active (25 kDa) forms of TGF-beta1 in differentiating myoblasts in a dose dependent manner. Exogenous TGF-beta1 (2 ng/ml) significantly increased myostatin levels both in proliferating and differentiating C2C12 myoblasts, whereas silencing of the TGF-beta1 receptor II gene significantly lowered myostatin level in examined cells. The presented results indicate that TGF-beta1 may control myostatin-related regulation of myogenesis through up-regulation of myostatin, predominantly in the course of terminal differentiation and glucocorticoid-dependent catabolic stimulation.

  20. Transforming growth factor-alpha in vivo stimulates epithelial cell proliferation in digestive tissues of suckling rats.

    PubMed Central

    Hormi, K; Lehy, T

    1996-01-01

    BACKGROUND: The role that exogenous transforming growth factor-alpha (TGF-alpha) may exert on cell proliferation in vivo is poorly understood. AIM: To investigate the effect of rat TGF-alpha on epithelial cell proliferation in all suckling rat digestive tissues and to compare it with that of rat epidermal growth factor (EGF). ANIMAL AND METHODS: TGF-alpha and EGF were given three times daily either subcutaneously (10 or 20 micrograms/kg) or intraperitoneally (100 micrograms/kg) to rats from the ninth postnatal day. Cell proliferation was assessed through 5-bromo- 2-deoxyuridine incorporation and estimation of labelling indices. RESULTS: For both growth factors, the highest dose given for only two days significantly increased stomach and intestinal weights compared with controls (p < 0.05 to p < 0.001). The proliferative responded depended on the dose given, colonic mucosa being the most sensitive whereas oxyntic mucosa remained unresponsive. TGF-alpha was as potent as EGF in stimulating epithelial cell proliferation in antral, duodenal, and colonic mucosae. However, EGF was more active on oesophageal and jejunal cell proliferation whereas TGF-alpha was more active on pancreatic exocrine cell proliferation and the differences between the two growth factor treated groups were significant. CONCLUSIONS: These results prove for the first time the stimulating effect in vivo of exogenous rat TGF-alpha on epithelial cell proliferation in rat digestive tissues during the developmental period and support a functional role for TGF-alpha at that time. PMID:8944561

  1. Plant Lectin Can Target Receptors Containing Sialic Acid, Exemplified by Podoplanin, to Inhibit Transformed Cell Growth and Migration

    PubMed Central

    Shen, Yongquan; Acharya, Nimish K.; Han, Min; McNulty, Dean E.; Hasegawa, Hitoki; Hyodo, Toshinori; Senga, Takeshi; Geng, Jian-Guo; Kosciuk, Mary; Shin, Seung S.; Goydos, James S.; Temiakov, Dmitry; Nagele, Robert G.; Goldberg, Gary S.

    2012-01-01

    Cancer is a leading cause of death of men and women worldwide. Tumor cell motility contributes to metastatic invasion that causes the vast majority of cancer deaths. Extracellular receptors modified by α2,3-sialic acids that promote this motility can serve as ideal chemotherapeutic targets. For example, the extracellular domain of the mucin receptor podoplanin (PDPN) is highly O-glycosylated with α2,3-sialic acid linked to galactose. PDPN is activated by endogenous ligands to induce tumor cell motility and metastasis. Dietary lectins that target proteins containing α2,3-sialic acid inhibit tumor cell growth. However, anti-cancer lectins that have been examined thus far target receptors that have not been identified. We report here that a lectin from the seeds of Maackia amurensis (MASL) with affinity for O-linked carbohydrate chains containing sialic acid targets PDPN to inhibit transformed cell growth and motility at nanomolar concentrations. Interestingly, the biological activity of this lectin survives gastrointestinal proteolysis and enters the cardiovascular system to inhibit melanoma cell growth, migration, and tumorigenesis. These studies demonstrate how lectins may be used to help develop dietary agents that target specific receptors to combat malignant cell growth. PMID:22844530

  2. Noncanonical transforming growth factor β (TGFβ) signaling in cranial neural crest cells causes tongue muscle developmental defects.

    PubMed

    Iwata, Jun-ichi; Suzuki, Akiko; Pelikan, Richard C; Ho, Thach-Vu; Chai, Yang

    2013-10-11

    Microglossia is a congenital birth defect in humans and adversely impacts quality of life. In vertebrates, tongue muscle derives from the cranial mesoderm, whereas tendons and connective tissues in the craniofacial region originate from cranial neural crest (CNC) cells. Loss of transforming growth factor β (TGFβ) type II receptor in CNC cells in mice (Tgfbr2(fl/fl);Wnt1-Cre) causes microglossia due to a failure of cell-cell communication between cranial mesoderm and CNC cells during tongue development. However, it is still unclear how TGFβ signaling in CNC cells regulates the fate of mesoderm-derived myoblasts during tongue development. Here we show that activation of the cytoplasmic and nuclear tyrosine kinase 1 (ABL1) cascade in Tgfbr2(fl/fl);Wnt1-Cre mice results in a failure of CNC-derived cell differentiation followed by a disruption of TGFβ-mediated induction of growth factors and reduction of myogenic cell proliferation and differentiation activities. Among the affected growth factors, the addition of fibroblast growth factor 4 (FGF4) and neutralizing antibody for follistatin (FST; an antagonist of bone morphogenetic protein (BMP)) could most efficiently restore cell proliferation, differentiation, and organization of muscle cells in the tongue of Tgfbr2(fl/fl);Wnt1-Cre mice. Thus, our data indicate that CNC-derived fibroblasts regulate the fate of mesoderm-derived myoblasts through TGFβ-mediated regulation of FGF and BMP signaling during tongue development.

  3. The prognostic significance of transforming growth factors in human breast cancer.

    PubMed Central

    Murray, P. A.; Barrett-Lee, P.; Travers, M.; Luqmani, Y.; Powles, T.; Coombes, R. C.

    1993-01-01

    Transforming growth factor alpha (TGF alpha) and Transforming growth factor beta-1 (TGF-beta 1) are growth regulatory for breast cancer cell lines in vitro and several studies have suggested that levels of the receptor for TGF alpha, the epidermal growth factor (EGFR) in tumour biopsies predict relapse and survival. We have examined the prognostic significance of TGF alpha, TGF-beta 1 and EGFR mRNA expression in a series of patients with primary breast cancer with a median follow up period of 60 months. In 167 patients the expression of TGF-beta 1 was inversely correlated with node status (P = 0.065) but not ER status, tumour size or menopausal status. Patients with high levels of TGF-beta 1 had a longer disease free interval with a significantly longer probability of survival at 80 months although the overall relapse free survival was not increased. EGFR mRNA expression was measured in 106 patients and was inversely correlated with ER status (P = 0.018). EGFR levels did not predict for early relapse or survival. TGF alpha mRNA levels were measured in 104 patients, no correlation was seen tumour size, node status, Er status, or clinical outcome. PMID:8390290

  4. Enhanced transformation of tetrabromobisphenol a by nitrifiers in nitrifying activated sludge.

    PubMed

    Li, Fangjie; Jiang, Bingqi; Nastold, Peter; Kolvenbach, Boris Alexander; Chen, Jianqiu; Wang, Lianhong; Guo, Hongyan; Corvini, Philippe François-Xavier; Ji, Rong

    2015-04-01

    The fate of the most commonly used brominated flame retardant, tetrabromobisphenol A (TBBPA), in wastewater treatment plants is obscure. Using a (14)C-tracer, we studied TBBPA transformation in nitrifying activated sludge (NAS). During the 31-day incubation, TBBPA transformation (half-life 10.3 days) was accompanied by mineralization (17% of initial TBBPA). Twelve metabolites, including those with single benzene ring, O-methyl TBBPA ether, and nitro compounds, were identified. When allylthiourea was added to the sludge to completely inhibit nitrification, TBBPA transformation was significantly reduced (half-life 28.9 days), formation of the polar and single-ring metabolites stopped, but O-methylation was not significantly affected. Abiotic experiments confirmed the generation of mono- and dinitro-brominated forms of bisphenol A in NAS by the abiotic nitration of TBBPA by nitrite, a product of ammonia-oxidizing microorganisms (AOMs). Three biotic (type II ipso-substitution, oxidative skeletal cleavage, and O-methylation) and one abiotic (nitro-debromination) pathways were proposed for TBBPA transformation in NAS. Apart from O-methylation, AOMs were involved in three other pathways. Our results are the first to provide information about the complex metabolism of TBBPA in NAS, and they are consistent with a determining role for nitrifiers in TBBPA degradation by initiating its cleavage into single-ring metabolites that are substrates for the growth of heterotrophic bacteria. PMID:25754048

  5. An evolutionarily conserved enzyme degrades transforming growth factor- alpha as well as insulin

    PubMed Central

    1989-01-01

    A single enzyme found in both Drosophila and mammalian cells is able to selectively bind and degrade transforming growth factor (TGF)-alpha and insulin, but not EGF, at physiological concentrations. These growth factors are also able to inhibit binding and degradation of one another by the enzyme. Although there are significant immunological differences between the mammalian and Drosophila enzymes, the substrate specificity has been highly conserved. These results demonstrate the existence of a selective TGF-alpha-degrading enzyme in both Drosophila and mammalian cells. The evolutionary conservation of the ability to degrade both insulin and TGF-alpha suggests that this property is important for the physiological role of the enzyme and its potential for regulating growth factor levels. PMID:2670957

  6. Abelson murine leukemia virus transformation-defective mutants with impaired P120-associated protein kinase activity.

    PubMed Central

    Reynolds, F H; Van de Ven, W J; Stephenson, J R

    1980-01-01

    Several transformation-defective (td) mutants of Abelson murine leukemia virus (AbLV) are described. Cells nonproductively infected with such mutants exhibited a high degree of growth contact inhibition, failed to form colonies in soft agar, lacked rescuable transforming virus, and were as susceptible as uninfected control cells to transformation by wild-type (wt) AbLV pseudotype virus. In addition, each of several td AbLV nonproductively infected cell clones analyzed was found to be nontumorigenic in vivo. Biochemical analysis of td mutant AbLV-infected clones revealed levels of expression of the major AbLV translational product, P120, and a highly related 80,000-Mr AbLV-encoded protein, P80, at concentrations analogous to those in wt AbLV-transformed cells. Although the AbLV-specific 120,000-Mr polyproteins expressed in td mutant AbLV-infected clones were indistinguishable from those in wt AbLV-transformed lines with respect to molecular weight and [35S]methionine tryptic peptide composition, they each differed from wt AbLV P120 in their patterns of post-translational phosphorylation. A previously described AbLV-associated protein kinase activity is shown to recognize as substrate a major tyrosine-specific acceptor site(s) contained within a single well-resolved tryptic peptide common to both AbLV P120 and P80. In vitro [gamma-32P]ATP-mediated labeling of this phosphorylation site was reduced to below detectable levels in td mutant nonproductively infected cell clones. These findings establish that the AbLV-encoded polyprotein P120 and its associated protein kinase activity are involved in AbLV tumorigenesis. Images PMID:6253663

  7. Transforming growth factor-β2 is sequestered in preterm human milk by chondroitin sulfate proteoglycans

    PubMed Central

    Namachivayam, Kopperuncholan; Coffing, Hayley P.; Sankaranarayanan, Nehru Viji; Jin, Yingzi; MohanKumar, Krishnan; Frost, Brandy L.; Blanco, Cynthia L.; Patel, Aloka L.; Meier, Paula P.; Garzon, Steven A.; Desai, Umesh R.

    2015-01-01

    Human milk contains biologically important amounts of transforming growth factor-β2 isoform (TGF-β2), which is presumed to protect against inflammatory gut mucosal injury in the neonate. In preclinical models, enterally administered TGF-β2 can protect against experimental necrotizing enterocolitis, an inflammatory bowel necrosis of premature infants. In this study, we investigated whether TGF-β bioactivity in human preterm milk could be enhanced for therapeutic purposes by adding recombinant TGF-β2 (rTGF-β2) to milk prior to feeding. Milk-borne TGF-β bioactivity was measured by established luciferase reporter assays. Molecular interactions of TGF-β2 were investigated by nondenaturing gel electrophoresis and immunoblots, computational molecular modeling, and affinity capillary electrophoresis. Addition of rTGF-β2 (20–40 nM) to human preterm milk samples failed to increase TGF-β bioactivity in milk. Milk-borne TGF-β2 was bound to chondroitin sulfate (CS) containing proteoglycan(s) such as biglycan, which are expressed in high concentrations in milk. Chondroitinase treatment of milk increased the bioactivity of both endogenous and rTGF-β2, and consequently, enhanced the ability of preterm milk to suppress LPS-induced NF-κB activation in macrophages. These findings provide a mechanism for the normally low bioavailability of milk-borne TGF-β2 and identify chondroitinase digestion of milk as a potential therapeutic strategy to enhance the anti-inflammatory effects of preterm milk. PMID:26045614

  8. Cellular localization of transforming growth factor-beta expression in bleomycin-induced pulmonary fibrosis.

    PubMed Central

    Zhang, K.; Flanders, K. C.; Phan, S. H.

    1995-01-01

    Bleomycin-induced pulmonary fibrosis is associated with increased lung transforming growth factor-beta (TGF-beta) gene expression, but cellular localization of the source of this expression has not been unequivocally established. In this study, lung fibrosis was induced in rats by endotracheal bleomycin injection on day 0 and, on selected days afterwards, lungs were harvested for in situ hybridization, immunohistochemical and histochemical analyses for TGF-beta 1 mRNA and protein expression, and cell identification. The results show that control lungs express essentially no detectable TGF-beta 1 mRNA or protein in the parenchyma. Before day 3 after bleomycin treatment, scattered bronchiolar epithelial cells, mononuclear cells, and eosinophils expressed elevated levels of TGF-beta 1. Between days 3 and 14, there was a major increase in the number of eosinophils, myofibroblasts, and fibroblasts strongly expressing TGF-beta 1 mRNA and protein. TGF-beta 1-producing cells were predominantly localized within areas of injury and active fibrosis. After day 14, the intensity and number of TGF-beta 1-expressing cells significantly declined and were predominantly found in fibroblasts in fibrotic areas. The expression of TGF-beta 1 protein was generally coincident with that for mRNA with the exception of bronchiolar epithelial cells in which strong protein expression was unaccompanied by a commensurate increase in mRNA. The study demonstrates that myofibroblasts, fibroblasts, and eosinophils represent the major sources of increased lung TGF-beta 1 expression in this model of pulmonary fibrosis. Images Figure 2 Figure 3 Figure 4 PMID:7543734

  9. Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor beta 1.

    PubMed Central

    Oberhammer, F A; Pavelka, M; Sharma, S; Tiefenbacher, R; Purchio, A F; Bursch, W; Schulte-Hermann, R

    1992-01-01

    In previous studies hepatocytes undergoing cell death by apoptosis but not normal hepatocytes in rat liver showed immunostaining for transforming growth factor beta 1 (TGF-beta 1). Staining was much stronger with antibodies recognizing the pro-region of TGF-beta 1 than the mature peptide itself. Therefore we investigated the ability of both forms of TGF-beta 1 to induce apoptosis in primary cultures of rat hepatocytes. Mature TGF-beta 1 induced rounding up of the cells and fragmentation into multiple vesicles. As revealed by the DNA-specific stain H33258, the chromatin of these cells condensed and segregated into masses at the nuclear membrane; this was obviously followed by fragmentation of the nucleus. Ultrastructurally the cytoplasm was well preserved, as demonstrated by the presence of intact cell organelles. These features strongly suggest the occurrence of apoptosis. Quantification of nuclei with condensed chromatin revealed that mature TGF-beta 1 was 30-fold more effective than the TGF-beta 1 latency-associated protein complex. Finally, we administered TGF-beta 1 in vivo using an experimental model in which regression of rat liver was initiated by a short preceding treatment with the hepatomitogen cyproterone acetate. Two doses of TGF-beta 1, each 1 nM/kg, augmented the incidence of apoptotic hepatocytes 5-fold. Equimolar doses of TGF-beta 1 latency-associated protein complex were ineffective. These studies suggest that TGF-beta 1 is involved in the initiation of apoptosis in the liver and that the mature form of TGF-beta 1 is the active principle. Images PMID:1608949

  10. Phenol oxidase activity in secondary transformed peat-moorsh soils

    NASA Astrophysics Data System (ADS)

    Styła, K.; Szajdak, L.

    2009-04-01

    The chemical composition of peat depends on the geobotanical conditions of its formation and on the depth of sampling. The evolution of hydrogenic peat soils is closely related to the genesis of peat and to the changes in water conditions. Due to a number of factors including oscillation of ground water level, different redox potential, changes of aerobic conditions, different plant communities, and root exudes, and products of the degradation of plant remains, peat-moorsh soils may undergo a process of secondary transformation conditions (Sokolowska et al. 2005; Szajdak et al. 2007). Phenol oxidase is one of the few enzymes able to degrade recalcitrant phenolic materials as lignin (Freeman et al. 2004). Phenol oxidase enzymes catalyze polyphenol oxidation in the presence of oxygen (O2) by removing phenolic hydrogen or hydrogenes to from radicals or quinines. These products undergo nucleophilic addition reactions in the presence or absence of free - NH2 group with the eventual production of humic acid-like polymers. The presence of phenol oxidase in soil environments is important in the formation of humic substances a desirable process because the carbon is stored in a stable form (Matocha et al. 2004). The investigations were carried out on the transect of peatland 4.5 km long, located in the Agroecological Landscape Park host D. Chlapowski in Turew (40 km South-West of Poznań, West Polish Lowland). The sites of investigation were located along Wyskoć ditch. The following material was taken from four chosen sites marked as Zbechy, Bridge, Shelterbelt and Hirudo in two layers: cartel (0-50cm) and cattle (50-100cm). The object of this study was to characterize the biochemical properties by the determination of the phenol oxidize activity in two layers of the four different peat-moors soils used as meadow. The phenol oxidase activity was determined spectrophotometrically by measuring quinone formation at λmax=525 nm with catechol as substrate by method of Perucci

  11. The combination of epidermal growth factor and transforming growth factor-beta induces novel phenotypic changes in mouse liver stem cell lines.

    PubMed

    Isfort, R J; Cody, D B; Stuard, S B; Randall, C J; Miller, C; Ridder, G M; Doersen, C J; Richards, W G; Yoder, B K; Wilkinson, J E; Woychik, R P

    1997-12-01

    Mouse liver stem cell (oval cell) lines were investigated in order to determine the role which two families of growth and differentiation factors (GDFs), epidermal growth factor (EGF) family and transforming growth factor beta (TGF-beta) family, play in liver regeneration. EGF family members, including EGF, amphiregulin, betacellulin, heparin-binding epidermal growth factor, and TGF-alpha, were mitogenic for oval cell lines while TGF-beta family members, including TGF-beta1, TGF-beta2 and TGF-beta3, inhibited mitogenesis and induced apoptosis in oval cell lines. Surprisingly, the combination of EGF family members and TGF-ss family members resulted in neither proliferation nor apoptosis but instead in a novel cellular response, cellular scattering in tissue culture and morphological differentiation in Matrigel. Analysis of the signal transduction pathways activated by exposure of oval cell lines to either EGF, EGF+TGF-beta, or TGF-beta indicated that novel combinations of intracellular signals result following stimulation of the cells with the combination of EGF+TGF-beta. These data reveal that the dynamics of synergistic GDF action following tissue injury and regeneration results in a new level of complexity not obvious from the study of individual GDFs.

  12. Shape and size transformation of gold nanorods (GNRs) via oxidation process: A reverse growth mechanism

    NASA Astrophysics Data System (ADS)

    Chandrasekar, Govindasamy; Mougin, Karine; Haidara, Hamidou; Vidal, Loïc; Gnecco, Enrico

    2011-02-01

    The anisotropic shape transformation of gold nanorods (GNRs) with H2O2 was observed in the presence of "cethyl trimethylammonium bromide" (CTAB). The adequate oxidative dissolution of GNR is provided by the following autocatalytic scheme with H2O2: Au0 → Au+, Au0 + Aun+ → 2Au3+, n = 1 and 3. The shape transformation of the GNRs was investigated by UV-vis spectroscopy and transmission electron microscopy (TEM). As-synthesised GNRs exhibit transverse plasmon band (TPB) at 523 nm and longitudinal plasmon band (LPB) at 731 nm. Upon H2O2 oxidation, the LPB showed a systematic hypsochromic (blue) shift, while TPB stays at ca. 523 nm. In addition, a new emerging peak observed at ca. 390 nm due to Au(III)-CTAB complex formation during the oxidation. TEM analysis of as-synthesised GNRs with H2O2 confirmed the shape transformation to spherical particles with 10 nm size in 2 h, whereas centrifuged nanorod solution showed no changes in the aspect ratio under the same condition. Au3+ ions produced from oxidation, complex with excess free CTAB and approach the nanorods preferentially at the end, leading to spatially directed oxidation. This work provides some information to the crystal stability and the growth mechanism of GNRs, as both growth and shortening reactions occur preferentially at the edge of single-crystalline GNRs, all directed by Br- ions.

  13. Transformation by Raf and other oncogenes renders cells differentially sensitive to growth inhibition by a dominant negative c-jun mutant.

    PubMed

    Rapp, U R; Troppmair, J; Beck, T; Birrer, M J

    1994-12-01

    In NIH3T3 cells expressing active Raf-1 protein serine/threonine kinase (PSK) c-jun expression is constitutive while c-fos expression is attenuated. This alteration prompted us to determine whether oncogene transformation would render cells differentially sensitive to growth inhibition by a dominant negative mutant of c-jun, TAM 67. Growth inhibition was observed in three types of assays: (1) transfection of TAM 67 into cells stably transformed by a variety of oncogenes, (2) cotransfection of TAM 67 with oncogene expression plasmids into NIH3T3 cells and (3) titration of oncogene-expressing retroviruses on cells stably expressing TAM 67. The results clearly demonstrate that Raf-1 dependent oncogenes, which include receptor protein tyrosine kinases (PTKs)-, intracellular PTKs- and Ras-derived genes share the Raf phenotype of constitutive c-jun expression, attenuated c-fos induction, and high sensitivity to growth suppression by TAM 67. Additionally, the intracellular PSK oncogene, mos and the nuclear oncogenes c-myc, c-fos, and SV40 T antigen were TAM 67-sensitive for transformation. This universal pattern of altered growth regulation in oncogene transformed fibroblast cell lines highlights the potential usefulness of c-jun based inhibitors for control of tumor cell growth.

  14. Cadmium-transformed cells in the in vitro cell transformation assay reveal different proliferative behaviours and activated pathways.

    PubMed

    Forcella, M; Callegaro, G; Melchioretto, P; Gribaldo, L; Frattini, M; Stefanini, F M; Fusi, P; Urani, C

    2016-10-01

    The in vitro Cell Transformation Assay (CTA) is a powerful tool for mechanistic studies of carcinogenesis. The endpoint is the classification of transformed colonies (foci) by means of standard morphological features. To increase throughput and reliability of CTAs, one of the suggested follow-up activities is to exploit the comprehension of the mechanisms underlying cell transformation. To this end, we have performed CTAs testing CdCl2, a widespread environmental contaminant classified as a human carcinogen with the underlying mechanisms of action not completely understood. We have isolated and re-seeded the cells at the end (6weeks) of in vitro CTAs to further identify the biochemical pathways underlying the transformed phenotype of foci. Morphological evaluations and proliferative assays confirmed the loss of contact-inhibition and the higher proliferative rate of transformed clones. The biochemical analysis of EGFR pathway revealed that, despite the same initial carcinogenic stimulus (1μM CdCl2 for 24h), transformed clones are characterized by the activation of two different molecular pathways: proliferation (Erk activation) or survival (Akt activation). Our preliminary results on molecular characterization of cell clones from different foci could be exploited for CTAs improvement, supporting the comprehension of the in vivo process and complementing the morphological evaluation of foci. PMID:27432484

  15. Cadmium-transformed cells in the in vitro cell transformation assay reveal different proliferative behaviours and activated pathways.

    PubMed

    Forcella, M; Callegaro, G; Melchioretto, P; Gribaldo, L; Frattini, M; Stefanini, F M; Fusi, P; Urani, C

    2016-10-01

    The in vitro Cell Transformation Assay (CTA) is a powerful tool for mechanistic studies of carcinogenesis. The endpoint is the classification of transformed colonies (foci) by means of standard morphological features. To increase throughput and reliability of CTAs, one of the suggested follow-up activities is to exploit the comprehension of the mechanisms underlying cell transformation. To this end, we have performed CTAs testing CdCl2, a widespread environmental contaminant classified as a human carcinogen with the underlying mechanisms of action not completely understood. We have isolated and re-seeded the cells at the end (6weeks) of in vitro CTAs to further identify the biochemical pathways underlying the transformed phenotype of foci. Morphological evaluations and proliferative assays confirmed the loss of contact-inhibition and the higher proliferative rate of transformed clones. The biochemical analysis of EGFR pathway revealed that, despite the same initial carcinogenic stimulus (1μM CdCl2 for 24h), transformed clones are characterized by the activation of two different molecular pathways: proliferation (Erk activation) or survival (Akt activation). Our preliminary results on molecular characterization of cell clones from different foci could be exploited for CTAs improvement, supporting the comprehension of the in vivo process and complementing the morphological evaluation of foci.

  16. The farnesyltransferase inhibitor, LB42708, inhibits growth and induces apoptosis irreversibly in H-ras and K-ras-transformed rat intestinal epithelial cells

    SciTech Connect

    Kim, Han-Soo; Kim, Ju Won; Gang, Jingu; Wen, Jing; Koh, Sang Seok; Koh, Jong Sung; Chung, Hyun-Ho; Song, Si Young . E-mail: gisong@yumc.yonsei.ac.kr

    2006-09-15

    LB42708 (LB7) and LB42908 (LB9) are pyrrole-based orally active farnesyltransferase inhibitors (FTIs) that have similar structures. The in vitro potencies of these compounds against FTase and GGTase I are remarkably similar, and yet they display different activity in apoptosis induction and morphological reversion of ras-transformed rat intestinal epithelial (RIE) cells. Both FTIs induced cell death despite K-ras prenylation, implying the participation of Ras-independent mechanism(s). Growth inhibition by these two FTIs was accompanied by G1 and G2/M cell cycle arrests in H-ras and K-ras-transformed RIE cells, respectively. We identified three key markers, p21{sup CIP1/WAF1}, RhoB and EGFR, that can explain the differences in the molecular mechanism of action between two FTIs. Only LB7 induced the upregulation of p21{sup CIP1/WAF1} and RhoB above the basal level that led to the cell cycle arrest and to distinct morphological alterations of ras-transformed RIE cells. Both FTIs successfully inhibited the ERK and activated JNK in RIE/K-ras cells. While the addition of conditioned medium from RIE/K-ras reversed the growth inhibition of ras-transformed RIE cells by LB9, it failed to overcome the growth inhibitory effect of LB7 in both H-ras- and K-ras-transformed RIE cells. We found that LB7, but not LB9, decreased the expression of EGFRs that confers the cellular unresponsiveness to EGFR ligands. These results suggest that LB7 causes the induction of p21{sup CIP1/WAF1} and RhoB and downregulation of EGFR that may serve as critical steps in the mechanism by which FTIs trigger irreversible inhibitions on the cell growth and apoptosis in ras-transformed cells.

  17. Expression of neu protein, epidermal growth factor receptor, and transforming growth factor alpha in breast cancer. Correlation with clinicopathologic parameters.

    PubMed Central

    Lundy, J.; Schuss, A.; Stanick, D.; McCormack, E. S.; Kramer, S.; Sorvillo, J. M.

    1991-01-01

    The major objectives of this study were twofold: to determine 1) if growth factors or growth factor receptors were expressed similarly or differently in a clinically well-characterized group of breast cancer patients and 2) if these phenotypic characteristics were associated with any of the commonly used prognostic parameters. Formalin-fixed paraffin-embedded tumor tissue from 51 node-positive breast cancer patients were analyzed for the expression of neu, epidermal growth factor-receptor (EGF-R), and transforming growth factor alpha (TGF alpha) using immunoperoxidase staining. Positive membranous staining for neu was observed in 15 (29%) tumors. Over-expression of neu was observed in high-grade, estrogen-receptor-negative tumors (P less than 0.05). Epidermal growth factor receptor was expressed in 22 (43%) of the tumors analyzed and found to a greater degree in estrogen-receptor-negative and high-grade tumors (P less than 0.025). A significant correlation between neu and EGF-R expression was also noted. Tumors expressing membranous staining of neu had a greater than 70% chance of expressing EGF-R (P less than 0.01). Expression of TGF alpha was found in 68% of tumors and TGF alpha was detected in grade 1 and 2 tumor to a greater degree than EGF-R. The authors conclude that assaying tumors for these antigens may give additional phenotypic characteristics that can give further insight into the biology of breast cancer. Images Figure 1 Figure 2 Figure 3 PMID:1711294

  18. Transformation Pathways of the Recalcitrant Pharmaceutical Compound Carbamazepine by the White-Rot Fungus Pleurotus ostreatus: Effects of Growth Conditions.

    PubMed

    Golan-Rozen, Naama; Seiwert, Bettina; Riemenschneider, Christina; Reemtsma, Thorsten; Chefetz, Benny; Hadar, Yitzhak

    2015-10-20

    The widely used anticonvulsant pharmaceutical carbamazepine is recalcitrant in many environmental niches and thus poses a challenge in wastewater treatment. We followed the decomposition of carbamazepine by the white-rot fungus Pleurotus ostreatus in liquid culture compared to solid-state fermentation on lignocellulosic substrate where different enzymatic systems are active. Carbamazepine metabolites were identified using liquid chromatography-high-resolution mass spectrometry (LC-Q-TOF-MS). In liquid culture, carbamazepine was only transformed to 10,11-epoxy carbamazepine and 10,11-dihydroxy carbamazepine as a dead-end product. During solid-state fermentation, carbamazepine metabolism resulted in the generation of an additional 22 transformation products, some of which are toxic. Under solid-state-fermentation conditions, 10,11-epoxy carbamazepine was further metabolized via acridine and 10,11-dihydroxy carbamazepine pathways. The latter was further metabolized via five subpathways. When (14)C-carbonyl-labeled carbamazepine was used as the substrate, (14)C-CO2 release amounted to 17.4% of the initial radioactivity after 63 days of incubation. The proposed pathways were validated using metabolites (10,11-epoxy carbamazepine, 10,11-dihydroxy carbamazepine, and acridine) as primary substrates and following their fate at different time points. This work highlights the effect of growth conditions on the transformation pathways of xenobiotics. A better understanding of the fate of pollutants during bioremediation treatments is important for establishment of such technologies. PMID:26418858

  19. Inhibition of PI3K by PX-866 prevents transforming growth factor-alpha-induced pulmonary fibrosis.

    PubMed

    Le Cras, Timothy D; Korfhagen, Thomas R; Davidson, Cynthia; Schmidt, Stephanie; Fenchel, Matthew; Ikegami, Machiko; Whitsett, Jeffrey A; Hardie, William D

    2010-02-01

    Transforming growth factor-alpha (TGFalpha) is a ligand for the epidermal growth factor receptor (EGFR). EGFR activation is associated with fibroproliferative processes in human lung disease and animal models of pulmonary fibrosis. EGFR signaling activates several intracellular signaling pathways including phosphatidylinositol 3'-kinase (PI3K). We previously showed that induction of lung-specific TGFalpha expression in transgenic mice caused progressive pulmonary fibrosis over a 4-week period. The increase in levels of phosphorylated Akt, detected after 1 day of doxycycline-induced TGFalpha expression, was blocked by treatment with the PI3K inhibitor, PX-866. Daily administration of PX-866 during TGFalpha induction prevented increases in lung collagen and airway resistance as well as decreases in lung compliance. Treatment of mice with oral PX-866 4 weeks after the induction of TGFalpha prevented additional weight loss and further increases in total collagen, and attenuated changes in pulmonary mechanics. These data show that PI3K is activated in TGFalpha/EGFR-mediated pulmonary fibrosis and support further studies to determine the role of PI3K activation in human lung fibrotic disease, which could be amenable to targeted therapy.

  20. Transforming growth factor β as regulator of cancer stemness and metastasis

    PubMed Central

    Bellomo, Claudia; Caja, Laia; Moustakas, Aristidis

    2016-01-01

    Key elements of cancer progression towards metastasis are the biological actions of cancer stem cells and stromal cells in the tumour microenvironment. Cross-communication between tumour and stromal cells is mediated by secreted cytokines, one of which, the transforming growth factor β (TGFβ), regulates essentially every cell within the malignant tissue. In this article, we focus on the actions of TGFβ on cancer stem cells, cancer-associated fibroblasts and immune cells that assist the overall process of metastatic dissemination. We aim at illustrating intricate connections made by various cells in the tumour tissue and which depend on the action of TGFβ. PMID:27537386

  1. Influence of phase transformation on stress evolution during growth of metal thin films on silicon.

    PubMed

    Fillon, A; Abadias, G; Michel, A; Jaouen, C; Villechaise, P

    2010-03-01

    In situ stress measurements during two-dimensional growth of low mobility metal films on amorphous Si were used to demonstrate the impact of interface reactivity and phase transformation on stress evolution. Using Mo1-xSix films as examples, the results show that the tensile stress rise, which develops after the film has become crystalline, is correlated with an increase in lateral grain size. The origin of the tensile stress is attributed to the volume change resulting from the alloy crystallization, which occurs at a concentration-dependent critical thickness. PMID:20366996

  2. Expression of transforming growth factor β receptor II in mesenchymal stem cells from systemic sclerosis patients

    PubMed Central

    Vanneaux, Valérie; Farge-Bancel, Dominique; Lecourt, Séverine; Baraut, Julie; Cras, Audrey; Jean-Louis, Francette; Brun, Cécilia; Verrecchia, Franck; Larghero, Jérôme; Michel, Laurence

    2013-01-01

    Objectives The present work aimed to evaluate the expression of transforming growth factor-β (TGF-β) receptors on bone marrow-derived multipotent mesenchymal stromal cells (MSCs) in patients with systemic sclerosis (SSc) and the consequences of TGF-β activation in these cells, since MSC have potential therapeutic interest for SSc patients and knowing that TGF-β plays a critical role during the development of fibrosis in SSc. Design This is a prospective research study using MSC samples obtained from SSc patients and compared with MSC from healthy donors. Setting One medical hospital involving collaboration between an internal medicine department for initial patient recruitment, a clinical biotherapeutic unit for MSC preparation and an academic laboratory for research. Participants 9 patients with diffuse SSc for which bone marrow (BM) aspiration was prescribed by sternum aspiration before haematopoietic stem cell transplantation, versus nine healthy donors for normal BM. Primary and secondary outcome measures TGF-β, TGF-β receptor types I (TBRI) and II (TBRII) mRNA and protein expression were assessed by quantitative PCR and flow cytometry, respectively, in MSC from both SSc patients and healthy donors. MSC were exposed to TGF-β and assessed for collagen 1α2 synthesis and Smad expression. As positive controls, primary cultures of dermal fibroblasts were also analysed. Results Compared with nine controls, MSC from nine SSc patients showed significant increase in mRNA levels (p<0.002) and in membrane expression (p<0.0001) of TBRII. In response to TGF-β activation, a significant increase in collagen 1α synthesis (p<0.05) and Smad-3 phosphorylation was upregulated in SSc MSC. Similar results were obtained on eight SSc-derived dermal fibroblasts compared to six healthy controls. Conclusions TBRII gene and protein expression defect in MSC derived from SSc patients may have pathological significance. These findings should be taken into account when considering

  3. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death.

    PubMed Central

    Kulkarni, A B; Huh, C G; Becker, D; Geiser, A; Lyght, M; Flanders, K C; Roberts, A B; Sporn, M B; Ward, J M; Karlsson, S

    1993-01-01

    To delineate specific developmental roles of transforming growth factor beta 1 (TGF-beta 1) we have disrupted its cognate gene in mouse embryonic stem cells by homologous recombination to generate TGF-beta 1 null mice. These mice do not produce detectable amounts of either TGF-beta 1 RNA or protein. After normal growth for the first 2 weeks they develop a rapid wasting syndrome and die by 3-4 weeks of age. Pathological examination revealed an excessive inflammatory response with massive infiltration of lymphocytes and macrophages in many organs, but primarily in heart and lungs. Many lesions resembled those found in autoimmune disorders, graft-vs.-host disease, or certain viral diseases. This phenotype suggests a prominent role for TGF-beta 1 in homeostatic regulation of immune cell proliferation and extravasation into tissues. Images PMID:8421714

  4. Prodomains of transforming growth factor beta (TGFbeta) superfamily members specify different functions: extracellular matrix interactions and growth factor bioavailability.

    PubMed

    Sengle, Gerhard; Ono, Robert N; Sasaki, Takako; Sakai, Lynn Y

    2011-02-18

    The specific functions of the prodomains of TGFβ superfamily members are largely unknown. Interactions are known between prodomains of TGFβ-1-3 and latent TGFβ-binding proteins and between prodomains of BMP-2, -4, -7, and -10 and GDF-5 and fibrillins, raising the possibility that latent TGFβ-binding proteins and fibrillins may mediate interactions with all other prodomains of this superfamily. This possibility is tested in this study. Results show that the prodomain of BMP-5 interacts with the N-terminal regions of fibrillin-1 and -2 in a site similar to the binding sites for other bone morphogenetic proteins. However, in contrast, the prodomain of GDF-8 (myostatin) interacts with the glycosaminoglycan side chains of perlecan. The binding site for the GDF-8 prodomain is likely the heparan sulfate chain present on perlecan domain V. These results support and extend the emerging concept that TGFβ superfamily prodomains target their growth factor dimers to extracellular matrix macromolecules. In addition, biochemical studies of prodomain·growth factor complexes were performed to identify inactive complexes. For some members of the superfamily, the prodomain is noncovalently associated with its growth factor dimer in an inactive complex; for others, the prodomain·growth factor complex is active, even though the prodomain is noncovalently associated with its growth factor dimer. Results show that the BMP-10 prodomain, in contrast to BMP-4, -5, and -7 prodomains, can inhibit the bioactivity of the BMP-10 growth factor and suggest that the BMP-10 complex is like TGFβ and GDF-8 complexes, which can be activated by cleavage of the associated prodomain.

  5. Non-linear antigenic regions in epidermal growth factor (EGF) and transforming growth factor alpha (TGF alpha) studied by EGF-TGF alpha chimaeras.

    PubMed

    van de Poll, M L; van Rotterdam, W; Gadellaa, M M; Stortelers, C; van Vugt, M J; van Zoelen, E J

    2000-07-01

    With the help of 16 chimaeras between human epidermal growth factor (hEGF) and human transforming growth factor alpha (hTGF alpha), a detailed analysis was performed on the epitope recognized by two polyclonal antibodies raised against hEGF, and one polyclonal antibody raised against hTGF alpha. All three antibodies recognized essentially the same antigenic site, a non-linear and conformation-dependent sequence that is located near the second and fourth disulphide-bonded cysteines and that includes the start of the B-loop beta-sheet. The epitope recognized by the anti-hEGF antibodies was further characterized using 8 chimaeras between hEGF and an EGF-repeat from Drosophila Notch and was found to include Met(21), Ala(30) and Asn(32). All three polyclonal antibodies were able to neutralize the biological activity of the respective growth factor when tested on 32D murine haematopoietic progenitor cells transfected with ErbB-1, indicating that the receptor binding domain is shielded upon binding of the antibody.

  6. Non-linear antigenic regions in epidermal growth factor (EGF) and transforming growth factor alpha (TGF alpha) studied by EGF-TGF alpha chimaeras.

    PubMed Central

    van de Poll, M L; van Rotterdam , W; Gadellaa, M M; Stortelers, C; van Vugt , M J; van Zoelen , E J

    2000-01-01

    With the help of 16 chimaeras between human epidermal growth factor (hEGF) and human transforming growth factor alpha (hTGF alpha), a detailed analysis was performed on the epitope recognized by two polyclonal antibodies raised against hEGF, and one polyclonal antibody raised against hTGF alpha. All three antibodies recognized essentially the same antigenic site, a non-linear and conformation-dependent sequence that is located near the second and fourth disulphide-bonded cysteines and that includes the start of the B-loop beta-sheet. The epitope recognized by the anti-hEGF antibodies was further characterized using 8 chimaeras between hEGF and an EGF-repeat from Drosophila Notch and was found to include Met(21), Ala(30) and Asn(32). All three polyclonal antibodies were able to neutralize the biological activity of the respective growth factor when tested on 32D murine haematopoietic progenitor cells transfected with ErbB-1, indicating that the receptor binding domain is shielded upon binding of the antibody. PMID:10861238

  7. Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformation

    SciTech Connect

    Jensen, Taylor J.; Wozniak, Ryan J.; Eblin, Kylee E.; Wnek, Sean M.; Gandolfi, A. Jay; Futscher, Bernard W.

    2009-02-15

    Arsenic is a human carcinogen with exposure associated with cancer of the lung, skin, and bladder. Many potential mechanisms have been implicated as playing a role in the process of arsenical-induced malignancy including the perturbation of signaling pathways and aberrant epigenetic regulation. We initiated studies to examine the role of a member of the non-canonical WNT signaling pathway, WNT5A, in UROtsa cells and arsenite [URO-ASSC] and monomethylarsonous acid [URO-MSC] malignantly transformed variants. We present data herein that suggest that WNT5A is transcriptionally activated during arsenical-induced malignant transformation. This WNT5A transcriptional activation is correlated with the enrichment of permissive histone modifications and the reduction of repressive modifications in the WNT5A promoter region. The epigenetic activation of WNT5A expression and acetylation of its promoter remain after the removal of the arsenical, consistent with the maintenance of an anchorage independent growth phenotype in these cells. Additionally, treatment with epigenetic modifying drugs supports a functional role for these epigenetic marks in controlling gene expression. Reduction of WNT5A using lentiviral shRNA greatly attenuated the ability of these cells to grow in an anchorage independent fashion. Extension of our model into human bladder cancer cell lines indicates that each of the cell lines examined also express WNT5A. Taken together, these data suggest that the epigenetic remodeling of the WNT5A promoter is correlated with its transcriptional activation and this upregulation likely participates in arsenical-induced malignant transformation.

  8. Epidermal transformation leads to increased perlecan synthesis with heparin-binding-growth-factor affinity.

    PubMed Central

    Tapanadechopone, P; Tumova, S; Jiang, X; Couchman, J R

    2001-01-01

    Perlecan, a proteoglycan of basement membrane and extracellular matrices, has important roles in both normal biological and pathological processes. As a result of its ability to store and protect growth factors, perlecan may have crucial roles in tumour-cell growth and invasion. Since the biological functions of different types of glycosaminoglycan vary with cellular origin and structural modifications, we analysed the expression and biological functions of perlecan produced by a normal epidermal cell line (JB6) and its transformed counterpart (RT101). Expression of perlecan in tumorigenic cells was significantly increased in both mRNA and protein levels. JB6 perlecan was exclusively substituted with heparan sulphate, whereas that of RT101 contained some additional chondroitin sulphate. Detailed structural analysis of the heparan sulphate (HS) chains from perlecan of both cell types revealed that their overall sulphation and chain length were similar (approximately 60 kDa), but the HS chains of tumour-cell-derived perlecan were less sulphated. This resulted from reduced 2-O- and 6-O-sulphation, but not N-sulphation, and an increase in the proportion of unsulphated disaccharides. Despite this, the heparan sulphate of RT101- and JB6-derived perlecan bound fibroblast growth factor-1, -2, -4 and -7 and heparin-binding epidermal growth factor with similar affinity. Therefore abundant tumour-derived perlecan may support the angiogenic responses seen in vivo and be a key player in tumorigenesis. PMID:11284741

  9. Growth Hormone Induces Transforming Growth Factor-Beta-Induced Protein in Podocytes: Implications for Podocyte Depletion and Proteinuria.

    PubMed

    Chitra, P Swathi; Swathi, T; Sahay, Rakesh; Reddy, G Bhanuprakash; Menon, Ram K; Kumar, P Anil

    2015-09-01

    The glomerular podocytes form a major size selective barrier for the filtration of serum proteins and reduced podocyte number is a critical event in the pathogenesis of proteinuria during diabetic nephropathy (DN). An elevated level of growth hormone (GH) is implicated as a causative factor in the development of nephropathy in patients with type 1 diabetes mellitus. We have previously shown that podocytes express GH receptor and are a target for GH action. To elucidate the molecular basis for the effects of GH on podocyte depletion, we conducted PCR-array analyses for extracellular matrix and adhesion molecules in podocytes. Our studies reveal that GH increases expression of a gene that encodes transforming growth factor-beta-induced protein (TGFBIp) expression. Similarly, microarray data retrieved from the Nephromine database revealed elevation of TGFBIp in patients with DN. Treatment with GH results in increased secretion of extracellular TGFBIp by podocytes. Both GH and TGFBIp induced apoptosis and epithelial mesenchymal transition (EMT) of podocytes. Exposure of podocytes to GH and TGFBIp resulted in increased migration of cells and altered podocyte permeability to albumin across podocyte monolayer. Administration of GH to rats induced EMT and apoptosis in the glomerular fraction of the kidney. Therefore, we conclude that the GH-dependent increase in TGFBIp in the podocyte is one of the mechanisms responsible for podocyte depletion in DN. PMID:25740786

  10. Expression of transforming growth factor β and fibroblast growth factor 2 in the lens epithelium of Morioka cataract mice.

    PubMed

    Kondo, Tomohiro; Ishiga-Hashimoto, Naoko; Nagai, Hiroaki; Takeshita, Ai; Mino, Masaki; Morioka, Hiroshi; Kusakabe, Ken Takeshi; Okada, Toshiya

    2014-05-01

    In the Morioka cataract (MCT) mice, lens opacity appears at 6 to 8 weeks of age, and swollen lens fiber is electron-microscopically observed at 3 weeks after birth. The present study was designed to characterize the expression of transforming growth factor β (TGFβ) and fibroblast growth factor 2 (FGF2) in the lens epithelium of the MCT mice. Immunohistochemical analysis showed that the expression of TGFβ in the lens epithelium of the MCT mice was stronger than that of the wild-type ddY mice at 2 and 4 weeks after birth. The expression of TGFβ receptors (TGFβRI and TGFβRII) and FGF2 in the lens epithelium of the MCT mice was stronger than that of the wild-type ddY mice at 4 weeks and weaker than that of the wild-type ddY mice at 15 weeks after birth. Using real time polymerase chain reaction (PCR), quantitative RT-PCR analysis showed that expression of TGFβ1 and TGFβ2 mRNA in the lens of 2-week-old MCT mice was significantly higher compared to age-matched wild-type ddY mice. These findings indicate that the lens epithelium of MCT mice has increased expression of TGFβ before cataract affection and that changes in the expression of FGF2 as well as TGFβ may contribute to the progression of the cataract in the mice.

  11. Butachlor, a suspected carcinogen, alters growth and transformation characteristics of mouse liver cells.

    PubMed

    Ou, Y H; Chung, P C; Chang, Y C; Ngo, F Q; Hsu, K Y; Chen, F D

    2000-12-01

    Butachlor is a widely used herbicide in Asia and South America. Previous investigations have indicated that it is a suspected carcinogen. To understand more about the biological effects of butachlor on cultured cells and the mechanism(s) of its carcinogenicity, we studied the alteration of the growth characteristics that was induced by butachlor in normal mouse liver cells (BNL CL2). This study demonstrates that butachlor decreases the population-doubling time of BNL CL2 cells, suggesting that it stimulates cell proliferation. To support this finding, a thymidine incorporation assay was conducted and a similar result that butachlor stimulates cell proliferation was elucidated. In addition, we show that butachlor increases the saturation density of the BNL CL2 cells. When combined with the tumor initiator N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), butachlor transforms cells efficiently, as demonstrated by loss of contact inhibition. These findings indicate that butachlor alters the growth characteristics of BNL CL2 cells and suggest that butachlor may induce malignant transformation through stimulation of cell proliferation, alteration of cell cycle regulation, and suppression of cell density-dependent inhibition of proliferation.

  12. Transforming growth factor-alpha precursors in human colon carcinoma cells.

    PubMed

    Asbert, M; Montaner, B; Pérez-Tomás, R

    2001-06-01

    Among the proteins of the epidermal growth factor family, transforming growth factor-alpha (TGF-alpha) may be an especially reliable indicator of metastasis or prognosis in human colorectal carcinomas. Moreover, anomalous forms of TGF-alpha have been detected in several tissues of cancer origin, suggesting a role of these forms in the development of the disease. This study was designed to identify the presence of TGF-alpha precursors in different colon cancer cell lines by mean of immunocytochemistry and western blotting techniques. Pro-TGF-alpha was detected in all cell lines tested. Staining for pro-TGF-alpha was observed in cytoplasm. Monoclonal antibody to TGF-alpha detected two bands of 20 and 21 kDa. Polyclonal antibody to pro-TGF-alpha revealed five bands ranging from 15 to 24 kDa. All these proteins were also detected in nonmalignant cells expressing a transfected rat pro-TGF-alpha gene. In conclusions, transformation in these human colon carcinoma cells is not due to the presence of anomalous forms of TGF-alpha precursors.

  13. Strong magnetic field-assisted growth of carbon nanofibers and its microstructural transformation mechanism

    PubMed Central

    Luo, Chengzhi; Fu, Qiang; Pan, Chunxu

    2015-01-01

    It is well-known that electric and magnetic fields can control the growth direction, morphology and microstructure of one-dimensional carbon nanomaterials (1-DCNMs), which plays a key role for its potential applications in micro-nano-electrics and devices. In this paper, we introduce a novel process for controlling growth of carbon nanofibers (CNFs) with assistance of a strong magnetic field (up to 0.5 T in the center) in a chemical vapor deposition (CVD) system. The results reveal that: 1) The CNFs get bundled when grown in the presence of a strong magnetic field and slightly get aligned parallel to the direction of the magnetic field; 2) The CNFs diameter become narrowed and homogenized with increase of the magnetic field; 3) With the increase of the magnetic field, the microstructure of CNFs is gradually changed, i.e., the strong magnetic field makes the disordered “solid-cored” CNFs transform into a kind of bamboo-liked carbon nanotubes; 4) We propose a mechanism that the reason for these variations and transformation is due to diamagnetic property of carbon atoms, so that it has direction selectivity in the precipitation process. PMID:25761381

  14. Strong magnetic field-assisted growth of carbon nanofibers and its microstructural transformation mechanism.

    PubMed

    Luo, Chengzhi; Fu, Qiang; Pan, Chunxu

    2015-01-01

    It is well-known that electric and magnetic fields can control the growth direction, morphology and microstructure of one-dimensional carbon nanomaterials (1-DCNMs), which plays a key role for its potential applications in micro-nano-electrics and devices. In this paper, we introduce a novel process for controlling growth of carbon nanofibers (CNFs) with assistance of a strong magnetic field (up to 0.5 T in the center) in a chemical vapor deposition (CVD) system. The results reveal that: 1) The CNFs get bundled when grown in the presence of a strong magnetic field and slightly get aligned parallel to the direction of the magnetic field; 2) The CNFs diameter become narrowed and homogenized with increase of the magnetic field; 3) With the increase of the magnetic field, the microstructure of CNFs is gradually changed, i.e., the strong magnetic field makes the disordered "solid-cored" CNFs transform into a kind of bamboo-liked carbon nanotubes; 4) We propose a mechanism that the reason for these variations and transformation is due to diamagnetic property of carbon atoms, so that it has direction selectivity in the precipitation process. PMID:25761381

  15. Strong magnetic field-assisted growth of carbon nanofibers and its microstructural transformation mechanism

    NASA Astrophysics Data System (ADS)

    Luo, Chengzhi; Fu, Qiang; Pan, Chunxu

    2015-03-01

    It is well-known that electric and magnetic fields can control the growth direction, morphology and microstructure of one-dimensional carbon nanomaterials (1-DCNMs), which plays a key role for its potential applications in micro-nano-electrics and devices. In this paper, we introduce a novel process for controlling growth of carbon nanofibers (CNFs) with assistance of a strong magnetic field (up to 0.5 T in the center) in a chemical vapor deposition (CVD) system. The results reveal that: 1) The CNFs get bundled when grown in the presence of a strong magnetic field and slightly get aligned parallel to the direction of the magnetic field; 2) The CNFs diameter become narrowed and homogenized with increase of the magnetic field; 3) With the increase of the magnetic field, the microstructure of CNFs is gradually changed, i.e., the strong magnetic field makes the disordered ``solid-cored'' CNFs transform into a kind of bamboo-liked carbon nanotubes; 4) We propose a mechanism that the reason for these variations and transformation is due to diamagnetic property of carbon atoms, so that it has direction selectivity in the precipitation process.

  16. Transforming and oncogenic potential of activated c-Ha-ras in three immortalized human breast epithelial cell lines.

    PubMed

    Wang, B; Soule, H D; Miller, F R

    1997-01-01

    The ability of activated c-Ha-ras (codon 12 valine) to transform human breast epithelial cells varied for three different immortalized normal human breast epithelial cell lines established from two different women. Although activated c-Ha-ras may transform and induce a preneoplastic phenotype in MCF10A cells, activated c-Ha-ras was not sufficient to transform MCF10-2A cells. Only two of three MCF10-2A clones which expressed mutant p21 protein acquired the ability to form colonies in soft agar. When xenografted into nude beige mice, two MCF10-2A clones formed squamous carcinomas and one formed no lesions at all. The ability to form tumors did not correlate with growth in soft agar. All three activated c-Ha-ras-transfected clones of MCF-12A formed colonies in soft agar but only two produced squamous carcinomas in nude beige mice. Unlike activated c-Ha-ras-transfected MCF10A cells, none of the activated c-Ha-ras-transfected MCF10-2A or MCF-12A clones formed ducts in xenografts. Rather, initial xenograft lesions consisted of nests of cells with squamous differentiation. These observations illustrate that additional events are involved in the transformation and progression of human breast epithelial cells with activated c-Ha-ras.

  17. P-cadherin regulates human hair growth and cycling via canonical Wnt signaling and transforming growth factor-β2.

    PubMed

    Samuelov, Liat; Sprecher, Eli; Tsuruta, Daisuke; Bíró, Tamás; Kloepper, Jennifer E; Paus, Ralf

    2012-10-01

    P-cadherin is a key component of epithelial adherens junctions, and it is prominently expressed in the hair follicle (HF) matrix. Loss-of-function mutations in CDH3, which encodes P-cadherin, result in hypotrichosis with juvenile macular dystrophy (HJMD), an autosomal recessive disorder featuring sparse and short hair. Here, we attempted to recapitulate some aspects of HJMD in vitro by transfecting normal, organ-cultured human scalp HFs with lipofectamine and CDH3-specific or scrambled control siRNAs. As in HJMD patients, P-cadherin silencing inhibited hair shaft growth, prematurely induced HF regression (catagen), and inhibited hair matrix keratinocyte proliferation. In situ, membrane β-catenin expression and transcription of the β-catenin target gene, axin2, were significantly reduced, whereas glycogen synthase kinase 3 β (GSK3β) and phospho-β-catenin immunoreactivity were increased. These effects were partially reversed by inhibiting GSK3β. P-cadherin silencing reduced the expression of the anagen-promoting growth factor, IGF-1, whereas that of transforming growth factor β 2 (TGFβ2; catagen promoter) was enhanced. Neutralizing TGFβ antagonized the catagen-promoting effects of P-cadherin silencing. In summary, we introduce human HFs as an attractive preclinical model for studying the functions of P-cadherin in human epithelial biology and pathology. This model demonstrates that cadherins can be successfully knocked down in an intact human organ in vitro, and shows that P-cadherin is needed for anagen maintenance by regulating canonical Wnt signaling and suppressing TGFβ2.

  18. Protopanaxatirol type ginsenoside Re promotes cyclic growth of hair follicles via inhibiting transforming growth factor β signaling cascades.

    PubMed

    Li, Zheng; Ryu, Seung-Wook; Lee, Jungsul; Choi, Kyungsun; Kim, Sunchang; Choi, Chulhee

    2016-02-19

    Ginsenosides, the major bio-active ingredients included in Panax ginseng, have been known for the hair growth activity and used to treat patients who suffer from hair loss; however, the detailed mechanisms of this action are still largely unknown. This study was conducted to investigate the molecular and cellular mechanisms responsible for hair growth promoting effect of ginsenoside Re (GRe) in vitro and in vivo. Different doses of minoxidil and GRe were administered topically to the back regions of nude mice for up to 45 days, and hair shaft length and hair cycles were determined for hair promoting activities. Topical treatment of GRe significantly increased the hair shaft length and hair existent time, which was comparable to the action of minoxidil. We also demonstrated that GRe stimulated hair shaft elongation in the ex vivo cultures of vibrissa hair follicles isolated from C57BL/6 mouse. Systemic transcriptome analysis by next generation sequencing demonstrated that TGF-β-pathway related genes were selectively down-regulated by treatment of GRe in vivo, and the same treatment suppressed TGF-β-induced phosphorylation of ERK in HeLa cells. The results clearly indicated that GRe is the effective constituent in the ginseng on hair promotion via selective inhibition of the hair growth phase transition related signaling pathways, TGF-β signaling cascades.

  19. Protopanaxatirol type ginsenoside Re promotes cyclic growth of hair follicles via inhibiting transforming growth factor β signaling cascades.

    PubMed

    Li, Zheng; Ryu, Seung-Wook; Lee, Jungsul; Choi, Kyungsun; Kim, Sunchang; Choi, Chulhee

    2016-02-19

    Ginsenosides, the major bio-active ingredients included in Panax ginseng, have been known for the hair growth activity and used to treat patients who suffer from hair loss; however, the detailed mechanisms of this action are still largely unknown. This study was conducted to investigate the molecular and cellular mechanisms responsible for hair growth promoting effect of ginsenoside Re (GRe) in vitro and in vivo. Different doses of minoxidil and GRe were administered topically to the back regions of nude mice for up to 45 days, and hair shaft length and hair cycles were determined for hair promoting activities. Topical treatment of GRe significantly increased the hair shaft length and hair existent time, which was comparable to the action of minoxidil. We also demonstrated that GRe stimulated hair shaft elongation in the ex vivo cultures of vibrissa hair follicles isolated from C57BL/6 mouse. Systemic transcriptome analysis by next generation sequencing demonstrated that TGF-β-pathway related genes were selectively down-regulated by treatment of GRe in vivo, and the same treatment suppressed TGF-β-induced phosphorylation of ERK in HeLa cells. The results clearly indicated that GRe is the effective constituent in the ginseng on hair promotion via selective inhibition of the hair growth phase transition related signaling pathways, TGF-β signaling cascades. PMID:26820528

  20. Angiotensin II-induced hypertrophy of cultured murine proximal tubular cells is mediated by endogenous transforming growth factor-beta.

    PubMed Central

    Wolf, G; Mueller, E; Stahl, R A; Ziyadeh, F N

    1993-01-01

    Previous studies by our group have demonstrated that angiotensin II (ANG II), as a single factor in serum-free medium, induces cellular hypertrophy of a cultured murine proximal tubular cell line (MCT). The present study was performed to test the hypothesis that this growth effect was mediated by activation of endogenous transforming growth factor-beta (TGF-beta). Exogenous TGF-beta 1 (1 ng/ml) mimicked the growth effects observed with 10(-8) M ANG II (inhibition of DNA synthesis and induction of cellular hypertrophy). A neutralizing anti-TGF-beta antibody attenuated the ANG II-induced increase in de novo protein and total RNA synthesis as well as total protein content. This antibody also abolished the ANG II-mediated inhibition of [3H]thymidine incorporation into quiescent MCT cells. Control IgG or an unrelated antibody had no effect. A bioassay for TGF-beta using mink lung epithelial cells revealed that MCT cells treated with ANG II released active TGF-beta into the cell culture supernatant. Northern blot analysis and semi-quantitative cDNA amplification demonstrated increases in steady-state levels for TGF-beta 1 mRNA after ANG II stimulation of MCT cells, but not in a syngeneic murine mesangial cell line. Our data indicate that the ANG II-induced hypertrophy in MCT cells is mediated by synthesis and activation of endogenous TGF-beta. It is intriguing to speculate that TGF-beta may play a role in the early tubular cell hypertrophy and the subsequent interstitial scarring observed in several models of chronic renal injury that are characterized by increased activity of intrarenal ANG II. Images PMID:7690779

  1. Transforming growth factor (TGF)beta, fibroblast growth factor (FGF) and retinoid signalling pathways promote pancreatic exocrine gene expression in mouse embryonic stem cells.

    PubMed Central

    Skoudy, Anouchka; Rovira, Meritxell; Savatier, Pierre; Martin, Franz; León-Quinto, Trinidad; Soria, Bernat; Real, Francisco X

    2004-01-01

    Extracellular signalling cues play a major role in the activation of differentiation programmes. Mouse embryonic stem (ES) cells are pluripotent and can differentiate into a wide variety of specialized cells. Recently, protocols designed to induce endocrine pancreatic differentiation in vitro have been designed but little information is currently available concerning the potential of ES cells to differentiate into acinar pancreatic cells. By using conditioned media of cultured foetal pancreatic rudiments, we demonstrate that ES cells can respond in vitro to signalling pathways involved in exocrine development and differentiation. In particular, modulation of the hedgehog, transforming growth factor beta, retinoid, and fibroblast growth factor pathways in ES cell-derived embryoid bodies (EB) resulted in increased levels of transcripts encoding pancreatic transcription factors and cytodifferentiation markers, as demonstrated by RT-PCR. In EB undergoing spontaneous differentiation, expression of the majority of the acinar genes (i.e. amylase, carboxypeptidase A and elastase) was induced after the expression of endocrine genes, as occurs in vivo during development. These data indicate that ES cells can undergo exocrine pancreatic differentiation with a kinetic pattern of expression reminiscent of pancreas development in vivo and that ES cells can be coaxed to express an acinar phenotype by activation of signalling pathways known to play a role in pancreatic development and differentiation. PMID:14733613

  2. In situ electron microscope study of the phase transformation, structure and growth of thin Te1-xSex films

    NASA Astrophysics Data System (ADS)

    Vermaak, J. S.; Raubenheimer, D.

    1988-01-01

    An in-situ electron microscope technique was utilized to observe directly the amorphous-to-crystalline phase transformation, the isothermal growth rates, as well as the orientation and structure of the recrystallized films for the Te1-xSex alloy system for x=0.2, 0.3 and 0.4. Activation energies of E=0.91, 0.93 and 0.96 eV and crystallization temperatures of Tc=-14, 81.5 and 85°C for the three alloys, respectively, were found. In all three cases the crystallization process originated from single crystalline nuclei with a hexagonal structure and with the c-axis in general parallel to the substrate surface.

  3. X-linked inhibitor of apoptosis protein functions as a cofactor in transforming growth factor-beta signaling.

    PubMed

    Birkey Reffey, S; Wurthner, J U; Parks, W T; Roberts, A B; Duckett, C S

    2001-07-13

    X-linked inhibitor of apoptosis protein (XIAP) is a potent suppressor of apoptotic cell death, which functions by directly inhibiting caspases, the principal effectors of apoptosis. Here we report that XIAP can also function as a cofactor in the regulation of gene expression by transforming growth factor-beta (TGF-beta). XIAP, but not the related proteins c-IAP1 or c-IAP2, associated with several members of the type I class of the TGF-beta receptor superfamily and potentiated TGF-beta-induced signaling. Although XIAP-mediated activation of c-Jun N-terminal kinase and nuclear factor kappa B was found to require the TGF-beta signaling intermediate Smad4, the ability of XIAP to suppress apoptosis was found to be Smad4-independent. These data implicate a role for XIAP in TGF-beta-mediated signaling that is distinct from its anti-apoptotic functions.

  4. Uric acid and transforming growth factor in fructose-induced production of reactive oxygen species in skeletal muscle.

    PubMed

    Madlala, Hlengiwe P; Maarman, Gerald J; Ojuka, Edward

    2016-04-01

    The consumption of fructose, a major constituent of the modern diet, has raised increasing concern about the effects of fructose on health. Research suggests that excessive intake of fructose (>50 g/d) causes hyperuricemia, insulin resistance, mitochondrial dysfunction, de novo lipogenesis by the liver, and increased production of reactive oxygen species (ROS) in muscle. In a number of tissues, uric acid has been shown to stimulate the production of ROS via activation of transforming growth factor β1 and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4. The role of uric acid in fructose-induced production of ROS in skeletal muscle, however, has not been investigated. This review examines the evidence for fructose-induced production of ROS in skeletal muscle, highlights proposed mechanisms, and identifies gaps in current knowledge.

  5. Uric acid and transforming growth factor in fructose-induced production of reactive oxygen species in skeletal muscle.

    PubMed

    Madlala, Hlengiwe P; Maarman, Gerald J; Ojuka, Edward

    2016-04-01

    The consumption of fructose, a major constituent of the modern diet, has raised increasing concern about the effects of fructose on health. Research suggests that excessive intake of fructose (>50 g/d) causes hyperuricemia, insulin resistance, mitochondrial dysfunction, de novo lipogenesis by the liver, and increased production of reactive oxygen species (ROS) in muscle. In a number of tissues, uric acid has been shown to stimulate the production of ROS via activation of transforming growth factor β1 and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4. The role of uric acid in fructose-induced production of ROS in skeletal muscle, however, has not been investigated. This review examines the evidence for fructose-induced production of ROS in skeletal muscle, highlights proposed mechanisms, and identifies gaps in current knowledge. PMID:26946251

  6. Transgenic overexpression of transforming growth factor alpha bypasses the need for c-Ha-ras mutations in mouse skin tumorigenesis.

    PubMed Central

    Vassar, R; Hutton, M E; Fuchs, E

    1992-01-01

    The induction of skin papillomas in mice can be divided into two different stages. Chemical initiation frequently elicits mutations in the Ha-ras gene, leading to the constitutive activation of ras. The second step, promotion, involves repetitive topical application of phorbol esters or wounding, leading to epidermal hyperproliferation and papilloma formation. We have found that overexpression of transforming growth factor alpha (TGF-alpha) in the basal epidermal layer of transgenic mice yielded papillomas directly upon wounding or 12-O-tetradecanoylphorbol-13-acetate treatment without the need for an initiator. Moreover, papillomas from TGF-alpha mice did not exhibit mutations in the Ha-ras gene. Interestingly, TGF-alpha acted synergistically with 12-O-tetradecanoylphorbol-13-acetate to enhance epidermal hyperproliferation. Our results demonstrate a central role for TGF-alpha overexpression in tumorigenesis and provide an important animal model for the study of skin tumorigenesis. Images PMID:1406654

  7. Coordinated Regulation of Apoptosis and Cell Proliferation by Transforming Growth Factor β1 in Cultured Uterine Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Rotello, Rocco J.; Lieberman, Rita C.; Purchio, Anthony F.; Gerschenson, Lazaro E.

    1991-04-01

    Cell and tissue growth is regulated through a complex interplay of stimulatory and inhibitory signals. We describe two biological actions of transforming growth factor β 1 (TGF-β 1) in primary cultures of rabbit uterine epithelial cells: (i) inhibition of cell proliferation and (ii) a concomitant increase in cells undergoing apoptosis (programmed cell death). It is proposed that proliferation and apoptosis together comprise normal cell growth regulation.

  8. Sorption and mineral-promoted transformation of synthetic hormone growth promoters in soil systems.

    PubMed

    Qu, Shen; Kolodziej, Edward P; Cwiertny, David M

    2014-12-24

    This work examines the fate of synthetic growth promoters (trenbolone acetate, melengestrol acetate, and zeranol) in sterilized soil systems, focusing on their sorption to organic matter and propensity for mineral-promoted reactions. In organic-rich soil matrices (e.g., Pahokee Peat), the extent and reversibility of sorption did not generally correlate with compound hydrophobicity (e.g., K(ow) values), suggesting that specific binding interactions (e.g., potentially hydrogen bonding through C17 hydroxyl groups for the trenbolone and melengestrol families) can also contribute to uptake. In soils with lower organic carbon contents (1-5.9% OC), evidence supports sorption occurring in parallel with surface reaction on inorganic mineral phases. Subsequent experiments with pure mineral phases representative of those naturally abundant in soil (e.g., iron, silica, and manganese oxides) suggest that growth promoters are prone to mineral-promoted oxidation, hydrolysis, and/or nucleophilic (e.g., H2O or OH(-)) addition reactions. Although reaction products remain unidentified, this study shows that synthetic growth promoters can undergo abiotic transformation in soil systems, a previously unidentified fate pathway with implications for their persistence and ecosystem effects in the subsurface.

  9. Transforming growth factor-beta and its implication in the malignancy of gliomas.

    PubMed

    Roy, Laurent-Olivier; Poirier, Marie-Belle; Fortin, David

    2015-03-01

    Malignant gliomas are the most common type of primary malignant brain tumors. They are characterized by enhanced growing capabilities, neoangiogenic proliferation, and extensive infiltration of the brain parenchyma, which make their complete surgical resection impossible. Together with transient and refractory responses to standard therapy, these aggressive neoplasms are incurable and present a median survival of 12 to 14 months. Transforming growth factor-beta (TGF-β) is a pleiotropic cytokine of which two of the three isoforms expressed in humans have been shown to be overexpressed proportionally to the histologic grade of glioma malignancy. The increase of chromosomal aberrations and genetic mutations observed in glioma cells turns TGF-β into an oncogene. For that reason, it plays critical roles in glioma progression through induction of several genes implicated in many carcinogenic processes such as proliferation, angiogenesis, and invasion. Consequently, investigators have begun developing innovative therapeutics targeting this growth factor or its signaling pathway in an attempt to hinder TGF-β's appalling effects in order to refine the treatment of malignant gliomas and improve their prognosis. In this paper, we extensively review the TGF-β-induced oncogenic pathways and discuss the diverse new molecules targeting this growth factor. PMID:24590691

  10. Immunohistochemical localization of the epidermal growth factor, transforming growth factor alpha, and their receptor in the human mesonephros and metanephros.

    PubMed

    Bernardini, N; Bianchi, F; Lupetti, M; Dolfi, A

    1996-07-01

    The distribution of epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and EGF/TGF alpha receptor were studied by means of immunohistochemical methods starting from the very early stages of human embryonic kidney development. Mesonephros and metanephros were examined in order to detect immunoreactive staining in serial sectioned embryos and fetal kidneys. Anti-EGF immunoprecipitates were found in the S-shaped mesonephric vesicles of 6-week old embryos as well as in the mesonephric duct albeit with a lower degree of reactivity. Intense reactivity was observed in the metanephros within the blastemic caps of the same gestational period; the reaction was weaker within the ureteric bud branches. Bowman's capsule, proximal tubules, and collecting ducts were also reactive in the fetal kidney to varying degrees. The distribution of TGF alpha reactivity in the mesonephros was similar to that observed for EGF but with a lower intensity. In contrast, there was no reactivity in the metanephros, at least during the embyronic periods examined. By the 11th week of gestation, an intense reactivity for TGF alpha polipeptide was shown in the fetal kidney at the level of the proximal tubules and Bowman's capsule; distal tubules as well as all urinary structures from the collecting ducts to the pelvis were less reactive. Finally, EGF/TGF alpha receptor reactivity was identified by the 6th week of development, being more intense in the mesonephros at the level of the mesonephric duct cells. In the metanephros, the ureteric bud-derived branches were reactive, whereas most of the blastemic tissue did not stain. By the 11th week, only the collecting ducts and the remaining urinary structures contained reaction products: Reactivity was distributed to the tissues originating from the ureteric bud branching. Taking into account recent advances in knowledge about the biology of growth factors, the hypothesis is proposed that the secretory components (vesicles

  11. Transformation and pp60v-src autophosphorylation correlate with SHC-GRB2 complex formation in rat and chicken cells expressing host-range and kinase-active, transformation-defective alleles of v-src.

    PubMed Central

    Verderame, M F; Guan, J L; Woods Ignatoski, K M

    1995-01-01

    The biochemical properties of several pp60v-src substrates believed to participate in src-mediated transformation were examined in cells expressing a kinase-active, transformation-defective v-src allele (v-src-F172 delta/Y416F) and its parental allele, v-src-F172 delta, a host-range--dependent allele that transforms chicken cells to a fusiform morphology, but does not transform rat cells. Because pp60v-src-F172 delta is dependent on autophosphorylation for transforming ability, these alleles provide a unique opportunity to examine the role of pp60v-src autophosphorylation in regulating substrate interactions. Increased pp125FAK tyrosine phosphorylation and high levels of pp60v-src-associated phosphotidylinositol-3' kinase activity were detected specifically in chicken cells exhibiting round, refractile transformation but not in cells transformed to a fusiform morphology. Increased pp125FAK kinase activity, but not increased pp125FAK tyrosine-phosphorylation correlated with pp60v-src autophosphorylation and increased anchorage-independent growth. Thus, pp125FAK and PI3'K may participate in morphological transformation by v-src. Furthermore, association of phosphorylated SHC with the adapter GRB2 correlated with increased anchorage-independent growth (and autophosphorylation) in both rat and chicken cells independent of the morphological phenotype induced. Therefore, host-range dependence for transformation may be regulated through association of SHC with GRB2, thus implicating SHC as a crucial substrate for src-dependent transformation. Images PMID:7579711

  12. How should enzyme activities be used in fish growth studies?

    PubMed

    Pelletier; Blier; Dutil; Guderley

    1995-01-01

    The activity of glycolytic and oxidative enzymes was monitored in the white muscle of Atlantic cod Gadus morhua experiencing different growth rates. A strong positive relationship between the activity of two glycolytic enzymes and individual growth rate was observed regardless of whether the enzyme activity was expressed as units per gram wet mass, units per gram dry mass or with respect to muscle protein and DNA content. The most sensitive response to growth rate was observed when pyruvate kinase and lactate dehydrogenase activities were expressed as units per microgram DNA, and this may be useful as an indicator of growth rate in wild fish. In contrast, no relationship between the activities of oxidative enzymes and growth rate was observed when cytochrome c oxidase and citrate synthase activities were expressed as units per gram protein. Apparently, the aerobic capacity of white muscle in cod is not specifically increased to match growth rate. PMID:9319392

  13. Posttranslational regulation of insulin-like growth factor binding protein-4 in normal and transformed human fibroblasts. Insulin-like growth factor dependence and biological studies.

    PubMed Central

    Conover, C A; Kiefer, M C; Zapf, J

    1993-01-01

    Insulin-like growth factor binding protein-4 (IGFBP-4) is a 24-26-kD protein expressed by a variety of cell types in vivo and in vitro. Treatment of normal adult human fibroblasts with 10 nM insulin-like growth factor II (IGF-II) for 24 h resulted in an 85% decrease in endogenous IGFBP-4, as assessed by Western ligand blot analysis of the conditioned medium. Incubation of human fibroblast-conditioned medium (HFCM) with IGF-II under cell-free conditions led to a similar loss of IGFBP-4. This posttranslationally regulated decrease in IGFBP-4 appeared to be due to a protease in HFCM: (a) It could be prevented with specific protease inhibitors or incubation at 4 degrees C; (b) proteolysis of recombinant human (rh) IGFBP-4 required HFCM; (c) immunoblotting and radiolabeling confirmed cleavage of IGFBP-4 into 18- and 14-kD IGFBP-4 fragments. The protease was specific for IGFBP-4, and was strictly dependent on IGFs for activation. IGF-II was the most effective of the natural and mutant IGFs tested, inducing complete hydrolysis of rhIGFBP-4 at a molar ratio of 0.25:1 (IGF/IGFBP-4). Simian virus 40-transformed adult human fibroblasts also expressed IGFBP-4 and IGFBP-4 protease, as well as an inhibitor of IGFBP-4 proteolysis. In biological studies, intact rhIGFBP-4 potently inhibited IGF-I-stimulated [3H]aminoisobutyric acid uptake, whereas proteolyzed rhIGFBP-4 had no inhibitory effect. In conclusion, these data provide evidence for a novel IGF-dependent IGFBP-4-specific protease that modifies IGFBP-4 structure and function, and indicate a preferential role for IGF-II in its activation. Posttranslational regulation of IGFBP-4 may provide a means for cooperative control of local cell growth by IGF-I and IGF-II. Images PMID:7680662

  14. Transforming growth factor-β1 induces EMT by the transactivation of epidermal growth factor signaling through HA/CD44 in lung and breast cancer cells.

    PubMed

    Li, Lingmei; Qi, Lisha; Liang, Zhijie; Song, Wangzhao; Liu, Yanxue; Wang, Yalei; Sun, Baocun; Zhang, Bin; Cao, Wenfeng

    2015-07-01

    Epithelial-mesenchymal transition (EMT), a process closely related to tumor development, is regulated by a variety of signaling pathways and growth factors, such as transforming growth factor-β1 (TGF-β1) and epidermal growth factor (EGF). Hyaluronan (HA) has been shown to induce EMT through either TGF-β1 or EGF signaling and to be a regulator of the crosstalk between these two pathways in fibroblasts. In this study, in order to clarify whether HA has the same effect in tumor cells, we utilized the lung cancer cell line, A549, and the breast cancer cell line, MCF-7, and found that the effects of stimulation with TGF-β1 were more potent than those of EGF in regulating the expression of EMT-associated proteins and in enhancing cell migration and invasion. In addition, we observed that TGF-β1 activated EGF receptor (EGFR) and its downstream AKT and extracellular signal-regulated kinase (ERK) pathways. Furthermore, we found that TGF-β1 upregulated the expression of hyaluronan synthases (HAS1, HAS2 and HAS3) and promoted the expression of CD44, a cell surface receptor for HA, which interacts with EGFR, resulting in the activation of the downstream AKT and ERK pathways. Conversely, treatment with 4-methylumbelliferone (4-MU; an inhibitor of HAS) prior to stimulation with TGF-β1, inhibited the expression of CD44 and EGFR, abolished the interaction between CD44 and EGFR. Furthermore, the use of shRNA targeting CD44 impaired the expression of EGFR, deactivated the AKT and ERK pathways, reversed EMT and decreased the migration and invasion ability of cells. In conclusion, our data demonstrate that TGF-β1 induces EMT by the transactivation of EGF signaling through HA/CD44 in lung and breast cancer cells.

  15. Interferon-alpha inhibits murine macrophage transforming growth factor-beta mRNA expression.

    PubMed

    Dhanani, S; Huang, M; Wang, J; Dubinett, S M

    1994-06-01

    Transforming growth factor-beta (TGF-beta), a multifunctional polypeptide is produced by a wide variety of cells and regulates a broad array of physiological and pathological functions. TGF-beta appears to play a central role in pulmonary fibrosis and may contribute to tumor-associated immunosuppression. Alveolar macrophages are a rich source of TGF-beta and are intimately involved in lung inflammation. We therefore chose to study TGF-beta regulation in murine alveolar macrophages as well as an immortalized peritoneal macrophage cell line (IC-21). Murine macrophages were incubated with cytokines to evaluate their role in regulating TGF-beta mRNA expression. We conclude that IFN-alpha downregulates TGF-beta mRNA expression in murine macrophages. PMID:8088926

  16. Transforming growth factor-β: an important mediator in Helicobacter pylori-associated pathogenesis

    PubMed Central

    Li, Nianshuang; Xie, Chuan; Lu, Nong-Hua

    2015-01-01

    Helicobacter pylori (H.pylori) is a Gram-negative, microaerophilic, helical bacillus that specifically colonizes the gastric mucosa. The interaction of virulence factors, host genetic factors, and environmental factors contributes to the pathogenesis of H. pylori-associated conditions, such as atrophic gastritis and intestinal metaplasia. Infection with H. pylori has recently been recognized as the strongest risk factor for gastric cancer. As a pleiotropic cytokine, transforming growth factor (TGF)-β regulates various biological processes, including cell cycle, proliferation, apoptosis, and metastasis. Recent studies have shed new light on the involvement of TGF-β signaling in the pathogenesis of H. pylori infection. This review focuses on the potential etiological roles of TGF-β in H. pylori-mediated gastric pathogenesis. PMID:26583078

  17. CYLD negatively regulates transforming growth factor-β-signalling via deubiquitinating Akt

    PubMed Central

    Lim, Jae Hyang; Jono, Hirofumi; Komatsu, Kensei; Woo, Chang-Hoon; Lee, Jiyun; Miyata, Masanori; Matsuno, Takashi; Xu, Xiangbin; Huang, Yuxian; Zhang, Wenhong; Park, Soo Hyun; Kim, Yu-Il; Choi, Yoo-Duk; Shen, Huahao; Heo, Kyung-Sun; Xu, Haodong; Bourne, Patricia; Koga, Tomoaki; Xu, Haidong; Yan, Chen; Wang, Binghe; Chen, Lin-Feng; Feng, Xin-Hua; Li, Jian-Dong

    2012-01-01

    Lung injury, whether induced by infection or caustic chemicals, initiates a series of complex wound-healing responses. If uncontrolled, these responses may lead to fibrotic lung diseases and loss of function. Thus, resolution of lung injury must be tightly regulated. The key regulatory proteins required for tightly controlling the resolution of lung injury have yet to be identified. Here we show that loss of deubiquitinase CYLD led to the development of lung fibrosis in mice after infection with Streptococcus pneumoniae. CYLD inhibited transforming growth factor-β-signalling and prevented lung fibrosis by decreasing the stability of Smad3 in an E3 ligase carboxy terminus of Hsc70-interacting protein-dependent manner. Moreover, CYLD decreases Smad3 stability by deubiquitinating K63-polyubiquitinated Akt. Together, our results unveil a role for CYLD in tightly regulating the resolution of lung injury and preventing fibrosis by deubiquitinating Akt. These studies may help develop new therapeutic strategies for preventing lung fibrosis. PMID:22491319

  18. The Role of Transforming Growth Factor β1 in the Regulation of Blood Pressure

    PubMed Central

    Matsuki, Kota; Hathaway, Catherine K.; Lawrence, Marlon G.; Smithies, Oliver; Kakoki, Masao

    2016-01-01

    Although human association studies suggest a link between polymorphisms in the gene encoding transforming growth factor (TGF) β1 and differing blood pressure levels, a causative mechanism for this correlation remains elusive. Recently we have generated a series of mice with graded expression of TGFβ1, ranging from approximately 10% to 300% compared to normal. We have found that blood pressure and plasma volume are negatively regulated by TGFβ1. Of note, the 10% hypomorph exhibits primary aldosteronism and markedly impaired urinary excretion of water and electrolytes. We here review previous literature highlighting the importance of TGFβ signaling as a natriuretic system, which we postulate is a causative mechanism explaining how polymorphisms in TGFβ1 could influence blood pressure levels. PMID:25801626

  19. Proton NMR assignment and secondary structural elements of human transforming growth factor. alpha

    SciTech Connect

    Brown, S.C.; Mueller, L.; Jeffs, P.W. )

    1989-01-24

    The {sup 1}H NMR spectrum of human transforming growth factor {alpha} (hTGF-{alpha}) has been completely assigned, and secondary structural elements have been identified as a preliminary step in determining the structure of this protein by distance geometry methods. Many of these structural elements closely correspond to those previously found in a truncated human EGF and murine EGF. These include the presence of an antiparallel {beta}-sheet between residues G19 and C34 with a type I {beta}-turn at V25-D28, a type II {beta}-turn at H35-Y38, and another short {beta}-sheet between residues Y38-V39 and H45-A46.

  20. The pleiotropic roles of transforming growth factor beta inhomeostasis and carcinogenesis of endocrine organs.

    SciTech Connect

    Fleisch, Markus C.; Maxwell, Christopher A.; Barcellos-Hoff,Mary-Helen

    2006-01-13

    Transforming growth factor beta (TGF-beta) is a ubiquitous cytokine that plays a critical role in numerous pathways regulating cellular and tissue homeostasis. TGF-beta is regulated by hormones and is a primary mediator of hormone response in uterus, prostate and mammary gland. This review will address the role of TGF-beta in regulating hormone dependent proliferation and morphogenesis. The subversion of TGF-beta regulation during the processes of carcinogenesis, with particular emphasis on its effects on genetic stability and epithelial to mesenchymal transition (EMT), will also be examined. An understanding of the multiple and complex mechanisms of TGF-beta regulation of epithelial function, and the ultimate loss of TGF-beta function during carcinogenesis, will be critical in the design of novel therapeutic interventions for endocrine-related cancers.

  1. Transforming growth factor beta differentially modulates the inducible nitric oxide synthase gene in distinct cell types.

    PubMed

    Gilbert, R S; Herschman, H R

    1993-08-31

    Nitric oxide is a mediator of paracrine cell signalling. An inducible form of nitric oxide synthase (iNOS) is expressed in macrophages and in Swiss 3T3 cells. Transforming growth factor beta (TGF-beta) is a cytokine that modulates many cellular functions. We find that TGF-beta cannot induce iNOS mRNA expression, either in macrophage cell lines or in Swiss 3T3 cells. However, TGF-beta attenuates lipopolysaccharide induction of iNOS mRNA in macrophages. In contrast, TGF-beta enhances iNOS induction by phorbol ester, serum or lipopolysaccharide in 3T3 cells. Thus TGF-beta can inhibit or augment iNOS mRNA induction in response to primary inducers, depending on the cell type in question.

  2. Modeling of organic substrate transformation in the high-rate activated sludge process.

    PubMed

    Nogaj, Thomas; Randall, Andrew; Jimenez, Jose; Takacs, Imre; Bott, Charles; Miller, Mark; Murthy, Sudhir; Wett, Bernhard

    2015-01-01

    This study describes the development of a modified activated sludge model No.1 framework to describe the organic substrate transformation in the high-rate activated sludge (HRAS) process. New process mechanisms for dual soluble substrate utilization, production of extracellular polymeric substances (EPS), absorption of soluble substrate (storage), and adsorption of colloidal substrate were included in the modified model. Data from two HRAS pilot plants were investigated to calibrate and to validate the proposed model for HRAS systems. A subdivision of readily biodegradable soluble substrate into a slow and fast fraction were included to allow accurate description of effluent soluble chemical oxygen demand (COD) in HRAS versus longer solids retention time (SRT) systems. The modified model incorporates production of EPS and storage polymers as part of the aerobic growth transformation process on the soluble substrate and transformation processes for flocculation of colloidal COD to particulate COD. The adsorbed organics are then converted through hydrolysis to the slowly biodegradable soluble fraction. Two soluble substrate models were evaluated during this study, i.e., the dual substrate and the diauxic models. Both models used two state variables for biodegradable soluble substrate (SBf and SBs) and a single biomass population. The A-stage pilot typically removed 63% of the soluble substrate (SB) at an SRT <0.13 d and 79% at SRT of 0.23 d. In comparison, the dual substrate model predicted 58% removal at the lower SRT and 78% at the higher SRT, with the diauxic model predicting 32% and 70% removals, respectively. Overall, the dual substrate model provided better results than the diauxic model and therefore it was adopted during this study. The dual substrate model successfully described the higher effluent soluble COD observed in the HRAS systems due to the partial removal of SBs, which is almost completely removed in higher SRT systems.

  3. Role of transforming growth factor Beta in corneal function, biology and pathology.

    PubMed

    Tandon, A; Tovey, J C K; Sharma, A; Gupta, R; Mohan, R R

    2010-08-01

    Transforming growth factor-beta (TGFbeta) is a pleiotropic multifunctional cytokine that regulates several essential cellular processes in many parts of the body including the cornea. Three isoforms of TGFbeta are known in mammals and the human cornea expresses all of them. TGFbeta1 has been shown to play a central role in scar formation in adult corneas whereas TGFbeta2 and TGFbeta3 have been implicated to play a critical role in corneal development and scarless wound healing during embryogenesis. The biological effects of TGFbeta in the cornea have been shown to follow Smad dependent as well as Smad-independent signaling pathways depending upon cellular responses and microenvironment. Corneal TGFbeta expression is necessary for maintaining corneal integrity and corneal wound healing. On the other hand, TGFbeta is perhaps the most important cytokine in the pathogenesis of fibrotic disease in the cornea. Although the transformation of keratocytes to myofibroblasts induced by TGFbeta is largely believed to cause corneal fibrosis or scarring, the precise molecular mechanism(s) involved in this process is still unknown. Currently no drugs are available to treat corneal scarring effectively without causing significant side effects. Many approaches to treat TGFbeta-mediated corneal scarring are under investigation. These include blocking of TGFbeta, TGFbeta receptor, TGFbeta function and/or TGFbeta maturation. Other strategies such as modulating keratocyte proliferation, apoptosis, transcription and DNA condensation are also being investigated. The potential of gene therapy to neutralize the pathologic effects of TGFbeta has also been demonstrated recently.

  4. Interactions between stromal cell--derived keratinocyte growth factor and epithelial transforming growth factor in immune-mediated crypt cell hyperplasia.

    PubMed Central

    Bajaj-Elliott, M; Poulsom, R; Pender, S L; Wathen, N C; MacDonald, T T

    1998-01-01

    Immune reactions in the gut are associated with increased epithelial cell proliferation. Here we have studied the role of keratinocyte growth factor (KGF; FGF7) and transforming growth factor-alpha (TGF-alpha) in the epithelial cell hyperplasia seen in explants of fetal human small intestine after activation of lamina propria T cells with the superantigen Staphylococcus aureus enterotoxin B (SEB). After the addition of SEB to the explants there is a 10-fold increase in KGF mRNA by 72 h of culture. KGF transcripts were abundant in the lamina propria using in situ hybridization and the culture supernatants contained elevated amounts of KGF protein. SEB had no direct effect on KGF mRNA and protein production by cultured lamina propria mesenchymal cells, but both were upregulated by TNF-alpha. Accompanying the increase in KGF there was also an increase in TGF-alpha precursor proteins in the culture supernatants and the phosphorylated form of the EGFR receptor was also detected in the tissue. Increased TGF-alpha precursor proteins were also detected in the supernatants of control explants stimulated with KGF alone. The direct addition of KGF and TGF-alpha enhanced epithelial cell proliferation and antibodies against KGF and TGF-alpha partially inhibited SEB-induced crypt hyperplasia. These results suggest molecular cross-talk between the KGF/KGFR and the TGF-alpha/EGFR in immune-mediated crypt cell hyperplasia. PMID:9788959

  5. Transformational teaching and physical activity: a new paradigm for adolescent health promotion?

    PubMed

    Morton, K L; Keith, S E; Beauchamp, M R

    2010-03-01

    Drawing from transformational leadership theory, this research examined adolescent perceptions of transformational teaching within school-based physical education. In Study 1, focus groups with 62 adolescents examined perceptions of physical education teachers' behaviors. In Study 2, follow-up semi-structured interviews were conducted with 18 purposively sampled students. Findings revealed that behaviors within physical education settings can be understood within a conceptual framework that includes transformational teaching. In addition, students who perceived their teachers to utilize transformational behaviors described more adaptive responses. Issues concerning theory development and the application of transformational teaching to physical activity and health promotion settings are considered.

  6. Chemical transformations on botryane skeleton. Effect on the cytotoxic activity.

    PubMed

    Reino, José L; Durán-Patrón, Rosa; Segura, Inmaculada; Hernández-Galán, Rosario; Riese, Hans H; Collado, Isidro G

    2003-03-01

    Eighteen compounds with a botryane skeleton have been obtained through chemical transformations of various toxins from the fungus Botrytis cinerea. During the course of these transformations, the C-10 carbon of the botryane skeleton was found to exhibit an interesting high regioselectivity to oxidizing and reducing agents. In addition, the cytotoxicity of 27 botryane derivatives was determined in vitro against Hs578T, MDA-MB-231, HT-1080, U87-MG, IMR-90, and HUVEC cell lines. The results of this study confirm that the cytotoxicity of botrydial (1) and its derivatives is related to the presence of a 1,5-dialdehyde functionality.

  7. Abietane diterpenoids from Salvia sclarea transformed roots as growth inhibitors of pathogenic Acanthamoeba spp.

    PubMed

    Kuźma, Łukasz; Derda, Monika; Hadaś, Edward; Wysokińska, Halina

    2015-01-01

    Amoebae from the genus Acanthamoeba are known agents leading to various diseases such as granulomatous amoebic encephalitis (GAE), a chronic progressive disease of the central nervous system, amoebic keratitis (AK), chronic eye infection, amoebic pneumitis (AP), chronic lung infection, and skin infections. It is known that various synthetic anti-Acanthamoeba substances are ineffective. Therefore, other substances, e.g., natural plant compounds, are the focus of biological investigations regarding anti-parasite activity. In this work, the ability of four abietane diterpenoids (ferruginol, salvipisone, aethiopinone, and 1-oxo-aethiopinone) to inhibit Acanthamoeba growth is reported. All investigated compounds were active against Acanthamoeba growing in vitro. Among them, ferruginol demonstrated the highest activity against Acanthamoeba. This compound inhibited Acanthamoeba growth by about 72% in a 3-day exposure period (IC50 17.45 μM), while aethiopinone and 1-oxo-aethiopinone demonstrated this activity at the level of 55-56%. Salvipisone reduced the growth of Acanthamoeba in vitro culture by 39%. For this compound, the value of IC50 was 701.94 μM after 72 h of exposure.

  8. Oncogenic Ras activation of Raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation.

    PubMed Central

    Khosravi-Far, R; White, M A; Westwick, J K; Solski, P A; Chrzanowska-Wodnicka, M; Van Aelst, L; Wigler, M H; Der, C J

    1996-01-01

    Substantial evidence supports a critical role for the activation of the Raf-1/MEK/mitogen-activated protein kinase pathway in oncogenic Ras-mediated transformation. For example, dominant negative mutants of Raf-1, MEK, and mitogen-activated protein kinase all inhibit Ras transformation. Furthermore, the observation that plasma membrane-localized Raf-1 exhibits the same transforming potency as oncogenic Ras suggests that Raf-1 activation alone is sufficient to mediate full Ras transforming activity. However, the recent identification of other candidate Ras effectors (e.g., RalGDS and phosphatidylinositol-3 kinase) suggests that activation of other downstream effector-mediated signaling pathways may also mediate Ras transforming activity. In support of this, two H-Ras effector domain mutants, H-Ras(12V, 37G) and H-Ras(12V, 40C), which are defective for Raf binding and activation, induced potent tumorigenic transformation of some strains of NIH 3T3 fibroblasts. These Raf-binding defective mutants of H-Ras induced a transformed morphology that was indistinguishable from that induced by activated members of Rho family proteins. Furthermore, the transforming activities of both of these mutants were synergistically enhanced by activated Raf-1 and inhibited by the dominant negative RhoA(19N) mutant, indicating that Ras may cause transformation that occurs via coordinate activation of Raf-dependent and -independent pathways that involves Rho family proteins. Finally, cotransfection of H-Ras(12V, 37G) and H-Ras(12V, 40C) resulted in synergistic cooperation of their focus-forming activities, indicating that Ras activates at least two Raf-independent, Ras effector-mediated signaling events. PMID:8668210

  9. Expression and localization of epidermal growth factor, transforming growth factor-α and epidermal growth factor receptor in the canine testis

    PubMed Central

    TAMADA, Hiromichi; TAKEMOTO, Kohei; TOMINAGA, Masato; KAWATE, Noritoshi; TAKAHASHI, Masahiro; HATOYA, Shingo; MATSUYAMA, Satoshi; INABA, Toshio; SAWADA, Tsutomu

    2015-01-01

    Gene expression of epidermal growth factor (EGF), transforming growth factor-α (TGF-α) and EGF receptor (EGF-R) and the localization of the corresponding proteins in the canine testis were studied. Levels of mRNA expressions were determined by semiquantitative reverse transcription polymerase chain reaction in the testes of the peripubertal (4–6 months), young adult (3–4 years), advanced adult (7–8 years) and senescent (11–16 years) groups. The EGF-R mRNA level in the testes of the peripubertal group was significantly higher than those in the other groups, whereas there was no difference in EGF and TGF-α mRNA levels among groups. Immunohistochemical stainings for EGF, TGF-α and EGF-R in the testis revealed that immunoreactivity in the seminiferous epithelium and Sertoli cell was weak and nonspecific for the stage of spermatogenesis, and distinct staining was found in Leydig cells. These results suggest that the EGF family of growth factors may be involved in testicular maturation and function in the dog. PMID:26498203

  10. A Common Biosynthetic Pathway Governs the Dimerization and Secretion of Inhibin and Related Transforming Growth Factor β (TGFβ) Ligands*

    PubMed Central

    Walton, Kelly L.; Makanji, Yogeshwar; Wilce, Matthew C.; Chan, Karen L.; Robertson, David M.; Harrison, Craig A.

    2009-01-01

    The assembly and secretion of transforming growth factor β superfamily ligands is dependent upon non-covalent interactions between their pro- and mature domains. Despite the importance of this interaction, little is known regarding the underlying regulatory mechanisms. In this study, the binding interface between the pro- and mature domains of the inhibin α-subunit was characterized using in vitro mutagenesis. Three hydrophobic residues near the N terminus of the prodomain (Leu30, Phe37, Leu41) were identified that, when mutated to alanine, disrupted heterodimer assembly and secretion. It is postulated that these residues mediate dimerization by interacting non-covalently with hydrophobic residues (Phe271, Ile280, Pro283, Leu338, and Val340) on the outer convex surface of the mature α-subunit. Homology modeling indicated that these mature residues are located at the interface between two β-sheets of the α-subunit and that their side chains form a hydrophobic packing core. Mutation of these residues likely disturbs the conformation of this region, thereby disrupting non-covalent interactions with the prodomain. A similar hydrophobic interface was identified spanning the pro- and mature domains of the inhibin βA-subunit. Mutation of key residues, including Ile62, Leu66, Phe329, and Pro341, across this interface was disruptive for the production of both inhibin A and activin A. In addition, mutation of Ile62 and Leu66 in the βA-propeptide reduced its ability to bind, or inhibit the activity of, activin A. Conservation of the identified hydrophobic motifs in the pro- and mature domains of other transforming growth factor β superfamily ligands suggests that we have identified a common biosynthetic pathway governing dimer assembly. PMID:19193648

  11. Loss of transforming growth factor β signalling in the intestine contributes to tissue injury in inflammatory bowel disease

    PubMed Central

    Hahm, K; Im, Y; Parks, T; Park, S; Markowitz, S; Jung, H; Green, J; Kim, S

    2001-01-01

    BACKGROUND—Inflammatory bowel disease (IBD) is a chronic inflammation of the gastrointestinal tract caused by an abnormal and uncontrolled immune response to one or more normally occurring gut constituents.
AIM—Given the effects of transforming growth factor β1 (TGF-β1) on both the immune system and extracellular matrix, we postulated that alterations in TGF-β signalling in intestinal epithelial cells may play an important role in the development of IBD.
METHODS—TGF-β signalling was inactivated in mouse intestine by expressing a dominant negative mutant form of the TGF-β type II receptor under the control of the mouse intestinal trefoil peptide (ITF)/TFF3 promoter. Transgenic mice (ITF-dnRII) developed spontaneous colitis presenting with diarrhoea, haematochezia, and anal prolapse when not maintained under specific pathogen free (SPF) conditions. Under SPF conditions we induced colitis by mixing dextran sodium sulphate (DSS) in drinking water to examine the significance of loss of TGF-β signalling in the pathogenesis of IBD.
RESULTS—Transgenic mice showed increased susceptibility to DSS induced IBD, and elicited increased expression of major histocompatibility complex class II, generation of autoantibodies against intestinal goblet cells, and increased activity of matrix metalloproteinase in intestinal epithelial cells compared with wild-type littermates challenged with DSS.
CONCLUSIONS—Deficiency of TGF-β signalling specifically in the intestine contributes to the development of IBD. Maintenance of TGF-β signalling may be important in regulating immune homeostasis in the intestine


Keywords: inflammatory bowel disease; transforming growth factor β; matrix metalloproteinases; intestinal trefoil factor; mouse PMID:11454793

  12. Regulation of proliferation of embryonic heart mesenchyme: Role of transforming growth factor-beta 1 and the interstitial matrix

    SciTech Connect

    Choy, M.; Armstrong, M.T.; Armstrong, P.B. )

    1990-10-01

    Proliferation of atrioventricular cushion mesenchyme of the embryonic avian heart maintained in three-dimensional aggregate culture is stimulated by interaction with the interstitial matrix. Chicken serum or transforming growth factor-beta 1, which stimulates proliferation, induces matrix deposition in regions of the aggregate showing high labeling indices with tritiated thymidine. Dispersed heart mesenchyme interstitial matrix introduced into serum-free culture is incorporated into the aggregate and stimulates cellular proliferation similar to serum or transforming growth factor-beta 1. Proliferation is reversibly inhibited by the peptide Gly-Arg-Gly-Asp-Ser-Pro. It is suggested that transforming growth factor-beta 1 stimulates the production of interstitial matrix and that a sufficient stimulus for proliferation in this system is the presence of the matrix, which acts as the adhesive support for cellular anchorage.

  13. The Cain and Abl of Epithelial-Mesenchymal Transition and Transforming Growth Factor-β in Mammary Epithelial Cells

    PubMed Central

    Allington, Tressa M.; Schiemann, William P.

    2010-01-01

    Transforming growth factor-β (TGF-β) normally inhibits breast cancer development by preventing mammary epithelial cell (MEC) proliferation, by inducing MEC apoptosis, and by creating cell microenvironments that maintain MEC homeostasis and prevent their uncontrolled growth and motility. Mammary tumorigenesis elicits dramatic alterations in MEC architecture and microenvironment integrity, which collectively counteract the tumor-suppressing activities of TGF-β and enable its stimulation of breast cancer invasion and metastasis. How malignant MECs overcome the cytostatic actions imposed by normal microenvironments and TGF-β, and how abnormal microenvironments conspire with TGF-β to stimulate the development and progression of mammary tumors remains largely undefined. These knowledge gaps have prevented science and medicine from implementing treatments effective in simultaneously targeting abnormal cellular microenvironments, and in antagonizing the oncogenic activities of TGF-β in developing and progressing breast cancers. c-Abl is a ubiquitously expressed nonreceptor protein tyrosine kinase that essentially oversees all aspects of cell physiology, including the regulation of cell proliferation, migration and adhesion, as well as that of cell survival. Thus, the biological functions of c-Abl are highly reminiscent of those attributed to TGF-β, including the ability to function as either a suppressor or promoter of tumorigenesis. Interestingly, while dysregulated Abl activity clearly promotes tumorigenesis in hematopoietic cells, an analogous role for c-Abl in regulating solid tumor development, including those of the breast, remains controversial. Here, we review the functions of c-Abl in regulating breast cancer development and progression, and in alleviating the oncogenic activities of TGF-β and its stimulation of epithelial-mesenchymal transition during mammary tumorigenesis. PMID:21051857

  14. Photoactivation of Endogenous Latent Transforming Growth Factor–β1 Directs Dental Stem Cell Differentiation for Regeneration

    PubMed Central

    Arany, Praveen R.; Cho, Andrew; Hunt, Tristan D.; Sidhu, Gursimran; Shin, Kyungsup; Hahm, Eason; Huang, George X.; Weaver, James; Chen, Aaron Chih-Hao; Padwa, Bonnie L.; Hamblin, Michael R.; Barcellos-Hoff, Mary Helen; Kulkarni, Ashok B.; Mooney, David J.

    2014-01-01

    Rapid advancements in the field of stem cell biology have led to many current efforts to exploit stem cells as therapeutic agents in regenerative medicine. However, current ex vivo cell manipulations common to most regenerative approaches create a variety of technical and regulatory hurdles to their clinical translation, and even simpler approaches that use exogenous factors to differentiate tissue-resident stem cells carry significant off-target side effects. We show that non-ionizing, low-power laser (LPL) treatment can instead be used as a minimally invasive tool to activate an endogenous latent growth factor complex, transforming growth factor–β1 (TGF-β1), that subsequently differentiates host stem cells to promote tissue regeneration. LPL treatment induced reactive oxygen species (ROS) in a dose-dependent manner, which, in turn, activated latent TGF-β1 (LTGF-β1) via a specific methionine residue (at position 253 on LAP). Laser-activated TGF-β1 was capable of differentiating human dental stem cells in vitro. Further, an in vivo pulp capping model in rat teeth demonstrated significant increase in dentin regeneration after LPL treatment. These in vivo effects were abrogated in TGF-β receptor II (TGF-βRII) conditional knockout (DSPPCreTGF-βRIIfl/fl) mice or when wild-type mice were given a TGF-βRI inhibitor. These findings indicate a pivotal role for TGF-β in mediating LPL-induced dental tissue regeneration. More broadly, this work outlines a mechanistic basis for harnessing resident stem cells with a light-activated endogenous cue for clinical regenerative applications. PMID:24871130

  15. The Cain and Abl of epithelial-mesenchymal transition and transforming growth factor-β in mammary epithelial cells.

    PubMed

    Allington, Tressa M; Schiemann, William P

    2011-01-01

    Transforming growth factor-β (TGF-β) normally inhibits breast cancer development by preventing mammary epithelial cell (MEC) proliferation, by inducing MEC apoptosis, and by creating cell microenvironments that maintain MEC homeostasis and prevent their uncontrolled growth and motility. Mammary tumorigenesis elicits dramatic alterations in MEC architecture and microenvironment integrity, which collectively counteract the tumor-suppressing activities of TGF-β and enable its stimulation of breast cancer invasion and metastasis. How malignant MECs overcome the cytostatic actions imposed by normal microenvironments and TGF-β, and how abnormal microenvironments conspire with TGF-β to stimulate the development and progression of mammary tumors remains largely undefined. These knowledge gaps have prevented science and medicine from implementing treatments effective in simultaneously targeting abnormal cellular microenvironments, and in antagonizing the oncogenic activities of TGF-β in developing and progressing breast cancers. c-Abl is a ubiquitously expressed nonreceptor protein tyrosine kinase that essentially oversees all aspects of cell physiology, including the regulation of cell proliferation, migration and adhesion, as well as that of cell survival. Thus, the biological functions of c-Abl are highly reminiscent of those attributed to TGF-β, including the ability to function as either a suppressor or promoter of tumorigenesis. Interestingly, while dysregulated Abl activity clearly promotes tumorigenesis in hematopoietic cells, an analogous role for c-Abl in regulating solid tumor development, including those of the breast, remains controversial. Here, we review the functions of c-Abl in regulating breast cancer development and progression, and in alleviating the oncogenic activities of TGF-β and its stimulation of epithelial-mesenchymal transition during mammary tumorigenesis.

  16. A Histologically Distinctive Interstitial Pneumonia Induced by Overexpression of the Interleukin 6, Transforming Growth Factor β1, or Platelet-Derived Growth Factor B Gene

    NASA Astrophysics Data System (ADS)

    Yoshida, Mitsuhiro; Sakuma, Junko; Hayashi, Seiji; Abe, Kin'ya; Saito, Izumu; Harada, Shizuko; Sakatani, Mitsunoir; Yamamoto, Satoru; Matsumoto, Norinao; Kaneda, Yasufumi; Kishmoto, Tadamitsu

    1995-10-01

    Interstitial pneumonia is characterized by alveolitis with resulting fibrosis of the interstitium. To determine the relevance of humoral factors in the pathogenesis of interstitial pneumonia, we introduced expression vectors into Wistar rats via the trachea to locally overexpress humoral factors in the lungs. Human interleukin (IL) 6 and IL-6 receptor genes induced lymphocytic alveolitis without marked fibroblast proliferation. In contrast, overexpression of human transforming growth factor β1 or human platelet-derived growth factor B gene induced only mild or apparent cellular infiltration in the alveoli, respectively. However, both factors induced significant proliferation of fibroblasts and deposition of collagen fibrils. These histopathologic changes induced by the transforming growth factor β1 and platelet-derived growth factor B gene are partly akin to those changes seen in lung tissues from patients with pulmonary fibrosis and markedly contrast with the changes induced by overexpression of the IL-6 and IL-6 receptor genes that mimics lymphocytic interstitial pneumonia.

  17. Transforming growth factor-beta regulates stearoyl coenzyme A desaturase expression through a Smad signaling pathway.

    PubMed

    Samuel, William; Nagineni, Chandrasekharam N; Kutty, R Krishnan; Parks, W Tony; Gordon, Joel S; Prouty, Stephen M; Hooks, John J; Wiggert, Barbara

    2002-01-01

    The regulation of stearoyl-CoA desaturase (SCD), a rate-limiting enzyme in the synthesis of unsaturated fatty acids, is physiologically important because the ratio of saturated to unsaturated fatty acids is thought to control cellular functions by modulating the structural integrity and fluidity of cell membranes. Transforming growth factor-beta (TGF-beta), a multifunctional cytokine, increased SCD mRNA expression in cultured human retinal pigment epithelial cells. This response was elicited by all three TGF-beta isoforms, beta1, beta2, and beta3. However, SCD mRNA expression was not increased either by other members of the TGF-beta family or by other growth factors or cytokines. TGF-beta also increased SCD mRNA expression in several other cell lines tested. The increase in SCD mRNA expression was preceded by a marked increase in Smad2 phosphorylation in TGF-beta-treated human retinal pigment epithelial cells. TGF-beta did not induce SCD mRNA expression in a Smad4-deficient cell line. However, Smad4 overexpression restored the TGF-beta effect in this cell line. Moreover, TGF-beta-induced SCD mRNA expression was effectively blocked by the overexpression of Smad7, an inhibitory Smad. Thus, a TGF-beta signal transduction pathway involving Smad proteins appears to regulate the cellular expression of the SCD gene, and this regulation may play an important role in lipid metabolism.

  18. Regulation of experimental autoimmune neuritis by transforming growth factor-beta 1.

    PubMed

    Gregorian, S K; Lee, W P; Beck, L S; Rostami, A; Amento, E P

    1994-06-01

    Experimental autoimmune neuritis (EAN) is a T-cell-mediated autoimmune disease characterized by demyelination and mononuclear cell infiltration of the peripheral nervous system. It is induced in Lewis rats by administration of myelin P2 protein or a synthetic peptide (SP-26) corresponding to amino acid residues 53-78 of bovine P2 protein. The effects of transforming growth factor-beta 1 (TGF-beta 1) on the clinical signs, histological changes, cell-mediated immune responses, and secretion of interferon-gamma (IFN-gamma) by lymphoid cells of rats with EAN were examined. Systemic administration of TGF-beta 1 markedly inhibited the clinical signs and histological changes of EAN when given intraperitoneally every other day for Days 0 through 18. In addition, it decreased proliferative responses and reduced the delayed-type hypersensitivity (DTH) response to SP-26 compared to control rats. The reduction in clinical severity correlated with skin test unresponsiveness (DTH) to the disease-inducing agent (SP-26) as well to decreased cellular responsiveness to the antigen in vitro. The decrease in cellular responsiveness extended to a decrease in at least one T cell lymphokine, IFN-gamma. The profound effect of TGF-beta on disease progression in EAN, a T-cell-mediated process, is consistent with a direct effect of this growth factor on T lymphocytes. PMID:7515330

  19. Transforming growth factor-{beta}2 enhances differentiation of cardiac myocytes from embryonic stem cells

    SciTech Connect

    Kumar, Dinender . E-mail: Dinender.Kumar@uvm.edu; Sun, Baiming

    2005-06-24

    Stem cell therapy holds great promise for the treatment of injured myocardium, but is challenged by a limited supply of appropriate cells. Three different isoforms of transforming growth factor-{beta} (TGF-{beta}) -{beta}1, -{beta}2, and -{beta}3 exhibit distinct regulatory effects on cell growth, differentiation, and migration during embryonic development. We compared the effects of these three different isoforms on cardiomyocyte differentiation from embryonic stem (ES) cells. In contrast to TGF-{beta}1, or -{beta}3, treatment of mouse ES cells with TGF-{beta}2 isoform significantly increased embryoid body (EB) proliferation as well as the extent of the EB outgrowth that beat rhythmically. At 17 days, 49% of the EBs treated with TGF-{beta}2 exhibited spontaneous beating compared with 15% in controls. Cardiac myocyte specific protein markers sarcomeric myosin and {alpha}-actin were demonstrated in beating EBs and cells isolated from EBs. In conclusion, TGF-{beta}2 but not TGF-{beta}1, or -{beta}3 promotes cardiac myocyte differentiation from ES cells.

  20. Transforming Growth Factor Beta 3 Is Required for Excisional Wound Repair In Vivo

    PubMed Central

    Le, Mark; Naridze, Rachelle; Morrison, Jasmine; Biggs, Leah C.; Rhea, Lindsey; Schutte, Brian C.; Kaartinen, Vesa; Dunnwald, Martine

    2012-01-01

    Wound healing is a complex process that relies on proper levels of cytokines and growth factors to successfully repair the tissue. Of particular interest are the members of the transforming growth factor family. There are three TGF-ß isoforms–TGF- ß 1, 2, and 3, each isoform showing a unique expression pattern, suggesting that they each play a distinct function during development and repair. Previous studies reported an exclusive role for TGF-ß 3 in orofacial development and a potent anti-scarring effect. However, the role of TGF- ß 3 in excisional wound healing and keratinocyte migration remains poorly understood. We tested the effect of TGF-ß 3 levels on excisional cutaneous wounds in the adult mouse by directly injecting recombinant TGF-ß 3 or neutralizing antibody against TGF-ß 3 (NAB) in the wounds. Our results demonstrate that TGF-ß 3 does not promote epithelialization. However, TGF-ß 3 is necessary for wound closure as wounds injected with neutralizing antibody against TGF-ß 3 showed increased epidermal volume and proliferation in conjunction with a delay in keratinocyte migration. Wild type keratinocytes treated with NAB and Tgfb3-deficient keratinocytes closed an in vitro scratch wound with no delay, suggesting that our in vivo observations likely result from a paracrine effect. PMID:23110169

  1. Proliferating cell nuclear antigen in oesophageal diseases; correlation with transforming growth factor alpha expression.

    PubMed Central

    Jankowski, J; McMenemin, R; Yu, C; Hopwood, D; Wormsley, K G

    1992-01-01

    This study was designed to correlate mucosal proliferation in Barrett's oesophagus with expression of a growth promoting peptide, transforming growth factor alpha (TGF alpha). Oesophageal mucosa was studied from 50 patients with oesophageal disease who had been treated by oesophagectomy. Histological analysis showed a range of oesophageal pathology - 18 patients had gastric type Barrett's mucosa, 18 had intestinal type Barrett's mucosa, and 14 had oesophageal adenocarcinomas. Sections were stained immunohistochemically for proliferating cell nuclear antigen (PCNA) (an index of cellular proliferation) and TGF alpha. PCNA immunostaining was seen mainly in the basal cells of the neck/foveolar epithelial compartment of the glands in Barrett's oesophagus. However, in mucosa with high grade dysplasia, the proliferative compartment extended upwards into the superficial layers of the glands. At least 2000 cells were counted in each patient to determine the proportion with PCNA immunoreactivity (PCNA labelling index). The labelling index was highest in adenocarcinoma (25%) and in Barrett's intestinal type mucosa with high grade dysplasia (26%) compared with intestinal type mucosa with no significant dysplasia (20%) and Barrett's gastric type mucosa (12%). There was a significant positive correlation between PCNA labelling indices and TGF alpha expression in Barrett's mucosa (p less than 0.01). In glands showing high grade dysplasia, TGF alpha immunoreactivity was seen in the same regions of the glands as PCNA immunoreactivity, indicating the possibility of involvement of TGF alpha in (pre) neoplastic proliferation in Barrett's oesophagus. Images Figure 2 Figure 5 PMID:1351861

  2. Regulation of experimental autoimmune neuritis by transforming growth factor-beta 1.

    PubMed

    Gregorian, S K; Lee, W P; Beck, L S; Rostami, A; Amento, E P

    1994-06-01

    Experimental autoimmune neuritis (EAN) is a T-cell-mediated autoimmune disease characterized by demyelination and mononuclear cell infiltration of the peripheral nervous system. It is induced in Lewis rats by administration of myelin P2 protein or a synthetic peptide (SP-26) corresponding to amino acid residues 53-78 of bovine P2 protein. The effects of transforming growth factor-beta 1 (TGF-beta 1) on the clinical signs, histological changes, cell-mediated immune responses, and secretion of interferon-gamma (IFN-gamma) by lymphoid cells of rats with EAN were examined. Systemic administration of TGF-beta 1 markedly inhibited the clinical signs and histological changes of EAN when given intraperitoneally every other day for Days 0 through 18. In addition, it decreased proliferative responses and reduced the delayed-type hypersensitivity (DTH) response to SP-26 compared to control rats. The reduction in clinical severity correlated with skin test unresponsiveness (DTH) to the disease-inducing agent (SP-26) as well to decreased cellular responsiveness to the antigen in vitro. The decrease in cellular responsiveness extended to a decrease in at least one T cell lymphokine, IFN-gamma. The profound effect of TGF-beta on disease progression in EAN, a T-cell-mediated process, is consistent with a direct effect of this growth factor on T lymphocytes.

  3. Disrupted pulmonary vascular development and pulmonary hypertension in transgenic mice overexpressing transforming growth factor-alpha.

    PubMed

    Le Cras, Timothy D; Hardie, William D; Fagan, Karen; Whitsett, Jeffrey A; Korfhagen, Thomas R

    2003-11-01

    Pulmonary vascular disease plays a major role in morbidity and mortality in infant and adult lung diseases in which increased levels of transforming growth factor (TGF)-alpha and its receptor EGFR have been associated. The aim of this study was to determine whether overexpression of TGF-alpha disrupts pulmonary vascular development and causes pulmonary hypertension. Lung-specific expression of TGF-alpha in transgenic mice was driven with the human surfactant protein (SP)-C promoter. Pulmonary arteriograms and arterial counts show that pulmonary vascular development was severely disrupted in TGF-alpha mice. TGF-alpha mice developed severe pulmonary hypertension and vascular remodeling characterized by abnormally extensive muscularization of small pulmonary arteries. Pulmonary vascular development was significantly improved and pulmonary hypertension and vascular remodeling were prevented in bi-transgenic mice expressing both TGF-alpha and a dominant-negative mutant EGF receptor under the control of the SP-C promoter. Vascular endothelial growth factor (VEGF-A), an important angiogenic factor produced by the distal epithelium, was decreased in the lungs of TGF-alpha adults and in the lungs of infant TGF-alpha mice before detectable abnormalities in pulmonary vascular development. Hence, overexpression of TGF-alpha caused severe pulmonary vascular disease, which was mediated through EGFR signaling in distal epithelial cells. Reductions in VEGF may contribute to the pathogenesis of pulmonary vascular disease in TGF-alpha mice.

  4. Active Learning in the Workplace: Transforming Individuals and Institutions

    ERIC Educational Resources Information Center

    Pare, Anthony; Le Maistre, Cathrine

    2006-01-01

    In order to keep current and dynamic, organizations depend on the careful induction of new members. In social work, as in many professions, that task is generally given to experienced practitioners who supervise and manage the gradual transformation of novices into effective professionals. The process is critical for both organizations and…

  5. Transforming growth factor-beta-dependent and -independent pathways of induction of tubulointerstitial fibrosis in beta6(-/-) mice.

    PubMed

    Ma, Li-Jun; Yang, Haichun; Gaspert, Ariana; Carlesso, Gianluca; Barty, Melissa M; Davidson, Jeffrey M; Sheppard, Dean; Fogo, Agnes B

    2003-10-01

    Transforming growth factor-beta1 (TGF-beta1) and the renin-angiotensin-aldosterone system are key mediators in kidney fibrosis. Integrin alphavbeta6, a heterodimeric matrix receptor expressed in epithelia, binds and activates latent TGF-beta1. We used beta6 integrin-null mice (beta6(-/-)) to determine the role of local TGF-beta1 activation in renal fibrosis in the unilateral ureteral obstruction (UUO) model. Obstructed kidneys from beta6(-/-) mice showed less injury than obstructed kidneys from wild-type (WT) mice, associated with lower collagen I, collagen III, plasminogen activator inhibitor (PAI-1), and TGF-beta1 mRNA levels and lower collagen content. Infusion with either angiotensin II (Ang II) or aldosterone (Aldo) or combination in beta6(-/-) UUO mice significantly increased collagen contents to levels comparable to those in identically treated WT. Active TGF-beta protein expression in beta6(-/-) mice was less in UUO kidneys with or without Ang II infusion compared to matched WT mice. Activated Smad 2 levels in beta6(-/-) obstructed kidneys were lower than in WT UUO mice, and did not increase when fibrosis was induced in beta6(-/-) UUO mice by Ang II infusion. Anti-TGF-beta antibody only partially decreased this Ang II-stimulated fibrosis in beta6(-/-) UUO kidneys. In situ hybridization and immunostaining showed low expression of PAI-1 mRNA and protein in tubular epithelium in beta6(-/-) UUO kidneys, with increased PAI-1 expression in response to Ang II, Aldo, or both. Our results indicate that interruption of alphavbeta6-mediated activation of TGF-beta1 can protect against tubulointerstitial fibrosis. Further, the robust induction of tubulointerstitial fibrosis without increase in activated Smad 2 levels in obstructed beta6(-/-) mice by Ang II suggests the existence of a TGF-beta1-independent pathway of induction of fibrosis through angiotensin.

  6. Fibulin-2 is essential for angiotensin II-induced myocardial fibrosis mediated by transforming growth factor (TGF)-β.

    PubMed

    Khan, Shaukat A; Dong, Hailong; Joyce, Jennifer; Sasaki, Takako; Chu, Mon-Li; Tsuda, Takeshi

    2016-07-01

    Fibrosis is an ominous pathological process in failing myocardium, but its pathogenesis is poorly understood. We recently reported that loss of an extracellular matrix (ECM) protein, fibulin-2, protected against ventricular dysfunction after myocardial infarction (MI) in association with absence of activation of transforming growth factor (TGF)-β signaling and suppressed upregulation of ECM protein expression during myocardial remodeling. Here we investigated the role of fibulin-2 in the development of myocardial hypertrophy and fibrosis induced by continuous pressor-dosage of angiotensin II (Ang II) infusion. Both wild type (WT) and fibulin-2 null (Fbln2KO) mice developed comparable hypertension and myocardial hypertrophy by Ang II infusion. However, myocardial fibrosis with significant upregulation of collagen type I and III mRNA was only seen in WT but not in Fbln2KO mice.Transforming growth factor (TGF)-β1 mRNA and its downstream signal, Smad2, were significantly upregulated in WT by Ang II, whereas there were no Ang II-induced changes in Flbn2KO, suggesting fibulin-2 is necessary for Ang II-induced TGF-β signaling that induces myocardial fibrosis. To test whether fibulin-2 is sufficient for Ang II-induced TGF-β upregulation, isolated Flbn2KO cardiac fibroblasts were treated with Ang II after transfecting with fibulin-2 expression vector or pretreating with recombinant fibulin-2 protein. Ang II-induced TGF-β signaling in Fbln2KO cells was partially rescued by exogenous fibulin-2, suggesting that fibulin-2 is required and probably sufficient for Ang II-induced TGF-β activation. Smad2 phosphorylation was induced just by adding recombinant fibulin-2 to KO cells, suggesting that extracellular interaction between fibulin-2 and latent TGF-β triggered initial TGF-β activation. Our study indicates that Ang II cannot induce TGF-β activation without fibulin-2 and that fibulin-2 has an essential role in Ang II-induced TGF-β signaling and subsequent myocardial

  7. Transforming growth factor-β1 up-regulates connexin43 expression in human granulosa cells

    PubMed Central

    Chen, Yu-Ching; Chang, Hsun-Ming; Cheng, Jung-Chien; Tsai, Horng-Der; Wu, Cheng-Hsuan; Leung, Peter C.K.

    2015-01-01

    STUDY QUESTION Does transforming growth factor-β1 (TGF-β1) up-regulate connexin43 (Cx43) to promote cell–cell communication in human granulosa cells? SUMMARY ANSWER TGF-β1 up-regulates Cx43 and increases gap junction intercellular communication activities (GJIC) in human granulosa cells, and this effect occurs via the activin receptor-like kinase (ALK)5-mediated Sma- and Mad-related protein (SMAD)2/3-SMAD4-dependent pathway. WHAT IS KNOWN ALREADY TGF-β1 and its receptors are expressed in human granulosa cells, and follicular fluid contains TGF-β1 protein. In human granulosa cells, Cx43 gap junctions play an important role in the development of follicles and oocytes. STUDY DESIGN, SIZE, DURATION This is an experimental study which was performed over a 1-year period. PARTICIPANTS/MATERIALS, SETTING, METHODS Immortalized human granulosa cells (SVOG cells) and primary human granulosa-lutein cells obtained from women undergoing IVF in an academic research center were used as the study models. Cx43 mRNA and protein expression levels were examined after exposure of SVOG cells to recombinant human TGF-β1. An activin/TGF-β type I receptor inhibitor, SB431542, and small interfering RNAs targeting ALK4, ALK5, SMAD2, SMAD3 and SMAD4 were used to verify the specificity of the effects and to investigate the molecular mechanisms. Real-time-quantitative PCR and western blot analysis were used to detect the specific mRNA and protein levels, respectively. GJIC between SVOG cells were evaluated using a scrape loading and dye transfer assay. Results were analyzed by one-way analysis of variance. MAIN RESULTS AND THE ROLE OF CHANCE TGF-β1 treatment increased phosphorylation of SMAD2/3 (P < 0.0001) and up-regulated Cx43 mRNA and protein levels (P < 0.001) in SVOG cells and these stimulatory effects were abolished by the TGF-β type I receptor inhibitor SB431542. In addition, the up-regulatory effect of TGF-β1 on Cx43 expression (mRNA and protein) was confirmed in primary

  8. Role and mechanism of miR-222 in arsenic-transformed cells for inducing tumor growth

    PubMed Central

    Wang, Min; Li, Dongmei; Liu, Xue; Wang, Lin; Jiang, Chengfei; Shi, Zhumei; Qin, Lianju; Liu, Jiayin; Yang, Hushan; Liu, Ling-Zhi; He, Jun; Zhen, Linlin; Jiang, Bing-Hua

    2016-01-01

    High levels of arsenic in drinking water, soil, and air are associated with the higher incidences of several kinds of cancers worldwide, but the mechanism is yet to be fully discovered. Recently, a number of evidences show that dysregulation of microRNAs (miRNAs) induces carcinogenesis. In this study, we found miR-222 was upregulated in arsenic-transformed human lung epithelial BEAS-2B cells (As-T cells). Anti-miR-222 inhibitor treatment decreased cell proliferation, migration, tube formation, and induced apoptosis. In addition, anti-miR-222 inhibitor expression decreased tumor growth in vivo. We also found that inhibition of miR-222 induced the expression of its direct targets ARID1A and phosphatase and tensin homolog deleted on chromosome 10 (PTEN), and activated apoptosis of As-T cells in part through ARID1A downregulation. These results indicate that miR-222 plays an important role in arsenic-induced tumor growth. PMID:26909602

  9. Role and mechanism of miR-222 in arsenic-transformed cells for inducing tumor growth.

    PubMed

    Wang, Min; Ge, Xin; Zheng, Jitai; Li, Dongmei; Liu, Xue; Wang, Lin; Jiang, Chengfei; Shi, Zhumei; Qin, Lianju; Liu, Jiayin; Yang, Hushan; Liu, Ling-Zhi; He, Jun; Zhen, Linlin; Jiang, Bing-Hua

    2016-04-01

    High levels of arsenic in drinking water, soil, and air are associated with the higher incidences of several kinds of cancers worldwide, but the mechanism is yet to be fully discovered. Recently, a number of evidences show that dysregulation of microRNAs (miRNAs) induces carcinogenesis. In this study, we found miR-222 was upregulated in arsenic-transformed human lung epithelial BEAS-2B cells (As-T cells). Anti-miR-222 inhibitor treatment decreased cell proliferation, migration, tube formation, and induced apoptosis. In addition, anti-miR-222 inhibitor expression decreased tumor growth in vivo. We also found that inhibition of miR-222 induced the expression of its direct targets ARID1A and phosphatase and tensin homolog deleted on chromosome 10 (PTEN), and activated apoptosis of As-T cells in part through ARID1A downregulation. These results indicate that miR-222 plays an important role in arsenic-induced tumor growth.

  10. Specific inhibition of transforming growth factor-beta2 expression in human osteoblast cells by antisense phosphorothioate oligonucleotides.

    PubMed

    Shen, Z J; Kim, S K; Kwon, O S; Lee, Y S; Moon, B J

    2001-04-01

    To elucidate the role of endogenous transforming growth factor (TGF)-beta2 on human osteoblast cell, antisense phosphorothioate oligonucleotides (S-ODNs) complementary to regions in mRNA of TGF-beta2 were synthesized and examined their effects on TGF-beta2 production and cell proliferation in a human osteoblast cell line ROS 17/2. Antisense S-ODNs were designated for three different target regions in the mRNA of TGF-beta2. Among several antisense S-ODN analyzed, an oligonucleotide (AS-11) complementary to the translation initiation site of mRNA of TGF-beta2 demonstrated a selective and strong inhibitory effect on TGF-beta2 production in osteoblast cells. Other antisense S-ODNs which were designated for other regions in mRNA of TGF-beta2 and one- or three-base mismatched analogs of AS-11 showed little or much less antisense activities than AS-11. Therefore, the most effective target site in mRNA of TGF-beta2 is at the initiation codon region. The antisense effects of AS-11 were observed without reduction of levels of mRNA of TGF-beta2. Furthermore, the inhibition of TGF-beta2 expression by antisense S-ODN appeared to enhance cell proliferation, demonstrating the growth inhibitory effect of autocrine TGF-beta2 in osteoblast cells.

  11. The interaction of the transforming growth factor-betas with heparin/heparan sulfate is isoform-specific.

    PubMed

    Lyon, M; Rushton, G; Gallagher, J T

    1997-07-18

    We have undertaken a comparative study of the interaction of the three mammalian transforming growth factor-betas (TGF-beta) with heparin and heparan sulfate. TGF-beta1 and -beta2, but not -beta3, bind to heparin and the highly sulfated liver heparan sulfate. These polysaccharides potentiate the biological activity of TGF-beta1 (but not the other isoforms), whereas a low sulfated mucosal heparan sulfate fails to do so. Potentiation is due to antagonism of the binding and inactivation of TGF-beta1 by alpha2-macroglobulin, rather than by modulation of growth factor-receptor interactions. TGF-beta2.alpha2-macroglobulin complexes are more refractory to heparin/heparan sulfate, and those involving TGF-beta3 cannot be affected. Comparison of the amino acid sequences of the TGF-beta isoforms strongly implicates the basic amino acid residue at position 26 of each monomer as being a vital binding determinant. A model is proposed in which polysaccharide binding occurs at two distinct sites on the TGF-beta dimer. Interaction with heparin and liver heparan sulfate may be most effective because of the ability of the dimer to co-operatively engage two specific sulfated binding sequences, separated by a distance of approximately seven disaccharides, within the same chain.

  12. c-Jun N-terminal kinase inhibitor favors transforming growth factor-β to antagonize hepatitis B virus X protein-induced cell growth promotion in hepatocellular carcinoma

    PubMed Central

    WU, YAN-HUI; AI, XI; LIU, FU-YAO; LIANG, HUI-FANG; ZHANG, BI-XIANG; CHEN, XIAO-PING

    2016-01-01

    Transforming growth factor (TGF)-β induces cell growth arrest in well-differentiated hepatocellular carcinoma (HCC) while hepatitis B virus X protein (HBx) minimizes the tumor suppression of TGF-β signaling in early chronic hepatitis B. However, how to reverse the oncogenic effect of HBx and sustain the tumor-suppressive action of TGF-β has yet to be investigated. The present study examined the effect of TGF-β and a c-Jun N-terminal kinase (JNK) inhibitor on cell growth in HCC cells with forced expression of HBx. It was found that HBx promoted cell growth via activation of the JNK/pSMAD3L pathway and inhibition of the transforming growth factor-beta type I receptor (TβRI)/pSMAD3C pathway. pSMAD3L/SMAD4 and pSMAD3C/SMAD4 complexes antagonized each other to regulate c-Myc expression. In the absence of HBx, TGF-β induced cell growth arrest through activation of the TβRI/pSMAD3C pathway in well-differentiated HCC cells. In the presence of HBx, TGF-β had no effect on cell growth. JNK inhibitor SP600125 significantly reversed the oncogenic action of HBx and favored TGF-β to regain the ability to inhibit the cell growth in HBx-expressing well-differentiated HCC cells. In conclusion, targeting JNK signaling favors TGF-β to block HBx-induced cell growth promotion in well-differentiated HCC cells. As an adjunct to anti-viral therapy, the combination of TGF-β and inhibition of JNK signaling is a potential therapy for HBV-infected HCC. PMID:26648552

  13. c-Jun N-terminal kinase inhibitor favors transforming growth factor-β to antagonize hepatitis B virus X protein-induced cell growth promotion in hepatocellular carcinoma.

    PubMed

    Wu, Yan-Hui; Ai, Xi; Liu, Fu-Yao; Liang, Hui-Fang; Zhang, Bi-Xiang; Chen, Xiao-Ping

    2016-02-01

    Transforming growth factor (TGF)-β induces cell growth arrest in well-differentiated hepatocellular carcinoma (HCC) while hepatitis B virus X protein (HBx) minimizes the tumor suppression of TGF-β signaling in early chronic hepatitis B. However, how to reverse the oncogenic effect of HBx and sustain the tumor-suppressive action of TGF-β has yet to be investigated. The present study examined the effect of TGF-β and a c-Jun N-terminal kinase (JNK) inhibitor on cell growth in HCC cells with forced expression of HBx. It was found that HBx promoted cell growth via activation of the JNK/pSMAD3L pathway and inhibition of the transforming growth factor-beta type I receptor (TβRI)/pSMAD3C pathway. pSMAD3L/SMAD4 and pSMAD3C/SMAD4 complexes antagonized each other to regulate c-Myc expression. In the absence of HBx, TGF-β induced cell growth arrest through activation of the TβRI/pSMAD3C pathway in well-differentiated HCC cells. In the presence of HBx, TGF-β had no effect on cell growth. JNK inhibitor SP600125 significantly reversed the oncogenic action of HBx and favored TGF-β to regain the ability to inhibit the cell growth in HBx-expressing well-differentiated HCC cells. In conclusion, targeting JNK signaling favors TGF-β to block HBx-induced cell growth promotion in well-differentiated HCC cells. As an adjunct to anti-viral therapy, the combination of TGF-β and inhibition of JNK signaling is a potential therapy for HBV-infected HCC.

  14. TRANSFORMING GROWTH FACTOR-BETA MEDIATED SUPPRESSION OF ANTI-TUMOR T CELLS REQUIRES FOXP1 TRANSCRIPTION FACTOR EXPRESSION

    PubMed Central

    Stephen, Tom L.; Rutkowski, Melanie R.; Allegrezza, Michael J.; Perales-Puchalt, Alfredo; Tesone, Amelia J.; Svoronos, Nikolaos; Nguyen, Jenny M.; Sarmin, Fahmida; Borowsky, Mark E.; Tchou, Julia; Conejo-Garcia, Jose R.

    2014-01-01

    SUMMARY Tumor-reactive T cells become unresponsive in advanced tumors. Here we have characterized a common mechanism of T cell unresponsiveness in cancer driven by the up-regulation of the transcription factor Forkhead box protein P1 (Foxp1), which prevents CD8+ T cells from proliferating and up-regulating Granzyme-B and interferon-γ (IFN-γ) in response to tumor antigens. Accordingly, Foxp1-deficient lymphocytes induced rejection of incurable tumors, and promoted protection against tumor re-challenge. Mechanistically, Foxp1 interacted with the transcription factors Smad2 and Smad3 in pre-activated CD8+ T cells in response to microenvironmental transforming growth factor-β (TGF-β), and was essential for its suppressive activity. Therefore, Smad2 and Smad3-mediated c-Myc repression requires Foxp1 expression in T cells. Furthermore, Foxp1 directly mediated TGF-β-induced c-Jun transcriptional repression, which abrogated T cell activity. Our results unveil a fundamental mechanism of T cell unresponsiveness different from anergy or exhaustion, driven by TGF-β signaling on tumor-associated lymphocytes undergoing Foxp1-dependent transcriptional regulation. PMID:25238097

  15. Analysis of Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor β.

    PubMed

    Valcourt, Ulrich; Carthy, Jonathon; Okita, Yukari; Alcaraz, Lindsay; Kato, Mitsuyasu; Thuault, Sylvie; Bartholin, Laurent; Moustakas, Aristidis

    2016-01-01

    In recent years, the importance of the cell biological process of epithelial-mesenchymal transition (EMT) has been established via an exponentially growing number of reports. EMT has been documented during embryonic development, tissue fibrosis, and cancer progression in vitro, in animal models in vivo and in human specimens. EMT relates to many molecular and cellular alterations that occur when epithelial cells undergo a switch in differentiation that generates mesenchymal-like cells with newly acquired migratory and invasive properties. In addition, EMT relates to a nuclear reprogramming similar to the one occurring in the generation of induced pluripotent stem cells. Via such a process, EMT is gradually established to promote the generation and maintenance of adult tissue stem cells which under disease states such as cancer, are known as cancer stem cells. EMT is induced by developmental growth factors, oncogenes, radiation, and hypoxia. A prominent growth factor that causes EMT is transforming growth factor β (TGF-β).A series of molecular and cellular techniques can be applied to define and characterize the state of EMT in diverse biological samples. These methods range from DNA and RNA-based techniques that measure the expression of key EMT regulators and markers of epithelial or mesenchymal differentiation to functional assays of cell mobility, invasiveness and in vitro stemness. This chapter focuses on EMT induced by TGF-β and provides authoritative protocols and relevant reagents and citations of key publications aiming at assisting newcomers that enter this prolific area of biomedical sciences, and offering a useful reference tool to pioneers and aficionados of the field. PMID:26520123

  16. Dynamics of Transforming Growth Factor Beta Signaling in Wound Healing and Scarring

    PubMed Central

    Finnson, Kenneth W.; McLean, Sarah; Di Guglielmo, Gianni M.; Philip, Anie

    2013-01-01

    Significance Wound healing is an intricate biological process in which the skin, or any other tissue, repairs itself after injury. Normal wound healing relies on the appropriate levels of cytokines and growth factors to ensure that cellular responses are mediated in a coordinated manner. Among the many growth factors studied in the context of wound healing, transforming growth factor beta (TGF-β) is thought to have the broadest spectrum of effects. Recent Advances Many of the molecular mechanisms underlying the TGF-β/Smad signaling pathway have been elucidated, and the role of TGF-β in wound healing has been well characterized. Targeting the TGF-β signaling pathway using therapeutic agents to improve wound healing and/or reduce scarring has been successful in pre-clinical studies. Critical Issues Although TGF-β isoforms (β1, β2, β3) signal through the same cell surface receptors, they display distinct functions during wound healing in vivo through mechanisms that have not been fully elucidated. The challenge of translating preclinical studies targeting the TGF-β signaling pathway to a clinical setting may require more extensive preclinical research using animal models that more closely mimic wound healing and scarring in humans, and taking into account the spatial, temporal, and cell-type–specific aspects of TGF-β isoform expression and function. Future Directions Understanding the differences in TGF-β isoform signaling at the molecular level and identification of novel components of the TGF-β signaling pathway that critically regulate wound healing may lead to the discovery of potential therapeutic targets for treatment of impaired wound healing and pathological scarring. PMID:24527343

  17. Effect of transforming growth factor beta on synthesis of glycosaminoglycans by human lung fibroblasts

    SciTech Connect

    Dubaybo, B.A.; Thet, L.A. )

    1990-09-01

    The processes of lung growth, injury, and repair are characterized by alterations in fibroblast synthesis and interstitial distribution of extracellular matrix components. Transforming growth factor beta (TGF-beta), which is postulated to play a role in modulating lung repair, alters the distribution of several matrix components such as collagen and fibronectin. We studied the effect of TGF-beta on the synthesis and distribution of the various glycosaminoglycans (GAGs) and whether these effects may explain its role in lung repair. Human diploid lung fibroblasts (IMR-90) were exposed to various concentrations of TGF-beta (0-5 nM) for variable periods of time (0-18 h). Newly synthesized GAGs were labeled with either (3H)glucosamine or (35S)sulfate. Individual GAGs were separated by size exclusion chromatography after serial enzymatic and chemical digestions and quantitated using scintillation counting. There was a dose-dependent increase in total GAG synthesis with maximal levels detected after 6 h of exposure. This increase was noted in all individual GAG types measured and was observed in both the cell associated GAGs (cell-matrix fraction) as well as the GAGs released into the medium (medium fraction). In the cell-matrix fraction, TGF-beta increased the proportion of heparan sulfate that was membrane bound as well as the proportion of dermatan sulfate in the intracellular compartment. In the medium fraction, TGF-beta increased the proportion of hyaluronic acid, chondroitin sulfate and dermatan sulfate released. We conclude that the role of TGF-beta in lung growth and repair may be related to increased synthesis of GAGs by human lung fibroblasts as well as alterations in the distribution of individual GAGs.

  18. Analysis of Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor β.

    PubMed

    Valcourt, Ulrich; Carthy, Jonathon; Okita, Yukari; Alcaraz, Lindsay; Kato, Mitsuyasu; Thuault, Sylvie; Bartholin, Laurent; Moustakas, Aristidis

    2016-01-01

    In recent years, the importance of the cell biological process of epithelial-mesenchymal transition (EMT) has been established via an exponentially growing number of reports. EMT has been documented during embryonic development, tissue fibrosis, and cancer progression in vitro, in animal models in vivo and in human specimens. EMT relates to many molecular and cellular alterations that occur when epithelial cells undergo a switch in differentiation that generates mesenchymal-like cells with newly acquired migratory and invasive properties. In addition, EMT relates to a nuclear reprogramming similar to the one occurring in the generation of induced pluripotent stem cells. Via such a process, EMT is gradually established to promote the generation and maintenance of adult tissue stem cells which under disease states such as cancer, are known as cancer stem cells. EMT is induced by developmental growth factors, oncogenes, radiation, and hypoxia. A prominent growth factor that causes EMT is transforming growth factor β (TGF-β).A series of molecular and cellular techniques can be applied to define and characterize the state of EMT in diverse biological samples. These methods range from DNA and RNA-based techniques that measure the expression of key EMT regulators and markers of epithelial or mesenchymal differentiation to functional assays of cell mobility, invasiveness and in vitro stemness. This chapter focuses on EMT induced by TGF-β and provides authoritative protocols and relevant reagents and citations of key publications aiming at assisting newcomers that enter this prolific area of biomedical sciences, and offering a useful reference tool to pioneers and aficionados of the field.

  19. The linear C-terminal regions of epidermal growth factor (EGF) and transforming growth factor-alpha bind to different epitopes on the human EGF receptor.

    PubMed Central

    Lenferink, A E; De Roos, A D; Van Vugt, M J; Van de Poll, M L; Van Zoelen, E J

    1998-01-01

    Epidermal growth factor (EGF) and transforming growth factor-alpha (TGFalpha) bind with similar affinities in a competitive fashion to the human EGF receptor, and basically induce similar mitogenic responses. In spite of the fact that EGF and TGFalpha are structurally alike, it is still not clear if the two growth factors bind the receptor in an identical manner. The observation that the 13A9 antibody blocks binding of TGFalpha, but not that of EGF, to the human EGF receptor [Winkler, O'Connor, Winget and Fendly (1989) Biochemistry 28, 6373-6378] suggests that their binding characteristics are not identical. In the present study we have made use of a set of EGF/TGFalpha chimaeric molecules to show that the 13A9 antibody blocks receptor binding of ligands with TGFalpha sequences, but not of ligands with EGF sequences, in their C-terminal linear regions. Using HaCaT human keratinocyte cells in culture, it was determined that ligands that are able to bind the EGF receptor in the presence of 13A9 are also able to induce calcium release from intracellular stores in these cells, indicating that these ligands have the ability to activate the EGF receptor in the presence of the antibody. From these data it is concluded that the flexible C-terminal linear domains of EGF and TGFalpha bind to separate sequences on the EGF receptor, such that the binding domain of TGFalpha, but not that of EGF, overlaps with the binding epitope of the 13A9 antibody. PMID:9806896

  20. HER-2 overexpression differentially alters transforming growth factor-β responses in luminal versus mesenchymal human breast cancer cells

    PubMed Central

    Wilson, Cindy A; Cajulis, Elaina E; Green, Jennifer L; Olsen, Taylor M; Chung, Young Ah; Damore, Michael A; Dering, Judy; Calzone, Frank J; Slamon, Dennis J

    2005-01-01

    Introduction Amplification of the HER-2 receptor tyrosine kinase has been implicated in the pathogenesis and aggressive behavior of approximately 25% of invasive human breast cancers. Clinical and experimental evidence suggest that aberrant HER-2 signaling contributes to tumor initiation and disease progression. Transforming growth factor beta (TGF-β) is the dominant factor opposing growth stimulatory factors and early oncogene activation in many tissues, including the mammary gland. Thus, to better understand the mechanisms by which HER-2 overexpression promotes the early stages of breast cancer, we directly assayed the cellular and molecular effects of TGF-β1 on breast cancer cells in the presence or absence of overexpressed HER-2. Methods Cell proliferation assays were used to determine the effect of TGF-β on the growth of breast cancer cells with normal or high level expression of HER-2. Affymetrix microarrays combined with Northern and western blot analysis were used to monitor the transcriptional responses to exogenous TGF-β1 in luminal and mesenchymal-like breast cancer cells. The activity of the core TGF-β signaling pathway was assessed using TGF-β1 binding assays, phospho-specific Smad antibodies, immunofluorescent staining of Smad and Smad DNA binding assays. Results We demonstrate that cells engineered to over-express HER-2 are resistant to the anti-proliferative effect of TGF-β1. HER-2 overexpression profoundly diminishes the transcriptional responses induced by TGF-β in the luminal MCF-7 breast cancer cell line and prevents target gene induction by a novel mechanism that does not involve the abrogation of Smad nuclear accumulation, DNA binding or changes in c-myc repression. Conversely, HER-2 overexpression in the context of the mesenchymal MDA-MB-231 breast cell line potentiated the TGF-β induced pro-invasive and pro-metastatic gene signature. Conclusion HER-2 overexpression promotes the growth and malignancy of mammary epithelial cells, in

  1. Cloning and biological activity of epigen, a novel member of the epidermal growth factor superfamily.

    PubMed

    Strachan, L; Murison, J G; Prestidge, R L; Sleeman, M A; Watson, J D; Kumble, K D

    2001-05-25

    High throughput sequencing of a mouse keratinocyte library was used to identify an expressed sequence tag with homology to the epidermal growth factor (EGF) family of growth factors. We have named the protein encoded by this expressed sequence tag Epigen, for epithelial mitogen. Epigen encodes a protein of 152 amino acids that contains features characteristic of the EGF superfamily. Two hydrophobic regions, corresponding to a putative signal sequence and transmembrane domain, flank a core of amino acids encompassing six cysteine residues and two putative N-linked glycosylation sites. Epigen shows 24-37% identity to members of the EGF superfamily including EGF, transforming growth factor alpha, and Epiregulin. Northern blotting of several adult mouse tissues indicated that Epigen was present in testis, heart, and liver. Recombinant Epigen was synthesized in Escherichia coli and refolded, and its biological activity was compared with that of EGF and transforming growth factor alpha in several assays. In epithelial cells, Epigen stimulated the phosphorylation of c-erbB-1 and mitogen-activated protein kinases and also activated a reporter gene containing enhancer sequences present in the c-fos promoter. Epigen also stimulated the proliferation of HaCaT cells, and this proliferation was blocked by an antibody to the extracellular domain of the receptor tyrosine kinase c-erbB-1. Thus, Epigen is the newest member of the EGF superfamily and, with its ability to promote the growth of epithelial cells, may constitute a novel molecular target for wound-healing therapy. PMID:11278323

  2. Thrombospondin-1-dependent immune regulation by transforming growth factor-β2-exposed antigen-presenting cells.

    PubMed

    Mir, Fayaz Ahmad; Contreras-Ruiz, Laura; Masli, Sharmila

    2015-12-01

    An important role of transforming growth factor-β (TGF-β) in the development of regulatory T cells is well established. Although integrin-mediated activation of latent TGF-β1 is considered essential for the induction of regulatory T (Treg) cells by antigen-presenting cells (APCs), such an activation mechanism is not applicable to the TGF-β2 isoform, which lacks an integrin-binding RGD sequence in its latency-associated peptide. Mucosal and ocular tissues harbour TGF-β2-expressing APCs involved in Treg induction. The mechanisms that regulate TGF-β activation in such APCs remain unclear. In this study, we demonstrate that murine APCs exposed to TGF-β2 in the environment predominantly increase expression of TGF-β2. Such predominantly TGF-β2-expressing APCs use thrombospondin-1 (TSP-1) as an integrin-independent mechanism to activate their newly synthesized latent TGF-β2 to induce Foxp3(+) Treg cells both in vitro and in vivo. Expression of Treg induction by TGF-β2-expressing APCs is supported by a TSP-1 receptor, CD36, which facilitates activation of latent TGF-β during antigen presentation. Our results suggest that APC-derived TSP-1 is essential for the development of an adaptive regulatory immune response induced by TGF-β2-expressing APCs similar to those located at mucosal and ocular sites. These findings introduce the integrin-independent mechanism of TGF-β activation as an integral part of peripheral immune tolerance associated with TGF-β2-expressing tissues.

  3. Lysyl oxidase contributes to mechanotransduction-mediated regulation of transforming growth factor-β signaling in breast cancer cells.

    PubMed

    Taylor, Molly A; Amin, Jay D; Kirschmann, Dawn A; Schiemann, William P

    2011-05-01

    Transforming growth factor-β (TGF-β) regulates all stages of mammary gland development, including the maintenance of tissue homeostasis and the suppression of tumorigenesis in mammary epithelial cells (MECs). Interestingly, mammary tumorigenesis converts TGF-β from a tumor suppressor to a tumor promoter through molecular mechanisms that remain incompletely understood. Changes in integrin signaling and tissue compliance promote the acquisition of malignant phenotypes in MECs in part through the activity of lysyl oxidase (LOX), which regulates desmoplastic reactions and metastasis. TGF-β also regulates the activities of tumor reactive stroma and MEC metastasis. We show here that TGF-β1 stimulated the synthesis and secretion of LOX from normal and malignant MECs in vitro and in mammary tumors produced in mice. The ability of TGF-β1 to activate Smad2/3 was unaffected by LOX inactivation in normal MECs, whereas the stimulation of p38 MAPK by TGF-β1 was blunted by inhibiting LOX activity in malignant MECs or by inducing the degradation of hydrogen peroxide in both cell types. Inactivating LOX activity impaired TGF-β1-mediated epithelial-mesenchymal transition and invasion in breast cancer cells. We further show that increasing extracellular matrix rigidity by the addition of type I collagen to three-dimensional organotypic cultures promoted the proliferation of malignant MECs, a cellular reaction that was abrogated by inhibiting the activities of TGF-β1 or LOX, and by degrading hydrogen peroxide. Our findings identify LOX as a potential mediator that couples mechanotransduction to oncogenic signaling by TGF-β1 and suggest that measures capable of inactivating LOX function may prove effective in diminishing breast cancer progression stimulated by TGF-β1.

  4. Assessment of the frequency of the transforming growth factor beta-1 sequence polymorphisms in patients with alcohol dependence syndrome.

    PubMed

    Augustyńska, Beata; Araszkiewicz, Aleksander; Woźniak, Marcin; Grzybowski, Tomasz; Skonieczna, Katarzyna; Woźniak, Alina; Żyła, Magdalena

    2015-01-01

    Alcohol abuse is one of the most significant factors in the development of liver fibrosis. The pathomechanism of liver fibrosis is the same regardless of its etiology. Fibrosis is a sign of an imbalance between the synthesis of the extracellular matrix components and their degradation. Among the many cytokines that affect hepatic stellate cell activation it seems that transforming growth factor beta (TGF-β) is the most significant, either as the direct factor stimulating polymerase chain reaction (HSC) proliferation and transformation into myofibroblasts, or as the direct factor causing an increase in the activity of genes responsible for the synthesis of extracellular matrix components. The aim of the study was to reveal possible dependencies and differences between the presence of certain alleles of the TGF-β1 gene and its blood level in the study and control group. Blood samples were obtained from 39 patients, the control group consisted of 21 patients. The results obtained in the course of this study showed no statistically significant differences between the frequencies of particular polymorphisms. In the case of haplotype frequencies, insignificant differences were found for the algorithm Excoffier-Laval-Balding predicted haplotypes while one significant difference between the study and control groups was detected in case of the TC haplotype frequency predicted using the Expectation-Maximization algorithm. However, the difference in frequency of TC haplotype predicted by both algorithms was not significant. Genetic analysis of two single nucleotide polymorphisms (SNPs) in exon I of the TGF-β1 gene did not show significant differences between the occurrence of particular polymorphisms and haplotypes in the populations under study.

  5. Functional mapping of quantitative trait loci underlying growth trajectories using a transform-both-sides logistic model.

    PubMed

    Wu, Rongling; Ma, Chang-Xing; Lin, Min; Wang, Zuoheng; Casella, George

    2004-09-01

    The incorporation of developmental control mechanisms of growth has proven to be a powerful tool in mapping quantitative trait loci (QTL) underlying growth trajectories. A theoretical framework for implementing a QTL mapping strategy with growth laws has been established. This framework can be generalized to an arbitrary number of time points, where growth is measured, and becomes computationally more tractable, when the assumption of variance stationarity is made. In practice, however, this assumption is likely to be violated for age-specific growth traits due to a scale effect. In this article, we present a new statistical model for mapping growth QTL, which also addresses the problem of variance stationarity, by using a transform-both-sides (TBS) model advocated by Carroll and Ruppert (1984, Journal of the American Statistical Association 79, 321-328). The TBS-based model for mapping growth QTL cannot only maintain the original biological properties of a growth model, but also can increase the accuracy and precision of parameter estimation and the power to detect a QTL responsible for growth differentiation. Using the TBS-based model, we successfully map a QTL governing growth trajectories to a linkage group in an example of forest trees. The statistical and biological properties of the estimates of this growth QTL position and effect are investigated using Monte Carlo simulation studies. The implications of our model for understanding the genetic architecture of growth are discussed.

  6. Participation of tenascin and transforming growth factor-beta in reciprocal epithelial-mesenchymal interactions of MCF7 cells and fibroblasts.

    PubMed

    Chiquet-Ehrismann, R; Kalla, P; Pearson, C A

    1989-08-01

    The tumor stroma is essential for the development of the tumor epithelium. Tenascin is an extracellular matrix protein highly expressed in the stroma of malignant mammary tumors. We therefore tested whether in vitro MCF7 cells were able to induce fibroblasts to synthesize tenascin. Indeed MCF7 cell-conditioned medium contained tenascin-inducing activity. This activity was shown to be transforming growth factor-beta. The morphology of the MCF7 cells was in turn affected by the addition of tenascin to the culture medium. The cells partially detached from the substratum and lost their cell-cell contracts.

  7. Improvement of activated sludge bacteria growth by low intensity ultrasound

    NASA Astrophysics Data System (ADS)

    Yan, Y. X.; Ding, J. Y.; Gao, J. L.

    2016-08-01

    Influence of low intensity ultrasound (US) on growth rate of bacteria separated from aerobic activated sludge was studied. In order to reveal the optimal ultrasonic conditions,specific oxygen uptake rate (SOUR) of activated sludge was first detected and results showed that the maximum SOUR was obtained (increased by 40%) at US intensity of 3 Wcm-2 and irradiation time of 10min. Under the optimal conditions, 2 species of bacteria isolated from activated sludge were sonicated and then cultivated for 36h, and increment of 6% and 10% of growth rate were detected for the 2 species of bacteria, respectively, indicating US irradiation of suitable parameters effectively improved activated sludge bacteria growth.

  8. Isolation from Animal Tissue and Genetic Transformation of Coxiella burnetii Are Facilitated by an Improved Axenic Growth Medium▿

    PubMed Central

    Omsland, Anders; Beare, Paul A.; Hill, Joshua; Cockrell, Diane C.; Howe, Dale; Hansen, Bryan; Samuel, James E.; Heinzen, Robert A.

    2011-01-01

    We recently described acidified citrate cysteine medium (ACCM), which supports host cell-free (axenic) growth of Coxiella burnetii. After 6 days of incubation, greater than 3 logs of growth was achieved with the avirulent Nine Mile phase II (NMII) strain. Here, we describe modified ACCM and culture conditions that support improved growth of C. burnetii and their use in genetic transformation and pathogen isolation from tissue samples. ACCM was modified by replacing fetal bovine serum with methyl-β-cyclodextrin to generate ACCM-2. Cultivation of NMII in ACCM-2 with moderate shaking and in 2.5% oxygen yielded 4 to 5 logs of growth over 7 days. Similar growth was achieved with the virulent Nine Mile phase I and G isolates of C. burnetii. Colonies that developed after 6 days of growth in ACCM-2 agarose were approximately 0.5 mm in diameter, roughly 5-fold larger than those formed in ACCM agarose. By electron microscopy, colonies consisted primarily of the C. burnetii small cell variant morphological form. NMII was successfully cultured in ACCM-2 when medium was inoculated with as little as 10 genome equivalents contained in tissue homogenates from infected SCID mice. A completely axenic C. burnetii genetic transformation system was developed using ACCM-2 that allowed isolation of transformants in about 2 1/2 weeks. Transformation experiments demonstrated clonal populations in colonies and a transformation frequency of approximately 5 × 10−5. Cultivation in ACCM-2 will accelerate development of C. burnetii genetic tools and provide a sensitive means of primary isolation of the pathogen from Q fever patients. PMID:21478315

  9. Some New Observations on Activation Energy of Crystal Growth for Thermally Activated Crystallization.

    PubMed

    Mehta, N; Kumar, A

    2016-02-18

    Calorimetric study of glass/crystal phase transformation in disordered semiconductors is a significant tool for understanding their crystallization kinetics. Such studies provide the basis for practical application of glasses. Differential scanning calorimetry (DSC) is one of the advanced techniques for the analysis of thermally induced crystallization in glassy or amorphous systems. We are reporting the nonisothermal DSC measurements on four amorphous systems of Se70Te30 alloy with Ag, Cd, Sb, and Zn as chemical modifiers. In general, the rate constant (K) shows Arrhenian dependence on temperature (T), i.e., K = K0 exp (-Eg/RT) where Eg is the activation energy of crystal growth and K0 is called the pre-exponential factor of rate constant. In the present work, an experiment is designed to see the effect of composition on the activation energy of crystal growth. We have found Meyer-Neldel relation (MNR) between Eg and K0 for present systems. Another interesting feature of present work is the observation of further relation between Meyer-Neldel prefactor and Meyer-Neldel energy.

  10. Lipopolysaccharide/interferon-γ and not transforming growth factor β inhibits retinal microglial migration from retinal explant

    PubMed Central

    Carter, D A; Dick, A D

    2003-01-01

    Background/aims: The retina possesses a rich network of CD45+ positive myeloid derived cells that both surround inner retinal vessels and lie within the retina (microglia). Microglia migrate and accumulate in response to neurodegeneration and inflammation. Although microglia express MHC class II, their role remains undefined. The aims of this study are to investigate changes in human microglia phenotype, migration, and activation status in response to pro-inflammatory and anti-inflammatory stimulation. Methods: Donor eyes were obtained from the Bristol Eye Bank with consent and whole retina was removed. 5 mm retinal trephines were cultured in glucose enhanced RPMI on cell culture insert membranes for up to 72 hours. The effects of lipopolysaccharide/interferon-γ (LPS/IFNγ) and transforming growth factor β inhibits (TGFβ) stimulation, alone or in combination, on migration, phenotype, and activation status (iNOS expression) of microglia were studied using immunofluorescence and cytokine analysis by ELISA. Results: CD45+ MHC class II+ retinal microglia were observed within retinal explants, and in culture microglia readily migrated, adhered to culture membrane, downregulated MHC class II expression, and produced interleukin 12 (IL-12) and tumour necrosis factor α (TNFα). Following LPS/IFNγ stimulation microglia remained MHC class II− iNOS−, and secreted IL-10. Migration was suppressed and this could be reversed by neutralising IL-10 activity. TGFβ did not affect ability of microglia to migrate and was unable to reverse LPS/IFNγ induced suppression. Conclusions: Microglia readily migrate from retinal explants and are subsequently MHC class II−, iNOS−, and generate IL-12. In response to LPS/IFNγ microglia produce IL-10, which inhibits both their migration and activation. TGFβ was unable to counter LPS/IFNγ effects. The data infer that microglia respond coordinately, dependent upon initial cytokine stimulation, but paradoxically respond to classic

  11. Increased susceptibility to atrial fibrillation secondary to atrial fibrosis in transgenic goats expressing transforming growth factor - B1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in people with significant morbidity and mortality. There is a strong association between atrial fibrosis and AF. Transforming growth factor B1 (TGF-B1) is an essential mediator of atrial fibrosis in animal models and human pat...

  12. Vertebral Artery Aneurysm Mimicking as Left Subclavian Artery Aneurysm in a Patient with Transforming Growth Factor Beta Receptor II Mutation.

    PubMed

    Afifi, Rana O; Dhillon, Baltej Singh; Sandhu, Harleen K; Charlton-Ouw, Kristofer M; Estrera, Anthony L; Azizzadeh, Ali

    2015-10-01

    We report successful endovascular repair of a left vertebral artery aneurysm in a patient with transforming growth factor beta receptor II mutation. The patient was initially diagnosed with a left subclavian artery aneurysm on computed tomography angiography. The patient consented to publication of this report.

  13. Tyrosine dephosphorylation of nuclear proteins mimics transforming growth factor {beta}1 stimulation of {alpha}2(I) collagen gene expression

    SciTech Connect

    Greenwel, P.; Hu, Wei; Ramirez, F.; Kohanski, R.A.

    1995-12-01

    This report describes how the transforming growth factor {beta}1 (TGF-{beta}1) stimulates the transcription of the gene coding for collagen I (COL1A2). The report goes on to correlate tyrosine dephosphorylation, increased binding of a transcriptional complex and TGF-{beta}1 stimulation of gene expression. 33 refs., 8 figs., 1 tab.

  14. B cell-derived transforming growth factor-β1 expression limits the induction phase of autoimmune neuroinflammation

    PubMed Central

    Bjarnadóttir, Kristbjörg; Benkhoucha, Mahdia; Merkler, Doron; Weber, Martin S.; Payne, Natalie L.; Bernard, Claude C. A.; Molnarfi, Nicolas; Lalive, Patrice H.

    2016-01-01

    Studies in experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS), have shown that regulatory B cells modulate the course of the disease via the production of suppressive cytokines. While data indicate a role for transforming growth factor (TGF)-β1 expression in regulatory B cell functions, this mechanism has not yet been tested in autoimmune neuroinflammation. Transgenic mice deficient for TGF-β1 expression in B cells (B–TGF-β1−/−) were tested in EAE induced by recombinant mouse myelin oligodendrocyte glycoprotein (rmMOG). In this model, B–TGF-β1−/− mice showed an earlier onset of neurologic impairment compared to their littermate controls. Exacerbated EAE susceptibility in B–TGF-β1−/− mice was associated with augmented CNS T helper (Th)1/17 responses. Moreover, selective B cell TGF-β1–deficiency increased the frequencies and activation of myeloid dendritic cells, potent professional antigen-presenting cells (APCs), suggesting that B cell-derived TGF-β1 can constrain Th1/17 responses through inhibition of APC activity. Collectively our data suggest that B cells can down-regulate the function of APCs, and in turn encephalitogenic Th1/17 responses, via TGF-β1, findings that may be relevant to B cell-targeted therapies. PMID:27708418

  15. Polyamine metabolism and transforming growth factor-beta signaling are affected in Caco-2 cells by differentially cooked broccoli extracts.

    PubMed

    Furniss, Caroline S M; Bennett, Richard N; Bacon, James R; LeGall, Gwen; Mithen, Richard F

    2008-10-01

    The health benefits of consuming cruciferous vegetables are widely considered to be due to the biological activity of glucosinolate degradation products. However, it is conceivable that other phytochemicals within crucifers may also have biological activity that may contribute to health benefits. In this study, we analyzed global gene expression in Caco-2 cells exposed to extracts derived from broccoli that had been heat treated to different extents to result in contrasting profiles of glucosinolates and their degradation products. Extracts microwaved for 0, 1, and 4 min contained 9.5, 25.5, and 0 micromol/L sulforaphane and induced changes in expression of 381, 1017, and 101 genes, respectively (>2 fold; P < 0.01). Seventy-two genes showed similar changes in expression after treatment with all 3 extracts. These included genes involved in polyamine catabolism and transforming growth factor (TGF)-beta signaling. Consistent with these changes in gene expression, subsequent studies demonstrated that exposing cells to these extracts, including the 4-min extract that contained no glucosinolate degradation products, increased putrescine and N-acetyl-spermine concentration, and suppressed the TGFbeta1-mediated induction of phosphorylated Smad 2. This is the first report, to our knowledge, of phytochemicals from a cruciferous vegetable affecting both a signaling pathway and a catabolic process.

  16. Transforming growth factor. beta. sub 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis

    SciTech Connect

    Broekelmann, T.J.; Limper, A.H.; McDonald, J.A. ); Colby, T.V. )

    1991-08-01

    Idiopathic pulmonary fibrosis is an inexorably fatal disorder characterized by connective tissue deposition within the terminal air spaces resulting in loss of lung function and eventual respiratory failure. Previously, the authors demonstrated that foci of activated fibroblasts expressing high levels of fibronectin, procollagen, and smooth muscle actin and thus resembling those found in healing wounds are responsible for the connective tissue deposition and scarring in idiopathic pulmonary fibrosis. Using in situ hybridization and immunohistochemistry, they now demonstrate the presence of transforming growth factor {beta}{sub 1} (TGF-{beta}{sub 1}), a potent profibrotic cytokine, in the foci containing these activated fibroblasts. These results suggest that matrix-associated TGF-{beta}{sub 1} may serve as a stimulus for the persistent expression of connective tissue genes. One potential source of the TGF-{beta}{sub 1} is the alveolar macrophage, and they demonstrate the expression of abundant TGF-{beta}{sub 1} mRNA in alveolar macrophages in lung tissue from patients with idiopathic pulmonary fibrosis.

  17. Transforming growth factor β-mediated suppression of antitumor T cells requires FoxP1 transcription factor expression.

    PubMed

    Stephen, Tom L; Rutkowski, Melanie R; Allegrezza, Michael J; Perales-Puchalt, Alfredo; Tesone, Amelia J; Svoronos, Nikolaos; Nguyen, Jenny M; Sarmin, Fahmida; Borowsky, Mark E; Tchou, Julia; Conejo-Garcia, Jose R

    2014-09-18

    Tumor-reactive T cells become unresponsive in advanced tumors. Here we have characterized a common mechanism of T cell unresponsiveness in cancer driven by the upregulation of the transcription factor Forkhead box protein P1 (Foxp1), which prevents CD8⁺ T cells from proliferating and upregulating Granzyme-B and interferon-γ in response to tumor antigens. Accordingly, Foxp1-deficient lymphocytes induced rejection of incurable tumors and promoted protection against tumor rechallenge. Mechanistically, Foxp1 interacted with the transcription factors Smad2 and Smad3 in preactivated CD8⁺ T cells in response to microenvironmental transforming growth factor-β (TGF-β), and was essential for its suppressive activity. Therefore, Smad2 and Smad3-mediated c-Myc repression requires Foxp1 expression in T cells. Furthermore, Foxp1 directly mediated TGF-β-induced c-Jun transcriptional repression, which abrogated T cell activity. Our results unveil a fundamental mechanism of T cell unresponsiveness different from anergy or exhaustion, driven by TGF-β signaling on tumor-associated lymphocytes undergoing Foxp1-dependent transcriptional regulation.

  18. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway

    PubMed Central

    Herbertz, Stephan; Sawyer, J Scott; Stauber, Anja J; Gueorguieva, Ivelina; Driscoll, Kyla E; Estrem, Shawn T; Cleverly, Ann L; Desaiah, Durisala; Guba, Susan C; Benhadji, Karim A; Slapak, Christopher A; Lahn, Michael M

    2015-01-01

    Transforming growth factor-beta (TGF-β) signaling regulates a wide range of biological processes. TGF-β plays an important role in tumorigenesis and contributes to the hallmarks of cancer, including tumor proliferation, invasion and metastasis, inflammation, angiogenesis, and escape of immune surveillance. There are several pharmacological approaches to block TGF-β signaling, such as monoclonal antibodies, vaccines, antisense oligonucleotides, and small molecule inhibitors. Galunisertib (LY2157299 monohydrate) is an oral small molecule inhibitor of the TGF-β receptor I kinase that specifically downregulates the phosphorylation of SMAD2, abrogating activation of the canonical pathway. Furthermore, galunisertib has antitumor activity in tumor-bearing animal models such as breast, colon, lung cancers, and hepatocellular carcinoma. Continuous long-term exposure to galunisertib caused cardiac toxicities in animals requiring adoption of a pharmacokinetic/pharmacodynamic-based dosing strategy to allow further development. The use of such a pharmacokinetic/pharmacodynamic model defined a therapeutic window with an appropriate safety profile that enabled the clinical investigation of galunisertib. These efforts resulted in an intermittent dosing regimen (14 days on/14 days off, on a 28-day cycle) of galunisertib for all ongoing trials. Galunisertib is being investigated either as monotherapy or in combination with standard antitumor regimens (including nivolumab) in patients with cancer with high unmet medical needs such as glioblastoma, pancreatic cancer, and hepatocellular carcinoma. The present review summarizes the past and current experiences with different pharmacological treatments that enabled galunisertib to be investigated in patients. PMID:26309397

  19. Regulatory factor X1-induced down-regulation of transforming growth factor β2 transcription in human neuroblastoma cells.

    PubMed

    Feng, Chenzhuo; Zuo, Zhiyi

    2012-06-29

    Regulatory factor X (RFX) proteins are transcription factors. Seven mammalian RFX proteins have been identified. RFX1 is the prototype RFX. However, its biological functions are not known. Here, RFX1 overexpression reduced fetal bovine serum-stimulated proliferation of SH-SY5Y cells, a human neuroblastoma cell line. This inhibition is associated with decreased transforming growth factor β2 (TGFβ2) and phospho-extracellular signal-regulated kinase (ERK). Exogenous TGFβ2 increased cell proliferation and phospho-ERK in cells overexpressing RFX1. An anti-TGFβ2 antibody and PD98059, an ERK activation inhibitor, inhibited SH-SY5Y cell proliferation. TGFβ2 promoter activity was decreased in cells overexpressing RFX1. Chromosome immunoprecipitation assay showed that RFX1 bound the TGFβ2 promoter. RFX1 down-regulation increased TGFβ2 in SH-SY5Y and HCN-1A cells, a normal human neuronal cell line. More importantly, TGFβ2 concentrations were negatively correlated with RFX1 levels in human medulloblastoma tissues with a R(2) of 0.464. These results suggest that RFX1 reduces cell proliferation through inhibiting the TGFβ2-ERK signaling pathway. RFX1 blocks TGFβ2 expression through its direct action on TGFβ2 transcription. This effect also appears in human brain tumor tissues. Because TGFβ is known to be involved in cancer development, our results provide initial evidence to suggest that RFX1 may play an important role in human tumor biology.

  20. Modulation of the Bioactive Conformation of Transforming Growth Factor β: Possible Implications of Cation Binding for Biological Function

    NASA Astrophysics Data System (ADS)

    Bocharov, Eduard V.; Pavlov, Konstantin V.; Blommers, Marcel J. J.; Arvinte, Tudor; Arseniev, Alexander S.

    In any organism, very precisely adjusted interaction and exchange of information between cells is continuously required. These cooperative interactions involve numerous cytokines, acting through corresponding sets of cell-surface receptors. The transforming growth factor β (TGF-β) superfamily includes a variety of structurally related multifunctional cytokines that play critical roles in maintaining cellular homeostasis and controlling cell fate. Response of a cell to a specific signal it receives should depend upon the current state of the environment, including concentrations of biologically relevant ions. One of the most biologically active ions, calcium, acts upon a specific calcium signaling system that operates over a wide temporal range and regulates many cellular processes in continuous “cross-talk” with the TGF-β signaling system. In addition to that, the structural and dynamical properties of TGF-β molecules, along with detected direct interaction of them with the biologically relevant cations suggest another level of fine regulation of TGF-β activity. The fact that both mono- and divalent cations bind in the same low-affinity sites implies that some competition of cations for interaction with TGF-β can also occur in vivo, contributing to the diversity of TGF-β biological functions.

  1. Using the Learning Activities Survey to Examine Transformative Learning Experiences in Two Graduate Teacher Preparation Courses

    ERIC Educational Resources Information Center

    Caruana, Vicki; Woodrow, Kelli; Pérez, Luis

    2015-01-01

    The Learning Activities Survey (LAS) detected whether, and to what extent, a perspective transformation occurred during two graduate courses in teacher preparation. The LAS examined the types of learning identified as contributing to their transformative experiences. This study examined pre-service teachers' critical reflection of the course…

  2. Transforming growth factor: beta signaling is essential for limb regeneration in axolotls.

    PubMed

    Lévesque, Mathieu; Gatien, Samuel; Finnson, Kenneth; Desmeules, Sophie; Villiard, Eric; Pilote, Mireille; Philip, Anie; Roy, Stéphane

    2007-01-01

    Axolotls (urodele amphibians) have the unique ability, among vertebrates, to perfectly regenerate many parts of their body including limbs, tail, jaw and spinal cord following injury or amputation. The axolotl limb is the most widely used structure as an experimental model to study tissue regeneration. The process is well characterized, requiring multiple cellular and molecular mechanisms. The preparation phase represents the first part of the regeneration process which includes wound healing, cellular migration, dedifferentiation and proliferation. The redevelopment phase represents the second part when dedifferentiated cells stop proliferating and redifferentiate to give rise to all missing structures. In the axolotl, when a limb is amputated, the missing or wounded part is regenerated perfectly without scar formation between the stump and the regenerated structure. Multiple authors have recently highlighted the similarities between the early phases of mammalian wound healing and urodele limb regeneration. In mammals, one very important family of growth factors implicated in the control of almost all aspects of wound healing is the transforming growth factor-beta family (TGF-beta). In the present study, the full length sequence of the axolotl TGF-beta1 cDNA was isolated. The spatio-temporal expression pattern of TGF-beta1 in regenerating limbs shows that this gene is up-regulated during the preparation phase of regeneration. Our results also demonstrate the presence of multiple components of the TGF-beta signaling machinery in axolotl cells. By using a specific pharmacological inhibitor of TGF-beta type I receptor, SB-431542, we show that TGF-beta signaling is required for axolotl limb regeneration. Treatment of regenerating limbs with SB-431542 reveals that cellular proliferation during limb regeneration as well as the expression of genes directly dependent on TGF-beta signaling are down-regulated. These data directly implicate TGF-beta signaling in the

  3. Relation of spontaneous transformation in cell culture to adaptive growth and clonal heterogeneity.

    PubMed

    Rubin, A L; Yao, A; Rubin, H

    1990-01-01

    Cell transformation in culture is marked by the appearance of morphologically altered cells that continue to multiply to form discrete foci in confluent sheets when the surrounding cells are inhibited. These foci occur spontaneously in early-passage NIH 3T3 cells grown to confluency in 10% calf serum (CS) but are not seen in cultures grown to confluency in 2% CS. However, repeated passage of the cells at low density in 2% CS gives rise to an adapted population that grows to increasingly higher saturation densities and produces large numbers of foci in 2% CS. The increased saturation density of the adapted population in 2% CS is retained upon repeated passage in 10% CS, but the number and size of the foci produced in 2% CS gradually decrease under this regime. Clonal analysis confirms that the focus-forming potential of most if not all of the cells in a population increases in response to a continuously applied growth constraint, although only a small fraction of the population may actually form foci in a given assay. The acquired capacity for focus formation varies widely in clones derived from the adapted population and changes in diverse ways upon further passage of the clones. We propose that the adaptive changes result from progressive selection of successive phenotypic variations in growth capacity that occur spontaneously. The process designated progressive state selection resolves the apparent dichotomy between spontaneous mutation with selection on the one hand and induction on the other, by introducing selection among fluctuating states or metabolic patterns rather than among genetically altered cells.

  4. Control of DNA replication in a transformed lymphoid cell line: coexistence of activator and inhibitor activities.

    PubMed

    Coffman, F D; Fresa, K L; Oglesby, I; Cohen, S

    1991-12-01

    Proliferating lymphocytes contain an intracellular factor, ADR (activator of DNA replication), which can initiate DNA synthesis in isolated quiescent nuclei. Resting lymphocytes lack ADR activity and contain an intracellular inhibitory factor that suppresses DNA synthesis in normal but not transformed nuclei. In this study we describe a MOLT-4 subline that produces both the activator and inhibitory activities which can be separated by ammonium sulfate fractionation. The inhibitor is heat stable and inhibits ADR-mediated DNA replication in a dose-dependent manner. It does not inhibit DNA polymerase alpha activity. The inhibitor must be present at the initiation of DNA replication to be effective, as it loses most of its effectiveness if it is added after replication has begun. The presence of inhibitory activity in proliferating MOLT-4 cells, taken with the previous observation that inhibitor derived from normal resting cells does not affect DNA synthesis by MOLT-4 nuclei, suggests that failure of a down-regulating signal may play an important role in proliferative disorder. PMID:1934078

  5. 1,25-dihydroxyvitamin D3 stimulates transforming growth factor-beta1 synthesis by mouse renal proximal tubular cells.

    PubMed

    Weinreich, T; Landolt, M; Booy, C; Wüthrich, R; Binswanger, U

    1999-01-01

    1,25-dihydroxyvitamin D3 [1,25-(OH)2 D3] is a secosteroid hormone with effects on cell growth, differentiation and immunoregulatory functions in a number of tissues not primarily involved in mineral metabolism. We recently demonstrated growth-regulating effects of 1, 25-(OH)2 D3 on human mesangial cells and proximal tubular cells. To investigate whether 1,25-(OH)2 D3 might also affect the synthesis of cytokines and growth factors in proximal tubular cells, we assessed in the present study the expression and secretion of transforming growth factor-beta1 (TGF-beta1) in a mouse proximal tubular cell line (MCT) in vitro. TGF-beta1 synthesis was measured by a monospecific ELISA in culture supernatant. The secreted TGF-beta1 was proven to be biologically active by means of a bioassay system (CCL-64 mink lung epithelial cell proliferation assay). TGF-beta1 gene expression was assessed by RT-PCR. To analyze whether TGF-beta1 expression mediates the 1,25-(OH)2 D3-induced antiproliferative actions in MCT, proliferation studies in the absence or presence of a blocking monoclonal anti TGF-beta1-3 antibody were performed. 1, 25-(OH)2 D3 (10(-11) to 10(-7) M) specifically increased the TGF-beta1 protein secretion in MCT with a maximum at 10(-8) M. No detectable effect was found with 25 D3 at 10 times higher concentrations. A synthetic 20-epi analogue, MC 1288, increased TGF-beta1 secretion up to similar amounts at equimolar concentrations as the natural hormone 1,25-(OH)2 D3. Steady-state TGF-beta1 mRNA concentration in MCT was transiently increased by 1, 25-(OH)2 D3 between 12 and 24 h, returning to control values at 48 h. Blocking TGF-beta1 did not reduce or abrogate the antiproliferative effect of 1,25-(OH)2 D3. In conclusion, 1,25-(OH)2 D3 stimulates TGF-beta1 expression in renal proximal tubular cells, a growth factor with anti-inflammatory and profibrotic actions which plays an important role in the development and progression of nephrosclerosis. PMID:10394107

  6. Transforming growth factor-β evokes Ca2+ waves and enhances gene expression in human pulmonary fibroblasts.

    PubMed

    Mukherjee, Subhendu; Kolb, Martin R J; Duan, Fuqin; Janssen, Luke J

    2012-06-01

    Fibroblasts maintain the structural framework of animal tissue by synthesizing extracellular matrix molecules. Chronic lung diseases are characterized in part by changes in fibroblast numbers, properties, and more. Fibroblasts respond to a variety of growth factors, cytokines, and proinflammatory mediators. However, the signaling mechanisms behind these responses have not been fully explored. We sought to determine the role of Ca(2+) waves in transforming growth factor-β (TGF-β)-mediated gene expression in human pulmonary fibroblasts. Primary human pulmonary fibroblasts were cultured and treated with TGF-β and different blockers under various conditions. Cells were then loaded with the Ca(2+) indicator dye Oregon green, and Ca(2+) waves were monitored by confocal [Ca(2+)](i) fluorimetry. Real-time PCR was used to probe gene expression. TGF-β (1 nM) evoked recurring Ca(2+) waves. A 30-minute pretreatment of SD 208, a TGF-β receptor-1 kinase inhibitor, prevented Ca(2+) waves from being evoked by TGF-β. The removal of external Ca(2+) completely occluded TGF-β-evoked Ca(2+) waves. Cyclopiazonic acid, an inhibitor of the internal Ca(2+) pump, evoked a relatively slowly developing rise in Ca(2+) waves compared with the rapid changes evoked by TGF-β, but the baseline fluorescence was increased. Ryanodine (10(-5) M) also blocked TGF-β-mediated Ca(2+) wave activity. Real-time PCR showed that TGF-β rapidly and dramatically increased the gene expression of collagen A1 and fibronectin. This increase was blocked by ryanodine treatment and cyclopiazonic acid. We conclude that, in human pulmonary fibroblasts, TGF-β acts on ryanodine-sensitive channels, leading to Ca(2+) wave activity, which in turn amplifies extracellular matrix gene expression.

  7. The anticancer agent prodigiosin induces p21WAF1/CIP1 expression via transforming growth factor-beta receptor pathway.

    PubMed

    Soto-Cerrato, Vanessa; Viñals, Francesc; Lambert, James R; Pérez-Tomás, Ricardo

    2007-11-01

    The anticancer agent prodigiosin has been shown to act as an efficient immunosuppressant, eliciting cell cycle arrest at non-cytotoxic concentrations, and potent proapoptotic and antimetastatic effects at higher concentrations. Gene expression profiling of MCF-7 cells after treatment with a non-cytotoxic concentration of prodigiosin showed that expression of the p21WAF1/CIP1 gene, a negative cell cycle regulator was induced. In this study, we show that prodigiosin induces p21 expression leading to cell cycle blockade. Subsequently, we attempted to elucidate the molecular mechanisms involved in prodigiosin-mediated p21 gene expression. We demonstrate that prodigiosin induces p21 in a p53-independent manner as prodigiosin induced p21 in cells with both mutated and dominant negative p53. Conversely, the transforming growth factor-beta (TGF-beta) pathway has been found to be necessary for p21 induction. Prodigiosin-mediated p21 expression was blocked by SB431542, a TGF-beta receptor inhibitor. Nevertheless, this pathway alone is not enough to induce p21 expression. The TGF-beta family member (nonsteroidal anti-inflammatory drug)-activated gene 1/growth differentiation factor 15 (NAG-1) may activate this pathway, as it has previously been suggested to signal through the TGF-beta pathway and is overexpressed in response to prodigiosin treatment. We show that NAG-1 colocalizes with TGF-beta receptor type I, suggesting a possible interaction between them. Taken together, these results suggest the TGF-beta pathway is required for induction of p21 expression after prodigiosin treatment of MCF-7 cells.

  8. Hair Growth Promotion Activity and Its Mechanism of Polygonum multiflorum

    PubMed Central

    Li, Yunfei; Han, Mingnuan; Lin, Pei; He, Yanran; Yu, Jie; Zhao, Ronghua

    2015-01-01

    Polygonum multiflorum Radix (PMR) has long history in hair growth promotion and hair coloring in clinical applications. However, several crucial problems in its clinic usage and mechanisms are still unsolved or lack scientific evidences. In this research, C57BL/6J mice were used to investigate hair growth promotion activity and possible mechanism of PMR and Polygonum multiflorum Radix Preparata (PMRP). Hair growth promotion activities were investigated by hair length, hair covered skin ratio, the number of follicles, and hair color. Regulation effects of several cytokines involved in the hair growth procedure were tested, such as fibroblast growth factor (FGF-7), Sonic Hedgehog (SHH), β-catenin, insulin-like growth factor-1 (IGF-1), and hepatocyte growth factor (HGF). Oral PMR groups had higher hair covered skin ratio (100 ± 0.00%) than oral PMRP groups (48%~88%). However, topical usage of PMRP had about 90% hair covered skin ratio. Both oral administration of PMR and topically given PMRP showed hair growth promotion activities. PMR was considered to be more suitable for oral administration, while PMRP showed greater effects in external use. The hair growth promotion effect of oral PMR was most probably mediated by the expression of FGF-7, while topical PMRP promoted hair growth by the stimulation of SHH expression. PMID:26294926

  9. Identification of selected microorganisms from activated sludge capable of benzothiazole and benzotriazole transformation.

    PubMed

    Kowalska, Katarzyna; Felis, Ewa

    2015-01-01

    Benzothiazole (BT) and benzotriazole (BTA) are present in the environment - especially in urban and industrial areas, usually as anthropogenic micropollutants. BT and BTA have been found in the municipal and industrial wastewater, rivers, soil, groundwater, sediments and sludge. The origins of those substances' presence in the environment are various industry branches (food, chemical, metallurgical, electrical), households and surface runoff from industrial areas. Increasingly strict regulations on water quality and the fact that the discussed compounds are poorly biodegradable, make them a serious problem in the environment. Considering this, it is important to look for environmentally friendly and socially acceptable ways to remove BT and BTA. The aim of this study was to identify microorganisms capable of BT and BTA transformation or/and degradation in aquatic environment. Selected microorganisms were isolated from activated sludge. The identification of microorganisms capable of BT and BTA removal was possible using molecular biology techniques (PCR, DNA sequencing). Among isolated microorganisms of activated sludge are bacteria potentially capable of BT and BTA biotransformation and/or removal. The most common bacteria capable of BT and BTA transformation were Rhodococcus sp., Enterobacter sp., Arthrobacter sp. They can grow in a medium with BT and BTA as the only carbon source. Microorganisms previously adapted to the presence of the studied substances at a concentration of 10 mg/l, showed a greater rate of growth of colonies on media than microorganisms unconditioned to the presence of such compounds. Results of the biodegradation test suggest that BT was degraded to a greater extent than BTA, 98-100% and 11-19%, respectively.

  10. Identification of selected microorganisms from activated sludge capable of benzothiazole and benzotriazole transformation.

    PubMed

    Kowalska, Katarzyna; Felis, Ewa

    2015-01-01

    Benzothiazole (BT) and benzotriazole (BTA) are present in the environment - especially in urban and industrial areas, usually as anthropogenic micropollutants. BT and BTA have been found in the municipal and industrial wastewater, rivers, soil, groundwater, sediments and sludge. The origins of those substances' presence in the environment are various industry branches (food, chemical, metallurgical, electrical), households and surface runoff from industrial areas. Increasingly strict regulations on water quality and the fact that the discussed compounds are poorly biodegradable, make them a serious problem in the environment. Considering this, it is important to look for environmentally friendly and socially acceptable ways to remove BT and BTA. The aim of this study was to identify microorganisms capable of BT and BTA transformation or/and degradation in aquatic environment. Selected microorganisms were isolated from activated sludge. The identification of microorganisms capable of BT and BTA removal was possible using molecular biology techniques (PCR, DNA sequencing). Among isolated microorganisms of activated sludge are bacteria potentially capable of BT and BTA biotransformation and/or removal. The most common bacteria capable of BT and BTA transformation were Rhodococcus sp., Enterobacter sp., Arthrobacter sp. They can grow in a medium with BT and BTA as the only carbon source. Microorganisms previously adapted to the presence of the studied substances at a concentration of 10 mg/l, showed a greater rate of growth of colonies on media than microorganisms unconditioned to the presence of such compounds. Results of the biodegradation test suggest that BT was degraded to a greater extent than BTA, 98-100% and 11-19%, respectively. PMID:26641641

  11. Loss of transforming growth factor-beta 2 leads to impairment of central synapse function

    PubMed Central

    Heupel, Katharina; Sargsyan, Vardanush; Plomp, Jaap J; Rickmann, Michael; Varoqueaux, Frédérique; Zhang, Weiqi; Krieglstein, Kerstin

    2008-01-01

    Background The formation of functional synapses is a crucial event in neuronal network formation, and with regard to regulation of breathing it is essential for life. Members of the transforming growth factor-beta (TGF-β) superfamily act as intercellular signaling molecules during synaptogenesis of the neuromuscular junction of Drosophila and are involved in synaptic function of sensory neurons of Aplysia. Results Here we show that while TGF-β2 is not crucial for the morphology and function of the neuromuscular junction of the diaphragm muscle of mice, it is essential for proper synaptic function in the pre-Bötzinger complex, a central rhythm organizer located in the brainstem. Genetic deletion of TGF-β2 in mice strongly impaired both GABA/glycinergic and glutamatergic synaptic transmission in the pre-Bötzinger complex area, while numbers and morphology of central synapses of knock-out animals were indistinguishable from their wild-type littermates at embryonic day 18.5. Conclusion The results demonstrate that TGF-β2 influences synaptic function, rather than synaptogenesis, specifically at central synapses. The functional alterations in the respiratory center of the brain are probably the underlying cause of the perinatal death of the TGF-β2 knock-out mice. PMID:18854036

  12. Transforming Growth Factor β Drives Hemogenic Endothelium Programming and the Transition to Hematopoietic Stem Cells.

    PubMed

    Monteiro, Rui; Pinheiro, Philip; Joseph, Nicola; Peterkin, Tessa; Koth, Jana; Repapi, Emmanouela; Bonkhofer, Florian; Kirmizitas, Arif; Patient, Roger

    2016-08-22

    Hematopoietic stem cells (HSCs) are self-renewing multipotent stem cells that generate mature blood lineages throughout life. They, together with hematopoietic progenitor cells (collectively known as HSPCs), emerge from hemogenic endothelium in the floor of the embryonic dorsal aorta by an endothelial-to-hematopoietic transition (EHT). Here we demonstrate that transforming growth factor β (TGFβ) is required for HSPC specification and that it regulates the expression of the Notch ligand Jagged1a in endothelial cells prior to EHT, in a striking parallel with the epithelial-to-mesenchymal transition (EMT). The requirement for TGFβ is two fold and sequential: autocrine via Tgfβ1a and Tgfβ1b produced in the endothelial cells themselves, followed by a paracrine input of Tgfβ3 from the notochord, suggesting that the former programs the hemogenic endothelium and the latter drives EHT. Our findings have important implications for the generation of HSPCs from pluripotent cells in vitro. PMID:27499523

  13. Transforming growth factor-beta 1 is decreased in remodeling hypertensive bovine pulmonary arteries.

    PubMed Central

    Botney, M D; Parks, W C; Crouch, E C; Stenmark, K; Mecham, R P

    1992-01-01

    The development of pulmonary hypertension in hypoxic newborn calves is associated with a complex pattern of increased tropoelastin and type I procollagen synthesis and deposition by smooth muscle cells in large elastic pulmonary arteries compared to normoxic controls. We examined the possibility that transforming growth factor-beta 1 (TGF-beta 1) may be associated with the production of extracellular matrix protein in this model of pulmonary hypertension. Medial smooth muscle cells in both normotensive and hypertensive vessels, as assessed by immunohistochemistry, were the major source of TGF-beta 1. Staining was confined to foci of smooth muscle cells in the outer media and appeared greater in normotensive than hypertensive vessels. Consistent with the immunohistochemistry, a progressive, age-dependent increase in normotensive pulmonary artery TGF-beta 1 mRNA was observed after birth, whereas TGF-beta 1 mRNA remained at low, basal levels in hypertensive, remodeling pulmonary arteries. These observations suggest that local expression of TGF-beta 1 is not associated with increased extracellular matrix protein synthesis in this model of hypoxic pulmonary hypertension. Images PMID:1569202

  14. Integration of sexual trauma in a religious narrative: transformation, resolution and growth among contemplative nuns.

    PubMed

    Durà-Vilà, Glòria; Littlewood, Roland; Leavey, Gerard

    2013-02-01

    The psychological consequences of sexual abuse are generally serious and enduring, particularly when the perpetrator is known and trusted by the survivor. This paper explores the experiences of five contemplative nuns who were sexually abused by priests and the spiritual journeys that followed. In the context of an ethnographic study of contemplative practice, participant observation and in-depth interviews were used to examine the ways that the nuns sought to make sense of their experiences through a long process of solitary introspection. The pursuit of meaning was shaped by religious beliefs relating to forgiveness, sacrifice, and salvation. Thus, trauma was transformed into a symbolic religious narrative that shaped their sense of identity. They were able to restructure core beliefs and to manage their current relationships with priests more securely. They described regaining their spiritual well-being in ways that suggest a form of posttraumatic spiritual growth. We conclude by discussing the findings in the light of the existing literature on the interaction of trauma and spirituality.

  15. Ursolic acid, an antagonist for transforming growth factor (TGF)-beta1.

    PubMed

    Murakami, Shigeru; Takashima, Hajime; Sato-Watanabe, Mariko; Chonan, Sumi; Yamamoto, Koji; Saitoh, Masako; Saito, Shiuji; Yoshimura, Hiromitsu; Sugawara, Koko; Yang, Junshan; Gao, Nannan; Zhang, Xinggao

    2004-05-21

    Transforming growth factor-beta (TGF-beta), a multifunctional cytokine which is involved in extracellular matrix modulation, has a major role in the pathogenesis and progression of fibrotic diseases. We now report the effects of ursolic acid on TGF-beta1 receptor binding and TGF-beta1-induced cellular functions in vitro. Ursolic acid inhibited [(125)I]-TGF-beta1 receptor binding to Balb/c 3T3 mouse fibroblasts with an IC(50) value of 6.9+/-0.8 microM. Ursolic acid dose-dependently recovered reduced proliferation of Minc Mv1Lu cells in the presence of 5 nM of TGF-beta1 and attenuated TGF-beta1-induced collagen synthesis and production in human fibroblasts. Molecular dynamics simulations suggest that ursolic acid may interact with the hydrophobic region of the dimeric interface and thereby inhibit the binding of TGF-beta1 to its receptor. All these findings taken together show that ursolic acid functions as an antagonist for TGF-beta1. This is the first report to show that a small molecule can inhibit TGF-beta1 receptor binding and influence functions of TGF-beta1.

  16. Transforming growth factor-beta signaling in thoracic aortic aneurysm development: a paradox in pathogenesis

    PubMed Central

    Jones, Jeffrey A.; Spinale, Francis G.; Ikonomidis, John S.

    2008-01-01

    Thoracic aortic aneurysms (TAAs) are potentially devastating, and due to their asymptomatic behavior, pose a serious health risk characterized by the lack of medical treatment options and high rates of surgical morbidity and mortality. Independent of the inciting stimuli (biochemical/mechanical), TAA development proceeds by a multifactorial process influenced by both cellular and extracellular mechanisms, resulting in alterations of the structure and composition of the vascular extracellular matrix (ECM). While the role of enhanced ECM proteolysis in TAA formation remains undisputed, little attention has been focused on the upstream signaling events that drive the remodeling process. Recent evidence highlighting the dysregulation of transforming growth factor-beta (TGF-β) signaling in ascending TAAs from Marfan syndrome patients has stimulated an interest in this intracellular signaling pathway. However, paradoxical discoveries have implicated both enhanced TGF-β signaling and loss of function TGF-β receptor mutations, in aneurysm formation; obfuscating a clear functional role for TGF-β in aneurysm development. In an effort to elucidate this subject, TGF-β signaling and its role in vascular remodeling and pathology will be reviewed, with the aim of identifying potential mechanisms of how TGF-β signaling may contribute to the formation and progression of TAA. PMID:18765947

  17. Genetic variations in the transforming growth factor beta pathway as predictors of bladder cancer risk.

    PubMed

    Wei, Hua; Kamat, Ashish M; Aldousari, Saad; Ye, Yuanqing; Huang, Maosheng; Dinney, Colin P; Wu, Xifeng

    2012-01-01

    Bladder cancer is the fifth most common cancer in the United States, and identifying genetic markers that may predict susceptibility in high-risk population is always needed. The purpose of our study is to determine whether genetic variations in the transforming growth factor-beta (TGF-β) pathway are associated with bladder cancer risk. We identified 356 single-nucleotide polymorphisms (SNPs) in 37 key genes from this pathway and evaluated their association with cancer risk in 801 cases and 801 controls. Forty-one SNPs were significantly associated with cancer risk, and after adjusting for multiple comparisons, 9 remained significant (Q-value ≤0.1). Haplotype analysis further revealed three haplotypes within VEGFC and two haplotypes in EGFR were significantly associated with increased bladder cancer risk compared to the most common haplotype. Classification and regression tree analysis further revealed potential high-order gene-gene interactions, with VEGFC: rs3775194 being the initial split, which suggests that this variant is responsible for the most variation in risk. Individuals carrying the common genotype for VEGFC: rs3775194 and EGFR: rs7799627 and the variant genotype for VEGFR: rs4557213 had a 4.22-fold increase in risk, a much larger effect magnitude than that conferred by common genotype for VEGFR: rs4557213. Our study provides the first epidemiological evidence supporting a connection between TGF-β pathway variants and bladder cancer risk.

  18. Effect of transforming growth factor-β3 on mono and multilayer chondrocytes.

    PubMed

    Sefat, Farshid; Youseffi, Mansour; Khaghani, Seyed Ali; Soon, Chin Fhung; Javid, Farideh

    2016-07-01

    Articular cartilage is an avascular and flexible connective tissue found in joints. It produces a cushioning effect at the joints and provides low friction to protect the ends of the bones from wear and tear/damage. It has poor repair capacity and any injury can result pain and loss of mobility. Transforming growth factor-beta (TGF-β), a cytokine superfamily, regulates cell function, including differentiation and proliferation. Although the function of the TGF-βs in various cell types has been investigated, their function in cartilage repair is as yet not fully understood. The effect of TGF-β3 in biological regulation of primary chondrocyte was investigated in this work. TGF-β3 provided fibroblastic morphology to chondrocytes and therefore overall reduction in cell proliferation was observed. The length of the cells supplemented with TGF-β3 were larger than the cells without TGF-β3 treatment. This was caused by the fibroblast like cells (dedifferentiated chondrocytes) which occupied larger areas compared to cells without TGF-β3 addition. The healing process of the model wound closure assay of chondrocyte multilayer was slowed down by TGF-β3, and this cytokine negatively affected the strength of chondrocyte adhesion to the cell culture surface. PMID:27108397

  19. Association of transforming growth-factor alpha gene polymorphisms with nonsyndromic cleft palate only (CPO)

    SciTech Connect

    Shiang, R. ); Lidral, A.C.; Ardinger, H.H.; Murray, J.C.; Romitti, P.A.; Munger, R.G.; Buetow, K.H.

    1993-10-01

    Genetic analysis and tissue-specific expression studies support a role for transforming growth-factor alpha (TGFA) in craniofacial development. Previous studies have confirmed an association of alleles for TGFA with nonsyndromic cleft lip with or without cleft palate (CL/P) in humans. The authors carried out a retrospective association study to determine whether specific allelic variants of the TGFA gene are also associated with cleft palate only (CPO). The PCR products from 12 overlapping sets of primers to the TGFA cDNA were examined by using single-strand conformational polymorphism analysis. Four DNA polymorphic sites for TGFA were identified in the 3[prime] untranslated region of the TGFA gene. These variants, as well as previously identified RFLPs for TGFA, were characterized in case and control populations for CPO by using X[sup 2] analysis. A significant association between alleles of TGFA and CPO was identified which further supports a role for this gene as one of the genetic determinants of craniofacial development. Sequence analysis of the variants disclosed a cluster of three variable sites within 30 bp of each other in the 3[prime] untranslated region previously associated with an antisense transcript. These studies extend the role for TGFA in craniofacial morphogenesis and support an interrelated mechanism underlying nonsyndromic forms of CL/P. 46 refs., 3 figs., 3 tabs.

  20. Transforming growth factor receptor type II (ec-TβR II) behaves as a halophile.

    PubMed

    Saini, Komal; Khan, M Ashhar I; Chakrapani, Sumit; Deep, Shashank

    2015-01-01

    The members of transforming growth factor β family (TGF-β) are multifunctional proteins but their main role is to control cell proliferation and differentiation. Polypeptides of TGF-β family function by binding to two related, functionally distinct transmembrane receptor kinases, first to the type II (TβR II) followed by type I receptor (TβR I). The paper describes, in details, the stability of wt-ec-TβR II under different conditions. The stability of wt-ec-TβR II was observed at different pH and salt concentration using fluorescence spectroscopy. Stability of ec-TβR II decreases with decrease in pH. Interestingly, the addition of salt increases the stability of the TβRII at pH 5.0 as observed for halophiles. Computational analysis using DELPHI suggests that this is probably due to the decrease in repulsion between negatively charged residues at surface on the addition of salt. This is further confirmed by the change in the stability of receptor on mutation of some of the residues (D32A) at surface.

  1. Transforming growth factor-beta (TGF-beta) and programmed cell death in the vertebrate retina.

    PubMed

    Duenker, Nicole

    2005-01-01

    Programmed cell death (PCD) is a precisely regulated phenomenon essential for the homeostasis of multicellular organisms. Developmental systems, particularly the nervous system, have provided key observations supporting the physiological role of PCD. We have recently shown that transforming growth factor-beta (TGF-beta) plays an important role in mediating ontogenetic PCD in the nervous system. As part of the central nervous system the developing retina serves as an ideal model system for investigating apoptotic processes during neurogenesis in vivo as it is easily accessible experimentally and less complex due to its limited number of different neurons. This review summarizes data indicating a pivotal role of TGF-beta in mediating PCD in the vertebrate retina. The following topics are discussed: expression of TGF-beta isoforms and receptors in the vertebrate retina, the TGF-beta signaling pathway, functions and molecular mechanisms of PCD in the nervous system, TGF-beta-mediated retinal apoptosis in vitro and in vivo, and interactions of TGF-beta with other pro- and anti-apoptotic factors.

  2. Cardiac fibroblasts are predisposed to convert into myocyte phenotype: Specific effect of transforming growth factor. beta

    SciTech Connect

    Eghbali, M.; Tomek, R.; Woods, C.; Bhambi, B. )

    1991-02-01

    Cardiac fibroblasts are mainly responsible for the synthesis of major extracellular matrix proteins in the heart, including fibrillar collagen types I and III and fibronectin. In this report we show that these cells, when stimulated by transforming growth factor {beta}{sub 1} (TGF-{beta}{sub 1}), acquire certain myocyte-specific properties. Cultured cardiac fibroblasts from adult rabbit heart were treated with TGF-{beta}{sub 1}, (10-15 ng/ml) for different periods of time. Northern hybridization analysis of total RNA showed that cells treated with TGF-{beta}{sub 1} became stained with a monoclonal antibody to muscle-specific actin. After treatment of quiescent cells with TGF-{beta}{sub 1}, cell proliferation (as measured by ({sup 3}H)thymidine incorporation) was moderately increased. Cultured cardiac fibroblasts at the subconfluent stage, when exposed to TGF-{beta}{sub 1} in the presence of 10% fetal bovine serum, gave rise to a second generation of slowly growing cells that expressed muscle-specific actin filaments. The findings demonstrate that cardiac fibroblasts can be made to differentiate into cells that display many characteristics of cardiac myocytes. TGF-{beta}{sub 1} seems to be a specific inducer of such conversion.

  3. Metformin is a novel suppressor for transforming growth factor (TGF)-β1

    PubMed Central

    Xiao, Han; Zhang, Jianshu; Xu, Zhonghe; Feng, Yenan; Zhang, Mingliang; Liu, Jianli; Chen, Ruifei; Shen, Jing; Wu, Jimin; Lu, Zhizhen; Fang, Xiaohong; Li, Jingyuan; Zhang, Youyi

    2016-01-01

    Metformin is a widely used first-line antidiabetic drug that has been shown to protect against a variety of specific diseases in addition to diabetes, including cardiovascular disorders, polycystic ovary syndrome, and cancer. However, the precise mechanisms underlying the diverse therapeutic effects of metformin remain elusive. Here, we report that transforming growth factor-β1 (TGF-β1), which is involved in the pathogenesis of numerous diseases, is a novel target of metformin. Using a surface plasmon resonance-based assay, we identified the direct binding of metformin to TGF-β1 and found that metformin inhibits [125I]-TGF-β1 binding to its receptor. Furthermore, based on molecular docking and molecular dynamics simulations, metformin was predicted to interact with TGF-β1 at its receptor-binding domain. Single-molecule force spectroscopy revealed that metformin reduces the binding probability but not the binding force of TGF-β1 to its type II receptor. Consequently, metformin suppresses type II TGF-β1 receptor dimerization upon exposure to TGF-β1, which is essential for downstream signal transduction. Thus, our results indicate that metformin is a novel TGF-β suppressor with therapeutic potential for numerous diseases in which TGF-β1 hyperfunction is indicated. PMID:27349853

  4. Integration of sexual trauma in a religious narrative: Transformation, resolution and growth among contemplative nuns

    PubMed Central

    Littlewood, Roland; Leavey, Gerard

    2013-01-01

    The psychological consequences of sexual abuse are generally serious and enduring, particularly when the perpetrator is known and trusted by the survivor. This paper explores the experiences of five contemplative nuns who were sexually abused by priests and the spiritual journeys that followed. In the context of an ethnographic study of contemplative practice, participant observation and in-depth interviews were used to examine the ways that the nuns sought to make sense of their experiences through a long process of solitary introspection. The pursuit of meaning was shaped by religious beliefs relating to forgiveness, sacrifice, and salvation. Thus, trauma was transformed into a symbolic religious narrative that shaped their sense of identity. They were able to restructure core beliefs and to manage their current relationships with priests more securely. They described regaining their spiritual well-being in ways that suggest a form of posttraumatic spiritual growth. We conclude by discussing the findings in the light of the existing literature on the interaction of trauma and spirituality. PMID:23296289

  5. Transforming Growth Factor Beta Receptor I Inhibitor Sensitizes Drug-resistant Pancreatic Cancer Cells to Gemcitabine

    PubMed Central

    Kim, Yeon Jeong; Hwang, Jae Seok; Hong, Young Bin; Bae, Insoo; Seong, Yeon-Sun

    2012-01-01

    Background Resistance to gemcitabine is a major obstacle in the treatment of advanced pancreatic cancer. Previous exploration of protein kinase inhibitors demonstrated that blocking transforming growth factor-β (TGFβ) signal enhances the efficacy of gemcitabine in pancreatic cancer cells. Materials and Methods We analyzed the cell viability after combinational treatment of TGFβ receptor I (TβRI) inhibitors, SB431542 and SB525334 with gemcitabine in pancreatic cancer cells. In addition, apoptotic cell death and cell migration were measured. Results Combination with TβRI inhibitors significantly augmented the cytotoxicity of gemcitabine in both parental and gemcitabine resistant pancreatic cancer cells. SB525334 significantly increased apoptotic cell death in gemcitabine-resistant cells. Treatment of SB525334 also reduced AKT signal pathway, which plays crucial role in gemcitabine resistance. Migration assay also revealed that blocking TβRI reduces cell migration. Conclusion Chemotherapeutic approaches using SB525334 might enhance the treatment benefit of the gemcitabine-containing regimens in the treatment of pancreatic cancer patients. PMID:22399597

  6. Elevated Transforming Growth Factor β1 in Plasma of Primary Open-Angle Glaucoma Patients

    PubMed Central

    Kuchtey, John; Kunkel, Jessica; Burgess, L. Goodwin; Parks, Megan B.; Brantley, Milam A.; Kuchtey, Rachel W.

    2014-01-01

    Purpose. To test the hypothesis that primary open-angle glaucoma (POAG) patients have a systemic elevation of transforming growth factor β1 (TGFβ1). Methods. Plasma was prepared from blood samples drawn from patients of the Vanderbilt Eye Institute during clinic visits. Concentrations of total TGFβ1 and thrombospondin-1 (TSP1) in plasma were determined by ELISA. Statistical significance of differences between POAG and control samples was evaluated by Mann-Whitney test. Regression analysis was used to evaluate correlations between plasma TGFβ1 and patient age and between plasma TGFβ1 and TSP1. Results. Plasma samples were obtained from 148 POAG patients and 150 controls. Concentration of total TGFβ1 in the plasma of POAG patients (median = 3.25 ng/mL) was significantly higher (P < 0.0001) than in controls (median = 2.46 ng/mL). Plasma TGFβ1 was not correlated with age of patient (P = 0.17). Thrombospondin-1 concentration was also significantly higher (P < 0.0001) in POAG patients (median = 0.774 μg/mL) as compared to controls (median = 0.567 μg/mL). Plasma total TGFβ1 and TSP1 concentrations were linearly correlated (P < 0.0001). Conclusions. Plasma samples from POAG patients display elevated total TGFβ1 compared to controls, consistent with elevated systemic TGFβ1 in POAG patients. PMID:25061114

  7. Differential expression of transforming growth factor-beta in the interstitial tissue of testis during aging.

    PubMed

    Jung, Jae-Chang; Park, Geun-Tae; Kim, Kook-Hee; Woo, Ju Hyung; An, Jung-Min; Kim, Ki-Chul; Chung, Hae Young; Bae, Young-Seuk; Park, Jeen Woo; Kang, Shin-Sung; Lee, Young-Sup

    2004-05-01

    Transforming growth factor-betas (TGF-betas) have significant effects on testis development. The pattern of TGF-beta expression in aging testis has not been established to date. We examined age-related changes in the expression of TGF-beta and its receptors in the testis using Western blot analysis. TGF-beta1 expression increased continuously in aging rat testis, whereas no age-associated changes were observed for TGF-beta3. Strong expression of TGF-beta2, as well as type I and II receptors was observed in 12-month-old testis, but following this time, expression decreased dramatically. Interestingly, TGF-beta2 and -beta3 displayed strong and similar expression patterns in liver, regardless of age, suggesting that the down-regulation of TGF-beta2 is testis-specific. We observed significant induction of p53 and p21WAF1 in 18-month-old testis that appeared to correspond with aging. Moreover, caloric restriction (CR) prevented age-related decrease in TGF-beta2 expression. Using immunohistochemistry, we showed that all TGF-beta1, -beta2, and -beta3 proteins are expressed primarily in interstitial cells, which are located in the space between adjoining seminiferous tubules. Our data collectively indicate that aging in the testis is regulated by differential expression of TGF-beta proteins, and decreased levels of TGF-beta2 contribute to the aging process.

  8. Association of Transforming Growth Factor Alpha Polymorphisms with Nonsyndromic Cleft Lip and Palate in Iranian Population

    PubMed Central

    Ebadifar, Asghar; Hamedi, Roya; Khorram Khorshid, Hamid Reza; Saliminejad, Kioomars; Kamali, Koorosh; Aghakhani Moghadam, Fatemeh; Esmaeili Anvar, Nazanin; Ameli, Nazilla

    2015-01-01

    Background: Cleft lip with or without cleft palate (CL/P) is one of the most common congenital anomalies and the etiology of orofacial clefts is multifactorial. Transforming growth factor alpha (TGFA) is expressed at the medial edge epithelium of fusing palatal shelves during craniofacial development. In this study, the association of two important TGFA gene polymorphisms, BamHI (rs11466297) and RsaI (rs3732248), with CL/P was evaluated in an Iranian population. Methods: The frequencies of BamHI and RsaI variations were determined in 105 unrelated Iranian subjects with nonsyndromic CL/P and 218 control subjects using PCR and RFLP methods, and the results were compared with healthy controls. A p-value of <0.05 was considered statistically significant. Results: The BamHI AC genotype was significantly higher (p=0.016) in the patients (12.4%) than the control group (5.0%). The BamHI C allele was significantly higher (p=0.001; OR=3.4, 95% CI: 1.6–7.4) in the cases (8.0%) compared with the control group (2.5%). Conclusion: Our study showed that there was an association between the TGFA BamHI variation and nonsyndromic CL/P in Iranian population. PMID:26605011

  9. Transforming Growth Factor-β and Endoglin Signaling Orchestrate Wound Healing

    PubMed Central

    Valluru, Manoj; Staton, Carolyn A.; Reed, Malcolm W. R.; Brown, Nicola J.

    2011-01-01

    Physiological wound healing is a complex process requiring the temporal and spatial co-ordination of various signaling networks, biomechanical forces, and biochemical signaling pathways in both hypoxic and non-hypoxic conditions. Although a plethora of factors are required for successful physiological tissue repair, transforming growth factor beta (TGF-β) expression has been demonstrated throughout wound healing and shown to regulate many processes involved in tissue repair, including production of ECM, proteases, protease inhibitors, migration, chemotaxis, and proliferation of macrophages, fibroblasts of the granulation tissue, epithelial and capillary endothelial cells. TGF-β mediates these effects by stimulating signaling pathways through a receptor complex which contains Endoglin. Endoglin is expressed in a broad spectrum of proliferating and stem cells with elevated expression during hypoxia, and regulates important cellular functions such as proliferation and adhesion via Smad signaling. This review focuses on how the TGF-β family and Endoglin, regulate stem cell availability, and modulate cellular behavior within the wound microenvironment, includes current knowledge of the signaling pathways involved, and explores how this information may be applicable to inflammatory and/or angiogenic diseases such as fibrosis, rheumatoid arthritis and metastatic cancer. PMID:22164144

  10. Transforming growth factor-β1 in carcinogenesis, progression, and therapy in cervical cancer.

    PubMed

    Zhu, Haiyan; Luo, Hui; Shen, Zhaojun; Hu, Xiaoli; Sun, Luzhe; Zhu, Xueqiong

    2016-06-01

    Transforming growth factor β1 (TGF-β1) is a multifunctional cytokine that plays important roles in cervical tumor formation, invasion, progression, and metastasis. TGF-β1 functions as a tumor inhibitor in precancerous lesions and early stage cancers of cervix whereas as a tumor promoter in later stage. This switch from a tumor inhibitor to a tumor promoter might be due to various alterations in TGF-β signaling pathway, such as mutations or loss of expression of TGF-β receptors and SMAD proteins. Additionally, the oncoproteins of human papillomaviruses have been shown to stimulate TGF-β1 expression, which in turn suppresses host immune surveillance. Thus, in addition to driving tumor cell migration and metastasis, TGF-β1 is believed to play a key role in promoting human papillomavirus infection by weakening host immune defense. In this article, we will discuss the role of TGF-β1 in the expression, carcinogenesis, progression, and therapy in cervical cancers. A better understanding of this cytokine in cervical carcinogenesis is essential for critical evaluation of this cytokine as a potential prognostic marker and therapeutic target. PMID:27010470

  11. Transforming growth factor beta (TGF-β) isomers influence cell detachment of MG-63 bone cells.

    PubMed

    Sefat, Farshid; Khaghani, Seyed Ali; Nejatian, Touraj; Genedy, Mohammed; Abdeldayem, Ali; Moghaddam, Zoha Salehi; Denyer, Morgan C T; Youseffi, Mansour

    2015-12-01

    Bone repair and wound healing are modulated by different stimuli. There is evidence that Transforming Growth Factor-beta (TGF-β) super-family of cytokines have significant effects on bone structure by regulating the replication and differentiation of chondrocytes, osteoblasts and osteoclasts. There is also significant evidence that interactions with extracellular matrix molecules influence cell behaviour. In this study cell surface attachment was examined via a trypsinization assay using various TGF-β isomers in which the time taken to trypsinize cells from the surface provided a means of assessing the strength of attachment. Three TGF-β isomers (TGF-β1, 2 and 3), four combined forms (TGF-β(1+2), TGF-β(1+3), TGF-β(2+3) and TGF-β(1+2+3)) along with four different controls (BSA, HCl, BSA/HCl and negative control) were investigated in this study. The results indicated that treatment with TGF-β1, 2, 3 and HCl decreased cell attachment, however, this effect was significantly greater in the case of TGF-β3 (p<0.001) indicating perhaps that TGF-β3 does not act alone in cell detachment, but instead functions synergistically with signalling pathways that are dependent on the availability of hydrogen ions. Widefield Surface Plasmon Resonance (WSPR) microscope was also used to investigate cell surface interactions.

  12. Metformin is a novel suppressor for transforming growth factor (TGF)-β1

    NASA Astrophysics Data System (ADS)

    Xiao, Han; Zhang, Jianshu; Xu, Zhonghe; Feng, Yenan; Zhang, Mingliang; Liu, Jianli; Chen, Ruifei; Shen, Jing; Wu, Jimin; Lu, Zhizhen; Fang, Xiaohong; Li, Jingyuan; Zhang, Youyi

    2016-06-01

    Metformin is a widely used first-line antidiabetic drug that has been shown to protect against a variety of specific diseases in addition to diabetes, including cardiovascular disorders, polycystic ovary syndrome, and cancer. However, the precise mechanisms underlying the diverse therapeutic effects of metformin remain elusive. Here, we report that transforming growth factor-β1 (TGF-β1), which is involved in the pathogenesis of numerous diseases, is a novel target of metformin. Using a surface plasmon resonance-based assay, we identified the direct binding of metformin to TGF-β1 and found that metformin inhibits [125I]-TGF-β1 binding to its receptor. Furthermore, based on molecular docking and molecular dynamics simulations, metformin was predicted to interact with TGF-β1 at its receptor-binding domain. Single-molecule force spectroscopy revealed that metformin reduces the binding probability but not the binding force of TGF-β1 to its type II receptor. Consequently, metformin suppresses type II TGF-β1 receptor dimerization upon exposure to TGF-β1, which is essential for downstream signal transduction. Thus, our results indicate that metformin is a novel TGF-β suppressor with therapeutic potential for numerous diseases in which TGF-β1 hyperfunction is indicated.

  13. Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation.

    PubMed

    Subramanian, S V; Fitzgerald, M L; Bernfield, M

    1997-06-01

    The syndecan family of transmembrane heparan sulfate proteoglycans is abundant on the surface of all adherent mammalian cells. Syndecans bind and modify the action of various growth factors/cytokines, proteases/antiproteases, cell adhesion molecules, and extracellular matrix components. Syndecan expression is highly regulated during wound repair, a process orchestrated by many of these effectors. Each syndecan ectodomain is shed constitutively by cultured cells, but the mechanism and significance of this shedding are not understood. Therefore, we examined (i) whether physiological agents active during wound repair influence syndecan shedding, and (ii) whether wound fluids contain shed syndecan ectodomains. Using SVEC4-10 endothelial cells we find that certain proteases and growth factors accelerate shedding of the syndecan-1 and -4 ectodomains. Protease-accelerated shedding is completely inhibited by serum-containing media. Thrombin activity is duplicated by the 14-amino acid thrombin receptor agonist peptide that directly activates the thrombin receptor and is not inhibited by serum. Epidermal growth factor family members accelerate shedding but FGF-2, platelet-derived growth factor-AB, transforming growth factor-beta, tumor necrosis factor-alpha, and vascular endothelial cell growth factor 165 do not. Shed ectodomains are soluble, stable in the conditioned medium, have the same size core proteins regardless whether shed at a basal rate, or accelerated by thrombin or epidermal growth factor-family members and are found in acute human dermal wound fluids. Thus, shedding is accelerated by activation of at least two distinct receptor classes, G protein-coupled (thrombin) and protein tyrosine kinase (epidermal growth factor). Proteases and growth factors active during wound repair can accelerate syndecan shedding from cell surfaces. Regulated shedding of syndecans suggests physiological roles for the soluble proteoglycan ectodomains.

  14. Transforming Growth Factor Beta 1 Augments Calvarial Defect Healing and Promotes Suture Regeneration

    PubMed Central

    Shakir, Sameer; MacIsaac, Zoe M.; Naran, Sanjay; Smith, Darren M.; Bykowski, Michael R.; Cray, James J.; Craft, Timothy K.; Wang, Dan; Weiss, Lee; Campbell, Phil G.; Mooney, Mark P.; Losee, Joseph E.

    2015-01-01

    Background: Repair of complex cranial defects is hindered by a paucity of appropriate donor tissue. Bone morphogenetic protein 2 (BMP2) and transforming growth factor beta 1 (TGFβ1) have been shown separately to induce bone formation through physiologically distinct mechanisms and potentially improve surgical outcome for cranial defect repair by obviating the need for donor tissue. We hypothesize that a combination of BMP2 and TGFβ1 would improve calvarial defect healing by augmenting physiologic osteogenic mechanisms. Methods/Results: Coronal suturectomies (3×15 mm) were performed in 10-day-old New Zealand White rabbits. DermaMatrix™ (3×15mm) patterned with four treatments (vehicle, 350 ng BMP2, 200 ng TGFβ1, or 350 ng BMP2+200 ng TGFβ1) was placed in suturectomy sites and rabbits were euthanized at 6 weeks of age. Two-dimensional (2D) defect healing, bone volume, and bone density were quantified by computed tomography. Regenerated bone was qualitatively assessed histologically. One-way analysis of variance revealed significant group main effects for all bone quantity measures. Analysis revealed significant differences in 2D defect healing, bone volume, and bone density between the control group and all treatment groups, but no significant differences were detected among the three growth factor treatment groups. Qualitatively, TGFβ1 treatment produced bone with morphology most similar to native bone. TGFβ1-regenerated bone contained a suture-like tissue, growing from the lateral edge of the defect margin toward the midline. Unique to the BMP2 treatment group, regenerated bone contained lacunae with chondrocytes, demonstrating the presence of endochondral ossification. Conclusions/Significance: Total healing in BMP2 and TGFβ1 treatment groups is not significantly different. The combination of BMP2+TGFβ1 did not significantly increase bone healing compared with treatment with BMP2 or TGFβ1 alone postoperatively at 4 weeks. We highlight the

  15. Porous tricalcium phosphate and transforming growth factor used for anterior spine surgery.

    PubMed

    Steffen, T; Stoll, T; Arvinte, T; Schenk, R K

    2001-10-01

    Harvesting autologous bone graft from the iliac crest is associated with considerable secondary morbidity. Bone graft substitutes such as porous ceramics are increasingly used for spinal surgery. This paper presents the results of an animal study in which beta-tricalcium phosphate (beta-TCP) bone substitutes were used for anterior spinal surgery in sheep and baboons. The presented baboon study also investigated the effect of impregnating the ceramic material with transforming growth factor (TGF). In the first study, using the sheep model, a stand-alone instrumented anterior fusion was performed. The animals were randomized into three treatment groups: autologous bone, beta-TCP granules, and sham group. The results were analyzed biomechanically and histologically at three survival intervals: 8, 16 and 32 weeks. An additional animal group was added later, with ceramic pre-filled implants. In the second study, a baboon model was used to assess the osteointegration of a 15-mm-diameter porous beta-TCP block into the vertebral body. The experiment was partially motivated by a new surgical procedure proposed for local bone graft harvest. Three treatment groups were used: beta-TCP plug, beta-TCP plug impregnated with TGF-beta3, and a sham group with empty defect. The evaluation for all animals included computer tomograms at 3 and 6 months, as well as histology at 6 months. In the sheep model, the mechanical evaluation failed to demonstrate differences between treatment groups. This was because massive anterior bone bridges formed in almost all the animals, masking the effects of individual treatments. Histologically, beta-TCP was shown to be a good osteoconductor. While multiple signs of implant micromotion were documented, pre-filling the cages markedly improved the histological fusion outcomes. In the baboon study, the beta-TCP plugs were completely osteointegrated at 6 months. For the group that used ceramic plugs impregnated with TGF-beta3, no incremental advantage was

  16. Human pulmonary acinar aplasia: reduction of transforming growth factor-beta ligands and receptors.

    PubMed

    Chen, M F; Gray, K D; Prentice, M A; Mariano, J M; Jakowlew, S B

    1999-07-01

    Pulmonary hypoplasia has been found in the human neonatal autopsy population and has been attributed to an alteration in epithelial-mesenchymal interactions during development of the lung. Pulmonary acinar aplasia is a very rare and severe form of pulmonary hypoplasia. The transforming growth factor-betas (TGF-beta) are multifunctional regulatory peptides that are secreted by a variety of normal and malignant cells and are expressed in developing organs including the lung; their tissue distribution patterns have possible significance for signaling roles in many epithelial-mesenchymal interactions. Here, we report our examination of TGF-beta in the lungs of a term female infant diagnosed with pulmonary acinar aplasia whose autopsy revealed extremely hypoplastic lungs with complete absence of alveolar ducts and alveoli. Immunohistochemical and in situ hybridization analyses were used to localize and measure the proteins and mRNA, respectively, for TGF-beta1, TGF-beta2, TGF-beta3, and TGF-beta type I and type II receptors (TGF-beta RI and RII) in formalin-fixed and paraffin-embedded sections of these hypoplastic lungs and normal lungs. Immunostaining for TGF-beta1, TGF-beta2, and TGF-beta RI and RII was significantly lower in the bronchial epithelium and muscle of the hypoplastic lungs than in normal lungs, whereas no difference was detected in staining for other proteins including Clara cell 10-kD protein, adrenomedullin, hepatocyte growth factor/scatter factor, and hepatocyte growth factor receptor/Met in the hypoplastic and normal lungs or in the liver and kidneys of this infant compared with normal liver and kidney. In addition, in situ hybridization showed that TGF-beta1 and TGF-beta RI transcripts were considerably reduced in the bronchial epithelium of the hypoplastic lung compared with normal lung. These results show that there is a selective reduction of TGF-beta in pulmonary acinar aplasia and suggest that the signaling action of TGF-beta in epithelial

  17. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) {beta}1-induced senescence

    SciTech Connect

    Byun, Hae-Ok; Jung, Hyun-Jung; Seo, Yong-Hak; Lee, Young-Kyoung; Hwang, Sung-Chul; Seong Hwang, Eun; Yoon, Gyesoon

    2012-09-10

    Transforming growth factor {beta}1 (TGF {beta}1) induces Mv1Lu cell senescence by persistently producing mitochondrial reactive oxygen species (ROS) through decreased complex IV activity. Here, we investigated the molecular mechanism underlying the effect of TGF {beta}1 on mitochondrial complex IV activity. TGF {beta}1 progressively phosphorylated the negative regulatory sites of both glycogen synthase kinase 3 (GSK3) {alpha} and {beta}, corresponding well to the intracellular ROS generation profile. Pre-treatment of N-acetyl cysteine, an antioxidant, did not alter this GSK3 phosphorylation (inactivation), whereas pharmacological inhibition of GSK3 by SB415286 significantly increased mitochondrial ROS, implying that GSK3 phosphorylation is an upstream event of the ROS generation. GSK3 inhibition by SB415286 decreased complex IV activity and cellular O{sub 2} consumption rate and eventually induced senescence of Mv1Lu cell. Similar results were obtained with siRNA-mediated knockdown of GSK3. Moreover, we found that GSK3 not only exists in cytosol but also in mitochondria of Mv1Lu cell and the mitochondrial GSK3 binds complex IV subunit 6b which has no electron carrier and is topologically located in the mitochondrial intermembrane space. Involvement of subunit 6b in controlling complex IV activity and overall respiration rate was proved with siRNA-mediated knockdown of subunit 6b. Finally, TGF {beta}1 treatment decreased the binding of the subunit 6b to GSK3 and subunit 6b phosphorylation. Taken together, our results suggest that GSK3 inactivation is importantly involved in TGF {beta}1-induced complex IV defects through decreasing phosphorylation of the subunit 6b, thereby contributing to senescence-associated mitochondrial ROS generation.

  18. Endotoxin-induced endothelial fibrosis is dependent on expression of transforming growth factors β1 and β2.

    PubMed

    Echeverría, César; Montorfano, Ignacio; Tapia, Pablo; Riedel, Claudia; Cabello-Verrugio, Claudio; Simon, Felipe

    2014-09-01

    During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor β1 (TGF-β1) and TGF-β2. However, whether TGF-β1 and TGF-β2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-β receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-β production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the dependence of endotoxin-induced endothelial fibrosis on the expression of TGF-β1 and TGF-β2. Endotoxin-treated ECs induced the expression and secretion of TGF-β1 and TGF-β2. TGF-β1 and TGF-β2 downregulation inhibited the endotoxin-induced changes in the endothelial marker VE-cadherin and in the fibrotic proteins α-SMA and fibronectin. Thus, endotoxin induces the production of TGF-β1 and TGF-β2 as a mechanism to promote endotoxin-induced endothelial fibrosis. To the best of our knowledge, this is the first report showing that endotoxin induces endothelial fibrosis via TGF-β secretion, which represents an emerging source of vascular dysfunction. These findings contribute to understanding the molecular mechanism of endotoxin-induced endothelial fibrosis, which could be useful in the treatment of inflammatory diseases.

  19. Endotoxin-Induced Endothelial Fibrosis Is Dependent on Expression of Transforming Growth Factors β1 and β2

    PubMed Central

    Echeverría, César; Montorfano, Ignacio; Tapia, Pablo; Riedel, Claudia; Cabello-Verrugio, Claudio

    2014-01-01

    During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor β1 (TGF-β1) and TGF-β2. However, whether TGF-β1 and TGF-β2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-β receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-β production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the dependence of endotoxin-induced endothelial fibrosis on the expression of TGF-β1 and TGF-β2. Endotoxin-treated ECs induced the expression and secretion of TGF-β1 and TGF-β2. TGF-β1 and TGF-β2 downregulation inhibited the endotoxin-induced changes in the endothelial marker VE-cadherin and in the fibrotic proteins α-SMA and fibronectin. Thus, endotoxin induces the production of TGF-β1 and TGF-β2 as a mechanism to promote endotoxin-induced endothelial fibrosis. To the best of our knowledge, this is the first report showing that endotoxin induces endothelial fibrosis via TGF-β secretion, which represents an emerging source of vascular dysfunction. These findings contribute to understanding the molecular mechanism of endotoxin-induced endothelial fibrosis, which could be useful in the treatment of inflammatory diseases. PMID:24935972

  20. Muscarinic receptors transform NIH 3T3 cells through a Ras-dependent signalling pathway inhibited by the Ras-GTPase-activating protein SH3 domain.

    PubMed Central

    Mattingly, R R; Sorisky, A; Brann, M R; Macara, I G

    1994-01-01

    Expression of certain subtypes of human muscarinic receptors in NIH 3T3 cells provides an agonist-dependent model of cellular transformation by formation of foci in response to carbachol. Although focus formation correlates with the ability of the muscarinic receptors to activate phospholipase C, the actual mitogenic signal transduction pathway is unknown. Through cotransfection experiments and measurement of the activation state of native and epitope-tagged Ras proteins, the contributions of Ras and Ras GTPase-activating protein (Ras-GAP) to muscarinic receptor-dependent transformation were defined. Transforming muscarinic receptors were able to activate Ras, and such activation was required for transformation because focus formation was inhibited by coexpression of either Ras with a dominant-negative mutation or constructs of Ras-GAP that include the catalytic domain. Coexpression of the N-terminal region of GAP or of its isolated SH3 (Src homology 3) domain, but not its SH2 domain, was also sufficient to suppress muscarinic receptor-dependent focus formation. Point mutations at conserved residues in the Ras-GAP SH3 domain reversed its action, leading to an increase in carbachol-dependent transformation. The inhibitory effect of expression of the Ras-GAP SH3 domain occurs proximal to Ras activation and is selective for the mitogenic pathway activated by carbachol, as cellular transformation by either v-Ras or trkA/nerve growth factor is unaffected. Images PMID:7969134

  1. Neural Stem Cells Restore Hair Growth Through Activation of the Hair Follicle Niche.

    PubMed

    Hwang, Insik; Choi, Kyung-Ah; Park, Hang-Soo; Jeong, Hyesun; Kim, Jeong-Ok; Seol, Ki-Cheon; Kwon, Han-Jin; Park, In-Hyun; Hong, Sunghoi

    2016-01-01

    Several types of hair loss result from the inability of hair follicles to initiate the anagen phase of the hair regeneration cycle. Modulating signaling pathways in the hair follicle niche can stimulate entry into the anagen phase. Despite much effort, stem cell-based or pharmacological therapies to activate the hair follicle niche have not been successful. Here, we set out to test the effect of neural stem cell (NSC) extract on the hair follicle niche for hair regrowth. NSC extracts were applied to the immortalized cell lines HaCaT keratinocytes and dermal papilla cells (DPCs) and the shaven dorsal skin of mice. Treatment with NSC extract dramatically improved the growth of HaCaT keratinocytes and DPCs. In addition, NSC extract enhanced the hair growth of the shaven dorsal skin of mice. In order to determine the molecular signaling pathways regulated by NSCs, we evaluated the expression levels of multiple growth and signaling factors, such as insulin-like growth factor-1 (IGF-1), hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), vascular endothelial growth factor (VEGF), transforming growth factor-β (TGF-β), and bone morphogenetic protein (BMP) family members. We found that treatment with an NSC extract enhanced hair growth by activating hair follicle niches via coregulation of TGF-β and BMP signaling pathways in the telogen phase. We also observed activation and differentiation of intrafollicular hair follicle stem cells, matrix cells, and extrafollicular DPCs in vivo and in vitro. We tested whether activation of growth factor pathways is a major effect of NSC treatment on hair growth by applying the growth factors to mouse skin. Combined growth factors, including TGF-β, significantly increased the hair shaft length and growth rate. DNA damage and cell death were not observed in skin cells of mice treated with the NSC extract for a prolonged period. Overall, our data demonstrate that NSC extract provides an effective approach for promoting

  2. Sodium butyrate suppresses the transforming activity of an activated N-ras oncogene in human colon carcinoma cells

    SciTech Connect

    Stoddart, J.H.; Niles, R.M. ); Lane, M.A. )

    1989-09-01

    The transforming activity of DNA from a newly established undifferentiated human colon carcinoma cell line (MIP-101) was tested in the NIH-3T3 transfection assay. Southern blot analysis of the transfectant DNA revealed the presence of a human N-ras oncogene. Here the authors report that there is a significant reduction in the transforming efficiency of the DNA from butyrate-treated MIP-101 cells. A nonspecific reduction in total DNA uptake as an explanation for these findings was eliminated by showing that there was similar uptake and expression of the thymidine kinase gene from the DNA of butyrate-treated and control MIP cells. An NIH-3T3 transformant carrying the human N-ras gene was evaluated for phenotypic reversion and DNA transforming ability after treatment with sodium butyrate. Although butyrate suppressed several transformed properties similar to MIP-101 cells, DNA from control and treated cultures had an identical level of transforming activity. The results suggest that the environment of the MIP cells may contain additional elements not present in the NIH-3T3 transformants which are required to observe the effect of butyrate on reduction of transforming activity.

  3. Transforming Growth Factor-β1 Downregulates Vascular Endothelial Growth Factor-D Expression in Human Lung Fibroblasts via the Jun NH2-Terminal Kinase Signaling Pathway

    PubMed Central

    Cui, Ye; Osorio, Juan C; Risquez, Cristobal; Wang, Hao; Shi, Ying; Gochuico, Bernadette R; Morse, Danielle; Rosas, Ivan O; El-Chemaly, Souheil

    2014-01-01

    Vascular endothelial growth factor (VEGF)-D, a member of the VEGF family, induces both angiogenesis and lymphangiogenesis by activating VEGF receptor-2 (VEGFR-2) and VEGFR-3 on the surface of endothelial cells. Transforming growth factor (TGF)-β1 has been shown to stimulate VEGF-A expression in human lung fibroblast via the Smad3 signaling pathway and to induce VEGF-C in human proximal tubular epithelial cells. However, the effects of TGF-β1 on VEGF-D regulation are unknown. To investigate the regulation of VEGF-D, human lung fibroblasts were studied under pro-fibrotic conditions in vitro and in idiopathic pulmonary fibrosis (IPF) lung tissue. We demonstrate that TGF-β1 downregulates VEGF-D expression in a dose- and time-dependent manner in human lung fibroblasts. This TGF-β1 effect can be abolished by inhibitors of TGF-β type I receptor kinase and Jun NH2-terminal kinase (JNK), but not by Smad3 knockdown. In addition, VEGF-D knockdown in human lung fibroblasts induces G1/S transition and promotes cell proliferation. Importantly, VEGF-D protein expression is decreased in lung homogenates from IPF patients compared with control lung. In IPF lung sections, fibroblastic foci show very weak VEGF-D immunoreactivity, whereas VEGF-D is abundantly expressed within alveolar interstitial cells in control lung. Taken together, our data identify a novel mechanism for downstream signal transduction induced by TGF-β1 in lung fibroblasts, through which they may mediate tissue remodeling in IPF. PMID:24515257

  4. Transforming growth factor β1 (TGFβ1) in physiology and pathology.

    PubMed

    Kajdaniuk, Dariusz; Marek, Bogdan; Borgiel-Marek, Halina; Kos-Kudła, Beata

    2013-01-01

    This review describes precisely the consequence of TGFβ1 prevalence in the organism, and its significant influence on physiological and pathophysiological processes. Organ and tissue distinctiveness hinder unambiguous characterisation of the cytokine. However, there are constant functions of TGFβ1 inducing no controversy: it participates in foetal development, control of cell growth and differentiation, induces fibrosis and scar formation (the process of 'wound healing'), causes the suppression of immune response, is involved in angiogenesis, the development of tumours, and inflammatory processes. Thus, TGFβ1 is a multifunctional cytokine. There are three fundamental directions of its activities: I. TGFβ1 regulates cell proliferation, growth, differentiation and cells movement. II. TGFβ1 has immunomodulatory effects. III. TGFβ1 has profibrogenic effects. TGFβ1 action can be local and systemic. This review describes TGFβ1 in pathology: colitis ulcerosa, Crohn's disease, coeliac disease, diabetic nephropathy, diabetic retinopathy and diabetic foot, pulmonary hypertension, and Alzheimer's disease. TGFβ1 and its receptors are also of interest to endocrinologists. Lack of TGFβ1-dependent growth control may result in oncogenesis: papillary, follicular and anaplastic thyroid cancers, prostate, breast and uterine cervical cancer, oesophagus, gastric, colorectal and liver cancers, NSCLC, and malignant melanoma. Excessive TGFβ1 activity is an integral part of the fibrotic processes occurring in the response to injury. An increased TGFβ1 expression has been observed in patients with pulmonary, kidney, and liver fibrosis. In chronic hepatitis, the prolonged stimulation of hepatic stellate cells being the result of chronic damage to hepatocytes results in the release of profibrogenic abundant factors such as TGFβ1 and leads to the development of liver cirrhosis. The results of experimental procedures and treatment known as anti-TGFβ1 strategy acting against the

  5. Quantitative structure-activity relationship models of chemical transformations from matched pairs analyses.

    PubMed

    Beck, Jeremy M; Springer, Clayton

    2014-04-28

    The concepts of activity cliffs and matched molecular pairs (MMP) are recent paradigms for analysis of data sets to identify structural changes that may be used to modify the potency of lead molecules in drug discovery projects. Analysis of MMPs was recently demonstrated as a feasible technique for quantitative structure-activity relationship (QSAR) modeling of prospective compounds. Although within a small data set, the lack of matched pairs, and the lack of knowledge about specific chemical transformations limit prospective applications. Here we present an alternative technique that determines pairwise descriptors for each matched pair and then uses a QSAR model to estimate the activity change associated with a chemical transformation. The descriptors effectively group similar transformations and incorporate information about the transformation and its local environment. Use of a transformation QSAR model allows one to estimate the activity change for novel transformations and therefore returns predictions for a larger fraction of test set compounds. Application of the proposed methodology to four public data sets results in increased model performance over a benchmark random forest and direct application of chemical transformations using QSAR-by-matched molecular pairs analysis (QSAR-by-MMPA).

  6. Adolescents' Accounts of Growth Experiences in Youth Activities.

    ERIC Educational Resources Information Center

    Dworkin, Jodi B.; Larson, Reed; Hansen, David

    2003-01-01

    Conducted 10 focus groups in which adolescents discussed their "growth experiences" in extracurricular and community-based activities. The 55 participants reported personal and interpersonal processes and generally described themselves as agents of their own development and change. (SLD)

  7. Breadboard activities for advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Banish, Michael

    1993-01-01

    The proposed work entails the design, assembly, testing, and delivery of a turn-key system for the semi-automated determination of protein solubilities as a function of temperature. The system will utilize optical scintillation as a means of detecting and monitoring nucleation and crystallite growth during temperature lowering (or raising, with retrograde solubility systems). The deliverables of this contract are: (1) turn-key scintillation system for the semi-automatic determination of protein solubilities as a function of temperature, (2) instructions and software package for the operation of the scintillation system, and (3) one semi-annual and one final report including the test results obtained for ovostatin with the above scintillation system.

  8. Platelet-derived growth factor (BB homodimer), transforming growth factor-beta 1, and basic fibroblast growth factor in dermal wound healing. Neovessel and matrix formation and cessation of repair.

    PubMed Central

    Pierce, G. F.; Tarpley, J. E.; Yanagihara, D.; Mustoe, T. A.; Fox, G. M.; Thomason, A.

    1992-01-01

    Recombinant platelet-derived growth factor (BB homodimer, rPDGF-BB), transforming growth factor beta 1 (rTGF-beta 1), and basic fibroblast growth factor (rbFGF) can accelerate healing of soft tissues. However, little information is available characterizing the components of wound matrix induced by these growth factors and the molecular mechanisms underlying accelerated repair and wound maturation. In this study, the composition, quantity, and rate of extracellular matrix deposition within growth factor-treated lapine ear excisional wounds were analyzed at different stages of healing using specific histochemical and immunohistochemical stains, coupled with image analysis techniques. Single application of optimal concentrations of each growth factor accelerated normal healing by 30% (P less than 0.0003); rPDGF-BB markedly augmented early glycosaminoglycan (GAG) and fibronectin deposition, but induced significantly greater levels of collagen later in the repair process, compared with untreated wounds rTGF-beta 1 treatment led to rapidly enhanced collagen synthesis and maturation, without increased GAG deposition. In contrast, rbFGF treatment induced a predominantly angiogenic response in wounds, with a marked increase in endothelia and neovessels (P less than 0.0001), and increased wound collagenolytic activity (P less than 0.03). rbFGF-treated wounds did not evolve into collagen-containing scars and continued to accumulate only provisional matrix well past wound closure. These results provide new evidence that growth factors influence wound repair via different mechanisms: 1) rPDGF-BB accelerates deposition of provisional wound matrix; 2) rTGF-beta 1 accelerates deposition and maturation of collagen; and 3) rbFGF induces a profound monocellular angiogenic response which may lead to a marked delay in wound maturation, and the possible loss of the normal signal(s) required to stop repair. These results suggest that specific growth factors may selectively regulate

  9. Transforming Growth Factor β/activin signalling induces epithelial cell flattening during Drosophila oogenesis

    PubMed Central

    Brigaud, Isabelle; Duteyrat, Jean-Luc; Chlasta, Julien; Le Bail, Sandrine; Couderc, Jean-Louis; Grammont, Muriel

    2015-01-01

    ABSTRACT Although the regulation of epithelial morphogenesis is essential for the formation of tissues and organs in multicellular organisms, little is known about how signalling pathways control cell shape changes in space and time. In the Drosophila ovarian epithelium, the transition from a cuboidal to a squamous shape is accompanied by a wave of cell flattening and by the ordered remodelling of E-cadherin-based adherens junctions. We show that activation of the TGFβ pathway is crucial to determine the timing, the degree and the dynamic of cell flattening. Within these cells, TGFβ signalling controls cell-autonomously the formation of Actin filament and the localisation of activated Myosin II, indicating that internal forces are generated and used to remodel AJ and to promote cytoskeleton rearrangement. Our results also reveal that TGFβ signalling controls Notch activity and that its functions are partly executed through Notch. Thus, we demonstrate that the cells that undergo the cuboidal-to-squamous transition produce active cell-shaping mechanisms, rather than passively flattening in response to a global force generated by the growth of the underlying cells. Thus, our work on TGFβ signalling provides new insights into the mechanisms through which signal transduction cascades orchestrate cell shape changes to generate proper organ structure. PMID:25681395

  10. Transforming but not immortalizing oncogenes activate the transcription factor PEA1.

    PubMed Central

    Wasylyk, C; Imler, J L; Wasylyk, B

    1988-01-01

    The transcription factor PEA1 (a homologue of AP1 and c-jun) is highly active in several fibroblast cell lines, compared to its low activity in a myeloma and an embryo-carcinoma (EC) cell line. Serum components are essential to attain these high levels of PEA1 activity in fibroblasts. This serum requirement is abrogated by transformation with the oncogenes c-Ha-ras, v-src and polyoma middle T (Py-MT) but not by immortalization with polyoma large T (Py-LT), v-myc, c-myc or SV40 large T (SV40T). Expression in myeloma cells of the same transforming oncogenes, as well as v-mos and c-fos, activates PEA1, whereas expression of the same immortalizing oncogenes and EIA does not. These results suggest that a common target for transforming oncogenes is PEA1. Serum components have no effect on PEA1 activity in the myeloma and EC cell lines. In contrast, retinoic acid treatment of F9 EC cells augments PEA1 activity. These results suggest that transforming oncogene expression compensates for the absence of cell type-specific factors which are required to activate PEA1. Activation of PEA1 may lead to altered transcription of a set of transformation-related genes. Images PMID:3142763

  11. Effects of transforming growth factor type beta on expression of cytoskeletal proteins in endosteal mouse osteoblastic cells

    SciTech Connect

    Lomri, A.; Marie, P.J. )

    1990-01-01

    Transforming growth factor beta (TGF beta) has been shown to influence the growth and differentiation of many cell types in vitro. We have examined the effects of TGF beta on cell morphology and cytoskeletal organization in relation to parameters of cell proliferation and differentiation in endosteal osteoblastic cells isolated from mouse caudal vertebrae. Treatment of mouse osteoblastic cells cultured in serum free medium for 24 hours with TGF beta (1.5-30 ng/mL) slightly (-23%) inhibited alkaline phosphatase activity. In parallel, TGF beta (0.5-30 ng/mL, 24 hours) greatly increased cell replication as evaluated by (3H)-thymidine incorporation into DNA (157% to 325% of controls). At a median dose (1.5 ng/mL) that affected both alkaline phosphatase and DNA synthesis (235% of controls) TGF beta induced rapid (six hours) cell respreading of quiescent mouse osteoblastic cells. This effect was associated with increased polymerization of actin, alpha actinin, and tubulins, as evaluated by both biochemical and immunofluorescence methods. In addition, TGF beta (1.5 ng/mL) increased the de novo biosynthesis of actin, alpha actinin, vimentin, and tubulins, as determined by {sup 35}S methionine labeling and fractionation of cytoskeletal proteins using two-dimensional gel electrophoresis. These effects were rapid and transient, as they occurred at six hours and were reversed after 24 hours of TGF beta exposure. The results indicate that the stimulatory effect of TGF beta on DNA synthesis in endosteal mouse osteoblastic cells is associated with a transient increase in cell spreading associated with enhanced polymerization and synthesis of cytoskeletal proteins.

  12. p70 ribosomal S6 kinase regulates subpleural fibrosis following transforming growth factor-α expression in the lung.

    PubMed

    Madala, Satish K; Thomas, George; Edukulla, Ramakrishna; Davidson, Cynthia; Schmidt, Stephanie; Schehr, Angelica; Hardie, William D

    2016-01-15

    The p70 ribosomal S6 kinase (S6K) is a downstream substrate that is phosphorylated and activated by the mammalian target of rapamycin complex and regulates multiple cellular processes associated with fibrogenesis. Recent studies demonstrate that aberrant mTORC1-S6K signaling contributes to various pathological conditions, but a direct role in pulmonary fibroproliferation has not been established. Increased phosphorylation of the S6K pathway is detected immediately following transforming growth factor-α (TGF-α) expression in a transgenic model of progressive lung fibrosis. To test the hypothesis that the S6K directly regulates pulmonary fibroproliferative disease we determined the cellular sites of S6K phosphorylation during the induction of fibrosis in the TGF-α model and tested the efficacy of specific pharmacological inhibition of the S6K pathway to prevent and reverse fibrotic disease. Following TGF-α expression increased phosphorylation of the S6K was detected in the airway and alveolar epithelium and the mesenchyme of advanced subpleural fibrotic regions. Specific inhibition of the S6K with the small molecule inhibitor LY-2584702 decreased TGF-α and platelet-derived growth factor-β-induced proliferation of lung fibroblasts in vitro. Administration of S6K inhibitors to TGF-α mice prevented the development of extensive subpleural fibrosis and alterations in lung mechanics, and attenuated the increase in total lung hydroxyproline. S6K inhibition after fibrosis was established attenuated the progression of subpleural fibrosis. Together these studies demonstrate targeting the S6K pathway selectively modifies the progression of pulmonary fibrosis in the subpleural compartment of the lung. PMID:26566903

  13. p70 ribosomal S6 kinase regulates subpleural fibrosis following transforming growth factor-α expression in the lung.

    PubMed

    Madala, Satish K; Thomas, George; Edukulla, Ramakrishna; Davidson, Cynthia; Schmidt, Stephanie; Schehr, Angelica; Hardie, William D

    2016-01-15

    The p70 ribosomal S6 kinase (S6K) is a downstream substrate that is phosphorylated and activated by the mammalian target of rapamycin complex and regulates multiple cellular processes associated with fibrogenesis. Recent studies demonstrate that aberrant mTORC1-S6K signaling contributes to various pathological conditions, but a direct role in pulmonary fibroproliferation has not been established. Increased phosphorylation of the S6K pathway is detected immediately following transforming growth factor-α (TGF-α) expression in a transgenic model of progressive lung fibrosis. To test the hypothesis that the S6K directly regulates pulmonary fibroproliferative disease we determined the cellular sites of S6K phosphorylation during the induction of fibrosis in the TGF-α model and tested the efficacy of specific pharmacological inhibition of the S6K pathway to prevent and reverse fibrotic disease. Following TGF-α expression increased phosphorylation of the S6K was detected in the airway and alveolar epithelium and the mesenchyme of advanced subpleural fibrotic regions. Specific inhibition of the S6K with the small molecule inhibitor LY-2584702 decreased TGF-α and platelet-derived growth factor-β-induced proliferation of lung fibroblasts in vitro. Administration of S6K inhibitors to TGF-α mice prevented the development of extensive subpleural fibrosis and alterations in lung mechanics, and attenuated the increase in total lung hydroxyproline. S6K inhibition after fibrosis was established attenuated the progression of subpleural fibrosis. Together these studies demonstrate targeting the S6K pathway selectively modifies the progression of pulmonary fibrosis in the subpleural compartment of the lung.

  14. The pathogenic role of transforming growth factor-β2 in glaucomatous damage to the optic nerve head.

    PubMed

    Fuchshofer, Rudolf

    2011-08-01

    In patients with primary open angle glaucoma (POAG), the optic nerve head (ONH) shows characteristic cupping correlated with visual field defects. The progressive optic neuropathy is characterized by irreversible loss of retinal ganglion cells (RGC). The critical risk factor for axonal damage at the ONH is an elevated intraocular pressure (IOP). The increase in IOP correlates with axonal loss in the ONH, which might be due to an impaired axoplasmatic flow leading to the loss of RGCs. Damage to the optic nerve is thought to occur in the lamina cribrosa (LC) region of the ONH, which is composed of characteristic sieve-like connective tissue cribriform plates through which RGC axons exit the eye. The cupping of the optic disc, and the compression and excavation of LC are characteristic signs of glaucomatous ONH remodelling. In ONH of POAG patients a disorganized distribution and deposition of elastic fibers and a typical pronounced thickening of the connective tissue septae surrounding the optic nerve fibers is found. Transforming growth factor (TGF)-β2 could be one of the pathogenic factors responsible for the structural alterations in POAG patients as the TGF-β2 levels in the ONH of glaucomatous eyes are elevated as well as in the aqueous homour. TGF-β2 leads to an increased synthesis of extracellular matrix (ECM) molecules mediated by connective tissue growth factor and to an impaired ECM degradation in cultured ONH astrocytes. Bone morphogenetic protein (BMP)-4 effectively antagonizes the effects of TGF-β2 on matrix deposition. The BMP antagonist gremlin blocks this inhibition, allowing TGF-β2 stimulation of ECM synthesis. Overall, the ECM in the ONH is kept in balance in the OHN by factors that augment or block the activity of TGF-β2.

  15. Doxazosin Treatment Attenuates Carbon Tetrachloride-Induced Liver Fibrosis in Hamsters through a Decrease in Transforming Growth Factor β Secretion

    PubMed Central

    Muñoz-Ortega, Martin Humberto; Llamas-Ramírez, Raúl Wiliberto; Romero-Delgadillo, Norma Isabel; Elías-Flores, Tania Guadalupe; de Jesus Tavares-Rodríguez, Edgar; del Rosario Campos-Esparza, María; Cervantes-García, Daniel; Muñoz-Fernández, Luis; Gerardo-Rodríguez, Martin; Ventura-Juárez, Javier

    2016-01-01

    Background/Aims The development of therapeutic strategies for the treatment of cirrhosis has become an important focus for basic and clinical researchers. Adrenergic receptor antagonists have been evaluated as antifibrotic drugs in rodent models of carbon tetrachloride (CCl4)-induced cirrhosis. The aim of the present study was to evaluate the effects of carvedilol and doxazosin on fibrosis/cirrhosis in a hamster animal model. Methods Cirrhotic-induced hamsters were treated by daily administration of carvedilol and doxazosin for 6 weeks. Hepatic function and histological evaluation were conducted by measuring biochemical markers, including total bilirubin, aspartate aminotransferase, alanine aminotransferase and albumin, and liver tissue slices. Additionally, transforming growth factor β (TGF-β) immunohistochemistry was analyzed. Results Biochemical markers revealed that hepatic function was restored after treatment with doxazosin and carvedilol. Histological evaluation showed a decrease in collagen type I deposits and TGF-β-secreting cells. Conclusions Taken together, these results suggest that the decrease in collagen type I following treatment with doxazosin or carvedilol is achieved by decreasing the profibrotic activities of TGF-β via the blockage of α1- and β-adrenergic receptor. Consequently, a diminution of fibrotic tissue in the CCl4-induced model of cirrhosis is achieved. PMID:26573293

  16. Transforming growth factor-beta and its effect on reepithelialization of partial-thickness ear wounds in transgenic mice.

    PubMed

    Tredget, Eric B; Demare, Jack; Chandran, Geethan; Tredget, Edward E; Yang, Liju; Ghahary, Aziz

    2005-01-01

    Transforming growth factor-beta (TGF-beta) is known to affect nearly every aspect of wound repair. Many of the effects have been extensively investigated; however, the primary effect of endogenously derived TGF-beta on wound reepithelialization is still not completely understood. To examine this, two types of wounds were made on a transgenic mouse over-expressing TGF-beta1. Full-thickness back wounds were made to compare the wound healing process in the presence of compensatory healing mechanisms. Superficial partial-thickness ear wounds involving only the epidermis were made to determine the effect of TGF-beta on reepithelialization. In the partial-thickness ear wounds, at later time points, the transgenic group had smaller epithelial gaps than the wild-type mice. A greater number of actively proliferating cells, as determined by bromodeoxyuridine incorporation, was also found in the transgenic mice at post-injury day 8. These results show that TGF-beta1 stimulates the rate of reepithelialization at later time points in partial-thickness wounds. However, in the full-thickness back wounds, the transgenic animals exhibited a slower reepithelialization rate at all time points and the number of bromodeoxyuridine-positive cells was fewer. Our findings would suggest that the overexpression of TGF-beta1 speeds the rate of wound closure in partial-thickness wounds by promoting keratinocyte migration. In full-thickness wounds, however, the overexpression of TGF-beta1 slows the rate of wound reepithelialization.

  17. Hydrogen sulfide suppresses transforming growth factor-β1-induced differentiation of human cardiac fibroblasts into myofibroblasts.

    PubMed

    Zhang, YouEn; Wang, JiaNing; Li, Hua; Yuan, LiangJun; Wang, Lei; Wu, Bing; Ge, JunBo

    2015-11-01

    In heart disease, transforming growth factor-β1 (TGF-β1) converts fibroblasts into myofibroblasts, which synthesize and secrete fibrillar type I and III collagens. The purpose of the present study was to investigate how hydrogen sulfide (H2S) suppresses TGF-β1-induced differentiation of human cardiac fibroblasts to myofibroblasts. Human cardiac fibroblasts were serum-starved in fibroblast medium for 16 h before exposure to TGF-β1 (10 ng mL(-1)) for 24 h with or without sodium hydrosulfide (NaHS, 100 µmol L(-1), 30 min pretreatment) treatment. NaHS, an exogenous H2S donor, potently inhibited the proliferation and migration of TGF-β1-induced human cardiac fibroblasts and regulated their cell cycle progression. Furthermore, NaHS treatment led to suppression of fibroblast differentiation into myofibroblasts, and reduced the levels of collagen, TGF-β1, and activated Smad3 in TGF-β1-induced human cardiac fibroblasts in vitro. We therefore conclude that H2S suppresses TGF-β1-stimulated conversion of fibroblasts to myofibroblasts by inhibiting the TGF-β1/Smad3 signaling pathway, as well as by inhibiting the proliferation, migration, and cell cycle progression of human cardiac myofibroblasts. These effects of H2S may play significant roles in cardiac remodeling associated with heart failure.

  18. Proteoglycan expression in bleomycin lung fibroblasts: role of transforming growth factor-beta(1) and interferon-gamma.

    PubMed

    Venkatesan, Narayanan; Roughley, Peter J; Ludwig, Mara S

    2002-10-01

    Bleomycin (BM)-induced pulmonary fibrosis involves excess production of proteoglycans (PGs). Because transforming growth factor-beta(1) (TGF-beta(1)) promotes fibrosis, and interferon-gamma (IFN-gamma) inhibits it, we hypothesized that TGF-beta(1) treatment would upregulate PG production in fibrotic lung fibroblasts, and IFN-gamma would abrogate this effect. Primary lung fibroblast cultures were established from rats 14 days after intratracheal instillation of saline (control) or BM (1.5 units). PGs were extracted and subjected to Western blot analysis. Bleomycin-exposed lung fibroblasts (BLF) exhibited increased production of versican (VS), heparan sulfate proteoglycan (HSPG), and biglycan (BG) compared with normal lung fibroblasts (NLF). Compared with NLF, BLF released significantly increased amounts of TGF-beta(1). TGF-beta(1) (5 ng/ml for 48 h) upregulated PG expression in both BLF and NLF. Incubation of BLF with anti-TGF-beta antibody (1, 5, and 10 microg/ml) inhibited PG expression in a dose-dependent manner. Treatment of BLF with IFN-gamma (500 U. ml(-1) x 48 h) reduced VS, HSPG, and BG expression. Furthermore, IFN-gamma inhibited TGF-beta(1)-induced increases in PG expression by these fibroblasts. Activation of fibroblasts by TGF-beta(1) promotes abnormal deposition of PGs in fibrotic lungs; downregulation of TGF-beta(1) by IFN-gamma may have potential therapeutic benefits in this disease. PMID:12225958

  19. Targeted expression of transforming growth factor-beta 1 in intracardiac grafts promotes vascular endothelial cell DNA synthesis.

    PubMed Central

    Koh, G Y; Kim, S J; Klug, M G; Park, K; Soonpaa, M H; Field, L J

    1995-01-01

    Intracardiac grafts comprised of genetically modified skeletal myoblasts were assessed for their ability to effect long-term delivery of recombinant transforming growth factor-beta (TGF-beta) to the heart. C2C12 myoblasts were stably transfected with a construct comprised of an inducible metallothionein promoter fused to a modified TGF-beta 1 cDNA. When cultured in medium supplemented with zinc sulfate, cells carrying this transgene constitutively secrete active TGF-beta 1. These genetically modified myoblasts were used to produce intracardiac grafts in syngeneic C3Heb/FeJ hosts. Viable grafts were observed as long as three months after implantation, and immunohistological analyses of mice maintained on water supplemented with zinc sulfate revealed the presence of grafted cells which stably expressed TGF-beta 1. Regions of apparent neovascularization, as evidenced by tritiated thymidine incorporation into vascular endothelial cells, were observed in the myocardium which bordered grafts expressing TGF-beta 1. The extent of vascular endothelial cell DNA synthesis could be modulated by altering dietary zinc. Similar effects on the vascular endothelial cells were not seen in mice with grafts comprised of nontransfected cells. This study indicates that genetically modified skeletal myoblast grafts can be used to effect the local, long-term delivery of recombinant molecules to the heart. Images PMID:7529257

  20. The G-quadruplex augments translation in the 5' untranslated region of transforming growth factor β2.

    PubMed

    Agarwala, Prachi; Pandey, Satyaprakash; Mapa, Koyeli; Maiti, Souvik

    2013-03-01

    Transforming growth factor β2 (TGFβ2) is a versatile cytokine with a prominent role in cell migration, invasion, cellular development, and immunomodulation. TGFβ2 promotes the malignancy of tumors by inducing epithelial-mesenchymal transition, angiogenesis, and immunosuppression. As it is well-documented that nucleic acid secondary structure can regulate gene expression, we assessed whether any secondary motif regulates its expression at the post-transcriptional level. Bioinformatics analysis predicts an existence of a 23-nucleotide putative G-quadruplex sequence (PG4) in the 5' untranslated region (UTR) of TGFβ2 mRNA. The ability of this stretch of sequence to form a highly stable, intramolecular parallel quadruplex was demonstrated using ultraviolet and circular dichroism spectroscopy. Footprinting studies further validated its existence in the presence of a neighboring nucleotide sequence. Following structural characterization, we evaluated the biological relevance of this secondary motif using a dual luciferase assay. Although PG4 inhibits the expression of the reporter gene, its presence in the context of the entire 5' UTR sequence interestingly enhances gene expression. Mutation or removal of the G-quadruplex sequence from the 5' UTR of the gene diminished the level of expression of this gene at the translational level. Thus, here we highlight an activating role of the G-quadruplex in modulating gene expression of TGFβ2 at the translational level and its potential to be used as a target for the development of therapeutics against cancer.

  1. Histone deacetylase 3 unconventional splicing mediates endothelial-to-mesenchymal transition through transforming growth factor β2.

    PubMed

    Zeng, Lingfang; Wang, Gang; Ummarino, Dario; Margariti, Andriana; Xu, Qihe; Xiao, Qingzhong; Wang, Wen; Zhang, Zhongyi; Yin, Xiaoke; Mayr, Manuel; Cockerill, Gillian; Li, Julie Yi-shuan; Chien, Shu; Hu, Yanhua; Xu, Qingbo

    2013-11-01

    Histone deacetylase 3 (HDAC3) plays a critical role in the maintenance of endothelial integrity and other physiological processes. In this study, we demonstrated that HDAC3 undergoes unconventional splicing during stem cell differentiation. Four different splicing variants have been identified, designated as HD3α, -β, -γ, and -δ, respectively. HD3α was confirmed in stem cell differentiation by specific antibody against the sequences from intron 12. Immunofluorescence staining indicated that the HD3α isoform co-localized with CD31-positive or α-smooth muscle actin-positive cells at different developmental stages of mouse embryos. Overexpression of HD3α reprogrammed human aortic endothelial cells into mesenchymal cells featuring an endothelial-to-mesenchymal transition (EndMT) phenotype. HD3α directly interacts with HDAC3 and Akt1 and selectively activates transforming growth factor β2 (TGFβ2) secretion and cleavage. TGFβ2 functioned as an autocrine and/or paracrine EndMT factor. The HD3α-induced EndMT was both PI3K/Akt- and TGFβ2-dependent. This study provides the first evidence of the role of HDAC3 splicing in the maintenance of endothelial integrity.

  2. Circulating transforming growth factor-β1 levels and the risk for kidney disease in African-Americans

    PubMed Central

    Suthanthiran, Manikkam; Gerber, Linda M.; Schwartz, Joseph E.; Sharma, Vijay K.; Medeiros, Mara; Marion, RoseMerie; Pickering, Thomas G.; August, Phyllis

    2013-01-01

    Transforming growth factor-β1 (TGF-β1) is well known to induce progression of experimental renal disease. Here we determined whether there is an association between serum levels of TGF-β1 and the risk factors for progression of clinically relevant renal disorders in 186 black and 147 white adults none of whom had kidney disease or diabetes. Serum TGF-β1 protein levels were positively and significantly associated with plasma renin activity along with the systolic and diastolic blood pressure in blacks but not whites after controlling for age, gender and body mass index. These TGF-β1 protein levels were also significantly associated with body mass index and metabolic syndrome and more predictive of microalbuminuria in blacks than in whites. The differential association between TGF-β1 and renal disease risk factors in blacks and whites suggests an explanation for the excess burden of end-stage renal disease in the black population but this requires validation in an independent cohort. Whether these findings show that it is the circulating levels of TGF-β1 that contributes to renal disease progression or reflects other unmeasured factors will need to be tested in longitudinal studies. PMID:19279557

  3. Angiopoietin-like protein 2 increases renal fibrosis by accelerating transforming growth factor-β signaling in chronic kidney disease.

    PubMed

    Morinaga, Jun; Kadomatsu, Tsuyoshi; Miyata, Keishi; Endo, Motoyoshi; Terada, Kazutoyo; Tian, Zhe; Sugizaki, Taichi; Tanigawa, Hiroki; Zhao, Jiabin; Zhu, Shunshun; Sato, Michio; Araki, Kimi; Iyama, Ken-ichi; Tomita, Kengo; Mukoyama, Masashi; Tomita, Kimio; Kitamura, Kenichiro; Oike, Yuichi

    2016-02-01

    Renal fibrosis is a common pathological consequence of chronic kidney disease (CKD) with tissue fibrosis closely associated with chronic inflammation in numerous pathologies. However, molecular mechanisms underlying that association, particularly in the kidney, remain unclear. Here, we determine whether there is a molecular link between chronic inflammation and tissue fibrosis in CKD progression. Histological analysis of human kidneys indicated abundant expression of angiopoietin-like protein 2 (ANGPTL2) in renal tubule epithelial cells during progression of renal fibrosis. Numerous ANGPTL2-positive renal tubule epithelial cells colocalized with cells positive for transforming growth factor (TGF)-β1, a critical mediator of tissue fibrosis. Analysis of M1 collecting duct cells in culture showed that TGF-β1 increases ANGPTL2 expression by attenuating its repression through microRNA-221. Conversely, ANGPTL2 increased TGF-β1 expression through α5β1 integrin-mediated activation of extracellular signal-regulated kinase. Furthermore, ANGPTL2 deficiency in a mouse unilateral ureteral obstruction model significantly reduced renal fibrosis by decreasing TGF-β1 signal amplification in kidney. Thus, ANGPTL2 and TGF-β1 positively regulate each other as renal fibrosis progresses. Our study provides insight into molecular mechanisms underlying chronic inflammation and tissue fibrosis and identifies potential therapeutic targets for CKD treatment.

  4. Effects of transforming growth factor-beta in the development of inflammatory pseudotumour-like lesions in a murine model.

    PubMed

    Guariniello, Luciana Doria; Correa, Mariangela; Jasiulionis, Miriam Galvonas; Machado, Joel; Silva, José Antônio; Pesquero, João Bosco; Carneiro, Célia Regina Whitaker

    2006-06-01

    Alterations in transforming growth factor (TGF)-beta signalling have been frequently implicated in human cancer, and an important mechanism underlying its pro-oncogenic nature is suppression of the host antitumour immune response. Considering the immunosuppressive effect of TGF-beta, we asked whether human tumour cells, known to secrete TGF-beta in culture, would survive and grow when implanted into the peritoneal cavity of immunocompetent mice. Therefore, we developed a xenogeneic model where mice were intraperitoneally (i.p.) injected with a TGF-beta-secreting human colorectal adenocarcinoma cell line, LISP-A10. Although animals did not develop macroscopic tumours, the recovery and isolation of human tumour cells was achieved when an inflammatory environment was locally induced by the administration of complete Freund's adjuvant (CFA). This procedure significantly increased TGF-beta concentrations in the peritoneal fluid and was accompanied by impaired activation of the host-specific immune response against LISP-A10 cells. Furthermore, inflammatory lesions resembling human inflammatory pseudotumours (IPTs) were observed on the surface of i.p. organs. These lesions could be induced by either injection of LISP-A10 cells, cells-conditioned medium or recombinant TGF-beta but only after administration of CFA. In addition, host cyclooxygenase-2 and kinin receptors played an important role in the induction of TGF-beta-mediated IPT-like lesions in our experimental model. PMID:16709227

  5. Transforming Growth Factor-β1 Signaling Represses Testicular Steroidogenesis through Cross-Talk with Orphan Nuclear Receptor Nur77

    PubMed Central

    Park, Eunsook; Song, Chin-Hee; Park, Jae-Il; Ahn, Ryun-Sup; Choi, Hueng-Sik; Ko, CheMyong; Lee, Keesook

    2014-01-01

    Transforming growth factor- β1 (TGF-β1) has been reported to inhibit luteinizing hormone (LH) mediated-steroidogenesis in testicular Leydig cells. However, the mechanism by which TGF-β1 controls the steroidogenesis in Leydig cells is not well understood. Here, we investigated the possibility that TGF-β1 represses steroidogenesis through cross-talk with the orphan nuclear receptor Nur77. Nur77, which is induced by LH/cAMP signaling, is one of major transcription factors that regulate the expression of steroidogenic genes in Leydig cells. TGF-β1 signaling inhibited cAMP-induced testosterone production and the expression of steroidogenic genes such as P450c17, StAR and 3β-HSD in mouse Leydig cells. Further, TGF-β1/ALK5 signaling repressed cAMP-induced and Nur77-activated promoter activity of steroidogenic genes. In addition, TGF-β1/ALK5-activated Smad3 repressed Nur77 transactivation of steroidogenic gene promoters by interfering with Nur77 binding to DNA. In primary Leydig cells isolated from Tgfbr2flox/flox Cyp17iCre mice, TGF-β1-mediated repression of cAMP-induced steroidogenic gene expression was significantly less than that in primary Leydig cells from Tgfbr2flox/flox mice. Taken together, these results suggest that TGF-β1/ALK5/Smad3 signaling represses the expression of steroidogenic genes via the suppression of Nur77 transactivation in testicular Leydig cells. These findings may provide a molecular mechanism involved in the TGF-β1-mediated repression of testicular steroidogenesis. PMID:25140527

  6. MEK inhibition prevents tumour-shed transforming growth factor-β-induced T-regulatory cell augmentation in tumour milieu

    PubMed Central

    Hossain, Dewan M S; Panda, Abir K; Chakrabarty, Sreeparna; Bhattacharjee, Pushpak; Kajal, Kirti; Mohanty, Suchismita; Sarkar, Irene; Sarkar, Diptendra K; Kar, Santosh K; Sa, Gaurisankar

    2015-01-01

    Tumour progression is associated with immune-suppressive conditions that facilitate the escape of tumour cells from the regimen of immune cells, subsequently paralysing the host defence mechanisms. Induction of CD4+ CD25+ FoxP3+ T regulatory (Treg) cells has been implicated in the tumour immune escape mechanism, although the novel anti-cancer treatment strategies targeting Treg cells remain unknown. The focus of this study is to define the interaction between tumour and immune system, i.e. how immune tolerance starts and gradually leads to the induction of adaptive Treg cells in the tumour microenvironment. Our study identified hyperactivated mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) -signalling as a potential target for reversing Treg cell augmentation in breast cancer patients. In more mechanistic detail, pharmacological inhibitors of MEK/ERK signalling inhibited transforming growth factor-β (TGF-β) production in tumour cells that essentially blocked TGF-β-SMAD3/SMAD4-mediated induction of CD25/interleukin-2 receptor α on CD4+ T-cell surface. As a result high-affinity binding of interleukin-2 on those cells was prohibited, causing lack of Janus kinase 1 (JAK1)/JAK3-mediated signal transducer and activator of transcription 3 (STAT3)/STAT5 activation required for FoxP3 expression. Finally, for a more radical approach towards a safe MEK inhibitor, we validate the potential of multi-kinase inhibitor curcumin, especially the nano-curcumin made out of pure curcumin with greater bioavailability; in repealing tumour-shed TGF-β-induced Treg cell augmentation. PMID:25284464

  7. Transforming Growth Factor-α Improves Memory Impairment and Neurogenesis Following Ischemia Reperfusion

    PubMed Central

    Alipanahzadeh, Hassan; Soleimani, Mansooreh; Soleimani Asl, Sara; Pourheydar, Bagher; Nikkhah, Ali; Mehdizadeh, Mehdi

    2014-01-01

    Objective Stroke is most important cause of death and disability in adults. The hippocampal CA1 and sub-ventricular zone neurons are vulnerable to ischemia that can impair memory and learning functions. Although neurogenesis normally occurs in the dentate gyrus (DG) of the hippocampus and sub-ventricular zone (SVZ) following brain damage, this response is unable to compensate for severely damaged areas. This study aims to assess both neurogenesis and the neuroprotective effects of transforming growth factor-alpha (TGF-α) on the hippocampus and SVZ following ischemia-reperfusion. Materials and Methods In this experimental study, a total of 48 male Wistar rats were divided into the following groups: surgical (n=12), phosphate buffered saline (PBS) treated vehicle shams (n=12), ischemia (n=12) and treatment (n=12) groups. Ischemia was induced by common carotid occlusion for 30 minutes followed by reperfusion, and TGF-α was then injected into the right lateral ventricle. Spatial memory was assessed using Morris water maze (MWM). Nestin and Bcl-2 family protein expressions were studied by immunohistochemistry (IHC) and Western blot methods, respectively. Finally, data were analyzed using Statistical Package for the Social Sciences (SPSS, SPSS Inc., Chicago, USA) version 16 and one-way analysis of variance (ANOVA). Results TGF-α injection significantly increased nestin expression in both the hippocampal DG and SVZ areas. TGF-α treatment caused a significant decrease in Bax expression and an increase in Bcl-2 anti-apoptotic protein expression in the hippocampus. Our results showed a significant increase in the number of pyramidal neurons. Memory also improved significantly following TGF-α treatment. Conclusion Our findings proved that TGF-α reduced ischemic injury and played a neuroprotective role in the pathogenesis of ischemic injury. PMID:24611146

  8. Transforming growth factor-ß1 genotype and susceptibility to chronic obstructive pulmonary disease

    PubMed Central

    Wu, L; Chau, J; Young, R; Pokorny, V; Mills, G; Hopkins, R; McLean, L; Black, P

    2004-01-01

    Background: Only a few long term smokers develop symptomatic chronic obstructive pulmonary disease (COPD) and this may be due, at least in part, to genetic susceptibility to the disease. Transforming growth factor ß1 (TGF-ß1) has a number of actions that make it a candidate for a role in the pathogenesis of COPD. We have investigated a single nucleotide polymorphism at exon 1 nucleotide position 29 (T→C) of the TGF-ß1 gene that produces a substitution at codon 10 (Leu→Pro). Methods: The frequency of this polymorphism was determined in 165 subjects with COPD, 140 healthy blood donors, and 76 smokers with normal lung function (resistant smokers) using the polymerase chain reaction and restriction enzyme fragment length polymorphism. Results: The distribution of genotypes was Leu-Leu (41.8%), Leu-Pro (50.3%), and Pro-Pro (7.9%) for subjects with COPD, which was significantly different from the control subjects (blood donors: Leu-Leu (29.3%), Leu-Pro (52.1%) and Pro-Pro (18.6%), p = 0.006; resistant smokers: Leu-Leu (28.9%), Leu-Pro (51.3%) and Pro-Pro (19.7%), p = 0.02). The Pro10 allele was less common in subjects with COPD (33%) than in blood donors (45%; OR = 0.62, 95% CI 0.45 to 0.86, p = 0.005) and resistant smokers (45%; OR = 0.59, 95% CI 0.40 to 0.88, p = 0.01). Conclusions: The proline allele at codon 10 of the TGF-ß1 gene occurs more commonly in control subjects than in individuals with COPD. This allele is associated with increased production of TGF-ß1 which raises the possibility that TGF-ß1 has a protective role in COPD. PMID:14760152

  9. Orofacial clefts, parental cigarette smoking, and transforming growth factor-alpha gene variants

    SciTech Connect

    Shaw, G.M.; Wasserman, C.R.; O`Malley, C.D.

    1996-03-01

    Results of studies determine whether women who smoke during early pregnancy are at increased risk of delivering infants with orofacial clefts have been mixed, and recently a gene-environment interaction between maternal smoking, transforming growth factor-alpha (TGFa), and clefting has been reported. Using a large population-based case-control study, we investigated whether parental periconceptional cigarette smoking was associated with an increased risk for having offspring with orofacial clefts. We also investigated the influence of genetic variation of the TGFa locus on the relation between smoking and clefting. Parental smoking information was obtained from telephone interviews with mothers of 731 (84.7% of eligible) orofacial cleft case infants and with mothers of 734 (78.2%) nonmalformed control infants. DNA was obtained from newborn screening blood spots and genotyped for the allelic variants of TGFa. We found that risks associated with maternal smoking were most elevated for isolated cleft lip with or without cleft palate, (odds ratio 2.1 [95% confidence interval 1.3-3.6]) and for isolated cleft palate (odds ratio 2.2 [1.1-4.5]) when mothers smoked {ge} 20 cigarrettes/d. These risks for white infants ranged from 3-fold to 11-fold across phenotypic groups. Paternal smoking was not associated with clefting among the offspring of nonsmoking mothers, and passive smoke exposures were associated with at most slightly increased risks. This study offers evidence that the risk for orofacial clefting in infants may be influenced by maternal smoke exposures alone as well as in combination (gene-environment interaction) with the presence of the uncommon TGFa allele. 56 refs., 5 tabs.

  10. Expression and clinical significance of the transforming growth factor-β signalling pathway in endometrial cancer

    PubMed Central

    Mhawech-Fauceglia, Paulette; Akers, Stacey; DuPont, Nefertiti Chianti; Clark, Kimberly; Lele, Shashikant; Liu, Song

    2016-01-01

    Aims To evaluate the components of the transforming growth factor (TGF)-β–Smad signalling pathway in human endometrial cancer (EC). Methods and results TGF-β1, TGF-β receptor type I, TGF-β receptor type II, Smad2, Smad3, Smad4, Skil and Disabled-2 (DAB2) mRNA levels were determined by reverse transcriptase polymerase chain reaction on EC cell lines and in 70 EC tissues. Immunohistochemistry for Skil and DAB2 antibodies was performed on 362 EC cases. Decreased mRNA levels of all eight components of the TGF-β pathway tested were found in the majority of 70 cases. For DAB2, the mRNA level was correlated with protein expression level (P = 0.04). The Skil mRNA level was associated with tumour stage (P = 0.03), and the Smad2/3/4 mRNA level with tumour grade (P = 0.03, P = 0.02, and P = 0.00, respectively). The Smad4 mRNA level was also associated with tumour size (P = 0.05), subtype (P = 0.04), and disease-free survival (DFS) (P = 0.05). The TGF-β1 mRNA level was associated with DFS (P = 0.04). Finally, tumours with positive Skil protein expression had a shorter recurrence time, whereas, those with positive DAB2 protein expression had a longer recurrence time. Conclusions Down-regulation of the TGF-β–Smad signalling pathway might be responsible for the pathogenesis of human EC, and some of its components appeared to be prognostic factors. Exploration of future therapy targeting the TGF-β–Smad pathway is warranted in EC. PMID:21771027

  11. Hydrogen Sulfide Inhibits Transforming Growth Factor-β1-Induced EMT via Wnt/Catenin Pathway

    PubMed Central

    Tao, Jie; Lan, Zhen; Hei, Hongya; Tian, Lulu; Pan, Wanma; Wang, Li; Zhang, Xuemei

    2016-01-01

    Hydrogen sulfide (H2S) has anti-fibrotic potential in lung, kidney and other organs. The exogenous H2S is released from sodium hydrosulfide (NaHS) and can influence the renal fibrosis by blocking the differentiation of quiescent renal fibroblasts to myofibroblasts. But whether H2S affects renal epithelial-to-mesenchymal transition (EMT) and the underlying mechanisms remain unknown. Our study is aimed at investigating the in vitro effects of H2S on transforming growth factor-β1 (TGF-β1)-induced EMT in renal tubular epithelial cells (HK-2 cells) and the associated mechanisms. The induced EMT is assessed by Western blotting analysis on the expressions of α-SMA, E-cadherin and fibronectin. HK-2 cells were treated with NaHS before incubating with TGF-β1 to investigate its effect on EMT and the related molecular mechanism. Results demonstrated that NaHS decreased the expression of α-SMA and fibronectin, and increased the expression of E-cadherin. NaHS reduced the expression of TGF-β receptor type I (TβR I) and TGF-β receptor type II (TβR II). In addition, NaHS attenuated TGF-β1-induced increase of β-catenin expression and ERK phosphorylation. Moreover, it inhibited the TGF-β1-induced nuclear translocation of ββ-catenin. These effects of NaHS on fibronectin, E-cadherin and TβR I were abolished by the ERK inhibitor U0126 or β-catenin inhibitor XAV939, or β-catenin siRNA interference. We get the conclusion that NaHS attenuated TGF-β1-induced EMT in HK-2 cells through both ERK-dependent and β-catenin-dependent pathways. PMID:26760502

  12. Transforming growth factor-β3 promotes facial nerve injury repair in rabbits

    PubMed Central

    WANG, YANMEI; ZHAO, XINXIANG; HUOJIA, MUHTER; XU, HUI; ZHUANG, YOUMEI

    2016-01-01

    The present study investigated the effects of transforming growth factor (TGF)-β3 on the regeneration of facial nerves in rabbits. A total of 20 adult rabbits were randomly divided into three equal groups: Normal control (n=10), surgical control (n=10) and TGF-β3 treatment (n=10). The total number and diameter of the regenerated nerve fibers was significantly increased in the TGF-β3 treatment group, as compared with in the surgical control group (P<0.01). Furthermore, in the TGF-β3 treatment group, the epineurial repair of the facial nerves was intact and the nerve fibers, which were arranged in neat rows, were morphologically intact with visible myelin swelling. However, in the surgical control group, the epineurial repair was incomplete, as demonstrated by: Atrophic nerve fibers, partially disappeared axons and myelin of uneven thickness with fuzzy borders. Electron microscopy demonstrated that the regenerated fibers in the TGF-β3 treatment group were predominantly myelinated, with clear-layered myelin sheath structures and axoplasms rich in organelles. Although typical layered myelin sheath structures were observed in the surgical control group, the myelin sheaths of the myelinated nerve fibers were poorly developed and few organelles were detected in the axoplasms. Neuro-electrophysiological examination demonstrated that, as compared with the surgical control group, the latency period of the action potentials in the TGF-β3 treatment group were shorter, whereas the stimulus amplitudes of the action potentials were significantly increased (P<0.01). The results of the present study suggest that TGF-β3 may improve the regeneration of facial nerves following trauma or injury. PMID:26997982

  13. MicroRNA-326 regulates profibrotic functions of transforming growth factor-β in pulmonary fibrosis.

    PubMed

    Das, Sudipta; Kumar, Manish; Negi, Vinny; Pattnaik, Bijay; Prakash, Y S; Agrawal, Anurag; Ghosh, Balaram

    2014-05-01

    Idiopathic pulmonary fibrosis (IPF) is a fatal disorder resulting from the progressive remodeling of lungs, with no known effective treatment. Although transforming growth factor (TGF)-β has a well-established role in lung fibrosis, clinical experience with neutralizing antibodies to TGF-β has been disappointing, and strategies to directly suppress TGF-β1 secretion are needed. In this study we used a combination of in silico, in vitro, and in vivo approaches to identify microRNAs involved in TGF-β1 regulation and to validate the role of miR-326 in pulmonary fibrosis.We show that hsa-miR-326 regulates TGF-β1 expression and that hsa-miR-326 levels are inversely correlated to TGF-β1 protein levels in multiple human cell lines. The increase in TGF-β1 expression during the progression of bleomycin-induced lung fibrosis in mice was associated with loss of mmu-miR-326. Restoration of mmu-miR-326 levels by intranasal delivery of miR-326 mimics was sufficient to inhibit TGF-β1 expression and attenuate the fibrotic response. Moreover, human IPF lung specimens had markedly diminished miR-326 expression as compared with nonfibrotic lungs. Additional targets of miR-326 controlling TGF-β signaling and fibrosis-related pathways were identified, and miR-326 was found to down-regulate profibrotic genes, such as Ets1, Smad3, and matrix metalloproteinase 9, whereas it up-regulates antifibrotic genes, such as Smad7. Our results suggest for the first time that miR-326 plays a key role in regulating TGF-β1 expression and other profibrotic genes and could be useful in developing better therapeutic strategies for alleviating lung fibrosis.

  14. Transforming growth factor (TGF)-β levels and unprovoked recurrent venous thromboembolism.

    PubMed

    Memon, Ashfaque A; Sundquist, Kristina; Wang, Xiao; Svensson, Peter J; Sundquist, Jan; Zöller, Bengt

    2014-10-01

    Prediction of recurrence in patients with unprovoked venous thromboembolism (VTE) remains a challenge. Studies of atherosclerosis suggest a protective role of transforming growth factor (TGF)-β. However, the role of TGF-β has not been studied in VTE. The aim of this study was to investigate TGF-β as a predictive marker of recurrent VTE in patients with a first episode of unprovoked VTE. Patients in the Malmö Thrombophilia Study (MATS) were followed after the discontinuation of anticoagulant treatment until the diagnosis of recurrent VTE or the end of the study in December 2008 (mean ± SD 38.5 months ± 27). Among patients with a first episode of unprovoked VTE, we identified 42 patients with recurrent VTE during the follow-up period. Two age- and sex-matched control subjects without recurrent VTE were selected for each patient (n = 84). Plasma levels of the three isoforms of TGF-β (TGF-β1, TGF-β2 and TGF-β3) were quantified simultaneously by TGF-β 3-plex immunoassay. Compared to controls, plasma levels of TGF-β1 and TGF-β2 were significantly lower in patients with recurrent VTE (p < 0.05), whereas no difference was found for TGF-β3. In a multivariate Cox regression analyses, adjusted for inherited thrombophilia, age, sex and BMI, low levels of TGF-β1 [hazard ratio (HR) = 2.2, 95% confidence interval (CI) 1.1-4.3; p = 0.02] and TGF-β2 (HR = 2.4, 95% CI 1.2-4.7; p = 0.01) were independently associated with a higher risk of recurrent VTE. We propose TGF-β1 and TGF-β2 as potential predictive markers for recurrence in patients with unprovoked VTE.

  15. Genetic polymorphisms in transforming growth factor beta-1 (TGFB1) and childhood asthma and atopy

    PubMed Central

    Li, Huiling; Romieu, Isabelle; Wu, Hao; Sienra-Monge, Juan-Jose; Ramírez-Aguilar, Matiana; del Río-Navarro, Blanca Estela; Lara-Sánchez, Irma del Carmen; Kistner, Emily O.; Gjessing, Håkon K.; London, Stephanie J.

    2007-01-01

    Transforming growth factor beta-1 (TGFB1) may influence asthma by modulating allergic airway inflammation and airway remodeling. The role of single nucleotide polymorphisms (SNPs) of TGFB1 in asthma remains inconclusive. We examined TGFB1 SNPs in relation to asthma risk and degree of atopy among 546 case-parent triads, consisting of asthmatics aged 4 to 17 years and their parents in Mexico City. Atopy to 24 aeroallergens was determined by skin prick tests. We genotyped five TGFB1 SNPs, including two known functional SNPs [C-509T (rs1800469), T869C (rs1982073)] and three others (rs7258445, rs1800472, rs8179181), using TaqMan and Masscode assays. We analyzed the data using log-linear and polytomous logistic methods. Three associated SNPs, including the two known functional SNPs, were statistically significantly related to asthma risk. Individuals carrying the T allele of C-509T had an increased risk of asthma [relative risk (RR) = 1.42, 95% confidence interval (CI) = 1.08–1.87 for one copy; RR (95%CI) = 1.95 (1.36–2.78) for two copies]. For T869C, the RRs (95%CI) were 1.47 (1.09–1.98) for one and 2.00 (1.38–2.90) for two copies of the C allele. Similar results were found for rs7258445. The haplotype containing all three risk alleles conferred an increased risk of asthma (RR = 1.48, 95% CI = 1.11–1.95 for one copy; RR = 1.77, 95% CI = 1.22–2.57 for two copies). These three SNPs were also related to the degree of atopy. This largest study to date of genetic variation in TGFB1 and asthma and atopy adds to increasing evidence for a role in these disorders. PMID:17333284

  16. Molecular characterisation of sea bream (Sparus aurata) transforming growth factor beta1.

    PubMed

    Tafalla, C; Aranguren, R; Secombes, C J; Castrillo, J L; Novoa, B; Figueras, A

    2003-05-01

    A transforming growth factor beta1 (TGF beta1) full length cDNA was characterised and sequenced from the head kidney of sea bream (Sparus aurata) previously challenged with a nodavirus. The cloned cDNA of 1778bp contains a predicted open reading frame of 379 amino acids, which includes the mature peptide region of 112 amino acids. The regulating region of the peptide possesses four potential N-linked glycosylation sites (N-X-T/S), as well as an RGD integrin binding site, an RKKR tetrabasic cut site and nine conserved cysteines all characteristic of the TGF beta superfamily. Compared to other teleost TGF beta1 genes, the sea bream TGF beta1 is most closely related to hybrid striped bass (Moronesaxatilis xM. chrysops) TGF beta1 (80% amino acid identity). The genomic organisation of TGF beta1 was determined through the generation of contiguous PCR clones. The sea bream TGF beta1 gene is approximately 3.6kb in length and consists of five coding regions. Two introns are absent in comparison to the genomic organisation of rainbow trout Oncorhynchus mykiss TGF beta1, whilst an additional intron not present in other sequenced TGF beta genes, but present in the trout TGF beta1 gene, is conserved in sea bream.A reverse transcription polymerase chain reaction (RT-PCR) assay was developed to study TGF beta expression in different sea bream tissues. Constitutive TGF beta1 expression was detected in the liver, brain, muscle, kidney, heart, gills and spleen of sea bream, as well as in head kidney macrophages and blood leucocytes.

  17. Transformation of Traditional Vocabulary Exercises into Collaborative Writing Activity

    ERIC Educational Resources Information Center

    Zheng, Jian-feng

    2010-01-01

    In the reading course, especially the so-called intensive reading course or integrative English reading course, there are some vocabulary exercises which intend to consolidate the active vocabulary emerging in the reading passages. Mostly, these exercises are in the form of blank-filling or rewriting sentences with the words given. The problem…

  18. Activity Theory and the Transformation of Pedagogic Practice

    ERIC Educational Resources Information Center

    Yamazumi, Katsuhiro

    2006-01-01

    Today, work and other societal practices are experiencing accelerating paradigm shifts from mass-production-based systems toward new systems based on networking between organizations, collaboration, and partnerships. This shift requires new paradigms in the fields of education, learning, and development. As human activity quickly changes to…

  19. Platelet-activating factor promotes motility in breast cancer cells and disrupts non-transformed breast acinar structures.

    PubMed

    Anandi, V Libi; Ashiq, K A; Nitheesh, K; Lahiri, M

    2016-01-01

    A plethora of studies have demonstrated that chronic inflammatory microenvironment influences the genesis and progression of tumors. Such microenvironments are enriched with various lipid mediators. Platelet activating factor (PAF, 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is one such lipid mediator that is secreted by different immune cell types during inflammation and by breast cancer cells upon stimulation with growth factors. Overexpression of PAF-receptor has also been observed in many other cancers. Here we report the possible roles of PAF in tumor initiation and progression. MCF10A, a non-transformed and non-malignant mammary epithelial cell line, when grown as 3D 'on-top' cultures form spheroids that have a distinct hollow lumen surrounded by a monolayer of epithelial cells. Exposure of these spheroids to PAF resulted in the formation of large deformed acinar structures with disrupted lumen, implying transformation. We then examined the response of transformed cells such as MDA-MB 231 to stimulation with PAF. We observed collective cell migration as well as motility at the single cell level on PAF induction, suggesting its role during metastasis. This increase in collective cell migration is mediated via PI3-kinase and/or JNK pathway and is independent of the MAP-kinase pathway. Taken together this study signifies a novel role of PAF in inducing transformation of non-tumorigenic cells and the vital role in promotion of breast cancer cell migration. PMID:26531049

  20. Omega 3 but not omega 6 fatty acids inhibit AP-1 activity and cell transformation in JB6 cells

    PubMed Central

    Liu, Guangming; Bibus, Douglas M.; Bode, Ann M.; Ma, Wei-Ya; Holman, Ralph T.; Dong, Zigang

    2001-01-01

    Epidemiological and animal-based investigations have indicated that the development of skin cancer is in part associated with poor dietary practices. Lipid content and subsequently the derived fatty acid composition of the diet are believed to play a major role in the development of tumorigenesis. Omega 3 (ω3) fatty acids, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), can effectively reduce the risk of skin cancer whereas omega 6 (ω6) fatty acids such as arachidonic acid (AA) reportedly promote risk. To investigate the effects of fatty acids on tumorigenesis, we performed experiments to examine the effects of the ω3 fatty acids EPA and DHA and of the ω6 fatty acid AA on phorbol 12-tetradecanoate 13-acetate (TPA)-induced or epidermal growth factor (EGF)-induced transcription activator protein 1 (AP-1) transactivation and on the subsequent cellular transformation in a mouse epidermal JB6 cell model. DHA treatment resulted in marked inhibition of TPA- and EGF-induced cell transformation by inhibiting AP-1 transactivation. EPA treatment also inhibited TPA-induced AP-1 transactivation and cell transformation but had no effect on EGF-induced transformation. AA treatment had no effect on either TPA- or EGF-induced AP-1 transactivation or transformation, but did abrogate the inhibitory effects of DHA on TPA- or EGF-induced AP-1 transactivation and cell transformation in a dose-dependent manner. The results of this study demonstrate that the inhibitory effects of ω3 fatty acids on tumorigenesis are more significant for DHA than for EPA and are related to an inhibition of AP-1. Similarly, because AA abrogates the beneficial effects of DHA, the dietary ratio of ω6 to ω3 fatty acids may be a significant factor in mediating tumor development. PMID:11416221

  1. Differential cell cycle response of nontumorigenic and tumorigenic human papillomavirus-positive keratinocytes towards transforming growth factor-beta1.

    PubMed

    Hasskarl, J; Butz, K; Whitaker, N; Ullmann, A; Dürst, M; Hoppe-Seyler, F

    2000-01-01

    Human papillomaviruses (HPVs) are causative agents of a number of malignancies in humans, including cervical cancer. Their tumorigenic potential is linked to expression of the viral E6/E7 genes which can interfere with normal cell cycle control by targeting p53, p21WAF1, p27KIP1, and pRb. We show here that nontumorigenic and tumorigenic HPV-positive keratinocytes (HPK) exhibit striking differences in the response of cell cycle regulatory genes towards transforming growth factor beta-beta1. Treatment with this agent led to an efficient induction of p53 and the growth-inhibitory p15INK4 and p21WAF1 genes only in nontumorigenic HPKs and was linked to an efficient reduction in viral E6/E7 oncogene expression. This was associated with increased pRb levels, exhibiting sustained hypophosphorylation, and a permanent growth arrest in the G1 phase of the cell cycle. In contrast, tumorigenic HPKs exhibited only a modest rise in p53 protein levels and a substantially reduced induction of the p15INK4 and p21WAF1 genes, which was linked to a lesser degree of viral oncogene repression. In addition, tumorigenic HPKs rapidly resumed cell growth after a transient G1 arrest, concomitantly with the reappearance of hyperphosphorylated pRb. These results support the notion that the progression of HPV-positive cells to a malignant phenotype is associated with increased resistance to growth inhibition by transforming growth factor-beta1. This is linked in the tumorigenic cells to a lack of persistent G1 arrest, inefficient induction of several cell cycle control genes involved in growth inhibition, and inefficient repression of the growth-promoting viral E6/E7 oncogenes. PMID:10794545

  2. Critical telomerase activity for uncontrolled cell growth

    NASA Astrophysics Data System (ADS)

    Wesch, Neil L.; Burlock, Laura J.; Gooding, Robert J.

    2016-08-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed.

  3. Critical telomerase activity for uncontrolled cell growth.

    PubMed

    Wesch, Neil L; Burlock, Laura J; Gooding, Robert J

    2016-01-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed. PMID:27500377

  4. Common parietal activation in musical mental transformations across pitch and time.

    PubMed

    Foster, Nicholas E V; Halpern, Andrea R; Zatorre, Robert J

    2013-07-15

    We previously observed that mental manipulation of the pitch level or temporal organization of melodies results in functional activation in the human intraparietal sulcus (IPS), a region also associated with visuospatial transformation and numerical calculation. Two outstanding questions about these musical transformations are whether pitch and time depend on separate or common processing in IPS, and