Science.gov

Sample records for activates mapk signaling

  1. The Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway as a Discovery Target in Stroke.

    PubMed

    Sun, Jing; Nan, Guangxian

    2016-05-01

    Protein kinases are critical modulators of a variety of intracellular and extracellular signal transduction pathways, and abnormal phosphorylation events can contribute to disease progression in a variety of diseases. As a result, protein kinases have emerged as important new drug targets for small molecule therapeutics. The mitogen-activated protein kinase (MAPK) signaling pathway transmits signals from the cell membrane to the nucleus in response to a variety of different stimuli. Because this pathway controls a broad spectrum of cellular processes, including growth, inflammation, and stress responses, it is accepted as a therapeutic target for cancer and peripheral inflammatory disorders. There is also increasing evidence that MAPK is an important regulator of ischemic and hemorrhagic cerebral vascular disease, raising the possibility that it might be a drug discovery target for stroke. In this review, we discuss the MAPK signaling pathway in association with its activation in stroke-induced brain injury. PMID:26842916

  2. Phosphatidylserine enhances IKBKAP transcription by activating the MAPK/ERK signaling pathway.

    PubMed

    Donyo, Maya; Hollander, Dror; Abramovitch, Ziv; Naftelberg, Shiran; Ast, Gil

    2016-04-01

    Familial dysautonomia (FD) is a genetic disorder manifested due to abnormal development and progressive degeneration of the sensory and autonomic nervous system. FD is caused by a point mutation in the IKBKAP gene encoding the IKAP protein, resulting in decreased protein levels. A promising potential treatment for FD is phosphatidylserine (PS); however, the manner by which PS elevates IKAP levels has yet to be identified. Analysis of ChIP-seq results of the IKBKAP promoter region revealed binding of the transcription factors CREB and ELK1, which are regulated by the mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) signaling pathway. We show that PS treatment enhanced ERK phosphorylation in cells derived from FD patients. ERK activation resulted in elevated IKBKAP transcription and IKAP protein levels, whereas pretreatment with the MAPK inhibitor U0126 blocked elevation of the IKAP protein level. Overexpression of either ELK1 or CREB activated the IKBKAP promoter, whereas downregulation of these transcription factors resulted in a decrease of the IKAP protein. Additionally, we show that PS improves cell migration, known to be enhanced by MAPK/ERK activation and abrogated in FD cells. In conclusion, our results demonstrate that PS activates the MAPK/ERK signaling pathway, resulting in activation of transcription factors that bind the promoter region of IKBKAP and thus enhancing its transcription. Therefore, compounds that activate the MAPK/ERK signaling pathway could constitute potential treatments for FD. PMID:26769675

  3. Cooperativity between MAPK and PI3K signaling activation is required for glioblastoma pathogenesis

    PubMed Central

    Vitucci, Mark; Karpinich, Natalie O.; Bash, Ryan E.; Werneke, Andrea M.; Schmid, Ralf S.; White, Kristen K.; McNeill, Robert S.; Huff, Byron; Wang, Sophie; Van Dyke, Terry; Miller, C. Ryan

    2013-01-01

    Background Glioblastoma (GBM) genomes feature recurrent genetic alterations that dysregulate core intracellular signaling pathways, including the G1/S cell cycle checkpoint and the MAPK and PI3K effector arms of receptor tyrosine kinase (RTK) signaling. Elucidation of the phenotypic consequences of activated RTK effectors is required for the design of effective therapeutic and diagnostic strategies. Methods Genetically defined, G1/S checkpoint-defective cortical murine astrocytes with constitutively active Kras and/or Pten deletion mutations were used to systematically investigate the individual and combined roles of these 2 RTK signaling effectors in phenotypic hallmarks of glioblastoma pathogenesis, including growth, migration, and invasion in vitro. A novel syngeneic orthotopic allograft model system was used to examine in vivo tumorigenesis. Results Constitutively active Kras and/or Pten deletion mutations activated both MAPK and PI3K signaling. Their combination led to maximal growth, migration, and invasion of G1/S-defective astrocytes in vitro and produced progenitor-like transcriptomal profiles that mimic human proneural GBM. Activation of both RTK effector arms was required for in vivo tumorigenesis and produced highly invasive, proneural-like GBM. Conclusions These results suggest that cortical astrocytes can be transformed into GBM and that combined dysregulation of MAPK and PI3K signaling revert G1/S-defective astrocytes to a primitive gene expression state. This genetically-defined, immunocompetent model of proneural GBM will be useful for preclinical development of MAPK/PI3K-targeted, subtype-specific therapies. PMID:23814263

  4. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling

    PubMed Central

    Shrestha, Yashaswi; Schafer, Eric J.; Boehm, Jesse S.; Thomas, Sapana R.; He, Frank; Du, Jinyan; Wang, Shumei; Barretina, Jordi; Weir, Barbara A.; Zhao, Jean J.; Polyak, Kornelia; Golub, Todd R.; Beroukhim, Rameen; Hahn, William C.

    2011-01-01

    Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK Mitogen-Activated Protein Kinase (MAPK) pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce anchorage-independent growth in a derivative of immortalized human mammary epithelial cells (HMLE). We identified PAK1 as a kinase that permitted HMLE cells to form anchorage-independent colonies. PAK1 is amplified in several human cancer types, including 33% of breast tumor samples and cancer cell lines. The kinase activity of PAK1 is necessary for PAK1-induced transformation. Moreover, we show that PAK1 simultaneously activates MAPK and MET signaling; the latter via inhibition of Merlin. Disruption of these activities inhibits PAK1-driven anchorage-independent growth. These observations establish PAK1 amplification as an alternative mechanism for MAPK activation in human breast cancer and credential PAK1 as a breast cancer oncogene that coordinately regulates multiple signaling pathways, the cooperation of which leads to malignant transformation. PMID:22105362

  5. The PHD motif of Map3k1 activates cytokine-dependent MAPK signaling

    PubMed Central

    Gallagher, Ewen; Suddason, Tesha

    2015-01-01

    We generated a mutation in the gene encoding mitogen-activated protein kinase kinase kinase 1 (Map3k1) that results in a protein with an inactive plant homeodomain (PHD). Map3k1mPHD cells are defective in cytokine-mediated MAPK signaling. Protein array identified transforming growth factor (TGF-β)-activated kinase 1 binding protein 1 (Tab1) as a PHD substrate. The Map3k1 PHD transfers Lys63-linked poly-ubiquitin onto Tab1 to activate MAPKs. PMID:27308457

  6. MAPK Cascades in Guard Cell Signal Transduction

    PubMed Central

    Lee, Yuree; Kim, Yun Ju; Kim, Myung-Hee; Kwak, June M.

    2016-01-01

    Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK) cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions. PMID:26904052

  7. MAPK Cascades in Guard Cell Signal Transduction.

    PubMed

    Lee, Yuree; Kim, Yun Ju; Kim, Myung-Hee; Kwak, June M

    2016-01-01

    Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK) cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions. PMID:26904052

  8. Plant MAPK cascades: Just rapid signaling modules?

    PubMed Central

    Boudsocq, Marie; Danquah, Agyemang; de Zélicourt, Axel; Hirt, Heribert; Colcombet, Jean

    2015-01-01

    Abscisic acid (ABA) is a major phytohormone mediating important stress-related processes. We recently unveiled an ABA-activated MAPK signaling module constituted of MAP3K17/18-MKK3-MPK1/2/7/14. Unlike classical rapid MAPK activation, we showed that the activation of the new MAPK module is delayed and relies on the MAP3K protein synthesis. In this addendum, we discuss the role of this original and unexpected activation mechanism of MAPK cascades which suggests that MAPKs can regulate both early and long-term plant stress responses. PMID:26313321

  9. MAPKs in development: insights from Dictyostelium signaling pathways

    PubMed Central

    Hadwiger, Jeffrey A.; Nguyen, Hoai-Nghia

    2011-01-01

    Mitogen activated protein kinases (MAPKs) play important roles in the development of eukaryotic organisms through the regulation of signal transduction pathways stimulated by external signals. MAPK signaling pathways have been associated with the regulation of cell growth, differentiation, and chemotaxis, indicating MAPKs contribute to a diverse set of developmental processes. In most eukaryotes, the diversity of external signals is likely to far exceed the diversity of MAPKs, suggesting that multiple signaling pathways might share MAPKs. Do different signaling pathways converge before MAPK function or can MAPKs maintain signaling specificity through interactions with specific proteins? The genetic and biochemical analysis of MAPK pathways in simple eukaryotes such as Dictyostelium offers opportunities to investigate functional specificity of MAPKs in G protein-mediated signal transduction pathways. This review considers the regulation and specificity of MAPK function in pathways that control Dictyostelium growth and development. PMID:21666837

  10. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling

    PubMed Central

    Lin, Athena W.; Barradas, Marta; Stone, James C.; van Aelst, Linda; Serrano, Manuel; Lowe, Scott W.

    1998-01-01

    Oncogenic Ras transforms immortal rodent cells to a tumorigenic state, in part, by constitutively transmitting mitogenic signals through the mitogen-activated protein kinase (MAPK) cascade. In primary cells, Ras is initially mitogenic but eventually induces premature senescence involving the p53 and p16INK4a tumor suppressors. Constitutive activation of MEK (a component of the MAPK cascade) induces both p53 and p16, and is required for Ras-induced senescence of normal human fibroblasts. Furthermore, activated MEK permanently arrests primary murine fibroblasts but forces uncontrolled mitogenesis and transformation in cells lacking either p53 or INK4a. The precisely opposite response of normal and immortalized cells to constitutive activation of the MAPK cascade implies that premature senescence acts as a fail-safe mechanism to limit the transforming potential of excessive Ras mitogenic signaling. Consequently, constitutive MAPK signaling activates p53 and p16 as tumor suppressors. PMID:9765203

  11. Function and Regulation in MAPK Signaling Pathways

    PubMed Central

    Chen, Raymond E.; Thorner, Jeremy

    2007-01-01

    Signaling pathways that activate different mitogen-activated protein kinases (MAPKs) elicit many of the responses that are evoked in cells by changes in certain environmental conditions and upon exposure to a variety of hormonal and other stimuli. These pathways were first elucidated in the unicellular eukaryote Saccharomyces cerevisiae (budding yeast). Studies of MAPK pathways in this organism continue to be especially informative in revealing the molecular mechanisms by which MAPK cascades operate, propagate signals, modulate cellular processes, and are controlled by regulatory factors both internal to and external to the pathways. Here we highlight recent advances and new insights about MAPK-based signaling that have been made through studies in yeast, which provide lessons directly applicable to, and that enhance our understanding of, MAPK-mediated signaling in mammalian cells. PMID:17604854

  12. IGF-1 protects tubular epithelial cells during injury via activation of ERK/MAPK signaling pathway

    PubMed Central

    Wu, Zengbin; Yu, Yang; Niu, Lei; Fei, Aihua; Pan, Shuming

    2016-01-01

    Injury of renal tubular epithelial cells can induce acute renal failure and obstructive nephropathy. Previous studies have shown that administration of insulin-like growth factor-1 (IGF-1) ameliorates the renal injury in a mouse unilateral ureteral obstruction (UUO) model, whereas the underlying mechanisms are not completely understood. Here, we addressed this question. We found that the administration of IGF-1 significantly reduced the severity of the renal fibrosis in UUO. By analyzing purified renal epithelial cells, we found that IGF-1 significantly reduced the apoptotic cell death of renal epithelial cells, seemingly through upregulation of anti-apoptotic protein Bcl-2, at protein but not mRNA level. Bioinformatics analyses and luciferase-reporter assay showed that miR-429 targeted the 3′-UTR of Bcl-2 mRNA to inhibit its protein translation in renal epithelial cells. Moreover, IGF-1 suppressed miR-429 to increase Bcl-2 in renal epithelial cells to improve survival after UUO. Furthermore, inhibition of ERK/MAPK signaling pathway in renal epithelial cells abolished the suppressive effects of IGF-1 on miR-429 activation, and then the enhanced effects on Bcl-2 in UUO. Thus, our data suggest that IGF-1 may protect renal tubular epithelial cells via activation of ERK/MAPK signaling pathway during renal injury. PMID:27301852

  13. Extracellular ATP activates MAPK and ROS signaling during injury response in the fungus Trichoderma atroviride

    PubMed Central

    Medina-Castellanos, Elizabeth; Esquivel-Naranjo, Edgardo U.; Heil, Martin; Herrera-Estrella, Alfredo

    2014-01-01

    The response to mechanical damage is crucial for the survival of multicellular organisms, enabling their adaptation to hostile environments. Trichoderma atroviride, a filamentous fungus of great importance in the biological control of plant diseases, responds to mechanical damage by activating regenerative processes and asexual reproduction (conidiation). During this response, reactive oxygen species (ROS) are produced by the NADPH oxidase complex. To understand the underlying early signaling events, we evaluated molecules such as extracellular ATP (eATP) and Ca2+ that are known to trigger wound-induced responses in plants and animals. Concretely, we investigated the activation of mitogen-activated protein kinase (MAPK) pathways by eATP, Ca2+, and ROS. Indeed, application of exogenous ATP and Ca2+ triggered conidiation. Furthermore, eATP promoted the Nox1-dependent production of ROS and activated a MAPK pathway. Mutants in the MAPK-encoding genes tmk1 and tmk3 were affected in wound-induced conidiation, and phosphorylation of both Tmk1 and Tmk3 was triggered by eATP. We conclude that in this fungus, eATP acts as a damage-associated molecular pattern (DAMP). Our data indicate the existence of an eATP receptor and suggest that in fungi, eATP triggers pathways that converge to regulate asexual reproduction genes that are required for injury-induced conidiation. By contrast, Ca2+ is more likely to act as a downstream second messenger. The early steps of mechanical damage response in T. atroviride share conserved elements with those known from plants and animals. PMID:25484887

  14. Measurement of constitutive MAPK and PI3K/AKT signaling activity in human cancer cell lines

    PubMed Central

    Paraiso, Kim H.T.; Van Der Kooi, Kaisa; Messina, Jane L.; Smalley, Keiran S. M.

    2014-01-01

    The growth and survival of cancer cells is often driven by constitutive activity in the mitogen activated protein kinase (MAPK) and phospho-inositide 3-kinase (PI3K)/AKT signaling pathways. Activity in these signal transduction cascades is known to contribute to the uncontrolled growth and resistance to apoptosis that characterizes tumor progression. There is now a great deal of interest in therapeutically targeting these pathways in cancer using small molecule inhibitors. In this chapter we describe methods to measure constitutive MAPK and AKT activity in melanoma cell lines, with a focus upon Western blotting, phospho-flow cytometry and immunofluorescence staining techniques. PMID:21036250

  15. Activation of Egr-1 in Human Lung Epithelial Cells Exposed to Silica through MAPKs Signaling Pathways

    PubMed Central

    Chu, Ling; Wang, Tiansheng; Hu, Yongbin; Gu, Yonghong; Su, Zanshan; Jiang, Haiying

    2013-01-01

    The alveolar type II epithelial cell, regarded historically as a key target cell in initial injury by silica, now appears to be important in both defense from lung damage as well as elaboration of chemokines and cytokines. The molecular basis for silica-induced epithelial cell injury is poorly understood. In this study we explored the activation of nuclear factor Egr-1 and related signal pathway. Human II alveolar epithelial line A549 cells were exposed to silica for indicated time to assay the expression and activation of Egr-1 and upstream MAPKs. Immunofluorescence, western-blot techniques, RT-PCR, Electrophoretic mobility shift assay (EMSA), transient transfection assay, kinase inhibitor experiments were performed. It was found that the expression of Egr-1 at mRNA and protein level was significantly increased in A549 cells after administration with silica and the activity of Egr-1 peaked by silica treatment for 60 minutes. Furthermore, phosphorylated-ERK1/2, P38 MAPKs (the upstream kinase of Egr-1) ballooned during 15-30minutes, 30-60minutes respectively after silica exposure in A549 cells. By administration of ERK1/2, P38 inhibitor, the expression and transcription of Egr-1 were both markedly decreased. But PKC inhibitor did not prevent the increase of Egr-1. These results indicated Egr-1 played a critical role in silica-induced pulmonary fibrosis in an ERK1/2, P38 MAPKs-dependent manner, which suggests Egr-1 is an essential regulator in silicosis, and underlines a new molecular mechanism for fibrosis induced by silica. PMID:23874821

  16. Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling

    NASA Astrophysics Data System (ADS)

    House, Carrie D.; Wang, Bi-Dar; Ceniccola, Kristin; Williams, Russell; Simaan, May; Olender, Jacqueline; Patel, Vyomesh; Baptista-Hon, Daniel T.; Annunziata, Christina M.; Silvio Gutkind, J.; Hales, Tim G.; Lee, Norman H.

    2015-06-01

    Functional expression of voltage-gated Na+ channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes.

  17. Activation of the MAPK/ERK Cell-Signaling Pathway in Uterine Smooth Muscle Cells of Women With Adenomyosis.

    PubMed

    Streuli, Isabelle; Santulli, Pietro; Chouzenoux, Sandrine; Chapron, Charles; Batteux, Frédéric

    2015-12-01

    We investigated whether the myometrium might be intrinsically different in women with adenomyosis. We studied whether the mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPKs/ERKs) and phosphoinositide 3-kinase/mammalian target of rapamycin/AKT (PI3K/mTOR/AKT) cell-signaling pathways, implicated in the pathogenesis of endometriosis, might also be activated in uterine smooth muscle cells (uSMCs) of women with adenomyosis and measured the production of reactive oxygen species (ROS), proinflammatory mediators that modulate cell proliferation and have been shown to activate the MAPK/ERK pathway in endometriosis. The uSMC cultures were derived from myometrium biopsies obtained during hysterectomy or myomectomy in women with adenomyosis and controls with leiomyoma. Proliferation of uSMCs and in vitro activation of the MAPK/ERK cell-signaling pathway were increased in women with adenomyosis compared to controls. The activation of the PI3K/mTOR/AKT pathway was not significant. The ROS production and ROS detoxification pathways were not different between uSMCs of women with adenomyosis and controls suggesting an ROS-independent activation of the MAPK/ERK pathway. Our results also provide evidence that protein kinase inhibitors and the rapanalogue temsirolimus can control proliferation of uSMCs in vitro suggesting an implication of the MAPK/ERK and the PI3K/mTOR/AKT pathways in proliferation of uSMCs in women with adenomyosis and leiomyomas. PMID:26071388

  18. Deoxycholic acid mediates non-canonical EGFR-MAPK activation through the induction of calcium signaling in colon cancer cells.

    PubMed

    Centuori, Sara M; Gomes, Cecil J; Trujillo, Jesse; Borg, Jamie; Brownlee, Joshua; Putnam, Charles W; Martinez, Jesse D

    2016-07-01

    Obesity and a western diet have been linked to high levels of bile acids and the development of colon cancer. Specifically, increased levels of the bile acid deoxycholic acid (DCA), an established tumor promoter, has been shown to correlate with increased development of colorectal adenomas and progression to carcinoma. Herein we investigate the mechanism by which DCA leads to EGFR-MAPK activation, a candidate mechanism by which DCA may promote colorectal tumorigenesis. DCA treated colon cancer cells exhibited strong and prolonged activation of ERK1/2 when compared to EGF treatment alone. We also showed that DCA treatment prevents EGFR degradation as opposed to the canonical EGFR recycling observed with EGF treatment. Moreover, the combination of DCA and EGF treatment displayed synergistic activity, suggesting DCA activates MAPK signaling in a non-canonical manner. Further evaluation showed that DCA treatment increased intracellular calcium levels and CAMKII phosphorylation, and that blocking calcium with BAPTA-AM abrogated MAPK activation induced by DCA, but not by EGF. Finally we showed that DCA-induced CAMKII leads to MAPK activation through the recruitment of c-Src. Taken together, we demonstrated that DCA regulates MAPK activation through calcium signaling, an alternative mechanism not previously recognized in human colon cancer cells. Importantly, this mechanism allows for EGFR to escape degradation and thus achieve a constitutively active state, which may explain its tumor promoting effects. PMID:27086143

  19. Small Molecule APY606 Displays Extensive Antitumor Activity in Pancreatic Cancer via Impairing Ras-MAPK Signaling.

    PubMed

    Guo, Na; Liu, Zuojia; Zhao, Wenjing; Wang, Erkang; Wang, Jin

    2016-01-01

    Pancreatic cancer has been found with abnormal expression or mutation in Ras proteins. Oncogenic Ras activation exploits their extensive signaling reach to affect multiple cellular processes, in which the mitogen-activated protein kinase (MAPK) signaling exerts important roles in tumorigenesis. Therapies targeted Ras are thus of major benefit for pancreatic cancer. Although small molecule APY606 has been successfully picked out by virtual drug screening based on Ras target receptor, its in-depth mechanism remains to be elucidated. We herein assessed the antitumor activity of APY606 against human pancreatic cancer Capan-1 and SW1990 cell lines and explored the effect of Ras-MAPK and apoptosis-related signaling pathway on the activity of APY606. APY606 treatment resulted in a dose- and time-dependent inhibition of cancer cell viability. Additionally, APY606 exhibited strong antitumor activity, as evidenced not only by reduction in tumor cell invasion, migration and mitochondrial membrane potential but also by alteration in several apoptotic indexes. Furthermore, APY606 treatment directly inhibited Ras-GTP and the downstream activation of MAPK, which resulted in the down-regulation of anti-apoptotic protein Bcl-2, leading to the up-regulation of mitochondrial apoptosis pathway-related proteins (Bax, cytosolic Cytochrome c and Caspase 3) and of cyclin-dependent kinase 2 and Cyclin A, E. These data suggest that impairing Ras-MAPK signaling is a novel mechanism of action for APY606 during therapeutic intervention in pancreatic cancer. PMID:27223122

  20. Small Molecule APY606 Displays Extensive Antitumor Activity in Pancreatic Cancer via Impairing Ras-MAPK Signaling

    PubMed Central

    Guo, Na; Liu, Zuojia; Zhao, Wenjing; Wang, Erkang; Wang, Jin

    2016-01-01

    Pancreatic cancer has been found with abnormal expression or mutation in Ras proteins. Oncogenic Ras activation exploits their extensive signaling reach to affect multiple cellular processes, in which the mitogen-activated protein kinase (MAPK) signaling exerts important roles in tumorigenesis. Therapies targeted Ras are thus of major benefit for pancreatic cancer. Although small molecule APY606 has been successfully picked out by virtual drug screening based on Ras target receptor, its in-depth mechanism remains to be elucidated. We herein assessed the antitumor activity of APY606 against human pancreatic cancer Capan-1 and SW1990 cell lines and explored the effect of Ras-MAPK and apoptosis-related signaling pathway on the activity of APY606. APY606 treatment resulted in a dose- and time-dependent inhibition of cancer cell viability. Additionally, APY606 exhibited strong antitumor activity, as evidenced not only by reduction in tumor cell invasion, migration and mitochondrial membrane potential but also by alteration in several apoptotic indexes. Furthermore, APY606 treatment directly inhibited Ras-GTP and the downstream activation of MAPK, which resulted in the down-regulation of anti-apoptotic protein Bcl-2, leading to the up-regulation of mitochondrial apoptosis pathway-related proteins (Bax, cytosolic Cytochrome c and Caspase 3) and of cyclin-dependent kinase 2 and Cyclin A, E. These data suggest that impairing Ras-MAPK signaling is a novel mechanism of action for APY606 during therapeutic intervention in pancreatic cancer. PMID:27223122

  1. A Trichoderma atroviride stress-activated MAPK pathway integrates stress and light signals.

    PubMed

    Esquivel-Naranjo, Edgardo Ulises; García-Esquivel, Mónica; Medina-Castellanos, Elizabeth; Correa-Pérez, Víctor Alejandro; Parra-Arriaga, Jorge Luis; Landeros-Jaime, Fidel; Cervantes-Chávez, José Antonio; Herrera-Estrella, Alfredo

    2016-06-01

    Cells possess stress-activated protein kinase (SAPK) signalling pathways, which are activated practically in response to any cellular insult, regulating responses for survival and adaptation to harmful environmental changes. To understand the function of SAPK pathways in T. atroviride, mutants lacking the MAPKK Pbs2 and the MAPK Tmk3 were analysed under several cellular stresses, and in their response to light. All mutants were highly sensitive to cellular insults such as osmotic and oxidative stress, cell wall damage, high temperature, cadmium, and UV irradiation. Under oxidative stress, the Tmk3 pathway showed specific roles during development, which in conidia are essential for tolerance to oxidant agents and appear to play a minor role in mycelia. The function of this pathway was more evident in Δpbs2 and Δtmk3 mutant strains when combining oxidative stress or cell wall damage with light. Light stimulates tolerance to osmotic stress through Tmk3 independently of the photoreceptor Blr1. Strikingly, photoconidiation and expression of blue light regulated genes was severally affected in Δtmk3 and Δpbs2 strains, indicating that this pathway regulates light responses. Furthermore, Tmk3 was rapidly phosphorylated upon light exposure. Thus, our data indicate that Tmk3 signalling cooperates with the Blr photoreceptor complex in the activation of gene expression. PMID:26878111

  2. MAPK signaling in equations and embryos

    PubMed Central

    Shvartsman, Stanislav Y.; Coppey, Mathieu; Berezhkovskii, Alexander M.

    2009-01-01

    The Extracellularly Regulated Kinase/Mitogen Activated Protein Kinase (ERK/MAPK) signaling pathway is a critical regulator of cellular processes in adult and developing tissues. Depending on the cellular context, MAPK cascade can act as a rheostat, a switch, or an oscillator. The highly conserved structure of the cascade does not imply a rigid function, as was suggested by the early mathematical models of MAPK signaling, and can instead produce a wide range of input-output maps. Given a large number of pathway components and modes of regulation, it is essential to establish experimental systems that will allow both manipulating the MAPK cascade and monitoring its dynamics. The terminal patterning system in the Drosophila embryo appears to be ideally suited for this purpose. Our recent experiments characterized dynamics of the MAPK phosphorylation gradient in the terminal system and proposed that it is regulated by a cascade of diffusion-trapping modules. Here we discuss a biophysical model that can describe the observed dynamics and guide future experiments for exploring the relative importance of multiple layers of MAPK cascade regulation. PMID:19182542

  3. YES oncogenic activity is specified by its SH4 domain and regulates RAS/MAPK signaling in colon carcinoma cells

    PubMed Central

    Dubois, Fanny; Leroy, Cédric; Simon, Valérie; Benistant, Christine; Roche, Serge

    2015-01-01

    Members of the SRC family of tyrosine kinases (SFK) display important functions in human cancer, but their specific role in tumorigenesis remains unclear. We previously demonstrated that YES regulates a unique oncogenic signaling important for colorectal cancer (CRC) progression that is not shared with SRC. Here, we addressed the underlying mechanism involved in this process. We show that YES oncogenic signaling relies on palmitoylation of its SH4 domain that controls YES localization in cholesterol-enriched membrane micro-domains. Specifically, deletion of the palmitoylation site compromised YES transforming activity, while addition of a palmitoylation site in the SH4 domain of SRC was sufficient for SRC to restore the transforming properties of cells in which YES had been silenced. Subsequently, SILAC phosphoproteomic analysis revealed that micro-domain-associated cell adhesive components and receptor tyrosine kinases are major YES substrates. YES also phosphorylates upstream regulators of RAS/MAPK signaling, including EGFR, SHC and SHP2, which were not targeted by SRC due to the absence of palmitoylation. Accordingly, EGFR-induced MAPK activity was attenuated by YES down-regulation, while increased RAS activity significantly restored cell transformation that was lost upon YES silencing. Collectively, these results uncover a critical role for the SH4 domain in the specification of SFK oncogenic activity and a selective role for YES in the induction of RAS/MAPK signaling in CRC cells. PMID:26269757

  4. Thrombosis recanalization by paeoniflorin through the upregulation of urokinase-type plasminogen activator via the MAPK signaling pathway

    PubMed Central

    YE, SONGSHAN; MAO, BINGYU; YANG, LEI; FU, WEIYUN; HOU, JUNRAN

    2016-01-01

    Paeoniflorin, the major component of Paeonia lactiflora pall, has previously been reported to prevent thrombosis. Plasminogen activator urokinase (uPA) is a serine protease that markedly facilitates normal thrombosis resolution. Paeoniflorin and uPA have been linked to the mitogen-activated protein kinase (MAPK) signaling pathway. In the current study, the influence of paeoniflorin on the expression of uPA was investigated and the underlying regulatory mechanism was preliminarily determined. The prothrombotic state of the model animals treated with paeoniflorin were assessed by enzyme-linked immunosorbent assay (ELISA). Additionally, the cytotoxicity of paeoniflorin on human umbilical vein endothelial cell (HUVEC) cultures was estimated using a methyl thiazolyl tetrazolium assay and the possible pathways involved in the interaction between paeoniflorin and uPA were evaluated using western blot analysis. The ELISA results demonstrated that the levels of 6-keto prostaglandin F1a, fibronectin and uPA were significantly upregulated by treatment with paeoniflorin compared with control (P<0.05). By contrast, the expression of fibrinogen, D-dimer and thromboxane B2 were inhibited. With an increase in the concentration of paeoniflorin the cell viability of HUVECs decreased gradually. The results of western blot analysis demonstrated that paeoniflorin increased the phosphorylation of MAPK 14 (p38) and MAPK 8 (JNK). The present study demonstrated that paeoniflorin has the potential to improve the prethrombotic state and recanalize thrombosis by increasing the expression of uPA, which may be mediated via regulation of the p38 and JNK MAPK signaling pathways. However, this treatment effect was dependent on the concentration of paeoniflorin used, an unsuitable concentration of the agent would result in a negative effect on the anti-thrombosis pathways. PMID:27082639

  5. Quantitative cell signalling analysis reveals down-regulation of MAPK pathway activation in colorectal cancer.

    PubMed

    Gulmann, Christian; Sheehan, Katherine M; Conroy, Ronán M; Wulfkuhle, Julia D; Espina, Virginia; Mullarkey, Michelle J; Kay, Elaine W; Liotta, Lance A; Petricoin, Emanuel F

    2009-08-01

    Mitogen-activated protein kinases (MAPK) are considered to play significant roles in colonic carcinogenesis and kinase inhibitor therapy has been proposed as a potential tool in the treatment of this disease. Reverse-phase microarray assays using phospho-specific antibodies can directly measure levels of phosphorylated protein isoforms. In the current study, samples from 35 cases of untreated colorectal cancer colectomies were laser capture-microdissected to isolate epithelium and stroma from cancer as well as normal (i.e. uninvolved) mucosa. Lysates generated from these four tissue types were spotted onto reverse-phase protein microarrays and probed with a panel of antibodies to ERK, p-ERK, p38, p-p38, p-JNK, MEK and p-MEK. Whereas total protein levels were unchanged, or slightly elevated (p38, p = 0.0025) in cancers, activated isoforms, including p-ERK, p-p38 and p-JNK, were decreased two- to four-fold in cancers compared with uninvolved mucosa (p < 0.0023 in all cases except for p-JNK in epithelium, where decrement was non-significant). This was backed up by western blotting. Dukes' stage B and C cancers displayed lower p-ERK and p-p38 expression than Dukes' stage A cancers, although this was not statistically significant. It is concluded that MAPK activity may be down-regulated in colorectal cancer and that further exploration of inhibitory therapy in this system should be carefully evaluated if this finding is confirmed in larger series. PMID:19396842

  6. MAPK Signaling and ERK1/2 bistability in Asthma

    PubMed Central

    Alam, Rafeul; Gorska, Magdalena M.

    2010-01-01

    Mitogen-activated protein kinases (MAPK) integrate signals from numerous receptors and translate these signals into cell functions. MAPKs are critical for immune cell metabolism, migration, production of pro-inflammatory mediators, survival, and differentiation. We provide a concise review of the involvement of MAPK in important cells of the immune system. Certain cell functions e.g. production of pro-inflammatory mediators resolve quickly and may require a transient MAPK activation, other processes such as cell differentiation and long-term survival may require persistent MAPK signal. The persistent MAPK signal is frequently a consequence of positive feedback loops or double negative feedback loops which perpetuate the signal after removal of an external cell stimulus. This self-perpetuated activation of a signaling circuit is a manifestation of its bistability. Bistable systems can exist in “on” and “off” states and both states are stable. We have demonstrated the existence of self-perpetuated activation mechanism for ERK1/2 in bronchial epithelial cells. This sustained activation of ERK1/2 supports long-term survival of these cells and primes them for cytokine transcription. ERK1/2 bistability arises from repetitive stimulation of the cell. The repeated stimulation (e.g. repeated viral infection or repeated allergen exposure) seems to be a common theme in asthma and other chronic illnesses. We thus hypothesize that the self-perpetuated ERK1/2 signal plays an important role in the pathogenesis of asthma. PMID:21121982

  7. Interleukin 6 Is Required for Pancreatic Cancer Progression by Promoting MAPK Signaling Activation and Oxidative Stress Resistance

    PubMed Central

    Zhang, Yaqing; Yan, Wei; Collins, Meredith A.; Bednar, Filip; Rakshit, Sabita; Zetter, Bruce R.; Stanger, Ben Z.; Chung, Ivy; Rhim, Andrew D.; di Magliano, Marina Pasca

    2013-01-01

    Pancreatic cancer, one of the deadliest human malignancies, is almost invariably associated with the presence of an oncogenic form of Kras. Mice expressing oncogenic Kras in the pancreas recapitulate the step-wise progression of the human disease. The inflammatory cytokine interleukin 6 (IL6) is often expressed by multiple cell types within the tumor microenvironment. Here, we show that IL6 is required for the maintenance and progression of pancreatic cancer precursor lesions. In fact, the lack of IL6 completely ablates cancer progression even in presence of oncogenic Kras. Mechanistically, we show that IL6 synergizes with oncogenic Kras to activate the reactive oxygen species (ROS) detoxification program downstream of the MAPK/ERK signaling cascade. In addition, IL6 regulates the inflammatory microenvironment of pancreatic cancer throughout its progression, providing several signals that are essential for carcinogenesis. Thus, IL6 emerges as a key player at all stages of pancreatic carcinogenesis, and a potential therapeutic target. PMID:24097820

  8. The Role of JNK and p38 MAPK Activities in UVA-Induced Signaling Pathways Leading to AP-1 Activation and c-Fos Expression1

    PubMed Central

    Silvers, Amy L; Bachelor, Michael A; Bowden, G Timothy

    2003-01-01

    Abstract To further delineate ultraviolet A (UVA) signaling pathways in the human keratinocyte cell line HaCaT, we examined the potential role of mitogen-activated protein kinases (MAPKs) in UVA-induced activator protein-1 (AP-1) transactivation and c-Fos expression. UVA-induced phosphorylation of p38 and c-Jun N-terminal kinase (JNK) proteins was detected immediately after irradiation and disappeared after approximately 2 hours. Conversely, phosphorylation of extracellular signal-regulated kinase was significantly inhibited for up to 1 hour post-UVA irradiation. To examine the role of p38 and JNK MAPKs in UVA-induced AP-1 and c-fos transactivations, the selective pharmacologic MAPK inhibitors, SB202190 (p38 inhibitor) and SP600125 (JNK inhibitor), were used to independently treat stably transfected HaCaT cells in luciferase reporter assays. Both SB202190 and SP600125 dose-dependently inhibited UVA-induced AP-1 and c-fos transactivations. SB202190 (0.25–0.5 µM) and SP600125 (62–125 nM) treatments also primarily inhibited UVA-induced c-Fos expression. These results demonstrated that activation of both JNK and p38 play critical role in UVA-mediated AP-1 transactivation and c-Fos expression in these human keratinocyte cells. Targeted inhibition of these MAPKs with their selective pharmacologic inhibitors may be effective chemopreventive strategies for UVA-induced nonmelanoma skin cancer. PMID:14511403

  9. Titanium dioxide nanoparticles stimulate sea urchin immune cell phagocytic activity involving TLR/p38 MAPK-mediated signalling pathway

    PubMed Central

    Pinsino, Annalisa; Russo, Roberta; Bonaventura, Rosa; Brunelli, Andrea; Marcomini, Antonio; Matranga, Valeria

    2015-01-01

    Titanium dioxide nanoparticles (TiO2NPs) are one of the most widespread-engineered particles in use for drug delivery, cosmetics, and electronics. However, TiO2NP safety is still an open issue, even for ethical reasons. In this work, we investigated the sea urchin Paracentrotus lividus immune cell model as a proxy to humans, to elucidate a potential pathway that can be involved in the persistent TiO2NP-immune cell interaction in vivo. Morphology, phagocytic ability, changes in activation/inactivation of a few mitogen-activated protein kinases (p38 MAPK, ERK), variations of other key proteins triggering immune response (Toll-like receptor 4-like, Heat shock protein 70, Interleukin-6) and modifications in the expression of related immune response genes were investigated. Our findings indicate that TiO2NPs influence the signal transduction downstream targets of p38 MAPK without eliciting an inflammatory response or other harmful effects on biological functions. We strongly recommend sea urchin immune cells as a new powerful model for nano-safety/nano-toxicity investigations without the ethical normative issue. PMID:26412401

  10. Integration analysis of MKK and MAPK family members highlights potential MAPK signaling modules in cotton.

    PubMed

    Zhang, Xueying; Xu, Xiaoyang; Yu, Yujia; Chen, Chuan; Wang, Jing; Cai, Caiping; Guo, Wangzhen

    2016-01-01

    Mitogen-activated protein kinase (MAPK) cascades play a crucial role in plant growth and development, as well as their biotic and abiotic stress responses. As a nodal point of the MAPK cascade, the MKK gene family has not been systematically studied in cotton. Here, we identified 11 putative MKK genes in the Gossypium raimondii genome. Phylogenetic analysis showed that the MKKs were supported by architectures of conserved protein motifs. Expression patterns of MKKs under hormone treatments or abiotic stresses revealed their diverse functions in stress responses. Based on a yeast two hybrid, a total of 63 interactive pairs of MKKs and MAPKs were identified in cotton. Among these, 40 interactive pairs were newly identified compared to that reported previously in Arabidopsis. Integration analysis of the interaction network and expression patterns of MKK and MAPK family members revealed 13 potential MAPK signaling modules that are involved in the complicated cross-talk between hormones and abiotic stresses. Taken together, our data enhance the understanding of the evolution and function of MAPK cascades in cotton, and lay the foundation for the improvement of various defense responses that use MAPK signaling modules in the future. PMID:27417377

  11. Integration analysis of MKK and MAPK family members highlights potential MAPK signaling modules in cotton

    PubMed Central

    Zhang, Xueying; Xu, Xiaoyang; Yu, Yujia; Chen, Chuan; Wang, Jing; Cai, Caiping; Guo, Wangzhen

    2016-01-01

    Mitogen-activated protein kinase (MAPK) cascades play a crucial role in plant growth and development, as well as their biotic and abiotic stress responses. As a nodal point of the MAPK cascade, the MKK gene family has not been systematically studied in cotton. Here, we identified 11 putative MKK genes in the Gossypium raimondii genome. Phylogenetic analysis showed that the MKKs were supported by architectures of conserved protein motifs. Expression patterns of MKKs under hormone treatments or abiotic stresses revealed their diverse functions in stress responses. Based on a yeast two hybrid, a total of 63 interactive pairs of MKKs and MAPKs were identified in cotton. Among these, 40 interactive pairs were newly identified compared to that reported previously in Arabidopsis. Integration analysis of the interaction network and expression patterns of MKK and MAPK family members revealed 13 potential MAPK signaling modules that are involved in the complicated cross-talk between hormones and abiotic stresses. Taken together, our data enhance the understanding of the evolution and function of MAPK cascades in cotton, and lay the foundation for the improvement of various defense responses that use MAPK signaling modules in the future. PMID:27417377

  12. Thrombosis recanalization by paeoniflorin through the upregulation of urokinase‑type plasminogen activator via the MAPK signaling pathway.

    PubMed

    Ye, Songshan; Mao, Bingyu; Yang, Lei; Fu, Weiyun; Hou, Junran

    2016-06-01

    Paeoniflorin, the major component of Paeonia lactiflora pall, has previously been reported to prevent thrombosis. Plasminogen activator urokinase (uPA) is a serine protease that markedly facilitates normal thrombosis resolution. Paeoniflorin and uPA have been linked to the mitogen‑activated protein kinase (MAPK) signaling pathway. In the current study, the influence of paeoniflorin on the expression of uPA was investigated and the underlying regulatory mechanism was preliminarily determined. The prothrombotic state of the model animals treated with paeoniflorin were assessed by enzyme‑linked immunosorbent assay (ELISA). Additionally, the cytotoxicity of paeoniflorin on human umbilical vein endothelial cell (HUVEC) cultures was estimated using a methyl thiazolyl tetrazolium assay and the possible pathways involved in the interaction between paeoniflorin and uPA were evaluated using western blot analysis. The ELISA results demonstrated that the levels of 6‑keto prostaglandin F1a, fibronectin and uPA were significantly upregulated by treatment with paeoniflorin compared with control (P<0.05). By contrast, the expression of fibrinogen, D‑dimer and thromboxane B2 were inhibited. With an increase in the concentration of paeoniflorin the cell viability of HUVECs decreased gradually. The results of western blot analysis demonstrated that paeoniflorin increased the phosphorylation of MAPK 14 (p38) and MAPK 8 (JNK). The present study demonstrated that paeoniflorin has the potential to improve the prethrombotic state and recanalize thrombosis by increasing the expression of uPA, which may be mediated via regulation of the p38 and JNK MAPK signaling pathways. However, this treatment effect was dependent on the concentration of paeoniflorin used, an unsuitable concentration of the agent would result in a negative effect on the anti‑thrombosis pathways. PMID:27082639

  13. Interplay of Notch and FGF signaling restricts cell fate and MAPK activation in the Drosophila trachea.

    PubMed

    Ikeya, T; Hayashi, S

    1999-10-01

    The patterned branching in the Drosophila tracheal system is triggered by the FGF-like ligand Branchless that activates a receptor tyrosine kinase Breathless and the MAP kinase pathway. A single fusion cell at the tip of each fusion branch expresses the zinc-finger gene escargot, leads branch migration in a stereotypical pattern and contacts with another fusion cell to mediate fusion of the branches. A high level of MAP kinase activation is also limited to the tip of the branches. Restriction of such cell specialization events to the tip is essential for tracheal tubulogenesis. Here we show that Notch signaling plays crucial roles in the singling out process of the fusion cell. We found that Notch is activated in tracheal cells by Branchless signaling through stimulation of &Dgr; expression at the tip of tracheal branches and that activated Notch represses the fate of the fusion cell. In addition, Notch is required to restrict activation of MAP kinase to the tip of the branches, in part through the negative regulation of Branchless expression. Notch-mediated lateral inhibition in sending and receiving cells is thus essential to restrict the inductive influence of Branchless on the tracheal tubulogenesis. PMID:10498681

  14. PBX3 promotes migration and invasion of colorectal cancer cells via activation of MAPK/ERK signaling pathway

    PubMed Central

    Han, Hai-Bo; Gu, Jin; Ji, Deng-Bo; Li, Zhao-Wei; Zhang, Yuan; Zhao, Wei; Wang, Li-Min; Zhang, Zhi-Qian

    2014-01-01

    AIM: To investigate the role of pre-B-cell leukemia homeobox (PBX)3 in migration and invasion of colorectal cancer (CRC) cells. METHODS: We detected PBX3 expression in five cell lines and surgical specimens from 111 patients with CRC using real-time reverse transcription-polymerase chain reaction. We forced expression of PBX3 in low metastatic HT-29 and SW480 cells and knocked down expression of PBX3 in highly metastatic LOVO and HCT-8 cells. Wound healing and Boyden chamber assays were used to detect cell migration and invasion after altered expression of PBX3. Western blot was performed to detect the change of signaling molecule ERK1/2 following PBX3 overexpression. RESULTS: High level of PBX3 expression was correlated with the invasive potential of CRC cells, and significantly associated with lymph node invasion (P = 0.02), distant metastasis (P = 0.04), advanced TNM stage (P = 0.03) and poor overall survival of patients (P < 0.05). Ectopic expression of PBX3 in low metastatic cells was shown to promote migration and invasion, while inhibited PBX3 expression in highly metastatic cells suppressed migration and invasion. Furthermore, upregulation of phosphorylated extracellular signal-regulated kinase (ERK)1/2 was found to be one of the targeted molecules responsible for PBX3-induced CRC cell migration and invasion. CONCLUSION: PBX3 induces invasion and metastasis of CRC cells partially through activation of the MAPK/ERK signaling pathway. PMID:25561793

  15. Abnormal activity of the MAPK- and cAMP-associated signaling pathways in frontal cortical areas in postmortem brain in schizophrenia.

    PubMed

    Funk, Adam J; McCullumsmith, Robert E; Haroutunian, Vahram; Meador-Woodruff, James H

    2012-03-01

    Recent evidence suggests that schizophrenia may result from alterations of integration of signaling mediated by multiple neurotransmitter systems. Abnormalities of associated intracellular signaling pathways may contribute to the pathophysiology of schizophrenia. Proteins and phospho-proteins comprising mitogen activated protein kinase (MAPK) and 3'-5'-cyclic adenosine monophosphate (cAMP)-associated signaling pathways may be abnormally expressed in the anterior cingulate (ACC) and dorsolateral prefrontal cortex (DLPFC) in schizophrenia. Using western blot analysis we examined proteins of the MAPK- and cAMP-associated pathways in these two brain regions. Postmortem samples were used from a well-characterized collection of elderly patients with schizophrenia (ACC=36, DLPFC=35) and a comparison (ACC=33, DLPFC=31) group. Near-infrared intensity of IR-dye labeled secondary antisera bound to targeted proteins of the MAPK- and cAMP-associated signaling pathways was measured using LiCor Odyssey imaging system. We found decreased expression of Rap2, JNK1, JNK2, PSD-95, and decreased phosphorylation of JNK1/2 at T183/Y185 and PSD-95 at S295 in the ACC in schizophrenia. In the DLPFC, we found increased expression of Rack1, Fyn, Cdk5, and increased phosphorylation of PSD-95 at S295 and NR2B at Y1336. MAPK- and cAMP-associated molecules constitute ubiquitous intracellular signaling pathways that integrate extracellular stimuli, modify receptor expression and function, and regulate cell survival and neuroplasticity. These data suggest abnormal activity of the MAPK- and cAMP-associated pathways in frontal cortical areas in schizophrenia. These alterations may underlie the hypothesized hypoglutamatergic function in this illness. Together with previous findings, these data suggest that abnormalities of intracellular signaling pathways may contribute to the pathophysiology of schizophrenia. PMID:22048463

  16. Control of Sty1 MAPK activity through stabilisation of the Pyp2 MAPK phosphatase.

    PubMed

    Kowalczyk, Katarzyna M; Hartmuth, Sonya; Perera, David; Stansfield, Peter; Petersen, Janni

    2013-08-01

    In all eukaryotes tight control of mitogen-activated protein kinase (MAPK) activity plays an important role in modulating intracellular signalling in response to changing environments. The fission yeast MAPK Sty1 (also known as Spc1 or Phh1) is highly activated in response to a variety of external stresses. To avoid segregation of damaged organelles or chromosomes, strong Sty1 activation transiently blocks mitosis and cell division until such stresses have been dealt with. MAPK phosphatases dephosphorylate Sty1 to reduce kinase activity. Therefore, tight control of MAPK phosphatases is central for stress adaptation and for cell division to resume. In contrast to Pyp1, the fission yeast Pyp2 MAPK phosphatase is under environmental control. Pyp2 has a unique sequence (the linker region) between the catalytic domain and the N-terminal MAPK-binding site. Here we show that the Pyp2 linker region is a destabilisation domain. Furthermore, the linker region is highly phosphorylated to increase Pyp2 protein stability and this phosphorylation is Sty1 dependent. Our data suggests that Sty1 activation promotes Pyp2 phosphorylation to increase the stability of the phosphatase. This MAPK-dependent Pyp2 stabilisation allows cells to attenuate MAPK signalling and resume cell division, once stresses have been dealt with. PMID:23690545

  17. The Conserved MAPK Site in E(spl)-M8, an Effector of Drosophila Notch Signaling, Controls Repressor Activity during Eye Development

    PubMed Central

    Bandyopadhyay, Mohna; Bishop, Clifton P.

    2016-01-01

    The specification of patterned R8 photoreceptors at the onset of eye development depends on timely inhibition of Atonal (Ato) by the Enhancer of split (E(spl) repressors. Repression of Ato by E(spl)-M8 requires the kinase CK2 and is inhibited by the phosphatase PP2A. The region targeted by CK2 harbors additional conserved Ser residues, raising the prospect of regulation via multi-site phosphorylation. Here we investigate one such motif that meets the consensus for modification by MAPK, a well-known effector of Epidermal Growth Factor Receptor (EGFR) signaling. Our studies reveal an important role for the predicted MAPK site of M8 during R8 birth. Ala/Asp mutations reveal that the CK2 and MAPK sites ensure that M8 repression of Ato and the R8 fate occurs in a timely manner and at a specific stage (stage-2/3) of the morphogenetic furrow (MF). M8 repression of Ato is mitigated by halved EGFR dosage, and this effect requires an intact MAPK site. Accordingly, variants with a phosphomimetic Asp at the MAPK site exhibit earlier (inappropriate) activity against Ato even at stage-1 of the MF, where a positive feedback-loop is necessary to raise Ato levels to a threshold sufficient for the R8 fate. Analysis of deletion variants reveals that both kinase sites (CK2 and MAPK) contribute to ‘cis’-inhibition of M8. This key regulation by CK2 and MAPK is bypassed by the E(spl)D mutation encoding the truncated protein M8*, which potently inhibits Ato at stage-1 of R8 birth. We also provide evidence that PP2A likely targets the MAPK site. Thus multi-site phosphorylation controls timely onset of M8 repressor activity in the eye, a regulation that appears to be dispensable in the bristle. The high conservation of the CK2 and MAPK sites in the insect E(spl) proteins M7, M5 and Mγ, and their mammalian homologue HES6, suggest that this mode of regulation may enable E(spl)/HES proteins to orchestrate repression by distinct tissue-specific mechanisms, and is likely to have broader

  18. Selenium inhibits Staphylococcus aureus-induced inflammation by suppressing the activation of the NF-κB and MAPK signalling pathways in RAW264.7 macrophages.

    PubMed

    Bi, Chong-Liang; Wang, Heng; Wang, Yin-Jie; Sun, Jun; Dong, Jun-Sheng; Meng, Xia; Li, Jian-Ji

    2016-06-01

    Inflammation is the hallmark of Staphylococcus aureus (S. aureus)-induced mastitis. Given the interesting relationship between selenium levels and inflammation, this study aimed to demonstrate that selenium modulated the inflammation reaction by suppressing the nuclear factor kappa B (NF-κB) and mitogen activated protein kinase (MAPK) signalling pathways. RAW264.7 macrophages were treated with three different concentrations (1μmol/l, 1.5μmol/l, and 2μmol/l) of Na2SeO3 for 12h before infection with S. aureus for 6h, 8h, and 10h. The results showed that selenium significantly reduced the mRNA expression levels of tumour necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6). Furthermore, the release of TNF-α, IL-1β, and IL-6 was decreased significantly with selenium supplementation. In addition, selenium influenced the NF-κB signalling pathway by suppressing the activation of NF-κB p65 and degradation of inhibitory kappa-B (IκB). Selenium also suppressed extracellular regulated protein kinase (Erk), c-Jun N-terminal kinase (Jnk), and p38 phosphorylation through the MAPK signalling pathway. In conclusion, selenium played an anti-inflammation role in RAW264.7 macrophages infected with S. aureus by suppressing the activation of the NF-κB and MAPK signalling pathways. PMID:27036486

  19. Targeting MAPK Signaling in Age-Related Macular Degeneration

    PubMed Central

    Kyosseva, Svetlana V.

    2016-01-01

    Age-related macular degeneration (AMD) is a major cause of irreversible blindness affecting elderly people in the world. AMD is a complex multifactorial disease associated with demographic, genetics, and environmental risk factors. It is well established that oxidative stress, inflammation, and apoptosis play critical roles in the pathogenesis of AMD. The mitogen-activated protein kinase (MAPK) signaling pathways are activated by diverse extracellular stimuli, including growth factors, mitogens, hormones, cytokines, and different cellular stressors such as oxidative stress. They regulate cell proliferation, differentiation, survival, and apoptosis. This review addresses the novel findings from human and animal studies on the relationship of MAPK signaling with AMD. The use of specific MAPK inhibitors may represent a potential therapeutic target for the treatment of this debilitating eye disease. PMID:27385915

  20. Transforming growth factor-beta1-induced activation of the Raf-MEK-MAPK signaling pathway in rat lung fibroblasts via a PKC-dependent mechanism.

    PubMed

    Axmann, A; Seidel, D; Reimann, T; Hempel, U; Wenzel, K W

    1998-08-19

    In fibroblasts transforming growth factor-beta1 (TGF-beta1) regulates cell proliferation and turnover of macromolecular components of the extracellular matrix. Here, intracellular signaling events in growth-inhibited embryonic rat lung fibroblasts (RFL-6) upon stimulation with TGF-beta1 were investigated. TGF-beta1 rapidly induced the activation of c-Raf-1, MEK-1, and MAPK p42 and p44. The activation of this pathway by TGF-beta1 did not depend on autocrine platelet-derived growth factor (PDGF) or basic fibroblast growth factor (bFGF). Inhibition of the binding of growth factors to their tyrosine kinase receptors did not affect MAPK activation by TGF-beta1. Ras activation by TGF-beta1 was significantly lower compared to the activation by PDGF or bFGF. The intracellular transduction of the TGF-beta1 signal was completely suppressed by depletion or inhibition of protein kinase C (PKC). It is shown that calcium-dependent isoforms of PKC are required for MAPK activation by TGF-beta1. PMID:9712718

  1. Subanesthetic Isoflurane Reduces Zymosan-Induced Inflammation in Murine Kupffer Cells by Inhibiting ROS-Activated p38 MAPK/NF-κB Signaling

    PubMed Central

    Wang, Hui; Wang, Lei; Li, Nan-lin; Li, Jun-tang; Yu, Feng; Zhao, Ya-li; Wang, Ling; Yi, Jun; Wang, Ling; Bian, Jie-fang; Chen, Jiang-hao; Yuan, Shi-fang; Wang, Ting; Lv, Yong-gang; Liu, Ning-ning; Zhu, Xiao-shan; Ling, Rui; Yun, Jun

    2014-01-01

    Volatile anesthetic isoflurane (ISO) has immunomodulatory effects. The fungal component zymosan (ZY) induces inflammation through toll-like receptor 2 or dectin-1 signaling. We investigated the molecular actions of subanesthetic (0.7%) ISO against ZY-induced inflammatory activation in murine Kupffer cells (KCs), which are known as the resident macrophages within the liver. We observed that ISO reduced ZY-induced cyclooxygenase 2 upregulation and prostaglandin E2 release, as determined by western blot and radioimmunoassay, respectively. ISO also reduced the production of tumor necrosis factor-α, interleukin-1β, IL-6, high-mobility group box-1, macrophage inflammatory protein-1α, macrophage inflammatory protein-2, and monocyte chemoattractant protein-1 as assessed by enzyme-linked immunosorbent assays. ISO blocked the ZY-induced nuclear translocation and DNA-binding activity of nuclear factor- (NF)-κB p65. Moreover, ISO attenuated ZY-induced p38 mitogen-activated protein kinase (MAPK) activation partly by scavenging reactive oxygen species (ROS); the interregulation that ROS activated p38 MAPK followed by NF-κB activation was crucial for the ZY-induced inflammatory responses in KCs. An in vivo study by peritoneal injection of ZY into BALB/C mice confirmed the anti-inflammatory properties of 0.7% ISO against ZY in KCs. These results suggest that ISO ameliorates ZY-induced inflammatory responses in murine KCs by inhibiting the interconnected ROS/p38 MAPK/NF-κB signaling pathways. PMID:25147596

  2. Quantitative proteomic analysis reveals heat stress-induced injury in rat small intestine via activation of the MAPK and NF-κB signaling pathways.

    PubMed

    He, Shasha; Hou, Xiaolin; Xu, Xiaolong; Wan, Changrong; Yin, Peng; Liu, Xiaoxi; Chen, Yuping; Shu, Banchao; Liu, Fenghua; Xu, Jianqin

    2015-03-01

    The intestinal epithelium plays a critical role in absorbing nutrients and maintaining the integrity of the gut barrier. Extreme heat stress induces damage to the intestinal epithelium. However, the protein expression changes and the mechanism behind this damage remain poorly understood. In this study, morphological observation showed that heat stress induced desquamation of intestinal epithelial cells, and destruction of intestinal microvilli and mitochondria. Heat stress-induced changes in the intestinal proteome were quantified using the iTRAQ method followed by mass spectrometry and software analysis. A total of 1689 proteins were identified in rat intestine tissue, of which 41 showed significantly altered expression between the heat stressed and control groups. However, these proteins with significant alterations were involved in biological processes such as cellular assembly and organization, developmental disorder, organismal injury and abnormalities, and inflammation. We found that members of the MAPK and NF-κB signaling pathways act as hub proteins in the network interaction analysis. Furthermore, western blot analysis verified that the MAPK and NF-κB signaling pathways were activated by heat stress as expected. This study suggests that heat stress induces cell cytoskeleton reorganization and an inflammatory response, and the activation of the MAPK and NF-κB signaling pathways, which may ultimately contribute to intestinal injury. PMID:25537883

  3. Anti-Inflammatory Effects of α-Galactosylceramide Analogs in Activated Microglia: Involvement of the p38 MAPK Signaling Pathway

    PubMed Central

    Chung, Young Sun; Park, Seung Bum; Kim, Hee-Sun

    2014-01-01

    Microglial activation plays a pivotal role in the development and progression of neurodegenerative diseases. Thus, anti-inflammatory agents that control microglial activation can serve as potential therapeutic agents for neurodegenerative diseases. Here, we designed and synthesized α-galactosylceramide (α-GalCer) analogs to exert anti-inflammatory effects in activated microglia. We performed biological evaluations of 25 α-GalCer analogs and observed an interesting preliminary structure-activity relationship in their inhibitory influence on NO release and TNF-α production in LPS-stimulated BV2 microglial cells. After identification of 4d and 4e as hit compounds, we further investigated the underlying mechanism of their anti-inflammatory effects using RT-PCR analysis. We confirmed that 4d and 4e regulate the expression of iNOS, COX-2, IL-1β, and IL-6 at the mRNA level and the expression of TNF-α at the post-transcriptional level. In addition, both 4d and 4e inhibited LPS-induced DNA binding activities of NF-κB and AP-1 and phosphorylation of p38 MAPK without affecting other MAP kinases. When we examined the anti-inflammatory effect of a p38 MAPK-specific inhibitor, SB203580, on microglial activation, we observed an identical inhibitory pattern as that of 4d and 4e, not only on NO and TNF-α production but also on the DNA binding activities of NF-κB and AP-1. Taken together, these results suggest that p38 MAPK plays an important role in the anti-inflammatory effects of 4d and 4e via the modulation of NF-κB and AP-1 activities. PMID:24523867

  4. Dietary influence on MAPK-signaling pathways and risk of colon and rectal cancer

    PubMed Central

    Slattery, Martha L.; Lundgreen, Abbie; Wolff, Roger K.

    2014-01-01

    Mitogen-activated protein kinase (MAPK) pathways regulate cellular functions including cell proliferation, differentiation, migration, and apoptosis. Associations between genes in the DUSP, ERK1/2, JNK, and p38 MAPK-signaling pathways and dietary factors associated with growth factors, inflammation, and oxidative stress and risk of colon and rectal cancer were evaluated. Data include colon cases (n=1555) and controls (n=1956) and rectal cases (n=754) and controls (n=959). Statistically significant interactions were observed for the MAPK-signaling pathways after adjustment for multiple comparisons. DUSP genes interacted with carbohydrates, mutagen index, calories, calcium, vitamin D, lycopene, dietary fats, folic acid, and selenium. MAPK1, MAPK3, MAPK1 and RAF1 within the ERK1/2 MAPK-signaling pathway interacted with dietary fats and cruciferous vegetables. Within the JNK MAPK-signaling pathway, interactions between MAP3K7 and protein, vitamin C, iron, folic acid, carbohydrates, and cruciferous vegetables; MAP3K10 and folic acid; MAP3K9 and lutein/zeaxanthin; MAPK8 and calcium; MAP3K3 and calcium and lutein; MAP3K1 and cruciferous vegetables. Interaction within the p38-signaling pathway included: MAPK14 with calories, carbohydrates saturated fat, selenium, vitamin C; MAP3K2 and carbohydrates, and folic acid. These data suggest that dietary factors involved in inflammation and oxidative stress interact with MAPK-signaling genes to alter risk of colorectal cancer. PMID:23859041

  5. Goniothalamin induces apoptosis associated with autophagy activation through MAPK signaling in SK-BR-3 cells.

    PubMed

    Innajak, Sukanda; Mahabusrakum, Wilawan; Watanapokasin, Ramida

    2016-05-01

    Goniothalamin, a plant bioactive styrly-lactone, possesses many biological activities. In the present study, the anticancer effect of goniothalamin on human breast cancer cell line SK-BR-3 was investigated. The results showed that goniothalamin induced nuclear condensation, DNA fragmentation, apoptotic bodies and mitochondrial dysfunction as determined by JC-1 staining. Goniothalamin also increased the Bax/Bcl-2 ratio and expression of cleaved caspase-7, cleaved caspase-9 and cleaved PARP, but decreased Bcl-2 expression. In addition, goniothalamin induced apoptosis via p-JNK1/2 and p-p38 upregulation and inhibited cell survival via p-ERK1/2 and p-Akt downregulation. Notably, goniothalamin induced autophagy through upregulation of Atg7, Atg12-Atg5 conjugation and LC3II. The increased p-p38 and p-JNK1/2 and decreased p-Akt may lead to autophagy induction. Therefore, goniothalamin promoted apoptosis associated with autophagy induction in SK-BR-3 cells through p-p38 and p-JNK1/2 upregulation and p-Akt downregulation. The present study indicated that goniothalamin may be further used as a potential therapeutic candidate or may offer an alternative treatment for breast cancer. PMID:26987063

  6. Activation of transient receptor potential vanilloid 4 induces apoptosis in hippocampus through downregulating PI3K/Akt and upregulating p38 MAPK signaling pathways

    PubMed Central

    Jie, P; Hong, Z; Tian, Y; Li, Y; Lin, L; Zhou, L; Du, Y; Chen, L; Chen, L

    2015-01-01

    Transient receptor potential vanilloid 4 (TRPV4) is a calcium-permeable cation channel that is sensitive to cell swelling, arachidonic acid and its metabolites, epoxyeicosatrienoic acids, which are associated with cerebral ischemia. The activation of TRPV4 induces cytotoxicity in many types of cells, accompanied by an increase in the intracellular free calcium concentration. TRPV4 activation modulates the mitogen-activated protein kinase (MAPK) and phosphatidyl inositol 3 kinase (PI3K)/ protein kinase B (Akt) signaling pathways that regulate cell death and survival. Herein, we examined TRPV4-induced neuronal apoptosis by intracerebroventricular (ICV) injection of a TRPV4 agonist (GSK1016790A) and assessed its involvement in cerebral ischemic injury. ICV injection of GSK1016790A dose-dependently induced apoptosis in the mouse hippocampi (GSK-injected mice). The protein level of phosphorylated p38 MAPK (p-p38 MAPK) was markedly increased and that of phosphorylated c-Jun N-terminal protein kinase (p-JNK) was virtually unchanged. TRPV4 activation also decreased Bcl-2/Bax protein ratio and increased the cleaved caspase-3 protein level, and these effects were blocked by a PI3K agonist and a p38 MAPK antagonist, but were unaffected by a JNK antagonist. ICV injection of the TRPV4 antagonist HC-067047 reduced brain infarction after reperfusion for 48 h in mice with middle cerebral artery occlusion (MCAO). In addition, HC-067047 treatment attenuated the decrease in the phosphorylated Akt protein level and the increase in p-p38 MAPK protein level at 48 h after MCAO, while the increase in p-JNK protein level remained unchanged. Finally, the decreased Bcl-2/Bax protein ratio and the increased cleaved caspase-3 protein level at 48 h after MCAO were markedly attenuated by HC-067047. We conclude that activation of TRPV4 induces apoptosis by downregulating PI3K/Akt and upregulating p38 MAPK signaling pathways, which is involved in cerebral ischemic injury. PMID:26043075

  7. Induction of Apoptosis by PQ1, a Gap Junction Enhancer that Upregulates Connexin 43 and Activates the MAPK Signaling Pathway in Mammary Carcinoma Cells

    PubMed Central

    Shishido, Stephanie N.; Nguyen, Thu A.

    2016-01-01

    The mechanism of gap junction enhancer (PQ1) induced cytotoxicity is thought to be attributed to the change in connexin 43 (Cx43) expression; therefore, the effects of Cx43 modulation in cell survival were investigated in mammary carcinoma cells (FMC2u) derived from a malignant neoplasm of a female FVB/N-Tg(MMTV-PyVT)634Mul/J (PyVT) transgenic mouse. PQ1 was determined to have an IC50 of 6.5 µM in FMC2u cells, while inducing an upregulation in Cx43 expression. The effects of Cx43 modulation in FMC2u cell survival was determined through transfection experiments with Cx43 cDNA, which induced an elevated level of protein expression similar to that seen with PQ1 exposure, or siRNA to silence Cx43 protein expression. Overexpression or silencing of Cx43 led to a reduction or an increase in cell viability, respectively. The mitogen-activated protein kinase (MAPK) family has been implicated in the regulation of cell survival and cell death; therefore, the gap junctional intercellular communication (GJIC)-independent function of PQ1 and Cx43 in the Raf/Mitogen-activated protein kinase/ERK kinase/extracellular-signal-regulated kinase (Raf-MEK-ERK) cascade of cellular survival and p38 MAPK-dependent pathway of apoptosis were explored. PQ1 treatment activated p44/42 MAPK, while the overexpression of Cx43 resulted in a reduced expression. This suggests that PQ1 affects the Raf-MEK-ERK cascade independent of Cx43 upregulation. Both overexpression of Cx43 and PQ1 treatment stimulated an increase in the phosphorylated form of p38-MAPK, reduced levels of the anti-apoptotic protein Bcl-2, and increased the cleavage of pro-caspase-3. Silencing of Cx43 protein expression led to a reduction in the phosphorylation of p38-MAPK and an increase in Bcl-2 expression. The mechanism behind PQ1-induced cytotoxicity in FMC2u mammary carcinoma cells is thought to be attributed to the change in Cx43 expression. Furthermore, PQ1-induced apoptosis through the upregulation of Cx43 may depend on p38

  8. MAPK-Activated Protein Kinases (MKs): Novel Insights and Challenges

    PubMed Central

    Gaestel, Matthias

    2016-01-01

    Downstream of MAPKs, such as classical/atypical ERKs and p38 MAPKs, but not of JNKs, signaling is often mediated by protein kinases which are phosphorylated and activated by MAPKs and, therefore, designated MAPK-activated protein kinases (MAPKAPKs). Recently, novel insights into the specificity of the assembly of MAPK/MAPKAPK hetero-dimeric protein kinase signaling complexes have been gained. In addition, new functional aspects of MKs have been described and established functions have been challenged. This short review will summarize recent developments including the linear motif (LM) in MKs, the ERK-independent activation of RSK, the RSK-independent effects of some RSK-inhibitors and the challenged role of MK5/PRAK in tumor suppression. PMID:26779481

  9. Mitogen-activated protein kinase (MAPK) in cardiac tissues.

    PubMed

    Page, C; Doubell, A F

    Mitogen-activated protein kinase (MAPK) has recently emerged as a prominent role player in intracellular signalling in the ventricular myocyte with attention being focussed on its possible role in the development of ventricular hypertrophy. It is becoming clear that MAPK is also active in other cells of cardiac origin such as cardiac fibroblasts and possible functions of this signalling pathway in the heart have yet to be explored. In this report the mammalian MAPK pathway is briefly outlined, before reviewing current knowledge of the MAPK pathway in cardiac tissue (ventricular myocytes, vascular smooth muscle cells and cardiac fibroblasts). New data is also presented on the presence and activity of MAPK in two additional cardiac celltypes namely atrial myocytes and vascular endothelial cells from the coronary microcirculation. PMID:8739228

  10. MAPK-Activated Protein Kinases (MKs): Novel Insights and Challenges.

    PubMed

    Gaestel, Matthias

    2015-01-01

    Downstream of MAPKs, such as classical/atypical ERKs and p38 MAPKs, but not of JNKs, signaling is often mediated by protein kinases which are phosphorylated and activated by MAPKs and, therefore, designated MAPK-activated protein kinases (MAPKAPKs). Recently, novel insights into the specificity of the assembly of MAPK/MAPKAPK hetero-dimeric protein kinase signaling complexes have been gained. In addition, new functional aspects of MKs have been described and established functions have been challenged. This short review will summarize recent developments including the linear motif (LM) in MKs, the ERK-independent activation of RSK, the RSK-independent effects of some RSK-inhibitors and the challenged role of MK5/PRAK in tumor suppression. PMID:26779481

  11. The Kinase Activity-deficient Isoform of the Protein Araf Antagonizes Ras/Mitogen-activated Protein Kinase (Ras/MAPK) Signaling in the Zebrafish Embryo*

    PubMed Central

    Xiong, Cong; Liu, Xingfeng; Meng, Anming

    2015-01-01

    Raf kinases are important components of the Ras-Raf-Mek-Erk pathway and also cross-talk with other signaling pathways. Araf kinase has been demonstrated to inhibit TGF-β/Smad2 signaling by directly phosphorylating and accelerating degradation of activated Smad2. In this study, we show that the araf gene expresses in zebrafish embryos to produce a shorter transcript variant, araf-tv2, in addition to the full-length variant araf-tv1. araf-tv2 is predicted to encode a C-terminally truncated peptide without the kinase activity domain. Araf-tv2 can physically associate with Araf-tv1 but does not antagonize the inhibitory effect of Araf-tv1 on TGF-β/Smad2 signaling. Instead, Araf-tv2 interacts strongly with Kras and Nras, ultimately blocking MAPK activation by these Ras proteins. In zebrafish embryos, overexpression of araf-tv2 is sufficient to inhibit Fgf/Ras-promoted Erk activation, mesodermal induction, dorsal development, and neuroectodermal posteriorization. Therefore, different isoforms of Araf may participate in similar developmental processes but by regulating different signaling pathways. PMID:26306042

  12. Total flavonoids of Hedyotis diffusa Willd inhibit inflammatory responses in LPS-activated macrophages via suppression of the NF-κB and MAPK signaling pathways

    PubMed Central

    CHEN, YUNLONG; LIN, YANYAN; LI, YACHAN; LI, CANDONG

    2016-01-01

    Nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways play a central role in inflammatory responses. Total flavonoids of Hedyotis diffusa Willd (TFHDW) are active compounds derived from Hedyotis diffusa Willd, which has been long used in Chinese traditional medicine for the treatment of various inflammatory diseases, including ulcerative colitis and bronchitis; however, the precise mechanisms underlying the effects of TFHDW are largely unknown. In the present study, the anti-inflammatory effect of TFHDW was evaluated and the underlying molecular mechanisms were investigated in an in vitro inflammatory model comprising lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The results indicated that TFHDW inhibited the inflammatory response as it significantly reduced the LPS-induced expression of pro-inflammatory nitric oxide, tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β in a concentration-dependent manner, without causing cytotoxicity. In addition, the mRNA expression of inducible nitric oxide synthase, TNF-α, IL-6 and IL-1β was suppressed by treatment with TFHDW in LPS-stimulated RAW 264.7 cells. Moreover, TFHDW treatment significantly inhibited the LPS-induced activation of NF-κB via the suppression of inhibitor of κB (IκB) phosphorylation, and reduced the phosphorylation of MAPK signaling molecules (p38, c-Jun N-terminal protein kinase and extracellular signal-regulated kinase 1/2), which resulted in the inhibition of cytokine expression. These findings suggest that TFHDW exerted anti-inflammatory activity via suppression of the NF-κB and MAPK signaling pathways. PMID:26998046

  13. BMP4 Increases Canonical Transient Receptor Potential Protein Expression by Activating p38 MAPK and ERK1/2 Signaling Pathways in Pulmonary Arterial Smooth Muscle Cells

    PubMed Central

    Li, Xiaoyan; Lu, Wenju; Fu, Xin; Zhang, Yi; Yang, Kai; Zhong, Nanshan; Ran, Pixin

    2013-01-01

    Abnormal bone morphogenetic protein (BMP) signaling has been implicated in the pathogenesis of pulmonary hypertension. We previously found that BMP4 elevated basal intracellular Ca2+ ([Ca2+]i) concentrations in distal pulmonary arterial smooth muscle cells (PASMCs), attributable in large part to enhanced store-operated Ca2+ entry through store-operated Ca2+ channels (SOCCs). Moreover, BMP4 up-regulated the expression of canonical transient receptor potential (TRPC) proteins thought to compose SOCCs. The present study investigated the signaling pathways through which BMP4 regulates TRPC expression and basal [Ca2+]i in distal PASMCs. Real-time quantitative PCR was used for the measurement of mRNA, Western blotting was used for the measurement of protein, and fluorescent microscopic for [Ca2+]i was used to determine the involvement of p38 and extracellular regulated kinase (ERK)–1/2 mitogen-activated protein kinase (MAPK) signaling in BMP4–induced TRPC expression and the elevation of [Ca2+]i in PASMCs. We found that the treatment of BMP4 led to the activation of both p38 MAPK and ERK1/2 in rat distal PASMCs. The induction of TRPC1, TRPC4, and TRPC6 expression, and the increases of [Ca2+]i caused by BMP4 in distal PASMCs, were inhibited by treatment with either SB203580 (10 μM), the selective inhibitor for p38 activation, or the specific p38 small interfering RNA (siRNA). Similarly, those responses induced by BMP4 were also abolished by treatment with PD98059 (5 μM), the selective inhibitor of ERK1/2, or by the knockdown of ERK1/2 using its specific siRNA. These results indicate that BMP4 participates in the regulation of Ca2+ signaling in PASMCs by modulating TRPC channel expression via activating p38 and ERK1/2 MAPK pathways. PMID:23526217

  14. Effect of hyperprolactinemia on PRL-receptor expression and activation of Stat and Mapk cell signaling in the prostate of long-term sexually-active rats.

    PubMed

    Pascual-Mathey, Luz I; Rojas-Duran, Fausto; Aranda-Abreu, Gonzalo E; Manzo, Jorge; Herrera-Covarrubias, Deissy; Muñoz-Zavaleta, David A; Garcia, Luis I; Hernandez, Ma Elena

    2016-04-01

    The abnormal elevation of serum PRL, referred to as hyperprolactinemia (HyperPRL), produces alterations in several reproductive parameters of male rats such as penile erection or decreased tendency to reach ejaculation. Additionally, this situation produces a significant modification of prostate histology, as observed in the epithelial structure and alveolar area, which could reach a level of hyperplasia in the long-term. In this tissue, HyperPRL produces an increase in expression of PRL receptors and activation of the Stat3 signaling pathway that is correlated with the evolution of prostate pathologies. However, the impact of HyperPRL in long-term sexually active male rats is unknown. In this work, using constantly copulating Wistar male rats with induced HyperPRL, we analyzed the level of serum PRL, the effect on prostate PRL receptors, and activation of pStat3, pStat5 and Mapk signaling pathways. Two procedures to induce HyperPRL were employed, comprising daily IP administration or adenohypophysis transplant, and although neither affected the execution of sexual behavior, the serum PRL profile following successive ejaculations was affected. Messenger RNA expression of the short and long isoforms of the PRL receptor at the ventral prostate was affected in different ways depending on the procedure to induce HyperPRL. The ventral prostate did not show any modification in terms of activation of the pStat5 signaling pathway in subjects with daily administration of PRL, although this was significantly increased in ADH transplanted subjects in the second and fourth consecutive ejaculation. A similar profile was found for the pStat3 pathway which additionally showed a significant increase in the third and fourth ejaculation of daily-injected subjects. The Mapk signaling pathway did not show any modifications in subjects with daily administration of PRL, but showed a significant increase in the second and third ejaculations of subjects with ADH transplants. Thus

  15. p38MAPK activation and DUSP10 expression in meningiomas.

    PubMed

    Johnson, Mahlon D; Reeder, Jay E; O'Connell, Mary

    2016-08-01

    The mitogen activated protein kinase (MAPK) p38MAPK has been implicated in regulation of cell proliferation and apoptosis. However, expression, activation and regulation has not been studied in meningiomas, to our knowledge. p38MAPK is regulated, in part, by dual specificity phosphatases (DUSP) that inactivate signaling by dephosphorylation. DUSP10 is also a likely participant in regulating meningioma proliferation. Five fetal and an adult human leptomeninges and 37 meningioma cultures (MC) were evaluated for DUSP10 as well as phosphorylation of its substrates p38MAPK and p44/42MAPK by western blot and DUSP10 expression by polymerase chain reaction. Platelet derived growth factor-BB (PDGF-BB), transforming growth factor B1 (TGFB1) and cerebrospinal fluid effects on DUSP10 and signaling were also studied in vitro. DUSP10 and phospho-p38MAPK and phospho-p44/42MAPK were detected in all six leptomeninges. DUSP10 was detected in 13 of 17 World Health Organization grade I, 11 of 14 grade II and four of six grade III meningiomas. Phospho-p38MAPK was detected in nine of 17 grade I, two of six grade II, and four of six grade III meningiomas. In the majority of meningiomas DUSP10 expression correlated inversely with phosphorylation of p38MAPK. PDGF-BB increased DUSP10 in MC2 and MC4 and weakly in MC3. TGFB1 increased phosphorylation of p38MAPK and caspase 3 activation. Thus p38MAPK and DUSP10 likely participate in the pathogenesis of meningiomas. PMID:27050915

  16. p38 MAPK Signaling in Osteoblast Differentiation

    PubMed Central

    Rodríguez-Carballo, Eddie; Gámez, Beatriz; Ventura, Francesc

    2016-01-01

    The skeleton is a highly dynamic tissue whose structure relies on the balance between bone deposition and resorption. This equilibrium, which depends on osteoblast and osteoclast functions, is controlled by multiple factors that can be modulated post-translationally. Some of the modulators are Mitogen-activated kinases (MAPKs), whose role has been studied in vivo and in vitro. p38-MAPK modifies the transactivation ability of some key transcription factors in chondrocytes, osteoblasts and osteoclasts, which affects their differentiation and function. Several commercially available inhibitors have helped to determine p38 action on these processes. Although it is frequently mentioned in the literature, this chemical approach is not always as accurate as it should be. Conditional knockouts are a useful genetic tool that could unravel the role of p38 in shaping the skeleton. In this review, we will summarize the state of the art on p38 activity during osteoblast differentiation and function, and emphasize the triggers of this MAPK. PMID:27200351

  17. G13-dependent activation of MAPK by thyrotropin.

    PubMed

    Büch, Thomas R H; Biebermann, Heike; Kalwa, Hermann; Pinkenburg, Olaf; Hager, Denise; Barth, Holger; Aktories, Klaus; Breit, Andreas; Gudermann, Thomas

    2008-07-18

    Stimulation of the thyrotropin receptor (TSHR) activates G proteins of all four subfamilies (G(s), G(i/o), G(q/11), and G(12/13)). Whereas G(s)/cAMP-dependent cellular responses upon TSHR stimulation are well established, other signaling pathways are less characterized. We evaluated TSH-elicited cellular responses in human follicular thyroid carcinoma cells stably expressing the TSHR and in primary, nonneoplastic human thyrocytes. In these cellular models, stimulation with TSH caused activation of p44/42 MAPK and subsequent induction of c-Fos. MAPK stimulation occurred independently of G(s), G(i/o), and G(q/11) signaling. Dominant negative constructs of G(12) or G(13) as well as shRNA-mediated suppression of Galpha(12) or Galpha(13) revealed that MAPK activation was dependent on G(13) but not on G(12) signaling. Furthermore, G(13)-dependent transactivation of the epidermal growth factor receptor was necessary for MAPK activation in follicular carcinoma cells, whereas EGFR was not involved in MAPK activation in nonneoplastic primary thyrocytes. The use of bacterial inhibitors of monomeric GTPases revealed that MAPK activation proceeded independently of Rho proteins but was clostridial toxin B-sensitive, suggesting involvement of Cdc42 or Rac. Thus, our data shed new light on cAMP-independent TSHR signaling and identify the first G(13)-dependent TSHR signaling pathway in human thyrocytes. PMID:18445595

  18. Activation of type 5 metabotropic glutamate receptor promotes the proliferation of rat retinal progenitor cell via activation of the PI-3-K and MAPK signaling pathways.

    PubMed

    Zhang, Z; Hu, F; Liu, Y; Ma, B; Chen, X; Zhu, K; Shi, Y; Wei, T; Xing, Y; Gao, Y; Lu, H; Liu, Y; Kang, Q

    2016-05-13

    The metabotropic glutamate receptor 5 (mGluR5) regulates neurogenesis in the brain, but the effect of mGluR5 on retinal progenitor cells (RPCs) remains unknown. In this study, we found that mGluR5 promoted the proliferation of rat RPCs with activation of the phosphatidylinositol-3-kinase (PI-3-K) and mitogen-activated protein kinase (MAPK) signaling pathways in vitro. The mGluR5 agonist (S)-3,5-dihydroxyphenylglycine hydrate (DHPG) increased the cellular viability in a concentration- and time-dependent manner, whereas the mGluR5 antagonist 6-methyl-2-(phenylethynyl)pyridine hydrochloride (MTEP) had the opposite effect, as shown by 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine hydrochloride (MTT) assay. Treatment with DHPG (100μM) also promoted the proliferation of RPCs, as indicated by 5-Bromo-2-deoxyUridine (BrdU) staining and flow cytometry, and likewise, MTEP (100μM) and mGluR5 knockdown abolished the action of mGluR5 activity. Western blot demonstrated that the activation of mGluR5 enhanced the expression of Cyclin D1 and the phosphorylation level of PKC however, MTEP or mGluR5 knockdown also abrogated the effect of DHPG on RPCs. Furthermore, we found that activation of the extracellular signal-regulated protein kinase (ERK) and protein kinase B (AKT) signaling pathways was involved in the proliferation of RPC. After DHPG treatment, the levels of both p-ERK1/2 and p-AKT increased in a time-dependent manner. Then we used MTEP, mGluR5 knockdown, the ERK1/2 inhibitor U0126 and the AKT inhibitor LY294002 to pretreat the cells, and all of them clearly eliminated the influence of DHPG. These results demonstrated that mGluR5 regulates neurogenesis in RPCs through the MAPK and PI-3-K signaling pathways, and these findings may motivate a pharmacological study investigating a potential mechanism for the treatment of retinal diseases such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD). PMID:26902516

  19. Arsenite and Cadmium Activate MAPK/ERK via Membrane Estrogen Receptors and G-Protein Coupled Estrogen Receptor Signaling in Human Lung Adenocarcinoma Cells.

    PubMed

    Huff, Mary O; Todd, Sarah L; Smith, Aaron L; Elpers, Julie T; Smith, Alexander P; Murphy, Robert D; Bleser-Shartzer, Allison S; Hoerter, Jacob E; Radde, Brandie N; Klinge, Carolyn M

    2016-07-01

    Epidemiological evidence indicates that cadmium and arsenic exposure increase lung cancer risk. Cadmium and arsenic are environmental contaminants that act as endocrine disruptors (EDs) by activating estrogen receptors (ERs) in breast and other cancer cell lines but their activity as EDs in lung cancer is untested. Here, we examined the effect of cadmium chloride (CdCl2) and sodium arsenite (NaAsO2) on the proliferation of human lung adenocarcinoma cell lines. Results demonstrated that both CdCl2 and NaAsO2 stimulated cell proliferation at environmentally relevant nM concentrations in a similar manner to 17β-estradiol (E2) in H1793, H2073, and H1944 cells but not in H1792 or H1299 cells. Further studies in H1793 cells showed that 100 nM CdCl2 and NaAsO2 rapidly stimulated mitogen-activated protein kinase (MAPK, extracellular-signal-regulated kinases) phosphorylation with a peak detected at 15 min. Inhibitor studies suggest that rapid MAPK phosphorylation by NaAsO2, CdCl2, and E2 involves ER, Src, epidermal growth factor receptor, and G-protein coupled ER (GPER) in a pertussis toxin-sensitive pathway. CdCl2 and E2 activation of MAPK may also involve ERβ. This study supports the involvement of membrane ER and GPER signaling in mediating cellular responses to environmentally relevant nM concentrations of CdCl2 and NaAsO2 in lung adenocarcinoma cells. PMID:27071941

  20. Zinc Carnosine Inhibits Lipopolysaccharide-Induced Inflammatory Mediators by Suppressing NF-κb Activation in Raw 264.7 Macrophages, Independent of the MAPKs Signaling Pathway.

    PubMed

    Ooi, Theng Choon; Chan, Kok Meng; Sharif, Razinah

    2016-08-01

    This study aimed to investigate the role of the mitogen-activated protein kinases (MAPKs) signaling pathway in the anti-inflammatory effects of zinc carnosine (ZnC) in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Cells were pretreated with ZnC (0-100 μM) for 2 h prior to the addition of LPS (1 μg/ml). Following 24 h of treatment, ZnC was found not to be cytotoxic to RAW 264.7 cells up to the concentration of 100 μM. Our current findings showed that ZnC did not protect RAW 264.7 cells from LPS-induced "respiratory burst". Significant increment in intracellular glutathione (GSH) level and reduction in thiobarbituric acid reactive substances (TBARS) concentration can only be observed in cell pretreated with high doses of ZnC only (50 and 100 μM for GSH and 100 μM only for TBARS). On the other hand, pretreatment of cells with ZnC was able to inhibit LPS-induced inducible nitric oxide synthase and cyclooxygenase-2 expression significantly. Furthermore, results from immunoblotting showed that ZnC was able to suppress nuclear factor-kappaB (NF-κB) activation, and highest suppression can be observed at 100 μM of ZnC pretreatment. However, pretreatment of ZnC did not inhibit the early activation of MAPKs. In conclusion, pretreatment with ZnC was able to inhibit the expression of inflammatory mediators in LPS-induced RAW 264.7 cells, mainly via suppression of NF-κB activation, and is independent of the MAPKs signaling pathway. PMID:26749414

  1. Saikosaponin-D reduces cisplatin-induced nephrotoxicity by repressing ROS-mediated activation of MAPK and NF-κB signalling pathways.

    PubMed

    Ma, Xiaobin; Dang, Chengxue; Kang, Huafeng; Dai, Zhijun; Lin, Shuai; Guan, Haitao; Liu, Xiaoxu; Wang, Xijing; Hui, Wentao

    2015-09-01

    The nephrotoxicity induced by cisplatin (DDP) severely limits the clinical efficacy of this widely used anticancer agent. The observed nephrotoxicity may be the result of DDP-induced inflammation and apoptosis. Saikosaponin-D (SSD), a triterpenoid saponin, has numerous pharmacological properties. The goal of the present study was to investigate whether and how SSD protected against DDP-induced nephrotoxicity. Non-cytotoxic levels of SSD significantly increased the viability rate, improved the nuclear morphology, and attenuated the caspase-3 activation and programmed apoptosis of DDP-treated HK-2 cells. In addition, SSD treatment markedly inhibited the release of tumour necrosis factor (TNF)-α, interleukin-1β (IL-1β), and interleukin-6 (IL-6), as well as the production of nitric oxide and the expression of inducible nitric oxide synthase (iNOS) by these cells. More importantly, SSD effectively blocked the DDP-induced activation of NF-κB, P38, JNK, and MAPKs. Furthermore, we found that U0126 (a specific inhibitor of MAPKs) strongly inhibited the IKK/IκB/NF-κB-dependent release of pro-inflammatory cytokines and iNOS gene expression. Finally, we demonstrated that SSD decreased the level of reactive oxygen species (ROS) accumulation and that the specific ROS scavenger N-acetylcysteine (NAC) markedly inhibited the DDP-induced activation of MAPK and phosphorylation of the downstream signal NF-κB, which in turn reduced the levels of pro-inflammatory cytokine release and iNOS gene expression. Our results suggest that the SSD-mediated alleviation of DDP-induced nephrotoxicity was due to uncoupling of the ROS, P38, and JNK/NF-κB signalling pathways. PMID:26118633

  2. Thymol has antifungal activity against Candida albicans during infection and maintains the innate immune response required for function of the p38 MAPK signaling pathway in Caenorhabditis elegans.

    PubMed

    Shu, Chengjie; Sun, Lingmei; Zhang, Weiming

    2016-08-01

    The Caenorhabditis elegans model can be used to study Candida albicans virulence and host immunity, as well as to identify plant-derived natural products to use against C. albicans. Thymol is a hydrophobic phenol compound from the aromatic plant thyme. In this study, the in vitro data demonstrated concentration-dependent thymol inhibition of both C. albicans growth and biofilm formation during different developmental phases. With the aid of the C. elegans system, we performed in vivo assays, and our results further showed the ability of thymol to increase C. elegans life span during infection, inhibit C. albicans colony formation in the C. elegans intestine, and increase the expression levels of host antimicrobial genes. Moreover, among the genes that encode the p38 MAPK signaling pathway, mutation of the pmk-1 or sek-1 gene decreased the beneficial effects of thymol's antifungal activity against C. albicans and thymol's maintenance of the innate immune response in nematodes. Western blot data showed the level of phosphorylation of pmk-1 was dramatically decreased against C. albicans. In nematodes, treatment with thymol recovered the dysregulation of pmk-1 and sek-1 gene expressions, the phosphorylation level of PMK-1 caused by C. albicans infection. Therefore, thymol may act, at least in part, through the function of the p38 MAPK signaling pathway to protect against C. albicans infection and maintain the host innate immune response to C. albicans. Our results indicate that the p38 MAPK signaling pathway plays a crucial role in regulating the beneficial effects observed after nematodes infected with C. albicans were treated with thymol. PMID:26783030

  3. PrtT-Regulated Proteins Secreted by Aspergillus fumigatus Activate MAPK Signaling in Exposed A549 Lung Cells Leading to Necrotic Cell Death

    PubMed Central

    Sharon, Haim; Amar, David; Levdansky, Emma; Mircus, Gabriel; Shadkchan, Yana; Shamir, Ron; Osherov, Nir

    2011-01-01

    Aspergillus fumigatus is the most commonly encountered mold pathogen of humans, predominantly infecting the respiratory system. Colonization and penetration of the lung alveolar epithelium is a key but poorly understood step in the infection process. This study focused on identifying the transcriptional and cell-signaling responses activated in A549 alveolar carcinoma cells incubated in the presence of A. fumigatus wild-type and ΔPrtT protease-deficient germinating conidia and culture filtrates (CF). Microarray analysis of exposed A549 cells identified distinct classes of genes whose expression is altered in the presence of germinating conidia and CF and suggested the involvement of both NFkB and MAPK signaling pathways in mediating the cellular response. Phosphoprotein analysis of A549 cells confirmed that JNK and ERK1/2 are phosphorylated in response to CF from wild-type A. fumigatus and not phosphorylated in response to CF from the ΔPrtT protease-deficient strain. Inhibition of JNK or ERK1/2 kinase activity substantially decreased CF-induced cell damage, including cell peeling, actin-cytoskeleton damage, and reduction in metabolic activity and necrotic death. These results suggest that inhibition of MAPK-mediated host responses to treatment with A. fumigatus CF decreases cellular damage, a finding with possible clinical implications. PMID:21412410

  4. Plastid-nucleus communication involves calcium-modulated MAPK signalling.

    PubMed

    Guo, Hailong; Feng, Peiqiang; Chi, Wei; Sun, Xuwu; Xu, Xiumei; Li, Yuan; Ren, Dongtao; Lu, Congming; David Rochaix, Jean; Leister, Dario; Zhang, Lixin

    2016-01-01

    Chloroplast retrograde signals play important roles in coordinating the plastid and nuclear gene expression and are critical for proper chloroplast biogenesis and for maintaining optimal chloroplast functions in response to environmental changes in plants. Until now, the signals and the mechanisms for retrograde signalling remain poorly understood. Here we identify factors that allow the nucleus to perceive stress conditions in the chloroplast and to respond accordingly by inducing or repressing specific nuclear genes encoding plastid proteins. We show that ABI4, which is known to repress the LHCB genes during retrograde signalling, is activated through phosphorylation by the MAP kinases MPK3/MPK6 and the activity of these kinases is regulated through 14-3-3ω-mediated Ca(2+)-dependent scaffolding depending on the chloroplast calcium sensor protein CAS. These findings uncover an additional mechanism in which chloroplast-modulated Ca(2+) signalling controls the MAPK pathway for the activation of critical components of the retrograde signalling chain. PMID:27399341

  5. Peroxiredoxins in Regulation of MAPK Signalling Pathways; Sensors and Barriers to Signal Transduction

    PubMed Central

    Latimer, Heather R.; Veal, Elizabeth A.

    2016-01-01

    Peroxiredoxins are highly conserved and abundant peroxidases. Although the thioredoxin peroxidase activity of peroxiredoxin (Prx) is important to maintain low levels of endogenous hydrogen peroxide, Prx have also been shown to promote hydrogen peroxide-mediated signalling. Mitogen activated protein kinase (MAPK) signalling pathways mediate cellular responses to a variety of stimuli, including reactive oxygen species (ROS). Here we review the evidence that Prx can act as both sensors and barriers to the activation of MAPK and discuss the underlying mechanisms involved, focusing in particular on the relationship with thioredoxin. PMID:26813660

  6. Peroxiredoxins in Regulation of MAPK Signalling Pathways; Sensors and Barriers to Signal Transduction.

    PubMed

    Latimer, Heather R; Veal, Elizabeth A

    2016-01-01

    Peroxiredoxins are highly conserved and abundant peroxidases. Although the thioredoxin peroxidase activity of peroxiredoxin (Prx) is important to maintain low levels of endogenous hydrogen peroxide, Prx have also been shown to promote hydrogen peroxide-mediated signalling. Mitogen activated protein kinase (MAPK) signalling pathways mediate cellular responses to a variety of stimuli, including reactive oxygen species (ROS). Here we review the evidence that Prx can act as both sensors and barriers to the activation of MAPK and discuss the underlying mechanisms involved, focusing in particular on the relationship with thioredoxin. PMID:26813660

  7. Lycium barbarum polysaccharide LBPF4-OL may be a new Toll-like receptor 4/MD2-MAPK signaling pathway activator and inducer.

    PubMed

    Zhang, Xiao-rui; Qi, Chun-hui; Cheng, Jun-ping; Liu, Gang; Huang, Lin-juan; Wang, Zhong-fu; Zhou, Wen-xia; Zhang, Yong-xiang

    2014-03-01

    Recognition of the utility of the traditional Chinese medicine Lycium barbarum L. has been gradually increasing in Europe and the Americas. Many immunoregulation and antitumor effects of L. barbarum polysaccharides (LBP) have been reported, but its molecular mechanism is not yet clear. In this study, we reported that the activity of the polysaccharide LBPF4-OL, which was purified from LBP, is closely associated with the TLR4-MAPK signaling pathway. We found that LBPF4-OL can significantly induce TNF-α and IL-1β production in peritoneal macrophages isolated from wild-type (C3H/HeN) but not TLR4-deficient mice (C3H/HeJ). We also determined that the proliferation of LBPF4-OL-stimulated lymphocytes from C3H/HeJ mice is significantly weaker than that of lymphocytes from C3H/HeN mice. Furthermore, through a bio-layer interferometry assay, we found that LPS but not LBPF4-OL can directly associate with the TLR4/MD2 molecular complex. Flow cytometry analysis indicated that LBPF4-OL markedly upregulates TLR4/MD2 expression in both peritoneal macrophages and Raw264.7 cells. As its mechanism of action, LBPF4-OL increases the phosphorylation of p38-MAPK and inhibits the phosphorylation of JNK and ERK1/2, as was observed through Western blot analysis. These data suggest that the L. barbarum polysaccharide LBPF4-OL is a new Toll-like receptor 4/MD2-MAPK signaling pathway activator and inducer. PMID:24462389

  8. p38 MAPK Signaling in Postnatal Tendon Growth and Remodeling

    PubMed Central

    Schwartz, Andrew J.; Sarver, Dylan C.; Sugg, Kristoffer B.; Dzierzawski, Justin T.; Gumucio, Jonathan P.; Mendias, Christopher L.

    2015-01-01

    Tendon is a dynamic tissue whose structure and function is influenced by mechanical loading, but little is known about the fundamental mechanisms that regulate tendon growth and remodeling in vivo. Data from cultured tendon fibroblasts indicated that the p38 MAPK pathway plays an important role in tendon fibroblast proliferation and collagen synthesis in vitro. To gain greater insight into the mechanisms of tendon growth, and explore the role of p38 MAPK signaling in this process, we tested the hypotheses that inducing plantaris tendon growth through the ablation of the synergist Achilles tendon would result in rapid expansion of a neotendon matrix surrounding the original tendon, and that treatment with the p38 MAPK inhibitor SB203580 would prevent this growth. Rats were treated with vehicle or SB203580, and subjected to synergist ablation by bilateral tenectomy of the Achilles tendon. Changes in histological and biochemical properties of plantaris tendons were analyzed 3, 7, or 28 days after overload, and comparisons were made to non-overloaded animals. By 28 days after overload, tendon mass had increased by 30% compared to non-overloaded samples, and cross-sectional area (CSA) increased by around 50%, with most of the change occurring in the neotendon. The expansion in CSA initially occurred through the synthesis of a hyaluronic acid rich matrix that was progressively replaced with mature collagen. Pericytes were present in areas of active tendon growth, but never in the original tendon ECM. Inhibition of p38 MAPK resulted in a profound decrease in IL6 expression, and had a modest effect on the expression of other ECM and cell proliferation genes, but had a negligible impact on overall tendon growth. The combined results from this study provided novel insights into tendon mechanobiology, and suggest that p38 MAPK signaling does not appear to be necessary for tendon growth in vivo. PMID:25768932

  9. A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling.

    PubMed Central

    Hatakeyama, Mariko; Kimura, Shuhei; Naka, Takashi; Kawasaki, Takuji; Yumoto, Noriko; Ichikawa, Mio; Kim, Jae-Hoon; Saito, Kazuki; Saeki, Mihoro; Shirouzu, Mikako; Yokoyama, Shigeyuki; Konagaya, Akihiko

    2003-01-01

    ErbB tyrosine kinase receptors mediate mitogenic signal cascade by binding a variety of ligands and recruiting the different cassettes of adaptor proteins. In the present study, we examined heregulin (HRG)-induced signal transduction of ErbB4 receptor and found that the phosphatidylinositol 3'-kinase (PI3K)-Akt pathway negatively regulated the extracellular signal-regulated kinase (ERK) cascade by phosphorylating Raf-1 on Ser(259). As the time-course kinetics of Akt and ERK activities seemed to be transient and complex, we constructed a mathematical simulation model for HRG-induced ErbB4 receptor signalling to explain the dynamics of the regulation mechanism in this signal transduction cascade. The model reflected well the experimental results observed in HRG-induced ErbB4 cells and in other modes of growth hormone-induced cell signalling that involve Raf-Akt cross-talk. The model suggested that HRG signalling is regulated by protein phosphatase 2A as well as Raf-Akt cross-talk, and protein phosphatase 2A modulates the kinase activity in both the PI3K-Akt and MAPK (mitogen-activated protein kinase) pathways. PMID:12691603

  10. Thymoquinone prevents RANKL-induced osteoclastogenesis activation and osteolysis in an in vivo model of inflammation by suppressing NF-KB and MAPK Signalling.

    PubMed

    Thummuri, Dinesh; Jeengar, Manish Kumar; Shrivastava, Shweta; Nemani, Harishankar; Ramavat, Ravindar Naik; Chaudhari, Pradip; Naidu, V G M

    2015-09-01

    Osteoclasts are multinuclear giant cells responsible for bone resorption in inflammatory bone diseases such as osteoporosis, rheumatoid arthritis and periodontitis. Because of deleterious side effects with currently available drugs the search continues for novel effective and safe therapies. Thymoquinone (TQ), the major bioactive component of Nigella sativa has been investigated for its anti-inflammatory, antioxidant and anticancer activities. However, its effects in osteoclastogenesis have not been reported. In the present study we show for the first time that TQ inhibits nuclear factor-KB ligand (RANKL) induced osteoclastogenesis in RAW 264.7 and primary bone marrow derived macrophages (BMMs) cells. RANKL induced osteoclastogenesis is associated with increased expression of multiple transcription factors via activation of NF-KB, MAPKs signalling and reactive oxygen species (ROS). Mechanistically TQ blocked the RANKL induced NF-KB activation by attenuating the phosphorylation of IkB kinase (IKKα/β). Interestingly, in RAW 264.7 cells TQ inhibited the RANKL induced phosphorylation of MAPKs and mRNA expression of osteoclastic specific genes such as TRAP, DC-STAMP, NFATc1 and c-Fos. In addition, TQ also decreased the RANKL stimulated ROS generation in macropahges (RAW 264.7) and H2O2 induced ROS generation in osteoblasts (MC-3T3-E1). Consistent with in vitro results, TQ inhibited lipopolysaccharide (LPS) induced bone resorption by suppressing the osteoclastogenesis. Indeed, micro-CT analysis showed that bone mineral density (BMD) and bone architecture parameters were positively modulated by TQ. Taken together our data demonstrate that TQ has antiosteoclastogenic effect by inhibiting inflammation induced activation of MAPKs, NF-KB and ROS generation followed by suppressing the gene expression of c-Fos and NFATc1 in osteoclast precursors. PMID:26022736

  11. Inhibition of Grb2-mediated activation of MAPK signal transduction suppresses NOR1/CB1954-induced cytotoxicity in the HepG2 cell line.

    PubMed

    Gui, Rong; Li, Dengqing; Qi, Guannan; Suhad, Ali; Nie, Xinmin

    2012-09-01

    The nitroreductase oxidored-nitro domain containing protein 1 (NOR1) gene may be involved in the chemical carcinogenesis of hepatic cancer and nasopharyngeal carcinoma (NPC). We have previously demonstrated that NOR1 overexpression is capable of converting the monofunctional alkylating agent 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) into a toxic form by reducing the 4-nitro group of CB1954. Toxic CB1954 is able to enhance cell killing in the NPC cell line CNE1; however, the underlying mechanisms remain unknown. Using cDNA microarrays and quantitative real-time PCR, we previously discovered that NOR1 increases the expression of growth factor receptor-bound protein 2 (Grb2) mRNA by 4.8-fold in the human hepatocellular carcinoma cell line HepG2. In the present study, we revealed that NOR1 increased Grb2 protein expression by 3-fold in HepG2 cells. Additionally, we demonstrated that NOR1 enhanced CB1954-induced cell killing in HepG2 cells, and cell cytotoxicity was inhibited with the tyrosine kinase inhibitor genistein, or by stable transfection of Grb2 small hairpin RNA (shRNA) pU6(+27)-shGrb2 to silence the expression of Grb2. Western blot analysis revealed that Grb2 downregulation may reduce the activity of the mitogen-activated protein kinase (MAPK). Inhibiting the activation of MAPK using the methyl ethyl ketone (MEK) inhibtor PD98059 suppressed CB1954-induced cell killing. These results suggested that the NOR1 gene enhances CB1954-mediated cell cytotoxicity through the upregulation of Grb2 expression and the activation of MAPK signal transduction in the HepG2 cell line. PMID:23741254

  12. Extra virgin olive oil polyphenolic extracts downregulate inflammatory responses in LPS-activated murine peritoneal macrophages suppressing NFκB and MAPK signalling pathways.

    PubMed

    Cárdeno, A; Sánchez-Hidalgo, M; Aparicio-Soto, M; Sánchez-Fidalgo, S; Alarcón-de-la-Lastra, C

    2014-06-01

    Extra virgin olive oil (EVOO) is obtained from the fruit of the olive tree Olea europaea L. Phenolic compounds present in EVOO have recognized anti-oxidant and anti-inflammatory properties. However, the activity of the total phenolic fraction extracted from EVOO and the action mechanisms involved are not well defined. The present study was designed to evaluate the potential anti-inflammatory mechanisms of the polyphenolic extract (PE) from EVOO on LPS-stimulated peritoneal murine macrophages. Nitric oxide (NO) production was analyzed by the Griess method and intracellular reactive oxygen species (ROS) by fluorescence analysis. Moreover, changes in the protein expression of the pro-inflammatory enzymes, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase-1 (mPGES-1), as well as the role of nuclear transcription factor kappa B (NFκB) and mitogen-activated protein kinase (MAPK) signalling pathways, were analyzed by Western blot. PE from EVOO reduced LPS-induced oxidative stress and inflammatory responses through decreasing NO and ROS generation. In addition, PE induced a significant down-regulation of iNOS, COX-2 and mPGES-1 protein expressions, reduced MAPK phosphorylation and prevented the nuclear NFκB translocation. This study establishes that PE from EVOO possesses anti-inflammatory activities on LPS-stimulated murine macrophages. PMID:24740524

  13. 1,25-dihydroxyvitamin D3 Protects against Macrophage-Induced Activation of NFκB and MAPK Signalling and Chemokine Release in Human Adipocytes

    PubMed Central

    Ding, Cherlyn; Wilding, John P. H.; Bing, Chen

    2013-01-01

    Increased accumulation of macrophages in adipose tissue in obesity is linked to low-grade chronic inflammation, and associated with features of metabolic syndrome. Vitamin D3 may have immunoregulatory effects and reduce adipose tissue inflammation, although the molecular mechanisms remain to be established. This study investigated the effects of vitamin D3 on macrophage-elicited inflammatory responses in cultured human adipocytes, particularly the signalling pathways involved. Macrophage-conditioned (MC) medium (25% with adipocyte maintenance media) markedly inhibited protein expression of the nuclear factor-κB (NFκB) subunit inhibitor κBα (IκBα) (71%, P<0.001) and increased NFκB p65 (1.5-fold, P = 0.026) compared with controls. Treatment with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) abolished macrophage-induced activation of NFκB signalling by increasing IκBα expression (2.7-fold, P = 0.005) and reducing NFκB p65 phosphorylation (68%; P<0.001). The mitogen-activated protein kinase (MAPK) signalling was activated by MC medium, which was also blunted by 1,25(OH)2D3 with a downregulation of phosphorylated p38 MAPK (32%, P = 0.005) and phosphorylated Erk1/2 (49%, P = 0.001). Furthermore, MC medium (12.5% or 25%) dose-dependently upregulated secretion of key proinflammatory chemokines/cytokines (22-368-fold; all P<0.001) and this was significantly decreased by 1,25(OH)2D3: IL-8 (61% and 31%, P<0.001), MCP-1 (37%, P<0.001 and 36%, P = 0.002), RANTES (78% and 62%, P<0.001) and IL-6 (29%, P<0.001 and 34%, P = 0.019). Monocyte migration-elicited by adipocytes treated with 1,25(OH)2D3 was also reduced (up to 25%, P<0.001). In conclusion, vitamin D3 could be anti-inflammatory in adipose tissue, decreasing macrophage-induced release of chemokines and cytokines by adipocytes and the chemotaxis of monocytes. Our data suggests these effects are mediated by inhibition of the NFκB and MAPK signalling pathways. PMID:23637889

  14. Silibinin suppresses PMA-induced MMP-9 expression by blocking the AP-1 activation via MAPK signaling pathways in MCF-7 human breast carcinoma cells.

    PubMed

    Lee, Syng-Ook; Jeong, Yun-Jeong; Im, Hyo Gwon; Kim, Cheorl-Ho; Chang, Young-Chae; Lee, In-Seon

    2007-03-01

    Matrix metalloproteinase-9 (MMP-9) plays an important role in the invasion and metastasis of cancer cells. In this study, we examined the inhibitory effect of silibinin, a flavonoid antioxidant from milk thistle (Silybum marianum L.) on PMA-induced MMP-9 expression in MCF-7 human breast carcinoma cells. Silibinin significantly and selectively suppressed PMA-induced MMP-9 expression in MCF-7. Silibinin has been found to inhibit PMA-induced MMP-9 gene transcriptional activity by blocking the activation of AP-1 via MAPK signaling pathways. Moreover, the Matrigel invasion assay showed that silibinin reduces PMA-induced invasion of MCF-7 cells. These results suggest that silibinin represents a potential anti-metastatic agent suppressing PMA-induced cancer cell invasion through the specific inhibition of AP-1-dependent MMP-9 gene expression. PMID:17214970

  15. 24-Week Exposure to Oxidized Tyrosine Induces Hepatic Fibrosis Involving Activation of the MAPK/TGF-β1 Signaling Pathway in Sprague-Dawley Rats Model

    PubMed Central

    Li, Zhuqing Leslie; Shi, Yonghui; Le, Guowei; Ding, Yinyi; Zhao, Qi

    2016-01-01

    Scope. Oxidized tyrosine (O-Tyr) has been widely detected in many consumer protein products. O-Tyr products such as dityrosine (Dityr) and 3-nitrotyrosine (3-NT) are universal biomarkers of protein oxidation and have been demonstrated to be associated with metabolic disorders in biological system. Evaluation of potential intracorporal effects of dietary O-Tyr is important since the mechanism of biological impacts induced by oral oxidized protein products (OPPs) is still limited although we have proved that some dietary OPPs would induce oxidative injury to liver and kidney. Methods and Results. The present study aimed to investigate the dose-dependent hepatic injury caused by oral O-Tyr in rats. 24-week feeding of O-Tyr enhanced aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities, increased total bilirubin (TBiL) content, and led to oxidative damage in rats liver. Besides, O-Tyr distinctly increased the phosphorylation of p38 and ERK2 MAPKs and enhanced fibrosis-related TGF-β1 and Smad2/3 levels. Higher extracellular matrix (ECM) indexes (ICTP, PIIINP) and histological examination (HE and Masson staining) also supported dose-dependent hepatic fibrosis caused by O-Tyr. Conclusion. These findings reveal that O-Tyr may induce oxidative damage and hepatic fibrosis via MAPK/TGF-β1 signaling pathway, in which ROS together with malondialdehyde (MDA) and OPPs act as the pivotal mediators. PMID:26788244

  16. Selective Regulation of MAPK Signaling Mediates RANKL-dependent Osteoclast Differentiation

    PubMed Central

    Lee, Kyunghee; Chung, Yeoun Ho; Ahn, Heejin; Kim, Hyunsoo; Rho, Jaerang; Jeong, Daewon

    2016-01-01

    Different stimuli often activate the same intracellular signaling molecules but trigger distinct cell responses. We explored whether or not MAPK signaling induced by macrophage colony-stimulating factor (M-CSF), which is responsible for osteoclast proliferation, differs from that induced by receptor activator of NF-κB ligand (RANKL), which is essential for inducing osteoclast differentiation. The activation of MAPKs by M-CSF or RANKL differed in terms of the extent and duration of ERK, p38, and JNK phosphorylation as well as the isoform specificity of JNK phosphorylation. In particular, RANKL induced a second wave of MAPK activation coincident with the onset of osteoclast differentiation, whereas M-CSF triggered only a monophasic response. M-CSF was also able to trigger a full MAPK response on restimulation of cells earlier than was RANKL, representing that MAPK resensitization by M-CSF differs from that by RANKL. Furthermore, the adapter protein TRAF6 recruitment to the cytoplasmic tail of RANK in a submembrane compartment is specifically required for RANKL-induced activation of p38 MAPK, expression of osteoclastogenic transcription factors, and osteoclast differentiation, indicating that the switch from proliferation to differentiation in osteoclast precursors is dependent on p38 activation via the RANKL-RANK-TRAF6 axis. Our results suggest that selective control of MAPK signaling induced by M-CSF and by RANKL mediates the proliferation versus differentiation decision in osteoclast precursors. PMID:26884720

  17. Fluoxetine signature on hippocampal MAPK signalling in sex-dependent manner.

    PubMed

    Mitic, Milos; Lukic, Iva; Bozovic, Natalija; Djordjevic, Jelena; Adzic, Miroslav

    2015-02-01

    A growing body of evidence indicates that mitogen-activated protein kinase (MAPK) participates in various stress-induced responses and is considered to be one of the pathophysiological mechanisms in depression. Surprisingly, the effect of antidepressants on MAPKs is almost unexplored, particularly from the perspective of sexes. The present study investigates the cytoplasm-nuclear distribution of MAPK family, c-Jun N-terminal kinases (JNKs) 1, 2 and 3; extracellular signal-regulated kinases (ERKs) 1 and 2; and p38 kinases, as well as their phosphoisoforms in the hippocampus of chronically stressed female and male rats and upon chronic fluoxetine treatment. Additionally, we analysed crosstalk between MAPK signalling and depressive-like behaviour which correlated with brain-derived neurotrophic factor (BDNF) expression. Our results emphasize a gender-specific and compartment-dependent response of MAPKs to stress and fluoxetine. In females, stress decreased pp38 and pJNK and induced cytosolic retention of pERKs which reduced all nuclear pMAPKs. These changes correlated with altered BDNF expression and behaviour. Similarly, in males, stress decreased pp38 but promoted nuclear translocation of pJNKs and pERKs. These stress alterations of pMAPKs in males were not associated with BDNF expression and depressive-like behaviour. Fluoxetine treatment in stressed females upregulated whole pMAPK signalling particularly those in nucleus which was followed with BDNF expression and normalization of behaviour. In stressed males, fluoxetine affected only cytosolic pJNKs, while nuclear pMAPK signalling and BDNF expression were unaffected even though fluoxetine normalized behaviour. Overall, our results suggest existence of gender-specific mechanism of fluoxetine on nuclear pMAPK/BDNF signalling and depressive-like behaviour and reinforce the antidepressant dogma that females and males respond differently to certain antidepressants. PMID:24841087

  18. Osmotic Stress, not Aldose Reductase Activity, Directly induces Growth Factors and MAPK Signaling changes during Sugar Cataract Formation

    PubMed Central

    Zhang, Peng; Xing, Kuiyi; Randazzo, James; Blessing, Karen; Lou, Marjorie F.; Kador, Peter F.

    2012-01-01

    In sugar cataract formation in rats, aldose reductase (AR) actitvity is not only linked to lenticular sorbitol (diabetic) or galactitol (galactosemic) formation but also to signal transduction changes, cytotoxic signals and activation of apoptosis. Using both in vitro and in vivo techniques, the interrelationship between AR activity, polyol (sorbitol and galactitol) formation, osmotic stress, growth factor induction, and cell signaling changes have been investigated. For in vitro studies, lenses from Sprague Dawley rats were cultured for up to 48 hrs in TC-199-bicarbonate media containing either 30 mM fructose (control), or 30 mM glucose or galctose with/without the aldose reductase inhibitors AL1576 or tolrestat, the sorbitol dehydrogenase inhibitor (SDI) CP-470,711, or 15 mM mannitol (osmotic-compensated media). For in vivo studies, lenses were obtained from streptozotocin-induced diabetic Sprague Dawley rats fed diet with/without the ARIs AL1576 or tolrestat for 10 weeks. As expected, lenses cultured in high glucose / galactose media or from untreated diabetic rats all showed a decrease in the GSH pool that was lessened by ARI treatment. Lenses either from diabetic rats or from glucose/galactose culture conditions showed increased expression of basic-FGF, TGF-β, and increased signaling through P-Akt, P-ERK1/2 and P-SAPK/JNK which were also normalized by ARIs to the expression levels observed in non-diabetic controls. Culturing rat lenses in osomotically compensated media containing 30 mM glucose or galactose did not lead to increased growth factor expression or altered signaling. These studies indicate that it is the biophysical response of the lens to osmotic stress that results in an increased intralenticular production of basic-FGF and TGF-β and the altered cytotoxic signaling that is observed during sugar cataract formation. PMID:22710095

  19. RAF inhibitors that evade paradoxical MAPK pathway activation.

    PubMed

    Zhang, Chao; Spevak, Wayne; Zhang, Ying; Burton, Elizabeth A; Ma, Yan; Habets, Gaston; Zhang, Jiazhong; Lin, Jack; Ewing, Todd; Matusow, Bernice; Tsang, Garson; Marimuthu, Adhirai; Cho, Hanna; Wu, Guoxian; Wang, Weiru; Fong, Daniel; Nguyen, Hoa; Shi, Songyuan; Womack, Patrick; Nespi, Marika; Shellooe, Rafe; Carias, Heidi; Powell, Ben; Light, Emily; Sanftner, Laura; Walters, Jason; Tsai, James; West, Brian L; Visor, Gary; Rezaei, Hamid; Lin, Paul S; Nolop, Keith; Ibrahim, Prabha N; Hirth, Peter; Bollag, Gideon

    2015-10-22

    Oncogenic activation of BRAF fuels cancer growth by constitutively promoting RAS-independent mitogen-activated protein kinase (MAPK) pathway signalling. Accordingly, RAF inhibitors have brought substantially improved personalized treatment of metastatic melanoma. However, these targeted agents have also revealed an unexpected consequence: stimulated growth of certain cancers. Structurally diverse ATP-competitive RAF inhibitors can either inhibit or paradoxically activate the MAPK pathway, depending whether activation is by BRAF mutation or by an upstream event, such as RAS mutation or receptor tyrosine kinase activation. Here we have identified next-generation RAF inhibitors (dubbed 'paradox breakers') that suppress mutant BRAF cells without activating the MAPK pathway in cells bearing upstream activation. In cells that express the same HRAS mutation prevalent in squamous tumours from patients treated with RAF inhibitors, the first-generation RAF inhibitor vemurafenib stimulated in vitro and in vivo growth and induced expression of MAPK pathway response genes; by contrast the paradox breakers PLX7904 and PLX8394 had no effect. Paradox breakers also overcame several known mechanisms of resistance to first-generation RAF inhibitors. Dissociating MAPK pathway inhibition from paradoxical activation might yield both improved safety and more durable efficacy than first-generation RAF inhibitors, a concept currently undergoing human clinical evaluation with PLX8394. PMID:26466569

  20. HBx-related long non-coding RNA DBH-AS1 promotes cell proliferation and survival by activating MAPK signaling in hepatocellular carcinoma.

    PubMed

    Huang, Jin-lan; Ren, Ting-yu; Cao, Shun-wang; Zheng, Shi-hao; Hu, Xiu-mei; Hu, Yan-wei; Lin, Li; Chen, Jing; Zheng, Lei; Wang, Qian

    2015-10-20

    Accumulating evidence supports an important role for the hepatitis B virus x protein (HBx) in the pathogenesis of hepatitis B virus (HBV)-induced hepatocellular carcinoma (HCC), but the underlying mechanisms are not entirely clear. Here, we identified a novel long noncoding RNA (lncRNA) DBH-AS1 involved in the HBx-mediated hepatocarcinogenesis. The levels of DBH-AS1 were positively correlated with hepatitis B surface antigen (HBsAg) and tumor size in HCC tissues. Functionally, transgenic expression of DBH-AS1 significantly enhanced cell proliferation and tumorigenesis, whereas short hairpin RNA knockdown of DBH-AS1 caused an inhibition of cell proliferation. Mechanistically, overexpression of DBH-AS1 induced cell cycle progression by accelerating G1/S and G2/M transition concomitantly with upregulation of CDK6, CCND1, CCNE1 and downregulation of p16, p21 and p27. We also found that enhanced DBH-AS1 expression inhibited serum starvation-induced apoptosis of HCC cells. In contrast, suppressed DBH-AS1 expression had opposite effects. Furthermore, DBH-AS1 was shown to activate MAPK pathway. We also provide evidence that DBH-AS1 could be significantly induced by HBx protein and markedly down-regulated by p53. Thus, we concluded that DBH-AS1 can be induced by HBx and inactivated by p53, and consequently promote cell proliferation and cell survival through activation of MAPK signaling in HCC. Our study suggests that DBH-AS1 acts as an oncogene for HCC. PMID:26393879

  1. Transmembrane/cytoplasmic, rather than catalytic, domains of Mmp14 signal to MAPK activation and mammary branching morphogenesis via binding to integrin β1

    PubMed Central

    Mori, Hidetoshi; Lo, Alvin T.; Inman, Jamie L.; Alcaraz, Jordi; Ghajar, Cyrus M.; Mott, Joni D.; Nelson, Celeste M.; Chen, Connie S.; Zhang, Hui; Bascom, Jamie L.; Seiki, Motoharu; Bissell, Mina J.

    2013-01-01

    Epithelial cell invasion through the extracellular matrix (ECM) is a crucial step in branching morphogenesis. The mechanisms by which the mammary epithelium integrates cues from the ECM with intracellular signaling in order to coordinate invasion through the stroma to make the mammary tree are poorly understood. Because the cell membrane-bound matrix metalloproteinase Mmp14 is known to play a key role in cancer cell invasion, we hypothesized that it could also be centrally involved in integrating signals for mammary epithelial cells (MECs) to navigate the collagen 1 (CL-1)-rich stroma of the mammary gland. Expression studies in nulliparous mice that carry a NLS-lacZ transgene downstream of the Mmp14 promoter revealed that Mmp14 is expressed in MECs at the tips of the branches. Using both mammary organoids and 3D organotypic cultures, we show that MMP activity is necessary for invasion through dense CL-1 (3 mg/ml) gels, but dispensable for MEC branching in sparse CL-1 (1 mg/ml) gels. Surprisingly, however, Mmp14 without its catalytic activity was still necessary for branching. Silencing Mmp14 prevented cell invasion through CL-1 and disrupted branching altogether; it also reduced integrin β1 (Itgb1) levels and attenuated MAPK signaling, disrupting Itgb1-dependent invasion/branching within CL-1 gels. FRET imaging revealed that Mmp14 associates directly with Itgb1. We identified a domain of Mmp14 that is required for modulating the levels of Itgb1, MEC signaling and the rate of invasion within CL-1. These results shed light on hitherto undescribed non-proteolytic activities of Mmp14 that are necessary for the Itgb1-dependent biochemical and mechanical signals that regulate branching in the mammary epithelium. PMID:23250208

  2. Modulation of l-α-Lysophosphatidylinositol/GPR55 Mitogen-activated Protein Kinase (MAPK) Signaling by Cannabinoids*

    PubMed Central

    Anavi-Goffer, Sharon; Baillie, Gemma; Irving, Andrew J.; Gertsch, Jürg; Greig, Iain R.; Pertwee, Roger G.; Ross, Ruth A.

    2012-01-01

    GPR55 is activated by l-α-lysophosphatidylinositol (LPI) but also by certain cannabinoids. In this study, we investigated the GPR55 pharmacology of various cannabinoids, including analogues of the CB1 receptor antagonist Rimonabant®, CB2 receptor agonists, and Cannabis sativa constituents. To test ERK1/2 phosphorylation, a primary downstream signaling pathway that conveys LPI-induced activation of GPR55, a high throughput system, was established using the AlphaScreen® SureFire® assay. Here, we show that CB1 receptor antagonists can act both as agonists alone and as inhibitors of LPI signaling under the same assay conditions. This study clarifies the controversy surrounding the GPR55-mediated actions of SR141716A; some reports indicate the compound to be an agonist and some report antagonism. In contrast, we report that the CB2 ligand GW405833 behaves as a partial agonist of GPR55 alone and enhances LPI signaling. GPR55 has been implicated in pain transmission, and thus our results suggest that this receptor may be responsible for some of the antinociceptive actions of certain CB2 receptor ligands. The phytocannabinoids Δ9-tetrahydrocannabivarin, cannabidivarin, and cannabigerovarin are also potent inhibitors of LPI. These Cannabis sativa constituents may represent novel therapeutics targeting GPR55. PMID:22027819

  3. MAPK Signaling in Cardiovascular Health and Disease: Molecular Mechanisms and Therapeutic Targets

    PubMed Central

    Muslin, Anthony J.

    2009-01-01

    Intracellular mitogen-activated protein kinase (MAPK) signaling cascades likely play an important role in the pathogenesis of cardiac and vascular disease. A substantial amount of basic science research has defined many of the details of MAPK pathway organization and activation, but the role of individual signaling proteins in the pathogenesis of various cardiovascular diseases is still being elucidated. In this review, the role of the MAPKs extracellular signal-regulated kinase (ERK), C-jun N-terminal kinase (JNK) and p38 MAPK in cardiac hypertrophy, cardiac remodeling after myocardial infarction, atherosclerosis and vascular restenosis will be examined with attention paid to genetically-modified murine model systems and to the use of pharmacologic inhibitors of protein kinases. Despite the complexities of this field of research, attractive targets for pharmacological therapy are emerging. PMID:18752467

  4. Focus on the p38 MAPK signaling pathway in bone development and maintenance

    PubMed Central

    Thouverey, Cyril; Caverzasio, Joseph

    2015-01-01

    The p38 mitogen-activated protein kinase (MAPK) signaling pathway can be activated in response to a wide range of extracellular signals. As a consequence, it can generate many different biological effects that depend on the stimulus and on the activated cell type. Therefore, this pathway has been found to regulate many aspects of tissue development and homeostasis. Recent work with the aid of genetically modified mice has highlighted the physiological functions of this pathway in skeletogenesis and postnatal bone maintenance. In this review, emphasis is given to the roles of the p38 MAPK pathway in chondrocyte, osteoblast and osteoclast biology. In particular, we describe the molecular mechanisms of p38 MAPK activation and downstream targets. The requirement of this pathway in physiological bone development and homeostasis is demonstrated by the ability of p38 MAPK to regulate master transcription factors controlling geneses and functions of chondrocytes, osteoblasts and osteoclasts. PMID:26131361

  5. Doxycycline Suppresses Microglial Activation by Inhibiting the p38 MAPK and NF-kB Signaling Pathways.

    PubMed

    Santa-Cecília, Flávia V; Socias, Benjamin; Ouidja, Mohand O; Sepulveda-Diaz, Julia E; Acuña, Leonardo; Silva, Rangel L; Michel, Patrick P; Del-Bel, Elaine; Cunha, Thiago M; Raisman-Vozari, Rita

    2016-05-01

    In neurodegenerative diseases, the inflammatory response is mediated by activated glial cells, mainly microglia, which are the resident immune cells of the central nervous system. Activated microglial cells release proinflammatory mediators and neurotoxic factors that are suspected to cause or exacerbate these diseases. We recently demonstrated that doxycycline protects substantia nigra dopaminergic neurons in an animal model of Parkinson's disease. This effect was associated with a reduction of microglial cell activation, which suggests that doxycycline may operate primarily as an anti-inflammatory drug. In the present study, we assessed the anti-inflammatory potential of doxycycline using lipopolysaccharide (LPS)-activated primary microglial cells in culture as a model of neuroinflammation. Doxycycline attenuated the expression of key activation markers in LPS-treated microglial cultures in a concentration-dependent manner. More specifically, doxycycline treatment lowered the expression of the microglial activation marker IBA-1 as well as the production of ROS, NO, and proinflammatory cytokines (TNF-α and IL-1β). In primary microglial cells, we also found that doxycycline inhibits LPS-induced p38 MAP kinase phosphorylation and NF-kB nuclear translocation. The present results indicate that the effect of doxycycline on LPS-induced microglial activation probably occurs via the modulation of p38 MAP kinase and NF-kB signaling pathways. These results support the idea that doxycycline may be useful in preventing or slowing the progression of PD and other neurodegenerative diseases that exhibit altered glia function. PMID:26745968

  6. Ferulic Acid Administered at Various Time Points Protects against Cerebral Infarction by Activating p38 MAPK/p90RSK/CREB/Bcl-2 Anti-Apoptotic Signaling in the Subacute Phase of Cerebral Ischemia-Reperfusion Injury in Rats

    PubMed Central

    Cheng, Chin-Yi; Tang, Nou-Ying; Kao, Shung-Te; Hsieh, Ching-Liang

    2016-01-01

    Objectives This study aimed to evaluate the effects of ferulic acid (FA) administered at various time points before or after 30 min of middle cerebral artery occlusion (MCAo) followed by 7 d of reperfusion and to examine the involvement of mitogen-activated protein kinase (MAPK) signaling pathways in the cortical penumbra. Methods FA was intravenously administered to rats at a dose of 100 mg/kg 24 h before ischemia (B-FA), 2 h before ischemia (P-FA), immediately after ischemic insult (I-FA), 2 h after reperfusion (R-FA), or 24 h after reperfusion (D-FA). Results Our study results indicated that P-FA, I-FA, and R-FA effectively reduced cerebral infarct areas and neurological deficits. P-FA, I-FA, and R-FA significantly downregulated glial fibrillary acidic protein (GFAP), mitochondrial Bax, cytochrome c, and cleaved caspase-3 expression, and effectively restored the phospho-p38 MAPK (p-p38 MAPK)/p38 MAPK ratio, phospho-90 kDa ribosomal S6 kinase (p-p90RSK) expression, phospho-Bad (p-Bad) expression, the phospho-cAMP response element-binding protein (p-CREB)/CREB ratio, the cytosolic and mitochondrial Bcl-2/Bax ratios, and the cytosolic Bcl-xL/Bax ratio in the cortical penumbra 7 d after reperfusion. SB203580, a specific inhibitor of p38 MAPK, administered 30 min prior to ischemia abrogated the downregulating effects of I-FA on cerebral infarction, and mitochondrial Bax and cleaved caspase-3 expression, and the upregulating effects of I-FA on the p-p38 MAPK/p38 MAPK ratio, p-p90RSK expression, p-Bad expression, and the p-CREB/CREB, and cytosolic and mitochondrial Bcl-2/Bax ratios. Conclusions Our study results thus indicate that P-FA, I-FA, and R-FA effectively suppress reactive astrocytosis and exert neuroprotective effects against cerebral infarction by activating p38 MAPK signaling. The regulating effects of P-FA, I-FA, and R-FA on Bax-induced apoptosis result from activation of the p38 MAPK/p90RSK/CREB/Bcl-2 signaling pathway, and eventually contribute to

  7. ROS mediated MAPK signaling in abiotic and biotic stress- striking similarities and differences

    PubMed Central

    Jalmi, Siddhi K.; Sinha, Alok K.

    2015-01-01

    Plants encounter a number of environmental stresses throughout their life cycles, most of which activate mitogen activated protein kinase (MAPK) pathway. The MAPKs show crosstalks at several points but the activation and the final response is known to be specific for particular stimuli that in-turn activates specific set of downstream targets. Interestingly, reactive oxygen species (ROS) is an important and common messenger produced in various environmental stresses and is known to activate many of the MAPKs. ROS activates a similar MAPK in different environmental stimuli, showing different downstream targets with different and specific responses. In animals and yeast, the mechanism behind the specific activation of MAPK by different concentration and species of ROS is elaborated, but in plants this aspect is still unclear. This review mainly focuses on the aspect of specificity of ROS mediated MAPK activation. Attempts have been made to review the involvement of ROS in abiotic stress mediated MAPK signaling and how it differentiates with that of biotic stress. PMID:26442079

  8. Tiron Inhibits UVB-Induced AP-1 Binding Sites Transcriptional Activation on MMP-1 and MMP-3 Promoters by MAPK Signaling Pathway in Human Dermal Fibroblasts

    PubMed Central

    Zhang, Chao; Zhao, Mei; Zhang, Quan-Wu; Gao, Feng-Hou

    2016-01-01

    Recent research found that Tiron was an effective antioxidant that could act as the intracellular reactive oxygen species (ROS) scavenger or alleviate the acute toxic metal overload in vivo. In this study, we investigated the inhibitory effect of Tiron on matrix metalloproteinase (MMP)-1 and MMP-3 expression in human dermal fibroblast cells. Western blot and ELISA analysis revealed that Tiron inhibited ultraviolet B (UVB)-induced protein expression of MMP-1 and MMP-3. Real-time quantitative PCR confirmed that Tiron could inhibit UVB-induced mRNA expression of MMP-1 and MMP-3. Furthermore, Tiron significantly blocked UVB-induced activation of the MAPK signaling pathway and activator protein (AP)-1 in the downstream of this transduction pathway in fibroblasts. Through the AP-1 binding site mutation, it was found that Tiron could inhibit AP-1-induced upregulation of MMP-1 and MMP-3 expression through blocking AP-1 binding to the AP-1 binding sites in the MMP-1 and MMP-3 promoter region. In conclusion, Tiron may be a novel antioxidant for preventing and treating skin photoaging UV-induced. PMID:27486852

  9. Wogonin suppresses TNF-{alpha}-induced MMP-9 expression by blocking the NF-{kappa}B activation via MAPK signaling pathways in human aortic smooth muscle cells

    SciTech Connect

    Lee, Syng-Ook; Jeong, Yun-Jeong; Yu, Mi Hee; Lee, Ji-Won; Hwangbo, Mi Hyang; Kim, Cheorl-Ho; Lee, In-Seon . E-mail: inseon@kmu.ac.kr

    2006-12-08

    Matrix metalloproteinase-9 (MMP-9) plays a major role in the pathogenesis of atherosclerosis and restenosis by regulating both migration and proliferation of vascular smooth muscle cells (VSMC) after an arterial injury. In this study, we examined the inhibitory effect of three major flavonoids in Scutellariae Radix, baicalin, baicalein, and wogonin, on TNF-{alpha}-induced MMP-9 expression in human aortic smooth muscle cells (HASMC). Wogonin, but not baicalin and baicalein, significantly and selectively suppressed TNF-{alpha}-induced MMP-9 expression in HASMC. Reporter gene, electrophoretic mobility shift, and Western blotting assays showed that wogonin inhibits MMP-9 gene transcriptional activity by blocking the activation of NF-{kappa}B via MAPK signaling pathways. Moreover, the Matrigel migration assay showed that wogonin reduced TNF-{alpha}-induced HASMC migration. These results suggest that wogonin effectively suppresses TNF-{alpha}-induced HASMC migration through the selective inhibition of MMP-9 expression and represents a potential agent for the prevention of vascular disorders related to the migration of VSMC.

  10. Delphinidin suppresses PMA-induced MMP-9 expression by blocking the NF-κB activation through MAPK signaling pathways in MCF-7 human breast carcinoma cells.

    PubMed

    Im, Nam-Kyung; Jang, Won Jun; Jeong, Chul-Ho; Jeong, Gil-Saeng

    2014-08-01

    Matrix metalloproteinase-9 (MMP-9) plays an important role in the invasion and metastasis of cancer cells. The synthesis and secretion of MMP-9 can be stimulated by a variety of stimuli, including cytokines and phorbol 12-myristate 13-acetate (PMA), during various pathological processes, such as tumor invasion, atherosclerosis, inflammation, and rheumatoid arthritis, whereas MMP-2 is usually expressed constitutively. Delphinidin, an anthocyanidin present in pigmented fruits and vegetables, possesses potent antioxidant, anti-inflammatory, and antiangiogenic properties. In this study, we investigated the antiproliferative and antiinvasive effects of delphinidin on PMA-induced MMP-9 expression in MCF-7 human breast carcinoma cells using zymography, western blotting, reverse transcription-polymerase chain reaction, and Matrigel invasion assay. Delphinidin significantly suppressed PMA-induced MMP-9 protein expression in MCF-7 human breast carcinoma cells, and it also inhibited the MMP-9 gene transcriptional activity by blocking the activation of NFkappaB (NF-κB) through MAPK signaling pathways. Moreover, the Matrigel invasion assay showed that delphinidin reduces PMA-induced cancer cell invasion. These results suggest that delphinidin is a potential antimetastatic agent that suppresses PMA-induced cancer cell invasion through the specific inhibition of NF-κB-dependent MMP-9 gene expression. PMID:25000305

  11. Downregulation of TFAM inhibits the tumorigenesis of non-small cell lung cancer by activating ROS-mediated JNK/p38MAPK signaling and reducing cellular bioenergetics

    PubMed Central

    Shangguan, Fugeng; Lin, Xiaoming; Chen, Fuhong; Xu, Shan; Zhang, Ya; Chen, Zilei; Huang, Kate; Wang, Rongrong; Wang, Lu; Song, Xiaoxiao; Liu, Yongzhang; Lu, Bin

    2016-01-01

    Mitochondrial transcription factor A (TFAM) is essential for the replication, transcription and maintenance of mitochondrial DNA (mtDNA). The role of TFAM in non-small cell lung cancer (NSCLC) remains largely unknown. Herein, we report that downregulation of TFAM in NSCLC cells resulted in cell cycle arrest at G1 phase and significantly blocked NSCLC cell growth and migration through the activation of reactive oxygen species (ROS)-induced c-Jun amino-terminal kinase(JNK)/p38 MAPK signaling and decreased cellular bioenergetics. We further found that TFAM downregulation in NSCLC cells led to increased apoptotic cell death and enhanced the sensitivity of NSCLC cells to cisplatin. Tissue microarray (TMA) data showed that elevated expression of TFAM was related to the histological grade and TNM stage of NSCLC patients. We also demonstrated that TFAM is an independent prognostic factor for overall survival of NSCLC patients. Taken together, our findings suggest that TFAM could serve as a potential diagnostic biomarker and molecular target for the treatment of NSCLC, as well as for prediction of the effectiveness of chemotherapy. PMID:26820294

  12. Tenuigenin exhibits anti-inflammatory activity via inhibiting MAPK and NF-κB and inducing Nrf2/HO-1 signaling in macrophages.

    PubMed

    Lv, Hongming; Ren, Wenzhi; Zheng, Yuwei; Wang, Lidong; Lu, Gejin; Yi, Pengfei; Ci, Xinxin

    2016-01-01

    Tenuigenin (TNG), isolated from the root of the Chinese herb Polygala tenuifolia, possesses various biological and pharmacological activities, including anti-oxidation and anti-inflammation activities. In this study, we aimed to further investigate whether its anti-inflammatory activity is associated with the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Our results showed that TNG treatment dramatically reduced prostaglandin E2 (PGE2) and NO production, decreased iNOS and COX-2 gene expression, inhibited JNK1/2, ERK1/2, p38 and NF-κB (p65) phosphorylation, and blocked IκBα phosphorylation and degradation. Further studies revealed that TNG dramatically up-regulated heme oxygenase (HO)-1 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression, which was related to the induction of Nrf2 nuclear translocation and decreased Keap1 protein expression. Additionally, treatment with JNK1/2, ERK1/2 or p38 inhibitors had no effect on the TNG-induced HO-1 protein expression. Furthermore, the LPS-induced iNOS and COX-2 expression levels were inhibited by TNG, which was partially reversed by the HO-1-siRNA and HO-1 inhibitors. Together, these results showed that TNG's anti-inflammatory activity is related to the inhibition of iNOS and COX-2 expression via down-regulation of the MAPK and NF-κB, and up-regulation of the Nrf2/HO-1 signaling pathways. PMID:26499342

  13. Berberine attenuates high glucose-induced fibrosis by activating the G protein-coupled bile acid receptor TGR5 and repressing the S1P2/MAPK signaling pathway in glomerular mesangial cells.

    PubMed

    Yang, Zhiying; Li, Jie; Xiong, Fengxiao; Huang, Junying; Chen, Cheng; Liu, Peiqing; Huang, Heqing

    2016-08-15

    Berberine (BBR) exerts powerful renoprotective effects on diabetic nephropathy (DN), but the underlying mechanisms remain unclear. We previously demonstrated that activation of the G protein-coupled bile acid receptor TGR5 ameliorates diabetic nephropathy by inhibiting the activation of the sphingosine 1-phosphate (S1P)/sphingosine 1-phosphate receptor 2 (S1P2) signaling pathway. In this study, we explored the role of TGR5 in the BBR-induced downregulation of sphingosine 1-phosphate receptor 2 (S1P2)/mitogen-activated protein kinase (MAPK)-mediated fibrosis in glomerular mesangial cells (GMCs). Results showed that, BBR suppressed the expression of FN, ICAM-1, and TGF-β1 in high-glucose cultures of GMCs, and the phosphorylation level of c-Jun/c-Fos was downregulated. The high glucose lowered TGR5 expression in a time-dependent manner; this effect was reversed by BBR in a dose-dependent manner. The TGR5 agonist INT-777 decreased the high glucose-induced FN, ICAM-1, and TGF-β1 protein contents. In addition, TGR5 siRNA blocked S1P2 degradation by BBR. And MAPK signaling, which plays important regulatory roles in the pathological progression of DN, was activated by TGR5 siRNA. Apart from this, MAPK signaling as well as FN, ICAM-1, and TGF-β1 suppressed by BBR under high glucose conditions were limited by TGR5 depletion. Thus, BBR decreases FN, ICAM-1, and TGF-β1 levels under high glucose conditions in GMCs possibly by activating TGR5 and inhibiting S1P2/MAPK signaling. PMID:27292312

  14. Age-dependent changes of the antioxidant system in rat livers are accompanied by altered MAPK activation and a decline in motor signaling

    PubMed Central

    Yang, Wei; Burkhardt, Britta; Fischer, Luise; Beirow, Maja; Bork, Nadja; Wönne, Eva C.; Wagner, Cornelia; Husen, Bettina; Zeilinger, Katrin; Liu, Liegang; Nussler, Andreas K.

    2015-01-01

    Aging is characterized by a progressive decrease of cellular functions, because cells gradually lose their capacity to respond to injury. Increased oxidative stress is considered to be one of the major contributors to age-related changes in all organs including the liver. Our study has focused on elucidating whether important antioxidative enzymes, the mTOR pathway, and MAPKs exhibit age-dependent changes in the liver of rats during aging. We found an age-dependent increase of GSH in the cytosol and mitochondria. The aged liver showed an increased SOD enzyme activity, while the CAT enzyme activity decreased. HO-1 and NOS-2 gene expression was lower in adult rats, but up-regulated in aged rats. Western blot analysis revealed that SOD1, SOD2, GPx, GR, γ-GCL, and GSS were age-dependent up-regulated, while CAT remained constant. We also demonstrated that the phosphorylation of Akt, JNK, p38, and TSC2Ser1254 decreased while ERK1/2 and TSC2Thr1462 increased age-dependently. Furthermore, our data show that the mTOR pathway seems to be activated in livers of aged rats, and hence stimulating cell proliferation/regeneration, as confirmed by an age-dependent increase of PCNA and p-eIF4ESer209 protein expression. Our data may help to explain the fact that liver cells only proliferate in cases of necessity, like injury and damage. In summary, we have demonstrated that, age-dependent changes of the antioxidant system and stress-related signaling pathways occur in the livers of rats, which may help to better understand organ aging. PMID:27004051

  15. Carvacrol protects neuroblastoma SH-SY5Y cells against Fe2+-induced apoptosis by suppressing activation of MAPK/JNK-NF-κB signaling pathway

    PubMed Central

    Cui, Zhen-wen; Xie, Zheng-xing; Wang, Bao-feng; Zhong, Zhi-hong; Chen, Xiao-yan; Sun, Yu-hao; Sun, Qing-fang; Yang, Guo-yuan; Bian, Liu-guan

    2015-01-01

    Aim: Carvacrol (2-methyl-5-isopropylphenol), a phenolic monoterpene in the essential oils of the genera Origanum and Thymus, has been shown to exert a variety of therapeutic effects. Here we examined whether carvacrol protected neuroblastoma SH-SY5Y cells against Fe2+-induced apoptosis and explored the underlying mechanisms. Methods: Neuroblastoma SH-SY5Y cells were incubated with Fe2+ for 24 h, and the cell viability was assessed with CCK-8 assay. TUNEL assay and flow cytometric analysis were performed to evaluate cell apoptosis. The mRNA levels of pro-inflammatory cytokines and NF-κB p65 were determined using qPCR. The expression of relevant proteins was determined using Western blot analysis or immunofluorescence staining. Results: Treatment of SH-SY5Y cells with Fe2+ (50–200 μmol/L) dose-dependently decreased the cell viability, which was significantly attenuated by pretreatment with carvacrol (164 and 333 μmol/L). Treatment with Fe2+ increased the Bax level and caspase-3 activity, and decreased the Bcl-2 level, resulting in cell apoptosis. Furthermore, treatment with Fe2+ significantly increased the gene expression of IL-1β, IL-6 and TNF-α, and induced the nuclear translocation of NF-κB. Treatment with Fe2+ also significantly increased the phosphorylation of p38, ERK, JNK and IKK in the cells. Pretreatment with carvacrol significantly inhibited Fe2+-induced activation of NF-κB, expression of the pro-inflammatory cytokines, and cell apoptosis. Moreover, pretreatment with carvacrol inhibited Fe2+-induced phosphorylation of JNK and IKK, but not p38 and ERK in the cells. Conclusion: Carvacrol protects neuroblastoma SH-SY5Y cells against Fe2+-induced apoptosis, which may result from suppressing the MAPK/JNK-NF-κB signaling pathways. PMID:26592517

  16. Systemic Regulation of RAS/MAPK Signaling by the Serotonin Metabolite 5-HIAA

    PubMed Central

    Schmid, Tobias; Snoek, L. Basten; Fröhli, Erika; van der Bent, M. Leontien; Kammenga, Jan; Hajnal, Alex

    2015-01-01

    Human cancer is caused by the interplay of mutations in oncogenes and tumor suppressor genes and inherited variations in cancer susceptibility genes. While many of the tumor initiating mutations are well characterized, the effect of genetic background variation on disease onset and progression is less understood. We have used C. elegans genetics to identify genetic modifiers of the oncogenic RAS/MAPK signaling pathway. Quantitative trait locus analysis of two highly diverged C. elegans isolates combined with allele swapping experiments identified the polymorphic monoamine oxidase A (MAOA) gene amx-2 as a negative regulator of RAS/MAPK signaling. We further show that the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA), which is a product of MAOA catalysis, systemically inhibits RAS/MAPK signaling in different organs of C. elegans. Thus, MAOA activity sets a global threshold for MAPK activation by controlling 5-HIAA levels. To our knowledge, 5-HIAA is the first endogenous small molecule that acts as a systemic inhibitor of RAS/MAPK signaling. PMID:25978500

  17. MAPK/ERK signaling pathway-induced hyper-O-GlcNAcylation enhances cancer malignancy.

    PubMed

    Zhang, Xinling; Ma, Leina; Qi, Jieqiong; Shan, Hui; Yu, Wengong; Gu, Yuchao

    2015-12-01

    Dysregulated MAPK/ERK signaling is implicated in one-third of human tumors and represents an attractive target for the development of anticancer drugs. Similarly, elevated protein O-GlcNAcylation and O-GlcNAc transferase (OGT) are detected in various cancers and serve as attractive novel cancer-specific therapeutic targets. However, the potential connection between them remains unexplored. Here, a positive correlation was found between the activated MAPK/ERK signaling and hyper-O-GlcNAcylation in various cancer types and inhibition of the MAPK/ERK signaling by 10 µM U0126 significantly decreased the expression of OGT and O-GlcNAcylation in H1299, BPH-1 and DU145 cells; then, the pathway analysis of the potential regulators of OGT obtained from the UCSC Genome Browser was done, and ten downstream targets of ERK pathway were uncovered; the following results showed that ELK1, one of the ten targets of ERK pathway, mediated ERK signaling-induced OGT upregulation; finally, the MTT assay and the soft agar assay showed that the inhibition of MAPK/ERK signaling reduced the promotion effect of hyper-O-GlcNAcylation on cancer cell proliferation and anchorage-independent growth. Taken together, our data originally provided evidence for the regulatory mechanism of hyper-O-GlcNAcylation in tumors, which will be helpful for the development of anticancer drugs targeting to hyper-O-GlcNAcylation. This study also provided a new mechanism by which MAPK/ERK signaling-enhanced cancer malignancy. Altogether, the recently discovered oncogenic factor O-GlcNAc was linked to the classical MAPK/ERK signaling which is essential for the maintenance of malignant phenotype of cancers. PMID:26318312

  18. The BASL Polarity Protein Controls a MAPK Signaling Feedback Loop in Asymmetric Cell Division

    PubMed Central

    Zhang, Ying; Wang, Pengcheng; Shao, Wanchen; Zhu, Jian-Kang; Dong, Juan

    2015-01-01

    SUMMARY Cell polarization is linked to fate determination during asymmetric division of plant stem cells, but the underlying molecular mechanisms remain unknown. In Arabidopsis, BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) is polarized to control stomatal asymmetric division. A MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascade determines terminal stomatal fate by promoting the degradation of the lineage determinant SPEECHLESS (SPCH). Here we demonstrate that a positive feedback loop between BASL and the MAPK pathway constitutes a polarity module at the cortex. Cortical localization of BASL requires phosphorylation mediated by MPK3/6. Phosphorylated BASL functions as a scaffold and recruits the MAPKKK YODA and MPK3/6 to spatially concentrate signaling at the cortex. Activated MPK3/6 reinforces the feedback loop by phosphorylating BASL, and inhibits stomatal fate by phosphorylating SPCH. Polarization of the BASL-MAPK signaling feedback module represents a mechanism connecting cell polarity to fate differentiation during asymmetric stem cell division in plants. PMID:25843888

  19. The Dictyostelium MAPK ERK1 is phosphorylated in a secondary response to early developmental signaling

    PubMed Central

    Schwebs, David J.; Hadwiger, Jeffrey A.

    2014-01-01

    Previous reports have suggested that the two mitogen-activated protein kinases (MAPKs) in Dictyostelium discoideum, ERK1 and ERK2, can be directly activated in response to external cAMP even though these MAPKs play different roles in the developmental life cycle. To better characterize MAPK regulation, the levels of phosphorylated MAPKs were analyzed in response to external signals. Only ERK2 was rapidly phosphorylated in response to the chemoattractants, cAMP and folate. In contrast, the phosphorylation of ERK1 occurred as a secondary or indirect response to these stimuli and this phosphorylation was enhanced by cell-cell interactions, suggesting that other external signals can activate ERK1. The phosphorylation of ERK1 or ERK2 did not require the function of the other MAPK in these responses. Folate stimulation of a chimeric population of erk1− and gα4− cells revealed that the phosphorylation of ERK1 could be mediated through an intercellular signal other than folate. Loss of ERK1 function suppressed the developmental delay and the deficiency in anterior cell localization associated with gα5− mutants suggesting that ERK1 function can be down regulated through Gα5 subunit-mediated signaling. However, no major changes in the phosphorylation of ERK1 were observed in gα5− cells suggesting that the Gα5 subunit signaling pathway does not regulate the phosphorylation of ERK1. These findings suggest that the activation of ERK1 occurs as a secondary response to chemoattractants and that other cell-cell signaling mechanisms contribute to this activation. Gα5 subunit signaling can down regulate ERK1 function to promote prestalk cell development but not through major changes to the level of phosphorylated ERK1. PMID:25451080

  20. Cilostazol Induces PGI2 Production via Activation of the Downstream Epac-1/Rap1 Signaling Cascade to Increase Intracellular Calcium by PLCε and to Activate p44/42 MAPK in Human Aortic Endothelial Cells

    PubMed Central

    Hashimoto, Ayako

    2015-01-01

    Background Cilostazol, a selective phosphodiesterase 3 (PDE3) inhibitor, is known as an anti-platelet drug and acts directly on platelets. Cilostazol has been shown to exhibit vascular protection in ischemic diseases. Although vascular endothelium-derived prostaglandin I2 (PGI2) plays an important role in vascular protection, it is unknown whether cilostazol directly stimulates PGI2 synthesis in endothelial cells. Here, we elucidate the mechanism of cilostazol-induced PGI2 stimulation in endothelial cells. Methods and Results Human aortic endothelial cells (HAECs) were stimulated with cilostazol and PGI2 accumulation in the culture media was measured. Cilostazol increased PGI2 synthesis via the arachidonic acid pathway. Cilostazol-induced intracellular calcium also promoted PGI2 synthesis via the inositol 1,4,5-trisphosphate receptor. Using RNAi, silencing of PDE3B abolished the induction effect of cilostazol on PGI2 synthesis and intracellular cAMP accumulation. Inhibition of the exchange protein, which was directly activated by cyclic AMP 1 (Epac-1) and its downstream signal the Ras-like small GTPase (Rap-1), abolished cilostazol-induced PGI2 synthesis, but this did not take place via protein kinase A (PKA). Inhibition of downstream signaling, such as mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K) γ, and phospholipase C (PLC) ε, suppressed cilostazol-induced PGI2 synthesis. Conclusions The PDE3/Epac-1/Rap-1 signaling pathway plays an important role in cilostazol-induced PGI2 synthesis. Namely, stimulation of HAECs with cilostazol induces intracellular calcium elevation via the Rap-1/PLCε/IP3 pathway, along with MAPK activation via direct activation by Epac-1/Rap-1 and indirect activation by Epac-1/Rap-1/PI3Kγ, resulting in synergistically induced PGI2 synthesis. PMID:26181635

  1. Regulation of endothelial MAPK/ERK signalling and capillary morphogenesis by low-amplitude electric field

    PubMed Central

    Sheikh, Abdul Q.; Taghian, Toloo; Hemingway, Bryan; Cho, Hongkwan; Kogan, Andrei B.; Narmoneva, Daria A.

    2013-01-01

    Low-amplitude electric field (EF) is an important component of wound-healing response and can promote vascular tissue repair; however, the mechanisms of action on endothelium remain unclear. We hypothesized that physiological amplitude EF regulates angiogenic response of microvascular endothelial cells via activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. A custom set-up allowed non-thermal application of EF of high (7.5 GHz) and low (60 Hz) frequency. Cell responses following up to 24 h of EF exposure, including proliferation and apoptosis, capillary morphogenesis, vascular endothelial growth factor (VEGF) expression and MAPK pathways activation were quantified. A db/db mouse model of diabetic wound healing was used for in vivo validation. High-frequency EF enhanced capillary morphogenesis, VEGF release, MEK-cRaf complex formation, MEK and ERK phosphorylation, whereas no MAPK/JNK and MAPK/p38 pathways activation was observed. The endothelial response to EF did not require VEGF binding to VEGFR2 receptor. EF-induced MEK phosphorylation was reversed in the presence of MEK and Ca2+ inhibitors, reduced by endothelial nitric oxide synthase inhibition, and did not depend on PI3K pathway activation. The results provide evidence for a novel intracellular mechanism for EF regulation of endothelial angiogenic response via frequency-sensitive MAPK/ERK pathway activation, with important implications for EF-based therapies for vascular tissue regeneration. PMID:22993248

  2. PKG-Mediated MAPK Signaling Is Necessary for Long-Term Operant Memory in "Aplysia"

    ERIC Educational Resources Information Center

    Michel, Maximilian; Green, Charity L.; Eskin, Arnold; Lyons, Lisa C.

    2011-01-01

    Signaling pathways necessary for memory formation, such as the mitogen-activated protein kinase (MAPK) pathway, appear highly conserved across species and paradigms. Learning that food is inedible (LFI) represents a robust form of associative, operant learning that induces short- (STM) and long-term memory (LTM) in "Aplysia." We investigated the…

  3. Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors.

    PubMed

    Escuin-Ordinas, Helena; Li, Shuoran; Xie, Michael W; Sun, Lu; Hugo, Willy; Huang, Rong Rong; Jiao, Jing; de-Faria, Felipe Meira; Realegeno, Susan; Krystofinski, Paige; Azhdam, Ariel; Komenan, Sara Marie D; Atefi, Mohammad; Comin-Anduix, Begoña; Pellegrini, Matteo; Cochran, Alistair J; Modlin, Robert L; Herschman, Harvey R; Lo, Roger S; McBride, William H; Segura, Tatiana; Ribas, Antoni

    2016-01-01

    BRAF inhibitors are highly effective therapies for the treatment of BRAF(V600)-mutated melanoma, with the main toxicity being a variety of hyperproliferative skin conditions due to paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway in BRAF wild-type cells. Most of these hyperproliferative skin changes improve when a MEK inhibitor is co-administered, as it blocks paradoxical MAPK activation. Here we show how the BRAF inhibitor vemurafenib accelerates skin wound healing by inducing the proliferation and migration of human keratinocytes through extracellular signal-regulated kinase (ERK) phosphorylation and cell cycle progression. Topical treatment with vemurafenib in two wound-healing mice models accelerates cutaneous wound healing through paradoxical MAPK activation; addition of a mitogen-activated protein kinase kinase (MEK) inhibitor reverses the benefit of vemurafenib-accelerated wound healing. The same dosing regimen of topical BRAF inhibitor does not increase the incidence of cutaneous squamous cell carcinomas in mice. Therefore, topical BRAF inhibitors may have clinical applications in accelerating the healing of skin wounds. PMID:27476449

  4. Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors

    PubMed Central

    Escuin-Ordinas, Helena; Li, Shuoran; Xie, Michael W.; Sun, Lu; Hugo, Willy; Huang, Rong Rong; Jiao, Jing; de-Faria, Felipe Meira; Realegeno, Susan; Krystofinski, Paige; Azhdam, Ariel; Komenan, Sara Marie D.; Atefi, Mohammad; Comin-Anduix, Begoña; Pellegrini, Matteo; Cochran, Alistair J.; Modlin, Robert L.; Herschman, Harvey R.; Lo, Roger S.; McBride, William H.; Segura, Tatiana; Ribas, Antoni

    2016-01-01

    BRAF inhibitors are highly effective therapies for the treatment of BRAFV600-mutated melanoma, with the main toxicity being a variety of hyperproliferative skin conditions due to paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway in BRAF wild-type cells. Most of these hyperproliferative skin changes improve when a MEK inhibitor is co-administered, as it blocks paradoxical MAPK activation. Here we show how the BRAF inhibitor vemurafenib accelerates skin wound healing by inducing the proliferation and migration of human keratinocytes through extracellular signal-regulated kinase (ERK) phosphorylation and cell cycle progression. Topical treatment with vemurafenib in two wound-healing mice models accelerates cutaneous wound healing through paradoxical MAPK activation; addition of a mitogen-activated protein kinase kinase (MEK) inhibitor reverses the benefit of vemurafenib-accelerated wound healing. The same dosing regimen of topical BRAF inhibitor does not increase the incidence of cutaneous squamous cell carcinomas in mice. Therefore, topical BRAF inhibitors may have clinical applications in accelerating the healing of skin wounds. PMID:27476449

  5. Tumor Necrosis Factor-Like Weak Inducer of Apoptosis Accelerates the Progression of Renal Fibrosis in Lupus Nephritis by Activating SMAD and p38 MAPK in TGF-β1 Signaling Pathway.

    PubMed

    Liu, Zhiqin; Xue, Leixi; Liu, Zhichun; Huang, Jun; Wen, Jian; Hu, Ji; Bo, Lin; Yang, Ru

    2016-01-01

    This study aim was to explore the effects of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in lupus nephritis and its potential underlying mechanisms. MRL/lpr mice were used for in vivo experiments and human proximal tubular cells (HK2 cells) were used for in vitro experiments. Results showed that MRL/lpr mice treated with vehicle solution or LV-Control shRNA displayed significant proteinuria and severe renal histopathological changes. LV-TWEAK-shRNA treatment reversed these changes and decreased renal expressions of TWEAK, TGF-β1, p-p38 MAPK, p-Smad2, COL-1, and α-SMA proteins. In vitro, hTWEAK treatment upregulated the expressions of TGF-β1, p-p38 MAPK, p-SMAD2, α-SMA, and COL-1 proteins in HK2 cells and downregulated the expressions of E-cadherin protein, which were reversed by cotreatment with anti-TWEAK mAb or SB431542 treatment. These findings suggest that TWEAK may contribute to chronic renal changes and renal fibrosis by activating TGF-β1 signaling pathway, and phosphorylation of Smad2 and p38 MAPK proteins was also involved in this signaling pathway. PMID:27365897

  6. Tumor Necrosis Factor-Like Weak Inducer of Apoptosis Accelerates the Progression of Renal Fibrosis in Lupus Nephritis by Activating SMAD and p38 MAPK in TGF-β1 Signaling Pathway

    PubMed Central

    Liu, Zhiqin; Xue, Leixi; Liu, Zhichun; Huang, Jun; Wen, Jian; Hu, Ji; Bo, Lin; Yang, Ru

    2016-01-01

    This study aim was to explore the effects of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in lupus nephritis and its potential underlying mechanisms. MRL/lpr mice were used for in vivo experiments and human proximal tubular cells (HK2 cells) were used for in vitro experiments. Results showed that MRL/lpr mice treated with vehicle solution or LV-Control shRNA displayed significant proteinuria and severe renal histopathological changes. LV-TWEAK-shRNA treatment reversed these changes and decreased renal expressions of TWEAK, TGF-β1, p-p38 MAPK, p-Smad2, COL-1, and α-SMA proteins. In vitro, hTWEAK treatment upregulated the expressions of TGF-β1, p-p38 MAPK, p-SMAD2, α-SMA, and COL-1 proteins in HK2 cells and downregulated the expressions of E-cadherin protein, which were reversed by cotreatment with anti-TWEAK mAb or SB431542 treatment. These findings suggest that TWEAK may contribute to chronic renal changes and renal fibrosis by activating TGF-β1 signaling pathway, and phosphorylation of Smad2 and p38 MAPK proteins was also involved in this signaling pathway. PMID:27365897

  7. The Asian-American variant of human papillomavirus type 16 exhibits higher activation of MAPK and PI3K/AKT signaling pathways, transformation, migration and invasion of primary human keratinocytes.

    PubMed

    Hochmann, Jimena; Sobrinho, João S; Villa, Luisa L; Sichero, Laura

    2016-05-01

    Asian-American (AA) HPV-16 variants are associated with higher risk of cancer. Abnormal activation of intracellular signaling play a critical role in cancer development and progression. Our aim was to elucidate mechanisms underlying the higher oncogenic potential attributed to AA variant. We evaluated activation of MAPK and PI3K/AKT pathways in primary human keratinocytes (PHKs) transduced with E6/E7 of three HPV-16 variants: E-P, AA, E-350G. Phenotypes examined included migration, anchorage independent growth and invasion. AA PHKs presented the highest levels of active proteins involved in all cascades analyzed: MAPK-ERK, MAPK-p38 and PI3K-AKT. AA PHKs were more efficient in promoting anchorage independent growth, and in stimulating cell migration and invasion. MEK1 inhibition decreased migration. The mesenchymal phenotype marker vimentin was increased in AA PHKs. Our results suggest that MEK1, ERK2, AKT2 hyperactivation influence cellular behavior by means of GSK-3b inactivation and EMT induction prompting AA immortalized PHKs to more efficiently surpass carcinogenesis steps. PMID:26945151

  8. Perfluorooctanoic acid disrupts the blood-testis barrier and activates the TNFα/p38 MAPK signaling pathway in vivo and in vitro.

    PubMed

    Lu, Yin; Luo, Bin; Li, Jing; Dai, Jiayin

    2016-04-01

    Perfluorooctanoic acid (PFOA) is correlated with male reproductive dysfunction in animals and humans, but the underlying mechanisms for this remain unknown. To explore the potential reproductive toxicity of PFOA, we studied blood-testis barrier (BTB) damage using in vivo and in vitro models. Male mice were gavage-administered PFOA (0-20 mg/kg/d) for 28 consecutive days, and breeding capacity and permeability of the Sertoli cell-based BTB were estimated. Primary Sertoli cells (SCs) were exposed to PFOA (0-500 μM) for 48 h, and transepithelial electrical resistance (TER) was assessed. Furthermore, BTB-associated protein expression, TNFα content, and phosphorylation and protein levels of the mitogen-activated protein kinase (MAPK) pathway were detected. An apparent decrease in mated and pregnant females per male mouse as well as litter weight was observed. Marked BTB damage was evidenced by increased red biotin fluorescence in the lumen tubular of the testes and the decrease in TER in SCs in vitro. The protein levels of claudin-11, connexin-43, N-cadherin, β-catenin, and occludin were significantly decreased in the testes and also in the SCs in vitro except for N-cadherin and β-catenin. TNFα content showed a dose-dependent increase in the testes and a dose- and time-dependent increase in the SCs, with the p-p38/p38 MAPK ratio also increasing in testes and SCs after PFOA exposure. Moreover, PFOA altered expressions of claudin-11, connexin-43, TNFα, and p-p38 MAPK were recovered 48 h after PFOA removal in the SCs. The SCs appeared to be target to PFOA, and the disruption of the BTB may be crucial to PFOA-induced reproductive dysfunction in mice. PMID:25743374

  9. [Regulative mechanism of renal inflammatory-related p38MAPK signaling pathway in diabetic nephropathy and interventional effects of Chinese herbal medicine].

    PubMed

    Chen, Hao-Li; Wan, Yi-Gang; Zhao, Qing; Huang, Yan-Ru; Shi, Xi-Miao; Meng, Xian-Jie; Yao, Jian

    2013-07-01

    It is reported, in the process of diabetic nephropathy (DN), inflammatory-related p38 mitogen-activated protein kinase (MAPK) signaling pathway has a close relationship with renal injury. On the one hand,many factors in the upstream including hyperglycemia, abnormal hemodynamics, oxidative stress, and pro-inflammatory cytokines could activate p38MAPK signaling pathway. On the other hand,the activated p38MAPK signaling pathway could lead to renal damage via activating inflammatory cells, inducing the expression of inflammatory mediators, and intervening cytokines production. CHM could intervene p38MAPK signaling pathway through multi-ways, including inhibiting inflammatory cytokines expression, regulating phosphorylated p38MAPK (p-p38MAPK) expression, and reducing fibrogenic factors expression. PMID:24199552

  10. Hypertonic saline activation of p38 MAPK primes the PMN respiratory burst.

    PubMed

    Ciesla, D J; Moore, E E; Biffl, W L; Gonzalez, R J; Moore, H B; Silliman, C C

    2001-10-01

    Investigation of hypertonic saline (HTS) modulation of neutrophils (PMN) cytotoxic responses has generated seemingly contradictory results. Clinically relevant levels of HTS attenuate receptor-mediated p38 MAPK signaling, whereas higher levels activate p38 MAPK. Concurrently, HTS exerts a dose-dependent attenuation of the PMN respiratory burst, most notably at concentrations where p38 MAPK is activated. We hypothesized that HTS-mediated p38 MAPK activation augments the PMN respiratory burst on return to normotonicity. We found that although clinically relevant levels of HTS (Na+ > or = 200 mM) did not activate p38 MAPK, higher concentrations (Na+ > or = 300 mM) resulted in activation comparable with that after PAF stimulation. Transient stimulation with high levels of HTS primed the PMN respiratory burst in response to fMLP and PMA. This effect was attenuated by pretreatment with SB 203580, a p38 MAPK specific inhibitor. We conclude that severe osmotic shock primes the respiratory burst via p38 MAPK signaling, further supporting the role of this signaling cascade in PMN priming. PMID:11580111

  11. p38γ and p38δ Mitogen Activated Protein Kinases (MAPKs), New Stars in the MAPK Galaxy

    PubMed Central

    Escós, Alejandra; Risco, Ana; Alsina-Beauchamp, Dayanira; Cuenda, Ana

    2016-01-01

    The protein kinases p38γ and p38δ belong to the p38 mitogen-activated protein kinase (MAPK) family. p38MAPK signaling controls many cellular processes and is one of the most conserved mechanisms in eukaryotes for the cellular response to environmental stress and inflammation. Although p38γ and p38δ are widely expressed, it is likely that they perform specific functions in different tissues. Their involvement in human pathologies such as inflammation-related diseases or cancer is starting to be uncovered. In this article we give a general overview and highlight recent advances made in defining the functions of p38γ and p38δ, focusing in innate immunity and inflammation. We consider the potential of the pharmacological targeting of MAPK pathways to treat autoimmune and inflammatory diseases and cancer. PMID:27148533

  12. Kidney injury molecule-1 (KIM-1) mediates renal epithelial cell repair via ERK MAPK signaling pathway

    PubMed Central

    Zhang, Zhiwei; Cai, Cindy X

    2016-01-01

    The expression of kidney injury molecule-1 (KIM-1), a very promising sensitive and specific urinary biomarker for acute renal injury, is markedly upregulated in injured and regenerating renal proximal tubular epithelial cells following ischemic or toxic insults, suggesting a possible role for this molecule in renal repair process. In the present study we report that expression of KIM-1 facilitates renal tubular epithelial cell repair by promoting cell migration and proliferation. KIM-1 expression also enhances ERK MAPK activation, and the modulatory effect of KIM-1 on cellular repair process is likely mediated via ERK MAPK signaling pathway. PMID:27084535

  13. Kidney injury molecule-1 (KIM-1) mediates renal epithelial cell repair via ERK MAPK signaling pathway.

    PubMed

    Zhang, Zhiwei; Cai, Cindy X

    2016-05-01

    The expression of kidney injury molecule-1 (KIM-1), a very promising sensitive and specific urinary biomarker for acute renal injury, is markedly upregulated in injured and regenerating renal proximal tubular epithelial cells following ischemic or toxic insults, suggesting a possible role for this molecule in renal repair process. In the present study, we report that expression of KIM-1 facilitates renal tubular epithelial cell repair by promoting cell migration and proliferation. KIM-1 expression also enhances ERK MAPK activation, and the modulatory effect of KIM-1 on cellular repair process is likely mediated via ERK MAPK signaling pathway. PMID:27084535

  14. Plasticity of the MAPK Signaling Network in Response to Mechanical Stress

    PubMed Central

    Shekhar, Shashank; Kanger, Johannes S.; Subramaniam, Vinod; Martín-Blanco, Enrique

    2014-01-01

    Cells display versatile responses to mechanical inputs and recent studies have identified the mitogen-activated protein kinase (MAPK) cascades mediating the biological effects observed upon mechanical stimulation. Although, MAPK pathways can act insulated from each other, several mechanisms facilitate the crosstalk between the components of these cascades. Yet, the combinatorial complexity of potential molecular interactions between these elements have prevented the understanding of their concerted functions. To analyze the plasticity of the MAPK signaling network in response to mechanical stress we performed a non-saturating epistatic screen in resting and stretched conditions employing as readout a JNK responsive dJun-FRET biosensor. By knocking down MAPKs, and JNK pathway regulators, singly or in pairs in Drosophila S2R+ cells, we have uncovered unexpected regulatory links between JNK cascade kinases, Rho GTPases, MAPKs and the JNK phosphatase Puc. These relationships have been integrated in a system network model at equilibrium accounting for all experimentally validated interactions. This model allows predicting the global reaction of the network to its modulation in response to mechanical stress. It also highlights its context-dependent sensitivity. PMID:25025279

  15. Transforming growth factor β recruits persistent MAPK signaling to regulate long-term memory consolidation in Aplysia californica.

    PubMed

    Shobe, Justin; Philips, Gary T; Carew, Thomas J

    2016-05-01

    In this study, we explore the mechanistic relationship between growth factor signaling and kinase activity that supports the protein synthesis-dependent phase of long-term memory (LTM) consolidation for sensitization ofAplysia Specifically, we examine LTM for tail shock-induced sensitization of the tail-elicited siphon withdrawal (T-SW) reflex, a form of memory that requires both (i) extracellular signal-regulated kinase (ERK1/2; MAPK) activity within identified sensory neurons (SNs) that mediate the T-SW and (ii) the activation of transforming growth factor β (TGFβ) signaling. We now report that repeated tail shocks that induce intermediate-term (ITM) and LTM for sensitization, also induce a sustained post-training phase of MAPK activity in SNs (lasting at least 1 h). We identified two mechanistically distinct phases of post-training MAPK: (i) an immediate phase that does not require ongoing protein synthesis or TGFβ signaling, and (ii) a sustained phase that requires both protein synthesis and extracellular TGFβ signaling. We find that LTM consolidation requires sustained MAPK, and is disrupted by inhibitors of protein synthesis and TGFβ signaling during the consolidation window. These results provide strong evidence that TGFβ signaling sustains MAPK activity as an essential mechanistic step for LTM consolidation. PMID:27084925

  16. Antagonistic control of cell fates by JNK and p38-MAPK signaling.

    PubMed

    Wada, T; Stepniak, E; Hui, L; Leibbrandt, A; Katada, T; Nishina, H; Wagner, E F; Penninger, J M

    2008-01-01

    During the development and organogenesis of all multicellular organisms, cell fate decisions determine whether cells undergo proliferation, differentiation, or aging. Two independent stress kinase signaling pathways, p38-MAPK, and JNKs, have evolved that relay developmental and environmental cues to determine cell responses. Although multiple stimuli can activate these two stress kinase pathways, the functional interactions and molecular cross-talks between these common second signaling cascades are poorly elucidated. Here we report that JNK and p38-MAPK pathways antagonistically control cellular senescence, oncogenic transformation, and proliferation in primary mouse embryonic fibroblasts (MEFs). Similarly, genetic inactivation of the JNK pathway results in impaired proliferation of fetal hepatoblasts in vitro and defective adult liver regeneration in vivo, which is rescued by inhibition of the p38-MAPK pathway. Thus, the balance between the two stress-signaling pathways, MKK7-JNK and MKK3/6-p38-MAPK, determines cell fate and links environmental and developmental stress to cell cycle arrest, senescence, oncogenic transformation, and adult tissue regeneration. PMID:17762881

  17. Ilimaquinone induces death receptor expression and sensitizes human colon cancer cells to TRAIL-induced apoptosis through activation of ROS-ERK/p38 MAPK-CHOP signaling pathways.

    PubMed

    Do, Minh Truong; Na, MinKyun; Kim, Hyung Gyun; Khanal, Tilak; Choi, Jae Ho; Jin, Sun Woo; Oh, Seok Hoon; Hwang, In Hyun; Chung, Young Chul; Kim, Hee Suk; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-09-01

    TRAIL induces apoptosis in a variety of tumor cells. However, development of resistance to TRAIL is a major obstacle to more effective cancer treatment. Therefore, novel pharmacological agents that enhance sensitivity to TRAIL are necessary. In the present study, we investigated the molecular mechanisms by which ilimaquinone isolated from a sea sponge sensitizes human colon cancer cells to TRAIL. Ilimaquinone pretreatment significantly enhanced TRAIL-induced apoptosis in HCT 116 cells and sensitized colon cancer cells to TRAIL-induced apoptosis through increased caspase-8, -3 activation, PARP cleavage, and DNA damage. Ilimaquinone also reduced the cell survival proteins Bcl2 and Bcl-xL, while strongly up-regulating death receptor (DR) 4 and DR5 expression. Induction of DR4 and DR5 by ilimaquinone was mediated through up-regulation of CCAAT/enhancer-binding protein homologous protein (CHOP). The up-regulation of CHOP, DR4 and DR5 expression was mediated through activation of extracellular-signal regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) signaling pathways. Finally, the generation of ROS was required for CHOP and DR5 up-regulation by ilimaquinone. These results demonstrate that ilimaquinone enhanced the sensitivity of human colon cancer cells to TRAIL-induced apoptosis through ROS-ERK/p38 MAPK-CHOP-mediated up-regulation of DR4 and DR5 expression, suggesting that ilimaquinone could be developed into an adjuvant chemotherapeutic drug. PMID:24930757

  18. In Vitro Manganese Exposure Disrupts MAPK Signaling Pathways in Striatal and Hippocampal Slices from Immature Rats

    PubMed Central

    Peres, Tanara Vieira; Pedro, Daniela Zótico; de Cordova, Fabiano Mendes; Lopes, Mark William; Gonçalves, Filipe Marques; Mendes-de-Aguiar, Cláudia Beatriz Nedel; Walz, Roger; Farina, Marcelo; Aschner, Michael; Leal, Rodrigo Bainy

    2013-01-01

    The molecular mechanisms mediating manganese (Mn)-induced neurotoxicity, particularly in the immature central nervous system, have yet to be completely understood. In this study, we investigated whether mitogen-activated protein kinases (MAPKs) and tyrosine hydroxylase (TH) could represent potential targets of Mn in striatal and hippocampal slices obtained from immature rats (14 days old). The aim of this study was to evaluate if the MAPK pathways are modulated after subtoxic Mn exposure, which do not significantly affect cell viability. The concentrations of manganese chloride (MnCl2; 10–1,000 μM) caused no change in cell viability in slices exposed for 3 or 6 hours. However, Mn exposure significantly increased extracellular signal-regulated kinase (ERK) 1/2, as well as c-Jun N-terminal kinase (JNK) 1/2/3 phosphorylation at both 3 and 6 hours incubations, in both brain structures. Furthermore, Mn exposure did not change the total content or phosphorylation of TH at the serine 40 site in striatal slices. Thus, Mn at concentrations that do not disrupt cell viability causes activation of MAPKs (ERK1/2 and JNK1/2/3) in immature hippocampal and striatal slices. These findings suggest that altered intracellular MAPKs signaling pathways may represent an early event concerning the effects of Mn in the immature brain. PMID:24324973

  19. Ssanghwa-tang, an oriental herbal cocktail, exerts anti-melanogenic activity by suppression of the p38 MAPK and PKA signaling pathways in B16F10 cells

    PubMed Central

    2013-01-01

    Background Ssanghwa-tang (SHT) is a widely used medication for the treatment of fatigue, pain, inflammation, hypothermia, erectile dysfunction, cancer, and osteoporosis in Asia, however, role of SHT on the melanin synthesis has not been checked previously. Thus, the present study was designed to determine the effect of SHT on α-melanocyte stimulating hormone (α-MSH)-induced melanogensis and its mechanisms of action in murine B16F10 melanoma cells. Method Cellular melanin content and tyrosinase activity in murine B16F10 melanoma cells were determined after α-MSH stimulation with or without pre-treatment of SHT at the concentration of 250 and 500 μg/ml. Expression level of tyrosinase, tyrosinase-related protein 1 (TRP-1), TRP-2, microphthalmia-associated transcription factor (MITF), and activation of c-AMP-dependent protein kinase (PKA), c-AMP-related element binding protein (CREB), and mitogen-activated protein kinases (MAPKs) were examined by Western blot analysis. Results SHT significantly inhibited α-MSH-induced melanin synthesis and tyrosinase activity, and also decreased α-MSH-induced expression of MITF, tyrosinase, and TRP-1. In addition, SHT remarkably suppressed tyrosinase, CRE, and MITF luciferase reporter activity in a resting state as well as in α-MSH-stimulating condition. Phosphorylation of p38 MAPK by α-MSH stimulation was efficiently blocked by SHT pre-treatment. Moreover, SHT as an herbal cocktail showed synergistic anti-melanogenic effect compared with that of each single constituent herb. Conclusion SHT efficiently inhibited c-AMP-induced melanin synthesis in B16F10 cells via suppression of PKA and p38 MAPK signaling pathways and subsequently decreased the level of CREB phosphorylation, MITF, and melanogenic enzymes. These results indicate that SHT may be useful as herbal medicine for treating hyperpigmentation and cosmetics as a skin-whitening agent. PMID:23981281

  20. BMP signaling balances murine myeloid potential through SMAD-independent p38MAPK and NOTCH pathways.

    PubMed

    Cook, Brandoch D; Evans, Todd

    2014-07-17

    Bone morphogenetic protein (BMP) signaling regulates early hematopoietic development, proceeding from mesoderm patterning through the progressive commitment and differentiation of progenitor cells. The BMP pathway signals largely through receptor-mediated activation of Mothers Against Decapentaplegic homolog (SMAD) proteins, although alternate pathways are modulated through various components of mitogen-activated protein kinase (MAPK) signaling. Using a conditional, short hairpin RNA (shRNA)-based knockdown system in the context of differentiating embryonic stem cells (ESCs), we demonstrated previously that Smad1 promotes hemangioblast specification, but then subsequently restricts primitive progenitor potential. Here we show that co-knockdown of Smad5 restores normal progenitor potential of Smad1-depleted cells, suggesting opposing functions for Smad1 and Smad5. This balance was confirmed by cotargeting Smad1/5 with a specific chemical antagonist, LDN193189 (LDN). However, we discovered that LDN treatment after hemangioblast commitment enhanced primitive myeloid potential. Moreover, inhibition with LDN (but not SMAD depletion) increased expression of Delta-like ligands Dll1 and Dll3 and NOTCH activity; abrogation of NOTCH activity restored LDN-enhanced myeloid potential back to normal, corresponding with expression levels of the myeloid master regulator, C/EBPα. LDN but not SMAD activity was also associated with activation of the p38MAPK pathway, and blocking this pathway was sufficient to enhance myelopoiesis. Therefore, NOTCH and p38MAPK pathways balance primitive myeloid progenitor output downstream of the BMP pathway. PMID:24894772

  1. Disorders of dysregulated signal traffic through the RAS-MAPK pathway: phenotypic spectrum and molecular mechanisms

    PubMed Central

    Tartaglia, Marco; Gelb, Bruce D.

    2010-01-01

    RAS GTPases control a major signaling network implicated in several cellular functions, including cell fate determination, proliferation, survival, differentiation, migration, and senescence. Within this network, signal flow through the RAF-MEK-ERK pathway, the first identified mitogen-associated protein kinase (MAPK) cascade, mediates early and late developmental processes controlling morphology determination, organogenesis, synaptic plasticity and growth. Signaling through the RAS-MAPK cascade is tightly controlled, and its enhanced activation represents a well-known event in oncogenesis. Unexpectedly, in the past few years, inherited dysregulation of this pathway has been recognized as the cause underlying a group of clinically related disorders sharing facial dysmorphism, cardiac defects, reduced postnatal growth, ectodermal anomalies, variable cognitive deficits and susceptibility to certain malignancies as major features. These disorders are caused by heterozygosity for mutations in genes encoding RAS proteins, regulators of RAS function, modulators of RAS interaction with effectors or downstream signal transducers. Here, we provide an overview of the phenotypic spectrum associated with germline mutations perturbing RAS-MAPK signaling, the unpredicted molecular mechanisms converging towards the dysregulation of this signaling cascade, and major genotype-phenotype correlations. PMID:20958325

  2. Tight Interconnection and Multi-Level Control of Arabidopsis MYB44 in MAPK Cascade Signalling

    PubMed Central

    2013-01-01

    Abiotic stress poses a huge, ever-increasing problem to plants and agriculture. The dissection of signalling pathways mediating stress tolerance is a prerequisite to develop more resistant plant species. Mitogen-activated protein kinase (MAPK) cascades are universal signalling modules. In Arabidopsis, the MAPK MPK3 and its upstream regulator MAPK kinase MKK4 initiate the adaptation response to numerous abiotic and biotic stresses. Yet, molecular steps directly linked with MKK4 – MPK3 activation are largely unknown. Starting with a yeast-two-hybrid screen for interacting partners of MKK4, we identified a transcription factor, MYB44. MYB44 is controlled at multiple levels by and strongly inter-connected with MAPK signalling. As we had shown earlier, stress-induced expression of the MYB44 gene is regulated by a MPK3-targeted bZIP transcription factor VIP1. At the protein level, MYB44 interacts with MPK3 in vivo. MYB44 is phosphorylated by MPK3 in vitro at a single residue, Ser145. Although replacement of Ser145 by a non-phosphorylatable (S145A) or phosphomimetic (S145D) residue did not alter MYB44 subcellular localisation, dimerization behaviour nor DNA-binding characteristics, abiotic stress tolerance tests in stable transgenic Arabidopsis plants clearly related S145 phosphorylation to MYB44 function: Compared to Arabidopsis wild type plants, MYB44 overexpressing lines exhibit an enhanced tolerance to osmotic stress and are slightly more sensitive to abscisic acid. Interestingly, overexpression of the S145A variant revealed that impaired phosphorylation does not render the MYB44 protein non-functional. Instead, S145A lines are highly sensitive to abiotic stress, and thereby remarkably similar to mpk3-deficient plants. Its in vivo interaction with the nuclear sub-pools of both MPK3 and MKK4 renders MYB44 the first plant transcription factor to have a second function as putative MAPK cascade scaffolding protein. PMID:23437396

  3. A p38MAPK/MK2 signaling pathway leading to redox stress, cell death and ischemia/reperfusion injury

    PubMed Central

    2014-01-01

    Background Many diseases and pathological conditions are characterized by transient or constitutive overproduction of reactive oxygen species (ROS). ROS are causal for ischemia/reperfusion (IR)-associated tissue injury (IRI), a major contributor to organ dysfunction or failure. Preventing IRI with antioxidants failed in the clinic, most likely due to the difficulty to timely and efficiently target them to the site of ROS production and action. IR is also characterized by changes in the activity of intracellular signaling molecules including the stress kinase p38MAPK. While ROS can cause the activation of p38MAPK, we recently obtained in vitro evidence that p38MAPK activation is responsible for elevated mitochondrial ROS levels, thus suggesting a role for p38MAPK upstream of ROS and their damaging effects. Results Here we identified p38MAPKα as the predominantly expressed isoform in HL-1 cardiomyocytes and siRNA-mediated knockdown demonstrated the pro-oxidant role of p38MAPKα signaling. Moreover, the knockout of the p38MAPK effector MAPKAP kinase 2 (MK2) reproduced the effect of inhibiting or knocking down p38MAPK. To translate these findings into a setting closer to the clinic a stringent kidney clamping model was used. p38MAPK activity increased upon reperfusion and p38MAPK inhibition by the inhibitor BIRB796 almost completely prevented severe functional impairment caused by IR. Histological and molecular analyses showed that protection resulted from decreased redox stress and apoptotic cell death. Conclusions These data highlight a novel and important mechanism for p38MAPK to cause IRI and suggest it as a potential therapeutic target for prevention of tissue injury. PMID:24423080

  4. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway

    PubMed Central

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li-Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-01-01

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors. PMID:26080442

  5. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    DOE PAGESBeta

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li -Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referredmore » to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.« less

  6. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    SciTech Connect

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li -Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.

  7. MKK3 was involved in larval settlement of the barnacle Amphibalanus amphitrite through activating the kinase activity of p38MAPK.

    PubMed

    Zhang, Gen; He, Li-Sheng; Wong, Yue Him; Qian, Pei-Yuan

    2013-01-01

    The p38 mitogen-activated protein kinase (p38MAPK) plays a key role in larval settlement of the barnacle Amphibalanus amphitrite. To study the signaling pathway associated with p38MAPK during larval settlement, we sought to identify the upstream kinase of p38MAPK. Three MKKs (MKK3, MKK4 and MKK7) and three MAPKs (p38MAPK, ERK and JNK) in A. amphitrite were cloned and recombinantly expressed in E. coli. Through kinase assays, we found that MKK3, but not MKK4 or MKK7, phosphorylated p38MAPK. Furthermore, MKK3 activity was specific to p38MAPK, as it did not phosphorylate ERK or JNK. To further investigate the functional relationship between MKK3 and p38MAPK in vivo, we studied the localization of phospho-MKK3 (pMKK3) and MKK3 by immunostaining. Consistent with the patterns of p38MAPK and phospho-p38MAPK (pp38MAPK), pMKK3 and MKK3 mainly localized to the antennules of the cyprids. Western blot analysis revealed that pMKK3 levels, like pp38MAPK levels, were elevated at cyprid stage, compared to nauplii and juvenile stages. Moreover, pMKK3 levels increased after treatment with adult barnacle crude extracts, suggesting that MKK3 might mediate the stimulatory effects of adult barnacle extracts on the p38MAPK pathway. PMID:23922727

  8. Computational Modeling of PI3K/AKT and MAPK Signaling Pathways in Melanoma Cancer

    PubMed Central

    Pappalardo, Francesco; Russo, Giulia; Candido, Saverio; Pennisi, Marzio; Cavalieri, Salvatore; Motta, Santo; McCubrey, James A.; Nicoletti, Ferdinando; Libra, Massimo

    2016-01-01

    Background Malignant melanoma is an aggressive tumor of the skin and seems to be resistant to current therapeutic approaches. Melanocytic transformation is thought to occur by sequential accumulation of genetic and molecular alterations able to activate the Ras/Raf/MEK/ERK (MAPK) and/or the PI3K/AKT (AKT) signalling pathways. Specifically, mutations of B-RAF activate MAPK pathway resulting in cell cycle progression and apoptosis prevention. According to these findings, MAPK and AKT pathways may represent promising therapeutic targets for an otherwise devastating disease. Result Here we show a computational model able to simulate the main biochemical and metabolic interactions in the PI3K/AKT and MAPK pathways potentially involved in melanoma development. Overall, this computational approach may accelerate the drug discovery process and encourages the identification of novel pathway activators with consequent development of novel antioncogenic compounds to overcome tumor cell resistance to conventional therapeutic agents. The source code of the various versions of the model are available as S1 Archive. PMID:27015094

  9. Gadd45 Proteins as Critical Signal Transducers Linking NF-κB to MAPK Cascades

    PubMed Central

    Yang, Z.; Song, L.; Huang, C.

    2013-01-01

    The growth arrest and DNA damage-inducible 45 (Gadd45) proteins are a group of critical signal transducers that are involved in regulations of many cellular functions. Accumulated data indicate that all three Gadd45 proteins (i.e., Gadd45α, Gadd45β, and Gadd45γ) play essential roles in connecting an upstream sensor module, the transcription Nuclear Factor-κB (NF-κB), to a transcriptional regulating module, mitogen-activated protein kinase (MAPK). This NF-κB-Gadd45(s)-MAPK pathway responds to various kinds of extracellular stimuli and regulates such cell activities as growth arrest, differentiation, cell survival, and apoptosis. Defects in this pathway can also be related to oncogenesis. In the first part of this review, the functions of Gadd45 proteins, and briefly NF-κB and MAPK, are summarized. In the second part, the mechanisms by which Gadd45 proteins are regulated by NF-κB, and how they affect MAPK activation, are reviewed. PMID:20025601

  10. CD14 Signaling Restrains Chronic Inflammation through Induction of p38-MAPK/SOCS-Dependent Tolerance

    PubMed Central

    Sahay, Bikash; Patsey, Rebeca L.; Eggers, Christian H.; Salazar, Juan C.; Radolf, Justin D.; Sellati, Timothy J.

    2009-01-01

    Current thinking emphasizes the primacy of CD14 in facilitating recognition of microbes by certain TLRs to initiate pro-inflammatory signaling events and the importance of p38-MAPK in augmenting such responses. Herein, this paradigm is challenged by demonstrating that recognition of live Borrelia burgdorferi not only triggers an inflammatory response in the absence of CD14, but one that is, in part, a consequence of altered PI3K/AKT/p38-MAPK signaling and impaired negative regulation of TLR2. CD14 deficiency results in increased localization of PI3K to lipid rafts, hyperphosphorylation of AKT, and reduced activation of p38. Such aberrant signaling leads to decreased negative regulation by SOCS1, SOCS3, and CIS, thereby compromising the induction of tolerance in macrophages and engendering more severe and persistent inflammatory responses to B. burgdorferi. Importantly, these altered signaling events and the higher cytokine production observed can be mimicked through shRNA and pharmacological inhibition of p38 activity in CD14-expressing macrophages. Perturbation of this CD14/p38-MAPK-dependent immune regulation may underlie development of infectious chronic inflammatory syndromes. PMID:20011115

  11. Hyperactive Ras/MAPK signaling is critical for tibial nonunion fracture in neurofibromin-deficient mice.

    PubMed

    Sharma, Richa; Wu, Xiaohua; Rhodes, Steven D; Chen, Shi; He, Yongzheng; Yuan, Jin; Li, Jiliang; Yang, Xianlin; Li, Xiaohong; Jiang, Li; Kim, Edward T; Stevenson, David A; Viskochil, David; Xu, Mingjiang; Yang, Feng-Chun

    2013-12-01

    Neurofibromatosis type 1 (NF1) is a common genetic disorder affecting 1 in 3500 individuals. Patients with NF1 are predisposed to debilitating skeletal manifestations, including osteopenia/osteoporosis and long bone pseudarthrosis (nonunion fracture). Hyperactivation of the Ras/mitogen-activated protein kinase (MAPK) pathway in NF1 is known to underlie aberrant proliferation and differentiation in cell lineages, including osteoclast progenitors and mesenchymal stem cells (MSCs) also known as osteoblast progenitors (pro-OBLs). Our current study demonstrates the hyper Ras/MAPK as a critical pathway underlying the pathogenesis of NF1-associated fracture repair deficits. Nf1-deficient pro-OBLs exhibit Ras/MAPK hyperactivation. Introduction of the NF1 GTPase activating-related domain (NF1 GAP-related domain) in vitro is sufficient to rescue hyper Ras activity and enhance osteoblast (OBL) differentiation in Nf1(-/-) pro-OBLs and NF1 human (h) MSCs cultured from NF1 patients with skeletal abnormalities, including pseudarthrosis or scoliosis. Pharmacologic inhibition of mitogen-activated protein kinase kinase (MEK) signaling with PD98059 partially rescues aberrant Erk activation while enhancing OBL differentiation and expression of OBL markers, osterix and osteocalcin, in Nf1-deficient murine pro-OBLs. Similarly, MEK inhibition enhances OBL differentiation of hMSCs. In addition, PD98059 rescues aberrant osteoclast maturation in Nf1 haploinsufficient bone marrow mononuclear cells (BMMNCs). Importantly, MEK inhibitor significantly improves fracture healing in an NF1 murine model, Col2.3Cre;Nf1(flox/-). Collectively, these data indicate the Ras/MAPK cascade as a critical pathway in the pathogenesis of bone loss and pseudarthrosis related to NF1 mutations. These studies provide evidence for targeting the MAPK pathway to improve bone mass and treat pseudarthrosis in NF1. PMID:23863460

  12. Nanofiber diameter-dependent MAPK activity in osteoblasts.

    PubMed

    Jaiswal, Devina; Brown, Justin L

    2012-11-01

    The major challenge for bone tissue engineering lies in the fabrication of scaffolds that can mimic the extracellular matrix and promote osteogenesis. Electrospun fibers are being widely researched for this application due to high porosity, interconnectivity, and mechanical strength of the fibrous scaffolds. Electrospun poly methyl methacrylate (PMMA, 2.416 ± 0.100 μm) fibers were fabricated and etched using a 60% propylene glycol methyl ether acetate (PGMEA)/limonene (vol/vol) solution to obtain fiber diameters ranging from 2.5 to 0.5 μm in a time-dependent manner. The morphology of the fibrous scaffolds was evaluated using scanning electron microscopy and cellular compatibility with etchant-treated scaffold was assessed using immunoflurescence. Mitogen-activated protein kinases (MAPK) activation in response to different fiber diameter was evaluated with western blot as well as quantitative in-cell western. We report that electrospun micro-fibers can be etched to 0.552 ± 0.047 μm diameter without producing beads. Osteoblasts adhered to the fibers and a change in fiber diameter played a major role in modulating the activation of extracellular signal-regulated kinase (ERK) and p38 kinases with 0.882 ± 0.091 μm diameter fibers producing an inverse effect on ERK and p38 phosphorylation. These results indicate that nanofibers produced by wet etching can be effectively utilized to produce diameters that can differentially modulate MAPK activation patterns. PMID:22700490

  13. Hyperhomocysteinemia inhibits satellite cell regenerative capacity through p38 alpha/beta MAPK signaling.

    PubMed

    Veeranki, Sudhakar; Lominadze, David; Tyagi, Suresh C

    2015-07-15

    Chronic failure in maintenance and regeneration of skeletal muscles leads to lower muscle mass (sarcopenia), muscle weakness, and poor response to injury. Evidence suggests that aberrant p38 MAPK signaling undermines the repair process after injury in aged mice. Previous studies have shown that hyperhomocysteinemia (HHcy) has been associated with muscle weakness and lower than normal body weights. However, whether or not HHcy condition also compromises skeletal muscle regenerative capabilities is not clear. In the current study, we show that CBS-/+ mice, a model for HHcy condition, exhibited compromised regenerative function and cell proliferation upon injury. However, there was no significant difference in Pax7 expression levels in the satellite cells from CBS-/+ mouse skeletal muscles. Interestingly, the satellite cells from CBS-/+ mice not only exhibited diminished in vitro proliferative capabilities, but also there was heightened oxidative stress. In addition, there was enhanced p38 MAPK activation as well as p16 and p21 expression in the CBS-/+ mouse satellite cells. Moreover, the C2C12 myoblasts also exhibited higher p38 MAPK activation and p16 expression upon treatment with homocysteine in addition to enhanced ROS presence. Tissue engraftment potential and regeneration after injury were restored to some extent upon treatment with the p38-MAPK inhibitor, SB203580, in the CBS-/+ mice. These results together suggest that HHcy-induced diminished satellite cell proliferation involves excessive oxidative stress and p38 MAPK signaling. Our study further proposes that HHcy is a potential risk factor for elderly frailty, and need to be considered as a therapeutic target while designing the alleviation interventions/postinjury rehabilitation measures for adults with HHcy. PMID:25980021

  14. PDGF-BB-mediated activation of p42(MAPK) is independent of PDGF beta-receptor tyrosine phosphorylation.

    PubMed

    Cartel, N J; Liu, J; Wang, J; Post, M

    2001-10-01

    Herein, we investigated the activity of mitogen-activated protein kinase (MAPK), a key component of downstream signaling events, which is activated subsequent to platelet-derived growth factor (PDGF)-BB stimulation. Specifically, p42(MAPK) activity peaked 60 min after addition of PDGF-BB, declined thereafter, and was determined not to be a direct or necessary component of glycosaminoglycan (GAG) synthesis. PDGF-BB also activated MAPK kinase 2 (MAPKK2) but had no effect on MAPKK1 and Raf-1 activity. Chemical inhibition of Janus kinase, phosphatidylinositol 3-kinase, Src kinase, or tyrosine phosphorylation inhibition of the PDGF beta-receptor (PDGFR-beta) did not abrogate PDGF-BB-induced p42(MAPK) activation or its threonine or tyrosine phosphorylation. A dominant negative cytoplasmic receptor for hyaluronan-mediated motility variant 4 (RHAMMv4), a regulator of MAPKK-MAPK interaction and activation, did not inhibit PDGF-BB-induced p42(MAPK) activation nor did a construct expressing PDGFR-beta with cytoplasmic tyrosines mutated to phenylalanine. However, overexpression of a dominant negative PDGFR-beta lacking the cytoplasmic signaling domain abrogated p42(MAPK) activity. These results suggest that PDGF-BB-mediated activation of p42(MAPK) requires the PDGFR-beta but is independent of its tyrosine phosphorylation. PMID:11557582

  15. FSH-induced p38-MAPK-mediated dephosphorylation at serine 727 of the signal transducer and activator of transcription 1 decreases Cyp1b1 expression in mouse granulosa cells.

    PubMed

    Du, Xue-Hai; Zhou, Xiao-Long; Cao, Rui; Xiao, Peng; Teng, Yun; Ning, Cai-Bo; Liu, Hong-Lin

    2015-01-01

    Most mammalian follicles undergo atresia at various stages before ovulation, and granulosa cell apoptosis is a major cause of antral follicular atresia. Estradiol is an essential mitogen for granulosa cell proliferation in vivo and inhibition of apoptosis. The estradiol-producing capacity and metabolism levels are important for follicle health, and sufficient estradiol is necessary for follicle development and ovulation. Cyp1b1, a member of the cytochrome P450 1 subfamily, is responsible for the metabolism of a wide variety of halogenated and polycyclic aromatic hydrocarbons in diverse tissues. In mouse follicles, Cyp1b1 converts estradiol to 4-hydroxyestradiol. We investigated mouse granulosa cells (MGCs) in vivo and in vitro and found that Cyp1b1 played a crucial role in estradiol metabolism in dominant follicles. Follicle-stimulating hormone (FSH) decreased estrogen metabolism by reducing Cyp1b1 mRNA and protein levels in MGCs. Furthermore, FSH regulated signal transducer and activator of transcription 1 (STAT1), a significant transcription factor of Cyp1b1, by mediating the dephosphorylation of STAT1 on serine 727 (Ser(727)) in MGCs. p38 mitogen-activated protein kinase (MAPK) may be involved in the FSH-induced dephosphorylation of STAT1 on Ser(727) in MGCs. These results suggested that FSH functions via p38 MAPK-induced dephosphorylation at Ser(727) of STAT1 to downregulate Cyp1b1 expression and maintain the estradiol levels in mouse dominant follicles. PMID:25315223

  16. EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila

    PubMed Central

    Jiang, Huaqi; Grenley, Marc O.; Bravo, Maria-Jose; Blumhagen, Rachel Z.; Edgar, Bruce A.

    2010-01-01

    Many tissues in higher animals undergo dynamic homeostatic growth, wherein damaged or aged cells are replaced by the progeny of resident stem cells. To maintain homeostasis, stem cells must respond to tissue needs. Here we show that in response to damage or stress in the intestinal (midgut) epithelium of adult Drosophila, multiple EGFR ligands and rhomboids (intramembrane proteases that activate some EGFR ligands) are induced, leading to the activation of EGFR signaling in intestinal stem cells (ISCs). Activation of EGFR signaling promotes ISC division and midgut epithelium regeneration, thus maintaining tissue homeostasis. ISCs defective in EGFR signaling cannot grow or divide, are poorly maintained, and cannot support midgut epithelium regeneration following enteric infection by the bacterium, Pseudomonas entomophila. Furthermore, ISC proliferation induced by Jak/Stat signaling is dependent upon EGFR signaling. Thus the EGFR/Ras/MAPK signaling pathway plays central, essential roles in ISC maintenance and the feedback system that mediates intestinal homeostasis. PMID:21167805

  17. ESAT-6 induced COX-2 expression involves coordinated interplay between PI3K and MAPK signaling.

    PubMed

    A, Senthil Kumar; Bansal, Kushagra; Holla, Sahana; Verma-Kumar, Shalu; Sharma, Pawan; Balaji, Kithiganahalli Narayanaswamy

    2012-01-01

    Macrophages, as sentinels of robust host immunity, are key regulators of innate immune responses against invading mycobacteria; however, pathogenic mycobacteria survive in the infected host by subverting host innate immunity. Infection dependent expression of early secreted antigenic target protein 6 (ESAT-6) by Mycobacterium tuberculosis is strongly correlated with subversion of innate immune responses against invading mycobacteria. As a part of multifaceted immunity to mycobacterial infection, induced expression of cyclooxygenase-2 (COX-2) may act as an important influencing factor towards effective host immunity. In the current investigation, we demonstrate that ESAT-6 triggers COX-2 expression both in vitro and in vivo in a TLR2 dependent manner. Signaling perturbation data suggest that signaling dynamics of PI3K and p38 and JNK1/2 MAPK assume critical importance in ESAT-6 triggered expression of COX-2 in macrophages. Interestingly, ESAT-6 triggered PI3K-MAPK signaling axis holds the capacity to regulate coordinated activation of NF-κB and AP-1. Overall, current investigation provides mechanistic insights into ESAT-6 induced COX-2 expression and unravels TLR2 mediated interplay of PI3K and MAPK signaling axis as a rate-determining step during intricate host immune responses. These findings would serve as a paradigm to understand pathogenesis of mycobacterial infection and clearly pave a way towards development of novel therapeutics. PMID:22154837

  18. Activation of Type 4 Metabotropic Glutamate Receptor Attenuates Oxidative Stress-Induced Death of Neural Stem Cells with Inhibition of JNK and p38 MAPK Signaling.

    PubMed

    Zhang, Zhichao; Ma, Wen; Wang, Li; Gong, Hanshi; Tian, Yumei; Zhang, Jianshui; Liu, Jianxin; Lu, Haixia; Chen, Xinlin; Liu, Yong

    2015-11-15

    Promoting both endogenous and exogenous neural stem cells' (NSCs) survival in the hostile host environments is essential to cell replacement therapy for central nervous system (CNS) disorders. Type 4 metabotropic glutamate receptor (mGluR4), one of the members of mGluRs, has been shown to protect neurons from acute and chronic excitotoxic insults in various brain damages. The present study investigated the preventive effects of mGluR4 on NSC injury induced by oxidative stress. Under challenge with H2O2, loss of cell viability was observed in cultured rat NSCs, and treatment with selective mGluR4 agonist VU0155041 conferred protective effects against the loss of cellular viability in a concentration-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Pretreatment of VU0155041 (30 μM) also inhibited the excessive NSC death induced by H2O2, and group III mGluRs antagonist (RS)-a-methylserine-O-phosphate (MSOP) or gene-targeted knockdown abolished the protective action of mGluR4, indicated by propidium iodide-Hoechst and terminal deoxynucleotidyl transferase-mediated UTP nick end labeling (TUNEL) staining. Western blot assay demonstrated that mGluR4 activation reversed the decreased procaspase-8/9/3and the destructed Bcl-2/Bax expressing balance, and likewise, MSOP and mGluR4 knockdown abrogated the action of mGluR4 activity. Furthermore, inhibition of JNK and p38 mitogen-activated protein kinases (MAPKs) were observed after mGluR4 activation, and as paralleling control, JNK-specific inhibitor SP600125 and p38-specific inhibitor SB203580 significantly rescued the H2O2-mediated NSC apoptosis and cleavage of procaspase-3. We suggest that activation of mGluR4 prevents oxidative stress-induced NSC death and apoptotic-associated protein activities with involvement of inhibiting the JNK and p38 pathways in cell culture. Our findings may help to develop strategies for enhancing the resided and transplanted NSC survival

  19. p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts.

    PubMed

    Furukawa, Fukiko; Matsuzaki, Koichi; Mori, Shigeo; Tahashi, Yoshiya; Yoshida, Katsunori; Sugano, Yasushi; Yamagata, Hideo; Matsushita, Masanori; Seki, Toshihito; Inagaki, Yutaka; Nishizawa, Mikio; Fujisawa, Junichi; Inoue, Kyoichi

    2003-10-01

    Hepatic stellate cells (HSCs) spontaneously transdifferentiate into myofibroblast (MFB)-phenotype on plastic dishes. This response recapitulates the features of activation in vivo. Transforming growth factor beta (TGF-beta) plays a prominent role in stimulating liver fibrogenesis by MFBs. In quiescent HSCs, TGF-beta signaling involves TGF-beta type I receptor (TbetaRI)-mediated phosphorylation of serine residues within the conserved SSXS motif at the C-terminus of Smad2 and Smad3. The middle linker regions of Smad2 and Smad3 also are phosphorylated by mitogen-activated protein kinase (MAPK). This study elucidates the change of Smad3-mediated signals during the transdifferentiation process. By using antibodies highly specific to the phosphorylated C-terminal region and the phosphorylated linker region of Smad3, we found that TGF-beta-dependent Smad3 phosphorylation at the C-terminal region decreased, but that the phosphorylation at the linker region increased in the process of transdifferentiation. TGF-beta activated the p38 MAPK pathway, further leading to Smad3 phosphorylation at the linker region in the cultured MFBs, irrespective of Smad2. The phosphorylation promoted hetero-complex formation and nuclear translocation of Smad3 and Smad4. Once combined with TbetaRI-phosphorylated Smad2, the Smad3 and Smad4 complex bound to plasminogen activator inhibitor-type I promoter could enhance the transcription. In addition, Smad3 phosphorylation mediated by the activated TbetaRI was impaired severely in MFBs during chronic liver injury, whereas Smad3 phosphorylation at the linker region was remarkably induced by p38 MAPK pathway. In conclusion, p38 MAPK-dependent Smad3 phosphorylation promoted extracellular matrix production in MFBs both in vitro and in vivo. PMID:14512875

  20. MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia

    PubMed Central

    Jones, Courtney L.; Gearheart, Christy M.; Fosmire, Susan; Delgado-Martin, Cristina; Evensen, Nikki A.; Bride, Karen; Waanders, Angela J.; Pais, Faye; Wang, Jinhua; Bhatla, Teena; Bitterman, Danielle S.; de Rijk, Simone R.; Bourgeois, Wallace; Dandekar, Smita; Park, Eugene; Burleson, Tamara M.; Madhusoodhan, Pillai Pallavi; Teachey, David T.; Raetz, Elizabeth A.; Hermiston, Michelle L.; Müschen, Markus; Loh, Mignon L.; Hunger, Stephen P.; Zhang, Jinghui; Garabedian, Michael J.; Porter, Christopher C.

    2015-01-01

    The outcome for pediatric acute lymphoblastic leukemia (ALL) patients who relapse is dismal. A hallmark of relapsed disease is acquired resistance to multiple chemotherapeutic agents, particularly glucocorticoids. In this study, we performed a genome-scale short hairpin RNA screen to identify mediators of prednisolone sensitivity in ALL cell lines. The incorporation of these data with an integrated analysis of relapse-specific genetic and epigenetic changes allowed us to identify the mitogen-activated protein kinase (MAPK) pathway as a mediator of prednisolone resistance in pediatric ALL. We show that knockdown of the specific MAPK pathway members MEK2 and MEK4 increased sensitivity to prednisolone through distinct mechanisms. MEK4 knockdown increased sensitivity specifically to prednisolone by increasing the levels of the glucocorticoid receptor. MEK2 knockdown increased sensitivity to all chemotherapy agents tested by increasing the levels of p53. Furthermore, we demonstrate that inhibition of MEK1/2 with trametinib increased sensitivity of ALL cells and primary samples to chemotherapy in vitro and in vivo. To confirm a role for MAPK signaling in patients with relapsed ALL, we measured the activation of the MEK1/2 target ERK in matched diagnosis-relapse primary samples and observed increased phosphorylated ERK levels at relapse. Furthermore, relapse samples have an enhanced response to MEK inhibition compared to matched diagnosis samples in xenograft models. Together, our data indicate that inhibition of the MAPK pathway increases chemosensitivity to glucocorticoids and possibly other agents and that the MAPK pathway is an attractive target for prevention and/or treatment of relapsed disease. PMID:26324703

  1. MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia.

    PubMed

    Jones, Courtney L; Gearheart, Christy M; Fosmire, Susan; Delgado-Martin, Cristina; Evensen, Nikki A; Bride, Karen; Waanders, Angela J; Pais, Faye; Wang, Jinhua; Bhatla, Teena; Bitterman, Danielle S; de Rijk, Simone R; Bourgeois, Wallace; Dandekar, Smita; Park, Eugene; Burleson, Tamara M; Madhusoodhan, Pillai Pallavi; Teachey, David T; Raetz, Elizabeth A; Hermiston, Michelle L; Müschen, Markus; Loh, Mignon L; Hunger, Stephen P; Zhang, Jinghui; Garabedian, Michael J; Porter, Christopher C; Carroll, William L

    2015-11-01

    The outcome for pediatric acute lymphoblastic leukemia (ALL) patients who relapse is dismal. A hallmark of relapsed disease is acquired resistance to multiple chemotherapeutic agents, particularly glucocorticoids. In this study, we performed a genome-scale short hairpin RNA screen to identify mediators of prednisolone sensitivity in ALL cell lines. The incorporation of these data with an integrated analysis of relapse-specific genetic and epigenetic changes allowed us to identify the mitogen-activated protein kinase (MAPK) pathway as a mediator of prednisolone resistance in pediatric ALL. We show that knockdown of the specific MAPK pathway members MEK2 and MEK4 increased sensitivity to prednisolone through distinct mechanisms. MEK4 knockdown increased sensitivity specifically to prednisolone by increasing the levels of the glucocorticoid receptor. MEK2 knockdown increased sensitivity to all chemotherapy agents tested by increasing the levels of p53. Furthermore, we demonstrate that inhibition of MEK1/2 with trametinib increased sensitivity of ALL cells and primary samples to chemotherapy in vitro and in vivo. To confirm a role for MAPK signaling in patients with relapsed ALL, we measured the activation of the MEK1/2 target ERK in matched diagnosis-relapse primary samples and observed increased phosphorylated ERK levels at relapse. Furthermore, relapse samples have an enhanced response to MEK inhibition compared to matched diagnosis samples in xenograft models. Together, our data indicate that inhibition of the MAPK pathway increases chemosensitivity to glucocorticoids and possibly other agents and that the MAPK pathway is an attractive target for prevention and/or treatment of relapsed disease. PMID:26324703

  2. Multi-Compartmentalisation in the MAPK Signalling Pathway Contributes to the Emergence of Oscillatory Behaviour and to Ultrasensitivity

    PubMed Central

    Shuaib, Aban; Hartwell, Adam; Kiss-Toth, Endre; Holcombe, Mike

    2016-01-01

    Signal transduction through the Mitogen Activated Protein Kinase (MAPK) pathways is evolutionarily highly conserved. Many cells use these pathways to interpret changes to their environment and respond accordingly. The pathways are central to triggering diverse cellular responses such as survival, apoptosis, differentiation and proliferation. Though the interactions between the different MAPK pathways are complex, nevertheless, they maintain a high level of fidelity and specificity to the original signal. There are numerous theories explaining how fidelity and specificity arise within this complex context; spatio-temporal regulation of the pathways and feedback loops are thought to be very important. This paper presents an agent based computational model addressing multi-compartmentalisation and how this influences the dynamics of MAPK cascade activation. The model suggests that multi-compartmentalisation coupled with periodic MAPK kinase (MAPKK) activation may be critical factors for the emergence of oscillation and ultrasensitivity in the system. Finally, the model also establishes a link between the spatial arrangements of the cascade components and temporal activation mechanisms, and how both contribute to fidelity and specificity of MAPK mediated signalling. PMID:27243235

  3. 2-O Heparan Sulfate Sulfation by Hs2st Is Required for Erk/Mapk Signalling Activation at the Mid-Gestational Mouse Telencephalic Midline

    PubMed Central

    Chan, Wai Kit; Howe, Katherine; Clegg, James M.; Guimond, Scott E.; Price, David J.; Turnbull, Jeremy E.; Pratt, Thomas

    2015-01-01

    Heparan sulfate (HS) is a linear carbohydrate composed of polymerized uronate-glucosamine disaccharide units that decorates cell surface and secreted glycoproteins in the extracellular matrix. In mammals HS is subjected to differential sulfation by fifteen different heparan sulfotransferase (HST) enzymes of which Hs2st uniquely catalyzes the sulfation of the 2-O position of the uronate in HS. HS sulfation is postulated to be important for regulation of signaling pathways by facilitating the interaction of HS with signaling proteins including those of the Fibroblast Growth Factor (Fgf) family which signal through phosphorylation of extracellular signal-regulated kinases Erk1/2. In the developing mouse telencephalon Fgf2 signaling regulates proliferation and neurogenesis. Loss of Hs2st function phenocopies the thinned cerebral cortex of mutant mice in which Fgf2 or Erk1/2 function are abrogated, suggesting the hypothesis that 2-O-sulfated HS structures play a specific role in Fgf2/Erk signaling pathway in this context in vivo. This study investigated the molecular role of 2-O sulfation in Fgf2/Erk signaling in the developing telencephalic midline midway through mouse embryogenesis at E12.5. We examined the expression of Hs2st, Fgf2, and Erk1/2 activity in wild-type and Hs2st-/- mice. We found that Hs2st is expressed at high levels at the midline correlating with high levels of Erk1/2 activation and Erk1/2 activation was drastically reduced in the Hs2st-/- mutant at the rostral telencephalic midline. We also found that 2-O sulfation is specifically required for the binding of Fgf2 protein to Fgfr1, its major cell-surface receptor at the rostral telencephalic midline. We conclude that 2-O sulfated HS structures generated by Hs2st are needed to form productive signaling complexes between HS, Fgf2 and Fgfr1 that activate Erk1/2 at the midline. Overall, our data suggest the interesting possibility that differential expression of Hs2st targets the rostral telencephalic

  4. 2-O Heparan Sulfate Sulfation by Hs2st Is Required for Erk/Mapk Signalling Activation at the Mid-Gestational Mouse Telencephalic Midline.

    PubMed

    Chan, Wai Kit; Howe, Katherine; Clegg, James M; Guimond, Scott E; Price, David J; Turnbull, Jeremy E; Pratt, Thomas

    2015-01-01

    Heparan sulfate (HS) is a linear carbohydrate composed of polymerized uronate-glucosamine disaccharide units that decorates cell surface and secreted glycoproteins in the extracellular matrix. In mammals HS is subjected to differential sulfation by fifteen different heparan sulfotransferase (HST) enzymes of which Hs2st uniquely catalyzes the sulfation of the 2-O position of the uronate in HS. HS sulfation is postulated to be important for regulation of signaling pathways by facilitating the interaction of HS with signaling proteins including those of the Fibroblast Growth Factor (Fgf) family which signal through phosphorylation of extracellular signal-regulated kinases Erk1/2. In the developing mouse telencephalon Fgf2 signaling regulates proliferation and neurogenesis. Loss of Hs2st function phenocopies the thinned cerebral cortex of mutant mice in which Fgf2 or Erk1/2 function are abrogated, suggesting the hypothesis that 2-O-sulfated HS structures play a specific role in Fgf2/Erk signaling pathway in this context in vivo. This study investigated the molecular role of 2-O sulfation in Fgf2/Erk signaling in the developing telencephalic midline midway through mouse embryogenesis at E12.5. We examined the expression of Hs2st, Fgf2, and Erk1/2 activity in wild-type and Hs2st-/- mice. We found that Hs2st is expressed at high levels at the midline correlating with high levels of Erk1/2 activation and Erk1/2 activation was drastically reduced in the Hs2st-/- mutant at the rostral telencephalic midline. We also found that 2-O sulfation is specifically required for the binding of Fgf2 protein to Fgfr1, its major cell-surface receptor at the rostral telencephalic midline. We conclude that 2-O sulfated HS structures generated by Hs2st are needed to form productive signaling complexes between HS, Fgf2 and Fgfr1 that activate Erk1/2 at the midline. Overall, our data suggest the interesting possibility that differential expression of Hs2st targets the rostral telencephalic

  5. Hepatitis C virus E2 protein promotes human hepatoma cell proliferation through the MAPK/ERK signaling pathway via cellular receptors

    SciTech Connect

    Zhao Lanjuan; Wang Lu; Ren Hao; Cao Jie; Li Li; Ke Jinshan; Qi Zhongtian . E-mail: qizt53@hotmail.com

    2005-04-15

    Dysregulation of mitogen-activated protein kinase (MAPK) signaling pathways by various viruses has been shown to be responsible for viral pathogenicity. The molecular mechanism by which hepatitis C virus (HCV) infection caused human liver diseases has been investigated on the basis of abnormal intracellular signal events. Current data are very limited involved in transmembrane signal transduction triggered by HCV E2 protein. Here we explored regulation of the MAPK/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway by E2 expressed in Chinese hamster oval cells. In human hepatoma Huh-7 cells, E2 specifically activated the MAPK/ERK pathway including downstream transcription factor ATF-2 and greatly promoted cell proliferation. CD81 and low density lipoprotein receptor (LDLR) on the cell surface mediated binding of E2 to Huh-7 cells. The MAPK/ERK activation and cell proliferation driven by E2 were suppressed by blockage of CD81 as well as LDLR. Furthermore, pretreatment with an upstream kinase MEK1/2 inhibitor U0126 also impaired the MAPK/ERK activation and cell proliferation induced by E2. Our results suggest that the MAPK/ERK signaling pathway triggered by HCV E2 via its receptors maintains survival and growth of target cells.

  6. Xiang-Qi-Tang and its active components exhibit anti-inflammatory and anticoagulant properties by inhibiting MAPK and NF-κB signaling pathways in LPS-treated rat cardiac microvascular endothelial cells.

    PubMed

    He, Chang-Liang; Yi, Peng-Fei; Fan, Qiao-Jia; Shen, Hai-Qing; Jiang, Xiao-Lin; Qin, Qian-Qian; Song, Zhou; Zhang, Cui; Wu, Shuai-Cheng; Wei, Xu-Bin; Li, Ying-Lun; Fu, Ben-Dong

    2013-04-01

    Xiang-Qi-Tang (XQT) is a Chinese herbal formula containing Cyperus rotundus, Astragalus membranaceus and Andrographis paniculata. Alpha-Cyperone (CYP), astragaloside IV (AS-IV) and andrographolide (AND) are the three major active components in this formula. XQT may modulate the inflammatory or coagulant responses. We therefore assessed the effects of XQT on lipopolysaccharide (LPS)-induced inflammatory model of rat cardiac microvascular endothelial cells (RCMECs). XQT, CYP, AS-IV and AND inhibited the production of tumor necrosis factor alpha (TNF-α), intercellular cell adhesion molecule-1 (ICAM-1) and plasminogen activator inhibitor-1 (PAI-1), and up-regulated the mRNA expression of Kruppel-like factor 2 (KLF2). XQT and CYP inhibited the secretion of tissue factor (TF). To further explore the mechanism, we found that XQT, or its active components CYP, AS-IV and AND significantly inhibited extracellular signal-regulated kinase (ERK), c-jun NH2-terminal kinase (JNK) and p38 phosphorylation protein expression as well as decreased the phosphorylation levels of nuclear factor κB (NF-κB) p65 proteins in LPS-stimulated RCMECs. These results suggested that XQT and its active components inhibited the expression of inflammatory and coagulant mediators via mitogen-activated protein kinase (MAPKs) and NF-κB signaling pathways. These findings may contribute to future research on the action mechanisms of this formula, as well as therapy for inflammation- or coagulation-related diseases. PMID:23171279

  7. Involvement of NF-κB-dependent signaling and p38 MAPK signaling pathway in the regulation of hemopoiesis during restrain stress.

    PubMed

    Dygai, A M; Zhdanov, V V; Zyuz'kov, G N; Udut, E V; Miroshnichenko, L A; Simanina, E V; Chaikovskii, A V; Stavrova, L A; Danilets, M G; Agafonov, V I; Khrichkova, T Yu

    2014-09-01

    Protein kinase p38 was shown to contribute to the increase in production of granulocyte CSF by microenvironmental cells under conditions of restraint stress. Stimulation of colony-forming activity was not accompanied by the increase in maturation of clonogenic structures in the bone marrow granulocytic stem. This process was realized with the involvement of NF-κB-dependent signaling and p38 MAPK signaling pathway. Our study showed that the p38 MAPK signaling pathway plays an important role in the regulation of granulocytopoiesis, but not of erythropoiesis. PMID:25257409

  8. Skb5, an SH3 adaptor protein, regulates Pmk1 MAPK signaling by controlling the intracellular localization of the MAPKKK Mkh1.

    PubMed

    Kanda, Yuki; Satoh, Ryosuke; Matsumoto, Saki; Ikeda, Chisato; Inutsuka, Natsumi; Hagihara, Kanako; Matzno, Sumio; Tsujimoto, Sho; Kita, Ayako; Sugiura, Reiko

    2016-08-15

    The mitogen-activated protein kinase (MAPK) cascade is a highly conserved signaling module composed of MAPK kinase kinases (MAPKKKs), MAPK kinases (MAPKK) and MAPKs. The MAPKKK Mkh1 is an initiating kinase in Pmk1 MAPK signaling, which regulates cell integrity in fission yeast (Schizosaccharomyces pombe). Our genetic screen for regulators of Pmk1 signaling identified Shk1 kinase binding protein 5 (Skb5), an SH3-domain-containing adaptor protein. Here, we show that Skb5 serves as an inhibitor of Pmk1 MAPK signaling activation by downregulating Mkh1 localization to cell tips through its interaction with the SH3 domain. Consistent with this, the Mkh1(3PA) mutant protein, with impaired Skb5 binding, remained in the cell tips, even when Skb5 was overproduced. Intriguingly, Skb5 needs Mkh1 to localize to the growing ends as Mkh1 deletion and disruption of Mkh1 binding impairs Skb5 localization. Deletion of Pck2, an upstream activator of Mkh1, impaired the cell tip localization of Mkh1 and Skb5 as well as the Mkh1-Skb5 interaction. Interestingly, both Pck2 and Mkh1 localized to the cell tips at the G1/S phase, which coincided with Pmk1 MAPK activation. Taken together, Mkh1 localization to cell tips is important for transmitting upstream signaling to Pmk1, and Skb5 spatially regulates this process. PMID:27451356

  9. Alternative Roles of STAT3 and MAPK Signaling Pathways in the MMPs Activation and Progression of Lung Injury Induced by Cigarette Smoke Exposure in ACE2 Knockout Mice.

    PubMed

    Hung, Yi-Han; Hsieh, Wen-Yeh; Hsieh, Jih-Sheng; Liu, Fon-Chang; Tsai, Chin-Hung; Lu, Li-Che; Huang, Chen-Yi; Wu, Chien-Liang; Lin, Chih-Sheng

    2016-01-01

    Inflammation-mediated abnormalities in the renin-angiotensin system (RAS) and expression of matrix metalloproteinases (MMPs) are implicated in the pathogenesis of lung injury. Angiotensin converting enzyme II (ACE2), an angiotensin converting enzyme (ACE) homologue that displays antagonist effects on ACE/angiotensin II (Ang II) axis, could also play a protective role against lung diseases. However, the relationship between ACE2 and MMPs activation in lung injury is still largely unclear. The purpose of this study is to investigate whether MMPs activity could be affected by ACE2 and which ACE2 derived signaling pathways could be also involved via using a mouse model with lung injury induced by cigarette smoke (CS) exposure for 1 to 3 weeks. Wild-type (WT; C57BL/6) and ACE2 KO mice (ACE2(-/-)) were utilized to study CS-induced lung injury. Increases in the resting respiratory rate (RRR), pulmonary immunokines, leukocyte infiltration and bronchial hyperplasia were observed in the CS-exposed mice. Compared to WT mice, more serious physiopathological changes were found in ACE2(-/-) mice in the first week of CS exposure. CS exposure increased pulmonary ACE and ACE2 activities in WT mice, and significantly increased ACE in ACE2(-/-) mice. Furthermore, the activity of pulmonary MMPs was decreased in CS-exposed WT mice, whereas this activity was increased in ACE2(-/-) mice. CS exposure increased the pulmonary p-p38, p-JNK and p-ERK1/2 level in all mice. In ACE2(-/-) mice, a significant increase p-STAT3 signaling was detected; however, no effect was observed on the p-STAT3 level in WT mice. Our results support the hypothesis that ACE2 deficiency influences MMPs activation and STAT3 phosphorylation signaling to promote more pulmonary inflammation in the development of lung injury. PMID:27019629

  10. Alternative Roles of STAT3 and MAPK Signaling Pathways in the MMPs Activation and Progression of Lung Injury Induced by Cigarette Smoke Exposure in ACE2 Knockout Mice

    PubMed Central

    Hung, Yi-Han; Hsieh, Wen-Yeh; Hsieh, Jih-Sheng; Liu, Fon-Chang; Tsai, Chin-Hung; Lu, Li-Che; Huang, Chen-Yi; Wu, Chien-Liang; Lin, Chih-Sheng

    2016-01-01

    Inflammation-mediated abnormalities in the renin-angiotensin system (RAS) and expression of matrix metalloproteinases (MMPs) are implicated in the pathogenesis of lung injury. Angiotensin converting enzyme II (ACE2), an angiotensin converting enzyme (ACE) homologue that displays antagonist effects on ACE/angiotensin II (Ang II) axis, could also play a protective role against lung diseases. However, the relationship between ACE2 and MMPs activation in lung injury is still largely unclear. The purpose of this study is to investigate whether MMPs activity could be affected by ACE2 and which ACE2 derived signaling pathways could be also involved via using a mouse model with lung injury induced by cigarette smoke (CS) exposure for 1 to 3 weeks. Wild-type (WT; C57BL/6) and ACE2 KO mice (ACE2-/-) were utilized to study CS-induced lung injury. Increases in the resting respiratory rate (RRR), pulmonary immunokines, leukocyte infiltration and bronchial hyperplasia were observed in the CS-exposed mice. Compared to WT mice, more serious physiopathological changes were found in ACE2-/- mice in the first week of CS exposure. CS exposure increased pulmonary ACE and ACE2 activities in WT mice, and significantly increased ACE in ACE2-/- mice. Furthermore, the activity of pulmonary MMPs was decreased in CS-exposed WT mice, whereas this activity was increased in ACE2-/- mice. CS exposure increased the pulmonary p-p38, p-JNK and p-ERK1/2 level in all mice. In ACE2-/- mice, a significant increase p-STAT3 signaling was detected; however, no effect was observed on the p-STAT3 level in WT mice. Our results support the hypothesis that ACE2 deficiency influences MMPs activation and STAT3 phosphorylation signaling to promote more pulmonary inflammation in the development of lung injury. PMID:27019629

  11. Induction of Macrophage Function in Human THP-1 Cells Is Associated with Rewiring of MAPK Signaling and Activation of MAP3K7 (TAK1) Protein Kinase

    PubMed Central

    Richter, Erik; Ventz, Katharina; Harms, Manuela; Mostertz, Jörg; Hochgräfe, Falko

    2016-01-01

    Macrophages represent the primary human host response to pathogen infection and link the immediate defense to the adaptive immune system. Mature tissue macrophages convert from circulating monocyte precursor cells by terminal differentiation in a process that is not fully understood. Here, we analyzed the protein kinases of the human monocytic cell line THP-1 before and after induction of macrophage differentiation by using kinomics and phosphoproteomics. When comparing the macrophage-like state with the monocytic precursor, 50% of the kinome was altered in expression and even 71% of covered kinase phosphorylation sites were affected. Kinome rearrangements are for example characterized by a shift of overrepresented cyclin-dependent kinases associated with cell cycle control in monocytes to calmodulin-dependent kinases and kinases involved in proinflammatory signaling. Eventually, we show that monocyte-to-macrophage differentiation is associated with major rewiring of mitogen-activated protein kinase signaling networks and demonstrate that protein kinase MAP3K7 (TAK1) acts as the key signaling hub in bacterial killing, chemokine production and differentiation. Our study proves the fundamental role of protein kinases and cellular signaling as major drivers of macrophage differentiation and function. The finding that MAP3K7 is central to macrophage function suggests MAP3K7 and its networking partners as promising targets in host-directed therapy for macrophage-associated disease. PMID:27066479

  12. Single-Cell Analysis Reveals that Insulation Maintains Signaling Specificity between Two Yeast MAPK Pathways with Common Components

    PubMed Central

    Patterson, Jesse C.; Klimenko, Evguenia S.; Thorner, Jeremy

    2014-01-01

    Eukaryotic cells use multiple mitogen-activated protein kinase (MAPK) cascades to evoke appropriate responses to external stimuli. In Saccharomyces cerevisiae, the MAPK Fus3 is activated by pheromone-binding G protein-coupled receptors to promote mating, whereas the MAPK Hog1 is activated by hyperosmotic stress to elicit the high osmolarity glycerol (HOG) response. Although these MAPK pathways share several upstream components, exposure to either pheromone or osmolyte alone triggers only the appropriate response. We used fluorescent localization- and transcription-specific reporters to assess activation of these pathways in individual cells on the minute and hour timescale, respectively. Dual activation of these two MAPK pathways occurred over a broad range of stimulant concentrations and temporal regimes in wild-type cells subjected to co-stimulation. Thus, signaling specificity is achieved through an “insulation” mechanism, not a “cross-inhibition” mechanism. Furthermore, we showed that there was a critical period during which Hog1 activity had to occur for proper insulation of the HOG pathway. PMID:20959523

  13. Socs36E Controls Niche Competition by Repressing MAPK Signaling in the Drosophila Testis

    PubMed Central

    Amoyel, Marc; Anderson, Jason; Suisse, Annabelle; Glasner, Johanna; Bach, Erika A.

    2016-01-01

    The Drosophila testis is a well-established system for studying stem cell self-renewal and competition. In this tissue, the niche supports two stem cell populations, germ line stem cells (GSCs), which give rise to sperm, and somatic stem cells called cyst stem cells (CySCs), which support GSCs and their descendants. It has been established that CySCs compete with each other and with GSCs for niche access, and mutations have been identified that confer increased competitiveness to CySCs, resulting in the mutant stem cell and its descendants outcompeting wild type resident stem cells. Socs36E, which encodes a negative feedback inhibitor of the JAK/STAT pathway, was the first identified regulator of niche competition. The competitive behavior of Socs36E mutant CySCs was attributed to increased JAK/STAT signaling. Here we show that competitive behavior of Socs36E mutant CySCs is due in large part to unbridled Mitogen-Activated Protein Kinase (MAPK) signaling. In Socs36E mutant clones, MAPK activity is elevated. Furthermore, we find that clonal upregulation of MAPK in CySCs leads to their outcompetition of wild type CySCs and of GSCs, recapitulating the Socs36E mutant phenotype. Indeed, when MAPK activity is removed from Socs36E mutant clones, they lose their competitiveness but maintain self-renewal, presumably due to increased JAK/STAT signaling in these cells. Consistently, loss of JAK/STAT activity in Socs36E mutant clones severely impairs their self-renewal. Thus, our results enable the genetic separation of two essential processes that occur in stem cells. While some niche signals specify the intrinsic property of self-renewal, which is absolutely required in all stem cells for niche residence, additional signals control the ability of stem cells to compete with their neighbors. Socs36E is node through which these processes are linked, demonstrating that negative feedback inhibition integrates multiple aspects of stem cell behavior. PMID:26807580

  14. Characterization of early events involved in human dendritic cell maturation induced by sensitizers: Cross talk between MAPK signalling pathways

    SciTech Connect

    Trompezinski, Sandra; Migdal, Camille; Tailhardat, Magalie; Le Varlet, Beatrice; Courtellemont, Pascal; Haftek, Marek; Serres, Mireille

    2008-08-01

    Dendritic cells (DCs), efficient-antigen presenting cells play an important role in initiating and regulating immune responses. DC maturation following exposure to nickel or DNCB induced an up-regulation of phenotypic markers and inflammatory cytokine secretion. Early intracellular mechanisms involved in DC maturation required to be precise. To address this purpose, DCs derived from human monocytes were treated with sensitizers (nickel, DNCB or thimerosal) in comparison with an irritant (SDS). Our data confirming the up-regulation of CD86, CD54 and cytokine secretion (IL-8 and TNF{alpha}) induced by sensitizers but not by SDS, signalling transduction involved in DC maturation was investigated using these chemicals. Kinase activity measurement was assessed using two new sensitive procedures (Face{sup TM} and CBA) requiring few cells. SDS did not induce changes in signalling pathways whereas NiSO{sub 4}, DNCB and thimerosal markedly activated p38 MAPK and JNK, in contrast Erk1/2 phosphorylation was completely inhibited by DNCB or thimerosal and only activated by nickel. A pre-treatment with p38 MAPK inhibitor (SB203580) suppressed Erk1/2 inhibition induced by DNCB or thimerosal demonstrating a direct interaction between p38 MAPK and Erk1/2. A pre-treatment with an antioxidant, N-acetyl-L-cysteine (NAC) markedly reduced Erk1/2 inhibition and p38 MAPK phosphorylation induced by DNCB and thimerosal, suggesting a direct activation of p38 MAPK via an oxidative stress and a regulation of MAPK signalling pathways depending on chemicals. Because of a high sensitivity of kinase activity measurements, these procedures will be suitable for weak or moderate sensitizer screening.

  15. Resokaempferol-mediated anti-inflammatory effects on activated macrophages via the inhibition of JAK2/STAT3, NF-κB and JNK/p38 MAPK signaling pathways.

    PubMed

    Yu, Qian; Zeng, KeWu; Ma, XiaoLi; Song, FangJiao; Jiang, Yong; Tu, PengFei; Wang, XueMei

    2016-09-01

    The excessive or prolonged production of inflammatory mediators can result in numerous chronic diseases, such as rheumatoid arthritis, atherosclerosis, diabetes, and cancer. Therefore, for many inflammatory-related diseases, pharmaceutical intervention is required to restrain the excessive release of such inflammatory mediators. Novel therapeutics and mechanistic insight are sought for the management of chronic inflammatory diseases. Resokaempferol (RES) is a type of flavonoid recently reported to demonstrate anti-cancer properties. However, the anti-inflammatory capacity of RES has not been studied to date. Therefore, this study investigated whether RES is capable of suppressing the inflammatory response to lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and the mechanism by which this is achieved. We found that RES attenuated the LPS-induced production of nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), monocyte chemotactic protein 1 (MCP-1) and IL-6. RES also inhibited the nuclear translocation of signal transducer and activator of transcription (STAT) 3 and reduced the LPS-mediated phosphorylation of Janus kinase (JAK) 2 and STAT3 at the sites of Ser727 and Tyr705. RES also inhibited the activation of NF-κB and JNK/p38 MAPK signaling pathways in LPS-induced RAW264.7 cells. Additionally, RES inhibited the activation of the JAK2/STAT3 pathway in exogenous IL-6-activated RAW264.7 macrophages. We conclude that RES inhibits the inflammatory response in activated macrophages by blocking the activation of the JAK2/STAT3 pathway by both LPS and IL-6 signaling. PMID:27261558

  16. Identification of putative negative regulators of yeast signaling through a screening for protein phosphatases acting on cell wall integrity and mating MAPK pathways.

    PubMed

    Sacristán-Reviriego, Almudena; Martín, Humberto; Molina, María

    2015-04-01

    The lack of signaling through MAPK pathways leads to a defective cellular response to the corresponding stimulus, but an improper hyperactivation of these routes results in deleterious effects as well. Protein phosphorylation is an activating modification for signal transmission through components of MAPK pathways and thus, protein phosphatases are key negative regulators of these cellular routes by limiting excessive signaling activity. However, in contrast to most of the protein kinases operating in MAPK pathways, protein phosphatases usually exhibit redundancy and promiscuity, which has limited the identification of their function. In order to identify new putative phosphatases operating in Saccharomyces cerevisiae MAPK signaling, we have taken advantage of growth inhibition promoted by overproduction of constitutively active components of the mating and cell wall integrity (CWI) pathways to perform a screen with a collection of 43 protein phosphatases or phosphatase-regulatory proteins. The phosphatases able to alleviate the induced growth inhibition when overproduced were further studied by testing their capacity to downregulate expression of mating and CWI responsive promoters and the consequences of their removal on MAPK signaling. Epistasis analysis placed the Ser/Thr protein phosphatase Ppq1 as a regulator of the mating MAPK module downstream the MAPKKK Ste11. The dual specificity phosphatase Yvh1 was found to be important for the maintenance of cell wall integrity and appropriate signaling through the CWI pathway. Moreover, we have found that Ptc2 and Ptc4 bind to the CWI MAPK Slt2. Together with known phosphatases of the mating and CWI pathway, as Msg5 or Ptp2, other putative negative regulators of both pathways that came up in the screening were Ptc2, Oca2 and Ptp1. We show that Ptp1 physically interacts with Slt2 and the mating MAPK Fus3. Elimination of Ptp1 results in increased signaling through these pathways, suggesting that this tyrosine

  17. AMPK activation inhibits expression of proinflammatory mediators through downregulation of PI3K/p38 MAPK and NF-κB signaling in murine macrophages.

    PubMed

    Huang, Bee-Piao; Lin, Chun-Hsiang; Chen, Han-Min; Lin, Jiun-Tsai; Cheng, Yi-Fang; Kao, Shao-Hsuan

    2015-02-01

    Adenosine monophosphate (AMP)-activated protein kinase (AMPK) plays a central role in energy homeostasis and regulation of inflammatory responses. The present study is aimed to investigate the anti-inflammatory effects of ENERGI-F704, a nucleobase analogue isolated from bamboo leaves, on expression of proinflammatory mediators in murine macrophage RAW264.7 in response to lipopolysaccharide (LPS). ENERGI-F704 enhanced phosphorylation of AMPK(T172) but insignificantly affected the viability of RAW264.7 cells. Further investigation showed that ENERGI-F704 decreased mRNA expression of interleukin (IL)-6, IL-8, tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX2), and inducible nitric oxide synthase (iNOS) induced by LPS, as well as suppressed the production of prostaglandin E2 (PGE₂) and nitric oxide (NO). Additionally, the inhibitory effects of ENERGI-F704 on the LPS-induced proinflammatory mediators were diminished by pretreatment of AMPK inhibitor Compound C. ENERGI-F704 also inhibited LPS-triggered activation of nuclear factor kappa B (NF-κB), phosphatidylinositol 3-kinase (PI3K), and p38 mitogen-activated protein kinase (p38), whereas extracellular signal-regulated kinase (Erk)1/2 and c-Jun N-terminal kinase (JNK) were insignificantly influenced. Our findings indicate that ENERGI-F704 may exert anti-inflammatory activity on RAW264.7 cells in response to LPS through the activation of AMPK and suppression of PI3K/P38/NF-κB signaling and the consequent decreased expression of proinflammatory mediators, suggesting that ENERGI-F704 is beneficial to the amelioration of inflammatory disorders. PMID:25536376

  18. GalNAc/Gal-binding Rhizoctonia solani agglutinin has antiproliferative activity in Drosophila melanogaster S2 cells via MAPK and JAK/STAT signaling.

    PubMed

    Hamshou, Mohamad; Van Damme, Els J M; Vandenborre, Gianni; Ghesquière, Bart; Trooskens, Geert; Gevaert, Kris; Smagghe, Guy

    2012-01-01

    Rhizoctonia solani agglutinin, further referred to as RSA, is a lectin isolated from the plant pathogenic fungus Rhizoctonia solani. Previously, we reported a high entomotoxic activity of RSA towards the cotton leafworm Spodoptera littoralis. To better understand the mechanism of action of RSA, Drosophila melanogaster Schneider S2 cells were treated with different concentrations of the lectin and FITC-labeled RSA binding was examined using confocal fluorescence microscopy. RSA has antiproliferative activity with a median effect concentration (EC(50)) of 0.35 µM. In addition, the lectin was typically bound to the cell surface but not internalized. In contrast, the N-acetylglucosamine-binding lectin WGA and the galactose-binding lectin PNA, which were both also inhibitory for S2 cell proliferation, were internalized whereas the mannose-binding lectin GNA did not show any activity on these cells, although it was internalized. Extracted DNA and nuclei from S2 cells treated with RSA were not different from untreated cells, confirming inhibition of proliferation without apoptosis. Pre-incubation of RSA with N-acetylgalactosamine clearly inhibited the antiproliferative activity by RSA in S2 cells, demonstrating the importance of carbohydrate binding. Similarly, the use of MEK and JAK inhibitors reduced the activity of RSA. Finally, RSA affinity chromatography of membrane proteins from S2 cells allowed the identification of several cell surface receptors involved in both signaling transduction pathways. PMID:22529896

  19. GalNAc/Gal-Binding Rhizoctonia solani Agglutinin Has Antiproliferative Activity in Drosophila melanogaster S2 Cells via MAPK and JAK/STAT Signaling

    PubMed Central

    Hamshou, Mohamad; Van Damme, Els J. M.; Vandenborre, Gianni; Ghesquière, Bart; Trooskens, Geert; Gevaert, Kris; Smagghe, Guy

    2012-01-01

    Rhizoctonia solani agglutinin, further referred to as RSA, is a lectin isolated from the plant pathogenic fungus Rhizoctonia solani. Previously, we reported a high entomotoxic activity of RSA towards the cotton leafworm Spodoptera littoralis. To better understand the mechanism of action of RSA, Drosophila melanogaster Schneider S2 cells were treated with different concentrations of the lectin and FITC-labeled RSA binding was examined using confocal fluorescence microscopy. RSA has antiproliferative activity with a median effect concentration (EC50) of 0.35 µM. In addition, the lectin was typically bound to the cell surface but not internalized. In contrast, the N-acetylglucosamine-binding lectin WGA and the galactose-binding lectin PNA, which were both also inhibitory for S2 cell proliferation, were internalized whereas the mannose-binding lectin GNA did not show any activity on these cells, although it was internalized. Extracted DNA and nuclei from S2 cells treated with RSA were not different from untreated cells, confirming inhibition of proliferation without apoptosis. Pre-incubation of RSA with N-acetylgalactosamine clearly inhibited the antiproliferative activity by RSA in S2 cells, demonstrating the importance of carbohydrate binding. Similarly, the use of MEK and JAK inhibitors reduced the activity of RSA. Finally, RSA affinity chromatography of membrane proteins from S2 cells allowed the identification of several cell surface receptors involved in both signaling transduction pathways. PMID:22529896

  20. Impact of non-thermal plasma treatment on MAPK signaling pathways of human immune cell lines.

    PubMed

    Bundscherer, Lena; Wende, Kristian; Ottmüller, Katja; Barton, Annemarie; Schmidt, Anke; Bekeschus, Sander; Hasse, Sybille; Weltmann, Klaus-Dieter; Masur, Kai; Lindequist, Ulrike

    2013-10-01

    In the field of wound healing research non-thermal plasma (NTP) increasingly draws attention. Next to its intensely studied antibacterial effects, some studies already showed stimulating effects on eukaryotic cells. This promises a unique potential in healing of chronic wounds, where effective therapies are urgently needed. Immune cells do play an important part in the process of wound healing and their reaction to NTP treatment has yet been rarely examined. Here, we studied the impact of NTP treatment using the kinpen on apoptotic and proliferative cell signaling pathways of two human immune cell lines, the CD4(+)T helper cell line Jurkat and the monocyte cell line THP-1. Depending on NTP treatment time the number of apoptotic cells increased in both investigated cell types according to a caspase 3 assay. Western blot analysis pointed out that plasma treatment activated pro-apoptotic signaling proteins like p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase 1 and 2 (JNK 1/2) in both cell types. Stronger signals were detected in Jurkat cells at comparable plasma treatment times. Intriguingly, exposure of Jurkat and THP-1 cells to plasma also activated the pro-proliferative signaling molecules extracellular signal-regulated kinase 1/2 (ERK 1/2) and MAPK/ERK kinase 1 and 2 (MEK 1/2). In contrast to Jurkat cells, the anti-apoptotic heat shock protein 27 (HSP27) was activated in THP-1 cells after plasma treatment, indicating a possible mechanism how THP-1 cells may reduce programmed cell death. In conclusion, several signaling cascades were activated in the examined immune cell lines after NTP treatment and in THP-1 monocytes a possible defense mechanism against plasma impacts could be revealed. Therefore, plasma might be a treatment option for wound healing. PMID:23735483

  1. Suppression of B-Raf(V600E) cancers by MAPK hyper-activation

    PubMed Central

    Eldad, Sophia; Smeir, Elia; Bar-Tana, Jacob

    2016-01-01

    B-Raf(V600E) activates MEK/MAPK signalling and acts as oncogenic driver of a variety of cancers, including melanoma, colorectal and papillary thyroid carcinoma. Specific B-Raf(V600E) kinase inhibitors (e.g., Vemurafenib) prove initial efficacy in melanoma followed shortly by acquired resistance, while failing in most other B-Raf(V600E) cancers due to primary resistance. Resistance is due to acquired mutations in the Ras/Raf/MEK/MAPK pathway and/or other oncogenic drivers that bypass B-Raf(V600E). Surprisingly, hyper-activation of MAPK by inhibiting its protein phosphatase 2A by a synthetic long-chain fatty acid analogue (MEDICA), results in oncogene-induced growth arrest and apoptosis of B-Raf(V600E) cancer cells. Growth arrest is accompanied by MAPK-mediated serine/threonine phosphorylation and suppression of a variety of oncogenic drivers that resist treatment by B-Raf(V600E) kinase inhibitors, including ErbB members, c-Met, IGFR, IRS, STAT3 and Akt. The combined activities of mutated B-Raf and MEDICA are required for generating hyper-activated MAPK, growth arrest and apoptosis, implying strict specificity for mutated B-Raf cancer cells. PMID:26959890

  2. Suppression of B-Raf(V600E) cancers by MAPK hyper-activation.

    PubMed

    Atiq, Rawan; Hertz, Rachel; Eldad, Sophia; Smeir, Elia; Bar-Tana, Jacob

    2016-04-01

    B-Raf(V600E) activates MEK/MAPK signalling and acts as oncogenic driver of a variety of cancers, including melanoma, colorectal and papillary thyroid carcinoma. Specific B-Raf(V600E) kinase inhibitors (e.g., Vemurafenib) prove initial efficacy in melanoma followed shortly by acquired resistance, while failing in most other B-Raf(V600E) cancers due to primary resistance. Resistance is due to acquired mutations in the Ras/Raf/MEK/MAPK pathway and/or other oncogenic drivers that bypass B-Raf(V600E). Surprisingly, hyper-activation of MAPK by inhibiting its protein phosphatase 2A by a synthetic long-chain fatty acid analogue (MEDICA), results in oncogene-induced growth arrest and apoptosis of B-Raf(V600E) cancer cells. Growth arrest is accompanied by MAPK-mediated serine/threonine phosphorylation and suppression of a variety of oncogenic drivers that resist treatment by B-Raf(V600E) kinase inhibitors, including ErbB members, c-Met, IGFR, IRS, STAT3 and Akt. The combined activities of mutated B-Raf and MEDICA are required for generating hyper-activated MAPK, growth arrest and apoptosis, implying strict specificity for mutated B-Raf cancer cells. PMID:26959890

  3. Atorvastatin Prevents Glutamate Uptake Reduction Induced by Quinolinic Acid Via MAPKs Signaling.

    PubMed

    Vandresen-Filho, S; Martins, W C; Bertoldo, D B; Rieger, D K; Maestri, M; Leal, R B; Tasca, C I

    2016-08-01

    Statins have been shown to promote neuroprotection in a wide range of neurological disorders. However, the mechanisms involved in such effects of statins are not fully understood. Quinolinic acid (QA) is a neurotoxin that induces seizures when infused in vivo and promotes glutamatergic excitotoxicity in the central nervous system. The aim of this study was to evaluate the putative glutamatergic mechanisms and the intracellular signaling pathways involved in the atorvastatin neuroprotective effects against QA toxicity. Atorvastatin (10 mg/kg) treatment for 7 days prevented the QA-induced decrease in glutamate uptake, but had no effect on increased glutamate release induced by QA. Moreover, atorvastatin treatment increased the phosphorylation of ERK1 and prevented the decrease in Akt phosphorylation induced by QA. Neither atorvastatin treatment nor QA infusion altered glutamine synthetase activity or the levels of phosphorylation of p38(MAPK) or JNK1/2 during the evaluation. Inhibition of MEK/ERK signaling pathway, but not PI3K/Akt signaling, abolished the neuroprotective effect of atorvastatin against QA-induced decrease in glutamate uptake. Our data suggest that atorvastatin protective effects against QA toxicity are related to modulation of glutamate transporters via MAPK/ERK signaling pathway. PMID:27084771

  4. Curcumin synergizes with resveratrol to stimulate the MAPK signaling pathway in human articular chondrocytes in vitro.

    PubMed

    Shakibaei, Mehdi; Mobasheri, Ali; Buhrmann, Constanze

    2011-05-01

    The mitogen-activated protein kinase (MAPK) pathway is stimulated in differentiated chondrocytes and is an important signaling cascade for chondrocyte differentiation and survival. Pro-inflammatory cytokines such as interleukin 1β (IL-1β) play important roles in the pathogenesis of osteoarthritis (OA) and rheumatoid arthritis (RA). In this study, we investigated whether curcumin and resveratrol can synergistically inhibit the catabolic effects of IL-1β, specifically the inhibition of the MAPK and subsequent apoptosis in human articular chondrocytes. Chondrocytes were either left untreated or treated with 10 ng/ml IL-1β or 1 μM U0126, a specific inhibitor of MAPK pathway alone for the indicated time periods or pre-treated with 10 μM curcumin, 10 μM resveratrol or 10 μM resveratrol and 10 μM curcumin for 4 h followed by co-treatment with 10 ng/ml IL-1β or 1 μM U0126 and 10 μM resveratrol, 10 μM curcumin or 10 μM resveratrol and 10 μM curcumin for the indicated time periods. Cultures were evaluated by immunoblotting and transmission electron microscopy. Incubation of chondrocytes with IL-1β resulted in induction of apoptosis, downregulation of β1-integrins and the extracellular signal-regulated kinase 1/2 (Erk1/2). Interestingly, U0126 induced apoptosis and blocked the above-mentioned proteins in a similar way to IL-1β. Furthermore, curcumin and resveratrol inhibited IL-1β- or U0126-induced apoptosis and downregulation of β1-integrins and Erk1/2 in human articular chondrocytes. These results suggest that combining these two natural compounds activates MEK/Erk signaling, a pathway that is involved in the maintenance of chondrocyte differentiation and survival. PMID:21484156

  5. Ganoderma lucidum polysaccharide exerts anti-tumor activity via MAPK pathways in HL-60 acute leukemia cells.

    PubMed

    Yang, Guohua; Yang, Lei; Zhuang, Yun; Qian, Xifeng; Shen, Yunfeng

    2016-01-01

    In this study, we investigated the anti-tumor activity both in vitro and in vivo of a polysaccharide obtained from Ganoderma lucidum on HL-60 acute myeloid leukemia cells, and focused on its targeting effect on mitogen-activated protein kinase (MAPK) pathways. It was found by the methods such as western blot and flow cytometry (FCM), that G. lucidum polysaccharide (GLP) blocked the extracellular signal-regulated kinase/MAPK signaling pathway, simultaneously activated p38 and JNK MAPK pathways, and therefore regulated their downstream genes and proteins, including p53, c-myc, c-fos, c-jun, Bcl-2, Bax, cleaved caspase-3 and cyclin D1. As a result, cycle arrest and apoptosis of HL-60 cells were induced. Therefore, GLP exerted anti-tumor activity via MAPK pathways in HL-60 acute leukemia cells. PMID:25327706

  6. FGFR2c-mediated ERK-MAPK activity regulates coronal suture development.

    PubMed

    Pfaff, Miles J; Xue, Ke; Li, Li; Horowitz, Mark C; Steinbacher, Derek M; Eswarakumar, Jacob V P

    2016-07-15

    Fibroblast growth factor receptor 2 (FGFR2) signaling is critical for proper craniofacial development. A gain-of-function mutation in the 2c splice variant of the receptor's gene is associated with Crouzon syndrome, which is characterized by craniosynostosis, the premature fusion of one or more of the cranial vault sutures, leading to craniofacial maldevelopment. Insight into the molecular mechanism of craniosynostosis has identified the ERK-MAPK signaling cascade as a critical regulator of suture patency. The aim of this study is to investigate the role of FGFR2c-induced ERK-MAPK activation in the regulation of coronal suture development. Loss-of-function and gain-of-function Fgfr2c mutant mice have overlapping phenotypes, including coronal synostosis and craniofacial dysmorphia. In vivo analysis of coronal sutures in loss-of-function and gain-of-function models demonstrated fundamentally different pathogenesis underlying coronal suture synostosis. Calvarial osteoblasts from gain-of-function mice demonstrated enhanced osteoblastic function and maturation with concomitant increase in ERK-MAPK activation. In vitro inhibition with the ERK protein inhibitor U0126 mitigated ERK protein activation levels with a concomitant reduction in alkaline phosphatase activity. This study identifies FGFR2c-mediated ERK-MAPK signaling as a key mediator of craniofacial growth and coronal suture development. Furthermore, our results solve the apparent paradox between loss-of-function and gain-of-function FGFR2c mutants with respect to coronal suture synostosis. PMID:27034231

  7. CREB-binding protein regulates lung cancer growth by targeting MAPK and CPSF4 signaling pathway.

    PubMed

    Tang, Zhipeng; Yu, Wendan; Zhang, Changlin; Zhao, Shilei; Yu, Zhenlong; Xiao, Xiangsheng; Tang, Ranran; Xuan, Yang; Yang, Wenjing; Hao, Jiaojiao; Xu, Tingting; Zhang, Qianyi; Huang, Wenlin; Deng, Wuguo; Guo, Wei

    2016-02-01

    CBP (CREB-binding protein) is a transcriptional co-activator which possesses HAT (histone acetyltransferases) activity and participates in many biological processes, including embryonic development, growth control and homeostasis. However, its roles and the underlying mechanisms in the regulation of carcinogenesis and tumor development remain largely unknown. Here we investigated the molecular mechanisms and potential targets of CBP involved in tumor growth and survival in lung cancer cells. Elevated expression of CBP was detected in lung cancer cells and tumor tissues compared to the normal lung cells and tissues. Knockdown of CBP by siRNA or inhibition of its HAT activity using specific chemical inhibitor effectively suppressed cell proliferation, migration and colony formation and induced apoptosis in lung cancer cells by inhibiting MAPK and activating cytochrome C/caspase-dependent signaling pathways. Co-immunoprecipitation and immunofluorescence analyses revealed the co-localization and interaction between CBP and CPSF4 (cleavage and polyadenylation specific factor 4) proteins in lung cancer cells. Knockdown of CPSF4 inhibited hTERT transcription and cell growth induced by CBP, and vice versa, demonstrating the synergetic effect of CBP and CPSF4 in the regulation of lung cancer cell growth and survival. Moreover, we found that high expression of both CBP and CPSF4 predicted a poor prognosis in the patients with lung adenocarcinomas. Collectively, our results indicate that CBP regulates lung cancer growth by targeting MAPK and CPSF4 signaling pathways. PMID:26628108

  8. Extracellular α-crystallin protects astrocytes from cell death through activation of MAPK, PI3K/Akt signaling pathway and blockade of ROS release from mitochondria.

    PubMed

    Zhu, Zhihui; Li, Rongyu; Stricker, Rolf; Reiser, Georg

    2015-09-16

    α-Crystallin with two isoforms, αA-crystallin (HSPB4) and αB-crystallin (HSPB5), is found in eye lens, spleen, lung, kidney, cornea, skin, but also in brain. Several studies revealed roles of αA/αB-crystallin in regulating cell viability and protection in the central nervous system. We previously demonstrated that α-crystallin serves as an intracellular protectant in astrocytes. Compared to well-studied intracellular functions of α-crystallin, there is limited proof for the role of α-crystallin as extracellular protectant. In order to clarify protective effects of extracellular αA/αB-crystallin, we exposed astrocytes to the toxic agents, staurosporine or C2-ceramide, or serum-starvation in the presence of αA/αB-crystallin. Extracellular αA/αB-crystallin protected astrocytes from staurosporine- and C2-ceramide-induced cell death. In addition, extracellular αB-crystallin/HSPB5 effectively promoted astrocytes viability through phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinases (p38) and c-Jun N-terminal kinases (JNK) signaling pathways under serum-deprivation. Furthermore, αB-crystallin/HSPB5 decreases the staurosporine-mediated cleavage of caspase 3 through PI3K/Akt signaling preventing apoptosis of astrocytes. Thus, the current study indicates that extracellular αA/αB-crystallin protects astrocytes exposed to various harmful stimuli. Furthermore, application of αB-crystallin/HSPB5 to isolated rat brain mitochondria inhibits ROS generation induced by complex III inhibition with Antimycin A. PMID:25998538

  9. Epibrassinolide alters PI3K/MAPK signaling axis via activating Foxo3a-induced mitochondria-mediated apoptosis in colon cancer cells.

    PubMed

    Coskun, Deniz; Obakan, Pinar; Arisan, Elif Damla; Çoker-Gürkan, Ajda; Palavan-Ünsal, Narçin

    2015-10-15

    Epibrassinolide (EBR), a steroid-derived plant growth regulator, has been recently suggested as an apoptotic inducer in different cancer cells. In this experimental study, we investigated the potential apoptotic effect of EBR on stress-related and survival signaling molecules in colon carcinoma cells. EBR decreased cell viability and colony formation in HCT 116 and HT-29 colon carcinoma cells. The inactivation of PI3K/AKT by EBR treatment led to upregulation of Foxo3a, which in turn induced apoptosis in HCT 116 and HT-29 cells. In addition, the upstream non-receptor protein tyrosine kinase Src was found elevated allowing to the upregulation of p38, stress-activated protein kinase/Jun amino-terminal kinase and extracellular signal-regulated kinase 1/2 and their target genes c-jun, c-fos and c-myc in a time-dependent manner in HCT 116 cells within 48h. The alterations in PA metabolism caused intracellular PA pool decrease. The upregulation of pro-apoptotic Bak, Bax, Puma and Bim were accompanied with the decrease in Mcl-1 in HCT 116 and Bcl-xL expression profiles in HT-29 following 48h EBR treatment. We suggest that the upregulation of Bim expression levels might be related with one of the PI3K/AKT target transcription factor Foxo3a, which was dephosphorylated by EBR treatment in HCT 116 and HT-29 cells. PMID:26318418

  10. Tetraspanin CD9 regulates osteoclastogenesis via regulation of p44/42 MAPK activity

    SciTech Connect

    Yi, TacGhee; Kim, Hye-Jin; Cho, Je-Yoel; Woo, Kyung Mi; Ryoo, Hyun-Mo; Kim, Gwan-Shik; Baek, Jeong-Hwa . E-mail: baekjh@snu.ac.kr

    2006-08-18

    Tetraspanin CD9 has been shown to regulate cell-cell fusion in sperm-egg fusion and myotube formation. However, the role of CD9 in osteoclast, another multinucleated cell type, is not still clear. Therefore, we investigated the role of CD9 in osteoclast differentiation. CD9 was expressed in osteoclast lineage cells and its expression level increased during the progression of RANKL-induced osteoclastogenesis. KMC8, a neutralizing antibody specific to CD9, significantly suppressed RANKL-induced multinucleated osteoclast formation and the mRNA expression of osteoclast differentiation marker genes. To define CD9-regulated osteoclastogenic signaling pathway, MAPK pathways were examined. KMC8 induced long-term phosphorylation of p44/42 MAPK, but not of p38 MAPK. Constitutive activation of p44/42 MAPK by overexpressing constitutive-active mutant of MEK1 almost completely blocked osteoclast differentiation. Taken together, these results suggest that CD9 expressed on osteoclast lineage cells might positively regulate osteoclastogenesis via the regulation of p44/42 MAPK activity.

  11. Layer specific and general requirements for ERK/MAPK signaling in the developing neocortex

    PubMed Central

    Xing, Lei; Larsen, Rylan S; Bjorklund, George Reed; Li, Xiaoyan; Wu, Yaohong; Philpot, Benjamin D; Snider, William D; Newbern, Jason M

    2016-01-01

    Aberrant signaling through the Raf/MEK/ERK (ERK/MAPK) pathway causes pathology in a family of neurodevelopmental disorders known as 'RASopathies' and is implicated in autism pathogenesis. Here, we have determined the functions of ERK/MAPK signaling in developing neocortical excitatory neurons. Our data reveal a critical requirement for ERK/MAPK signaling in the morphological development and survival of large Ctip2+ neurons in layer 5. Loss of Map2k1/2 (Mek1/2) led to deficits in corticospinal tract formation and subsequent corticospinal neuron apoptosis. ERK/MAPK hyperactivation also led to reduced corticospinal axon elongation, but was associated with enhanced arborization. ERK/MAPK signaling was dispensable for axonal outgrowth of layer 2/3 callosal neurons. However, Map2k1/2 deletion led to reduced expression of Arc and enhanced intrinsic excitability in both layers 2/3 and 5, in addition to imbalanced synaptic excitation and inhibition. These data demonstrate selective requirements for ERK/MAPK signaling in layer 5 circuit development and general effects on cortical pyramidal neuron excitability. DOI: http://dx.doi.org/10.7554/eLife.11123.001 PMID:26848828

  12. EPAS1 trans-activation during hypoxia requires p42/p44 MAPK.

    PubMed

    Conrad, P W; Freeman, T L; Beitner-Johnson, D; Millhorn, D E

    1999-11-19

    Hypoxia is a common environmental stress that regulates gene expression and cell function. A number of hypoxia-regulated transcription factors have been identified and have been shown to play critical roles in mediating cellular responses to hypoxia. One of these is the endothelial PAS-domain protein 1 (EPAS1/HIF2-alpha/HLF/HRF). This protein is 48% homologous to hypoxia-inducible factor 1-alpha (HIF1-alpha). To date, virtually nothing is known about the signaling pathways that lead to either EPAS1 or HIF1-alpha activation. Here we show that EPAS1 is phosphorylated when PC12 cells are exposed to hypoxia and that p42/p44 MAPK is a critical mediator of EPAS1 activation. Pretreatment of PC12 cells with the MEK inhibitor, PD98059, completely blocked hypoxia-induced trans-activation of a hypoxia response element (HRE) reporter gene by transfected EPAS1. Likewise, expression of a constitutively active MEK1 mimicked the effects of hypoxia on HRE reporter gene expression. However, pretreatment with PD98059 had no effect on EPAS1 phosphorylation during hypoxia, suggesting that MAPK targets other proteins that are critical for the trans-activation of EPAS1. We further show that hypoxia-induced trans-activation of EPAS1 is independent of Ras. Finally, pretreatment with calmodulin antagonists nearly completely blocked both the hypoxia-induced phosphorylation of MAPK and the EPAS1 trans-activation of HRE-Luc. These results demonstrate that the MAPK pathway is a critical mediator of EPAS1 activation and that activation of MAPK and EPAS1 occurs through a calmodulin-sensitive pathway and not through the GTPase, Ras. These results are the first to identify a specific signaling pathway involved in EPAS1 activation. PMID:10559262

  13. The Protective Effect of Beraprost Sodium on Diabetic Nephropathy by Inhibiting Inflammation and p38 MAPK Signaling Pathway in High-Fat Diet/Streptozotocin-Induced Diabetic Rats.

    PubMed

    Peng, Li; Li, Jie; Xu, Yixing; Wang, Yangtian; Du, Hong; Shao, Jiaqing; Liu, Zhimin

    2016-01-01

    Background. p38 mitogen-activated protein kinase (MAPK) plays a crucial role in regulating signaling pathways implicated in inflammatory processes leading to diabetic nephropathy (DN). This study aimed to examine p38 MAPK activation in DN and determine whether beraprost sodium (BPS) ameliorates DN by inhibiting inflammation and p38 MAPK signaling pathway in diabetic rats. Methods. Forty male Sprague Dawley (SD) rats were randomly divided into the normal control group, type 2 diabetic group, and BPS treatment group. At the end of the 8-week experiment, we measured renal pathological changes and the activation of the p38 MAPK signaling pathway and inflammation. Result. After BPS treatment, renal function, 24-hour urine protein, lipid profiles, and blood glucose level were improved significantly; meanwhile, inflammation and the expression of p38 MAPK signaling pathway in the diabetic kidney were attenuated. Conclusions. BPS significantly prevented type 2 diabetes induced kidney injury characterized by renal dysfunction and pathological changes. The protective mechanisms are complicated but may be mainly attributed to the inhibition of the p38 MAPK signaling pathway and inflammation in the diabetic kidney. PMID:27212945

  14. The Protective Effect of Beraprost Sodium on Diabetic Nephropathy by Inhibiting Inflammation and p38 MAPK Signaling Pathway in High-Fat Diet/Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Peng, Li; Li, Jie; Xu, Yixing; Wang, Yangtian; Du, Hong; Shao, Jiaqing; Liu, Zhimin

    2016-01-01

    Background. p38 mitogen-activated protein kinase (MAPK) plays a crucial role in regulating signaling pathways implicated in inflammatory processes leading to diabetic nephropathy (DN). This study aimed to examine p38 MAPK activation in DN and determine whether beraprost sodium (BPS) ameliorates DN by inhibiting inflammation and p38 MAPK signaling pathway in diabetic rats. Methods. Forty male Sprague Dawley (SD) rats were randomly divided into the normal control group, type 2 diabetic group, and BPS treatment group. At the end of the 8-week experiment, we measured renal pathological changes and the activation of the p38 MAPK signaling pathway and inflammation. Result. After BPS treatment, renal function, 24-hour urine protein, lipid profiles, and blood glucose level were improved significantly; meanwhile, inflammation and the expression of p38 MAPK signaling pathway in the diabetic kidney were attenuated. Conclusions. BPS significantly prevented type 2 diabetes induced kidney injury characterized by renal dysfunction and pathological changes. The protective mechanisms are complicated but may be mainly attributed to the inhibition of the p38 MAPK signaling pathway and inflammation in the diabetic kidney. PMID:27212945

  15. Genome-Wide Survey and Expression Profile Analysis of the Mitogen-Activated Protein Kinase (MAPK) Gene Family in Brassica rapa

    PubMed Central

    Yu, Hao; Qu, Cunmin; Tang, Zhanglin; Li, Jiana; Chai, Yourong; Liang, Ying

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades are fundamental signal transduction modules in plants, controlling cell division, development, hormone signaling, and biotic and abiotic stress responses. Although MAPKs have been investigated in several plant species, a comprehensive analysis of the MAPK gene family has hitherto not been performed in Brassica rapa. In this study, we identified 32 MAPKs in the B. rapa genome by conducting BLASTP and syntenic block analyses, and screening for the essential signature motif (TDY or TEY) of plant MAPK proteins. Of the 32 BraMAPK genes retrieved from the Brassica Database, 13 exhibited exon splicing errors, excessive splicing of the 5' sequence, excessive retention of the 5' sequence, and sequencing errors of the 3' end. Phylogenetic trees of the 32 corrected MAPKs from B. rapa and of MAPKs from other plants generated by the neighbor-joining and maximum likelihood methods suggested that BraMAPKs could be divided into four groups (groups A, B, C, and D). Gene number expansion was observed for BraMAPK genes in groups A and D, which may have been caused by the tandem duplication and genome triplication of the ancestral genome of the Brassica progenitor. Except for five members of the BraMAPK10 subfamily, the identified BraMAPKs were expressed in most of the tissues examined, including callus, root, stem, leaf, flower, and silique. Quantitative real-time PCR demonstrated that at least six and five BraMAPKs were induced or repressed by various abiotic stresses and hormone treatments, respectively, suggesting their potential roles in the abiotic stress response and various hormone signal transduction pathways in B. rapa. This study provides valuable insight into the putative physiological and biochemical functions of MAPK genes in B. rapa. PMID:26173020

  16. Genome-Wide Survey and Expression Profile Analysis of the Mitogen-Activated Protein Kinase (MAPK) Gene Family in Brassica rapa.

    PubMed

    Lu, Kun; Guo, Wenjin; Lu, Junxing; Yu, Hao; Qu, Cunmin; Tang, Zhanglin; Li, Jiana; Chai, Yourong; Liang, Ying

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades are fundamental signal transduction modules in plants, controlling cell division, development, hormone signaling, and biotic and abiotic stress responses. Although MAPKs have been investigated in several plant species, a comprehensive analysis of the MAPK gene family has hitherto not been performed in Brassica rapa. In this study, we identified 32 MAPKs in the B. rapa genome by conducting BLASTP and syntenic block analyses, and screening for the essential signature motif (TDY or TEY) of plant MAPK proteins. Of the 32 BraMAPK genes retrieved from the Brassica Database, 13 exhibited exon splicing errors, excessive splicing of the 5' sequence, excessive retention of the 5' sequence, and sequencing errors of the 3' end. Phylogenetic trees of the 32 corrected MAPKs from B. rapa and of MAPKs from other plants generated by the neighbor-joining and maximum likelihood methods suggested that BraMAPKs could be divided into four groups (groups A, B, C, and D). Gene number expansion was observed for BraMAPK genes in groups A and D, which may have been caused by the tandem duplication and genome triplication of the ancestral genome of the Brassica progenitor. Except for five members of the BraMAPK10 subfamily, the identified BraMAPKs were expressed in most of the tissues examined, including callus, root, stem, leaf, flower, and silique. Quantitative real-time PCR demonstrated that at least six and five BraMAPKs were induced or repressed by various abiotic stresses and hormone treatments, respectively, suggesting their potential roles in the abiotic stress response and various hormone signal transduction pathways in B. rapa. This study provides valuable insight into the putative physiological and biochemical functions of MAPK genes in B. rapa. PMID:26173020

  17. Cytometry-based single-cell analysis of intact epithelial signaling reveals MAPK activation divergent from TNF-α-induced apoptosis in vivo

    PubMed Central

    Simmons, Alan J; Banerjee, Amrita; McKinley, Eliot T; Scurrah, Cherie' R; Herring, Charles A; Gewin, Leslie S; Masuzaki, Ryota; Karp, Seth J; Franklin, Jeffrey L; Gerdes, Michael J; Irish, Jonathan M; Coffey, Robert J; Lau, Ken S

    2015-01-01

    Understanding heterogeneous cellular behaviors in a complex tissue requires the evaluation of signaling networks at single-cell resolution. However, probing signaling in epithelial tissues using cytometry-based single-cell analysis has been confounded by the necessity of single-cell dissociation, where disrupting cell-to-cell connections inherently perturbs native cell signaling states. Here, we demonstrate a novel strategy (Disaggregation for Intracellular Signaling in Single Epithelial Cells from Tissue—DISSECT) that preserves native signaling for Cytometry Time-of-Flight (CyTOF) and fluorescent flow cytometry applications. A 21-plex CyTOF analysis encompassing core signaling and cell-identity markers was performed on the small intestinal epithelium after systemic tumor necrosis factor-alpha (TNF-α) stimulation. Unsupervised and supervised analyses robustly selected signaling features that identify a unique subset of epithelial cells that are sensitized to TNF-α-induced apoptosis in the seemingly homogeneous enterocyte population. Specifically, p-ERK and apoptosis are divergently regulated in neighboring enterocytes within the epithelium, suggesting a mechanism of contact-dependent survival. Our novel single-cell approach can broadly be applied, using both CyTOF and multi-parameter flow cytometry, for investigating normal and diseased cell states in a wide range of epithelial tissues. PMID:26519361

  18. Cytometry-based single-cell analysis of intact epithelial signaling reveals MAPK activation divergent from TNF-α-induced apoptosis in vivo.

    PubMed

    Simmons, Alan J; Banerjee, Amrita; McKinley, Eliot T; Scurrah, Cherie' R; Herring, Charles A; Gewin, Leslie S; Masuzaki, Ryota; Karp, Seth J; Franklin, Jeffrey L; Gerdes, Michael J; Irish, Jonathan M; Coffey, Robert J; Lau, Ken S

    2015-10-01

    Understanding heterogeneous cellular behaviors in a complex tissue requires the evaluation of signaling networks at single-cell resolution. However, probing signaling in epithelial tissues using cytometry-based single-cell analysis has been confounded by the necessity of single-cell dissociation, where disrupting cell-to-cell connections inherently perturbs native cell signaling states. Here, we demonstrate a novel strategy (Disaggregation for Intracellular Signaling in Single Epithelial Cells from Tissue-DISSECT) that preserves native signaling for Cytometry Time-of-Flight (CyTOF) and fluorescent flow cytometry applications. A 21-plex CyTOF analysis encompassing core signaling and cell-identity markers was performed on the small intestinal epithelium after systemic tumor necrosis factor-alpha (TNF-α) stimulation. Unsupervised and supervised analyses robustly selected signaling features that identify a unique subset of epithelial cells that are sensitized to TNF-α-induced apoptosis in the seemingly homogeneous enterocyte population. Specifically, p-ERK and apoptosis are divergently regulated in neighboring enterocytes within the epithelium, suggesting a mechanism of contact-dependent survival. Our novel single-cell approach can broadly be applied, using both CyTOF and multi-parameter flow cytometry, for investigating normal and diseased cell states in a wide range of epithelial tissues. PMID:26519361

  19. TNF-α stimulates System A amino acid transport in primary human trophoblast cells mediated by p38 MAPK signaling

    PubMed Central

    Aye, Irving L M H; Jansson, Thomas; Powell, Theresa L

    2015-01-01

    Maternal obesity and gestational diabetes mellitus (GDM) increase the risk of delivering infants that are large for gestational age with greater adiposity, who are prone to the development of metabolic disease in childhood and beyond. These maternal conditions are also associated with increased levels of the proinflammatory cytokine TNF-α in maternal tissues and the placenta. Recent evidence suggests that changes in placental amino acid transport contribute to altered fetal growth. TNF-α was previously shown to stimulate System A amino acid transport in primary human trophoblasts (PHTs), however the molecular mechanisms remain unknown. In this study, we tested the hypothesis that TNF-α regulates amino acid uptake in cultured PHTs by a mitogen-activated protein kinase (MAPK)-dependent mechanism. Treatment of PHTs with TNF-α significantly increased System A amino acid transport, as well as Erk and p38 MAPK signaling. Pharmacological antagonism of p38, but not Erk MAPK activity, inhibited TNF-α stimulated System A activity. Silencing of p38 MAPK using siRNA transfections prevented TNF-α stimulated System A transport in PHTs. TNF-α significantly increased the protein expression of System A transporters SNAT1 and SNAT2, but did not affect their mRNA expression. The effects of TNF-α on SNAT1 and SNAT2 protein expression were reversed by p38 MAPK siRNA silencing. In conclusion, TNF-α regulates System A activity through increased SNAT1 and SNAT2 transporter protein expression in PHTs. These findings suggest that p38 MAPK may represent a critical mechanistic link between elevated proinflammatory cytokines and increased placental amino acid transport in obese and GDM pregnancies associated with fetal overgrowth. PMID:26508738

  20. The MAPK Pathway Signals Telomerase Modulation in Response to Isothiocyanate-Induced DNA Damage of Human Liver Cancer Cells

    PubMed Central

    Lamy, Evelyn; Herz, Corinna; Lutz-Bonengel, Sabine; Hertrampf, Anke; Márton, Melinda-Rita; Mersch-Sundermann, Volker

    2013-01-01

    4-methylthiobutyl isothiocyanate (MTBITC), an aliphatic, sulphuric compound from Brassica vegetables, possesses in vitro and in vivo antitumor activity. Recently we demonstrated the potent growth inhibitory potential of the DNA damaging agent MTBITC in human liver cancer cells. Here we now show that MTBITC down regulates telomerase which sensitizes cells to apoptosis induction. This is mediated by MAPK activation but independent from production of reactive oxygen species (ROS). Within one hour, MTBITC induced DNA damage in cancer cells correlating to a transient increase in hTERT mRNA expression which then turned into telomerase suppression, evident at mRNA as well as enzyme activity level. To clarify the role of MAPK for telomerase regulation, liver cancer cells were pre-treated with MAPK-specific inhibitors prior to MTBITC exposure. This clearly showed that transient elevation of hTERT mRNA expression was predominantly mediated by the MAPK family member JNK. In contrast, activated ERK1/2 and P38, but not JNK, signalled to telomerase abrogation and consequent apoptosis induction. DNA damage by MTBITC was also strongly abolished by MAPK inhibition. Oxidative stress, as analysed by DCF fluorescence assay, electron spin resonance spectroscopy and formation of 4-hydroxynonenal was found as not relevant for this process. Furthermore, N-acetylcysteine pre-treatment did not impact MTBITC-induced telomerase suppression or depolarization of the mitochondrial membrane potential as marker for apoptosis. Our data therefore imply that upon DNA damage by MTBITC, MAPK are essential for telomerase regulation and consequent growth impairment in liver tumor cells and this detail probably plays an important role in understanding the potential chemotherapeutic efficacy of ITC. PMID:23382840

  1. Pheromone-Induced Morphogenesis Improves Osmoadaptation Capacity by Activating the HOG MAPK Pathway**

    PubMed Central

    Baltanás, Rodrigo; Bush, Alan; Couto, Alicia; Durrieu, Lucía; Hohmann, Stefan; Colman-Lerner, Alejandro

    2013-01-01

    Environmental and internal conditions expose cells to a multiplicity of stimuli whose consequences are difficult to predict. Here, we investigate the response to mating pheromone of yeast cells adapted to high osmolarity. Events downstream of pheromone binding involve two mitogen-activated protein kinase (MAPK) cascades: the pheromone response (PR) and the cell-wall integrity response (CWI). Although these MAPK pathways share components with each and a third MAPK pathway, the high osmolarity response (HOG), they are normally only activated by distinct stimuli, a phenomenon called insulation. We found that in cells adapted to high osmolarity, PR activated the HOG pathway in a pheromone- and osmolarity- dependent manner. Activation of HOG by the PR was not due to loss of insulation, but rather a response to a reduction in internal osmolarity, which resulted from an increase in glycerol release caused by the PR. By analyzing single-cell time courses, we found that stimulation of HOG occurred in discrete bursts that coincided with the “shmooing” morphogenetic process. Activation required the polarisome, the cell wall integrity MAPK Slt2, and the aquaglyceroporin Fps1. HOG activation resulted in high glycerol turnover that improved adaptability to rapid changes in osmolarity. Our work shows how a differentiation signal can recruit a second, unrelated sensory pathway to enable responses to yeast to multiple stimuli. PMID:23612707

  2. Pheromone-induced morphogenesis improves osmoadaptation capacity by activating the HOG MAPK pathway.

    PubMed

    Baltanás, Rodrigo; Bush, Alan; Couto, Alicia; Durrieu, Lucía; Hohmann, Stefan; Colman-Lerner, Alejandro

    2013-04-23

    Environmental and internal conditions expose cells to a multiplicity of stimuli whose consequences are difficult to predict. We investigate the response to mating pheromone of yeast cells adapted to high osmolarity. Events downstream of pheromone binding involve two mitogen-activated protein kinase (MAPK) cascades: the pheromone response (PR) and the cell wall integrity (CWI) response. Although the PR MAPK pathway shares components with a third MAPK pathway, the high osmolarity (HOG) response, each one is normally only activated by its cognate stimulus, a phenomenon called insulation. We found that in cells adapted to high osmolarity, PR activated the HOG pathway in a pheromone- and osmolarity-dependent manner. Activation of HOG by the PR was not due to loss of insulation, but rather a response to a reduction in internal osmolarity, which resulted from an increase in glycerol release caused by the PR. By analyzing single-cell time courses, we found that stimulation of HOG occurred in discrete bursts that coincided with the "shmooing" morphogenetic process. Activation required the polarisome, the CWI MAPK Slt2, and the aquaglyceroporin Fps1. HOG activation resulted in high glycerol turnover, which improved adaptability to rapid changes in osmolarity. Our work shows how a differentiation signal can recruit a second, unrelated sensory pathway to fine-tune yeast response in a complex environment. PMID:23612707

  3. Kappa Opioid Receptor-Induced Aversion Requires p38 MAPK Activation in VTA Dopamine Neurons

    PubMed Central

    Ehrich, Jonathan M.; Messinger, Daniel I.; Knakal, Cerise R.; Kuhar, Jamie R.; Schattauer, Selena S.; Bruchas, Michael R.; Zweifel, Larry S.; Kieffer, Brigitte L.; Phillips, Paul E.M.

    2015-01-01

    . Understanding how KOR activation produces dysphoria is key to the development of better analgesics and to defining how the endogenous dynorphin opioids produce their depression-like effects. Results in this study show that the aversive effects of κ receptor activation required arrestin-dependent p38α MAPK activation in dopamine neurons but did not require inhibition of dopamine release in the nucleus accumbens. Thus, contrary to the prevailing view, inhibition of mesolimbic dopamine release does not mediate the aversive effects of KOR activation and functionally selective κ opioids that do not activate arrestin signaling may be effective analgesics lacking dysphoric effects. PMID:26377476

  4. OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production.

    PubMed

    Liu, Shuying; Hua, Lei; Dong, Sujun; Chen, Hongqi; Zhu, Xudong; Jiang, Jun'e; Zhang, Fang; Li, Yunhai; Fang, Xiaohua; Chen, Fan

    2015-11-01

    Grain size is an important agronomic trait in determining grain yield. However, the molecular mechanisms that determine the final grain size are not well understood. Here, we report the functional analysis of a rice (Oryza sativa L.) mutant, dwarf and small grain1 (dsg1), which displays pleiotropic phenotypes, including small grains, dwarfism and erect leaves. Cytological observations revealed that the small grain and dwarfism of dsg1 were mainly caused by the inhibition of cell proliferation. Map-based cloning revealed that DSG1 encoded a mitogen-activated protein kinase (MAPK), OsMAPK6. OsMAPK6 was mainly located in the nucleus and cytoplasm, and was ubiquitously distributed in various organs, predominately in spikelets and spikelet hulls, consistent with its role in grain size and biomass production. As a functional kinase, OsMAPK6 interacts strongly with OsMKK4, indicating that OsMKK4 is likely to be the upstream MAPK kinase of OsMAPK6 in rice. In addition, hormone sensitivity tests indicated that the dsg1 mutant was less sensitive to brassinosteroids (BRs). The endogenous BR levels were reduced in dsg1, and the expression of several BR signaling pathway genes and feedback-inhibited genes was altered in the dsg1 mutant, with or without exogenous BRs, indicating that OsMAPK6 may contribute to influence BR homeostasis and signaling. Thus, OsMAPK6, a MAPK, plays a pivotal role in grain size in rice, via cell proliferation, and BR signaling and homeostasis. PMID:26366992

  5. p38 MAPK Is Activated but Does Not Play a Key Role during Apoptosis Induction by Saturated Fatty Acid in Human Pancreatic β-Cells

    PubMed Central

    Šrámek, Jan; Němcová-Fürstová, Vlasta; Balušíková, Kamila; Daniel, Petr; Jelínek, Michael; James, Roger F.; Kovář, Jan

    2016-01-01

    Saturated stearic acid (SA) induces apoptosis in the human pancreatic β-cells NES2Y. However, the molecular mechanisms involved are unclear. We showed that apoptosis-inducing concentrations of SA activate the p38 MAPK signaling pathway in these cells. Therefore, we tested the role of p38 MAPK signaling pathway activation in apoptosis induction by SA in NES2Y cells. Crosstalk between p38 MAPK pathway activation and accompanying ERK pathway inhibition after SA application was also tested. The inhibition of p38 MAPK expression by siRNA silencing resulted in a decrease in MAPKAPK-2 activation after SA application, but it had no significant effect on cell viability or the level of phosphorylated ERK pathway members. The inhibition of p38 MAPK activity by the specific inhibitor SB202190 resulted in inhibition of MAPKAPK-2 activation and noticeable activation of ERK pathway members after SA treatment but in no significant effect on cell viability. p38 MAPK overexpression by plasmid transfection produced an increase in MAPKAPK-2 activation after SA exposure but no significant influence on cell viability or ERK pathway activation. The activation of p38 MAPK by the specific activator anisomycin resulted in significant activation of MAPKAPK-2. Concerning the effect on cell viability, application of the activator led to apoptosis induction similar to application of SA (PARP cleavage and caspase-7, -8, and -9 activation) and in inhibition of ERK pathway members. We demonstrated that apoptosis-inducing concentrations of SA activate the p38 MAPK signaling pathway and that this activation could be involved in apoptosis induction by SA in the human pancreatic β-cells NES2Y. However, this involvement does not seem to play a key role. Crosstalk between p38 MAPK pathway activation and ERK pathway inhibition in NES2Y cells seems likely. Thus, the ERK pathway inhibition by p38 MAPK activation does not also seem to be essential for SA-induced apoptosis. PMID:26861294

  6. p38 MAPK and PI3K/AKT Signalling Cascades inParkinson’s Disease

    PubMed Central

    Jha, Saurabh Kumar; Jha, Niraj Kumar; Kar, Rohan; Ambasta, Rashmi K; Kumar, Pravir

    2015-01-01

    Parkinson's disease (PD) is a chronic neurodegenerative condition which has the second largest incidence rate among all other neurodegenerative disorders barring Alzheimer's disease (AD). Currently there is no cure and researchers continue to probe the therapeutic prospect in cell cultures and animal models of PD. Out of the several factors contributing to PD prognosis, the role of p38 MAPK (Mitogen activated protein-kinase) and PI3K/AKT signalling module in PD brains is crucial because the impaired balance between the pro- apoptotic and anti-apoptotic pathways trigger unwanted phenotypes such as microglia activation, neuroinflammation, oxidative stress and apoptosis. These factors continue challenging the brain homeostasis in initial stages thereby essentially assisting the dopaminergic (DA) neurons towards progressive degeneration in PD. Neurotherapeutics against PD shall then be targeted against the misregulated accomplices of the p38 and PI3K/AKT cascades. In this review, we have outlined many such established mechanisms involving the p38 MAPK and PI3K/AKT pathways which can offer therapeutic windows for the rectification of aberrant DA neuronal dynamics in PD brains. PMID:26261796

  7. The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids

    PubMed Central

    Soares-Silva, Mercedes; Diniz, Flavia F.; Gomes, Gabriela N.; Bahia, Diana

    2016-01-01

    Leishmania spp. and Trypanosoma cruzi are the causative agents of leishmaniasis and Chagas disease, respectively, two neglected tropical diseases that affect about 25 million people worldwide. These parasites belong to the family Trypanosomatidae, and are both obligate intracellular parasites that manipulate host signaling pathways and the innate immune system to establish infection. Mitogen-activated protein kinases (MAPKs) are serine and threonine protein kinases that are highly conserved in eukaryotes, and are involved in signal transduction pathways that modulate physiological and pathophysiological cell responses. This mini-review highlights existing knowledge concerning the mechanisms that Leishmania spp. and T. cruzi have evolved to target the host’s MAPK signaling pathways and highjack the immune response, and, in this manner, promote parasite maintenance in the host. PMID:26941717

  8. The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids.

    PubMed

    Soares-Silva, Mercedes; Diniz, Flavia F; Gomes, Gabriela N; Bahia, Diana

    2016-01-01

    Leishmania spp. and Trypanosoma cruzi are the causative agents of leishmaniasis and Chagas disease, respectively, two neglected tropical diseases that affect about 25 million people worldwide. These parasites belong to the family Trypanosomatidae, and are both obligate intracellular parasites that manipulate host signaling pathways and the innate immune system to establish infection. Mitogen-activated protein kinases (MAPKs) are serine and threonine protein kinases that are highly conserved in eukaryotes, and are involved in signal transduction pathways that modulate physiological and pathophysiological cell responses. This mini-review highlights existing knowledge concerning the mechanisms that Leishmania spp. and T. cruzi have evolved to target the host's MAPK signaling pathways and highjack the immune response, and, in this manner, promote parasite maintenance in the host. PMID:26941717

  9. Morin Attenuates Ovalbumin-Induced Airway Inflammation by Modulating Oxidative Stress-Responsive MAPK Signaling

    PubMed Central

    Ma, Yuan; Ge, Ai; Zhu, Wen; Liu, Ya-Nan; Ji, Ning-Fei; Zha, Wang-Jian; Zhang, Jia-Xiang; Zeng, Xiao-Ning

    2016-01-01

    Asthma is one of the most common inflammatory diseases characterized by airway hyperresponsiveness, inflammation, and remodeling. Morin, an active ingredient obtained from Moraceae plants, has been demonstrated to have promising anti-inflammatory activities in a range of disorders. However, its impacts on pulmonary diseases, particularly on asthma, have not been clarified. This study was designed to investigate whether morin alleviates airway inflammation in chronic asthma with an emphasis on oxidative stress modulation. In vivo, ovalbumin- (OVA-) sensitized mice were administered with morin or dexamethasone before challenge. Bronchoalveolar lavage fluid (BALF) and lung tissues were obtained to perform cell counts, histological analysis, and enzyme-linked immunosorbent assay. In vitro, human bronchial epithelial cells (BECs) were challenged by tumor necrosis factor alpha (TNF-α). The supernatant was collected for the detection of the proinflammatory proteins, and the cells were collected for reactive oxygen species (ROS)/mitogen-activated protein kinase (MAPK) evaluations. Severe inflammatory responses and remodeling were observed in the airways of the OVA-sensitized mice. Treatment with morin dramatically attenuated the extensive trafficking of inflammatory cells into the BALF and inhibited their infiltration around the respiratory tracts and vessels. Morin administration also significantly suppressed goblet cell hyperplasia and collagen deposition/fibrosis and dose-dependently inhibited the OVA-induced increases in IgE, TNF-α, interleukin- (IL-) 4, IL-13, matrix metalloproteinase-9, and malondialdehyde. In human BECs challenged by TNF-α, the levels of proteins such as eotaxin-1, monocyte chemoattractant protein-1, IL-8 and intercellular adhesion molecule-1, were consistently significantly decreased by morin. Western blotting and the 2′,7′-dichlorofluorescein assay revealed that the increases in intracellular ROS and MAPK phosphorylation were abolished by

  10. Morin Attenuates Ovalbumin-Induced Airway Inflammation by Modulating Oxidative Stress-Responsive MAPK Signaling.

    PubMed

    Ma, Yuan; Ge, Ai; Zhu, Wen; Liu, Ya-Nan; Ji, Ning-Fei; Zha, Wang-Jian; Zhang, Jia-Xiang; Zeng, Xiao-Ning; Huang, Mao

    2016-01-01

    Asthma is one of the most common inflammatory diseases characterized by airway hyperresponsiveness, inflammation, and remodeling. Morin, an active ingredient obtained from Moraceae plants, has been demonstrated to have promising anti-inflammatory activities in a range of disorders. However, its impacts on pulmonary diseases, particularly on asthma, have not been clarified. This study was designed to investigate whether morin alleviates airway inflammation in chronic asthma with an emphasis on oxidative stress modulation. In vivo, ovalbumin- (OVA-) sensitized mice were administered with morin or dexamethasone before challenge. Bronchoalveolar lavage fluid (BALF) and lung tissues were obtained to perform cell counts, histological analysis, and enzyme-linked immunosorbent assay. In vitro, human bronchial epithelial cells (BECs) were challenged by tumor necrosis factor alpha (TNF-α). The supernatant was collected for the detection of the proinflammatory proteins, and the cells were collected for reactive oxygen species (ROS)/mitogen-activated protein kinase (MAPK) evaluations. Severe inflammatory responses and remodeling were observed in the airways of the OVA-sensitized mice. Treatment with morin dramatically attenuated the extensive trafficking of inflammatory cells into the BALF and inhibited their infiltration around the respiratory tracts and vessels. Morin administration also significantly suppressed goblet cell hyperplasia and collagen deposition/fibrosis and dose-dependently inhibited the OVA-induced increases in IgE, TNF-α, interleukin- (IL-) 4, IL-13, matrix metalloproteinase-9, and malondialdehyde. In human BECs challenged by TNF-α, the levels of proteins such as eotaxin-1, monocyte chemoattractant protein-1, IL-8 and intercellular adhesion molecule-1, were consistently significantly decreased by morin. Western blotting and the 2',7'-dichlorofluorescein assay revealed that the increases in intracellular ROS and MAPK phosphorylation were abolished by morin

  11. Suppression of p38α MAPK Signaling in Osteoblast Lineage Cells Impairs Bone Anabolic Action of Parathyroid Hormone.

    PubMed

    Thouverey, Cyril; Caverzasio, Joseph

    2016-05-01

    Intermittent parathyroid hormone administration (iPTH) increases bone mass and strength by stimulating osteoblast number and activity. PTH exerts its anabolic effects through cAMP/protein kinase A (PKA) signaling pathway in mature osteoblasts and osteocytes. Here, we show that inactivation of the p38α MAPK-encoding gene with the use of an osteocalcin-cre transgene prevents iPTH bone anabolic action. Indeed, iPTH fails to increase insulin-like growth factor 1 expression, osteoblast number and activity, and bone formation in mice lacking p38α in osteoblasts and osteocytes. Moreover, iPTH-induced expression of receptor activator of NF-κB ligand (RANKL) and subsequent increased bone resorption are suppressed in those mice. Finally, we found that PTH activates p38α MAPK downstream of cAMP/PKA signaling pathway in mature osteoblasts. Our findings identify p38α MAPK as a key component of PTH signaling in osteoblast lineage cells and highlight its requirement in iPTH osteoanabolic activity. © 2015 American Society for Bone and Mineral Research. PMID:26643857

  12. WNT3 Inhibits Cerebellar Granule Neuron Progenitor Proliferation and Medulloblastoma Formation via MAPK Activation

    PubMed Central

    Ayrault, Olivier; Kim, Jee Hae; Zhu, Xiaodong; Murphy, David A.; Van Aelst, Linda; Roussel, Martine F.; Hatten, Mary E.

    2013-01-01

    During normal cerebellar development, the remarkable expansion of granule cell progenitors (GCPs) generates a population of granule neurons that outnumbers the total neuronal population of the cerebral cortex, and provides a model for identifying signaling pathways that may be defective in medulloblastoma. While many studies focus on identifying pathways that promote growth of GCPs, a critical unanswered question concerns the identification of signaling pathways that block mitogenic stimulation and induce early steps in differentiation. Here we identify WNT3 as a novel suppressor of GCP proliferation during cerebellar development and an inhibitor of medulloblastoma growth in mice. WNT3, produced in early postnatal cerebellum, inhibits GCP proliferation by down-regulating pro-proliferative target genes of the mitogen Sonic Hedgehog (SHH) and the bHLH transcription factor Atoh1. WNT3 suppresses GCP growth through a non-canonical Wnt signaling pathway, activating prototypic mitogen-activated protein kinases (MAPKs), the Ras-dependent extracellular-signal-regulated kinases 1/2 (ERK1/2) and ERK5, instead of the classical β-catenin pathway. Inhibition of MAPK activity using a MAPK kinase (MEK) inhibitor reversed the inhibitory effect of WNT3 on GCP proliferation. Importantly, WNT3 inhibits proliferation of medulloblastoma tumor growth in mouse models by a similar mechanism. Thus, the present study suggests a novel role for WNT3 as a regulator of neurogenesis and repressor of neural tumors. PMID:24303070

  13. Activation of the p38 MAPK/Akt/ERK1/2 signal pathways is required for the protein stabilization of CDC6 and cyclin D1 in low-dose arsenite-induced cell proliferation.

    PubMed

    Liu, Youhong; Hock, Janet M; Sullivan, Con; Fang, Geying; Cox, Allison J; Davis, Kathleen T; Davis, Bruce H; Li, Xiong

    2010-12-15

    Arsenic trioxide (ATO) is a first-line anti-cancer agent for acute promyelocytic leukemia, and induces apoptosis in other solid cancer cell lines including breast cancer cells. However, as with arsenites found in drinking water and used as raw materials for wood preservatives, insecticides, and herbicides, low doses of ATO can induce carcinogenesis after long-term exposure. At 24 h after exposure, ATO (0.01-1 µM) significantly increased cell proliferation and promoted cell cycle progression from the G1 to S/G2 phases in the non-tumorigenic MCF10A breast epithelial cell line. The expression of 14 out of 96 cell-cycle-associated genes significantly increased, and seven of these genes including cell division cycle 6 (CDC6) and cyclin D1 (CCND1) were closely related to cell cycle progression from G1 to S phase. Low-dose ATO steadily increased gene transcript and protein levels of both CDC6 and cyclin D1 in a dose- and time-dependent manner. Low-dose ATO produced reactive oxygen species (ROS), and activated the p38 MAPK, Akt, and ERK1/2 pathways at different time points within 60 min. Small molecular inhibitors and siRNAs inhibiting the activation of p38 MAPK, Akt, and ERK1/2 decreased the ATO-increased expression of CDC6 protein. Inhibiting the activation of Akt and ERK1/2, but not p38 MAPK, decreased the ATO-induced expression of cyclin D1 protein. This study reports for the first time that p38 MAPK/Akt/ERK1/2 activation is required for the protein stabilization of CDC6 in addition to cyclin D1 in ATO-induced cell proliferation and cell cycle modulation from G1 to S phase. PMID:20862710

  14. The activation of p38MAPK and JNK pathways in bovine herpesvirus 1 infected MDBK cells.

    PubMed

    Zhu, Liqian; Yuan, Chen; Huang, Liyuan; Ding, Xiuyan; Wang, Jianye; Zhang, Dong; Zhu, Guoqiang

    2016-01-01

    We have shown previously that BHV-1 infection activates Erk1/2 signaling. Here, we show that BHV-1 provoked an early-stage transient and late-stage sustained activation of JNK, p38MAPK and c-Jun signaling in MDBK cells. C-Jun phosphorylation was dependent on JNK. These early events were partially due to the viral entry process. Unexpectedly, reactive oxygen species were not involved in the later activation phase. Interestingly, only activated JNK facilitated the viral multiplication identified through both chemical inhibitor and siRNA. Collectively, this study provides insight into our understanding of early stages of BHV-1 infection. PMID:27590675

  15. Dieckol enhances the expression of antioxidant and detoxifying enzymes by the activation of Nrf2-MAPK signalling pathway in HepG2 cells.

    PubMed

    Lee, Min-Sup; Lee, Bonggi; Park, Kyoung-Eun; Utsuki, Tadanobu; Shin, Taisun; Oh, Chul Woong; Kim, Hyeung-Rak

    2015-05-01

    Dieckol was previously reported to exhibit antioxidant and anticancer activities in vitro studies. In this study, we characterised the mechanism underlying the dieckol-mediated expression of antioxidant and detoxifying enzymes. Dieckol suppressed the production of intracellular reactive oxygen species in the presence or absence of H2O2 and increased glutathione level in HepG2 cells. Dieckol enhanced the activities of antioxidant enzymes, and the expression of detoxifying enzymes including heme oxygenase-1 (HO-1), NAD(P)H:quinine oxidoreductase 1 (NQO1), and glutathione S-transferase (GST) in HepG2 cells. Enhanced expression of antioxidant and detoxifying enzymes by dieckol was presumed to be the activation of the nuclear factor erythroid-derived 2-like 2 (Nrf2) demonstrated by its nuclear translocation and transcriptional activity via activation of mitogen-activated protein kinases in HepG2 cells. Furthermore, we demonstrated dieckol induced the expression of HO-1 in mouse liver. These results demonstrate that the dieckol-mediated cytoprotection in HepG2 cells is mediated through a ROS-independent up-regulation of antioxidant and detoxifying enzymes via Nrf2 activation as well as its intrinsic antioxidant activity, suggesting that dieckol may be used as a natural cytoprotective agent. PMID:25529716

  16. Akt and MAPK signaling mediate pregnancy-induced cardiac adaptation.

    PubMed

    Chung, Eunhee; Yeung, Fan; Leinwand, Leslie A

    2012-05-01

    Although the signaling pathways underlying exercise-induced cardiac adaptation have been extensively studied, little is known about the molecular mechanisms that result in the response of the heart to pregnancy. The objective of this study was to define the morphological, functional, and gene expression patterns that define the hearts of pregnant mice, and to identify the signaling pathways that mediate this response. Mice were divided into three groups: nonpregnant diestrus control, midpregnancy, and late pregnancy. Both time points of pregnancy were associated with significant cardiac hypertrophy. The prosurvival signaling cascades of Akt and ERK1/2 were activated in the hearts of pregnant mice, while the stress kinase, p38, was decreased. Given the activation of Akt in pregnancy and its known role in cardiac hypertrophy, the hypertrophic response to pregnancy was tested in mice expressing a cardiac-specific activated (myristoylated) form of Akt (myrAkt) or a cardiac-specific constitutively active (antipathologic hypertrophic) form of its downstream target, glycogen synthase kinase 3β (caGSK3β). The pregnancy-induced hypertrophic responses of hearts from these mice were significantly attenuated. Finally, we tested whether pregnancy-associated sex hormones could induce hypertrophy and alter signaling pathways in isolated neonatal rat ventricular myocytes (NRVMs). In fact, progesterone, but not estradiol treatment increased NRVM cell size via phosphorylation of ERK1/2. Inhibition of MEK1 effectively blocked progesterone-induced cellular hypertrophy. Taken together, our study demonstrates that pregnancy-induced cardiac hypertrophy is mediated by activation of Akt and ERK1/2 pathways. PMID:22345431

  17. Atractylodin Inhibits Interleukin-6 by Blocking NPM-ALK Activation and MAPKs in HMC-1.

    PubMed

    Chae, Hee-Sung; Kim, Young-Mi; Chin, Young-Won

    2016-01-01

    Atractylodin is one of the major constituents of the rhizome of Atractylodes lancea, which is widely used in Korean traditional medicine as a remedy for the treatment of gastritis and gastric ulcers. Despite of a major constituent of widely used botanical to treat inflammatory responses little is known about anti-inflammatory effect of atractylodin in the human mast cell (HMC-1). Hence, we evaluated the effect of atractylodin on the release of IL-6, the involvement of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) and mitogen-activated protein kinases (MAPKs) in phorbol-12-myristate-13-acetate and A23187-induced HMC-1. In addition, Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), phospholipase C (PLC) gamma 1, and AKT phosphorylation relevant to NPM-ALK signal pathway were assessed. IL-6 levels in the HMC-1 stimulated by phorbol-12-myristate-13-acetate and A23187 were apparently decreased by the treatment of atractylodin. Concurrently, atractylodin not only inhibited the phosphorylation of NPM-ALK, but also suppressed the phosphorylation of JAK2, STAT3, PLC gamma 1, and AKT. Furthermore, the activated mitogen-activated protein kinases (MAPKs) by phorbol-12-myristate-13-acetate and A23187 were inhibited by atractylodin. These results suggested that atractylodin might have a potential regulatory effect on inflammatory mediator expression through blockade of both the phosphorylation of MAPKs and the NPM-ALK signaling pathway. PMID:27598116

  18. Adipocyte-derived PAMM suppresses macrophage inflammation by inhibiting MAPK signalling.

    PubMed

    Guo, Fang; He, Hui; Fu, Zhi-Chao; Huang, Shengping; Chen, Tingtao; Papasian, Christopher J; Morse, Leslie R; Xu, Yan; Battaglino, Ricardo A; Yang, Xiao-Feng; Jiang, Zhisheng; Xin, Hong-Bo; Fu, Mingui

    2015-12-15

    Macrophages within adipose tissue play a key role in mediating inflammatory responses in adipose tissue that are associated with obesity-related metabolic complications. In an effort to identify novel proteins secreted from adipocytes that may negatively regulate macrophage inflammation, we found that peroxiredoxin (PRX)-like 2 activated in M-CSF stimulated monocytes (PAMM), a CXXC-type PRX-like 2 domain-containing redox regulatory protein, is a novel secreted protein with potent anti-inflammatory properties. PAMM is secreted from mature human adipocytes but not preadipocytes. Overexpression of PAMM significantly attenuated lipopolysaccharide (LPS)-induced macrophage inflammation. Incubation of macrophages with adipocyte-conditional medium treated with anti-PAMM antibody significantly enhanced LPS-induced interleukin-12 (IL-12) expression in Raw264.7 cells. In addition, incubation of Raw264.7 cells with purified PAMM protein had a similar anti-inflammatory effect. Moreover, forced expression of PAMM in Raw264.7 cells resulted in decreased LPS-induced ERK1/2, p38 and c-Jun N-terminal kinase (JNK) phosphorylation, suggesting that PAMM exerted the anti-inflammatory function probably by suppressing the mitogen-activated protein kinase (MAPK) signalling pathway. Mutations in the CXXC motif of PAMM that suppressed its anti-redox activity were still able to suppress production of inflammatory cytokines in LPS-stimulated macrophages, suggesting that PAMM's anti-inflammatory properties may be independent of its antioxidant properties. Finally, PAMM was highly expressed in both white (WAT) and brown adipose tissues (BAT) and further increased in obesity status. Our results suggest that adipocyte-derived PAMM may suppress macrophage activation by inhibiting MAPK signalling pathway. PMID:26438880

  19. Hard-metal (WC-Co) particles trigger a signaling cascade involving p38 MAPK, HIF-1α, HMOX1, and p53 activation in human PBMC.

    PubMed

    Lombaert, Noömi; Castrucci, Eleonora; Decordier, Ilse; Van Hummelen, Paul; Kirsch-Volders, Micheline; Cundari, Enrico; Lison, Dominique

    2013-02-01

    Hard-metals are made of tungsten carbide (WC) and metallic cobalt (Co) particles and are important industrial materials produced for their extreme hardness and high wear resistance properties. While occupational exposure to metallic Co alone is apparently not associated with an increased risk of cancer, the WC-Co particle mixture was shown to increase the risk of lung cancer in exposed workers. We have previously shown that WC-Co specifically induces a burst of reactive oxygen species (ROS) and in vitro mutagenic/apoptogenic effects in human peripheral blood mononucleated cells (PBMC) used as a validated experimental model. In the present study, PBMCs were treated during a short period (15 min) to focus on the very rapid ROS burst induced by WC-Co. We investigated by microarray the response to WC-Co versus Co(2+) ions (CoCl(2)) after 15 min exposure and found that the oxidative stress response HMOX1 gene was highly expressed in WC-Co-treated samples. This result was confirmed by qRT-PCR, and western blotting was carried out to analyze translational and post-translational regulation of genes belonging to the HMOX1 pathway. We show here that WC-Co, and metallic Co particles although with slower kinetics, but not CoCl(2) or WC alone, induced a temporally ordered cascade of events. This cascade implies p38/MAP kinase activation, HIF-1α stabilization, HMOX1 transcriptional activation, and ATM-independent p53 stabilization. These events, and in particular HIF-1α stabilization, could contribute to the carcinogenic activity of WC-Co dusts. PMID:23052192

  20. Regulation of MAPK/ERK Signaling and Photic Entrainment of the Suprachiasmatic Nucleus Circadian Clock by Raf Kinase Inhibitor Protein

    PubMed Central

    Antoun, Ghadi; Cannon, Pascale Bouchard; Cheng, Hai-Ying Mary

    2013-01-01

    Activation of the MAPK/ERK signaling cascade in the suprachiasmatic nucleus (SCN) is a key event that couples light to circadian clock entrainment. However, we do not fully understand the mechanisms that shape the properties of MAPK/ERK signaling in the SCN, and how these mechanisms may influence overt circadian rhythms. Here we show that Raf kinase inhibitor protein (RKIP) controls the kinetics of light-induced MAPK/ERK activity in the SCN and photic entrainment of behavioral rhythms. Light triggers robust phosphorylation of RKIP in the murine SCN and dissociation of RKIP and c-Raf. Overexpression of a nonphosphorylatable form of RKIP in the SCN of transgenic mice blocks light-induced ERK1/2 activation in the SCN and severely dampens light-induced phase delays in behavioral rhythms. Conversely, in RKIP knock-out (RKIP−/−) mice, light-induced ERK1/2 activity in the SCN is prolonged in the early and late subjective night, resulting in augmentation of the phase-delaying and -advancing effects of light. Reentrainment to an advancing light cycle was also accelerated in RKIP−/− mice. In relation to the molecular clockwork, genetic deletion of RKIP potentiated light-evoked PER1 and PER2 protein expression in the SCN in the early night. Additionally, RKIP−/− mice displayed enhanced transcriptional activation of mPeriod1 and the immediate early gene c-Fos in the SCN in response to a phase-delaying light pulse. Collectively, our data reveal an important role of RKIP in the regulation of MAPK/ERK signaling in the SCN and photic entrainment of the SCN clock. PMID:22492043

  1. Differential regulation of EGFR-MAPK signaling by deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA) in colon cancer

    PubMed Central

    Centuori, Sara M.; Martinez, Jesse D.

    2014-01-01

    A high fat diet coincides with elevated levels of bile acids. This elevation of bile acids, particularly deoxycholic acid (DCA), has been strongly associated with the development of colon cancer. Conversely, ursodeoxycholic acid (UDCA) may have chemopreventive properties. Although structurally similar, DCA and UDCA present different biological and pathological effects in colon cancer progression. The differential regulation of cancer by these two bile acids is not yet fully understood. However, one possible explanation for their diverging effects is their ability to differentially regulate signaling pathways involved in the multistep progression of colon cancer, such as the epidermal growth factor receptor (EGFR) mitogen-activated protein kinase (MAPK) pathway. This review will examine the biological effects of DCA and UDCA on colon cancer development, as well as the diverging effects of these bile acids on the oncogenic signaling pathways that play a role in colon cancer development, with a particular emphasis on bile acid regulation of the EGFR-MAPK pathway. PMID:25027205

  2. Antiallergic Activity of Ethanol Extracts of Arctium lappa L. Undried Roots and Its Active Compound, Oleamide, in Regulating FcεRI-Mediated and MAPK Signaling in RBL-2H3 Cells.

    PubMed

    Yang, Woong-Suk; Lee, Sung Ryul; Jeong, Yong Joon; Park, Dae Won; Cho, Young Mi; Joo, Hae Mi; Kim, Inhye; Seu, Young-Bae; Sohn, Eun-Hwa; Kang, Se Chan

    2016-05-11

    The antiallergic potential of Arctium lappa L. was investigated in Sprague-Dawley rats, ICR mice, and RBL-2H3 cells. Ethanol extract (90%) of A. lappa (ALE, 100 μg/mL) inhibited the degranulation rate by 52.9%, determined by the level of β-hexosaminidase. ALE suppressed passive cutaneous anaphylaxis (PCA) in rats and attenuated anaphylaxis and histamine release in mice. To identify the active compound of ALE, we subsequently fractionated and determined the level of β-hexosaminidase in all subfractions. Oleamide was identified as an active compound of ALE, which attenuated the secretion of histamine and the production of tumor necrosis factor (TNF)-α and interleukin-4 (IL-4) in cells treated with compound 48/80 or A23187/phorbol myristate acetate (PMA). Oleamide suppressed FcεRI-tyrosine kinase Lyn-mediated pathway, c-Jun N-terminal kinases (JNK/SAPK), and p38 mitogen-activated protein kinases (p38-MAPKs). These results showed that ALE and oleamide attenuated allergic reactions and should serve as a platform to search for compounds with antiallergic activity. PMID:27087645

  3. Complement C5a-C5aR interaction enhances MAPK signaling pathway activities to mediate renal injury in trichloroethylene sensitized BALB/c mice.

    PubMed

    Zhang, Jia-xiang; Zha, Wan-sheng; Ye, Liang-ping; Wang, Feng; Wang, Hui; Shen, Tong; Wu, Chang-hao; Zhu, Qi-xing

    2016-02-01

    We have previously shown complement activation as a possible mechanism for trichloroethylene (TCE) sensitization, leading to multi-organ damage including the kidneys. In particular, excessive deposition of C5 and C5b-9-the membrane attack complex, which can generate significant tissue damage, was observed in the kidney tissue after TCE sensitization. The present study tested the hypothesis that anaphylatoxin C5a binding to its receptor C5aR mediates renal injury in TCE-sensitized BALB/c mice. BALB/c mice were sensitized through skin challenge with TCE, with or without pretreatment by the C5aR antagonist W54011. Kidney histopathology and the renal functional test were performed to assess renal injury, and immunohistochemistry and fluorescent labeling were carried out to assess C5a and C5aR expressions. TCE sensitization up-regulated C5a and C5aR expressions in kidney tissue, generated inflammatory infiltration, renal tubule damage, glomerular hypercellularity and impaired renal function. Antagonist pretreatment blocked C5a binding to C5aR and attenuated TCE-induced tissue damage and renal dysfunction. TCE sensitization also caused the deposition of major pro-inflammatory cytokines IL-2, TNF-α and IFN-γ in the kidney tissue (P < 0.05); this was accompanied by increased expression of P-p38, P-ERK and P-JNK proteins (P < 0.05). Pretreatment with the C5aR antagonist attenuated the increase of expression of P-p38, P-ERK and P-JNK proteins (P < 0.05) and also consistently reduced the TCE sensitization-induced increase of IL-2, TNF-α and IFN-γ (P < 0.05). These data identify C5a binding to C5aR, MAP kinase activation, and inflammatory cytokine release as a novel mechanism for complement-mediated renal injury by sensitization with TCE or other environmental chemicals. PMID:26095957

  4. Involvement of p38 MAPK in the Anticancer Activity of Cultivated Cordyceps militaris.

    PubMed

    Chou, Shang-Min; Lai, Wan-Jung; Hong, Tzuwen; Tsai, Sheng-Hong; Chen, Yen-Hsun; Kao, Cheng-Hsiang; Chu, Richard; Shen, Tang-Long; Li, Tsai-Kun

    2015-01-01

    Cordyceps militaris is a traditional Chinese medicine frequently used for tonic and therapeutic purposes. Reports from our laboratory and others have demonstrated that extracts of the cultivated fruiting bodies of C. militaris (CM) exhibit a potent cytotoxic effect against many cancer cell lines, especially human leukemia cells. Here, we further investigated the underlying mechanism through which CM is cytotoxic to cancer cells. The CM-mediated induction of PARP cleavage and its related DNA damage signal (γH2AX) was diminished by caspase inhibitor I. In contrast, a ROS scavenger failed to prevent CM-mediated leukemia cell death. Moreover, two signaling molecules, AKT and p38 MAPK, were activated during the course of apoptosis induction. Employing MTT analysis, we found that a p38 MAPK inhibitor but not an AKT inhibitor could rescue cells from CM-mediated cell death, as well as inhibit the cleavage of PARP, formation of apoptotic bodies and up-regulation of the γH2AX signal. These results suggest that CM-mediated leukemia cell death occurs through the activation of the p38 MAPK pathway, indicating its potential therapeutic effects against human leukemia. PMID:26205966

  5. Ribosome Synthesis and MAPK Activity Modulate Ionizing Radiation-Induced Germ Cell Apoptosis in Caenorhabditis elegans

    PubMed Central

    Eberhard, Ralf; Stergiou, Lilli; Hofmann, E. Randal; Hofmann, Jen; Haenni, Simon; Teo, Youjin; Furger, André; Hengartner, Michael O.

    2013-01-01

    Synthesis of ribosomal RNA by RNA polymerase I (RNA pol I) is an elemental biological process and is key for cellular homeostasis. In a forward genetic screen in C. elegans designed to identify DNA damage-response factors, we isolated a point mutation of RNA pol I, rpoa-2(op259), that leads to altered rRNA synthesis and a concomitant resistance to ionizing radiation (IR)-induced germ cell apoptosis. This weak apoptotic IR response could be phenocopied when interfering with other factors of ribosome synthesis. Surprisingly, despite their resistance to DNA damage, rpoa-2(op259) mutants present a normal CEP-1/p53 response to IR and increased basal CEP-1 activity under normal growth conditions. In parallel, rpoa-2(op259) leads to reduced Ras/MAPK pathway activity, which is required for germ cell progression and physiological germ cell death. Ras/MAPK gain-of-function conditions could rescue the IR response defect in rpoa-2(op259), pointing to a function for Ras/MAPK in modulating DNA damage-induced apoptosis downstream of CEP-1. Our data demonstrate that a single point mutation in an RNA pol I subunit can interfere with multiple key signalling pathways. Ribosome synthesis and growth-factor signalling are perturbed in many cancer cells; such an interplay between basic cellular processes and signalling might be critical for how tumours evolve or respond to treatment. PMID:24278030

  6. Wip1 phosphatase positively modulates dendritic spine morphology and memory processes through the p38MAPK signaling pathway

    PubMed Central

    Fernandez, Francesca; Soon, Irene; Li, Zeng; Kuan, Tan Chee; Min, Deng Hong; Wong, Esther Sook-Miin; Demidov, Oleg N.; Paterson, Malcolm C.; Dawe, Gavin; Bulavin, Dmitry V.; Xiao, Zhi-Cheng

    2012-01-01

    Dendritic spine morphology is modulated by protein kinase p38, a mitogen-activated protein (MAPK), in the hippocampus. Protein p38MAPK is a substrate of wip1, a protein phosphatase. The role of wip1 in the central nervous system (CNS) has never been explored. Here, we report a novel function of wip1 in dendritic spine morphology and memory processes. Wip1 deficiency decreases dendritic spine size and density in pyramidal neurons of the hippocampal CA1 region. Simultaneously, impairments in object recognition tasks and contextual memory occur in wip1 deficient mice, but are reversed in wip1/p38 double mutant mice. Thus, our findings demonstrate that wip1 modulates dendritic morphology and memory processes through the p38MAPK signaling pathway. In addition to the well-characterized role of the wip1/p38MAPK in cell death and differentiation, we revealed the novel contribution of wip1 to cognition and dendritic spine morphology, which may suggest new approaches to treating neurodegenerative disorders. PMID:22983193

  7. Involvement of p38MAPK-ATF2 signaling pathway in alternariol induced DNA polymerase β expression

    PubMed Central

    ZHAO, JIMIN; MA, JUNFEN; LU, JING; JIANG, YANAN; ZHANG, YANYAN; ZHANG, XIAOYAN; ZHAO, JUN; YANG, HONGYAN; HUANG, YOUTIAN; ZHAO, MINGYAO; LIU, KANGDONG; DONG, ZIMING

    2016-01-01

    Base excision repair (BER) systems are important for maintaining the integrity of genomes in mammalian cells. Aberrant DNA bases or broken single strands can be repaired by BER. Consequently, DNA lesions, which may be caused by cancer and aging, have a close association with BER procedure. DNA polymerase β (polβ) is a critical BER enzyme that can excise 5′-sugar phosphate prior to adding a nucleotide in the gap by its function as a DNA polymerase in the BER process. However, DNA polβ is an error-prone DNA polymerase, and overexpressing polβ increases the cellular spontaneous mutation rate. DNA polβ overexpression has been identified in various human tumors, which implies that DNA polβ overexpression has a close association with tumorigenesis. The present study showed that alternariol (AOH), a secondary product of a fungus that is found in grains and fruits, could cause DNA damage to NIH3T3 cells in a single cell gel electrophoresis, and that 2, 10 and 20 µM AOH induced DNA polβ overexpression in a dose-dependent manner. In the process, the level of phosphorylation of mitogen-activated protein kinase 14 (p38) mitogen-activated protein kinase (MAPK) and activating transcription factor 2 (ATF2) was increased. In addition, SB203580, a p38MAPK inhibitor, resulted in decreased DNA polβ expression. Small hairpin RNA-p38MAPK had the same effect; notably, DNA polβ expression was downregulated in p38MAPK knockdown cells. These data suggest that the p38MAPK-ATF2 signaling pathway may be involved in DNA polβ expression induced by AOH. PMID:27347199

  8. COMP-angiopoietin 1 increases proliferation, differentiation, and migration of stem-like cells through Tie-2-mediated activation of p38 MAPK and PI3K/Akt signal transduction pathways

    SciTech Connect

    Kook, Sung-Ho; Lim, Shin-Saeng; Cho, Eui-Sic; Lee, Young-Hoon; Han, Seong-Kyu; Lee, Kyung-Yeol; Kwon, Jungkee; Hwang, Jae-Won; Bae, Cheol-Hyeon; Seo, Young-Kwon; Lee, Jeong-Chae

    2014-12-12

    Highlights: • COMP-Ang1 induces Tie-2 activation in BMMSCs, but not in primary osteoblasts. • Tie-2 knockdown inhibits COMP-Ang1-stimulated proliferation and osteoblastogenesis. • Tie-2 knockdown prevents COMP-Ang1-induced activation of PI3K/Akt and p38 MAPK. • COMP-Ang1 induces migration of cells via activation of PI3K/Akt and CXCR4 pathways. • COMP-Ang1 stimulates in vivo migration of PDLSCs into a calvarial defect site of rats. - Abstract: Recombinant COMP-Ang1, a chimera of angiopoietin-1 (Ang1) and a short coiled-coil domain of cartilage oligomeric matrix protein (COMP), is under consideration as a therapeutic agent capable of inducing the homing of cells with increased angiogenesis. However, the potentials of COMP-Ang1 to stimulate migration of mesenchymal stem cells (MSCs) and the associated mechanisms are not completely understood. We examined the potential of COMP-Ang1 on bone marrow (BM)-MSCs, human periodontal ligament stem cells (PDLSCs), and calvarial osteoblasts. COMP-Ang1 augmented Tie-2 induction at protein and mRNA levels and increased proliferation and expression of runt-related transcription factor 2 (Runx2), osterix, and CXCR4 in BMMSCs, but not in osteoblasts. The COMP-Ang1-mediated increases were inhibited by Tie-2 knockdown and by treating inhibitors of phosphoinositide 3-kinase (PI3K), LY294002, or p38 mitogen-activated protein kinase (MAPK), SB203580. Phosphorylation of p38 MAPK and Akt was prevented by siRNA-mediated silencing of Tie-2. COMP-Ang1 also induced in vitro migration of BMMSCs and PDLSCs. The induced migration was suppressed by Tie-2 knockdown and by CXCR4-specific peptide antagonist or LY294002, but not by SB203580. Furthermore, COMP-Ang1 stimulated the migration of PDLSCs into calvarial defect site of rats. Collectively, our results demonstrate that COMP-Ang1-stimulated proliferation, differentiation, and migration of progenitor cells may involve the Tie-2-mediated activation of p38 MAPK and PI3K/Akt pathways.

  9. RAS/MAPK Activation Drives Resistance to Smo Inhibition, Metastasis, and Tumor Evolution in Shh Pathway-Dependent Tumors.

    PubMed

    Zhao, Xuesong; Ponomaryov, Tatyana; Ornell, Kimberly J; Zhou, Pengcheng; Dabral, Sukriti K; Pak, Ekaterina; Li, Wei; Atwood, Scott X; Whitson, Ramon J; Chang, Anne Lynn S; Li, Jiang; Oro, Anthony E; Chan, Jennifer A; Kelleher, Joseph F; Segal, Rosalind A

    2015-09-01

    Aberrant Shh signaling promotes tumor growth in diverse cancers. The importance of Shh signaling is particularly evident in medulloblastoma and basal cell carcinoma (BCC), where inhibitors targeting the Shh pathway component Smoothened (Smo) show great therapeutic promise. However, the emergence of drug resistance limits long-term efficacy, and the mechanisms of resistance remain poorly understood. Using new medulloblastoma models, we identify two distinct paradigms of resistance to Smo inhibition. Sufu mutations lead to maintenance of the Shh pathway in the presence of Smo inhibitors. Alternatively activation of the RAS-MAPK pathway circumvents Shh pathway dependency, drives tumor growth, and enhances metastatic behavior. Strikingly, in BCC patients treated with Smo inhibitor, squamous cell cancers with RAS/MAPK activation emerged from the antecedent BCC tumors. Together, these findings reveal a critical role of the RAS-MAPK pathway in drug resistance and tumor evolution of Shh pathway-dependent tumors. PMID:26130651

  10. RAS/MAPK activation drives resistance to Smo inhibition, metastasis and tumor evolution in Shh pathway-dependent tumors

    PubMed Central

    Zhao, Xuesong; Ponomaryov, Tatyana; Ornell, Kimberly J.; Zhou, Pengcheng; Dabral, Sukriti K.; Pak, Ekaterina; Li, Wei; Atwood, Scott X.; Whitson, Ramon J.; Chang, Anne Lynn S.; Li, Jiang; Oro, Anthony E.; Chan, Jennifer A.; Kelleher, Joseph F.; Segal, Rosalind A.

    2015-01-01

    Aberrant Shh signaling promotes tumor growth in diverse cancers. The importance of Shh signaling is particularly evident in medulloblastoma and basal cell carcinoma (BCC), where inhibitors targeting the Shh pathway component Smoothened (Smo) show great therapeutic promise. However, the emergence of drug resistance limits long-term efficacy and the mechanisms of resistance remain poorly understood. Using new medulloblastoma models, we identify two distinct paradigms of resistance to Smo inhibition. Sufu mutations lead to maintenance of the Shh pathway in the presence of Smo inhibitors. Alternatively activation of the RAS/MAPK pathway circumvents Shh pathway-dependency, drives tumor growth and enhances metastatic behavior. Strikingly, in BCC patients treated with Smo inhibitor, squamous cell cancers with RAS/MAPK activation emerged from the antecedent BCC tumors. Together these findings reveal a critical role of RAS/MAPK pathway in drug resistance and tumor evolution of Shh pathway-dependent tumors. PMID:26130651

  11. Ozone (O{sub 3}) elicits neurotoxicity in spinal cord neurons (SCNs) by inducing ER Ca{sup 2+} release and activating the CaMKII/MAPK signaling pathway

    SciTech Connect

    Li, Yun; Lin, Xiaowen; Zhao, XueJun; Xie, Juntian; JunNan, Wang; Sun, Tao; Fu, Zhijian

    2014-11-01

    Ozone (O{sub 3}) is widely used in the treatment of spinal cord related diseases. Excess or accumulation of this photochemical air can however be neurotoxic. In this study, in vitro cultured Wister rat spinal cord neurons (SCNs) were used to investigate the detrimental effects and underlying mechanisms of O{sub 3}. Ozone in a dose-dependent manner inhibited cell viability at a range of 20 to 500 μg/ml, with the dose at 40 μg/ml resulting in a decrease of cell viability to 75%. The cell death after O{sub 3} exposure was related to endoplasmic reticulum (ER) calcium (Ca{sup 2+}) release. Intracellular Ca{sup 2+} chelator, ER stabilizer (inositol 1,4,5-trisphosphate receptor (IP3R) antagonist and ryanodine receptor (RyR) antagonist) and calcium/calmodulin-dependent protein kinase II (CaMKII) antagonist could effectively block Ca{sup 2+} mobilization and inhibit cell death following 40 μg/ml O{sub 3} exposure. In addition, ER Ca{sup 2+} release due to O{sub 3} exposure enhanced phospho-p38 and phospho-JNK levels and apoptosis of SCNs through activating CaMKII. Based on these results, we confirm that ozone elicits neurotoxicity in SCNs via inducing ER Ca{sup 2+} release and activating CaMKII/MAPK signaling pathway. Therefore, physicians should get attention to the selection of treatment concentrations of oxygen/ozone. And, approaches, such as chelating intracellular Ca{sup 2+} and stabilizing neuronal Ca{sup 2+} homeostasis could effectively ameliorate the neurotoxicity of O{sub 3}. - Highlights: • Exposure to O{sub 3} can reduce the viability of SCNs and cause the cell death. • Exposure to O{sub 3} can trigger RyR and IP3R dependent intracellular Ca{sup 2+} release. • Exposure to O{sub 3} can enhance the phospho-CaMKII, phospho-JNK and phospho-p38 levels.

  12. BMP9-Induced Survival Effect in Liver Tumor Cells Requires p38MAPK Activation

    PubMed Central

    García-Álvaro, María; Addante, Annalisa; Roncero, Cesáreo; Fernández, Margarita; Fabregat, Isabel; Sánchez, Aránzazu; Herrera, Blanca

    2015-01-01

    The study of bone morphogenetic proteins (BMPs) role in tumorigenic processes, and specifically in the liver, has gathered importance in the last few years. Previous studies have shown that BMP9 is overexpressed in about 40% of hepatocellular carcinoma (HCC) patients. In vitro data have also shown evidence that BMP9 has a pro-tumorigenic action, not only by inducing epithelial to mesenchymal transition (EMT) and migration, but also by promoting proliferation and survival in liver cancer cells. However, the precise mechanisms driving these effects have not yet been established. In the present work, we deepened our studies into the intracellular mechanisms implicated in the BMP9 proliferative and pro-survival effect on liver tumor cells. In HepG2 cells, BMP9 induces both Smad and non-Smad signaling cascades, specifically PI3K/AKT and p38MAPK. However, only the p38MAPK pathway contributes to the BMP9 growth-promoting effect on these cells. Using genetic and pharmacological approaches, we demonstrate that p38MAPK activation, although dispensable for the BMP9 proliferative activity, is required for the BMP9 protective effect on serum withdrawal-induced apoptosis. These findings contribute to a better understanding of the signaling pathways involved in the BMP9 pro-tumorigenic role in liver tumor cells. PMID:26343646

  13. Exocyst Sec10 protects renal tubule cells from injury by EGFR/MAPK activation and effects on endocytosis

    PubMed Central

    Fogelgren, Ben; Zuo, Xiaofeng; Buonato, Janine M.; Vasilyev, Aleksandr; Baek, Jeong-In; Choi, Soo Young; Chacon-Heszele, Maria F.; Palmyre, Aurélien; Polgar, Noemi; Drummond, Iain; Park, Kwon Moo; Lazzara, Matthew J.

    2014-01-01

    Acute kidney injury is common and has a high mortality rate, and no effective treatment exists other than supportive care. Using cell culture models, we previously demonstrated that exocyst Sec10 overexpression reduced damage to renal tubule cells and speeded recovery and that the protective effect was mediated by higher basal levels of mitogen-activated protein kinase (MAPK) signaling. The exocyst, a highly-conserved eight-protein complex, is known for regulating protein trafficking. Here we show that the exocyst biochemically interacts with the epidermal growth factor receptor (EGFR), which is upstream of MAPK, and Sec10-overexpressing cells express greater levels of phosphorylated (active) ERK, the final step in the MAPK pathway, in response to EGF stimulation. EGFR endocytosis, which has been linked to activation of the MAPK pathway, increases in Sec10-overexpressing cells, and gefitinib, a specific EGFR inhibitor, and Dynasore, a dynamin inhibitor, both reduce EGFR endocytosis. In turn, inhibition of the MAPK pathway reduces ligand-mediated EGFR endocytosis, suggesting a potential feedback of elevated ERK activity on EGFR endocytosis. Gefitinib also decreases MAPK signaling in Sec10-overexpressing cells to levels seen in control cells and, demonstrating a causal role for EGFR, reverses the protective effect of Sec10 overexpression following cell injury in vitro. Finally, using an in vivo zebrafish model of acute kidney injury, morpholino-induced knockdown of sec10 increases renal tubule cell susceptibility to injury. Taken together, these results suggest that the exocyst, acting through EGFR, endocytosis, and the MAPK pathway is a candidate therapeutic target for acute kidney injury. PMID:25298525

  14. Doxycycline enhances the Ras-MAPK signaling and proliferation of mouse thymic epithelial cells.

    PubMed

    Chen, Xun; Xia, Sheng; Li, Rong; Liu, Hui; Huang, Ying; Qian, Xiaoping; Xiao, Xueyuan; Xu, Xun; Lin, Xin; Tian, Yuxiang; Zong, Yangyong; He, Dacheng; Chen, Weifeng; Zhang, Yu; Shao, Qixiang

    2009-06-01

    Depletion of T-cell-dependent immunity is a major consideration for patients suffering from infections of human immunodeficiency virus (HIV), those undergoing organ transplantation, and those receiving anti-cancer chemotherapy and/or radiotherapy. In general, T-cell regeneration occurs in the thymus through thymopoiesis. We have found that doxycycline (Dox), a tetracycline derivative, enhances the proliferation of mouse thymic epithelial cells, which are unique in their capacity to support positive selection and are essential throughout the development of thymocytes. Cell cycle analysis indicates that the increased cell proliferation is due to a shortened G(0)/G(1) phase. To reveal the underlying mechanisms, we examined the expression of an array of molecules that regulate the cell cycle. The results show that in mouse thymic medullary-type epithelial cell line 1 (MTEC1) Dox leads to elevated levels of H-Ras, phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), cyclin E, cyclin dependent kinase 4/2 (CDK4/CDK2), E2F3, and c-myc. These data, and the observation that the proliferation-enhancing effect is largely abolished following treatment with an ERK inhibitor support an active role of the Ras-ERK/mitogen-activated protein kinase (MAPK) signaling pathway. In conclusion, the present study reveals a new activity of an old family of antibiotics. The in vivo effect of Dox on immune reconstitution warrants further exploration. PMID:19330805

  15. Differential effects of chronic overload-induced muscle hypertrophy on mTOR and MAPK signaling pathways in adult and aged rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined activation of the mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) signaling pathways in adult (Y; 6 mo old; n = 16) and aged (O; 30 mo old; n = 16) male rats (Fischer 344 x Brown Norway) subjected to chronic overload-induced muscle hypertrophy of the plan...

  16. Parainfluenza Virus Type 1 Induces Epithelial IL-8 Production via p38-MAPK Signalling

    PubMed Central

    Galván Morales, Miguel Ángel; Cabello Gutiérrez, Carlos; Mejía Nepomuceno, Fidencio; Valle Peralta, Leticia; Valencia Maqueda, Elba; Manjarrez Zavala, María Eugenia

    2014-01-01

    Human parainfluenza virus type 1 (HPIV-1) is the most common cause of croup in infants. The aim of this study was to describe molecular mechanisms associated with IL-8 production during HPIV-1 infection and the role of viral replication in MAPK synthesis and activation. An in vitro model of HPIV-1 infection in the HEp-2 and A549 cell lines was used; a kinetic-based ELISA for IL-8 detection was also used, phosphorylation of the mitogen-activated protein kinases (MAPKs) was identified by Western blot analysis, and specific inhibitors for each kinase were used to identify which MAPK was involved. Inactivated viruses were used to assess whether viral replication is required for IL-8 production. Results revealed a gradual increase in IL-8 production at different selected times, when phosphorylation of MAPK was detected. The secretion of IL-8 in the two cell lines infected with the HPIV-1 is related to the phosphorylation of the MAPK as well as viral replication. Inhibition of p38 suppressed the secretion of IL-8 in the HEp-2 cells. No kinase activation was observed when viruses were inactivated. PMID:25013817

  17. Regulation of Muscle Stem Cell Functions: A Focus on the p38 MAPK Signaling Pathway.

    PubMed

    Segalés, Jessica; Perdiguero, Eusebio; Muñoz-Cánoves, Pura

    2016-01-01

    Formation of skeletal muscle fibers (myogenesis) during development and after tissue injury in the adult constitutes an excellent paradigm to investigate the mechanisms whereby environmental cues control gene expression programs in muscle stem cells (satellite cells) by acting on transcriptional and epigenetic effectors. Here we will review the molecular mechanisms implicated in the transition of satellite cells throughout the distinct myogenic stages (i.e., activation from quiescence, proliferation, differentiation, and self-renewal). We will also discuss recent findings on the causes underlying satellite cell functional decline with aging. In particular, our review will focus on the epigenetic changes underlying fate decisions and on how the p38 MAPK signaling pathway integrates the environmental signals at the chromatin to build up satellite cell adaptive responses during the process of muscle regeneration, and how these responses are altered in aging. A better comprehension of the signaling pathways connecting external and intrinsic factors will illuminate the path for improving muscle regeneration in the aged. PMID:27626031

  18. Regulation of Muscle Stem Cell Functions: A Focus on the p38 MAPK Signaling Pathway

    PubMed Central

    Segalés, Jessica; Perdiguero, Eusebio; Muñoz-Cánoves, Pura

    2016-01-01

    Formation of skeletal muscle fibers (myogenesis) during development and after tissue injury in the adult constitutes an excellent paradigm to investigate the mechanisms whereby environmental cues control gene expression programs in muscle stem cells (satellite cells) by acting on transcriptional and epigenetic effectors. Here we will review the molecular mechanisms implicated in the transition of satellite cells throughout the distinct myogenic stages (i.e., activation from quiescence, proliferation, differentiation, and self-renewal). We will also discuss recent findings on the causes underlying satellite cell functional decline with aging. In particular, our review will focus on the epigenetic changes underlying fate decisions and on how the p38 MAPK signaling pathway integrates the environmental signals at the chromatin to build up satellite cell adaptive responses during the process of muscle regeneration, and how these responses are altered in aging. A better comprehension of the signaling pathways connecting external and intrinsic factors will illuminate the path for improving muscle regeneration in the aged. PMID:27626031

  19. Hypochlorite-Modified Albumin Upregulates ICAM-1 Expression via a MAPK-NF-κB Signaling Cascade: Protective Effects of Apocynin.

    PubMed

    Tang, Dong-dong; Niu, Hong-xin; Peng, Fen-fen; Long, Hai-bo; Liu, Zong-rui; Zhao, Hao; Chen, Yi-hua

    2016-01-01

    Hypochlorite-modified albumin (HOCl-alb) has been linked to endothelial dysfunction, which plays an important role in the development of hypertension, diabetes, and chronic kidney disease. However, whether HOCl-alb induces endothelial dysfunction via vascular inflammation and whether a signaling pathway is involved are unknown and have not been investigated. HOCl-alb was found to upregulate ICAM-1 expression in human umbilical vein endothelial cells (HUVECs) in a time- and dose-dependent manner. HOCl-alb time-dependently phosphorylated ERK1/2 and p38(MAPK). HOCl-alb also activated NF-κB. ICAM-1 expression was dose-dependently inhibited by U0126 (a specific inhibitor of MEK1/2, a signal upstream from ERK1/2), SB203580 (a specific inhibitor of p38(MAPK)), and SN50 (a specific inhibitor of NF-κB). U0126 and SB203580 both counteracted the activation of NF-κB, whereas the phosphorylation of ERK1/2 and p38(MAPK) was not blocked by SN50. ERK1/2 phosphorylation was blocked by U0126 but not by SB203580, and p38(MAPK) activity was reduced by SB203580 but not by U0126. Apocynin, a specific NADPH oxidase (NOX) inhibitor, inhibited ICAM-1 expression and the activity of ERK1/2, p38(MAPK), and NF-κB. These results indicate that HOCl-alb-induced ICAM-1 expression is caused by the activation of a redox-sensitive intracellular signal cascade involving ERK1/2 and p38(MAPK), culminating in the activation of NF-κB and involving NOXs among the upstream signals. PMID:26881015

  20. Data-Derived Modeling Characterizes Plasticity of MAPK Signaling in Melanoma

    PubMed Central

    Bernardo-Faura, Marti; Massen, Stefan; Falk, Christine S.; Brady, Nathan R.; Eils, Roland

    2014-01-01

    The majority of melanomas have been shown to harbor somatic mutations in the RAS-RAF-MEK-MAPK and PI3K-AKT pathways, which play a major role in regulation of proliferation and survival. The prevalence of these mutations makes these kinase signal transduction pathways an attractive target for cancer therapy. However, tumors have generally shown adaptive resistance to treatment. This adaptation is achieved in melanoma through its ability to undergo neovascularization, migration and rearrangement of signaling pathways. To understand the dynamic, nonlinear behavior of signaling pathways in cancer, several computational modeling approaches have been suggested. Most of those models require that the pathway topology remains constant over the entire observation period. However, changes in topology might underlie adaptive behavior to drug treatment. To study signaling rearrangements, here we present a new approach based on Fuzzy Logic (FL) that predicts changes in network architecture over time. This adaptive modeling approach was used to investigate pathway dynamics in a newly acquired experimental dataset describing total and phosphorylated protein signaling over four days in A375 melanoma cell line exposed to different kinase inhibitors. First, a generalized strategy was established to implement a parameter-reduced FL model encoding non-linear activity of a signaling network in response to perturbation. Next, a literature-based topology was generated and parameters of the FL model were derived from the full experimental dataset. Subsequently, the temporal evolution of model performance was evaluated by leaving time-defined data points out of training. Emerging discrepancies between model predictions and experimental data at specific time points allowed the characterization of potential network rearrangement. We demonstrate that this adaptive FL modeling approach helps to enhance our mechanistic understanding of the molecular plasticity of melanoma. PMID:25188314

  1. PKC/MAPK signaling suppression by retinal pericyte conditioned medium prevents retinal endothelial cell proliferation.

    PubMed

    Kondo, Tetsu; Hosoya, Ken-Ichi; Hori, Satoko; Tomi, Masatoshi; Ohtsuki, Sumio; Terasaki, Tetsuya

    2005-05-01

    Little is known about the regulation mechanism of endothelial cell proliferation by retinal pericytes. The purpose of this study was to elucidate the suppression mechanism of retinal capillary endothelial cell growth by soluble factors derived from retinal pericytes. Conditioned medium of retinal pericytes (rPCT1-CM) suppressed ischemia-induced retinal neovascularization. The growth and DNA synthesis of TR-iBRB2 cells, a conditionally immortalized rat retinal capillary endothelial cell line, were suppressed in a concentration-dependent manner by concentrated rPCT1-CM. The number of human cultured endothelial cells was also reduced by rPCT1-CM. These results provide the first evidence that CM from the cultivation of pericytes alone can inhibit retinal neovascularization in vivo and in vitro. Although the growth reduction of TR-iBRB2 cells was only partly reversed by treatment of rPCT1-CM with antibodies to transforming growth factor-beta1, it was completely lost by heat-treatment of rPCT1-CM, suggesting that anti-angiogenic factors are soluble proteins. The levels of expression of G1/S-phase-related proteins, such as cyclin D1, cyclin-dependent kinase (cdk)4, cdk6, and proliferating cell nuclear antigen, were reduced and a cdk inhibitor, p21(Cip1), was induced in rPCT1-CM-treated TR-iBRB2 cells. Moreover, phosphorylated p44/42 mitogen-activated protein kinase (p44/42 MAPK) in TR-iBRB2 cells was reduced by rPCT1-CM treatment and phosphorylated protein kinase C (PKC)alpha/betaII, which is upstream of p44/42 MAPK, was also suppressed. In conclusion, CM from retinal pericytes suppresses PKC-p44/42 MAPK signaling, inhibits endothelial cell growth, and prevents retinal neovascularization. Anti-angiogenic factors derived from retinal pericytes are likely to play a critical role in the regulation of retinal endothelial cell growth. PMID:15499572

  2. Stimulatory Effects of Coumestrol on Embryonic and Fetal Development Through AKT and ERK1/2 MAPK Signal Transduction.

    PubMed

    Lim, Whasun; Song, Gwonhwa

    2016-12-01

    Successful establishment of pregnancy is required for fetal-maternal interactions regulating implantation, embryonic development and placentation. A uterine environment with insufficient growth factors and nutrients increases the incidence of intrauterine growth restriction (IUGR) leading to an impaired uterine environment. In the present study, we demonstrated the effects of the phytoestrogen coumestrol on conceptus development in the pig that is regarded as an excellent biomedical animal model for research on IUGR. Results of this study indicated that coumestrol induced migration of porcine trophectoderm (pTr) cells in a concentration-dependent manner. In response to coumestrol, the phosphorylation of AKT, P70S6K, S6, ERK1/2 MAPK, and P90RSK proteins were activated in pTr cells and ERK1/2 MAPK and P90RSK phosphorylation was prolonged for a longer period than for the other proteins. To identify the signal transduction pathway induced by coumestrol, pharmacological inhibitors U0126 (an ERK1/2 inhibitor) and LY294002 (a PI3K inhibitor) were used to pretreat pTr cells. The results showed that coumestrol-induced phosphorylation of ERK1/2 MAPK and P90RSK was blocked by U0126. In addition, the increased phosphorylation in response to coumestrol was completely inhibited following pre-treatment incubation of pTr cells in the presence of LY294002 and U0126. Furthermore, these two inhibitors suppressed the ability of coumestrol to induce migration of pTr cells. Collectively, these findings suggest that coumestrol affects embryonic development through activation of the PI3K/AKT and ERK1/2 MAPK cell signal transduction pathways and improvement in the uterine environment through coumestrol supplementation may provide beneficial effects of enhancing embryonic and fetal survival and development. J. Cell. Physiol. 231: 2733-2740, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991852

  3. Involvement of PI3K and MAPK Signaling in bcl-2-induced Vascular Endothelial Growth Factor Expression in Melanoma Cells

    PubMed Central

    Trisciuoglio, Daniela; Iervolino, Angela; Zupi, Gabriella; Del Bufalo, Donatella

    2005-01-01

    We have previously demonstrated that bcl-2 overexpression in tumor cells exposed to hypoxia increases the expression of vascular endothelial growth factor (VEGF) gene through the hypoxia-inducible factor-1 (HIF-1). In this article, we demonstrate that exposure of bcl-2 overexpressing melanoma cells to hypoxia induced phosphorylation of AKT and extracellular signal-regulated kinase (ERK)1/2 proteins. On the contrary, no modulation of these pathways by bcl-2 was observed under normoxic conditions. When HIF-1α expression was reduced by RNA interference, AKT and ERK1/2 phosphorylation were still induced by bcl-2. Pharmacological inhibition of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways reduced the induction of VEGF and HIF-1 in response to bcl-2 overexpression in hypoxia. No differences were observed between control and bcl-2-overexpressing cells in normoxia, in terms of VEGF protein secretion and in response to PI3K and MAPK inhibitors. We also demonstrated that RNA interference-mediated down-regulation of bcl-2 expression resulted in a decrease in the ERK1/2 phosphorylation and VEGF secretion only in bcl-2-overexpressing cell exposed to hypoxia but not in control cells. In conclusion, our results indicate, for the first time, that bcl-2 synergizes with hypoxia to promote expression of angiogenesis factors in melanoma cells through both PI3K- and MAPK-dependent pathways. PMID:15987743

  4. Hypoxia differentially regulates the mitogen- and stress-activated protein kinases. Role of Ca2+/CaM in the activation of MAPK and p38 gamma.

    PubMed

    Conrad, P W; Millhorn, D E; Beitner-Johnson, D

    2000-01-01

    Hypoxic/ischemic trauma is a primary factor in the pathology of various vascular, pulmonary, and cerebral disease states. Yet, the signaling mechanisms by which cells respond and adapt to changes in oxygen levels are not clearly established. The effects of hypoxia on the stress- and mitogen-activated protein kinase (SAPK and MAPK) signaling pathways were studied in PC12 cells. Exposure to moderate hypoxia (5% O2) was found to progressively stimulate phosphorylation and activation of p38 gamma in particular, and also p38 alpha, two isoforms of the p38 family of stress-activated protein kinases. In contrast, hypoxia had no effect on enzyme activity of p38 beta, p38 beta 2, p38 delta, or on JNK, another stress-activated protein kinase. Prolonged hypoxia also induced phosphorylation and activation of p42/p44 MAPK, although this activation was modest when compared to NGF and UV-induced activation. We further showed that activation of p38 gamma and MAPK during hypoxia requires calcium, as treatment with Ca(2+)-free media or the calmodulin antagonist, W13, blocked the activation of p38 gamma and MAPK, respectively. These studies demonstrate that an extremely typical physiological stress (hypoxia) causes selective activation of specific elements of the SAPKs and MAPKs, and identifies Ca+2/CaM as a critical upstream activator. PMID:10849670

  5. Klotho Protects Dopaminergic Neuron Oxidant-Induced Degeneration by Modulating ASK1 and p38 MAPK Signaling Pathways

    PubMed Central

    Brobey, Reynolds K.; German, Dwight; Sonsalla, Patricia K.; Gurnani, Prem; Pastor, Johanne; Hsieh, C-C; Papaconstantinou, John; Foster, Philip P.; Kuro-o, Makoto; Rosenblatt, Kevin P.

    2015-01-01

    Klotho transgenic mice exhibit resistance to oxidative stress as measured by their urinal levels of 8-hydroxy-2-deoxyguanosine, albeit this anti-oxidant defense mechanism has not been locally investigated in the brain. Here, we tested the hypothesis that the reactive oxygen species (ROS)-sensitive apoptosis signal-regulating kinase 1 (ASK1)/p38 MAPK pathway regulates stress levels in the brain of these mice and showed that: 1) the ratio of free ASK1 to thioredoxin (Trx)-bound ASK1 is relatively lower in the transgenic brain whereas the reverse is true for the Klotho knockout mice; 2) the reduced p38 activation level in the transgene corresponds to higher level of ASK1-bound Trx, while the KO mice showed elevated p38 activation and lower level of–bound Trx; and 3) that 14-3-3ζ is hyper phosphorylated (Ser-58) in the transgene which correlated with increased monomer forms. In addition, we evaluated the in vivo robustness of the protection by challenging the brains of Klotho transgenic mice with a neurotoxin, MPTP and analyzed for residual neuron numbers and integrity in the substantia nigra pars compacta. Our results show that Klotho overexpression significantly protects dopaminergic neurons against oxidative damage, partly by modulating p38 MAPK activation level. Our data highlight the importance of ASK1/p38 MAPK pathway in the brain and identify Klotho as a possible anti-oxidant effector. PMID:26452228

  6. Klotho Protects Dopaminergic Neuron Oxidant-Induced Degeneration by Modulating ASK1 and p38 MAPK Signaling Pathways.

    PubMed

    Brobey, Reynolds K; German, Dwight; Sonsalla, Patricia K; Gurnani, Prem; Pastor, Johanne; Hsieh, C-C; Papaconstantinou, John; Foster, Philip P; Kuro-o, Makoto; Rosenblatt, Kevin P

    2015-01-01

    Klotho transgenic mice exhibit resistance to oxidative stress as measured by their urinal levels of 8-hydroxy-2-deoxyguanosine, albeit this anti-oxidant defense mechanism has not been locally investigated in the brain. Here, we tested the hypothesis that the reactive oxygen species (ROS)-sensitive apoptosis signal-regulating kinase 1 (ASK1)/p38 MAPK pathway regulates stress levels in the brain of these mice and showed that: 1) the ratio of free ASK1 to thioredoxin (Trx)-bound ASK1 is relatively lower in the transgenic brain whereas the reverse is true for the Klotho knockout mice; 2) the reduced p38 activation level in the transgene corresponds to higher level of ASK1-bound Trx, while the KO mice showed elevated p38 activation and lower level of-bound Trx; and 3) that 14-3-3ζ is hyper phosphorylated (Ser-58) in the transgene which correlated with increased monomer forms. In addition, we evaluated the in vivo robustness of the protection by challenging the brains of Klotho transgenic mice with a neurotoxin, MPTP and analyzed for residual neuron numbers and integrity in the substantia nigra pars compacta. Our results show that Klotho overexpression significantly protects dopaminergic neurons against oxidative damage, partly by modulating p38 MAPK activation level. Our data highlight the importance of ASK1/p38 MAPK pathway in the brain and identify Klotho as a possible anti-oxidant effector. PMID:26452228

  7. Basal protein phosphatase 2A activity restrains cytokine expression: role for MAPKs and tristetraprolin.

    PubMed

    Rahman, Md Mostafizur; Rumzhum, Nowshin N; Morris, Jonathan C; Clark, Andrew R; Verrills, Nicole M; Ammit, Alaina J

    2015-01-01

    PP2A is a master controller of multiple inflammatory signaling pathways. It is a target in asthma; however the molecular mechanisms by which PP2A controls inflammation warrant further investigation. In A549 lung epithelial cells in vitro we show that inhibition of basal PP2A activity by okadaic acid (OA) releases restraint on MAPKs and thereby increases MAPK-mediated pro-asthmatic cytokines, including IL-6 and IL-8. Notably, PP2A inhibition also impacts on the anti-inflammatory protein - tristetraprolin (TTP), a destabilizing RNA binding protein regulated at multiple levels by p38 MAPK. Although PP2A inhibition increases TTP mRNA expression, resultant TTP protein builds up in the hyperphosphorylated inactive form. Thus, when PP2A activity is repressed, pro-inflammatory cytokines increase and anti-inflammatory proteins are rendered inactive. Importantly, these effects can be reversed by the PP2A activators FTY720 and AAL(s), or more specifically by overexpression of the PP2A catalytic subunit (PP2A-C). Moreover, PP2A plays an important role in cytokine expression in cells stimulated with TNFα; as inhibition of PP2A with OA or PP2A-C siRNA results in significant increases in cytokine production. Collectively, these data reveal the molecular mechanisms of PP2A regulation and highlight the potential of boosting the power of endogenous phosphatases as novel anti-inflammatory strategies to combat asthmatic inflammation. PMID:25985190

  8. Cordycepin induced MA-10 mouse Leydig tumor cell apoptosis by regulating p38 MAPKs and PI3K/AKT signaling pathways

    PubMed Central

    Pan, Bo-Syong; Wang, Yang-Kao; Lai, Meng-Shao; Mu, Yi-Fen; Huang, Bu-Miin

    2015-01-01

    The p38 MAPKs play important roles in the regulation of balance between cell survival and cell death on the development of various cancers. However, the roles of p38 MAPKs regulating apoptotic effects on Leydig tumor cells remain unclear. In the present study, we showed that cordycepin (3′-deoxyadenosine) selectively induced apoptosis in MA-10 mouse Leydig tumor cells through regulating the p38 MAPK and PI3K/AKT signaling pathways. Cordycepin reduced viability in MA-10, TM4, and NT2/D1 cells, but not cause cell death of primary mouse Leydig cells on moderate concentration. Cordycepin increased reactive oxygen species (ROS) levels, which is associated with the induction of apoptosis as characterized by positive Annexin V binding, activation of caspase-3, and cleavage of PARP. Inhibition of p38 MAPKs activity by SB203580 significantly prevented cordycepin-induced apoptosis in MA-10 cells. Co-treatment with wortmannin or the autophagy inhibitor 3-methyladenine (3-MA) elevated levels of apoptosis in cordycepin-treated MA-10 cells. Moreover, cordycepin activated p53, p21 and TGFß; and downregulated CDK2. The antitumour activity of cordycepin-treated MA-10 cells was significantly distinct in severe combined immunodeficiency (SCID) mice in vivo. These results suggested that cordycein is a highly selective treatment to induce MA-10 cells apoptosis via p38 MAPKs signaling. PMID:26303320

  9. Metabolic Respiration Induces AMPK- and Ire1p-Dependent Activation of the p38-Type HOG MAPK Pathway

    PubMed Central

    Adhikari, Hema; Cullen, Paul J.

    2014-01-01

    Evolutionarily conserved mitogen activated protein kinase (MAPK) pathways regulate the response to stress as well as cell differentiation. In Saccharomyces cerevisiae, growth in non-preferred carbon sources (like galactose) induces differentiation to the filamentous cell type through an extracellular-signal regulated kinase (ERK)-type MAPK pathway. The filamentous growth MAPK pathway shares components with a p38-type High Osmolarity Glycerol response (HOG) pathway, which regulates the response to changes in osmolarity. To determine the extent of functional overlap between the MAPK pathways, comparative RNA sequencing was performed, which uncovered an unexpected role for the HOG pathway in regulating the response to growth in galactose. The HOG pathway was induced during growth in galactose, which required the nutrient regulatory AMP-dependent protein kinase (AMPK) Snf1p, an intact respiratory chain, and a functional tricarboxylic acid (TCA) cycle. The unfolded protein response (UPR) kinase Ire1p was also required for HOG pathway activation in this context. Thus, the filamentous growth and HOG pathways are both active during growth in galactose. The two pathways redundantly promoted growth in galactose, but paradoxically, they also inhibited each other's activities. Such cross-modulation was critical to optimize the differentiation response. The human fungal pathogen Candida albicans showed a similar regulatory circuit. Thus, an evolutionarily conserved regulatory axis links metabolic respiration and AMPK to Ire1p, which regulates a differentiation response involving the modulated activity of ERK and p38 MAPK pathways. PMID:25356552

  10. Differential Activation of Mitogen-Activated Protein Kinases, ERK 1/2, p38(MAPK) and JNK p54/p46 During Postnatal Development of Rat Hippocampus.

    PubMed

    Costa, Ana Paula; Lopes, Mark William; Rieger, Débora K; Barbosa, Sabrina Giovana Rocha; Gonçalves, Filipe Marques; Xikota, João Carlos; Walz, Roger; Leal, Rodrigo B

    2016-05-01

    Mitogen-activated protein kinases (MAPKs) are a group of serine-threonine kinases, including p38(MAPK), ERK 1/2 and JNK p54/p46, activated by phosphorylation in response to extracellular stimuli. The early postnatal period is characterized by significant changes in brain structure as well as intracellular signaling. In the hippocampus MAPKs have been involved in the modulation of development and neural plasticity. However, the temporal profile of MAPK activation throughout the early postnatal development is incomplete. An understanding of this profile is important since slight changes in the activity of these enzymes, in response to environmental stress in specific developmental windows, might alter the course of development. The present study was undertaken to investigate the hippocampal differential activation of MAPK during postnatal period. MAPK activation and total content were evaluated by Western blotting of hippocampal tissue obtained from male Wistar rats at postnatal days (P) 1, 4, 7, 10, 14, 21, 30 and 60. The total content and phosphorylation of each MAPK was expressed as mean ± SEM and then calculates as a percentile compared to P1 (set at 100 %). The results showed: (1) phosphorylation peaks of p38(MAPK) at PN4 (p = 0.036) and PN10 to PN60; (2) phosphorylation of ERK1 and ERK2 were increased with age (ERK1 p = 0.0000005 and ERK2 p = 0.003); (3) phosphorylation profile of JNK p54/p46 was not changed during the period analyzed (JNKp56 p = 0.716 and JNKp46 p = 0.192). Therefore, the activity profile of ERK 1/2 and p38(MAPK) during postnatal development of rat hippocampus are differentially regulated. Our results demonstrate that ERK 1/2 and p38(MAPK) are dynamically regulated during postnatal neurodevelopment, suggesting temporal correlation of MAPK activity with critical periods when programmed cell death and synaptogenesis are occurring. This suggests an important role for these MAPKs in postnatal development of rat hippocampus. PMID

  11. TLR4-Activated MAPK-IL-6 Axis Regulates Vascular Smooth Muscle Cell Function.

    PubMed

    Lee, Guan-Lin; Wu, Jing-Yiing; Tsai, Chien-Sung; Lin, Chih-Yuan; Tsai, Yi-Ting; Lin, Chin-Sheng; Wang, Yi-Fu; Yet, Shaw-Fang; Hsu, Yu-Juei; Kuo, Cheng-Chin

    2016-01-01

    Migration of vascular smooth muscle cells (VSMCs) into the intima is considered to be a vital event in the pathophysiology of atherosclerosis. Despite substantial evidence supporting the pathogenic role of Toll-like receptor 4 (TLR4) in the progression of atherogenesis, its function in the regulation of VSMC migration remains unclear. The goal of the present study was to elucidate the mechanism by which TLR4 regulates VSMC migration. Inhibitor experiments revealed that TLR4-induced IL-6 secretion and VSMC migration were mediated via the concerted actions of MyD88 and TRIF on the activation of p38 MAPK and ERK1/2 signaling. Neutralizing anti-IL-6 antibodies abrogated TLR4-driven VSMC migration and F-actin polymerization. Blockade of p38 MAPK or ERK1/2 signaling cascade inhibited TLR4 agonist-mediated activation of cAMP response element binding protein (CREB). Moreover, siRNA-mediated suppression of CREB production repressed TLR4-induced IL-6 production and VSMC migration. Rac-1 inhibitor suppressed TLR4-driven VSMC migration but not IL-6 production. Importantly, the serum level of IL-6 and TLR4 endogenous ligand HMGB1 was significantly higher in patients with coronary artery diseases (CAD) than in healthy subjects. Serum HMGB1 level was positively correlated with serum IL-6 level in CAD patients. The expression of both HMGB1 and IL-6 was clearly detected in the atherosclerotic tissue of the CAD patients. Additionally, there was a positive association between p-CREB and HMGB1 in mouse atherosclerotic tissue. Based on our findings, we concluded that, upon ligand binding, TLR4 activates p38 MAPK and ERK1/2 signaling through MyD88 and TRIF in VSMCs. These signaling pathways subsequently coordinate an additive augmentation of CREB-driven IL-6 production, which in turn triggers Rac-1-mediated actin cytoskeleton to promote VSMC migration. PMID:27563891

  12. Fasudil inhibits LPS-induced migration of retinal microglial cells via regulating p38-MAPK signaling pathway

    PubMed Central

    Xu, Fan; Xu, Yue; Zhu, Liqiong; Rao, Pinhong; Wen, Jiamin; Sang, Yunyun; Shang, Fu

    2016-01-01

    Purpose To investigate the effect and possible molecular mechanisms of fasudil on retinal microglial (RMG) cell migration. Methods Primary cultured RMG cells were incubated with lipopolysaccharide (LPS), fasudil, and/or SB203580 (a p38 inhibitor). RMG cell motility was determined with the scratch wound assay and the Transwell migration assay. The phosphorylation of p38 and levels of matrix metalloproteinase 2 (MMP-2) and MMP-9 were measured with western blot. Results In the scratch-induced migration assay, as well as in the Transwell migration assay, the results indicated that LPS stimulated the migratory potential of RMG cells and fasudil significantly reduced LPS-stimulated RMG cell migration in a concentration-dependent manner. However, fasudil had no effect on RMG cell migration in the absence of LPS stimulation. Moreover, fasudil reduced the level of phosphor-p38 mitogen-activated protein kinase (p-p38-MAPK) in a concentration-dependent manner, without effects on the levels of phospho-p44/42 (p-ERK1/2) and phospho-c-Jun N-terminal kinase (p-JNK). Cotreatment with SB203580 (a p38 inhibitor) and fasudil resulted in the synergistic reduction of MMP-2, MMP-9, and p-p38-MAPK, as well as a reduction in the LPS-stimulated migration capabilities of the RMG cells, suggesting fasudil suppresses the LPS-stimulated migration of RMG cells via directly downregulating the p38-MAPK signaling pathway. Conclusions Our studies indicated that fasudil inhibited LPS-stimulated RMG cell migration via suppression of the p38-MAPK signaling pathway. PMID:27441000

  13. Kit transduced signals counteract erythroid maturation by MAPK-dependent modulation of erythropoietin signaling and apoptosis induction in mouse fetal liver.

    PubMed

    Haas, N; Riedt, T; Labbaf, Z; Baßler, K; Gergis, D; Fröhlich, H; Gütgemann, I; Janzen, V; Schorle, H

    2015-05-01

    Signaling by the stem cell factor receptor Kit in hematopoietic stem and progenitor cells is functionally associated with the regulation of cellular proliferation, differentiation and survival. Expression of the receptor is downregulated upon terminal differentiation in most lineages, including red blood cell terminal maturation, suggesting that omission of Kit transduced signals is a prerequisite for the differentiation process to occur. However, the molecular mechanisms by which Kit signaling preserves the undifferentiated state of progenitor cells are not yet characterized in detail. In this study, we generated a mouse model for inducible expression of a Kit receptor carrying an activating mutation and studied its effects on fetal liver hematopoiesis. We found that sustained Kit signaling leads to expansion of erythroid precursors and interferes with terminal maturation beyond the erythroblast stage. Primary KIT(D816V) erythroblasts stimulated to differentiate fail to exit cell cycle and show elevated rates of apoptosis because of insufficient induction of survival factors. They further retain expression of progenitor cell associated factors c-Myc, c-Myb and GATA-2 and inefficiently upregulate erythroid transcription factors GATA-1, Klf1 and Tal1. In KIT(D816V) erythroblasts we found constitutive activation of the mitogen-activated protein kinase (MAPK) pathway, elevated expression of the src kinase family member Lyn and impaired Akt activation in response to erythropoietin. We demonstrate that the block in differentiation is partially rescued by MAPK inhibition, and completely rescued by the multikinase inhibitor Dasatinib. These results show that a crosstalk between Kit and erythropoietin receptor signaling cascades exists and that continuous Kit signaling, partly mediated by the MAPK pathway, interferes with this crosstalk. PMID:25323585

  14. Kit transduced signals counteract erythroid maturation by MAPK-dependent modulation of erythropoietin signaling and apoptosis induction in mouse fetal liver

    PubMed Central

    Haas, N; Riedt, T; Labbaf, Z; Baßler, K; Gergis, D; Fröhlich, H; Gütgemann, I; Janzen, V; Schorle, H

    2015-01-01

    Signaling by the stem cell factor receptor Kit in hematopoietic stem and progenitor cells is functionally associated with the regulation of cellular proliferation, differentiation and survival. Expression of the receptor is downregulated upon terminal differentiation in most lineages, including red blood cell terminal maturation, suggesting that omission of Kit transduced signals is a prerequisite for the differentiation process to occur. However, the molecular mechanisms by which Kit signaling preserves the undifferentiated state of progenitor cells are not yet characterized in detail. In this study, we generated a mouse model for inducible expression of a Kit receptor carrying an activating mutation and studied its effects on fetal liver hematopoiesis. We found that sustained Kit signaling leads to expansion of erythroid precursors and interferes with terminal maturation beyond the erythroblast stage. Primary KITD816V erythroblasts stimulated to differentiate fail to exit cell cycle and show elevated rates of apoptosis because of insufficient induction of survival factors. They further retain expression of progenitor cell associated factors c-Myc, c-Myb and GATA-2 and inefficiently upregulate erythroid transcription factors GATA-1, Klf1 and Tal1. In KITD816V erythroblasts we found constitutive activation of the mitogen-activated protein kinase (MAPK) pathway, elevated expression of the src kinase family member Lyn and impaired Akt activation in response to erythropoietin. We demonstrate that the block in differentiation is partially rescued by MAPK inhibition, and completely rescued by the multikinase inhibitor Dasatinib. These results show that a crosstalk between Kit and erythropoietin receptor signaling cascades exists and that continuous Kit signaling, partly mediated by the MAPK pathway, interferes with this crosstalk. PMID:25323585

  15. Ghrelin Protects against Dexamethasone-Induced INS-1 Cell Apoptosis via ERK and p38MAPK Signaling

    PubMed Central

    2016-01-01

    Glucocorticoid excess induces apoptosis of islet cells, which may result in diabetes. In this study, we investigated the protective effect of ghrelin on dexamethasone-induced INS-1 cell apoptosis. Our data showed that ghrelin (0.1 μM) inhibited dexamethasone-induced (0.1 μM) apoptosis of INS-1 cells and facilitated cell proliferation. Moreover, ghrelin upregulated Bcl-2 expression, downregulated Bax expression, and decreased caspase-3 activity. The protective effect of ghrelin against dexamethasone-induced INS-1 cell apoptosis was mediated via growth hormone secretagogue receptor 1a. Further studies revealed that ghrelin increased ERK activation and decreased p38MAPK expression after dexamethasone treatment. Ghrelin-mediated protection of dexamethasone-induced apoptosis of INS-1 cells was attenuated using the ERK inhibitor U0126 (10 μM), and cell viability increased using the p38MAPK inhibitor SB203580 (10 μM). In conclusion, ghrelin could protect against dexamethasone-induced INS-1 cell apoptosis, at least partially via GHS-R1a and the signaling pathway of ERK and p38MAPK. PMID:27190513

  16. Prunetin signals via G-protein-coupled receptor, GPR30(GPER1): Stimulation of adenylyl cyclase and cAMP-mediated activation of MAPK signaling induces Runx2 expression in osteoblasts to promote bone regeneration.

    PubMed

    Khan, Kainat; Pal, Subhashis; Yadav, Manisha; Maurya, Rakesh; Trivedi, Arun Kumar; Sanyal, Sabyasachi; Chattopadhyay, Naibedya

    2015-12-01

    Prunetin is found in red clover and fruit of Prunus avium (red cherry). The effect of prunetin on osteoblast function, its mode of action and bone regeneration in vivo were investigated. Cultures of primary osteoblasts, osteoblastic cell line and HEK293T cells were used for various in vitro studies. Adult female rats received drill-hole injury at the femur diaphysis to assess the bone regenerative effect of prunetin. Prunetin at 10nM significantly (a) increased proliferation and differentiation of primary cultures of osteoblasts harvested from rats and (b) promoted formation of mineralized nodules by bone marrow stromal/osteoprogenitor cells. At this concentration, prunetin did not activate any of the two nuclear estrogen receptors (α and β). However, prunetin triggered signaling via a G-protein-coupled receptor, GPR30/GPER1, and enhanced cAMP levels in osteoblasts. G15, a selective GPR30 antagonist, abolished prunetin-induced increases in osteoblast proliferation, differentiation and intracellular cAMP. In osteoblasts, prunetin up-regulated runt-related transcription factor 2 (Runx2) protein through cAMP-dependent Erk/MAP kinase activation that ultimately resulted in the up-regulation of GPR30. Administration of prunetin at 0.25mg/kg given to rats stimulated bone regeneration at the site of drill hole and up-regulated Runx2 expression in the fractured callus and the effect was comparable to human parathyroid hormone, the only clinically used osteogenic therapy. We conclude that prunetin promotes osteoinduction in vivo and the mechanism is defined by signaling through GPR30 resulting in the up-regulation of the key osteogenic gene Runx2 that in turn up-regulates GPR30. PMID:26345541

  17. Evidence for the Involvement of p38 MAPK Activation in Barnacle Larval Settlement

    PubMed Central

    He, Li-Sheng; Xu, Ying; Matsumura, Kiyotaka; Zhang, Yu; Zhang, Gen; Qi, Shu-Hua; Qian, Pei-Yuan

    2012-01-01

    The barnacle Balanus ( = Amphibalanus) amphitrite is a major marine fouling animal. Understanding the molecular mechanism of larval settlement in this species is critical for anti-fouling research. In this study, we cloned one isoform of p38 MAPK (Bar-p38 MAPK) from this species, which shares the significant characteristic of containing a TGY motif with other species such as yeast, Drosophila and humans. The activation of p38 MAPK was detected by an antibody that recognizes the conserved dual phosphorylation sites of TGY. The results showed that phospho-p38 MAPK (pp38 MAPK) was more highly expressed at the cyprid stage, particularly in aged cyprids, in comparison to other stages, including the nauplius and juvenile stages. Immunostaining showed that Bar-p38 MAPK and pp38 MAPK were mainly located at the cyprid antennules, and especially the third and fourth segments, which are responsible for substratum exploration during settlement. The expression and localization patterns of Bar-p38 MAPK suggest its involvement in larval settlement. This postulation was also supported by the larval settlement bioassay with the p38 MAPK inhibitor SB203580. Behavioral analysis by live imaging revealed that the larvae were still capable of exploring the surface of the substratum after SB203580 treatment. This shows that the effect of p38 MAPK on larval settlement might be by regulating the secretion of permanent proteinaceous substances. Furthermore, the level of pp38 MAPK dramatically decreased after full settlement, suggesting that Bar-p38 MAPK maybe plays a role in larval settlement rather than metamorphosis. Finally, we found that Bar-p38 MAPK was highly activated when larvae confronted extracts of adult barnacle containing settlement cues, whereas larvae pre-treated with SB203580 failed to respond to the crude adult extracts. PMID:23115639

  18. Michael addition of dehydroalanine-containing MAPK peptides to catalytic lysine inhibits the activity of phosphothreonine lyase.

    PubMed

    Zhang, Yuan; Yang, Ru; Huang, Juan; Liang, Qiujin; Guo, Yanmin; Bian, Weixiang; Luo, Lingfei; Li, Hongtao

    2015-11-30

    The phosphothreonine lyases OspF and SpvC irreversibly inactivate host dual-phosphorylated mitogen-activated protein kinases (MAPKs) [pThr-X-pTyr motif] through β-elimination. We found that dual-phosphorylated (pSer-X-pTyr) MAPK substrate peptides and their resulting catalytic products cross-link to OspF and SpvC. Mass spectrometry results revealed that these linkages form between lysine, which acts as a general base, and dehydroalanine (Dha) on catalytic products. The nucleophilic addition efficiency is dependent on the K136 residue being in a deprotonated state. Peptide cross-linking inhibits the activity of SpvC and blocks the inactivation of MAPK signaling by SpvC. Small compounds mimicking these sequences may act as phosphothreonine lyase inhibitors. PMID:26519561

  19. A Measurable Activation of the bZIP Transcription Factor Atf1 in a Fission Yeast Strain Devoid of Stress-activated and Cell Integrity Mitogen-activated Protein Kinase (MAPK) Activities*

    PubMed Central

    Zhou, Xin; Ma, Yan; Kato, Toshiaki; Kuno, Takayoshi

    2012-01-01

    In Schizosaccharomyces pombe, the stress-activated Sty1 MAPK pathway is essential for cell survival under stress conditions. The Sty1 MAPK regulates Atf1 transcription factor to elicit stress responses in extreme conditions of osmolarity and reactive oxygen species-generating agents such as hydrogen peroxide, heat, low glucose, and heavy metal. Herein, using a newly developed Renilla luciferase reporter assay with enhanced detection sensitivity and accuracy, we show that distinct signaling pathways respond to cadmium and other reactive oxygen species-generating agents for the activation of Atf1. Also, surprisingly, a measurable activation of Atf1 transcription factor was still observed devoid of Sty1 MAPK activity. Further genetic and biological analyses revealed that the residual activation is caused by the activation of the cell wall integrity Pmk1 MAPK pathway and a redox-mediated activation of Atf1. PMID:22661707

  20. Overexpression of the MAP kinase gene OsMAPK33 enhances sensitivity to salt stress in rice (Oryza sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mitogen-activated protein kinases (MAPK) signaling cascades are activated by extracellular stimuli such as environmental stresses and pathogens in higher eukaryotic plants. To know more about MAPK signaling in plants, a MAPK cDNA clone, OsMAPK33 was isolated from rice. The gene is mainly induced by ...

  1. R-Ras inhibits VEGF-induced p38MAPK activation and HSP27 phosphorylation in endothelial cells

    PubMed Central

    Sawada, Junko; Li, Fangfei; Komatsu, Masanobu

    2016-01-01

    R-Ras is a Ras family small GTPase highly expressed in mature functional blood vessels in normal tissues. It inhibits pathological angiogenesis and promotes vessel maturation and stabilization. Previous studies suggest that R-Ras affects cellular signaling in endothelial cells, pericytes, and smooth muscle cells to regulate vessel formation and remodeling in adult tissues. R-Ras suppresses VEGF-induced endothelial permeability and vessel sprouting while promoting normalization of pathologically developing vessels in mice. R-Ras attenuates VEGF receptor-2 (VEGFR2) activation by inhibiting internalization of the receptor upon VEGF ligand binding, leading to significant reduction of VEGFR2 autophosphorylation. Here, we show that R-Ras strongly suppresses VEGF-dependent activation of stress-activated protein kinase-2/p38 mitogen-activated protein kinase (SAPK2/p38MAPK) and phosphorylation of downstream heat shock protein 27 (HSP27), a regulator of actin cytoskeleton organization, in endothelial cells. The suppression of p38MAPK activation and HSP27 phosphorylation by R-Ras concurred with altered actin cytoskeleton architecture, reduced membrane protrusion, and inhibition of endothelial cell migration toward VEGF. Silencing of endogenous R-Ras by RNAi increased membrane protrusion and cell migration stimulated by VEGF, and these effects were offset by p38MAPK inhibitor SB203580. These results suggest that R-Ras regulates angiogenic activities of endothelial cells in part via inhibition of the p38MAPK-HSP27 axis of VEGF signaling. PMID:27029009

  2. R-Ras Inhibits VEGF-Induced p38MAPK Activation and HSP27 Phosphorylation in Endothelial Cells.

    PubMed

    Sawada, Junko; Li, Fangfei; Komatsu, Masanobu

    2015-01-01

    R-Ras is a Ras family small GTPase that is highly expressed in mature functional blood vessels in normal tissues. It inhibits pathological angiogenesis and promotes vessel maturation and stabilization. Previous studies suggest that R-Ras affects cellular signaling in endothelial cells, pericytes and smooth-muscle cells to regulate vessel formation and remodeling in adult tissues. R-Ras suppresses VEGF-induced endothelial permeability and vessel sprouting while promoting normalization of pathologically developing vessels in mice. It attenuates VEGF receptor-2 (VEGFR2) activation by inhibiting internalization of the receptor upon VEGF ligand binding, leading to significant reduction of VEGFR2 autophosphorylation. Here, we show that R-Ras strongly suppresses the VEGF-dependent activation of stress-activated protein kinase-2/p38 mitogen-activated protein kinase (SAPK2/p38MAPK) and the phosphorylation of downstream heat-shock protein 27 (HSP27), a regulator of actin cytoskeleton organization, in endothelial cells. The suppression of p38MAPK activation and HSP27 phosphorylation by R-Ras concurred with altered actin cytoskeleton architecture, reduced membrane protrusion and inhibition of endothelial cell migration toward VEGF. Silencing of endogenous R-Ras by RNA interference increased membrane protrusion and cell migration stimulated by VEGF, and these effects were offset by p38MAPK inhibitor SB203580. These results suggest that R-Ras regulates angiogenic activities of endothelial cells in part via inhibition of the p38MAPK-HSP27 axis of VEGF signaling. PMID:27029009

  3. Cadmium induces vascular permeability via activation of the p38 MAPK pathway

    SciTech Connect

    Dong, Fengyun; Guo, Fang; Li, Liqun; Guo, Ling; Hou, Yinglong; Hao, Enkui; Yan, Suhua; Allen, Thaddeus D.; Liu, Ju

    2014-07-18

    Highlights: • Low-dose cadmium (Cd) induces vascular hyper-permeability. • p38 MAPK mediates Cd-induced disruption of endothelial cell barrier function. • SB203850 inhibits Cd-induced membrane dissociation of VE-cadherin and β-catenin. • SB203850 reduces Cd-induced expression and secretion of TNF-α. - Abstract: The vasculature of various organs is a targeted by the environmental toxin, cadmium (Cd). However, mechanisms leading to pathological conditions are poorly understood. In the present study, we examined the effect of cadmium chloride (CdCl{sub 2}) on human umbilical vein endothelial cells (HUVECs). At 4 μM, CdCl{sub 2} induced a hyper-permeability defect in HUVECs, but not the inhibition of cell growth up to 24 h. This effect of CdCl{sub 2} was dependent on the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. The p38 MAPK inhibitor SB203850 suppressed the CdCl{sub 2}-induced alteration in trans-endothelial electrical resistance in HUVEC monolayers, a model measurement of vascular endothelial barrier integrity. SB203850 also inhibited the Cd-induced membrane dissociation of vascular endothelial (VE) cadherin and β-catenin, the important components of the adherens junctional complex. In addition, SB203850 reduces the Cd-induced expression and secretion of tumor necrosis factor α (TNF-α). Taken together, our findings suggest that Cd induces vascular hyper-permeability and disruption of endothelial barrier integrity through stimulation of p38 MAPK signaling.

  4. Effect of Indole Ethyl Isothiocyanates on Proliferation, Apoptosis and MAPK Signaling in Neuroblastoma Cell Lines

    PubMed Central

    Singh, Rakesh K.; Lange, Thilo S.; Kim, Kyu Kwang; Zou, Yongping; Lieb, Casey; Sholler, Giselle L.; Brard, Laurent

    2007-01-01

    Several indole ethyl isothiocyanate (IEITC) analogs were designed, synthesized and screened to evaluate their cytotoxicity against neuroblastoma (NB) cells in-vitro. In NB, predominantly a tumor of early childhood, survival remains low despite aggressive treatments. Therefore, novel treatment strategies are greatly needed. The objective of the present study was to study the therapeutic potential of IEITC by analyzing the cytotoxic, anti-proliferative and apoptotic effects on NB cell lines. 7-methyl-indole-3-ethyl isothiocyanate (7Me-IEITC) proved to be cytotoxic to various NB cell lines (SMS-KCNR, SK-N-SH, SH-SY5Y, IMR-32) with an IC50 at 2.5-5.0 μM, while primary control cells (lung fibroblasts) were not affected. 7Me-IEITC led to the activation of apoptotic markers caspase-3, - 8 and -9, caused activation of pro-apoptotic p38 MAPK and SAP/JNK, and down-regulated pro-survival factor AKT in SMS-KCNR cells. Moreover, 7Me-IEITC displayed anti-proliferative effects (IC50 at 600 nM) and caused an arrest in cell cycle progression. This wide effect of 7Me-IEITC on NB cell signaling and survival suggests that it could be developed as a therapeutic agent against neuroblastoma. PMID:17855093

  5. Effect of electroacupuncture stimulation at Zusanli acupoint (ST36) on gastric motility: possible through PKC and MAPK signal transduction pathways

    PubMed Central

    2014-01-01

    Background Electroacupuncture (EA) stimulation has been shown to have a great therapeutic potential for treating gastrointestinal motility disorders. However, no evidence has clarified the mechanisms contributing to the effects of EA stimulation at the Zusanli acupoint (ST.36). This study was designed to investigate the regulative effect of EA stimulation at the ST.36 on gastric motility and to explore its possible mechanisms. Methods Thirty Sprague-Dawley rats were randomly divided into three groups: the ST.36 group, the non-acupoint group, and the control group. EA stimulation was set at 2 Hz, continuous mode, and 1 V for 30 min. The frequency and average peak amplitude of gastric motility were measured by electrogastrography. The protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) signaling pathways were assessed using real-time polymerase chain reactions. Caldesmon (CaD) and calponin (CaP) protein expression in the gastric antrum were detected on Western blots. A Computed Video Processing System was used to evaluate morphological changes in smooth muscle cells (SMCs) from the gastric antrum. Results EA stimulation at ST.36 had a dual effect on the frequency and average peak amplitude. Additionally, EA stimulation at ST.36 regulated the expression of some genes in the PKC and MAPK signaling pathways, and it regulated the expression of the CaD and CaP proteins. EA serum induced SMC contractility. Promotion of gastric motility may correlate with up-regulation of MAPK6 (ERK3), MAPK13, and Prostaglandin-endoperoxide synthase 2 (PTGS2) gene expression, and the down-regulation of the collagen, type I, alpha 1 (COL1A1) gene and CaD and CaP protein expression. Inhibition of gastric motility may correlate with down-regulation of the Interleukin-1 receptor type 2 (IL1R2) and Matrix metalloproteinase-9 (MMP9) genes, and up-regulation of CaD and CaP protein expression. Conclusions EA stimulation at ST.36 regulated gastric motility, and the effects were

  6. The role of MAPK signaling pathway in the Her-2-positive meningiomas.

    PubMed

    Wang, Zhaoyin; Wang, Weijia; Xu, Shan; Wang, Shanshan; Tu, Yi; Xiong, Yifeng; Mei, Jinhong; Wang, Chunliang

    2016-08-01

    Meningiomas are common types of adult nerve system tumors. Although most cases are considered benign, due to its high rate of recurrence and easy malignant progression to anaplastic meningioma they present a puzzle for the current treatment. The HER-2 oncogene has important value for meningioma cells development and progression. So far, little is known about the effect on the exact underlying signal pathway and molecular mechanisms of HER-2-positive meningioma cells. The goal of the present study was to determine the effects of HER-2 gene and possible involvement of MAPK signal pathway in human malignant meningioma. We applied q-PCR analysis, immunofluorescence (IF) staining, western blot analysis, animal model, MAPK inhibition, MTT assay and cell invasion analysis for the investigation. The results demonstrated that the downregulation of the expression of HER-2 significantly inhibited cell motility and proliferation of human meningioma cells in vivo. Accordingly, in the HER-2-overexpression meningioma cells with the inhibition of ERK1/2, ERK5, JNK, in the cells with the ERK1/2, ERK5 inhibition, protein expression was markedly suppressed as well as the cell proliferation resistance. No difference was observed in the HER-2-overexpression meningioma cells with the inhibition of JNK. These findings suggest that HER-2 gene can affect the proliferation ability of human meningioma cells in vivo and MAPK signal pathway may contribute to the carcinogenesis and development of human meningiomas combinating with HER-2. PMID:27279438

  7. The role of MAPK signaling pathway in the Her-2-positive meningiomas

    PubMed Central

    Wang, Zhaoyin; Wang, Weijia; Xu, Shan; Wang, Shanshan; Tu, Yi; Xiong, Yifeng; Mei, Jinhong; Wang, Chunliang

    2016-01-01

    Meningiomas are common types of adult nerve system tumors. Although most cases are considered benign, due to its high rate of recurrence and easy malignant progression to anaplastic meningioma they present a puzzle for the current treatment. The HER-2 oncogene has important value for meningioma cells development and progression. So far, little is known about the effect on the exact underlying signal pathway and molecular mechanisms of HER-2-positive meningioma cells. The goal of the present study was to determine the effects of HER-2 gene and possible involvement of MAPK signal pathway in human malignant meningioma. We applied q-PCR analysis, immunofluorescence (IF) staining, western blot analysis, animal model, MAPK inhibition, MTT assay and cell invasion analysis for the investigation. The results demonstrated that the downregulation of the expression of HER-2 significantly inhibited cell motility and proliferation of human meningioma cells in vivo. Accordingly, in the HER-2-overexpression meningioma cells with the inhibition of ERK1/2, ERK5, JNK, in the cells with the ERK1/2, ERK5 inhibition, protein expression was markedly suppressed as well as the cell proliferation resistance. No difference was observed in the HER-2-overexpression meningioma cells with the inhibition of JNK. These findings suggest that HER-2 gene can affect the proliferation ability of human meningioma cells in vivo and MAPK signal pathway may contribute to the carcinogenesis and development of human meningiomas combinating with HER-2. PMID:27279438

  8. Cross-talk between Smad and p38 MAPK signalling in transforming growth factor {beta} signal transduction in human glioblastoma cells

    SciTech Connect

    Dziembowska, Magdalena; Danilkiewicz, Malgorzata; Wesolowska, Aleksandra; Zupanska, Agata; Chouaib, Salem; Kaminska, Bozena . E-mail: bozenakk@nencki.gov.pl

    2007-03-23

    Transforming growth factor-beta (TGF-{beta}) is a multifunctional cytokine involved in the regulation of cell proliferation, differentiation, and survival. Malignant tumour cells often do not respond to TGF-{beta} by growth inhibition, but retain responsiveness to cytokine in regulating extracellular matrix deposition, cell adhesion, and migration. We demonstrated that TGF-{beta}1 does not affect viability or proliferation of human glioblastoma T98G, but increases transcriptional responses exemplified by induction of MMP-9 expression. TGF-{beta} receptors were functional in T98G glioblastoma cells leading to SMAD3/SMAD4 nuclear translocation and activation of SMAD-dependent promoter. In parallel, a selective activation of p38 MAPK, and phosphorylation of its substrates: ATF2 and c-Jun proteins were followed by a transient activation of AP-1 transcription factor. Surprisingly, an inhibition of p38 MAPK with a specific inhibitor, SB202190, abolished TGF-inducible activation of Smad-dependent promoter and decreased Smad2 phosphorylation. It suggests an unexpected interaction between Smad and p38 MAPK pathways in TGF-{beta}1-induced signalling.

  9. SB203580 Modulates p38 MAPK Signaling and Dengue Virus-Induced Liver Injury by Reducing MAPKAPK2, HSP27, and ATF2 Phosphorylation

    PubMed Central

    Sreekanth, Gopinathan Pillai; Chuncharunee, Aporn; Sirimontaporn, Aunchalee; Panaampon, Jutatip; Noisakran, Sansanee; Yenchitsomanus, Pa-thai; Limjindaporn, Thawornchai

    2016-01-01

    Dengue virus (DENV) infection causes organ injuries, and the liver is one of the most important sites of DENV infection, where viral replication generates a high viral load. The molecular mechanism of DENV-induced liver injury is still under investigation. The mitogen activated protein kinases (MAPKs), including p38 MAPK, have roles in the hepatic cell apoptosis induced by DENV. However, the in vivo role of p38 MAPK in DENV-induced liver injury is not fully understood. In this study, we investigated the role of SB203580, a p38 MAPK inhibitor, in a mouse model of DENV infection. Both the hematological parameters, leucopenia and thrombocytopenia, were improved by SB203580 treatment and liver transaminases and histopathology were also improved. We used a real-time PCR microarray to profile the expression of apoptosis-related genes. Tumor necrosis factor α, caspase 9, caspase 8, and caspase 3 proteins were significantly lower in the SB203580-treated DENV-infected mice than that in the infected control mice. Increased expressions of cytokines including TNF-α, IL-6 and IL-10, and chemokines including RANTES and IP-10 in DENV infection were reduced by SB203580 treatment. DENV infection induced the phosphorylation of p38MAPK, and its downstream signals including MAPKAPK2, HSP27 and ATF-2. SB203580 treatment did not decrease the phosphorylation of p38 MAPK, but it significantly reduced the phosphorylation of MAPKAPK2, HSP27, and ATF2. Therefore, SB203580 modulates the downstream signals to p38 MAPK and reduces DENV-induced liver injury. PMID:26901653

  10. REX-1 Expression and p38 MAPK Activation Status Can Determine Proliferation/Differentiation Fates in Human Mesenchymal Stem Cells

    PubMed Central

    Jung, Ji-Won; Kang, Soo-Kyung; Kang, Kyung-Sun

    2010-01-01

    Background REX1/ZFP42 is a well-known embryonic stem cell (ESC) marker. However, the role of REX1, itself, is relatively unknown because the function of REX1 has only been reported in the differentiation of ESCs via STAT signaling pathways. Human mesenchymal stem cells (hMSCs) isolated from young tissues and cancer cells express REX1. Methodology/Principal Finding Human umbilical cord blood-derived MSCs (hUCB-MSCs) and adipose tissue-derived MSCs (hAD-MSCs) strongly express REX1 and have a lower activation status of p38 MAPK, but bone marrow-derived MSCs (hBM-MSCs) have weak REX1 expression and higher activation of p38 MAPK. These results indicated that REX1 expression in hMSCs was positively correlated with proliferation rates but inversely correlated with the phosphorylation of p38 MAPK. In hUCB-MSCs, the roles of REX1 and p38 MAPK were investigated, and a knockdown study was performed using a lentiviral vector-based small hairpin RNA (shRNA). After REX1 knockdown, decreased cell proliferation was observed. In REX1 knocked-down hUCB-MSCs, the osteogenic differentiation ability deteriorated, but the adipogenic potential increased or was similar to that observed in the controls. The phosphorylation of p38 MAPK in hUCB-MSCs significantly increased after REX1 knockdown. After p38 MAPK inhibitor treatment, the cell growth in REX1 knocked-down hUCB-MSCs almost recovered, and the suppressed expression levels of CDK2 and CCND1 were also restored. The expression of MKK3, an upstream regulator of p38 MAPK, significantly increased in REX1 knocked-down hUCB-MSCs. The direct binding of REX1 to the MKK3 gene was confirmed by a chromatin immunoprecipitation (ChIP) assay. Conclusions/Significance These findings showed that REX1 regulates the proliferation/differentiation of hMSCs through the suppression of p38 MAPK signaling via the direct suppression of MKK3. Therefore, p38 MAPK and REX-1 status can determine the cell fate of adult stem cells (ASCs). These results were the

  11. Andrographolide suppresses epithelial mesenchymal transition by inhibition of MAPK signalling pathway in lens epithelial cells.

    PubMed

    Kayastha, Forum; Johar, Kaid; Gajjar, Devarshi; Arora, Anshul; Madhu, Hardik; Ganatra, Darshini; Vasavada, Abhay

    2015-06-01

    Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown. The purpose of this study is to evaluate the effect of andrographolide on EMT induced by growth factors in the fetal human lens epithelial cell line (FHL 124). Initially the LECs were treated with growth factors (TGF-beta 2 and bFGF) to induce EMT. Subsequently these EMT-induced cells were treated with andrographolide at 100 and 500 nM concentrations for 24 h. Our results showed that FHL 124 cells treated with growth factors had a significant decrease in protein and m-RNA levels of epithelial markers pax6 and E-Cadherin. After administering andrographolide, these levels significantly increased. It was noticed that EMT markers alpha-SMA, fibronectin and collagen IV significantly decreased after treatment with andrographolide when compared to the other group. Treatment with andrographolide significantly inhibited phosphorylation of ERK and JNK. Cell cycle analysis showed that andrographolide did not arrest cells at G0/G1 or G2/M at tested concentrations. Our findings suggest that andrographolide helps sustain epithelial characteristics by modulating EMT markers and inhibiting the mitogen-activated protein kinase (MAPK) signalling pathway in LECs. Hence it can prove to be useful in curbing EMT-mediated PCO. PMID:25963259

  12. Identification, Nomenclature, and Evolutionary Relationships of Mitogen-Activated Protein Kinase (MAPK) Genes in Soybean

    PubMed Central

    Neupane, Achal; Nepal, Madhav P.; Piya, Sarbottam; Subramanian, Senthil; Rohila, Jai S.; Reese, R. Neil; Benson, Benjamin V.

    2013-01-01

    Mitogen-activated protein kinase (MAPK) genes in eukaryotes regulate various developmental and physiological processes including those associated with biotic and abiotic stresses. Although MAPKs in some plant species including Arabidopsis have been identified, they are yet to be identified in soybean. Major objectives of this study were to identify GmMAPKs, assess their evolutionary relationships, and analyze their functional divergence. We identified a total of 38 MAPKs, eleven MAPKKs, and 150 MAPKKKs in soybean. Within the GmMAPK family, we also identified a new clade of six genes: four genes with TEY and two genes with TQY motifs requiring further investigation into possible legume-specific functions. The results indicated the expansion of the GmMAPK families attributable to the ancestral polyploidy events followed by chromosomal rearrangements. The GmMAPK and GmMAPKKK families were substantially larger than those in other plant species. The duplicated GmMAPK members presented complex evolutionary relationships and functional divergence when compared to their counterparts in Arabidopsis. We also highlighted existing nomenclatural issues, stressing the need for nomenclatural consistency. GmMAPK identification is vital to soybean crop improvement, and novel insights into the evolutionary relationships will enhance our understanding about plant genome evolution. PMID:24137047

  13. Alterations in left ventricular function during intermittent hypoxia: Possible involvement of O-GlcNAc protein and MAPK signaling.

    PubMed

    Guo, Xueling; Shang, Jin; Deng, Yan; Yuan, Xiao; Zhu, Die; Liu, Huiguo

    2015-07-01

    Obstructive sleep apnea, characterized by recurrent episodes of hypoxia [intermittent hypoxia (IH)], has been identified as a risk factor for cardiovascular diseases. The O-linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) of proteins has important regulatory implications on the pathophysiology of cardiovascular disorders. In this study, we examined the role of O-GlcNAcylation in cardiac architecture and left ventricular function following IH. Rats were randomly assigned to a normoxia and IH group (2 min 21% O2; 2 min 6-8% O2). Left ventricular function, myocardial morphology and the levels of signaling molecules were then measured. IH induced a significant increase in blood pressure, associated with a gradually abnormal myocardial architecture. The rats exposed to 2 or 3 weeks of IH presented with augmented left ventricular systolic and diastolic function, which declined at week 4. Consistently, the O-GlcNAc protein and O-GlcNAcase (OGA) levels in the left ventricular tissues steadily increased following IH, reaching peak levels at week 3. The O-GlcNAc transferase (OGT), extracellular signal-regulated kinase 1/2 (ERK1/2) and the p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation levels were affected in an opposite manner. The phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII) remained unaltered. In parallel, compared with exposure to normoxia, 4 weeks of IH augmented the O-GlcNAc protein, OGT, phosphorylated ERK1/2 and p38 MAPK levels, accompanied by a decrease in OGA levels and an increase in the levels of myocardial nuclear factor-κB (NF-κB), inflammatory cytokines, caspase-3 and cardiomyocyte apoptosis. Taken together, our suggest a possible involvement of O-GlcNAc protein and MAPK signaling in the alterations of left ventricular function and cardiac injury following IH. PMID:25936416

  14. Alterations in left ventricular function during intermittent hypoxia: Possible involvement of O-GlcNAc protein and MAPK signaling

    PubMed Central

    GUO, XUELING; SHANG, JIN; DENG, YAN; YUAN, XIAO; ZHU, DIE; LIU, HUIGUO

    2015-01-01

    Obstructive sleep apnea, characterized by recurrent episodes of hypoxia [intermittent hypoxia (IH)], has been identified as a risk factor for cardiovascular diseases. The O-linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) of proteins has important regulatory implications on the pathophysiology of cardiovascular disorders. In this study, we examined the role of O-GlcNAcylation in cardiac architecture and left ventricular function following IH. Rats were randomly assigned to a normoxia and IH group (2 min 21% O2; 2 min 6–8% O2). Left ventricular function, myocardial morphology and the levels of signaling molecules were then measured. IH induced a significant increase in blood pressure, associated with a gradually abnormal myocardial architecture. The rats exposed to 2 or 3 weeks of IH presented with augmented left ventricular systolic and diastolic function, which declined at week 4. Consistently, the O-GlcNAc protein and O-GlcNAcase (OGA) levels in the left ventricular tissues steadily increased following IH, reaching peak levels at week 3. The O-GlcNAc transferase (OGT), extracellular signal-regulated kinase 1/2 (ERK1/2) and the p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation levels were affected in an opposite manner. The phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII) remained unaltered. In parallel, compared with exposure to normoxia, 4 weeks of IH augmented the O-GlcNAc protein, OGT, phosphorylated ERK1/2 and p38 MAPK levels, accompanied by a decrease in OGA levels and an increase in the levels of myocardial nuclear factor-κB (NF-κB), inflammatory cytokines, caspase-3 and cardiomyocyte apoptosis. Taken together, our suggest a possible involvement of O-GlcNAc protein and MAPK signaling in the alterations of left ventricular function and cardiac injury following IH. PMID:25936416

  15. Platycodin-D Induced Autophagy in Non-Small Cell Lung Cancer Cells via PI3K/Akt/mTOR and MAPK Signaling Pathways

    PubMed Central

    Zhao, Ruolin; Chen, Meijuan; Jiang, Zequn; Zhao, Fengming; Xi, Beili; Zhang, Xu; Fu, Haian; Zhou, Kunfu

    2015-01-01

    Platycodin-D (PD) is an effective triterpene saponin extracted from the root of Platycodon grandiflorum which has been used clinically to treat pulmonary diseases in traditional Chinese medicine. Recently, it has been reported that PD has anti-tumor effects in various cancer models through the induction of apoptosis. However, whether PD induces autophagy in both cell lines and its molecular mechanisms have not been elucidated. Here, our present study confirmed that PD induced autophagy in both NCI-H460 and A549 cells via up-regulating the expression levels of Atg-3, Atg-7 and Beclin-1. Meanwhile, PD contributed to the up-regulation of LC3-II at both protein and mRNA levels. Further detection of the PI3K/Akt/mTOR signaling pathway compared to LY294002 (PI3K kinase inhibitor), RAP (mTOR kinase inhibitor) and insulin (an activator of PI3K/Akt/mTOR signaling pathway) showed that PD induced autophagy through inhibiting the pathway at p-Akt (Ser473), p-p70S6K (Thr389) and p-4EBP1 (Thr37/46) in both cell lines. Moreover, the examination of MAPK signaling pathway showed that PD treatment increased the phosphorylation of JNK and p38 MAPK, while decreased the phosphorylation of Erk1/2 in both cell lines. Additionally, the effects assessed with a panel of pharmacologic inhibitors, including U0126 (Erk1/2 kinase inhibitor), SP600125 (JNK kinase inhibitor) and SB203580 (p38 MAPK kinase inhibitor) suggested that the activation of JNK and p38 MAPK participated in PD-induced autophagy. Taken together, these findings suggested that PD induced autophagy in NCI-H460 and A549 cells through inhibiting PI3K/Akt/mTOR signaling pathway and activating JNK and p38 MAPK signaling pathways. Therefore, PD may be an alternative compound for NSCLC therapy. PMID:26078792

  16. Platycodin-D Induced Autophagy in Non-Small Cell Lung Cancer Cells via PI3K/Akt/mTOR and MAPK Signaling Pathways.

    PubMed

    Zhao, Ruolin; Chen, Meijuan; Jiang, Zequn; Zhao, Fengming; Xi, Beili; Zhang, Xu; Fu, Haian; Zhou, Kunfu

    2015-01-01

    Platycodin-D (PD) is an effective triterpene saponin extracted from the root of Platycodon grandiflorum which has been used clinically to treat pulmonary diseases in traditional Chinese medicine. Recently, it has been reported that PD has anti-tumor effects in various cancer models through the induction of apoptosis. However, whether PD induces autophagy in both cell lines and its molecular mechanisms have not been elucidated. Here, our present study confirmed that PD induced autophagy in both NCI-H460 and A549 cells via up-regulating the expression levels of Atg-3, Atg-7 and Beclin-1. Meanwhile, PD contributed to the up-regulation of LC3-II at both protein and mRNA levels. Further detection of the PI3K/Akt/mTOR signaling pathway compared to LY294002 (PI3K kinase inhibitor), RAP (mTOR kinase inhibitor) and insulin (an activator of PI3K/Akt/mTOR signaling pathway) showed that PD induced autophagy through inhibiting the pathway at p-Akt (Ser473), p-p70S6K (Thr389) and p-4EBP1 (Thr37/46) in both cell lines. Moreover, the examination of MAPK signaling pathway showed that PD treatment increased the phosphorylation of JNK and p38 MAPK, while decreased the phosphorylation of Erk1/2 in both cell lines. Additionally, the effects assessed with a panel of pharmacologic inhibitors, including U0126 (Erk1/2 kinase inhibitor), SP600125 (JNK kinase inhibitor) and SB203580 (p38 MAPK kinase inhibitor) suggested that the activation of JNK and p38 MAPK participated in PD-induced autophagy. Taken together, these findings suggested that PD induced autophagy in NCI-H460 and A549 cells through inhibiting PI3K/Akt/mTOR signaling pathway and activating JNK and p38 MAPK signaling pathways. Therefore, PD may be an alternative compound for NSCLC therapy. PMID:26078792

  17. Oligonol Ameliorates CCl4-Induced Liver Injury in Rats via the NF-Kappa B and MAPK Signaling Pathways

    PubMed Central

    Bak, Jeonghyeon; Je, Nam Kyung; Chung, Hae Young; Yokozawa, Takako; Yoon, Sik; Moon, Jeon-Ok

    2016-01-01

    Oxidative stress is thought to be a key risk factor in the development of hepatic diseases. Blocking or retarding the reactions of oxidation and the inflammatory process by antioxidants could be a promising therapeutic intervention for prevention or treatment of liver injuries. Oligonol is a low molecular weight polyphenol containing catechin-type monomers and oligomers derived from lychee fruit. In this study, we investigated the anti-inflammatory effect of oligonol on carbon tetrachloride- (CCl4-) induced acute hepatic injury in rats. Oral administration of oligonol (10 or 50 mg/kg) reduced CCl4-induced abnormalities in liver histology and serum AST and serum ALT levels. Oligonol treatment attenuated the CCl4-induced production of inflammatory mediators, including TNF-α, IL-1β, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) mRNA levels. Western blot analysis showed that oligonol suppressed proinflammatory nuclear factor-kappa B (NF-κB) p65 activation, phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 mitogen-activated protein kinases (MAPKs) as well as Akt. Oligonol exhibited strong antioxidative activity in vitro and in vivo, and hepatoprotective activity against t-butyl hydroperoxide-induced HepG2 cells. Taken together, oligonol showed antioxidative and anti-inflammatory effects in CCl4-intoxicated rats by inhibiting oxidative stress and NF-κB activation via blockade of the activation of upstream kinases including MAPKs and Akt. PMID:26798422

  18. Icariin stimulates the proliferation of rat bone mesenchymal stem cells via ERK and p38 MAPK signaling

    PubMed Central

    Qin, Shuyan; Zhou, Wei; Liu, Shaoying; Chen, Puxiang; Wu, Hongjin

    2015-01-01

    Bone mesenchymal stem cells (BMSCs) are able to differentiate into multi types of lineages, so they have been widely applied in the stem cell transplantation. The BMSCs are usually needed to be expanded before transplantation due to their limited content in bone marrow. It has recently been reported that Icariin (ICA), a major constituent of flavonoids from the Chinese medical herb Epimedium brevicornum Maxim, promotes the proliferation of various types of differentiated cells. However, whether ICA can enhance BMSCs proliferation and the possible underlying mechanisms are still unknown. After being isolated and purified from rat bone marrow, cultured BMSCs are stimulated with different concentrations of ICA. The cytotoxicity of ICA is evaluated by the Cell Counting Kit-8 (CCK-8) assay method and the ICA optimal concentration for BMSCs proliferation is determined at 320 μg/L. Our work reveals that ICA induces an obvious phosphorylation of ERK and p38 kinases in BMSCs, no matter serum exists or not. Inhibition of ERK or p38 MAPK signaling by their specific inhibitors PD98059 or SP600125, respectively, not only prevents the activation of these kinases, but also attenuates cell proliferation induced by ICA. Furthermore, the downstream transcription factors of MAPK pathway, Elk1, Stat3, c-Myc and Fos, are also monitored by RT-PCR, and our results show that among them, Elk1 and c-Myc are significantly upregulated after ICA treatment. Taken together, our results demonstrate that ICA promotes the proliferation of rat BMSCs through activating ERK and p38 MAPK signaling which further leads to upregulation of their downstream transcription factors Elk1 and c-Myc. Our work provides a novel effective way to expand the content of BMSCs in vitro, which casts light on clinical applications of stem cell transplantation in the future. PMID:26221250

  19. Resistin-induced stromal cell-derived factor-1 expression through Toll-like receptor 4 and activation of p38 MAPK/ NFκB signaling pathway in gastric cancer cells

    PubMed Central

    2014-01-01

    Background Stromal cell-derived factor-1 (SDF-1) (CXC chemokine ligand-12)/CXC chemokine receptor 4 (CXCR4) is involved in the carcinogenesis of human gastric cancer, where it stimulates angiogenesis and favors metastasis of tumor cells to distant organs. In addition, resistin is suggested to be an important link between obesity and the development of gastric cancer. Resistin has identified as an important player in inflammatory responses, and emerged as a mediator in inflammation-associated cancer. A limited number of studies have investigated the association of resistin and SDF-1 with gastric cancer. Herein, we investigated the molecular mechanisms by which resistin influences the expression of SDF-1 in gastric carcinoma cells. Results Human gastric cancer cell lines were exposed to doses of resistin; SDF-1 expression and secretion levels were then determined. Real-time polymerase chain reaction and western blotting analyses were performed to clarify molecular changes. Inhibition of Toll-like receptor 4 (TLR4) by a competitive antagonist inhibited resistin-induced SDF-1 expression. Pharmacological inhibitors and small interfering RNA (siRNA) demonstrated that activation of the p38 mitogen-activated protein kinase (MAPK) pathway is critical for resistin-induced SDF-1 expression mediated by TLR4. The promoter activity and transcription factor enzyme-linked immunosorbent assay revealed that resistin induced expression of SDF-1 mediated by NF-κB in gastric cancer cells. Inhibition of p38 MARK activation blocked the SDF-1-induced expression and the SDF-1 promoter activity in the cancer gastric cells. Chromatin immunoprecipitation assay revealed that inhibition of p38 MARK activation also blocked the resistin-increased NF-κB-DNA-binding activity. Conclusions Resistin-induced SDF-1 upregulation by activation of TLR4, p38 MARK and NF-κB may explain a new role of resistin in the link of obesity and gastric cancer. PMID:24929539

  20. Selectivity of docking sites in MAPK kinases.

    PubMed

    Bardwell, A Jane; Frankson, Erlynn; Bardwell, Lee

    2009-05-01

    Protein kinases often recognize their substrates and regulators through docking interactions that occur outside of the active site; these interactions can help us to understand kinase networks, and to target kinases with drugs. During mitogen-activated protein kinase (MAPK) signaling, the ability of MAPK kinases (MKKs, or MEKs) to recognize their cognate MAPKs is facilitated by a short docking motif (the D-site) in the MKK N terminus, which binds to a complementary region on the MAPK. MAPKs then recognize many of their targets using the same strategy, because many MAPK substrates also contain D-sites. The extent to which docking contributes to the specificity of MAPK transactions is incompletely understood. Here we characterize the selectivity of the interaction between MKK-derived D-sites and MAPKs by measuring the ability of D-site peptides to inhibit MAPK-mediated phosphorylation of D-site-containing substrates. We find that all MKK D-sites bind better to their cognate MAPKs than they do to non-cognate MAPKs. For instance, the MKK3 D-site peptide, which is a remarkably potent inhibitor of p38alpha (IC(50) < 10 nm), does not inhibit JNK1 or JNK2. Likewise, MAPKs generally bind as well or better to cognate D-sites than to non-cognate D-sites. For instance, JNK1 and JNK2 do not appreciably bind to any D-sites other than their cognate D-sites from MKK4 and MKK7. In general, cognate, within-pathway interactions are preferred about an order of magnitude over non-cognate interactions. However, the selectivity of MAPKs and their cognate MKK-derived D-sites for each other is limited in some cases; in particular, ERK2 is not very selective. We conclude that MAPK-docking sites in MAPK kinases bind selectively to their cognate MAPKs. PMID:19196711

  1. Mechanical Strain Promotes Osteogenesis of BMSCs from Ovariectomized Rats via the ERK1/2 but not p38 or JNK-MAPK Signaling Pathways.

    PubMed

    Zhang, P; Dai, Q; Ouyang, N; Yang, X; Wang, J; Zhou, S; He, N; Fang, B; Jiang, L

    2015-01-01

    Osteoporosis has become a world-wide health problem. As a promising intervention, mechanical strain is considered to be an important factor in bone remodeling. However, the underlying mechanisms are still not clarified clearly. In the present study, we aim to investigate the possible mechanism by which mechanical stimulation induces osteogenic differentiation of bone mesenchymal stem cells (BMSCs) from ovariectomized rats (OVX BMSCs). The results demonstrated that intermittent mechanical strain (IMS) promoted osteogenic differentiation of OVX BMSCs by activating Runt-related transcription factor 2 (Runx2). When the extracellular regulated kinase1/2-mitogen activated protein kinases (ERK1/2-MAPK) signaling pathway was blocked, the osteogenenic effects of IMS were diminished; while blocking of the p38-MAPK signaling pathway had little effect on subsequent osteogenic events. In addition, the phosphorylation level of JNK was not affected by IMS. Our results indicated that strain-induced osteogenic differentiation of OVX BMSCs may take effect via ERK1/2-MAPK not p38 or c-Jun N-terminal (JNK)-MAPK signaling pathway. These findings may have implications for physical treatment of osteoporosis in vitro. PMID:26299771

  2. Exogenous C2 Ceramide Suppresses Matrix Metalloproteinase Gene Expression by Inhibiting ROS Production and MAPK Signaling Pathways in PMA-Stimulated Human Astroglioma Cells

    PubMed Central

    Jung, Ji-Sun; Ahn, Young-Ho; Moon, Byung-In; Kim, Hee-Sun

    2016-01-01

    Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases, which play a pivotal role in invasion, migration, and angiogenesis of glioma. Therefore, controlling MMPs is potentially an important therapeutic strategy for glioma. In the present study, we found that exogenous cell-permeable short-chain C2 ceramide inhibits phorbol myristate acetate (PMA)-induced MMP-1, -3, and -9 gene expressions in U87MG and U373MG human astroglioma cells. In addition, C2 ceramide inhibited the protein secretion and enzymatic activities of MMP-1, -3, and -9. The Matrigel invasion assay and wound healing assay showed that C2 ceramide suppresses the in vitro invasion and migration of glioma cells, which appears to be involved in strong inhibition of MMPs by C2 ceramide. Subsequent mechanistic studies revealed that C2 ceramide inhibits PMA-induced mitogen-activated protein kinase (MAPK) phosphorylation and nuclear factor (NF)-κB/activator protein (AP)-1 DNA binding activities. Furthermore, C2 ceramide significantly inhibited PMA-induced reactive oxygen species (ROS) production and NADPH oxidase 4 (NOX4) expression, and inhibition of ROS by diphenylene iodonium (DPI, NADPH oxidase inhibitor) mimicked the effects of C2 ceramide on MMP expression and NF-κB/AP-1 via inhibition of p38 MAPK. The results suggest C2 ceramide inhibits MMP expression and glioma invasion, at least partly, by modulating ROS-p38 MAPK signaling axis and other MAPK signaling pathways. PMID:27043542

  3. Exogenous C2 Ceramide Suppresses Matrix Metalloproteinase Gene Expression by Inhibiting ROS Production and MAPK Signaling Pathways in PMA-Stimulated Human Astroglioma Cells.

    PubMed

    Jung, Ji-Sun; Ahn, Young-Ho; Moon, Byung-In; Kim, Hee-Sun

    2016-01-01

    Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases, which play a pivotal role in invasion, migration, and angiogenesis of glioma. Therefore, controlling MMPs is potentially an important therapeutic strategy for glioma. In the present study, we found that exogenous cell-permeable short-chain C2 ceramide inhibits phorbol myristate acetate (PMA)-induced MMP-1, -3, and -9 gene expressions in U87MG and U373MG human astroglioma cells. In addition, C2 ceramide inhibited the protein secretion and enzymatic activities of MMP-1, -3, and -9. The Matrigel invasion assay and wound healing assay showed that C2 ceramide suppresses the in vitro invasion and migration of glioma cells, which appears to be involved in strong inhibition of MMPs by C2 ceramide. Subsequent mechanistic studies revealed that C2 ceramide inhibits PMA-induced mitogen-activated protein kinase (MAPK) phosphorylation and nuclear factor (NF)-κB/activator protein (AP)-1 DNA binding activities. Furthermore, C2 ceramide significantly inhibited PMA-induced reactive oxygen species (ROS) production and NADPH oxidase 4 (NOX4) expression, and inhibition of ROS by diphenylene iodonium (DPI, NADPH oxidase inhibitor) mimicked the effects of C2 ceramide on MMP expression and NF-κB/AP-1 via inhibition of p38 MAPK. The results suggest C2 ceramide inhibits MMP expression and glioma invasion, at least partly, by modulating ROS-p38 MAPK signaling axis and other MAPK signaling pathways. PMID:27043542

  4. Methanol Extract of Croton Pycnanthus Benth. Inhibits Osteoclast Differentiation by Suppressing the MAPK and NF-κB Signaling Pathways

    PubMed Central

    Lee, Jiyeon

    2014-01-01

    Background Osteoclasts are differentiated from monocytes/macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL). Croton pycnanthus Benth. (CPB) is a herbal plant that belongs to Euphorbiaceae family. The aim of this study was to investigate the effects of CPB on osteoclastogenesis and RANKL-dependent signaling pathways. Methods Methanol extract of CPB was obtained from International Biological Material Research Center. Osteoclast differentiation was achieved by culturing mouse bone marrow-derived macrophages (BMMs) with M-CSF and RANKL. Osteoclast numbers were evaluated by counting multinuclear cells positive for tartrate-resistant acid phosphatase (TRAP). mRNA and protein levels were analyzed by real-time polymerase chain reaction (PCR) and Western blotting, respectively. The activation of signaling molecules were assessed after acute stimulation of cells with high dose of RANKL by Western blotting with phospho-specific antibodies. Results CPB reduced the generation of TRAP-positive multinucleated cells and the activation of mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways. The induction of the expression of c-Fos, nuclear factor-activated T cells c1 (NFATc1) and dendritic cell-specific transmembrane protein (DC-STAMP) by RANKL was also suppressed. Conclusions CPB exerts negative effects on osteoclast differentiation in response to the RANKL. The inhibitory mechanism involves the suppression of MAPK and NF-κB signaling pathways and subsequently the down-regulation of c-Fos and NFATc1 transcription factors. PMID:25489576

  5. Role of ERK1/2 MAPK Signaling in the Maintenance of Myelin and Axonal Integrity in the Adult CNS

    PubMed Central

    Ishii, Akihiro; Furusho, Miki; Dupree, Jeffrey L.

    2014-01-01

    Oligodendrocytes form myelin during postnatal development and then maintain a functional myelin sheath throughout adult life. While many regulators of developmental myelination have been identified, the signal transduction mechanisms that regulate oligodendrocyte functions in adulthood are not well understood. The extracellular signal-regulated kinases-1 and -2 (ERK1/2), downstream mediators of mitogen-activated protein kinases (MAPKs), have emerged as prominent regulators of myelin formation. Here, we investigated whether these signaling molecules are also required for myelin maintenance in the adult CNS. Inducible conditional ablation of Erk1/2 in oligodendrocytes of the adult CNS resulted in a downregulation of myelin gene expression. Although myelin thickness was reduced and some axons were demyelinated, the majority of axons were wrapped by intact myelin sheaths that appeared structurally normal. However, late onset of progressive axonal degeneration, accompanied by astrogliosis, microglial activation, partial loss of oligodendrocytes, and functional impairment, occurred in the adult mice lacking ERK1/2 activity. Conditional ablation of Fibroblast Growth Factor receptors-1 and -2 (FGFR1/2) in oligodendrocytes also resulted in downregulation of myelin gene expression and development of axonal degeneration as the mice aged. Further, the level of the key transcription factor myelin gene regulatory factor (Myrf) was downregulated or upregulated in mice with genetic loss or gain of ERK1/2 function, respectively. Together, our studies demonstrate that ERK1/2-MAPK signaling is required for the long-term maintenance of myelin and axonal integrity in the adult CNS and suggest that FGFR1/2 and Myrf may, in part, contribute to signaling upstream and downstream of ERK1/2 in maintaining these oligodendrocyte functions during adulthood. PMID:25429144

  6. Role of ERK1/2 MAPK signaling in the maintenance of myelin and axonal integrity in the adult CNS.

    PubMed

    Ishii, Akihiro; Furusho, Miki; Dupree, Jeffrey L; Bansal, Rashmi

    2014-11-26

    Oligodendrocytes form myelin during postnatal development and then maintain a functional myelin sheath throughout adult life. While many regulators of developmental myelination have been identified, the signal transduction mechanisms that regulate oligodendrocyte functions in adulthood are not well understood. The extracellular signal-regulated kinases-1 and -2 (ERK1/2), downstream mediators of mitogen-activated protein kinases (MAPKs), have emerged as prominent regulators of myelin formation. Here, we investigated whether these signaling molecules are also required for myelin maintenance in the adult CNS. Inducible conditional ablation of Erk1/2 in oligodendrocytes of the adult CNS resulted in a downregulation of myelin gene expression. Although myelin thickness was reduced and some axons were demyelinated, the majority of axons were wrapped by intact myelin sheaths that appeared structurally normal. However, late onset of progressive axonal degeneration, accompanied by astrogliosis, microglial activation, partial loss of oligodendrocytes, and functional impairment, occurred in the adult mice lacking ERK1/2 activity. Conditional ablation of Fibroblast Growth Factor receptors-1 and -2 (FGFR1/2) in oligodendrocytes also resulted in downregulation of myelin gene expression and development of axonal degeneration as the mice aged. Further, the level of the key transcription factor myelin gene regulatory factor (Myrf) was downregulated or upregulated in mice with genetic loss or gain of ERK1/2 function, respectively. Together, our studies demonstrate that ERK1/2-MAPK signaling is required for the long-term maintenance of myelin and axonal integrity in the adult CNS and suggest that FGFR1/2 and Myrf may, in part, contribute to signaling upstream and downstream of ERK1/2 in maintaining these oligodendrocyte functions during adulthood. PMID:25429144

  7. 11-epi-Sinulariolide acetate reduces cell migration and invasion of human hepatocellular carcinoma by reducing the activation of ERK1/2, p38MAPK and FAK/PI3K/AKT/mTOR signaling pathways.

    PubMed

    Lin, Jen-Jie; Su, Jui-Hsin; Tsai, Chi-Chu; Chen, Yi-Jen; Liao, Ming-Hui; Wu, Yu-Jen

    2014-09-01

    Cancer metastasis is one of the major causes of death in cancer. An active compound, 11-epi-sinulariolide acetate (11-epi-SA), isolated from the cultured soft coral Sinularia flexibilis has been examined for potential anti-cell migration and invasion effects on hepatocellular carcinoma cells (HCC). However, the molecular mechanism of anti-migration and invasion by 11-epi-SA on HCC, along with their corresponding effects, remain poorly understood. In this study, we investigated anti-migration and invasion effects and the underlying mechanism of 11-epi-SA in HA22T cells, and discovered by trans-well migration and invasion assays that 11-epi-SA provided a concentration-dependent inhibitory effect on the migration of human HCC HA22T cells. After treatment with 11-epi-SA for 24 h, there were suppressed protein levels of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and urokinase-type plasminogen activator (uPA) in HA22T cells. Meanwhile, the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and metalloproteinase-2 (TIMP-2) were increased in a concentration-dependent manner. Further investigation revealed that 11-epi-SA suppressed the phosphorylation of ERK1/2 and p38MAPK. The 11-epi-SA also suppressed the expression of the phosphorylation of FAK/PI3K/AKT/mTOR pathways. PMID:25222667

  8. 11-epi-Sinulariolide Acetate Reduces Cell Migration and Invasion of Human Hepatocellular Carcinoma by Reducing the Activation of ERK1/2, p38MAPK and FAK/PI3K/AKT/mTOR Signaling Pathways

    PubMed Central

    Lin, Jen-Jie; Su, Jui-Hsin; Tsai, Chi-Chu; Chen, Yi-Jen; Liao, Ming-Hui; Wu, Yu-Jen

    2014-01-01

    Cancer metastasis is one of the major causes of death in cancer. An active compound, 11-epi-sinulariolide acetate (11-epi-SA), isolated from the cultured soft coral Sinularia flexibilis has been examined for potential anti-cell migration and invasion effects on hepatocellular carcinoma cells (HCC). However, the molecular mechanism of anti-migration and invasion by 11-epi-SA on HCC, along with their corresponding effects, remain poorly understood. In this study, we investigated anti-migration and invasion effects and the underlying mechanism of 11-epi-SA in HA22T cells, and discovered by trans-well migration and invasion assays that 11-epi-SA provided a concentration-dependent inhibitory effect on the migration of human HCC HA22T cells. After treatment with 11-epi-SA for 24 h, there were suppressed protein levels of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and urokinase-type plasminogen activator (uPA) in HA22T cells. Meanwhile, the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and metalloproteinase-2 (TIMP-2) were increased in a concentration-dependent manner. Further investigation revealed that 11-epi-SA suppressed the phosphorylation of ERK1/2 and p38MAPK. The 11-epi-SA also suppressed the expression of the phosphorylation of FAK/PI3K/AKT/mTOR pathways. PMID:25222667

  9. Low-Intensity Pulsed Ultrasound Affects Chondrocyte Extracellular Matrix Production via an Integrin-Mediated p38 MAPK Signaling Pathway.

    PubMed

    Xia, Peng; Ren, Shasha; Lin, Qiang; Cheng, Kai; Shen, Shihao; Gao, Mingxia; Li, Xueping

    2015-06-01

    Although low-intensity pulsed ultrasound (LIPUS) regulates p38 mitogen-activated protein kinase (MAPK) and promotes cartilage repair in osteoarthritis, the role of integrin-mediated p38 MAPK in the effect of LIPUS on extracellular matrix (ECM) production of normal and OA chondrocytes remains unknown. The aim of this study was to investigate whether LIPUS affects ECM production in normal and OA rabbit chondrocytes through an integrin-p38 signaling pathway. A rabbit model of OA was established by anterior cruciate ligament transection, and chondrocytes were isolated from normal or OA cartilage and cultured in vitro. Chondrocytes were treated with LIPUS and then pre-incubated with the integrin inhibitor GRGDSP or the p38 inhibitor SB203580. Expression of type II collagen, MMP-13, integrin β1, p38 and phosphorylated p38 was assessed by Western blot analysis. We found that type II collagen and integrin β1 were upregulated (p < 0.05), whereas MMP-13 was downregulated (p < 0.05) in normal and OA chondrocytes. Furthermore, phosphorylated p38 was upregulated (p < 0.05) in normal chondrocytes, but downregulated (p < 0.05) in OA chondrocytes after LIPUS stimulation. Pre-incubation of chondrocytes with the integrin inhibitor disrupted the effects of LIPUS on normal and OA chondrocytes. Pre-incubation of chrondocytes with the p38 inhibitor reduced the effects of LIPUS on normal chondrocytes, but had no impact on OA chondrocytes. Our findings suggest that the integrin-p38 MAPK signaling pathway plays an important role in LIPUS-mediated ECM production in chondrocytes. PMID:25736607

  10. Attenuation of Magnesium Sulfate on CoCl₂-Induced Cell Death by Activating ERK1/2/MAPK and Inhibiting HIF-1α via Mitochondrial Apoptotic Signaling Suppression in a Neuronal Cell Line.

    PubMed

    Huang, Chih-Yang; Hsieh, You-Liang; Ju, Da-Tong; Lin, Chien-Chung; Kuo, Chia-Hua; Liou, Yi-Fan; Ho, Tsung-Jung; Tsai, Chang-Hai; Tsai, Fuu-Jen; Lin, Jing-Ying

    2015-08-31

    Magnesium sulfate (MgSO₄) ameliorates hypoxia/ischemia-induced neuronal apoptosis in a rat model. This study aimed to investigate the mechanisms governing the anti-apoptotic effect of MgSO₄ on cobalt chloride (CoCl₂)-exposed NB41A3 mouse neuroblastoma cells. MgSO₄ increased the viability of NB41A3 cells treated with CoCl₂ in a dose-dependent manner. MgSO₄ treatment was shown to lead to an increase in the anti-apoptotic Bcl-2 family proteins, with a concomitant decrease in the pro-apoptotic proteins. MgSO₄ also attenuated the CoCl₂-induced disruption of mitochondrial membrane potential (ΔΨ(m)) and reduced the release of cytochrome c form the mitochondria to the cytosol. Furthermore, exposure to CoCl₂ caused activation of the hypoxia-inducible factor 1α (HIF-1α). On the other hand, MgSO₄ markedly reduced CoCl₂-induced HIF-1α activation and suppressed HIF-1α downstream protein BNIP3. MgSO₄ treatment induced ERK1/2 activation and attenuated CoCl₂-induced activation of p38 and JNK. Addition of the ERK1/2 inhibitor U0126 significantly reduced the ability of MgSO₄ to protect neurons from CoCl₂-induced mitochondrial apoptotic events. However, incubation of cultures with the p38 and JNK inhibitors did not significantly affect MgSO₄-mediated neuroprotection. MgSO₄ appears to suppress CoCl₂-induced NB41A3 cell death by activating ERK1/2/ MAPK pathways, which further modulates the role of Bcl-2 family proteins and mitochondria in NB41A3 cells. Our data suggest that MgSO₄ may act as a survival factor that preserves mitochondrial integrity and inhibits apoptotic pathways. PMID:26211648

  11. Crosstalk Between MAPK/ERK and PI3K/AKT Signal Pathways During Brain Ischemia/Reperfusion

    PubMed Central

    Zhou, Jing; Du, Ting; Li, Baoman; Rong, Yan; Verkhratsky, Alexei

    2015-01-01

    The epidermal growth factor receptor (EGFR) is linked to the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Raf/mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling pathways. During brain ischemia/reperfusion, EGFR could be transactivated, which stimulates these intracellular signaling cascades that either protect cells or potentiate cell injury. In the present study, we investigated the activation of EGFR, PI3K/AKT, and Raf/MAPK/ERK1/2 during ischemia or reperfusion of the brain using the middle cerebral artery occlusion model. We found that EGFR was phosphorylated and transactivated during both ischemia and reperfusion periods. During ischemia, the activity of PI3K/AKT pathway was significantly increased, as judged from the strong phosphorylation of AKT; this activation was suppressed by the inhibitors of EGFR and Zn-dependent metalloproteinase. Ischemia, however, did not induce ERK1/2 phosphorylation, which was dependent on reperfusion. Coimmunoprecipitation of Son of sevenless 1 (SOS1) with EGFR showed increased association between the receptor and SOS1 in ischemia, indicating the inhibitory node downstream of SOS1. The inhibitory phosphorylation site of Raf-1 at Ser259, but not its stimulatory phosphorylation site at Ser338, was phosphorylated during ischemia. Furthermore, ischemia prompted the interaction between Raf-1 and AKT, while both the inhibitors of PI3K and AKT not only abolished AKT phosphorylation but also restored ERK1/2 phosphorylation. All these findings suggest that Raf/MAPK/ERK1/2 signal pathway is inhibited by AKT via direct phosphorylation and inhibition at Raf-1 node during ischemia. During reperfusion, we observed a significant increase of ERK1/2 phosphorylation but no change in AKT phosphorylation. Inhibitors of reactive oxygen species and phosphatase and tensin homolog restored AKT phosphorylation but abolished ERK1/2 phosphorylation, suggesting that the reactive oxygen species

  12. Zearalenone Mycotoxin Affects Immune Mediators, MAPK Signalling Molecules, Nuclear Receptors and Genome-Wide Gene Expression in Pig Spleen

    PubMed Central

    Pistol, Gina Cecilia; Braicu, Cornelia; Motiu, Monica; Gras, Mihail Alexandru; Marin, Daniela Eliza; Stancu, Mariana; Calin, Loredana; Israel-Roming, Florentina; Berindan-Neagoe, Ioana; Taranu, Ionelia

    2015-01-01

    The toxicity of zearalenone (ZEA) was evaluated in swine spleen, a key organ for the innate and adaptative immune response. Weaned pigs were fed for 18 days with a control or a ZEA contaminated diet. The effect of ZEA was assessed on wide genome expression, pro- (TNF-α, IL-8, IL-6, IL-1β, IFN-γ) and anti-inflammatory (IL-10, IL-4) cytokines, other molecules involved in inflammatory processes (MMPs/TIMPs), as well as signaling molecules, (p38/JNK1/JNK2-MAPKs) and nuclear receptors (PPARγ/NFkB/AP-1/STAT3/c-JUN). Microarray analysis showed that 46% of total number of differentially expressed genes was involved in cellular signaling pathway, 13% in cytokine network and 10% in the inflammatory response. ZEA increased expression and synthesis of pro- inflammatory (TNF-α, IL-8, IL-6, IL-1β) and had no effect on IFN-γ, IL-4 and IL-10 cytokines in spleen. The inflammatory stimulation might be a consequence of JNK pathway activation rather than of p-38MAPK and NF-kB involvement whose gene and protein expression were suppressed by ZEA action. In summary, our findings indicated the role of ZEA as an immune disruptor at spleen level. PMID:26011631

  13. Zearalenone mycotoxin affects immune mediators, MAPK signalling molecules, nuclear receptors and genome-wide gene expression in pig spleen.

    PubMed

    Pistol, Gina Cecilia; Braicu, Cornelia; Motiu, Monica; Gras, Mihail Alexandru; Marin, Daniela Eliza; Stancu, Mariana; Calin, Loredana; Israel-Roming, Florentina; Berindan-Neagoe, Ioana; Taranu, Ionelia

    2015-01-01

    The toxicity of zearalenone (ZEA) was evaluated in swine spleen, a key organ for the innate and adaptative immune response. Weaned pigs were fed for 18 days with a control or a ZEA contaminated diet. The effect of ZEA was assessed on wide genome expression, pro- (TNF-α, IL-8, IL-6, IL-1β, IFN-γ) and anti-inflammatory (IL-10, IL-4) cytokines, other molecules involved in inflammatory processes (MMPs/TIMPs), as well as signaling molecules, (p38/JNK1/JNK2-MAPKs) and nuclear receptors (PPARγ/NFkB/AP-1/STAT3/c-JUN). Microarray analysis showed that 46% of total number of differentially expressed genes was involved in cellular signaling pathway, 13% in cytokine network and 10% in the inflammatory response. ZEA increased expression and synthesis of pro- inflammatory (TNF-α, IL-8, IL-6, IL-1β) and had no effect on IFN-γ, IL-4 and IL-10 cytokines in spleen. The inflammatory stimulation might be a consequence of JNK pathway activation rather than of p-38MAPK and NF-kB involvement whose gene and protein expression were suppressed by ZEA action. In summary, our findings indicated the role of ZEA as an immune disruptor at spleen level. PMID:26011631

  14. Endogenous PGE(2) induces MCP-1 expression via EP4/p38 MAPK signaling in melanoma.

    PubMed

    Tang, Mingrui; Wang, Yuxin; Han, Sihuan; Guo, Shu; Xu, Nan; Guo, Jiayan

    2013-02-01

    It has been demonstrated that cyclooxygenase-2 (COX-2) is expressed in melanoma tissues and prostaglandin E(2) (PGE(2)) is produced by melanoma cells in vitro. However, the roles of COX-2/PGE(2) in melanoma are largely unknown. In the present study, we set out to analyze the correlation of endogenous PGE(2) with the expression of macrophage chemoattractant protein-1 (MCP-1) and to identify the signaling pathway involved. It was found that MCP-1 mRNA was heterogeneously expressed in 18 melanoma tissue specimens, and the levels of MCP-1 mRNA were positively correlated with those of COX-2 mRNA. Inhibition of endogenous PGE(2) production by a COX-2 inhibitor, COX-2 siRNA or an NFκB inhibitor suppressed MCP-1 expression, whereas treatment with TNF-α (to stimulate endogenous PGE(2) production) or exogenous PGE(2) enhanced MCP-1 expression in melanoma cells. Both the EP4 antagonist and the p38 MAPK inhibitor reduced MCP-1 production in melanoma cells, and abrogated the increased MCP-1 secretion induced by TNF-α or exogenous PGE(2). Conditioned medium from melanoma cells promoted macrophage migration, which was blocked by inhibitors of the PGE(2)/EP4/p38 MAPK signaling pathway. These results indicate that endogenous PGE(2) induces MCP-1 expression via EP4/p38 MAPK signaling in an autocrinal manner in melanoma, and melanoma cell-derived PGE(2) may be involved in macrophage recruitment in the melanoma microenvironment. PMID:23420676

  15. Paxillin mediates stretch-induced Rho signaling and endothelial permeability via assembly of paxillin-p42/44MAPK-GEF-H1 complex.

    PubMed

    Gawlak, Grzegorz; Tian, Yufeng; O'Donnell, James J; Tian, Xinyong; Birukova, Anna A; Birukov, Konstantin G

    2014-07-01

    Suboptimal ventilator support or regional ventilation heterogeneity in inflamed lungs causes excessive tissue distension, which triggers stretch-induced pathological signaling and may lead to vascular leak and lung dysfunction. Focal adhesions (FAs) are cell-substrate adhesive complexes participating in cellular mechanotransduction and regulation of the Rho GTPase pathway. Stretch-induced Rho regulation remains poorly understood. We used human lung endothelial cells (ECs) exposed to pathological cyclic stretch (CS) at 18% distension to test the hypothesis that FA protein paxillin participates in CS-induced Rho activation by recruiting the Rho-specific guanine nucleotide exchange factor GEF-H1. CS induced phosphorylation of paxillin and activated p42/44-MAP kinase, Rho GTPase, and paxillin/GEF-H1/p42/44-MAPK association. CS caused nearly 2-fold increase in EC permeability, which was attenuated by paxillin knockdown. Expression of the paxillin-Y31/118F phosphorylation mutant decreased the CS-induced paxillin/GEF-H1 association (16.3 ± 4.1%), GEF-H1 activation (28.9 ± 9.2%), and EC permeability (28.7 ± 8.1%) but not CS-induced p42/44-MAPK activation. Inhibition of p42/44-MAPK suppressed CS-induced paxillin/GEF-H1 interactions (15.9 ± 7.9%), GEF-H1 activation (11.7 ± 4.3%), and disruption of EC monolayer. Expression of GEF-H1T678A lacking p42/44-MAPK phosphorylation site attenuated Rho activation (31.2±11.6%). We conclude that MAPK-dependent targeting of GEF-H1 to paxillin is involved in the regulation of CS-induced Rho signaling and EC permeability. This study proposes a novel concept of paxillin-GEF-H1-p42/44-MAPK module as a regulator of pathological mechanotransduction.-Gawlak, G., Tian, Y., O'Donnell, J. J., III, Tian, X., Birukova, A. A., Birukov, K. G. Paxillin mediates stretch-induced Rho signaling and endothelial permeability via assembly of paxillin-p42/44MAPK-GEF-H1 complex. PMID:24706358

  16. Importin-7 mediates memory consolidation through regulation of nuclear translocation of training-activated MAPK in Drosophila.

    PubMed

    Li, Qian; Zhang, Xuchen; Hu, Wantong; Liang, Xitong; Zhang, Fang; Wang, Lianzhang; Liu, Zhong-Jian; Zhong, Yi

    2016-03-15

    Translocation of signaling molecules, MAPK in particular, from the cytosol to nucleus represents a universal key element in initiating the gene program that determines memory consolidation. Translocation mechanisms and their behavioral impact, however, remain to be determined. Here, we report that a highly conserved nuclear transporter, Drosophila importin-7 (DIM-7), regulates import of training-activated MAPK for consolidation of long-term memory (LTM). We show that silencing DIM-7 functions results in impaired LTM, whereas overexpression of DIM-7 enhances LTM. This DIM-7-dependent regulation of LTM is confined to a consolidation time window and in mushroom body neurons. Image data show that bidirectional alteration in DIM-7 expression results in proportional changes in the intensity of training-activated MAPK accumulated within the nuclei of mushroom body neurons during LTM consolidation. Such DIM-7-regulated nuclear accumulation of activated MAPK is observed only in the training specified for LTM induction and determines the amplitude, but not the time course, of memory consolidation. PMID:26929354

  17. Naringin inhibits ROS-activated MAPK pathway in high glucose-induced injuries in H9c2 cardiac cells.

    PubMed

    Chen, Jingfu; Guo, Runmin; Yan, Hai; Tian, Lihong; You, Qiong; Li, Shanghai; Huang, Ruina; Wu, Keng

    2014-04-01

    Naringin, an active flavonoid isolated from citrus fruit extracts, exhibits biological and pharmacological properties, such as antioxidant activity and antidiabetic effect. Mitogen-activated protein kinase (MAPK) signalling pathway has been shown to participate in hyperglycaemia-induced injury. The present study tested the hypothesis that naringin protects against high glucose (HG)-induced injuries by inhibiting MAPK pathway in H9c2 cardiac cells. To examine this, the cells were treated with 35 mM glucose (HG) for 24 hr to establish a HG-induced cardiomyocyte injury model. The cells were pre-treated with 80 μM naringin for 2 hr before exposure to HG. The findings of this study showed that exposure of H9c2 cells to HG for 24 hr markedly induced injuries, as evidenced by a decrease in cell viability, increases in apoptotic cells and reactive oxygen species (ROS) production, as well as dissipation of mitochondrial membrance potential (MMP). These injuries were significantly attenuated by the pre-treatment of cells with either naringin or SB203580 (a selective inhibitor of p38 MAPK) or U0126 (a selective inhibitor of extracellular signal regulated kinase 1/2, ERK1/2) or SP600125 (a selective inhibitor of c-jun N-termanal kinase, JNK) before exposure to HG, respectively. Furthermore, exposure of cells to HG increased the phosphorylation of p38 MAPK, ERK1/2 and JNK. The increased activation of MAPK pathway was ameliorated by pre-treatment with either naringin or N-acetyl-L-cysteine (NAC), a ROS scavenger, which also reduced HG-induced cytotoxicity and apoptosis, leading to increase in cell viability and decrease in apoptotic cells. In conclusion, our findings provide new evidence for the first time that naringin protects against HG-induced injuries by inhibiting the activation of MAPK (p38 MAPK, ERK1/2 and JNK) and oxidative stress in H9c2 cells. PMID:24118820

  18. Angiotensin II induces the production of MMP-3 and MMP-13 through the MAPK signaling pathways via the AT(1) receptor in osteoblasts.

    PubMed

    Nakai, Kumiko; Kawato, Takayuki; Morita, Toyoko; Iinuma, Toshimitsu; Kamio, Noriaki; Zhao, Ning; Maeno, Masao

    2013-04-01

    Angiotensin II (Ang II) plays an important role in the maintenance of bone mass and integrity by activation of the mitogen-activated protein kinases (MAPKs) and by modulation of balance between resorption by osteoclasts and formation by osteoblasts. However, the role of Ang II in the turnover of extracellular matrix (ECM) in osteoid by osteoblasts remains unclear. Therefore, we examined the effect of Ang II on the expression of matrix metalloproteinases (MMPs), plasminogen activators (PAs), and their inhibitors [i.e., tissue inhibitors of metalloproteinases (TIMPs) and PA inhibitor-1 (PAI-1)] using osteoblastic ROS17/2.8 cells. Treatment with Ang II strikingly increased the expressions of MMP-3 and -13 and promoted cell proliferation associated with reduced alkaline phosphatase activity as well as enhanced phosphorylated expression of extracellular signal-regulated kinase (ERK)1/2, p38 MAPK, and stress-activated protein kinases/c-jun N-terminal kinases (SAPK/JNK) in ROS17/2.8 cells. However, Ang II had no effect on the expression of MMP-2, -9, -14, urokinase-type PA, tissue-type PA, TIMP-1, -2, -3, and PAI-1 in cells. Losartan (AT1 receptor blocker) blocked Ang II-induced expression of MMP-3 and -13, whereas PD123319 (AT2 receptor blocker) did not completely block these responses. Losartan also blocked the Ang II-induced phosphorylation of ERK1/2, p38 MAPK, and SAPK/JNK. MAPK kinase 1/2 inhibitor PD98059 and JNK inhibitor SP600125 suppressed Ang II-induced expression of MMP-3 and -13. These results suggested that Ang II stimulated the degradation process that occurs during ECM turnover in osteoid by increasing the production of MMP-3 and -13 through MAPK signaling pathways via the AT1 receptor in osteoblasts. Furthermore, our findings suggest that Ang II does not influence the plasminogen/plasmin pathway in osteoblasts. PMID:23277113

  19. Daphnetin protects oxidative stress-induced neuronal apoptosis via regulation of MAPK signaling and HSP70 expression

    PubMed Central

    Qi, Zhilin; Qi, Shimei; Gui, Lin; Shen, Lei; Feng, Zunyong

    2016-01-01

    Neurodegenerative disorders are characterized by progressive degeneration and loss of neurons in the brain. Oxidative stress is implicated in the pathogenesis of neurological disorders, although the pathological mechanism remains unelucidated. Daphnetin, an active ingredient extracted from Changbai daphne (Daphne Korean Nakai), exhibits various pharmacological effects, including anti-inflammatory, anti-oxidative and anti-tumor effects. However, the neuroprotective effects, as well as the specific mechanisms of daphnetin, remain unclear. Neuronal-like rat pheochromocytoma PC12 cells were pretreated with daphnetin for 2 h, then treated with or without H2O2 for various times. Cell morphology was detected using an inverted microscope, the apoptotic ratio was determined by Annexin V fluorescein isothiocyanate/propidium iodide assay, nuclear morphology was observed and photographed using a fluorescence microscope following 4′,6-diamidino-2-phenylindole staining. The levels of pro-caspase 3, cleavage of poly ADP-ribose polymerase and caspase 3 were detected by western blotting. In addition, the activation of mitogen-activated protein kinase (MAPK) signal pathway and the expression of HSP70 were detected by western blotting. The present study demonstrated that daphnetin attenuated hydrogen peroxide (H2O2)-induced apoptosis in a concentration-dependent manner, reduced the cleavage of poly ADP ribose polymerase and caspase 3, and inhibited the phosphorylation of p38 MAPK and c-Jun N-terminal kinases (JNK) in H2O2-induced PC12 cells. In addition, daphnetin induced the expression of HSP70 in a dose- and time-dependent manner, and daphnetin-induced HSP70 expression was reduced by extracellular signal-regulated kinase (ERK) 1/2 inhibitor U0126 in PC12 cells. Therefore, the present results indicate that daphnetin protects PC12 cells against oxidative stress injury by regulating p38 MAPK and JNK signaling and increasing the expression of HSP70 via ERK signaling. This suggests

  20. Carboxyl-Ester Lipase Maturity-Onset Diabetes of the Young Is Associated With Development of Pancreatic Cysts and Upregulated MAPK Signaling in Secretin-Stimulated Duodenal Fluid

    PubMed Central

    Ræder, Helge; McAllister, Fiona E.; Tjora, Erling; Bhatt, Shweta; Haldorsen, Ingfrid; Hu, Jiang; Willems, Stefan M.; Vesterhus, Mette; El Ouaamari, Abdelfattah; Liu, Manway; Ræder, Maria B.; Immervoll, Heike; Hoem, Dag; Dimcevski, Georg; Njølstad, Pål R.; Molven, Anders; Gygi, Steven P.; Kulkarni, Rohit N.

    2014-01-01

    Carboxyl-ester lipase (CEL) maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes and pancreatic exocrine dysfunction due to mutations in the CEL gene encoding CEL. The pathogenic mechanism for diabetes development is unknown. Since CEL is expressed mainly in pancreatic acinar cells, we asked whether we could find structural pancreatic changes in CEL-MODY subjects during the course of diabetes development. Furthermore, we hypothesized that the diseased pancreas releases proteins that are detectable in pancreatic fluid and potentially reflect activation or inactivation of disease-specific pathways. We therefore investigated nondiabetic and diabetic CEL-mutation carriers by pancreatic imaging studies and secretin-stimulated duodenal juice sampling. The secretin-stimulated duodenal juice was studied using cytokine assays, mass spectrometry (MS) proteomics, and multiplexed MS-based measurement of kinase activities. We identified multiple pancreatic cysts in all eight diabetic mutation carriers but not in any of the four nondiabetic mutation carriers or the six healthy controls. Furthermore, we identified upregulated mitogen-activated protein kinase (MAPK) target proteins and MAPK-driven cytokines and increased MAPK activity in the secretin-stimulated duodenal juice. These findings show that subjects with CEL-MODY develop multiple pancreatic cysts by the time they develop diabetes and that upregulated MAPK signaling in the pancreatic secretome may reflect the pathophysiological development of pancreatic cysts and diabetes. PMID:24062244

  1. Prenatal choline supplementation advances hippocampal development and enhances MAPK and CREB activation.

    PubMed

    Mellott, Tiffany J; Williams, Christina L; Meck, Warren H; Blusztajn, Jan Krzysztof

    2004-03-01

    Choline is an essential nutrient for animals and humans. Previous studies showed that supplementing the maternal diet with choline during the second half of gestation in rats permanently enhances memory performance of the adult offspring. Here we show that prenatal choline supplementation causes a 3-day advancement in the ability of juvenile rats to use relational cues in a water maze task, indicating that the treatment accelerates hippocampal maturation. Moreover, phosphorylation and therefore activation of hippocampal mitogen-activated protein kinase (MAPK) and cAMP-response element binding protein (CREB) in response to stimulation by glutamate, N-methyl-D-aspartate, or depolarizing concentrations of K+ were increased by prenatal choline supplementation and reduced by prenatal choline deficiency. These data provide the first evidence that developmental plasticity of the hippocampal MAPK and CREB signaling pathways is controlled by the supply of a single essential nutrient, choline, during fetal development and point to these pathways as candidate mechanisms for the developmental and long-term cognitive enhancement induced by prenatal choline supplementation. PMID:14715695

  2. MicroRNA-24 promotes 3T3-L1 adipocyte differentiation by directly targeting the MAPK7 signaling.

    PubMed

    Jin, Min; Wu, Yutao; Wang, Jing; Chen, Jian; Huang, Yiting; Rao, Jinpeng; Feng, Chun

    2016-05-20

    Over the past years, MicroRNAs (miRNAs) act as a vital role in harmony with gene regulation and maintaining cellular homeostasis. It is well testified that miRNAshave been involved in numerous physiological and pathological processes, including embryogenesis, cell fate decision, and cellular differentiation. Adipogenesis is an organized process of cellular differentiation by which pre-adipocytes differentiate towards mature adipocytes, and it is tightly modulated by a series of transcription factors such as peroxisome proliferator-activated receptor γ (PPAR-γ) and sterol regulatory-element binding proteins 1 (SREBP1). However, the molecular mechanisms underlying the connection between miRNAs and adipogenesis-related transcription factors remain obscure. In this study, we unveiled that miR- 24 was remarkably upregulated during 3T3-L1 adipogenesis. Overexpression of miR-24 significantly promoted 3T3-L1 adipogenesis, as evidenced by its ability to increase the expression of PPAR-γ and SREBP1, lipid droplet formation and triglyceride (TG) accumulation. Furthermore, we found that neither ectopic expression of miR-24nor miR-24 inhibitor affect cell proliferation and cell cycle progression. Finally, we demonstrated that miR-24 plays the modulational role by directly repressing MAPK7, a key number in the MAPK signaling pathway. These data indicate that miR-24 is a novel positive regulator of adipocyte differentiation by targeting MAPK7, which provides new insights into the molecular mechanism of miRNA-mediated cellular differentiation. PMID:27103442

  3. Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretion and MAPK signaling pathway

    PubMed Central

    Jung, Tae-Hwan; Park, Jeong Hyeon; Han, Kyoung-Sik

    2015-01-01

    BACKGROUND/OBJECTIVES Fermentation of dietary fiber results in production of various short chain fatty acids in the colon. In particular, butyrate is reported to regulate the physical and functional integrity of the normal colonic mucosa by altering mucin gene expression or the number of goblet cells. The objective of this study was to investigate whether butyrate modulates mucin secretion in LS174T human colorectal cells, thereby influencing the adhesion of probiotics such as Lactobacillus and Bifidobacterium strains and subsequently inhibiting pathogenic bacteria such as E. coli. In addition, possible signaling pathways involved in mucin gene regulation induced by butyrate treatment were also investigated. MATERIALS/METHODS Mucin protein content assay and periodic acid-Schiff (PAS) staining were performed in LS174T cells treated with butyrate at various concentrations. Effects of butyrate on the ability of probiotics to adhere to LS174T cells and their competition with E. coli strains were examined. Real time polymerase chain reaction for mucin gene expression and Taqman array 96-well fast plate-based pathway analysis were performed on butyrate-treated LS174T cells. RESULTS Treatment with butyrate resulted in a dose-dependent increase in mucin protein contents in LS174T cells with peak effects at 6 or 9 mM, which was further confirmed by PAS staining. Increase in mucin protein contents resulted in elevated adherence of probiotics, which subsequently reduced the adherent ability of E. coli. Treatment with butyrate also increased transcriptional levels of MUC3, MUC4, and MUC12, which was accompanied by higher gene expressions of signaling kinases and transcription factors involved in mitogen-activated protein kinase (MAPK) signaling pathways. CONCLUSIONS Based on our results, butyrate is an effective regulator of modulation of mucin protein production at the transcriptional and translational levels, resulting in changes in the adherence of gut microflora. Butyrate

  4. Gastrointestinal Congestion Dilates the Hepatic Artery Through the P38 MAPK Signal Transduction Pathway During Liver Transplantation.

    PubMed

    Cao, Zhongping; Tang, Xiaowen; Hou, Shike

    2016-01-01

    During the neohepatic stage of liver transplantation, hemodynamics change markedly. The current study aimed to investigate whether gastrointestinal congestion caused by inferior vena cava and hepatic portal vein clamping can dilate the hepatic artery and to determine the associated mechanisms. Ring segments of the hepatic artery were treated with the plasma from gastrointestinal congestion or the superior vena cava. The fractions in gastrointestinal congestion and the superior vena cava plasma were tested, and the effect of these fractions on the tone of the hepatic artery ring was examined. Different signal transduction blockers and different inhibitors were then used to determine the exact signal transduction pathway involved. In addition, endothelial cell structure was observed by transmission electron microscopy after treatment with the gastrointestinal congestion plasma or the superior vena cava plasma. Gastrointestinal congestion plasma contained more inflammatory cytokines than superior vena cava plasma, and these cytokines could cause hepatic artery ring dilatation. A P38 mitogen-activated protein kinase (P38 MAPK) signal transduction pathway blocker and nitric oxide (NO), prostaglandin (PGI2), nuclear factor-κB (NF-κB), and adenosine triphosphate (ATP)-sensitive K (KATP) channel inhibitors were able to significantly reverse the ring tension caused by gastrointestinal congestion plasma. The normal endothelium was also injured by treatment with gastrointestinal congestion plasma. The inflammatory cytokines in gastrointestinal congestion can cause hepatic artery ring dilatation through the P38 MAPK signal transduction pathway, and this phenomenon is also associated with NO, PGI2, NF-κB, and the KATP channel. These inflammatory cytokines can injure endothelial cells in the hepatic artery. PMID:26955003

  5. Activation of MAPK Is Required for ROS Generation and Exocytosis in HMC-1 Cells Induced by Trichomonas vaginalis-Derived Secretory Products

    PubMed Central

    Narantsogt, Giimaa; Min, Arim; Nam, Young Hee; Lee, Young Ah; Kim, Kyeong Ah; Agvaandaram, Gurbadam; Dorjsuren, Temuulen; El-Benna, Jamel; Shin, Myeong Heon

    2015-01-01

    Trichomonas vaginalis is a flagellated protozoan parasite that causes vaginitis and cervicitis in women and asymptomatic urethritis and prostatitis in men. Mast cells have been reported to be predominant in vaginal smears and vaginal walls of patients infected with T. vaginalis. Mitogen-activated protein kinase (MAPK), activated by various stimuli, have been shown to regulate the transcriptional activity of various cytokine genes in mast cells. In this study, we investigated whether MAPK is involved in ROS generation and exocytotic degranulation in HMC-1 cells induced by T. vaginalis-derived secretory products (TvSP). We found that TvSP induces the activation of MAPK and NADPH oxidase in HMC-1 cells. Stimulation with TvSP induced phosphorylation of MAPK and p47phox in HMC-1 cells. Stimulation with TvSP also induced up-regulation of CD63, a marker for exocytosis, along the surfaces of human mast cells. Pretreatment with MAPK inhibitors strongly inhibited TvSP-induced ROS generation and exocytotic degranulation. Finally, our results suggest that TvSP induces intracellular ROS generation and exocytotic degranulation in HMC-1 via MAPK signaling. PMID:26537039

  6. Ether-linked diglycerides inhibit vascular smooth muscle cell growth via decreased MAPK and PI3K/Akt signaling.

    PubMed

    Houck, Kristy L; Fox, Todd E; Sandirasegarane, Lakshman; Kester, Mark

    2008-10-01

    Diglycerides (DGs) are phospholipid-derived second messengers that regulate PKC-dependent signaling pathways. Distinct species of DGs are generated from inflammatory cytokines and growth factors. Growth factors increase diacyl- but not ether-linked DG species, whereas inflammatory cytokines predominately generate alkyl, acyl- and alkenyl, acyl-linked DG species in rat mesenchymal cells. These DG species have been shown to differentially regulate protein kinase C (PKC) isotypes. Ester-linked diacylglycerols activate PKC-epsilon and cellular proliferation in contrast to ether-linked DGs, which lead to growth arrest through the inactivation of PKC-epsilon. It is now hypothesized that ether-linked DGs inhibit mitogenesis through the inactivation of ERK and/or Akt signaling cascades. We demonstrate that cell-permeable ether-linked DGs reduce vascular smooth muscle cell growth by inhibiting platelet-derived growth factor-stimulated ERK in a PKC-epsilon-dependent manner. This inhibition is specific to the ERK pathway, since ether-linked DGs do not affect growth factor-induced activation of other family members of the MAPKs, including p38 MAPK and c-Jun NH(2)-terminal kinases. We also demonstrate that ether-linked DGs reduce prosurvival phosphatidylinositol 3-kinase (PI3K)/Akt signaling, independent of PKC-epsilon, by diminishing an interaction between the subunits of PI3K and not by affecting protein phosphatase 2A or lipid (phosphatase and tensin homologue deleted in chromosome 10) phosphatases. Taken together, our studies identify ether-linked DGs as potential adjuvant therapies to limit vascular smooth muscle migration and mitogenesis in atherosclerotic and restenotic models. PMID:18723771

  7. Astilbin alleviates LPS-induced ARDS by suppressing MAPK signaling pathway and protecting pulmonary endothelial glycocalyx.

    PubMed

    Kong, Guiqing; Huang, Xiao; Wang, Lipeng; Li, Yan; Sun, Ting; Han, Shasha; Zhu, Weiwei; Ma, Mingming; Xu, Haixiao; Li, Jiankui; Zhang, Xiaohua; Liu, Xiangyong; Wang, Xiaozhi

    2016-07-01

    Acute respiratory distress syndrome (ARDS) is a devastating disorder that is characterized by increased vascular endothelial permeability and inflammation. Unfortunately, no effective treatment beyond supportive care is available for ARDS. Astilbin, a flavonoid compound isolated from Rhizoma Smilacis Glabrae, has been used for anti-hepatic, anti-arthritic, and anti-renal injury treatments. This study examined the effects of Astilbin on pulmonary inflammatory activation and endothelial cell barrier dysfunction caused by Gram-negative bacterial endotoxin lipopolysaccharide (LPS). Endothelial cells from human umbilical veins or male Kunming mice were pretreated with Astilbin 24h before LPS stimulation. Results showed that Astilbin significantly attenuated the pulmonary histopathological changes and neutrophil infiltration 6h after the LPS challenge. Astilbin suppressed the activities of myeloperoxidase and malondialdehyde, as well as the expression of tumor necrosis factor-α and interleukin-6 in vivo and in vitro. As indices of pulmonary edema, lung wet-to-dry weight ratios, were markedly decreased by Astilbin pretreatment. Western blot analysis also showed that Astilbin inhibited LPS-induced activation of mitogen-activated protein kinase (MAPK) pathways in lung tissues. Furthermore, Astilbin significantly inhibited the activity of heparanase and reduced the production of heparan sulfate in the blood serum as determined by ELISA. These findings indicated that Astilbin can alleviate LPS-induced ARDS, which potentially contributed to the suppression of MAPK pathway activation and the degradation of endothelial glycocalyx. PMID:27111514

  8. The endocannabinoid anandamide induces apoptosis of rat decidual cells through a mechanism involving ceramide synthesis and p38 MAPK activation.

    PubMed

    Fonseca, B M; Correia-da-Silva, G; Teixeira, N A

    2013-12-01

    Anandamide (AEA) belongs to an endogenous family of lipid messengers, called endocannabinoids (ECs), which exert pharmacological effects by binding to selective membrane receptors, the CB1 and CB2 receptors. Increasing evidence suggests that AEA is involved in the regulation of a variety of cell signalling pathways both in experimental models and humans. We have previously demonstrated that ECs machinery operates in decidual cells and found that AEA, the principal EC, induced apoptosis in decidual cells through CB1. Here, we investigated in rat primary decidual cells the signal transduction pathways activated upon AEA binding to CB1. We found that AEA induces a significant increase in the level of intracellular ceramide. These effects were reversed by inhibiting CB1 receptor activation with AM251. The ceramide analogue, C6-ceramide, induced a decrease in decidual cell viability and of p38 MAPK phosphorylation. Additionally, the pharmacologic inhibition of de novo ceramide biosynthesis with L-cycloserine and fumonisin B reduced the AEA-effects on cell viability and p38 MAPK phosphorylation. Furthermore, AEA and C6-ceramide induced a drop in ΔΨm, an increase in ROS production and caspase-3/-7 activation, effects partially reverted by inhibitors of ceramide synthesis and of p38 MAPK. Taken together, we showed that AEA induces a reduction in decidual cell viability by a mechanism involving CB1 activation, which results in ceramide synthesis de novo and p38 phosphorylation, followed by mitochondrial stress and ROS production, leading to apoptosis. PMID:24048885

  9. Comparative analysis of MAPK and PI3K/AKT pathway activation and inhibition in human and canine melanoma.

    PubMed

    Fowles, J S; Denton, C L; Gustafson, D L

    2015-09-01

    The lack of advanced animal models of human cancers is considered a barrier to developing effective therapeutics. Canine and human melanomas are histologically disparate but show similar disease progression and response to therapies. The purpose of these studies was to compare human and canine melanoma tumours and cell lines regarding MAPK and PI3K/AKT signalling dysregulation, and response to select molecularly targeted agents. Pathway activation was investigated via microarray and mutational analysis. Growth inhibition and cell cycle effects were assessed for pathway inhibitors AZD6244 (MAPK) and rapamycin (PI3K/AKT) in human and canine melanoma cells. Human and canine melanoma share similar differential gene expression patterns within the MAPK and PI3K/AKT pathways. Constitutive pathway activation and similar sensitivity to AZD6244 and rapamycin was observed in human and canine cells. These results show that human and canine melanoma share activation and sensitivity to inhibition of cancer-related signalling pathways despite differences in activating mutations. PMID:23745794

  10. MAPK signaling triggers transcriptional induction of cFOS during amino acid limitation of HepG2 cells.

    PubMed

    Shan, Jixiu; Donelan, William; Hayner, Jaclyn N; Zhang, Fan; Dudenhausen, Elizabeth E; Kilberg, Michael S

    2015-03-01

    Amino acid (AA) deprivation in mammalian cells activates a collection of signaling cascades known as the AA response (AAR), which is characterized by transcriptional induction of stress-related genes, including FBJ murine osteosarcoma viral oncogene homolog (cFOS). The present study established that the signaling mechanism underlying the AA-dependent transcriptional regulation of the cFOS gene in HepG2 human hepatocellular carcinoma cells is independent of the classic GCN2-eIF2-ATF4 pathway. Instead, a RAS-RAF-MEK-ERK cascade mediates AAR signaling to the cFOS gene. Increased cFOS transcription is observed from 4-24 h after AAR-activation, exhibiting little or no overlap with the rapid and transient increase triggered by the well-known serum response. Furthermore, serum is not required for the AA-responsiveness of the cFOS gene and no phosphorylation of promoter-bound serum response factor (SRF) is observed. The ERK-phosphorylated transcription factor E-twenty six-like (p-ELK1) is increased in its association with the cFOS promoter after activation of the AAR. This research identified cFOS as a target of the AAR and further highlights the importance of AA-responsive MAPK signaling in HepG2 cells. PMID:25523140

  11. Arachidonic acid stimulates DNA synthesis in brown preadipocytes through the activation of protein kinase C and MAPK.

    PubMed

    Garcia, Bibian; Martinez-de-Mena, Raquel; Obregon, Maria-Jesus

    2012-10-01

    Arachidonic acid (AA) is a polyunsaturated fatty acid that stimulates the proliferation of many cellular types. We studied the mitogenic potential of AA in rat brown preadipocytes in culture and the signaling pathways involved. AA is a potent mitogen which induces 4-fold DNA synthesis in brown preadipocytes. The AA mitogenic effect increases by NE addition. AA also increases the mitogenic action of different growth factor combinations. Other unsaturated and saturated fatty acids do not stimulate DNA synthesis to the same extent as AA. We analyzed the role of PKC and MEK/MAPK signaling pathways. PKC inhibition by bisindolilmaleimide I (BIS) abolishes AA and phorbol ester stimulation of DNA synthesis and reduces the mitogenic activity of different growth factors in brown preadipocytes. Brown preadipocytes in culture express PKC α, δ, ε and ζ isoforms. Pretreatment with high doses of the phorbol ester PDBu, induces downregulation of PKCs ε and δ and reproduces the effect of BIS indicating that AA-dependent induction of DNA synthesis requires PKC activity. AA also activates MEK/MAPK pathway and the inhibition of MEK activity inhibits AA stimulation of DNA synthesis and brown adipocyte proliferation. Inhibition of PKC δ by rottlerin abolishes AA-dependent stimulation of DNA synthesis and MAPK activation, whereas PKC ε inhibition does not produce any effect. In conclusion, our results identify AA as a potent mitogen for brown adipocytes and demonstrate the involvement of the PDBu-sensitive PKC δ isoform and MEK/MAPK pathway in AA-induced proliferation of brown adipocytes. Increased proliferative activity might increase the thermogenic capacity of brown fat. PMID:22766489

  12. Endothelial lipase is upregulated by interleukin-6 partly via the p38 MAPK and p65 NF-κB signaling pathways.

    PubMed

    Yue, Xin; Wu, Minghui; Jiang, Hong; Hao, Jing; Zhao, Qinghao; Zhu, Qing; Saren, Gaowa; Zhang, Yun; Zhang, Xiaoli

    2016-09-01

    To investigate the effects of inflammatory factor interleukin (IL)‑6 on the expression of endothelial lipase (EL) and its potential signaling pathways in atherosclerosis, a primary culture of human umbilical vein endothelial cells (HUVECs) was established and treated as follows: i) Control group without any treatment; ii) recombinant human (rh)IL‑6 treatment (10 ng/ml) for 0, 4, 8, 12 and 24 h; iii) p38 mitogen‑activated protein kinases (MAPKs) inhibitor (SB203580, 10 µmol/l) pretreatment for 1 h prior to rhIL‑6 (10 ng/ml) treatment; iv) nuclear factor (NF)‑κB activation inhibitor (pyrrolidine dithiocarbamate, 10 mmol/l) pretreatment for 1 h prior to rhIL‑6 (10 ng/ml) treatment. EL levels were detected by immunocytochemical staining and western blot analysis. Proliferation of HUVECs was detected by immunostaining of proliferating cell nuclear antigen (PCNA) and an MTT assay. p38 MAPK and NF‑κB p65 levels were detected by western blotting. The results showed that rhIL‑6 treatment increased EL expression and proliferation of HUVECs. NF‑κB p65 and MAPK p38 protein levels also increased in a time‑dependent manner in HUVECs after rhIL‑6 treatment. NF‑κB inhibitor and MAPK p38 inhibitor prevented the effects of rhIL‑6 on EL expression. In conclusion, inflammatory factor IL‑6 may participate in the pathogenesis of atherosclerosis by increasing EL expression and the proliferation of endothelial cells via the p38 MAPK and NF-κB signaling pathways. PMID:27430252

  13. TNF-α-induced p38MAPK activation regulates TRPA1 and TRPV4 activity in odontoblast-like cells.

    PubMed

    El Karim, Ikhlas; McCrudden, Maeliosa T C; Linden, Gerard J; Abdullah, Hanniah; Curtis, Timothy M; McGahon, Mary; About, Imad; Irwin, Christopher; Lundy, Fionnuala T

    2015-11-01

    The transient receptor potential (TRP) channels are unique cellular sensors that are widely expressed in many neuronal and nonneuronal cells. Among the TRP family members, TRPA1 and TRPV4 are emerging as candidate mechanosensitive channels that play a pivotal role in inflammatory pain and mechanical hyperalgesia. Odontoblasts are nonneuronal cells that possess many of the features of mechanosensitive cells and mediate important defense and sensory functions. However, the effect of inflammation on the activity of the odontoblast's mechanosensitive channels remains unknown. By using immunohistochemistry and calcium microfluorimetry, we showed that odontoblast-like cells express TRPA1 and TRPV4 and that these channels were activated by hypotonicity-induced membrane stretch. Short treatment of odontoblast-like cells with tumor necrosis factor (TNF)-α enhanced TRPA1 and TRPV4 responses to their chemical agonists and membrane stretch. This enhanced channel activity was accompanied by phospho-p38 mitogen-activated protein kinase (MAPK) expression. Treatment of cells with the p38 inhibitor SB202190 reduced TNF-α effects, suggesting modulation of channel activity via p38 MAPK. In addition, TNF-α treatment also resulted in an up-regulation of TRPA1 expression but down-regulation of TRPV4. Unlike TRPV4, enhanced TRPA1 expression was also evident in dental pulp of carious compared with noncarious teeth. SB202190 treatment significantly reduced TNF-α-induced TRPA1 expression, suggesting a role for p38 MAPK signaling in modulating both the transcriptional and non-transcriptional regulation of TRP channels in odontoblasts. PMID:26358221

  14. Nur77 inhibits oxLDL induced apoptosis of macrophages via the p38 MAPK signaling pathway.

    PubMed

    Shao, Qin; Han, Fei; Peng, Shi; He, Ben

    2016-03-18

    The interaction between macrophages and oxLDL plays a crucial role in the initiation and progression of atherosclerosis. As a key initiator in a number of plaque promoting processes, oxLDL induces variable effects such as cell apoptosis or proliferation. Orphan nuclear receptor Nur77 is potently induced in macrophages by diverse stimuli, suggesting that it is of importance in vascular inflammation resulting in atherosclerosis, but whether Nur77 induction is detrimental or protective is unclear. In our study, we explore the role of Nur77 in the regulation of oxLDL-induced macrophage apoptosis and the signaling pathways that are involved. We found that oxLDL induced Nur77 expression in a dose and time dependent fashion, and cell viability was decreased in parallel. To determine whether Nur77 induction contributes to the loss of cell viability or is a protective mechanism, the effect of Nur77 overexpression was examined. Importantly, Nur77 overexpression inhibited the oxLDL-induced decrease of cell viability, inhibited the production of apoptotic bodies and restored DNA synthesis following oxLDL exposure. Furthermore, we found that Nur77 induction is mediated through the p38 MAPK signaling pathway. After pretreatment with SB203580, cell viability was decreased, the expression of CyclinA2 and PCNA was attenuated and the percentage of cell apoptosis was enhanced. Likewise, Nur77 overexpression increased the expression of the cell cycle genes PCNA and p21, and attenuated the increase in caspase-3. On the other hand, knockdown of Nur77 expression by specific siRNA resulted in the increased expression of caspase 3. The results demonstrate that Nur77 is induced by oxLDL via the p38 MAPK signaling pathway, which is involved in the regulation of cell survival. Nur77 enhanced cell survival via suppressing apoptosis, without affecting cell proliferation of activated macrophages, which may be beneficial in patients with atherosclerosis. PMID:26768365

  15. Frankincense and myrrh suppress inflammation via regulation of the metabolic profiling and the MAPK signaling pathway

    PubMed Central

    Su, Shulan; Duan, Jinao; Chen, Ting; Huang, Xiaochen; Shang, Erxin; Yu, Li; Wei, Kaifeng; Zhu, Yue; Guo, Jianming; Guo, Sheng; Liu, Pei; Qian, Dawei; Tang, Yuping

    2015-01-01

    Frankincense and myrrh are highly effective in treatment of inflammatary diseases, but lacking of the therapy mechanisms. We undertook this stuty to evaluate the effects on Adjuvant-induced Arthritis (AIA) rats and to explore the underlying mechanisms by analyzing the metabolic profiling and signaling pathway evaluated by expression of inflammatory cytokines, c-jun and c-fos and corresponding phosphorylation levels. The results stated the elevated expression levels of TNFα, PGE2, IL-2, NO, and MDA in serum and swelling paw of AIA rats were significantly decreased after treatment, which exerted more remarkable inhibitive effects of combined therapy. The metbolic profiling of plasma and urine were clearly improved and twenty-one potential biomarkers were identified. Moreover, the inhibited effects of five bioactive components on cytokine transcription in PHA stimulated-PBMC showed the MAPK pathway might account for this phenomenon with considerable reduction in phosphorylated forms of all the three MAPK (ERK1/2, p38 and JNK) and down regulation of c-jun and c-fos. PMID:26329643

  16. Heat stress prevents lipopolysaccharide-induced apoptosis in pulmonary microvascular endothelial cells by blocking calpain/p38 MAPK signalling.

    PubMed

    Liu, Zhi-Feng; Zheng, Dong; Fan, Guo-Chang; Peng, Tianqing; Su, Lei

    2016-08-01

    Pulmonary microvascular endothelial cells (PMECs) injury including apoptosis plays an important role in the pathogenesis of acute lung injury during sepsis. Our recent study has demonstrated that calpain activation contributes to apoptosis in PMECs under septic conditions. This study investigated how calpain activation mediated apoptosis and whether heat stress regulated calpain activation in lipopolysaccharides (LPS)-stimulated PMECs. In cultured mouse primary PMECs, incubation with LPS (1 μg/ml, 24 h) increased active caspase-3 fragments and DNA fragmentation, indicative of apoptosis. These effects of LPS were abrogated by pre-treatment with heat stress (43 °C for 2 h). LPS also induced calpain activation and increased phosphorylation of p38 MAPK. Inhibition of calpain and p38 MAPK prevented apoptosis induced by LPS. Furthermore, inhibition of calpain blocked p38 MAPK phosphorylation in LPS-stimulated PMECs. Notably, heat stress decreased the protein levels of calpain-1/2 and calpain activities, and blocked p38 MAPK phosphorylation in response to LPS. Additionally, forced up-regulation of calpain-1 or calpain-2 sufficiently induced p38 MAPK phosphorylation and apoptosis in PMECs, both of which were inhibited by heat stress. In conclusion, heat stress prevents LPS-induced apoptosis in PMECs. This effect of heat stress is associated with down-regulation of calpain expression and activation, and subsequent blockage of p38 MAPK activation in response to LPS. Thus, blocking calpain/p38 MAPK pathway may be a novel mechanism underlying heat stress-mediated inhibition of apoptosis in LPS-stimulated endothelial cells. PMID:27325431

  17. Chronic inflammation and estradiol interact through MAPK activation to affect TMJ nociceptive processing by trigeminal caudalis neurons.

    PubMed

    Tashiro, A; Okamoto, K; Bereiter, D A

    2009-12-29

    The mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK) pathway plays a key role in mediating estrogen actions in the brain and neuronal sensitization during inflammation. Estrogen status is a risk factor in chronic temporomandibular muscle/joint (TMJ) disorders; however, the basis for this relationship is not known. The present study tested the hypothesis that estrogen status acts through the MAPK/ERK signaling pathway to alter TMJ nociceptive processing. Single TMJ-responsive neurons were recorded in laminae I-II at the spinomedullary (Vc/C(1-2)) junction in naïve ovariectomized (OvX) female rats treated for 2 days with high-dose (20 microg/day; HE2) or low-dose estradiol (2 microg/day; LE2) and after chronic inflammation of the TMJ region by complete Freund's adjuvant for 12-14 days. Intra-TMJ injection of ATP (1 mM) was used to activate Vc/C(1-2) neurons. The MAPK/ERK inhibitor (PD98059, 0.01-1 mM) was applied topically to the dorsal Vc/C(1-2) surface at the site of recording 10 min prior to each ATP stimulus. In naïve HE2 rats, low-dose PD98059 caused a maximal inhibition of ATP-evoked activity, whereas even high doses had only minor effects on units in LE2 rats. By contrast, after chronic TMJ inflammation, PD98059 produced a marked and similar dose-related inhibition of ATP-evoked activity in HE2 and LE2 rats. These results suggested that E2 status and chronic inflammation acted, at least in part, through a common MAPK/ERK-dependent signaling pathway to enhance TMJ nociceptive processing by laminae I-II neurons at the spinomedullary junction region. PMID:19786077

  18. Pioglitazone Protected against Cardiac Hypertrophy via Inhibiting AKT/GSK3β and MAPK Signaling Pathways

    PubMed Central

    Wei, Wen-Ying; Ma, Zhen-Guo; Xu, Si-Chi; Zhang, Ning; Tang, Qi-Zhu

    2016-01-01

    Peroxisome proliferator activated receptor γ (PPARγ) has been closely involved in the process of cardiovascular diseases. This study was to investigate whether pioglitazone (PIO), a PPARγ agonist, could protect against pressure overload-induced cardiac hypertrophy. Mice were orally given PIO (2.5 mg/kg) from 1 week after aortic banding and continuing for 7 weeks. The morphological examination and biochemical analysis were used to evaluate the effects of PIO. Neonatal rat ventricular cardiomyocytes were also used to verify the protection of PIO against hypertrophy in vitro. The results in our study demonstrated that PIO remarkably inhibited hypertrophic response induced by aortic banding in vivo. Besides, PIO also suppressed cardiac fibrosis in vivo. PIO treatment also inhibited the activation of protein kinase B (AKT)/glycogen synthase kinase-3β (GSK3β) and mitogen-activated protein kinase (MAPK) in the heart. In addition, PIO alleviated angiotensin II-induced hypertrophic response in vitro. In conclusion, PIO could inhibit cardiac hypertrophy via attenuation of AKT/GSK3β and MAPK pathways. PMID:27110236

  19. SIRT1 protects rat lung tissue against severe burn-induced remote ALI by attenuating the apoptosis of PMVECs via p38 MAPK signaling

    PubMed Central

    Bai, Xiaozhi; Fan, Lei; He, Ting; Jia, Wenbin; Yang, Longlong; Zhang, Jun; Liu, Yang; Shi, Jihong; Su, Linlin; Hu, Dahai

    2015-01-01

    Silent information regulator type-1 (SIRT1) has been reported to be involved in the cardiopulmonary protection. However, its role in the pathogenesis of burn-induced remote acute lung injury (ALI) is currently unknown. The present study aims to investigate the role of SIRT1 in burn-induced remote ALI and the involved signaling pathway. We observed that SIRT1 expression in rat lung tissue after burn injury appeared an increasing trend after a short period of suppression. The upregulation of SIRT1 stimulated by resveratrol exhibited remission of histopathologic changes, reduction of cell apoptosis, and downregulation of pro-inflammatory cytokines in rat pulmonary tissues suffering from severe burn. We next used primary pulmonary microvascular endothelial cells (PMVECs) challenged by burn serum (BS) to simulate in vivo rat lung tissue after burn injury, and found that BS significantly suppressed SIRT1 expression, increased cell apoptosis, and activated p38 MAPK signaling. The use of resveratrol reversed these effects, while knockdown of SIRT1 by shRNA further augmented BS-induced increase of cell apoptosis and activation of p38 MAPK. Taken together, these results indicate that SIRT1 might protect lung tissue against burn-induced remote ALI by attenuating PMVEC apoptosis via p38 MAPK signaling, suggesting its potential therapeutic effects on the treatment of ALI. PMID:25992481

  20. Molecular Changes Involving MEK3-p38 MAPK Activation in Chronic Masticatory Myalgia.

    PubMed

    Meng, H; Gao, Y; Kang, Y F; Zhao, Y P; Yang, G J; Wang, Y; Cao, Y; Gan, Y H; Xie, Q F

    2016-09-01

    The exact mechanism underlying chronic masticatory myalgia (CMM), a conspicuous symptom in temporomandibular disorders, remains unclear. This investigation compared gene expression profiles between CMM patients and healthy subjects. Peripheral blood leukocytes were collected in 8 cases and 8 controls and subjected to whole genome microarray analyses. Data were analyzed with Gene Ontology and interactive pathways analyses. According to Gene Ontology analysis, categories such as ion transport, response to stimuli, and metabolic process were upregulated. The pathway analysis suggested overexpression of the mitogen-activated protein kinase (MAPK) pathway in CMM patients and to a higher degree in a pathway network. Overexpression of representative members of the MAPK pathway-including MAPK kinase 3 (MEK3), calcium voltage-gated channel auxiliary subunit gamma 2 (CACNG2), and growth arrest and DNA damage-inducible gamma (GADD45G)-was validated with real-time polymerase chain reaction. The upregulation of MEK3 was negatively correlated with the age of the CMM group. In the next step, the authors focused on MEK3, the gene that exhibited the greatest degree of differential expression, and its downstream target protein p38 MAPK. The results revealed upregulation of MEK3, as well as phosphorylated MEK3 and phosphorylated p38 MAPK, in CMM patients. These results provide a "fingerprint" for mechanistic studies of CMM in the future and highlight the importance of MEK3-p38 MAPK activation in CMM. PMID:27418173

  1. MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways

    SciTech Connect

    Simões, Maylla Ronacher; Aguado, Andrea; Fiorim, Jonaína; Silveira, Edna Aparecida; Azevedo, Bruna Fernandes; Toscano, Cindy Medice; Zhenyukh, Olha; Briones, Ana María; Alonso, María Jesús; Vassallo, Dalton Valentim; Salaices, Mercedes

    2015-03-01

    Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 μg/100 g; subsequent doses: 0.125 μg/100 g, intramuscular, 30 days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20 μg/dL) were used. Lead blood levels of treated rats attained 21.7 ± 2.38 μg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and did not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension. - Highlights: • Lead-exposure increases oxidative stress, COX-2 expression and vascular reactivity. • Lead exposure activates MAPK signaling pathway. • ROS and COX-2 activation by

  2. Nitric oxide induces prion protein via MEK and p38 MAPK signaling.

    PubMed

    Wang, Vinchi; Chuang, Tzu-Chao; Hsu, Yaw-Don; Chou, Wei-Yuan; Kao, Ming-Ching

    2005-07-22

    The prion diseases or transmissible spongiform encephalopathy, such as human Creutzfeldt-Jakob disease (CJD) and so-called mad cow disease, are attributed to the causative agent, the scrapie variant of prion protein (PrP(Sc)) which causes fatal neurodegeneration. To investigate if stresses such as nitric oxide (NO) induced the cellular isoform of prion protein (PrP(C)), lipopolysaccharide, and sodium nitroprusside were used to treat N2a and NT2 cells, which resulted in elevated levels of the PRNP mRNA and prion protein. The signaling pathway for the NO-induced PrP(C) production involved guanylyl cyclase, MEK, and p38 MAPK as shown by the effect of specific pharmacological inhibitors ODQ, PD98059, and SB203580, respectively. Knowing the PrP induction by the biologically existing stimulus, this study provides useful information about the possible cellular mechanism and strategies for the treatment of CJD. PMID:15936714

  3. 17β-estradiol rapidly activates calcium release from intracellular stores via the GPR30 pathway and MAPK phosphorylation in osteocyte-like MLO-Y4 cells.

    PubMed

    Ren, Jian; Wu, Jun Hua

    2012-05-01

    Estrogen regulates critical cellular functions, and its deficiency initiates bone turnover and the development of bone mass loss in menopausal females. Recent studies have demonstrated that 17β-estradiol (E(2)) induces rapid non-genomic responses that activate downstream signaling molecules, thus providing a new perspective to understand the relationship between estrogen and bone metabolism. In this study, we investigated rapid estrogen responses, including calcium release and MAPK phosphorylation, in osteocyte-like MLO-Y4 cells. E(2) elevated [Ca(2+)]( i ) and increased Ca(2+) oscillation frequency in a dose-dependent manner. Immunolabeling confirmed the expression of three estrogen receptors (ERα, ERβ, and G protein-coupled receptor 30 [GPR30]) in MLO-Y4 cells and localized GPR30 predominantly to the plasma membrane. E(2) mobilized calcium from intracellular stores, and the use of selective agonist(s) for each ER showed that this was mediated mainly through the GPR30 pathway. MAPK phosphorylation increased in a biphasic manner, with peaks occurring after 7 and 60 min. GPR30 and classical ERs showed different temporal effects on MAPK phosphorylation and contributed to MAPK phosphorylation sequentially. ICI182,780 inhibited E(2) activation of MAPK at 7 min, while the GPR30 agonist G-1 and antagonist G-15 failed to affect MAPK phosphorylation levels. G-1-mediated MAPK phosphorylation at 60 min was prevented by prior depletion of calcium stores. Our data suggest that E(2) induces the non-genomic responses Ca(2+) release and MAPK phosphorylation to regulate osteocyte function and indicate that multiple receptors mediate rapid E(2) responses. PMID:22392527

  4. Hepatocyte cytoskeleton during ischemia and reperfusion - influence of ANP-mediated p38 MAPK activation

    PubMed Central

    Keller, Melanie; Gerbes, Alexander L; Kulhanek-Heinze, Stefanie; Gerwig, Tobias; Grützner, Uwe; van Rooijen, Nico; Vollmar, Angelika M; Kiemer, Alexandra K

    2005-01-01

    AIM: To determine functional consequences of this activation, whereby we focused on a potential regulation of the hepatocyte cytoskeleton during ischemia and reperfusion. METHODS: For in vivo experiments, animals received ANP (5 μg/kg) intravenously. In a different experimental setting, isolated rat livers were perfused with KH-buffer±ANP (200 nmol/L)±SB203580 (2 μmol/L). Livers were then kept under ischemic conditions for 24 h, and either transplanted or reperfused. Actin, Hsp27, and phosphorylated Hsp27 were determined by Western blotting, p38 MAPK activity by in vitro phosphorylation assay. F-actin distribution was determined by confocal microscopy. RESULTS: We first confirmed that ANP preconditioning leads to an activation of p38 MAPK and observed alterations of the cytoskeleton in hepatocytes of ANP-preconditioned organs. ANP induced an increase of hepatic F-actin after ischemia, which could be prevented by the p38 MAPK inhibitor SB203580 but had no effect on bile flow. After ischemia untreated livers showed a translocation of Hsp27 towards the cytoskeleton and an increase in total Hsp27, whereas ANP preconditioning prohibited translocation but caused an augmentation of Hsp27 phosphorylation. This effect is also mediated via p38 MAPK, since it was abrogated by the p38 MAPK inhibitor SB203580. CONCLUSION: This study reveals that ANP-mediated p38 MAPK activation leads to changes in hepatocyte cytoskeleton involving an elevation of phosphorylated Hsp27 and thereby for the first time shows functional consequences of ANP-induced hepatic p38 MAPK activation. PMID:16437711

  5. Differential Effects of E2 on MAPK Activity in the Brain and Heart of Aged Female Rats

    PubMed Central

    Shults, Cody L.; Rao, Yathindar S.; Pak, Toni R.

    2016-01-01

    Aging and the coincident loss of circulating estrogens at menopause lead to increased risks for neurological and cardiovascular pathologies. Clinical studies show that estrogen therapy (ET) can be beneficial in mitigating these negative effects, in both the brain and heart, when it is initiated shortly after the perimenopausal transition. However, this same therapy is detrimental when initiated >10 years postmenopause. Importantly, the molecular mechanisms underlying this age-related switch in ET efficacy are unknown. Estrogen receptors (ERs) mediate the neuroprotective and cardioprotective functions of estrogens by modulating gene transcription or, non-genomically, by activating second messenger signaling pathways, such as mitogen activated protein kinases (MAPK). These kinases are critical regulators of cell signaling pathways and have widespread downstream effects. Our hypothesis is that age and estrogen deprivation following menopause alters the expression and activation of the MAPK family members p38 and ERK in the brain and heart. To test this hypothesis, we used a surgically induced model of menopause in 18 month old rats through bilateral ovariectomy (OVX) followed by an acute dose of 17β-estradiol (E2) administered at varying time points post-OVX (1 week, 4 weeks, 8 weeks, or 12 weeks). Age and E2 treatment differentially regulated kinase activity in both the brain and heart, and the effects were also brain region specific. MAPK signaling plays an integral role in aging, and the aberrant regulation of those signaling pathways might be involved in age-related disorders. Clinical studies show benefits of ET during early menopause but detrimental effects later, which might be reflective of changes in kinase expression and activation status. PMID:27487271

  6. Effects of Maternal Chromium Restriction on the Long-Term Programming in MAPK Signaling Pathway of Lipid Metabolism in Mice.

    PubMed

    Zhang, Qian; Sun, Xiaofang; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2016-01-01

    It is now broadly accepted that the nutritional environment in early life is a key factor in susceptibility to metabolic diseases. In this study, we evaluated the effects of maternal chromium restriction in vivo on the modulation of lipid metabolism and the mechanisms involved in this process. Sixteen pregnant C57BL mice were randomly divided into two dietary treatments: a control (C) diet group and a low chromium (L) diet group. The diet treatment was maintained through gestation and lactation period. After weaning, some of the pups continued with either the control diet or low chromium diet (CC or LL), whereas other pups switched to another diet (CL or LC). At 32 weeks of age, serum lipid metabolism, proinflammatory indexes, oxidative stress and anti-oxidant markers, and DNA methylation status in adipose tissue were measured. The results indicated that the maternal low chromium diet increased body weight, fat pad weight, serum triglyceride (TG), low-density lipoprotein cholesterol (LDL), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), and oxidized glutathione (GSSG). There was a decrease in serum reduced/oxidized glutathione (GSH/GSSG) ratio at 32 weeks of age in female offspring. From adipose tissue, we identified 1214 individual hypomethylated CpG sites and 411 individual hypermethylated CpG sites in the LC group when compared to the CC group. Pathway analysis of the differential methylation genes revealed a significant increase in hypomethylated genes in the mitogen-activated protein kinase (MAPK) signaling pathway in the LC group. Our study highlights the importance of the MAPK signaling pathway in epigenetic changes involved in the lipid metabolism of the offspring from chromium-restricted dams. PMID:27517955

  7. Effects of Maternal Chromium Restriction on the Long-Term Programming in MAPK Signaling Pathway of Lipid Metabolism in Mice

    PubMed Central

    Zhang, Qian; Sun, Xiaofang; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2016-01-01

    It is now broadly accepted that the nutritional environment in early life is a key factor in susceptibility to metabolic diseases. In this study, we evaluated the effects of maternal chromium restriction in vivo on the modulation of lipid metabolism and the mechanisms involved in this process. Sixteen pregnant C57BL mice were randomly divided into two dietary treatments: a control (C) diet group and a low chromium (L) diet group. The diet treatment was maintained through gestation and lactation period. After weaning, some of the pups continued with either the control diet or low chromium diet (CC or LL), whereas other pups switched to another diet (CL or LC). At 32 weeks of age, serum lipid metabolism, proinflammatory indexes, oxidative stress and anti-oxidant markers, and DNA methylation status in adipose tissue were measured. The results indicated that the maternal low chromium diet increased body weight, fat pad weight, serum triglyceride (TG), low-density lipoprotein cholesterol (LDL), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), and oxidized glutathione (GSSG). There was a decrease in serum reduced/oxidized glutathione (GSH/GSSG) ratio at 32 weeks of age in female offspring. From adipose tissue, we identified 1214 individual hypomethylated CpG sites and 411 individual hypermethylated CpG sites in the LC group when compared to the CC group. Pathway analysis of the differential methylation genes revealed a significant increase in hypomethylated genes in the mitogen-activated protein kinase (MAPK) signaling pathway in the LC group. Our study highlights the importance of the MAPK signaling pathway in epigenetic changes involved in the lipid metabolism of the offspring from chromium-restricted dams. PMID:27517955

  8. The Pore-Forming α-Toxin from Clostridium septicum Activates the MAPK Pathway in a Ras-c-Raf-Dependent and Independent Manner

    PubMed Central

    Chakravorty, Anjana; Awad, Milena M.; Cheung, Jackie K.; Hiscox, Thomas J.; Lyras, Dena; Rood, Julian I.

    2015-01-01

    Clostridium septicum is the causative agent of atraumatic gas gangrene, with α-toxin, an extracellular pore-forming toxin, essential for disease. How C. septicum modulates the host’s innate immune response is poorly defined, although α-toxin-intoxicated muscle cells undergo cellular oncosis, characterised by mitochondrial dysfunction and release of reactive oxygen species. Nonetheless, the signalling events that occur prior to the initiation of oncosis are poorly characterised. Our aims were to characterise the ability of α-toxin to activate the host mitogen activated protein kinase (MAPK) signalling pathway both in vitro and in vivo. Treatment of Vero cells with purified α-toxin activated the extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 arms of the MAPK pathway and stimulated the release of TNF-α in a dose-dependent manner. Studies using inhibitors of all three MAPK components suggested that activation of ERK occurred in a Ras-c-Raf dependent manner, whereas activation of JNK and p38 occurred by a Ras-independent mechanism. Toxin-mediated activation was dependent on efficient receptor binding and pore formation and on an influx of extracellular calcium ions. In the mouse myonecrosis model we showed that the MAPK pathway was activated in tissues of infected mice, implying that it has an important role in the disease process. PMID:25675415

  9. The pore-forming α-toxin from clostridium septicum activates the MAPK pathway in a Ras-c-Raf-dependent and independent manner.

    PubMed

    Chakravorty, Anjana; Awad, Milena M; Cheung, Jackie K; Hiscox, Thomas J; Lyras, Dena; Rood, Julian I

    2015-02-01

    Clostridium septicum is the causative agent of atraumatic gas gangrene, with α-toxin, an extracellular pore-forming toxin, essential for disease. How C. septicum modulates the host's innate immune response is poorly defined, although α-toxin-intoxicated muscle cells undergo cellular oncosis, characterised by mitochondrial dysfunction and release of reactive oxygen species. Nonetheless, the signalling events that occur prior to the initiation of oncosis are poorly characterised. Our aims were to characterise the ability of α-toxin to activate the host mitogen activated protein kinase (MAPK) signalling pathway both in vitro and in vivo. Treatment of Vero cells with purified α-toxin activated the extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 arms of the MAPK pathway and stimulated the release of TNF-α in a dose-dependent manner. Studies using inhibitors of all three MAPK components suggested that activation of ERK occurred in a Ras-c-Raf dependent manner, whereas activation of JNK and p38 occurred by a Ras-independent mechanism. Toxin-mediated activation was dependent on efficient receptor binding and pore formation and on an influx of extracellular calcium ions. In the mouse myonecrosis model we showed that the MAPK pathway was activated in tissues of infected mice, implying that it has an important role in the disease process. PMID:25675415

  10. Ceftiofur impairs pro-inflammatory cytokine secretion through the inhibition of the activation of NF-{kappa}B and MAPK

    SciTech Connect

    Ci Xinxin; Song Yu; Zeng Fanqin; Zhang Xuemei; Li Hongyu; Wang Xinrui; Cui Junqing Deng Xuming

    2008-07-18

    Ceftiofur is a new broad-spectrum, third-generation cephalosporin antibiotic for veterinary use. Immunopharmacological studies can provide new information on the immunomodulatory activities of some drugs, including their effect on cytokine productions. For this reason, we investigated the effect of ceftiofur on cytokine productions in vitro. We found that ceftiofur can downregulate tumor necrosis factor-{alpha} (TNF-{alpha}), interleukin-1{beta} (IL-1{beta}), and interleukin-6 (IL-6), but did not affect interleukin-10 (IL-10) production. We further investigated signal transduction mechanisms to determine how ceftiofur affects. RAW 264.7 cells were pretreated with 1, 5, or 10 mg/L of ceftiofur 1 h prior to treatment with 1 mg/L of LPS. Thirty minutes later, cells were harvested and mitogen activated protein kinases (MAPKs) activation was measured by Western blot. Alternatively, cells were fixed and nuclear factor-{kappa}B (NF-{kappa}B) activation was measured using immunocytochemical analysis. Signal transduction studies showed that ceftiofur significantly inhibited extracellular signal-regulated kinase (ERK), p38, and c-jun NH{sub 2}-terminal kinase (JNK) phosphorylation protein expression. Ceftiofur also inhibited p65-NF-{kappa}B translocation into the nucleus. Therefore, ceftiofur may inhibit LPS-induced production of inflammatory cytokines by blocking NF-{kappa}B and MAPKs signaling in RAW264.7 cells.

  11. Tension Force Downregulates Matrix Metalloproteinase Expression and Upregulates the Expression of Their Inhibitors through MAPK Signaling Pathways in MC3T3-E1 cells

    PubMed Central

    Karasawa, Yoko; Tanaka, Hideki; Nakai, Kumiko; Tanabe, Natsuko; Kawato, Takayuki; Maeno, Masao; Shimizu, Noriyoshi

    2015-01-01

    Objective: Matrix metalloproteinases (MMPs), produced by osteoblasts, catalyze the turnover of extracellular matrix (ECM) molecules in osteoid, and the regulation of MMP activity depends on interactions between MMPs and tissue inhibitors of metalloproteinases (TIMPs). We focused on the degradation process of ECM in osteoid that was exposed to mechanical strain, and conducted an in vitro study using MC3T3-E1 osteoblastic cells to examine the effects of tension force (TF) on the expression of MMPs and TIMPs, and activation of mitogen-activated protein kinase (MAPK) pathways. Design: Cells were incubated on flexible-bottomed culture plates and stimulated with or without cyclic TF for 24 hours. The expression of MMPs and TIMPs was examined at mRNA and protein levels by real-time RT-PCR and Western blotting, respectively. The phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, and stress-activated protein kinases/c-jun N-terminal kinases (SAPK/JNK) were examined by Western blotting. Results: TF decreased the expression of MMP-1, -3, -13 and phosphorylated ERK1/2. In contrast, TF increased the expression of TIMP-2, -3 and phosphorylated SAPK/JNK. The expression of MMP-2, -14, TIMP-1, -4 and phosphorylated p38 MAPK was unaffected by TF. MMP-1, -3 and -13 expression decreased in cells treated with the ERK inhibitor PD98059 compared with untreated control cells. The JNK inhibitor SP600125 inhibited the TF-induced upregulation of TIMP-2 and -3. Conclusions: The results suggest that TF suppresses the degradation process that occurs during ECM turnover in osteoid via decreased production of MMP-1, -3 and -13, and increased production of TIMP-2 and -3 through the MAPK signaling pathways in osteoblasts. PMID:26640410

  12. Nucleophosmin Mutants Promote Adhesion, Migration and Invasion of Human Leukemia THP-1 Cells through MMPs Up-regulation via Ras/ERK MAPK Signaling

    PubMed Central

    Xian, Jingrong; Shao, Huiyuan; Chen, Xianchun; Zhang, Shuaishuai; Quan, Jing; Zou, Qin; Jin, Hongjun; Zhang, Ling

    2016-01-01

    Acute myeloid leukemia (AML) with mutated nucleophosmin (NPM1) has been defined as a unique subgroup in the new classification of myeloid neoplasm, and the AML patients with mutated NPM1 frequently present extramedullary infiltration, but how NPM1 mutants regulate this process remains elusive. In this study, we found that overexpression of type A NPM1 gene mutation (NPM1-mA) enhanced the adhesive, migratory and invasive potential in THP-1 AML cells lacking mutated NPM1. NPM1-mA had up-regulated expression and gelatinolytic matrix metalloprotease-2 (MMP-2)/MMP-9 activity, as assessed by real-time PCR, western blotting and gelatin zymography. Following immunoprecipitation analysis to identify the interaction of NPM1-mA with K-Ras, we focused on the effect of NPM1-mA overexpression on the Ras/Mitogen-activated protein kinase (MAPK) signaling axis and showed that NPM1-mA increased the MEK and ERK phosphorylation levels, as evaluated by western blotting. Notably, a specific inhibitor of the ERK/MAPK pathway (PD98059), but not p38/MAPK, JNK/MAPK or PI3-K/AKT inhibitors, markedly decreased the cell invasion numbers in a transwell assay. Further experiments demonstrated that blocking the ERK/MAPK pathway by PD98059 resulted in reduced MMP-2/9 protein levels and MMP-9 activity. Additionally, NPM1-mA overexpression had down-regulated gene expression and protein production of tissue inhibitor of MMP-2 (TIMP-2) in THP-1 cells. Furthermore, evaluation of gene expression data from The Cancer Genome Atlas (TCGA) dataset revealed that MMP-2 was overexpressed in AML patient samples with NPM1 mutated and high MMP-2 expression associated with leukemic skin infiltration. Taken together, our results reveal that NPM1 mutations contribute to the invasive potential of AML cells through MMPs up-regulation via Ras/ERK MAPK signaling pathway activation and offer novel insights into the potential role of NPM1 mutations in leukemogenesis. PMID:26884713

  13. Berberine prevents nitric oxide-induced rat chondrocyte apoptosis and cartilage degeneration in a rat osteoarthritis model via AMPK and p38 MAPK signaling.

    PubMed

    Zhou, Yan; Liu, Shi-Qing; Yu, Ling; He, Bin; Wu, Shi-Hao; Zhao, Qi; Xia, Shao-Qiang; Mei, Hong-Jun

    2015-09-01

    Chondrocyte apoptosis is an important mechanism involved in osteoarthritis (OA). Berberine (BBR), a plant alkaloid derived from Chinese medicine, is characterized by multiple pharmacological effects, such as anti-inflammatory and anti-apoptotic activities. This study aimed to evaluate the chondroprotective effect and underlying mechanisms of BBR on sodium nitroprusside (SNP)-stimulated chondrocyte apoptosis and surgically-induced rat OA model. The in vitro results revealed that BBR suppressed SNP-stimulated chondrocyte apoptosis as well as cytoskeletal remodeling, down-regulated expressions of inducible nitric oxide synthase (iNOS) and caspase-3, and up-regulated Bcl-2/Bax ratio and Type II collagen (Col II) at protein levels, which were accompanied by increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and decreased phosphorylation of p38 mitogen-activated protein kinase (MAPK). Furthermore, the anti-apoptotic effect of BBR was blocked by AMPK inhibitor Compound C (CC) and adenosine-9-β-D-arabino-furanoside (Ara A), and enhanced by p38 MAPK inhibitor SB203580. In vivo experiment suggested that BBR ameliorated cartilage degeneration and exhibited an anti-apoptotic effect on articular cartilage in a rat OA model, as demonstrated by histological analyses, TUNEL assay and immunohistochemical analyses of caspase-3, Bcl-2 and Bax expressions. These findings suggest that BBR suppresses SNP-stimulated chondrocyte apoptosis and ameliorates cartilage degeneration via activating AMPK signaling and suppressing p38 MAPK activity. PMID:26184498

  14. Protective effects of protocatechuic acid on acute lung injury induced by lipopolysaccharide in mice via p38MAPK and NF-κB signal pathways.

    PubMed

    Zhang, Xiuli; Li, Chunli; Li, Jun; Xu, Yingzhen; Guan, Shui; Zhao, Mingshan

    2015-05-01

    The study aims to investigate the effects of protocatechuic acid (PCA) separated from Chinese herbs, on acute lung injury (ALI) induced by lipopolysaccharide (LPS) in mice. The mouse model was induced by intraperitoneal injection of LPS at the dose of 5mg/kg body weight. Three doses of PCA (30, 15, 5 mg/kg) were administered to mice with intraperitoneal injection one hour prior to LPS exposure. Six hours later after LPS administration, the effect of PCA on ALI mice was assessed via histopathological examination by HE staining, inflammatory cytokine production by ELISA assay and RT-PCR, p38MAPK and NF-κB activation by Western blot analysis. We found that PCA administration significantly ameliorated lung histopathological changes and decreased protein concentration in the bronchoalveolar lavage fluid. Furthermore, the overproduction of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) was reduced by PCA. Additionally, PCA at the dose of 30 mg/kg could block the activation of p38MAPK and NF-κB signal pathways induced by LPS. In conclusion, our findings demonstrate that PCA possesses a protective effect on LPS-induced ALI in mice via suppression of p38MAPK and NF-κB signal pathways. Therefore, PCA may be useful in the therapy of lung inflammatory diseases, especially for ALI. PMID:25841318

  15. Trimethyltin-Induced Microglial Activation via NADPH Oxidase and MAPKs Pathway in BV-2 Microglial Cells

    PubMed Central

    Kim, Da Jung; Kim, Yong Sik

    2015-01-01

    Trimethyltin (TMT) is known as a potent neurotoxicant that causes neuronal cell death and neuroinflammation, particularly in the hippocampus. Microglial activation is one of the prominent pathological features of TMT neurotoxicity. Nevertheless, it remains unclear how microglial activation occurs in TMT intoxication. In this study, we aimed to investigate the signaling pathways in TMT-induced microglial activation using BV-2 murine microglial cells. Our results revealed that TMT generates reactive oxygen species (ROS) and increases the expression of CD11b and nuclear factor-κB- (NF-κB-) mediated nitric oxide (NO) and tumor necrosis factor- (TNF-) α in BV-2 cells. We also observed that NF-κB activation was controlled by p38 and JNK phosphorylation. Moreover, TMT-induced ROS generation occurred via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in BV-2 cells. Interestingly, treatment with the NADPH oxidase inhibitor apocynin significantly suppressed p38 and JNK phosphorylation and NF-κB activation and ultimately the production of proinflammatory mediators upon TMT exposure. These findings indicate that NADPH oxidase-dependent ROS generation activated p38 and JNK mitogen-activated protein kinases (MAPKs), which then stimulated NF-κB to release proinflammatory mediators in the TMT-treated BV-2 cells. PMID:26221064

  16. Nicotine enhances invasion and metastasis of human colorectal cancer cells through the nicotinic acetylcholine receptor downstream p38 MAPK signaling pathway.

    PubMed

    Xiang, Tao; Fei, Rushan; Wang, Zhe; Shen, Zhonglei; Qian, Jing; Chen, Wenbin

    2016-01-01

    Nicotine as a cigarette component is an established risk factor for colorectal cancer tumorigenesis. The downstream signaling pathways of nicotinic acetylcholine receptors (nAchRs) are believed to be responsible for the cellular effects. In the present study, we evaluated the effects and novel mechanisms for nicotine on the capacity for colorectal cancer cell invasion and metastasis. LOVO and SW620 colorectal cancer cells were stimulated with nicotine in vitro. A Transwell chamber model was applied to detect the capacity for tumor cell invasion. Assays for gelatin zymography and western blotting were applied to detect the activity and expression of metastasis-related matrix metalloproteinases (MMPs), respectively. Signal transduction was assessed by immunoblotting for the phosphorylation of relevant signal molecules and the application of pharmaceutical inhibitors. We showed that nicotine increased LOVO and SW620 colorectal cancer cell invasion along with enhanced activity and expression of MMP-1, -2 and -9. Nicotine increased phosphorylation of p38, ERK, Akt and PI3K p85 but had no effect on phosphorylation of JNK, or NF-κB. Of the pharmaceutical inhibitors of U0126 (ERK1/2 inhibitor), LY294002 (Akt activation inhibitor), SB239063 (p38 MAPK activation inhibitor) and hexamethonium (Hex) (nAchRs inhibitor), the cellular and molecular effects were reduced by the applications of SB239063 and Hex. We concluded that nicotine stimulates the invasion and metastasis of colon cancer cells in vitro via activation of the nAchRs and the p38 MAPK downstream signaling pathway. Therefore, p38 MAPK may have potential as a therapeutic target for smoking-related human colorectal cancer metastasis. PMID:26530054

  17. Requirement of ERα and basal activities of EGFR and Src kinase in Cd-induced activation of MAPK/ERK pathway in human breast cancer MCF-7 cells

    SciTech Connect

    Song, Xiulong Wei, Zhengxi; Shaikh, Zahir A.

    2015-08-15

    Cadmium (Cd) is a common environmental toxicant and an established carcinogen. Epidemiological studies implicate Cd with human breast cancer. Low micromolar concentrations of Cd promote proliferation of human breast cancer cells in vitro. The growth promotion of breast cancer cells is associated with the activation of MAPK/ERK pathway. This study explores the mechanism of Cd-induced activation of MAPK/ERK pathway. Specifically, the role of cell surface receptors ERα, EGFR, and Src kinase was evaluated in human breast cancer MCF-7 cells treated with 1–3 μM Cd. The activation of ERK was studied using a serum response element (SRE) luciferase reporter assay. Receptor phosphorylation was detected by Western blot analyses. Cd treatment increased both the SRE reporter activity and ERK1/2 phosphorylation in a concentration-dependent manner. Cd treatment had no effect on reactive oxygen species (ROS) generation. Also, blocking the entry of Cd into the cells with manganese did not diminish Cd-induced activation of MAPK/ERK. These results suggest that the effect of Cd was likely not caused by intracellular ROS generation, but through interaction with the membrane receptors. While Cd did not appear to activate either EGFR or Src kinase, their inhibition completely blocked the Cd-induced activation of ERK as well as cell proliferation. Similarly, silencing ERα with siRNA or use of ERα antagonist blocked the effects of Cd. Based on these results, it is concluded that not only ERα, but also basal activities of EGFR and Src kinase are essential for Cd-induced signal transduction and activation of MAPK/ERK pathway for breast cancer cell proliferation. - Highlights: • Low micromolar concentrations of Cd rapidly activate ERK1/2 in MCF-7 cells. • Signal transduction and resulting cell proliferation require EGFR, ERα, and Src. • These findings implicate Cd in promotion of breast cancer.

  18. Neuroprotective effect of sulfated polysaccharide isolated from sea cucumber Stichopus japonicus on 6-OHDA-induced death in SH-SY5Y through inhibition of MAPK and NF-κB and activation of PI3K/Akt signaling pathways.

    PubMed

    Cui, Chao; Cui, Ningshan; Wang, Peng; Song, Shuliang; Liang, Hao; Ji, Aiguo

    2016-02-01

    The purpose of this study is to investigate the protective effect and molecular mechanism of the sulfated polysaccharide (SJP) isolated from the sea cucumber Stichopus japonicus against 6-OHDA-induced toxicity in SH-SY5Y cells. The results showed that SJP could protect SH-SY5Y cells against 6-OHDA-induced cell injury. We found that SJP effectively improves cell viability, decreases LDH leakage, and reverses morphological damage. Moreover, SJP significantly increases SOD activity but decreases MDA levels and ROS generation. Effect of SJP on 6-OHDA-induced cell death in SH-SY5Y cells is associated with an arrest in the G1/S phase of the cell cycle and inhibits the expression of Cyclin D3. 6-OHDA-induced intracellular generation of ROS and mitochondrial dysfunctions, release of cytochrome c, imbalance of Bax/Bcl-2, cleaved caspase-9/caspase-9 and cleaved caspase-3/caspase-3 ratio, and p-p53 activation were strikingly attenuated by SJP pretreatment. Meanwhile, SJP counteracted NF-κB activation, thereby preventing up-regulation of iNOS and intracellular NO release. The data provide the first evidence that SJP protects SH-SY5Y cells against 6-OHDA toxicity possibly by inhibiting MAPK and NF-κB and activating PI3K/Akt signaling pathways. Thus, SJP is a candidate for further evaluation of its protective effects against neurodegeneration in PD. PMID:26773499

  19. GITRL modulates the activities of p38 MAPK and STAT3 to promote Th17 cell differentiation in autoimmune arthritis

    PubMed Central

    Ma, Jie; Wang, Jiemin; Qi, Chen; Rui, Ke; Wang, Yungang; Xu, Huaxi; Lu, Liwei; Wang, Shengjun

    2016-01-01

    The glucocorticoid-induced TNFR family-related protein (GITR) and its ligand play a critical role in the pathogenesis of autoimmune arthritis by enhancing the Th17 cell response, but their molecular mechanisms remain largely unclear. This study aims to define the role of p38 mitogen-activated protein kinases (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling in GITRL-induced Th17 cells in autoimmune arthritis. We found that the p38 phosphorylation was enhanced by GITRL in activated CD4+T cells, and the p38 inhibitor restrained the GITRL-induced Th17 cell expansion in a dose-dependent manner. Moreover, there was decreased STAT3 activity on Tyr705 and Ser727 with the p38 inhibitor in vitro. Notably, the p38 inhibitor could prevent GITRL-treated arthritis progression and markedly decrease the Th17 cell percentages. The phosphorylation of the Tyr705 site was significantly lower in the GITRL-treated CIA mice administrated with the p38 inhibitor. A significantly higher phosphorylation of p38 was detected in RA patients and had a positive relationship with the serum level of anti-cyclic citrullinated peptide (anti-CCP) antibody. Our findings have indicated that GITRL could promote Th17 cell differentiation by p38 MAPK and STAT3 signaling in autoimmune arthritis. PMID:26657118

  20. Anthraquinone Glycoside Aloin Induces Osteogenic Initiation of MC3T3-E1 Cells: Involvement of MAPK Mediated Wnt and Bmp Signaling.

    PubMed

    Pengjam, Yutthana; Madhyastha, Harishkumar; Madhyastha, Radha; Yamaguchi, Yuya; Nakajima, Yuichi; Maruyama, Masugi

    2016-03-01

    Osteoporosis is a bone pathology leading to increased fracture risk and challenging the quality of life. The aim of this study was to evaluate the effect of an anthraquinone glycoside, aloin, on osteogenic induction of MC3T3-E1 cells. Aloin increased alkaline phosphatase (ALP) activity, an early differentiation marker of osteoblasts. Aloin also increased the ALP activity in adult human adipose-derived stem cells (hADSC), indicating that the action of aloin was not cell-type specific.Alizarin red S staining revealed a signifiant amount of calcium deposition in cells treated with aloin. Aloin enhanced the expression of osteoblast differentiation genes, Bmp-2, Runx2 and collagen 1a, in a dose-dependent manner. Western blot analysis revealed that noggin and inhibitors of p38 MAPK and SAPK/JNK signals attenuated aloin-promoted expressions of Bmp-2 and Runx2 proteins. siRNA mediated blocking of Wnt-5a signaling pathway also annulled the influenceof aloin, indicating Wnt-5a dependent activity. Inhibition of the different signal pathways abrogated the influenceof aloin on ALP activity, confirmingthat aloin induced MC3T3-E1 cells into osteoblasts through MAPK mediated Wnt and Bmp signaling pathway. PMID:26869456

  1. Anthraquinone Glycoside Aloin Induces Osteogenic Initiation of MC3T3-E1 Cells: Involvement of MAPK Mediated Wnt and Bmp Signaling

    PubMed Central

    Pengjam, Yutthana; Madhyastha, Harishkumar; Madhyastha, Radha; Yamaguchi, Yuya; Nakajima, Yuichi; Maruyama, Masugi

    2016-01-01

    Osteoporosis is a bone pathology leading to increased fracture risk and challenging the quality of life. The aim of this study was to evaluate the effect of an anthraquinone glycoside, aloin, on osteogenic induction of MC3T3-E1 cells. Aloin increased alkaline phosphatase (ALP) activity, an early differentiation marker of osteoblasts. Aloin also increased the ALP activity in adult human adipose-derived stem cells (hADSC), indicating that the action of aloin was not cell-type specific. Alizarin red S staining revealed a significant amount of calcium deposition in cells treated with aloin. Aloin enhanced the expression of osteoblast differentiation genes, Bmp-2, Runx2 and collagen 1a, in a dose-dependent manner. Western blot analysis revealed that noggin and inhibitors of p38 MAPK and SAPK/JNK signals attenuated aloin-promoted expressions of Bmp-2 and Runx2 proteins. siRNA mediated blocking of Wnt-5a signaling pathway also annulled the influence of aloin, indicating Wnt-5a dependent activity. Inhibition of the different signal pathways abrogated the influence of aloin on ALP activity, confirming that aloin induced MC3T3-E1 cells into osteoblasts through MAPK mediated Wnt and Bmp signaling pathway. PMID:26869456

  2. The Rho-GTPase Rnd1 Suppresses Mammary Tumorigenesis and EMT by Restraining Ras-MAPK signaling

    PubMed Central

    Okada, Tomoyo; Sinha, Surajit; Esposito, Ilaria; Schiavon, Gaia; López-Lago, Miguel A.; Su, Wenjing; Pratilas, Christine A.; Abele, Cristina; Hernandez, Jonathan M.; Ohara, Masahiro; Okada, Morihito; Viale, Agnes; Heguy, Adriana; Socci, Nicholas D.; Sapino, Anna; Seshan, Venkatraman E.; Long, Stephen; Inghirami, Giorgio; Rosen, Neal; Giancotti, Filippo G.

    2015-01-01

    SUMMARY We identified the Rho-GTPase Rnd1 as a candidate metastasis suppressor through bioinformatics analysis and showed that its depletion disrupt epithelial adhesion and polarity, induced Epithelial-to-Mesenchymal Transition (EMT), and cooperated with deregulated expression of c-Myc or loss of p53 to cause neoplastic conversion. Mechanistic studies revealed that Rnd1 suppresses Ras signalling by activating the GAP domain of Plexin B1, which inhibits Rap1. Rap1 inhibition in turn led to derepression of p120-RasGAP, which was able to inhibit Ras. Inactivation of Rnd1 in mammary epithelial cells induced highly undifferentiated and invasive tumors in mice. Conversely, Rnd1 expression inhibited spontaneous and experimental lung colonization in mouse models of metastasis. Genomic studies indicated that gene deletion in combination with epigenetic silencing or, more rarely, point mutation inactivates RND1 in human breast cancer. These results reveal a previously unappreciated mechanism through which Rnd1 restrains activation of Ras-MAPK signaling and breast tumor initiation and progression. PMID:25531777

  3. Isoquercitrin inhibits the progression of liver cancer in vivo and in vitro via the MAPK signalling pathway.

    PubMed

    Huang, Guihong; Tang, Bo; Tang, Kun; Dong, Xiaomin; Deng, Jungang; Liao, Luqin; Liao, Zengzhen; Yang, Hua; He, Songqing

    2014-05-01

    Liver cancer is a malignant tumour with high morbidity and fatality rates that is common worldwide. At present, the clinical approaches to treating primary liver cancer include partial hepatectomy, systemic or local chemotherapy, radiotherapy, radiofrequency ablative surgery and liver transplantation. However, all of these approaches have shortcomings, including poor prognosis and numerous side-effects. A large number of studies have proven that many effective ingredients in traditional Chinese medicine, particularly the flavonoid compounds extracted from plants, have achieved breakthroughs in terms of enhancing the effects and reducing the toxicity of chemotherapy and radiotherapy, preventing tumour metastasis and relapse after surgery, alleviating the clinical symptoms of advanced tumours, improving the quality of life of the patient with tumours and extending patient long‑term survival. The purpose of the present study was to investigate the impact of isoquercitrin, the flavonoid from Bidens bipinnata L. extract, on the progression of liver cancer and to achieve a deeper understanding of the biological characteristics of isoquercitrin's involvement in the progression of liver cancer. In the in vitro experiments, isoquercitrin was found to strongly inhibit the proliferation of human liver cancer cells, promote the apoptosis of human liver cancer cells, and block the cell cycle in the G1 phase. Isoquercitrin activated caspase-3, -8 and -9, inhibited the expression level of ERK and p38MAPK protein phosphorylation, and promoted the phosphorylation of JNK. Additionally, isoquercitrin reduced the expression level of PKC in human liver cancer cells. In the in vivo experiments, isoquercitrin was also found to significantly inhibit the growth of transplanted tumours in nude mice. The present study confirmed that isoquercitrin could inhibit the progression of human liver cancer in vivo and in vitro, and the molecular mechanism of isoquercitrin may be closely associated

  4. Ginkgo biloba extract mitigates liver fibrosis and apoptosis by regulating p38 MAPK, NF-κB/IκBα, and Bcl-2/Bax signaling

    PubMed Central

    Wang, Yuanyuan; Wang, Rong; Wang, Yujie; Peng, Ruqin; Wu, Yan; Yuan, Yongfang

    2015-01-01

    Background Liver fibrosis is the consequence of diverse liver injuries and can eventually develop into liver cirrhosis. Ginkgo biloba extract (GBE) is an extract from dried ginkgo leaves that has many pharmacological effects because of its various ingredients and has been shown to be hepatoprotective. Purpose and methods Aimed to investigate the underlying protective mechanisms of GBE on carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Male Sprague Dawley rats were randomly divided into four groups: control group (C), model group (M), low-dose group (L), and high-dose group (H). Liver fibrosis was induced by CCl4 groups M, L, and H: group C was administered saline. In addition, GBE at different doses was used to treat groups L and H. Results The results of hematoxylin and eosin staining, Masson’s trichrome staining, a liver function index, and a liver fibrosis index showed that GBE application noticeably mitigated fibrosis and improved the function of the liver. The western blotting and immunohistochemistry analyses indicated that GBE reduced liver fibrosis not only by inhibiting p38 MAPK and NF-κBp65 via inhibition of IκBα degradation but also by inhibiting hepatocyte apoptosis via downregulation of Bax, upregulation of Bcl-2, and subsequent inhibition of caspase-3 activation. Inflammation-associated factors and hepatic stellate cell (HSC)-activation markers further demonstrated that GBE could effectively inhibit HSC activation and inflammation as a result of its regulation of p38 MAPK and nuclear factor-kappa B/IκBα signaling. Conclusion Our findings indicated a novel role for GBE in the treatment of liver fibrosis. The potential mechanisms may be associated with the following signaling pathways: 1) the p38 MAPK and nuclear factor-kappa B/IκBα signaling pathways (inhibiting inflammation and HSCs activation) and 2) the Bcl-2/Bax signaling pathway (inhibiting the apoptosis of hepatocytes). PMID:26664050

  5. Isoalantolactone inhibits the migration and invasion of human breast cancer MDA-MB-231 cells via suppression of the p38 MAPK/NF-κB signaling pathway.

    PubMed

    Wang, Jing; Cui, Li; Feng, Liang; Zhang, Zhenhai; Song, Jie; Liu, Dan; Jia, Xiaobin

    2016-09-01

    Isoalantolactone is a bioactive sesquiterpene lactone isolated from the flowering plant Inula helenium L. This study was conducted to assess the anti-migratory and anti-invasive activities of isoalantolactone in MDA-MB-231 cells, and to explore the underlying mechanisms. Wound-healing and Transwell chambers assays demonstrated that isoalantolactone inhibited the adhesion, migration and invasion of MDA-MB-231 cells. The activity and expression of MMP-2 and MMP-9 were downregulated by isoalantolactone in a dose-dependent manner. Additionally, isoalantolactone markedly decreased the p-p38 MAPK level, whereas no significant change in p-ERK1/2 and p-JNK1/2 was noted. The downregulation of MMP-2 and MMP-9 protein expression and suppression of in vitro invasion might be associated with the blockade of p38 MAPK activation. Furthermore, isoalantolactone blocked the translocation of NF-κB p65 from the cytoplasm into the nucleus. These results revealed that isoalantolactone inhibited the adhesion, migration and invasion of MDA-MB-231 cells via suppression of the p38 MAPK/NF-κB signaling pathway, and isoalantolactone might be an alternative treatment for breast cancer. PMID:27461575

  6. Probiotic Lactobacillus reuteri promotes TNF-induced apoptosis in human myeloid leukemia-derived cells by modulation of NF-kappaB and MAPK signalling.

    PubMed

    Iyer, Chandra; Kosters, Astrid; Sethi, Gautam; Kunnumakkara, Ajaikumar B; Aggarwal, Bharat B; Versalovic, James

    2008-07-01

    The molecular mechanisms of pro-apoptotic effects of human-derived Lactobacillus reuteri ATCC PTA 6475 were investigated in this study. L. reuteri secretes factors that potentiate apoptosis in myeloid leukemia-derived cells induced by tumour necrosis factor (TNF), as indicated by intracellular esterase activity, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labelling assays and poly (ADP-ribose) polymerase cleavage. L. reuteri downregulated nuclear factor-kappaB (NF-kappaB)-dependent gene products that mediate cell proliferation (Cox-2, cyclin D1) and cell survival (Bcl-2, Bcl-xL). L. reuteri suppressed TNF-induced NF-kappaB activation, including NF-kappaB-dependent reporter gene expression in a dose-and time-dependent manner. L. reuteri stabilized degradation of IkappaBalpha and inhibited nuclear translocation of p65 (RelA). Although phosphorylation of IkappaBalpha was not affected, subsequent polyubiquitination necessary for regulated IkappaBalpha degradation was abrogated by L. reuteri. In addition, L. reuteri promoted apoptosis by enhancing mitogen-activated protein kinase (MAPK) activities including c-Jun N-terminal kinase and p38 MAPK. In contrast, L. reuteri suppressed extracellular signal-regulated kinases 1/2 in TNF-activated myeloid cells. L. reuteri may regulate cell proliferation by promoting apoptosis of activated immune cells via inhibition of IkappaBalpha ubiquitination and enhancing pro-apoptotic MAPK signalling. An improved understanding of L. reuteri-mediated effects on apoptotic signalling pathways may facilitate development of future probiotics-based regimens for prevention of colorectal cancer and inflammatory bowel disease. PMID:18331465

  7. FGF signaling via MAPK is required early and improves Activin A-induced definitive endoderm formation from human embryonic stem cells

    SciTech Connect

    Sui, Lina; Mfopou, Josue K.; Geens, Mieke; Sermon, Karen; Bouwens, Luc

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Deep study the FGF signaling role during DE specification in the context of hESCs. Black-Right-Pointing-Pointer DE differentiation from hESCs has an early dependence on FGF signaling. Black-Right-Pointing-Pointer A serum-free DE protocol is developed based on the findings. Black-Right-Pointing-Pointer The DE cells showed potential to differentiate into pancreatic progenitor cells. -- Abstract: Considering their unlimited proliferation and pluripotency properties, human embryonic stem cells (hESCs) constitute a promising resource applicable for cell replacement therapy. To facilitate this clinical translation, it is critical to study and understand the early stage of hESCs differentiation wherein germ layers are defined. In this study, we examined the role of FGF signaling in Activin A-induced definitive endoderm (DE) differentiation in the absence of supplemented animal serum. We found that activated FGF/MAPK signaling is required at the early time point of Activin A-induced DE formation. In addition, FGF activation increased the number of DE cells compared to Activin A alone. These DE cells could further differentiate into PDX1 and NKX6.1 positive pancreatic progenitors in vitro. We conclude that Activin A combined with FGF/MAPK signaling efficiently induce DE cells in the absence of serum. These findings improve our understanding of human endoderm formation, and constitute a step forward in the generation of clinical grade hESCs progenies for cell therapy.

  8. The Activation of ERK1/2 and JNK MAPK Signaling by Insulin/IGF-1 Is Responsible for the Development of Colon Cancer with Type 2 Diabetes Mellitus.

    PubMed

    Teng, Jia-An; Wu, San-Gang; Chen, Jia-Xin; Li, Qiang; Peng, Fang; Zhu, Zhou; Qin, Jian; He, Zhen-Yu

    2016-01-01

    Previous studies showed that type 2 diabetes mellitus (T2DM) is linked to increased risk of developing colon cancer. Insulin and insulin-like growth factor 1 (IGF-1) are increased in patients with T2DM. The increased insulin and IGF-1 may be responsible for the developing of colon cancer. In this study, we investigated the effects and mechanisms of insulin and IGF-1 in colon cancer development in vitro and in vivo. Insulin and IGF-1 alone or together elevated proliferation and reduced apoptosis in colon cancer MC38 cells. Meanwhile, insulin and IGF-1 promoted the phosphorylation of extracellular-signal regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Treatment with ERK1/2 or JNK inhibitor in the presence of insulin and IGF-1 significantly decreased B-cell lymphoma 2 (Bcl-2) and increased Bcl-2-associated X protein (Bax) expression and finally increased apoptosis and inhibited the proliferation. Accelerative colon tumor growth was found in a mouse model of T2DM with db/db mice which got high level of endogenous insulin and IGF-1. Furthermore, the inhibition of ERK1/2 or JNK suppressed the development of colon tumor in vivo. These results suggest that the activation of ERK1/2 and JNK signaling by insulin and IGF-1, at least in part, is responsible for the development of colon cancer with T2DM. PMID:26901856

  9. The Activation of ERK1/2 and JNK MAPK Signaling by Insulin/IGF-1 Is Responsible for the Development of Colon Cancer with Type 2 Diabetes Mellitus

    PubMed Central

    Li, Qiang; Peng, Fang; Zhu, Zhou; Qin, Jian; He, Zhen-Yu

    2016-01-01

    Previous studies showed that type 2 diabetes mellitus (T2DM) is linked to increased risk of developing colon cancer. Insulin and insulin-like growth factor 1 (IGF-1) are increased in patients with T2DM. The increased insulin and IGF-1 may be responsible for the developing of colon cancer. In this study, we investigated the effects and mechanisms of insulin and IGF-1 in colon cancer development in vitro and in vivo. Insulin and IGF-1 alone or together elevated proliferation and reduced apoptosis in colon cancer MC38 cells. Meanwhile, insulin and IGF-1 promoted the phosphorylation of extracellular-signal regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Treatment with ERK1/2 or JNK inhibitor in the presence of insulin and IGF-1 significantly decreased B-cell lymphoma 2 (Bcl-2) and increased Bcl-2-associated X protein (Bax) expression and finally increased apoptosis and inhibited the proliferation. Accelerative colon tumor growth was found in a mouse model of T2DM with db/db mice which got high level of endogenous insulin and IGF-1. Furthermore, the inhibition of ERK1/2 or JNK suppressed the development of colon tumor in vivo. These results suggest that the activation of ERK1/2 and JNK signaling by insulin and IGF-1, at least in part, is responsible for the development of colon cancer with T2DM. PMID:26901856

  10. Tanreqing Injection Attenuates Lipopolysaccharide-Induced Airway Inflammation through MAPK/NF-κB Signaling Pathways in Rats Model

    PubMed Central

    Liu, Wei; Jiang, Hong-li; Cai, Lin-li; Yan, Min; Dong, Shou-jin; Mao, Bing

    2016-01-01

    Background. Tanreqing injection (TRQ) is a commonly used herbal patent medicine for treating inflammatory airway diseases in view of its outstanding anti-inflammatory properties. In this study, we explored the signaling pathways involved in contributions of TRQ to LPS-induced airway inflammation in rats. Methods/Design. Adult male Sprague Dawley (SD) rats randomly divided into different groups received intratracheal instillation of LPS and/or intraperitoneal injection of TRQ. Bronchoalveolar Lavage Fluid (BALF) and lung samples were collected at 24 h, 48 h, and 96 h after TRQ administration. Protein and mRNA levels of tumor necrosis factor- (TNF-) α, Interleukin- (IL-) 1β, IL-6, and IL-8 in BALF and lung homogenate were observed by ELISA and real-time PCR, respectively. Lung sections were stained for p38 MAPK and NF-κB detection by immunohistochemistry. Phospho-p38 MAPK, phosphor-extracellular signal-regulated kinases ERK1/2, phospho-SAPK/JNK, phospho-NF-κB p65, phospho-IKKα/β, and phospho-IκB-α were measured by western blot analysis. Results. The results showed that TRQ significantly counteracted LPS-stimulated release of TNF-α, IL-1β, IL-6, and IL-8, attenuated cells influx in BALF, mitigated mucus hypersecretion, suppressed phosphorylation of NF-κB p65, IκB-α, ΙKKα/β, ERK1/2, JNK, and p38 MAPK, and inhibited p38 MAPK and NF-κB p65 expression in rat lungs. Conclusions. Results of the current research indicate that TRQ possesses potent exhibitory effects in LPS-induced airway inflammation by, at least partially, suppressing the MAPKs and NF-κB signaling pathways, in a general dose-dependent manner. PMID:27366191

  11. Hepatocyte growth factor increases the invasive potential of PC-3 human prostate cancer cells via an ERK/MAPK and Zeb-1 signaling pathway

    PubMed Central

    HAN, YILI; LUO, YONG; WANG, YONGXING; CHEN, YATONG; LI, MINGCHUAN; JIANG, YONGGUANG

    2016-01-01

    Hepatocyte growth factor (HGF) has been implicated in epithelial-mesenchymal transition (EMT) in numerous types of cancer. However, to the best of our knowledge, there has been no previous evidence that HGF has a role in prostate cancer. The present study aimed to investigate the effect of HGF on EMT and invasive potential, as well as the underlying molecular mechanisms, in a human prostate cancer cell line. Therefore, PC-3 cells were treated with various concentrations of HGF for varying durations. EMT-associated proteins, including E-cadherin and vimentin, were examined by western blot analysis. The effects of HGF on cell proliferation, migration, invasion and tumorigenicity were assessed using MTT, wound-healing, Transwell and soft-agar assays. Subsequently, the role of c-Met in the mediation of EMT-like changes was investigated using reverse transcription-polymerase chain reaction, western blot analysis and gene knockdown by small interfering RNA. Finally, western blot analysis was used to quantify the expression of a downstream transcription factor and extracellular signal-related kinase/mitogen activated protein kinase (ERK/MAPK) signaling pathway proteins. The results indicated that treatment with HGF induced EMT-like changes and enhanced the invasive potential of PC-3 cells. There was an increase in the expression of ERK, phosphorylated-ERK and zinc finger E-box binding homeobox-1 (Zeb-1), suggesting that EMT-like changes may be mediated through the ERK/MAPK and Zeb-1 signaling pathway. Furthermore, HGF-mediated EMT-like changes were associated with c-Met activation, and these changes were able to be blocked by c-Met knockdown. The present study demonstrated that HGF-induced EMT increased the invasive potential of PC-3 human prostate cancer cells through activating the ERK/MAPK and Zeb-1 signaling pathway. PMID:26870279

  12. Ghrelin accelerates wound healing through GHS-R1a-mediated MAPK-NF-κB/GR signaling pathways in combined radiation and burn injury in rats.

    PubMed

    Liu, Cong; Huang, Jiawei; Li, Hong; Yang, Zhangyou; Zeng, Yiping; Liu, Jing; Hao, Yuhui; Li, Rong

    2016-01-01

    The therapeutic effect of ghrelin on wound healing was assessed using a rat model of combined radiation and burn injury (CRBI). Rat ghrelin, anti-rat tumor necrosis factor (TNF) α polyclonal antibody (PcAb), or selective antagonists of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and growth hormone secretagogue receptor (GHS-R) 1a (SB203580, SP600125, and [D-Lys3]-GHRP-6, respectively), were administered for seven consecutive days. Levels of various signaling molecules were assessed in isolated rat peritoneal macrophages. The results showed that serum ghrelin levels and levels of macrophage glucocorticoid receptor (GR) decreased, while phosphorylation of p38MAPK, JNK, and p65 nuclear factor (NF) κB increased. Ghrelin inhibited the serum induction of proinflammatory mediators, especially TNF-α, and promoted wound healing in a dose-dependent manner. Ghrelin treatment decreased phosphorylation of p38MAPK, JNK, and p65NF-κB, and increased GR levels in the presence of GHS-R1a. SB203580 or co-administration of SB203580 and SP600125 decreased TNF-α level, which may have contributed to the inactivation of p65NF-κB and increase in GR expression, as confirmed by western blotting. In conclusion, ghrelin enhances wound recovery in CRBI rats, possibly by decreasing the induction of TNF-α or other proinflammatory mediators that are involved in the regulation of GHS-R1a-mediated MAPK-NF-κB/GR signaling pathways. PMID:27271793

  13. Ghrelin accelerates wound healing through GHS-R1a-mediated MAPK-NF-κB/GR signaling pathways in combined radiation and burn injury in rats

    PubMed Central

    Liu, Cong; Huang, Jiawei; Li, Hong; Yang, Zhangyou; Zeng, Yiping; Liu, Jing; Hao, Yuhui; Li, Rong

    2016-01-01

    The therapeutic effect of ghrelin on wound healing was assessed using a rat model of combined radiation and burn injury (CRBI). Rat ghrelin, anti-rat tumor necrosis factor (TNF) α polyclonal antibody (PcAb), or selective antagonists of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and growth hormone secretagogue receptor (GHS-R) 1a (SB203580, SP600125, and [D-Lys3]-GHRP-6, respectively), were administered for seven consecutive days. Levels of various signaling molecules were assessed in isolated rat peritoneal macrophages. The results showed that serum ghrelin levels and levels of macrophage glucocorticoid receptor (GR) decreased, while phosphorylation of p38MAPK, JNK, and p65 nuclear factor (NF) κB increased. Ghrelin inhibited the serum induction of proinflammatory mediators, especially TNF-α, and promoted wound healing in a dose-dependent manner. Ghrelin treatment decreased phosphorylation of p38MAPK, JNK, and p65NF-κB, and increased GR levels in the presence of GHS-R1a. SB203580 or co-administration of SB203580 and SP600125 decreased TNF-α level, which may have contributed to the inactivation of p65NF-κB and increase in GR expression, as confirmed by western blotting. In conclusion, ghrelin enhances wound recovery in CRBI rats, possibly by decreasing the induction of TNF-α or other proinflammatory mediators that are involved in the regulation of GHS-R1a-mediated MAPK-NF-κB/GR signaling pathways. PMID:27271793

  14. Molecular cloning of the duck mitogen-activated protein kinase 1 (MAPK1) gene and the development of a quantitative real-time PCR assay to detect its expression.

    PubMed

    Cao, Shoulin; Han, Xiangan; Ding, Chan; Wang, Shaohui; Tian, Mingxing; Wang, Xiaolan; Hou, Wanwan; Yue, Jiaping; Wang, Guijun; Yu, Shengqing

    2014-09-01

    Mitogen-activated protein kinase 1 (MAPK1) acts as an integration point for multiple biochemical signals, and is involved in a wide variety of biological processes such as cell proliferation and differentiation, transcription regulation, and development. Mitogen-activated protein kinase 1 plays an important role in inducing cell death in bacterial infections. In this study, the duck MAPK1 gene was cloned for the first time from the Cherry Valley duck. Sequence analysis showed that duck MAPK1 cDNA is 1,557 bp long, with an open reading frame of 1,107 bp. It encodes 368 amino acids, with 85.4, 84.5, and 97.3% homology with the human, mouse, and chicken MAPK1 gene, respectively. Furthermore, a SYBR Green quantitative real-time PCR assay was developed to detect duck MAPK1 expression. Following Riemerella anatipestifer infection by virulent strain Yb2, MAPK1 mRNA level increased more than 200-fold in the duck spleens, suggesting that increased duck MAPK1 expression can be used as an indicator of bacterial infection. Our results provide ground work to warrant further studies of the duck MAPK1 gene in bacterial pathogenesis. PMID:24974389

  15. CX3CL1/CX3CR1 Axis Plays a Key Role in Ischemia-Induced Oligodendrocyte Injury via p38MAPK Signaling Pathway.

    PubMed

    Wu, Xiao-Mei; Liu, Yong; Qian, Zhong-Ming; Luo, Qian-Qian; Ke, Ya

    2016-08-01

    Based on current knowledge on the role of the CX3CL1/CX3CR1 axis in the regulation of microglial activation and on the involvement of activated microglia in damaging oligodendrocytes, we hypothesized that CX3CL1/CX3CR1 axis is associated with the development of ischemic oligodendrocyte and white matter injury. We investigated the effects of CX3CL1, CX3CR1 shRNA, and p38MAPK inhibitor on the apoptosis, proliferation, and myelin proteolipid protein (PLP) expression in oligodendrocytes in co-cultures with BV2 microglia under ischemia. We demonstrated that CX3CL1 markedly increased the numbers of apoptotic oligodendrocytes, decreased PLP expression in oligodendrocytes, and inhibited the increased proliferation of oligodendrocytes induced by ischemia in co-cultures. All these effects of CX3CL1 were suppressed by pre-treatment of BV2 microglia with CX3CR1 shRNA to silence CX3CR1 expression or SB203580 to inhibit p38MAPK pathway. Our findings support that CX3CL1/CX3CR1 axis plays a key role in the development of ischemia-induced oligodendrocyte injury via p38MAPK signaling pathway. PMID:26189830

  16. Regulation of SREBPs by Sphingomyelin in Adipocytes via a Caveolin and Ras-ERK-MAPK-CREB Signaling Pathway.

    PubMed

    Makdissy, Nehman; Haddad, Katia; Mouawad, Charbel; Popa, Iuliana; Younsi, Mohamed; Valet, Philippe; Brunaud, Laurent; Ziegler, Olivier; Quilliot, Didier

    2015-01-01

    Sterol response element binding protein (SREBP) is a key transcription factor in insulin and glucose metabolism. We previously demonstrated that elevated levels of membrane sphingomyelin (SM) were related to peroxisome proliferator-activated receptor-γ (PPARγ), which is a known target gene of SREBP-1 in adipocytes. However, the role of SM in SREBP expression in adipocytes remains unknown. In human abdominal adipose tissue from obese women with various concentrations of fasting plasma insulin, SREBP-1 proteins decreased in parallel with increases in membrane SM levels. An inverse correlation was found between the membrane SM content and the levels of SREBP-1c/ERK/Ras/PPARγ/CREB proteins. For the first time, we demonstrate the effects of SM and its signaling pathway in 3T3-F442A adipocytes. These cells were enriched or unenriched with SM in a range of concentrations similar to those observed in obese subjects by adding exogenous natural SMs (having different acyl chain lengths) or by inhibiting neutral sphingomyelinase. SM accumulated in caveolae of the plasma membrane within 24 h and then in the intracellular space. SM enrichment decreased SREBP-1 through the inhibition of extracellular signal-regulated protein kinase (ERK) but not JNK or p38 mitogen-activated protein kinase (MAPK). Ras/Raf-1/MEK1/2 and KSR proteins, which are upstream mediators of ERK, were down-regulated, whereas SREBP-2/caveolin and cholesterol were up-regulated. In SM-unmodulated adipocytes treated with DL-1-Phenyl-2-Palmitoylamino-3-morpholino-1-propanol (PPMP), where the ceramide level increased, the expression levels of SREBPs and ERK were modulated in an opposite direction relative to the SM-enriched cells. SM inhibited the insulin-induced expression of SREBP-1. Rosiglitazone, which is an anti-diabetic agent and potent activator of PPARγ, reversed the effects of SM on SREBP-1, PPARγ and CREB. Taken together, these findings provide novel insights indicating that excess membrane SM might

  17. Regulation of SREBPs by Sphingomyelin in Adipocytes via a Caveolin and Ras-ERK-MAPK-CREB Signaling Pathway

    PubMed Central

    Makdissy, Nehman; Popa, Iuliana; Younsi, Mohamed; Valet, Philippe; Brunaud, Laurent; Ziegler, Olivier; Quilliot, Didier

    2015-01-01

    Sterol response element binding protein (SREBP) is a key transcription factor in insulin and glucose metabolism. We previously demonstrated that elevated levels of membrane sphingomyelin (SM) were related to peroxisome proliferator–activated receptor-γ (PPARγ), which is a known target gene of SREBP-1 in adipocytes. However, the role of SM in SREBP expression in adipocytes remains unknown. In human abdominal adipose tissue from obese women with various concentrations of fasting plasma insulin, SREBP-1 proteins decreased in parallel with increases in membrane SM levels. An inverse correlation was found between the membrane SM content and the levels of SREBP-1c/ERK/Ras/PPARγ/CREB proteins. For the first time, we demonstrate the effects of SM and its signaling pathway in 3T3-F442A adipocytes. These cells were enriched or unenriched with SM in a range of concentrations similar to those observed in obese subjects by adding exogenous natural SMs (having different acyl chain lengths) or by inhibiting neutral sphingomyelinase. SM accumulated in caveolae of the plasma membrane within 24 h and then in the intracellular space. SM enrichment decreased SREBP-1 through the inhibition of extracellular signal-regulated protein kinase (ERK) but not JNK or p38 mitogen-activated protein kinase (MAPK). Ras/Raf-1/MEK1/2 and KSR proteins, which are upstream mediators of ERK, were down-regulated, whereas SREBP-2/caveolin and cholesterol were up-regulated. In SM-unmodulated adipocytes treated with DL-1-Phenyl-2-Palmitoylamino-3-morpholino-1-propanol (PPMP), where the ceramide level increased, the expression levels of SREBPs and ERK were modulated in an opposite direction relative to the SM-enriched cells. SM inhibited the insulin-induced expression of SREBP-1. Rosiglitazone, which is an anti-diabetic agent and potent activator of PPARγ, reversed the effects of SM on SREBP-1, PPARγ and CREB. Taken together, these findings provide novel insights indicating that excess membrane SM

  18. Sodium houttuyfonate inhibits inflammation by blocking the MAPKs/NF-κB signaling pathways in bovine endometrial epithelial cells.

    PubMed

    Zhu, Qi; Xu, Xiaolong; Liu, Xiaoxi; Lin, Jiabao; Kan, Yao; Zhong, Yougang; Liu, Fenghua; Xu, Jianqin

    2015-06-01

    Sodium houttuyfonate (SH) has traditionally been used for the therapy of inflammatory diseases. In this research, we tried to assess the anti-inflammatory effects of SH on LPS-induced bovine endometrial epithelial cell (bEEC) inflammation. SH cell toxicity was measured using the MTT and LDH assays, and inflammatory cytokine expression was assessed by ELISA, qRT-PCR and Western blotting. We demonstrated that SH was not cytotoxic to bEECs, and that it significantly decreased the LPS-induced mRNA and protein expression of tumor necrosis factor (TNF) α, interleukin (IL)-1β, IL-6 and IL-8. Furthermore, in LPS-induced bEECs, SH inhibited IκBα degradation and NF-κB p65 phosphorylation, and suppressed the phosphorylation of the mitogen-activated protein kinases (MAPKs), p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). In conclusion, we found that SH could effectively block the NF-κB-mediated signaling pathway and reduce the inflammatory process, thereby exerting a protective effect on bEECs. PMID:25935757

  19. Intrinsic noise, dissipation cost, and robustness of cellular networks: The underlying energy landscape of MAPK signal transduction

    PubMed Central

    Lapidus, Saul; Han, Bo; Wang, Jin

    2008-01-01

    We develop a probabilistic method for analyzing global features of a cellular network under intrinsic statistical fluctuations, which is important when there are finite numbers of molecules. By making a self-consistent mean field approximation of splitting the variables in order to reduce the large number of degrees of freedom, which is reasonable for a not very strongly interacting network, we discovered that the underlying energy landscape of the mitogen-activated protein kinases (MAPKs) signal transduction network (with experimentally measured or inferred parameters such as chemical reaction rate coefficients in the network) is funneled toward a global minimum characterized by the nonequilibrium steady-state fixed point of the system at the end of the signal transduction process. For this system, we also show that the energy landscape is robust against intrinsic fluctuations and random perturbation to the inherent chemical reaction rates. The ratio of the slope versus the roughness of the energy landscape becomes a quantitative measure of robustness and stability of the network. Furthermore, we quantify the dissipation cost of this nonequilibrium system through entropy production, caused by the nonequilibrium flux in the system. We found that a lower dissipation cost corresponds to a more robust network. This least dissipation property might provide a design principle for robust and functional networks. Finally, we find the possibility of bistable and oscillatory-like solutions, which are important for cell fate decisions, upon perturbations. The method described here can be used in a variety of biological networks. PMID:18420822

  20. Geniposide suppresses LPS-induced nitric oxide, PGE2 and inflammatory cytokine by downregulating NF-κB, MAPK and AP-1 signaling pathways in macrophages.

    PubMed

    Shi, Qinghai; Cao, Jinjun; Fang, Li; Zhao, Hongyan; Liu, Zhengxiang; Ran, Jihua; Zheng, Xinchuan; Li, Xiaoling; Zhou, Yu; Ge, Di; Zhang, Hongming; Wang, Li; Ran, Ying; Fu, Jianfeng

    2014-06-01

    Inflammatory responses are important to host immune reactions, but uncontrolled inflammatory mediators may aid in the pathogenesis of other inflammatory diseases. Geniposide, an iridoid glycoside found in the herb gardenia, is believed to have broad-spectrum anti-inflammatory effects in murine models but its mechanism of action is unclear. We investigated the action of this compound in murine macrophages stimulated by lipopolysaccharide (LPS), as the stimulation of macrophages by LPS is known to induce inflammatory reactions. We determined the effect of geniposide on LPS-induced production of the inflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2), the mRNA and protein expression of the NO and PGE2 synthases, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively, and the mRNA and protein expression of the inflammatory cytokine, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Furthermore, nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK) and activator protein (AP)-1 activity were assayed. To understand the action of geniposide on the NF-κB and MAPK pathways, we studied the effect of NF-κB and MAPK inhibitors on the LPS-induced production of NO, PGE2 and TNF-α. Our findings clearly showed that geniposide mainly exerts its anti-inflammatory effects by inhibiting the LPS-induced NF-κB, MAPK and AP-1 signaling pathways in macrophages, which subsequently reduces overexpression of the inducible enzymes iNOS and COX-2 and suppresses the expression and release of the inflammatory factors, TNF-α, IL-6, NO and PGE2. Thus, geniposide shows promise as a therapeutic agent in inflammatory diseases. PMID:24735815

  1. 15-Lipoxygenase 1 interacts with phosphatidylethanolamine-binding protein to regulate MAPK signaling in human airway epithelial cells

    PubMed Central

    Zhao, Jinming; O'Donnell, Valerie B.; Balzar, Silvana; St. Croix, Claudette M.; Trudeau, John B.; Wenzel, Sally E.

    2011-01-01

    Epithelial 15-lipoxygenase 1 (15LO1) and activated ERK are increased in asthma despite modest elevations in IL-13. MAPK kinase (MEK)/ERK activation is regulated by interactions of Raf-1 with phosphatidylethanolamine-binding protein 1 (PEBP1). Epithelial 15LO1 generates intracellular 15-hydroxyeicosatetraenoic acid (15HETE) conjugated to phosphatidylethanolamine (PE) (15HETE–PE). We hypothesized that (i) 15LO1 and its product 15HETE–PE serve as signaling molecules interacting with PEBP1 to activate Raf-1/MEK/ERK and that (ii) this 15LO1–15HETE–PE-regulated ERK activation amplifies IL-4Rα downstream pathways. Our results demonstrate that high epithelial 15LO1 levels correlate with ERK phosphorylation ex vivo. In vitro, IL-13 induces 15LO1, which preferentially binds to PEBP1, causing PEBP1 to dissociate from Raf-1 and activate ERK. Exogenous 15HETE–PE similarly induces dissociation of PEBP1 from Raf-1 independently of IL-13/15LO1. siRNA knockdown of 15LO1 decreases the dissociation of Raf-1 from PEBP1, and the resulting lower ERK activation leads to lower downstream IL-4Rα–related gene expression. Identical protein–protein interactions are observed in endobronchial biopsies and fresh epithelial cells from asthmatics ex vivo. Colocalization of Raf-1 to PEBP1 is low in asthmatic tissue and cells compared with normals, whereas there is striking colocalization of 15LO1 with PEBP1 in asthma. Low 15LO1 levels in normals limit its colocalization with PEBP1. The results confirm a previously unknown signaling role for 15LO1 and its PE-conjugated eicosanoid product in human airway epithelial cells. This pathway enhances critical inflammatory pathways integral to asthma pathogenesis. PMID:21831839

  2. 15-Lipoxygenase 1 interacts with phosphatidylethanolamine-binding protein to regulate MAPK signaling in human airway epithelial cells.

    PubMed

    Zhao, Jinming; O'Donnell, Valerie B; Balzar, Silvana; St Croix, Claudette M; Trudeau, John B; Wenzel, Sally E

    2011-08-23

    Epithelial 15-lipoxygenase 1 (15LO1) and activated ERK are increased in asthma despite modest elevations in IL-13. MAPK kinase (MEK)/ERK activation is regulated by interactions of Raf-1 with phosphatidylethanolamine-binding protein 1 (PEBP1). Epithelial 15LO1 generates intracellular 15-hydroxyeicosatetraenoic acid (15HETE) conjugated to phosphatidylethanolamine (PE) (15HETE-PE). We hypothesized that (i) 15LO1 and its product 15HETE-PE serve as signaling molecules interacting with PEBP1 to activate Raf-1/MEK/ERK and that (ii) this 15LO1-15HETE-PE-regulated ERK activation amplifies IL-4Rα downstream pathways. Our results demonstrate that high epithelial 15LO1 levels correlate with ERK phosphorylation ex vivo. In vitro, IL-13 induces 15LO1, which preferentially binds to PEBP1, causing PEBP1 to dissociate from Raf-1 and activate ERK. Exogenous 15HETE-PE similarly induces dissociation of PEBP1 from Raf-1 independently of IL-13/15LO1. siRNA knockdown of 15LO1 decreases the dissociation of Raf-1 from PEBP1, and the resulting lower ERK activation leads to lower downstream IL-4Rα-related gene expression. Identical protein-protein interactions are observed in endobronchial biopsies and fresh epithelial cells from asthmatics ex vivo. Colocalization of Raf-1 to PEBP1 is low in asthmatic tissue and cells compared with normals, whereas there is striking colocalization of 15LO1 with PEBP1 in asthma. Low 15LO1 levels in normals limit its colocalization with PEBP1. The results confirm a previously unknown signaling role for 15LO1 and its PE-conjugated eicosanoid product in human airway epithelial cells. This pathway enhances critical inflammatory pathways integral to asthma pathogenesis. PMID:21831839

  3. Sphingosine kinase inhibitor suppresses IL-18-induced interferon-gamma production through inhibition of p38 MAPK activation in human NK cells

    SciTech Connect

    Cheon, Soyoung; Song, Seok Bean; Jung, Minkyung; Park, Yoorim; Bang, Jung-Wook; Kim, Tae Sung; Park, Hyunjeong; Kim, Cherl-hyun; Yang, Yool-hee; Bang, Sa Ik; Cho, Daeho

    2008-09-12

    Natural killer (NK) cells play an important role in the innate immune response. Interleukin-18 (IL-18) is a well-known interferon-gamma (IFN-{gamma} inducing factor, which stimulates immune response in NK and T cells. Sphingosine kinase (SPHK) catalyzes the formation of sphingosine 1-phosphate (S1P), which acts as a second messenger to function as an anti-apoptotic factor and proliferation stimulator of immune cells. In this study, to elucidate whether SPHK is involved in IL-18-induced IFN-{gamma} production, we measured IL-18-induced IFN-{gamma} production after pre-treatment with SPHK inhibitor (SKI) in NK-92MI cells. We found that IL-18-induced IFN-{gamma} expression was blocked by SKI pre-treatment in both mRNA and protein levels. In addition, the increased IFN-{gamma} production by stimulation with IL-18 is mediated through both SPHK and p38 MAPK. To determine the upstream signals of SKI and p38 MAPK in IL-18-induced IFN-{gamma} production, phosphorylation levels of p38 MAPK was measured after SKI pre-treatment. As a result, inhibition of SPHK by SKI blocked phosphorylation of p38 MAPK, showing that SPHK activation by IL-18 is an upstream signal of p38 MAPK activation. Inhibition of SPHK by SKI also inhibited IL-18-induced IFN-{gamma} production in human primary NK cells. In conclusion, SPHK activation is an essential factor for IL-18-induced IFN-{gamma} production via p38 MAPK.

  4. Astaxanthin Inhibits Acetaldehyde-Induced Cytotoxicity in SH-SY5Y Cells by Modulating Akt/CREB and p38MAPK/ERK Signaling Pathways

    PubMed Central

    Yan, Tingting; Zhao, Yan; Zhang, Xia; Lin, Xiaotong

    2016-01-01

    Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. Acetaldehyde, the most toxic metabolite of ethanol, mediates the brain tissue damage and cognitive dysfunction induced by chronic excessive alcohol consumption. In this study, the effect of astaxanthin, a marine bioactive compound, on acetaldehyde-induced cytotoxicity was investigated in SH-SY5Y cells. It was found that astaxanthin protected cells from apoptosis by ameliorating the effect of acetaldehyde on the expression of Bcl-2 family proteins, preventing the reduction of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bak induced by acetaldehyde. Further analyses showed that astaxanthin treatment inhibited acetaldehyde-induced reduction of the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). Astaxanthin treatment also prevented acetaldehyde-induced increase of the level of activated p38 mitogen-activated protein kinase (MAPK) and decrease of the level of activated extracellular signal-regulated kinases (ERKs). Activation of Akt/CREB pathway promotes cell survival and is involved in the upregulation of Bcl-2 gene. P38MAPK plays a critical role in apoptotic events while ERKs mediates the inhibition of apoptosis. Thus, astaxanthin may inhibit acetaldehyde-induced apoptosis through promoting the activation of Akt/CREB and ERKs and blocking the activation of p38MAPK. In addition, astaxanthin treatment suppressed the oxidative stress induced by acetaldehyde and restored the antioxidative capacity of SH-SY5Y cells. Therefore, astaxanthin may protect cells against acetaldehyde-induced cytotoxicity through maintaining redox balance and modulating apoptotic and survival signals. The results suggest that astaxanthin treatment may be beneficial for preventing neurotoxicity associated with acetaldehyde and excessive alcohol consumption. PMID:26978376

  5. Astaxanthin Inhibits Acetaldehyde-Induced Cytotoxicity in SH-SY5Y Cells by Modulating Akt/CREB and p38MAPK/ERK Signaling Pathways.

    PubMed

    Yan, Tingting; Zhao, Yan; Zhang, Xia; Lin, Xiaotong

    2016-03-01

    Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. Acetaldehyde, the most toxic metabolite of ethanol, mediates the brain tissue damage and cognitive dysfunction induced by chronic excessive alcohol consumption. In this study, the effect of astaxanthin, a marine bioactive compound, on acetaldehyde-induced cytotoxicity was investigated in SH-SY5Y cells. It was found that astaxanthin protected cells from apoptosis by ameliorating the effect of acetaldehyde on the expression of Bcl-2 family proteins, preventing the reduction of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bak induced by acetaldehyde. Further analyses showed that astaxanthin treatment inhibited acetaldehyde-induced reduction of the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). Astaxanthin treatment also prevented acetaldehyde-induced increase of the level of activated p38 mitogen-activated protein kinase (MAPK) and decrease of the level of activated extracellular signal-regulated kinases (ERKs). Activation of Akt/CREB pathway promotes cell survival and is involved in the upregulation of Bcl-2 gene. P38MAPK plays a critical role in apoptotic events while ERKs mediates the inhibition of apoptosis. Thus, astaxanthin may inhibit acetaldehyde-induced apoptosis through promoting the activation of Akt/CREB and ERKs and blocking the activation of p38MAPK. In addition, astaxanthin treatment suppressed the oxidative stress induced by acetaldehyde and restored the antioxidative capacity of SH-SY5Y cells. Therefore, astaxanthin may protect cells against acetaldehyde-induced cytotoxicity through maintaining redox balance and modulating apoptotic and survival signals. The results suggest that astaxanthin treatment may be beneficial for preventing neurotoxicity associated with acetaldehyde and excessive alcohol consumption. PMID:26978376

  6. REG Iα activates c-Jun through MAPK pathways to enhance the radiosensitivity of squamous esophageal cancer cells.

    PubMed

    Wakita, Akiyuki; Motoyama, Satoru; Sato, Yusuke; Koyota, Souichi; Usami, Shuetsu; Yoshino, Kei; Sasaki, Tomohiko; Imai, Kazuhiro; Saito, Hajime; Minamiya, Yoshihiro

    2015-07-01

    Identification of the key molecules that mediate susceptibility to anticancer treatments would be highly desirable. Based on clinical and cell biological studies, we recently proposed that regenerating gene (REG) Iα may be such a molecule. In the present study, we hypothesized that REG Iα increases radiosensitivity through activation of mitogen-activated protein kinase (MAPK) pathways. To test that idea, we transfected TE-5 and TE-9 squamous esophageal cancer cells with REG Iα and examined its involvement in MAPK signaling and its effect on susceptibility to radiotherapy. We found that REG Iα-expressing cells showed increased expression of c-Jun messenger RNA (mRNA) and phospho-c-Jun protein mediated via the c-Jun N-terminal kinase (JNK) pathway and extracellular signal-regulated kinase (ERK) pathway, as well as increased radiosensitivity. Immunohistochemical analysis confirmed the activation of c-Jun in tumors expressing REG Iα. Collectively, these findings suggest that REG Iα activates c-Jun via the JNK and ERK pathway, thereby enhancing radiosensitivity. PMID:25656613

  7. Activation of MAPK Is Necessary for Long-Term Memory Consolidation Following Food-Reward Conditioning

    ERIC Educational Resources Information Center

    Ribeiro, Maria J.; Schofield, Michael G.; Kemenes, Ildiko; O'Shea, Michael; Kemenes, Gyorgy; Benjamin, Paul R.

    2005-01-01

    Although an important role for the mitogen-activated protein kinase (MAPK) has been established for memory consolidation in a variety of learning paradigms, it is not known if this pathway is also involved in appetitive classical conditioning. We address this question by using a single-trial food-reward conditioning paradigm in the freshwater…

  8. A Blueberry-Enriched Diet Improves Renal Function and Reduces Oxidative Stress in Metabolic Syndrome Animals: Potential Mechanism of TLR4-MAPK Signaling Pathway

    PubMed Central

    Nair, Anand R.; Elks, Carrie M.; Vila, Jorge; Del Piero, Fabio; Paulsen, Daniel B.; Francis, Joseph

    2014-01-01

    Background Metabolic syndrome (MetS) is characterized by a cluster of health factors that indicate a higher risk for cardio-renal diseases. Recent evidence indicates that antioxidants from berries are alternative to attenuate oxidative stress and inflammation. We tested the hypothesis that inflammation-induced renal damage is triggered by the activation of TLR4, and subsequent modulation of redox-sensitive molecules and mitogen-activated protein kinase (MAPK) pathway. Methods Five-week old lean and obese Zucker rats (LZR and OZR) were fed a blueberry-enriched diet or an isocaloric control diet for 15 weeks. A glucose tolerance test and acute renal clearance experiments were performed. Gene and protein expression levels for TLR4, cytokines and phosphorylation of ERK and p38MAPK were measured. Kidney redox status and urinary albumin levels were quantified. Renal pathology was evaluated histologically. Results Control OZR exhibited lower glucose tolerance; exacerbated renal function parameters; increased oxidative stress. Gene and protein expression levels of TLR4 were higher and this was accompanied by increased renal pathology with extensive albuminuria and deterioration in antioxidant levels in OZR. In addition, OZR had increased phosphorylation of ERK and p38MAPK. Blueberry-fed OZR exhibited significant improvements in all these parameters compared to OZR. Conclusion TLR4-MAPK signaling pathway is a key to the renal structural injury and dysfunction in MetS and blueberry (BB) protect against this damage by inhibiting TLR4. Significance This is the first study to put forth a potential mechanism of TLR4-induced kidney damage in a model of MetS and to elucidate a downstream mechanism by which blueberry exert their reno-protective effects. PMID:25372283

  9. The mitogen-activated protein kinase (MAPK) cascade controls phosphatase and tensin homolog (PTEN) expression through multiple mechanisms.

    PubMed

    Ciuffreda, Ludovica; Di Sanza, Cristina; Cesta Incani, Ursula; Eramo, Adriana; Desideri, Marianna; Biagioni, Francesca; Passeri, Daniela; Falcone, Italia; Sette, Giovanni; Bergamo, Paola; Anichini, Andrea; Sabapathy, Kanaga; McCubrey, James A; Ricciardi, Maria Rosaria; Tafuri, Agostino; Blandino, Giovanni; Orlandi, Augusto; De Maria, Ruggero; Cognetti, Francesco; Del Bufalo, Donatella; Milella, Michele

    2012-06-01

    The mitogen-activated protein kinase (MAPK) and PI3K pathways are regulated by extensive crosstalk, occurring at different levels. In tumors, transactivation of the alternate pathway is a frequent "escape" mechanism, suggesting that combined inhibition of both pathways may achieve synergistic antitumor activity. Here we show that, in the M14 melanoma model, simultaneous inhibition of both MEK and mammalian target of rapamycin (mTOR) achieves synergistic effects at suboptimal concentrations, but becomes frankly antagonistic in the presence of relatively high concentrations of MEK inhibitors. This observation led to the identification of a novel crosstalk mechanism, by which either pharmacologic or genetic inhibition of constitutive MEK signaling restores phosphatase and tensin homolog (PTEN) expression, both in vitro and in vivo, and inhibits downstream signaling through AKT and mTOR, thus bypassing the need for double pathway blockade. This appears to be a general regulatory mechanism and is mediated by multiple mechanisms, such as MAPK-dependent c-Jun and miR-25 regulation. Finally, PTEN upregulation appears to be a major effector of MEK inhibitors' antitumor activity, as cancer cells in which PTEN is inactivated are consistently more resistant to the growth inhibitory and anti-angiogenic effects of MEK blockade. PMID:22215152

  10. 6-Shogaol exerts anti-proliferative and pro-apoptotic effects through the modulation of STAT3 and MAPKs signaling pathways.

    PubMed

    Kim, Sung-Moo; Kim, Chulwon; Bae, Hang; Lee, Jong Hyun; Baek, Seung Ho; Nam, Dongwoo; Chung, Won-Seok; Shim, Bum Sang; Lee, Seok-Geun; Kim, Sung-Hoon; Sethi, Gautam; Ahn, Kwang Seok

    2015-10-01

    6-shogaol (6SG), one of active ingredients in ginger (Zingiber officinale), is known to exhibit anti-proliferative, anti-metastatic, and pro-apoptotic activities through a mechanism that is not fully elucidated. Because the aberrant activation of STAT3 and MAPKs have been associated with regulation of proliferation, invasion, and metastasis of tumors, we hypothesized that 6SG modulates the activation of STAT3 and MAPKs activation in tumor cells. We found that 6SG strongly inhibited constitutive phosphorylation of STAT3 through inhibition of the activation of upstream JAK2 and c-Src kinases and nuclear translocation of STAT3 on both MDA-MB231 and DU145 cells. Also, 6SG caused the activation of JNK, p38 MAPK, and ERK. Inhibition of ROS generation by N-acetylcysteine (NAC) significantly prevented 6SG-induced apoptosis. 6SG induced apoptosis as characterized by cleavage of PARP, accumulation of cells in subG1 phase, positive Annexin V binding, down-regulation of STAT3-regulated proteins, and activation of caspase-8, -9, -3 in both MDA-MB231 cells. Compared with other analogues of 6SG, such as 6-gingerol (6G), 8-gingerol (8G), and 10-gingerol (10G), 6SG was found to be the most potent blocker of STAT3 activation. We observed that the administration of 6SG alone significantly suppressed the growth of the tumor. As compared to the vehicle control, 6SG also suppressed the expression of STAT3-regulated gene products such as Bcl-2, Bcl-xL, and Survivin in tumor tissues. Overall, these findings suggest that 6SG can interfere with multiple signaling cascades involved in tumorigenesis and can be used as a potential therapeutic candidate for both the prevention and treatment of cancer. PMID:24962868

  11. Immunolocalization of the mitogen-activated protein kinases p42MAPK and JNK1, and their regulatory kinases MEK1 and MEK4, in adult rat central nervous system.

    PubMed

    Flood, D G; Finn, J P; Walton, K M; Dionne, C A; Contreras, P C; Miller, M S; Bhat, R V

    1998-08-31

    Cell survival, death, and stress signals are transduced from the cell surface to the cytoplasm and nucleus via a cascade of phosphorylation events involving the mitogen-activated protein kinase (MAPK) family. We compared the distribution of p42 mitogen-activated protein kinase (p42MAPK) and its activator MAPK or ERK kinase (MEK1; involved in transduction of growth and differentiation signals), with c-Jun N-terminal kinase (JNK1) and its activator MEK4 (involved in transduction of stress and death signals) in the adult rat central nervous system. All four kinases were present in the cytoplasm, dendrites, and axons of neurons. The presence of p42MAPK and JNK1 in dendrites and axons, as well as in cell bodies, suggests a role for these kinases in phosphorylation and regulation of cytoplasmic targets. A high degree of correspondence was found between the regional distribution of MEK1 and p42MAPK. Immunostaining for MEK1 and p42MAPK was intense in olfactory structures, neocortex, hippocampus, striatum, midline, and interlaminar thalamic nuclei, hypothalamus, brainstem, Purkinje cells, and spinal cord. In addition to neurons, p42MAPK was also present in oligodendrocytes. Whereas MEK4 was ubiquitously distributed, JNK1 was more selective. Immunostaining for MEK4 and JNK1 was intense in the olfactory bulb, lower cortical layers, the cholinergic basal forebrain, most nuclei of the thalamus, medial habenula, and cranial motor nuclei. The distribution of MEK1 and p42MAPK proteins only partially overlapped with that of MEK4 and JNK1. This suggests that the growth/differentiation and death/stress pathways affected by these kinases may not necessarily act to counterbalance each other in response to extracellular stimuli. The differential distribution of these kinases may control the specificity of neuronal function to extracellular signals. PMID:9714150

  12. Fisetin Inhibits Human Melanoma Cell Invasion through Promotion of Mesenchymal to Epithelial Transition and by Targeting MAPK and NFκB Signaling Pathways

    PubMed Central

    Pal, Harish Chandra; Sharma, Samriti; Strickland, Leah Ray; Katiyar, Santosh K.; Ballestas, Mary E.; Athar, Mohammad; Elmets, Craig A.; Afaq, Farrukh

    2014-01-01

    Malignant melanoma is responsible for approximately 75% of skin cancer-related deaths. BRAF plays an important role in regulating the mitogen-activated protein kinase (MAPK) signaling cascade in melanoma with activating mutations in the serine/threonine kinase BRAF occurring in 60–70% of malignant melanomas. The BRAF-MEK-ERK (MAPK) pathway is a key regulator of melanoma cell invasion. In addition, activation of NFκB via the MAPK pathway is regulated through MEK-induced activation of IKK. These pathways are potential targets for prevention and treatment of melanoma. In this study, we investigated the effect of fisetin, a phytochemical present in fruits and vegetables, on melanoma cell invasion and epithelial-mesenchymal transition, and delineated the underlying molecular mechanism. Treatment of multiple human malignant melanoma cell lines with fisetin (5–20 µM) resulted in inhibition of cell invasion. BRAF mutated melanoma cells were more sensitive to fisetin treatment, and this was associated with a decrease in the phosphorylation of MEK1/2 and ERK1/2. In addition, fisetin inhibited the activation of IKK leading to a reduction in the activation of the NFκB signaling pathway. Treatment of cells with an inhibitor of MEK1/2 (PD98059) or of NFκB (caffeic acid phenethyl ester) also reduced melanoma cell invasion. Furthermore, treatment of fisetin promoted mesenchymal to epithelial transition in melanoma cells, which was associated with a decrease in mesenchymal markers (N-cadherin, vimentin, snail and fibronectin) and an increase in epithelial markers (E-cadherin and desmoglein). Employing three dimensional skin equivalents consisting of A375 cells admixed with normal human keratinocytes embedded onto a collagen-constricted fibroblast matrix, we found that treatment of fisetin reduced the invasive potential of melanoma cells into the dermis and increased the expression of E-cadherin with a concomitant decrease in vimentin. These results indicate that fisetin

  13. Inactivation of the MAPK signaling pathway by Listeria monocytogenes infection promotes trophoblast giant cell death

    PubMed Central

    Hashino, Masanori; Tachibana, Masato; Nishida, Takashi; Hara, Hideki; Tsuchiya, Kohsuke; Mitsuyama, Masao; Watanabe, Kenta; Shimizu, Takashi; Watarai, Masahisa

    2015-01-01

    Listeria monocytogenes has a well-characterized ability to cross the placental barrier, resulting in spontaneous abortion and fetal infections. However, the mechanisms resulting in infection-associated abortion are not fully understood. In this study, we demonstrate that the dephosphorylation of MAPK family proteins caused by L. monocytogenes infection of trophoblast giant (TG) cells, which are placental immune cells, contributes to infectious abortion. Dephosphorylation of c-Jun, p38, and ERK1/2 was observed in infected TG cells, causing the downregulation of cytoprotective heme oxygenase (HO)-1. Blocking the dephosphorylation of proteins, including MAPK family proteins, inhibited the decrease in HO-1 expression. Treatment with MAPK inhibitors inhibited bacterial internalization into TG cells. Moreover, Toll-like receptor 2 involved in the expression of MAPK family proteins. Infection with a listeriolysin O-deleted mutant impaired dephosphorylation of MAPK family proteins in TG cells and did not induce infectious abortion in a mouse model. These results suggest that inactivation of the MAPK pathway by L. monocytogenes induces TG cell death and causes infectious abortion. PMID:26528279

  14. Spatio-temporal dynamics of a cell signal pathway with negative feedbacks: the MAPK/ERK pathway.

    PubMed

    Maya-Bernal, José Luis; Ramírez-Santiago, Guillermo

    2016-03-01

    We studied the spatio-temporal dynamics of a cell signal cascade with negative feedback that quantitatively emulates the regulative process that occurs in the Mitogen Activated Protein Kinase/Extracellular Regulated Kinase (MAPK/ERK) pathway. The model consists of a set of six coupled reaction-diffusion equations that describes the dynamics of the six-module pathway. In the basic module the active form of the protein transmits the signal to the next pathway’s module. As suggested by experiments, the model considers that the fifth module's kinase down-regulates the first and third modules. The feedback parameter is defined as, μ(r)( j)= k(kin)5/k(kin)(j), (j = 1, 3). We analysed the pathway's dynamics for μ(r)( j) = 0.10, 1.0, and 10 in the kinetic regimes: i) saturation of both kinases and phosphatases, ii) saturation of the phosphatases and iii) saturation of the kinases. For a regulated pathway the Total Activated Protein Profiles (TAPPs) as a function of time develop a maximum during the transient stage in the three kinetic regimes. These maxima become higher and their positions shift to longer times downstream. This scenario also applies to the TAPP's regulatory kinase that sums up its inhibitory action to that of the phosphatases leading to a maximum. Nevertheless, when μ(r)(j)= 1.0 , the TAPPs develop two maxima, with the second maximum being almost imperceptible. These results are in qualitative agreement with experimental data obtained from NIH 3T3 mouse fibroblasts. In addition, analyses of the stationary states as a function of position indicate that in the kinetic regime i) which is of physiological interest, signal transduction occurs with a relatively large propagation length for the three values of the regulative parameter. However, for μ(r)(j)= 0.10 , the sixth module concentration profile is transmitted with approximately 45% of its full value. The results obtained for μ(r)(j) = 10 , indicate that the first five concentration profiles are

  15. The convergence of Notch and MAPK signaling specifies the blood progenitor fate in the Drosophila mesoderm

    PubMed Central

    Grigorian, Melina; Mandal, Lolitika; Hakimi, Manuel; Ortiz, Irma; Hartenstein, Volker

    2011-01-01

    Blood progenitors arise from a pool of pluripotential cells (“hemangioblasts”) within the Drosophila embryonic mesoderm. The fact that the cardiogenic mesoderm consists of only a small number of highly stereotypically patterned cells that can be queried individually regarding their gene expression in normal and mutant embryos, is one of the significant advantages that Drosophila offers to dissect the mechanism specifying the fate of these cells. We show in this paper that the expression of the Notch ligand Delta (Dl) reveals segmentally reiterated mesodermal clusters (“cardiogenic clusters”) that constitute the cardiogenic mesoderm. These clusters give rise to cardioblasts, blood progenitors and nephrocytes. Cardioblasts emerging from the cardiogenic clusters accumulate high levels of Dl, which is required to prevent more cells from adopting the cardioblast fate. In embryos lacking Dl function, all cells of the cardiogenic clusters become cardioblasts, and blood progenitors are lacking. Concomitant activation of the Mitogen Activated Protein Kinase (MAPK) pathway by Epidermal Growth Factor Receptor (EGFR) and Fibroblast Growth Factor Receptor (FGFR) is required for the specification and maintenance of the cardiogenic mesoderm; in addition, the spatially restricted localization of some of the FGFR ligands may be instrumental in controlling the spatial restriction of the Dl ligand to presumptive cardioblasts. PMID:21382367

  16. The convergence of Notch and MAPK signaling specifies the blood progenitor fate in the Drosophila mesoderm.

    PubMed

    Grigorian, Melina; Mandal, Lolitika; Hakimi, Manuel; Ortiz, Irma; Hartenstein, Volker

    2011-05-01

    Blood progenitors arise from a pool of pluripotential cells ("hemangioblasts") within the Drosophila embryonic mesoderm. The fact that the cardiogenic mesoderm consists of only a small number of highly stereotypically patterned cells that can be queried individually regarding their gene expression in normal and mutant embryos is one of the significant advantages that Drosophila offers to dissect the mechanism specifying the fate of these cells. We show in this paper that the expression of the Notch ligand Delta (Dl) reveals segmentally reiterated mesodermal clusters ("cardiogenic clusters") that constitute the cardiogenic mesoderm. These clusters give rise to cardioblasts, blood progenitors and nephrocytes. Cardioblasts emerging from the cardiogenic clusters accumulate high levels of Dl, which is required to prevent more cells from adopting the cardioblast fate. In embryos lacking Dl function, all cells of the cardiogenic clusters become cardioblasts, and blood progenitors are lacking. Concomitant activation of the Mitogen Activated Protein Kinase (MAPK) pathway by Epidermal Growth Factor Receptor (EGFR) and Fibroblast Growth Factor Receptor (FGFR) is required for the specification and maintenance of the cardiogenic mesoderm; in addition, the spatially restricted localization of some of the FGFR ligands may be instrumental in controlling the spatial restriction of the Dl ligand to presumptive cardioblasts. PMID:21382367

  17. Oxidized High-Density Lipoprotein Impairs Endothelial Progenitor Cells' Function by Activation of CD36-MAPK-TSP-1 Pathways

    PubMed Central

    Wu, Jianxiang; He, Zhiqing; Gao, Xiang; Wu, Feng; Ding, Ru; Ren, Yusheng; Jiang, Qijun; Fan, Min

    2015-01-01

    Abstract Aims: High-density lipoprotein (HDL) levels inversely correlate with cardiovascular events due to the protective effects on vascular wall and stem cells, which are susceptible to oxidative modifications and then lead to potential pro-atherosclerotic effects. We proposed that oxidized HDL (ox-HDL) might lead to endothelial progenitor cells (EPCs) dysfunction and investigated underlying mechanisms. Results: ox-HDL was shown to increase apoptosis and intracellular reactive oxygen species levels, but to reduce migration, angiogenesis, and cholesterol efflux of EPCs in a dose-dependent manner. p38 mitogen-activated protein kinase (MAPK) and NF-κB were activated after ox-HDL stimulation, which also upregulated thrombospondin-1 (TSP-1) expression without affecting vascular endothelial growth factor. Effects caused by ox-HDL could be significantly attenuated by pretreatment with short hairpin RNA-mediated CD36 knockdown or probucol. Data of in vivo experiments and the inverse correlation of ox-HDL and circulating EPC numbers among patients with coronary artery diseases (CAD) or CAD and type 2 diabetes also supported it. Meanwhile, HDL separated from such patients could significantly increase cultured EPC's caspase 3 activity, further supporting our proposal. Innovation: This is the most complete study to date of how ox-HDL would impair EPCs function, which was involved with activation of CD36-p38 MAPK-TSP-1 pathways and proved by not only the inverse relationship between ox-HDL and circulating EPCs in clinic but also pro-apoptotic effects of HDL separated from patients' serum. Conclusion: Activation of CD36-p38 MAPK-TSP-1 pathways contributes to the pathological effects of ox-HDL on EPCs' dysfunction, which might be one of the potential etiological factors responsible for the disturbed neovascularization in chronic ischemic disease. Antioxid. Redox Signal. 22, 308–324. PMID:25313537

  18. Tartary buckwheat flavonoids protect hepatic cells against high glucose-induced oxidative stress and insulin resistance via MAPK signaling pathways.

    PubMed

    Hu, Yuanyuan; Hou, Zuoxu; Liu, Dongyang; Yang, Xingbin

    2016-03-01

    Oxidative stress plays a crucial role in chronic complication of diabetes. In this study, the protective effect of purified tartary buckwheat flavonoids (TBF) fraction against oxidative stress induced by a high-glucose challenge, which causes insulin resistance, was investigated on hepatic HepG2 cells. Oxidative status, phosphorylated mitogen-activated protein kinases (MAPKs), nuclear factor E2 related factor 2 (Nrf2) and p-(Ser307)-IRS-1 expression, and glucose uptake were evaluated. Results suggest that treatment of HepG2 cells with TBF alone improved glucose uptake and antioxidant enzymes, and activated Nrf2, and attenuated the IRS-1 Ser307 phosphorylation, and enhanced total levels of IRS-1. Furthermore, the high glucose-induced changes in antioxidant defences, Nrf2, p-MAPKs, p-IRS1 Ser307, and IRS-1 levels, and glucose uptake were also significantly inhibited by pre-treatment with TBF. Interestingly, the selective MAPK inhibitors significantly enhanced the TBF-mediated protection by inducing changes in the redox status, glucose uptake, p-(Ser307) and total IRS-1 levels. This report firstly showed that TBF could recover the redox status of insulin-resistant HepG2 cells, suggesting that TBF significantly protected the cells against high glucose-induced oxidative stress, and these beneficial effects of TBF on redox balance and insulin resistance were mediated by targeting MAPKs. PMID:26899161

  19. TNFα Signaling Regulates Cystic Epithelial Cell Proliferation through Akt/mTOR and ERK/MAPK/Cdk2 Mediated Id2 Signaling

    PubMed Central

    Zhou, Julie X.; Fan, Lucy X.; Li, Xiaoyan; Calvet, James P.; Li, Xiaogang

    2015-01-01

    Tumor necrosis factor alpha (TNFα) is present in cyst fluid and promotes cyst growth in autosomal dominant polycystic kidney disease (ADPKD). However, the cross-talk between TNFα and PKD associated signaling pathways remains elusive. In this study, we found that stimulation of renal epithelial cells with TNFα or RANKL (receptor activator of NF-κB ligand), a member of the TNFα cytokine family, activated either the PI3K pathway, leading to AKT and mTOR mediated the increase of Id2 protein, or MAPK and Cdk2 to induce Id2 nuclear translocation. The effects of TNFα/RANKL on increasing Id2 protein and its nuclear translocation caused significantly decreased mRNA and protein levels of the Cdk inhibitor p21, allowing increased cell proliferation. TNFα levels increase in cystic kidneys in response to macrophage infiltration and thus might contribute to cyst growth and enlargement during the progression of disease. As such, this study elucidates a novel mechanism for TNFα signaling in regulating cystic renal epithelial cell proliferation in ADPKD. PMID:26110849

  20. Tgfβ Signaling Directly Induces Arf Promoter Remodeling by a Mechanism Involving Smads 2/3 and p38 MAPK*

    PubMed Central

    Zheng, Yanbin; Zhao, Yi D.; Gibbons, Melissa; Abramova, Tatiana; Chu, Patricia Y.; Ash, John D.; Cunningham, John M.; Skapek, Stephen X.

    2010-01-01

    We have investigated how the Arf gene product, p19Arf, is activated by Tgfβ during mouse embryo development to better understand how this important tumor suppressor is controlled. Taking advantage of new mouse models, we provide genetic evidence that Arf lies downstream of Tgfβ signaling in cells arising from the Wnt1-expressing neural crest and that the anti-proliferative effects of Tgfβ depend on Arf in vivo. Tgfβ1, -2, and -3 (but not BMP-2, another member of the Tgfβ superfamily) induce p19Arf expression in wild type mouse embryo fibroblasts (MEFs), and they enhance Arf promoter activity in ArflacZ/lacZ MEFs. Application of chemical inhibitors of Smad-dependent and -independent pathways show that SB431542, a Tgfβ type I receptor (TβrI) inhibitor, and SB203580, a p38 MAPK inhibitor, impede Tgfβ2 induction of Arf. Genetic studies confirm the findings; transient knockdown of Smad2, Smad3, or p38 MAPK blunt Tgfβ2 effects, as does Cre recombinase treatment of Tgfbr2fl/fl MEFs to delete Tgfβ receptor II. Chromatin immunoprecipitation reveals that Tgfβ rapidly induces Smads 2/3 binding and histone H3 acetylation at genomic DNA proximal to Arf exon 1β. This is followed by increased RNA polymerase II binding and progressively increased Arf primary and mature transcripts from 24 through 72 h, indicating that increased transcription contributes to p19Arf increase. Last, Arf induction by oncogenic Ras depends on p38 MAPK but is independent of TβrI activation of Smad 2. These findings add to our understanding of how developmental and tumorigenic signals control Arf expression in vivo and in cultured MEFs. PMID:20826783

  1. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways

    SciTech Connect

    Tong, Qingyi; Qing, Yong; Wu, Yang; Hu, Xiaojuan; Jiang, Lei; Wu, Xiaohua

    2014-12-01

    Dioscin has shown cytotoxicity against cancer cells, but its in vivo effects and the mechanisms have not elucidated yet. The purpose of the current study was to assess the antitumor effects and the molecular mechanisms of dioscin. We showed that dioscin could inhibit tumor growth in vivo and has no toxicity at the test condition. The growth suppression was accompanied by obvious blood vessel decrease within solid tumors. We also found dioscin treatment inhibited the proliferation of cancer and endothelial cell lines, and most sensitive to primary cultured human umbilical vein endothelial cells (HUVECs). What's more, analysis of HUVECs migration, invasion, and tube formation exhibited that dioscin has significantly inhibitive effects to these actions. Further analysis of blood vessel formation in the matrigel plugs indicated that dioscin could inhibit VEGF-induced blood vessel formation in vivo. We also identified that dioscin could suppress the downstream protein kinases of VEGFR2, including Src, FAK, AKT and Erk1/2, accompanied by the increase of phosphorylated P38MAPK. The results potently suggest that dioscin may be a potential anticancer drug, which efficiently inhibits angiogenesis induced by VEGFR2 signaling pathway as well as AKT/MAPK pathways. - Highlights: • Dioscin inhibits tumor growth in vivo and does not exhibit any toxicity. • Dioscin inhibits angiogenesis within solid tumors. • Dioscin inhibits the proliferation, migration, invasion, and tube formation of HUVECs. • Dioscin inhibits VEGF–induced blood vessel formation in vivo. • Dioscin inhibits VEGFR2 signaling pathway as well as AKT/MAPK pathway.

  2. Astragalin inhibits airway eotaxin-1 induction and epithelial apoptosis through modulating oxidative stress-responsive MAPK signaling

    PubMed Central

    2014-01-01

    Background Eotaxin proteins are a potential therapeutic target in treating the peribronchial eosinophilia associated with allergic airway diseases. Since inflammation is often associated with an increased generation of reactive oxygen species (ROS), oxidative stress is a mechanistically imperative factor in asthma. Astragalin (kaempferol-3-O-glucoside) is a flavonoid with anti-inflammatory activity and newly found in persimmon leaves and green tea seeds. This study elucidated that astragalin inhibited endotoxin-induced oxidative stress leading to eosinophilia and epithelial apoptosis in airways. Methods Airway epithelial BEAS-2B cells were exposed to lipopolysaccharide (LPS) in the absence and presence of 1–20 μM astragalin. Western blot and immunocytochemical analyses were conducted to determine induction of target proteins. Cell and nuclear staining was also performed for ROS production and epithelial apoptosis. Results When airway epithelial cells were exposed to 2 μg/ml LPS, astragalin nontoxic at ≤20 μM suppressed cellular induction of Toll-like receptor 4 (TLR4) and ROS production enhanced by LPS. Both LPS and H2O2 induced epithelial eotaxin-1 expression, which was blocked by astragalin. LPS activated and induced PLCγ1, PKCβ2, and NADPH oxidase subunits of p22phox and p47phox in epithelial cells and such activation and induction were demoted by astragalin or TLR4 inhibition antagonizing eotaxin-1 induction. H2O2-upregulated phosphorylation of JNK and p38 MAPK was dampened by adding astragalin to epithelial cells, while this compound enhanced epithelial activation of Akt and ERK. H2O2 and LPS promoted epithelial apoptosis concomitant with nuclear condensation or caspase-3 activation, which was blunted by astragalin. Conclusions Astragalin ameliorated oxidative stress-associated epithelial eosinophilia and apoptosis through disturbing TLR4-PKCβ2-NADPH oxidase-responsive signaling. Therefore, astragalin may be a potent agent antagonizing endotoxin

  3. atRA-induced apoptosis of mouse embryonic palate mesenchymal cells involves activation of MAPK pathway

    SciTech Connect

    Yu Zengli . E-mail: yuzengli@263.net; Xing Ying . E-mail: xingy@zzu.edu.cn

    2006-08-15

    Our previous studies have shown that atRA treatment resulted in cell-cycle block and growth inhibition in mouse embryonic palatal mesenchymal (MEPM). In the current study, gestation day (GD) 13 MEPM cells were used to test the hypothesis that the growth inhibition by atRA is due to apoptosis. The effects of atRA on apoptosis were assessed by performing MTT assay, Cell Death Detection ELISA and flow cytometry, respectively. Data analysis confirmed that atRA treatment induced apoptosis-like cell death, as shown by decreased cell viability and increased fragmented DNA and sub-G1 fraction. atRA-induced apoptosis was associated with upregulation of bcl-2, translocation of bax protein to the mitochondria from the cytosol, activation of caspase-3 and cytochrome c release into cytosol. atRA-induced apoptosis was abrogated by z-DEVD-fmk, a caspase-3 specific inhibitor, and z-VAD-fmk, a general caspase inhibitor, suggesting that the atRA-induced cell death of MEPM cells occurs through the cytochrome c- and caspase-3-dependent pathways. In addition, atRA treatment caused a strong and sustained activation of c-Jun N-terminal kinase (JNK) and p38 kinase (p38), as well as an early but transient activation of extracellular signal-regulated kinase (ERK). Importantly, atRA-induced DNA fragmentation and capase-3 activation were prevented by pretreatment with the JNK inhibitor (SP600125) and the p38 MAPK inhibitor (SB202190), but not by pretreatment with MEK inhibitor (U0126). From these results, we suggest that mitogen-activated protein kinase-dependent pathways is involved in the atRA-induced apoptosis of MEPM cells.

  4. Astragaloside IV suppresses transforming growth factor-β1 induced fibrosis of cultured mouse renal fibroblasts via inhibition of the MAPK and NF-κB signaling pathways

    SciTech Connect

    Che, Xiajing; Wang, Qin; Xie, Yuanyuan; Xu, Weijia; Shao, Xinghua; Mou, Shan Ni, Zhaohui

    2015-09-04

    Renal fibrosis, a progressive process characterized by the accumulation of extracellular matrix (ECM) leading to organ dysfunction, is a characteristic of chronic kidney diseases. Among fibrogenic factors known to regulate the renal fibrotic process, transforming growth factor-β (TGF-β) plays a central role. In the present study, we examined the effect of Astragaloside IV (AS-IV), a component of the traditional Chinese medicinal plant Astragalus membranaceus, on the processes associated with renal fibrosis in cultured mouse renal fibroblasts treated with TGF-β1. RT-PCR, western blotting, immunofluorescence staining and collagen assays showed that AS-IV suppressed TGF-β1 induced fibroblast proliferation, transdifferentiation, and ECM production in a dose-dependent manner. Examination of the underlying mechanisms showed that the effect of AS-IV on the inhibition of fibroblast differentiation and ECM formation were mediated by its modulation of the activity of the MAPK and NF-κB signaling pathways. Taken together, our results indicate that AS-IV alleviates renal interstitial fibrosis via a mechanism involving the MAPK and NF-κB signaling pathways and demonstrate the therapeutic potential of AS-IV for the treatment of chronic kidney diseases. - Highlights: • AS-IV suppressed TGF-β1 induced renal fibroblast proliferation. • AS-IV suppressed TGF-β1 induced renal fibroblast transdifferentiation. • AS-IV suppressed TGF-β1 induced ECM production. • AS-IV alleviates renal fibrosis via the MAPK and NF-κB signaling pathways.

  5. KSR is a scaffold required for activation of the ERK/MAPK module

    PubMed Central

    Roy, François; Laberge, Gino; Douziech, Mélanie; Ferland-McCollough, David; Therrien, Marc

    2002-01-01

    Mechanisms that regulate signal propagation through the ERK/MAPK pathway are still poorly understood. Several proteins are suspected to play critical roles in this process. One of these is Kinase Suppressor of Ras (KSR), a component previously identified in RAS-dependent genetic screens in Drosophila and Caenorhabditis elegans. Here, we show that KSR functions upstream of MEK within the ERK/MAPK module. In agreement with this, we found that KSR facilitates the phosphorylation of MEK by RAF. We further show that KSR associates independently with RAF and MEK, and that these interactions lead to the formation of a RAF/MEK complex, thereby positioning RAF in close proximity to its substrate MEK. These findings suggest that KSR functions as a scaffold that assembles the RAF/MEK functional pair. PMID:11850406

  6. A novel synthetic compound MCAP suppresses LPS-induced murine microglial activation in vitro via inhibiting NF-kB and p38 MAPK pathways

    PubMed Central

    Kim, Byung-Wook; More, Sandeep Vasant; Yun, Yo-Sep; Ko, Hyun-Myung; Kwak, Jae-Hwan; Lee, Heesoon; Suk, Kyoungho; Kim, In-Su; Choi, Dong-Kug

    2016-01-01

    Aim: To investigate the anti-neuroinflammatory activity of a novel synthetic compound, 7-methylchroman-2-carboxylic acid N-(2-trifluoromethyl) phenylamide (MCAP) against LPS-induced microglial activation in vitro. Methods: Primary mouse microglia and BV2 microglia cells were exposed to LPS (50 or 100 ng/mL). The expression of iNOS and COX-2, proinflammatory cytokines, NF-κB and p38 MAPK signaling molecules were analyzed by RT-PCR, Western blot and ELISA. The morphological changes of microglia and nuclear translocation of NF-ĸB were visualized using phase contrast and fluorescence microscopy, respectively. Results: Pretreatment with MCAP (0.1, 1, 10 μmol/L) dose-dependently inhibited LPS-induced expression of iNOS and COX-2 in BV2 microglia cells. Similar results were obtained in primary microglia pretreated with MCAP (0.1, 0.5 μmol/L). MCAP dose-dependently abated LPS-induced release of TNF-α, IL-6 and IL-1β, and mitigated LPS-induced activation of NF-κB by reducing the phosphorylation of IκBα in BV2 microglia cells. Moreover, MCAP attenuated LPS-induced phosphorylation of p38 MAPK, whereas SB203580, a p38 MAPK inhibitor, significantly potentiated MCAP-caused inhibition on the expression of MEF-2 (a transcription factor downstream of p38 MAPK). Conclusion: MCAP exerts anti-inflammatory effects in murine microglia in vitro by inhibiting the p38 MAPK and NF-κB signaling pathways and proinflammatory responses. MCAP may be developed as a novel agent for treating diseases involving activated microglial cells. PMID:26838070

  7. CFTR-regulated MAPK/NF-κB signaling in pulmonary inflammation in thermal inhalation injury

    PubMed Central

    Dong, Zhi Wei; Chen, Jing; Ruan, Ye Chun; Zhou, Tao; Chen, Yu; Chen, YaJie; Tsang, Lai Ling; Chan, Hsiao Chang; Peng, Yi Zhi

    2015-01-01

    The mechanism underlying pulmonary inflammation in thermal inhalation injury remains elusive. Cystic fibrosis, also hallmarked with pulmonary inflammation, is caused by mutations in CFTR, the expression of which is temperature-sensitive. We investigated whether CFTR is involved in heat-induced pulmonary inflammation. We applied heat-treatment in 16HBE14o- cells with CFTR knockdown or overexpression and heat-inhalation in rats in vivo. Heat-treatment caused significant reduction in CFTR and, reciprocally, increase in COX-2 at early stages both in vitro and in vivo. Activation of ERK/JNK, NF-κB and COX-2/PGE2 were detected in heat-treated cells, which were mimicked by knockdown, and reversed by overexpression of CFTR or VX-809, a reported CFTR mutation corrector. JNK/ERK inhibition reversed heat-/CFTR-knockdown-induced NF-κB activation, whereas NF-κB inhibitor showed no effect on JNK/ERK. IL-8 was augmented by heat-treatment or CFTR-knockdown, which was abolished by inhibition of NF-κB, JNK/ERK or COX-2. Moreover, in vitro or in vivo treatment with curcumin, a natural phenolic compound, significantly enhanced CFTR expression and reversed the heat-induced increases in COX-2/PGE2/IL-8, neutrophil infiltration and tissue damage in the airway. These results have revealed a CFTR-regulated MAPK/NF-κB pathway leading to COX-2/PGE2/IL-8 activation in thermal inhalation injury, and demonstrated therapeutic potential of curcumin for alleviating heat-induced pulmonary inflammation. PMID:26515683

  8. CFTR-regulated MAPK/NF-κB signaling in pulmonary inflammation in thermal inhalation injury.

    PubMed

    Dong, Zhi Wei; Chen, Jing; Ruan, Ye Chun; Zhou, Tao; Chen, Yu; Chen, YaJie; Tsang, Lai Ling; Chan, Hsiao Chang; Peng, Yi Zhi

    2015-01-01

    The mechanism underlying pulmonary inflammation in thermal inhalation injury remains elusive. Cystic fibrosis, also hallmarked with pulmonary inflammation, is caused by mutations in CFTR, the expression of which is temperature-sensitive. We investigated whether CFTR is involved in heat-induced pulmonary inflammation. We applied heat-treatment in 16HBE14o- cells with CFTR knockdown or overexpression and heat-inhalation in rats in vivo. Heat-treatment caused significant reduction in CFTR and, reciprocally, increase in COX-2 at early stages both in vitro and in vivo. Activation of ERK/JNK, NF-κB and COX-2/PGE2 were detected in heat-treated cells, which were mimicked by knockdown, and reversed by overexpression of CFTR or VX-809, a reported CFTR mutation corrector. JNK/ERK inhibition reversed heat-/CFTR-knockdown-induced NF-κB activation, whereas NF-κB inhibitor showed no effect on JNK/ERK. IL-8 was augmented by heat-treatment or CFTR-knockdown, which was abolished by inhibition of NF-κB, JNK/ERK or COX-2. Moreover, in vitro or in vivo treatment with curcumin, a natural phenolic compound, significantly enhanced CFTR expression and reversed the heat-induced increases in COX-2/PGE2/IL-8, neutrophil infiltration and tissue damage in the airway. These results have revealed a CFTR-regulated MAPK/NF-κB pathway leading to COX-2/PGE2/IL-8 activation in thermal inhalation injury, and demonstrated therapeutic potential of curcumin for alleviating heat-induced pulmonary inflammation. PMID:26515683

  9. Positive regulation of the Egr-1/osteopontin positive feedback loop in rat vascular smooth muscle cells by TGF-{beta}, ERK, JNK, and p38 MAPK signaling

    SciTech Connect

    Yu, Hong-Wei; Liu, Qi-Feng; Liu, Gui-Nan

    2010-05-28

    Previous studies identified a positive feedback loop in rat vascular smooth muscle cells (VSMCs) in which early growth response factor-1 (Egr-1) binds to the osteopontin (OPN) promoter and upregulates OPN expression, and OPN upregulates Egr-1 expression via the extracellular signal-regulated protein kinase (ERK) signaling pathway. The current study examined whether transforming growth factor-{beta} (TGF-{beta}) activity contributes to Egr-1 binding to the OPN promoter, and whether other signaling pathways act downstream of OPN to regulate Egr-1 expression. ChIP assays using an anti-Egr-1 antibody showed that amplification of the OPN promoter sequence decreased in TGF-{beta} DNA enzyme-transfected VSMCs relative to control VSMCs. Treatment of VSMCs with PD98059 (ERK inhibitor), SP600125 (JNK inhibitor), or SB203580 (p38 MAPK inhibitor) significantly inhibited OPN-induced Egr-1 expression, and PD98059 treatment was associated with the most significant decrease in Egr-1 expression. OPN-stimulated VSMC cell migration was inhibited by SP600125 or SB203580, but not by PD98059. Furthermore, MTT assays showed that OPN-mediated cell proliferation was inhibited by PD98059, but not by SP600125 or SB203580. Taken together, the results of the current study show that Egr-1 binding to the OPN promoter is positively regulated by TGF-{beta}, and that the p38 MAPK, JNK, and ERK pathways are involved in OPN-mediated Egr-1 upregulation.

  10. Brominated Flame Retardants, Tetrabromobisphenol A and Hexabromocyclododecane, Activate Mitogen-Activated Protein Kinases (MAPKs) in Human Natural Killer Cells

    PubMed Central

    Cato, Anita; Celada, Lindsay; Kibakaya, Esther Caroline; Simmons, Nadia; Whalen, Margaret M.

    2014-01-01

    NK cells provide a vital surveillance against virally infected cells, tumor cells, and antibody-coated cells through the release of cytolytic mediators and gamma interferon (IFN-γ). Hexabromocyclododecane (HBCD) is a brominated flame retardant used primarily in expanded (EPS) and extruded (XPS) polystyrene foams for thermal insulation in the building and construction industry. Tetrabromobisphenol A (TBBPA) is used both as a reactive and an additive flame retardant in a variety of materials. HBCD and TBBPA contaminate the environment and are found in human blood samples. In previous studies, we have shown that other environmental contaminants, such as the dibutyltin (DBT) and tributyltin (TBT), decrease NK lytic function by activating mitogen-activated protein kinases (MAPKs) in the NK cells. HBCD and TBBPA also interfere with NK cell(s) lytic function. The current study evaluates whether HBCD and/or TBBPA have the capacity to activate MAPKs and MAPK kinases (MAP2Ks). The effects of concentrations of HBCD and TBBPA that inhibited lytic function on the phosphorylation state and total levels of the MAPKs (p44/42, p38, and JNK) and the phosphorylation and total levels of the MAP2Ks (MEK1/2 and MKK3/6) were examined. Results indicate that exposure of human NK cells to 10-0.5 µM HBCD or TBBPA activate MAPKs and MAP2Ks. This HBCD and TBBPA-induced activation of MAPKs may leave them unavailable for activation by virally infected or tumor target cells and thus contributes to the observed decreases in lytic function seen in NK cells exposed to HBCD and TBBPA. PMID:25341744

  11. Estrogenic effect of procymidone through activation of MAPK in MCF-7 breast carcinoma cell line.

    PubMed

    Radice, Sonia; Chiesara, Enzo; Frigerio, Silvia; Fumagalli, Roberta; Parolaro, Daniela; Rubino, Tiziana; Marabini, Laura

    2006-05-01

    Procymidone modifies sexual differentiation in vitro and induces estrogenic activity in primary cultured rainbow trout hepatocytes, as shown by an increase in the contents of vitellogenin and heat shock proteins. Since this dicarboximide fungicide is found in human tissues, it was considered of interest to investigate its ability to induce endocrine damage in the MCF-7 human cell line. The mechanism of this estrogenic action was also evaluated. Procymidone 100 microM stimulated cell growth from day 3 up to day 12 and raised the level of pS2 on day 3. Although procymidone does not bind the estrogen receptor (ER), the antiestrogen ICI 182780 inhibited its effect on cell growth and pS2 content, suggesting that the ER is involved indirectly in these effects. In exploring the mechanism of ER indirect activation we found that the antibody against c-Neu receptor (9G6) did not modify procymidone's effects on cell growth and pS2 expression. Thus, procymidone does not bind the c-Neu membrane receptor, excluding this indirect ER activation pathway. We also found that procymidone induced mitogen-activated protein kinase (MAPK) at 15 and 30 min, and that PD 98059, a MAPK (Erk1/2) inhibitor, prevented procymidone's effects on cell growth and pS2, indicating that MAPK activation is responsible for procymidone ER activation. The production of reactive oxygen species (ROS) with these times and elimination of the phenomenon by alpha-tocopherol (alpha-T), a ROS scavenger, is proof that oxygen free-radical production is at the basis of the MAPK activation by procymidone. PMID:16310225

  12. Carbocisteine attenuates TNF-α-induced inflammation in human alveolar epithelial cells in vitro through suppressing NF-κB and ERK1/2 MAPK signaling pathways

    PubMed Central

    Wang, Wei; Guan, Wei-jie; Huang, Rong-quan; Xie, Yan-qing; Zheng, Jin-ping; Zhu, Shao-xuan; Chen, Mao; Zhong, Nan-shan

    2016-01-01

    Aim: We previously proven that carbocisteine, a conventional mucolytic drug, remarkably reduced the rate of acute exacerbations and improved the quality of life in the patients with chronic obstructive pulmonary disease. In this study we investigated the mechanisms underlying the anti-inflammatory effects of carbocisteine in human alveolar epithelial cells in vitro. Methods: Human lung adenocarcinoma cell line A549 was treated with TNF-α (10 ng/mL). Carbocisteine was administered either 24 h prior to or after TNF-α exposure. The cytokine release and expression were measured using ELISA and qRT-PCR. Activation of NF-κB was analyzed with Western blotting, immunofluorescence assay and luciferase reporter gene assay. The expression of ERK1/2 MAPK signaling proteins was assessed with Western blotting. Results: Carbocisteine (10, 100, 1000 μmol/L), administered either before or after TNF-α exposure, dose-dependently suppressed TNF-α-induced inflammation in A549 cells, as evidenced by diminished release of IL-6 and IL-8, and diminished mRNA expression of IL-6, IL-8, TNF-α, MCP-1 and MIP-1β. Furthermore, pretreatment with carbocisteine significantly decreased TNF-α-induced phosphorylation of NF-κB p65 and ERK1/2 MAPK, and inhibited the nuclear translocation of p65 subunit in A549 cells. In an NF-κB luciferase reporter system, pretreatment with carbocisteine dose-dependently inhibited TNF-α-induced transcriptional activity of NF-κB. Conclusion: Carbocisteine effectively suppresses TNF-α-induced inflammation in A549 cells via suppressing NF-κB and ERK1/2 MAPK signaling pathways. PMID:26997568

  13. GENE REGULATION BY MAPK SUBSTRATE COMPETITION

    PubMed Central

    Kim, Yoosik; Andreu, María José; Lim, Bomyi; Chung, Kwanghun; Terayama, Mark; Jiménez, Gerardo; Berg, Celeste A.; Lu, Hang; Shvartsman, Stanislav Y.

    2011-01-01

    SUMMARY Developing tissues are patterned by coordinated activities of signaling systems, which can be integrated by a regulatory region of a gene that binds multiple transcription factors or by a transcription factor that is modified by multiple enzymes. Based on a combination of genetic and imaging experiments in the early Drosophila embryo, we describe a signal integration mechanism that cannot be reduced to a single gene regulatory element or a single transcription factor. This mechanism relies on an enzymatic network formed by Mitogen Activated Protein Kinase (MAPK) and its substrates. Specifically, anteriorly localized MAPK substrates, such as Bicoid, antagonize MAPK-dependent downregulation of Capicua, a repressor which is involved in gene regulation along the dorsoventral axis of the embryo. MAPK substrate competition provides a basis for ternary interaction of the anterior, dorsoventral, and terminal patterning systems. A mathematical model of this interaction can explain gene expression patterns with both anteroposterior and dorsoventral polarities. PMID:21664584

  14. N-hydroxycinnamide derivatives of osthole ameliorate hyperglycemia through activation of AMPK and p38 MAPK.

    PubMed

    Lee, Wei-Hwa; Wu, Hsueh-Hsia; Huang, Wei-Jan; Li, Yi-Ning; Lin, Ren-Jye; Lin, Shyr-Yi; Liang, Yu-Chih

    2015-01-01

    Our previous studies found that osthole markedly reduced blood glucose levels in both db/db and ob/ob mice. To improve the antidiabetic activity of osthole, a series of N-hydroxycinnamide derivatives of osthole were synthesized, and their hypoglycemia activities were examined in vitro and in vivo. Both N-hydroxycinnamide derivatives of osthole, OHC-4p and OHC-2m, had the greatest potential for activating AMPK and increasing glucose uptake by L6 skeletal muscle cells. In addition, OHC-4p and OHC-2m time- and dose-dependently increased phosphorylation levels of AMPK and p38 MAPK. The AMPK inhibitor, compound C, and the p38 MAPK inhibitor, SB203580, significantly reversed activation of AMPK and p38 MAPK, respectively, in OHC-4p- and OHC-2m-treated cells. Compound C and SB203580 also inhibited glucose uptake induced by OHC-4p and OHC-2m. Next, we found that OHC-4p and OHC-2m significantly increased glucose transporter 4 (GLUT4) translocation to plasma membranes and counteracted hyperglycemia in mice with streptozotocin-induced diabetes. These results suggest that activation of AMPK and p38 MAPK by OHC-4p and OHC-2m is associated with increased glucose uptake and GLUT4 translocation and subsequently led to amelioration of hyperglycemia. Therefore, OHC-4p and OHC-2m might have potential as antidiabetic agents for treating type 2 diabetes. Our previous studies found that osthole markedly reduced blood glucose levels in both db/db and ob/ob mice. To improve the antidiabetic activity of osthole, a series of N-hydroxycinnamide derivatives of osthole were synthesized, and their hypoglycemia activities were examined in vitro and in vivo. Both N-hydroxycinnamide derivatives of osthole, OHC-4p and OHC-2m, had the greatest potential for activating AMPK and increasing glucose uptake by L6 skeletal muscle cells. In addition, OHC-4p and OHC-2m time- and dose-dependently increased phosphorylation levels of AMPK and p38 MAPK. The AMPK inhibitor, compound C, and the p38 MAPK inhibitor

  15. Functional microarray analysis of differentially expressed genes in granulosa cells from women with polycystic ovary syndrome related to MAPK/ERK signaling

    PubMed Central

    Lan, Chen-Wei; Chen, Mei-Jou; Tai, Kang-Yu; Yu, Danny CW; Yang, Yu-Chieh; Jan, Pey-Shynan; Yang, Yu-Shih; Chen, Hsin-Fu; Ho, Hong-Nerng

    2015-01-01

    Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age. Although its aetiology and pathogenesis remain unclear, recent studies suggest that the dysfunction of granulosa cells may partly be responsible. This study aimed to use cDNA microarray technology to compare granulosa cell gene expression profiles in women with and without PCOS to identify genes that may be aetiologically implicated in the pathogenesis of PCOS. The study cohort included 12 women undergoing in vitro fertilization, six with PCOS and six without PCOS. Differential gene expression profiles were classified by post-analyses of microarray data, followed by western blot analyses to confirm the microarray data of selected genes. In total, 243 genes were differentially expressed (125 upregulated and 118 downregulated) between the PCOS and non-PCOS granulosa cells. These genes are involved in reproductive system development, amino acid metabolism and cellular development and proliferation. Comparative analysis revealed genes involved in the mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK) signaling pathways. Western blot analyses confirmed that mitogen-activated protein kinase kinase kinase 4 and phospho-ERK1/2 were decreased in PCOS granulosa cells. This study identified candidate genes involved in MAPK/ERK signaling pathways that may influence the function of granulosa cells in PCOS. PMID:26459919

  16. Inhibition of Nickel Nanoparticles-Induced Toxicity by Epigallocatechin-3-Gallate in JB6 Cells May Be through Down-Regulation of the MAPK Signaling Pathways

    PubMed Central

    Bowman, Linda; Mao, Guochuan; Zou, Baobo; Xu, Jin; Liu, Yu; Liu, Kui; Zhao, Jinshun; Ding, Min

    2016-01-01

    With the rapid development in nanotechnology, nickel nanoparticles (Ni NPs) have emerged in the application of nanomedicine in recent years. However, the potential adverse health effects of Ni NPs are unclear. In this study, we examined the inhibition effects of epigallocatechin-3-gallate (EGCG) on the toxicity induced by Ni NPs in mouse epidermal cell line (JB6 cell). MTT assay showed that Ni NPs induced cytotoxicity in a dose-dependent manner while EGCG exerted a certain inhibition on the toxicity. Additionally, EGCG could reduce the apoptotic cell number and the level of reactive oxygen species (ROS) in JB6 cells induced by Ni NPs. Furthermore, we observed that EGCG could down-regulate Ni NPs-induced activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) activation in JB6 cells, which has been shown to play pivotal roles in tumor initiation, promotion and progression. Western blot indicated that EGCG could alleviate the toxicity of Ni NPs through regulating protein changes in MAPK signaling pathways. In summary, our results suggest that careful evaluation on the potential health effects of Ni NPs is necessary before being widely used in the field of nanomedicine. Inhibition of EGCG on Ni NPs-induced cytotoxicity in JB6 cells may be through the MAPK signaling pathways suggesting that EGCG might be useful in preventing the toxicity of Ni NPs. PMID:26943640

  17. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by downregulation of MMP2 and inactivation of ERK/MAPK signaling

    PubMed Central

    Han, Y; Wu, Z; Wu, T; Huang, Y; Cheng, Z; Li, X; Sun, T; Xie, X; Zhou, Y; Du, Z

    2016-01-01

    Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a type of long noncoding RNA. It is associated with metastasis and is a favorable prognostic factor for lung cancer. Recent studies have shown that MALAT1 plays an important role in other malignancies. But, little is known about the role of MALAT1 in glioma. In this study, quantitative reverse transcription PCR (qRT-PCR) was used to demonstrate that the expression of MALAT1 was lower than that in normal brain tissues. Stable RNA interference-mediated knockdown of MALAT1 in human glioma cell lines (U87 and U251) significantly promoted the invasion and proliferation of the glioma cells by in vitro assays. Conversely, overexpression of MALAT1 caused significant reduction in cell proliferation and invasion in vitro, and tumorigenicity in both subcutaneous and intracranial human glioma xenograft models. Furthermore, MALAT1-mediated tumor suppression in glioma cells may be via reduction of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling activity and expression of matrix metalloproteinase 2 (MMP2). In conclusion, overall data demonstrated the tumor-suppressive role of MALAT1 in glioma by attenuating ERK/MAPK-mediated growth and MMP2-mediated invasiveness. PMID:26938295

  18. cAMP induction by ouabain promotes endothelin-1 secretion via MAPK/ERK signaling in beating rabbit atria.

    PubMed

    Peng, Li-Qun; Li, Ping; Zhang, Qiu-Li; Hong, Lan; Liu, Li-Ping; Cui, Xun; Cui, Bai-Ri

    2016-01-01

    Adenosine 3',5'-cyclic monophosphate (cAMP) participates in the regulation of numerous cellular functions, including the Na(+)-K(+)-ATPase (sodium pump). Ouabain, used in the treatment of several heart diseases, is known to increase cAMP levels but its effects on the atrium are not understood. The aim of the present study was to examine the effect of ouabain on the regulation of atrial cAMP production and its roles in atrial endothelin-1 (ET-1) secretion in isolated perfused beating rabbit atria. Our results showed that ouabain (3.0 µmol/L) significantly increased atrial dynamics and cAMP levels during recovery period. The ouabain-increased atrial dynamics was blocked by KB-R7943 (3.0 µmol/L), an inhibitor for reverse mode of Na(+)-Ca(2+) exchangers (NCX), but did not by L-type Ca(2+) channel blocker nifedipine (1.0 µmol/L) or protein kinase A (PKA) selective inhibitor H-89 (3.0 µmol/L). Ouabain also enhanced atrial intracellular cAMP production in response to forskolin and theophyline (100.0 µmol/L), an inhibitor of phosphodiesterase, potentiated the ouabain-induced increase in cAMP. Ouabain and 8-Bromo-cAMP (0.5 µmol/L) markedly increased atrial ET-1 secretion, which was blocked by H-89 and by PD98059 (30 µmol/L), an inhibitor of extracellular-signal-regulated kinase (ERK) without changing ouabain-induced atrial dynamics. Our results demonstrated that ouabain increases atrial cAMP levels and promotes atrial ET-1 secretion via the mitogen-activated protein kinase (MAPK)/ERK signaling pathway. These findings may explain the development of cardiac hypertrophy in response to digitalis-like compounds. PMID:26807018

  19. cAMP induction by ouabain promotes endothelin-1 secretion via MAPK/ERK signaling in beating rabbit atria

    PubMed Central

    Peng, Li-qun; Li, Ping; Zhang, Qiu-li; Hong, Lan; Liu, Li-ping

    2016-01-01

    Adenosine 3',5'-cyclic monophosphate (cAMP) participates in the regulation of numerous cellular functions, including the Na+-K+-ATPase (sodium pump). Ouabain, used in the treatment of several heart diseases, is known to increase cAMP levels but its effects on the atrium are not understood. The aim of the present study was to examine the effect of ouabain on the regulation of atrial cAMP production and its roles in atrial endothelin-1 (ET-1) secretion in isolated perfused beating rabbit atria. Our results showed that ouabain (3.0 µmol/L) significantly increased atrial dynamics and cAMP levels during recovery period. The ouabain-increased atrial dynamics was blocked by KB-R7943 (3.0 µmol/L), an inhibitor for reverse mode of Na+-Ca2+ exchangers (NCX), but did not by L-type Ca2+ channel blocker nifedipine (1.0 µmol/L) or protein kinase A (PKA) selective inhibitor H-89 (3.0 µmol/L). Ouabain also enhanced atrial intracellular cAMP production in response to forskolin and theophyline (100.0 µmol/L), an inhibitor of phosphodiesterase, potentiated the ouabain-induced increase in cAMP. Ouabain and 8-Bromo-cAMP (0.5 µmol/L) markedly increased atrial ET-1 secretion, which was blocked by H-89 and by PD98059 (30 µmol/L), an inhibitor of extracellular-signal-regulated kinase (ERK) without changing ouabain-induced atrial dynamics. Our results demonstrated that ouabain increases atrial cAMP levels and promotes atrial ET-1 secretion via the mitogen-activated protein kinase (MAPK)/ERK signaling pathway. These findings may explain the development of cardiac hypertrophy in response to digitalis-like compounds. PMID:26807018

  20. The Role of Phospholipase D and MAPK Signaling Cascades in the Adaption of Lichen Microalgae to Desiccation: Changes in Membrane Lipids and Phosphoproteome.

    PubMed

    Gasulla, Francisco; Barreno, Eva; Parages, María L; Cámara, Joaquín; Jiménez, Carlos; Dörmann, Peter; Bartels, Dorothea

    2016-09-01

    Classically, lichen phycobionts are described as poikilohydric organisms able to undergo desiccation due to the constitutive presence of molecular protection mechanisms. However, little is known about the induction of cellular responses in lichen phycobionts during drying. The analysis of the lipid composition of the desiccated lichen microalga Asterochloris erici revealed the unusual accumulation of highly polar lipids (oligogalactolipids and phosphatidylinositol), which prevents the fusion of membranes during stress, but also the active degradation of cone-shaped lipids (monogalactosyldiacylglycerol and phosphatidylethanolamine) to stabilize membranes in desiccated cells. The level of phosphatidic acid increased 7-fold during desiccation, implicating a possible role for phospholipase D (PLD) in the response to osmotic stress. Inhibition of PLD with 1-butanol markedly impaired the recovery of photosynthesis activity in A. erici upon desiccation and salt stress (2 M NaCl). These two hyperosmotic stresses caused the phosphorylation of c-Jun N-terminal kinase (JNK) and p38-like mitogen-activated protein kinase (MAPK) and the dephosphorylation of extracellular signal-regulated kinase (ERK). The incubation with 1-butanol reduced the phosphorylation of JNK-like proteins and increased the dephosphorylation of ERK-like proteins, which indicates an upstream control of MAPK cascades by PLD. The phosphoproteome showed that desiccation caused the phosphorylation of several proteins in A. erici, most of them involved in protein turnover. The results demonstrate that lichen phycobionts possess both constitutive and inducible protective mechanisms to acquire desiccation tolerance. Among others, these responses are controlled by the PLD pathway through the activation of MAPK cascades. PMID:27335354

  1. A Standardized Chemically Modified Curcuma longa Extract Modulates IRAK-MAPK Signaling in Inflammation and Potentiates Cytotoxicity.

    PubMed

    Rana, Minakshi; Maurya, Preeti; Reddy, Sukka S; Singh, Vishal; Ahmad, Hafsa; Dwivedi, Anil K; Dikshit, Madhu; Barthwal, Manoj K

    2016-01-01

    The TLR/IL-1R pathway is a critical signaling module that is misregulated in pathologies like inflammation and cancer. Extracts from turmeric (Curcuma longa L.) enriched in curcumin and carbonyls like turmerones have been shown to exert potent anti-inflammatory effects. The present study evaluated the anti-inflammatory activity, cytotoxic effect and the underlying mechanism of a novel chemically modified, non-carbonyl compound enriched Curcuma longa L. (C. longa) extract (CMCE). CMCE (1 or 10 μg/mL; 14 h) significantly decreased LPS (50-100 ng/mL) induced TNF-α and IL-1β production in THP-1 cells, human, and mouse whole blood as measured by ELISA. LPS-induced IRAK1, MAPK activation, TLR4 expression, TLR4-MyD88 interaction, and IκBα degradation were significantly reduced in CMCE pre-treated THP-1 cells as assessed by Western blotting. CMCE (30, 100, and 300 mg/kg; 10 days p.o.) pre-treated and LPS (10 mg/kg) challenged Swiss mice exhibited attenuated plasma TNF-α, IL-1β, nitrite, aortic iNOS expression, and vascular dysfunction. In a PI permeability assay, cell lines derived from acute myeloid leukemia were most sensitive to the cytotoxic effects of CMCE. Analysis of Sub-G1 phase, Annexin V-PI positivity, loss of mitochondrial membrane potential, increased caspase-3, and PARP-1 activation confirmed CMCE induced apoptosis in HL-60 cells. IRAK inhibition also sensitized HL-60 cells to CMCE induced cytotoxicity. The present study defines the mechanism underlying the action of CMCE and suggests a therapeutic potential for its use in sepsis and leukemia. PMID:27504095

  2. A Standardized Chemically Modified Curcuma longa Extract Modulates IRAK-MAPK Signaling in Inflammation and Potentiates Cytotoxicity

    PubMed Central

    Rana, Minakshi; Maurya, Preeti; Reddy, Sukka S.; Singh, Vishal; Ahmad, Hafsa; Dwivedi, Anil K.; Dikshit, Madhu; Barthwal, Manoj K.

    2016-01-01

    The TLR/IL-1R pathway is a critical signaling module that is misregulated in pathologies like inflammation and cancer. Extracts from turmeric (Curcuma longa L.) enriched in curcumin and carbonyls like turmerones have been shown to exert potent anti-inflammatory effects. The present study evaluated the anti-inflammatory activity, cytotoxic effect and the underlying mechanism of a novel chemically modified, non-carbonyl compound enriched Curcuma longa L. (C. longa) extract (CMCE). CMCE (1 or 10 μg/mL; 14 h) significantly decreased LPS (50-100 ng/mL) induced TNF-α and IL-1β production in THP-1 cells, human, and mouse whole blood as measured by ELISA. LPS-induced IRAK1, MAPK activation, TLR4 expression, TLR4-MyD88 interaction, and IκBα degradation were significantly reduced in CMCE pre-treated THP-1 cells as assessed by Western blotting. CMCE (30, 100, and 300 mg/kg; 10 days p.o.) pre-treated and LPS (10 mg/kg) challenged Swiss mice exhibited attenuated plasma TNF-α, IL-1β, nitrite, aortic iNOS expression, and vascular dysfunction. In a PI permeability assay, cell lines derived from acute myeloid leukemia were most sensitive to the cytotoxic effects of CMCE. Analysis of Sub-G1 phase, Annexin V-PI positivity, loss of mitochondrial membrane potential, increased caspase-3, and PARP-1 activation confirmed CMCE induced apoptosis in HL-60 cells. IRAK inhibition also sensitized HL-60 cells to CMCE induced cytotoxicity. The present study defines the mechanism underlying the action of CMCE and suggests a therapeutic potential for its use in sepsis and leukemia. PMID:27504095

  3. Characterization of three mitogen-activated protein kinases (MAPK) genes reveals involvement of ERK and JNK, not p38 in defense against bacterial infection in Yesso scallop Patinopecten yessoensis.

    PubMed

    Sun, Yan; Zhang, Lingling; Zhang, Meiwei; Li, Ruojiao; Li, Yangping; Hu, Xiaoli; Wang, Shi; Bao, Zhenmin

    2016-07-01

    Mitogen-activated protein kinases (MAPKs) are protein Ser/Thr kinases that play a vital role in innate immune responses by converting extracellular stimuli into a wide range of cellular responses. Although MAPKs have been extensively studied in various vertebrates and invertebrates, our current understanding of MAPK signaling cascade in scallop is in its infancy. In this study, three MAPK genes (PyERK, PyJNK, and Pyp38) were identified from Yesso scallop Patinopecten yessoensis. The open reading frame of PyERK, PyJNK, and Pyp38 was 1104, 1227, and 1104 bp, encoding 367, 408, and 367 amino acids, respectively. Conservation in some splicing sites was revealed across the three PyMAPKs, suggesting the common descent of MAPKs genes. The expression profiles of PyMAPKs over the course of ten different developmental stages showed that they had different expression patterns. In adult scallops, PyMAPKs were primarily expressed in muscles, hemocytes, gill, and mantle. To gain insights into their role in innate immunity, we investigated their expression profiles after infection with Gram-positive bacteria (Micrococcus luteus) and Gram-negative bacteria (Vibrio anguillarum). Significant difference in gene expression was only found in PyERK and PyJNK, but not Pyp38, suggesting Pyp38 may not participate in immune response to bacterial infection. Besides, PyERK and PyJNK exhibited more drastic change against the invasion of V. anguillarum than M. luteus, suggesting they could be more sensitive to Gram-negative bacteria than Gram-positive bacteria. This study provides valuable resource for elucidating the role of MAPK signal pathway in bivalve innate immune response. PMID:27155450

  4. TACE release of TNF-α mediates mechanotransduction-induced activation of p38 MAPK and myogenesis

    PubMed Central

    Zhan, Mei; Jin, Bingwen; Chen, Shuen-Ei; Reecy, James M.; Li, Yi-Ping

    2011-01-01

    Summary Skeletal muscle responds to mechanical stimulation by activating p38 MAPK, a key signal for myogenesis. However, the mechanotransduction mechanism that activates p38 is unknown. Here we show that mechanical stimulation of myoblasts activates p38 and myogenesis through stimulating TNF-α release by TNF-α converting enzyme (TACE). In C2C12 or mouse primary myoblasts cultured in growth medium, static stretch activated p38 along with ERK1/2, JNK and AKT. Disrupting TNF-α signaling by TNF-α-neutralizing antibody or knocking out TNF-α receptors blocked stretch activation of p38, but not ERK1/2, JNK or AKT. Stretch also activated differentiation markers MEF2C, myogenin, p21 and myosin heavy chain in a TNF-α- and p38-dependent manner. Stretch stimulated the cleavage activity of TACE. Conversely, TACE inhibitor TAPI or TACE siRNA abolished stretch activation of p38. In addition, conditioned medium from stretched myoblast cultures activated p38 in unstretched myoblasts, which required TACE activity in the donor myoblasts, and TNF-α receptors in the recipient myoblasts. These results indicate that posttranscriptional activation of TACE mediates the mechanotransduction that activates p38-dependent myogenesis via the release of TNF-α. PMID:17264149

  5. Cross-talk between glycogen synthase kinase 3β (GSK3β) and p38MAPK regulates myocyte enhancer factor 2 (MEF2) activity in skeletal and cardiac muscle.

    PubMed

    Dionyssiou, M G; Nowacki, N B; Hashemi, S; Zhao, J; Kerr, A; Tsushima, R G; McDermott, J C

    2013-01-01

    Characterizing the signaling network that controls MEF2 transcription factors is crucial for understanding skeletal and cardiac muscle gene expression. Glycogen synthase kinase 3β (GSK3β) regulates MEF2 activity indirectly through reciprocal regulation of p38MAPK. Cross-talk between GSK3β and p38MAPK regulates MEF2 activity in skeletal and cardiac muscle. Understanding cross-talk in the signaling network converging at MEF2 control has therapeutic implications in cardiac and skeletal muscle pathology. Glycogen synthase kinase 3β (GSK3β) is a known regulator of striated muscle gene expression suppressing both myogenesis and cardiomyocyte hypertrophy. Since myocyte enhancer factor 2 (MEF2) proteins are key transcriptional regulators in both systems, we assessed whether MEF2 is a target for GSK3β. Pharmacological inhibition of GSK3β resulted in enhanced MEF2A/D expression and transcriptional activity in skeletal myoblasts and cardiac myocytes. Even though in silico analysis revealed GSK3β consensus (S/T)XXX(S/T) sites on MEF2A, a subsequent in vitro kinase assay revealed that MEF2A is only a weak substrate. However, we did observe a posttranslational modification in MEF2A in skeletal myoblasts treated with a GSK3β inhibitor which coincided with increased p38MAPK phosphorylation, a potent MEF2A activator, indicating that GSK3β inhibition may de-repress p38MAPK. Heart specific excision of GSK3β in mice also resulted in up-regulation of p38MAPK activity. Interestingly, upon pharmacological p38MAPK inhibition (SB203580), GSK3β inhibition loses its effect on MEF2 transcriptional activity suggesting potent cross-talk between the two pathways. Thus we have documented that cross-talk between p38MAPK and GSK3β signaling converges on MEF2 activity having potential consequences for therapeutic modulation of cardiac and skeletal muscle gene expression. PMID:23137781

  6. Suppression of MAPK Signaling and Reversal of mTOR-Dependent MDR1-Associated Multidrug Resistance by 21α-Methylmelianodiol in Lung Cancer Cells

    PubMed Central

    Aldonza, Mark Borris Docdoc; Hong, Ji-Young; Bae, Song Yi; Song, Jayoung; Kim, Won Kyung; Oh, Jedo; Shin, Yoonho; Lee, Seung Ho; Lee, Sang Kook

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide and remains the most prevalent. Interplay between PI3K/AMPK/AKT and MAPK pathways is a crucial effector in lung cancer growth and progression. These signals transduction protein kinases serve as good therapeutic targets for non-small cell lung cancer (NSCLC) which comprises up to 90% of lung cancers. Here, we described whether 21α-Methylmelianodiol (21α-MMD), an active triterpenoid derivative of Poncirus trifoliate, can display anticancer properties by regulating these signals and modulate the occurrence of multidrug resistance in NSCLC cells. We found that 21α-MMD inhibited the growth and colony formation of lung cancer cells without affecting the normal lung cell phenotype. 21α-MMD also abrogated the metastatic activity of lung cancer cells through the inhibition of cell migration and invasion, and induced G0/G1 cell cycle arrest with increased intracellular ROS generation and loss of mitochondrial membrane integrity. 21α-MMD regulated the expressions of PI3K/AKT/AMPK and MAPK signaling which drove us to further evaluate its activity on multidrug resistance (MDR) in lung cancer cells by specifying on P-glycoprotein (P-gp)/MDR1-association. Employing the established paclitaxel-resistant A549 cells (A549-PacR), we further found that 21α-MMD induced a MDR reversal activity through the inhibition of P-gp/MDR1 expressions, function, and transcription with regained paclitaxel sensitivity which might dependently correlate to the regulation of PI3K/mTOR signaling pathway. Taken together, these findings demonstrate, for the first time, the mechanistic evaluation in vitro of 21α-MMD displaying growth-inhibiting potential with influence on MDR reversal in human lung cancer cells. PMID:26098947

  7. Attenuation of the macrophage inflammatory activity by TiO2 nanotubes via inhibition of MAPK and NF-κB pathways

    PubMed Central

    Neacsu, Patricia; Mazare, Anca; Schmuki, Patrik; Cimpean, Anisoara

    2015-01-01

    Biomaterial implantation in a living tissue triggers the activation of macrophages in inflammatory events, promoting the transcription of pro-inflammatory mediator genes. The initiation of macrophage inflammatory processes is mainly regulated by signaling proteins of mitogen-activated protein kinase (MAPK) and by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. We have previously shown that titania nanotubes modified Ti surfaces (Ti/TiO2) mitigate the immune response, compared with flat Ti surfaces; however, little is known regarding the underlying mechanism. Therefore, the aim of this study is to investigate the mechanism(s) by which this nanotopography attenuates the inflammatory activity of macrophages. Thus, we analyzed the effects of TiO2 nanotubes on the activation of MAPK and NF-κB signaling pathways in standard and lipopolysaccharide-evoked conditions. Results showed that the Ti/TiO2 significantly reduce the expression levels of the phosphorylated forms of p38, ERK1/2, c-Jun NH2-terminal kinase (JNK), IKKβ, and IkB-α. Furthermore, a significant reduction in the p65 nuclear accumulation on the nanotubular surface was remarked. Following, by using specific MAPK inhibitors, we observed that lipopolysaccharide-induced production of monocyte chemotactic protein-1 and nitric oxide was significantly inhibited on the Ti/TiO2 surface via p38 and ERK1/2, but not via JNK. However, the selective inhibitor for JNK signaling pathway (SP600125) was effective in reducing tumor necrosis factor alpha release as well as monocyte chemotactic protein-1 and nitric oxide production. Altogether, these data suggest that titania nanotubes can attenuate the macrophage inflammatory response via suppression of MAPK and NF-κB pathways providing a potential mechanism for their anti-inflammatory activity. PMID:26491301

  8. Thymoquinone Inhibits IL-1β-Induced Inflammation in Human Osteoarthritis Chondrocytes by Suppressing NF-κB and MAPKs Signaling Pathway.

    PubMed

    Wang, Dongyan; Qiao, Jiutao; Zhao, Xin; Chen, Tianxin; Guan, Dehong

    2015-12-01

    Thymoquinone, an active ingredient isolated from Nigella sativa, has been reported to have anti-inflammatory effects. However, the anti-inflammatory effect of thymoquinone on IL-1β-stimulated osteoarthritis chondrocytes remains unclear. In this study, we designed to investigate the anti-inflammatory effects and elucidated the underlying mechanism of thymoquinone on IL-1β-stimulated human osteoarthritis chondrocytes. The effects of thymoquinone on inflammatory mediators COX-2, iNOS, NO, PGE2, as well as MMP-1, MMP3, MMP13 production were detected. The results demonstrated that thymoquinone concentration-dependently inhibited IL-1β-induced COX-2, iNOS, NO, and PGE2 production. Thymoquinone also suppressed IL-1β-induced MMP-1, MMP3, and MMP13 production. We found that thymoquinone significantly inhibited IL-1β-induced NF-κB activation and IκBα degradation. In addition, thymoquinone was found to suppress IL-1β-induced mitogen-activated protein kinases (MAPKs) activation. In conclusion, thymoquinone inhibited IL-1β-induced inflammatory mediator production by inhibition of NF-κB and MAPKs signaling pathways in osteoarthritis chondrocytes. Thymoquinone may be a potential agent in the treatment of osteoarthritis. PMID:26156811

  9. The Chromone Alkaloid, Rohitukine, Affords Anti-Cancer Activity via Modulating Apoptosis Pathways in A549 Cell Line and Yeast Mitogen Activated Protein Kinase (MAPK) Pathway

    PubMed Central

    Safia; Kamil, Mohd; Jadiya, Pooja; Sheikh, Saba; Haque, Ejazul; Nazir, Aamir; Lakshmi, Vijai; Mir, Snober S.

    2015-01-01

    The field of cancer research and treatment has made significant progress, yet we are far from having completely safe, efficient and specific therapies that target cancer cells and spare the healthy tissues. Natural compounds may reduce the problems related to cancer treatment. Currently, many plant products are being used to treat cancer. In this study, Rohitukine, a natural occurring chromone alkaloid extracted from Dysoxylum binectariferum, was investigated for cytotoxic properties against budding yeast as well as against lung cancer (A549) cells. We endeavored to specifically study Rohitukine in S. cerevisiae in the context of MAPK pathways as yeast probably represents the experimental model where the organization and regulation of MAPK pathways are best understood. MAPK are evolutionarily conserved protein kinases that transfer extracellular signals to the machinery controlling essential cellular processes like growth, migration, differentiation, cell division and apoptosis. We aimed at carrying out hypothesis driven studies towards targeting the important network of cellular communication, a critical process that gets awry in cancer. Employing mutant strains of genetic model system Saccharomyces cerevisiae. S. cerevisiae encodes five MAPKs involved in control of distinct cellular responses such as growth, differentiation, migration and apoptosis. Our study involves gene knockouts of Slt2 and Hog1 which are functional homologs of human ERK5 and mammalian p38 MAPK, respectively. We performed cytotoxicity assay to evaluate the effect of Rohitukine on cell viability and also determined the effects of drug on generation of reactive oxygen species, induction of apoptosis and expression of Slt2 and Hog1 gene at mRNA level in the presence of drug. The results of this study show a differential effect in the activity of drug between the WT, Slt2 and Hog1 gene deletion strain indicating involvement of MAPK pathway. Further, we investigated Rohitukine induced cytotoxic

  10. Inhibition of inflammatory mediators contributes to the anti-inflammatory activity of KYKZL-1 via MAPK and NF-κB pathway

    SciTech Connect

    Xu, Guang-Lin; Du, Yi-Fang; Cheng, Jing; Huan, Lin; Chen, Shi-Cui; Wei, Shao-Hua; Gong, Zhu-Nan; Cai, Jie; Qiu, Ting; Wu, Hao; Sun, Ting; Ao, Gui-Zhen

    2013-10-01

    KYKZL-1, a newly synthesized compound with COX/5-LOX dual inhibition, was subjected to the anti-inflammatory activity test focusing on its modulation of inflammatory mediators as well as intracellular MAPK and NF-κB signaling pathways. In acute ear edema model, pretreatment with KYKZL-1 (p.o.) dose-dependently inhibited the xylene-induced ear edema in mice with a higher inhibition than diclofenac. In a three-day TPA-induced inflammation, KYKZL-1 also showed significant anti-inflammatory activity with inhibition ranging between 20% and 64%. In gastric lesion test, KYKZL-1 elicited markedly fewer stomach lesions with a low index of ulcer as compared to diclofenac in rats. In further studies, KYKZL-1 was found to significantly inhibit the production of NO, PGE{sub 2}, LTB{sub 4} in LPS challenged RAW264.7, which is parallel to its attenuation of the expression of iNOS, COX-2, 5-LOX mRNAs or proteins and inhibition of phosphorylation of p38 and ERK MAPKs and activation of NF-κB. Taken together, our data indicate that KYKZL-1 comprises dual inhibition of COX and 5-LOX and exerts an obvious anti-inflammatory activity with an enhanced gastric safety profile via simultaneous inhibition of phosphorylation of p38 and ERK MAPKs and activation of NF-κB. - Highlights: • KYKZL-1 is designed to exhibit COX/5-LOX dual inhibition. • KYKZL-1 inhibits NO, PGE{sub 2} and LTB{sub 4} and iNOS, COX-2 and 5-LOX mRNAs and MAPKs. • KYKZL-1 inhibits phosphorylation of MAPKs. • KYKZL-1 inactivates NF-κB pathway.

  11. IFN-τ Alleviates Lipopolysaccharide-Induced Inflammation by Suppressing NF-κB and MAPKs Pathway Activation in Mice.

    PubMed

    Wu, Haichong; Zhao, Gan; Jiang, Kangfeng; Chen, Xiuying; Rui, Guangze; Qiu, Changwei; Guo, Mengyao; Deng, Ganzhen

    2016-06-01

    IFN-τ, which is a type I interferon with low cytotoxicity, is defined as a pregnancy recognition signal in ruminants. Type I interferons have been used as anti-inflammatory agents, but their side effects limit their clinical application. The present study aimed to determine the anti-inflammatory effects of IFN-τ in a lipopolysaccharide-stimulated acute lung injury (ALI) model and in RAW264.7 cells and to confirm the mechanism of action involved. The methods used included histopathology, measuring the lung wet/dry ratio, determining the myeloperoxidase activity, ELISA, qPCR, and western blot. The results revealed that IFN-τ greatly ameliorated the infiltration of inflammatory cells and the expression of TNF-α, IL-1β, and IL-6. Further analysis revealed that IFN-τ down-regulated the expression of TLR-2 and TLR-4 mRNA and the activity of the NF-κB and MAPK pathways both in a lipopolysaccharide-induced ALI model and in RAW264.7 cells. The results demonstrated that IFN-τ suppressed the levels of pro-inflammatory cytokines by inhibiting the phosphorylation of the NF-κB and MAPK pathways. Thus, IFN-τ may be an optimal target for the treatment of inflammatory diseases. PMID:27052630

  12. Hyaluronan Oligosaccharides Induce MMP-1 and -3 via Transcriptional Activation of NF-κB and p38 MAPK in Rheumatoid Synovial Fibroblasts

    PubMed Central

    Hanabayashi, Masahiro; Takahashi, Nobunori; Sobue, Yasumori; Hirabara, Shinya; Ishiguro, Naoki; Kojima, Toshihisa

    2016-01-01

    Objective To explore the effect of hyaluronan oligosaccharides (HAoligos) on interactions between HA and its principal receptor, CD44, in rheumatoid synovial fibroblasts (RSFs) and matrix metalloproteinase (MMP) production. Methods RSFs were isolated from rheumatoid synovial tissue. HA distribution was visualized by immunocytochemistry. MMP-1 and MMP-3 induction was analyzed by real-time RT-PCR and immunoblotting. The interaction between HAoligos and their MMP-producing receptors was tested by blocking with anti-CD44 and anti-Toll-like receptor 4 (TLR-4). Phosphorylation of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) was analyzed by immunoblotting. Results Endogenous HA decreased after treatment with HAoligos, while MMP-1 and MMP-3 expression increased in a dose-dependent manner. Pretreatment with anti-CD44 or anti-TLR-4 antibody significantly reduced the effect of HAoligos on MMP-1 and MMP-3 mRNA expression. NF-κB and p38 MAPK phosphorylation was enhanced by HAoligos pretreated with anti-TLR-4, and HAoligo-induced MMP production was blocked with an inhibitor of NF-κB and p38 MAPK pathways. Conclusions Disruptive changes in CD44-HA interactions by HAoligos enhanced MMP-1 and MMP-3 production via activation of NF-κB and p38 MAPK signaling pathways in RSFs. PMID:27564851

  13. l-glutamine Improves Skeletal Muscle Cell Differentiation and Prevents Myotube Atrophy After Cytokine (TNF-α) Stress Via Reduced p38 MAPK Signal Transduction.

    PubMed

    Girven, Matthew; Dugdale, Hannah F; Owens, Daniel J; Hughes, David C; Stewart, Claire E; Sharples, Adam P

    2016-12-01

    Tumour Necrosis Factor-Alpha (TNF-α) is chronically elevated in conditions where skeletal muscle loss occurs. As l-glutamine can dampen the effects of inflamed environments, we investigated the role of l-glutamine in both differentiating C2C12 myoblasts and existing myotubes in the absence/presence of TNF-α (20 ng · ml(-1) ) ± l-glutamine (20 mM). TNF-α reduced the proportion of cells in G1 phase, as well as biochemical (CK activity) and morphological differentiation (myotube number), with corresponding reductions in transcript expression of: Myogenin, Igf-I, and Igfbp5. Furthermore, when administered to mature myotubes, TNF-α induced myotube loss and atrophy underpinned by reductions in Myogenin, Igf-I, Igfbp2, and glutamine synthetase and parallel increases in Fox03, Cfos, p53, and Bid gene expression. Investigation of signaling activity suggested that Akt and ERK1/2 were unchanged, JNK increased (non-significantly) whereas P38 MAPK substantially and significantly increased in both myoblasts and myotubes in the presence of TNF-α. Importantly, 20 mM l-glutamine reduced p38 MAPK activity in TNF-α conditions back to control levels, with a corresponding rescue of myoblast differentiation and a reversal of atrophy in myotubes. l-glutamine resulted in upregulation of genes associated with growth and survival including; Myogenin, Igf-Ir, Myhc2 & 7, Tnfsfr1b, Adra1d, and restored atrophic gene expression of Fox03 back to baseline in TNF-α conditions. In conclusion, l-glutamine supplementation rescued suppressed muscle cell differentiation and prevented myotube atrophy in an inflamed environment via regulation of p38 MAPK. l-glutamine administration could represent an important therapeutic strategy for reducing muscle loss in catabolic diseases and inflamed ageing. J. Cell. Physiol. 9999: 231: 2720-2732, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991744

  14. Dynamic Modeling and Analysis of the Cross-Talk between Insulin/AKT and MAPK/ERK Signaling Pathways

    PubMed Central

    Arkun, Yaman

    2016-01-01

    Feedback loops play a key role in the regulation of the complex interactions in signal transduction networks. By studying the network of interactions among the biomolecules present in signaling pathways at the systems level, it is possible to understand how the biological functions are regulated and how the diseases emerge from their deregulations. This paper identifies the key feedback loops involved in the cross-talk among the insulin-AKT and MAPK/ERK signaling pathways. We developed a mathematical model that can be used to study the steady-state and dynamic behavior of the interactions among these two important signaling pathways. Modeling analysis and simulation case studies identify the key interaction parameters and the feedback loops that determine the normal and disease phenotypes. PMID:26930065

  15. Cathepsin S Activity Controls Injury-Related Vascular Repair in Mice via the TLR2-Mediated p38MAPK and PI3K−Akt/p-HDAC6 Signaling Pathway

    PubMed Central

    Wu, Hongxian; Hu, Lina; Takeshita, Kyosuke; Hu, Chen; Du, Qiuna; Li, Xiang; Zhu, Enbo; Huang, Zhe; Yisireyili, Maimaiti; Zhao, Guangxian; Piao, Limei; Inoue, Aiko; Jiang, Haiying; Lei, Yanna; Zhang, Xiaohong; Liu, Shaowen; Dai, Qiuyan; Kuzuya, Masafumi; Shi, Guo-Ping; Murohara, Toyoaki

    2016-01-01

    Objective— Cathepsin S (CatS) participates in atherogenesis through several putative mechanisms. The ability of cathepsins to modify histone tail is likely to contribute to stem cell development. Histone deacetylase 6 (HDAC6) is required in modulating the proliferation and migration of various types of cancer cells. Here, we investigated the cross talk between CatS and HADC6 in injury-related vascular repair in mice. Approach and Results— Ligation injury to the carotid artery in mice increased the CatS expression, and CatS-deficient mice showed reduced neointimal formation in injured arteries. CatS deficiency decreased the phosphorylation levels of p38 mitogen-activated protein kinase, Akt, and HDAC6 and toll-like receptor 2 expression in ligated arteries. The genetic or pharmacological inhibition of CatS also alleviated the increased phosphorylation of p38 mitogen-activated protein kinase, Akt, and HDAC6 induced by platelet-derived growth factor BB in cultured vascular smooth muscle cells (VSMCs), and p38 mitogen-activated protein kinase inhibition and Akt inhibition decreased the phospho-HDAC6 levels. Moreover, CatS inhibition caused decrease in the levels of the HDAC6 activity in VSMCs in response to platelet-derived growth factor BB. The HDAC6 inhibitor tubastatin A downregulated platelet-derived growth factor–induced VSMC proliferation and migration, whereas HDAC6 overexpression exerted the opposite effect. Tubastatin A also decreased the intimal VSMC proliferation and neointimal hyperplasia in response to injury. Toll-like receptor 2 silencing decreased the phosphorylation levels of p38 mitogen-activated protein kinase, Akt, and HDAC6 and VSMC migration and proliferation. Conclusions— This is the first report detailing cross-interaction between toll-like receptor 2–mediated CatS and HDAC6 during injury-related vascular repair. These data suggest that CatS/HDAC6 could be a potential therapeutic target for the control of vascular diseases that are

  16. Human Amnion-Derived Mesenchymal Stem Cells Protect Human Bone Marrow Mesenchymal Stem Cells against Oxidative Stress-Mediated Dysfunction via ERK1/2 MAPK Signaling

    PubMed Central

    Wang, Yuli; Ma, Junchi; Du, Yifei; Miao, Jing; Chen, Ning

    2016-01-01

    Epidemiological evidence suggests that bone is especially sensitive to oxidative stress, causing bone loss in the elderly. Previous studies indicated that human amnion-derived mesenchymal stem cells (HAMSCs), obtained from human amniotic membranes, exerted osteoprotective effects in vivo. However, the potential of HAMSCs as seed cells against oxidative stress-mediated dysfunction is unknown. In this study, we systemically investigated their antioxidative and osteogenic effects in vitro. Here, we demonstrated that HAMSCs signi cantly promoted the proliferation and osteoblastic differentiation of H2O2-induced human bone marrow mesenchymal stem cells (HBMSCs), and down-regulated the reactive oxygen species (ROS) level. Further, our results suggest that activation of the ERK1/2 MAPK signal transduction pathway is essential for both HAMSCs-mediated osteogenic and protective effects against oxidative stress-induced dysfunction in HBMSCs. U0126, a highly selective inhibitor of extracellular ERK1/2 MAPK signaling, significantly suppressed the antioxidative and osteogenic effects in HAMSCs. In conclusion, by modulating HBMSCs, HAMSCs show a strong potential in treating oxidative stress- mediated bone deficiency. PMID:26743906

  17. Hyperactive RAS/PI3-K/MAPK Signaling Cascade in Migration and Adhesion of Nf1 Haploinsufficient Mesenchymal Stem/Progenitor Cells.

    PubMed

    Zhou, Yuan; He, Yongzheng; Sharma, Richa; Xing, Wen; Estwick, Selina A; Wu, Xiaohua; Rhodes, Steven D; Xu, Mingjiang; Yang, Feng-Chun

    2015-01-01

    Neurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by mutations in the NF1 tumor suppressor gene, which affect approximately 1 out of 3000 individuals. Patients with NF1 suffer from a range of malignant and nonmalignant manifestations such as plexiform neurofibromas and skeletal abnormalities. We previously demonstrated that Nf1 haploinsufficiency in mesenchymal stem/progenitor cells (MSPCs) results in impaired osteoblastic differentiation, which may be associated with the skeletal manifestations in NF1 patients. Here we sought to further ascertain the role of Nf1 in modulating the migration and adhesion of MSPCs of the Nf1 haploinsufficient (Nf1(+/-)) mice. Nf1(+/-) MSPCs demonstrated increased nuclear-cytoplasmic ratio, increased migration, and increased actin polymerization as compared to wild-type (WT) MSPCs. Additionally, Nf1(+/-) MSPCs were noted to have significantly enhanced cell adhesion to fibronectin with selective affinity for CH271 with an overexpression of its complimentary receptor, CD49e. Nf1(+/-) MSPCs also showed hyperactivation of phosphoinositide 3-kinase (PI3-K) and mitogen activated protein kinase (MAPK) signaling pathways when compared to WT MSPCs, which were both significantly reduced in the presence of their pharmacologic inhibitors, LY294002 and PD0325901, respectively. Collectively, our study suggests that both PI3-K and MAPK signaling pathways play a significant role in enhanced migration and adhesion of Nf1 haploinsufficient MSPCs. PMID:26039236

  18. Angiopoietin-Like Protein 7 Promotes an Inflammatory Phenotype in RAW264.7 Macrophages Through the P38 MAPK Signaling Pathway.

    PubMed

    Qian, Tao; Wang, Kun; Cui, Jiesheng; He, Yiduo; Yang, Zaiqing

    2016-06-01

    Angiopoietin-like protein 7 (Angptl7) has been extensively studied for decades, but its potential immune functions have not been characterized. Hence, we investigated the relationship between Angptl7 and inflammation by using RAW264.7 monocyte/macrophage cells. The expression of genes encoding inflammation-associated factors cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, IL-10, and transforming growth factor beta 1 (TGF-β1)) decreased after RAW264.7 cells were treated with anti-Angptl7 polyclonal antibody but increased after the cells were transfected with an Angptl7-expressing plasmid. Angptl7 overexpression enhanced phagocytosis and inhibited the proliferation of RAW264.7 cells. In addition, Angptl7 antagonized the anti-inflammatory effects of TGF-β1 and dexamethasone. Pathway analysis showed that Angptl7 promoted the phosphorylation of both p65 and p38, but only the P38 mitogen-activated protein kinase (MAPK) signaling pathway mediated Angptl7-associated inflammatory functions. Additionally, after 1 week of daily intraperitoneal injections of recombinant TNF-α in a mouse model of peripheral inflammation, Angptl7 expression increased in the mouse eyes. Thus, Angptl7 is a factor that promotes pro-inflammatory responses in macrophages through the P38 MAPK signaling pathway and represents a potential therapeutic target for treatment of inflammatory diseases. PMID:26973239

  19. A novel p38 mitogen activated protein kinase (MAPK) specific inhibitor suppresses respiratory syncytial virus and influenza A virus replication by inhibiting virus-induced p38 MAPK activation.

    PubMed

    Choi, Myung-Soo; Heo, Jinyuk; Yi, Chae-Min; Ban, Junsu; Lee, Noh-Jin; Lee, Na-Rae; Kim, Sang Won; Kim, Nam-Jung; Inn, Kyung-Soo

    2016-08-26

    Respiratory syncytial virus (RSV) and influenza A virus are leading causes of acute lower respiratory infectious disease. Respiratory diseases caused by RSV and influenza A virus result in serious economic burden and life-threatening disease for immunocompromised people. With the revelation that p38 mitogen-activated protein kinase (MAPK) activity in host cells is crucial for infection and replication of RSV and influenza A virus, inhibition of p38 MAPK activity has been suggested as a potential antiviral therapeutic strategy. However, the low selectivity and high toxicity of the p38 MAPK inhibitors necessitate the development of better inhibitors. Herein, we report the synthesis of a novel p38 MAPK inhibitor, NJK14047, with high kinase selectivity. In this work, it was demonstrated that NJK14047 inhibits RSV- and influenza A-mediated p38 MAPK activation in epithelial cells. Subsequently, NJK14047 treatment resulted in decreased viral replication and viral mRNA synthesis. In addition, secretion of interleukin-6 from infected cells was greatly diminished by NJK14047, suggesting that it can ameliorate immunopathological responses to RSV and influenza A. Collectively, the results suggest that NJK14047 has therapeutic potential to treat respiratory viral infection through the suppression of p38 MAPK activation, which is suggested to be an essential step for respiratory virus infection. PMID:27346133

  20. Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling.

    PubMed

    Zhang, Wen-zhou; Jiang, Zheng-kui; He, Bao-xia; Liu, Xian-ben

    2015-08-01

    Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling. PMID:25616905

  1. Maternal separation enhances object location memory and prevents exercise-induced MAPK/ERK signalling in adult Sprague-Dawley rats.

    PubMed

    Makena, Nokuthula; Bugarith, Kishor; Russell, Vivienne A

    2012-09-01

    Early life stress increases the risk of developing psychopathology accompanied by reduced cognitive function in later life. Maternal separation induces anxiety-like behaviours and is associated with impaired memory. On the other hand, exercise has been shown to diminish anxiety-like behaviours and improve cognitive function. The effects of maternal separation and exercise on anxiety, memory and hippocampal proteins were investigated in male Sprague-Dawley rats. Maternal separation produced anxiety-like behaviours which were reversed by exercise. Maternal separation also enhanced object location memory which was not affected by exercise. Exercise did, however, increase synaptophysin and phospho-extracellular signal-regulated kinase (p-ERK) in the hippocampus of non-separated rats and this effect was not observed in maternally separated rats. These findings show that maternal separation selectively enhanced n memory and prevented activation of the MAPK/ERK signalling pathway in the adult rat hippocampus. PMID:22476924

  2. Crosstalk and Signaling Switches in Mitogen-Activated Protein Kinase Cascades

    PubMed Central

    Fey, Dirk; Croucher, David R.; Kolch, Walter; Kholodenko, Boris N.

    2012-01-01

    Mitogen-activated protein kinase (MAPK) cascades control cell fate decisions, such as proliferation, differentiation, and apoptosis by integrating and processing intra- and extracellular cues. However, similar MAPK kinetic profiles can be associated with opposing cellular decisions depending on cell type, signal strength, and dynamics. This implies that signaling by each individual MAPK cascade has to be considered in the context of the entire MAPK network. Here, we develop a dynamic model of feedback and crosstalk for the three major MAPK cascades; extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38), c-Jun N-terminal kinase (JNK), and also include input from protein kinase B (AKT) signaling. Focusing on the bistable activation characteristics of the JNK pathway, this model explains how pathway crosstalk harmonizes different MAPK responses resulting in pivotal cell fate decisions. We show that JNK can switch from a transient to sustained activity due to multiple positive feedback loops. Once activated, positive feedback locks JNK in a highly active state and promotes cell death. The switch is modulated by the ERK, p38, and AKT pathways. ERK activation enhances the dual specificity phosphatase (DUSP) mediated dephosphorylation of JNK and shifts the threshold of the apoptotic switch to higher inputs. Activation of p38 restores the threshold by inhibiting ERK activity via the PP1 or PP2A phosphatases. Finally, AKT activation inhibits the JNK positive feedback, thus abrogating the apoptotic switch and allowing only proliferative signaling. Our model facilitates understanding of how cancerous deregulations disturb MAPK signal processing and provides explanations for certain drug resistances. We highlight a critical role of DUSP1 and DUSP2 expression patterns in facilitating the switching of JNK activity and show how oncogene induced ERK hyperactivity prevents the normal apoptotic switch explaining the failure of certain drugs to

  3. Extracellular Hsp90 serves as a co-factor for MAPK activation and latent viral gene expression during de novo infection by KSHV

    SciTech Connect

    Qin Zhiqiang; DeFee, Michael; Isaacs, Jennifer S.; Parsons, Chris

    2010-07-20

    The Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS), an important cause of morbidity and mortality in immunocompromised patients. KSHV interaction with the cell membrane triggers activation of specific intracellular signal transduction pathways to facilitate virus entry, nuclear trafficking, and ultimately viral oncogene expression. Extracellular heat shock protein 90 localizes to the cell surface (csHsp90) and facilitates signal transduction in cancer cell lines, but whether csHsp90 assists in the coordination of KSHV gene expression through these or other mechanisms is unknown. Using a recently characterized non-permeable inhibitor specifically targeting csHsp90 and Hsp90-specific antibodies, we show that csHsp90 inhibition suppresses KSHV gene expression during de novo infection, and that this effect is mediated largely through the inhibition of mitogen-activated protein kinase (MAPK) activation by KSHV. Moreover, we show that targeting csHsp90 reduces constitutive MAPK expression and the release of infectious viral particles by patient-derived, KSHV-infected primary effusion lymphoma cells. These data suggest that csHsp90 serves as an important co-factor for KSHV-initiated MAPK activation and provide proof-of-concept for the potential benefit of targeting csHsp90 for the treatment or prevention of KSHV-associated illnesses.

  4. Extracellular Hsp90 serves as a co-factor for MAPK activation and latent viral gene expression during de novo infection by KSHV

    PubMed Central

    Qin, Zhiqiang; DeFee, Michael; Isaacs, Jennifer; Parsons, Chris

    2010-01-01

    The Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi’s sarcoma (KS), an important cause of morbidity and mortality in immunocompromised patients. KSHV interaction with the cell membrane triggers activation of specific intracellular signal transduction pathways to facilitate virus entry, nuclear trafficking, and ultimately viral oncogene expression. Extracellular heat shock protein 90 localizes to the cell surface (csHsp90) and facilitates signal transduction in cancer cell lines, but whether csHsp90 assists in the coordination of KSHV gene expression through these or other mechanisms is unknown. Using a recently characterized non-permeable inhibitor specifically targeting csHsp90, we show that csHsp90 inhibition suppresses KSHV gene expression during de novo infection, and that this effect is mediated largely through the inhibition of mitogen-activated protein kinase (MAPK) activation by KSHV. Moreover, we show that targeting csHsp90 reduces constitutive MAPK expression and the release of infectious viral particles by patient-derived, KSHV-infected primary effusion lymphoma cells. These data suggest that csHsp90 serves as an important co-factor for KSHV-initiated MAPK activation and provide proof-of-concept for the potential benefit of targeting csHsp90 for the treatment or prevention of KSHV-associated illnesses. PMID:20451233

  5. Endoplasmic reticulum reorganizations and Ca2+ signaling in maturing and fertilized oocytes of marine protostome worms: the roles of MAPKs and MPF.

    PubMed

    Stricker, Stephen A; Smythe, Toni L

    2003-07-01

    Before a proper Ca(2+) response is produced at fertilization, oocytes typically undergo a maturation process during which their endoplasmic reticulum (ER) is restructured. In marine protostome worms belonging to the phylum Nemertea, the ER of maturing oocytes forms numerous distinct clusters that are about 5 micro m in diameter. After fertilization, mature oocytes with such aggregates generate a normal series of Ca(2+) oscillations and eventually disassemble their ER clusters at around the time that the oscillations cease. Immature oocytes, however, lack prominent ER clusters and fail to exhibit repetitive Ca(2+) oscillations upon insemination, collectively suggesting that cell cycle-related changes in ER structure may play a role in Ca(2+) signaling. To assess the effects of meiotic regulators on the morphology of the ER and the type of Ca(2+) response that is produced at fertilization, nemertean oocytes were treated with pharmacological modulators of mitogen-activated protein kinases (MAPKs) or maturation-promoting factor (MPF) prior to confocal microscopic analyses. Based on such imaging studies and correlative assays of kinase activities, MAPKs of the ERK1/2 type (extracellular signal regulated kinases 1/2) do not seem to be essential for either structural reorganizations of the ER or repetitive Ca(2+) signaling at fertilization. Conversely, MPF levels appear to modulate both ER structure and the capacity to produce normal Ca(2+) oscillations. The significance of these findings is discussed with respect to other reports on ER structure, MPF cycling and Ca(2+) signaling in oocytes of deuterostome animals. PMID:12756171

  6. Tetraspanin Family Member, CD82, Regulates Expression of EZH2 via Inactivation of p38 MAPK Signaling in Leukemia Cells

    PubMed Central

    Nishioka, Chie; Ikezoe, Takayuki; Yang, Jing; Yokoyama, Akihito

    2015-01-01

    Purpose We recently found that the tetraspanin family member, CD82, which is aberrantly expressed in chemotherapy-resistant CD34+/CD38− acute myelogenous leukemia (AML) cells, negatively regulates matrix metalloproteinase 9, and plays an important role in enabling CD34+/CD38− AML cells to adhere to the bone marrow microenvironment. This study explored novel functions of CD82 that contribute to AML progression. Materials and Methods We employed microarray analysis comparing the gene expression profiles between CD34+/CD38− AML cells transduced with CD82 shRNA and CD34+/CD38− AML cells transduced with control shRNA. Real-time RT-PCR and western blot analysis were performed to examine the effect of CD82 knockdown on the expression of the polycomb group member, enhancer of zeste homolog 2 (EZH2), in leukemia cells. A chromatin immunoprecipitation assay was performed to examine the effect of CD82 expression on the amount of EZH2 bound to the promoter regions of tumor suppressor genes in leukemia cells. We also utilized methylation-specific PCR to examine whether CD82 expression influences the methylation status of the tumor suppressor gene promoter regions in leukemia cells. Results Microarray analysis revealed that levels of EZH2 decreased after shRNA-mediated depletion of CD82 in CD34+/CD38− AML cells. Moreover, the antibody-mediated blockade of CD82 in leukemia cells lowered EZH2 expression via activation of p38 MAPK signaling, decreased the amount of EZH2 bound to the promoter regions of the tumor suppressor genes, and inhibited histone H3 lysine 27 trimethylation in these promoter regions, resulting in upregulation of the tumor suppressors at both the mRNA and protein levels. PMID:25955299

  7. The inflammatory response of keratinocytes and its modulation by vitamin D: the role of MAPK signaling pathways.

    PubMed

    Miodovnik, Mor; Koren, Ruth; Ziv, Esther; Ravid, Amiram

    2012-05-01

    The hormonal form of vitamin D, calcitriol, and its analogs are known for their beneficial effect in the treatment of inflammatory skin disorders. Keratinocytes play a role in epidermal inflammatory responses invoked by breeching of the epidermal barrier, by infectious agents and by infiltrating immune cells. We studied the role of calcitriol in the initiation of keratinocyte inflammatory response by the viral and injury mimic polyinosinic-polycytidylic acid (poly(I:C)) and in its maintenance by tumor-necrosis-factor α (TNFα) and investigated the role of the mitogen-activated protein kinase cascades in these processes and their regulation by calcitriol. The inflammatory response of human HaCaT keratinocytes to poly(I:C) or TNFα was assessed by measuring mRNA levels of 13 inflammation-related molecules by real-time PCR microarray and by in-depth investigation of the regulation of interleukin 8, intercellular-adhesion-molecule 1, and TNFα expression. We found that while calcitriol had only a minor effect on the keratinocyte response to poly(I:C) and a modest effect on the early response (2 h) to TNFα, it markedly attenuated the later response (16-24 h) to TNFα. The expression of CYP27B1, the enzyme responsible for calcitriol production, was marginally increased by poly(I:C) and markedly by TNFα treatment. This pattern suggests that while allowing the initial keratinocyte inflammatory response to proceed, calcitriol contributes to its timely resolution. Using pharmacological inhibitors we found that while the p38 MAPK and the extracellular signal-regulated kinase have only a minor role, c-Jun N-terminal kinase plays a pivotal role in the induction of the pro-inflammatory genes and its modulation by calcitriol. PMID:21792935

  8. Role of P38 MAPK on MMP Activity in Photothrombotic Stroke Mice as Measured using an Ultrafast MMP Activatable Probe

    PubMed Central

    Chang, Di; Wang, Yuan-Cheng; Bai, Ying-Ying; Lu, Chun-Qiang; Xu, Ting-Ting; Zhu, Lei; Ju, Shenghong

    2015-01-01

    Matrix metalloproteinases (MMPs) exert a dual effect in ischemic stroke and thus represent an ideal target for detection and therapy. However, to date, all clinical trials of MMP inhibitors have failed, and alternative drug candidates and therapeutic targets are urgently required. Nonetheless, further investigations are limited by the lack of non-invasive imaging techniques. Here, we report a novel, fast and ultrasensitive MMP activatable optical imaging probe for the dynamic visualization of MMP activity in photothrombotic stroke mice. This probe provides a significant signal enhancement in as little as 15 min, with the highest signal intensity occurring at 1 h post-injection, and shows high sensitivity in measuring MMP activity alterations, which makes it specifically suitable for the real-time visualization of MMP activity and drug discovery in preclinical research. Moreover, using this probe, we successfully demonstrate that the regulation of the p38 mitogen-activated protein kinase (MAPK) signal pathway is capable of modulating MMP activity after stroke, revealing a novel regulatory mechanism of postischemic brain damage and overcoming the limitations of traditional therapeutic strategies associated with MMP inhibitors by using a non-invasive molecular imaging method. PMID:26581247

  9. BMP7 retards peripheral myelination by activating p38 MAPK in Schwann cells

    PubMed Central

    Liu, Xiaoyu; Zhao, Yahong; Peng, Su; Zhang, Shuqiang; Wang, Meihong; Chen, Yeyue; Zhang, Shan; Yang, Yumin; Sun, Cheng

    2016-01-01

    Schwann cell (SC) myelination is pivotal for the proper physiological functioning of the nervous system, but the underlying molecular mechanism remains less well understood. Here, we showed that the expression of bone morphogenetic protein 7 (BMP7) inversely correlates with myelin gene expression during peripheral myelination, which suggests that BMP7 is likely a negative regulator for myelin gene expression. Our experiments further showed that the application of BMP7 attenuates the cAMP induced myelin gene expression in SCs. Downstream pathway analysis suggested that both p38 MAPK and SMAD are activated by exogenous BMP7 in SCs. The pharmacological intervention and gene silence studies revealed that p38 MAPK, not SMAD, is responsible for BMP7-mediated suppression of myelin gene expression. In addition, c-Jun, a potential negative regulator for peripheral myelination, was up-regulated by BMP7. In vivo experiments showed that BMP7 treatment greatly impaired peripheral myelination in newborn rats. Together, our results established that BMP7 is a negative regulator for peripheral myelin gene expression and that p38 MAPK/c-Jun axis might be the main downstream target of BMP7 in this process. PMID:27491681

  10. BMP7 retards peripheral myelination by activating p38 MAPK in Schwann cells.

    PubMed

    Liu, Xiaoyu; Zhao, Yahong; Peng, Su; Zhang, Shuqiang; Wang, Meihong; Chen, Yeyue; Zhang, Shan; Yang, Yumin; Sun, Cheng

    2016-01-01

    Schwann cell (SC) myelination is pivotal for the proper physiological functioning of the nervous system, but the underlying molecular mechanism remains less well understood. Here, we showed that the expression of bone morphogenetic protein 7 (BMP7) inversely correlates with myelin gene expression during peripheral myelination, which suggests that BMP7 is likely a negative regulator for myelin gene expression. Our experiments further showed that the application of BMP7 attenuates the cAMP induced myelin gene expression in SCs. Downstream pathway analysis suggested that both p38 MAPK and SMAD are activated by exogenous BMP7 in SCs. The pharmacological intervention and gene silence studies revealed that p38 MAPK, not SMAD, is responsible for BMP7-mediated suppression of myelin gene expression. In addition, c-Jun, a potential negative regulator for peripheral myelination, was up-regulated by BMP7. In vivo experiments showed that BMP7 treatment greatly impaired peripheral myelination in newborn rats. Together, our results established that BMP7 is a negative regulator for peripheral myelin gene expression and that p38 MAPK/c-Jun axis might be the main downstream target of BMP7 in this process. PMID:27491681

  11. Conjugated linoleic acids suppress inflammatory response and ICAM-1 expression through inhibition of NF-κB and MAPK signaling in human bronchial epithelial cells.

    PubMed

    Huang, Wen-Chung; Tu, Rong-Syuan; Chen, Ya-Ling; Tsai, Yun-Yun; Lin, Chwan-Fwu; Liou, Chian-Jiun

    2016-04-20

    Conjugated linoleic acids (CLAs) comprise a group of natural unsaturated fatty acids. CLA was reported to have anti-asthma, anti-adiposity, and anti-tumor effects. The present study aimed to evaluate the suppressive effects of cis-9, trans-11-CLA (c9,t11-CLA) on the expression of proinflammatory cytokines and intercellular adhesion molecule 1 (ICAM-1) in TNF-α-stimulated human bronchial epithelial (BEAS-2B) cells. After treating with various doses of c9,t11-CLA (12.5-100 μg ml(-1)), BEAS-2B cells were induced into an inflamed state by adding TNF-α or TNF-α/IL-4. The presence of c9,t11-CLA significantly suppressed the secretion of cytokines IL-6, IL-8, CCL5, and MCP-1. We also found that c9,t11-CLA inhibited ICAM-1 expression, and decreased monocyte adhesion to inflamed bronchial epithelial cells. Interestingly, c9,t11-CLA attenuated the phosphorylation of mitogen-activated protein kinase (MAPK) and down-regulated the activation of nuclear factor-κB (NF-κB). These results suggested that the anti-inflammatory effects of c9,t11-CLA were mediated by inhibiting proinflammatory cytokines, chemokines, and ICAM-1 expression by blocking NF-κB transcription regulation and by attenuating MAPK signaling pathways. PMID:27007063

  12. Pathological axonal death through a MAPK cascade that triggers a local energy deficit

    PubMed Central

    Yang, Jing; Wu, Zhuhao; Renier, Nicolas; Simon, David J.; Uryu, Kunihiro; Park, David S.; Greer, Peter A.; Tournier, Cathy; Davis, Roger J.; Tessier-Lavigne, Marc

    2015-01-01

    Summary Axonal death disrupts functional connectivity of neural circuits and is a critical feature of many neurodegenerative disorders. Pathological axon degeneration often occurs independently of known programmed death pathways, but the underlying molecular mechanisms remain largely unknown. Using traumatic injury as a model, we systematically investigate mitogen-activated protein kinase (MAPK) families, and delineate a MAPK cascade that represents the early degenerative response to axonal injury. The adaptor protein Sarm1 is required for activation of this MAPK cascade, and this Sarm1-MAPK pathway disrupts axonal energy homeostasis, leading to ATP depletion before physical breakdown of damaged axons. The protective cytoNmnat1/Wlds protein inhibits activation of this MAPK cascade. Further, MKK4, a key component in the Sarm1-MAPK pathway, is antagonized by AKT signaling, which modulates the degenerative response by limiting activation of downstream JNK signaling. Our results reveal a regulatory mechanism that integrates distinct signals to instruct pathological axon degeneration. PMID:25594179

  13. Copper oxide nanoparticles aggravate airway inflammation and mucus production in asthmatic mice via MAPK signaling.

    PubMed

    Park, Ji-Won; Lee, In-Chul; Shin, Na-Rae; Jeon, Chan-Mi; Kwon, Ok-Kyoung; Ko, Je-Won; Kim, Jong-Choon; Oh, Sei-Ryang; Shin, In-Sik; Ahn, Kyung-Seop

    2016-05-01

    Copper oxide nanoparticles (CuONPs), metal oxide nanoparticles were used in multiple applications including wood preservation, antimicrobial textiles, catalysts for carbon monoxide oxidation and heat transfer fluid in machines. We investigated the effects of CuONPs on the respiratory system in Balb/c mice. In addition, to investigate the effects of CuONPs on asthma development, we used a murine model of ovalbumin (OVA)-induced asthma. CuONPs markedly increased airway hyper-responsiveness (AHR), inflammatory cell counts, proinflammatory cytokines and reactive oxygen species (ROS). CuONPs induced airway inflammation and mucus secretion with increases in phosphorylation of the MAPKs (Erk, JNK and p38). In the OVA-induced asthma model, CuONPs aggravated the increased AHR, inflammatory cell count, proinflammatory cytokines, ROS and immunoglobulin E induced by OVA exposure. In addition, CuONPs markedly increased inflammatory cell infiltration into the lung and mucus secretions, and MAPK phosphorylation was elevated compared to OVA-induced asthmatic mice. Taken together, CuONPs exhibited toxicity on the respiratory system, which was associated with the MAPK phosphorylation. In addition, CuONPs exposure aggravated the development of asthma. We conclude that CuONPs exposure has a potential toxicity in humans with respiratory disease. PMID:26472121

  14. Gain-of-Function Mutations in the Toll-Like Receptor Pathway: TPL2-Mediated ERK1/ERK2 MAPK Activation, a Path to Tumorigenesis in Lymphoid Neoplasms?

    PubMed Central

    Rousseau, Simon; Martel, Guy

    2016-01-01

    Lymphoid neoplasms form a family of cancers affecting B-cells, T-cells, and NK cells. The Toll-Like Receptor (TLR) signaling adapter molecule MYD88 is the most frequently mutated gene in these neoplasms. This signaling adaptor relays signals from TLRs to downstream effector pathways such as the Nuclear Factor kappa B (NFκB) and Mitogen Activated Protein Kinase (MAPK) pathways to regulate innate immune responses. Gain-of-function mutations such as MYD88[L265P] activate downstream signaling pathways in absence of cognate ligands for TLRs, resulting in increased cellular proliferation and survival. This article reports an analysis of non-synonymous somatic mutations found in the TLR signaling network in lymphoid neoplasms. In accordance with previous reports, mutations map to MYD88 pro-inflammatory signaling and not TRIF-mediated Type I IFN production. Interestingly, the analysis of somatic mutations found downstream of the core TLR-signaling network uncovered a strong association with the ERK1/2 MAPK cascade. In support of this analysis, heterologous expression of MYD88[L265P] in HEK293 cells led to ERK1/2 MAPK phosphorylation in addition to NFκB activation. Moreover, this activation is dependent on the protein kinase Tumor Promoting Locus 2 (TPL2), activated downstream of the IKK complex. Activation of ERK1/2 would then lead to activation, amongst others, of MYC and hnRNPA1, two proteins previously shown to contribute to tumor formation in lymphoid neoplasms. Taken together, this analysis suggests that TLR-mediated ERK1/2 activation via TPL2 may be a novel path to tumorigenesis. Therefore, the hypothesis proposed is that inhibition of ERK1/2 MAPK activation would prevent tumor growth downstream of MYD88[L265]. It will be interesting to test whether pharmacological inhibitors of this pathway show efficacy in primary tumor cells derived from hematologic malignancies such as Waldenstrom's Macroglobulinemia, where the majority of the cells carry the MYD88[L265P

  15. Transcriptional suppression of IL-27 production by Mycobacterium tuberculosis-activated p38 MAPK via inhibition of AP-1 binding.

    PubMed

    Zhang, Jidong; Qian, Xuesong; Ning, Huan; Eickhoff, Christopher S; Hoft, Daniel F; Liu, Jianguo

    2011-05-15

    Mycobacterium tuberculosis remains a major global challenge to human health care, and the mechanisms of how M. tuberculosis evades host immune surveillance to favor its survival are still largely unknown. In this study, we found that bacillus Calmette-Guérin (BCG) and viable M. tuberculosis as well as M. tuberculosis lysates could activate IL-27 expression in human and mouse macrophages by induction of p28 subunit transcription. However, in parallel with these effects, BCG and M. tuberculosis lysate stimulation of macrophages induced activation of p38 MAPK signaling molecules MLK3/MKK3/MK2 to prevent maximal IL-27 production. M. tuberculosis lysate-induced p28 transcription was dependent on MyD88 signaling pathway. AP-1/c-Fos was shown to bind directly to the p28 promoter and induce p28 expression after M. tuberculosis lysate stimulation. Overexpression of p38α inhibited the binding of c-Fos to the p28 promoter but had no effect on c-Fos protein expression or phosphorylation in response to M. tuberculosis lysate stimulation. Furthermore, blockade of p38 by SB203580 enhanced M. tuberculosis-induced AP-1 binding to the p28 promoter. Importantly, we show that adding exogenous IL-27 to increase the levels produced by PBMCs stimulated with live mycobacteria enhanced the ability of BCG-expanded T cells to inhibit intracellular mycobacterial growth in human macrophages. Taken together, our data demonstrate that mycobacterial stimulation induces both IL-27 production and p38 MAPK activation. Strategies designed to tip the balance toward positive regulation of p28 induction by mycobacteria could lead to enhanced protective tuberculosis immunity. PMID:21482740

  16. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    SciTech Connect

    Li, Yanyan; Gao, Chao; Shi, Yanru; Tang, Yuhan; Liu, Liang; Xiong, Ting; Du, Min; Xing, Mingyou; Liu, Liegang; Yao, Ping

    2013-11-15

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD.

  17. Regulation of H-Ras-driven MAPK signaling, transformation and tumorigenesis, but not PI3K signaling and tumor progression, by plasma membrane microdomains.

    PubMed

    Michael, J V; Wurtzel, J G T; Goldfinger, L E

    2016-01-01

    In this study, we assessed the contributions of plasma membrane (PM) microdomain targeting to the functions of H-Ras and R-Ras. These paralogs have identical effector-binding regions, but variant C-terminal targeting domains (tDs) which are responsible for lateral microdomain distribution: activated H-Ras targets to lipid ordered/disordered (Lo/Ld) domain borders, and R-Ras to Lo domains (rafts). We hypothesized that PM distribution regulates Ras-effector interactions and downstream signaling. We used tD swap mutants, and assessed effects on signal transduction, cell proliferation, transformation and tumorigenesis. R-Ras harboring the H-Ras tD (R-Ras-tH) interacted with Raf, and induced Raf and ERK phosphorylation similar to H-Ras. R-Ras-tH stimulated proliferation and transformation in vitro, and these effects were blocked by both MEK and PI3K inhibition. Conversely, the R-Ras tD suppressed H-Ras-mediated Raf activation and ERK phosphorylation, proliferation and transformation. Thus, Ras access to Raf at the PM is sufficient for MAPK activation and is a principal component of Ras mitogenesis and transformation. Fusion of the R-Ras extended N-terminal domain to H-Ras had no effect on proliferation, but inhibited transformation and tumor progression, indicating that the R-Ras N-terminus also contributes negative regulation to these Ras functions. PI3K activation was tD independent; however, H-Ras was a stronger activator of PI3K than R-Ras, with either tD. PI3K inhibition nearly ablated transformation by R-Ras-tH, H-Ras and H-Ras-tR, whereas MEK inhibition had a modest effect on Ras-tH-driven transformation but no effect on H-Ras-tR transformation. R-Ras-tH supported tumor initiation, but not tumor progression. While H-Ras-tR-induced transformation was reduced relative to H-Ras, tumor progression was robust and similar to H-Ras. H-Ras tumor growth was moderately suppressed by MEK inhibition, which had no effect on H-Ras-tR tumor growth. In contrast, PI3K inhibition

  18. MicroRNA-29a suppresses cardiac fibroblasts proliferation via targeting VEGF-A/MAPK signal pathway.

    PubMed

    Tao, Hui; Chen, Ze-Wen; Yang, Jing-Jing; Shi, Kai-Hu

    2016-07-01

    Cardiac fibroblasts proliferation is the most important pathophysiological character of cardiac fibrosis while the underlying mechanisms are still incompletely known. MicroRNAs (miRNAs) regulate gene expression by binding to specific sites. Studies have been indicated that miRNA-29a play a key role in cardiac fibrosis. VEGF-A carries out its functions through MAPK signaling pathway in cardiac fibrosis. Existing proofs predict that the VEGF-A is one of the potential targets of miRNA-29a. We therefore probe the role of miRNA-29a and its latent target VEGF-A during cardiac fibrosis. In our study, miRNA-29a was down-regulated while VEGF-A was up-regulated in cardiac fibrosis tissues. The rat cardiac fibroblasts that were transfected with miRNA-29a inhibitor exhibited low-expression of miRNA-29a, enhanced VEGF-A protein and mRNA expression. Nevertheless, the cardiac fibroblasts transfected with miRNA-29a mimics obtained the opposite expression result. Furthermore, over-expression of miRNA-29a suppresses cardiac fibroblasts proliferation. In conclusion, these results suggested that miRNA-29a suppresses cardiac fibrosis and fibroblasts proliferation via targeting VEGF-A/MAPK signal pathway implicating that miRNA-29a might play a role in the treatment of cardiac fibrosis. PMID:27060017

  19. Muscle protein synthesis, mTORC1/MAPK/Hippo signaling, and capillary density are altered by blocking of myostatin and activins.

    PubMed

    Hulmi, Juha J; Oliveira, Bernardo M; Silvennoinen, Mika; Hoogaars, Willem M H; Ma, Hongqiang; Pierre, Philippe; Pasternack, Arja; Kainulainen, Heikki; Ritvos, Olli

    2013-01-01

    Loss of muscl