Science.gov

Sample records for activates nuclear factor

  1. Nuclear factor Y regulates ancient budgerigar hepadnavirus core promoter activity.

    PubMed

    Shen, Zhongliang; Liu, Yanfeng; Luo, Mengjun; Wang, Wei; Liu, Jing; Liu, Wei; Pan, Shaokun; Xie, Youhua

    2016-09-16

    Endogenous viral elements (EVE) in animal genomes are the fossil records of ancient viruses and provide invaluable information on the origin and evolution of extant viruses. Extant hepadnaviruses include avihepadnaviruses of birds and orthohepadnaviruses of mammals. The core promoter (Cp) of hepadnaviruses is vital for viral gene expression and replication. We previously identified in the budgerigar genome two EVEs that contain the full-length genome of an ancient budgerigar hepadnavirus (eBHBV1 and eBHBV2). Here, we found eBHBV1 Cp and eBHBV2 Cp were active in several human and chicken cell lines. A region from nt -85 to -11 in eBHBV1 Cp was critical for the promoter activity. Bioinformatic analysis revealed a putative binding site of nuclear factor Y (NF-Y), a ubiquitous transcription factor, at nt -64 to -50 in eBHBV1 Cp. The NF-Y core binding site (ATTGG, nt -58 to -54) was essential for eBHBV1 Cp activity. The same results were obtained with eBHBV2 Cp and duck hepatitis B virus Cp. The subunit A of NF-Y (NF-YA) was recruited via the NF-Y core binding site to eBHBV1 Cp and upregulated the promoter activity. Finally, the NF-Y core binding site is conserved in the Cps of all the extant avihepadnaviruses but not of orthohepadnaviruses. Interestingly, a putative and functionally important NF-Y core binding site is located at nt -21 to -17 in the Cp of human hepatitis B virus. In conclusion, our findings have pinpointed an evolutionary conserved and functionally critical NF-Y binding element in the Cps of avihepadnaviruses. PMID:27501758

  2. Mapping neural circuits with activity-dependent nuclear import of a transcription factor.

    PubMed

    Masuyama, Kaoru; Zhang, Yi; Rao, Yi; Wang, Jing W

    2012-03-01

    Abstract: Nuclear factor of activated T cells (NFAT) is a calcium-responsive transcription factor. We describe here an NFAT-based neural tracing method-CaLexA (calcium-dependent nuclear import of LexA)-for labeling active neurons in behaving animals. In this system, sustained neural activity induces nuclear import of the chimeric transcription factor LexA-VP16-NFAT, which in turn drives green fluorescent protein (GFP) reporter expression only in active neurons. We tested this system in Drosophila and found that volatile sex pheromones excite specific neurons in the olfactory circuit. Furthermore, complex courtship behavior associated with multi-modal sensory inputs activated neurons in the ventral nerve cord. This method harnessing the mechanism of activity-dependent nuclear import of a transcription factor can be used to identify active neurons in specific neuronal population in behaving animals. PMID:22236090

  3. The nuclear factor SPBP contains different functional domains and stimulates the activity of various transcriptional activators.

    PubMed

    Rekdal, C; Sjøttem, E; Johansen, T

    2000-12-22

    SPBP (stromelysin-1 platelet-derived growth factor-responsive element binding protein) was originally cloned from a cDNA expression library by virtue of its ability to bind to a platelet-derived growth factor-responsive element in the human stromelysin-1 promoter. A 937-amino acid-long protein was deduced from a 3995-nucleotide murine cDNA sequence. By analyses of both human and murine cDNAs, we now show that SPBP is twice as large as originally found. The human SPBP gene contains six exons and is located on chromosome 22q13.1-13.3. Two isoforms differing in their C termini are expressed due to alternative splicing. PCR analyses of multitissue cDNA panels showed that SPBP is expressed in most tissues except for ovary and prostate. Functional mapping revealed that SPBP is a nuclear, multidomain protein containing an N-terminal region with transactivating ability, a novel type of DNA-binding domain containing an AT hook motif, and a bipartite nuclear localization signal as well as a C-terminal zinc finger domain. This type of zinc finger domain is also found in the trithorax family of chromatin-based transcriptional regulator proteins. Using cotransfection experiments, we find that SPBP enhances the transcriptional activity of various transcription factors such as c-Jun, Ets1, Sp1, and Pax6. Hence, SPBP seems to act as a transcriptional coactivator. PMID:10995766

  4. [Conception for permanent activation of nuclear factor kbeta as molecular basis for metabolic syndrom pathogenesis].

    PubMed

    Kaidashev, I P

    2013-01-01

    The analysis of new data concerning the development of pathology due to the community of evolutionary new pathological factors was done. Author provides the comparison of well-known and new definition for "metabolic syndrome" and diagnostic criteria of this pathology. The conception for permanent activation of nuclear factor kbeta as possible typic pathological process was discussed. Suppose that NF-kbeta is the possible key molecule in the initiation and formation of "vicious circle"--insulinresistance--inflammation--atherosclerosis. PMID:24340624

  5. Nuclear localization of platelet-activating factor receptor controls retinal neovascularization

    PubMed Central

    K Bhosle, Vikrant; Rivera, José Carlos; Zhou, Tianwei (Ellen); Omri, Samy; Sanchez, Melanie; Hamel, David; Zhu, Tang; Rouget, Raphael; Rabea, Areej Al; Hou, Xin; Lahaie, Isabelle; Ribeiro-da-Silva, Alfredo; Chemtob, Sylvain

    2016-01-01

    Platelet-activating factor (PAF) is a pleiotropic phospholipid with proinflammatory, procoagulant and angiogenic actions on the vasculature. We and others have reported the presence of PAF receptor (Ptafr) at intracellular sites such as the nucleus. However, mechanisms of localization and physiologic functions of intracellular Ptafr remain poorly understood. We hereby identify the importance of C-terminal motif of the receptor and uncover novel roles of Rab11a GTPase and importin-5 in nuclear translocation of Ptafr in primary human retinal microvascular endothelial cells. Nuclear localization of Ptafr is independent of exogenous PAF stimulation as well as intracellular PAF biosynthesis. Moreover, nuclear Ptafr is responsible for the upregulation of unique set of growth factors, including vascular endothelial growth factor, in vitro and ex vivo. We further corroborate the intracrine PAF signaling, resulting in angiogenesis in vivo, using Ptafr antagonists with distinct plasma membrane permeability. Collectively, our findings show that nuclear Ptafr translocates in an agonist-independent manner, and distinctive functions of Ptafr based on its cellular localization point to another dimension needed for pharmacologic selectivity of drugs. PMID:27462464

  6. Nuclear Factor of Activated T-cells (NFAT) plays a role in SV40 infection

    PubMed Central

    Manley, Kate; O’Hara, Bethany A; Atwood, Walter J

    2008-01-01

    Recent evidence highlighted a role for the transcription factor, Nuclear Factor of Activated T-cells (NFAT), in the transcription of the human polyomavirus JCV. Here we show that NFAT is also important in the transcriptional control of the related polyomavirus, Simian Virus 40 (SV40). Inhibition of NFAT activity reduced SV40 infection of Vero, 293A and HeLa cells, and this block occurred at the stage of viral transcription. Both NFAT3 and NFAT4 bound to the SV40 promoter through κB sites located within the 72bp repeated enhancer region. In Vero cells NFAT was involved in late transcription, but in HeLa and 293A cells both early and late viral transcription required NFAT activity. SV40 large T-Ag was found to increase NFAT activity and provided a positive feedback loop to transactivate the SV40 promoter. PMID:18031784

  7. Nuclear factor of activated T-cells (NFAT) plays a role in SV40 infection

    SciTech Connect

    Manley, Kate; O'Hara, Bethany A.; Atwood, Walter J.

    2008-03-01

    Recent evidence highlighted a role for the transcription factor, nuclear factor of activated T-cells (NFAT), in the transcription of the human polyomavirus JCV. Here we show that NFAT is also important in the transcriptional control of the related polyomavirus, Simian Virus 40 (SV40). Inhibition of NFAT activity reduced SV40 infection of Vero, 293A, and HeLa cells, and this block occurred at the stage of viral transcription. Both NFAT3 and NFAT4 bound to the SV40 promoter through {kappa}B sites located within the 72 bp repeated enhancer region. In Vero cells, NFAT was involved in late transcription, but in HeLa and 293A cells both early and late viral transcription required NFAT activity. SV40 large T-Ag was found to increase NFAT activity and provided a positive feedback loop to transactivate the SV40 promoter.

  8. Protein kinase A-dependent phosphorylation modulates DNA-binding activity of hepatocyte nuclear factor 4.

    PubMed

    Viollet, B; Kahn, A; Raymondjean, M

    1997-08-01

    Hepatocyte nuclear factor 4 (HNF4), a liver-enriched transcription factor of the nuclear receptor superfamily, is critical for development and liver-specific gene expression. Here, we demonstrate that its DNA-binding activity is modulated posttranslationally by phosphorylation in vivo, ex vivo, and in vitro. In vivo, HNF4 DNA-binding activity is reduced by fasting and by inducers of intracellular cyclic AMP (cAMP) accumulation. A consensus protein kinase A (PKA) phosphorylation site located within the A box of its DNA-binding domain has been identified, and its role in phosphorylation-dependent inhibition of HNF4 DNA-binding activity has been investigated. Mutants of HNF4 in which two potentially phosphorylatable serines have been replaced by either neutral or charged amino acids were able to bind DNA in vitro with affinity similar to that of the wild-type protein. However, phosphorylation by PKA strongly repressed the binding affinity of the wild-type factor but not that of HNF4 mutants. Accordingly, in transfection assays, expression vectors for the mutated HNF4 proteins activated transcription more efficiently than that for the wild-type protein-when cotransfected with the PKA catalytic subunit expression vector. Therefore, HNF4 is a direct target of PKA which might be involved in the transcriptional inhibition of liver genes by cAMP inducers. PMID:9234678

  9. Protein kinase A-dependent phosphorylation modulates DNA-binding activity of hepatocyte nuclear factor 4.

    PubMed Central

    Viollet, B; Kahn, A; Raymondjean, M

    1997-01-01

    Hepatocyte nuclear factor 4 (HNF4), a liver-enriched transcription factor of the nuclear receptor superfamily, is critical for development and liver-specific gene expression. Here, we demonstrate that its DNA-binding activity is modulated posttranslationally by phosphorylation in vivo, ex vivo, and in vitro. In vivo, HNF4 DNA-binding activity is reduced by fasting and by inducers of intracellular cyclic AMP (cAMP) accumulation. A consensus protein kinase A (PKA) phosphorylation site located within the A box of its DNA-binding domain has been identified, and its role in phosphorylation-dependent inhibition of HNF4 DNA-binding activity has been investigated. Mutants of HNF4 in which two potentially phosphorylatable serines have been replaced by either neutral or charged amino acids were able to bind DNA in vitro with affinity similar to that of the wild-type protein. However, phosphorylation by PKA strongly repressed the binding affinity of the wild-type factor but not that of HNF4 mutants. Accordingly, in transfection assays, expression vectors for the mutated HNF4 proteins activated transcription more efficiently than that for the wild-type protein-when cotransfected with the PKA catalytic subunit expression vector. Therefore, HNF4 is a direct target of PKA which might be involved in the transcriptional inhibition of liver genes by cAMP inducers. PMID:9234678

  10. Salicylates Inhibit Flavivirus Replication Independently of Blocking Nuclear Factor Kappa B Activation

    PubMed Central

    Liao, Ching-Len; Lin, Yi-Ling; Wu, Bi-Ching; Tsao, Chang-Huei; Wang, Mei-Chuan; Liu, Chiu-I; Huang, Yue-Ling; Chen, Jui-Hui; Wang, Jia-Pey; Chen, Li-Kuang

    2001-01-01

    Flaviviruses comprise a positive-sense RNA genome that replicates exclusively in the cytoplasm of infected cells. Whether flaviviruses require an activated nuclear factor(s) to complete their life cycle and trigger apoptosis in infected cells remains elusive. Flavivirus infections quickly activate nuclear factor kappa B (NF-κB), and salicylates have been shown to inhibit NF-κB activation. In this study, we investigated whether salicylates suppress flavivirus replication and virus-induced apoptosis in cultured cells. In a dose-dependent inhibition, we found salicylates within a range of 1 to 5 mM not only restricted flavivirus replication but also abrogated flavivirus-triggered apoptosis. However, flavivirus replication was not affected by a specific NF-κB peptide inhibitor, SN50, and a proteosome inhibitor, lactacystin. Flaviviruses also replicated and triggered apoptosis in cells stably expressing IκBα-ΔN, a dominant-negative mutant that antagonizes NF-κB activation, as readily as in wild-type BHK-21 cells, suggesting that NF-κB activation is not essential for either flavivirus replication or flavivirus-induced apoptosis. Salicylates still diminished flavivirus replication and blocked apoptosis in the same IκBα-ΔN cells. This inhibition of flaviviruses by salicylates could be partially reversed by a specific p38 mitogen-activated protein (MAP) kinase inhibitor, SB203580. Together, these results show that the mechanism by which salicylates suppress flavivirus infection may involve p38 MAP kinase activity but is independent of blocking the NF-κB pathway. PMID:11483726

  11. Multiple phosphorylation events control chicken ovalbumin upstream promoter transcription factor I orphan nuclear receptor activity.

    PubMed

    Gay, Frédérique; Baráth, Peter; Desbois-Le Péron, Christine; Métivier, Raphaël; Le Guével, Rémy; Birse, Darcy; Salbert, Gilles

    2002-06-01

    Chicken ovalbumin upstream promoter transcription factor I (COUP-TFI) is an orphan member of the nuclear hormone receptor superfamily that comprises key regulators of many biological functions, such as embryonic development, metabolism, homeostasis, and reproduction. Although COUP-TFI can both actively silence gene transcription and antagonize the functions of various other nuclear receptors, the COUP-TFI orphan receptor also acts as a transcriptional activator in certain contexts. Moreover, COUP-TFI has recently been shown to serve as an accessory factor for some ligand-bound nuclear receptors, suggesting that it may modulate, both negatively and positively, a wide range of hormonal responses. In the absence of any identified cognate ligand, the mechanisms involved in the regulation of COUP-TFI activity remain unclear. The elucidation of several putative phosphorylation sites for MAPKs, PKC, and casein kinase II within the sequence of this orphan receptor led us to investigate phosphorylation events regulating the various COUP-TFI functions. After showing that COUP-TFI is phosphorylated in vivo, we provide evidence that in vivo inhibition of either MAPK or PKC signaling pathway leads to a specific and pronounced decrease in COUP-TFI-dependent transcriptional activation of the vitronectin gene promoter. Focusing on the molecular mechanisms underlying the MAPK- and PKC-mediated regulation of COUP-TFI activity, we show that COUP-TFI can be directly targeted by PKC and MAPK. These phosphorylation events differentially modulate COUP-TFI functions: PKC-mediated phosphorylation enhances COUP-TFI affinity for DNA and MAPK-mediated phosphorylation positively regulates the transactivation function of COUP-TFI, possibly through enhancing specific coactivator recruitment. These data provide evidence that COUP-TFI is likely to integrate distinct signaling pathways and raise the possibility that multiple extracellular signals influence biological processes controlled by COUP

  12. A new bibenzyl derivative with nuclear factor-kappaB inhibitory activity from Schefflera arboricola (Araliaceae).

    PubMed

    Li, Hang; Cai, Zi-Zhe; Zhu, Long-Ping; Xu, Xin-Jun; Chen, Shao-Rui; Yang, De-Po; Zhao, Zhi-Min

    2015-01-01

    A new bibenzyl derivative (1), 4-acetoxy-3,5,3',4'-tetramethoxybibenzyl, along with eight known compounds (2-9), was isolated from the twigs and leaves of Schefflera arboricola (Araliaceae). The isolated compounds were elucidated mainly by means of one-dimensional, two-dimensional NMR and MS, and by comparison with the literature data. Compounds 2-5 and 7-9 are first reported from this plant. In the in vitro assays, compound 1 displayed moderate nuclear factor-kappaB inhibitory activity. PMID:25427246

  13. Activation of the orphan nuclear receptor steroidogenic factor 1 by oxysterols

    PubMed Central

    Lala, Deepak S.; Syka, Peter M.; Lazarchik, Steven B.; Mangelsdorf, David J.; Parker, Keith L.; Heyman, Richard A.

    1997-01-01

    Steroidogenic factor 1 (SF-1), an orphan member of the intracellular receptor superfamily, plays an essential role in the development and function of multiple endocrine organs. It is expressed in all steroidogenic tissues where it regulates the P450 steroidogenic genes to generate physiologically active steroids. Although many of the functions of SF-1 in vivo have been defined, an unresolved question is whether a ligand modulates its transcriptional activity. Here, we show that 25-, 26-, or 27-hydroxycholesterol, known suppressors of cholesterol biosynthesis, enhance SF-1-dependent transcriptional activity. This activation is dependent upon the SF-1 activation function domain, and, is specific for SF-1 as several other receptors do not respond to these molecules. The oxysterols activate at concentrations comparable to those previously shown to inhibit cholesterol biosynthesis, and, can be derived from cholesterol by P450c27, an enzyme expressed within steroidogenic tissues. Recent studies have shown that the nuclear receptor LXR also is activated by oxysterols. We demonstrate that different oxysterols differ in their rank order potency for these two receptors, with 25-hydroxycholesterol preferentially activating SF-1 and 22(R)-hydroxycholesterol preferentially activating LXR. These results suggest that specific oxysterols may mediate transcriptional activation via different intracellular receptors. Finally, ligand-dependent transactivation of SF-1 by oxysterols may play an important role in enhancing steroidogenesis in vivo. PMID:9144161

  14. Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells.

    PubMed

    Hideshima, Teru; Ikeda, Hiroshi; Chauhan, Dharminder; Okawa, Yutaka; Raje, Noopur; Podar, Klaus; Mitsiades, Constantine; Munshi, Nikhil C; Richardson, Paul G; Carrasco, Ruben D; Anderson, Kenneth C

    2009-07-30

    Bortezomib is a proteasome inhibitor with remarkable preclinical and clinical antitumor activity in multiple myeloma (MM) patients. The initial rationale for its use in MM was inhibition of nuclear factor (NF)-kappaB activity by blocking proteasomal degradation of inhibitor of kappaBalpha (IkappaBalpha). Bortezomib inhibits inducible NF-kappaB activity; however, its impact on constitutive NF-kappaB activity in MM cells has not yet been defined. In this study, we demonstrate that bortezomib significantly down-regulated IkappaBalpha expression and triggered NF-kappaB activation in MM cell lines and primary tumor cells from MM patients. Importantly, no inhibition of p65 (RelA) nuclear translocation was recognized after bortezomib treatment in a murine xenograft model bearing human MM cells. Bortezomib-induced NF-kappaB activation was mediated via the canonical pathway. Moreover, other classes of proteasome inhibitors also induced IkappaBalpha down-regulation associated with NF-kappaB activation. Molecular mechanisms whereby bortezomib induced IkappaBalpha down-regulation were further examined. Bortezomib triggered phosphorylation of IkappaB kinase (IKKbeta) and its upstream receptor-interacting protein 2, whereas IKKbeta inhibitor MLN120B blocked bortezomib-induced IkappaBalpha down-regulation and NF-kappaB activation, indicating receptor-interacting protein 2/IKKbeta signaling plays crucial role in bortezomib-induced NF-kappaB activation. Moreover, IKKbeta inhibitors enhanced bortezomib-induced cytotoxicity. Our studies therefore suggest that bortezomib-induced cytotoxicity cannot be fully attributed to inhibition of canonical NF-kappaB activity in MM cells. PMID:19436050

  15. Activation of nuclear factor-kappaB in dogs with chronic enteropathies.

    PubMed

    Luckschander, Nicole; Hall, Jean A; Gaschen, Frédéric; Forster, Ursula; Wenzlow, Nanny; Hermann, Pascal; Allenspach, Karin; Dobbelaere, Dirk; Burgener, Iwan A; Welle, Monika

    2010-02-15

    Homeostasis in the intestinal microenvironment between the immune system and luminal antigens appears disturbed in chronic enteropathies. Pro-inflammatory cytokines likely play a role in the pathogenesis of intestinal inflammation. Several inflammatory and immunoregulatory genes have associated nuclear factor-kappaB (NF-kappaB) binding sites, which allow NF-kappaB to regulate gene transcription. The purpose of this study was to investigate (1) the occurrence of NF-kappaB activation during mucosal inflammation in situ, (2) the mucosal distribution pattern of cells expressing activated NF-kappaB within treatment groups, and (3) the effect of specific therapy on NF-kappaB activation. Dogs with chronic enteropathy were studied (n=26) and compared with 13 healthy dogs. Ten dogs had food responsive disease (FRD) and 16 had inflammatory bowel disease (IBD). NF-kappaB activation was detected in duodenal mucosal biopsies using a mouse monoclonal antibody (MAB 3026) that selectively binds the nuclear localization sequence of activated NF-kappaB. To identify macrophages, biopsies were stained using the MAC 387 antibody. Macrophages in the lamina propria double-stained for MAC 387 and NF-kappaB were quantitated; epithelial cell expression of activated NF-kappaB was determined semi-quantitatively. Results showed that more macrophages positive for activated NF-kappaB were present in lamina propria of dogs with chronic enteropathy compared to control dogs (p<0.01). More NF-kappaB positive epithelial cells were observed in FRD dogs compared to IBD dogs (p<0.05). After therapy, the number of macrophages and epithelial cells staining positive for activated NF-kappaB decreased (p<0.01) in chronic enteropathy dogs. In conclusion, activation of NF-kappaB is closely associated with the pathophysiology of canine chronic enteropathy. Down-regulation follows successful therapy. PMID:19740552

  16. Nuclear translocation of phospholipase C-zeta, an egg-activating factor, during early embryonic development

    SciTech Connect

    Sone, Yoshie; Ito, Masahiko; Shirakawa, Hideki; Shikano, Tomohide; Takeuchi, Hiroyuki; Kinoshita, Katsuyuki; Miyazaki, Shunichi . E-mail: shunm@research.twmu.ac.jp

    2005-05-13

    Phospholipase C-zeta (PLC{zeta}), a strong candidate of the egg-activating sperm factor, causes intracellular Ca{sup 2+} oscillations and egg activation, and is subsequently accumulated into the pronucleus (PN), when expressed in mouse eggs by injection of RNA encoding PLC{zeta}. Changes in the localization of expressed PLC{zeta} were investigated by tagging with a fluorescent protein. PLC{zeta} began to translocate into the PN formed at 5-6 h after RNA injection and increased there. Observation in the same embryo revealed that PLC{zeta} in the PN dispersed to the cytoplasm upon nuclear envelope breakdown and translocated again into the nucleus after cleavage. The dynamics was found in the second mitosis as well. When RNA was injected into fertilization-originated 1-cell embryos or blastomere(s) of 2-8-cell embryos, the nuclear localization of expressed PLC{zeta} was recognized in every embryo up to blastocyst. Thus, PLC{zeta} exhibited alternative cytoplasm/nucleus localization during development. This supports the view that the sperm factor could control cell cycle-dependent generation of Ca{sup 2+} oscillations in early embryogenesis.

  17. A Simple and Efficient Method to Detect Nuclear Factor Activation in Human Neutrophils by Flow Cytometry

    PubMed Central

    García-García, Erick; Uribe-Querol, Eileen; Rosales, Carlos

    2013-01-01

    Neutrophils are the most abundant leukocytes in peripheral blood. These cells are the first to appear at sites of inflammation and infection, thus becoming the first line of defense against invading microorganisms. Neutrophils possess important antimicrobial functions such as phagocytosis, release of lytic enzymes, and production of reactive oxygen species. In addition to these important defense functions, neutrophils perform other tasks in response to infection such as production of proinflammatory cytokines and inhibition of apoptosis. Cytokines recruit other leukocytes that help clear the infection, and inhibition of apoptosis allows the neutrophil to live longer at the site of infection. These functions are regulated at the level of transcription. However, because neutrophils are short-lived cells, the study of transcriptionally regulated responses in these cells cannot be performed with conventional reporter gene methods since there are no efficient techniques for neutrophil transfection. Here, we present a simple and efficient method that allows detection and quantification of nuclear factors in isolated and immunolabeled nuclei by flow cytometry. We describe techniques to isolate pure neutrophils from human peripheral blood, stimulate these cells with anti-receptor antibodies, isolate and immunolabel nuclei, and analyze nuclei by flow cytometry. The method has been successfully used to detect NF-κB and Elk-1 nuclear factors in nuclei from neutrophils and other cell types. Thus, this method represents an option for analyzing activation of transcription factors in isolated nuclei from a variety of cell types. PMID:23603868

  18. Opioid treatment of experimental pain activates nuclear factor-κB

    PubMed Central

    Compton, Peggy; Griffis, Charles; Breen, Elizabeth Crabb; Torrington, Matthew; Sadakane, Ryan; Tefera, Eshetu; Irwin, Michael R.

    2015-01-01

    Objective To determine the independent and combined effects of pain and opioids on the activation of an early marker of inflammation, nuclear factor-κB (NF-κB). Design NF-κB activation was compared within-subjects following four randomly ordered experimental sessions of opioid-only (intravenous fentanyl 1 μg/kg), pain-only (cold-pressor), opioid + pain, and a resting condition. Setting University General Clinical Research Center. Participants Twenty-one (11 female) healthy controls. Interventions Following exposure to treatment (fentanyl administration and/or cold-pressor pain), blood samples for NF-kB analysis were obtained. Main outcome measures Intracellular levels of activated NF-κB, in unstimulated and stimulated peripheral blood mononuclear cells at 15 and 30 minutes. Results Neither pain nor opioid administration alone effected NF-κB levels in cell populations; however, the combination of treatments induced significant increases of NF-κB in stimulated peripheral blood mononuclear cell, lymphocytes, and monocytes. Conclusions The combination of acute pain with opioids, as occurs in clinical situations, activates a key transcription factor involved in proinflammatory responses. PMID:25901477

  19. Neuropeptide-inducible upregulation of proteasome activity precedes nuclear factor kappa B activation in androgen-independent prostate cancer cells

    PubMed Central

    2012-01-01

    Background Upregulation of nuclear factor kappa B (NFκB) activity and neuroendocrine differentiation are two mechanisms known to be involved in prostate cancer (PC) progression to castration resistance. We have observed that major components of these pathways, including NFκB, proteasome, neutral endopeptidase (NEP) and endothelin 1 (ET-1), exhibit an inverse and mirror image pattern in androgen-dependent (AD) and -independent (AI) states in vitro. Methods We have now investigated for evidence of a direct mechanistic connection between these pathways with the use of immunocytochemistry (ICC), western blot analysis, electrophoretic mobility shift assay (EMSA) and proteasome activity assessment. Results Neuropeptide (NP) stimulation induced nuclear translocation of NFκB in a dose-dependent manner in AI cells, also evident as reduced total inhibitor κB (IκB) levels and increased DNA binding in EMSA. These effects were preceded by increased 20 S proteasome activity at lower doses and at earlier times and were at least partially reversed under conditions of NP deprivation induced by specific NP receptor inhibitors, as well as NFκB, IκB kinase (IKK) and proteasome inhibitors. AD cells showed no appreciable nuclear translocation upon NP stimulation, with less intense DNA binding signal on EMSA. Conclusions Our results support evidence for a direct mechanistic connection between the NPs and NFκB/proteasome signaling pathways, with a distinct NP-induced profile in the more aggressive AI cancer state. PMID:22715899

  20. The restricted promoter activity of the liver transcription factor hepatocyte nuclear factor 3 beta involves a cell-specific factor and positive autoactivation.

    PubMed Central

    Pani, L; Quian, X B; Clevidence, D; Costa, R H

    1992-01-01

    The transcription factor hepatocyte nuclear factor 3 (HNF-3) is involved in the coordinate expression of several liver genes. HNF-3 DNA binding activity is composed of three different liver proteins which recognize the same DNA site. The HNF-3 proteins (designated alpha, beta, and gamma) possess homology in the DNA binding domain and in several additional regions. To understand the cell-type-specific expression of HNF-3 beta, we have defined the regulatory sequences that elicit hepatoma-specific expression. Promoter activity requires -134 bp of HNF-3 beta proximal sequences and binds four nuclear proteins, including two ubiquitous factors. One of these promoter sites interacts with a novel cell-specific factor, LF-H3 beta, whose binding activity correlates with the HNF-3 beta tissue expression pattern. Furthermore, there is a binding site for the HNF-3 protein within its own promoter, suggesting that an autoactivation mechanism is involved in the establishment of HNF-3 beta expression. We propose that both the LF-H3 beta and HNF-3 sites play an important role in the cell-type-specific expression of the HNF-3 beta transcription factor. Images PMID:1732730

  1. Activation of the glutaredoxin-1 gene by Nuclear Factor kappa B enhances signaling

    PubMed Central

    Aesif, Scott W.; Kuipers, Ine; van der Velden, Jos; Tully, Jane E.; Guala, Amy S.; Anathy, Vikas; Sheely, Juliana I.; Reynaert, Niki L.; Wouters, Emiel F. M.; van der Vliet, Albert; Janssen-Heininger, Yvonne M. W.

    2011-01-01

    The transcription factor, Nuclear Factor kappa B (NF-κB) is a critical regulator of inflammation and immunity, and is negatively regulated via S-glutathionylation. The inhibitory effect of S-glutathionylation is overcome by glutaredoxin-1 (Grx1), which under physiological conditions catalyses deglutathionylation and enhances NF-κB activation. The mechanisms whereby expression of the Glrx1 gene is regulated remain unknown. Here we examined the role of NF-κB in regulating activation of Glrx1. Transgenic mice which express a doxycyclin-inducible constitutively active version of inhibitory kappa B kinase-beta (CA-IKKβ) demonstrate elevated expression of Grx1. Transient transfection of CA-IKKβ also resulted in significant induction of Grx1. A 2kb region Glrx1 promoter that contains two putative NF-κB binding sites was activated by CA-IKKβ, RelA/p50, and lipopolysaccharide (LPS). Chromatin immunoprecipitation experiments confirmed binding of RelA to the promoter of Glrx1 in response to LPS. Stimulation of C10 lung epithelial cells with LPS caused transient increases in Grx1 mRNA expression, and time-dependent increases in S-glutathionylation of IKKβ. Overexpression of Grx1 decreased S-glutathionylation of IKKβ, prolonged NF-κB activation, and increased levels of pro-inflammatory mediators. Collectively, this study demonstrates that the Glrx1 gene is positively regulated by NF-κB, and suggests a feed forward mechanism to promote NF-κB signaling by decreasing S-glutathionylation. PMID:21762778

  2. Inhibition of Nuclear Factor-Kappa B Activation Decreases Survival of Mycobacterium tuberculosis in Human Macrophages

    PubMed Central

    Chmura, Kathryn; Ovrutsky, Alida R.; Su, Wen-Lin; Griffin, Laura; Pyeon, Dohun; McGibney, Mischa T.; Strand, Matthew J.; Numata, Mari; Murakami, Seiji; Gaido, Loretta; Honda, Jennifer R.; Kinney, William H.; Oberley-Deegan, Rebecca E.; Voelker, Dennis R.; Ordway, Diane J.; Chan, Edward D.

    2013-01-01

    Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy. PMID:23634218

  3. Inhibition of nuclear factor-kappa B activation decreases survival of Mycobacterium tuberculosis in human macrophages.

    PubMed

    Bai, Xiyuan; Feldman, Nicole E; Chmura, Kathryn; Ovrutsky, Alida R; Su, Wen-Lin; Griffin, Laura; Pyeon, Dohun; McGibney, Mischa T; Strand, Matthew J; Numata, Mari; Murakami, Seiji; Gaido, Loretta; Honda, Jennifer R; Kinney, William H; Oberley-Deegan, Rebecca E; Voelker, Dennis R; Ordway, Diane J; Chan, Edward D

    2013-01-01

    Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy. PMID:23634218

  4. Silibinin modulates lipid homeostasis and inhibits nuclear factor kappa B activation in experimental nonalcoholic steatohepatitis.

    PubMed

    Salamone, Federico; Galvano, Fabio; Cappello, Francesco; Mangiameli, Andrea; Barbagallo, Ignazio; Li Volti, Giovanni

    2012-06-01

    Nonalcoholic steatohepatitis (NASH) is associated with increased liver-related mortality. Disturbances in hepatic lipid homeostasis trigger oxidative stress and inflammation (ie, lipotoxicity), leading to the progression of NASH. This study aimed at identifying whether silibinin may influence the molecular events of lipotoxicity in a mouse model of NASH. Eight-week-old db/db mice were fed a methionine-choline deficient (MCD) diet for 4 weeks and treated daily with silibinin (20 mg/kg intraperitoneally) or vehicle. Liver expression and enzyme activity of stearoyl-CoA desaturase-1 and acyl-CoA oxidase, and expression of liver fatty acid-binding protein were assessed. Hepatic levels of reactive oxygen species, thiobarbituric acid-reactive substances (TBARS), 3-nitrotyrosine (3-NT), inducible nitric oxide synthase (iNOS), and nuclear factor kappa B (NFkB) activities were also determined. Silibinin administration decreased serum alanine aminotransferase and improved liver steatosis, hepatocyte ballooning, and lobular inflammation in db/db mice fed an MCD diet. Gene expression and activity of stearoyl-CoA desaturase-1 were reduced in db/db mice fed an MCD diet compared with lean controls and were increased by silibinin; moreover, silibinin treatment induced the expression and activity of acyl-CoA oxidase and the expression of liver fatty acid-binding protein. Vehicle-treated animals displayed increased hepatic levels of reactive oxygen species and TBARS, 3-NT staining, and iNOS expression; silibinin treatment markedly decreased reactive oxygen species and TBARS and restored 3-NT and iNOS to the levels of control mice. db/db mice fed an MCD diet consistently had increased NFkB p65 and p50 binding activity; silibinin administration significantly decreased the activity of both subunits. Silibinin treatment counteracts the progression of liver injury by modulating lipid homeostasis and suppressing oxidative stress-mediated lipotoxicity and NFkB activation in experimental

  5. Activation of nuclear factor-kappaB and not activator protein-1 in cellular response to nickel compounds.

    PubMed Central

    Huang, Yi; Davidson, Gerard; Li, Jingxia; Yan, Yan; Chen, Fei; Costa, Max; Chen, Lung Chi; Huang, Chuanshu

    2002-01-01

    The predominant exposure route for nickel compounds is by inhalation, and several studies have indicated the correlation between nickel exposure and respiratory cancers. The tumor-promoting effects of nickel compounds are thought to be associated with their transactivation of transcription factors. We have investigated the possible activation of activator protein-1 (AP-1) and nuclear factor KB (NF-kappaB) in mouse C141 epidermal cells and fibroblasts 3T3 and B82, and human bronchoepithelial BEAS-2B cells in response to nickel compound exposure. Our results show that NF-kappaB activity is induced by nickel exposure in 3T3 and BEAS-2B cells. Conversely, similar nickel treatment of these cells did not induce AP-1 activity, suggesting that nickel tumorigenesis occurs through NF-kappaB and not AP-1. We also investigated the role of NF-kappaB in the induction of Cap43 by nickel compounds using dominant negative mutant Ikappabeta kinase b-KM BEAS-2B transfectants. PMID:12426142

  6. Diterpenoids from aerial parts of Flickingeria fimbriata and their nuclear factor-kappaB inhibitory activities.

    PubMed

    Li, Hang; Zhao, Jing-jun; Chen, Jin-long; Zhu, Long-ping; Wang, Dong-mei; Jiang, Lin; Yang, De-po; Zhao, Zhi-min

    2015-09-01

    Chemical investigation of the aerial parts of Flickingeria fimbriata (Bl.) Hawkes resulted in isolation of sixteen ent-pimarane diterpenoids, including five rare 16-nor-ent-pimarane diterpenoids, two 15,16-dinor-ent-pimarane diterpenoids and one ent-pimarane diterpenoid. Structures were mainly elucidated by extensive spectroscopic analysis, and their absolute configurations were unequivocally determined by the exciton chirality method, the modified Mosher's method, the CD experiments (including Snatzke's method) and chemical transformations, respectively. All the isolated compounds were screened for inhibitory effects on the nuclear factor-kappaB (NF-κB) in lipopolysaccharide (LPS) induced murine macrophage RAW264.7 cells, using a NF-κB-dependent luciferase reporter gene assay. Several of these compounds displayed comparable or even better activities than the positive control pyrrolidinedithiocarbamate (PDTC) (IC50=26.3 μM) with IC50 values in the range of 14.7-29.2 μM and structure-activity relationships are briefly proposed. PMID:26186245

  7. Transcriptional activation of cyclooxygenase-2 by tumor suppressor p53 requires nuclear factor-kappaB.

    PubMed

    Benoit, V; de Moraes, E; Dar, N A; Taranchon, E; Bours, V; Hautefeuille, A; Tanière, P; Chariot, A; Scoazec, J-Y; de Moura Gallo, C V; Merville, M-P; Hainaut, P

    2006-09-21

    Overexpression of cyclooxygenase-2 (Cox-2) is thought to exert antiapoptotic effects in cancer. Here we show that the tumor suppressor p53 upregulated Cox-2 in esophageal and colon cancer cell lines by inducing the binding of nuclear factor-kappaB (NF-kappaB) to its response element in the COX-2 promoter. Inhibition of NF-kappaB prevented p53 induction of Cox-2 expression. Cooperation between p53 and NF-kappaB was required for activation of COX-2 promoter in response to daunomycin, a DNA-damaging agent. Pharmacological inhibition of Cox-2 enhanced apoptosis in response to daunomycin, in particular in cells containing active p53. In esophageal cancer, there was a correlation between Cox-2 expression and wild-type TP53 in Barrett's esophagus (BE) and in adenocarcinoma, but not in squamous cell carcinoma (P<0.01). These results suggest that p53 and NF-kappaB cooperate in upregulating Cox-2 expression, promoting cell survival in inflammatory precursor lesions such as BE. PMID:16682957

  8. Lycopene activates antioxidant enzymes and nuclear transcription factor systems in heat-stressed broilers.

    PubMed

    Sahin, K; Orhan, C; Tuzcu, M; Sahin, N; Hayirli, A; Bilgili, S; Kucuk, O

    2016-05-01

    This study was conducted to evaluate the effects of dietary lycopene supplementation on growth performance, antioxidant status, and muscle nuclear transcription factor [Kelch like-ECH-associated protein 1 (Keap1) and (erythroid-derived 2)-like 2 (Nrf2)] expressions in broiler chickens exposed to heat stress (HS). A total of 180 one-day-old male broiler chicks (Ross 308) were assigned randomly to one of 2×3 factorially arranged treatments: two housing temperatures (22°C for 24 h/d; thermoneutral, TN or 34°C for 8 h/d HS) and three dietary lycopene levels (0, 200, or 400 mg/kg). Each treatment consisted of three replicates of 10 birds. Birds were reared to 42 d of age. Heat stress caused reductions in feed intake and weight gain by 12.2 and 20.7% and increased feed efficiency by 10.8% (P<0.0001 for all). Increasing dietary lycopene level improved performance in both environments. Birds reared under the HS environment had lower serum and muscle lycopene concentration (0.34 vs. 0.50 μg/mL and 2.80 vs. 2.13 μg/g), activities of superoxide dismutase (151 vs. 126 U/mL and 131 vs. 155 U/mg protein), glutathione peroxidase (184 vs. 154 U/mL and 1.39 vs. 1.74 U/mg protein), and higher malondialdehyde (MDA) concentration (0.53 vs. 0.83 μg/mL and 0.78 vs. 0.45 μg/ mg protein) than birds reared under the TN environment. Changes in levels of lycopene and MDA and activities of enzymes in serum and muscle varied by the environmental temperature as dietary lycopene level increased. Moreover, increasing dietary lycopene level suppressed muscle Keap1 expression and enhanced muscle Nrf2 expression, which had increased by 150% and decreased by 40%, respectively in response to HS. In conclusion, lycopene supplementation alleviates adverse effects of HS on performance through modulating expressions of stress-related nuclear transcription factors. PMID:26936958

  9. Aberrant activation of nuclear factor of activated T cell 2 in lamina propria mononuclear cells in ulcerative colitis

    PubMed Central

    Shih, Tsung-Chieh; Hsieh, Sen-Yung; Hsieh, Yi-Yueh; Chen, Tse-Chin; Yeh, Chien-Yu; Lin, Chun-Jung; Lin, Deng-Yn; Chiu, Cheng-Tang

    2008-01-01

    AIM: To investigate the role of nuclear factor of activated T cell 2 (NFAT2), the major NFAT protein in peripheral T cells, in sustained T cell activation and intractable inflammation in human ulcerative colitis (UC). METHODS: We used two-dimensional gel-electrophoresis, immunohistochemistry, double immunohistochemical staining, and confocal microscopy to inspect the expression of NFAT2 in 107, 15, 48 and 5 cases of UC, Crohn’s disease (CD), non-specific colitis, and 5 healthy individuals, respectively. RESULTS: Up-regulation with profound nucleo-translocation/activation of NFAT2 of lamina propria mononuclear cells (LPMC) of colonic mucosa was found specifically in the affected colonic mucosa from patients with UC, as compared to CD or NC (P < 0.001, Kruskal-Wallis test). Nucleo-translocation/activation of NFAT2 primarily occurred in CD8+T, but was less prominent in CD4+ T cells or CD20+B cells. It was strongly associated with the disease activity, including endoscopic stage (τ = 0.2145, P = 0.0281) and histologic grade (τ = 0.4167, P < 0.001). CONCLUSION: We disclose for the first time the nucleo-translocation/activatin of NFAT2 in lamina propria mononuclear cells in ulcerative colitis. Activation of NFAT2 was specific for ulcerative colitis and highly associated with disease activity. Since activation of NFAT2 is implicated in an auto-regulatory positive feedback loop of sustained T-cell activation and NFAT proteins play key roles in the calcium/calcineurin signaling pathways, our results not only provide new insights into the mechanism for sustained intractable inflammation, but also suggest the calcium-calcineurin/NFAT pathway as a new therapeutic target for ulcerative colitis. PMID:18350607

  10. Nuclear Factor 90(NF90) targeted to TAR RNA inhibits transcriptional activation of HIV-1

    PubMed Central

    Agbottah, Emmanuel T; Traviss, Christine; McArdle, James; Karki, Sambhav; St Laurent, Georges C; Kumar, Ajit

    2007-01-01

    Background Examination of host cell-based inhibitors of HIV-1 transcription may be important for attenuating viral replication. We describe properties of a cellular double-stranded RNA binding protein with intrinsic affinity for HIV-1 TAR RNA that interferes with Tat/TAR interaction and inhibits viral gene expression. Results Utilizing TAR affinity fractionation, North-Western blotting, and mobility-shift assays, we show that the C-terminal variant of nuclear factor 90 (NF90ctv) with strong affinity for the TAR RNA, competes with Tat/TAR interaction in vitro. Analysis of the effect of NF90ctv-TAR RNA interaction in vivo showed significant inhibition of Tat-transactivation of HIV-1 LTR in cells expressing NF90ctv, as well as changes in histone H3 lysine-4 and lysine-9 methylation of HIV chromatin that are consistent with the epigenetic changes in transcriptionally repressed gene. Conclusion Structural integrity of the TAR element is crucial in HIV-1 gene expression. Our results show that perturbation Tat/TAR RNA interaction by the dsRNA binding protein is sufficient to inhibit transcriptional activation of HIV-1. PMID:17565699

  11. The Fn14 cytoplasmic tail binds tumour-necrosis-factor-receptor-associated factors 1, 2, 3 and 5 and mediates nuclear factor-kappaB activation.

    PubMed Central

    Brown, Sharron A N; Richards, Christine M; Hanscom, Heather N; Feng, Sheau-Line Y; Winkles, Jeffrey A

    2003-01-01

    Fn14 is a growth-factor-inducible immediate-early-response gene encoding a 102-amino-acid type I transmembrane protein. The human Fn14 protein was recently identified as a cell-surface receptor for the tumour necrosis factor (TNF) superfamily member named TWEAK (TNF-like weak inducer of apoptosis). In the present paper, we report that the human TWEAK extracellular domain can also bind the murine Fn14 protein. Furthermore, site-specific mutagenesis and directed yeast two-hybrid interaction assays revealed that the TNFR-associated factor (TRAF) 1, 2, 3 and 5 adaptor molecules bind the murine Fn14 cytoplasmic tail at an overlapping, but non-identical, amino acid sequence motif. We also found that TWEAK treatment of quiescent NIH 3T3 cells stimulates inhibitory kappaBalpha phosphorylation and transcriptional activation of a nuclear factor-kappaB (NF-kappaB) enhancer/luciferase reporter construct. Fn14 overexpression in transiently transfected NIH 3T3 cells also promotes NF-kappaB activation, and this cellular response requires an intact TRAF binding site. These results indicate that Fn14 is a functional TWEAK receptor that can associate with four distinct TRAF family members and stimulate the NF-kappaB transcription factor signalling pathway. PMID:12529173

  12. Activation of nuclear factor kappa B pathway and reduction of hypothalamic oxytocin following hypothalamic lesions

    PubMed Central

    Roth, Christian L.; D’Ambrosio, Gabrielle; Elfers, Clinton

    2016-01-01

    Background Hypothalamic obesity (HO) occurs in patients with tumors and lesions in the medial hypothalamic region. In this study, a hyperphagic rat model of combined medial hypothalamic lesions (CMHL) was used to test which specific inflammatory molecules are involved. Methods In order to target specific homeostatic medial hypothalamic nuclei (arcuate, ventromedial, and dorsomedial nuclei), male Sprague-Dawley rats (age of 8 weeks, ~250 g body weight) received four electrolytic lesions or sham surgery. Post-surgery food intake and weight changes were tracked and hypothalamic gene expression for inflammatory molecules as well as anorexigenic peptide oxytocin 7 days and 7 months post-surgery were tested. Results Seven days post-surgery, average food intake increased by 23%, and body weight gain had increased by 68%. Toll-like 4 receptor/nuclear factor–κB (TLR4/NF–κB)—pathway was specifically activated in the mediobasal hypothalamus (MBH), resulting in 3-fold higher tumor necrosis factor (TNF)-α, 10-fold higher interleukin (IL) 1-β mRNA levels, and higher expression of suppression of cytokine signaling (SOCS) 3, while oxytocin mRNA levels were significantly reduced in CMHL rats versus sham surgery rats 7 days post-surgery. At 7 months, inflammation was less stimulated in MBH of CMHL rats compared to 7 days post-surgery and SOCS 3 as well as oxytocin mRNA levels were comparable between the two groups. Conclusion Medial hypothalamic lesions are associated with strong post-surgery hyperphagia and activation of TLR4/NF–κB—pathway as well as reduced expression of oxytocin in the hypothalamus.

  13. Nickel Ion Inhibits Nuclear Factor-Kappa B Activity in Human Oral Squamous Cell Carcinoma

    PubMed Central

    Shionome, Takashi; Endo, Shigeki; Omagari, Daisuke; Asano, Masatake; Toyoma, Hitoshi; Ishigami, Tomohiko; Komiyama, Kazuo

    2013-01-01

    Background The spontaneous IL-8 secretion observed in OSCC is partially dependent on the disregulated activity of transcription factor NF-κB. Nickel compounds are well established human carcinogens, however, little is known about the influence of nickel on the spontaneous secretion of IL-8 in oral squamous cell carcinoma (OSCC) cells. The aim of the present study was to investigate whether Ni2+ ions can influence on IL-8 secretion by OSCC. Methods and Results The IL-8 secretion was measured by ELISA. The expression of IL-8 mRNA was examined by real-time PCR. The NF-κB activity was measured by luciferase assay. The phosphorylation status and nuclear localization of NF-κB subunits were examined by Western blotting or Transfactor kit and immunofluorescence staining, respectively. The interaction of NF-κB p50 subunit and Ni2+ ions was examined by Ni2+-column pull down assay. The site-directed mutagenesis was used to generate a series of p50 mutants. Scratch motility assay was used to monitor the cell mobility. Our results demonstrated that, on the contrary to our expectations, Ni2+ ions inhibited the spontaneous secretion of IL-8. As IL-8 reduction was observed in a transcriptional level, we performed the luciferase assay and the data indicated that Ni2+ ions reduced the NF-κB activity. Measurement of p50 subunit in the nucleus and the immunofluorescence staining revealed that the inhibitory effect of Ni2+ ions was attributed to the prevention of p50 subunit accumulation to the nucleus. By Ni2+-column pull down assay, Ni2+ ions were shown to interact directly with His cluster in the N-terminus of p50 subunit. The inhibitory effect of Ni2+ ions was reverted in the transfectant expressing the His cluster-deleted p50 mutant. Moreover, Ni2+ ions inhibited the OSCC mobility in a dose dependent fashion. Conclusions Taken together, inhibition of NF-κB activity by Ni2+ ion might be a novel therapeutic strategy for the treatment of oral cancer. PMID:23844176

  14. Da0324, an inhibitor of nuclear factor-κB activation, demonstrates selective antitumor activity on human gastric cancer cells

    PubMed Central

    Jin, Rong; Xia, Yiqun; Chen, Qiuxiang; Li, Wulan; Chen, Dahui; Ye, Hui; Zhao, Chengguang; Du, Xiaojing; Shi, Dengjian; Wu, Jianzhang; Liang, Guang

    2016-01-01

    Background The transcription factor nuclear factor-κB (NF-κB) is constitutively activated in a variety of human cancers, including gastric cancer. NF-κB inhibitors that selectively kill cancer cells are urgently needed for cancer treatment. Curcumin is a potent inhibitor of NF-κB activation. Unfortunately, the therapeutic potential of curcumin is limited by its relatively low potency and poor cellular bioavailability. In this study, we presented a novel NF-κB inhibitor named Da0324, a synthetic asymmetric mono-carbonyl analog of curcumin. The purpose of this study is to research the expression of NF-κB in gastric cancer and the antitumor activity and mechanism of Da0324 on human gastric cancer cells. Methods The expressions between gastric cancer tissues/cells and normal gastric tissues/cells of NF-κB were evaluated by Western blot. The inhibition viability of compounds on human gastric cancer cell lines SGC-7901, BGC-823, MGC-803, and normal gastric mucosa epithelial cell line GES-1 was assessed with the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. Absorption spectrum method and high-performance liquid chromatography method detected the stability of the compound in vitro. The compound-induced changes of inducible NF-κB activation in the SGC-7901 and BGC-823 cells were examined by Western blot analysis and immunofluorescence methods. The antitumor activity of compound was performed by clonogenic assay, matrigel invasion assay, flow cytometric analysis, Western blot analysis, and Hoechst 33258 staining assay. Results High levels of p65 were found in gastric cancer tissues and cells. Da0324 displayed higher growth inhibition against several types of gastric cancer cell lines and showed relatively low toxicity to GES-1. Moreover, Da0324 was more stable than curcumin in vitro. Western blot analysis and immunofluorescence methods showed that Da0324 blocked NF-κB activation. In addition, Da0324 significantly inhibited tumor proliferation

  15. [Quantitative Analysis of Immuno-fluorescence of Nuclear Factor-κB Activation].

    PubMed

    Xiu, Min; He, Feng; Lou, Yuanlei; Xu, Lu; Xiong Jieqi; Wang, Ping; Liu, Sisun; Guo, Fei

    2015-06-01

    Immuno-fluorescence technique can qualitatively determine certain nuclear translocation, of which NF-κB/ p65 implicates the activation of NF-κB signal pathways. Immuno-fluorescence analysis software with independent property rights is able to quantitatively analyze dynamic location of NF-κB/p65 by computing relative fluorescence units in nuclei and cytoplasm. We verified the quantitative analysis by Western Blot. When we applied the software to analysis of nuclear translocation in lipopolysaccharide (LPS) induced (0. 5 h, 1 h, 2 h, 4 h) primary human umbilical vein endothelial cells (HUVECs) , we found that nuclear translocation peak showed up at 2h as with calculated Western blot verification results, indicating that the inventive immuno-fluorescence analysis software can be applied to the quantitative analysis of immuno-fluorescence. PMID:26485997

  16. Oncogenic activity of BIRC2 and BIRC3 mutants independent of nuclear factor-κB-activating potential.

    PubMed

    Yamato, Azusa; Soda, Manabu; Ueno, Toshihide; Kojima, Shinya; Sonehara, Kyuto; Kawazu, Masahito; Sai, Eirin; Yamashita, Yoshihiro; Nagase, Takahide; Mano, Hiroyuki

    2015-09-01

    BIRC2 and BIRC3 are closely related members of the inhibitor of apoptosis (IAP) family of proteins and play pivotal roles in regulation of nuclear factor-κB (NF-κB) signaling and apoptosis. Copy number loss for and somatic mutation of BIRC2 and BIRC3 have been frequently detected in lymphoid malignancies, with such genetic alterations being thought to contribute to carcinogenesis through activation of the noncanonical NF-κB signaling pathway. Here we show that BIRC2 and BIRC3 mutations are also present in a wide range of epithelial tumors and that most such nonsense or frameshift mutations confer direct transforming potential. This oncogenic function of BIRC2/3 mutants is largely independent of their ability to activate NF-κB signaling. Rather, all of the transforming mutants lack an intact RING finger domain, with loss of ubiquitin ligase activity being essential for transformation irrespective of NF-κB regulation. The serine-threonine kinase NIK was found to be an important, but not exclusive, mediator of BIRC2/3-driven carcinogenesis, although this function was independent of NF-κB activation. Our data thus suggest that, in addition to the BIRC2/3-NIK-NF-κB signaling pathway, BIRC2/3-NIK signaling targets effectors other than NF-κB and thereby contributes directly to carcinogenesis. Identification of these effectors may provide a basis for the development of targeted agents for the treatment of lymphoid malignancies and other cancers with BIRC2/3 alterations. PMID:26094954

  17. Activation of p38 mitogen-activated protein kinase and nuclear factor-kappaB in tumour necrosis factor-induced eotaxin release of human eosinophils

    PubMed Central

    WONG, C K; ZHANG, J P; IP, W K; LAM, C W K

    2002-01-01

    The CC chemokine eotaxin is a potent eosinophil-specific chemoattractant that is crucial for allergic inflammation. Allergen-induced tumour necrosis factor (TNF) has been shown to induce eotaxin synthesis in eosinophils. Nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPK) have been found to play an essential role for the eotaxin-mediated eosinophilia. We investigated the modulation of NF-κB and MAPK activation in TNF-induced eotaxin release of human eosinophils. Human blood eosinophils were purified from fresh buffy coat using magnetic cell sorting. NF-κB pathway-related genes were evaluated by cDNA expression array system. Degradation of IκBα and phosphorylation of MAPK were detected by Western blot. Activation of NF-κB was determined by electrophoretic mobility shift assay. Eotaxin released into the eosinophil culture medium was measured by ELISA. TNF was found to up-regulate the gene expression of NF-κB and IκBα in eosinophils. TNF-induced IκBα degradation was inhibited by the proteasome inhibitor N-cbz-Leu-Leu-leucinal (MG-132) and a non-steroidal anti-inflammatory drug sodium salicylate (NaSal). Using EMSA, both MG-132 and NaSal were found to suppress the TNF-induced NF-κB activation in eosinophils. Furthermore, TNF was shown to induce phosphorylation of p38 MAPK time-dependently but not extracellular signal-regulated kinases (ERK). Inhibition of NF-κB activation and p38 MAPK activity decreased the TNF-induced release of eotaxin from eosinophils. These results indicate that NF-κB and p38 MAPK play an important role in TNF-activated signalling pathway regulating eotaxin release by eosinophils. They have also provided a biochemical basis for the potential of using specific inhibitors of NF-κB and p38 MAPK for treating allergic inflammation. PMID:12067303

  18. 15-lipoxygenase-1 exerts its tumor suppressive role by inhibiting nuclear factor-kappa B via activation of PPAR gamma.

    PubMed

    Cimen, I; Astarci, E; Banerjee, S

    2011-09-01

    15-Lipoxygenase-1 (15-LOX-1) is an enzyme of the inflammatory eicosanoid pathway whose expression is known to be lost in colorectal cancer (CRC). We have previously shown that reintroduction of the gene in CRC cell lines slows proliferation and induces apoptosis (Cimen et al. [2009] Cancer Sci 100: 2283-2291). We have hypothesized that 15-LOX-1 may be anti-tumorigenic by the inhibition of the anti-apoptotic inflammatory transcription factor nuclear factor kappa B. We show here that ectopic expression of 15-LOX-1 gene in HCT-116 and HT-29 CRC cell lines inhibited the degradation of inhibitor of kappa B (IκBα), decreased nuclear translocation of p65 and p50, decreased DNA binding in the nucleus and decreased transcriptional activity of Nuclear factor kappa B (NF-κB). As the 15-LOX-1 enzymatic product 13(S)-HODE is known to be a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, and NF-κB can be inhibited by PPARγ, we examined whether activation of PPARγ was necessary for the abrogation of NF-κB activity. Our data show that the inhibition of both early and late stages of NF-κB activation could rescued by the PPARγ antagonist GW9662 indicating that the inhibition was most likely mediated via PPARγ. PMID:21544861

  19. Hydrogen Sulfide Levels and Nuclear Factor-Erythroid 2-Related Factor 2 (NRF2) Activity Are Attenuated in the Setting of Critical Limb Ischemia (CLI)

    PubMed Central

    Islam, Kazi N; Polhemus, David J; Donnarumma, Erminia; Brewster, Luke P; Lefer, David J

    2015-01-01

    Background Cystathionine γ-lyase, cystathionine β-synthase, and 3-mercaptopyruvate sulfurtransferase are endogenous enzymatic sources of hydrogen sulfide (H2S). Functions of H2S are mediated by several targets including ion channels and signaling proteins. Nuclear factor-erythroid 2-related factor 2 is responsible for the expression of antioxidant response element–regulated genes and is known to be upregulated by H2S. We examined the levels of H2S, H2S-producing enzymes, and nuclear factor-erythroid 2-related factor 2 activation status in skeletal muscle obtained from critical limb ischemia (CLI) patients. Methods and Results Gastrocnemius tissues were attained postamputation from human CLI and healthy control patients. We found mRNA and protein levels of cystathionine γ-lyase, cystathionine β-synthase, and 3-mercaptopyruvate sulfurtransferase were significantly decreased in skeletal muscle of CLI patients as compared to control. H2S and sulfane sulfur levels were significantly decreased in skeletal muscle of CLI patients. We also observed significant reductions in nuclear factor-erythroid 2-related factor 2 activation as well as antioxidant proteins, such as Cu, Zn-superoxide dismutase, catalase, and glutathione peroxidase in skeletal muscle of CLI patients. Biomarkers of oxidative stress, such as malondialdehyde and protein carbonyl formation, were significantly increased in skeletal muscle of CLI patients as compared to healthy controls. Conclusions The data demonstrate that H2S bioavailability and nuclear factor-erythroid 2-related factor 2 activation are both attenuated in CLI tissues concomitant with significantly increased oxidative stress. Reductions in the activity of H2S-producing enzymes may contribute to the pathogenesis of CLI. PMID:25977470

  20. Phytol metabolites are circulating dietary factors that activate the nuclear receptor RXR.

    PubMed Central

    Kitareewan, S; Burka, L T; Tomer, K B; Parker, C E; Deterding, L J; Stevens, R D; Forman, B M; Mais, D E; Heyman, R A; McMorris, T; Weinberger, C

    1996-01-01

    RXR is a nuclear receptor that plays a central role in cell signaling by pairing with a host of other receptors. Previously, 9-cis-retinoic acid (9cRA) was defined as a potent RXR activator. Here we describe a unique RXR effector identified from organic extracts of bovine serum by following RXR-dependent transcriptional activity. Structural analyses of material in active fractions pointed to the saturated diterpenoid phytanic acid, which induced RXR-dependent transcription at concentrations between 4 and 64 microM. Although 200 times more potent than phytanic acid, 9cRA was undetectable in equivalent amounts of extract and cannot be present at a concentration that could account for the activity. Phytanic acid, another phytol metabolite, was synthesized and stimulated RXR with a potency and efficacy similar to phytanic acid. These metabolites specifically displaced [3H]-9cRA from RXR with Ki values of 4 microM, indicating that their transcriptional effects are mediated by direct receptor interactions. Phytol metabolites are compelling candidates for physiological effectors, because their RXR binding affinities and activation potencies match their micromolar circulating concentrations. Given their exclusive dietary origin, these chlorophyll metabolites may represent essential nutrients that coordinate cellular metabolism through RXR-dependent signaling pathways. PMID:8856661

  1. Chronic intermittent hypoxia activates nuclear factor-{kappa}B in cardiovascular tissues in vivo

    SciTech Connect

    Greenberg, Harly; Ye Xiaobing; Wilson, David; Htoo, Aung K.; Hendersen, Todd; Liu Shufang . E-mail: sliu@lij.edu

    2006-05-05

    Obstructive sleep apnea (OSA) is an important risk factor for cardiovascular morbidity and mortality. The mechanisms through which OSA promotes the development of cardiovascular disease are poorly understood. In this study, we tested the hypotheses that chronic exposure to intermittent hypoxia and reoxygenation (CIH) is a major pathologic factor causing cardiovascular inflammation, and that CIH-induces cardiovascular inflammation and pathology by activating the NF-{kappa}B pathway. We demonstrated that exposure of mice to CIH activated NF-{kappa}B in cardiovascular tissues, and that OSA patients had markedly elevated monocyte NF-{kappa}B activity, which was significantly decreased when obstructive apneas and their resultant CIH were eliminated by nocturnal CPAP therapy. The elevated NF-{kappa}B activity induced by CIH is accompanied by and temporally correlated to the increased expression of iNOS protein, a putative and important NF-{kappa}B-dependent gene product. Thus, CIH-mediated NF-{kappa}B activation may be a molecular mechanism linking OSA and cardiovascular pathologies seen in OSA patients.

  2. Up-stream events in the nuclear factor κB activation cascade in response to sparsely ionizing radiation

    NASA Astrophysics Data System (ADS)

    Hellweg, Christine E.; Langen, Britta; Klimow, Galina; Ruscher, Roland; Schmitz, Claudia; Baumstark-Khan, Christa; Reitz, Günther

    2009-10-01

    Radiation is a potentially limiting factor for manned long-term space missions. Prolonged exposure to galactic cosmic rays may shorten the healthy life-span after return to Earth due to cancer induction. During the mission, a solar flare can be life threatening. For better risk estimation and development of appropriate countermeasures, the study of the cellular radiation response is necessary. Since apoptosis may be a mechanism the body uses to eliminate damaged cells, the induction by cosmic radiation of the nuclear anti-apoptotic transcription factor nuclear factor κB (NF-κB) could influence the cancer risk of astronauts exposed to cosmic radiation by improving the survival of radiation-damaged cells. In previous studies using a screening assay for the detection of NF-κB-dependent gene induction (HEK-pNF-κB-d2EGFP/Neo cells), the activation of this transcription factor by heavy ions was shown [Baumstark-Khan, C., Hellweg, C.E., Arenz, A., Meier, M.M. Cellular monitoring of the nuclear factor kappa B pathway for assessment of space environmental radiation. Radiat. Res. 164, 527-530, 2005]. Studies with NF-κB inhibitors can map functional details of the NF-κB pathway and the influence of radiation-induced NF-κB activation on various cellular outcomes such as survival or cell cycle arrest. In this work, the efficacy and cytotoxicity of four different NF-κB inhibitors, caffeic acid phenethyl ester (CAPE), capsaicin, the proteasome inhibitor MG-132, and the cell permeable peptide NF-κB SN50 were analyzed using HEK-pNF-κB-d2EGFP/Neo cells. In the recommended concentration range, only CAPE displayed considerable cytotoxicity. CAPE and capsaicin partially inhibited NF-κB activation by the cytokine tumor necrosis factor α. MG-132 completely abolished the activation and was therefore used for experiments with X-rays. NF-κB SN-50 could not reduce NF-κB dependent expression of the reporter destabilized Enhanced Green Fluorescent Protein (d2EGFP). MG-132

  3. Inhibition of Nuclear Factor of Activated T-Cells (NFAT) Suppresses Accelerated Atherosclerosis in Diabetic Mice

    PubMed Central

    Zetterqvist, Anna V.; Berglund, Lisa M.; Blanco, Fabiana; Garcia-Vaz, Eliana; Wigren, Maria; Dunér, Pontus; Andersson, Anna-Maria Dutius; To, Fong; Spegel, Peter; Nilsson, Jan; Bengtsson, Eva; Gomez, Maria F.

    2013-01-01

    Objective of the Study Diabetic patients have a much more widespread and aggressive form of atherosclerosis and therefore, higher risk for myocardial infarction, peripheral vascular disease and stroke, but the molecular mechanisms leading to accelerated damage are still unclear. Recently, we showed that hyperglycemia activates the transcription factor NFAT in the arterial wall, inducing the expression of the pro-atherosclerotic protein osteopontin. Here we investigate whether NFAT activation may be a link between diabetes and atherogenesis. Methodology and Principal Findings Streptozotocin (STZ)-induced diabetes in apolipoprotein E−/− mice resulted in 2.2 fold increased aortic atherosclerosis and enhanced pro-inflammatory burden, as evidenced by elevated blood monocytes, endothelial activation- and inflammatory markers in aorta, and pro-inflammatory cytokines in plasma. In vivo treatment with the NFAT blocker A-285222 for 4 weeks completely inhibited the diabetes-induced aggravation of atherosclerosis, having no effect in non-diabetic mice. STZ-treated mice exhibited hyperglycemia and higher plasma cholesterol and triglycerides, but these were unaffected by A-285222. NFAT-dependent transcriptional activity was examined in aorta, spleen, thymus, brain, heart, liver and kidney, but only augmented in the aorta of diabetic mice. A-285222 completely blocked this diabetes-driven NFAT activation, but had no impact on the other organs or on splenocyte proliferation or cytokine secretion, ruling out systemic immunosuppression as the mechanism behind reduced atherosclerosis. Instead, NFAT inhibition effectively reduced IL-6, osteopontin, monocyte chemotactic protein 1, intercellular adhesion molecule 1, CD68 and tissue factor expression in the arterial wall and lowered plasma IL-6 in diabetic mice. Conclusions Targeting NFAT signaling may be a novel and attractive approach for the treatment of diabetic macrovascular complications. PMID:23755169

  4. Porcine circovirus type 2 induces the activation of nuclear factor kappa B by I{kappa}B{alpha} degradation

    SciTech Connect

    Wei Li; Kwang, Jimmy; Wang Jin; Shi Lei; Yang Bing; Li Yongqing; Liu Jue

    2008-08-15

    The transcription factor NF-{kappa}B is commonly activated upon virus infection and a key player in the induction and regulation of the host immune response. The present study demonstrated for the first time that porcine circovirus type 2 (PCV2), which is the primary causative agent of an emerging swine disease, postweaning multisystemic wasting syndrome, can activate NF-{kappa}B in PCV2-infected PK15 cells. In PCV2-infected cells, NF-{kappa}B was activated concomitantly with viral replication, which was characterized by increased DNA binding activity, translocation of NF-{kappa}B p65 from the cytoplasm to the nucleus, as well as degradation and phosphorylation of I{kappa}B{alpha} protein. We further demonstrated PCV2-induced activation of NF-{kappa}B and colocalization of p65 nuclear translocation with virus replication in cultured cells. Treatment of cells with CAPE, a selective inhibitor of NF-{kappa}B activation, reduced virus protein expression and progeny production followed by decreasing PCV2-induced apoptotic caspase activity, indicating the involvement of this transcription factor in induction of cell death. Taken together, these data suggest that NF-{kappa}B activation is important for PCV2 replication and contributes to virus-mediated changes in host cells. The results presented here provide a basis for understanding molecular mechanism of PCV2 infection.

  5. Nuclear Factor Kappa B Activation and Peroxisome Proliferator-activated Receptor Transactivational Effects of Chemical Components of the Roots of Polygonum multiflorum

    PubMed Central

    Sun, Ya Nan; Li, Wei; Song, Seok Bean; Yan, Xi Tao; Yang, Seo Young; Kim, Young Ho

    2016-01-01

    Background: Polygonum multiflorum is well-known as “Heshouwu” in traditional Chinese herbal medicine. In Northeast Asia, it is often used as a tonic to prevent premature aging of the kidney and liver, tendons, and bones and strengthening of the lower back and knees. Objective: To research the anti-inflammatory activities of components from P. multiflorum. Materials and Methods: The compounds were isolated by a combination of silica gel and YMC R-18 column chromatography, and their structures were identified by analysis of spectroscopic data (1D, 2D-nuclear magnetic resonance, and mass spectrometry). The anti-inflammatory activities of the isolated compounds 1−15 were evaluated by luciferase reporter gene assays. Results: Fifteen compounds (1–15) were isolated from the roots of P. multiflorum. Compounds 1−5 and 14−15 significantly inhibited tumor necrosis factor-α-induced nuclear factor kappa B-luciferase activity, with IC50 values of 24.16-37.56 μM. Compounds 1−5 also greatly enhanced peroxisome proliferator-activated receptors transcriptional activity with EC50 values of 18.26−31.45 μM. Conclusion: The anthraquinone derivatives were the active components from the roots of P. multiflorum as an inhibitor on inflammation-related factors in human hepatoma cells. Therefore, we suggest that the roots of P. multiflorum can be used to treat natural inflammatory diseases. SUMMARY This study presented that fifteen compounds (1-15) isolated from the roots of Polygonum multiflrum exert signifiant anti inflmmatory effects by inhibiting TNF α induced NF κB activation and PPARs transcription. Abbreviation used: NF κB: Nuclear factor kappa B, PPARs: Peroxisome proliferator activated receptors, PPREs: Peroxisome proliferator response elements, TNF α: Tumor necrosis factor α, ESI-MS: Electrospray ionization mass spectrometry, HepG2: Human hepatoma cells PMID:27019559

  6. Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway

    SciTech Connect

    Baek, Jong Min; Park, Sun-Hyang; Cheon, Yoon-Hee; Ahn, Sung-Jun; Lee, Myeung Su; Oh, Jaemin; Kim, Ju-Young

    2015-05-29

    Esculetin exerts various biological effects on anti-oxidation, anti-tumors, and anti-inflammation. However, the involvement of esculetin in the bone metabolism process, particularly osteoclast differentiation has not yet been investigated. In the present study, we first confirmed the inhibitory effect of esculetin on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. We then revealed the relationship between esculetin and the expression of osteoclast-specific molecules to elucidate its underlying mechanisms. Esculetin interfered with the expression of c-Fos and nuclear factor of activated T cell c1 (NFATc1) both at the mRNA and protein level with no involvement in osteoclast-associated early signaling pathways, suppressing the expression of various transcription factors exclusively expressed in osteoclasts such as tartrate-resistant acid phosphatase (Trap), osteoclast-associated receptor (Oscar), dendritic cell-specific transmembrane protein (Dcstamp), osteoclast stimulatory transmembrane protein (Ocstamp), cathepsin K, αvβ3 integrin, and calcitonin receptor (Ctr). Additionally, esculetin inhibited the formation of filamentous actin (F-actin) ring-positive osteoclasts during osteoclast differentiation. However, the development of F-actin structures and subsequent bone resorbing activity of mature osteoclasts, which are observed in osteoclast/osteoblast co-culture systems were not affected by esculetin. Taken together, our results indicate for the first time that esculetin inhibits RANKL-mediated osteoclastogenesis via direct suppression of c-Fos and NFATc1 expression and exerts an inhibitory effect on actin ring formation during osteoclastogenesis. - Highlights: • We first investigated the effects of esculetin on osteoclast differentiation and function. • Our data demonstrate for the first time that esculetin can suppress osteoclastogenesis in vitro. • Esculetin acts as an inhibitor of c-Fos and NFATc1 activation.

  7. Src tyrosine kinase signaling antagonizes nuclear localization of FOXO and inhibits its transcription factor activity.

    PubMed

    Bülow, Margret H; Bülow, Torsten R; Hoch, Michael; Pankratz, Michael J; Jünger, Martin A

    2014-01-01

    Biochemical experiments in mammalian cells have linked Src family kinase activity to the insulin signaling pathway. To explore the physiological link between Src and a central insulin pathway effector, we investigated the effect of different Src signaling levels on the Drosophila transcription factor dFOXO in vivo. Ectopic activation of Src42A in the starved larval fatbody was sufficient to drive dFOXO out of the nucleus. When Src signaling levels were lowered by means of loss-of-function mutations or pharmacological inhibition, dFOXO localization was shifted to the nucleus in growing animals, and transcription of the dFOXO target genes d4E-BP and dInR was induced. dFOXO loss-of-function mutations rescued the induction of dFOXO target gene expression and the body size reduction of Src42A mutant larvae, establishing dFOXO as a critical downstream effector of Src signaling. Furthermore, we provide evidence that the regulation of FOXO transcription factors by Src is evolutionarily conserved in mammalian cells. PMID:24513978

  8. The chemokine-like factor 1 induces asthmatic pathological change by activating nuclear factor-κB signaling pathway.

    PubMed

    Li, Gang; Li, Guang-yan; Wang, Zhen-zhen; Ji, Hai-jie; Wang, Dong-mei; Hu, Jin-feng; Yuan, Yu-he; Liu, Gang; Chen, Nai-hong

    2014-05-01

    CKLF1, which exhibits chemotactic activities on a wide spectrum of leukocytes, is up-regulated during the progress of asthma. It plays a vital role in the pathogenesis of pulmonary disease. Here, we report that CKLF1 has the capability to activate the NF-κB signaling pathway leading to the pathological change in the lung. The HEK293-CCR4 cell line, which expressed CCR4 stably, was established and screened. Western blot analysis was performed to determine the expression of NF-κB in HEK293-CCR4 and A549 cells following the C27 (10μg/ml) added in each well at different times. These results showed that C27 (10μg/ml) time-dependently induced the accumulation of NF-κB in the nucleus of HEK293-CCR4 and A549 cells. In addition, CKLF1 plasmid (100μg) injection and electroporation led to the asthmatic change in the lung in mice as shown by HE and PAS staining. Furthermore, it was confirmed that CKLF1 significantly up-regulated the p-IκB expression, decreased the IκB expression, and suppressed the NF-κB expression in the cytoplasm of pulmonary tissue in vivo study. Intriguingly, an enhanced nuclear accumulation of NF-κB was observed in the lung of pCDI-CKLF1 electroporated mice, compared to that in the sham group. Therefore, the NF-κB signaling pathway was involved in the asthmatic change induced by CKLF1, among which CCR4 might play a crucial role. PMID:24583145

  9. Lithium Regulates Keratinocyte Proliferation Via Glycogen Synthase Kinase 3 and NFAT2 (Nuclear Factor of Activated T Cells 2)

    PubMed Central

    Hampton, Philip J; Jans, Ralph; Flockhart, Ross J; Parker, Graeme; Reynolds, Nick J

    2012-01-01

    Certain environmental factors including drugs exacerbate or precipitate psoriasis. Lithium is the commonest cause of drug-induced psoriasis but underlying mechanisms are currently unknown. Lithium inhibits glycogen synthase kinase 3 (GSK-3). As lithium does not exacerbate other T-cell-mediated chronic inflammatory diseases, we investigated whether lithium may be acting directly on epidermal keratinocytes by inhibiting GSK-3. We report that lithium-induced keratinocyte proliferation at therapeutically relevant doses (1–2 mM) and increased the proportion of cells in S phase of the cell cycle. Inhibition of GSK-3 in keratinocytes by retroviral transduction of GSK-binding protein (an endogenous inhibitory protein) or through a highly selective pharmacological inhibitor also resulted in increased keratinocyte proliferation. Nuclear factor of activated T cells (NFAT) is an important substrate for GSK-3 and for cyclosporin, an effective treatment for psoriasis that inhibits NFAT activation in keratinocytes as well as in lymphocytes. Both lithium and genetic/pharmacological inhibition of GSK-3 resulted in increased nuclear localization of NFAT2 (NFATc1) and increased NFAT transcriptional activation. Finally, retroviral transduction of NFAT2 increased keratinocyte proliferation whereas siRNA-mediated knockdown of NFAT2 reduced keratinocyte proliferation and decreased epidermal thickness in an organotypic skin equivalent model. Taken together, these data identify GSK-3 and NFAT2 as key regulators of keratinocyte proliferation and as potential molecular targets relevant to lithium-provoked psoriasis. J. Cell. Physiol. 227: 1529–1537, 2012. © 2011 Wiley Periodicals, Inc. PMID:21678407

  10. Borrelia burgdorferi outer membrane protein A induces nuclear translocation of nuclear factor-kappa B and inflammatory activation in human endothelial cells.

    PubMed

    Wooten, R M; Modur, V R; McIntyre, T M; Weis, J J

    1996-11-15

    Lyme disease is caused by infection with Borrelia burgdorferi, and is characterized by bacterial persistence and inflammation in a number of host tissues. B. burgdorferi outer surface lipoproteins possess cytokine stimulatory properties that may be responsible for localized inflammation. B. burgdorferi presence is correlated with severity of disease, and the pathology of many tissues, particularly the arthritic joint, is consistent with localized cytokine production. Spirochete invasion of tissues requires interaction with and penetration of vascular endothelium, suggesting endothelial cells may participate in the inflammation of Lyme disease. In this study, outer surface protein A (OspA), a model B. burgdorferi lipoprotein, was found to be a potent stimulant of nuclear factor-kappa B (NF-kappa B) nuclear translocation in human endothelial cells, resulting in nuclear levels similar to those seen in response to known inflammatory mediators. Only the lipid-modified OspA had activity, and activity was not due to contamination with LPS. Nuclear NF-kappa B was detectable within 15 min, suggesting that OspA directly mediates NF-kappa B nuclear translocation. OspA also rapidly up-regulated endothelial cell production of several proteins whose transcription is dependent on NF-kappa B: the cytokine IL-6; the chemokine IL-8; and the adhesion molecules E-selectin, VCAM-1, and ICAM-1. The adhesion molecules were functional, as demonstrated by enhanced binding of neutrophils to OspA-stimulated endothelial monolayers. These data suggest that OspA may initiate synthesis of many proteins essential for localized inflammation via the direct activation of NF-kappa B-dependent transcription. These observations suggest that the interaction of B. burgdorferi lipoproteins with the endothelium may directly induce the inflammation responsible for the symptoms of Lyme disease. PMID:8906837

  11. Cynaropicrin from Cynara scolymus L. suppresses photoaging of skin by inhibiting the transcription activity of nuclear factor-kappa B.

    PubMed

    Tanaka, Yuka Tsuda; Tanaka, Kiyotaka; Kojima, Hiroyuki; Hamada, Tomoji; Masutani, Teruaki; Tsuboi, Makoto; Akao, Yukihiro

    2013-01-15

    Aging of skin is characterized by skin wrinkling, laxity, and pigmentation induced by several environmental stress factors. Histological changes during the photoaging of skin include hyperproliferation of keratinocytes and melanocytes causing skin wrinkles and pigmentation. Nuclear factor kappa B (NF-κB) is one of the representative transcription factors active in conjunction with inflammation. NF-κB is activated by stimulation such as ultraviolet rays and inflammatory cytokines and induces the expression of various genes such as those of basic fibroblast growth factor (bFGF) and matrix metalloprotease-1 (MMP-1). We screened several plant extracts for their possible inhibitory effect on the transcriptional activity of NF-κB. One of them, an extract from Cynara scolymus L., showed a greatest effect on the suppression of NF-κB transactivation. As a result, we found that cynaropicrin, which is a sesquiterpene lactone, inhibited the NF-κB-mediated transactivation of bFGF and MMP-1. Furthermore, it was confirmed that in an in vivo mouse model cynaropicrin prevented skin photoaging processes leading to the hyperproliferation of keratinocytes and melanocytes. These findings taken together indicate that cynaropicrin is an effective antiphotoaging agent that acts by inhibiting NF-κB-mediated transactivation. PMID:23232059

  12. Tensile force on human macrophage cells promotes osteoclastogenesis through receptor activator of nuclear factor κB ligand induction.

    PubMed

    Kao, Chia-Tze; Huang, Tsui-Hsien; Fang, Hsin-Yuan; Chen, Yi-Wen; Chien, Chien-Fang; Shie, Ming-You; Yeh, Chia-Hung

    2016-07-01

    Little is known about the effects of tensile forces on osteoclastogenesis by human monocytes in the absence of mechanosensitive cells, including osteoblasts and fibroblasts. In this study we consider the effects of tensile force on osteoclastogenesis in human monocytes. The cells were treated with receptor activator of nuclear factor κB ligand (RANKL) to promote osteoclastogenesis. Then,expression and secretion of cathepsin K were examined. RANKL and the formation of osteoclasts during the osteoclast differentiation process under continual tensile stress were evaluated by Western blot. It was also found that -100 kPa or lower induces RANKL-enhanced tartrate-resistant acid phosphatase activity in a dose-dependent manner. Furthermore, an increased tensile force raises the expression and secretion of cathepsin K elevated by RANKL, and is concurrent with the increase of TNF-receptor-associated factor 6 induction and nuclear factor κB activation. Overall, the current report demonstrates that tensile force reinforces RANKL-induced osteoclastogenesis by retarding osteoclast differentiation. The tensile force is able to modify every cell through dose-dependent in vitro RANKL-mediated osteoclastogenesis, affecting the fusion of preosteoclasts and function of osteoclasts. However, tensile force increased TNF-receptor-associated factor 6 expression. These results are in vitro findings and were obtained under a condition of tensile force. The current results help us to better understand the cellular roles of human macrophage populations in osteoclastogenesis as well as in alveolar bone remodeling when there is tensile stress. PMID:26204845

  13. Matricellular Protein Periostin Mediates Intestinal Inflammation through the Activation of Nuclear Factor κB Signaling

    PubMed Central

    Koh, Seong-Joon; Choi, Younjeong; Kim, Byeong Gwan; Lee, Kook Lae; Kim, Dae Woo; Kim, Jung Ho; Kim, Ji Won; Kim, Joo Sung

    2016-01-01

    Periostin is a matricellular protein that interacts with various integrin molecules on the cell surface. Although periostin is expressed in inflamed colonic mucosa, its role in the regulation of intestinal inflammation remains unclear. We investigated the role of periostin in intestinal inflammation using Postn-deficient (Postn-/-) mice. Intestinal epithelial cells (IECs) were transfected by Postn small interfering RNAs. Periostin expression was determined in colon tissue samples from ulcerative colitis (UC) patients. Oral administration of dextran sulfate sodium (DSS) or rectal administration of trinitrobenzene sulfonic acid, induced severe colitis in wild-type mice, but not in Postn-/- mice. Administration of recombinant periostin induced colitis in Postn-/- mice. The periostin neutralizing-antibody ameliorated the severity of colitis in DSS-treated wild-type mice. Silencing of Postn inhibited inteleukin (IL)-8 mRNA expression and NF-κB DNA-binding activity in IECs. Tumor necrosis factor (TNF)-α upregulated mRNA expression of Postn in IECs, and recombinant periostin strongly enhanced IL-8 expression in combination with TNF-α, which was suppressed by an antibody against integrin αv (CD51). Periostin and CD51 were expressed at significantly higher levels in UC patients than in controls. Periostin mediates intestinal inflammation through the activation of NF-κB signaling, which suggests that periostin is a potential therapeutic target for inflammatory bowel disease. PMID:26890265

  14. Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level.

    PubMed Central

    Wegenka, U M; Buschmann, J; Lütticken, C; Heinrich, P C; Horn, F

    1993-01-01

    Interleukin-6 (IL-6) is known to be a major mediator of the acute-phase response in liver. We show here that IL-6 triggers the rapid activation of a nuclear factor, termed acute-phase response factor (APRF), both in rat liver in vivo and in human hepatoma (HepG2) cells in vitro. APRF bound to IL-6 response elements in the 5'-flanking regions of various acute-phase protein genes (e.g., the alpha 2-macroglobulin, fibrinogen, and alpha 1-acid glycoprotein genes). These elements contain a characteristic hexanucleotide motif, CTGGGA, known to be required for the IL-6 responsiveness of these genes. Analysis of the binding specificity of APRF revealed that it is different from NF-IL6 and NF-kappa B, transcription factors known to be regulated by cytokines and involved in the transcriptional regulation of acute-phase protein genes. In HepG2 cells, activation of APRF was observed within minutes after stimulation with IL-6 or leukemia-inhibitory factor and did not require ongoing protein synthesis. Therefore, a preexisting inactive form of APRF is activated by a posttranslational mechanism. We present evidence that this activation occurs in the cytoplasm and that a phosphorylation is involved. These results lead to the conclusions that APRF is an immediate target of the IL-6 signalling cascade and is likely to play a central role in the transcriptional regulation of many IL-6-induced genes. Images PMID:7678052

  15. Zoledronate inhibits receptor activator of nuclear factor kappa-B ligand-induced osteoclast differentiation via suppression of expression of nuclear factor of activated T-cell c1 and carbonic anhydrase 2.

    PubMed

    Nakagawa, Takayuki; Ohta, Kouji; Kubozono, Kazumi; Ishida, Yoko; Naruse, Takako; Takechi, Masaaki; Kamata, Nobuyuki

    2015-04-01

    Bisphosphonates (BPs) are widely used in the prevention of skeletal-related events (SRE), including osteoporosis, skeletal metastases of malignant tumours, and multiple myeloma. Osteonecrosis of the jaw (ONJ) is frequently reported as a major adverse effect induced by BP treatment. The receptor activator of the nuclear factor kappa-B ligand (RANKL) inhibitor, denosumab, has recently been used to prevent SRE, but the frequency of ONJ induced by denosumab is similar to that by BPs. This finding suggests that the inhibition of RANKL-mediated osteoclastogenesis may have a close relationship with the occurrence of ONJ. We therefore investigated the expression status of RANKL-inducible genes in zoledronate-treated mouse osteoclast precursor cells. The molecular targets of zoledronate in the RANKL signal pathway and additional factors associated with osteoclastogenesis were analysed by genome-wide screening. Microarray analysis identified that among 31 genes on 44 entities of RANKL-inducible genes, the mRNA expression level of two genes, i.e., nuclear factor of activated T-cells c1 (NFATc1) and carbonic anhydrase 2 (CAII), was decreased in zoledronate-treated cells. Subsequent analyses verified that these two genes were significantly silenced by zoledronate treatment and that their expression was restored following inhibition of zoledronate action by geranylgeraniol. Zoledronate inhibited RANKL-induced osteoclast differentiation by suppression of NFATc1 and CAII gene expression. Our results suggest that these genes might be common targets for zoledronate and denosumab in the mechanism underlying RANKL-induced osteoclast differentiation. A clear understanding of the common molecular mechanisms of bone-remodelling agents is thus essential for prevention of ONJ. PMID:25601046

  16. Identification of Novel Small Molecule Activators of Nuclear Factor-κB With Neuroprotective Action Via High-Throughput Screening

    PubMed Central

    Manuvakhova, Marina S.; Johnson, Guyla G.; White, Misti C.; Ananthan, Subramaniam; Sosa, Melinda; Maddox, Clinton; McKellip, Sara; Rasmussen, Lynn; Wennerberg, Krister; Hobrath, Judith V.; White, E. Lucile; Maddry, Joseph A.; Grimaldi, Maurizio

    2012-01-01

    Neuronal noncytokine-dependent p50/p65 nuclear factor-κB (the primary NF-κB complex in the brain) activation has been shown to exert neuroprotective actions. Thus neuronal activation of NF-κB could represent a viable neuroprotective target. We have developed a cell-based assay able to detect NF-κB expression enhancement, and through its use we have identified small molecules able to up-regulate NF-κB expression and hence trigger its activation in neurons. We have successfully screened approximately 300,000 compounds and identified 1,647 active compounds. Cluster analysis of the structures within the hit population yielded 14 enriched chemical scaffolds. One high-potency and chemically attractive representative of each of these 14 scaffolds and four singleton structures were selected for follow-up. The experiments described here highlighted that seven compounds caused noncanonical long-lasting NF-κB activation in primary astrocytes. Molecular NF-κB docking experiments indicate that compounds could be modulating NF-κB-induced NF-κB expression via enhancement of NF-κB binding to its own promoter. Prototype compounds increased p65 expression in neurons and caused its nuclear translocation without affecting the inhibitor of NF-κB (I-κB). One of the prototypical compounds caused a large reduction of glutamate-induced neuronal death. In conclusion, we have provided evidence that we can use small molecules to activate p65 NF-κB expression in neurons in a cytokine receptor-independent manner, which results in both long-lasting p65 NF-κB translocation/activation and decreased glutamate neurotoxicity. PMID:21046675

  17. Mangiferin induces apoptosis in multiple myeloma cell lines by suppressing the activation of nuclear factor kappa B-inducing kinase.

    PubMed

    Takeda, Tomoya; Tsubaki, Masanobu; Kino, Toshiki; Yamagishi, Misa; Iida, Megumi; Itoh, Tatsuki; Imano, Motohiro; Tanabe, Genzoh; Muraoka, Osamu; Satou, Takao; Nishida, Shozo

    2016-05-01

    Mangiferin is a naturally occurring glucosyl xanthone, which induces apoptosis in various cancer cells. However, the molecular mechanism underlying mangiferin-induced apoptosis has not been clarified thus far. Therefore, we examined the molecular mechanism underlying mangiferin-induced apoptosis in multiple myeloma (MM) cell lines. We found that mangiferin decreased the viability of MM cell lines in a concentration-dependent manner. We also observed an increased number of apoptotic cells, caspase-3 activation, and a decrease in the mitochondrial membrane potential. In addition, mangiferin inhibited the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated inhibitor kappa B (IκB) and increased the expression of IκB protein, whereas no changes were observed in the phosphorylation levels of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase 1/2 (JNK1/2), and mammalian target of rapamycin (mTOR). The molecular mechanism responsible for mangiferin-induced inhibition of nuclear translocation of NF-κB was a decrease in the expression of phosphorylated NF-κB-inducing kinase (NIK). Moreover, mangiferin decreased the expression of X-linked inhibitor of apoptosis protein (XIAP), survivin, and Bcl-xL proteins. Knockdown of NIK expression showed results similar to those observed with mangiferin treatment. Our results suggest that mangiferin induces apoptosis through the inhibition of nuclear translocation of NF-κB by suppressing NIK activation in MM cell lines. Our results provide a new insight into the molecular mechanism of mangiferin-induced apoptosis. Importantly, since the number of reported NIK inhibitors is limited, mangiferin, which targets NIK, may be a potential anticancer agent for the treatment of MM. PMID:26996543

  18. Tumor necrosis factor receptor p75 mediates cell-specific activation of nuclear factor kappa B and induction of human cytomegalovirus enhancer.

    PubMed

    Laegreid, A; Medvedev, A; Nonstad, U; Bombara, M P; Ranges, G; Sundan, A; Espevik, T

    1994-03-11

    The functional role of human tumor necrosis factor receptor (TNFR) p75 was studied by the use of TNFR p75-specific agonistic antibodies. Human SW480T adenocarcinoma cells, stably transfected with a reporter construct containing beta-galactosidase under the control of human cytomegalovirus immediate early enhancer, were stimulated with anti-TNFR p75 polyclonal antiserum or monoclonal antibodies followed by measurement of beta-galactosidase activity and analysis by electrophoretic mobility shift assays. It was found that cross-linking of TNFR p75 led to strong induction of the human cytomegalovirus enhancer as well as activation of nuclear factor-kappa B (NF-kappa B). Stimulation of TNFR p75 also mediated activation of NF-kappa B in human KYM-1 rhabdomyosarcoma cells but not in other cell types such as U937 and HL-60 monocytic cells or in Eahy 926 endothelial cells. NF-kappa B activation induced by TNFR p75 was delayed approximately 15 min compared with NF-kappa B activation induced by TNFR p55, indicating that the two TNFRs activate NF-kappa B through different signaling pathways. The data presented in this study identify intracellular responses mediated by TNFR p75 which have not been reported previously and suggest that TNFR p75-induced activation of NF-kappa B is strictly cell type-specific. PMID:8126005

  19. Kunbi-Boshin-Hangam-Tang stimulates nitic oxide production through activation of nuclear factor-kappaB.

    PubMed

    Koo, H N; Jeong, H J; Park, J H; Moon, G; Chae, H J; Kim, H R; Kim, C H; Seo, S B; An, N H; Kim, H M

    2001-05-01

    The objective of the currently study was to determine the effect of Kunbi-Boshin-Hangam-Tang (KBH-Tang) on the production of nitric oxide (NO). Stimulation of RAW 264.7 cells with KBH-Tang after the treatment of recombinant interferon-gamma (rIFN-gamma) resulted in increased NO synthesis. KBH-Tang partially increased NO synthesis by itself. When KBH-Tang was used in combination with rIFN-gamma, there was a marked cooperative induction of NO synthesis in a dose-dependent manner. This increase in NO synthesis was reflected as increased amount of inducible NO synthase (iNOS) protein. NO production was inhibited by NG-monomethyl-L-arginine (NGMMA). Furthermore, activation of nuclear factor (NF)-kappaB was increased by KBH-Tang. These results suggest that KBH-Tang may stimulate the NO production through the activation of the NF-kappaB. PMID:11417846

  20. Per a 10 protease activity modulates CD40 expression on dendritic cell surface by nuclear factor-kappaB pathway

    PubMed Central

    Goel, C; Kalra, N; Dwarakanath, B S; Gaur, S N; Arora, N

    2015-01-01

    Serine protease activity of Per a 10 from Periplaneta americana modulates dendritic cell (DC) functions by a mechanism(s) that remains unclear. In the present study, Per a 10 protease activity on CD40 expression and downstream signalling was evaluated in DCs. Monocyte-derived DCs from cockroach-allergic patients were treated with proteolytically active/heat-inactivated Per a 10. Stimulation with active Per a 10 demonstrated low CD40 expression on DCs surface (P < 0·05), while enhanced soluble CD40 level in the culture supernatant (P < 0·05) compared to the heat-inactivated Per a 10, suggesting cleavage of CD40. Per a 10 activity reduced the interleukin (IL)-12 and interferon (IFN)-γ secretion by DCs (P < 0·05) compared to heat-inactivated Per a 10, indicating that low CD40 expression is associated with low levels of IL-12 secretion. Active Per a 10 stimulation caused low nuclear factor-kappa B (NF-κB) activation in DCs compared to heat-inactivated Per a 10. Inhibition of the NF-κB pathway suppressed the CD40 expression and IL-12 secretion by DCs, further indicating that NF-κB is required for CD40 up-regulation. CD40 expression activated the tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), thereby suggesting its involvement in NF-κB activation. Protease activity of Per a 10 induced p38 mitogen-activated protein kinase (MAPK) activation that showed no significant effect on CD40 expression by DCs. However, inhibiting p38 MAPK or NF-κB suppressed the secretion of IL-12, IFN-γ, IL-6 and TNF-α by DCs. Such DCs further reduced the secretion of IL-4, IL-6, IL-12 and TNF-α by CD4+ T cells. In conclusion, protease activity of Per a 10 reduces CD40 expression on DCs. CD40 down-regulation leads to low NF-κB levels, thereby modulating DC-mediated immune responses. PMID:25492061

  1. Endoplasmic reticulum and oxidant stress mediate nuclear factor-κB activation in the subfornical organ during angiotensin II hypertension

    PubMed Central

    Young, Colin N.; Li, Anfei; Dong, Frederick N.; Horwath, Julie A.; Clark, Catharine G.

    2015-01-01

    Endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) generation in the brain circumventricular subfornical organ (SFO) mediate the central hypertensive actions of Angiotensin II (ANG II). However, the downstream signaling events remain unclear. Here we tested the hypothesis that angiotensin type 1a receptors (AT1aR), ER stress, and ROS induce activation of the transcription factor nuclear factor-κB (NF-κB) during ANG II-dependent hypertension. To spatiotemporally track NF-κB activity in the SFO throughout the development of ANG II-dependent hypertension, we used SFO-targeted adenoviral delivery and longitudinal bioluminescence imaging in mice. During low-dose infusion of ANG II, bioluminescence imaging revealed a prehypertensive surge in NF-κB activity in the SFO at a time point prior to a significant rise in arterial blood pressure. SFO-targeted ablation of AT1aR, inhibition of ER stress, or adenoviral scavenging of ROS in the SFO prevented the ANG II-induced increase in SFO NF-κB. These findings highlight the utility of bioluminescence imaging to longitudinally track transcription factor activation during the development of ANG II-dependent hypertension and reveal an AT1aR-, ER stress-, and ROS-dependent prehypertensive surge in NF-κB activity in the SFO. Furthermore, the increase in NF-κB activity before a rise in arterial blood pressure suggests a causal role for SFO NF-κB in the development of ANG II-dependent hypertension. PMID:25980014

  2. On involvement of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells, activator protein-1 and signal transducer and activator of transcription-3 in photodynamic therapy-induced death of crayfish neurons and satellite glial cells.

    PubMed

    Berezhnaya, Elena; Neginskaya, Marya; Kovaleva, Vera; Sharifulina, Svetlana; Ischenko, Irina; Komandirov, Maxim; Rudkovskii, Mikhail; Uzdensky, Anatoly B

    2015-07-01

    Photodynamic therapy (PDT) is currently used in the treatment of brain tumors. However, not only malignant cells but also neighboring normal neurons and glial cells are damaged during PDT. In order to study the potential role of transcription factors-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein (AP-1), and signal transducer and activator of transcription-3 (STAT-3)-in photodynamic injury of normal neurons and glia, we photosensitized the isolated crayfish mechanoreceptor consisting of a single sensory neuron enveloped by glial cells. Application of different inhibitors and activators showed that transcription factors NF-κB (inhibitors caffeic acid phenethyl ester and parthenolide, activator betulinic acid), AP-1 (inhibitor SR11302), and STAT-3 (inhibitors stattic and cucurbitacine) influenced PDT-induced death and survival of neurons and glial cells in different ways. These experiments indicated involvement of NF-κB in PDT-induced necrosis of neurons and apoptosis of glial cells. However, in glial cells, it played the antinecrotic role. AP-1 was not involved in PDT-induced necrosis of neurons and glia, but mediated glial apoptosis. STAT-3 was involved in PDT-induced apoptosis of glial cells and necrosis of neurons and glia. Therefore, signaling pathways that regulate cell death and survival in neurons and glial cells are different. Using various inhibitors or activators of transcription factors, one can differently influence the sensitivity and resistance of neurons and glial cells to PDT. PMID:26160345

  3. On involvement of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells, activator protein-1 and signal transducer and activator of transcription-3 in photodynamic therapy-induced death of crayfish neurons and satellite glial cells

    NASA Astrophysics Data System (ADS)

    Berezhnaya, Elena; Neginskaya, Marya; Kovaleva, Vera; Sharifulina, Svetlana; Ischenko, Irina; Komandirov, Maxim; Rudkovskii, Mikhail; Uzdensky, Anatoly B.

    2015-07-01

    Photodynamic therapy (PDT) is currently used in the treatment of brain tumors. However, not only malignant cells but also neighboring normal neurons and glial cells are damaged during PDT. In order to study the potential role of transcription factors-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein (AP-1), and signal transducer and activator of transcription-3 (STAT-3)-in photodynamic injury of normal neurons and glia, we photosensitized the isolated crayfish mechanoreceptor consisting of a single sensory neuron enveloped by glial cells. Application of different inhibitors and activators showed that transcription factors NF-κB (inhibitors caffeic acid phenethyl ester and parthenolide, activator betulinic acid), AP-1 (inhibitor SR11302), and STAT-3 (inhibitors stattic and cucurbitacine) influenced PDT-induced death and survival of neurons and glial cells in different ways. These experiments indicated involvement of NF-κB in PDT-induced necrosis of neurons and apoptosis of glial cells. However, in glial cells, it played the antinecrotic role. AP-1 was not involved in PDT-induced necrosis of neurons and glia, but mediated glial apoptosis. STAT-3 was involved in PDT-induced apoptosis of glial cells and necrosis of neurons and glia. Therefore, signaling pathways that regulate cell death and survival in neurons and glial cells are different. Using various inhibitors or activators of transcription factors, one can differently influence the sensitivity and resistance of neurons and glial cells to PDT.

  4. Keratinocyte sensitization to tumour necrosis factor-induced nuclear factor kappa B activation by the E2 regulatory protein of human papillomaviruses.

    PubMed

    Boulabiar, Manel; Boubaker, Samir; Favre, Michel; Demeret, Caroline

    2011-10-01

    Human papillomavirus (HPV) life cycle requires extensive manipulation of cell signalling to provide conditions adequate for viral replication within the stratified epithelia. In this regard, we show that the E2 regulatory protein of α, β and μ-HPV genotypes enhances tumour necrosis factor (TNF)-induced activation of nuclear factor kappa B (NF-κB). This activation is mediated by the N-terminal domain of E2, but does not rely on its transcriptional properties. It is independent of the NF-κB regulator Tax1BP1, which nevertheless interacts with all the E2 proteins. E2 specifically activates NF-κB pathways induced by TNF, while interleukin-1-induced pathways are not affected. E2 stimulates the activating K63-linked ubiquitination of TRAF5, and interacts with both TRAF5 and TRAF6. Our data suggest that E2 potentiates TNF-induced NF-κB signalling mediated by TRAF5 activation through direct binding. Since NF-κB controls epithelial differentiation, this activity may be involved in the commitment of infected keratinocytes to proliferation arrest and differentiation, both required for the implementation of the productive viral cycle. PMID:21715600

  5. Hyperactivation of nuclear factor of activated T cells 1 (NFAT1) in T cells attenuates severity of murine autoimmune encephalomyelitis

    PubMed Central

    Ghosh, Srimoyee; Koralov, Sergei B.; Stevanovic, Irena; Sundrud, Mark S.; Sasaki, Yoshiteru; Rajewsky, Klaus; Rao, Anjana; Müller, Martin R.

    2010-01-01

    Nuclear factor of activated T cells (NFAT) proteins are a group of Ca2+-regulated transcription factors residing in the cytoplasm of resting cells. Dephosphorylation by calcineurin results in nuclear translocation of NFAT and subsequent expression of target genes; rephosphorylation by kinases, including casein kinase 1 (CK1), restores NFAT to its latent state in the cytoplasm. We engineered a hyperactivable version of NFAT1 with increased affinity for calcineurin and decreased affinity for casein kinase 1. Mice expressing hyperactivable NFAT1 in their T-cell compartment exhibited a dramatically increased frequency of both IL-17– and IL-10–producing cells after differentiation under Th17 conditions—this was associated with direct binding of NFAT1 to distal regulatory regions of Il-17 and Il-10 gene loci in Th17 cells. Despite higher IL-17 production in culture, the mice were significantly less prone to myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis than controls, correlating with increased production of the immunomodulatory cytokine IL-10 and enhanced accumulation of regulatory T cells within the CNS. Thus, NFAT hyperactivation paradoxically leads to decreased susceptibility to experimental autoimmune encephalomyelitis, supporting previous observations linking defects in Ca2+/NFAT signaling to lymphoproliferation and autoimmune disease. PMID:20696888

  6. Factors Limiting Microbial Growth and Activity at a Proposed High-Level Nuclear Repository, Yucca Mountain, Nevada

    PubMed Central

    Kieft, T. L.; Kovacik, W. P.; Ringelberg, D. B.; White, D. C.; Haldeman, D. L.; Amy, P. S.; Hersman, L. E.

    1997-01-01

    As part of the characterization of Yucca Mountain, Nev., as a potential repository for high-level nuclear waste, volcanic tuff was analyzed for microbial abundance and activity. Tuff was collected aseptically from nine sites along a tunnel in Yucca Mountain. Microbial abundance was generally low: direct microscopic cell counts were near detection limits at all sites (3.2 x 10(sup4) to 2.0 x 10(sup5) cells g(sup-1) [dry weight]); plate counts of aerobic heterotrophs ranged from 1.0 x 10(sup1) to 3.2 x 10(sup3) CFU g(sup-1) (dry weight). Phospholipid fatty acid concentrations (0.1 to 3.7 pmol g(sup-1)) also indicated low microbial biomasses; diglyceride fatty acid concentrations, indicative of dead cells, were in a similar range (0.2 to 2.3 pmol g(sup-1)). Potential microbial activity was quantified as (sup14)CO(inf2) production in microcosms containing radiolabeled substrates (glucose, acetate, and glutamic acid); amendments with water and nutrient solutions (N and P) were used to test factors potentially limiting this activity. Similarly, the potential for microbial growth and the factors limiting growth were determined by performing plate counts before and after incubating volcanic tuff samples for 24 h under various conditions: ambient moisture, water-amended, and amended with various nutrient solutions (N, P, and organic C). A high potential for microbial activity was demonstrated by high rates of substrate mineralization (as much as 70% of added organic C in 3 weeks). Water was the major limiting factor to growth and microbial activity, while amendments with N and P resulted in little further stimulation. Organic C amendments stimulated growth more than water alone. PMID:16535670

  7. Nuclear activity of ROXY1, a glutaredoxin interacting with TGA factors, is required for petal development in Arabidopsis thaliana.

    PubMed

    Li, Shutian; Lauri, Andrea; Ziemann, Mark; Busch, Andrea; Bhave, Mrinal; Zachgo, Sabine

    2009-02-01

    Glutaredoxins (GRXs) have thus far been associated mainly with redox-regulated processes participating in stress responses. However, ROXY1, encoding a GRX, has recently been shown to regulate petal primorida initiation and further petal morphogenesis in Arabidopsis thaliana. ROXY1 belongs to a land plant-specific class of GRXs that has a CC-type active site motif, which deviates from ubiquitously occurring CPYC and CGFS GRXs. Expression studies of yellow fluorescent protein-ROXY1 fusion genes driven by the cauliflower mosaic virus 35S promoter reveal a nucleocytoplasmic distribution of ROXY1. We demonstrate that nuclear localization of ROXY1 is indispensable and thus crucial for its activity in flower development. Yeast two-hybrid screens identified TGA transcription factors as interacting proteins, which was confirmed by bimolecular fluorescence complementation experiments showing their nuclear interaction in planta. Overlapping expression patterns of ROXY1 and TGA genes during flower development demonstrate that ROXY1/TGA protein interactions can occur in vivo and support their biological relevance in petal development. Deletion analysis of ROXY1 demonstrates the importance of the C terminus for its functionality and for mediating ROXY1/TGA protein interactions. Phenotypic analysis of the roxy1-2 pan double mutant and an engineered chimeric repressor mutant from PERIANTHIA (PAN), a floral TGA gene, supports a dual role of ROXY1 in petal development. Together, our results show that the ROXY1 protein functions in the nucleus, likely by modifying PAN posttranslationally and thereby regulating its activity in petal primordia initiation. Additionally, ROXY1 affects later petal morphogenesis, probably by modulating other TGA factors that might act redundantly during differentiation of second whorl organs. PMID:19218396

  8. Modulation of transcriptional activation and coactivator interaction by a splicing variation in the F domain of nuclear receptor hepatocyte nuclear factor 4alpha1.

    PubMed

    Sladek, F M; Ruse, M D; Nepomuceno, L; Huang, S M; Stallcup, M R

    1999-10-01

    Transcription factors, such as nuclear receptors, often exist in various forms that are generated by highly conserved splicing events. Whereas the functional significance of these splicing variants is often not known, it is known that nuclear receptors activate transcription through interaction with coactivators. The parameters, other than ligands, that might modulate those interactions, however, are not well characterized, nor is the role of splicing variants. In this study, transient transfection, yeast two-hybrid, and GST pulldown assays are used to show not only that nuclear receptor hepatocyte nuclear factor 4 alpha1 (HNF4alpha1, NR2A1) interacts with GRIP1, and other coactivators, in the absence of ligand but also that the uncommonly large F domain in the C terminus of the receptor inhibits that interaction. In vitro, the F domain was found to obscure an AF-2-independent binding site for GRIP1 that did not map to nuclear receptor boxes II or III. The results also show that a natural splicing variant containing a 10-amino-acid insert in the middle of the F domain (HNF4alpha2) abrogates that inhibition in vivo and in vitro. A series of protease digestion assays indicates that there may be structural differences between HNF4alpha1 and HNF4alpha2 in the F domain as well as in the ligand binding domain (LBD). The data also suggest that there is a direct physical contact between the F domain and the LBD of HNF4alpha1 and -alpha2 and that that contact is different in the HNF4alpha1 and HNF4alpha2 isoforms. Finally, we propose a model in which the F domain of HNF4alpha1 acts as a negative regulatory region for transactivation and in which the alpha2 insert ameliorates the negative effect of the F domain. A conserved repressor sequence in the F domains of HNF4alpha1 and -alpha2 suggests that this model may be relevant to other nuclear receptors as well. PMID:10490591

  9. Tumour necrosis factor-alpha and interferon-gamma synergistically activate the RANTES promoter through nuclear factor kappaB and interferon regulatory factor 1 (IRF-1) transcription factors.

    PubMed

    Lee, A H; Hong, J H; Seo, Y S

    2000-08-15

    Inflammatory cytokines such as tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) synergistically activate expression of the RANTES (regulated upon activation, normal T-cell expressed and secreted) gene, which plays a crucial role in the chemoattraction of leukocytes during the inflammatory response. To understand at the molecular level the mechanism by which the two cytokines activate RANTES gene expression, we determined the requirement of cis-acting elements in the RANTES promoter and trans-acting factors. The murine RANTES promoter contained one putative interferon regulatory factor, IRF, and three putative nuclear factor kappaB (NF-kappaB) binding sites. Specific destruction of the IRF binding site and one of the three NF-kappaB binding sites abolished the inducibility of promoter activity by IFN-gamma and TNF-alpha, respectively. In contrast, mutation of the other two putative NF-kappaB binding sites did not affect RANTES promoter activity significantly. In addition, the RANTES promoter was stimulated by co-transfection of plasmids that expressed either p65, an NF-kappaB family protein, or the IRF-1 transcription factor. RANTES promoters with mutations in the NF-kappaB or IRF binding sites were not stimulated by p65 or IRF-1 expression, respectively. In electrophoretic mobility-shift and immunologic assays, we showed that IRF-1 was induced after cells were treated with IFN-gamma and that NF-kappaB was activated by TNF-alpha treatment. These results demonstrate that both NF-kappaB and IRF-1 transcription factors mediate the induction of RANTES expression via their cognate cis-acting elements when cells are stimulated by TNF-alpha and IFN-gamma. PMID:10926836

  10. Aberrant nuclear factor-kappa B activity in acute myeloid Leukemia: from molecular pathogenesis to therapeutic target

    PubMed Central

    Zhou, Jianbiao; Ching, Ying Qing; Chng, Wee-Joo

    2015-01-01

    The overall survival of patients with acute myeloid leukemia (AML) has not been improved significantly over the last decade. Molecularly targeted agents hold promise to change the therapeutic landscape in AML. The nuclear factor kappa B (NF-κB) controls a plethora of biological process through switching on and off its long list of target genes. In AML, constitutive NF-κB has been detected in 40% of cases and its aberrant activity enable leukemia cells to evade apoptosis and stimulate proliferation. These facts suggest that NF-κB signaling pathway plays a fundamental role in the development of AML and it represents an attractive target for the intervention of AML. This review summarizes our current knowledge of NF-κB signaling transduction including canonical and non-canonical NF-κB pathways. Then we specifically highlight what factors contribute to the aberrant activation of NF-κB activity in AML, followed by an overview of 8 important clinical trials of the first FDA approved proteasome inhibitor, Bortezomib (Velcade®), which is a NF-κB inhibitor too, in combination with other therapeutic agents in patients with AML. Finally, this review discusses the future directions of NF-κB inhibitor in treatment of AML, especially in targeting leukemia stem cells (LSCs). PMID:25823927

  11. Aberrant nuclear factor-kappa B activity in acute myeloid leukemia: from molecular pathogenesis to therapeutic target.

    PubMed

    Zhou, Jianbiao; Ching, Ying Qing; Chng, Wee-Joo

    2015-03-20

    The overall survival of patients with acute myeloid leukemia (AML) has not been improved significantly over the last decade. Molecularly targeted agents hold promise to change the therapeutic landscape in AML. The nuclear factor kappa B (NF-κB) controls a plethora of biological process through switching on and off its long list of target genes. In AML, constitutive NF-κB has been detected in 40% of cases and its aberrant activity enable leukemia cells to evade apoptosis and stimulate proliferation. These facts suggest that NF-κB signaling pathway plays a fundamental role in the development of AML and it represents an attractive target for the intervention of AML. This review summarizes our current knowledge of NF-κB signaling transduction including canonical and non-canonical NF-κB pathways. Then we specifically highlight what factors contribute to the aberrant activation of NF-κB activity in AML, followed by an overview of 8 important clinical trials of the first FDA approved proteasome inhibitor, Bortezomib (Velcade), which is a NF-κB inhibitor too, in combination with other therapeutic agents in patients with AML. Finally, this review discusses the future directions of NF-κB inhibitor in treatment of AML, especially in targeting leukemia stem cells (LSCs). PMID:25823927

  12. Inhibition of Nuclear Factor κB Activation and Cyclooxygenase-2 Expression by Aqueous Extracts of Hispanic Medicinal Herbs

    PubMed Central

    Gonzales, Amanda M.; Hunsaker, Lucy A.; Franco, Carolina R.; Royer, Robert E.; Vander Jagt, David L.; Vander Jagt, Dorothy J.

    2010-01-01

    Abstract Nonsteroidal anti-inflammatory drugs (NSAIDs) are a primary choice of therapy for diseases with a chronic inflammatory component. Unfortunately, long-term NSAID therapy is often accompanied by severe side effects, including cardiovascular and gastrointestinal complications. Because of this, there is critical need for identification of new and safer treatments for chronic inflammation to circumvent these side effects. Inflammatory diseases have been successfully remedied with natural herbs by many cultures. To better understand the potential of natural herbs in treating chronic inflammation and to identify their mechanism of action, we have evaluated the anti-inflammatory activities of 20 medicinal herbs commonly used in the Hispanic culture. We have established a standardized method for preparing aqueous extracts (teas) from the selected medicinal herbs and screened for inhibition of tumor necrosis factor-α-induced activation of nuclear factor κB (NF-κB), which is the central signaling pathway of the inflammatory response. A number of herbal teas were identified that exhibited significant anti-inflammatory activity. In particular, tea from the herb commonly called laurel was found to be an especially potent inhibitor of NF-κB-dependent cyclooxygenase-2 gene expression and prostaglandin E2 production in cultured murine macrophages. These findings indicate that laurel tea extract contains potent anti-inflammatory compounds that function by inhibiting the major signal transduction pathway responsible for inducing an inflammatory event. Based on these results, laurel may represent a new, safe therapeutic agent for managing chronic inflammation. PMID:20482259

  13. Silica-induced apoptosis in murine macrophage: involvement of tumor necrosis factor-alpha and nuclear factor-kappaB activation.

    PubMed

    Gozal, Evelyne; Ortiz, Luis A; Zou, Xiaoyan; Burow, Matthew E; Lasky, Joseph A; Friedman, Mitchell

    2002-07-01

    Alveolar macrophages play a critical role in silica-induced lung fibrosis. Silica exposure induces tumor necrosis factor (TNF)-alpha release and nuclear factor (NF)-kappaB activation, and apoptotic mechanisms have been implicated in silica-induced pathogenesis. To characterize potential relationships between these signaling events, we studied their induction in two murine macrophage cell lines. The RAW 264.7 macrophage cell line was more sensitive, and the IC-21 macrophage cell line more tolerant to silica exposure (0.2 or 1 mg/ml for 6 h) as evidenced by significantly higher apoptotic responses in RAW 264.7 (P < 0.05). RAW 264.7 macrophages exhibited enhanced TNF-alpha production and NF-kappaB activation in response to silica, whereas IC-21 macrophages did not produce TNF-alpha in response to silica and did not induce NF-kappaB nuclear binding. Inhibition of NF-kappaB in RAW 264.7 cells with BAY11-7082 significantly increased apoptosis while inhibiting TNF-alpha release. In addition, TNF-alpha and NF-kappaB activation, but not apoptosis, were induced by lipopolysaccharide (LPS) in both cell lines, and NF-kappaB inhibition reduced LPS-induced TNF-alpha release. These data suggest that TNF-alpha induction is dependent on NF-kappaB activation in both cell lines. However, silica can induce apoptosis in murine macrophages, independently of TNF-alpha stimulation, as in IC-21 macrophages. Furthermore, NF-kappaB activation in macrophages may play dual roles, both pro- and antiapoptotic during silica injury. PMID:12091251

  14. Resveratrol Inhibits Paraquat-Induced Oxidative Stress and Fibrogenic Response by Activating the Nuclear Factor Erythroid 2-Related Factor 2 Pathway

    PubMed Central

    He, Xiaoqing; Wang, Liping; Szklarz, Grazyna; Bi, Yongyi; Ma, Qiang

    2015-01-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is an antioxidant-activated transcription factor that recently emerged as a critical regulator of cellular defense against oxidative and inflammatory lesions. Resveratrol (Res) is a natural phytoalexin that exhibits multiple therapeutic potentials, including antioxidative and anti-inflammatory effects in animals. Paraquat (PQ) is the second most widely used herbicide worldwide, but it selectively accumulates in human lungs to cause oxidative injury and fibrosis with high mortality. Here, we analyzed the molecular mechanism of the fibrogenic response to PQ and its inhibition by Res and Nrf2. PQ dose-dependently caused toxicity in normal human bronchial epithelial cells (BEAS-2B), resulting in mitochondrial damage, oxidative stress, and cell death. Res at 10 µM markedly inhibited PQ toxicity. PQ at 10 µM stimulated production of inflammatory and profibrogenic factors (tumor necrosis factor α, interleukin 6, and transforming growth factor β1) and induced the transformation of normal human lung fibroblasts (WI38-VA13) to myofibroblasts; both effects were inhibited by Res. Res strongly activated the Nrf2 signaling pathway and induced antioxidant response elementdependent cytoprotective genes. On the other hand, knockout or knockdown of Nrf2 markedly increased PQ-induced cytotoxicity, cytokine production, and myofibroblast transformation and abolished protection by Res. The findings demonstrate that Res attenuates PQ-induced reactive oxygen species production, inflammation, and fibrotic reactions by activating Nrf2 signaling. The study reveals a new pathway for molecular intervention against pulmonary oxidative injury and fibrosis. PMID:22493042

  15. Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization.

    PubMed

    Kawai, Yumiko; Garduño, Lakisha; Theodore, Melanie; Yang, Jianqi; Arinze, Ifeanyi J

    2011-03-01

    Activation of Nrf2 by covalent modifications that release it from its inhibitor protein Keap1 has been extensively documented. In contrast, covalent modifications that may regulate its action after its release from Keap1 have received little attention. Here we show that CREB-binding protein induced acetylation of Nrf2, increased binding of Nrf2 to its cognate response element in a target gene promoter, and increased Nrf2-dependent transcription from target gene promoters. Heterologous sirtuin 1 (SIRT1) decreased acetylation of Nrf2 as well as Nrf2-dependent gene transcription, and its effects were overridden by dominant negative SIRT1 (SIRT1-H355A). The SIRT1-selective inhibitors EX-527 and nicotinamide stimulated Nrf2-dependent gene transcription, whereas resveratrol, a putative activator of SIRT1, was inhibitory, mimicking the effect of SIRT1. Mutating lysine to alanine or to arginine at Lys(588) and Lys(591) of Nrf2 resulted in decreased Nrf2-dependent gene transcription and abrogated the transcription-activating effect of CREB-binding protein. Furthermore, SIRT1 had no effect on transcription induced by these mutants, indicating that these sites are acetylation sites. Microscope imaging of GFP-Nrf2 in HepG2 cells as well as immunoblotting for Nrf2 showed that acetylation conditions resulted in increased nuclear localization of Nrf2, whereas deacetylation conditions enhanced its cytoplasmic rather than its nuclear localization. We posit that Nrf2 in the nucleus undergoes acetylation, resulting in binding, with basic-region leucine zipper protein(s), to the antioxidant response element and consequently in gene transcription, whereas deacetylation disengages it from the antioxidant response element, thereby resulting in transcriptional termination and subsequently in its nuclear export. PMID:21196497

  16. Nuclear Factor Erythroid 2-Related Factor 2 Drives Podocyte-Specific Expression of Peroxisome Proliferator-Activated Receptor γ Essential for Resistance to Crescentic GN.

    PubMed

    Henique, Carole; Bollee, Guillaume; Lenoir, Olivia; Dhaun, Neeraj; Camus, Marine; Chipont, Anna; Flosseau, Kathleen; Mandet, Chantal; Yamamoto, Masayuki; Karras, Alexandre; Thervet, Eric; Bruneval, Patrick; Nochy, Dominique; Mesnard, Laurent; Tharaux, Pierre-Louis

    2016-01-01

    Necrotizing and crescentic rapidly progressive GN (RPGN) is a life-threatening syndrome characterized by a rapid loss of renal function. Evidence suggests that podocyte expression of the transcription factor peroxisome proliferator-activated receptor γ (PPARγ) may prevent podocyte injury, but the function of glomerular PPARγ in acute, severe inflammatory GN is unknown. Here, we observed marked loss of PPARγ abundance and transcriptional activity in glomerular podocytes in experimental RPGN. Blunted expression of PPARγ in podocyte nuclei was also found in kidneys from patients diagnosed with crescentic GN. Podocyte-specific Pparγ gene targeting accentuated glomerular damage, with increased urinary loss of albumin and severe kidney failure. Furthermore, a PPARγ gain-of-function approach achieved by systemic administration of thiazolidinedione (TZD) failed to prevent severe RPGN in mice with podocyte-specific Pparγ gene deficiency. In nuclear factor erythroid 2-related factor 2 (NRF2)-deficient mice, loss of podocyte PPARγ was observed at baseline. NRF2 deficiency markedly aggravated the course of RPGN, an effect that was partially prevented by TZD administration. Furthermore, delayed administration of TZD, initiated after the onset of RPGN, still alleviated the severity of experimental RPGN. These findings establish a requirement for the NRF2-PPARγ cascade in podocytes, and we suggest that these transcription factors have a role in augmenting the tolerance of glomeruli to severe immune-complex mediated injury. The NRF2-PPARγ pathway may be a therapeutic target for RPGN. PMID:25999406

  17. Amlodipine and atorvastatin improved hypertensive cardiac hypertrophy through regulation of receptor activator of nuclear factor kappa B ligand/receptor activator of nuclear factor kappa B/osteoprotegerin system in spontaneous hypertension rats.

    PubMed

    Lu, Jingchao; Liu, Fan; Liu, Demin; Du, Hong; Hao, Jie; Yang, Xiuchun; Cui, Wei

    2016-06-01

    The present study aims to study the role of receptor activator of nuclear factor kappa B ligand/receptor activator of nuclear factor kappa B/osteoprotegerin (RANKL/RANK/OPG) system in cardiac hypertrophy in a spontaneous hypertension rat (SHR) model and the effects of amlodipine and atorvastatin intervention. Thirty-six-week-old male SHRs were randomly divided into four groups: 1) SHR control group; 2) amlodipine alone (10 mg/kg/d) group, 3) atorvastatin alone (10 mg/kg/d) group, 4) combination of amlodinpine and atorvastatin (10 mg/kg/d for each) group. Same gender, weight, and age of Wistar-Kyoto (WKY) rats with normal blood pressure were used as normal control. Drugs were administered by oral gavage over 12 weeks. The thicknesses of left ventricle walls, left ventricle weight, and cardiac function were measured by transthoracic echocardiography. Left ventricular pressure and function were assessed by hemodynamic examination. Cardiomyocyte hypertrophy and collagen accumulation in cardiac tissue were measured by hematoxylin and eosin (HE) and Masson staining, respectively. The hydroxyproline content of cardiac tissue was examined by biochemistry technique. RANKL, RANK and OPG mRNA, protein expression and tissue localization were studied by RT-PCR, Immunohistochemistry and Western blot. Treatment with amlodipine or atorvastatin alone significantly decreased left ventricular mass index, cardiomyocyte cross-sectional area and interstitial fibrosis in SHR (each P < 0.05). Moreover, combined amlodipine and atorvastatin treatment induced significant reversal of left ventricular hypertrophy and decreased cardiomyocyte cross-sectional area and interstitial fibrosis in SHR to a greater extent than each agent alone (P < 0.05). Compared with WKY rats, the myocardial expression of RANKL, RANK, and OPG was increased. Both amlodipine and atorvastatin reduced RANKL, RANK, and OPG expression, with the best effects seen with the combination. Based on our results

  18. Structural characterization and immunomodulatory activity of Grifola frondosa polysaccharide via toll-like receptor 4-mitogen-activated protein kinases-nuclear factor κB pathways.

    PubMed

    Ma, Xiaolei; Meng, Meng; Han, Lirong; Cheng, Dai; Cao, Xiaohong; Wang, Chunling

    2016-06-15

    We isolated a neutral polysaccharide from the fruiting body of a mushroom Grifola frondosa (GFP-A). The aim of this study was to characterize a neutral α-d-polysaccharide derived from G. frondosa and evaluate its immunomodulatory effect on toll-like receptor 4, mitogen-activated protein kinases and nuclear factor κB pathways of protein expression in macrophages. The structural features of GFP-A were characterized by physicochemical and instrumental analyses. Its molecular weight was found to be 8.48 × 10(2) kDa. The main chain of GFP-A consisted of (1 → 4)-linked and (1 → 6)-linked α-d-glucopyranosyl, and (1 → 3,6)-linked α-d-mannopyranosyl residues, which branched at C-3. The branches consisted of (1 → 6)-linked α-d-galactopyranosyl and t-l-rhamnopyranosyl residues. An in vitro immunomodulatory assay for pro-inflammatory cytokines (interleukin-1β, interleukin-2, tumor necrosis factor alpha, etc.) using the macrophage cell line, RAW 264.7, revealed that GFP-A exhibited significant immunomodulatory activity by stimulating the toll-like receptor 4, mitogen-activated protein kinases to nuclear factor κB/pathway. PMID:27220562

  19. Activation of AP-1 and nuclear factor-kappaB transcription factors is involved in hydrogen peroxide-induced apoptotic cell death of oligodendrocytes.

    PubMed

    Vollgraf, U; Wegner, M; Richter-Landsberg, C

    1999-12-01

    H2O2-induced onset and execution of programmed cell death in mature rat brain oligodendrocytes in culture is accompanied by the induction and nuclear translocation of the transcription factors AP-1 and nuclear factor-kappaB (NF-kappaB), both of which have been discussed as regulators of cell death and survival. Supershift analysis of nuclear extracts indicated that the AP-1 complex consists of c-Jun, c-Fos, JunD, and possibly JunB proteins, and that the NF-kappaB complex contains p50, p65, and c-Rel proteins. The first signs of DNA fragmentation were seen already during the first hour after the treatment. DNA fragmentation could be prevented by the antioxidants pyrrolidine dithiocarbamate and vitamin E, by the nuclease inhibitor aurintricarboxylic acid, and by preincubation with the iron chelator deferoxamine (DFO). Additionally, DFO protected oligodendrocytes from H2O2-induced cytotoxic effects as assessed by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, and suppressed the formation of free radicals. DFO alone led to a slight increase and in combination with H2O2 synergistically induced DNA-binding activities of AP-1 and NF-kappaB in oligodendrocytes. Our data suggest that although low levels of H2O2 directly activate AP-1 and NF-kappaB and might contribute to signal transduction pathways promoting cell survival, the formation and action of hydroxyl radicals promote cell death mechanisms that can be attenuated by the iron chelator DFO. PMID:10582611

  20. Phytochemicals of Aristolochia tagala and Curcuma caesia exert anticancer effect by tumor necrosis factor-α-mediated decrease in nuclear factor kappaB binding activity

    PubMed Central

    Hadem, Khetbadei Lysinia Hynniewta; Sharan, Rajeshwar Nath; Kma, Lakhan

    2015-01-01

    Rationale: The active compounds or metabolites of herbal plants exert a definite physiological action on the human body and thus are widely used in human therapy for various diseases including cancer. Previous studies by our group have reported the anticarcinogenic properties of the two herbal plants extracts (HPE) of Aristolochia tagala (AT) Cham. and Curcuma caesia (CC) Roxb. in diethylnitrosamine-induced mouse liver cancer in vivo. The anticarcinogenic properties of these extracts may be due to the active compounds present in them. Objectives: Our objective was to analyze the phytochemical constituents present in AT and CC, to assay their antioxidant properties and to determine their role in a possible intervention on tumor progression. Materials and Methods: Qualitative and quantitative analysis of constituent with anticancer properties present in the crude methanol extract of the two plants CC and AT was carried out following standard methods. Separation of the phytochemical compounds was done by open column chromatography. The extracts were eluted out with gradients of chloroform-methanol solvents. Ultraviolet-visible spectra of individual fractions were recorded, and the fractions were combined based on their λmax. The free radical scavenging activity of crude extracts and fractions obtained was also determined; the radical scavenging activity was expressed as IC50. High-performance thin layer chromatography (HPTLC) analysis of fractionated compounds was carried out to identify partially the phytochemical compounds. The anti-inflammatory and anticancer activity of AT and CC extracts was studied in DEN induced BALB/c mice by analyzing the tumor necrosis factor-α (TNF-α) levels in serum and the nuclear factor kappaB (NF-κB) binding activity in nuclear extracts of the liver. Results: It was observed that both AT and CC contained compounds such as phenolics, tannins, flavonoids, terpenoids, etc., and both extracts exhibited antioxidant capacity. HPTLC

  1. Receptor Activator of Nuclear Factor κB Ligand and Osteoprotegerin Regulation of Bone Remodeling in Health and Disease

    PubMed Central

    Kearns, Ann E.; Khosla, Sundeep; Kostenuik, Paul J.

    2008-01-01

    Osteoclasts and osteoblasts dictate skeletal mass, structure, and strength via their respective roles in resorbing and forming bone. Bone remodeling is a spatially coordinated lifelong process whereby old bone is removed by osteoclasts and replaced by bone-forming osteoblasts. The refilling of resorption cavities is incomplete in many pathological states, which leads to a net loss of bone mass with each remodeling cycle. Postmenopausal osteoporosis and other conditions are associated with an increased rate of bone remodeling, which leads to accelerated bone loss and increased risk of fracture. Bone resorption is dependent on a cytokine known as RANKL (receptor activator of nuclear factor κB ligand), a TNF family member that is essential for osteoclast formation, activity, and survival in normal and pathological states of bone remodeling. The catabolic effects of RANKL are prevented by osteoprotegerin (OPG), a TNF receptor family member that binds RANKL and thereby prevents activation of its single cognate receptor called RANK. Osteoclast activity is likely to depend, at least in part, on the relative balance of RANKL and OPG. Studies in numerous animal models of bone disease show that RANKL inhibition leads to marked suppression of bone resorption and increases in cortical and cancellous bone volume, density, and strength. RANKL inhibitors also prevent focal bone loss that occurs in animal models of rheumatoid arthritis and bone metastasis. Clinical trials are exploring the effects of denosumab, a fully human anti-RANKL antibody, on bone loss in patients with osteoporosis, bone metastasis, myeloma, and rheumatoid arthritis. PMID:18057140

  2. Rosmarinic Acid Attenuates Sodium Taurocholate-Induced Acute Pancreatitis in Rats by Inhibiting Nuclear Factor-κB Activation.

    PubMed

    Fan, Yu-Ting; Yin, Guo-Jian; Xiao, Wen-Qin; Qiu, Lei; Yu, Ge; Hu, Yan-Ling; Xing, Miao; Wu, De-Qing; Cang, Xiao-Feng; Wan, Rong; Wang, Xing-Peng; Hu, Guo-Yong

    2015-01-01

    Rosmarinic Acid (RA), a caffeic acid ester, has been shown to exert anti-inflammation, anti-oxidant and antiallergic effects. Our study aimed to investigate the effect of RA in sodium taurocholate ( NaTC )-induced acute pancreatitis, both in vivo and in vitro. In vivo, RA (50 mg/kg) was administered intraperitoneally 2 h before sodium taurocholate injection. Rats were sacrificed 12 h, 24 h or 48 h after sodium taurocholate injection. Pretreatment with RA significantly ameliorated pancreas histopathological changes, decreased amylase and lipase activities in serum, lowered myeloperoxidase activity in the pancreas, reduced systematic and pancreatic interleukin-1 β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) levels, and inhibited NF-κB translocation in pancreas. In vitro, pretreating the fresh rat pancreatic acinar cells with 80 μ mol/L RA 2 h before 3750 nmol/L sodium taurocholate or 10 ng/L TNF-α administration significantly attenuated the reduction of isolated pancreatic acinar cell viability and inhibited the nuclear activation and translocation of NF-κB. Based on our findings, RA appears to attenuate damage in sodium taurocholate-induced acute pancreatitis and reduce the release of inflammatory cytokines by inhibiting the activation of NF-κB. These findings might provide a basis for investigating the therapeutic role of RA in managing acute pancreatits. PMID:26364660

  3. Protein–energy malnutrition increases activation of the transcription factor, nuclear factor κB, in the gerbil hippocampus following global ischemia☆

    PubMed Central

    Ji, Liang; Nazarali, Adil J.; Paterson, Phyllis G.

    2013-01-01

    Protein–energy malnutrition (PEM) exacerbates functional impairment caused by brain ischemia. This is correlated with reactive gliosis, which suggests an increased inflammatory response. The objective of the current study was to investigate if PEM increases hippocampal activation of nuclear factor κB (NFκB), a transcription factor that amplifies the inflammatory response involved in ischemic brain injury. Mongolian gerbils (11–12 weeks old) were randomly assigned to control diet (12.5% protein) or protein-deficient diet (2%) for 4 weeks. The 2% protein group had a 15% decrease in voluntary food intake (P<.001; unpaired t test), resulting in PEM. Body weight after 4 weeks was 20% lower in the PEM group (P<.001). Gerbils were then exposed to sham surgery or global ischemia induced by 5-min bilateral common carotid artery occlusion. PEM independently increased hippocampal NFκB activation detected by electrophoretic mobility shift assay at 6 h after surgery (P=.014; 2-factor ANOVA). Ischemia did not significantly affect NFκB activation nor was there interaction between diet and ischemia. Serum glucose and cortisol concentrations at 6 h postischemia were unaltered by diet or ischemia. A second experiment using gerbils of the same age and feeding paradigm demonstrated that PEM also increases hippocampal NFκB activation in the absence of surgery. These findings suggest that PEM, which exists in 16% of elderly patients at admission for stroke, may worsen outcome by increasing activation of NFκB. Since PEM increased NFκB activation independent of ischemia or surgery, the data also have implications for the inflammatory response of the many individuals affected globally by PEM. PMID:18430555

  4. Co-activation of nuclear factor-κB and myocardin/serum response factor conveys the hypertrophy signal of high insulin levels in cardiac myoblasts.

    PubMed

    Madonna, Rosalinda; Geng, Yong-Jian; Bolli, Roberto; Rokosh, Gregg; Ferdinandy, Peter; Patterson, Cam; De Caterina, Raffaele

    2014-07-11

    Hyperinsulinemia contributes to cardiac hypertrophy and heart failure in patients with the metabolic syndrome and type 2 diabetes. Here, high circulating levels of tumor necrosis factor (TNF)-α may synergize with insulin in signaling inflammation and cardiac hypertrophy. We tested whether high insulin affects activation of TNF-α-induced NF-κB and myocardin/serum response factor (SRF) to convey hypertrophy signaling in cardiac myoblasts. In canine cardiac myoblasts, treatment with high insulin (10(-8) to 10(-7) m) for 0-24 h increased insulin receptor substrate (IRS)-1 phosphorylation at Ser-307, decreased protein levels of chaperone-associated ubiquitin (Ub) E3 ligase C terminus of heat shock protein 70-interacting protein (CHIP), increased SRF activity, as well as β-myosin heavy chain (MHC) and myocardin expressions. Here siRNAs to myocardin or NF-κB, as well as CHIP overexpression prevented (while siRNA-mediated CHIP disruption potentiated) high insulin-induced SR element (SRE) activation and β-MHC expression. Insulin markedly potentiated TNF-α-induced NF-κB activation. Compared with insulin alone, insulin+TNF-α increased SRF/SRE binding and β-MHC expression, which was reversed by the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) and by NF-κB silencing. In the hearts of db/db diabetic mice, in which Akt phosphorylation was decreased, p38MAPK, Akt1, and IRS-1 phosphorylation at Ser-307 were increased, together with myocardin expression as well as SRE and NF-κB activities. In response to high insulin, cardiac myoblasts increase the expression or the promyogenic transcription factors myocardin/SRF in a CHIP-dependent manner. Insulin potentiates TNF-α in inducing NF-κB and SRF/SRE activities. In hyperinsulinemic states, myocardin may act as a nuclear effector of insulin, promoting cardiac hypertrophy. PMID:24855642

  5. A novel nuclear factor erythroid 2-related factor 2 (Nrf2) activator RS9 attenuates brain injury after ischemia reperfusion in mice.

    PubMed

    Yamauchi, Keita; Nakano, Yusuke; Imai, Takahiko; Takagi, Toshinori; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Iwama, Toru; Hara, Hideaki

    2016-10-01

    Recanalization of occluded vessels leads to ischemia-reperfusion injury (IRI), with oxidative stress as one of the main causes of injury, despite the fact that recanalization therapy is the most effective treatment for ischemic stroke. The nuclear factor erythroid 2-related factor 2 (Nrf2) is one of the transcription factors which has an essential role in protection against oxidative stress. RS9 is a novel Nrf2 activator obtained from bardoxolone methyl (BARD), an Nrf2 activator that has already been tested in a clinical trial, using a biotransformation technique. RS9 has been reported to lead to higher Nrf2 activation and less cytotoxicity than BARD. In this study, we investigated the effects of RS9 on IRI. Mice were intraperitoneally treated immediately after 2h of transient middle cerebral artery occlusion (MCAO) with a vehicle solution or 0.2mg/kg of RS9. Post-onset treatment of RS9 attenuated the infarct volume and improved neurological deficits 22h after reperfusion. RS9 activated Nrf2 2 and 6h after reperfusion and activated heme oxygenase-1 at 6 and 22h after reperfusion. RS9 also attenuated the phosphorylation of NF-κB p65 2 and 6h after reperfusion. Finally, RS9 improved the survival rate and neurological deficits 7days after MCAO. Our results suggest that the activation of Nrf2 by RS9 has a neuroprotective effect, mediated by attenuating both oxidative stress and neuroinflammation, and that RS9 is an effective therapeutic candidate for the treatment of IRI. PMID:27474227

  6. Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment

    NASA Technical Reports Server (NTRS)

    Wise, Kimberly C.; Manna, Sunil K.; Yamauchi, Keiko; Ramesh, Vani; Wilson, Bobby L.; Thomas, Renard L.; Sarkar, Shubhashish; Kulkarni, Anil D.; Pellis, Neil R.; Ramesh, Govindarajan T.

    2005-01-01

    Microgravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent.

  7. Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment.

    PubMed

    Wise, Kimberly C; Manna, Sunil K; Yamauchi, Keiko; Ramesh, Vani; Wilson, Bobby L; Thomas, Renard L; Sarkar, Shubhashish; Kulkarni, Anil D; Pellis, Neil R; Ramesh, Govindarajan T

    2005-01-01

    Microgravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent. PMID:16029073

  8. Time dependency and topography of hepatic nuclear factor κB activation after hemorrhagic shock and resuscitation in mice.

    PubMed

    Korff, Sebastian; Falsafi, Reza; Czerny, Christoph; Jobin, Christian; Nau, Christoph; Jakob, Heike; Marzi, Ingo; Lehnert, Mark

    2012-11-01

    The leading causes of death in people aged 1 to 44 years are unintentional injuries with associated hemorrhagic shock. Hemorrhagic shock followed by resuscitation (H/R) activates the nuclear factor κB (NF-κB) pathway. To further address the association between liver damage and NF-κB activation, we analyzed the H/R-induced activation of NF-κB using cis-NF-κB reporter gene mice. In these mice, the expression of green fluorescent protein (GFP) is linked to the activation of NF-κB, and therefore tracing of GFP colocalizes NF-κB activation. Mice were hemorrhaged to a mean arterial blood pressure of 30mmHg for 90 min, followed by resuscitation. Six, 14, or 24 h after resuscitation, mice were killed. Compared with sham-operated mice, H/R led to a profound hepatic and cellular damage as measured by aspartate aminotransferase, creatine kinase, and lactate dehydrogenase levels, which was accompanied by an elevation in interleukin 6 levels and hepatic leukocyte infiltration. Interleukin 10 levels in plasma were elevated 6 h after H/R. Using serial liver sections, we found an association between necrotic areas, oxidative stress, and enhanced GFP-positive cells. Furthermore, enhanced GFP-positive cells surrounded areas of necrotic liver tissue, predominantly in a penumbra-like-shape pericentrally. These results elucidate spatial relationship between oxidative stress, liver necrosis, and NF-κB activation, using an in vivo approach and therefore might help to further analyze mechanisms of NF-κB activation after resuscitated blood loss. PMID:22814290

  9. Angiocidin Inhibits Breast Cancer Proliferation Through Activation of Epidermal Growth Factor Receptor and Nuclear Factor κB (Nf-κB)

    PubMed Central

    Godek, Jessica; Sargiannidou, Irene; Patel, Sneha; Hurd, Lauren; Rothman, Vicki L.; Tuszynski, George P.

    2011-01-01

    Angiocidin, a tumor-associated peptide, has been previously shown to inhibit tumor progression by blocking angiogenesis. We now show that angiocidin has a direct inhibitory effect on tumor cell proliferation. MDA-MB-231 breast cancer cells were inhibited from proliferating in the presence of epidermal growth factor (EGF) and angiocidin. Angiocidin transfected breast cancer cells also displayed growth inhibition in vitro and failed to develop significant tumors in mice as compared to vector controls. The anti-proliferative effect of angiocidin was reversed by treating the cells with the epidermal growth factor receptor (EGFR) inhibitor 4557W, a potent tyrosine kinase inhibitor. Consistent with these results, we found that treatment of breast cancer cells with angiocidin induced a 2.3 fold increase in EGFR tyrosine 845 phosphorylation while no change in phosphorylation was observed in the remaining 16 phosphorylation sites of EGFR and those of its family members as measured by a human EGFR phosphorylation array. Treatment of breast cancer cells with angiocidin also resulted in the activation of nuclear factor κB (Nf-κB) and the de novo up-regulation of many down-stream genes transcribed by Nf-κB, including cytokines, inflammatory mediators and the cell cycle inhibitor p21waf1. Therefore, angiocidin is a peptide that not only inhibits tumor angiogenesis but directly induces inhibition of tumor growth progression through the activation of EGFR and down-stream genes transcribed by Nf-κB. PMID:21241690

  10. Modulation of mitochondrial dysfunction in neurodegenerative diseases via activation of nuclear factor erythroid-2-related factor 2 by food-derived compounds.

    PubMed

    Denzer, Isabel; Münch, Gerald; Friedland, Kristina

    2016-01-01

    Oxidative stress and mitochondrial dysfunction are early events in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Mitochondria are important key players in cellular function based on mitochondrial energy production and their major role in cell physiology. Since neurons are highly depending on mitochondrial energy production due to their high energy demand and their reduced glycolytic capacity mitochondrial dysfunction has fatal consequences for neuronal function and survival. The transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2) is the major regulator of cellular response to oxidative stress. Activation of Nrf2 induces the transcriptional regulation of antioxidant response element (ARE)-dependent expression of a battery of cytoprotective and antioxidant enzymes and proteins. Moreover, activation of Nrf2 protects mitochondria from dysfunction and promotes mitochondrial biogenesis. Therefore, the Nrf2/ARE pathway has become an attractive target for the prevention and treatment of oxidative stress-related neurodegenerative diseases. Small food-derived inducers of the Nrf2/ARE pathway including l-sulforaphane from broccoli and isoliquiritigenin from licorice displayed promising protection of mitochondrial function in models of oxidative stress and neurodegenerative diseases and represent a novel approach to prevent and treat aging-associated neurodegenerative diseases. PMID:26626189

  11. Potential drugs which activate nuclear factor E2-related factor 2 signaling to prevent diabetic cardiovascular complications: A focus on fumaric acid esters.

    PubMed

    Zhou, Shanshan; Jin, Jingpeng; Bai, Tao; Sachleben, Leroy R; Cai, Lu; Zheng, Yang

    2015-08-01

    Diabetes and its cardiovascular complications have been a major public health issue. These complications are mainly attributable to a severe imbalance between free radical and reactive oxygen species production and the antioxidant defense systems. Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that controls the basal and inducible expression of a battery of antioxidant enzyme genes and other cyto-protective phase II detoxifying enzymes. As a result, Nrf2 has gained great attention as a promising drug target for preventing diabetic cardiovascular complications. And while animal studies have shown that several Nrf2 activators manifest a potential to efficiently prevent the diabetic complications, their use in humans has not been approved due to the lack of substantial evidence regarding safety and efficacy of the Nrf2 activation. We provide here a brief review of a few clinically-used drugs that can up-regulate Nrf2 with the potential of extending their usage to diabetic patients for the prevention of cardiovascular complications and conclude with a closer inspection of dimethyl fumarate and its mimic members. PMID:26044512

  12. Ongoing Space Nuclear Activities

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    2007-01-01

    Most ongoing US activities related to space nuclear power and propulsion are sponsored by NASA. NASA-spons0red space nuclear work is currently focused on evaluating potential fission surface power (FSP) systems and on radioisotope power systems (RPS). In addition, significant efforts related to nuclear thermal propulsion (NTP) systems have been completed and will provide a starting point for potential future NTP work.

  13. Activation of macrophage nuclear factor-κB and induction of inducible nitric oxide synthase by LPS

    PubMed Central

    Li, Ying-Hua; Yan, Zhong-Qun; Brauner, Annelie; Tullus, Kjell

    2002-01-01

    Background Chronic lung disease (CLD) of prematurity is a major problem of neonatal care. Bacterial infection and inflammatory response have been thought to play an important role in the development of CLD and steroids have been given, with some benefit, to neonates with this disease. In the present study, we assessed the ability of lipopolysaccharide (LPS) to stimulate rat alveolar macrophages to produce nitric oxide (NO), express inducible nitric oxide synthase (iNOS) and activate nuclear factor-κB (NF-κB) in vitro. In addition, we investigated the impact of dexamethasone and budesonide on these processes. Methods Griess reaction was used to measure the nitrite level. Western blot and a semi-quantitative RT-PCR were performed to detect iNOS expression. Electrophoretic mobility shift assay (EMSA) was performed to analyze the activation of NF-κB. Results We found that LPS stimulated the rat alveolar macrophages to produce NO in a dose (≥10 ng/ml) and time dependent manner (p < 0.05). This effect was further enhanced by IFN-γ (≥10 IU/ml, p < 0.05), but was attenuated by budesonide (10-4–10-10 M) and dexamethasone (10-4–10-6 M) (p < 0.05). The mRNA and protein levels of iNOS were also induced in response to LPS and attenuated by steroids. LPS triggered NF-κB activation, a mechanism responsible for the iNOS expression. Conclusion Our findings imply that Gram-negative bacterial infection and the inflammatory responses are important factors in the development of CLD. The down-regulatory effect of steroids on iNOS expression and NO production might explain the beneficial effect of steroids in neonates with CLD. PMID:12323081

  14. Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis by inhibiting the activation of nuclear factor-kappa B

    SciTech Connect

    Cheng, Jian; Zhang, Lin; Dai, Weiqi; Mao, Yuqing; Li, Sainan; Wang, Jingjie; Li, Huanqing; Guo, Chuanyong; Fan, Xiaoming

    2015-02-27

    Aim: This study aimed to investigate the effect and underlying mechanism of ghrelin on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. Methods and results: Acute colitis was induced in C57BL/6J mice by administering 2.5% DSS. Saline or 25, 125, 250 μg/kg ghrelin was administrated intraperitoneally (IP) to mice 1 day before colitis induction and on days 4, 5, and 6 after DSS administration. IP injection of a ghrelin receptor antagonist, [D-lys{sup 3}]-GHRP-6, was performed immediately prior to ghrelin injection. Ghrelin (125 or 250 μg/kg) could reduce the disease activity index, histological score, and myeloperoxidase activities in experimental colitis, and also prevented shortening of the colon. Ghrelin could prevent the reduction of transepithelial electrical resistance and tight junction expression, and bolstered tight junction structural integrity and regulated cytokine secretion. Ultimately, ghrelin inhibited nuclear factor kappa B (NF-κB), inhibitory κB-α, myosin light chain kinase, and phosphorylated myosin light chain 2 activation. Conclusions: Ghrelin prevented the breakdown of intestinal barrier function in DSS-induced colitis. The protective effects of ghrelin on intestinal barrier function were mediated by its receptor GHSR-1a. The inhibition of NF-κB activation might be part of the mechanism underlying the effects of ghrelin that protect against barrier dysfunction. - Highlights: • Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis. • The effect of ghrelin is mediated by GHSR-1a. • Inhibition of NF-κB activation.

  15. Hind Limb Unloading Model Alters Nuclear Factor kappa B and Activator Protein-1 Signaling in Mouse Brain

    NASA Astrophysics Data System (ADS)

    Ramesh, Govindarajan; Vani, Vani; Renard, Renard; Vera, Vera; Wilosn, Wilosn; Ramesh, Govindarajan

    Microgravity induces inflammatory response and also modulates immune functions, which may increase oxidative stress. Exposure to the microgravity environment induces adverse neurological effects. However, there is little research exploring the etiology of neurological effects of exposure to this environment. To explore this area we evaluated changes in Nuclear Factor kappa B, Activator Protein 1, MAPP kinase and N terminal c-Jun kinase in mouse brain exposed to a simulated microgravity environment using the hindlimb unloading model. BALB/c male mice were randomly assigned to hindlimb unloading group (n=12) and control group (n=12) to simulate a microgravity environment, for 7 days. Changes observed in NF-κB, AP- 1 DNA binding, MAPKK and N terminal c-Jun kinase were measured using electrophoretic mobility shift assay (EMSA) and western blot analysis and compared to unexposed brain regions. Hindlimb unloading exposed mice showed significant increases in generated NF-κB, AP-1, MAPKK and Kinase in all regions of the brain exposed to hindlimb unloading as compared to the control brain regions. Results suggest that exposure to simulated microgravity can induce expression of certain transcription factors and protein kinases. This work was supported by funding from NASA NCC 9-165. 504b030414000600080000002100828abc13fa0000001c020000130000005b436f6e74656e745f54797065735d2e78

  16. Identifying panaxynol, a natural activator of nuclear factor erythroid-2 related factor 2 (Nrf2) from American ginseng as a suppressor of inflamed macrophage-induced cardiomyocyte hypertrophy

    PubMed Central

    Qu, Chen; Li, Bin; Lai, Yimu; Li, Hechu; Windust, Anthony; Hofseth, Lorne J.; Nagarkatti, Mitzi; Nagarkatti, Prakash; Wang, Xing Li; Tang, Dongqi; Janicki, Joseph S.; Tian, Xingsong; Cui, Taixing

    2015-01-01

    Ethnopharmacological relevance American ginseng is capable of ameliorating cardiac dysfunction and activating Nrf2, a master regulator of antioxidant defense, in the heart. This study was designed to isolate compounds from American ginseng and to determine those responsible for the Nrf2-mediated resolution of inflamed macrophage-induced cardiomyocyte hypertrophy. Materials and methods A standardized crude extract of American ginseng was supplied by the National Research Council of Canada, Institute for National Measurement Standards. A bioassay-based fractionization of American ginseng was performed to identify the putative substances which could activate Nrf2-mediated suppression of pro-inflammatory cytokine expression in macrophages and macrophage-mediated pro-hypertrophic growth in cardiomyocytes. Results A hexane fraction of an anti-inflammatory crude extract of American ginseng was found to be most effective in suppressing the inflammatory responses in macrophages. Preparative, reverse-phase HPLC and a comparative analysis by analytical scale LC–UV/MS revealed the hexane fraction contains predominantly C17 polyacetylenes and linolenic acid. Panaxynol, one of the major polyacetylenes, was found to be a potent Nrf2 activator. Panaxynol posttranscriptionally activated Nrf2 by inhibiting Kelch-like ECH-associated protein (Keap) 1-mediated degradation without affecting the binding of Keap1 and Nrf2. Moreover, panaxynol suppressed a selected set of cytokine expression via the activation of Nrf2 while minimally regulating nuclear factor-kappa B (NF-κB)-mediated cytokine expression in macrophages. It also dramatically inhibited the inflamed macrophage-mediated cardiomyocyte death and hypertrophy by activating Nrf2 in macrophages. Conclusions These results demonstrate that American ginseng-derived panaxynol is a specific Nrf2 activator and panaxynol-activated Nrf2 signaling is at least partly responsible for American ginseng-induced health benefit in the heart. PMID

  17. Physiological role of receptor activator nuclear factor-kB (RANK) in denervation-induced muscle atrophy and dysfunction

    PubMed Central

    Dufresne, Sébastien S.; Boulanger-Piette, Antoine; Bossé, Sabrina; Frenette, Jérôme

    2016-01-01

    The bone remodeling and homeostasis are mainly controlled by the receptor-activator of nuclear factor kB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin (OPG) pathway. While there is a strong association between osteoporosis and skeletal muscle dysfunction, the functional relevance of a particular biological pathway that synchronously regulates bone and skeletal muscle physiopathology remains elusive. Our recent article published in the American Journal of Physiology (Cell Physiology) showed that RANK is also expressed in fully differentiated C2C12 myotubes and skeletal muscles. We used the Cre-Lox approach to inactivate muscle RANK (RANKmko) and showed that RANK deletion preserves the force of denervated fast-twitch EDL muscles. However, RANK deletion had no positive impact on slow-twitch Sol muscles. In addition, denervating RANKmko EDL muscles induced an increase in the total calcium concentration ([CaT]), which was associated with a surprising decrease in SERCA activity. Interestingly, the levels of STIM-1, which mediates Ca2+ influx following the depletion of SR Ca2+ stores, were markedly higher in denervated RANKmko EDL muscles. We speculated that extracellular Ca2+ influx mediated by STIM-1 may be important for the increase in [CaT] and the gain of force in denervated RANKmko EDL muscles. Overall, these findings showed for the first time that the RANKL/RANK interaction plays a role in denervation-induced muscle atrophy and dysfunction. PMID:27547781

  18. Liver Kinase B1 Is Required for Thromboxane Receptor-Dependent Nuclear Factor-κB Activation and Inflammatory Responses

    PubMed Central

    He, Jinlong; Zhou, Yanhong; Xing, Junjie; Wang, Qilong; Zhu, Huaiping; Zhu, Yi; Zou, Ming-Hui

    2013-01-01

    Objective Thromboxane A2 receptor (TPr) has been reported to trigger vascular inflammation. Nuclear factor κ B (NF-κB) is a known transcription factor. The aims of the present study were to determine the contributions of NF-κB activation to TPr-triggered vascular inflammation and elucidate the mechanism(s) underlying TPr activation of NF-κB. Approach and Results The effects of TPr activators, I-BOP and U46619, on NF-κB activation, phosphorylation of rhoA/ rho-associated kinases and liver kinase B1, cell adhesion and migration, proliferation, and endothelium-dependent vasorelaxation were assayed in cultured human umbilical vein endothelial cells, human monocytes, or isolated mouse aortas. Exposure of human umbilical vein endothelial cells to TPr agonists I-BOP and U46619 induced dose-dependent and time-dependent phosphorylation of inhibitor of κB α in parallel with aberrant expression of inflammatory markers cyclooxygenase-2, inducible nitric oxide synthase, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1. Inhibition of NF-κB by pharmacological or genetic means abolished TPr-triggered expression of inflammatory markers. Consistently, exposure of human umbilical vein endothelial cells to either I-BOP or U46619 significantly increased phosphorylation of inhibitor of κB α, IkappaB kinase, rhoA, rho-associated kinases, and liver kinase B1. Pretreatment of human umbilical vein endothelial cells with the TPr antagonist SQ29548 or rho-associated kinases inhibitor Y27632 or silencing of the LKB1 gene blocked TPr-enhanced phosphorylation of inhibitor of κB α and its upstream kinase, IkappaB kinase. Finally, exposure of isolated mouse aortas to either U46619 or I-BOP enhanced NF-κB activation and vascular inflammation in parallel with reduced endothelium-dependent relaxation in intact vessels. Conclusions TPr stimulation instigates aberrant inflammation and endothelial dysfunction via rho-associated kinases/liver kinase B1/IkappaB kinase

  19. Transforming growth factor-β inhibits IQ motif containing guanosine triphosphatase activating protein 1 expression in lung fibroblasts via the nuclear factor-κB signaling pathway.

    PubMed

    Zong, Chuanyue; Zhang, Xianlong; Xie, Ying; Cheng, Jiawen

    2015-07-01

    IQ motif containing guanosine triphosphatase activating protein 1 (IQGAP1) is associated with idiopathic pulmonary fibrogenesis (IPF); however, characterization of the expression of IQGAP1 in lung fibroblasts has remained elusive. The present study therefore evaluated IQGAP1 expression in mouse and human lung fibroblasts under fibrotic conditions via western blot analysis. It was revealed that IQGAP1 expression levels were significantly decreased in lung fibroblasts isolated from bleomycin-challenged mice than in those of control mice. Transforming growth factor-β (TGF-β) induced differentiation, as well as decreased expression of IQGAP1 in WI-38 cells human lung fibroblasts. Furthermore, inhibition of nuclear factor (NF)-κB activation restored the TGF-β-induced inhibition of IQGAP1 expression in WI-38 cells. In lysophosphatidic acid (LPA)-challenged WI-38 cells, the expression of IQGAP1 was also decreased, while neutralized anti-TGF-β antibody treatment restored the LPA-induced inhibition of IQGAP1 expression. These data indicated that TGF-β inhibited IQGAP1 expression in lung fibroblasts via the NF-κB signaling pathway, presenting a potential novel therapeutic target for the treatment of IPF. PMID:25684348

  20. The Profile of Immune Modulation by Cannabidiol (CBD) Involves Deregulation of Nuclear Factor of Activated T Cells (NFAT)

    PubMed Central

    Kaplan, Barbara L. F.; Springs, Alison E. B.; Kaminski, Norbert E.

    2009-01-01

    Cannabidiol (CBD) is a cannabinoid compound derived from Cannabis Sativa that does not possess high affinity for either the CB1 or CB2 cannabinoid receptors. Similar to other cannabinoids, we demonstrated previously that CBD suppressed interleukin-2 (IL-2) production from phorbol ester plus calcium ionophore (PMA/Io)-activated murine splenocytes. Thus, the focus of the present studies was to further characterize the effect of CBD on immune function. CBD also suppressed IL-2 and interferon-γ (IFN-γ) mRNA expression, proliferation, and cell surface expression of the IL-2 receptor alpha chain, CD25. While all of these observations support the fact that CBD suppresses T cell function, we now demonstrate that CBD suppressed IL-2 and IFN-γ production in purified splenic T cells. CBD also suppressed activator protein-1 (AP-1) and nuclear factor of activated T cells (NFAT) transcriptional activity, which are critical regulators of IL-2 and IFN-γ. Furthermore, CBD suppressed the T cell-dependent anti-sheep red blood cell immunoglobulin M antibody forming cell (anti-sRBC IgM AFC) response. Finally, using splenocytes derived from CB1-/-/CB2-/- mice, it was determined that suppression of IL-2 and IFN-γ and suppression of the in vitro anti-sRBC IgM AFC response occurred independently of both CB1 and CB2. However, the magnitude of the immune response to sRBC was significantly depressed in CB1-/-/CB2-/- mice. Taken together, these data suggest that CBD suppresses T cell function and that CB1 and/or CB2 play a critical role in the magnitude of the in vitro anti-sRBC IgM AFC response. PMID:18656454

  1. Two initiator-like elements are required for the combined activation of the human apolipoprotein C-III promoter by upstream stimulatory factor and hepatic nuclear factor-4.

    PubMed

    Pastier, Daniele; Lacorte, Jean-Marc; Chambaz, Jean; Cardot, Philippe; Ribeiro, Agnes

    2002-04-26

    Human apoC-III (-890/+24) promoter activity is strongly activated by hepatic nuclear factor (HNF)-4 through its binding to the proximal (-87/-72) element B. This site overlaps the binding site for an activity that we identified as the ubiquitously expressed upstream stimulatory factor (USF) (Ribeiro, A., Pastier, D., Kardassis, D., Chambaz, J., and Cardot, P. (1999) J. Biol. Chem. 274, 1216-1225). In the present study, we characterized the relationship between USF and HNF-4 in the activation of human apoC-III transcription. Although USF and HNF-4 binding to element B is mutually exclusive, co-transfection experiments in HepG2 cells surprisingly showed a combined effect of USF and HNF-4 in the transactivation of the (-890/+24) apoC-III promoter. This effect only requires the proximal region (-99/+24) of the apoC-III promoter and depends neither on USF binding to its cognate site in element B nor on a USF-dependent facilitation of HNF-4 binding to its site. By contrast, we found by electrophoretic mobility shift assay and footprinting analysis two USF low affinity binding sites, located within the proximal promoter at positions -58/-31 (element II) and -19/-4 (element I), which are homologous to initiator-like element sequence. Co-transfection experiments in HepG2 cells show that a mutation in element II reduces 2-fold the USF transactivation effect on the proximal promoter of apoC-III and that a mutation in element I inhibits the combined effect of USF and HNF-4. In conclusion, these initiator-like elements are directly involved in the transactivation of the apoC-III promoter by USF and are necessary to the combined effect between USF and HNF-4 for the apoC-III transcription. PMID:11839757

  2. Methamphetamine activates nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and induces human immunodeficiency virus (HIV) transcription in human microglial cells

    PubMed Central

    Wires, Emily S.; Alvarez, David; Dobrowolski, Curtis; Wang, Yun; Morales, Marisela; Karn, Jonathan; Harvey, Brandon K.

    2012-01-01

    Human immunodeficiency virus (HIV) primarily infects glial cells in the central nervous system (CNS). Recent evidence suggests that HIV-infected individuals who abuse drugs such as methamphetamine (METH) have higher viral loads and experience more severe neurological complications than HIV-infected individuals who do not abuse drugs. The aim of this study was to determine the effect of METH on HIV expression from the HIV long terminal repeats (LTR) promoter and on an HIV integrated provirus in microglial cells, the primary host cells for HIV in the CNS. Primary human microglial cells immortalized with SV40 T-antigen (CHME-5 cells) were co-transfected with an HIV LTR reporter and the HIV Tat gene, a key regulator of viral replication and gene expression, and exposed to METH. Our results demonstrate that METH treatment induced LTR activation, an effect potentiated in the presence of Tat. We also found that METH increased the nuclear translocation of the nuclear factor kappa B (NF-κB), a key cellular transcriptional regulator of the LTR promoter, and the activity of an NF-κB-specific reporter plasmid in CHME-5 cells. The presence of a dominant-negative regulator of NF-κB blocked METH-related activation of the HIV LTR. Furthermore, treatment of HIV-latently infected CHME-5 (CHME-5/HIV) cells with METH induced HIV expression in a dose-dependent manner, and nuclear translocation of the p65 subunit of NF-κB. These results suggest that METH can stimulate HIV gene expression in microglia cells through activation of the NF-κB signaling pathway. This mechanism may outline the initial biochemical events leading to the observed increased neurodegeneration in HIV-positive individuals who use METH. PMID:22618514

  3. Activation of liver X receptor reduces global ischemia brain injury by reduction of nuclear factor-κB

    PubMed Central

    Cheng, Oumei; Ostrowski, Robert P.; Liu, Wenwu; Zhang, John H.

    2010-01-01

    Recent studies have found that liver X receptors (LXRs) agonists decrease inflammation and possess neuroprotective properties. The aim of this study was to examine the mechanisms of liver X receptor agonist GW3965 on brain injury following global cerebral ischemia in the rat. The 48 male SD rats were randomly partitioned into three groups: sham, global ischemia (4-vessel occlusion for 15 minutes; 4VO) treated with vehicle and global ischemia treated with GW3965 (20mg/kg, via i.p at 10 minutes after reperfusion). The functional outcome was determined by neurological evaluation at 24 hours post ischemia and by testing rats in T maze at 3 and 7 days after reperfusion. The rats' daily body weight, incidence of seizures and 72 hours mortality were also determined. After Nissl staining and TUNEL in coronal brain sections, the numbers of intact and damaged cells were counted in the CA1 sector of the hippocampus. The expression of phosphorylated inhibitor of κB (p-IκBα), Nuclear Factor-κB (NF-κB) subunit p65, and cyclo-oxygenase-2 (COX-2) were analyzed with Western blot at 12 hours after reperfusion. GW3965 tended to reduce 72 hours mortality and the incidence of post-ischemic seizures. GW3965-treated rats showed an improved neuronal survivability in CA1 and a significant increase in the percentage of spontaneous alternations detected in T-maze on day 7 after ischemia. GW3965-induced neuroprotection was associated with a significant reduction in nuclear translocation of NF-kB p65 subunit and a decrease in the hippocampal expression of NF-kB target gene, COX-2. LXR receptor agonist protects against neuronal damage following global cerebral ischemia. The mechanism of neuroprotection may include blockade of NF-κB activation and the subsequent suppression of COX-2 in the post ischemic brain. PMID:20096333

  4. N-acetylcysteine reduces oxidative stress, nuclear factor-κB activity and cardiomyocyte apoptosis in heart failure

    PubMed Central

    WU, XIAO-YAN; LUO, AN-YU; ZHOU, YI-RONG; REN, JIANG-HUA

    2014-01-01

    The roles of oxidative stress on nuclear factor (NF)-κB activity and cardiomyocyte apoptosis during heart failure were examined using the antioxidant N-acetylcysteine (NAC). Heart failure was established in Japanese white rabbits with intravenous injections of doxorubicin, with ten rabbits serving as a control group. Of the rabbits with heart failure, 12 were not treated (HF group) and 13 received NAC (NAC group). Cardiac function was assessed using echocardiography and hemodynamic analysis. Myocardial cell apoptosis, apoptosis-related protein expression, NF-κBp65 expression and activity, total anti-oxidative capacity (tAOC), 8-iso-prostaglandin F2α (8-iso-PGF2α) expression and glutathione (GSH) expression levels were determined. In the HF group, reduced tAOC, GSH levels and Bcl-2/Bax ratios as well as increased 8-iso-PGF2α levels and apoptosis were observed (all P<0.05), which were effects that were attenuated by the treatment with NAC. NF-κBp65 and iNOS levels were significantly higher and the P-IκB-α levels were significantly lower in the HF group; expression of all three proteins returned to pre-HF levels following treatment with NAC. Myocardial cell apoptosis was positively correlated with left ventricular end-diastolic pressure (LVEDP), NF-κBp65 expression and 8-iso-PGF2α levels, but negatively correlated with the maximal and minimal rates of increase in left ventricular pressure (+dp/dtmax and −dp/dtmin, respectively) and the Bcl-2/Bax ratio (all P<0.001). The 8-iso-PGF2α levels were positively correlated with LVEDP and negatively correlated with +dp/dtmax and −dp/dtmin (all P<0.001). The present study demonstrated that NAC increased the antioxidant capacity, decreased the NF-κB activation and reduced myocardial cell apoptosis in an in vivo heart failure model. PMID:24889421

  5. Contribution of a Nuclear Factor-κB Binding Site to Human Angiotensinogen Promoter Activity in Renal Proximal Tubular Cells

    PubMed Central

    Acres, Omar W.; Satou, Ryousuke; Navar, L. Gabriel; Kobori, Hiroyuki

    2011-01-01

    Intrarenal angiotensinogen (AGT) is expressed highly in renal proximal tubular cells (RPTCs) and contributes to the regulation of intrarenal angiotensin II levels. Inhibition of nuclear factor (NF)-κB suppressed human (h)AGT expression in human RPTCs. However, the presence and localization of an NF-κB binding site in the hAGT promoter region have not been determined. Therefore, this study was performed to demonstrate that an NF-κB binding site in the hAGT promoter region contributes to hAGT promoter activity in human RPTCs. The hAGT promoter region was cloned from −4358 to +122 and deletion analysis was performed. A possible NF-κB binding site was removed from the hAGT promoter region (M1) and mutated (M2). Human RPTCs were transfected, and hAGT promoter activity was determined by luciferase assay. The identity of DNA binding proteins from binding assays were determined by Western blot. Progressive 5′-end deletions demonstrated removal of a distal promoter element in hAGT_−2414/+122 reduced promoter activity (0.61±0.12, ratio to hAGT_−4358/+122). Inhibition of NF-κB suppressed promoter activity in hAGT_−4358/+122 (0.51±0.14, ratio to control) and hAGT_−3681/+122 (0.48±0.06, ratio to control) but not in the construct without the NF-κB binding site. Promoter activity was reduced in the domain mutants M1 (0.57±0.08, ratio to hAGT_−4358/+122) and M2 (0.61±0.16, ratio to hAGT_−4358/+122). DNA binding levels of NF-κB protein were reduced in M1. These data demonstrate the functional importance of an NF-κB binding site in the hAGT promoter region, which contributes to hAGT promoter activity in human RPTCs. PMID:21282554

  6. Osteonecrosis of the jaw induced by receptor activator of nuclear factor-kappa B ligand (Denosumab) - Review

    PubMed Central

    Brizeno, Luiz-André-Cavalcante; de Sousa, Fabrício-Bitu; Mota, Mário-Rogério-Lima; Alves, Ana-Paula-Negreiros-Nunes

    2016-01-01

    Background Denosumab, an anti-resorptive agent, IgG2 monoclonal antibody for human Receptor activator of nuclear factor-kappa B ligand (RANKL), has been related to the occurrence of osteonecrosis of the jaws. Thus, the aim of this study was to review the literature from clinical case reports, regarding the type of patient and the therapeutic approach used for osteonecrosis of the jaws induced by chronic use of Denosumab. Material and Methods For this, a literature review was performed on PubMed, Medline and Cochrane databases, using the keywords “Denosumab” “anti-RANK ligand” and “Osteonecrosis of jaw”. To be included, articles should be a report or a serie of clinical cases, describing patients aged 18 years or over who used denosumab therapy and have received any therapy for ONJ. Results Thirteen complete articles were selected for this review, totaling 17 clinical cases. The majority of ONJ cases, patients receiving Denosumab as treatment for osteoporosis and prostate cancer therapy. In most cases, patients affected by ONJ were women aged 60 or over and posterior mandible area was the main site of involvement. Diabetes pre-treatment with bisphosphonates and exodontia were the most often risk factors related to the occurrence of this condition. It is concluded that the highest number of ONJ cases caused by the use of anti-RANKL agents occurred in female patients, aged 60 years or older, under treatment for osteoporosis and cancer metastasis, and the most affected region was the mandible posterior. Conclusions The results presented in this article are valid tool supporting the non-invasive mapping of facial vascularization. Key words:Denosumab, osteonecrosis, adverse effects, osteoporosis, antineoplastic protocols. PMID:26827069

  7. Monitoring international nuclear activity

    SciTech Connect

    Firestone, R.B.

    2006-05-19

    The LBNL Table of Isotopes website provides primary nuclearinformation to>150,000 different users annually. We have developedthe covert technology to identify users by IP address and country todetermine the kinds of nuclear information they are retrieving. Wepropose to develop pattern recognition software to provide an earlywarning system to identify Unusual nuclear activity by country or regionSpecific nuclear/radioactive material interests We have monitored nuclearinformation for over two years and provide this information to the FBIand LLNL. Intelligence is gleaned from the website log files. Thisproposal would expand our reporting capabilities.

  8. Ethanol induces upregulation of the nerve growth factor receptor CD271 in human melanoma cells via nuclear factor-κB activation

    PubMed Central

    RAPPA, GERMANA; ANZANELLO, FABIO; LORICO, AURELIO

    2015-01-01

    Alcohol consumption is one of the most important, and potentially avoidable, risk factors of human cancer, accounting for 3.6% of all types of cancer worldwide. In a recent meta-analysis, a 20% increased risk of melanoma was linked with regular alcohol consumption. In the present study, the effect of ethanol exposure on the expression of the nerve growth factor receptor, CD271, in human FEMX-I melanoma cells was investigated. Consistent with the derivation of melanocytes from the neural crest, the majority of melanomas express CD271, a protein that is crucial for maintaining the melanoma stem cell properties, including the capacity of self-renewal and resistance to chemotherapy and radiotherapy. Analysis of CD271-sorted subpopulations and clones of FEMX-I cells indicated no hierarchical organization of CD271+ and CD271− cells. In addition, CD271 expression was lost upon growth of FEMX-I melanoma cells in cancer stem cell-like conditions, while it was greatly increased upon CD133 knockdown or exposure to ethanol. After 24-h exposure to 100, 200 and 400 mM ethanol, the percentage of CD271+ cells increased from 14% in control cells to 24, 35 and 88%, respectively. An increase in the percentage of CD271+ cells was already evident 8 h after ethanol exposure and reached a maximum at 48 h. Ethanol-induced upregulation of CD271 was mediated by nuclear factor-κB (NF-κB). In fact, exposure of FEMX-I cells to 100–400 mM ethanol for 24 h resulted in a concentration- and time-dependent increase in NF-κB activity, up to 900% that of control cells. NF-κB activation was due to a decrease in p50 homodimers, which occupy the NF-κB binding site, blocking transactivation. No effects of ethanol on 9 additional signaling pathways of FEMX-I cells were observed. In the presence of CD271 blocking antibodies, NF-κB activation was not prevented, indicating that ethanol did not target CD271 directly. These data demonstrate that ethanol induces expression of CD271 in FEMX-I cells via

  9. Lipopolysaccharide prevents valproic acid-induced apoptosis via activation of nuclear factor-κB and inhibition of p53 activation.

    PubMed

    Tsolmongyn, Bilegtsaikhan; Koide, Naoki; Odkhuu, Erdenezaya; Haque, Abedul; Naiki, Yoshikazu; Komatsu, Takayuki; Yoshida, Tomoaki; Yokochi, Takashi

    2013-04-01

    The effect of lipopolysaccharide (LPS) on valproic acid (VPA)-induced cell death was examined by using mouse RAW 264.7 macrophage cells. LPS inhibited the activation of caspase 3 and poly (ADP-ribose) polymerase and prevented VPA-induced apoptosis. LPS inhibited VPA-induced p53 activation and pifithrin-α as a p53 inhibitor as well as LPS prevented VPA-induced apoptosis. LPS abolished the increase of Bax/Bcl-2 ratio, which is a critical indicator of p53-mediated mitochondrial damage, in response to VPA. The nuclear factor (NF)-κB inhibitors, Bay 11-7082 and parthenolide, abolished the preventive action of LPS on VPA-induced apoptosis. A series of toll-like receptor ligands, Pam3CSK4, poly I:C, and CpG DNA as well as LPS prevented VPA-induced apoptosis. Taken together, LPS was suggested to prevent VPA-induced apoptosis via activation of anti-apoptotic NF-κB and inhibition of pro-apoptotic p53 activation. The detailed inhibitory mechanism of VPA-induced apoptosis by LPS is discussed. PMID:23770718

  10. Quetiapine Attenuates Glial Activation and Proinflammatory Cytokines in APP/PS1 Transgenic Mice via Inhibition of Nuclear Factor-κB Pathway

    PubMed Central

    Zhu, Shenghua; Shi, Ruoyang; Li, Victor; Wang, Junhui; Zhang, Ruiguo; Tempier, Adrien; He, Jue; Kong, Jiming; Wang, Jun-Feng

    2015-01-01

    Background: In Alzheimer’s disease, growing evidence has shown that uncontrolled glial activation and neuroinflammation may contribute independently to neurodegeneration. Antiinflammatory strategies might provide benefits for this devastating disease. The aims of the present study are to address the issue of whether glial activation and proinflammatory cytokine increases could be modulated by quetiapine in vivo and in vitro and to explore the underlying mechanism. Methods: Four-month–old amyloid precursor protein (APP) and presenilin 1 (PS1) transgenic and nontransgenic mice were treated with quetiapine (5mg/kg/d) in drinking water for 8 months. Animal behaviors, total Aβ levels, and glial activation were evaluated by behavioral tests, enzyme-linked immunosorbent assay, immunohistochemistry, and Western blot accordingly. Inflammatory cytokines and the nuclear factor kappa B pathway were analyzed in vivo and in vitro. Results: Quetiapine improves behavioral performance, marginally affects total Aβ40 and Aβ42 levels, attenuates glial activation, and reduces proinflammatory cytokines in APP/PS1 mice. Quetiapine suppresses Aβ1-42-induced activation of primary microglia by decresing proinflammatory cytokines. Quetiapine inhibits the activation of nuclear factor kappa B p65 pathway in both transgenic mice and primary microglia stimulated by Aβ1–42. Conclusions: The antiinflammatory effects of quetiapine in Alzheimer’s disease may be involved in the nuclear factor kappa B pathway. Quetiapine may be an efficacious and promising treatment for Alzheimer’s disease targeting on neuroinflammation. PMID:25618401

  11. Calcineurin/Nuclear Factor of Activated T Cells–Coupled Vanilliod Transient Receptor Potential Channel 4 Ca2+ Sparklets Stimulate Airway Smooth Muscle Cell Proliferation

    PubMed Central

    Zhao, Limin; Sullivan, Michelle N.; Chase, Marlee; Gonzales, Albert L.

    2014-01-01

    Proliferation of airway smooth muscle cells (ASMCs) contributes to the remodeling and irreversible obstruction of airways during severe asthma, but the mechanisms underlying this disease process are poorly understood. Here we tested the hypothesis that Ca2+ influx through the vanilliod transient receptor potential channel (TRPV) 4 stimulates ASMC proliferation. We found that synthetic and endogenous TRPV4 agonists increase proliferation of primary ASMCs. Furthermore, we demonstrate that Ca2+ influx through individual TRPV4 channels produces Ca2+ microdomains in ASMCs, called “TRPV4 Ca2+ sparklets.” We also show that TRPV4 channels colocalize with the Ca2+/calmodulin–dependent protein phosphatase calcineurin in ASMCs. Activated calcineurin dephosphorylates nuclear factor of activated T cells (NFAT) transcription factors cytosolic (c) to allow nuclear translocation and activation of synthetic transcriptional pathways. We show that ASMC proliferation in response to TRPV4 activity is associated with calcineurin-dependent nuclear translocation of the NFATc3 isoform tagged with green florescent protein. Our findings suggest that Ca2+ microdomains created by TRPV4 Ca2+ sparklets activate calcineurin to stimulate nuclear translocation of NFAT and ASMC proliferation. These findings further suggest that inhibition of TRPV4 could diminish asthma-induced airway remodeling. PMID:24392954

  12. Ethanol Extracts of Fresh Davallia formosana (WL1101) Inhibit Osteoclast Differentiation by Suppressing RANKL-Induced Nuclear Factor-κB Activation

    PubMed Central

    Lin, Tzu-Hung; Yang, Rong-Sen; Wang, Kuan-Chin; Lu, Dai-Hua; Liou, Houng-Chi; Ma, Yun; Chang, Shao-Han; Fu, Wen-Mei

    2013-01-01

    The rhizome of Davallia formosana is commonly used to treat bone disease including bone fracture, arthritis, and osteoporosis in Chinese herbal medicine. Here, we report the effects of WL1101, the ethanol extracts of fresh rhizomes of Davallia formosana on ovariectomy-induced osteoporosis. In addition, excess activated bone-resorbing osteoclasts play crucial roles in inflammation-induced bone loss diseases, including rheumatoid arthritis and osteoporosis. In this study, we examined the effects of WL1101 on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. Treatment with WL1101 significantly inhibited RANKL-stimulated osteoclastogenesis. Two isolated active compounds, ((−)-epicatechin) or WL14 (4-hydroxy-3-aminobenzoic acid) could also inhibit RANKL-induced osteoclastogenesis. WL1101 suppressed the RANKL-induced nuclear factor-κB (NF-κB) activation and nuclear translocation, which is the key process during osteoclastogenesis, by inhibiting the activation of IκB kinase (IKK) and IκBα. In animal model, oral administration of WL1101 (50 or 200 mg/kg/day) effectively decreased the excess bone resorption and significantly antagonized the trabecular bone loss in ovariectomized rats. Our results demonstrate that the ethanol extracts of fresh rhizomes of Davallia formosana inhibit osteoclast differentiation via the inhibition of NF-κB activation and effectively ameliorate ovariectomy-induced osteoporosis. WL1101 may thus have therapeutic potential for the treatment of diseases associated with excessive osteoclastic activity. PMID:24191169

  13. The nuclear factor YY1 suppresses the human gamma interferon promoter through two mechanisms: inhibition of AP1 binding and activation of a silencer element.

    PubMed Central

    Ye, J; Cippitelli, M; Dorman, L; Ortaldo, J R; Young, H A

    1996-01-01

    Our group has previously reported that the nuclear factor Yin-Yang 1 (YY1), a ubiquitous DNA-binding protein, is able to interact with a silencer element (BE) in the gamma interferon (IFN-gamma) promoter region. In this study, we demonstrated that YY1 can directly inhibit the activity of the IFN-gamma promoter by interacting with multiple sites in the promoter. In cotransfection assays, a YY1 expression vector significantly inhibited IFN-gamma promoter activity. Mutation of the YY1 binding site in the native IFN-gamma promoter was associated with an increase in the IFN-gamma promoter activity. Analysis of the DNA sequences of the IFN-gamma promoter revealed a second functional YY1 binding site (BED) that overlaps with an AP1 binding site. In this element, AP1 enhancer activity was suppressed by YY1. Since the nuclear level of YY1 does not change upon cell activation, our data support a model that the nuclear factor YY1 acts to suppress basal IFN-gamma transcription by interacting with the promoter at multiple DNA binding sites. This repression can occur through two mechanisms: (i) cooperation with an as-yet-unidentified AP2-like repressor protein and (ii) competition for DNA binding with the transactivating factor AP1. PMID:8756632

  14. Src Subfamily Kinases Regulate Nuclear Export and Degradation of Transcription Factor Nrf2 to Switch Off Nrf2-mediated Antioxidant Activation of Cytoprotective Gene Expression*

    PubMed Central

    Niture, Suryakant K.; Jain, Abhinav K.; Shelton, Phillip M.; Jaiswal, Anil K.

    2011-01-01

    Nrf2 (NF-E2-related factor 2) is a nuclear transcription factor that in response to chemical and radiation stress regulates coordinated induction of a battery of cytoprotective gene expressions leading to cellular protection. In this study, we investigated the role of Src kinases in the regulation of Nrf2 and downstream signaling. siRNA-mediated inhibition of Fyn, Src, Yes, and Fgr, but not Lyn, in mouse hepatoma Hepa-1 cells, led to nuclear accumulation of Nrf2 and up-regulation of Nrf2 downstream gene expression. Mouse embryonic fibroblasts with combined deficiency of Fyn/Src/Yes/Fgr supported results from siRNA. In addition, steady-state overexpression of Fyn, Src, and Yes phosphorylated Nrf2Tyr568 that triggered nuclear export and degradation of Nrf2 and down-regulation of Nrf2 downstream gene expression. Exposure of cells to antioxidant, oxidant, or UV radiation increased nuclear import of Fyn, Src, and Yes kinases, which phosphorylated Nrf2Tyr568 resulting in nuclear export and degradation of Nrf2. Further analysis revealed that stress-activated GSK3β acted upstream to the Src kinases and phosphorylated the Src kinases, leading to their nuclear localization and Nrf2 phosphorylation. The overexpression of Src kinases in Hepa-1 cells led to decreased Nrf2, increased apoptosis, and decreased cell survival. Mouse embryonic fibroblasts deficient in Src kinases showed nuclear accumulation of Nrf2, induction of Nrf2 and downstream gene expression, reduced apoptosis, and increased cell survival. The studies together demonstrate that Src kinases play a critical role in nuclear export and degradation of Nrf2, thereby providing a negative feedback mechanism to switch off Nrf2 activation and restore normal cellular homeostasis. PMID:21690096

  15. Death-domain associated protein-6 (DAXX) mediated apoptosis in hantavirus infection is counter-balanced by activation of interferon-stimulated nuclear transcription factors

    SciTech Connect

    Khaiboullina, Svetlana F.; Morzunov, Sergey P.; Boichuk, Sergei V.; Palotás, András; Jeor, Stephen St.; Lombardi, Vincent C.; Rizvanov, Albert A.

    2013-09-01

    Hantaviruses are negative strand RNA species that replicate predominantly in the cytoplasm. They also activate numerous cellular responses, but their involvement in nuclear processes is yet to be established. Using human umbilical vein endothelial cells (HUVECs), this study investigates the molecular finger-print of nuclear transcription factors during hantavirus infection. The viral-replication-dependent activation of pro-myelocytic leukemia protein (PML) was followed by subsequent localization in nuclear bodies (NBs). PML was also found in close proximity to activated Sp100 nuclear antigen and interferon-stimulated gene 20 kDa protein (ISG-20), but co-localization with death-domain associated protein-6 (DAXX) was not observed. These data demonstrate that hantavirus triggers PML activation and localization in NBs in the absence of DAXX-PLM-NB co-localization. The results suggest that viral infection interferes with DAXX-mediated apoptosis, and expression of interferon-activated Sp100 and ISG-20 proteins may indicate intracellular intrinsic antiviral attempts.

  16. Glycemia-dependent Nuclear Factor κB Activation Contributes to Mechanical Allodynia in Rats with Chronic Postischemia Pain

    PubMed Central

    Ross-Huot, Marie-Christine; Laferrière, André; Khorashadi, Mina; Coderre, Terence J.

    2015-01-01

    Background Ischemia-reperfusion injury causes chronic postischemia pain (CPIP), and rats with higher glycemia during ischemia-reperfusion injury exhibit increased allodynia. Glycemia-induced elevation of nuclear factor kappa-B (NFκB) may contribute to increased allodynia. Methods Glycemia during a 3 h ischemia-reperfusion injury was manipulated by: normal feeding; or normal feeding with administration of insulin; dextrose; or insulin/dextrose. In these groups, NFκB was measured in ipsilateral hind paw muscle and spinal dorsal horn by ELISA, and SN50, an NFκB inhibitor, was administered to determine its differential anti-allodynic effects depending on glycemia. Results CPIP fed/insulin rats (12.03 ± 4.9, N = 6) had less allodynia than fed, fed/insulin/dextrose and fed/dextrose rats (6.29 ± 3.37 N = 7, 4.57 ± 3.03 g, N = 6, 2.95 ± 1.10, N = 9), respectively. Compared to fed rats (0.209 ± 0.022, N = 7), NFκB in ipsilateral plantar muscles was significantly lower for fed/insulin rats and significantly higher for fed/dextrose rats (0.152 ± 0.053, N = 6; 0.240 ± 0.057, N = 7, respectively). Furthermore, NFκB in the dorsal horn of fed, fed/insulin/dextrose and fed/dextrose rats (0.293 ± 0.049, N = 6) was significantly higher than in fed/insulin animals (0.267 ± 0.037, N = 6). The anti-allodynic SN50 dose-response curves of CPIP rats in the fed/insulin/dextrose, fed/dextrose and fed conditions exhibited a rightward shift compared to the fed/insulin group. The threshold SN50 dose of CPIP fed/dextrose, fed/insulin/dextrose and fed rats (328.94 ± 92.4, 77.80 ± 44.50 and 24.89 ± 17.20, respectively) was higher than that for fed/insulin rats (4.06 ± 7.04). Conclusions NFκB was activated in a glycemia-dependent manner in CPIP rats. Hypoglycemic rats were more sensitive to SN50 than rats with higher glycemia. The finding that SN50 reduces mechanical allodynia suggests that NFκB inhibitors might be useful for treating postischemia pain. PMID:23695173

  17. Influence of receptor activator of nuclear factor (NF)-kappaB ligand (RANKL), macrophage-colony stimulating factor (M-CSF) and fetal calf serum on human osteoclast formation and activity.

    PubMed

    Kreja, Ludwika; Liedert, Astrid; Schmidt, Carla; Claes, Lutz; Ignatius, Anita

    2007-10-01

    Human osteoclast (OC) formation and activity was studied in cultures of peripheral blood mononuclear cells (PBMNC) from six healthy donors after stimulation with fetal calf serum (FCS), under the influence of the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) and the macrophage-colony stimulating factor (M-CSF). The results showed that selected FCS could stimulate OC formation without any medium supplementation with osteoclastogenic factors. The OC formation, investigated by quantification of multinucleated tartrate-resistant acid phosphatase-positive cells (TRAP+ cells), and the sensitivity of OC progenitors to RANKL and M-CSF, varied widely between individual donors. The OC resorption activity, measured in the "pit-assay" on dentine, was strictly dependent on the presence of RANKL and M-CSF in the medium and was also donor dependent. The considerable donor variability should be considered in culture studies investigating, e.g. the interactions of OC with biomaterials or the influence of cytokines, growth factors and drugs on osteoclastogenesis. PMID:18161075

  18. Glycogen synthase kinase 3{beta} regulation of nuclear factor of activated T-cells isoform c1 in the vascular smooth muscle cell response to injury

    SciTech Connect

    Chow Winsion; Hou Guangpei; Bendeck, Michelle P.

    2008-10-01

    The migration and proliferation of vascular smooth muscle cells (vSMCs) are critical events in neointima formation during atherosclerosis and restenosis. The transcription factor nuclear factor of activated T-cells-isoform c1 (NFATc1) is regulated by atherogenic cytokines, and has been implicated in the migratory and proliferative responses of vSMCs through the regulation of gene expression. In T-cells, calcineurin de-phosphorylates NFATc1, leading to its nuclear import, while glycogen synthase kinase 3 {beta} (GSK3{beta}) phosphorylates NFATc1 and promotes its nuclear export. However, the relationship between NFATc1 and GSK3{beta} has not been studied during SMC migration and proliferation. We investigated this by scrape wounding vSMCs in vitro, and studying wound repair. NFATc1 protein was transiently increased, reaching a peak at 8 h after wounding. Cell fractionation and immunocytochemistry revealed that NFATc1 accumulation in the nucleus was maximal at 4 h after injury, and this was coincident with a significant 9 fold increase in transcriptional activity. Silencing NFATc1 expression with siRNA or inhibition of NFAT with cyclosporin A (CsA) attenuated wound closure by vSMCs. Phospho-GSK3{beta} (inactive) increased to a peak at 30 min after injury, preceding the nuclear accumulation of NFATc1. Overexpression of a constitutively active mutant of GSK3{beta} delayed the nuclear accumulation of NFATc1, caused a 50% decrease in NFAT transcriptional activity, and attenuated vSMC wound repair. We conclude that NFATc1 promotes the vSMC response to injury, and that inhibition of GSK3{beta} is required for the activation of NFAT during wound repair.

  19. Cocaine induces cell death and activates the transcription nuclear factor kappa-B in PC12 cells.

    PubMed

    Lepsch, Lucilia B; Munhoz, Carolina D; Kawamoto, Elisa M; Yshii, Lidia M; Lima, Larissa S; Curi-Boaventura, Maria F; Salgado, Thais M L; Curi, Rui; Planeta, Cleopatra S; Scavone, Cristoforo

    2009-01-01

    Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-kappaB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-kappaB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM) for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment) activated the p50/p65 subunit of NF-kappaB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-kappaB activation. Inhibition of NF-kappaB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis) and activates NF-kappaB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells. PMID:19183502

  20. Vitamin K3 attenuates lipopolysaccharide-induced acute lung injury through inhibition of nuclear factor-κB activation

    PubMed Central

    Tanaka, S; Nishiumi, S; Nishida, M; Mizushina, Y; Kobayashi, K; Masuda, A; Fujita, T; Morita, Y; Mizuno, S; Kutsumi, H; Azuma, T; Yoshida, M

    2010-01-01

    Vitamin K is a family of fat-soluble compounds including phylloquinone (vitamin K1), menaquinone (vitamin K2) and menadione (vitamin K3). Recently, it was reported that vitamin K, especially vitamins K1 and K2, exerts a variety of biological effects, and these compounds are expected to be candidates for therapeutic agents against various diseases. In this study, we investigated the anti-inflammatory effects of vitamin K3 in in vitro cultured cell experiments and in vivo animal experiments. In human embryonic kidney (HEK)293 cells, vitamin K3 inhibited the tumour necrosis factor (TNF)-α-evoked translocation of nuclear factor (NF)-κB into the nucleus, although vitamins K1 and K2 did not. Vitamin K3 also suppressed the lipopolysaccharide (LPS)-induced nuclear translocation of NF-κB and production of TNF-α in mouse macrophage RAW264·7 cells. Moreover, the addition of vitamin K3 before and after LPS administration attenuated the severity of lung injury in an animal model of acute lung injury/acute respiratory distress syndrome (ARDS), which occurs in the setting of acute severe illness complicated by systemic inflammation. In the ARDS model, vitamin K3 also suppressed the LPS-induced increase in the serum TNF-α level and inhibited the LPS-evoked nuclear translocation of NF-κB in lung tissue. Despite marked efforts, little therapeutic progress has been made, and the mortality rate of ARDS remains high. Vitamin K3 may be an effective therapeutic strategy against acute lung injury including ARDS. PMID:20030669

  1. Baicalin attenuates focal cerebral ischemic reperfusion injury through inhibition of nuclear factor {kappa}B p65 activation

    SciTech Connect

    Xue, Xia; Qu, Xian-Jun; Yang, Ying; Sheng, Xie-Huang; Cheng, Fang; Jiang, E-Nang; Wang, Jian-hua; Bu, Wen; Liu, Zhao-Ping

    2010-12-17

    Research highlights: {yields} Permanent NF-{kappa}B p65 activation contributes to the infarction after ischemia-reperfusion injury in rats. {yields} Baicalin can markedly inhibit the nuclear NF-{kappa}B p65 expression and m RNA levels after ischemia-reperfusion injury in rats. {yields} Baicalin decreased the cerebral infarction area via inhibiting the activation of nuclear NF-{kappa}B p65. -- Abstract: Baicalin is a flavonoid compound purified from plant Scutellaria baicalensis Georgi. We aimed to evaluate the neuroprotective effects of baicalin against cerebral ischemic reperfusion injury. Male Wistar rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 24 h. Baicalin at doses of 50, 100 and 200 mg/kg was intravenously injected after ischemia onset. Twenty-four hours after reperfusion, the neurological deficit was scored and infarct volume was measured. Hematoxylin and eosin (HE) staining was performed to analyze the histopathological changes of cortex and hippocampus neurons. We examined the levels of NF-{kappa}B p65 in ischemic cortexes by Western blot analysis and RT-PCR assay. The results showed that the neurological deficit scores were significantly decreased from 2.0 {+-} 0.7 to 1.2 {+-} 0.4 and the volume of infarction was reduced by 25% after baicalin injection. Histopathological examination showed that the increase of neurons with pycnotic shape and condensed nuclear in cortex and hippocampus were not observed in baicalin treated animals. Further examination showed that NF-{kappa}B p65 in cortex was increased after ischemia reperfusion injury, indicating the molecular mechanism of ischemia reperfusion injury. The level of NF-{kappa}B p65 was decreased by 73% after baicalin treatment. These results suggest that baicalin might be useful as a potential neuroprotective agent in stroke therapy. The neuroprotective effects of baicalin may relate to inhibition of NF-{kappa}B p65.

  2. Constitutive Activation of Nuclear Factor-E2-Related Factor 2 Induces Biotransformation Enzyme and Transporter Expression in Livers of Mice With Hepatocyte-Specific Deletion of Kelch-like ECH-associated protein 1

    PubMed Central

    Cheng, Qiuqiong; Taguchi, Keiko; Aleksunes, Lauren M.; Manautou, José E.; Cherrington, Nathan J.; Yamamoto, Masayuki; Slitt, Angela L.

    2013-01-01

    Chemicals that activate nuclear factor-E2-related factor-2 (Nrf2) often increase multidrug resistance-associated protein expression in liver. Hepatocyte-specific deletion of Kelch-like ECH-associated protein 1 (Keap1) activates Nrf2. Use of hepatocyte-specific Keap1 deletion represents a non-pharmacological method to determine whether constitutive Nrf2 activation upregulates liver transporter expression in vivo. The mRNA, protein expression and localization of several biotransformation and transporters was determined in livers of wild-type and hepatocyte-specific Keap1-null mice. Sulfotransferase 2a1/2, NADP(H):quinone oxidoreductase 1, Cytochrome P450 2b10, 3a11, and glutamate-cysteine ligase catalytic subunit expression was increased in livers of Keap1-null mice. Oatp1a1 expression was nearly abolished, as compared to that detected in livers of wild-type mice. By contrast, Mrp 1-5 mRNA and protein levels were increased in Keap1-null mouse livers, with Mrp4 expression being more than 15-fold higher than wild-types. In summary, Nrf2 has a significant role in affecting expression of Oatp and Mrp expression. PMID:21538727

  3. AMPK activation represses the human gene promoter of the cardiac isoform of acetyl-CoA carboxylase: Role of nuclear respiratory factor-1

    SciTech Connect

    Adam, Tasneem; Opie, Lionel H.; Essop, M. Faadiel

    2010-07-30

    Research highlights: {yields} AMPK inhibits acetyl-CoA carboxylase beta gene promoter activity. {yields} Nuclear respiratory factor-1 inhibits acetyl-CoA carboxylase beta promoter activity. {yields} AMPK regulates acetyl-CoA carboxylase beta at transcriptional level. -- Abstract: The cardiac-enriched isoform of acetyl-CoA carboxylase (ACC{beta}) produces malonyl-CoA, a potent inhibitor of carnitine palmitoyltransferase-1. AMPK inhibits ACC{beta} activity, lowering malonyl-CoA levels and promoting mitochondrial fatty acid {beta}-oxidation. Previously, AMPK increased promoter binding of nuclear respiratory factor-1 (NRF-1), a pivotal transcriptional modulator controlling gene expression of mitochondrial proteins. We therefore hypothesized that NRF-1 inhibits myocardial ACC{beta} promoter activity via AMPK activation. A human ACC{beta} promoter-luciferase construct was transiently transfected into neonatal cardiomyocytes {+-} a NRF-1 expression construct. NRF-1 overexpression decreased ACC{beta} gene promoter activity by 71 {+-} 4.6% (p < 0.001 vs. control). Transfections with 5'-end serial promoter deletions revealed that NRF-1-mediated repression of ACC{beta} was abolished with a pPII{beta}-18/+65-Luc deletion construct. AMPK activation dose-dependently reduced ACC{beta} promoter activity, while NRF-1 addition did not further decrease it. We also investigated NRF-1 inhibition in the presence of upstream stimulatory factor 1 (USF1), a known transactivator of the human ACC{beta} gene promoter. Here NRF-1 blunted USF1-dependent induction of ACC{beta} promoter activity by 58 {+-} 7.5% (p < 0.001 vs. control), reversed with a dominant negative NRF-1 construct. NRF-1 also suppressed endogenous USF1 transcriptional activity by 55 {+-} 6.2% (p < 0.001 vs. control). This study demonstrates that NRF-1 is a novel transcriptional inhibitor of the human ACC{beta} gene promoter in the mammalian heart. Our data extends AMPK regulation of ACC{beta} to the transcriptional level.

  4. Naringin lauroyl ester inhibits lipopolysaccharide-induced activation of nuclear factor κB signaling in macrophages.

    PubMed

    Hattori, Hiromi; Tsutsuki, Hiroyasu; Nakazawa, Masami; Ueda, Mitsuhiro; Ihara, Hideshi; Sakamoto, Tatsuji

    2016-07-01

    Naringin (Nar) has antioxidant and anti-inflammatory properties. It was recently reported that enzymatic modification of Nar enhanced its functions. Here, we acylated Nar with fatty acids of different sizes (C2-C18) using immobilized lipase from Rhizomucor miehei and investigated the anti-inflammatory effects of these molecules. Treatment of murine macrophage RAW264.7 cells with Nar alkyl esters inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) production, with Nar lauroyl ester (Nar-C12) showing the strongest effect. Furthermore, Nar-C12 suppressed the LPS-induced expression of inducible NO synthase by blocking the phosphorylation of inhibitor of nuclear factor (NF)-κB-α as well as the nuclear translocation of NF-κB subunit p65 in macrophage cells. Analysis of Nar-C12 uptake in macrophage cells revealed that Nar-C12 ester bond was partially degraded in the cell membrane and free Nar was translocated to the cytosol. These results indicate that Nar released from Nar-C12 exerts anti-inflammatory effects by suppressing NF-κB signaling pathway. PMID:26967587

  5. Role of mitogen-activated protein kinases and nuclear factor-kappa B in 1,3-dichloro-2-propanol-induced hepatic injury

    PubMed Central

    Lee, In-Chul; Lee, Sang-Min; Ko, Je-Won; Park, Sung-Hyeuk; Shin, In-Sik; Moon, Changjong; Kim, Sung-Ho

    2016-01-01

    In this study, the potential hepatotoxicity of 1,3-dichloro-2-propanol and its hepatotoxic mechanisms in rats was investigated. The test chemical was administered orally to male rats at 0, 27.5, 55, and 110 mg/kg body weight. 1,3-Dichloro-2-propanol administration caused acute hepatotoxicity, as evidenced by an increase in serum aminotransferases, total cholesterol, and total bilirubin levels and a decrease in serum glucose concentration in a dose-dependent manner with corresponding histopathological changes in the hepatic tissues. The significant increase in malondialdehyde content and the significant decrease in glutathione content and antioxidant enzyme activities indicated that 1,3-dichloro-2-propanol-induced hepatic damage was mediated through oxidative stress, which caused a dose-dependent increase of hepatocellular apoptotic changes in the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay and immunohistochemical analysis for caspase-3. The phosphorylation of mitogen-activated protein kinases caused by 1,3-dichloro-2-propanol possibly involved in hepatocellular apoptotic changes in rat liver. Furthermore, 1,3-dichloro-2-propanol induced an inflammatory response through activation of nuclear factor-kappa B signaling that coincided with the induction of pro-inflammatory mediators or cytokines in a dose-dependent manner. Taken together, these results demonstrate that hepatotoxicity may be related to oxidative stress-mediated activation of mitogen-activated protein kinases and nuclear factor-kappa B-mediated inflammatory response. PMID:27051440

  6. HT-29 and Caco-2 Reporter Cell Lines for Functional Studies of Nuclear Factor Kappa B Activation

    PubMed Central

    Mastropietro, Giuliana; Tiscornia, Inés; Perelmuter, Karen; Astrada, Soledad; Bollati-Fogolín, Mariela

    2015-01-01

    The NF-κB is a transcription factor which plays a key role in regulating biological processes. In response to signals, NF-κB activation occurs via phosphorylation of its inhibitor, which dissociates from the NF-κB dimer allowing the translocation to the nucleus, inducing gene expression. NF-κB activation has direct screening applications for drug discovery for several therapeutic indications. Thus, pathway-specific reporter cell systems appear as useful tools to screen and unravel the mode of action of probiotics and natural and synthetic compounds. Here, we describe the generation, characterization, and validation of human epithelial reporter cell lines for functional studies of NF-κB activation by different pro- and anti-inflammatory agents. Caco-2 and HT-29 cells were transfected with a pNF-κB-hrGFP plasmid which contains the GFP gene under the control of NF-κB binding elements. Three proinflammatory cytokines (TNF-α, IL-1β, and LPS) were able to activate the reporter systems in a dose-response manner, which corresponds to the activation of the NF-κB signaling pathway. Finally, the reporter cell lines were validated using lactic acid bacteria and a natural compound. We have established robust Caco-2-NF-κB-hrGFP and HT-29-NF-κB-hrGFP reporter cell lines which represent a valuable tool for primary screening and identification of bacterial strains and compounds with a potential therapeutic interest. PMID:25861164

  7. Nuclear-translocated endostatin downregulates hypoxia inducible factor-1α activation through interfering with Zn(II) homeostasis.

    PubMed

    Guo, Lifang; Chen, Yang; He, Ting; Qi, Feifei; Liu, Guanghua; Fu, Yan; Rao, Chunming; Wang, Junzhi; Luo, Yongzhang

    2015-05-01

    Hypoxia‑inducible factor‑1α (HIF‑1α) is key in tumor progression and aggressiveness as it regulates a series of genes involved in angiogenesis and anaerobic metabolism. Previous studies have shown that the transcriptional levels of HIF‑1α may be downregulated by endostatin. However, the molecular mechanism by which endostatin represses HIF‑1α expression remains unknown. The current study investigated the mechanism by which nuclear‑translocated endostatin suppresses HIF‑1α activation by disrupting Zn(II) homeostasis. Endostatin was observed to downregulate HIF‑1α expression at mRNA and protein levels. Blockage of endostatin nuclear translocation by RNA interference of importin α1/β1 or ectopic expression of NLS‑deficient mutant nucleolin in human umbilical vein endothelial cells co‑transfected with small interfering (si)‑nucleolin siRNA compromises endostatin‑reduced HIF‑1α expression. Nuclear‑translocated apo‑endostatin, but not holo‑endostatin, significantly disrupts the interaction between CBP/p300 and HIF‑1α by disturbing Zn(II) homeostasis, which leads to the transcriptional inactivation of HIF‑1α. The results reveal mechanistic insights into the method by which nuclear‑translocated endostatin downregulates HIF‑1α activation and provides a novel way to investigate the function of endostatin in endothelial cells. PMID:25607980

  8. 2-Methoxystypandrone inhibits signal transducer and activator of transcription 3 and nuclear factor-κB signaling by inhibiting Janus kinase 2 and IκB kinase.

    PubMed

    Kuang, Shan; Qi, Chunting; Liu, Jiawei; Sun, Xiaoxiao; Zhang, Qing; Sima, Zhenhua; Liu, Jingli; Li, Wuguo; Yu, Qiang

    2014-04-01

    Constitutive activation of the signal transducer and activator of transcription 3 (STAT3) or the nuclear factor-κB (NF-κB) pathway occurs frequently in cancer cells and contributes to oncogenesis. The activation of Janus kinase 2 (JAK2) and IκB kinase (IKK) are key events in STAT3 and NF-κB signaling, respectively. We have identified 2-methoxystypandrone (2-MS) from a traditional Chinese medicinal herb Polygonum cuspidatum as a novel dual inhibitor of JAK2 and IKK. 2-MS inhibits both interleukin-6-induced and constitutively-activated STAT3, as well as tumor necrosis factor-α-induced NF-κB activation. 2-MS specifically inhibits JAK and IKKβ kinase activities but has little effect on activities of other kinases tested. The inhibitory effects of 2-MS on STAT3 and NF-κB signaling can be eliminated by DTT or glutathione and can last for 4 h after a pulse treatment. Furthermore, 2-MS inhibits growth and induces death of tumor cells, particularly those with constitutively-activated STAT3 or NF-κB signaling. We propose that the natural compound 2-MS, as a potent dual inhibitor of STAT3 and NF-κB pathways, is a promising anticancer drug candidate. PMID:24450414

  9. Transcription factor (TF)-like nuclear regulator, the 250-kDa form of Homo sapiens TFIIIB", is an essential component of human TFIIIC1 activity.

    PubMed

    Weser, Stephan; Gruber, Christin; Hafner, Heike M; Teichmann, Martin; Roeder, Robert G; Seifart, Klaus H; Meissner, Wolfgang

    2004-06-25

    The general human RNA polymerase III transcription factor (TF) IIIC1 has hitherto been ill defined with respect to the polypeptides required for reconstitution of its activity. Here we identify Homo sapiens TFIIIB" (HsBdp1) as an essential component of hTFIIIC1 and hTFIIIC1-like activities. Several forms of HsBdp1 are described. The 250-kDa form of HsBdp1, also designated the "transcription factor-like nuclear regulator," strictly co-eluted with TFIIIC1 activity over multiple chromatographic purification steps as revealed by Western blot with anti-HsBdp1 antibodies and by MALDI-TOF analysis. In addition, TFIIIC1 activity could be depleted from partially purified fractions with anti-HsBdp1 antibodies but not with control antibodies. Moreover, highly purified recombinant HsBdp1 could replace TFIIIC1 activity in reconstituted transcription of the VAI gene in vitro. Furthermore, smaller proteins of approximately 90-150 kDa that were recognized by anti-HsBdp1 antibodies co-eluted with TFIIIC1-like activity. Finally, cytoplasmic extracts from differentiated mouse F9 fibroblast cells that lacked TFIIIC1 activity could be made competent for transcription of the VA1 gene by the addition of TFIIIC1, TFIIIC1-like, or recombinant HsBdp1. These results suggest that HsBdp1 proteins represent essential components of TFIIIC1 and TFIIIC1-like activities. PMID:15096501

  10. Activation of nuclear factor E2-related factor 2 in hereditary tyrosinemia type 1 and its role in survival and tumor development.

    PubMed

    Marhenke, Silke; Lamlé, Jutta; Buitrago-Molina, Laura Elisa; Cañón, José Manuel Fernández; Geffers, Robert; Finegold, Milton; Sporn, Michael; Yamamoto, Masayuki; Manns, Michael P; Grompe, Markus; Vogel, Arndt

    2008-08-01

    In tyrosinemia type 1 (HT1), accumulation of toxic metabolites results in oxidative stress and DNA damage, leading to a high incidence of hepatocellular carcinomas. Nuclear factor erythroid-2 related factor 2 (Nrf2) is a key transcription factor important for cellular protection against oxidative stress and chemical induced liver damage. To specifically address the role of Nrf2 in HT1, fumarylacetoacetate hydrolase (Fah)/Nrf2(-/-) mice were generated. In acute HT1, loss of Nrf2 elicited a strong inflammatory response and dramatically increased the mortality of mice. Following low grade injury, Fah/Nrf2(-/-) mice develop a more severe hepatitis and liver fibrosis. The glutathione and cellular detoxification system was significantly impaired in Fah/Nrf2(-/-) mice, resulting in increased oxidative stress and DNA damage. Consequently, tumor development was significantly accelerated by loss of Nrf2. Potent pharmacological inducers of Nrf2 such as the triterpenoid analogs 1[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole have been developed as cancer chemoprevention agents. Pretreatment with 1[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole dramatically protected Fah(-/-) mice against fumarylacetoacetate (Faa)-induced toxicity. Our data establish a central role for Nrf2 in the protection against Faa-induced liver injury; the Nrf2 regulated cellular defense not only prevents acute Faa-induced liver failure but also delays hepatocarcinogenesis in HT1. PMID:18666252

  11. Osteoblast Lineage Cells Play an Essential Role in Periodontal Bone Loss Through Activation of Nuclear Factor-Kappa B

    PubMed Central

    Pacios, Sandra; Xiao, Wenmei; Mattos, Marcelo; Lim, Jason; Tarapore, Rohinton S.; Alsadun, Sarah; Yu, Bo; Wang, Cun-Yu; Graves, Dana T.

    2015-01-01

    Bacterial pathogens stimulate periodontitis, the most common osteolytic disease in humans and the most common cause of tooth loss in adults. Previous studies identified leukocytes and their products as key factors in this process. We demonstrate for the first time that osteoblast lineage cells play a critical role in periodontal disease. Oral infection stimulated nuclear localization of NF-κB in osteoblasts and osteocytes in the periodontium of wild type but not transgenic mice that expressed a lineage specific dominant negative mutant of IKK (IKK-DN) in osteoblast lineage cells. Wild-type mice were also susceptible to bacteria induced periodontal bone loss but transgenic mice were not. The lack of bone loss in the experimental group was linked to reduced RANKL expression by osteoblast lineage cells that led to diminished osteoclast mediated bone resorption and greater coupled new bone formation. The results demonstrate that osteoblast lineage cells are key contributors to periodontal bone loss through an NF-κB mediated mechanism. PMID:26666569

  12. Nuclear Factor-κB Activation and Postischemic Inflammation Are Suppressed in CD36-Null Mice after Middle Cerebral Artery Occlusion

    PubMed Central

    Kunz, Alexander; Abe, Takato; Hochrainer, Karin; Shimamura, Munehisa; Anrather, Josef; Racchumi, Gianfranco; Zhou, Ping; Iadecola, Costantino

    2008-01-01

    CD36, a class-B scavenger receptor involved in multiple functions, including inflammatory signaling, may also contribute to ischemic brain injury through yet unidentified mechanisms. We investigated whether CD36 participates in the molecular events underlying the inflammatory reaction that accompanies cerebral ischemia and may contribute to the tissue damage. We found that activation of nuclear factor-κB, a transcription factor that coordinates postischemic gene expression, is attenuated in CD36-null mice subjected to middle cerebral artery occlusion. The infiltration of neutrophils and the glial reaction induced by cerebral ischemia were suppressed. Treatment with an inhibitor of inducible nitric oxide synthase, an enzyme that contributes to the tissue damage, reduced ischemic brain injury in wild-type mice, but not in CD36 nulls. In contrast to cerebral ischemia, the molecular and cellular inflammatory changes induced by intracerebroventricular injection of interleukin-1β were not attenuated in CD36-null mice. The findings unveil a novel role of CD36 in early molecular events leading to nuclear factor-κB activation and postischemic inflammation. Inhibition of CD36 signaling may be a valuable therapeutic approach to counteract the deleterious effects of postischemic inflammation. PMID:18272685

  13. Human Factors Research and Nuclear Safety.

    ERIC Educational Resources Information Center

    Moray, Neville P., Ed.; Huey, Beverly M., Ed.

    The Panel on Human Factors Research Needs in Nuclear Regulatory Research was formed by the National Research Council in response to a request from the Nuclear Regulatory Commission (NRC). The NRC asked the research council to conduct an 18-month study of human factors research needs for the safe operation of nuclear power plants. This report…

  14. Phlorofucofuroeckol B suppresses inflammatory responses by down-regulating nuclear factor κB activation via Akt, ERK, and JNK in LPS-stimulated microglial cells.

    PubMed

    Yu, Dong-Kyung; Lee, Bonggi; Kwon, Misung; Yoon, Nayoung; Shin, Taisun; Kim, Nam-Gil; Choi, Jae-Sue; Kim, Hyeung-Rak

    2015-10-01

    Microglial activation has been implicated in many neurological disorders for its inflammatory and neurotrophic effects. In this study, we investigated the effects of phlorofucofuroeckol B (PFF-B) isolated from Ecklonia stolonifera, on the production of inflammatory mediators in lipopolysaccharide (LPS)-stimulated microglia. PFF-B decreased secretion of pro-inflammatory cytokines including tumor necrosis factor α, interleukin (IL)-1β, and IL-6 and the expression of pro-inflammatory proteins such as cyclooxygenase-2 and inducible nitric oxide synthase in LPS-stimulated BV-2 cells. Profoundly, PFF-B inhibited activation of nuclear factor kappaB (NF-κB) by preventing the degradation of inhibitor κB-α (IκB-α), which led to prevent the nuclear translocation of p65 NF-κB subunit. Moreover, PFF-B inhibited the phosphorylation of Akt, ERK, and JNK. These results indicate that the anti-inflammatory effect of PFF-B on LPS-stimulated microglial cells is mainly regulated by the inhibition of IκB-α/NF-κB and Akt/ERK/JNK pathways. Our study suggests that PFF-B can be considered as a therapeutic agent against neuroinflammation by inhibiting microglial activation. PMID:26341413

  15. Analytic parametrization for nuclear form factors

    SciTech Connect

    Atkin, G.; Dumbrajs, O.

    1982-08-01

    A new analytic parametrization of the nuclear form factor is developed using a factorization theorem. We show that the nuclear form factor can be represented in terms of its real zeros and its asymptotic behavior. The parametrization is applied to nuclear form factor data of /sup 3/He and /sup 4/He. Our results suggest that further diffraction minima can be expected at higher momentum transfer where experiments have not yet been made.

  16. Cigarette smoke condensate activates nuclear transcription factor-kappaB through phosphorylation and degradation of IkappaB(alpha): correlation with induction of cyclooxygenase-2.

    PubMed

    Anto, Ruby John; Mukhopadhyay, Asok; Shishodia, Shishir; Gairola, C Gary; Aggarwal, Bharat B

    2002-09-01

    Cigarette smoke (CS) contains several carcinogens known to initiate and promote tumorigenesis and metastasis. Because various genes that mediate carcinogenesis and tumorigenesis are regulated by nuclear factor-kappaB (NF-kappaB), we postulated that the effects of CS must be mediated through activation of this transcription factor. Therefore, in the present report we investigated whether cigarette smoke condensate (CSC) activates NF-kappaB, and whether the pathway employed for activation is similar to that of TNF, one of the potent activators of NF-kappaB. Our results show that the treatment of human histiocytic lymphoma U-937 cells with CSC activated NF-kappaB in a dose- and time-dependent manner. The kinetics of NF-kappaB activation by CSC was comparable with that of TNF. CSC-induced NF-kappaB activation was not cell type-specific, as it also activated NF-kappaB in T cells (Jurkat), lung cells (H1299), and head and neck squamous cell lines (1483 and 14B). Activation of NF-kappaB by CSC correlated with time-dependent degradation of IkappaB(alpha), an inhibitor of NF-kappaB. Further studies revealed that CSC induced phosphorylation of the serine residue at position 32 in IkappaB(alpha). In vitro immunocomplex kinase assays showed that CSC activated IkappaB(alpha) kinase (IKK). The suppression of CSC-activated NF-kappaB-dependent reporter gene expression by dominant negative form of IkappaB(alpha), TRAF2, NIK and IKK suggests a similarity to the TNF-induced pathway for NF-kappaB. CSC also induced the expression of cyclooxygenase-2, an NF-kappaB regulated gene product. Overall, our results indicate that through phosphorylation and degradation of IkappaB(alpha), CSC can activate NF-kappaB in a wide a variety of cells, and this may play a role in CS-induced carcinogenesis. PMID:12189195

  17. The Chromatin Regulator DMAP1 Modulates Activity of the Nuclear Factor κB (NF-κB) Transcription Factor Relish in the Drosophila Innate Immune Response*

    PubMed Central

    Goto, Akira; Fukuyama, Hidehiro; Imler, Jean-Luc; Hoffmann, Jules A.

    2014-01-01

    The host defense of the model organism Drosophila is under the control of two major signaling cascades controlling transcription factors of the NF-κB family, the Toll and the immune deficiency (IMD) pathways. The latter shares extensive similarities with the mammalian TNF-R pathway and was initially discovered for its role in anti-Gram-negative bacterial reactions. A previous interactome study from this laboratory reported that an unexpectedly large number of proteins are binding to the canonical components of the IMD pathway. Here, we focus on DNA methyltransferase-associated protein 1 (DMAP1), which this study identified as an interactant of Relish, a Drosophila transcription factor reminiscent of the mammalian p105 NF-κB protein. We show that silencing of DMAP1 expression both in S2 cells and in flies results in a significant reduction of Escherichia coli-induced expression of antimicrobial peptides. Epistatic analysis indicates that DMAP1 acts in parallel or downstream of Relish. Co-immunoprecipitation experiments further reveal that, in addition to Relish, DMAP1 also interacts with Akirin and the Brahma-associated protein 55 kDa (BAP55). Taken together, these results reveal that DMAP1 is a novel nuclear modulator of the IMD pathway, possibly acting at the level of chromatin remodeling. PMID:24947515

  18. The chromatin regulator DMAP1 modulates activity of the nuclear factor B (NF-B) transcription factor Relish in the Drosophila innate immune response.

    PubMed

    Goto, Akira; Fukuyama, Hidehiro; Imler, Jean-Luc; Hoffmann, Jules A

    2014-07-25

    The host defense of the model organism Drosophila is under the control of two major signaling cascades controlling transcription factors of the NF-B family, the Toll and the immune deficiency (IMD) pathways. The latter shares extensive similarities with the mammalian TNF-R pathway and was initially discovered for its role in anti-Gram-negative bacterial reactions. A previous interactome study from this laboratory reported that an unexpectedly large number of proteins are binding to the canonical components of the IMD pathway. Here, we focus on DNA methyltransferase-associated protein 1 (DMAP1), which this study identified as an interactant of Relish, a Drosophila transcription factor reminiscent of the mammalian p105 NF-B protein. We show that silencing of DMAP1 expression both in S2 cells and in flies results in a significant reduction of Escherichia coli-induced expression of antimicrobial peptides. Epistatic analysis indicates that DMAP1 acts in parallel or downstream of Relish. Co-immunoprecipitation experiments further reveal that, in addition to Relish, DMAP1 also interacts with Akirin and the Brahma-associated protein 55 kDa (BAP55). Taken together, these results reveal that DMAP1 is a novel nuclear modulator of the IMD pathway, possibly acting at the level of chromatin remodeling. PMID:24947515

  19. Rg1 Attenuates alcoholic hepatic damage through regulating AMP-activated protein kinase and nuclear factor erythroid 2-related factor 2 signal pathways.

    PubMed

    Gao, Yan; Chu, Shi-Feng; Xia, Cong-Yuan; Zhang, Zhao; Zhang, Shuai; Chen, Nai-Hong

    2016-08-01

    Rg1 has shown multiple pharmacological activities and been considered to be evaluated for hepatic protective activity, as Rg1 could modulate different pathways in various diseases. Herein we assessed its effect and potential mechanism in a newly modified ethanol model. C57BL/6 mice were fed with Lieber-DeCarli liquid diet containing ethanol or isocaloric maltose dextrin as control diet with or without Rg1. Meanwhile, bicyclol was treated as positive drug to compare the efficacy of Rg1 against alcoholic hepatotoxicity. According to our data, Rg1 indeed improved the survival rate and lowered the abnormal high levels of serum parameters. H&E and Oil Red O staining indicated that the condition of liver damage was mitigated by Rg1 administration. Furthermore, AMPK and Nrf2 pathways were all modulated at both RNA and protein levels. In accordance with these findings, Rg1 effectively protected against alcoholic liver injury, possibly by modulating metabolism, suppressing oxidative stress, and enhancing oxidant defense systems of Nrf2 pathway. In vitro, Rg1 has no cell toxicity and promotes Nrf2 translocate into nuclear. In summary, we demonstrate that Rg1 is a potent activator of Nrf2 pathway, and could therefore be applied for prevention of hepatic damage. PMID:27229011

  20. Effect of Helicobacter pylori cdrA on interleukin-8 secretions and nuclear factor kappa B activation

    PubMed Central

    Takeuchi, Hiroaki; Zhang, Ya-Nan; Israel, Dawn A; Peek Jr, Richard M; Kamioka, Mikio; Yanai, Hideo; Morimoto, Norihito; Sugiura, Tetsuro

    2012-01-01

    AIM: To investigate genetic diversity of Helicobacter pylori (H. pylori) cell division-related gene A (cdrA) and its effect on the host response. METHODS: Inactivation of H. pylori cdrA, which is involved in cell division and morphological elongation, has a role in chronic persistent infections. Genetic property of H. pylori cdrA was evaluated using polymerase chain reaction and sequencing in 128 (77 American and 51 Japanese) clinical isolates obtained from 48 and 51 patients, respectively. Enzyme-linked immunosorbent assay was performed to measure interleukin-8 (IL-8) secretion with gastric biopsy specimens obtained from American patients colonized with cdrA-positive or -negative strains and AGS cells co-cultured with wild-type HPK5 (cdrA-positive) or its derivative HPKT510 (cdrA-disruptant). Furthermore, the cytotoxin-associated gene A (cagA) status (translocation and phosphorylation) and kinetics of transcription factors [nuclear factor-kappa B (NF-κB) and inhibition kappa B] were investigated in AGS cells co-cultured with HPK5, HPKT510 and its derivative HPK5CA (cagA-disruptant) by western blotting analysis with immunoprecipitation. RESULTS: Genetic diversity of the H. pylori cdrA gene demonstrated that the cdrA status segregated into two categories including four allele types, cdrA-positive (allele types;Iand II) and cdrA-negative (allele types; III and IV) categories, respectively. Almost all Japanese isolates were cdrA-positive (I: 7.8% and II: 90.2%), whereas 16.9% of American isolates were cdrA-positive (II) and 83.1% were cdrA-negative (III: 37.7% and IV: 45.5%), indicating extended diversity of cdrA in individual American isolates. Comparison of each isolate from different regions (antrum and corpus) in the stomach of 29 Americans revealed that cdrA status was identical in both isolates from different regions in 17 cases. However, 12 cases had a different cdrA allele and 6 of them exhibited a different cdrA category between two regions in the stomach

  1. Identification of a novel blocker of IkappaBalpha kinase activation that enhances apoptosis and inhibits proliferation and invasion by suppressing nuclear factor-kappaB.

    PubMed

    Sung, Bokyung; Pandey, Manoj K; Nakajima, Yuki; Nishida, Hiroshi; Konishi, Tetsuya; Chaturvedi, Madan M; Aggarwal, Bharat B

    2008-01-01

    3,4-dihydroxybenzalacetone (DBL) is a polyphenol derived from the medicinal plant Chaga [Inonotus obliquus (persoon) Pilat]. Although Chaga is used in Russia folk medicine to treat tumors, very little is known about its mechanism of action. Because most genes involved in inflammation, antiapoptosis, and cell proliferation are regulated by the transcription factor nuclear factor-kappaB (NF-kappaB), we postulated that DBL activity is mediated via modulation of the NF-kappaB activation pathway. We investigated the effects of DBL on NF-kappaB activation by electrophoretic mobility shift assay and on NF-kappaB-regulated gene expression by Western blot analysis. We found that DBL suppressed NF-kappaB activation by a wide variety of inflammatory agents, including tumor necrosis factor (TNF), interleukin-1beta, epidermal growth factor, okadaic acid, phorbol 12-myristate 13-acetate, and lipopolysaccharide. The suppression was not cell type specific and inhibited both inducible and constitutive NF-kappaB activation. DBL did not interfere with the binding of NF-kappaB to DNA but rather inhibited IkappaBalpha kinase activity, IkappaBalpha phosphorylation and degradation, p65 phosphorylation, and translocation. DBL also suppressed the expression of TNF-induced and NF-kappaB-regulated proliferative, antiapoptotic, and metastatic gene products. These effects correlated with enhancement of TNF-induced apoptosis and suppression of TNF-induced invasion. Together, our results indicate that DBL inhibits NF-kappaB activation and NF-kappaB-regulated gene expression, which may explain the ability of DBL to enhance apoptosis and inhibit invasion. PMID:18202022

  2. Downregulation of the DNA-Binding Activity of Nuclear Factor-κB p65 Subunit in Porphyromonas gingivalis Fimbria-Induced Tolerance

    PubMed Central

    Hajishengallis, George; Genco, Robert J.

    2004-01-01

    Porphyromonas gingivalis fimbriae induce high levels of nuclear factor-κB (NF-κB)-dependent cytokine release upon primary but not secondary stimulation of monocytic cells (FimA tolerance). In this study, fimbriae induced Toll-like receptor-mediated activation of both p50 and p65 subunits of NF-κB upon primary cellular activation. However, activation of the transactivating p65 subunit (but not of the transcriptionally inactive p50 subunit) was significantly inhibited in fimbria-restimulated cells. Moreover, expression of a NF-κB-dependent reporter gene was inhibited upon secondary stimulation with fimbriae. NF-κB p65 downregulation may thus contribute to induction of FimA tolerance. PMID:14742573

  3. Deficiency of Lipocalin-2 Promotes Proliferation and Differentiation of Osteoclast Precursors via Regulation of c-Fms Expression and Nuclear Factor-kappa B Activation

    PubMed Central

    Ohk, Boram; Kang, Woo Youl; Seong, Sook Jin; Suk, Kyoungho; Lim, Mi-Sun; Kim, Shin-Yoon

    2016-01-01

    Background Lipocalin-2 (LCN2), a small glycoprotein, has a pivotal role in diverse biological processes such as cellular proliferation and differentiation. We previously reported that LCN2 is implicated in osteoclast formation induced by receptor activator of nuclear factor-kappa B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). In the present study, we used a knockout mouse model to further investigate the role of LCN2 in osteoclast development. Methods Osteoclastogenesis was assessed using primary bone marrow-derived macrophages. RANKL and M-CSF signaling was determined by immunoblotting, cell proliferation by bromodeoxyuridine (BrdU) enzyme-linked immunosorbent assay (ELISA), and apoptosis by cell death detection ELISA. Bone morphometric parameters were determined using a micro-computed tomography system. Results Our results showed that LCN2 deficiency increases tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclast formation in vitro, a finding that reflects enhanced proliferation and differentiation of osteoclast lineage cells. LCN2 deficiency promotes M-CSF-induced proliferation of bone marrow macrophages (BMMs), osteoclast precursors, without altering their survival. The accelerated proliferation of LCN2-deficient precursors is associated with enhanced expression and activation of the M-CSF receptor, c-Fms. Furthermore, LCN2 deficiency stimulates the induction of c-Fos and nuclear factor of activated T cells c1 (NFATc1), key transcription factors for osteoclastogenesis, and promotes RANKL-induced inhibitor of kappa B (IκBα) phosphorylation. Interestingly, LCN2 deficiency does not affect basal osteoclast formation in vivo, suggesting that LCN2 might play a role in the enhanced osteoclast development that occurs under some pathological conditions. Conclusions Our study establishes LCN2 as a negative modulator of osteoclast formation, results that are in accordance with our previous findings. PMID:26981515

  4. Lactoferrin from Camelus dromedarius Inhibits Nuclear Transcription Factor-kappa B Activation, Cyclooxygenase-2 Expression and Prostaglandin E2 Production in Stimulated Human Chondrocytes

    PubMed Central

    Rasheed, Naila; Alghasham, Abdullah; Rasheed, Zafar

    2016-01-01

    Background: Osteoarthritis (OA) is a progressive joint disorder, which remains the leading cause of chronic disability in aged people. Nuclear factor-kappa B (NF)-κB is a major cellular event in OA and its activation by interleukin-1β (IL-1β) plays a critical role in cartilage breakdown in these patients. Objective: In this study, we examined the effect of lactoferrin on NF-κB activation, cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production in stimulated human articular chondrocytes. Materials and Methods: Human chondrocytes were derived from OA articular cartilage and treated with camel lactoferrin and then stimulated with IL-1β. Gene expression was determined by TaqMan assays and protein expression was studied by Western immunoblotting. NF-κB activity and PGE2 levels were determined by ELISA based assays. NF-κB activity was also determined by treatment of chondrocytes with NF-κB specific inhibitor Bay 11–7082. Results: Lactoferrin inhibited IL-1β-induced activation and nuclear translocation of NF-κB p65 in human OA chondrocytes. Lactoferrin also inhibited mRNA/protein expression of COX-2 and production of PGE2. Moreover, Bay 11–7082 also inhibited IL-1β-induced expression of COX-2 and production of PGE2. The inhibitory effect of lactoferrin on the IL-1β induced expression of COX-2 or production of PGE2 was mediated at least in part via suppression of NF-κB activation. Conclusions: Our data determine camel lactoferrin as a novel inhibitor of IL-1β-induced activation of NF-κB signaling events and production of cartilage-degrading molecule PGE2 via inhibition of COX-2 expressions. These results may have important implications for the development of novel therapeutic strategies for the prevention/treatment of OA and other degenerative/inflammatory diseases. SUMMARY Lactoferrin shows anti-arthritic activity in IL-1β stimulated primary human chondrocytes.Lactoferrin inhibits IL-1β-induced NF-κB activation.Lactoferrin inhibits

  5. Sorting nexin 9 differentiates ligand-activated Smad3 from Smad2 for nuclear import and transforming growth factor β signaling

    PubMed Central

    Wilkes, Mark C.; Repellin, Claire E.; Kang, Jeong-Han; Andrianifahanana, Mahefatiana; Yin, Xueqian; Leof, Edward B.

    2015-01-01

    Transforming growth factor β (TGFβ) is a pleiotropic protein secreted from essentially all cell types and primary tissues. While TGFβ’s actions reflect the activity of a number of signaling networks, the primary mediator of TGFβ responses are the Smad proteins. Following receptor activation, these cytoplasmic proteins form hetero-oligomeric complexes that translocate to the nucleus and affect gene transcription. Here, through biological, biochemical, and immunofluorescence approaches, sorting nexin 9 (SNX9) is identified as being required for Smad3-dependent responses. SNX9 interacts with phosphorylated (p) Smad3 independent of Smad2 or Smad4 and promotes more rapid nuclear delivery than that observed independent of ligand. Although SNX9 does not bind nucleoporins Nup153 or Nup214 or some β importins (Imp7 or Impβ), it mediates the association of pSmad3 with Imp8 and the nuclear membrane. This facilitates nuclear translocation of pSmad3 but not SNX9. PMID:26337383

  6. Cystic Fibrosis Transmembrane Conductance Regulator Controls Lung Proteasomal Degradation and Nuclear Factor-κB Activity in Conditions of Oxidative Stress

    PubMed Central

    Boncoeur, Emilie; Roque, Telma; Bonvin, Elise; Saint-Criq, Vinciane; Bonora, Monique; Clement, Annick; Tabary, Olivier; Henrion-Caude, Alexandra; Jacquot, Jacky

    2008-01-01

    Cystic fibrosis is a lethal inherited disorder caused by mutations in a single gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, resulting in progressive oxidative lung damage. In this study, we evaluated the role of CFTR in the control of ubiquitin-proteasome activity and nuclear factor (NF)-κB/IκB-α signaling after lung oxidative stress. After a 64-hour exposure to hyperoxia-mediated oxidative stress, CFTR-deficient (cftr−/−) mice exhibited significantly elevated lung proteasomal activity compared with wild-type (cftr+/+) animals. This was accompanied by reduced lung caspase-3 activity and defective degradation of NF-κB inhibitor IκB-α. In vitro, human CFTR-deficient lung cells exposed to oxidative stress exhibited increased proteasomal activity and decreased NF-κB-dependent transcriptional activity compared with CFTR-sufficient lung cells. Inhibition of the CFTR Cl− channel by CFTRinh-172 in the normal bronchial immortalized cell line 16HBE14o− increased proteasomal degradation after exposure to oxidative stress. Caspase-3 inhibition by Z-DQMD in CFTR-sufficient lung cells mimicked the response profile of increased proteasomal degradation and reduced NF-κB activity observed in CFTR-deficient lung cells exposed to oxidative stress. Taken together, these results suggest that functional CFTR Cl− channel activity is crucial for regulation of lung proteasomal degradation and NF-κB activity in conditions of oxidative stress. PMID:18372427

  7. C/EBPβ and Nuclear Factor of Activated T Cells Differentially Regulate Adamts-1 Induction by Stimuli Associated with Vascular Remodeling

    PubMed Central

    Oller, Jorge; Alfranca, Arántzazu; Méndez-Barbero, Nerea; Villahoz, Silvia; Lozano-Vidal, Noelia; Martín-Alonso, Mara; Arroyo, Alicia G.; Escolano, Amelia; Armesilla, Angel Luis

    2015-01-01

    Emerging evidence indicates that the metalloproteinase Adamts-1 plays a significant role in the pathophysiology of vessel remodeling, but little is known about the signaling pathways that control Adamts-1 expression. We show that vascular endothelial growth factor (VEGF), angiotensin-II, interleukin-1β, and tumor necrosis factor α, stimuli implicated in pathological vascular remodeling, increase Adamts-1 expression in endothelial and vascular smooth muscle cells. Analysis of the intracellular signaling pathways implicated in this process revealed that VEGF and angiotensin-II upregulate Adamts-1 expression via activation of differential signaling pathways that ultimately promote functional binding of the NFAT or C/EBPβ transcription factors, respectively, to the Adamts-1 promoter. Infusion of mice with angiotensin-II triggered phosphorylation and nuclear translocation of C/EBPβ proteins in aortic cells concomitantly with an increase in the expression of Adamts-1, further underscoring the importance of C/EBPβ signaling in angiotensin-II-induced upregulation of Adamts-1. Similarly, VEGF promoted NFAT activation and subsequent Adamts-1 induction in aortic wall in a calcineurin-dependent manner. Our results demonstrate that Adamts-1 upregulation by inducers of pathological vascular remodeling is mediated by specific signal transduction pathways involving NFAT or C/EBPβ transcription factors. Targeting of these pathways may prove useful in the treatment of vascular disease. PMID:26217013

  8. Inhibition of nuclear factor κB transcription activity drives a synergistic effect of cisplatin and oridonin on HepG2 human hepatocellular carcinoma cells.

    PubMed

    Dong, Xinjun; Liu, Feiyan; Li, Mianli

    2016-04-01

    Activation of nuclear factor κB (NF-κB) by cisplatin and other chemotherapeutics is responsible, at least in part, for the development of drug resistance in the treatment of hepatocellular carcinoma. Therefore, a combination of chemotherapeutics with NF-κB inhibitors could overcome resistance of cancer cells. Oridonin is a diterpenoid isolated from Rabdosia rubescens that can block the NF-κB signaling cascades. In this study, we investigated the synergistic effect of oridonin and cisplatin on human hepatocellular carcinoma HepG2 cells. Cell apoptosis and mitochondrial membrane potential loss were examined using Hoechst 33258 and rhodamine-123 staining, followed by flow cytometry, respectively. The expression of apoptosis-related proteins and NF-κB subunits was detected by real-time PCR and western blot. The activity of caspase 3 and 9 was measured using the Caspase Activity Kit. Electrophoretic mobility shift assay and the enzyme-linked immunosorbent assay-based kit were used to assess the DNA-binding activity of NF-κB. We found a synergistic antitumor effect between cisplatin and oridonin on HepG2 cells both in vitro and in vivo. In addition, the combination of cisplatin and oridonin synergistically induces apoptosis and regulates the expression and activity of several key apoptosis-related proteins. Furthermore, the combination treatment not only downregulates nuclear translocation of p50 and p65, but more significantly, decreases the transcription activity of all NF-κB subunits to a greater degree than either agent alone. Our results suggest that the synergistic effect between both agents is likely to be driven by the inhibition of transcription activity of NF-κB and the resulting increased apoptosis. PMID:26704389

  9. Co-operation of the transcription factor hepatocyte nuclear factor-4 with Sp1 or Sp3 leads to transcriptional activation of the human haem oxygenase-1 gene promoter in a hepatoma cell line.

    PubMed Central

    Takahashi, Shigeru; Matsuura, Naomi; Kurokawa, Takako; Takahashi, Yuji; Miura, Takashi

    2002-01-01

    We reported previously that the 5'-flanking region (nucleotides -1976 to -1655) of the human haem oxygenase-1 ( hHO-1 ) gene enhances hHO-1 promoter activity in human hepatoma HepG2 cells, but not in HeLa cells [Takahashi, Takahashi, Ito, Nagano, Shibahara and Miura (1999) Biochim. Biophys. Acta 1447, 231-235]. To define more precisely the regulatory elements involved, in the present study we have functionally dissected this region and localized the enhancer to a 50 bp fragment (-1793 to -1744). Site-direct mutagenesis analysis revealed that two regions were responsible for this enhancer activity, i.e. a hepatocyte nuclear factor-4 (HNF-4) homologous region and a GC box motif homologous region. Mutation in either region alone moderately decreased enhancer activity. However, mutations in both regions reduced promoter activity to the basal level. Electrophoretic mobility-shift assays demonstrated that the P5-2 fragment (-1793 to -1744) interacted with at least two nuclear factors, i.e. HNF-4 and Sp1/Sp3. Co-transfection experiments using Drosophila SL2 cells revealed that HNF-4 and Sp1/Sp3 synergistically stimulated the enhancer activity of the P5-2 fragment. These results indicate that co-operation of HNF-4 with Sp1 or Sp3 leads to the activation of hHO-1 gene expression in hepatoma cells. PMID:12133007

  10. Co-operation of the transcription factor hepatocyte nuclear factor-4 with Sp1 or Sp3 leads to transcriptional activation of the human haem oxygenase-1 gene promoter in a hepatoma cell line.

    PubMed

    Takahashi, Shigeru; Matsuura, Naomi; Kurokawa, Takako; Takahashi, Yuji; Miura, Takashi

    2002-11-01

    We reported previously that the 5'-flanking region (nucleotides -1976 to -1655) of the human haem oxygenase-1 ( hHO-1 ) gene enhances hHO-1 promoter activity in human hepatoma HepG2 cells, but not in HeLa cells [Takahashi, Takahashi, Ito, Nagano, Shibahara and Miura (1999) Biochim. Biophys. Acta 1447, 231-235]. To define more precisely the regulatory elements involved, in the present study we have functionally dissected this region and localized the enhancer to a 50 bp fragment (-1793 to -1744). Site-direct mutagenesis analysis revealed that two regions were responsible for this enhancer activity, i.e. a hepatocyte nuclear factor-4 (HNF-4) homologous region and a GC box motif homologous region. Mutation in either region alone moderately decreased enhancer activity. However, mutations in both regions reduced promoter activity to the basal level. Electrophoretic mobility-shift assays demonstrated that the P5-2 fragment (-1793 to -1744) interacted with at least two nuclear factors, i.e. HNF-4 and Sp1/Sp3. Co-transfection experiments using Drosophila SL2 cells revealed that HNF-4 and Sp1/Sp3 synergistically stimulated the enhancer activity of the P5-2 fragment. These results indicate that co-operation of HNF-4 with Sp1 or Sp3 leads to the activation of hHO-1 gene expression in hepatoma cells. PMID:12133007

  11. Monascin attenuates oxidative stress-mediated lung inflammation via peroxisome proliferator-activated receptor-gamma (PPAR-γ) and nuclear factor-erythroid 2 related factor 2 (Nrf-2) modulation.

    PubMed

    Hsu, Wei-Hsuan; Lee, Bao-Hong; Pan, Tzu-Ming

    2014-06-11

    We speculated that peroxisome proliferator-activated receptor (PPAR)-γ agonists may modulate the oxidative stress pathway to ameliorate the development of airway inflammation. The effect of Monascus-fermented metabolite monascin (MS) and rosiglitazone (Rosi) on oxidative stress-induced lung inflammation was evaluated. Luciferase assay and DNA binding activity assay were used to point out that MS may be a novel PPAR-γ agonist and nuclear factor-erythroid 2 related factor 2 (Nrf-2) activator. We used hydrogen peroxide (H2O2) to induce inflammation in lung epithelial cells. MS and Rosi prevented H2O2-induced ROS generation in A549 epithelial cells through PPAR-γ translocation, avoiding inflammatory mediator expression via inhibiting nuclear factor (NF)-κB translocation. The regulatory ability of MS was abolished by siRNA against PPAR-γ. MS also elevated antioxidant enzyme expression via Nrf-2 activation. Both PPAR-γ and Nrf-2 might have benefits against lung inflammation. MS regulated PPAR-γ and Nrf-2 to improve lung oxidative inflammation. PMID:24865672

  12. Involvement of Receptor Activator of Nuclear Factor-κB Ligand (RANKL)-induced Incomplete Cytokinesis in the Polyploidization of Osteoclasts.

    PubMed

    Takegahara, Noriko; Kim, Hyunsoo; Mizuno, Hiroki; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Tomura, Michio; Kanagawa, Osami; Ishii, Masaru; Choi, Yongwon

    2016-02-12

    Osteoclasts are specialized polyploid cells that resorb bone. Upon stimulation with receptor activator of nuclear factor-κB ligand (RANKL), myeloid precursors commit to becoming polyploid, largely via cell fusion. Polyploidization of osteoclasts is necessary for their bone-resorbing activity, but the mechanisms by which polyploidization is controlled remain to be determined. Here, we demonstrated that in addition to cell fusion, incomplete cytokinesis also plays a role in osteoclast polyploidization. In in vitro cultured osteoclasts derived from mice expressing the fluorescent ubiquitin-based cell cycle indicator (Fucci), RANKL induced polyploidy by incomplete cytokinesis as well as cell fusion. Polyploid cells generated by incomplete cytokinesis had the potential to subsequently undergo cell fusion. Nuclear polyploidy was also observed in osteoclasts in vivo, suggesting the involvement of incomplete cytokinesis in physiological polyploidization. Furthermore, RANKL-induced incomplete cytokinesis was reduced by inhibition of Akt, resulting in impaired multinucleated osteoclast formation. Taken together, these results reveal that RANKL-induced incomplete cytokinesis contributes to polyploidization of osteoclasts via Akt activation. PMID:26670608

  13. Anti-cancer effect of bee venom on colon cancer cell growth by activation of death receptors and inhibition of nuclear factor kappa B

    PubMed Central

    Zheng, Jie; Lee, Hye Lim; Ham, Young Wan; Song, Ho Sueb; Song, Min Jong; Hong, Jin Tae

    2015-01-01

    Bee venom (BV) has been used as a traditional medicine to treat arthritis, rheumatism, back pain, cancerous tumors, and skin diseases. However, the effects of BV on the colon cancer and their action mechanisms have not been reported yet. We used cell viability assay and soft agar colony formation assay for testing cell viability, electro mobility shift assay for detecting DNA binding activity of nuclear factor kappa B (NF-κB) and Western blotting assay for detection of apoptosis regulatory proteins. We found that BV inhibited growth of colon cancer cells through induction of apoptosis. We also found that the expression of death receptor (DR) 4, DR5, p53, p21, Bax, cleaved caspase-3, cleaved caspase-8, and cleaved caspase-9 was increased by BV treatment in a dose dependent manner (0–5 μg/ml). Consistent with cancer cell growth inhibition, the DNA binding activity of nuclear factor kappa B (NF-κB) was also inhibited by BV treatment. Besides, we found that BV blocked NF-κB activation by directly binding to NF-κB p50 subunit. Moreover, combination treatment with BV and p50 siRNA or NF-κB inhibitor augmented BV-induced cell growth inhibition. However, p50 mutant plasmid (C62S) transfection partially abolished BV-induced cell growth inhibiton. In addition, BV significantly suppressed tumor growth in vivo. Therefore, these results suggested that BV could inhibit colon cancer cell growth, and these anti-proliferative effects may be related to the induction of apoptosis by activation of DR4 and DR5 and inhibition of NF-κB. PMID:26561202

  14. The homeodomain Pbx2-Prep1 complex modulates hepatocyte nuclear factor 1alpha-mediated activation of the UDP-glucuronosyltransferase 2B17 gene.

    PubMed

    Gregory, Philip A; Mackenzie, Peter I

    2002-07-01

    UDP glucuronosyltransferases (UGT) are expressed in a wide range of tissues in which their levels of expression and distribution are dependent on cell-type specific regulatory mechanisms. The presence of a hepatocyte nuclear factor (HNF) 1 binding site in the proximal promoters of several UGT2B genes has been shown to contribute to their expression in liver cells and possibly other HNF1-containing cell types. In some of these UGT2B genes, a putative pre-B cell homeobox (Pbx) transcription factor binding site is found directly adjacent to the functional HNF1 site. To determine whether this putative Pbx site contributes to the regulation of UGT2B expression, we chose the UGT2B17 gene and investigated the capacity of its Pbx site to bind specific transcription factors and alter promoter activity. The UGT2B17 Pbx site matches a consensus Pbx site known to bind members of the Pbx, Hox, Meis, and Prep1 families of homeodomain-containing proteins and has previously been shown to bind nuclear proteins in DNaseI footprint assays. In this study, we used gel shift and functional assays to show that a Pbx2-Prep1 heterodimer can bind to the UGT2B17 Pbx site and interfere with the binding of HNF1alpha to its site adjacent to the Pbx site. This interaction of Pbx2-Prep1 and HNF1alpha results in down-regulation of HNF1alpha-mediated activation of the UGT2B17 promoter. Modulation of transcription by restricting the binding of transcriptional effectors to their target site is a novel role for Pbx2-Prep1 complexes. PMID:12065766

  15. Disruption of nuclear factor (erythroid-derived-2)-like 2 antioxidant signaling: a mechanism for impaired activation of stem cells and delayed regeneration of skeletal muscle.

    PubMed

    Shelar, Sandeep Balu; Narasimhan, Madhusudhanan; Shanmugam, Gobinath; Litovsky, Silvio Hector; Gounder, Sellamuthu S; Karan, Goutam; Arulvasu, Cinnasamy; Kensler, Thomas W; Hoidal, John R; Darley-Usmar, Victor M; Rajasekaran, Namakkal S

    2016-05-01

    Recently we have reported that age-dependent decline in antioxidant levels accelerated apoptosis and skeletal muscle degeneration. Here, we demonstrate genetic ablation of the master cytoprotective transcription factor, nuclear factor (erythroid-derived-2)-like 2 (Nrf2), aggravates cardiotoxin (CTX)-induced tibialis anterior (TA) muscle damage. Disruption of Nrf2 signaling sustained the CTX-induced burden of reactive oxygen species together with compromised expression of antioxidant genes and proteins. Transcript/protein expression of phenotypic markers of muscle differentiation, namely paired box 7 (satellite cell) and early myogenic differentiation and terminal differentiation (myogenin and myosin heavy chain 2) were increased on d 2 and 4 postinjury but later returned to baseline levels on d 8 and 15 in wild-type (WT) mice. In contrast, these responses were persistently augmented in Nrf2-null mice suggesting that regulation of the regeneration-related signaling mechanisms require Nrf2 for normal functioning. Furthermore, Nrf2-null mice displayed slower regeneration marked by dysregulation of embryonic myosin heavy chain temporal expression. Histologic observations illustrated that Nrf2-null mice displayed smaller, immature TA muscle fibers compared with WT counterparts on d 15 after CTX injury. Improvement in TA muscle morphology and gain in muscle mass evident in the WT mice was not noticeable in the Nrf2-null animals. Taken together these data show that the satellite cell activation, proliferation, and differentiation requires a functional Nrf2 system for effective healing following injury.-Shelar, S. B., Narasimhan, M., Shanmugam, G., Litovsky, S. H., Gounder, S. S., Karan, G., Arulvasu, C., Kensler, T. W., Hoidal, J. R., Darley-Usmar, V. M., Rajasekaran, N. S. Disruption of nuclear factor (erythroid-derived-2)-like 2 antioxidant signaling: a mechanism for impaired activation of stem cells and delayed regeneration of skeletal muscle. PMID:26839378

  16. Synthesis of piperlongumine analogues and discovery of nuclear factor erythroid 2-related factor 2 (Nrf2) activators as potential neuroprotective agents.

    PubMed

    Peng, Shoujiao; Zhang, Baoxin; Meng, Xianke; Yao, Juan; Fang, Jianguo

    2015-07-01

    The cellular antioxidant system plays key roles in blocking or retarding the pathogenesis of adult neurodegenerative disorders as elevated oxidative stress has been implicated in the pathophysiology of such diseases. Molecules with the ability in enhancing the antioxidant defense thus are promising candidates as neuroprotective agents. We reported herein the synthesis of piperlongumine analogues and evaluation of their cytoprotection against hydrogen peroxide- and 6-hydroxydopamine-induced neuronal cell oxidative damage in the neuron-like PC12 cells. The structure-activity relationship was delineated after the cytotoxicity and protection screening. Two compounds (4 and 5) displayed low cytotoxicity and confer potent protection of PC12 cells from the oxidative injury via upregulation of a panel of cellular antioxidant molecules. Genetically silencing the transcription factor Nrf2, a master regulator of the cellular stress responses, suppresses the cytoprotection, indicating the critical involvement of Nrf2 for the cellular action of compounds 4 and 5 in PC12 cells. PMID:26079183

  17. BaeR protein acts as an activator of nuclear factor-kappa B and Janus kinase 2 to induce inflammation in murine cell lines.

    PubMed

    Lee, Seung-Jin; Birhanu, Biruk Tesfaye; Awji, Elias Gebru; Kim, Myung Hee; Park, Ji-Yong; Suh, Joo-Won; Park, Seung-Chun

    2016-09-01

    BaeR, a response regulator protein, takes part in multidrug efflux, bacterial virulence activity, and other biological functions. Recently, BaeR was shown to induce inflammatory responses by activating the mitogen-activated protein kinases (MAPKs). In this study, we investigated additional pathways used by BaeR to induce an inflammatory response. BaeR protein was purified from Salmonella enterica Paratyphi A and subcloned into a pPosKJ expression vector. RAW 264.7 cells were treated with BaeR, and RNA was extracted by TRIzol reagent for RT-PCR. Cytokine gene expression was analyzed by using the comparative cycle threshold method, while western blotting and ELISA were used to assess protein expression. We confirmed that BaeR activates nuclear factor-kappa B (NF-κB), thereby inducing an inflammatory response and increases the production of interleukins (IL-)1β and IL-6. During this process, the Janus kinase 2 (JAK2)-STAT1 signaling pathway was activated, resulting in an increase in the release of interferons I and II. Additionally, COX-2 was activated and its expression increased with time. In conclusion, BaeR induced an inflammatory response through activation of NF-κB in addition to the MAPKs. Furthermore, activation of the JAK2-STAT1 pathway and COX-2 facilitated the cytokine binding activity, suggesting an additional role for BaeR in the modulation of the immune system of the host and the virulence activity of the pathogen. PMID:27374640

  18. Effect of The Receptor Activator of Nuclear Factor кB and RANK Ligand on In Vitro Differentiation of Cord Blood CD133+ Hematopoietic Stem Cells to Osteoclasts

    PubMed Central

    Kalantari, Nasim; Abroun, Saeid; Soleimani, Masoud; Kaviani, Saeid; Azad, Mehdi; Eskandari, Fatemeh; Habibi, Hossein

    2016-01-01

    Objective Receptor activator of nuclear factor-kappa B ligand (RANKL) appears to be an osteoclast-activating factor, bearing an important role in the pathogenesis of multiple myeloma. Some studies demonstrated that U-266 myeloma cell line and primary myeloma cells expressed RANK and RANKL. It had been reported that the expression of myeloid and monocytoid markers was increased by co-culturing myeloma cells with hematopoietic stem cells (HSCs). This study also attempted to show the molecular mechanism of RANK and RANKL on differentiation capability of human cord blood HSC to osteoclast, as well as expression of calcitonin receptor (CTR) on cord blood HSC surface. Materials and Methods In this experimental study, CD133+ hematopoietic stem cells were isolated from umbilical cord blood and cultured in the presence of macrophage colony-stimulating factor (M-CSF) and RANKL. Osteoclast differentiation was characterized by using tartrate-resistant acid phosphatase (TRAP) staining, giemsa staining, immunophenotyping, and reverse transcription-polymerase chain reaction (RT-PCR) assay for specific genes. Results Hematopoietic stem cells expressed RANK before and after differentiation into osteoclast. Compared to control group, flow cytometric results showed an increased expression of RANK after differentiation. Expression of CTR mRNA showed TRAP reaction was positive in some differentiated cells, including osteoclast cells. Conclusion Presence of RANKL and M-CSF in bone marrow could induce HSCs differentiation into osteoclast. PMID:27602313

  19. A novel naturally occurring salicylic acid analogue acts as an anti-inflammatory agent by inhibiting nuclear factor-kappaB activity in RAW264.7 macrophages.

    PubMed

    Zhang, Tiantai; Sun, Lan; Liu, Rui; Zhang, Dan; Lan, Xi; Huang, Chao; Xin, Wenyu; Wang, Chao; Zhang, Dongming; Du, Guanhua

    2012-03-01

    Methyl salicylate 2-O-β-D-lactoside (DL0309), is a molecule chemically related to salicylic acid that is isolated from Gaultheria yunnanensis (FRANCH.) REHDER (G. yunnanensis). G. yunnanensis, a traditional Chinese herbal medicine, is widely used for treating rheumatoid arthritis, swelling, pain, trauma, and chronic tracheitis. In the present study, we explored the mechanism whereby DL0309 exerts anti-inflammatory effects, using the model of lipopolysaccharide (LPS)-treated RAW264.7 cells. We examined the effects of DL0309 on LPS-induced nuclear factor-kappaB (NF-κB) activity by Western blot analysis, cell imaging analysis and an electrophoretic mobility shift assay (EMSA). Production of pro-inflammatory cytokines was also measured. Our observations indicate that DL0309 suppressed production of nitric oxide (NO), reactive oxygen species (ROS) and the pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), in a concentration-dependent manner. The phosphorylation of IKK-β and degradation of IκB-α by LPS were both inhibited by DL0309 in the cytoplasm. The increased protein level of NF-κB by LPS in the nucleus was also reduced by DL0309. Consistent with these results, we found that DL0309 prevents the nuclear translocation and DNA binding activity of NF-κB. Finally, our results demonstrate that DL0309 exerts anti-inflammatory effects, by inhibiting the production of pro-inflammatory cytokines and suppressing of the activation of the NF-κB signaling pathway in LPS-treated macrophage cells. Therefore, DL0309 may have therapeutic potential for treating inflammatory diseases by regulating the NF-κB pathway and pro-inflammatory cytokine production. PMID:22292506

  20. Diosmetin ameliorates the severity of cerulein-induced acute pancreatitis in mice by inhibiting the activation of the nuclear factor-κB

    PubMed Central

    Yu, Ge; Wan, Rong; Yin, Guojian; Xiong, Jie; Hu, Yanling; Xing, Miao; Cang, Xiaofeng; Fan, Yuting; Xiao, Wenqin; Qiu, Lei; Wang, Xingpeng; Hu, Guoyong

    2014-01-01

    Diosmetin (3’, 5, 7-trihydroxy-4’-methoxyflavone), the aglycone part of the flavonoid glycosides diosmin occurs naturally in citrus fruit, was considered to exhibit anti-inflammatory and antioxidant properties. Our study aimed to investigate the effect of diosmetin in a murine model of cerulein-induced acute pancreatitis (AP). Experimental AP was induced in mice by seven intraperitoneal injection of cerulein (50 ug/kg) at hourly intervals. Diosmetin (100 mg/kg) or vehicle was pretreated 2 h before the first cerulein injection. After 6 h, 9 h, 12 h of the first cerulein injection, the severity of acute pancreatitis was evaluated biochemically and morphologically. Pretreatment with diosmetin significantly reduced serum levels of amylase and lipase; the histological injury; the secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6; myeloperoxidase (MPO) activity, trypsinogen activation peptide (TAP) level, the expression of inducible nitric oxide synthase (iNOS); and the nuclear factor (NF)-κB activation in cerulein-induced AP. This study showed that administration of diosmetin demonstrated a beneficial effect on the course of cerulein-induced AP in mice. Therefore, diosmetin may become a new therapeutic agent in future clinical trials for treatment of AP. PMID:24966921

  1. Diosmetin ameliorates the severity of cerulein-induced acute pancreatitis in mice by inhibiting the activation of the nuclear factor-κB.

    PubMed

    Yu, Ge; Wan, Rong; Yin, Guojian; Xiong, Jie; Hu, Yanling; Xing, Miao; Cang, Xiaofeng; Fan, Yuting; Xiao, Wenqin; Qiu, Lei; Wang, Xingpeng; Hu, Guoyong

    2014-01-01

    Diosmetin (3', 5, 7-trihydroxy-4'-methoxyflavone), the aglycone part of the flavonoid glycosides diosmin occurs naturally in citrus fruit, was considered to exhibit anti-inflammatory and antioxidant properties. Our study aimed to investigate the effect of diosmetin in a murine model of cerulein-induced acute pancreatitis (AP). Experimental AP was induced in mice by seven intraperitoneal injection of cerulein (50 ug/kg) at hourly intervals. Diosmetin (100 mg/kg) or vehicle was pretreated 2 h before the first cerulein injection. After 6 h, 9 h, 12 h of the first cerulein injection, the severity of acute pancreatitis was evaluated biochemically and morphologically. Pretreatment with diosmetin significantly reduced serum levels of amylase and lipase; the histological injury; the secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6; myeloperoxidase (MPO) activity, trypsinogen activation peptide (TAP) level, the expression of inducible nitric oxide synthase (iNOS); and the nuclear factor (NF)-κB activation in cerulein-induced AP. This study showed that administration of diosmetin demonstrated a beneficial effect on the course of cerulein-induced AP in mice. Therefore, diosmetin may become a new therapeutic agent in future clinical trials for treatment of AP. PMID:24966921

  2. Andrographolide Inhibits Nuclear Factor-κB Activation through JNK-Akt-p65 Signaling Cascade in Tumor Necrosis Factor-α-Stimulated Vascular Smooth Muscle Cells

    PubMed Central

    Chen, Yu-Ying; Hsieh, Cheng-Ying; Lee, Lin-Wen; Sheu, Joen-Rong

    2014-01-01

    Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs) exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α). Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK), Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism. PMID:25114952

  3. Asiatic acid inhibits cardiac hypertrophy by blocking interleukin-1β-activated nuclear factor-κB signaling in vitro and in vivo

    PubMed Central

    Xu, Xiaohan; Si, Linjie; Xu, Jing; Yi, Chenlong; Wang, Fang; Gu, Weijuan

    2015-01-01

    Background Activated interleukin (IL)-1β signaling pathway is closely associated with pathological cardiac hypertrophy. This study investigated whether asiatic acid (AA) could inhibit IL-1β-related hypertrophic signaling, and thus suppressing the development of cardiac hypertrophy. Methods Transverse aortic constriction (TAC) induced cardiac hypertrophy in C57BL/6 mice and cultured neonatal cardiac myocytes stimulated with IL-1β were used to evaluate the role of AA in cardiac hypertrophy. The expression of atrial natriuretic peptide (ANP) was evaluated by quantitative polymerase chain reaction (qPCR) and the nuclear factor (NF)-κB binding activity was measured by electrophoretic mobility shift assays (EMSA). Results AA pretreatment significantly attenuated the IL-1β-induced hypertrophic response of cardiomyocytes as reflected by reduction in the cardiomyocyte surface area and the inhibition of ANP mRNA expression. The protective effect of AA on IL-1β-stimulated cardiomyocytes was associated with the reduction of NF-κB binding activity. In addition, AA prevented TAC-induced cardiac hypertrophy in vivo. It was found that AA markedly reduced the excessive expression of IL-1β and ANP, and inhibited the activation of NF-κB in the hypertrophic myocardium. Conclusions Our data suggest that AA may be a novel therapeutic agent for cardiac hypertrophy. The inhibition of IL-1β-activated NF-κB signaling may be the mechanism through which AA prevents cardiac hypertrophy. PMID:26623102

  4. Nuclear factor of activated T-cells 5 increases intestinal goblet cell differentiation through an mTOR/Notch signaling pathway

    PubMed Central

    Zhou, Yuning; Wang, Qingding; Weiss, Heidi L.; Evers, B. Mark

    2014-01-01

    The intestinal mucosa undergoes a continual process of proliferation, differentiation, and apoptosis that is regulated by multiple signaling pathways. Previously, we have shown that the nuclear factor of activated T-cells 5 (NFAT5) is involved in the regulation of intestinal enterocyte differentiation. Here we show that treatment with sodium chloride (NaCl), which activates NFAT5 signaling, increased mTORC1 repressor regulated in development and DNA damage response 1 (REDD1) protein expression and inhibited mTOR signaling; these alterations were attenuated by knockdown of NFAT5. Knockdown of NFAT5 activated mammalian target of rapamycin (mTOR) signaling and significantly inhibited REDD1 mRNA expression and protein expression. Consistently, overexpression of NFAT5 increased REDD1 expression. In addition, knockdown of REDD1 activated mTOR and Notch signaling, whereas treatment with mTOR inhibitor rapamycin repressed Notch signaling and increased the expression of the goblet cell differentiation marker mucin 2 (MUC2). Moreover, knockdown of NFAT5 activated Notch signaling and decreased MUC2 expression, while overexpression of NFAT5 inhibited Notch signaling and increased MUC2 expression. Our results demonstrate a role for NFAT5 in the regulation of mTOR signaling in intestinal cells. Importantly, these data suggest that NFAT5 participates in the regulation of intestinal homeostasis via the suppression of mTORC1/Notch signaling pathway. PMID:25057011

  5. Nuclear factor of activated T cell (NFAT) transcription proteins regulate genes involved in adipocyte metabolism and lipolysis

    SciTech Connect

    Holowachuk, Eugene W. . E-mail: geneh@telenet.net

    2007-09-21

    NFAT involvement in adipocyte physiological processes was examined by treatment with CsA and/or GSK3{beta} inhibitors (Li{sup +} or TZDZ-8), which prevent or increase NFAT nuclear translocation, respectively. CsA treatment reduced basal and TNF{alpha}-induced rates of lipolysis by 50%. Adipocytes preincubated with Li{sup +} or TZDZ-8 prior to CsA and/or TNF{alpha}, exhibited enhanced basal rates of lipolysis and complete inhibition of CsA-mediated decreased rates of lipolysis. CsA treatment dramatically reduced the mRNA levels of adipocyte-specific genes (aP2, HSL, PPAR{gamma}, ACS and Adn), compared with control or TNF{alpha}-treatment, whereas Li{sup +} pretreatment blocked the inhibitory effects of CsA, and mRNA levels of aP2, HSL, PPAR{gamma}, and ACS were found at or above control levels. NFAT nuclear localization, assessed by EMSA, confirmed that CsA or Li{sup +} treatments inhibited or increased NFAT nuclear translocation, respectively. These results show that NFAT proteins in mature adipocytes participate in the transcriptional control of genes involved in adipocyte metabolism and lipolysis.

  6. The nuclear factor kappa B (NF-κB) activation is required for phagocytosis of staphylococcus aureus by RAW 264.7 cells

    SciTech Connect

    Zhu, Fei Yue, Wanfu; Wang, Yongxia

    2014-10-01

    Nuclear factor kappa B (NF-κB) is a ubiquitous transcription factor which controls the expression of various genes involved in immune responses. However, it is not clear whether NF-κB activation is critical for phagocytosis when Staphylococcus aureus is the pathogen. Using oligonucleotide microarrays, we investigated whether NF-κB cascade genes are altered in a mouse leukemic monocyte macrophage cell line (RAW 264.7) when the cells were stimulated to activate a host innate immune response against live S. aureus or heat-inactivated S. aureus (HISA). NF-κB cascade genes such as Nfκb1, Nfκbiz, Nfκbie, Rel, Traf1 and Tnfaip3 were up-regulated by all treatments at one hour after incubation. NF-κB play an important role in activating phagocytosis in RAW 264.7 cells infected with S. aureus. Inhibition of NF-κB significantly blocked phagocytosis of fluorescently labeled S. aureus and decreased the expression of NFκB1, IL1α, IL1β and TLR2 in this cell line. Our results demonstrate that S. aureus may activate the NF-κB pathway and that NF-κB activation is required for phagocytosis of S. aureus by macrophages. - Highlights: • NF-κB cascade genes such as Nfκb1 and Traf1 were up-regulated by heat-inactivated S. aureus. • Inhibition of NF-κB significantly blocked phagocytosis of fluorescently labeled S. aureus. • NF-κB activation is required for phagocytosis of S. aureus by macrophages.

  7. Low-molecular-weight fractions of Alcalase hydrolyzed egg ovomucin extract exert anti-inflammatory activity in human dermal fibroblasts through the inhibition of tumor necrosis factor-mediated nuclear factor κB pathway.

    PubMed

    Sun, Xiaohong; Chakrabarti, Subhadeep; Fang, Jun; Yin, Yulong; Wu, Jianping

    2016-07-01

    Ovomucin is a mucin-like protein from egg white with a variety of biological functions. We hypothesized that ovomucin-derived peptides might exert anti-inflammatory activity. The specific objectives were to test the anti-inflammatory activities of different ovomucin hydrolysates and its various fractions in human dermal fibroblasts, and to understand the possible molecular mechanisms. Three ovomucin hydrolysates were prepared and desalted; only the desalted Alcalase hydrolysate showed anti-inflammatory activity. Desalting of ovomucin hydrolysate enriched the proportion of low-molecular-weight (MW) peptides. Indeed, ultrafiltration of this hydrolysate displayed comparable anti-inflammatory activity in dermal fibroblasts, indicating the responsible role of low-MW bioactive peptides in exerting the beneficial biological function. The anti-inflammatory activity of low-MW peptides was regulated through the inhibition of tumor necrosis factor-mediated nuclear factor κ-light-chain-enhancer of activated B cells activity. Our study demonstrated that both peptide composition and MW distribution play important roles in anti-inflammatory activity. The low-MW fractions prepared from ovomucin Alcalase hydrolysate may have potential applications for maintenance of dermal health and treatment of skin diseases. PMID:27333955

  8. In vitro evaluation of inhibitory effect of nuclear factor-kappaB activity by small interfering RNA on pro-tumor characteristics of M2-like macrophages.

    PubMed

    Kono, Yusuke; Kawakami, Shigeru; Higuchi, Yuriko; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2014-01-01

    Tumor-associated macrophages (TAMs) have an alternatively activated macrophage phenotype (M2) and promote cancer cell proliferation, angiogenesis and metastasis. Nuclear factor-kappaB (NF-κB) is one of the master regulators of macrophage polarization. Here, we investigated the effect of inhibition of NF-κB activity by small interfering RNA (siRNA) on the pro-tumor response of macrophages located in the tumor microenvironment in vitro. We used mouse peritoneal macrophages cultured in conditioned medium from colon-26 cancer cells as an in vitro TAM model (M2-like macrophages). Transfection of NF-κB (p50) siRNA into M2-like macrophages resulted in a significant decrease in the secretion of interleukin (IL)-10 (a T helper 2 (Th2) cytokine) and a significant increase of T helper 1 (Th1) cytokine production (IL-12, tumor necrosis factor-α, and IL-6). Furthermore, vascular endothelial growth factor production and matrix metalloproteinase-9 mRNA expression in M2-like macrophages were suppressed by inhibition of NF-κB expression with NF-κB (p50) siRNA. In addition, there was a reduction of arginase mRNA expression and increase in nitric oxide production. The cytokine secretion profiles of macrophages cultured in conditioned medium from either B16BL6 or PAN-02 cancer cells were also converted from M2 to classically activated (M1) macrophages by transfection of NF-κB (p50) siRNA. These results suggest that inhibition of NF-κB activity in M2-like macrophages alters their phenotype toward M1. PMID:24141263

  9. Keap1 silencing boosts lipopolysaccharide-induced transcription of interleukin 6 via activation of nuclear factor κB in macrophages

    SciTech Connect

    Lv, Peng; Xue, Peng; Dong, Jian; Peng, Hui; Clewell, Rebecca; Wang, Aiping; Wang, Yue; Peng, Shuangqing; Qu, Weidong; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2013-11-01

    Interleukin-6 (IL6) is a multifunctional cytokine that regulates immune and inflammatory responses. Multiple transcription factors, including nuclear factor κB (NF-κB) and nuclear factor E2-related factor 2 (Nrf2), regulate IL6 transcription. Kelch-like ECH-associated protein 1 (Keap1) is a substrate adaptor protein for the Cullin 3-dependent E3 ubiquitin ligase complex, which regulates the degradation of many proteins, including Nrf2 and IκB kinase β (IKKβ). Here, we found that stable knockdown of Keap1 (Keap1-KD) in RAW 264.7 (RAW) mouse macrophages and human monocyte THP-1 cells significantly increased expression of Il6, and Nrf2-target genes, under basal and lipopolysaccharide (LPS, 0.001–0.1 μg/ml)-challenged conditions. However, Nrf2 activation alone, by tert-butylhydroquinone treatment of RAW cells, did not increase expression of Il6. Compared to cells transduced with scrambled non-target negative control shRNA, Keap1-KD RAW cells showed enhanced protein levels of IKKβ and increased expression and phosphorylation of NF-κB p65 under non-stressed and LPS-treated conditions. Because the expression of Il6 in Keap1-KD RAW cells was significantly attenuated by silencing of Ikkβ, but not Nrf2, it appears that stabilized IKKβ is responsible for the enhanced transactivation of Il6 in Keap1-KD cells. This study demonstrated that silencing of Keap1 in macrophages boosts LPS-induced transcription of Il6 via NF-κB activation. Given the importance of IL6 in the inflammatory response, the Keap1–IKKβ–NF-κB pathway may be a novel target for treatment and prevention of inflammation and associated disorders. - Highlights: • Knockdown of Keap1 increases expression of Il6 in macrophages. • Silencing of Keap1 results in protein accumulation of IKKβ and NF-κB p65. • Induction of Il6 resulting from Keap1 silencing is attributed to NF-κB activation.

  10. Enhancement of CYP3A4 Activity in Hep G2 Cells by Lentiviral Transfection of Hepatocyte Nuclear Factor-1 Alpha

    PubMed Central

    Chiang, Tsai-Shin; Yang, Kai-Chiang; Chiou, Ling-Ling; Huang, Guan-Tarn; Lee, Hsuan-Shu

    2014-01-01

    Human hepatoma cell lines are commonly used as alternatives to primary hepatocytes for the study of drug metabolism in vitro. However, the phase I cytochrome P450 (CYP) enzyme activities in these cell lines occur at a much lower level than their corresponding activities in primary hepatocytes, and thus these cell lines may not accurately predict drug metabolism. In the present study, we selected hepatocyte nuclear factor-1 alpha (HNF1α) from six transcriptional regulators for lentiviral transfection into Hep G2 cells to optimally increase their expression of the CYP3A4 enzyme, which is the major CYP enzyme in the human body. We subsequently found that HNF1α-transfected Hep G2 enhanced the CYP3A4 expression in a time- and dose-dependent manner and the activity was noted to increase with time and peaked 7 days. With a multiplicity of infection (MOI) of 100, CYP3A4 expression increased 19-fold and enzyme activity more than doubled at day 7. With higher MOI (1,000 to 3,000), the activity increased 8- to 10-fold; however, it was noted the higher MOI, the higher cell death rate and lower cell survival. Furthermore, the CYP3A4 activity in the HNF1α-transfected cells could be induced by CYP3A4-specific inducer, rifampicin, and metabolized nifedipine in a dose-dependent manner. With an MOI of 3,000, nifedipine-metabolizing activity was 6-fold of control and as high as 66% of primary hepatocytes. In conclusion, forceful delivery of selected transcriptional regulators into human hepatoma cells might be a valuable method to enhance the CYP activity for a more accurate determination of drug metabolism in vitro. PMID:24733486

  11. Artemisia asiatica Nakai Attenuates the Expression of Proinflammatory Mediators in Stimulated Macrophages Through Modulation of Nuclear Factor-κB and Mitogen-Activated Protein Kinase Pathways

    PubMed Central

    Kim, Eun-Kyung; Tang, Yujiao; Cha, Kwang-Suk; Choi, Heeri; Lee, Chun Bok; Yoon, Jin-Hwan; Kim, Sang Bae; Kim, Jong-Shik; Kim, Jong Moon; Han, Weon Cheol; Choi, Suck-Jun; Lee, Sangmin; Choi, Eun-Ju; Kim, Sang-Hyun

    2015-01-01

    Abstract The present study aimed to examine the anti-inflammatory effects and potential mechanism of action of Artemisia asiatica Nakai (A. asiatica Nakai) extract in activated murine macrophages. A. asiatica Nakai extract showed dose-dependent suppression of lipopolysaccharide (LPS)-induced nitric oxide, inducible nitric oxide synthase, and cyclooxygenase-2 activity. It also showed dose-dependent inhibition of nuclear factor-κB (NF-κB) translocation from the cytosol to the nucleus and as an inhibitor of NF-κB-alpha phosphorylation. The extract's inhibitory effects were found to be mediated through NF-κB inhibition and phosphorylation of extracellular signal-regulated kinase 1/2 and p38 in LPS-stimulated J774A.1 murine macrophages, suggesting a potential mechanism for the anti-inflammatory activity of A. asiatica Nakai. To our knowledge, this is the first report of the anti-inflammatory effects of A. asiatica Nakai on J774A.1 murine macrophages; these results may help develop functional foods possessing an anti-inflammatory activity. PMID:26061361

  12. Artemisia asiatica Nakai Attenuates the Expression of Proinflammatory Mediators in Stimulated Macrophages Through Modulation of Nuclear Factor-κB and Mitogen-Activated Protein Kinase Pathways.

    PubMed

    Kim, Eun-Kyung; Tang, Yujiao; Cha, Kwang-Suk; Choi, Heeri; Lee, Chun Bok; Yoon, Jin-Hwan; Kim, Sang Bae; Kim, Jong-Shik; Kim, Jong Moon; Han, Weon Cheol; Choi, Suck-Jun; Lee, Sangmin; Choi, Eun-Ju; Kim, Sang-Hyun

    2015-08-01

    The present study aimed to examine the anti-inflammatory effects and potential mechanism of action of Artemisia asiatica Nakai (A. asiatica Nakai) extract in activated murine macrophages. A. asiatica Nakai extract showed dose-dependent suppression of lipopolysaccharide (LPS)-induced nitric oxide, inducible nitric oxide synthase, and cyclooxygenase-2 activity. It also showed dose-dependent inhibition of nuclear factor-κB (NF-κB) translocation from the cytosol to the nucleus and as an inhibitor of NF-κB-alpha phosphorylation. The extract's inhibitory effects were found to be mediated through NF-κB inhibition and phosphorylation of extracellular signal-regulated kinase 1/2 and p38 in LPS-stimulated J774A.1 murine macrophages, suggesting a potential mechanism for the anti-inflammatory activity of A. asiatica Nakai. To our knowledge, this is the first report of the anti-inflammatory effects of A. asiatica Nakai on J774A.1 murine macrophages; these results may help develop functional foods possessing an anti-inflammatory activity. PMID:26061361

  13. Nuclear factor of activated T cells (NFATc4) is required for BDNF-dependent survival of adult-born neurons and spatial memory formation in the hippocampus.

    PubMed

    Quadrato, Giorgia; Benevento, Marco; Alber, Stefanie; Jacob, Carolin; Floriddia, Elisa M; Nguyen, Tuan; Elnaggar, Mohamed Y; Pedroarena, Christine M; Molkentin, Jeffrey D; Di Giovanni, Simone

    2012-06-01

    New neurons generated in the adult dentate gyrus are constantly integrated into the hippocampal circuitry and activated during encoding and recall of new memories. Despite identification of extracellular signals that regulate survival and integration of adult-born neurons such as neurotrophins and neurotransmitters, the nature of the intracellular modulators required to transduce those signals remains elusive. Here, we provide evidence of the expression and transcriptional activity of nuclear factor of activated T cell c4 (NFATc4) in hippocampal progenitor cells. We show that NFATc4 calcineurin-dependent activity is required selectively for survival of adult-born neurons in response to BDNF signaling. Indeed, cyclosporin A injection and stereotaxic delivery of the BDNF scavenger TrkB-Fc in the mouse dentate gyrus reduce the survival of hippocampal adult-born neurons in wild-type but not in NFATc4(-/-) mice and do not affect the net rate of neural precursor proliferation and their fate commitment. Furthermore, associated with the reduced survival of adult-born neurons, the absence of NFATc4 leads to selective defects in LTP and in the encoding of hippocampal-dependent spatial memories. Thus, our data demonstrate that NFATc4 is essential in the regulation of adult hippocampal neurogenesis and identify NFATc4 as a central player of BDNF-driven prosurvival signaling in hippocampal adult-born neurons. PMID:22586092

  14. Electrophilic nitro-fatty acids prevent astrocyte-mediated toxicity to motor neurons in a cell model of familial amyotrophic lateral sclerosis via nuclear factor erythroid 2-related factor activation.

    PubMed

    Diaz-Amarilla, Pablo; Miquel, Ernesto; Trostchansky, Andrés; Trias, Emiliano; Ferreira, Ana M; Freeman, Bruce A; Cassina, Patricia; Barbeito, Luis; Vargas, Marcelo R; Rubbo, Homero

    2016-06-01

    Nitro-fatty acids (NO2-FA) are electrophilic signaling mediators formed in tissues during inflammation, which are able to induce pleiotropic cytoprotective and antioxidant pathways including up regulation of Nuclear factor erythroid 2-related factor 2 (Nrf2) responsive genes. Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motor neurons associated to an inflammatory process that usually aggravates the disease progression. In ALS animal models, the activation of the transcription factor Nrf2 in astrocytes confers protection to neighboring neurons. It is currently unknown whether NO2-FA can exert protective activity in ALS through Nrf2 activation. Herein we demonstrate that nitro-arachidonic acid (NO2-AA) or nitro-oleic acid (NO2-OA) administrated to astrocytes expressing the ALS-linked hSOD1(G93A) induce antioxidant phase II enzyme expression through Nrf2 activation concomitant with increasing intracellular glutathione levels. Furthermore, treatment of hSOD1(G93A)-expressing astrocytes with NO2-FA prevented their toxicity to motor neurons. Transfection of siRNA targeted to Nrf2 mRNA supported the involvement of Nrf2 activation in NO2-FA-mediated protective effects. Our results show for the first time that NO2-FA induce a potent Nrf2-dependent antioxidant response in astrocytes capable of preventing motor neurons death in a culture model of ALS. PMID:27012417

  15. Heterogeneous nuclear ribonucleoprotein K and nucleolin as transcriptional activators of the vascular endothelial growth factor promoter through interaction with secondary DNA structures

    PubMed Central

    Uribe, Diana J.; Guo, Kexiao; Shin, Yoon-Joo; Sun, Daekyu

    2011-01-01

    The human vascular endothelial growth factor (VEGF) promoter contains a polypurine/polypyrimidine (pPu/pPy) tract that is known to play a critical role in its transcriptional regulation. This pPu/pPy tract undergoes a conformational transition between B-DNA, single stranded DNA and atypical secondary DNA structures such as G-quadruplexes and i-motifs. We studied the interaction of the cytosine-rich (C-rich) and guanine-rich (G-rich) strands of this tract with transcription factors heterogeneous nuclear ribonucleoprotein (hnRNP) K and nucleolin, respectively, both in vitro and in vivo and their potential role in the transcriptional control of VEGF. Using chromatin immunoprecipitation (ChIP) assay for our in vivo studies and electrophoretic mobility shift assay (EMSA) for our in vitro studies, we demonstrated that both nucleolin and hnRNP K bind selectively to the G- and C-rich sequences, respectively, in the pPu/pPy tract of the VEGF promoter. The small interfering RNA (siRNA)-mediated silencing of either nucleolin or hnRNP K resulted in the down-regulation of basal VEGF gene, suggesting that they act as activators of VEGF transcription. Taken together, the identification of transcription factors that can recognize and bind to atypical DNA structures within the pPu/pPy tract will provide new insight into mechanisms of transcriptional regulation of the VEGF gene. PMID:21466159

  16. Hydrogen inhalation reduced epithelial apoptosis in ventilator-induced lung injury via a mechanism involving nuclear factor-kappa B activation

    SciTech Connect

    Huang, Chien-Sheng; Kawamura, Tomohiro; Peng, Ximei; Tochigi, Naobumi; Shigemura, Norihisa; Billiar, Timothy R.; Nakao, Atsunori; Toyoda, Yoshiya

    2011-05-06

    Highlights: {yields} Hydrogen is a regulatory molecule with antiinflammatory and antiapoptotic protective effects. {yields} There is very limited information on the pathways regulated in vivo by the hydrogen. {yields} Antiapoptotic abilities of hydrogen were explained by upregulation of the antiapoptotic gene. {yields} NF{kappa}B activation during hydrogen treatment was correlated with elevated antiapoptotic protein. {yields} NF{kappa}B activation associated with increase Bcl-2 may contribute to cytoprotection of hydrogen. -- Abstract: We recently demonstrated the inhalation of hydrogen gas, a novel medical therapeutic gas, ameliorates ventilator-induced lung injury (VILI); however, the molecular mechanisms by which hydrogen ameliorates VILI remain unclear. Therefore, we investigated whether inhaled hydrogen gas modulates the nuclear factor-kappa B (NF{kappa}B) signaling pathway. VILI was generated in male C57BL6 mice by performing a tracheostomy and placing the mice on a mechanical ventilator (tidal volume of 30 ml/kg or 10 ml/kg without positive end-expiratory pressure). The ventilator delivered either 2% nitrogen or 2% hydrogen in balanced air. NF{kappa}B activation, as indicated by NF{kappa}B DNA binding, was detected by electrophoretic mobility shift assays and enzyme-linked immunosorbent assay. Hydrogen gas inhalation increased NF{kappa}B DNA binding after 1 h of ventilation and decreased NF{kappa}B DNA binding after 2 h of ventilation, as compared with controls. The early activation of NF{kappa}B during hydrogen treatment was correlated with elevated levels of the antiapoptotic protein Bcl-2 and decreased levels of Bax. Hydrogen inhalation increased oxygen tension, decreased lung edema, and decreased the expression of proinflammatory mediators. Chemical inhibition of early NF{kappa}B activation using SN50 reversed these protective effects. NF{kappa}B activation and an associated increase in the expression of Bcl-2 may contribute, in part, to the

  17. Fat-specific protein 27 modulates nuclear factor of activated T cells 5 and the cellular response to stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fat-specific protein 27 (FSP27), a member of the cell death-inducing DNA fragmentation factor a-like effector (Cide) family, is highly expressed in adipose tissues and is a lipid droplet (LD)-associated protein that induces the accumulation of LDs. Using a yeast two-hybrid system to examine potentia...

  18. Tetramethylpyrazine inhibits agiontensin II-induced nuclear factor-kappaB activation and bone morphogenetic protein-2 downregulation in rat vascular smooth muscle cells.

    PubMed

    Ren, Xin-Yu; Ruan, Qiu-Rong; Zhu, Da-He; Zhu, Min; Qu, Zhi-Ling; Lu, Jun

    2007-06-25

    Tetramethylpyrazine (TMP), an effective component of traditional Chinese medicine Chuanxiong, is commonly used to resolve embolism. Its possible therapeutic effect against atherosclerosis has received considerable attention recently. Angiotensin II (Ang II) is highly implicated in the proliferation of vascular smooth muscle cells (VSMCs), resulting in atherosclerosis. The mechanisms of TMP in the proliferation of VSMCs induced by Ang II remain to be defined. The present study was aimed to study the effect of TMP on Ang II-induced VSMC proliferation through detection of nuclear factor-kappaB (NF-kappaB) activity and bone morphogenetic protein-2 (BMP-2) expression. Primary cultured rat aortic smooth muscle cells were divided into the control group, Ang II group, Ang II + TMP group and TMP group. Cells in each group were harvested at different time points (15, 30 and 60 min for detection of NF-kappaB activity; 6, 12 and 24 h for measurement of BMP-2 expression). NF-kappaB activation was identified as nuclear staining by immunohistochemistry. BMP-2 expression was observed through Western blot, immunohistochemistry and in situ hybridization. The results showed that: (1) Ang II stimulated the activation of NF-kappaB. Translocation of NF-kappaB p65 subunit from cytoplasm to nucleus appeared as early as 15 min, peaked at 30 min (P<0.01) and declined after 1 h. (2) TMP inhibited Ang II-induced NF-kappaB activation (P<0.01). (3) Ang II increased BMP-2 expression at 6 h but declined it significantly at 12 and 24 h (P<0.01). (4) BMP-2 expression was also kept at high level at 6 h in Ang II + TMP group but maintained at the normal level at 12 and 24 h. (5) There was no significant difference in NF-kappaB activation and BMP-2 expression between the control group and TMP group. These results indicate that TMP inhibits Ang II-induced VSMC proliferation through repression of NF-kappaB activation and BMP-2 reduction, and BMP-2 expression is independent of the NF-kappaB pathway. In

  19. Icariside II protects against cerebral ischemia-reperfusion injury in rats via nuclear factor-κB inhibition and peroxisome proliferator-activated receptor up-regulation.

    PubMed

    Deng, Yuanyuan; Xiong, Deqing; Yin, Caixia; Liu, Bo; Shi, Jingshan; Gong, Qihai

    2016-06-01

    Icariside II (IRS) is a metabolite of icariin, which is derived from Herba Epimedii. Although the potential therapeutic effects of icariin on ischemic brain injury were well-investigated; the role of IRS in ischemic stroke is still not addressed clearly. Therefore, the current study aimed to evaluate the effects of IRS on cerebral ischemia-reperfusion injury in rats. The rats were pre-treated by IRS (10 or 30 mg kg(-1), twice a day) for 3 days. After pre-treatment, a MCAO (middle cerebral artery occlusion) for 2 h followed by reperfusion for 24 h was applied on the rats to induce the cerebral ischemia injury model. The neurological deficit scores were assessed at 24 h after reperfusion, then animals were sacrificed, infarct volumes were determined by 2,3,5-triphenyltetrazolium chlorid (TTC) staining and protein expression levels of interleukin-1β (IL-1β), transforming growth factor-β1 (TGF-β1), inhibitory κB (IκB), nuclear factor κB (NF-κB) p65, peroxisome proliferator-activated receptor α (PPARα), and peroxisome proliferator-activated receptor γ (PPARγ) were assayed by using Western blot. IRS pretreatment markedly improved the neurological dysfunction and decreased infarct volume in MCAO rats. In addition, IRS inhibited IL-1β and TGF-β1 protein expression, and resulted in beneficial effects such as inhibition of IκB-α degradation and NF-κB activation induced by MCAO, in a dose-dependent manner. Furthermore, IRS increased the protein expression levels of PPARα and PPARγ in the ischemic brain. In conclusion, pretreatment with IRS protects against cerebral ischemic/reperfusion injury via up-regulation of PPARα and PPARγ and inhibition of NF-κB activation. PMID:26939761

  20. Decreased systemic IGF-1 in response to calorie restriction modulates murine tumor cell growth, nuclear factor-κB activation, and inflammation-related gene expression.

    PubMed

    Harvey, Alison E; Lashinger, Laura M; Otto, Glen; Nunez, Nomeli P; Hursting, Stephen D

    2013-12-01

    Calorie restriction (CR) prevents obesity and has potent anticancer effects associated with altered hormones and cytokines. We tested the hypothesis that CR inhibits MC38 mouse colon tumor cell growth through modulation of hormone-stimulated nuclear factor (NF)-κB activation and protumorigenic gene expression. Female C57BL/6 mice were randomized (n = 30/group) to receive control diet or 30% CR diet. At 20 wk, 15 mice/group were killed for body composition analysis. At 21 wk, serum was obtained for hormone analysis. At 22 wk, mice were injected with MC38 cells; tumor growth was monitored for 24 d. Gene expression in excised tumors and MC38 cells was analyzed using real-time RT-PCR. In vitro MC38 NF-κB activation (by p65 ELISA and immunofluorescence) were measured in response to varying IGF-1 concentrations (1-400 ng/mL). Relative to controls, CR mice had decreased tumor volume, body weight, body fat, serum IGF-1, serum leptin, and serum insulin, and increased serum adiponectin (P < 0.05, each). Tumors from CR mice, versus controls, had downregulated inflammation- and/or cancer-related gene expression, including interleukin (IL)-6, IL-1β, tumor necrosis factor-α, cyclooxygenase-2, chemokine (C-C motif) ligand-2, S100A9, and F4/80, and upregulated 15-hydroxyprostaglandin dehydrogenase expression. In MC38 cells in vitro, IGF-1 increased NF-κB activation and NF-κB downstream gene expression (P < 0.05, each). We conclude that CR, in association with reduced systemic IGF-1, modulates MC38 tumor growth, NF-κB activation, and inflammation-related gene expression. Thus, IGF-1 and/or NF-κB inhibition may pharmacologically mimic the anticancer effects of CR to break the obesity-colon cancer link. PMID:22778026

  1. Short-Term Heat Exposure Inhibits Inflammation by Abrogating Recruitment of and Nuclear Factor-κB Activation in Neutrophils Exposed to Chemotactic Cytokines

    PubMed Central

    Choi, Mira; Salanova, Birgit; Rolle, Susanne; Wellner, Maren; Schneider, Wolfgang; Luft, Friedrich C.; Kettritz, Ralph

    2008-01-01

    Cytokines, such as granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-8 attract neutrophils into inflammatory sites. During emigration from the blood neutrophils interact with extracellular matrix proteins such as fibronectin. Fibronectin provides β2-integrin co-stimulation, allowing GM-CSF and IL-8 to activate nuclear factor (NF)-κB, an effect that does not occur in suspension. We tested the hypothesis that exposure of mice to fever-like temperatures abrogates neutrophil recruitment and NF-κB activation in a mouse model of skin inflammation. Mice that were exposed to 40°C for 1 hour showed strongly reduced GM-CSF- and IL-8-induced neutrophilic skin inflammation. In vitro heat exposure did not interfere with neutrophil adhesion or spreading on fibronectin but strongly inhibited migration toward both cytokines. Using specific inhibitors, we found that PI3-K/Akt was pivotal for neutrophil migration and that heat down-regulated this pathway. Furthermore, neutrophils on fibronectin showed abrogated NF-κB activation in response to GM-CSF and IL-8 after heat. In vivo heat exposure of mice followed by ex vivo stimulation of isolated bone marrow neutrophils confirmed these results. Finally, less NF-κB activation was seen in the inflammatory lesions of mice exposed to fever-like temperatures as demonstrated by in situ hybridization for IκBα mRNA. These new findings suggest that heat may have anti-inflammatory effects in neutrophil-dependent inflammation. PMID:18187571

  2. Factors regulating microglia activation

    PubMed Central

    Kierdorf, Katrin; Prinz, Marco

    2013-01-01

    Microglia are resident macrophages of the central nervous system (CNS) that display high functional similarities to other tissue macrophages. However, it is especially important to create and maintain an intact tissue homeostasis to support the neuronal cells, which are very sensitive even to minor changes in their environment. The transition from the “resting” but surveying microglial phenotype to an activated stage is tightly regulated by several intrinsic (e.g., Runx-1, Irf8, and Pu.1) and extrinsic factors (e.g., CD200, CX3CR1, and TREM2). Under physiological conditions, minor changes of those factors are sufficient to cause fatal dysregulation of microglial cell homeostasis and result in severe CNS pathologies. In this review, we discuss recent achievements that gave new insights into mechanisms that ensure microglia quiescence. PMID:23630462

  3. Using Nuclear Receptor Activity to Stratify Hepatocarcinogens

    EPA Science Inventory

    Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic an...

  4. Teaching Activities on Horizontal Nuclear Proliferation.

    ERIC Educational Resources Information Center

    Zola, John

    1990-01-01

    Provides learning activities concerning the horizontal proliferation of nuclear weapons. Includes step-by-step directions for four activities: (1) the life cycle of nuclear weapons; (2) nuclear nonproliferation: pros and cons; (3) the nuclear power/nuclear weapons connection; and (4) managing nuclear proliferation. (NL)

  5. Activation of nuclear factor-kappa B by linear ubiquitin chain assembly complex contributes to lung metastasis of osteosarcoma cells.

    PubMed

    Tomonaga, Masato; Hashimoto, Nobuyuki; Tokunaga, Fuminori; Onishi, Megumi; Myoui, Akira; Yoshikawa, Hideki; Iwai, Kazuhiro

    2012-02-01

    NF-κB is involved in the metastasis of malignant cells. We have shown that NF-κB activation is involved in the pulmonary metastasis of LM8 cells, a highly metastatic subclone of Dunn murine osteosarcoma cells. Recently, it was determined that a newly identified type of polyubiquitin chain, a linear polyubiquitin chain, which is specifically generated by the linear ubiquitin chain assembly complex (LUBAC), plays a critical role in NF-κB activation. Here, we have evaluated the roles of LUBAC-mediated NF-κB activation in the development of lung metastasis of osteosarcoma cells. All three components of LUBAC (HOIL-1L, HOIP and SHARPIN) were highly expressed in LM8 cells compared to Dunn cells. Attenuation of LUBAC expression by stable knockdown of HOIL-1L in LM8 cells significantly suppressed NF-κB activity, invasiveness in vitro and lung metastasis. Induction of intracellular adhesion molecule-1 (ICAM-1) expression by LUBAC is involved in cell retention in the lungs after an intravenous inoculation of tumor cells. Moreover, we found that knockdown of LUBAC decreased not only the number but also the size of the metastatic nodules of LM8 cells in the lungs. These results indicate that LUBAC-mediated NF-κB activation plays crucial roles in several steps involved in metastasis, including extravasation and growth of osteosarcoma cells in the lung, and that suppression of LUBAC-mediated linear polyubiquitination activity may be a new approach to treat this life-threatening disease of young adolescents. PMID:21947385

  6. Chronic Ethanol Feeding Modulates Inflammatory Mediators, Activation of Nuclear Factor-κB, and Responsiveness to Endotoxin in Murine Kupffer Cells and Circulating Leukocytes

    PubMed Central

    Oppermann, Elsie; Jobin, Christian; Schleucher, Elke; Marzi, Ingo

    2014-01-01

    Chronic ethanol abuse is known to increase susceptibility to infections after injury, in part, by modification of macrophage function. Several intracellular signalling mechanisms are involved in the initiation of inflammatory responses, including the nuclear factor-κB (NF-κB) pathway. In this study, we investigated the systemic and hepatic effect of chronic ethanol feeding on in vivo activation of NF-κB in NF-κBEGFP reporter gene mice. Specifically, the study focused on Kupffer cell proinflammatory cytokines IL-6 and TNF-α and activation of NF-κB after chronic ethanol feeding followed by in vitro stimulation with lipopolysaccharide (LPS). We found that chronic ethanol upregulated NF-κB activation and increased hepatic and systemic proinflammatory cytokine levels. Similarly, LPS-stimulated IL-1β release from whole blood was significantly enhanced in ethanol-fed mice. However, LPS significantly increased IL-6 and TNF-α levels. These results demonstrate that chronic ethanol feeding can improve the responsiveness of macrophage LPS-stimulated IL-6 and TNF-α production and indicate that this effect may result from ethanol-induced alterations in intracellular signalling through NF-κB. Furthermore, LPS and TNF-α stimulated the gene expression of different inflammatory mediators, in part, in a NF-κB-dependent manner. PMID:24623963

  7. Isoliquiritigenin Inhibits Metastatic Breast Cancer Cell-induced Receptor Activator of Nuclear Factor Kappa-B Ligand/Osteoprotegerin Ratio in Human Osteoblastic Cells.

    PubMed

    Lee, Sun Kyoung; Park, Kwang-Kyun; Kim, Ki Rim; Kim, Hyun-Jeong; Chung, Won-Yoon

    2015-12-01

    Bone destruction induced by the metastasis of breast cancer cells is a frequent complication that is caused by the interaction between cancer cells and bone cells. Receptor activator of nuclear factor kappa-B ligand (RANKL) and the endogenous soluble RANKL inhibitor, osteoprotegerin (OPG), directly play critical roles in the differentiation, activity, and survival of osteoclasts. In patients with bone metastases, osteoclastic bone resorption promotes the majority of skeletal-related events and propagates bone metastases. Therefore, blocking osteoclast activity and differentiation via RANKL inhibition can be a promising therapeutic approach for cancer-associated bone diseases. We investigated the potential of isoliquiritigenin (ISL), which has anti-proliferative, anti-angiogenic, and anti-invasive effects, as a preventive and therapeutic agent for breast cancer cell-induced bone destruction. ISL at non-toxicity concentrations significantly inhibited the RANKL/OPG ratio by reducing the production of RANKL and restoring OPG production to control levels in hFOB1.19 cells stimulated with conditioned medium (CM) of MDA-MB-231 cells. In addition, ISL reduced the expression of cyclooxygenase-2 in hFOB1.19 cells stimulated by CM of MDA-MB-231 cells. Therefore, ISL may have inhibitory potential on breast cancer-induced bone destruction. PMID:26734591

  8. Inflexinol inhibits colon cancer cell growth through inhibition of nuclear factor-kappaB activity via direct interaction with p50.

    PubMed

    Ban, Jung Ok; Oh, Ju Hoon; Hwang, Bang Yeon; Moon, Dong Cheul; Jeong, Heon-Sang; Lee, Seram; Kim, Soyoun; Lee, Hyosung; Kim, Kyung-Bo; Han, Sang Bae; Hong, Jin Tae

    2009-06-01

    Kaurane diterpene compounds have been known to be cytotoxic against several cancer cells through inhibition of nuclear factor-kappaB (NF-kappaB) activity. Here, we showed that inflexinol, a novel kaurane diterpene compound, inhibited the activity of NF-kappaB and its target gene expression as well as cancer cell growth through induction of apoptotic cell death in vitro and in vivo. These inhibitory effects on NF-kappaB activity and on cancer cell growth were suppressed by the reducing agents DTT and glutathione and were abrogated in the cells transfected with mutant p50 (C62S). Sol-gel biochip and surface plasmon resonance analysis showed that inflexinol binds to the p50 subunit of NF-kappaB. These results suggest that inflexinol inhibits colon cancer cell growth via induction of apoptotic cell death through inactivation of NF-kappaB by a direct modification of cysteine residue in the p50 subunit of NF-kappaB. PMID:19509257

  9. Isoliquiritigenin Inhibits Metastatic Breast Cancer Cell-induced Receptor Activator of Nuclear Factor Kappa-B Ligand/Osteoprotegerin Ratio in Human Osteoblastic Cells

    PubMed Central

    Lee, Sun Kyoung; Park, Kwang-Kyun; Kim, Ki Rim; Kim, Hyun-Jeong; Chung, Won-Yoon

    2015-01-01

    Bone destruction induced by the metastasis of breast cancer cells is a frequent complication that is caused by the interaction between cancer cells and bone cells. Receptor activator of nuclear factor kappa-B ligand (RANKL) and the endogenous soluble RANKL inhibitor, osteoprotegerin (OPG), directly play critical roles in the differentiation, activity, and survival of osteoclasts. In patients with bone metastases, osteoclastic bone resorption promotes the majority of skeletal-related events and propagates bone metastases. Therefore, blocking osteoclast activity and differentiation via RANKL inhibition can be a promising therapeutic approach for cancer-associated bone diseases. We investigated the potential of isoliquiritigenin (ISL), which has anti-proliferative, anti-angiogenic, and anti-invasive effects, as a preventive and therapeutic agent for breast cancer cell-induced bone destruction. ISL at non-toxicity concentrations significantly inhibited the RANKL/OPG ratio by reducing the production of RANKL and restoring OPG production to control levels in hFOB1.19 cells stimulated with conditioned medium (CM) of MDA-MB-231 cells. In addition, ISL reduced the expression of cyclooxygenase-2 in hFOB1.19 cells stimulated by CM of MDA-MB-231 cells. Therefore, ISL may have inhibitory potential on breast cancer-induced bone destruction. PMID:26734591

  10. Chronic ethanol feeding modulates inflammatory mediators, activation of nuclear factor-κB, and responsiveness to endotoxin in murine Kupffer cells and circulating leukocytes.

    PubMed

    Maraslioglu, Miriam; Oppermann, Elsie; Blattner, Carolin; Weber, Roxane; Henrich, Dirk; Jobin, Christian; Schleucher, Elke; Marzi, Ingo; Lehnert, Mark

    2014-01-01

    Chronic ethanol abuse is known to increase susceptibility to infections after injury, in part, by modification of macrophage function. Several intracellular signalling mechanisms are involved in the initiation of inflammatory responses, including the nuclear factor-κB (NF-κB) pathway. In this study, we investigated the systemic and hepatic effect of chronic ethanol feeding on in vivo activation of NF-κB in NF-κB(EGFP) reporter gene mice. Specifically, the study focused on Kupffer cell proinflammatory cytokines IL-6 and TNF-α and activation of NF-κB after chronic ethanol feeding followed by in vitro stimulation with lipopolysaccharide (LPS). We found that chronic ethanol upregulated NF-κB activation and increased hepatic and systemic proinflammatory cytokine levels. Similarly, LPS-stimulated IL-1 β release from whole blood was significantly enhanced in ethanol-fed mice. However, LPS significantly increased IL-6 and TNF-α levels. These results demonstrate that chronic ethanol feeding can improve the responsiveness of macrophage LPS-stimulated IL-6 and TNF-α production and indicate that this effect may result from ethanol-induced alterations in intracellular signalling through NF-κB. Furthermore, LPS and TNF-α stimulated the gene expression of different inflammatory mediators, in part, in a NF-κB-dependent manner. PMID:24623963

  11. Simvastatin Reduces Lipopolysaccharides-Accelerated Cerebral Ischemic Injury via Inhibition of Nuclear Factor-kappa B Activity.

    PubMed

    Anthony Jalin, Angela M A; Lee, Jae-Chul; Cho, Geum-Sil; Kim, Chunsook; Ju, Chung; Pahk, Kisoo; Song, Hwa Young; Kim, Won-Ki

    2015-11-01

    Preceding infection or inflammation such as bacterial meningitis has been associated with poor outcomes after stroke. Previously, we reported that intracorpus callosum microinjection of lipopolysaccharides (LPS) strongly accelerated the ischemia/reperfusion-evoked brain tissue damage via recruiting inflammatory cells into the ischemic lesion. Simvastatin, 3-hydroxy-3-methylgultaryl (HMG)-CoA reductase inhibitor, has been shown to reduce inflammatory responses in vascular diseases. Thus, we investigated whether simvastatin could reduce the LPS-accelerated ischemic injury. Simvastatin (20 mg/kg) was orally administered to rats prior to cerebral ischemic insults (4 times at 72, 48, 25, and 1-h pre-ischemia). LPS was microinjected into rat corpus callosum 1 day before the ischemic injury. Treatment of simvastatin reduced the LPS-accelerated infarct size by 73%, and decreased the ischemia/reperfusion-induced expressions of pro-inflammatory mediators such as iNOS, COX-2 and IL-1β in LPS-injected rat brains. However, simvastatin did not reduce the infiltration of microglial/macrophageal cells into the LPS-pretreated brain lesion. In vitro migration assay also showed that simvastatin did not inhibit the monocyte chemoattractant protein-1-evoked migration of microglial/macrophageal cells. Instead, simvastatin inhibited the nuclear translocation of NF-κB, a key signaling event in expressions of various proinflammatory mediators, by decreasing the degradation of IκB. The present results indicate that simvastatin may be beneficial particularly to the accelerated cerebral ischemic injury under inflammatory or infectious conditions. PMID:26535078

  12. Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor kappaB.

    PubMed Central

    Yu, Zhiyuan; Zhang, Wenzheng; Kone, Bruce C

    2002-01-01

    Prolific generation of NO by inducible nitric oxide synthase (iNOS) can cause unintended injury to host cells during glomerulonephritis and other inflammatory diseases. While much is known about the mechanisms of iNOS induction, few transcriptional repressors have been found. We explored the role of signal transducers and activators of transcription 3 (STAT3) proteins in interleukin (IL)-1beta- and lipopolysaccharide (LPS)+interferon (IFN)-gamma-mediated iNOS induction in murine mesangial cells. Both stimuli induced rapid phosphorylation of STAT3 and sequence-specific STAT3 DNA-binding activity. Supershift assays with a STAT3 element probe demonstrated that nuclear factor kappaB (NF-kappaB) p65 and p50 complexed with STAT3 in the DNA-protein complex. The direct interaction of STAT3 and NF-kappaB p65 was verified in vivo by co-immunoprecipitation and in vitro by pull-down assays with glutathione S-transferase-NF-kappaB p65 fusion protein and in vitro -translated STAT3alpha. Overexpression of STAT3 dramatically inhibited IL-1beta- or LPS+IFN-gamma-mediated induction of iNOS promoter-luciferase constructs that contained the wild-type iNOS promoter or ones harbouring mutated STAT-binding elements. In tests of indirect inhibitory effects of STAT3, overexpression of STAT3 dramatically inhibited the activity of an NF-kappaB-dependent promoter devoid of STAT-binding elements without affecting NF-kappaB DNA-binding activity. Thus STAT3, via direct interactions with NF-kappaB p65, serves as a dominant-negative inhibitor of NF-kappaB activity to suppress indirectly cytokine induction of the iNOS promoter in mesangial cells. These results provide a new model for the termination of NO production by activated iNOS following exposure to pro-inflammatory stimuli. PMID:12057007

  13. Mitogen-activated protein kinases and nuclear factor-kappaB regulate Helicobacter pylori-mediated interleukin-8 release from macrophages.

    PubMed Central

    Bhattacharyya, Asima; Pathak, Shresh; Datta, Simanti; Chattopadhyay, Santanu; Basu, Joyoti; Kundu, Manikuntala

    2002-01-01

    Gastric infection, as well as inflammation, caused by Helicobacter pylori, activates the production of cytokines and chemokines by mononuclear cells; interleukin-8 (IL-8) is one of the major inflammatory chemokines. Since H. pylori does not invade mucosal tissue, we observed the effect of the water extract of H. pylori (HPE), containing shed factors, on the production of IL-8 by human peripheral blood monocytes and the human monocyte cell line THP-1. HPE-treatment induced activation of the mitogen-activated protein kinases (MAPKs) ERK (extracellular signal-regulated kinase), p38 and JNK (c-Jun N-terminal kinase), an effect which was not dependent on the presence of the cag pathogenicity island. p38 MAPK activation was sustained. The specific inhibitors, U0126 (for ERK1/2 signalling) and SB203580 (for p38 MAPK signalling), both abrogated IL-8 secretion from HPE-treated THP-1. Dominant-negative mutants of the upstream kinases MEK1 (MAPK/ERK kinase 1), MKK (MAPK kinase) 6 and MKK7 also inhibited IL-8 secretion, pointing to a role of all three MAPKs in HPE-mediated IL-8 release. The inhibitory effects of polymyxin B and anti-CD14 antibody suggested that the effect of HPE on MAPKs was mediated by H. pylori lipopolysaccharide (LPS). By analysis of IL-8-promoter-driven luciferase gene expression, we observed that the effects of HPE-induced nuclear factor-kappaB (NF-kappaB) activation and MAPK signalling were mediated at the level of the IL-8 promoter. While ERK1/2 activation could be linked to enhanced DNA binding of activator protein-1 (AP-1), p38 MAPK signalling did not affect AP-1 DNA binding. Taken together, these results provide the first evidence that LPS from H. pylori stimulates IL-8 release from cells of the monocytic lineage through activation of NF-kappaB and signalling along MAPK cascades. The stimulation of MAPK signalling in macrophages by LPS of H. pylori amplifies the inflammatory response associated with gastric H. pylori infection and needs to be taken

  14. Activated nuclear transcription factor {kappa}B in patients with myocarditis and dilated cardiomyopathy-relation to inflammation and cardiac function

    SciTech Connect

    Alter, Peter . E-mail: palter@med.uni-marburg.de; Rupp, Heinz; Maisch, Bernhard

    2006-01-06

    Objectives and background: Myocarditis is caused by various agents and autoimmune processes. It is unknown whether viral genome persistence represents inactive remnants of previous infections or whether it is attributed to ongoing adverse processes. The latter also applies to the course of autoimmune myocarditis. One principal candidate for an adverse remodeling is nuclear factor-{kappa}B (NF{kappa}B). Methods: A total of 93 patients with suspected myocarditis/cardiomyopathy was examined. Hemodynamics were assessed by echocardiography as well as right and left heart catheterization. Endomyocardial biopsies were taken from the left ventricle. Biopsies were examined by immunohistochemistry and PCR for viral genomes. Selective immunostaining of activated NF{kappa}B was performed. Results: NF{kappa}B was increased in patients with myocarditis when compared with controls (11.1 {+-} 7.1% vs. 5.0 {+-} 5.3%, P < 0.005) whereas dilated cardiomyopathy showed no significant increase. Patients with myocarditis and preserved left ventricular function exhibited increased activated NF{kappa}B when compared with reduced function (r {sup 2} = 0.72, P < 0.001). In parallel, inverse correlation of NF{kappa}B and left ventricular enddiasstolic volume was found (r {sup 2} = 0.43, P < 0.02). Increased activated NF{kappa}B was found in adenovirus persistence when compared with controls (P = 0.001). Only a trend of increased NF{kappa}B activation was seen in cytomegalovirus persistence. Parvovirus B19 persistence did not affect NF{kappa}B activation. Conclusions: Increased activation of NF{kappa}B is related to inflammatory processes in myocarditis. Since activated NF{kappa}B correlates with left ventricular function, it could be assumed that NF{kappa}B activation occurs at early stages of inflammation. Potentially, NF{kappa}B could inhibit loss of cardiomyocytes by apoptosis and protect from cardiac dilation. Since NF{kappa}B is a crucial key transcription factor of inflammation, its

  15. Differential activation of nuclear transcription factor kappaB, gene expression, and proteins by amifostine's free thiol in human microvascular endothelial and glioma cells.

    PubMed

    Grdina, David J; Murley, Jeffrey S; Kataoka, Yasushi; Calvin, Douglas P

    2002-01-01

    The effects of WR1065 (SH), the free thiol form of amifostine, on nuclear transcription factor kappaB (NFkappaB) activation, manganese superoxide dismutase (MnSOD) gene expression, and secretion of human vascular endothelial cell growth factor (hVEGF), basic fibroblast growth factor (bFGF), tumor necrosis factor-alpha (TNF-alpha), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), E-selectin, P-selectin, and interleukins IL-1alpha, IL-6, and IL-8 were investigated and compared in human microvascular endothelial (HMEC) and human glioma cells. WR1065 was evaluated at 2 concentrations, 4 mmol/L, ie, its most effective cytoprotective dose, and 40 micromol/L, a noncytoprotective but highly effective dose capable of preventing radiation and chemotherapeutic drug-induced mutations in exposed cells. A 30-minute exposure of HMEC and glioma cell lines U87 and U251 to WR1065 at either of the concentrations resulted in a marked activation of NFkappaB as determined by a gel shift assay, with the maximum effect observed between 30 minutes and 1 hour after treatment. Using a supershift assay, WR1065 exposure was observed to affect only the p50-p65 heterodimer, and not the homodimers or heterodimers containing p52 or c-Rel subunits of NFkappaB. WR1065 was also found to enhance MnSOD gene expression in both HMEC and glioma cells. Gene expression was enhanced 1.8-fold over control levels in HMEC over a period ranging from 12 to 24 hours after the time of maximum activation of NFkappaB. In contrast, MnSOD gene expression in U87 cells rose 3.5 times above control levels over this same period. WR1065 had no effect on the levels of adhesion molecules, cytokines, and growth factors secreted by cells exposed for up to 24 hours as measured by enzyme-linked immunosorbent assay. PMID:11917294

  16. Release of Positive Transcription Elongation Factor b (P-TEFb) from 7SK Small Nuclear Ribonucleoprotein (snRNP) Activates Hexamethylene Bisacetamide-inducible Protein (HEXIM1) Transcription*

    PubMed Central

    Liu, Pingyang; Xiang, Yanhui; Fujinaga, Koh; Bartholomeeusen, Koen; Nilson, Kyle A.; Price, David H.; Peterlin, B. Matija

    2014-01-01

    By phosphorylating negative elongation factors and the C-terminal domain of RNA polymerase II (RNAPII), positive transcription elongation factor b (P-TEFb), which is composed of CycT1 or CycT2 and CDK9, activates eukaryotic transcription elongation. In growing cells, it is found in active and inactive forms. In the former, free P-TEFb is a potent transcriptional coactivator. In the latter, it is inhibited by HEXIM1 or HEXIM2 in the 7SK small nuclear ribonucleoprotein (snRNP), which contains, additionally, 7SK snRNA, methyl phosphate-capping enzyme (MePCE), and La-related protein 7 (LARP7). This P-TEFb equilibrium determines the state of growth and proliferation of the cell. In this study, the release of P-TEFb from the 7SK snRNP led to increased synthesis of HEXIM1 but not HEXIM2 in HeLa cells, and this occurred only from an unannotated, proximal promoter. ChIP with sequencing revealed P-TEFb-sensitive poised RNA polymerase II at this proximal but not the previously annotated distal HEXIM1 promoter. Its immediate upstream sequences were fused to luciferase reporters and were found to be responsive to many P-TEFb-releasing compounds. The superelongation complex subunits AF4/FMR2 family member 4 (AFF4) and elongation factor RNA polymerase II 2 (ELL2) were recruited to this proximal promoter after P-TEFb release and were required for its transcriptional effects. Thus, P-TEFb regulates its own equilibrium in cells, most likely to maintain optimal cellular homeostasis. PMID:24515107

  17. Proteasome Inhibitor Bortezomib Suppresses Nuclear Factor-Kappa B Activation and Ameliorates Eye Inflammation in Experimental Autoimmune Uveitis

    PubMed Central

    Hsu, Sheng-Min; Yang, Chang-Hao; Shen, Fang-Hsiu; Chen, Shun-Hua; Lin, Chia-Jhen; Shieh, Chi-Chang

    2015-01-01

    Bortezomib is a proteasome inhibitor used for hematologic cancer treatment. Since it can suppress NF-κB activation, which is critical for the inflammatory process, bortezomib has been found to possess anti-inflammatory activity. In this study, we evaluated the effect of bortezomib on experimental autoimmune uveitis (EAU) in mice and investigated the potential mechanisms related to NF-κB inactivation. High-dose bortezomib (0.75 mg/kg), low-dose bortezomib (0.15 mg/kg), or phosphate buffered saline was given after EAU induction. We found that the EAU is ameliorated by high-dose bortezomib treatment when compared with low-dose bortezomib or PBS treatment. The DNA-binding activity of NF-κB was suppressed and expression of several key inflammatory mediators including TNF-α, IL-1α, IL-1β, IL-12, IL-17, and MCP-1 was lowered in the high-dose bortezomib-treated group. These results suggest that proteasome inhibition is a promising treatment strategy for autoimmune uveitis. PMID:25653480

  18. Evaluating Nuclear Factor NF-κB Activation following Bone Trauma: A Pilot Study in a Wistar Rats Model

    PubMed Central

    Salles, Marcos Barbosa; Gehrke, Sergio Alexandre; Shibli, Jamil Awad; Allegrini, Sergio; Yoshimoto, Marcelo; König, Bruno

    2015-01-01

    The present study investigated the moment of peak NF-kB activation and its dissipation in the cortical bone in the femur of Wistar rat stimulated by surgical trauma. Sixty-five Wistar rats were divided into 13 groups (n = 5 per group): eight experimental groups (expG 1–8) divided based on the euthanasia time point (zero, 1 h, 2 h, 4 h, 6 h, 8 h, 12 h and 24 h) and five sham control groups (conG 1–5) killed at zero, 1 h, 2 h, 4 h and 6 h, respectively. A 1.8-mm-diameter defect was generated 0.5 mm from the femur proximal joint using a round bur to induce the surgical trauma. Overall, the activation peak of NF-κB in the cortical bone was 6 h (expG5 group) independent of the evaluated position; this peak was significantly different compared to those in the other groups (p < 0.05). The surgical trauma resulted in a spread of immune markings throughout the cortical bone with an accentuation in the knee region. The present study provides the first evidence that the NF-κB activation peak was established after 6 hours in the cortical bone of Wistar rats. The signs from a surgical trauma can span the entire cortical bone and are not limited to the damaged region. PMID:26465330

  19. The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases.

    PubMed

    Kipanyula, Maulilio John; Kimaro, Wahabu Hamisi; Seke Etet, Paul F

    2016-01-01

    The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT) signaling pathway, a Ca(2+)/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca(2+)-ATPase (PMCA) and regulator of calcineurin 1 (RCAN1) also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects. PMID:27597899

  20. The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases

    PubMed Central

    Kimaro, Wahabu Hamisi; Etet, Paul F. Seke

    2016-01-01

    The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT) signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA) and regulator of calcineurin 1 (RCAN1) also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects. PMID:27597899

  1. Expression of nuclear factor of activated T cells (NFAT) and downstream muscle-specific proteins in ground squirrel skeletal and heart muscle during hibernation.

    PubMed

    Zhang, Yichi; Storey, Kenneth B

    2016-01-01

    The thirteen-lined ground squirrel (Ictidomys tridecemlineatus) undergoes remarkable adaptive changes during hibernation. Interestingly, skeletal muscle remodelling occurs during the torpor-arousal cycle of hibernation to prevent net muscle loss despite inactivity. Reversible cardiomyocyte hypertrophy occurs in cardiac muscle, allowing the heart to preserve cardiac output during hibernation, while avoiding chronic maladaptive hypertrophy post-hibernation. We propose that calcium signalling proteins [calcineurin (Cn), calmodulin (CaM), and calpain], the nuclear factor of activated T cell (NFAT) family of transcription factors, and the NFAT targets myoferlin and myomaker contribute significantly to adaptations taking place in skeletal and cardiac muscle during hibernation. Protein-level analyses were performed over several conditions: euthermic room temperature (ER), euthermic cold room (EC), entrance into (EN), early (ET), and late torpor (LT) time points, in addition to early (EA), interbout (IA), and late arousal (LA) time points using immunoblotting and DNA-protein interaction (DPI) enzyme-linked immunosorbent assay (ELISAs). In skeletal and cardiac muscle, NFATc2 protein levels were elevated during torpor. NFATc4 increased throughout the torpor-arousal cycle in both tissues, and NFATc1 showed this trend in cardiac muscle only. NFATc3 showed an elevation in DNA-binding activity but not expression during torpor. Myoferlin protein levels dramatically increased during torpor in both skeletal and cardiac muscle. Myomaker levels also increased significantly in cardiac muscle during torpor. Cardiac Cn levels remained stable, whereas CaM and calpain decreased throughout the torpor-arousal cycle. Activation and/or upregulation of NFATc2, c3, myoferlin, and myomaker at torpor could be part of a stress-response mechanism to preserve skeletal muscle mass, whereas CaM and calpain appear to initiate the rapid reversal of cardiac hypertrophy during arousal through

  2. Structure-based development of a receptor activator of nuclear factor-κB ligand (RANKL) inhibitor peptide and molecular basis for osteopetrosis

    PubMed Central

    Ta, Hai Minh; Nguyen, Giang Thi Tuyet; Jin, Hye Mi; Choi, Jongkeun; Park, Hyejin; Kim, Nacksung; Hwang, Hye-Yeon; Kim, Kyeong Kyu

    2010-01-01

    The receptor activator of nuclear factor-κB (RANK) and its ligand RANKL, which belong to the tumor necrosis factor (TNF) receptor-ligand family, mediate osteoclastogenesis. The crystal structure of the RANKL ectodomain (eRANKL) in complex with the RANK ectodomain (eRANK) combined with biochemical assays of RANK mutants indicated that three RANK loops (Loop1, Loop2, and Loop3) bind to the interface of a trimeric eRANKL. Loop3 is particularly notable in that it is structurally distinctive from other TNF-family receptors and forms extensive contacts with RANKL. The disulfide bond (C125-C127) at the tip of Loop3 is important for determining the unique topology of Loop3, and docking E126 close to RANKL, which was supported by the inability of C127A or E126A mutants of RANK to bind to RANKL. Inhibitory activity of RANK mutants, which contain loops of osteoprotegerin (OPG), a soluble decoy receptor to RANKL, confirmed that OPG shares the similar binding mode with RANK and OPG. Loop3 plays a key role in RANKL binding. Peptide inhibitors designed to mimic Loop3 blocked the RANKL-induced differentiation of osteoclast precursors, suggesting that they could be developed as therapeutic agents for the treatment of osteoporosis and bone-related diseases. Furthermore, some of the RANK mutations associated with autosomal recessive osteopetrosis (ARO) resulted in reduced RANKL-binding activity and failure to induce osteoclastogenesis. These results, together with structural interpretation of eRANK-eRANKL interaction, provided molecular understanding for pathogenesis of ARO. PMID:21059944

  3. Propofol attenuates LPS-induced tumor necrosis factor-α, interleukin-6 and nitric oxide expression in canine peripheral blood mononuclear cells possibly through down-regulation of nuclear factor (NF)-κB activation.

    PubMed

    Pei, Zengyang; Wang, Jinqiu

    2015-02-01

    Sepsis is a major cause of mortality in intensive care medicine. Propofol, an intravenous general anesthetic, has been suggested to have anti-inflammatory properties and able to prevent sepsis induced by Gram-positive and Gram-negative bacteria by down-regulating the gene expression of pro-inflammatory cytokines. However, propofol's anti-inflammatory effects upon canine peripheral blood mononuclear cells (PBMCs) have not yet been clarified. Here, we isolate canine PBMCs and investigate the effects of propofol on the gene expressions of both lipopolysaccharide (LPS)-induced interleukin-6 (IL-6) and tumor necrosis factor (TNF)-α and upon the production of nitric oxide (NO). Through real-time quantitative PCR and the Griess reagent system, we found that non-cytotoxic levels of propofol significantly inhibited the release of NO and IL-6 and TNF-α gene expression in LPS-induced canine PBMCs. Western blotting revealed that LPS does significantly increase the expression of inducible NO synthase (iNOS) protein in canine PBMCs, while pretreatment with propofol significantly decreases the LPS-induced iNOS protein expression. Propofol, at concentration of 25 µM and 50 µM, also significantly inhibited the LPS-induced nuclear translocation of nuclear factor (NF)-κB p65 protein in canine PBMCs. This diminished TNF-α, IL-6 and iNOS expression, and NO production was in parallel to the respective decreased NF-κB p65 protein nuclear translocation in the LPS-activated canine PBMCs pretreated with 25 µM and 50 µM propofol. This suggests that non-cytotoxic levels of propofol pretreatment can down-regulate LPS-induced inflammatory responses in canine PBMCs, possibly by inhibiting the nuclear translocation of the NF-κB p65 protein. PMID:25312048

  4. DJ-1 upregulates anti-oxidant enzymes and attenuates hypoxia/re-oxygenation-induced oxidative stress by activation of the nuclear factor erythroid 2-like 2 signaling pathway.

    PubMed

    Yan, Yu-Feng; Yang, Wen-Jie; Xu, Qiang; Chen, He-Ping; Huang, Xiao-Shan; Qiu, Ling-Yu; Liao, Zhang-Ping; Huang, Qi-Ren

    2015-09-01

    DJ-1 protein, as a multifunctional intracellular protein, has an important role in transcriptional regulation and anti-oxidant stress. A recent study by our group showed that DJ-1 can regulate the expression of certain anti‑oxidant enzymes and attenuate hypoxia/re‑oxygenation (H/R)‑induced oxidative stress in the cardiomyocyte cell line H9c2; however, the detailed molecular mechanisms have remained to be elucidated. Nuclear factor erythroid 2‑like 2 (Nrf2) is an essential transcription factor that regulates the expression of several anti‑oxidant genes via binding to the anti‑oxidant response element (ARE). The present study investigated whether activation of the Nrf2 pathway is responsible for the induction of anti‑oxidative enzymes by DJ‑1 and contributes to the protective functions of DJ‑1 against H/R‑induced oxidative stress in H9c2 cells. The results demonstrated that DJ‑1‑overexpressing H9c2 cells exhibited anti‑oxidant enzymes, including manganese superoxide dismutase, catalase and glutathione peroxidase, to a greater extent and were more resistant to H/R‑induced oxidative stress compared with native cells, whereas DJ‑1 knockdown suppressed the induction of these enzymes and further augmented the oxidative stress injury. Determination of the importance of Nrf2 in DJ‑1‑mediated anti‑oxidant enzymes induction and cytoprotection against oxidative stress induced by H/R showed that overexpression of DJ‑1 promoted the dissociation of Nrf2 from its cytoplasmic inhibitor Keap1, resulting in enhanced levels of nuclear translocation, ARE‑binding and transcriptional activity of Nrf2. Of note, Nrf2 knockdown abolished the DJ‑1‑mediated induction of anti‑oxidant enzymes and cytoprotection against oxidative stress induced by H/R. In conclusion, these findings indicated that activation of the Nrf2 pathway is a critical mechanism by which DJ-1 upregulates anti-oxidative enzymes and attenuates H/R-induced oxidative stress in H9c2

  5. Cyclic stretch induces cyclooxygenase-2 gene expression in vascular endothelial cells via activation of nuclear factor kappa-{beta}

    SciTech Connect

    Zhao, Haige; Hiroi, Toyoko; Hansen, Baranda S.; Rade, Jeffrey J.

    2009-11-27

    Vascular endothelial cells respond to biomechanical forces, such as cyclic stretch and shear stress, by altering gene expression. Since endothelial-derived prostanoids, such as prostacyclin and thromboxane A{sub 2}, are key mediators of endothelial function, we investigated the effects of cyclic stretch on the expression of genes in human umbilical vein endothelial cells controlling prostanoid synthesis: cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), prostacyclin synthase (PGIS) and thromboxane A{sub 2} synthase (TXAS). COX-2 and TXAS mRNAs were upregulated by cyclic stretch for 24 h. In contrast, PGIS mRNA was decreased and stretch had no effect on COX-1 mRNA expression. We further show that stretch-induced upregulation of COX-2 is mediated by activation of the NF-{kappa}{beta} signaling pathway.

  6. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress.

    PubMed Central

    Sarge, K D; Murphy, S P; Morimoto, R I

    1993-01-01

    The existence of multiple heat shock factor (HSF) genes in higher eukaryotes has promoted questions regarding the functions of these HSF family members, especially with respect to the stress response. To address these questions, we have used polyclonal antisera raised against mouse HSF1 and HSF2 to examine the biochemical, physical, and functional properties of these two factors in unstressed and heat-shocked mouse and human cells. We have identified HSF1 as the mediator of stress-induced heat shock gene transcription. HSF1 displays stress-induced DNA-binding activity, oligomerization, and nuclear localization, while HSF2 does not. Also, HSF1 undergoes phosphorylation in cells exposed to heat or cadmium sulfate but not in cells treated with the amino acid analog L-azetidine-2-carboxylic acid, indicating that phosphorylation of HSF1 is not essential for its activation. Interestingly, HSF1 and HSF2 overexpressed in transfected 3T3 cells both display constitutive DNA-binding activity, oligomerization, and transcriptional activity. These results demonstrate that HSF1 can be activated in the absence of physiological stress and also provide support for a model of regulation of HSF1 and HSF2 activity by a titratable negative regulatory factor. Images PMID:8441385

  7. Yin Yang 1-mediated epigenetic silencing of tumour-suppressive microRNAs activates nuclear factor-κB in hepatocellular carcinoma.

    PubMed

    Tsang, Daisy P F; Wu, William K K; Kang, Wei; Lee, Ying-Ying; Wu, Feng; Yu, Zhuo; Xiong, Lei; Chan, Anthony W; Tong, Joanna H; Yang, Weiqin; Li, May S M; Lau, Suki S; Li, Xiangchun; Lee, Sau-Dan; Yang, Yihua; Lai, Paul B S; Yu, Dae-Yeul; Xu, Gang; Lo, Kwok-Wai; Chan, Matthew T V; Wang, Huating; Lee, Tin L; Yu, Jun; Wong, Nathalie; Yip, Kevin Y; To, Ka-Fai; Cheng, Alfred S L

    2016-04-01

    Enhancer of zeste homolog 2 (EZH2) catalyses histone H3 lysine 27 trimethylation (H3K27me3) to silence tumour-suppressor genes in hepatocellular carcinoma (HCC) but the process of locus-specific recruitment remains elusive. Here we investigated the transcription factors involved and the molecular consequences in HCC development. The genome-wide distribution of H3K27me3 was determined by chromatin immunoprecipitation coupled with high-throughput sequencing or promoter array analyses in HCC cells from hepatitis B virus (HBV) X protein transgenic mouse and human cell models. Transcription factor binding site analysis was performed to identify EZH2-interacting transcription factors followed by functional characterization. Our cross-species integrative analysis revealed a crucial link between Yin Yang 1 (YY1) and EZH2-mediated H3K27me3 in HCC. Gene expression analysis of human HBV-associated HCC specimens demonstrated concordant overexpression of YY1 and EZH2, which correlated with poor survival of patients in advanced stages. The YY1 binding motif was significantly enriched in both in vivo and in vitro H3K27me3-occupied genes, including genes for 15 tumour-suppressive microRNAs. Knockdown of YY1 reduced not only global H3K27me3 levels, but also EZH2 and H3K27me3 promoter occupancy and DNA methylation, leading to the transcriptional up-regulation of microRNA-9 isoforms in HCC cells. Concurrent EZH2 knockdown and 5-aza-2'-deoxycytidine treatment synergistically increased the levels of microRNA-9, which reduced the expression and transcriptional activity of nuclear factor-κB (NF-κB). Functionally, YY1 promoted HCC tumourigenicity and inhibited apoptosis of HCC cells, at least partially through NF-κB activation. In conclusion, YY1 overexpression contributes to EZH2 recruitment for H3K27me3-mediated silencing of tumour-suppressive microRNAs, thereby activating NF-κB signalling in hepatocarcinogenesis. PMID:26800240

  8. Gypenoside Protects Cardiomyocytes against Ischemia-Reperfusion Injury via the Inhibition of Mitogen-Activated Protein Kinase Mediated Nuclear Factor Kappa B Pathway In Vitro and In Vivo

    PubMed Central

    Yu, Haijie; Shi, Liye; Qi, Guoxian; Zhao, Shijie; Gao, Yuan; Li, Yuzhe

    2016-01-01

    Gypenoside (GP) is the major effective component of Gynostemma pentaphyllum and has been shown to encompass a variety of pharmacological activities. In this study, we investigated whether GP is able to protect cardiomyocytes against injury myocardial ischemia–reperfusion (I/R) injury by using in vitro oxygen-glucose deprivation–reoxygenation (OGD/R) H9c2 cell model and in vivo myocardial I/R rat model. We found that GP pre-treatment alleviated the impairments on the cardiac structure and function in I/R injured rats. Moreover, pre-treatment with GP significantly inhibited IκB-α phosphorylation and nuclear factor (NF)-κB p65 subunit translocation into nuclei. GP and the MAPK pathway inhibitors also reduced the phosphorylation of ERK, JNK, and p38 in vitro. Specific inhibition of ERK, JNK, and p38 increased the cell viability of OGD/R injured cells. Taken together, our data demonstrated that GP protects cardiomyocytes against I/R injury by inhibiting NF-κB p65 activation via the MAPK signaling pathway both in vitro and in vivo. These findings suggest that GP may be a promising agent for the prevention or treatment of myocardial I/R injury. PMID:27313532

  9. Constitutive nuclear factor-kappaB activity preserves homeostasis of quiescent mature lymphocytes and granulocytes by controlling the expression of distinct Bcl-2 family proteins.

    PubMed

    Bureau, Fabrice; Vanderplasschen, Alain; Jaspar, Fabrice; Minner, Frédéric; Pastoret, Paul-Pierre; Merville, Marie-Paule; Bours, Vincent; Lekeux, Pierre

    2002-05-15

    Constitutive nuclear factor kappaB (NF-kappaB) activity protects quiescent mature immune cells from spontaneous apoptosis. Here, we examined whether NF-kappaB exerts its antiapoptotic function in these cells through the control of Bcl-2 family proteins. Specific pharmacologic inhibitors of NF-kappaB were used to achieve total NF-kappaB inactivation in quiescent human blood lymphocytes, granulocytes, and monocytes. NF-kappaB inhibition induced drastic lymphocyte and granulocyte apoptosis, but only moderate monocyte apoptosis. T- and B-cell apoptosis was slow and associated with a gradual down-regulation of the prosurvival Bcl-2 family proteins Bcl-x(L) and Bcl-2, respectively. By contrast, granulocyte apoptosis was fast and accompanied by a rapid cellular accumulation of Bcl-x(S), the proapoptotic Bcl-x isoform that is generated from alternative splicing of the bcl-x pre-mRNA. Finally, antisense bcl-x(L) and bcl-2 knockdown in T and B cells, respectively, and induction of Bcl-x(S) expression in granulocytes through antisense oligonucleotide-mediated redirection of bcl-x pre-mRNA splicing were sufficient to induce significant apoptosis in these cells. Taken together, these results reveal that basal NF-kappaB activity preserves homeostasis of quiescent mature lymphocytes and granulocytes through regulation of distinct members of the Bcl-2 family. This study sheds light on the constitutive mechanisms by which NF-kappaB maintains defense integrity. PMID:11986224

  10. Systemic Delivery of MicroRNA-181b Inhibits Nuclear Factor-κB Activation, Vascular Inflammation, and Atherosclerosis in Apolipoprotein E–Deficient Mice

    PubMed Central

    Wara, A.K.M.; Icli, Basak; Shvartz, Eugenia; Tesmenitsky, Yevgenia; Belkin, Nathan; Li, Dazhu; Blackwell, Timothy S.; Sukhova, Galina K.; Croce, Kevin; Feinberg, Mark W.

    2014-01-01

    Rationale Activated nuclear factor (NF)-κB signaling in the vascular endothelium promotes the initiation and progression of atherosclerosis. Targeting endothelial NF-κB may provide a novel strategy to limit chronic inflammation. Objective To examine the role of microRNA-181b (miR-181b) in endothelial NF-κB signaling and effects on atherosclerosis. Methods and Results MiR-181b expression was reduced in the aortic intima and plasma in apolipoprotein E–deficient mice fed a high-fat diet. Correspondingly, circulating miR-181b in the plasma was markedly reduced in human subjects with coronary artery disease. Systemic delivery of miR-181b resulted in a 2.3-fold overexpression of miR-181b in the aortic intima of apolipoprotein E–deficient mice and suppressed NF-κB signaling revealed by bioluminescence imaging and reduced target gene expression in the aortic arch in apolipoprotein E–deficient/NF-κB-luciferase transgenic mice. MiR-181b significantly inhibited atherosclerotic lesion formation, proinflammatory gene expression and the influx of lesional macrophages and CD4+ T cells in the vessel wall. Mechanistically, miR-181b inhibited the expression of the target gene importin-α3, an effect that reduced NF-κB nuclear translocation specifically in the vascular endothelium of lesions, whereas surprisingly leukocyte NF-κB signaling was unaffected despite a 7-fold overexpression of miR-181b. Our findings uncover that NF-κB nuclear translocation in leukocytes does not involve importin-α3, but rather importin-α5, which miR-181b does not target, highlighting that inhibition of NF-κB signaling in the endothelium is sufficient to mediate miR-181b's protective effects. Conclusions Systemic delivery of miR-181b inhibits the activation of NF-κB and atherosclerosis through cell-specific mechanisms in the vascular endothelium. These findings support the rationale that delivery of miR-181b may provide a novel therapeutic approach to treat chronic inflammatory diseases

  11. Andrographolide stimulates p38 mitogen-activated protein kinase-nuclear factor erythroid-2-related factor 2-heme oxygenase 1 signaling in primary cerebral endothelial cells for definite protection against ischemic stroke in rats.

    PubMed

    Yen, Ting-Lin; Chen, Ray-Jade; Jayakumar, Thanasekaran; Lu, Wan-Jung; Hsieh, Cheng-Ying; Hsu, Ming-Jen; Yang, Chih-Hao; Chang, Chao-Chien; Lin, Yen-Kuang; Lin, Kuan-Hung; Sheu, Joen-Rong

    2016-04-01

    Stroke pathogenesis involves complex oxidative stress-related pathways. The nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) pathways have been considered molecular targets in pharmacologic intervention for ischemic diseases. Andrographolide, a labdane diterpene, has received increasing attention in recent years because of its various pharmacologic activities. We determined that andrographolide modulates the mitogen-activated protein kinase (MAPK)-Nrf2-HO-1 signaling cascade in primary cerebral endothelial cells (CECs) to provide positive protection against middle cerebral artery occlusion (MCAO)-induced ischemic stroke in rats. In the present study, andrographolide (10 μM) increased HO-1 protein and messenger RNA expressions, Nrf2 phosphorylation, and nuclear translocation in CECs, and these activities were disrupted by a p38 MAPK inhibitor, SB203580, but not by the extracellular signal-regulated kinase inhibitor PD98059 or c-Jun amino-terminal kinase inhibitor SP600125. Similar results were observed in confocal microscopy analysis. Moreover, andrographolide-induced Nrf2 and HO-1 protein expressions were significantly inhibited by Nrf2 small interfering RNA. Moreover, HO-1 knockdown attenuated the protective effect of andrographolide against oxygen-glucose deprivation-induced CEC death. Andrographolide (0.1 mg/kg) significantly suppressed free radical formation, blood-brain barrier disruption, and brain infarction in MCAO-insulted rats, and these effects were reversed by the HO-1 inhibitor zinc protoporphyrin IX. The mechanism is attributable to HO-1 activation, as directly evidenced by andrographolide-induced pronounced HO-1 expression in brain tissues, which was highly localized in the cerebral capillary. In conclusion, andrographolide increased Nrf2-HO-1 expression through p38 MAPK regulation, confirming that it provides protection against MCAO-induced brain injury. These findings provide strong evidence that andrographolide could

  12. Regulation of p53, nuclear factor {kappa}B and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin

    SciTech Connect

    Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti; Srivastava, Smita; George, Jasmine; Prasad, Sahdeo; Shukla, Yogeshwer

    2008-01-01

    Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-{kappa}B), we also investigated the effect of bromelain on Cox-2 and NF-{kappa}B expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-{kappa}B by blocking phosphorylation and subsequent degradation of I{kappa}B{alpha}. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-{kappa}B-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects.

  13. Inhibition of MDA-MB-231 breast cancer cell migration and invasion activity by andrographolide via suppression of nuclear factor-κB-dependent matrix metalloproteinase-9 expression.

    PubMed

    Zhai, Zanjing; Qu, Xinhua; Li, Haowei; Ouyang, Zhengxiao; Yan, Wei; Liu, Guangwang; Liu, Xuqiang; Fan, Qiming; Tang, Tingting; Dai, Kerong; Qin, An

    2015-02-01

    Breast cancer is one of the most common types of cancer worldwide. The majority of patients with cancer succumb to the disease as a result of distant metastases (for example, in the bones), which cause severe complications. Despite advancements in breast cancer treatment, chemotherapeutic outcomes remain far from satisfactory, prompting a search for effective natural agents with few side‑effects. Andrographolide (AP), a natural diterpenoid lactone isolated from Andrographis paniculata, inhibits cancer cell growth. The current study aimed to examine the effect of AP on breast cancer cell proliferation, survival and progression in vitro and also its inhibitory activity on breast cancer bone metastasis in vivo. To achieve this, CCK8, flow cytometry, migration, invasion, western blot, PCR and luciferase reporter assay analyses were performed in vitro as well as establishing intratibial xenograft model of breast cancer bone metastasis in vivo. The results demonstrated that AP inhibits the migration and invasion of the MBA‑MD‑231 aggressive breast cancer cell line at non‑lethal concentrations, in addition to suppressing proliferation and inducing apoptosis at high concentrations in vitro. In vivo, AP significantly inhibited the growth of tumors planted in bone and attenuated cancer‑induced osteolysis. Tartrate‑resistant acid phosphatase staining revealed osteoclast activation in tumor‑bearing mice and AP was observed to attenuate this activation. The anti‑tumor activity of AP in vitro and in vivo correlates with the downregulation of the nuclear factor κB signaling pathway and the inhibition of matrix metalloproteinase‑9 expression levels. These results indicate that AP may be an effective anti‑tumor agent for the treatment of breast cancer bone metastasis. PMID:25374279

  14. Factorized molecular wave functions: Analysis of the nuclear factor

    SciTech Connect

    Lefebvre, R.

    2015-06-07

    The exact factorization of molecular wave functions leads to nuclear factors which should be nodeless functions. We reconsider the case of vibrational perturbations in a diatomic species, a situation usually treated by combining Born-Oppenheimer products. It was shown [R. Lefebvre, J. Chem. Phys. 142, 074106 (2015)] that it is possible to derive, from the solutions of coupled equations, the form of the factorized function. By increasing artificially the interstate coupling in the usual approach, the adiabatic regime can be reached, whereby the wave function can be reduced to a single product. The nuclear factor of this product is determined by the lowest of the two potentials obtained by diagonalization of the potential matrix. By comparison with the nuclear wave function of the factorized scheme, it is shown that by a simple rectification, an agreement is obtained between the modified nodeless function and that of the adiabatic scheme.

  15. Lipid Peroxidation Inhibition Blunts Nuclear Factor-κB Activation, Reduces Skeletal Muscle Degeneration, and Enhances Muscle Function in mdx Mice

    PubMed Central

    Messina, Sonia; Altavilla, Domenica; Aguennouz, M’hammed; Seminara, Paolo; Minutoli, Letteria; Monici, Maria C.; Bitto, Alessandra; Mazzeo, Anna; Marini, Herbert; Squadrito, Francesco; Vita, Giuseppe

    2006-01-01

    Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease resulting from lack of the sarcolemmal protein dystrophin. However, the mechanism leading to the final disease status is not fully understood. Several lines of evidence suggest a role for nuclear factor (NF)-κB in muscle degeneration as well as regeneration in DMD patients and mdx mice. We investigated the effects of blocking NF-κB by inhibition of oxidative stress/lipid peroxidation on the dystrophic process in mdx mice. Five-week-old mdx mice received three times a week for 5 weeks either IRFI-042 (20 mg/kg), a strong antioxidant and lipid peroxidation inhibitor, or its vehicle. IRFI-042 treatment increased forelimb strength (+22%, P < 0.05) and strength normalized to weight (+23%, P < 0.05) and decreased fatigue (−45%, P < 0.05). It also reduced serum creatine kinase levels (P < 0.01) and reduced muscle-conjugated diene content and augmented muscle-reduced glutathione (P < 0.01). IRFI-042 blunted NF-κB DNA-binding activity and tumor necrosis factor-α expression in the dystrophic muscles (P < 0.01), reducing muscle necrosis (P < 0.01) and enhancing regeneration (P < 0.05). Our data suggest that oxidative stress/lipid peroxidation represents one of the mechanisms activating NF-κB and the consequent pathogenetic cascade in mdx muscles. Most importantly, these new findings may have clinical implications for the pharmacological treatment of patients with DMD. PMID:16507907

  16. Dose-rate effects of protons on in vivo activation of nuclear factor-kappa B and cytokines in mouse bone marrow cells

    SciTech Connect

    Rithidech, K.N.; Rusek, A.; Reungpatthanaphong, P.; Honikel, L.; Simon, S.R.

    2010-05-28

    The objective of this study was to determine the kinetics of nuclear factor-kappa B (NF-{kappa}B) activation and cytokine expression in bone marrow (BM) cells of exposed mice as a function of the dose rate of protons. The cytokines included in this study are pro-inflammatory [i.e., tumor necrosis factor-alpha (TNF-{alpha}), interleukin-1beta (IL-1{beta}), and IL-6] and anti-inflammatory cytokines (i.e., IL-4 and IL-10). We gave male BALB/cJ mice a whole-body exposure to 0 (sham-controls) or 1.0 Gy of 100 MeV protons, delivered at 5 or 10 mGy min{sup -1}, the dose and dose rates found during solar particle events in space. As a reference radiation, groups of mice were exposed to 0 (sham-controls) or 1 Gy of {sup 137}Cs {gamma} rays (10 mGy min{sup -1}). After irradiation, BM cells were collected at 1.5, 3, 24 h, and 1 month for analyses (five mice per treatment group per harvest time). The results indicated that the in vivo time course of effects induced by a single dose of 1 Gy of 100 MeV protons or {sup 137}Cs {gamma} rays, delivered at 10 mGy min{sup -1}, was similar. Although statistically significant levels of NF-{kappa}B activation and pro-inflammatory cytokines in BM cells of exposed mice when compared to those in the corresponding sham controls (Student's t-test, p < 0.05 or < 0.01) were induced by either dose rate, these levels varied over time for each protein. Further, only a dose rate of 5 mGy min{sup -1} induced significant levels of anti-inflammatory cytokines. The results indicate dose-rate effects of protons.

  17. Luteolin is a bioflavonoid that attenuates adipocyte-derived inflammatory responses via suppression of nuclear factor-κB/mitogen-activated protein kinases pathway

    PubMed Central

    Nepali, Sarmila; Son, Ji-Seon; Poudel, Barun; Lee, Ji-Hyun; Lee, Young-Mi; Kim, Dae-Ki

    2015-01-01

    Background: Inflammation of adipocytes has been a therapeutic target for treatment of obesity and metabolic disorders which cause insulin resistance and hence lead to type II diabetes. Luteolin is a bioflavonoid with many beneficial properties such as antioxidant, antiproliferative, and anti-cancer. Objectives: To elucidate the potential anti-inflammatory response and the underlying mechanism of luteolin in 3T3-L1 adipocytes. Materials and Methods: We stimulated 3T3-L1 adipocytes with the mixture of tumor necrosis factor-α, lipopolysaccharide, and interferon-γ (TLI) in the presence or absence of luteolin. We performed Griess’ method for nitric oxide (NO) production and measure mRNA and protein expressions by real-time polymerase chain reaction and western blotting, respectively. Results: Luteolin opposed the stimulation of inducible nitric oxide synthase and NO production by simultaneous treatment of adipocytes with TLI. Furthermore, it reduced the pro-inflammatory genes such as cyclooxygenase-2, interleukin-6, resistin, and monocyte chemoattractant protein-1. Furthermore, luteolin improved the insulin sensitivity by enhancing the expression of insulin receptor substrates (IRS1/2) and glucose transporter-4 via phosphatidylinositol-3K signaling pathway. This inhibition was associated with suppression of Iκ-B-α degradation and subsequent inhibition of nuclear factor-κB (NF-κB) p65 translocation to the nucleus. In addition, luteolin blocked the phosphorylation of ERK1/2, c-Jun N-terminal Kinases and also p38 mitogen-activated protein kinases (MAPKs). Conclusions: These results illustrate that luteolin attenuates inflammatory responses in the adipocytes through suppression of NF-κB and MAPKs activation, and also improves insulin sensitivity in 3T3-L1 cells, suggesting that luteolin may represent a therapeutic agent to prevent obesity-associated inflammation and insulin resistance. PMID:26246742

  18. Osteoprotegerin, Soluble Receptor Activator of Nuclear Factor- κ B Ligand, and Subclinical Atherosclerosis in Children and Adolescents with Type 1 Diabetes Mellitus.

    PubMed

    Lambrinoudaki, Irene; Tsouvalas, Emmanouil; Vakaki, Marina; Kaparos, George; Stamatelopoulos, Kimon; Augoulea, Areti; Pliatsika, Paraskevi; Alexandrou, Andreas; Creatsa, Maria; Karavanaki, Kyriaki

    2013-01-01

    Aims. To evaluate carotid intima-media thickness (cIMT) and biomarkers of the osteoprotegerin/receptor activator of nuclear factor- κ B ligand (OPG/RANKL) system in type 1 diabetes (T1DM) children and adolescents and controls. Subjects and Methods. Fifty six T1DM patients (mean ± SD age: 12.0 ± 2.7 years, diabetes duration: 5.42 ± 2.87 years and HbA1c: 8.0 ± 1.5%) and 28 healthy matched controls, were studied with anthropometric and laboratory measurements, including serum OPG, soluble RANKL (sRANKL) and cIMT. Results. Anthropometric, laboratory, and cIMT measurements were similar between T1DM youngsters and controls. However patients with longer diabetes duration (>/7.0 years) had indicatively higher cIMT (cIMT = 0.49 vs 0.44 mm, P 0.072) and triglyceride levels than the rest of the patients (93.7 vs 64.6 mg/dl, P 0.025). Both in the total study population (β 0.418, P 0.027) and among T1DM patients separately (β 0.604, P 0.013), BMI was the only factor associated with cIMT. BMI was further associated with OPG in both groups (β -0.335, P 0.003 and β -0.356, P 0.008 respectively), while sRANKL levels were not associated with any factor. Conclusions. BMI was the strongest independent predictor of cIMT among the whole population, and especially in diabetics, suggesting a possible synergistic effect of diabetes and adiposity on atherosclerotic burden. BMI was overall strongly associated with circulating OPG, but the causes of this association remain unclear. PMID:24288529

  19. Inhibition of Nuclear Transcription Factor-κB and Activation of Peroxisome Proliferator-Activated Receptors in HepG2 Cells by Cucurbitane-Type Triterpene Glycosides from Momordica charantia

    PubMed Central

    Nhiem, Nguyen Xuan; Yen, Pham Hai; Ngan, Nguyen Thi Thanh; Quang, Tran Hong; Kiem, Phan Van; Minh, Chau Van; Tai, Bui Huu; Cuong, Nguyen Xuan; Song, Seok Bean

    2012-01-01

    Abstract Momordica charantia: is used to treat various diseases, including inflammatory conditions. Previous reports indicated that the extract of this plant inhibits activation of nuclear transcription factor-κB (NF-κB) but activates peroxisome proliferator-activated receptor (PPAR). Additionally, cucurbitane-type triterpene glycosides are the main bioactive components of the fruit of M. charantia. Therefore, we investigated the anti-inflammatory activity of 17 cucurbitane-type triterpene glycosides (1–17) isolated from this plant. Their inhibition of NF-κB and activation of PPAR activities in HepG2 cells were measured using luciferase reporter and PPAR subtype transactivation assays. Compounds 6 and 8 were found to inhibit NF-κB activation stimulated by tumor necrosis factor-α (TNFα) in a dose-dependent manner. With 50% inhibition concentration (IC50) values of 0.4 μM, compounds 6 and 8 were more potent inhibitors than the positive control, sulfasalazine (IC50=0.9 μM). Compounds 4, 6, and 8 also inhibited TNFα-induced expressions of inducible nitric oxide synthase and cyclooxygenase-2 mRNA. However, only compound 13 significantly increased PPARγ transactivation. PMID:22248180

  20. Up-regulation of Store-operated Ca2+ Entry and Nuclear Factor of Activated T Cells Promote the Acinar Phenotype of the Primary Human Salivary Gland Cells.

    PubMed

    Jang, Shyh-Ing; Ong, Hwei Ling; Liu, Xibao; Alevizos, Ilias; Ambudkar, Indu S

    2016-04-15

    The signaling pathways involved in the generation and maintenance of exocrine gland acinar cells have not yet been established. Primary human salivary gland epithelial cells, derived from salivary gland biopsies, acquired an acinar-like phenotype when the [Ca(2+)] in the serum-free medium (keratinocyte growth medium, KGM) was increased from 0.05 mm (KGM-L) to 1.2 mm (KGM-H). Here we examined the mechanism underlying this Ca(2+)-dependent generation of the acinar cell phenotype. Compared with cells in KGM-L, those in KGM-H display enhancement of Orai1, STIM1, STIM2, and nuclear factor of activated T cells 1 (NFAT1) expression together with an increase in store-operated Ca(2+) entry (SOCE), SOCE-dependent nuclear translocation of pGFP-NFAT1, and NFAT-dependent but not NFκB-dependent gene expression. Importantly, AQP5, an acinar-specific protein critical for function, is up-regulated in KGM-H via SOCE/NFAT-dependent gene expression. We identified critical NFAT binding motifs in the AQP5 promoter that are involved in Ca(2+)-dependent up-regulation of AQP5. These important findings reveal that the Ca(2+)-induced switch of salivary epithelial cells to an acinar-like phenotype involves remodeling of SOCE and NFAT signaling, which together control the expression of proteins critically relevant for acinar cell function. Our data provide a novel strategy for generating and maintaining acinar cells in culture. PMID:26903518

  1. Inhibition of Nuclear Translocation of Apoptosis-Inducing Factor Is an Essential Mechanism of the Neuroprotective Activity of Pigment Epithelium-Derived Factor in a Rat Model of Retinal Degeneration

    PubMed Central

    Murakami, Yusuke; Ikeda, Yasuhiro; Yonemitsu, Yoshikazu; Onimaru, Mitsuho; Nakagawa, Kazunori; Kohno, Ri-ichiro; Miyazaki, Masanori; Hisatomi, Toshio; Nakamura, Makoto; Yabe, Takeshi; Hasegawa, Mamoru; Ishibashi, Tatsuro; Sueishi, Katsuo

    2008-01-01

    Photoreceptor apoptosis is a critical process of retinal degeneration in retinitis pigmentosa (RP), a group of retinal degenerative diseases that result from rod and cone photoreceptor cell death and represent a major cause of adult blindness. We previously demonstrated the efficient prevention of photoreceptor apoptosis by intraocular gene transfer of pigment epithelium-derived factor (PEDF) in animal models of RP; however, the underlying mechanism of the neuroprotective activity of PEDF remains elusive. In this study, we show that an apoptosis-inducing factor (AIF)-related pathway is an essential target of PEDF-mediated neuroprotection. PEDF rescued serum starvation-induced apoptosis, which is mediated by AIF but not by caspases, of R28 cells derived from the rat retina by preventing translocation of AIF into the nucleus. Nuclear translocation of AIF was also observed in the apoptotic photoreceptors of Royal College of Surgeons rats, a well-known animal model of RP that carries a mutation of the Mertk gene. Lentivirus-mediated retinal gene transfer of PEDF prevented the nuclear translocation of AIF in vivo, resulting in the inhibition of the apoptotic loss of their photoreceptors in association with up-regulated Bcl-2 expression, which mediates the mitochondrial release of AIF. These findings clearly demonstrate that AIF is an essential executioner of photoreceptor apoptosis in inherited retinal degeneration and provide a therapeutic rationale for PEDF-mediated neuroprotective gene therapy for individuals with RP. PMID:18845835

  2. Activation of transcription factor IL-6 (NF-IL-6) and nuclear factor-kappaB (NF-kappaB) by lipid ozonation products is crucial to interleukin-8 gene expression in human airway epithelial cells.

    PubMed

    Kafoury, Ramzi M; Hernandez, Jazmir M; Lasky, Joseph A; Toscano, William A; Friedman, Mitchell

    2007-04-01

    Ozone (O(3)) is a major component of smog and an inhaled toxicant to the lung. O(3) rapidly reacts with the airway epithelial cell membrane phospholipids to generate lipid ozonation products (LOP). 1-Hydroxy-1-hydroperoxynonane (HHP-C9) is an important LOP, produced from the ozonation of 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylcholine. This LOP, at a biologically relevant concentration (100 microM), increases the activity of phospholipase C, nuclear factors-kappaB (NF-kappaB), and interleukin-6 (NF-IL-6) and the expression of the inflammatory gene, interleukin-8 (IL-8) in a cultured human bronchial epithelial cell line (BEAS-2B). The signaling pathways of ozone and its biologically-active products are as yet undefined. In the present study, we report that the HHP LOP, HHP-C9 (100 microM x 4 h), activated the expression of IL-8 (218 +/- 26% increase over control, n = 4, P < 0.01) through an apparent interaction between the two transcription factors, NF-kappaB and NF-IL-6. Transfection studies using luciferase reporter assays demonstrated that HHP-C9 induced a significant increase in NF-kappaB-DNA binding activity (37 +/- 7% increase over control, n = 6, P < 0.05). Inhibition of NF-kappaB showed a statistically significant but modest decrease in IL-8 release, which suggested a role for another transcription factor, NF-IL-6. Exposure of BEAS-2B cells to HHP-C9 induced a significant increase in the DNA binding activity of NF-IL-6 (45 +/- 11% increase over control, n = 6, P < 0.05). The results of the present study indicate that NF-IL-6 interacts with NF-kappaB in regulating the expression of IL-8 in cultured human airway epithelial cells exposed to LOP, the biological products of ozone in the lung. PMID:17366569

  3. Ethanol Extract of Cirsium japonicum var. ussuriense Kitamura Exhibits the Activation of Nuclear Factor Erythroid 2-Related Factor 2-dependent Antioxidant Response Element and Protects Human Keratinocyte HaCaT Cells Against Oxidative DNA Damage

    PubMed Central

    Yoo, Ok-Kyung; Choi, Bu Young; Park, Jin-Oh; Lee, Ji-Won; Park, Byoung-Kwon; Joo, Chul Gue; Heo, Hyo-Jung; Keum, Young-Sam

    2016-01-01

    Keratinocytes are constantly exposed to extracellular insults, such as ultraviolet B, toxic chemicals and mechanical stress, all of which can facilitate the aging of keratinocytes via the generation of intracellular reactive oxygen species (ROS). Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that plays a critical role in protecting keratinocytes against oxidants and xenobiotics by binding to the antioxidant response element (ARE), a cis-acting element existing in the promoter of most phase II cytoprotective genes. In the present study, we have attempted to find novel ethanol extract(s) of indigenous plants of Jeju island, Korea that can activate the Nrf2/ARE-dependent gene expression in human keratinocyte HaCaT cells. As a result, we identified that ethanol extract of Cirsium japonicum var. ussuriense Kitamura (ECJUK) elicited strong stimulatory effect on the ARE-dependent gene expression. Supporting this observation, we found that ECJUK induced the expression of Nrf2, hemoxygenase-1, and NAD(P)H:quinone oxidoreductase-1 and this event was correlated with Akt1 phosphorylation. We also found that ECJUK increased the intracellular reduced glutathione level and suppressed 12-O-tetradecanoylphorbol acetate-induced 8-hydroxyguanosine formation without affecting the overall viability. Collectively, our results provide evidence that ECJUK can protect against oxidative stress-mediated damages through the activation of Nrf2/ARE-dependent phase II cytoprotective gene expression. PMID:27051652

  4. A high-resolution peak fractionation approach for streamlined screening of nuclear-factor-E2-related factor-2 activators in Salvia miltiorrhiza.

    PubMed

    Zhang, Hui; Luo, Li-Ping; Song, Hui-Peng; Hao, Hai-Ping; Zhou, Ping; Qi, Lian-Wen; Li, Ping; Chen, Jun

    2014-01-24

    Generation of a high-purity fraction library for efficiently screening active compounds from natural products is challenging because of their chemical diversity and complex matrices. In this work, a strategy combining high-resolution peak fractionation (HRPF) with a cell-based assay was proposed for target screening of bioactive constituents from natural products. In this approach, peak fractionation was conducted under chromatographic conditions optimized for high-resolution separation of the natural product extract. The HRPF approach was automatically performed according to the predefinition of certain peaks based on their retention times from a reference chromatographic profile. The corresponding HRPF database was collected with a parallel mass spectrometer to ensure purity and characterize the structures of compounds in the various fractions. Using this approach, a set of 75 peak fractions on the microgram scale was generated from 4mg of the extract of Salvia miltiorrhiza. After screening by an ARE-luciferase reporter gene assay, 20 diterpene quinones were selected and identified, and 16 of these compounds were reported to possess novel Nrf2 activation activity. Compared with conventional fixed-time interval fractionation, the HRPF approach could significantly improve the efficiency of bioactive compound discovery and facilitate the uncovering of minor active components. PMID:24406141

  5. Role of nuclear factor of activated T-cells 5 in regulating hypertonic-mediated secretin receptor expression in kidney collecting duct cells.

    PubMed

    Chua, Oscar W H; Wong, Kenneth K L; Ko, Ben C; Chung, Sookja K; Chow, Billy K C; Lee, Leo T O

    2016-07-01

    A growing body of evidence suggests that secretin (SCT) is an important element in the osmoregulatory pathway. It is interesting to note that both SCT and its receptor (SCTR) gene are activated upon hyperosmolality in the kidney. However, the precise molecular mechanisms underlying the induction of the SCTR gene expression in response to changes in osmolality have yet to be clarified. Detailed DNA sequence analysis of the promoter regions of the SCTR gene reveals the presence of multiple osmotic response elements (ORE). The ORE is the binding site of a key osmosensitive transactivator, namely, the nuclear factor of activated T-cells 5 (NFAT5). SCTR and NFAT5 are co-expressed in the kidney cortex and medulla collecting duct cells. We therefore hypothesize that NFAT5 is responsible for modulating SCTR expression in hypertonic environments. In this study, we found hypertonicity stimulates the promoter activities and endogenous gene expression of SCTR in mouse kidney cortex collecting duct cells (M1) and inner medulla collecting duct cells (mIMCD3). The overexpression and silencing of NFAT5 further confirmed it to be responsible for the up-regulation of the SCTR gene under hypertonic conditions. A significant increase in the interaction between NFAT5 and the SCTR promoter was also observed following chromatin immunoprecipitation assay. In vivo, osmotic stress up-regulates the SCTR gene in the kidney cortex and medulla of wild-type mice, but does not do so in NFAT5(+/-) animals. Hence, this study provides comprehensive information on how NFAT5 regulates SCTR expression in different osmotic environments. PMID:27080132

  6. Characterization of osteoprotegerin binding to glycosaminoglycans by surface plasmon resonance: Role in the interactions with receptor activator of nuclear factor {kappa}B ligand (RANKL) and RANK

    SciTech Connect

    Theoleyre, S.; Kwan Tat, S.; Vusio, P.; Blanchard, F.; Gallagher, J.; Ricard-Blum, S.; Fortun, Y.; Padrines, M.; Redini, F.; Heymann, D. . E-mail: dominique.heymann@univ-nantes.fr

    2006-08-25

    Osteoprotegerin (OPG) is a decoy receptor for receptor activator of nuclear factor {kappa}B ligand (RANKL), a key inducer of osteoclastogenesis via its receptor RANK. We previously showed that RANK, RANKL, and OPG are able to form a tertiary complex and that OPG must be also considered as a direct effector of osteoclast functions. As OPG contains a heparin-binding domain, the present study investigated the interactions between OPG and glycosaminoglycans (GAGs) by surface plasmon resonance and their involvement in the OPG functions. Kinetic data demonstrated that OPG binds to heparin with a high-affinity (K {sub D}: 0.28 nM) and that the pre-incubation of OPG with heparin inhibits in a dose-dependent manner the OPG binding to the complex RANK-RANKL. GAGs from different structure/origin (heparan sulfate, dermatan sulfate, and chondroitin sulfate) exert similar activity on OPG binding. The contribution of the sulfation pattern and the size of the oligosaccharide were determined in this inhibitory mechanism. The results demonstrated that sulfation is essential in the OPG-blocking function of GAGs since a totally desulfated heparin loses its capacity to bind and to block OPG binding to RANKL. Moreover, a decasaccharide is the minimal structure that totally inhibits the OPG binding to the complex RANK-RANKL. Western blot analysis performed in 293 cells surexpressing RANKL revealed that the pre-incubation of OPG with these GAGs strongly inhibits the OPG-induced decrease of membrane RANKL half-life. These data support an essential function of the related glycosaminoglycans heparin and heparan sulfate in the activity of the triad RANK-RANKL-OPG.

  7. Age-Related Nuclear Translocation of P2X6 Subunit Modifies Splicing Activity Interacting with Splicing Factor 3A1

    PubMed Central

    Díaz-Hernández, Juan Ignacio; Sebastián-Serrano, Álvaro; Gómez-Villafuertes, Rosa

    2015-01-01

    P2X receptors are ligand-gated ion channels sensitive to extracellular nucleotides formed by the assembling of three equal or different P2X subunits. In this work we report, for the first time, the accumulation of the P2X6 subunit inside the nucleus of hippocampal neurons in an age-dependent way. This location is favored by its anchorage to endoplasmic reticulum through its N-terminal domain. The extracellular domain of P2X6 subunit is the key to reach the nucleus, where it presents a speckled distribution pattern and is retained by interaction with the nuclear envelope protein spectrin α2. The in vivo results showed that, once inside the nucleus, P2X6 subunit interacts with the splicing factor 3A1, which ultimately results in a reduction of the mRNA splicing activity. Our data provide new insights into post-transcriptional regulation of mRNA splicing, describing a novel mechanism that could explain why this process is sensitive to changes that occur with age. PMID:25874565

  8. The nuclear-encoded sigma factor SIG4 directly activates transcription of chloroplast psbA and ycf17 genes in the unicellular red alga Cyanidioschyzon merolae.

    PubMed

    Fujii, Gaku; Imamura, Sousuke; Era, Atsuko; Miyagishima, Shin-ya; Hanaoka, Mitsumasa; Tanaka, Kan

    2015-05-01

    The plant organelle chloroplast originated from the endosymbiosis of a cyanobacterial-like photosynthetic bacterium, and still retains its own genome derived from this ancestor. We have been focusing on a unicellular red alga, Cyanidioschyzon merolae, as a model photosynthetic eukaryote. In this study, we analyzed the transcriptional specificity of SIG4, which is one of four nuclear-encoded chloroplast RNA polymerase sigma factors in this alga. Accumulation of the SIG4 protein was observed in response to nitrogen depletion or high light conditions. By comparing the chloroplast transcriptomes under nitrogen depletion and SIG4-overexpressing conditions, we identified several candidate genes as SIG4 targets. Together with the results of chromatin immunoprecipitation analysis, the promoters of the psbA (encoding the D1 protein of the photosystem II reaction center) and ycf17 (encoding a protein of the early light-inducible protein family) genes were shown to be direct activation targets. The phycobilisome (PBS) CpcB protein was decreased by SIG4 overexpression, which suggests the negative involvement of SIG4 in PBS accumulation. PMID:25883111

  9. Propofol induces apoptosis and increases gemcitabine sensitivity in pancreatic cancer cells in vitro by inhibition of nuclear factor-κB activity

    PubMed Central

    Du, Qi-Hang; Xu, Yan-Bing; Zhang, Meng-Yuan; Yun, Peng; He, Chang-Yao

    2013-01-01

    AIM: To investigate the effect of propofol on human pancreatic cells and the molecular mechanism of propofol action. METHODS: We used the human pancreatic cancer cell line MIAPaCa-2 for in vitro studies measuring growth inhibition and degree of apoptotic cell death induced by propofol alone, gemcitabine alone, or propofol followed by gemcitabine. All experiments were conducted in triplicate and carried out on three or more separate occasions. Data were means of the three or more independent experiments ± SE. Statistically significant differences were determined by two-tailed unpaired Student’s t test and defined as P < 0.05. RESULTS: Pretreatment of cells with propofol for 24 h followed by gemcitabine resulted in 24%-75% growth inhibition compared with 6%-18% when gemcitabine was used alone. Overall growth inhibition was directly correlated with apoptotic cell death. We also showed that propofol potentiated gemcitabine-induced killing by downregulation of nuclear factor-κB (NF-κB). In contrast, NF-κB was upregulated when pancreatic cancer cells were exposed to gemcitabine alone, suggesting a potential mechanism of acquired chemoresistance. CONCLUSION: Inactivation of the NF-κB signaling pathway by propofol might abrogate gemcitabine-induced activation of NF-κB, resulting in chemosensitization of pancreatic tumors to gemcitabine. PMID:24023491

  10. Histone deacetylase 3 inhibition re-establishes synaptic tagging and capture in aging through the activation of nuclear factor kappa B

    PubMed Central

    Sharma, Mahima; Shivarama Shetty, Mahesh; Arumugam, Thiruma Valavan; Sajikumar, Sreedharan

    2015-01-01

    Aging is associated with impaired plasticity and memory. Altered epigenetic mechanisms are implicated in the impairment of memory with advanced aging. Histone deacetylase 3 (HDAC3) is an important negative regulator of memory. However, the role of HDAC3 in aged neural networks is not well established. Late long-term potentiation (late-LTP), a cellular correlate of memory and its associative mechanisms such as synaptic tagging and capture (STC) were studied in the CA1 area of hippocampal slices from 82–84 week old rats. Our findings demonstrate that aging is associated with deficits in the magnitude of LTP and impaired STC. Inhibition of HDAC3 augments the late-LTP and re-establishes STC. The augmentation of late-LTP and restoration of STC is mediated by the activation of nuclear factor kappa B (NFκB) pathway. We provide evidence for the promotion of associative plasticity in aged neural networks by HDAC3 inhibition and hence propose HDAC3 and NFκB as the possible therapeutic targets for treating age -related cognitive decline. PMID:26577291

  11. Molecular Profiling of Giant Cell Tumor of Bone and the Osteoclastic Localization of Ligand for Receptor Activator of Nuclear Factor κB

    PubMed Central

    Morgan, Teresa; Atkins, Gerald J.; Trivett, Melanie K.; Johnson, Sandra A.; Kansara, Maya; Schlicht, Stephen L.; Slavin, John L.; Simmons, Paul; Dickinson, Ian; Powell, Gerald; Choong, Peter F.M.; Holloway, Andrew J.; Thomas, David M.

    2005-01-01

    Giant cell tumor of bone (GCT) is a generally benign, osteolytic neoplasm comprising stromal cells and osteoclast-like giant cells. The osteoclastic cells, which cause bony destruction, are thought to be recruited from normal monocytic pre-osteoclasts by stromal cell expression of the ligand for receptor activator of nuclear factor κB (RANKL). This model forms the foundation for clinical trials in GCTs of novel cancer therapeutics targeting RANKL. Using expression profiling, we identified both osteoblast and osteoclast signatures within GCTs, including key regulators of osteoclast differentiation and function such as RANKL, a C-type lectin, osteoprotegerin, and the wnt inhibitor SFRP4. After ex vivo generation of stromal- and osteoclast-enriched cultures, we unexpectedly found that RANKL mRNA and protein were more highly expressed in osteoclasts than in stromal cells, as determined by expression profiling, flow cytometry, immunohistochemistry, and reverse transcriptase-polymerase chain reaction. The expression patterns of molecules implicated in signaling between stromal cells and monocytic osteoclast precursors were analyzed in both primary and fractionated GCTs. Finally, using array-based comparative genomic hybridization, neither GCTs nor the derived stromal cells demonstrated significant genomic gains or losses. These data raise questions regarding the role of RANKL in GCTs that may be relevant to the development of molecularly targeted therapeutics for this disease. PMID:15972958

  12. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation.

    PubMed Central

    Semenza, G L; Wang, G L

    1992-01-01

    We have identified a 50-nucleotide enhancer from the human erythropoietin gene 3'-flanking sequence which can mediate a sevenfold transcriptional induction in response to hypoxia when cloned 3' to a simian virus 40 promoter-chloramphenicol acetyltransferase reporter gene and transiently expressed in Hep3B cells. Nucleotides (nt) 1 to 33 of this sequence mediate sevenfold induction of reporter gene expression when present in two tandem copies compared with threefold induction when present in a single copy, suggesting that nt 34 to 50 bind a factor which amplifies the induction signal. DNase I footprinting demonstrated binding of a constitutive nuclear factor to nt 26 to 48. Mutagenesis studies revealed that nt 4 to 12 and 19 to 23 are essential for induction, as substitutions at either site eliminated hypoxia-induced expression. Electrophoretic mobility shift assays identified a nuclear factor which bound to a probe spanning nt 1 to 18 but not to a probe containing a mutation which eliminated enhancer function. Factor binding was induced by hypoxia, and its induction was sensitive to cycloheximide treatment. We have thus defined a functionally tripartite, 50-nt hypoxia-inducible enhancer which binds several nuclear factors, one of which is induced by hypoxia via de novo protein synthesis. Images PMID:1448077

  13. Osteoprotegerin (OPG), but not Receptor Activator for Nuclear Factor Kappa B Ligand (RANKL), is Associated with Subclinical Coronary Atherosclerosis in HIV-infected Men

    PubMed Central

    Ketlogetswe, Kerunne S; McKibben, Rebeccah; Jacobson, Lisa P; Li, Xuihong; Dobs, Adrian S; Budoff, Matthew; Witt, Mallory D; Palella, Frank J; Kingsley, Lawrence; Margolick, Joseph B.; Post, Wendy S; Brown, Todd T.

    2015-01-01

    Context Abnormalities in the osteoprotegerin (OPG)/receptor activator of nuclear factor-κB ligand (RANKL) axis have been observed in HIV-infected persons and have been implicated in cardiovascular disease pathogenesis in the general population. Objective To determine associations of serum OPG and RANKL concentrations with HIV infection and subclinical atherosclerosis. Design Cross-sectional study nested within the Multicenter AIDS Cohort Study Setting Four US academic medical centers Participants There were 578 HIV-infected and 344 HIV-uninfected men. Main Outcome Measures Coronary artery calcium (CAC) was measured by non-contrast cardiac computed tomography (CT), and coronary stenosis and plaque characteristics (composition, presence and extent) were measured by coronary CT angiography. All statistical models were adjusted for traditional cardiovascular risk factors. Results OPG concentrations were higher and RANKL concentrations were lower among HIV-infected men compared to –uninfected men (p<0.0001 each). Among the HIV-infected men, higher OPG concentrations were associated with the presence of CAC, mixed plaque, and coronary stenosis > 50%, but not with plaque extent. In contrast, among HIV-uninfected men, higher OPG concentrations were associated with extent of both CAC and calcified plaque, but not their presence. RANKL concentrations were not associated with plaque presence or extent among HIV-infected men, but among HIV-uninfected men, lower RANKL concentrations were associated with greater extent of CAC and total plaque. Conclusions OPG and RANKL are dysregulated in HIV-infected men and their relationship to the presence and extent of subclinical atherosclerosis varies by HIV-status. The role of these biomarkers in CVD pathogenesis and risk prediction may be different in HIV-infected men. PMID:26090754

  14. Coagulant Activity of Leukocytes. TISSUE FACTOR ACTIVITY

    PubMed Central

    Niemetz, J.

    1972-01-01

    Peritoneal leukocytes harvested from rabbits which have received two spaced doses of endotoxin have significantly greater (10-fold) coagulant activity than leukocytes from control rabbits. The coagulant activity accelerates the clotting of normal plasma and activates factor X in the presence of factor VII and calcium and is therefore regarded as tissue factor. A total of 40-80 mg tissue factor activity was obtained from the peritoneal cavity of single endotoxin-treated rabbits. In leukocyte subcellular fractions, separated by centrifugation, the specific tissue factor activity sedimented mainly at 14,500 g and above. The procoagulant activity was destroyed after heating for 10 min at 65°C but was preserved at lower temperatures. Polymyxin B, when given with the first dose of endotoxin, reduced both the number of peritoneal leukocytes and their tissue factor activity by two-thirds. When given immediately before the second dose of endotoxin, polymyxin B had no inhibitory effect. PMID:4333021

  15. Glycyrrhizic acid prevents ultraviolet-B-induced photodamage: a role for mitogen-activated protein kinases, nuclear factor kappa B and mitochondrial apoptotic pathway.

    PubMed

    Afnan, Quadri; Kaiser, Peerzada J; Rafiq, Rather A; Nazir, Lone A; Bhushan, Shashi; Bhardwaj, Subhash C; Sandhir, Rajat; Tasduq, Sheikh A

    2016-06-01

    Glycyrrhizic acid (GA), a natural triterpene, has received attention as an agent that has protective effects against chronic diseases including ultraviolet UV-B-induced skin photodamage. However, the mechanism of its protective effect remains elusive. Here, we used an immortalized human keratinocyte cell line (HaCaT) and a small animal model (BALB/c mice), to investigate the protective effects of GA against UV-B-induced oxidative damage, and additionally, delineated the molecular mechanisms involved in the UV-B-mediated inflammatory and apoptotic response. In the HaCaT cells, GA inhibited the UV-B-mediated increase in intracellular reactive oxygen species (ROS) and down-regulated the release of pro-inflammatory cytokines interleukin (IL)-1α, -1β and -6, tumor necrosis factor (TNF)-α and prostaglandin E2 (PGE2). GA inhibited UV-B-mediated activation of p38 and JNK MAP kinases, COX-2 expression and nuclear translocation of NF-κB. Furthermore, GA inhibited UV-B-mediated apoptosis by attenuating translocation of Bax from the cytosol to mitochondria, thus preserving mitochondrial integrity. GA-treated HaCaT cells also exhibited elevated antiapoptotic Bcl-2 protein, concomitant with reduced caspase-3 cleavage and decreased PARP-1 protein. In BALB/c mice, topical application of GA on dorsal skin exposed to UV-B irradiation protected against epidermal hyperplasia, lymphocyte infiltration and expression of several inflammatory proteins, p38, JNK, COX-2, NF-κB and ICAM-1. Based on the above findings, we conclude that GA protects against UV-B-mediated photodamage by inhibiting the signalling cascades triggered by oxidative stress, including MAPK/NF-κB activation, as well as apoptosis. Thus, GA has strong potential to be used as a therapeutic/cosmeceutical agent against photodamage. PMID:26836460

  16. Role of Osteoprotegerin and Receptor Activator of Nuclear Factor-κB Ligand in Bone Loss Related to Advanced Chronic Obstructive Pulmonary Disease

    PubMed Central

    Ugay, Ludmila; Kochetkova, Evgenia; Nevzorova, Vera; Maistrovskaia, Yuliya

    2016-01-01

    Background: Osteoporosis is a common complication of chronic obstructive pulmonary disease (COPD). Recent clinical and biological researches have increasingly delineated the biomolecular pathways of bone metabolism regulation in COPD. We extended this work by examining the specific association and potential contribution of the osteoprotegerin (OPG)/receptor activator of nuclear factor-κB ligand (RANKL) axis to the pathogenesis of osteoporosis in advanced COPD. The aim of this study was to assess the relationships of serum OPG, RANKL, and tumor necrosis factor-alpha (TNF-α) with bone turnover in men with very severe COPD. Methods: Pulmonary function, T-score at the lumbar spine (LS) and femoral neck (FN), serum OPG, RANKL, soluble receptor of tumor necrosis factor-alpha-I and II (sTNFR-I, sTNFR-II), osteocalcin (OC), and β-CrossLaps (βCL) levels were measured in 45 men with very severe stage COPD and 36 male non-COPD volunteers. COPD patients and healthy controls were compared using an independent t-test and Mann–Whitney U-test. The Pearson coefficient was used to assess the relationships between variables. Results: OPG and OC were lower in male COPD patients than in control subjects whereas RANKL, serum βCL, TNF-α, and its receptors were higher. OPG directly correlated with forced expiratory volume in 1 s (FEV1) % predicted (r = 0.46, P < 0.005), OC (r = 0.34, P < 0.05), LS (r = 0.56, P < 0.001), and FN T-score (r = 0.47, P < 0.01). In contrast, serum RANKL inversely associated with LS and FN T-score (r = −0.62, P < 0.001 and r = −0.48, P < 0.001) but directly correlated with βCL (r = 0.48, P < 0.001). In addition, OPG was inversely correlated with RANKL (r = −0.39, P < 0.01), TNF-α (r = −0.56, P < 0.001), and sTNFR-I (r = −0.40, P < 0.01). Conclusion: Our results suggest that serum OPG and RANKL levels are inversely associated with bone loss in men with advanced stage COPD. PMID:27411457

  17. TRIB3 mediates the expression of Wnt5a and activation of nuclear factor-κB in Porphyromonas endodontalis lipopolysaccharide-treated osteoblasts.

    PubMed

    Yu, Y; Qiu, L; Guo, J; Yang, D; Qu, L; Yu, J; Zhan, F; Xue, M; Zhong, M

    2015-08-01

    Porphyromonas endodontalis lipopolysaccharide (LPS) is considered to be correlated with the progression of bone resorption in periodontal and periapical diseases. Wnt5a has recently been implicated in inflammatory processes, but its role is unclear as a P. endodontalis LPS-induced mediator in osteoblasts. Tribbles homolog 3 (TRIB3) encodes a pseudokinase and has been linked to inflammation in certain situations. Here, we found that P. endodontalis LPS induced Wnt5a expression in a dose- and time-dependent manner and it also upregulated translocation, phosphorylation and transcriptional activity of nuclear factor-κB (NF-κB) in MC3T3-E1 cells. Bay 11-7082 blocked the translocation of NF-κB and Wnt5a expression induced by P. endodontalis LPS. Chromatin immunoprecipitation assay further established that induction of Wnt5a by P. endodontalis LPS was mediated through the NF-κB p65 subunit. Additionally, P. endodontalis LPS increased expression of TRIB3 in osteoblasts after 10 h simulated time. Overexpression of TRIB3 enhanced NF-κB phosphorylation and Wnt5a induction, whereas knockdown of TRIB3 inhibited NF-κB phosphorylation and Wnt5a expression in P. endodontalis LPS-stimulated osteoblasts. These results suggest that P. endodontalis LPS has the ability to promote the expression of Wnt5a in mouse osteoblasts, and this induction is mainly mediated by NF-κB pathway. TRIB3 seems to modulate the sustained expression of Wnt5a in osteoblasts stimulated by P. endodontalis LPS, as well as regulating NF-κB phosphorylation. PMID:25601649

  18. Serum levels of osteoprotegerin and receptor activator of nuclear factor -κB ligand in children with early juvenile idiopathic arthritis: a 2-year prospective controlled study

    PubMed Central

    2010-01-01

    Background The clinical relevance of observations of serum levels of osteoprotegerin (OPG) and receptor activator of nuclear factor -κB ligand (RANKL) in juvenile idiopathic arthritis (JIA) is not clear. To elucidate the potential role of OPG and RANKL in JIA we determined serum levels of OPG and RANKL in patients with early JIA compared to healthy children, and prospectively explored changes in relation to radiographic score, bone and lean mass, severity of the disease, and treatment. Methods Ninety children with early oligoarticular or polyarticular JIA (ages 6-18 years; mean disease duration 19.4 months) and 90 healthy children individually matched for age, sex, race, and county of residence, were examined at baseline and 2-year follow-up. OPG and RANKL were quantified by enzyme-immunoassay. Data were analyzed with the use of t-tests, ANOVA, and multiple regression analyses. Results Serum OPG was significantly lower in patients than controls at baseline, and there was a trend towards higher RANKL and a lower OPG/RANKL ratio. Patients with polyarthritis had significantly higher increments in RANKL from baseline to follow-up, compared to patients with oligoarthritis. RANKL was a significant negative predictor for increments in total body lean mass. Patients who were receiving corticosteroids (CS) or disease-modifying antirheumatic drugs (DMARDs) at follow-up had higher OPG/RANKL ratio compared with patients who did not receive this medication. Conclusions The data supports that levels of OPG are lower in patients with JIA compared to healthy children, and higher levels of RANKL is associated with more serious disease. RANKL was a significant negative predictor of lean mass in patients with JIA. The OPG/RANKL ratio was higher in patients on DMARDs or CS treatment. PMID:21134287

  19. c-Jun NH2-Terminal Kinase Activity in Subcutaneous Adipose Tissue but Not Nuclear Factor-κB Activity in Peripheral Blood Mononuclear Cells Is an Independent Determinant of Insulin Resistance in Healthy Individuals

    PubMed Central

    Sourris, Karly C.; Lyons, Jasmine G.; de Courten, Maximilian P.J.; Dougherty, Sonia L.; Henstridge, Darren C.; Cooper, Mark E.; Hage, Michelle; Dart, Anthony; Kingwell, Bronwyn A.; Forbes, Josephine M.; de Courten, Barbora

    2009-01-01

    OBJECTIVE Chronic low-grade activation of the immune system (CLAIS) predicts type 2 diabetes via a decrease in insulin sensitivity. Our study investigated potential relationships between nuclear factor-κB (NF-κB) and c-Jun NH2-terminal kinase (JNK) pathways—two pathways proposed as the link between CLAIS and insulin resistance. RESEARCH DESIGN AND METHODS Adiposity (dual-energy X-ray absorptiometry), waist-to-hip ratio (WHR), and insulin sensitivity (M, hyperinsulinemic-euglycemic clamp) were measured in 22 healthy nondiabetic volunteers (aged 29 ± 11 years, body fat 28 ± 11%). NF-κB activity (DNA-binding assay) and JNK1/2 activity (phosphorylated JNK) were assessed in biopsies of the vastus lateralis muscle and subcutaneous adipose tissue and in peripheral blood mononuclear cell (PBMC) lysates. RESULTS NF-κB activities in PBMCs and muscle were positively associated with WHR after adjustment for age, sex, and percent body fat (both P < 0.05). NF-κB activity in PBMCs was inversely associated with M after adjustment for age, sex, percent body fat, and WHR (P = 0.02) and explained 16% of the variance of M. There were no significant relationships between NF-κB activity and M in muscle or adipose tissue (both NS). Adipose-derived JNK1/2 activity was not associated with obesity (all P> 0.1), although it was inversely related to M (r = −0.54, P < 0.05) and explained 29% of its variance. When both NF-κB and JNK1/2 were examined statistically, only JNK1/2 activity in adipose tissue was a significant determinant of insulin resistance (P = 0.02). CONCLUSIONS JNK1/2 activity in adipose tissue but not NF-κB activity in PBMCs is an independent determinant of insulin resistance in healthy individuals. PMID:19258436

  20. Penehyclidine ameliorates acute lung injury by inhibiting Toll-like receptor 2/4 expression and nuclear factor-κB activation

    PubMed Central

    WANG, NA; SU, YUE; CHE, XIANG-MING; ZHENG, HUI; SHI, ZHI-GUO

    2016-01-01

    The aim of the present study was to investigate the effect of penehyclidine (PHC) on endotoxin-induced acute lung injury (ALI), as well as to examine the mechanism underlying this effect. A total of 60 rats were randomly divided into five groups, including the control (saline), LPS and three LPS + PHC groups. ALI was induced in the rats by injection of 8 mg lipopolysaccharide (LPS)/kg body weight. The rats were then treated with or without PHC at 0.3, 1 or 3 mg/kg body weight 1 min following LPS injection. After 6 h, serum levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 were determined by ELISA. In addition, the mRNA expression levels of toll-like receptor (TLR)2 and TLR4 were examined by reverse transcription-quantitative polymerase chain reaction in the lung tissue samples, and nuclear factor (NF)-κB p65 protein expression levels were examined by western blot analysis. The results demonstrated that lung injury was ameliorated by treatment with PHC (1 and 3 mg/kg body weight) as compared with treatment with LPS alone. Injection of LPS significantly increased the mRNA expression levels of TLR2 and TLR4, as well as the protein expression levels of NF-κB p65 in the lung tissue samples. Serum levels of TNF-α and IL-6 were also upregulated by LPS injection. Treatment of the rats with PHC following LPS injection suppressed the LPS-induced increase in TLR2/4 mRNA and NF-κB p65 protein expression levels. PHC also inhibited the increase in TNF-α and IL-6 serum levels. In addition, PHC reduced LPS-induced ALI and decreased the serum levels of TNF-α and IL-6, possibly by downregulating TLR2/4 mRNA expression and inhibiting NF-κB activity, and consequently alleviating the inflammatory response. PMID:27168812

  1. Active Nuclear Import of Membrane Proteins Revisited

    PubMed Central

    Laba, Justyna K.; Steen, Anton; Popken, Petra; Chernova, Alina; Poolman, Bert; Veenhoff, Liesbeth M.

    2015-01-01

    It is poorly understood how membrane proteins destined for the inner nuclear membrane pass the crowded environment of the Nuclear Pore Complex (NPC). For the Saccharomyces cerevisiae proteins Src1/Heh1 and Heh2, a transport mechanism was proposed where the transmembrane domains diffuse through the membrane while the extralumenal domains encoding a nuclear localization signal (NLS) and intrinsically disordered linker (L) are accompanied by transport factors and travel through the NPC. Here, we validate the proposed mechanism and explore and discuss alternative interpretations of the data. First, to disprove an interpretation where the membrane proteins become membrane embedded only after nuclear import, we present biochemical and localization data to support that the previously used, as well as newly designed reporter proteins are membrane-embedded irrespective of the presence of the sorting signals, the specific transmembrane domain (multipass or tail anchored), independent of GET, and also under conditions that the proteins are trapped in the NPC. Second, using the recently established size limit for passive diffusion of membrane proteins in yeast, and using an improved assay, we confirm active import of polytopic membrane protein with extralumenal soluble domains larger than those that can pass by diffusion on similar timescales. This reinforces that NLS-L dependent active transport is distinct from passive diffusion. Thirdly, we revisit the proposed route through the center of the NPC and conclude that the previously used trapping assay is, unfortunately, poorly suited to address the route through the NPC, and the route thus remains unresolved. Apart from the uncertainty about the route through the NPC, the data confirm active, transport factor dependent, nuclear transport of membrane-embedded mono- and polytopic membrane proteins in baker’s yeast. PMID:26473931

  2. Active Nuclear Import of Membrane Proteins Revisited.

    PubMed

    Laba, Justyna K; Steen, Anton; Popken, Petra; Chernova, Alina; Poolman, Bert; Veenhoff, Liesbeth M

    2015-01-01

    It is poorly understood how membrane proteins destined for the inner nuclear membrane pass the crowded environment of the Nuclear Pore Complex (NPC). For the Saccharomyces cerevisiae proteins Src1/Heh1 and Heh2, a transport mechanism was proposed where the transmembrane domains diffuse through the membrane while the extralumenal domains encoding a nuclear localization signal (NLS) and intrinsically disordered linker (L) are accompanied by transport factors and travel through the NPC. Here, we validate the proposed mechanism and explore and discuss alternative interpretations of the data. First, to disprove an interpretation where the membrane proteins become membrane embedded only after nuclear import, we present biochemical and localization data to support that the previously used, as well as newly designed reporter proteins are membrane-embedded irrespective of the presence of the sorting signals, the specific transmembrane domain (multipass or tail anchored), independent of GET, and also under conditions that the proteins are trapped in the NPC. Second, using the recently established size limit for passive diffusion of membrane proteins in yeast, and using an improved assay, we confirm active import of polytopic membrane protein with extralumenal soluble domains larger than those that can pass by diffusion on similar timescales. This reinforces that NLS-L dependent active transport is distinct from passive diffusion. Thirdly, we revisit the proposed route through the center of the NPC and conclude that the previously used trapping assay is, unfortunately, poorly suited to address the route through the NPC, and the route thus remains unresolved. Apart from the uncertainty about the route through the NPC, the data confirm active, transport factor dependent, nuclear transport of membrane-embedded mono- and polytopic membrane proteins in baker's yeast. PMID:26473931

  3. Antiosteoclastogenesis activity of a CO2 laser antagonizing receptor activator for nuclear factor kappaB ligand-induced osteoclast differentiation of murine macrophages

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Liang; Kao, Chia-Tze; Fang, Hsin-Yuan; Huang, Tsui-Hsien; Chen, Yi-Wen; Shie, Ming-You

    2015-03-01

    Macrophage cells are the important effector cells in the immune reaction which are indispensable for osteoclastogenesis; their heterogeneity and plasticity renders macrophages a primer target for immune system modulation. In recent years, there have been very few studies about the effects of macrophage cells on laser treatment-regulated osteoclastogenesis. In this study, RAW 264.7 macrophage cells were treated with RANKL to regulate osteoclastogenesis. We used a CO2 laser as a model biostimulation to investigate the role of osteoclastogenic. We also evaluated cell viability, cell death and cathepsin K expression. The CO2 laser inhibited a receptor activator of the NF-ĸB ligand (RANKL)-induced formation of osteoclasts during the osteoclast differentiation process. It was also found that irradiation for two times reduced RANKL-enhanced TRAP activity in a dose-dependent manner. Furthermore, CO2 laser-treatment diminished the expression and secretion of cathepsin K elevated by RANKL and was concurrent with the inhibition of TRAF6 induction and NF-ĸB activation. The current report demonstrates that CO2 laser abrogated RANKL-induced osteoclastogenesis by retarding osteoclast differentiation. The CO2 laser can modulate every cell through dose-dependent in vitro RANKL-mediated osteoclastogenesis, such as the proliferation and fusion of preosteoclasts and the maturation of osteoclasts. Therefore, the current results serve as an improved explanation of the cellular roles of macrophage cell populations in osteoclastogenesis as well as in alveolar bone remodeling by CO2 laser-treatment.

  4. Review of EPRI Nuclear Human Factors Program

    SciTech Connect

    Hanes, L.F.; O`Brien, J.F.

    1996-03-01

    The Electric Power Research Institute (EPRI) Human Factors Program, which is part of the EPRI Nuclear Power Group, was established in 1975. Over the years, the Program has changed emphasis based on the shifting priorities and needs of the commercial nuclear power industry. The Program has produced many important products that provide significant safety and economic benefits for EPRI member utilities. This presentation will provide a brief history of the Program and products. Current projects and products that have been released recently will be mentioned.

  5. Activating transcription factor 2 in mesenchymal tumors.

    PubMed

    Endo, Makoto; Su, Le; Nielsen, Torsten O

    2014-02-01

    Activating transcription factor 2 (ATF2) is a member of activator protein 1 superfamily, which can heterodimerize with other transcription factors regulating cell differentiation and survival. ATF2 assembles into a complex with the synovial sarcoma translocation, chromosome 18 (SS18)-synovial sarcoma, X breakpoint (SSX) fusion oncoprotein, and the transducin-like enhancer of split 1 (TLE1) corepressor, driving oncogenesis in synovial sarcoma. The fusion oncoproteins in many other translocation-associated sarcomas incorporate transcription factors from the ATF/cAMP response element binding or E26 families, which potentially form heterodimers with ATF2 to regulate transcription. ATF2 may therefore play an important role in the oncogenesis of many mesenchymal tumors, but as yet, little is known about its protein expression in patient specimens. Herein we perform immunohistochemical analyses using a validated specific antibody for ATF2 expression and intracellular localization on a cohort of 594 malignant and 207 benign mesenchymal tumors representing 47 diagnostic entities. Melanoma served as a positive control for nuclear and cytoplasmic staining. High nuclear ATF2 expression was mainly observed in translocation-associated and/or spindle cell sarcomas including synovial sarcoma, desmoplastic small round cell tumor, endometrial stromal sarcoma, gastrointestinal stromal tumor, malignant peripheral nerve sheath tumor, and solitary fibrous tumor. Cytoplasmic ATF2 expression was less frequently seen than nuclear expression in malignant mesenchymal tumors. Benign mesenchymal tumors mostly showed much lower nuclear and cytoplasmic ATF2 expression. PMID:24289970

  6. A nuclear factor for interleukin-6 expression (NF-IL6) and the glucocorticoid receptor synergistically activate transcription of the rat alpha 1-acid glycoprotein gene via direct protein-protein interaction.

    PubMed Central

    Nishio, Y; Isshiki, H; Kishimoto, T; Akira, S

    1993-01-01

    The acute-phase reaction is accompanied by an increase in a variety of serum proteins, named acute-phase proteins. The synthesis of these proteins is synergistically controlled by glucocorticoids and inflammatory cytokines such as interleukin-1 (IL-1), IL-6, and tumor necrosis factor alpha. Recently, we have cloned nuclear factor-IL-6 (NF-IL6), a transcription factor that activates the IL-6 gene, and have demonstrated its involvement in the expression of acute-phase-protein genes. We report here an analysis of the molecular mechanisms by which inflammatory cytokines and glucocorticoid act synergistically to activate expression of the rat alpha 1-acid glycoprotein (AGP) gene. We found that NF-IL6 and ligand-activated rat glucocorticoid receptor acted synergistically to transactivate the AGP gene and that maximal transcriptional activation of the AGP gene required expression of both intact NF-IL6 and rat glucocorticoid receptor. Surprisingly, however, transcriptional synergism was still observed even when one of the two factors lacked either its DNA-binding or transcriptional-activation function. We present evidence for a direct protein-protein interaction between these two distinct transcription factors and propose that this may be responsible for the synergistic activation of the rat AGP gene. Images PMID:8441418

  7. Nuclear transport factors: global regulation of mitosis.

    PubMed

    Forbes, Douglass J; Travesa, Anna; Nord, Matthew S; Bernis, Cyril

    2015-08-01

    The unexpected repurposing of nuclear transport proteins from their function in interphase to an equally vital and very different set of functions in mitosis was very surprising. The multi-talented cast when first revealed included the import receptors, importin alpha and beta, the small regulatory GTPase RanGTP, and a subset of nuclear pore proteins. In this review, we report that recent years have revealed new discoveries in each area of this expanding story in vertebrates: (a) The cast of nuclear import receptors playing a role in mitotic spindle regulation has expanded: both transportin, a nuclear import receptor, and Crm1/Xpo1, an export receptor, are involved in different aspects of spindle assembly. Importin beta and transportin also regulate nuclear envelope and pore assembly. (b) The role of nucleoporins has grown to include recruiting the key microtubule nucleator - the γ-TuRC complex - and the exportin Crm1 to the mitotic kinetochores of humans. Together they nucleate microtubule formation from the kinetochores toward the centrosomes. (c) New research finds that the original importin beta/RanGTP team have been further co-opted by evolution to help regulate other cellular and organismal activities, ranging from the actual positioning of the spindle within the cell perimeter, to regulation of a newly discovered spindle microtubule branching activity, to regulation of the interaction of microtubule structures with specific actin structures. (d) Lastly, because of the multitudinous roles of karyopherins throughout the cell cycle, a recent large push toward testing their potential as chemotherapeutic targets has begun to yield burgeoning progress in the clinic. PMID:25982429

  8. Early exposure of interferon-γ inhibits signal transducer and activator of transcription-6 signalling and nuclear factor κB activation in a short-term monocyte-derived dendritic cell culture promoting ‘FAST’ regulatory dendritic cells

    PubMed Central

    Rojas-Canales, D; Krishnan, R; Jessup, C F; Coates, P T

    2012-01-01

    Interferon (IFN)-γ is a cytokine with immunomodulatory properties, which has been shown previously to enhance the generation of tolerogenic dendritic cells (DC) when administered early ex vivo in 7-day monocyte-derived DC culture. To generate tolerogenic DC rapidly within 48 h, human monocytes were cultured for 24 h with interleukin (IL)-4 and granulocyte–macrophage colony-stimulating factor (GM-CSF) in the presence (IFN-γ-DC) or absence of IFN-γ (500 U/ml) (UT-DC). DC were matured for 24 h with TNF-α and prostaglandin E2 (PGE2). DC phenotype, signal transducer and activator of transcription-6 (STAT-6) phosphorylation and promotion of CD4+CD25+CD127neg/lowforkhead box P3 (FoxP3)hi T cells were analysed by flow cytometry. DC nuclear factor (NF)-κB transcription factor reticuloendotheliosis viral oncogene homologue B (RELB) and IL-12p70 protein expression were also determined. Phenotypically, IFN-γ-DC displayed reduced DC maturation marker CD83 by 62% and co-stimulation molecules CD80 (26%) and CD86 (8%). IFN-γ treatment of monocytes inhibited intracellular STAT6, RELB nuclear translocation and IL-12p70 production. IFN-γ-DC increased the proportion of CD4+CD25+CD127neg/lowfoxp3hi T cells compared to UT-DC from 12 to 23%. IFN-γ-DC primed T cells inhibited antigen-specific, autologous naive T cell proliferation by 70% at a 1:1 naive T cells to IFN-γ-DC primed T cell ratio in suppression assays. In addition, we examined the reported paradoxical proinflammatory effects of IFN-γ and confirmed in this system that late IFN-γ exposure does not inhibit DC maturation marker expression. Early IFN-γ exposure is critical in promoting the generation of regulatory DC. Early IFN-γ modulated DC generated in 48 h are maturation arrested and promote the generation of antigen-specific regulatory T cells, which may be clinically applicable as a novel cellular therapy for allograft rejection. PMID:22288588

  9. Persistent activation of nuclear factor-kappa B and expression of pro-inflammatory cytokines in bone marrow cells after exposure of mice to protons

    NASA Astrophysics Data System (ADS)

    Rithidech, Kanokporn; Reungpatthanaphong, Paiboon; Honikel, Louise; Whorton, Elbert

    Protons are the most abundant component of solar particle events (SPEs) in space. Information is limited on early-and late-occurring in vivo biological effects of exposure to protons at doses and dose rates that are similar to what astronauts encounter in space. We conducted a study series to fill this knowledge gap. We focused on the biological effects of 100 MeV/n protons, which are one of the most abundant types of protons induced during SPEs. We gave BALB/cJ mice a whole-body exposure to 0.5 or 1.0 Gy of 100 MeV/n protons, delivered at 0.5 or 1.0 cGy/min. These doses and dose rates of protons were selected because they are comparable to those of SPEs taking place in space. For each dose and dose rate of 100 MeV/n protons, mice exposed to 0 Gy of protons served as sham controls. Mice included in this study were also part of a study series conducted to examine the extent and the mechanisms involved in in vivo induction of genomic instability (expressed as late-occurring chromosome instability) by 100 MeV/n protons. Bone marrow (BM) cells were collected from groups of mice for analyses at different times post-exposure, i.e. early time-points (1.5, 3, and 24 hr) and late time-points (1 and 6 months). At each harvest time, there were five mice per treatment group. Several endpoints were used to investigate the biological effects of 100 MeV/n protons in BM cells from irradiated and sham control mice. The scope of this study was to determine the dose-rate effects of 0.5 Gy of 100 MeV/n protons in BM cells on the kinetics of nuclear factor-kappa B (NF-kappa B) activation and the expression of selected NF-kappa B target proteins known to be involved in inflammatory response, i.e. pro-inflammatory cytokines (TNF-alpha, IL-1 beta, and IL-6). Significantly high levels (p values ranging from p¡0.01 and p¡0.05) of activated NF-kappa B were observed in BM cells collected from irradiated mice, relative to those obtained from the corresponding sham controls, at all time

  10. Gastro-duodenal fluid induced nuclear factor-κappaB activation and early pre-malignant alterations in murine hypopharyngeal mucosa

    PubMed Central

    Vageli, Dimitra P.; Prasad, Manju L.; Sasaki, Clarence T.

    2016-01-01

    We recently described the role of gastro-duodenal fluids (GDFs) in generating changes consistent with hypopharyngeal neoplasia through activation of NF-κB pathway, using an in vitro model of human hypopharyngeal normal keratinocytes. Here, we further provide evidence that gastro-duodenal reflux is a risk factor for early pre-malignant alterations in hypopharyngeal mucosa (HM) related to an activated NF-κB oncogenic pathway, using both an in vitro and a novel in vivo model of C57Bl/6J mice. Histological, immunohistochemical and automated quantitative analysis documents significant NF-κB activation and early pre-malignant alterations in HM topically exposed to GDFs, compared to acid alone and other controls. Early pre-malignant histologic lesions exhibited increased Ki67, CK14 and ΔNp63, cell proliferation markers, changes of cell adhesion molecules, E-Cadherin and β-catenin, and STAT3 activation. The in vivo effect of NF-κB activation is positively correlated with p-STAT3, Ki67, CK14 or β-catenin expression, while GDFs induce significant transcriptional activation of RELA(p65), bcl-2, TNF-α, STAT3, EGFR and wnt5A, in vivo. Our in vivo model demonstrates selectively activated NF-κB in response to topically administrated GDFs, leading to early pre-malignant events in HM. PMID:26745676

  11. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1.

    PubMed Central

    vom Baur, E; Zechel, C; Heery, D; Heine, M J; Garnier, J M; Vivat, V; Le Douarin, B; Gronemeyer, H; Chambon, P; Losson, R

    1996-01-01

    Using a yeast two-hybrid system we report the isolation of a novel mouse protein, mSUG1, that interacts with retinoic acid receptor alpha (RAR alpha) both in yeast cells and in vitro in a ligand- and AF-2 activating domain (AF-2 AD)-dependent manner and show that it is a structural and functional homologue of the essential yeast protein SUG1. mSUG1 also efficiently interacts with other nuclear receptors, including oestrogen (ER), thyroid hormone (TR), Vitamin D3 (VDR) and retinoid X (RXR) receptors. By comparing the interaction properties of these receptors with mSUG1 and TIF1, we demonstrate that: (i) RXR alpha efficiently interacts with TIF1, but not with mSUG1, whereas TR alpha interacts much more efficiently with mSUG1 than with TIF1, and RAR alpha, VDR and ER efficiently interact with mSUG1 and TIF1; (ii) the amphipathic alpha-helix core of the AF-2 AD is differentially involved in interactions of RAR alpha with mSUG1 and TIF1; (iii) the AF-2 AD cores of RAR alpha and ER are similarly involved in their interaction with TIF1, but not with mSUG1. Thus, the interaction interfaces between the different receptors and either mSUG1 or TIF1 may vary depending on the nature of the receptor and the putative mediator of its AF-2 function. We discuss the possibility that mSUG1 and TIF1 may mediate the transcriptional activity of the AF-2 of nuclear receptors through different mechanisms. Images PMID:8598193

  12. Retigeric Acid B Exhibits Antitumor Activity through Suppression of Nuclear Factor-κB Signaling in Prostate Cancer Cells in Vitro and in Vivo

    PubMed Central

    Liu, Yong-Qing; Hu, Xiao-Yan; Lu, Tao; Cheng, Yan-Na; Young, Charles Y. F.; Yuan, Hui-Qing; Lou, Hong-Xiang

    2012-01-01

    Previously, we reported that retigeric acid B (RB), a natural pentacyclic triterpenic acid isolated from lichen, inhibited cell growth and induced apoptosis in androgen-independent prostate cancer (PCa) cells. However, the mechanism of action of RB remains unclear. In this study, we found that using PC3 and DU145 cells as models, RB inhibited phosphorylation levels of IκBα and p65 subunit of NF-κB in a time- and dosage-dependent manner. Detailed study revealed that RB blocked the nuclear translocation of p65 and its DNA binding activity, which correlated with suppression of NF-κB-regulated proteins including Bcl-2, Bcl-xL, cyclin D1 and survivin. NF-κB reporter assay suggested that RB was able to inhibit both constitutive activated-NF-κB and LPS (lipopolysaccharide)-induced activation of NF-κB. Overexpression of RelA/p65 rescued RB-induced cell death, while knockdown of RelA/p65 significantly promoted RB-mediated inhibitory effect on cell proliferation, suggesting the crucial involvement of NF-κB pathway in this event. We further analyzed antitumor activity of RB in in vivo study. In C57BL/6 mice carrying RM-1 homografts, RB inhibited tumor growth and triggered apoptosis mainly through suppressing NF-κB activity in tumor tissues. Additionally, DNA microarray data revealed global changes in the gene expression associated with cell proliferation, apoptosis, invasion and metastasis in response to RB treatment. Therefore, our findings suggested that RB exerted its anti-tumor effect by targeting the NF-κB pathway in PCa cells, and this could be a general mechanism for the anti-tumor effect of RB in other types of cancers as well. PMID:22666431

  13. Wogonin prevents lipopolysaccharide-induced acute lung injury and inflammation in mice via peroxisome proliferator-activated receptor gamma-mediated attenuation of the nuclear factor-kappaB pathway.

    PubMed

    Yao, Jing; Pan, Di; Zhao, Yue; Zhao, Li; Sun, Jie; Wang, Yu; You, Qi-Dong; Xi, Tao; Guo, Qing-Long; Lu, Na

    2014-10-01

    Acute lung injury (ALI) from a variety of clinical disorders, characterized by diffuse inflammation, is a cause of acute respiratory failure that develops in patients of all ages. Previous studies reported that wogonin, a flavonoid-like chemical compound which was found in Scutellaria baicalensis, has anti-inflammatory effects in several inflammation models, but not in ALI. Here, the in vivo protective effect of wogonin in the amelioration of lipopolysaccharide (LPS) -induced lung injury and inflammation was assessed. In addition, the in vitro effects and mechanisms of wogonin were studied in the mouse macrophage cell lines Ana-1 and RAW264.7. In vivo results indicated that wogonin attenuated LPS-induced histological alterations. Peripheral blood leucocytes decreased in the LPS-induced group, which was ameliorated by wogonin. In addition, wogonin inhibited the production of several inflammatory cytokines, including tumour necrosis factor-α, interleukin-1β (IL-1β) and IL-6, in the bronchoalveolar lavage fluid and lung tissues after LPS challenge, while the peroxisome proliferator-activated receptor γ (PPARγ) inhibitor GW9662 reversed these effects. In vitro results indicated that wogonin significantly decreased the secretion of IL-6, IL-1β and tumour necrosis factor-α in Ana-1 and RAW264.7 cells, which was suppressed by transfection of PPARγ small interfering RNA and GW9662 treatment. Moreover, wogonin activated PPARγ, induced PPARγ-mediated attenuation of the nuclear translocation and the DNA-binding activity of nuclear factor-κB in vivo and in vitro. In conclusion, all of these results showed that wogonin may serve as a promising agent for the attenuation of ALI-associated inflammation and pathology by regulating the PPARγ-involved nuclear factor-κB pathway. PMID:24766487

  14. Roles of lipoxin A4 receptor activation and anti-interleukin-1β antibody on the toll-like receptor 2/mycloid differentiation factor 88/nuclear factor-κB pathway in airway inflammation induced by ovalbumin

    PubMed Central

    KONG, XIA; WU, SHENG-HUA; ZHANG, LI; CHEN, XIAO-QING

    2015-01-01

    Previous studies investigating the role of toll-like receptors (TLRs) in asthma have been inconclusive. It has remained elusive whether the toll-like receptors (TLR2)/mycloid differentiation factor 88 (MyD88)/nuclear factor (NF)-κB signaling pathway is involved in lipoxin A4 (LXA4)-induced protection against asthma. Therefore, the present study investigated whether ovalbumin (OVA)-induced airway inflammation is mediated by upregulation of the TLR2/MyD88/NF-κB signaling pathway, and whether it proceeds via the inhibition of the activation of the LXA4 receptor and anti-interleukin (IL)-1β antibodies. Mice with airway inflammation induced by OVA administration were treated with or without a LXA4 receptor agonist, BML-111 and anti-IL-1β antibody. Serum levels of IL-1β, IL-4, IL-8 and interferon-γ (IFN-γ) were assessed, and levels of IL-1β, IL-4, IL-8 and OVA-immunoglobulin (Ig)E, as well as leukocyte counts in the bronchoalveolar lavage fluid (BALF) were measured. Pathological features and expression of TLR2, MyD88 and NF-κB in the lungs were analyzed. Expression of TLR2 and MyD88, and activation of NF-κB in leukocytes as well as levels of IL-4, IL-6 and IL-8 released from leukocytes exposed to IL-1β were assessed. OVA treatment increased the levels of IL-1β, IL-4 and IL-8 in the serum and BLAF, the number of leukocytes and the levels of OVA-IgE in the BALF, the expression of TLR2 and MyD88, and the activation of NF-κB in the lung. These increments induced by OVA were inhibited by treatment with BML-111 and anti-IL-1β antibodies. Treatment of the leukocytes with BML-111 or TLR2 antibody, or MyD88 or NF-κB inhibitor, all blocked the IL-1β-triggered production of IL-4, IL-6 and IL-8 and activation of NF-κB. Treatment of the leukocytes with BML-111 or TLR2 antibody suppressed IL-1β-induced TLR2 and MyD88 expression. The present study therefore suggested that OVA-induced airway inflammation is mediated by the TLR2/MyD88/NF-κB pathway. IL-1β has a

  15. Dopamine impairs functional integrity of rat hepatocytes through nuclear factor kappa B activity modulation: An in vivo, ex vivo, and in vitro study.

    PubMed

    Sun, Cheuk-Kwan; Kao, Ying-Hsien; Lee, Po-Huang; Wu, Ming-Chang; Chen, Kun-Cho; Lin, Yu-Chun; Tsai, Ming-Shian; Chen, Po-Han

    2015-12-01

    Dopamine (DA) is commonly used to maintain the hemodynamic stability of brain-dead donors despite its controversial effects on organ functions. This study aimed at examining the hemodynamic effect of DA in a rat brain-dead model in vivo, alteration of hepatocyte integrity in liver grafts after ex vivo preservation, and changes in cultured clone-9 hepatocytes including cellular viability, cell cycle, apoptotic regulators, and lipopolysaccharide (LPS)-stimulated nuclear factor kappa B (NF-κB) signaling machinery. Although in vivo findings demonstrated enhanced portal venous blood flow and hepatic microcirculatory perfusion after DA infusion, no apparent advantage was noted in preserving hepatocyte integrity ex vivo. In vitro, prolonged exposure to high-dose DA reduced proliferation and induced G1 growth arrest of clone-9 hepatocytes with concomitant decreases in B cell lymphoma 2 (BCL2)/B cell lymphoma 2-associated X protein (BAX) and heat shock protein 70/BAX protein ratios and intracellular NF-κB p65. Moreover, DA pretreatment suppressed LPS-elicited inhibitor of κBα phosphorylation and subsequent NF-κB nuclear translocation, suggesting that DA may down-regulate NF-κB signaling, thereby reducing expression of antiapoptotic regulators, such as BCL2. In conclusion, despite augmentation of hepatic perfusion, DA infusion failed to preserve hepatocyte integrity both in vivo and ex vivo. In vitro findings demonstrated that high-dose DA may hamper the function of NF-κB signaling machinery and eventually undermine functional integrity of hepatocytes in liver grafts. PMID:26421799

  16. Building Public Confidence in Nuclear Activities

    SciTech Connect

    Isaacs, T

    2002-03-27

    Achieving public acceptance has become a central issue in discussions regarding the future of nuclear power and associated nuclear activities. Effective public communication and public participation are often put forward as the key building blocks in garnering public acceptance. A recent international workshop in Finland provided insights into other features that might also be important to building and sustaining public confidence in nuclear activities. The workshop was held in Finland in close cooperation with Finnish stakeholders. This was most appropriate because of the recent successes in achieving positive decisions at the municipal, governmental, and Parliamentary levels, allowing the Finnish high-level radioactive waste repository program to proceed, including the identification and approval of a proposed candidate repository site. Much of the workshop discussion appropriately focused on the roles of public participation and public communications in building public confidence. It was clear that well constructed and implemented programs of public involvement and communication and a sense of fairness were essential in building the extent of public confidence needed to allow the repository program in Finland to proceed. It was also clear that there were a number of other elements beyond public involvement that contributed substantially to the success in Finland to date. And, in fact, it appeared that these other factors were also necessary to achieving the Finnish public acceptance. In other words, successful public participation and communication were necessary but not sufficient. What else was important? Culture, politics, and history vary from country to country, providing differing contexts for establishing and maintaining public confidence. What works in one country will not necessarily be effective in another. Nonetheless, there appear to be certain elements that might be common to programs that are successful in sustaining public confidence and some of

  17. Building Public Confidence in Nuclear Activities

    SciTech Connect

    Isaacs, T

    2002-02-13

    Achieving public acceptance has become a central issue in discussions regarding the future of nuclear power and associated nuclear activities. Effective public communication and public participation are often put forward as the key building blocks in garnering public acceptance. A recent international workshop in Finland provided insights into other features that might also be important to building and sustaining public confidence in nuclear activities. The workshop was held in Finland in close cooperation with Finnish stakeholders. This was most appropriate because of the recent successes in achieving positive decisions at the municipal, governmental, and Parliamentary levels, allowing the Finnish high-level radioactive waste repository program to proceed, including the identification and approval of a proposed candidate repository site Much of the workshop discussion appropriately focused on the roles of public participation and public communications in building public confidence. It was clear that well constructed and implemented programs of public involvement and communication and a sense of fairness were essential in building the extent of public confidence needed to allow the repository program in Finland to proceed. It was also clear that there were a number of other elements beyond public involvement that contributed substantially to the success in Finland to date. And, in fact, it appeared that these other factors were also necessary to achieving the Finnish public acceptance. In other words, successful public participation and communication were necessary but not sufficient. What else was important? Culture, politics, and history vary from country to country, providing differing contexts for establishing and maintaining public confidence. What works in one country will not necessarily be effective in another. Nonetheless, there appear to be certain elements that might be common to programs that are successful in sustaining public confidence, and some of

  18. Loss of Calpain 3 Proteolytic Activity Leads to Muscular Dystrophy and to Apoptosis-Associated Iκbα/Nuclear Factor κb Pathway Perturbation in Mice

    PubMed Central

    Richard, Isabelle; Roudaut, Carinne; Marchand, Sylvie; Baghdiguian, Stephen; Herasse, Muriel; Stockholm, Daniel; Ono, Yasuko; Suel, Laurence; Bourg, Nathalie; Sorimachi, Hiroyuki; Lefranc, Gérard; Fardeau, Michel; Sébille, Alain; Beckmann, Jacques S.

    2000-01-01

    Calpain 3 is known as the skeletal muscle–specific member of the calpains, a family of intracellular nonlysosomal cysteine proteases. It was previously shown that defects in the human calpain 3 gene are responsible for limb girdle muscular dystrophy type 2A (LGMD2A), an inherited disease affecting predominantly the proximal limb muscles. To better understand the function of calpain 3 and the pathophysiological mechanisms of LGMD2A and also to develop an adequate model for therapy research, we generated capn3-deficient mice by gene targeting. capn3-deficient mice are fully fertile and viable. Allele transmission in intercross progeny demonstrated a statistically significant departure from Mendel's law. capn3-deficient mice show a mild progressive muscular dystrophy that affects a specific group of muscles. The age of appearance of myopathic features varies with the genetic background, suggesting the involvement of modifier genes. Affected muscles manifest a similar apoptosis-associated perturbation of the IκBα/nuclear factor κB pathway as seen in LGMD2A patients. In addition, Evans blue staining of muscle fibers reveals that the pathological process due to calpain 3 deficiency is associated with membrane alterations. PMID:11134085

  19. Nitric oxide and superoxide anion differentially activate poly(ADP-ribose) polymerase-1 and Bax to induce nuclear translocation of apoptosis-inducing factor and mitochondrial release of cytochrome c after spinal cord injury.

    PubMed

    Wu, Kay L H; Hsu, Chin; Chan, Julie Y H

    2009-07-01

    We reported previously that complete spinal cord transection (SCT) results in depression of mitochondrial respiratory chain enzyme activity that triggers apoptosis via sequential activations of apoptosis-inducing factor (AIF)- and caspase-dependent cascades in the injured spinal cord. This study tested the hypothesis that nitric oxide (NO) and superoxide anion (O(2)(.-)) serve as the interposing signals between SCT and impaired mitochondrial respiratory functions. Adult Sprague-Dawley rats manifested a significant increase in NO or O(2)(.-) level in the injured spinal cord during the first 3 days after SCT. The augmented O(2)(.-) production, along with concomitant reduction in mitochondrial respiratory chain enzyme activity or ATP level, nuclear translocation of AIF, cytosolic release of cytochrome c, and DNA fragmentation were reversed by osmotic minipump infusion of a NO trapping agent, carboxy-PTIO, or a superoxide dismutase mimetic, tempol, into the epicenter of the transected spinal cord. Intriguingly, carboxy-PTIO significantly suppressed upregulation of poly(ADP-ribose) polymerase-1 (PARP-1) in the nucleus, attenuated nuclear translocation of AIF, inhibited mitochondrial translocation of Bax and antagonized mitochondrial release of cytochrome c; whereas tempol only inhibited the later two cellular events after SCT. We conclude that overproduction of NO and O(2)(.-) in the injured spinal cord promulgates mitochondrial dysfunction and triggers AIF- and caspase-dependent apoptotic signaling cascades via differential upregulation of nuclear PARP-1 and mitochondrial translocation of Bax. PMID:19473058

  20. Caffeic acid 3,4-dihydroxy-phenethyl ester suppresses receptor activator of NF-κB ligand–induced osteoclastogenesis and prevents ovariectomy-induced bone loss through inhibition of mitogen-activated protein kinase/activator protein 1 and Ca2+–nuclear factor of activated T-cells cytoplasmic 1 signaling pathways.

    PubMed

    Wu, Xian; Li, Zhenxi; Yang, Zhengfang; Zheng, Chunbing; Jing, Ji; Chen, Yihua; Ye, Xiyun; Lian, Xiaoyuan; Qiu, Wenwei; Yang, Fan; Tang, Jie; Xiao, Jianru; Liu, Mingyao; Luo, Jian

    2012-06-01

    Receptor activator of NF-κB ligand (RANKL) stimulation leads to the activation of mitogen-activated protein kinase (MAPK)/AP-1 and Ca2+–nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) signaling pathways in osteoclastogenesis. Targeting these pathways has been an encouraging strategy for bone-related diseases, such as postmenopausal osteoporosis. In this study, we examined the effects of caffeic acid 3,4-dihydroxy-phenethyl ester (CADPE) on osteoclastogenesis. In mouse bone marrow monocytes (BMMs) and RAW264.7 cells, CADPE suppressed RANKL-induced osteoclast differentiation and actin-ring formation in a dose-dependent manner within non–growth inhibitory concentrations at the early stage, while CADPE had no effect on macrophage colony-stimulating factor (M-CSF)-induced proliferation and differentiation. At the molecular level, CADPE inhibited RANKL-induced phosphorylation of MAPKs, including extracellular signal-regulated kinases 1/2 (ERK1/2), p38, and c-Jun N-terminal kinase (JNK), without significantly affecting the NF-κB signaling pathway. CADPE abrogated RANKL-induced activator protein 1 (AP-1)/FBJ murine osteosarcoma viral oncogene homolog (c-Fos) nuclear translocation and activation. Overexpression of c-Fos prevented the inhibition by CADPE of osteoclast differentiation. Furthermore, CADPE suppressed RANKL-induced the tumor necrosis factor receptor associated factor 6 (TRAF6) interaction with c-src tyrosine kinase (c-Src), blocked RANKL-induced the phosphorylation of protein kinase B (AKT), and inhibited RANKL-induced Ca2+ oscillation. As a result, CADPE decreased osteoclastogenesis-related marker gene expression, including NFATc1, TRAP, cathepsin K, and c-Src. To test the effects of CADPE on osteoclast activity in vivo, we showed that CADPE prevented ovariectomy-induced bone loss by inhibiting osteoclast activity. Together, our data demonstrate that CADPE suppresses osteoclastogenesis and bone loss through inhibiting RANKL-induced MAPKs and Ca

  1. Factors to be Considered in Long-Term Monitoring of a Former Nuclear Test Site in a Geophysically Active and Water-rich Environment

    NASA Astrophysics Data System (ADS)

    Eichelberger, J.; Hill, G.; Patrick, M.; Freymueller, J.; Barnes, D.; Kelley, J.; Layer, P.

    2001-12-01

    The US Department of Energy (USDOE) is currently undertaking an ambitious program of environmental remediation of the surface of Amchitka Island in the western Aleutians, where three underground nuclear tests were conducted during 1963-1971. Among these tests was Cannikin, at approximately 5 megatons the largest nuclear device ever exploded underground by the United States and equivalent in seismic energy release to a magnitude 7 earthquake. The blast caused about 1 m of uplift of the Bering Sea coastline in the 3-km-wide fault-bounded block within which it was detonated. The impending final transfer of stewardship of this area to the US Fish and Wildlife Service as part of the Alaska Maritime National Wildlife Refuge raises anew the question of the potential for transport of radionuclides from the shot cavity, located at 1791 m depth in mafic laharic breccias, into the accessible environment. In particular, there is concern about whether such contaminants could become concentrated in the marine food chain that is used for subsistence by Alaskan Natives (and by the broader international community through the North Pacific and Bering Fisheries). Both possible transport pathways in the form of faults and transport medium in the form of abundant water are present. Since the pre-plate tectonics paradigm days of active testing, the scientific community's understanding of the tectonic context of the Aleutian Islands has grown tremendously. Recently, the first direct measurements of motion within the arc have been made. How this new understanding should guide plans for long-term monitoring of the site is an important question. Convergence due to subduction of the North Pacific plate beneath North America ranges from near-normal at the Alaska Peninsula and eastern Aleutian islands to highly oblique in the west. Amchitka itself can be seen as a subaerial portion of a 200-km-long Rat Island arc crest segment. This fragment has torn from the Andreanof Islands to the east at

  2. Berberis aristata Ameliorates Adjuvant-Induced Arthritis by Inhibition of NF-κB and Activating Nuclear Factor-E2-related Factor 2/hem Oxygenase (HO)-1 Signaling Pathway.

    PubMed

    Kumar, Rohit; Nair, Vinod; Gupta, Yogendra Kumar; Singh, Surender; Arunraja, S

    2016-08-01

    The present study was carried out to investigate the anti-arthritic activity of Berberis aristata hydroalcoholic extract (BAHE) in formaldehyde-induced arthritis and adjuvant-induced arthritis (AIA) model. Arthritis was induced by administration of either formaldehyde (2% v/v) or CFA into the subplantar surface of the hind paw of the animal. In formaldehyde-induced arthritis and AIA, treatment of BAHE at doses 50, 100 and 200 mg/kg orally significantly decreased joint inflammation as evidenced by decrease in joint diameter and reduced inflammatory cell infiltration in histopathological examination. BAHE treatment demonstrated dose-dependent improvement in the redox status of synovium (decrease in GSH, MDA, and NO levels and increase in SOD and CAT activities). The beneficial effect of BAHE was substantiated with decreased expression of inflammatory markers such as IL-1β, IL-6, TNF-R1, and VEGF by immunohistochemistry analysis in AIA model. BAHE increased HO-1/Nrf-2 and suppressed NF-κB mRNA and protein expression in adjuvant immunized joint. Additionally, BAHE abrogated degrading enzymes, as there was decreased protein expression of MMP-3 and -9 in AIA. In conclusion, we demonstrated the anti-arthritic activity of Berberis aristata hydroalcoholic extract via the mechanism of inhibition of NF-κB and activation of Nrf-2/HO-1. PMID:27294302

  3. A mechanistic insight into a proteasome-independent constitutive inhibitor kappaBalpha (IkappaBalpha) degradation and nuclear factor kappaB (NF-kappaB) activation pathway in WEHI-231 B-cells.

    PubMed Central

    Shumway, Stuart D; Miyamoto, Shigeki

    2004-01-01

    Inducible activation of the transcription factor NF-kappaB (nuclear factor kappaB) is classically mediated by proteasomal degradation of its associated inhibitors, IkappaBalpha (inhibitory kappaBalpha) and IkappaBbeta. However, certain B-lymphocytes maintain constitutively nuclear NF-kappaB activity (a p50-c-Rel heterodimer) which is resistant to inhibition by proteasome inhibitors. This activity in the WEHI-231 B-cell line is associated with continual and preferential degradation of IkappaBalpha, which is also unaffected by proteasome inhibitors. Pharmacological studies indicated that there was a correlation between inhibition of IkappaBalpha degradation and constitutive p50-c-Rel activity. Domain analysis of IkappaBalpha by deletion mutagenesis demonstrated that an N-terminal 36-amino-acid sequence of IkappaBalpha represented an instability determinant for constitutive degradation. Moreover, domain grafting studies indicated that this sequence was sufficient to cause IkappaBbeta, but not chloramphenicol acetyltransferase, to be rapidly degraded in WEHI-231 B-cells. However, this sequence was insufficient to target IkappaBbeta to the non-proteasome degradation pathway, suggesting that there was an additional cis-element(s) in IkappaBalpha that was required for complete targeting. Nevertheless, the NF-kappaB pool associated with IkappaBbeta now became constitutively active by virtue of IkappaBbeta instability in these cells. These findings further support the notion that IkappaB instability governs the maintenance of constitutive p50-c-Rel activity in certain B-cells via a unique degradation pathway. PMID:14763901

  4. Sitagliptin inhibits endothelin-1 expression in the aortic endothelium of rats with streptozotocin-induced diabetes by suppressing the nuclear factor-κB/IκBα system through the activation of AMP-activated protein kinase

    PubMed Central

    TANG, SONG-TAO; SU, HUAN; ZHANG, QIU; TANG, HAI-QIN; WANG, CHANG-JIANG; ZHOU, QING; WEI, WEI; ZHU, HUA-QING; WANG, YUAN

    2016-01-01

    Emerging evidence suggests that dipeptidyl peptidase-4 (DPP-4) inhibitors, including sitagliptin, exert favourable effects on the vascular endothelium. DPP-4 inhibitors suppress the degradation of glucagon-like peptide-1 (GLP-1), which has been reported to enhance nitric oxide (NO) production. However, the effects of DPP-4 inhibitors on endothelin-1 (ET-1) expression in the aorta, as well as the underlying mechanisms responsible for these effects, have yet to be investigated in animal models of diabetes mellitus (DM). In the present study, the rats were randomly divided into the following four groups: i) control; ii) DM; iii) DM + low-dose sitagliptin (10 mg/kg); and iv) DM + high-dose sitagliptin (30 mg/kg). Apart from the control group, all the rats received a high-fat diet for 8 weeks prior to the induction of diabetes with an intraperitoneal injection of streptozotocin. The treatments were then administered for 12 weeks. The serum levels of ET-1, NO, GLP-1 and insulin were measured as well as endothelial function. The expression of ET-1, AMP-activated protein kinase (AMPK) and nuclear factor (NF)-κB/IκBα were determined. After 12 weeks of treatment, the diabetic rats receiving sitagliptin showed significantly elevated serum levels of GLP-1 and NO, and reduced levels of ET-1. Moreover, sitagliptin significantly attenuated endothelial dysfunction as well as the remodeling of the aortic wall. Notably, sitagliptin inhibited ET-1 expression at the transcriptional and translational level in the aorta, which may have been mediated by the suppression of the NF-κB/IκBα system induced by AMPK activation. The majority of the above-mentioned effects were dose dependent. Taken together, the findings of the present study indicate that sitagliptin inhibits ET-1 expression in the aortic endothelium by suppressing the NF-κB/IκBα system through the activation of the AMPK pathway in diabetic rats. These findings further demonstrate some of the vasoprotective properties

  5. Sitagliptin inhibits endothelin-1 expression in the aortic endothelium of rats with streptozotocin-induced diabetes by suppressing the nuclear factor-κB/IκBα system through the activation of AMP-activated protein kinase.

    PubMed

    Tang, Song-Tao; Su, Huan; Zhang, Qiu; Tang, Hai-Qin; Wang, Chang-Jiang; Zhou, Qing; Wei, Wei; Zhu, Hua-Qing; Wang, Yuan

    2016-06-01

    Emerging evidence suggests that dipeptidyl peptidase-4 (DPP-4) inhibitors, including sitagliptin, exert favourable effects on the vascular endothelium. DPP-4 inhibitors suppress the degradation of glucagon-like peptide-1 (GLP‑1), which has been reported to enhance nitric oxide (NO) production. However, the effects of DPP-4 inhibitors on endothelin-1 (ET-1) expression in the aorta, as well as the underlying mechanisms responsible for these effects, have yet to be investigated in animal models of diabetes mellitus (DM). In the present study, the rats were randomly divided into the following four groups: i) control; ii) DM; iii) DM + low‑dose sitagliptin (10 mg/kg); and iv) DM + high‑dose sitagliptin (30 mg/kg). Apart from the control group, all the rats received a high-fat diet for 8 weeks prior to the induction of diabetes with an intraperitoneal injection of streptozotocin. The treatments were then administered for 12 weeks. The serum levels of ET-1, NO, GLP-1 and insulin were measured as well as endothelial function. The expression of ET-1, AMP-activated protein kinase (AMPK) and nuclear factor (NF)-κB/IκBα were determined. After 12 weeks of treatment, the diabetic rats receiving sitagliptin showed significantly elevated serum levels of GLP-1 and NO, and reduced levels of ET-1. Moreover, sitagliptin significantly attenuated endothelial dysfunction as well as the remodeling of the aortic wall. Notably, sitagliptin inhibited ET-1 expression at the transcriptional and translational level in the aorta, which may have been mediated by the suppression of the NF-κB/IκBα system induced by AMPK activation. The majority of the above-mentioned effects were dose dependent. Taken together, the findings of the present study indicate that sitagliptin inhibits ET-1 expression in the aortic endothelium by suppressing the NF-κB/IκBα system through the activation of the AMPK pathway in diabetic rats. These findings further demonstrate some of the

  6. The G115S mutation associated with maturity-onset diabetes of the young impairs hepatocyte nuclear factor 4alpha activities and introduces a PKA phosphorylation site in its DNA-binding domain.

    PubMed

    Oxombre, Bénédicte; Kouach, Mostafa; Moerman, Ericka; Formstecher, Pierre; Laine, Bernard

    2004-11-01

    HNF4alpha (hepatocyte nuclear factor 4alpha) belongs to a complex transcription factor network that is crucial for the function of hepatocytes and pancreatic beta-cells. In these cells, it activates the expression of a very large number of genes, including genes involved in the transport and metabolism of glucose and lipids. Mutations in the HNF4alpha gene correlate with MODY1 (maturity-onset diabetes of the young 1), a form of type II diabetes characterized by an impaired glucose-induced insulin secretion. The MODY1 G115S (Gly115-->Ser) HNF4alpha mutation is located in the DNA-binding domain of this nuclear receptor. We show here that the G115S mutation failed to affect HNF4alpha-mediated transcription on apolipoprotein promoters in HepG2 cells. Conversely, in pancreatic beta-cell lines, this mutation resulted in strong impairments of HNF4alpha transcriptional activity on the promoters of LPK (liver pyruvate kinase) and HNF1alpha, with this transcription factor playing a key role in endocrine pancreas. We show as well that the G115S mutation creates a PKA (protein kinase A) phosphorylation site, and that PKA-mediated phosphorylation results in a decreased transcriptional activity of the mutant. Moreover, the G115E (Gly115-->Glu) mutation mimicking phosphorylation reduced HNF4alpha DNA-binding and transcriptional activities. Our results may account for the 100% penetrance of diabetes in human carriers of this mutation. In addition, they suggest that introduction of a phosphorylation site in the DNA-binding domain may represent a new mechanism by which a MODY1 mutation leads to loss of HNF4alpha function. PMID:15233628

  7. The G115S mutation associated with maturity-onset diabetes of the young impairs hepatocyte nuclear factoractivities and introduces a PKA phosphorylation site in its DNA-binding domain

    PubMed Central

    2004-01-01

    HNF4α (hepatocyte nuclear factor 4α) belongs to a complex transcription factor network that is crucial for the function of hepatocytes and pancreatic β-cells. In these cells, it activates the expression of a very large number of genes, including genes involved in the transport and metabolism of glucose and lipids. Mutations in the HNF4α gene correlate with MODY1 (maturity-onset diabetes of the young 1), a form of type II diabetes characterized by an impaired glucose-induced insulin secretion. The MODY1 G115S (Gly115→Ser) HNF4α mutation is located in the DNA-binding domain of this nuclear receptor. We show here that the G115S mutation failed to affect HNF4α-mediated transcription on apolipoprotein promoters in HepG2 cells. Conversely, in pancreatic β-cell lines, this mutation resulted in strong impairments of HNF4α transcriptional activity on the promoters of LPK (liver pyruvate kinase) and HNF1α, with this transcription factor playing a key role in endocrine pancreas. We show as well that the G115S mutation creates a PKA (protein kinase A) phosphorylation site, and that PKA-mediated phosphorylation results in a decreased transcriptional activity of the mutant. Moreover, the G115E (Gly115→Glu) mutation mimicking phosphorylation reduced HNF4α DNA-binding and transcriptional activities. Our results may account for the 100% penetrance of diabetes in human carriers of this mutation. In addition, they suggest that introduction of a phosphorylation site in the DNA-binding domain may represent a new mechanism by which a MODY1 mutation leads to loss of HNF4α function. PMID:15233628

  8. Dibenzylbutyrolactone lignans from Forsythia koreana fruits attenuate lipopolysaccharide-induced inducible nitric oxide synthetase and cyclooxygenase-2 expressions through activation of nuclear factor-κb and mitogen-activated protein kinase in RAW264.7 cells.

    PubMed

    Lee, Ji Yun; Cho, Bong Jae; Park, Tae Wook; Park, Byoung Eun; Kim, Soo Jung; Sim, Sang Soo; Kim, Chang Jong

    2010-01-01

    Previously, we reported that dibenzylbutyrolactone lignans (DBLLs) from the fruit of Forsythia koreana NAKAI (Oleaceae) has anti-inflammatory, antioxidant, and anti-asthmatic effects. In this study, to clarify the anti-inflammatory mechanisms of DBLL, we evaluated the effects of DBLLs on lipopolysaccharide-stimulated inducible nitric oxide synthetase (iNOS) and cyclooxygenase-2 (COX-2) expressions, nitric oxide (NO) and prostaglandin E(2) (PGE(2)) productions, nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) activations, inhibitor of κB (IκB) and inhibitor of κB kinase (IKK) phosphorylations in cytosolic proteins, and cytotoxicity in Raw264.7 cells. DBLLs potently suppressed both the enzyme expression and DNA-binding activity of NF-κB. Arctiin, arctigenin (1.0 µM) and matairesinol (10 µM) inhibited the expression of iNOS by 37.71±2.86%, 32.51±4.28%, and 27.44±2.65%, respectively, and arctiin, arctigenin (0.1 µM) and matairesinol (1.0 µM) inhibited COX-2 expression by 37.93±7.81%, 26.70±4.61% and 29.37±5.21%, respectively. The inhibitory effects of DBLLs on NO and PGE(2) productions were the same patterns as those seen for the reductions in iNOS and COX-2 expression, respectively. Arctiin, arctigenin (1.0 µM) and matairesinol (10 µM) significantly (p<0.05) inhibited NF-κB DNA binding by 44.85±6.67%, 44.16±6.61%, and 44.79±5.62%, respectively, and arctiin (0.1 µM) and arctigenin (1.0 µM) significantly (p<0.05) inhibited the phosphorylation of IκB by 20.58±3.86% and 25.99±6.18%, respectively. Furthermore, arctiin, matairesinol (1.0 µM) and arctigenin (10 µM) inhibited the phosphorylation of IKK by 38.80±6.64%, 38.33±6.65%, and 38.57±8.14%, respectively. In addition, DBLLs potently inhibited the lipopolysaccharide (LPS)-induced activation of MAPKs (SAPK/c-Jun NH(2)-terminal kinase (JNK), p38, and extracellular signal receptor-activated kinase (ERK)1/2). Overall, arctiin was the most effective; its effect was nearly

  9. Nuclear Control of Respiratory Chain Expression by Nuclear Respiratory Factors and PGC-1-Related Coactivator

    PubMed Central

    Scarpulla, Richard C.

    2010-01-01

    Expression of the respiratory apparatus depends on both nuclear and mitochondrial genes. Although these genes are sequestered in distinct cellular organelles, their transcription relies on nucleus-encoded factors. Certain of these factors are directed to the mitochondria, where they sponsor the bi-directional transcription of mitochondrial DNA. Others act on nuclear genes that encode the majority of the respiratory subunits and many other gene products required for the assembly and function of the respiratory chain. The nuclear respiratory factors, NRF-1 and NRF-2, contribute to the expression of respiratory subunits and mitochondrial transcription factors and thus have been implicated in nucleo-mitochondrial interactions. In addition, coactivators of the PGC-1 family serve as mediators between the environment and the transcriptional machinery governing mitochondrial biogenesis. One family member, peroxisome proliferator-activated receptor γ coactivator PGC-1-related coactivator (PRC), is an immediate early gene product that is rapidly induced by mitogenic signals in the absence of de novo protein synthesis. Like other PGC-1 family members, PRC binds NRF-1 and activates NRF-1 target genes. In addition, PRC complexes with NRF-2 and HCF-1 (host cell factor-1) in the activation of NRF-2-dependent promoters. HCF-1 functions in cell-cycle progression and has been identified as an NRF-2 coactivator. The association of these factors with PRC is suggestive of a role for the complex in cell growth. Finally, shRNA-mediated knock down of PRC expression results in a complex phenotype that includes the inhibition of respiratory growth on galactose and the loss of respiratory complexes. Thus, PRC may help integrate the expression of the respiratory apparatus with the cell proliferative program. PMID:19076454

  10. Role of reactive oxygen species in brucein D-mediated p38-mitogen-activated protein kinase and nuclear factor-κB signalling pathways in human pancreatic adenocarcinoma cells

    PubMed Central

    Lau, S T; Lin, Z X; Leung, P S

    2010-01-01

    Background: In human pancreatic adenocarcinoma, nuclear factor-kappa-B (NF-κB) transcription factor is constitutively activated that contributes to the resistance of the tumour cells to induced apoptosis. In our earlier studies, we have shown that brucein D (BD) mediated apoptosis through activation of the p38-mitogen-activated protein kinase (MAPK) signalling pathway in pancreatic cancer cells. This study investigated the function of reactive oxygen species (ROS) in BD-mediated p38-MAPK and NF-κB signalling pathways in PANC-1 cells. Methods: Glutathione and dihydroethidium assays were used to measure the antioxidant and superoxide levels, respectively. The protein expression of p22phox, p67phox and p38-MAPK were examined by western blot. The NF-κB activity was evaluated by electrophoretic mobility shift assay. Results: Treatment with BD depleted the intracellular glutathione levels in PANC-1 cells. Brucein D triggered the activation of NADPH oxidase isoforms, p22phox and p67phox while enhancing the generation of superoxide. Increases in both intracellular ROS and NADPH oxidase activity were inhibited by an antioxidant, N-acetylcysteine (NAC). Brucein D-mediated activation of p38-MAPK was also inhibited by NAC. However, inhibition of NF-κB activity in BD-treated cells was independent of ROS. In vivo studies showed that BD treatment effectively reduced the rate of xenograft human pancreatic tumour in nude mice with no significant toxicity. Conclusion: These data suggest that BD is an apoptogenic agent for pancreatic cancer cells through activation of the redox-sensitive p38-MAPK pathway and inhibition of NF-κB anti-apoptotic activity in pancreatic cancer cells. PMID:20068565

  11. Using Nuclear Receptor Activity to Stratify Hepatocarcinogens

    PubMed Central

    Shah, Imran; Houck, Keith; Judson, Richard S.; Kavlock, Robert J.; Martin, Matthew T.; Reif, David M.; Wambaugh, John; Dix, David J.

    2011-01-01

    Background Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic analysis of new in vitro human NR activity data on 309 environmental chemicals in relationship to their liver cancer-related chronic outcomes in rodents. Results The effects of 309 environmental chemicals on human constitutive androstane receptors (CAR/NR1I3), pregnane X receptor (PXR/NR1I2), aryl hydrocarbon receptor (AhR), peroxisome proliferator-activated receptors (PPAR/NR1C), liver X receptors (LXR/NR1H), retinoic X receptors (RXR/NR2B) and steroid receptors (SR/NR3) were determined using in vitro data. Hepatic histopathology, observed in rodents after two years of chronic treatment for 171 of the 309 chemicals, was summarized by a cancer lesion progression grade. Chemicals that caused proliferative liver lesions in both rat and mouse were generally more active for the human receptors, relative to the compounds that only affected one rodent species, and these changes were significant for PPAR (p0.001), PXR (p0.01) and CAR (p0.05). Though most chemicals exhibited receptor promiscuity, multivariate analysis clustered them into relatively few NR activity combinations. The human NR activity pattern of chemicals weakly associated with the severity of rodent liver cancer lesion progression (p0.05). Conclusions The rodent carcinogens had higher in vitro potency for human NR relative to non-carcinogens. Structurally diverse chemicals with similar NR promiscuity patterns weakly associated with the severity of rodent liver cancer progression. While these results do not prove the role of NR activation in human liver cancer, they do have implications for nuclear receptor chemical biology and provide insights into putative toxicity pathways. More importantly, these findings suggest the

  12. Activation of human factor V by factor Xa and thrombin

    SciTech Connect

    Monkovic, D.D.; Tracy, P.B. )

    1990-02-06

    The activation of human factor V by factor Xa and thrombin was studied by functional assessment of cofactor activity and sodium dodecyl sulfate-polycarylamide gel electrophoresis followed by either autoradiography of {sup 125}I-labeled factor V activation products or Western blot analyses of unlabeled factor V activation products. Cofactor activity was measured by the ability of the factor V/Va peptides to support the activation of prothrombin. The factor Xa catalyzed cleavage of factor V was observed to be time, phospholipid, and calcium ion dependent, yielding a cofactor with activity equal to that of thrombin-activated factor V (factor Va). The cleavage pattern differed markedly from the one observed in the bovine system. The factor Xa activated factor V subunits expressing cofactor activity were isolated and found to consist of peptides of M{sub r} 220,000 and 105,000. Although thrombin cleaved the M{sub r} 220,000 peptide to yield peptides previously shown to be products of thrombin activation, cofactor activity did not increase. N-Terminal sequence analysis confirmed that both factor Xa and thrombin cleave factor V at the same bond to generate the M{sub r} 220,000 peptide. The factor Xa dependent functional assessment of {sup 125}I-labeled factor V coupled with densitometric analyses of the cleavage products indicated that the cofactor activity of factor Xa activated factor V closely paralleled the appearance of the M{sub r} 220,000 peptide. The data indicate that factor Xa is as efficient an enzyme toward factor V as thrombin.

  13. Nuclear Receptor Activity and Liver Cancer Lesion Progression

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that control diverse cellular processes. Chronic stimulation of some NRs is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. We explored this question using human CAR, PXR, PPARα,...

  14. Oxygen-evoked changes in transcriptional activity of the 5'-flanking region of the human amiloride-sensitive sodium channel (alphaENaC) gene: role of nuclear factor kappaB.

    PubMed Central

    Baines, Deborah L; Janes, Mandy; Newman, David J; Best, Oliver G

    2002-01-01

    Expression of the alpha-subunit of the amiloride-sensitive sodium channel (alphaENaC) is regulated by a number of factors in the lung, including oxygen partial pressure (PO2). As transcriptional activation is a mechanism for raising cellular mRNA levels, we investigated the effect of physiological changes in PO2 on the activity of the redox-sensitive transcription factor nuclear factor kappaB (NF-kappaB) and transcriptional activity of 5'-flanking regions of the human alphaENaC gene using luciferase reporter-gene vectors transiently transfected into human adult alveolar carcinoma A549 cells. By Western blotting we confirmed the presence of NF-kappaB p65 but not p50 in these cells. Transiently increasing PO2 from 23 to 42 mmHg for 24 h evoked a significant increase in NF-kappaB DNA-binding activity and transactivation of a NF-kappaB-driven luciferase construct (pGLNF-kappaBpro), which was blocked by the NF-kappaB activation inhibitor sulphasalazine (5 mM). Transcriptional activity of alphaENaC-luciferase constructs containing 5'-flanking sequences (including the NF-kappaB consensus) were increased by raising PO2 from 23 to 142 mmHg if they contained transcriptional initiation sites (TIS) for exons 1A and 1B (pGL3E2.2) or the 3' TIS of exon 1B alone (pGL3E0.8). Sulphasalazine had no significant effect on the activity of these constructs, suggesting that the PO2-evoked rise in activity was not a direct consequence of NF-kappaB activation. Conversely, the relative luciferase activity of a construct that lacked the 3' TIS, a 3' intron and splice site but still retained the 5' TIS and NF-kappaB consensus sequence was suppressed significantly by raising PO2. This effect was reversed by sulphasalazine, suggesting that activation of NF-kappaB mediated PO2-evoked suppression of transcription from the exon 1A TIS of alphaENaC. PMID:12023897

  15. Ebselen Is a Potential Anti-Osteoporosis Agent by Suppressing Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclast Differentiation In vitro and Lipopolysaccharide-Induced Inflammatory Bone Destruction In vivo

    PubMed Central

    Baek, Jong Min; Kim, Ju-Young; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su

    2016-01-01

    Ebselen is a non-toxic seleno-organic drug with anti-inflammatory and antioxidant properties that is currently being examined in clinical trials to prevent and treat various diseases, including atherosclerosis, stroke, and cancer. However, no reports are available for verifying the pharmacological effects of ebselen on major metabolic bone diseases such as osteoporosis. In this study, we observed that ebselen suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in an osteoblast/osteoclast co-culture by regulating the ratio of receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin secreted by osteoblasts. In addition, ebselen treatment in the early stage of osteoclast differentiation inhibited RANKL-dependent osteoclastogenesis by decreasing the phosphorylation of IκB, PI3K, and Akt in early signaling pathways and by subsequently inducing c-Fos and nuclear factor of activated T-cells c1. Further, ebselen induced apoptosis of osteoclasts in the late stage of osteoclast differentiation. In addition, ebselen treatment suppressed filamentous actin ring formation and bone resorption activity of mature osteoclasts. Reflecting these in vitro effects, administration of ebselen recovered bone loss and its µ-CT parameters in lipopolysaccharide-mediated mouse model. Histological analysis confirmed that ebselen prevented trabecular bone matrix degradation and osteoclast formation in the bone tissues. Finally, it was proved that the anti-osteoclastogenic action of ebselen is achieved through targeting N-methyl-D-aspartate (NMDA) receptor. These results indicate that ebselen is a potentially safe drug for treating metabolic bone diseases such as osteoporosis. PMID:27019631

  16. Public opinion factors regarding nuclear power

    SciTech Connect

    Benson, B.

    1991-12-31

    This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry`s practices are aligned with public opinion, a more favorable regulatory climate is possible.

  17. Public opinion factors regarding nuclear power

    SciTech Connect

    Benson, B.

    1991-01-01

    This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry's practices are aligned with public opinion, a more favorable regulatory climate is possible.

  18. Morris Water Maze Training in Mice Elevates Hippocampal Levels of Transcription Factors Nuclear Factor (Erythroid-derived 2)-like 2 and Nuclear Factor Kappa B p65

    PubMed Central

    Snow, Wanda M.; Pahlavan, Payam S.; Djordjevic, Jelena; McAllister, Danielle; Platt, Eric E.; Alashmali, Shoug; Bernstein, Michael J.; Suh, Miyoung; Albensi, Benedict C.

    2015-01-01

    Research has identified several transcription factors that regulate activity-dependent plasticity and memory, with cAMP-response element binding protein (CREB) being the most well-studied. In neurons, CREB activation is influenced by the transcription factor nuclear factor kappa B (NF-κB), considered central to immunity but more recently implicated in memory. The transcription factor early growth response-2 (Egr-2), an NF-κB gene target, is also associated with learning and memory. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an antioxidant transcription factor linked to NF-κB in pathological conditions, has not been studied in normal memory. Given that numerous transcription factors implicated in activity-dependent plasticity demonstrate connections to NF-κB, this study simultaneously evaluated protein levels of NF-κB, CREB, Egr-2, Nrf2, and actin in hippocampi from young (1 month-old) weanling CD1 mice after training in the Morris water maze, a hippocampal-dependent spatial memory task. After a 6-day acquisition period, time to locate the hidden platform decreased in the Morris water maze. Mice spent more time in the target vs. non-target quadrants of the maze, suggestive of recall of the platform location. Western blot data revealed a decrease in NF-κB p50 protein after training relative to controls, whereas NF-κB p65, Nrf2 and actin increased. Nrf2 levels were correlated with platform crosses in nearly all tested animals. These data demonstrate that training in a spatial memory task results in alterations in and associations with particular transcription factors in the hippocampus, including upregulation of NF-κB p65 and Nrf2. Training-induced increases in actin protein levels caution against its use as a loading control in immunoblot studies examining activity-dependent plasticity, learning, and memory. PMID:26635523

  19. Factors Affecting the Development of Somatic Cell Nuclear Transfer Embryos in Cattle

    PubMed Central

    AKAGI, Satoshi; MATSUKAWA, Kazutsugu; TAKAHASHI, Seiya

    2014-01-01

    Nuclear transfer is a complex multistep procedure that includes oocyte maturation, cell cycle synchronization of donor cells, enucleation, cell fusion, oocyte activation and embryo culture. Therefore, many factors are believed to contribute to the success of embryo development following nuclear transfer. Numerous attempts to improve cloning efficiency have been conducted since the birth of the first sheep by somatic cell nuclear transfer. However, the efficiency of somatic cell cloning has remained low, and applications have been limited. In this review, we discuss some of the factors that affect the developmental ability of somatic cell nuclear transfer embryos in cattle. PMID:25341701

  20. Human factors design guidelines for maintainability of Department of Energy nuclear facilities

    SciTech Connect

    Bongarra, J.P. Jr.; VanCott, H.P.; Pain, R.F.; Peterson, L.R.; Wallace, R.I.

    1985-06-18

    Intent of these guidelines is to provide design and design review teams of DOE nuclear facilities with human factors principles to enhance the design and aid in the inspection of DOE nuclear facilities, systems, and equipment. These guidelines are concerned with design features of DOE nuclear facilities which can potentially affect preventive and corrective maintenance of systems within DOE nuclear facilities. Maintenance includes inspecting, checking, troubleshooting, adjusting, replacing, repairing, and servicing activities. Other factors which influence maintainability such as repair and maintenance suport facilities, maintenance information, and various aspects of the environment are also addressed.

  1. Flavonoids as dietary regulators of nuclear receptor activity

    PubMed Central

    Avior, Yishai; Bomze, David; Ramon, Ory

    2013-01-01

    Metabolic diseases such as obesity, type II diabetes, and dyslipidemia are a rising cause of mortality worldwide. The progression of many metabolic diseases is fundamentally regulated on the transcriptional level by a family of ligand-activated transcription factors, called nuclear receptors, which detect and respond to metabolic changes. Their role in maintaining metabolic homeostasis makes nuclear receptors an important pharmaceutical and dietary target. This review will present the growing evidence that flavonoids, natural secondary plant metabolites, are important regulators of nuclear receptor activity. Structural similarities between flavonoids and cholesterol derivatives combined with the promiscuous nature of most nuclear receptors provide a wealth of possibilities for pharmaceutical and dietary modulation of metabolism. While the challenges of bringing flavonoid-derived therapeutics to the market are significant, we consider this rapidly growing field to be an essential aspect of the functional food initiative and an important mine for pharmaceutical compounds. PMID:23598551

  2. Kpna7 interacts with egg-specific nuclear factors in rainbow trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nuclear proteins are required for initiation of transcription in early embryos before embryonic genome activation. The regulation of transportation of nuclear proteins is mediated by transport factors known as importins (karyopherins). Kpna7 is a newly discovered member of the importin a family, whi...

  3. Function of steroidogenic factor 1 domains in nuclear localization, transactivation, and interaction with transcription factor TFIIB and c-Jun.

    PubMed

    Li, L A; Chiang, E F; Chen, J C; Hsu, N C; Chen, Y J; Chung, B C

    1999-09-01

    Normal endocrine development and function require nuclear hormone receptor SF-1 (steroidogenic factor 1). To understand the molecular mechanism of SF-1 action, we have investigated its domain function by mutagenesis and functional analyses. Our mutant studies show that the putative AF2 (activation function 2) helix located at the C-terminal end is indispensable for gene activation. SF-1 does not have an N-terminal AF1 domain. Instead, it contains a unique FP region, composed of the Ftz-F1 box and the proline cluster, after the zinc finger motif. The FP region interacts with transcription factor IIB (TFIIB) in vitro. This interaction requires residues 178-201 of TFIIB, a domain capable of binding several transcription factors. The FP region also mediates physical interaction with c-Jun, and this interaction greatly enhances SF-1 activity. The putative SF-1 ligand, 25-hydroxycholesterol, has no effects on these bindings. In addition, the Ftz-F1 box contains a bipartite nuclear localization signal (NLS). Removing the basic residues at either end of the key nuclear localization sequence NLS2.2 abolishes the nuclear transport. Expression of mutants containing only the FP region or lacking the AF2 domain blocks wild-type SF-1 activity in cells. By contrast, the mutant having a truncated nuclear localization signal lacks this dominant negative effect. These results delineate the importance of the FP and AF2 regions in nuclear localization, protein-protein interaction, and transcriptional activation. PMID:10478848

  4. Interaction of calcineurin with a domain of the transcription factor NFAT1 that controls nuclear import.

    PubMed Central

    Luo, C; Shaw, K T; Raghavan, A; Aramburu, J; Garcia-Cozar, F; Perrino, B A; Hogan, P G; Rao, A

    1996-01-01

    The nuclear import of the nuclear factor of activated T cells (NFAT)-family transcription factors is initiated by the protein phosphatase calcineurin. Here we identify a regulatory region of NFAT1, N terminal to the DNA-binding domain, that controls nuclear import of NFAT1. The regulatory region of NFAT1 binds directly to calcineurin, is a substrate for calcineurin in vitro, and shows regulated subcellular localization identical to that of full-length NFAT1. The corresponding region of NFATc likewise binds calcineurin, suggesting that the efficient activation of NFAT1 and NFATc by calcineurin reflects a specific targeting of the phosphatase to these proteins. The presence in other NFAT-family transcription factors of several sequence motifs from the regulatory region of NFAT1, including its probable nuclear localization sequence, indicates that a conserved protein domain may control nuclear import of all NFAT proteins. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8799126

  5. Activation of the canonical nuclear factor-κB pathway is involved in isoflurane-induced hippocampal interleukin-1β elevation and the resultant cognitive deficits in aged rats

    SciTech Connect

    Li, Zheng-Qian; Rong, Xiao-Ying; Liu, Ya-Jie; Ni, Cheng; Tian, Xiao-Sheng; Mo, Na; Chui, De-Hua; Guo, Xiang-Yang

    2013-09-06

    Highlights: •Isoflurane induces hippocampal IL-1β elevation and cognitive deficits in aged rats. •Isoflurane transiently activates the canonical NF-κB pathway in aged rat hippocampus. •NF-κB inhibitor mitigates isoflurane-induced IL-1β elevation and cognitive deficits. •We report a linkage between NF-κB signaling, IL-1β expression, and cognitive changes. -- Abstract: Although much recent evidence has demonstrated that neuroinflammation contributes to volatile anesthetic-induced cognitive deficits, there are few existing mechanistic explanations for this inflammatory process. This study was conducted to investigate the effects of the volatile anesthetic isoflurane on canonical nuclear factor (NF)-κB signaling, and to explore its association with hippocampal interleukin (IL)-1β levels and anesthetic-related cognitive changes in aged rats. After a 4-h exposure to 1.5% isoflurane in 20-month-old rats, increases in IκB kinase and IκB phosphorylation, as well as a reduction in the NF-κB inhibitory protein (IκBα), were observed in the hippocampi of isoflurane-exposed rats compared with control rats. These events were accompanied by an increase in NF-κB p65 nuclear translocation at 6 h after isoflurane exposure and hippocampal IL-1β elevation from 1 to 6 h after isoflurane exposure. Nevertheless, no significant neuroglia activation was observed. Pharmacological inhibition of NF-κB activation by pyrrolidine dithiocarbamate markedly suppressed the IL-1β increase and NF-κB signaling, and also mitigated the severity of cognitive deficits in the Morris water maze task. Overall, our results demonstrate that isoflurane-induced cognitive deficits may stem from upregulation of hippocampal IL-1β, partially via activation of the canonical NF-κB pathway, in aged rats.

  6. Anti-inflammatory Effects of Schisandra chinensis (Turcz.) Baill Fruit Through the Inactivation of Nuclear Factor-κB and Mitogen-activated Protein Kinases Signaling Pathways in Lipopolysaccharide-stimulated Murine Macrophages

    PubMed Central

    Kang, Young-Soon; Han, Min-Ho; Hong, Su-Hyun; Park, Cheol; Hwang, Hye-Jin; Kim, Byung Woo; Kyoung, Kim Ho; Choi, Young Whan; Kim, Cheol Min; Choi, Yung Hyun

    2014-01-01

    Background: Schisandrae Fructus, the dried fruit of Schisandra chinensis (Turcz.) Baill. (Magnoliaceae), is widely used in traditional medicine for the treatment of a number of chronic inflammatory diseases. This study examined the anti-inflammatory effects of Schisandrae Fructus ethanol extract (SF) on the production of pro-inflammatory substances in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods: To measure the effects of SF on pro-inflammatory mediator and inflammatory cytokine’s expression and production in RAW 264.7 cells, we used the following methods: cell viability assay, Griess reagent assay, enzyme-linked immunosorbent assay, reverse transcriptase-polymerase chain reaction, Western blotting analysis and immunofluorescence staining. Results: Stimulation of the RAW 264.7 cells with LPS caused an elevated production of nitric oxide (NO), tumor necrosis factor α (TNF-α) and interleukin (IL)-1β, which was markedly inhibited by the pretreatment with SF without causing any cytotoxic effects. SF also inhibited the expression of inducible NO synthase, TNF-α, and IL-1β protein and their mRNAs in LPS-stimulated RAW 264.7 cells. Furthermore, SF attenuated LPS-induced nuclear translocation of nuclear factor-κB (NF-κB) by reducing inhibitory-κB degradation, and reduced the phosphorylation of mitogen-activated protein kinases (MAPKs), implying that SF regulated LPS-induced NF-κB-dependent inflammatory pathways through suppression of MAPKs activation. Conclusions: SF may be useful for the treatment of various inflammatory diseases. PMID:25574463

  7. S100A8, S100A9 and S100A12 activate airway epithelial cells to produce MUC5AC via extracellular signal-regulated kinase and nuclear factor-κB pathways.

    PubMed

    Kang, Jin Hyun; Hwang, Sae Mi; Chung, Il Yup

    2015-01-01

    Airway mucus hyperproduction is a common feature of chronic airway diseases such as severe asthma, chronic obstructive pulmonary disease and cystic fibrosis, which are closely associated with neutrophilic airway inflammation. S100A8, S100A9 and S100A12 are highly abundant proteins released by neutrophils and have been identified as important biomarkers in many inflammatory diseases. Herein, we report a new role for S100A8, S100A9 and S100A12 for producing MUC5AC, a major mucin protein in the respiratory tract. All three S100 proteins induced MUC5AC mRNA and the protein in normal human bronchial epithelial cells as well as NCI-H292 lung carcinoma cells in a dose-dependent manner. A Toll-like receptor 4 (TLR4) inhibitor almost completely abolished MUC5AC expression by all three S100 proteins, while neutralization of the receptor for advanced glycation end-products (RAGE) inhibited only S100A12-mediated production of MUC5AC. The S100 protein-mediated production of MUC5AC was inhibited by the pharmacological agents that block prominent signalling molecules for MUC5AC expression, such as mitogen-activated protein kinases, nuclear factor-κB (NF-κB) and epidermal growth factor receptor. S100A8, S100A9 and S100A12 equally elicited both phosphorylation of extracellular signal-regulated kinase (ERK) and nuclear translocation of NF-κB/degradation of cytosolic IκB with similar kinetics through TLR4. In contrast, S100A12 preferentially activated the ERK pathway rather than the NF-κB pathway through RAGE. Collectively, these data reveal the capacity of these three S100 proteins to induce MUC5AC production in airway epithelial cells, suggesting that they all serve as key mediators linking neutrophil-dominant airway inflammation to mucin hyperproduction. PMID:24975020

  8. Dietary and nutritional manipulation of the nuclear transcription factors peroxisome proliferator-activated receptor and sterol regulatory element-binding proteins as a tool for reversing the primary diseases of premature death and delaying aging.

    PubMed

    Kurtak, Karen A

    2014-04-01

    Evolution over 2.1 billion years has equipped us with a biochemical pathway that has the power to literally reverse the primary disease etiologies that have become the leading causes of death and aging in the developed world. Activation of the peroxisome proliferator-activated receptor (PPAR) pathway arrests inflammatory signaling throughout the body, reverses damage to tissues, reverses insulin resistance, and can even dissolve beta-amyloid plaque in the brain. It has played a critical role in the evolution of the metazoans and the successful migration of humans to all corners of the Earth. For two decades, various pharmaceuticals have been designed to activate the PPAR pathway but have consistently fallen short of expectations. There is nothing wrong with these drugs. The problem has been the standard "healthy" diet creating mixed signals that render the drugs ineffective. This article explores the ongoing dance between the two primary nuclear receptors that mediate gene regulation of fatty acids. It discusses their interaction with sirtuins and telomerase, optimization of their obligate heterodimers, and why manipulation of dietary and nutritional factors, like the ketogenic diet, is the most effective means of activation. These are effective tools that we can start implementing now to slow, and in some cases reverse, the diseases of aging. PMID:24713058

  9. Multiple Nuclear Localization Signals Mediate Nuclear Localization of the GATA Transcription Factor AreA

    PubMed Central

    Hunter, Cameron C.; Siebert, Kendra S.; Downes, Damien J.; Wong, Koon Ho; Kreutzberger, Sara D.; Fraser, James A.; Clarke, David F.; Hynes, Michael J.; Davis, Meryl A.

    2014-01-01

    The Aspergillus nidulans GATA transcription factor AreA activates transcription of nitrogen metabolic genes in response to nitrogen limitation and is known to accumulate in the nucleus during nitrogen starvation. Sequence analysis of AreA revealed multiple nuclear localization signals (NLSs), five putative classical NLSs conserved in fungal AreA orthologs but not in the Saccharomyces cerevisiae functional orthologs Gln3p and Gat1p, and one putative noncanonical RRX33RXR bipartite NLS within the DNA-binding domain. In order to identify the functional NLSs in AreA, we constructed areA mutants with mutations in individual putative NLSs or combinations of putative NLSs and strains expressing green fluorescent protein (GFP)-AreA NLS fusion genes. Deletion of all five classical NLSs individually or collectively did not affect utilization of nitrogen sources or AreA-dependent gene expression and did not prevent AreA nuclear localization. Mutation of the bipartite NLS conferred the inability to utilize alternative nitrogen sources and abolished AreA-dependent gene expression likely due to effects on DNA binding but did not prevent AreA nuclear localization. Mutation of all six NLSs simultaneously prevented AreA nuclear accumulation. The bipartite NLS alone strongly directed GFP to the nucleus, whereas the classical NLSs collaborated to direct GFP to the nucleus. Therefore, AreA contains multiple conserved NLSs, which show redundancy and together function to mediate nuclear import. The noncanonical bipartite NLS is conserved in GATA factors from Aspergillus, yeast, and mammals, indicating an ancient origin. PMID:24562911

  10. Decreased expression of hepatocyte nuclear factor 4α (Hnf4α)/microRNA-122 (miR-122) axis in hepatitis B virus-associated hepatocellular carcinoma enhances potential oncogenic GALNT10 protein activity.

    PubMed

    Wu, Qian; Liu, Hai-Ou; Liu, Yi-Dong; Liu, Wei-Si; Pan, Deng; Zhang, Wei-Juan; Yang, Liu; Fu, Qiang; Xu, Jie-Jie; Gu, Jian-Xin

    2015-01-01

    MicroRNA-122 (miR-122), a mammalian liver-specific miRNA, has been reported to play crucial roles in the control of diverse aspects of hepatic function and dysfunction, including viral infection and hepatocarcinogenesis. In this study, we explored the clinical significance, transcriptional regulation, and direct target of miR-122 in hepatitis B virus (HBV)-associated hepatocellular carcinoma. Reduced expression of miR-122 in patients with HBV-associated hepatocellular carcinoma was correlated with venous invasion and poor prognosis. Furthermore, UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase-10 (GALNT10) was identified as a bona fide target of miR-122 in hepatoma cells. Ectopic expression and knockdown studies showed that GALNT10 indeed promotes proliferation and apoptosis resistance of hepatoma cells in a glycosyltransferase-dependent manner. Critically, adverse correlation between miR-122 and GALNT10, a poor prognosticator of clinical outcome, was demonstrated in hepatoma patients. Hepatocyte nuclear factor 4α (Hnf4α), a liver-enriched transcription factor that activates miR-122 gene transcription, was suppressed in HBV-infected hepatoma cells. Chromatin immunoprecipitation assay showed significantly reduced association of Hnf4α with the miR-122 promoter in HBV-infected hepatoma cells. Moreover, GALNT10 was found to intensify O-glycosylation following signal activation of the epidermal growth factor receptor. In addition, in a therapeutic perspective, we proved that GALNT10 silencing increases sensitivity to sorafenib and doxorubicin challenge. In summary, our results reveal a novel Hnf4α/miR-122/GALNT10 regulatory pathway that facilitates EGF miR-122 activation and hepatoma growth in HBV-associated hepatocarcinogenesis. PMID:25422324

  11. Decreased Expression of Hepatocyte Nuclear Factor 4α (Hnf4α)/MicroRNA-122 (miR-122) Axis in Hepatitis B Virus-associated Hepatocellular Carcinoma Enhances Potential Oncogenic GALNT10 Protein Activity*

    PubMed Central

    Wu, Qian; Liu, Hai-Ou; Liu, Yi-Dong; Liu, Wei-Si; Pan, Deng; Zhang, Wei-Juan; Yang, Liu; Fu, Qiang; Xu, Jie-Jie; Gu, Jian-Xin

    2015-01-01

    MicroRNA-122 (miR-122), a mammalian liver-specific miRNA, has been reported to play crucial roles in the control of diverse aspects of hepatic function and dysfunction, including viral infection and hepatocarcinogenesis. In this study, we explored the clinical significance, transcriptional regulation, and direct target of miR-122 in hepatitis B virus (HBV)-associated hepatocellular carcinoma. Reduced expression of miR-122 in patients with HBV-associated hepatocellular carcinoma was correlated with venous invasion and poor prognosis. Furthermore, UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase-10 (GALNT10) was identified as a bona fide target of miR-122 in hepatoma cells. Ectopic expression and knockdown studies showed that GALNT10 indeed promotes proliferation and apoptosis resistance of hepatoma cells in a glycosyltransferase-dependent manner. Critically, adverse correlation between miR-122 and GALNT10, a poor prognosticator of clinical outcome, was demonstrated in hepatoma patients. Hepatocyte nuclear factor 4α (Hnf4α), a liver-enriched transcription factor that activates miR-122 gene transcription, was suppressed in HBV-infected hepatoma cells. Chromatin immunoprecipitation assay showed significantly reduced association of Hnf4α with the miR-122 promoter in HBV-infected hepatoma cells. Moreover, GALNT10 was found to intensify O-glycosylation following signal activation of the epidermal growth factor receptor. In addition, in a therapeutic perspective, we proved that GALNT10 silencing increases sensitivity to sorafenib and doxorubicin challenge. In summary, our results reveal a novel Hnf4α/miR-122/GALNT10 regulatory pathway that facilitates EGF miR-122 activation and hepatoma growth in HBV-associated hepatocarcinogenesis. PMID:25422324

  12. Prolyl hydroxylase 3 (PHD3) modulates catabolic effects of tumor necrosis factor-α (TNF-α) on cells of the nucleus pulposus through co-activation of nuclear factor κB (NF-κB)/p65 signaling.

    PubMed

    Fujita, Nobuyuki; Gogate, Shilpa S; Chiba, Kazuhiro; Toyama, Yoshiaki; Shapiro, Irving M; Risbud, Makarand V

    2012-11-16

    Recent studies suggest a differential role of prolyl hydroxylase (PHD) isoforms in controlling hypoxia-inducible factor (HIF)-α degradation and activity in nucleus pulposus (NP) cells. However, the regulation and function of PHDs under inflammatory conditions that characterize disc disease are not yet known. Here, we show that in NP cells, TNF-α and IL-1β induce PHD3 expression through NF-κB. Lentiviral delivery of Sh-p65 and Sh-IKKβ confirms that cytokine-mediated PHD3 expression is NF-κB-dependent. It is noteworthy that although both cytokines induce HIF activity, mechanistic studies using Sh-HIF-1α and PHD3 promoter/enhancer constructs harboring well characterized hypoxia response element (HRE) show lack of HIF involvement in cytokine-mediated PHD3 expression. Loss-of-function studies clearly indicate that PHD3 serves as a co-activator of NF-κB signaling activity in NP cells; PHD3 interacts with, and co-localizes with, p65. We observed that when PHD3 is silenced, there is a significant decrease in TNF-α-induced expression of catabolic markers that include ADAMTS5, syndecan4, MMP13, and COX2, and at the same time, there is restoration of aggrecan and collagen type II expression. It is noteworthy that hydroxylase function of PHDs is not required for mediating cytokine-dependent gene expression. These findings show that by enhancing the activity of inflammatory cytokines, PHD3 may serve a critical role in degenerative disc disease. PMID:22948157

  13. Prolyl Hydroxylase 3 (PHD3) Modulates Catabolic Effects of Tumor Necrosis Factor-α (TNF-α) on Cells of the Nucleus Pulposus through Co-activation of Nuclear Factor κB (NF-κB)/p65 Signaling*

    PubMed Central

    Fujita, Nobuyuki; Gogate, Shilpa S.; Chiba, Kazuhiro; Toyama, Yoshiaki; Shapiro, Irving M.; Risbud, Makarand V.

    2012-01-01

    Recent studies suggest a differential role of prolyl hydroxylase (PHD) isoforms in controlling hypoxia-inducible factor (HIF)-α degradation and activity in nucleus pulposus (NP) cells. However, the regulation and function of PHDs under inflammatory conditions that characterize disc disease are not yet known. Here, we show that in NP cells, TNF-α and IL-1β induce PHD3 expression through NF-κB. Lentiviral delivery of Sh-p65 and Sh-IKKβ confirms that cytokine-mediated PHD3 expression is NF-κB-dependent. It is noteworthy that although both cytokines induce HIF activity, mechanistic studies using Sh-HIF-1α and PHD3 promoter/enhancer constructs harboring well characterized hypoxia response element (HRE) show lack of HIF involvement in cytokine-mediated PHD3 expression. Loss-of-function studies clearly indicate that PHD3 serves as a co-activator of NF-κB signaling activity in NP cells; PHD3 interacts with, and co-localizes with, p65. We observed that when PHD3 is silenced, there is a significant decrease in TNF-α-induced expression of catabolic markers that include ADAMTS5, syndecan4, MMP13, and COX2, and at the same time, there is restoration of aggrecan and collagen type II expression. It is noteworthy that hydroxylase function of PHDs is not required for mediating cytokine-dependent gene expression. These findings show that by enhancing the activity of inflammatory cytokines, PHD3 may serve a critical role in degenerative disc disease. PMID:22948157

  14. Artemisinin triggers a G1 cell cycle arrest of human Ishikawa endometrial cancer cells and inhibits cyclin-dependent kinase-4 promoter activity and expression by disrupting nuclear factor-κB transcriptional signaling.

    PubMed

    Tran, Kalvin Q; Tin, Antony S; Firestone, Gary L

    2014-03-01

    Relatively little is known about the antiproliferative effects of artemisinin, a naturally occurring antimalarial compound from Artemisia annua, or sweet wormwood, in human endometrial cancer cells. Artemisinin induced a G1 cell cycle arrest in cultured human Ishikawa endometrial cancer cells and downregulated cyclin-dependent kinase-2 (CDK2) and CDK4 transcript and protein levels. Analysis of CDK4 promoter-luciferase reporter constructs showed that the artemisinin ablation of CDK4 gene expression was accounted for by the loss of CDK4 promoter activity. Chromatin immunoprecipitation demonstrated that artemisinin inhibited nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) subunit p65 and p50 interactions with the endogenous Ishikawa cell CDK4 promoter. Coimmunoprecipitation revealed that artemisinin disrupts endogenous p65 and p50 nuclear translocation through increased protein-protein interactions with IκB-α, an NF-κB inhibitor, and disrupts its interaction with the CDK4 promoter, leading to a loss of CDK4 gene expression. Artemisinin treatment stimulated the cellular levels of IκB-α protein without altering the level of IκB-α transcripts. Finally, expression of exogenous p65 resulted in the accumulation of this NF-κB subunit in the nucleus of artemisinin-treated and artemisinin-untreated cells, reversed the artemisinin downregulation of CDK4 protein expression and promoter activity, and prevented the artemisinin-induced G1 cell cycle arrest. Taken together, our results demonstrate that a key event in the artemisinin antiproliferative effects in endometrial cancer cells is the transcriptional downregulation of CDK4 expression by disruption of NF-κB interactions with the CDK4 promoter. PMID:24296733

  15. The orphan receptor hepatic nuclear factor 4 functions as a transcriptional activator for tissue-specific and hypoxia-specific erythropoietin gene expression and is antagonized by EAR3/COUP-TF1.

    PubMed Central

    Galson, D L; Tsuchiya, T; Tendler, D S; Huang, L E; Ren, Y; Ogura, T; Bunn, H F

    1995-01-01

    The erythropoietin (Epo) gene is regulated by hypoxia-inducible cis-acting elements in the promoter and in a 3' enhancer, both of which contain consensus hexanucleotide hormone receptor response elements which are important for function. A group of 11 orphan nuclear receptors, transcribed and translated in vitro, were screened by the electrophoretic mobility shift assay. Of these, hepatic nuclear factor 4 (HNF-4), TR2-11, ROR alpha 1, and EAR3/COUP-TF1 bound specifically to the response elements in the Epo promoter and enhancer and, except for ROR alpha 1, formed DNA-protein complexes that had mobilities similar to those observed in nuclear extracts of the Epo-producing cell line Hep3B. Moreover, both anti-HNF-4 and anti-COUP antibodies were able to supershift complexes in Hep3B nuclear extracts. Like Epo, HNF-4 is expressed in kidney, liver, and Hep3B cells but not in HeLa cells. Transfection of a plasmid expressing HNF-4 into HeLa cells enabled an eightfold increase in the hypoxic induction of a luciferase reporter construct which contains the minimal Epo enhancer and Epo promoter, provided that the nuclear hormone receptor consensus DNA elements in both the promoter and the enhancer were intact. The augmentation by HNF-4 in HeLa cells could be abrogated by cotransfection with HNF-4 delta C, which retains the DNA binding domain of HNF-4 but lacks the C-terminal activation domain. Moreover, the hypoxia-induced expression of the endogenous Epo gene was significantly inhibited in Hep3B cells stably transfected with HNF-4 delta C. On the other hand, cotransfection of EAR3/COUP-TF1 and the Epo reporter either with HNF-4 into HeLa cells or alone into Hep3B cells suppressed the hypoxia induction of the Epo reporter. These electrophoretic mobility shift assay and functional experiments indicate that HNF-4 plays a critical positive role in the tissue-specific and hypoxia-inducible expression of the Epo gene, whereas the COUP family has a negative modulatory role. PMID

  16. Nuclear factor-kappa B links carcinogenic and chemopreventive agents.

    PubMed

    Ralhan, Ranju; Pandey, Manoj K; Aggarwal, Bharat B

    2009-01-01

    Cancer prevention requires avoidance of tobacco, alcohol, high-fat diet, polluted air and water, sedentary lifestyle, and of mechanical, physical, psychological, or chemical stress. How these factors can cause cancer, is suggested by the transcription nuclear factor-kappa B (NF-kappa B), that is activated by tobacco, alcohol, high-fat diet, environment pollutants, cancer-causing viruses (human papillomavirus, hepatitis B and C viruses, HIV) and bacteria (Helicobacter pylori), ultraviolet light, ionizing radiation, obesity, and stress. Furthermore, NF-kappa B-regulated gene products have been implicated in transformation of cells, and in proliferation, survival, invasion, angiogenesis, and metastasis. Suppression of NF-kappa B activation by the phytochemicals present in fruits and vegetables provides the molecular basis for their ability to prevent cancer. Other agents identified from spices and Ayurvedic and traditional Chinese medicines also been found to suppress NF-kappa B activation and thus may have potential for cancer prevention. The classic chemopreventive agent should offer long-term safety, low cost, and efficacy. The current review discuses in detail numerous agents such as curcumin, resveratrol, silymarin, catechins and others as potential chemopreventive agents. Thus, cancer, an ancient problem, may have an ancient solution. PMID:19482682

  17. The Exposure Rate Conversion Factor for Nuclear Fallout

    SciTech Connect

    Spriggs, G D

    2009-02-11

    Nuclear fallout is comprised of approximately 2000 radionuclides. About 1000 of these radionuclides are either primary fission products or activated fission products that are created during the burn process. The exposure rate one meter above the surface produced by this complex mixture of radionuclides varies rapidly with time since many of the radionuclides are short-lived and decay numerous times before reaching a stable isotope. As a result, the mixture of radionuclides changes rapidly with time. Using a new code developed at the Lawrence Livermore National Laboratory, the mixture of radionuclides at any given point in time can be calculated. The code also calculates the exposure rate conversion factor (ECF) for all 3864 individual isotopes contained in its database based on the total gamma energy released per decay. Based on the combination of isotope mixture and individual ECFs, the time-dependent variation of the composite exposure rate conversion factor for nuclear fallout can be easily calculated. As example of this new capability, a simple test case corresponding to a 10 kt, uranium-plutonium fuel has been calculated. The results for the time-dependent, composite ECF for this test case are shown in Figure 1. For comparison, we also calculated the composite exposure rate conversion factor using the conversion factors found in Federal Guidance Report No.12 (FGR-12) published by ORNL, which contains the conversion factors for approximately 1000 isotopes. As can be noted from Figure 1, the two functions agree reasonably well at times greater than about 30 minutes. However, they do not agree at early times since FGR-12 does not include all of the short-lived isotopes that are produced in nuclear fallout. It should also be noted that the composite ECF at one hour is 19.7 R/hr per Ci/m{sup 2}. This corresponds to 3148 R/hr per 1 kt per square mile, which agrees reasonably well with the value of 3000 R/hr per 1 kt per square mile as quoted by Glasstone. We have

  18. Toll-like receptor 4 mediates cross-talk between peroxisome proliferator-activated receptor γ and nuclear factor-κB in macrophages

    PubMed Central

    Necela, Brian M; Su, Weidong; Thompson, E Aubrey

    2008-01-01

    The peroxisome proliferator-activated receptor γ (PPARγ) is expressed in macrophages and plays an important role in suppressing the inflammatory response. Lipopolysaccharides (LPS), which activate Toll-like receptor 4 (TLR4), reduced PPARγ expression and function in peritoneal macrophages and macrophage cell lines. Moreover, pretreatment with the synthetic PPARγ ligand, rosiglitazone did not prevent LPS-mediated downregulation of PPARγ. Inhibition of PPARγ expression was not blocked by cycloheximide, indicating that de novo protein synthesis is not required for LPS-mediated suppression of PPARγ. Destabilization of PPARγ messenger RNA (mRNA) was not observed in LPS-stimulated macrophages, suggesting that LPS regulates the synthesis of PPARγ mRNA. LPS had no effect on PPARγ expression in macrophages from TLR4 knockout mice, whereas LPS inhibited PPARγ expression in cells that had been reconstituted to express functional TLR4. Targeting the TLR4 pathway with inhibitors of MEK1/2, p38, JNK and AP-1 had no effect on PPARγ downregulation by LPS. However, inhibitors that target NEMO, IκB and NF-κB abolished LPS-mediated downregulation of PPARγ in LPS-stimulated macrophages. Our data indicate that activation of TLR4 inhibits PPARγ mRNA synthesis by an NF-κB-dependent mechanism. Low-density genomic profiling of macrophage-specific PPARγ knockout cells indicated that PPARγ suppresses inflammation under basal conditions, and that loss of PPARγ expression is sufficient to induce a proinflammatory state. Our data reveal a regulatory feedback loop in which PPARγ represses NF-κB-mediated inflammatory signalling in unstimulated macrophages; however, upon activation of TLR4, NF-κB drives down PPARγ expression and thereby obviates any potential anti-inflammatory effects of PPARγ in LPS-stimulated macrophages. PMID:18422969

  19. Human factors aspects of advanced instrumentation in the nuclear industry

    SciTech Connect

    Carter, R.J.

    1989-01-01

    An important consideration in regards to the use of advanced instrumentation in the nuclear industry is the interface between the instrumentation system and the human. A survey, oriented towards identifying the human factors aspects of digital instrumentation, was conducted at a number of United States (US) and Canadian nuclear vendors and utilities. Human factors issues, subsumed under the categories of computer-generated displays, controls, organizational support, training, and related topics were identified. 20 refs., 2 tabs.

  20. Humic acid in drinking well water induces inflammation through reactive oxygen species generation and activation of nuclear factor-κB/activator protein-1 signaling pathways: a possible role in atherosclerosis.

    PubMed

    Hseu, You-Cheng; Senthil Kumar, K J; Chen, Chih-Sheng; Cho, Hsin-Ju; Lin, Shu-Wei; Shen, Pei-Chun; Lin, Cheng-Wen; Lu, Fung-Jou; Yang, Hsin-Ling

    2014-01-15

    Humic acid (HA) has been implicated as one of the etiological factors in the peripheral vasculopathy of blackfoot disease (BFD) in Taiwan. However, the underlying pathophysiological mechanisms of BFD are not well defined. In this study, we used an in vitro and in vivo model, in which HA (25-200μg/mL) activated macrophages to produce pro-inflammatory molecules by activating their transcriptional factors. HA exposure induced NO and PGE2 production followed by induction of iNOS and COX-2 through NF-κB/AP-1 transactivation in macrophages. In addition, the production of TNF-α and IL-1β was significantly increased by HA. Moreover, HA-induced iNOS and COX-2 expression were down-regulated by the NF-κB and AP-1 inhibitors pyrrolidine dithiocarbamate (PDTC) and Tanshinone, respectively. Furthermore, generations of ROS and nitrotyrosine, as well as activation of the AKT and MAPKs signaling cascades were observed after HA exposure. Specifically, HA-induced NF-κB activation was mediated by ROS and AKT, and that HA-induced AP-1 activation was mediated by JNK and ERK. Notably, HA-mediated AKT, JNK, and ERK activation was ROS-independent. The inflammatory potential of HA was correlated with increased expression of HO-1 and Nrf2. Furthermore, an in vivo study confirms that mice exposed to HA, the serum levels of TNF-α and IL-1β was significantly increased in a dose-dependent manner. This report marks the first confirmation that environmental exposure of HA induces inflammation in macrophages, which may be one of the main causes of early atherogenesis in blackfoot disease. PMID:24239652

  1. Nuclear Science Teaching Aids and Activities.

    ERIC Educational Resources Information Center

    Woodburn, John H.

    This publication is a sourcebook for science teachers. It provides guides for basic laboratory work in nuclear energy, suggesting various teacher and student demonstrations. Ideas for science clubs, science fairs, and project research seminars are presented. Problem-solving activities for both science and mathematics classes are included, as well…

  2. RNA export factor Ddx19 is required for nuclear import of the SRF coactivator MKL1

    PubMed Central

    Rajakylä, Eeva Kaisa; Viita, Tiina; Kyheröinen, Salla; Huet, Guillaume; Treisman, Richard; Vartiainen, Maria K.

    2015-01-01

    Controlled transport of macromolecules between the cytoplasm and nucleus is essential for homeostatic regulation of cellular functions. For instance, gene expression entails coordinated nuclear import of transcriptional regulators to activate transcription and nuclear export of the resulting messenger RNAs for cytoplasmic translation. Here we link these two processes by reporting a novel role for the mRNA export factor Ddx19/Dbp5 in nuclear import of MKL1, the signal-responsive transcriptional activator of SRF. We show that Ddx19 is not a general nuclear import factor, and that its specific effect on MKL1 nuclear import is separate from its role in mRNA export. Both helicase and nuclear pore-binding activities of Ddx19 are dispensable for MKL1 nuclear import, but RNA binding is required. Mechanistically, Ddx19 operates by modulating the conformation of MKL1, which affects its interaction with Importin-β for efficient nuclear import. Thus, Ddx19 participates in mRNA export, translation and nuclear import of a key transcriptional regulator. PMID:25585691

  3. RNA export factor Ddx19 is required for nuclear import of the SRF coactivator MKL1.

    PubMed

    Rajakylä, Eeva Kaisa; Viita, Tiina; Kyheröinen, Salla; Huet, Guillaume; Treisman, Richard; Vartiainen, Maria K

    2015-01-01

    Controlled transport of macromolecules between the cytoplasm and nucleus is essential for homeostatic regulation of cellular functions. For instance, gene expression entails coordinated nuclear import of transcriptional regulators to activate transcription and nuclear export of the resulting messenger RNAs for cytoplasmic translation. Here we link these two processes by reporting a novel role for the mRNA export factor Ddx19/Dbp5 in nuclear import of MKL1, the signal-responsive transcriptional activator of SRF. We show that Ddx19 is not a general nuclear import factor, and that its specific effect on MKL1 nuclear import is separate from its role in mRNA export. Both helicase and nuclear pore-binding activities of Ddx19 are dispensable for MKL1 nuclear import, but RNA binding is required. Mechanistically, Ddx19 operates by modulating the conformation of MKL1, which affects its interaction with Importin-β for efficient nuclear import. Thus, Ddx19 participates in mRNA export, translation and nuclear import of a key transcriptional regulator. PMID:25585691

  4. C-type lectin receptor dectin-3 mediates trehalose 6,6'-dimycolate (TDM)-induced Mincle expression through CARD9/Bcl10/MALT1-dependent nuclear factor (NF)-κB activation.

    PubMed

    Zhao, Xue-Qiang; Zhu, Le-Le; Chang, Qing; Jiang, Changying; You, Yun; Luo, Tianming; Jia, Xin-Ming; Lin, Xin

    2014-10-24

    Previous studies indicate that both Dectin-3 (also called MCL or Clec4d) and Mincle (also called Clec4e), two C-type lectin receptors, can recognize trehalose 6,6'-dimycolate (TDM), a cell wall component from mycobacteria, and induce potent innate immune responses. Interestingly, stimulation of Dectin-3 by TDM can also induce Mincle expression, which may enhance the host innate immune system to sense Mycobacterium infection. However, the mechanism by which Dectin-3 induces Mincle expression is not fully defined. Here, we show that TDM-induced Mincle expression is dependent on Dectin-3-mediated NF-κB, but not nuclear factor of activated T-cells (NFAT), activation, and Dectin-3 induces NF-κB activation through the CARD9-BCL10-MALT1 complex. We found that bone marrow-derived macrophages from Dectin-3-deficient mice were severely defective in the induction of Mincle expression in response to TDM stimulation. This defect is correlated with the failure of TDM-induced NF-κB activation in Dectin-3-deficient bone marrow-derived macrophages. Consistently, inhibition of NF-κB, but not NFAT, impaired TDM-induced Mincle expression, whereas NF-κB, but not NFAT, binds to the Mincle promoter. Dectin-3-mediated NF-κB activation is dependent on the CARD9-Bcl10-MALT1 complex. Finally, mice deficient for Dectin-3 or CARD9 produced much less proinflammatory cytokines and keyhole limpet hemocyanin (KLH)-specific antibodies after immunization with an adjuvant containing TDM. Overall, this study provides the mechanism by which Dectin-3 induces Mincle expression in response to Mycobacterium infection, which will have significant impact to improve adjuvant and design vaccine for antimicrobial infection. PMID:25202022

  5. Ligands for the Nuclear Peroxisome Proliferator-Activated Receptor Gamma.

    PubMed

    Sauer, Sascha

    2015-10-01

    Nuclear receptors are ligand-activated transcription factors, which represent a primary class of drug targets. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is a key player in various biological processes. PPARγ is widely known as the target protein of the thiazolidinediones for treating type 2 diabetes. Moreover, PPARγ ligands can induce anti-inflammatory and potentially additional beneficial effects. Recent mechanistic insights of PPARγ modulation give hope the next generation of efficient PPARγ-based drugs with fewer side effects can be developed. Furthermore, chemical approaches that make use of synergistic action of combinatorial ligands are promising alternatives for providing tailored medicine. Lessons learned from fine-tuning the action of PPARγ can provide avenues for efficient molecular intervention via many other nuclear receptors to combat common diseases. PMID:26435213

  6. Advanced Glycation End Products (AGE) Potently Induce Autophagy through Activation of RAF Protein Kinase and Nuclear Factor κB (NF-κB).

    PubMed

    Verma, Neeharika; Manna, Sunil K

    2016-01-15

    Advanced glycation end products (AGE) accumulate in diabetic patients and aging people because of high amounts of three- or four-carbon sugars derived from glucose, thereby causing multiple consequences, including inflammation, apoptosis, obesity, and age-related disorders. It is important to understand the mechanism of AGE-mediated signaling leading to the activation of autophagy (self-eating) that might result in obesity. We detected AGE as one of the potent inducers of autophagy compared with doxorubicin and TNF. AGE-mediated autophagy is inhibited by suppression of PI3K and potentiated by the autophagosome maturation blocker bafilomycin. It increases autophagy in different cell types, and that correlates with the expression of its receptor, receptor for AGE. LC3B, the marker for autophagosomes, is shown to increase upon AGE stimulation. AGE-mediated autophagy is partially suppressed by inhibitor of NF-κB, PKC, or ERK alone and significantly in combination. AGE increases sterol regulatory element binding protein activity, which leads to an increase in lipogenesis. Although AGE-mediated lipogenesis is affected by autophagy inhibitors, AGE-mediated autophagy is not influenced by lipogenesis inhibitors, suggesting that the turnover of lipid droplets overcomes the autophagic clearance. For the first time, we provide data showing that AGE induces several cell signaling cascades, like NF-κB, PKC, ERK, and MAPK, that are involved in autophagy and simultaneously help with the accumulation of lipid droplets that are not cleared effectively by autophagy, therefore causing obesity. PMID:26586913

  7. A quantitative analysis of nuclear factor I/DNA interactions.

    PubMed Central

    Meisterernst, M; Gander, I; Rogge, L; Winnacker, E L

    1988-01-01

    Nuclear factor I (NFI) was purified to homogeneity from porcine liver by DNA-affinity chromatography and displays a single band with a molecular weight of 36 kDa in SDS-polyacrylamide gels. The purified protein was used to determine absolute equilibrium binding constants by gel retardation techniques for a variety of DNA fragments with genuine or mutated NFI binding sites and a number of DNA fragments derived from various eukaryotic promoters carrying the CCAAT-box as a half-site for NFI binding. We present a model which allows prediction of the functional significance of mutated NFI binding-sites from sequence data. The data suggest that the single molecular species of NFI from porcine liver may not be able to recognize and activate the -CCAAT- promoter element in vivo without additional interactions, e.g. with other proteins. Images PMID:3380685

  8. Examination of psychological variables related to nuclear attitudes and nuclear activism

    SciTech Connect

    Roy, P.J.

    1985-01-01

    It was hypothesized that knowledge about nuclear arms developments would not be correlated with nuclear attitudes, that sense of efficacy would be positively correlated with magnitude of nuclear activism, and that death anxiety would be correlated with high level of nuclear knowledge and anti-nuclear attitudes, but not with sense of power. It was also hypothesized that positive correlations would be found between nuclear activism and political activism, knowledge of nuclear facts, and degree of adherence to anti-nuclear attitudes. One hundred and forty three women and 90 men participated in this questionnaire study. Major findings are as follows. In general, the more people knew about nuclear developments, the more anti-nuclear were their attitudes. Also, regardless of nuclear attitudes, a positive correlation was found between knowledge of nuclear facts and nuclear activism. Death anxiety and powerlessness were not correlated. There was a positive correlation between anxiety and both nuclear knowledge and anti-nuclear attitudes. A strong positive correlation was found between nuclear activism and anti-nuclear attitudes, and between political activism and nuclear activism. Internal locus of control did not correlate significantly with high sense of power or with high degree of nuclear activism.

  9. Factors influencing chemical durability of nuclear waste glasses

    SciTech Connect

    Feng, Xiangdong; Bates, J.K.

    1993-03-01

    A short summary is given of our studies on the major factors that affect the chemical durability of nuclear waste glasses. These factors include glass composition, solution composition, SA/V (ratio of glass surface area to the volume of solution), radiation, and colloidal formation. These investigations have enabled us to gain a better understanding of the chemical durability of nuclear waste glasses and to accumulate.a data base for modeling the long-term durability of waste glass, which will be used in the risk assessment of nuclear waste disposal. This knowledge gained also enhances our ability to formulate optimal waste glass compositions.

  10. Factors influencing chemical durability of nuclear waste glasses

    SciTech Connect

    Feng, Xiangdong; Bates, J.K.

    1993-01-01

    A short summary is given of our studies on the major factors that affect the chemical durability of nuclear waste glasses. These factors include glass composition, solution composition, SA/V (ratio of glass surface area to the volume of solution), radiation, and colloidal formation. These investigations have enabled us to gain a better understanding of the chemical durability of nuclear waste glasses and to accumulate.a data base for modeling the long-term durability of waste glass, which will be used in the risk assessment of nuclear waste disposal. This knowledge gained also enhances our ability to formulate optimal waste glass compositions.

  11. Small GTPase Rho signaling is involved in {beta}1 integrin-mediated up-regulation of intercellular adhesion molecule 1 and receptor activator of nuclear factor {kappa}B ligand on osteoblasts and osteoclast maturation

    SciTech Connect

    Hirai, Fumihiko; Nakayamada, Shingo; Okada, Yosuke; Saito, Kazuyoshi; Kurose, Hitoshi; Mogami, Akira; Tanaka, Yoshiya . E-mail: tanaka@med.uoeh-u.ac.jp

    2007-04-27

    We assessed the characteristics of human osteoblasts, focusing on small GTPase Rho signaling. {beta}1 Integrin were highly expressed on osteoblasts. Engagement of {beta}1 integrins by type I collagen augmented expression of intercellular adhesion molecule 1 (ICAM-1) and receptor activator of nuclear factor {kappa}B ligand (RANKL) on osteoblasts. Rho was activated by {beta}1 stimulation in osteoblasts. {beta}1 Integrin-induced up-regulation of ICAM-1 and RANKL was inhibited by transfection with adenoviruses encoding C3 transferase or pretreated with Y-27632, specific Rho and Rho-kinase inhibitors. Engagement of {beta}1 integrin on osteoblasts induced formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (MNC) in a coculture system of osteoblasts and peripheral monocytes, but this action was completely abrogated by transfection of C3 transferase. Our results indicate the direct involvement of Rho-mediated signaling in {beta}1 integrin-induced up-regulation of ICAM-1 and RANKL and RANKL-dependent osteoclast maturation. Thus, Rho-mediated signaling in osteoblasts seems to introduce major biases to bone resorption.

  12. Active Nuclear Material Detection and Imaging

    SciTech Connect

    Daren Norman; James Jones; KevinHaskell; Peter E. Vanmier; Leon Forman

    2005-10-01

    An experimental evaluation has been conducted to assess the operational performance of a coded-aperture, thermal neutron imaging system and its detection and imaging capability for shielded nuclear material in pulsed photonuclear environments. This evaluation used an imaging system developed by Brookhaven National Laboratory. The active photonuclear environment was produced by an operationallyflexible, Idaho National Laboratory (INL) pulsed electron accelerator. The neutron environments were monitored using INL photonuclear neutron detectors. Results include experimental images, operational imaging system assessments and recommendations that would enhance nuclear material detection and imaging performance.

  13. Effect of gallium nitrate on the expression of osteoprotegerin and receptor activator of nuclear factor-κB ligand in osteoblasts in vivo and in vitro

    PubMed Central

    LI, JINGWU; WANG, GUANG-BIN; FENG, XUE; ZHANG, JING; FU, QIN

    2016-01-01

    Osteoporosis is characterized by the progressive loss of bone mass and the micro-architectural deterioration of bone tissue, leading to bone fragility and an increased risk of fracture. Gallium has demonstrated efficacy in the treatment of several diverse disorders that are characterized by accelerated bone loss. Osteoblasts orchestrate bone degradation by expressing the receptor activator of NF-κB ligand (RANKL), however they additionally protect the skeleton by secreting osteoprotegerin (OPG). Therefore, the relative concentration of RANKL and OPG in bone is a key determinant of bone mass and strength. The current study demonstrated that gallium nitrate (GaN) is able to counteract bone loss in an experimental model of established osteoporosis. Ovariectomized (OVX) rats exhibited significantly increased bone mineral density following GaN treatment for 4 and 8 weeks by 19.3 and 37.3%, respectively (P<0.05). The bone volume of the OVX + GaN group was increased by 40.9% (P<0.05) compared with the OVX group. In addition, the current study demonstrated that GaN stimulates the synthesis of OPG however has no effect on the expression of RANKL in osteoblasts, as demonstrated by RT-qPCR, western blotting and ELISA, resulting in an increase in the OPG/RANKL ratio and a reduction in osteoclast differentiation in vivo and in vitro. PMID:26647856

  14. GABP Transcription Factor (Nuclear Respiratory Factor 2) Is Required for Mitochondrial Biogenesis

    PubMed Central

    Yang, Zhong-Fa; Drumea, Karen; Mott, Stephanie; Wang, Junling

    2014-01-01

    Mitochondria are membrane-bound cytoplasmic organelles that serve as the major source of ATP production in eukaryotic cells. GABP (also known as nuclear respiratory factor 2) is a nuclear E26 transformation-specific transcription factor (ETS) that binds and activates mitochondrial genes that are required for electron transport and oxidative phosphorylation. We conditionally deleted Gabpa, the DNA-binding component of this transcription factor complex, from mouse embryonic fibroblasts (MEFs) to examine the role of Gabp in mitochondrial biogenesis, function, and gene expression. Gabpα loss modestly reduced mitochondrial mass, ATP production, oxygen consumption, and mitochondrial protein synthesis but did not alter mitochondrial morphology, membrane potential, apoptosis, or the expression of several genes that were previously reported to be GABP targets. However, the expression of Tfb1m, a methyltransferase that modifies ribosomal rRNA and is required for mitochondrial protein translation, was markedly reduced in Gabpα-null MEFs. We conclude that Gabp regulates Tfb1m expression and plays an essential, nonredundant role in mitochondrial biogenesis. PMID:24958105

  15. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    SciTech Connect

    Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha; Jeong, Jae Hoon; Pak, Youngmi Kim

    2014-07-18

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations.

  16. Humic acid in drinking well water induces inflammation through reactive oxygen species generation and activation of nuclear factor-κB/activator protein-1 signaling pathways: A possible role in atherosclerosis

    SciTech Connect

    Hseu, You-Cheng; Senthil Kumar, K.J.; Chen, Chih-Sheng; Cho, Hsin-Ju; Lin, Shu-Wei; Shen, Pei-Chun; Lin, Cheng-Wen; Lu, Fung-Jou; Yang, Hsin-Ling

    2014-01-15

    Humic acid (HA) has been implicated as one of the etiological factors in the peripheral vasculopathy of blackfoot disease (BFD) in Taiwan. However, the underlying pathophysiological mechanisms of BFD are not well defined. In this study, we used an in vitro and in vivo model, in which HA (25–200 μg/mL) activated macrophages to produce pro-inflammatory molecules by activating their transcriptional factors. HA exposure induced NO and PGE{sub 2} production followed by induction of iNOS and COX-2 through NF-κB/AP-1 transactivation in macrophages. In addition, the production of TNF-α and IL-1β was significantly increased by HA. Moreover, HA-induced iNOS and COX-2 expression were down-regulated by the NF-κB and AP-1 inhibitors pyrrolidine dithiocarbamate (PDTC) and Tanshinone, respectively. Furthermore, generations of ROS and nitrotyrosine, as well as activation of the AKT and MAPKs signaling cascades were observed after HA exposure. Specifically, HA-induced NF-κB activation was mediated by ROS and AKT, and that HA-induced AP-1 activation was mediated by JNK and ERK. Notably, HA-mediated AKT, JNK, and ERK activation was ROS-independent. The inflammatory potential of HA was correlated with increased expression of HO-1 and Nrf2. Furthermore, an in vivo study confirms that mice exposed to HA, the serum levels of TNF-α and IL-1β was significantly increased in a dose-dependent manner. This report marks the first confirmation that environmental exposure of HA induces inflammation in macrophages, which may be one of the main causes of early atherogenesis in blackfoot disease. - Highlights: • Humic acid (HA) induce pro-inflammatory cytokines and mediators in macrophages. • HA-induced inflammation is mediated by ROS and NF-κB/AP-1 signaling pathways. • The inflammatory potential of HA correlated with activation of Nrf2/HO-1 genes. • HA exposure to mice increased pro-inflammatory cytokines production in vivo. • HA may be one of the main causes of early

  17. Sevoflurane Inhibits Nuclear Factor-κB Activation in Lipopolysaccharide-Induced Acute Inflammatory Lung Injury via Toll-Like Receptor 4 Signaling

    PubMed Central

    Sun, Xi Jia; Li, Xiao Qian; Wang, Xiao Long; Tan, Wen Fei; Wang, Jun Ke

    2015-01-01

    Background Infection is a common cause of acute lung injury (ALI). This study was aimed to explore whether Toll-like receptors 4 (TLR4) of airway smooth muscle cells (ASMCs) play a role in lipopolysaccharide (LPS)-induced airway hyperresponsiveness and potential mechanisms. Methods In vivo: A sensitizing dose of LPS (50 µg) was administered i.p. to female mice before anesthesia with either 3% sevoflurane or phenobarbital i.p. After stabilization, the mice were challenged with 5 µg of intratracheal LPS to mimic inflammatory attack. The effects of sevoflurane were assessed by measurement of airway responsiveness to methacholine, histological examination, and IL-1, IL-6, TNF-α levels in bronchoalveolar lavage fluid (BALF). Protein and gene expression of TLR4 and NF-κB were also assessed. In vitro: After pre-sensitization of ASMCs and ASM segments for 24h, levels of TLR4 and NF-κB proteins in cultured ASMCs were measured after continuous LPS exposure for 1, 3, 5, 12 and 24h in presence or absence of sevoflurane. Constrictor and relaxant responsiveness of ASM was measured 24 h afterwards. Results The mRNA and protein levels of NF-κB and TLR4 in ASM were increased and maintained at high level after LPS challenge throughout 24h observation period, both in vivo and in vitro. Sevoflurane reduced LPS-induced airway hyperresponsiveness, lung inflammatory cell infiltration and proinflammatory cytokines release in BALF as well as maximal isometric contractile force of ASM segments to acetylcholine, but it increased maximal relaxation response to isoproterenol. Treatment with specific NF-κB inhibitor produced similar protections as sevoflurane, including decreased expressions of TLR4 and NF-κB in cultured ASMCs and improved pharmacodynamic responsiveness of ASM to ACh and isoproterenol. Conclusions This study demonstrates the crucial role of TLR4 activation in ASMCs during ALI in response to LPS. Sevoflurane exerts direct relaxant and anti-inflammatory effects in vivo

  18. Aloperine attenuated neuropathic pain induced by chronic constriction injury via anti-oxidation activity and suppression of the nuclear factor kappa B pathway

    SciTech Connect

    Xu, Ya-Qiong; Jin, Shao-Ju; Liu, Ning; Li, Yu-Xiang; Zheng, Jie; Ma, Lin; Du, Juan; Zhou, Ru; Zhao, Cheng-Jun; Niu, Yang; Sun, Tao; Yu, Jian-Qiang

    2014-09-05

    Highlights: • Aloperine has anti-nociceptive effects on neuropathic pain induced CCI. • Aloperine reduces ROS in neuropathic pain mice. • Aloperine down-regulates the expression of NF-κB and its downstream pro-inflammatory cytokines in neuropathic pain mice. - Abstract: Objective: To investigate whether aloperine (ALO) has antinociceptive effects on neuropathic pain induced by chronic constriction injury, whether ALO reduces ROS against neuropathic pain, and what are the mechanisms involved in ALO attenuated neuropathic pain. Methods: Mechanical and cold allodynia, thermal and mechanical hyperalgesia and spinal thermal hyperalgesia were estimated by behavior methods such as Von Frey filaments, cold-plate, radiant heat, paw pressure and tail immersion on one day before surgery and days 7, 8, 10, 12 and 14 after surgery, respectively. In addition, T-AOC, GSH-PX, T-AOC and MDA in the spinal cord (L4/5) were measured to evaluate anti-oxidation activity of ALO on neuropathic pain. Expressions of NF-κB and pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) in the spinal cord (L4/5) were analyzed by using Western blot. Results: Administration of ALO (80 mg/kg and 40 mg/kg, i.p.) significantly increased paw withdrawal threshold, paw pressure, paw withdrawal latencies, tail-curling latencies, T-AOC, GSH-PX and T-SOD concentration, reduced the numbers of paw lifts and MDA concentration compared to CCI group. ALO attenuated CCI induced up-regulation of expressions of NF-κB, TNF-α, IL-6, IL-1β at the dose of 80 mg/kg (i.p.). Pregabalin produced similar effects serving as positive control at the dose of 10 mg/kg (i.p.). Conclusion: ALO has antinociceptive effects on neuropathic pain induced by CCI. The antinociceptive effects of ALO against neuropathic pain is related to reduction of ROS, via suppression of NF-κB pathway.

  19. Dual-energy precursor and nuclear erythroid-related factor 2 activator treatment additively improve redox glutathione levels and neuron survival in aging and Alzheimer mouse neurons upstream of reactive oxygen species.

    PubMed

    Ghosh, Debolina; LeVault, Kelsey R; Brewer, Gregory J

    2014-01-01

    To determine whether glutathione (GSH) loss or increased reactive oxygen species (ROS) are more important to neuron loss, aging, and Alzheimer's disease (AD), we stressed or boosted GSH levels in neurons isolated from aging 3xTg-AD neurons compared with those from age-matched nontransgenic (non-Tg) neurons. Here, using titrating with buthionine sulfoximine, an inhibitor of γ-glutamyl cysteine synthetase (GCL), we observed that GSH depletion increased neuronal death of 3xTg-AD cultured neurons at increasing rates across the age span, whereas non-Tg neurons were resistant to GSH depletion until old age. Remarkably, the rate of neuron loss with ROS did not increase in old age and was the same for both genotypes, which indicates that cognitive deficits in the AD model were not caused by ROS. Therefore, we targeted for neuroprotection activation of the redox sensitive transcription factor, nuclear erythroid-related factor 2 (Nrf2) by 18 alpha glycyrrhetinic acid to stimulate GSH synthesis through GCL. This balanced stimulation of a number of redox enzymes restored the lower levels of Nrf2 and GCL seen in 3xTg-AD neurons compared with those of non-Tg neurons and promoted translocation of Nrf2 to the nucleus. By combining the Nrf2 activator together with the NADH precursor, nicotinamide, we increased neuron survival against amyloid beta stress in an additive manner. These stress tests and neuroprotective treatments suggest that the redox environment is more important for neuron survival than ROS. The dual neuroprotective treatment with nicotinamide and an Nrf2 inducer indicates that these age-related and AD-related changes are reversible. PMID:23954169

  20. Nuclear Import of the Retrotransposon Tf1 Is Governed by a Nuclear Localization Signal That Possesses a Unique Requirement for the FXFG Nuclear Pore Factor Nup124p

    PubMed Central

    Dang, Van-Dinh; Levin, Henry L.

    2000-01-01

    Retroviruses, such as human immunodeficiency virus, that infect nondividing cells generate integration precursors that must cross the nuclear envelope to reach the host genome. As a model for retroviruses, we investigated the nuclear entry of Tf1, a long-terminal-repeat-containing retrotransposon of the fission yeast Schizosaccharomyces pombe. Because the nuclear envelope of yeasts remains intact throughout the cell cycle, components of Tf1 must be transported through the envelope before integration can occur. The nuclear localization of the Gag protein of Tf1 is different from that of other proteins tested in that it has a specific requirement for the FXFG nuclear pore factor, Nup124p. Using extensive mutagenesis, we found that Gag contained three nuclear localization signals (NLSs) which, when included individually in a heterologous protein, were sufficient to direct nuclear import. In the context of the intact transposon, mutations in the NLS that mapped to the first 10 amino acid residues of Gag significantly impaired Tf1 retrotransposition and abolished nuclear localization of Gag. Interestingly, this NLS activity in the heterologous protein was specifically dependent upon the presence of Nup124p. Deletion analysis of heterologous proteins revealed the surprising result that the residues in Gag with the NLS activity were independent from the residues that conveyed the requirement for Nup124p. In fact, a fragment of Gag that lacked NLS activity, residues 10 to 30, when fused to a heterologous protein, was sufficient to cause the classical NLS of simian virus 40 to require Nup124p for nuclear import. Within the context of the current understanding of nuclear import, these results represent the novel case of a short amino acid sequence that specifies the need for a particular nuclear pore complex protein. PMID:11003674

  1. The unit cost factors and calculation methods for decommissioning - Cost estimation of nuclear research facilities

    SciTech Connect

    Kwan-Seong Jeong; Dong-Gyu Lee; Chong-Hun Jung; Kune-Woo Lee

    2007-07-01

    Available in abstract form only. Full text of publication follows: The uncertainties of decommissioning costs increase high due to several conditions. Decommissioning cost estimation depends on the complexity of nuclear installations, its site-specific physical and radiological inventories. Therefore, the decommissioning costs of nuclear research facilities must be estimated in accordance with the detailed sub-tasks and resources by the tasks of decommissioning activities. By selecting the classified activities and resources, costs are calculated by the items and then the total costs of all decommissioning activities are reshuffled to match with its usage and objectives. And the decommissioning cost of nuclear research facilities is calculated by applying a unit cost factor method on which classification of decommissioning works fitted with the features and specifications of decommissioning objects and establishment of composition factors are based. Decommissioning costs of nuclear research facilities are composed of labor cost, equipment and materials cost. Of these three categorical costs, the calculation of labor costs are very important because decommissioning activities mainly depend on labor force. Labor costs in decommissioning activities are calculated on the basis of working time consumed in decommissioning objects and works. The working times are figured out of unit cost factors and work difficulty factors. Finally, labor costs are figured out by using these factors as parameters of calculation. The accuracy of decommissioning cost estimation results is much higher compared to the real decommissioning works. (authors)

  2. Suplatast tosilate alleviates nasal symptoms through the suppression of nuclear factor of activated T-cells-mediated IL-9 gene expression in toluene-2,4-diisocyanate-sensitized rats.

    PubMed

    Mizuguchi, Hiroyuki; Orimoto, Naoki; Kadota, Takuya; Kominami, Takahiro; Das, Asish K; Sawada, Akiho; Tamada, Misaki; Miyagi, Kohei; Adachi, Tsubasa; Matsumoto, Mayumi; Kosaka, Tomoya; Kitamura, Yoshiaki; Takeda, Noriaki; Fukui, Hiroyuki

    2016-03-01

    Histamine H1 receptor (H1R) gene is upregulated in patients with pollinosis; its expression level is highly correlated with the nasal symptom severity. Antihistamines are widely used as allergy treatments because they inhibit histamine signaling by blocking H1R or suppressing H1R signaling as inverse agonists. However, long-term treatment with antihistamines does not completely resolve toluene-2,4-diisocyanate (TDI)-induced nasal symptoms, although it can decrease H1R gene expression to the basal level, suggesting additional signaling is responsible for the pathogenesis of the allergic symptoms. Here, we show that treatment with suplatast tosilate in combination with antihistamines markedly alleviates nasal symptoms in TDI-sensitized rats. Suplatast suppressed TDI-induced upregulation of IL-9 gene expression. Suplatast also suppressed ionomycin/phorbol-12-myristate-13-acetate-induced upregulation of IL-2 gene expression in Jurkat cells, in which calcineurin (CN)/nuclear factor of activated T-cells (NFAT) signaling is known to be involved. Immunoblot analysis demonstrated that suplatast inhibited binding of NFAT to DNA. Furthermore, suplatast suppressed ionomycin-induced IL-9 mRNA upregulation in RBL-2H3 cells, in which CN/NFAT signaling is also involved. These data suggest that suplatast suppressed NFAT-mediated IL-9 gene expression in TDI-sensitized rats and this might be the underlying mechanism of the therapeutic effects of combined therapy of suplatast with antihistamine. PMID:26874672

  3. Inhibition of mitogen-activated protein kinases/nuclear factor κB-dependent inflammation by a novel chalcone protects the kidney from high fat diet-induced injuries in mice.

    PubMed

    Fang, Qilu; Deng, Liancheng; Wang, Lintao; Zhang, Yali; Weng, Qiaoyou; Yin, Haimin; Pan, Yong; Tong, Chao; Wang, Jingying; Liang, Guang

    2015-11-01

    The prevalence of obesity has increased dramatically worldwide leading to increases in obesity-related complications, such as obesity-related glomerulopathy (ORG). Obesity is a state of chronic, low-grade inflammation, and increased inflammation in the adipose and kidney tissues has been shown to promote the progression of renal damage in obesity. Current therapeutic options for ORG are fairly limited and, as a result, we are seeing increased rates of progression to end-stage renal disease. Chalcones are a class of naturally occurring compounds with various pharmacological properties. 1-(3,4-Dihydroxyphenyl)-3-(2-methoxyphenyl)prop-2-en-1-one (L2H17) is a chalcone that we have previously synthesized and found capable of inhibiting the lipopolysaccharide-induced inflammatory response in macrophages. In this study, we investigated L2H17's effect on obesity-induced renal injury using palmitic acid-induced mouse peritoneal macrophages and high fat diet-fed mice. Our results indicate that L2H17 protects against renal injury through the inhibition of the mitogen-activated protein kinase/nuclear factor κB pathways significantly by decreasing the expression of proinflammatory cytokines and cell adhesion molecules and improving kidney histology and pathology. These findings lead us to believe that L2H17, as an anti-inflammatory agent, can be a potential therapeutic option in treating ORG. PMID:26354992

  4. Activity factors of the Korean exposure factors handbook.

    PubMed

    Jang, Jae-Yeon; Jo, Soo-Nam; Kim, So-Yeon; Lee, Kyung-Eun; Choi, Kyung-Ho; Kim, Young-Hee

    2014-01-01

    Exposure factors based on the Korean population are required for making appropriate risk assessment. It is expected that handbooks for exposure factors will be applied in many fields, as well as by health department risk assessors. The present article describes the development of an exposure factors handbook that specifically focuses on human activities in situations involving the possible risk of exposure to environmental contaminants. We define majour exposure factors that represent behavioral patterns for risk assessment, including time spent on routine activities, in different places, on using transportation, and engaged in activities related to water contact including swimming, bathing and washing. Duration of residence and employment are also defined. National survey data were used to identify recommended levels of exposure factors in terms of time spent on routine activities and period of residence and employment. An online survey was conducted with 2073 subjects who were selected using a stratified random sampling method in order to develop a list of exposure factors for the time spent in different places and in performing water-related activities. We provide the statistical distribution of the variables, and report reference levels of average exposure based on the reliable data in our exposure factors handbook. PMID:24570804

  5. Co-operative interactions between NFAT (nuclear factor of activated T cells) c1 and the zinc finger transcription factors Sp1/Sp3 and Egr-1 regulate MT1-MMP (membrane type 1 matrix metalloproteinase) transcription by glomerular mesangial cells.

    PubMed Central

    Alfonso-Jaume, Maria Alejandra; Mahimkar, Rajeev; Lovett, David H

    2004-01-01

    The transition of normally quiescent glomerular MCs (mesangial cells) to a highly proliferative phenotype with characteristics of myofibroblasts is a process commonly observed in inflammatory diseases affecting the renal glomerulus, the ultimate result of which is glomerulosclerosis. Generation of proteolytically active MMP (matrix metalloproteinase)-2 by the membrane-associated membrane type 1 (MT1)-MMP is responsible for the transition of mesangial cells to the myofibroblast phenotype [Turck, Pollock, Lee, Marti and Lovett (1996) J. Biol. Chem. 271, 15074-15083]. In the present study, we show that the expression of MT1-MMP within the context of MCs is mediated by three discrete cis -acting elements: a proximal non-canonical Sp1 site that preferentially binds Sp1; an overlapping Sp1/Egr-1-binding site that preferentially binds Egr-1; and a more distal binding site for the NFAT (nuclear factor of activated T cells) that binds the NFAT c1 isoform present in MC nuclear extracts. Transfection with an NFAT c1 expression plasmid, or activation of calcineurin with a calcium ionophore, yielded major increases in NFAT c1 nuclear DNA-binding activity, MT1-MMP transcription and protein synthesis, which were additive with the lower levels of transactivation provided by the proximal Sp1 and the overlapping Sp1/Egr-1 sites. Specific binding of NFAT c1 to the MT1-MMP promoter was confirmed by chromatin immunoprecipitation studies, while MT1-MMP expression was suppressed by treatment with the calcineurin inhibitor, cyclosporin A. These studies are the first demonstration that a specific NFAT isoform enhances transcription of an MMP (MT1-MMP) that plays a major role in the proteolytic events that are a dominant feature of acute glomerular inflammation. Suppression of MT1-MMP by commonly used calcineurin inhibitors may play a role in the development of renal fibrosis following renal transplantation. PMID:14979875

  6. Galaxy interactions and strength of nuclear activity

    NASA Technical Reports Server (NTRS)

    Simkin, S. M.

    1990-01-01

    Analysis of data in the literature for differential velocities and projected separations of nearby Seyfert galaxies with possible companions shows a clear difference in projected separations between type 1's and type 2's. This kinematic difference between the two activity classes reinforces other independent evidence that their different nuclear characteristics are related to a non-nuclear physical distinction between the two classes. The differential velocities and projected separations of the galaxy pairs in this sample yield mean galaxy masses, sizes, and mass to light ratios which are consistent with those found by the statistical methods of Karachentsev. Although the galaxy sample discussed here is too small and too poorly defined to provide robust support for these conclusions, the results strongly suggest that nuclear activity in Seyfert galaxies is associated with gravitational perturbations from companion galaxies, and that there are physical distinctions between the host companions of Seyfert 1 and Seyfert 2 nuclei which may depend both on the environment and the structure of the host galaxy itself.

  7. Propanil inhibits tumor necrosis factor-alpha production by reducing nuclear levels of the transcription factor nuclear factor-kappab in the macrophage cell line ic-21.

    PubMed

    Frost, L L; Neeley, Y X; Schafer, R; Gibson, L F; Barnett, J B

    2001-05-01

    Tumor necrosis factor-alpha (TNF-alpha) is an essential proinflammatory cytokine whose production is normally stimulated by bacterial cell wall components, such as lipopolysaccharide (LPS), during an infection. Macrophages stimulated with LPS in vitro produce several cytokines, including TNF-alpha. LPS-stimulated primary mouse macrophages produced less TNF-alpha protein and message after treatment with the herbicide propanil (Xie et al., Toxicol. Appl. Pharmacol. 145, 184-191, 1997). Nuclear factor-kappaB (NF-kappaB) tightly regulates TNF-alpha transcription. Therefore, as a step toward understanding the mechanism of the effect of propanil on TNF-alpha transcription, IC-21 cells were transfected with a TNF-alpha promoter-luciferase construct, and the effect of propanil on luciferase activity was measured. Cells transfected with promoter constructs containing a kappaB site showed decreased luciferase activity relative to controls after propanil treatment. These observations implicated NF-kappaB binding as an intracellular target of propanil. Further studies demonstrated a marked reduction in the nuclear levels of the stimulatory p65 subunit of NF-kappaB after propanil treatment, as measured by fluorescence confocal microscopy and Western blot analysis. The p50 subunit of NF-kappaB was not found to be reduced after propanil exposure by Western blot. Electrophoretic mobility gel shift assays showed decreased DNA binding of both p65/p50 heterodimers and p50/p50 homodimers to the kappaB3 site of the TNF-alpha promoter of propanil-treated cells. The marked reduction in nuclear p65/p50 NF-kappaB levels and diminished binding to the TNF-alpha promoter in propanil-treated cells are consistent with reduced TNF-alpha levels induced by LPS. PMID:11312646

  8. Methamphetamine oxidative stress, neurotoxicity, and functional deficits are modulated by nuclear factor-E2-related factor 2.

    PubMed

    Ramkissoon, Annmarie; Wells, Peter G

    2015-12-01

    Activation of redox-sensitive transcription factors like nuclear factor-E2-related factor 2 (Nrf2) can enhance the transcription of cytoprotective genes during oxidative stress. We investigated whether Nrf2 is activated by methamphetamine (METH) thereby altering neurotoxicity in Nrf2 +/+ and -/- adult mouse brain. A single dose of METH can induce the mRNA levels of Nrf2-regulated antioxidant and cytoprotective proteins in mouse brain. Multiple-day dosing with METH enhanced DNA oxidation and decreased tyrosine hydroxylase and dopamine transporter staining in the striatum, indicating dopaminergic nerve terminal toxicity, which was more severe in -/- mice, as were deficits in motor coordination and olfactory discrimination. These Nrf2-dependent effects were independent of changes in METH metabolism or the induction of hyperthermia. Similarly, METH increased striatal glial fibrillary acidic protein, indicating neurotoxicity. METH neurotoxicity was also observed in the glial cells and in the GABAergic system of the olfactory bulbs and was enhanced in -/- mice, whereas dopaminergic parameters were unaffected. With one-day dosing of METH, there were no differences between +/+ and -/- mice in either basal or METH-enhanced DNA oxidation and neurotoxicity markers. Nrf2-mediated pathways accordingly may protect against the neurodegenerative effects and functional deficits initiated by METH and perhaps other reactive oxygen species-enhancing neurotoxicants, when there is time for transcriptional activation and protein induction. In human users of METH, this mechanism may be essential when differences in drug abuse patterns may alter the induction and duration of Nrf2 activation thereby modulating susceptibility to the neurotoxic effects of METH. PMID:26427884

  9. Differential effect of immune cells on non-pathogenic Gram-negative bacteria-induced nuclear factor-κB activation and pro-inflammatory gene expression in intestinal epithelial cells

    PubMed Central

    Haller, D; Holt, L; Parlesak, A; Zanga, J; Bäuerlein, A; Sartor, R B; Jobin, C

    2004-01-01

    We have previously shown that non-pathogenic Gram negative bacteria induce RelA phosphorylation, nuclear factor (NF)-κB transcriptional activity and pro-inflammatory gene expression in intestinal epithelial cells (IEC) in vivo and in vitro. In this study, we investigated the molecular mechanism of immune-epithelial cell cross-talk on Gram-negative enteric bacteria-induced NF-κB signalling and pro-inflammatory gene expression in IEC using HT-29/MTX as well as CaCO-2 transwell cultures Interestingly, while differentiated HT-29/MTX cells are unresponsive to non-pathogenic Gram negative bacterial stimulation, interleukin-8 (IL-8) mRNA accumulation is strongly induced in Escherichia coli- but not Bacteroides vulgatus-stimulated IEC cocultured with peripheral blood (PBMC) and lamina propria mononuclear cells (LPMC). The presence of PBMC triggered both E. coli- and B. vulgatus-induced mRNA expression of the Toll-like receptor-4 accessory protein MD-2 as well as endogenous IκBα phosphorylation, demonstrating similar capabilities of these bacteria to induce proximal NF-κB signalling. However, B. vulgatus failed to trigger IκBα degradation and NF-κB transcriptional activity in the presence of PBMC. Interestingly, B. vulgatus- and E. coli-derived lipopolysaccharide-induced similar IL-8 mRNA expression in epithelial cells after basolateral stimulation of HT-29/PBMC cocultures. Although luminal enteric bacteria have adjuvant and antigenic properties in chronic intestinal inflammation, PBMC from patients with active ulcerative colitis and Crohn's disease differentially trigger epithelial cell activation in response to E. coli and E. coli-derived LPS. In conclusion, this study provides evidence for a differential regulation of non-pathogenic Gram-negative bacteria-induced NF-κB signalling and IL-8 gene expression in IEC cocultured with immune cells and suggests the presence of mechanisms that assure hyporesponsiveness of the intestinal epithelium to certain commensally

  10. Recombinant human ciliary neurotrophic factor reduces weight partly by regulating nuclear respiratory factor 1 and mitochondrial transcription factor A.

    PubMed

    Liu, Qing-Shan; Wang, Qiu-Juan; Du, Guan-Hua; Zhu, Shen-Yin; Gao, Mei; Zhang, Li; Zhu, Jun-Ming; Cao, Jian-Feng

    2007-06-01

    Ciliary neurotrophic factor (CNTF) can lead to weight loss by up-regulating energy metabolism and the expression of UCP-1 in mitochondria. To investigate the up-stream regulators of the expression of UCP-1, recombinant human CNTF (rhCNTF) (0.1, 0.3, 0.9 mg/kg/day s.c.) administered to KK-Ay mice for 30 days resulting in reductions in body weight and perirenal fat mass. In brown adipose tissues, the gene expressions of nuclear respiratory factor (NRF)-1, mitochondrial transcription factor A (TFam) and uncoupling protein (UCP)-1 were found up-regulated by rhCNTF. To the best of our knowledge, these effects represent new insights on the mechanisms of action of weight loss by rhCNTF. In addition, we also found that rhCNTF increased the activity of mitochondrial complex IV. The stimulation of NRF-1, TFam, UCP-1 and the enhanced activity of mitochondrial complex IV may be associated with remedying obesity. The result indicates that rhCNTF can enhance the expressions of NRF-1 and TFam, both of which can up-regulate the expression of UCP-1. PMID:17397829

  11. An activation factor of liver phosphofructokinase.

    PubMed Central

    Furuya, E; Uyeda, K

    1980-01-01

    Pure phosphofructokinase (ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) from liver is strongly inhibited by ATP, whereas crude phosphofructokinase is only slightly inhibited by ATP. A factor that is removed from the enzyme during purification and can prevent the inhibition of phosphofructokinase by ATP has been isolated. The factor can be resolved into three components that differ in molecular weights, as shown by gel filtration on Sephadex G-25. These factors overcome the ATP inhibition but have no effect on the catalytic activity under the optimum assay conditions. Furthermore, AMP acts syngeristically with the activation factor in reversing ATP inhibition. It is proposed that the activation of phosphofructokinase by the activation factor and AMP is sufficient to account for the glycolytic flux in the liver. PMID:6449699

  12. Economic Conditions and Factors Affecting New Nuclear Power Deployment

    SciTech Connect

    Harrison, Thomas J.

    2014-10-01

    This report documents work performed in support of the US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (AdvSMR) program. The report presents information and results from economic analyses to describe current electricity market conditions and those key factors that may impact the deployment of AdvSMRs or any other new nuclear power plants. Thus, this report serves as a reference document for DOE as it moves forward with its plans to develop advanced reactors, including AdvSMRs. For the purpose of this analysis, information on electricity markets and nuclear power plant operating costs will be combined to examine the current state of the nuclear industry and the process required to successfully move forward with new nuclear power in general and AdvSMRs in particular. The current electricity market is generally unfavorable to new nuclear construction, especially in deregulated markets with heavy competition from natural gas and subsidized renewables. The successful and profitable operation of a nuclear power plant (or any power plant) requires the rate at which the electricity is sold to be sufficiently greater than the cost to operate. The wholesale rates in most US markets have settled into values that provide profits for most operating nuclear power plants but are too low to support the added cost of capital recovery for new nuclear construction. There is a strong geographic dependence on the wholesale rate, with some markets currently able to support new nuclear construction. However, there is also a strong geographic dependence on pronuclear public opinion; the areas where power prices are high tend to have unfavorable views on the construction of new nuclear power plants. The use of government-backed incentives, such as subsidies, can help provide a margin to help justify construction projects that otherwise may not seem viable. Similarly, low interest rates for the project will also add a positive margin to the economic

  13. Parvoviruses Cause Nuclear Envelope Breakdown by Activating Key Enzymes of Mitosis

    PubMed Central

    Porwal, Manvi; Cohen, Sarah; Snoussi, Kenza; Popa-Wagner, Ruth; Anderson, Fenja; Dugot-Senant, Nathalie; Wodrich, Harald; Dinsart, Christiane; Kleinschmidt, Jürgen A.; Panté, Nelly; Kann, Michael

    2013-01-01

    Disassembly of the nuclear lamina is essential in mitosis and apoptosis requiring multiple coordinated enzymatic activities in nucleus and cytoplasm. Activation and coordination of the different activities is poorly understood and moreover complicated as some factors translocate between cytoplasm and nucleus in preparatory phases. Here we used the ability of parvoviruses to induce nuclear membrane breakdown to understand the triggers of key mitotic enzymes. Nuclear envelope disintegration was shown upon infection, microinjection but also upon their application to permeabilized cells. The latter technique also showed that nuclear envelope disintegration was independent upon soluble cytoplasmic factors. Using time-lapse microscopy, we observed that nuclear disassembly exhibited mitosis-like kinetics and occurred suddenly, implying a catastrophic event irrespective of cell- or type of parvovirus used. Analyzing the order of the processes allowed us to propose a model starting with direct binding of parvoviruses to distinct proteins of the nuclear pore causing structural rearrangement of the parvoviruses. The resulting exposure of domains comprising amphipathic helices was required for nuclear envelope disintegration, which comprised disruption of inner and outer nuclear membrane as shown by electron microscopy. Consistent with Ca++ efflux from the lumen between inner and outer nuclear membrane we found that Ca++ was essential for nuclear disassembly by activating PKC. PKC activation then triggered activation of cdk-2, which became further activated by caspase-3. Collectively our study shows a unique interaction of a virus with the nuclear envelope, provides evidence that a nuclear pool of executing enzymes is sufficient for nuclear disassembly in quiescent cells, and demonstrates that nuclear disassembly can be uncoupled from initial phases of mitosis. PMID:24204256

  14. NAIS: Nuclear activation-based imaging spectroscopy

    SciTech Connect

    Günther, M. M.; Britz, A.; Harres, K.; Hoffmeister, G.; Nürnberg, F.; Otten, A.; Pelka, A.; Roth, M.; Clarke, R. J.; Vogt, K.

    2013-07-15

    In recent years, the development of high power laser systems led to focussed intensities of more than 10{sup 22} W/cm{sup 2} at high pulse energies. Furthermore, both, the advanced high power lasers and the development of sophisticated laser particle acceleration mechanisms facilitate the generation of high energetic particle beams at high fluxes. The challenge of imaging detector systems is to acquire the properties of the high flux beam spatially and spectrally resolved. The limitations of most detector systems are saturation effects. These conventional detectors are based on scintillators, semiconductors, or radiation sensitive films. We present a nuclear activation-based imaging spectroscopy method, which is called NAIS, for the characterization of laser accelerated proton beams. The offline detector system is a combination of stacked metal foils and imaging plates (IP). After the irradiation of the stacked foils they become activated by nuclear reactions, emitting gamma decay radiation. In the next step, an autoradiography of the activated foils using IPs and an analysis routine lead to a spectrally and spatially resolved beam profile. In addition, we present an absolute calibration method for IPs.

  15. Activation of factor X by rat hepatocytes

    SciTech Connect

    Willingham, A.K.; Matschiner, J.T.

    1986-05-01

    Synthesis and secretion of blood coagulation factor X was studied in hepatocytes prepared by perfusion of rat livers with collagenase. Hepatocytes were incubated in the presence of vitamin K and /sup 3/H-leucine for up to 4h at 37/sup 0/C. Factor X was isolated from the incubation medium by immunochemical techniques and analyzed by SDS-PAGE. The recovered /sup 3/H-labeled proteins migrated, after reduction of disulfides, as two polypeptide chains with apparent molecular weights (M/sub r/) of approximately 42,000 and 22,000 representing the heavy and light chains of factor X respectively. The apparent M/sub r/ of the heavy chain was about 10,000 daltons lighter than seen with the heavy chain of factor X isolated from rat plasma and was more characteristic of the heavy chain of factor Xa. When the levels of factor X secreted by hepatocytes were determined by clotting assays, activity was present as factor Xa. Also, when purified plasma factor X was added to incubations of hepatocytes (>95% parenchymal cells) the added factor X was rapidly converted to factor Xa. Plasma membranes prepared from isolated hepatocytes or from liver homogenates contained an enzyme that converted factor X to factor Xa in a calcium dependent reaction. The physiological significance of a factor X activating enzyme on hepatocyte plasma membranes is not clear.

  16. Nuclear reaction effects in use of newly recommended quality factor

    NASA Technical Reports Server (NTRS)

    Shinn, Judy L.; Wilson, John W.

    1991-01-01

    The biological risk for energetic ion exposure cannot be reliably estimated exclusive of the target nuclear reaction products produced within the local tissue. A theoretical basis is derived for evaluating target fragment contributions that are evaluated for the newly proposed quality factor.

  17. Electronic and Nuclear Factors in Charge and Excitation Transfer

    SciTech Connect

    Piotr Piotrowiak

    2004-09-28

    We report the and/or state of several subprojects of our DOE sponsored research on Electronic and Nuclear Factors in Electron and Excitation Transfer: (1) Construction of an ultrafast Ti:sapphire amplifier. (2) Mediation of electronic interactions in host-guest molecules. (3) Theoretical models of electrolytes in weakly polar media. (4) Symmetry effects in intramolecular excitation transfer.

  18. LANSCE nuclear science facilities and activities

    SciTech Connect

    Nelson, Ronald O

    2010-01-01

    Nuclear science activities at the Los Alamos Neutron Science Center (LANSCE) encompass measurements spanning the neutron energy range from thermal to 600 MeV. The neutron sources use spallation of the LANSCE 800 MeV pulsed proton beam with the time-of-flight technique to measure properties of neutron-induced reactions as a function of energy over this large energy range. Current experiments are conducted at the Lujan Center moderated neutron source, the unmoderated WNR target, and with a lead-slowing-down spectrometer. Instruments in use include the DANCE array of BaF{sub 2} scintillators for neutron capture studies, the FIGARO array of liquid scintillator neutron detectors, the GEANIE array of high-resolution HPGe x-ray and gamma-ray detectors, and a number of fission chambers, and other detectors. The LANL capabilities for production and handling of radioactive materials coupled with the neutron sources and detectors at LANSCE are enabling new and challenging measurements for a variety of applications including nuclear energy and nuclear astrophysics. An overview of recent research and examples of results is presented.

  19. Personality Factors and Nuclear Power Plant Operators: Initial License Success

    NASA Astrophysics Data System (ADS)

    DeVita-Cochrane, Cynthia

    Commercial nuclear power utilities are under pressure to effectively recruit and retain licensed reactor operators in light of poor candidate training completion rates and recent candidate failures on the Nuclear Regulatory Commission (NRC) license exam. One candidate failure can cost a utility over $400,000, making the successful licensing of new operators a critical path to operational excellence. This study was designed to discover if the NEO-PI-3, a 5-factor measure of personality, could improve selection in nuclear utilities by identifying personality factors that predict license candidate success. Two large U.S. commercial nuclear power corporations provided potential participant contact information and candidate results on the 2014 NRC exam from their nuclear power units nation-wide. License candidates who participated (n = 75) completed the NEO-PI-3 personality test and results were compared to 3 outcomes on the NRC exam: written exam, simulated operating exam, and overall exam result. Significant correlations were found between several personality factors and both written and operating exam outcomes on the NRC exam. Further, a regression analysis indicated that personality factors, particularly Conscientiousness, predicted simulated operating exam scores. The results of this study may be used to support the use of the NEO-PI-3 to improve operator selection as an addition to the current selection protocol. Positive social change implications from this study include support for the use of a personality measure by utilities to improve their return-on-investment in candidates and by individual candidates to avoid career failures. The results of this study may also positively impact the public by supporting the safe and reliable operation of commercial nuclear power utilities in the United States.

  20. Phospholipase Cϵ Activates Nuclear Factor-κB Signaling by Causing Cytoplasmic Localization of Ribosomal S6 Kinase and Facilitating Its Phosphorylation of Inhibitor κB in Colon Epithelial Cells.

    PubMed

    Wakita, Masahiro; Edamatsu, Hironori; Li, Mingzhen; Emi, Aki; Kitazawa, Sohei; Kataoka, Tohru

    2016-06-10

    Phospholipase Cϵ (PLCϵ), an effector of Ras and Rap small GTPases, plays a crucial role in inflammation by augmenting proinflammatory cytokine expression. This proinflammatory function of PLCϵ is implicated in its facilitative role in tumor promotion and progression during skin and colorectal carcinogenesis, although their direct link remains to be established. Moreover, the molecular mechanism underlying these functions of PLCϵ remains unknown except that PKD works downstream of PLCϵ. Here we show by employing the colitis-induced colorectal carcinogenesis model, where Apc(Min) (/+) mice are administered with dextran sulfate sodium, that PLCϵ knock-out alleviates the colitis and suppresses the following tumorigenesis concomitant with marked attenuation of proinflammatory cytokine expression. In human colon epithelial Caco2 cells, TNF-α induces sustained expression of proinflammatory molecules and sustained activation of nuclear factor-κB (NF-κB) and PKD, the late phases of which are suppressed by not only siRNA-mediated PLCϵ knockdown but also treatment with a lysophosphatidic acid (LPA) receptor antagonist. Also, LPA stimulation induces these events in an early time course, suggesting that LPA mediates TNF-α signaling in an autocrine manner. Moreover, PLCϵ knockdown results in inhibition of phosphorylation of IκB by ribosomal S6 kinase (RSK) but not by IκB kinases. Subcellular fractionation suggests that enhanced phosphorylation of a scaffolding protein, PEA15 (phosphoprotein enriched in astrocytes 15), downstream of the PLCϵ-PKD axis causes sustained cytoplasmic localization of phosphorylated RSK, thereby facilitating IκB phosphorylation in the cytoplasm. These results suggest the crucial role of the TNF-α-LPA-LPA receptor-PLCϵ-PKD-PEA15-RSK-IκB-NF-κB pathway in facilitating inflammation and inflammation-associated carcinogenesis in the colon. PMID:27053111

  1. Role of zinc finger structure in nuclear localization of transcription factor Sp1

    SciTech Connect

    Ito, Tatsuo; Azumano, Makiko; Uwatoko, Chisana; Itoh, Kohji Kuwahara, Jun

    2009-02-27

    Transcription factor Sp1 is localized in the nucleus and regulates gene expression. Our previous study demonstrated that the carboxyl terminal region of Sp1 containing 3-zinc finger region as DNA binding domain can also serve as nuclear localization signal (NLS). However, the nuclear transport mechanism of Sp1 has not been well understood. In this study, we performed a gene expression study on mutant Sp1 genes causing a set of amino acid substitutions in zinc finger domains to elucidate nuclear import activity. Nuclear localization of the GFP-fused mutant Sp1 proteins bearing concomitant substitutions in the first and third zinc fingers was highly inhibited. These mutant Sp1 proteins had also lost the binding ability as to the GC box sequence. The results suggest that the overall tertiary structure formed by the three zinc fingers is essential for nuclear localization of Sp1 as well as dispersed basic amino acids within the zinc fingers region.

  2. Nuclear Factor-kappa B Signaling in Skeletal Muscle Atrophy

    PubMed Central

    Li, Hong; Malhotra, Shweta; Kumar, Ashok

    2008-01-01

    Skeletal muscle atrophy/wasting is a serious complication of a wide range of diseases and conditions such as aging, disuse, AIDS, chronic obstructive pulmonary disease, space travel, muscular dystrophy, chronic heart failure, sepsis, and cancer. Emerging evidence suggests that nuclear factor-kappa B (NF-κB) is one of most important signaling pathways linked to the loss of skeletal muscle mass in various physiological and pathophysiological conditions. Activation of NF-κB in skeletal muscle leads to degradation of specific muscle proteins, induces inflammation and fibrosis, and blocks the regeneration of myofibers after injury/atrophy. Recent studies employing genetic mouse models have provided strong evidence that NF-κB can serve as an important molecular target for the prevention of skeletal muscle loss. In this article, we have outlined the current understanding regarding the role of NF-κB in skeletal muscle with particular reference to different models of muscle-wasting and the development of novel therapy. PMID:18574572

  3. Hepatocyte uptake and nuclear binding of epidermal growth factor (EGF)

    SciTech Connect

    Moriarity, D.M.; Underwood, T.

    1987-05-01

    The internalization of /sup 125/I-EGF and its cell-membrane receptor by target cells suggests a possible intracellular role for EGF and/or its receptor. They have examined the uptake of /sup 125/I-EGF by primary cultures of adult rat hepatocytes after 1, 24 and 48 hours of incubation in the presence of the growth factor. A significant increase in the association of radioactivity with various nuclear fractions was observed between 1 and 24 hours incubation. After 1 hour approximately 2% of the total specific binding was associated with both the nuclear sap proteins extractable with 0.14 M NaCl and with the residual nucleoplasm, while about 1% or less was associated with the nuclear membrane and the chromatin fractions. After 24 hours the percentage associated with the nuclear membrane and chromatin fractions increased 2-4 fold. Binding of /sup 125/I-EGF to isolated nuclei from intact livers of adult rats followed by fractionation of the nuclei after incubation with /sup 125/I-EGF indicated that after 60 min at 37/sup 0/C there was a substantial amount of specific binding associated with the nucleoplasm, nuclear membranes and chromatin fractions. These data indicate that specific interactions of EGF with nuclear components occur in both intact normal hepatocytes and in isolated nuclei from intact liver.

  4. Factors limiting microbial activity in volcanic tuff at Yucca Mountain

    SciTech Connect

    Kieft, T.L.; Kovacik, W.P.; Taylor, J.

    1996-09-01

    Samples of tuff aseptically collected from 10 locations in the Exploratory Shaft Facility at the site of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada Test Site were analyzed for microbiological populations, activities, and factors limiting microbial activity. Radiotracer assays ({sup 14}C-labeled organic substrate mineralization), direct microscopic counts, and plate counts were used. Radiolabeled substrates were glucose, acetate, and glutamate. Radiotracer experiments were carried out with and without moisture and inorganic nutrient amendments to determine factors limiting to microbial activities. Nearly all samples showed the presence of microorganisms with the potential to mineralize organic substrates. Addition of inorganic nutrients stimulated activities in a small number of samples. The presence of viable microbial communities within the tuff has implications for transport of contaminants.

  5. Summary of nuclear fuel reprocessing activities around the world

    SciTech Connect

    Mellinger, P.J.; Harmon, K.M.; Lakey, L.T.

    1984-11-01

    This review of international practices for nuclear fuel reprocessing was prepared to provide a nontechnical summary of the current status of nuclear fuel reprocessing activities around the world. The sources of information are widely varied.

  6. Regulatory effect of cytokine-induced neutrophil chemoattractant, epithelial neutrophil-activating peptide 78 and pyrrolidine dithiocarbamate on pulmonary neutrophil aggregation mediated by nuclear factor-κB in lipopolysaccharide-induced acute respiratory distress syndrome mice

    PubMed Central

    Wang, Hongman; Zhao, Jiping; Xue, Guansheng; Wang, Junfei; Wu, Jinxiang; Wang, Donghui; Dong, Liang

    2016-01-01

    In the present study, the regulatory effect of cytokine-induced neutrophil chemoattractant (CINC) and epithelial neutrophil-activating peptide 78 (ENA-78) on pulmonary neutrophil (PMN) accumulation in lipopolysaccharide (LPS)-induced acute respiratory distress syndrome (ARDS) mice, and the therapeutic effect of pyrrolidine dithiocarbamate (PDTC), was investigated. BALB/c mice were divided into control, LPS and PDTC + LPS groups using a random number table. The phosphorylation of nuclear factor-κB (NF-κB) was detected using a western blot, and the mRNA expression levels of CINC were evaluated using reverse transcription-quantitative polymerase chain reaction. The expression of NF-κB, CINC and ENA-78 was detected using immunohistochemistry. The production of interleukin (IL)-8 and IL-10 in serum and broncho-alveolar lavage fluid (BALF) was analyzed using an enzyme-linked immunosorbent assay. The total number of leukocytes and proportion of PMNs in BALF was also determined. Following injection with LPS (20 mg/kg), the expression levels of p-NF-κB, CINC and ENA-78 were increased in lung tissue, and the expression levels of IL-8, IL-10 and the number of PMNs increased in serum and BALF. However, in comparison with the LPS group, the degree of lung injury was reduced in ARDS mice that were treated with PDTC. In addition, the expression level of p-NF-κB and the production of chemokines in lung tissue decreased in ARDS mice that were treated with PDTC, and the number of PMNs in BALF also decreased. In conclusion, the results of the present study suggest that the LPS-induced phosphorylation of NF-κB may result in the synthesis and release of CINC and ENA-78, which induce the accumulation of PMNs in the lung. Therefore, PDTC may be used to reduce the production of chemokines and cytokines, thereby decreasing the activation of PMNs in lung tissue and reducing the damage of lung tissue in ARDS. PMID:27602092

  7. Nuclear Factor-Y is an adipogenic factor that regulates leptin gene expression

    PubMed Central

    Lu, Yi-Hsueh; Dallner, Olof Stefan; Birsoy, Kivanc; Fayzikhodjaeva, Gulya; Friedman, Jeffrey M.

    2015-01-01

    Objective Leptin gene expression is highly correlated with cellular lipid content in adipocytes but the transcriptional mechanisms controlling leptin expression in vivo are poorly understood. In this report, we set out to identify cis- and trans-regulatory elements controlling leptin expression. Methods Leptin-BAC luciferase transgenic mice combining with other computational and molecular techniques were used to identify transcription regulatory elements including a CCAAT-binding protein Nuclear Factor Y (NF-Y). The function of NF-Y in adipocyte was studied in vitro with 3T3-L1 cells and in vivo with adipocyte-specific knockout of NF-Y. Results Using Leptin-BAC luciferase mice, we showed that DNA sequences between −22 kb and +8.8 kb can confer quantitative expression of a leptin reporter. Computational analysis of sequences and gel shift assays identified a 32 bp sequence (chr6: 28993820–2899385) consisting a CCAAT binding site for Nuclear Factor Y (NF-Y) and this was confirmed by a ChIP assay in vivo. A deletion of this 32 bp sequence in the −22 kb to +8.8 kb leptin-luciferase BAC reporter completely abrogates luciferase reporter activity in vivo. RNAi mediated knockdown of NF-Y interfered with adipogenesis in vitro and adipocyte-specific knockout of NF-Y in mice reduced expression of leptin and other fat specific genes in vivo. Further analyses of the fat specific NF-Y knockout revealed that these animals develop a moderately severe lipodystrophy that is remediable with leptin therapy. Conclusions These studies advance our understanding of leptin gene expression and show that NF-Y controls the expression of leptin and other adipocyte genes and identifies a new form of lipodystrophy. PMID:25973387

  8. Factors affecting recognition of cancer risks of nuclear workers.

    PubMed Central

    Kneale, G W; Stewart, A M

    1995-01-01

    OBJECTIVES--To discover whether direct estimates of the risks of cancer for nuclear workers agree with indirect estimates based on survivors of the atomic bomb; whether relations between age at exposure and risk of cancer are the same for workers and survivors, and whether dosimetry standards are sufficiently uniform to allow pooling of data from different nuclear industrial sites. METHOD--Data from five nuclear sites in the United States were included in a cohort analysis that as well as controlling for all the usual factors also allowed for possible effects of three cancer modulating factors (exposure age, cancer latency, and year of exposure). This analysis was first applied to three distinct cohorts, and then to two sets of pooled data. RESULTS--From each study cohort there was evidence of a risk of cancer related to dose, and evidence that the extra radiogenic cancers had the same overall histological manifestations as naturally occurring cancers and were largely the result of exposures after 50 years of age causing deaths after 70 years. There were, however, significant differences between the five sets of risk estimates. CONCLUSIONS--Although the risks of cancer in nuclear workers were appreciably higher than estimates based on the cancer experiences of survivors of the atomic bomb, some uncertainties remained as there were non-uniform standards of dosimetry in the nuclear sites. The differences between nuclear workers and survivors of the atomic bomb were largely the result of relations between age at exposure and risk of cancer being totally different for workers and survivors and, in the occupational data, there were no signs of the special risks of leukaemia found in atomic bomb data and other studies of effects of high doses. PMID:7663636

  9. Selective Activation of Transcription by a Novel CCAAT Binding Factor

    NASA Astrophysics Data System (ADS)

    Maity, Sankar N.; Golumbek, Paul T.; Karsenty, Gerard; de Crombrugghe, Benoit

    1988-07-01

    A novel CCAAT binding factor (CBF) composed of two different subunits has been extensively purified from rat liver. Both subunits are needed for specific binding to DNA. Addition of this purified protein to nuclear extracts of NIH 3T3 fibroblasts stimulates transcription from several promoters including the α 2(I) collagen, the α 1(I) collagen, the Rous sarcoma virus long terminal repeat (RSV-LTR), and the adenovirus major late promoter. Point mutations in the CCAAT motif that show either no binding or a decreased binding of CBF likewise abolish or reduce activation of transcription by CBF. Activation of transcription requires, therefore, the specific binding of CBF to its recognition sites.

  10. Chicken ovalbumin upstream promoter transcription factors act as auxiliary cofactors for hepatocyte nuclear factor 4 and enhance hepatic gene expression.

    PubMed Central

    Ktistaki, E; Talianidis, I

    1997-01-01

    Chicken ovalbumin upstream promoter transcription factors (COUP-TFs) strongly inhibit transcriptional activation mediated by nuclear hormone receptors, including hepatocyte nuclear factor 4 (HNF-4). COUP-TFs repress HNF-4-dependent gene expression by competition with HNF-4 for common binding sites found in several regulatory regions. Here we show that promoters, such as the HNF-1 promoter, which are recognized by HNF-4 but not by COUP-TFs are activated by COUP-TFI and COUP-TFII in conjunction with HNF-4 more than 100-fold above basal levels, as opposed to about 8-fold activation by HNF-4 alone. This enhancement was strictly dependent on an intact HNF-4 E domain. In vitro and in vivo evidence suggests that COUP-TFs enhance HNF-4 activity by a mechanism that involves their physical interaction with the amino acid 227 to 271 region of HNF-4. Our results indicate that in certain promoters, COUP-TFs act as auxiliary cofactors for HNF-4, orienting the HNF-4 activation domain in a more efficient configuration to achieve enhanced transcriptional activity. These findings provide new insights into the regulatory functions of COUP-TFs, suggesting their involvement in the initial activation and subsequent high-level expression of hepatic regulators, as well as in the positive and negative modulation of downstream target genes. PMID:9111350

  11. Chicken ovalbumin upstream promoter transcription factors act as auxiliary cofactors for hepatocyte nuclear factor 4 and enhance hepatic gene expression.

    PubMed

    Ktistaki, E; Talianidis, I

    1997-05-01

    Chicken ovalbumin upstream promoter transcription factors (COUP-TFs) strongly inhibit transcriptional activation mediated by nuclear hormone receptors, including hepatocyte nuclear factor 4 (HNF-4). COUP-TFs repress HNF-4-dependent gene expression by competition with HNF-4 for common binding sites found in several regulatory regions. Here we show that promoters, such as the HNF-1 promoter, which are recognized by HNF-4 but not by COUP-TFs are activated by COUP-TFI and COUP-TFII in conjunction with HNF-4 more than 100-fold above basal levels, as opposed to about 8-fold activation by HNF-4 alone. This enhancement was strictly dependent on an intact HNF-4 E domain. In vitro and in vivo evidence suggests that COUP-TFs enhance HNF-4 activity by a mechanism that involves their physical interaction with the amino acid 227 to 271 region of HNF-4. Our results indicate that in certain promoters, COUP-TFs act as auxiliary cofactors for HNF-4, orienting the HNF-4 activation domain in a more efficient configuration to achieve enhanced transcriptional activity. These findings provide new insights into the regulatory functions of COUP-TFs, suggesting their involvement in the initial activation and subsequent high-level expression of hepatic regulators, as well as in the positive and negative modulation of downstream target genes. PMID:9111350

  12. Effect of the interactions and environment on nuclear activity

    NASA Astrophysics Data System (ADS)

    Sabater, J.; Best, P. N.; Argudo-Fernández, M.

    2013-03-01

    We present a study of the prevalence of optical and radio nuclear activity with respect to the environment and interactions in a sample of the Sloan Digital Sky Survey (SDSS) galaxies. The aim is to determine the independent effects of distinct aspects of source environment on the triggering of different types of nuclear activity. We defined a local density parameter and a tidal force estimator and used a cluster richness estimator from the literature to trace different aspects of environment and interaction. The possible correlations between the environmental parameters were removed using a principal component analysis. By far, the strongest trend found for the active galactic nuclei (AGN) fractions, of all AGN types, is with galaxy mass. We therefore applied a stratified statistical method that takes into account the effect of possible confounding factors like the galaxy mass. We found that (at fixed mass) the prevalence of optical AGN is a factor of 2-3 lower in the densest environments, but increases by a factor of ˜2 in the presence of strong one-on-one interactions. These effects are even more pronounced for star-forming nuclei. The importance of galaxy interactions decreases from star-forming nuclei to Seyferts to low-ionization nuclear emission-line regions to passive galaxies, in accordance with previous suggestions of an evolutionary time-sequence. The fraction of radio AGN increases very strongly (by nearly an order of magnitude) towards denser environments, and is also enhanced by galaxy interactions. Overall, the results agree with a scenario in which the mechanisms of accretion into the black hole are determined by the presence and nature of a supply of gas, which in turn is controlled by the local density of galaxies and their interactions. A plentiful cold gas supply is required to trigger star formation, optical AGN and radiatively efficient radio AGN. This is less common in the cold-gas-poor environments of groups and clusters, but is enhanced by

  13. Transcription factor nuclear factor erythroid-2 mediates expression of the cytokine interleukin 8, a known predictor of inferior outcome in patients with myeloproliferative neoplasms

    PubMed Central

    Wehrle, Julius; Seeger, Thalia S.; Schwemmers, Sven; Pfeifer, Dietmar; Bulashevska, Alla; Pahl, Heike L.

    2013-01-01

    The transcription factor nuclear factor erythroid-2 is over-expressed in patients with myeloproliferative neoplasms irrespective of the presence of the JAK2V617F mutation. Our transgenic mouse model over-expressing nuclear factor erythroid-2, which recapitulates many features of myeloproliferative neoplasms including transformation to acute myeloid leukemia, clearly implicates this transcription factor in the pathophysiology of myeloproliferative neoplasms. Because the targets mediating nuclear factor erythroid-2 effects are not well characterized, we conducted microarray analysis of CD34+ cells lentivirally transduced to over-express nuclear factor erythroid-2 or to silence this transcription factor via shRNA, in order to identify novel target genes. Here, we report that the cytokine interleukin 8 is a novel target gene. Nuclear factor erythroid-2 directly binds the interleukin 8 promoter in vivo, and these binding sites are required for promoter activity. Serum levels of interleukin 8 are known to be elevated in both polycythemia vera and primary myelofibrosis patients. Recently, increased interleukin 8 levels have been shown to be predictive of inferior survival in primary myelofibrosis patients in multivariate analysis. Therefore, one of the mechanisms by which nuclear factor erythroid-2 contributes to myeloproliferative neoplasm pathology may be increased interleukin 8 expression. PMID:23445878

  14. Nuclear modification factor in an anisotropic quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Mandal, Mahatsab; Bhattacharya, Lusaka; Roy, Pradip

    2011-10-01

    We calculate the nuclear modification factor (RAA) of light hadrons by taking into account the initial state momentum anisotropy of the quark-gluon plasma (QGP) expected to be formed in relativistic heavy ion collisions. Such an anisotropy can result from the initial rapid longitudinal expansion of the matter. A phenomenological model for the space-time evolution of the anisotropic QGP is used to obtain the time dependence of the anisotropy parameter ξ and the hard momentum scale, phard. The result is then compared with the PHENIX experimental data to constrain the isotropization time scale, τiso for fixed initial conditions (FIC). It is shown that the extracted value of τiso lies in the range 0.5⩽τiso⩽1.5. However, using a fixed final multiplicity (FFM) condition does not lead to any firm conclusion about the extraction of the isotropization time. The present calculation is also extended to contrast with the recent measurement of nuclear modification factor by the ALICE collaboration at s=2.76 TeV. It is argued that in the present approach, the extraction of τiso at this energy is uncertain and, therefore, refinement of the model is necessary. The sensitivity of the results on the initial conditions has been discussed. We also present the nuclear modification factor at Large Hadron Collider (LHC) energies with s=5.5 TeV.

  15. Occupational Employment in Nuclear-Related Activities, 1981.

    ERIC Educational Resources Information Center

    Baker, Joe G.; Olsen, Kathryn

    Employment in nuclear- and nuclear energy-related activities in 1981 was examined and compared to that in previous years. Survey instruments were returned by 784 establishments. Total 1981 nuclear-related employment was estimated to be 249,500--a growth of 22,600 (10%) workers over the 1977 total. Government-owned, contractor-operated (GOCO)…

  16. Delineating role of ubiquitination on nuclear factor-kappa B pathway by a computational modeling approach

    SciTech Connect

    Lee, Jungsul; Choi, Kyungsun; Choi, Chulhee; Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701; KI for Bio Century, KAIST, Daejeon 305-701

    2010-01-01

    Mutant ubiquitin found in neurodegenerative diseases has been thought to hamper activation of transcription factor nuclear factor-kappa B (NF-{kappa}B) by inhibiting ubiquitin-proteasome system (UPS). It has been reported that ubiquitin also is involved in signal transduction in an UPS-independent manner. We used a modeling and simulation approach to delineate the roles of ubiquitin on NF-{kappa}B activation. Inhibition of proteasome complex increased maximal activation of IKK mainly by decreasing the UPS efficiency. On the contrary, mutant ubiquitin decreased maximal activity of IKK. Computational modeling showed that the inhibition effect of mutant ubiquitin is mainly attributed to decreased activity of UPS-independent function of ubiquitin. Collectively, our results suggest that mutant ubiquitin affects NF-{kappa}B activation in an UPS-independent manner.

  17. Nuclear actin polymerization from faster growing ends in the initial activation of Hox gene transcription are nuclear speckles involved?

    PubMed

    Naum-Onganía, Gabriela; Díaz, Víctor M; Blasi, Francesco; Rivera-Pomar, Rolando

    2013-01-01

    The HoxB cluster expression is activated by retinoic acid and transcribed in a collinear manner. The DNA-binding Pknox1-Pbx1 complex modulates Hox protein activity. Here, NT2-D1 teratocarcinoma cells -a model of Hox gene expression- were used to show that upon retinoic acid induction, Pknox1 co-localizes with polymeric nuclear actin. We have found that globular actin aggregates, polymeric actin, the elongating RNA polymerase II and THOC match euchromatic regions corresponding to nuclear speckles. Moreover, RNA polymerase II, N-WASP, and transcription/splicing factors p54(nrb) and PSF were validated as Pknox1 interactors by tandem affinity purification. PSF pulled down with THOC and nuclear actin, both of which co-localize in nuclear speckles. Although latrunculin A slightly decreases the general level of HoxB gene expression, inhibition of nuclear actin polymerization by cytochalasin D blocks the expression of HoxB transcripts in a collinear manner. Thus, our results support the hypothesis that nuclear actin polymerization is involved in the activation of HoxB gene expression by means of nuclear speckles. PMID:24406343

  18. Key Response Planning Factors for the Aftermath of Nuclear Terrorism

    SciTech Connect

    Buddemeier, B R; Dillon, M B

    2009-01-21

    Despite hundreds of above-ground nuclear tests and data gathered from Hiroshima and Nagasaki, the effects of a ground-level, low-yield nuclear detonation in a modern urban environment are still the subject of considerable scientific debate. Extensive review of nuclear weapon effects studies and discussions with nuclear weapon effects experts from various federal agencies, national laboratories, and technical organizations have identified key issues and bounded some of the unknowns required to support response planning for a low-yield, ground-level nuclear detonation in a modern U.S. city. This study, which is focused primarily upon the hazards posed by radioactive fallout, used detailed fallout predictions from the advanced suite of three-dimensional (3-D) meteorology and plume/fallout models developed at Lawrence Livermore National Laboratory (LLNL), including extensive global Key Response Planning Factors for the Aftermath of Nuclear Terrorism geographical and real-time meteorological databases to support model calculations. This 3-D modeling system provides detailed simulations that account for complex meteorology and terrain effects. The results of initial modeling and analysis were presented to federal, state, and local working groups to obtain critical, broad-based review and feedback on strategy and messaging. This effort involved a diverse set of communities, including New York City, National Capitol Regions, Charlotte, Houston, Portland, and Los Angeles. The largest potential for reducing casualties during the post-detonation response phase comes from reducing exposure to fallout radiation. This can be accomplished through early, adequate sheltering followed by informed, delayed evacuation.B The response challenges to a nuclear detonation must be solved through multiple approaches of public education, planning, and rapid response actions. Because the successful response will require extensive coordination of a large number of organizations, supplemented by

  19. Reprint of "Nuclear transport factors: global regulation of mitosis".

    PubMed

    Forbes, Douglass J; Travesa, Anna; Nord, Matthew S; Bernis, Cyril

    2015-06-01

    The unexpected repurposing of nuclear transport proteins from their function in interphase to an equally vital and very different set of functions in mitosis was very surprising. The multi-talented cast when first revealed included the import receptors, importin alpha and beta, the small regulatory GTPase RanGTP, and a subset of nuclear pore proteins. In this review, we report that recent years have revealed new discoveries in each area of this expanding story in vertebrates: (a) The cast of nuclear import receptors playing a role in mitotic spindle regulation has expanded: both transportin, a nuclear import receptor, and Crm1/Xpo1, an export receptor, are involved in different aspects of spindle assembly. Importin beta and transportin also regulate nuclear envelope and pore assembly. (b) The role of nucleoporins has grown to include recruiting the key microtubule nucleator – the γ-TuRC complex – and the exportin Crm1 to the mitotic kinetochores of humans. Together they nucleate microtubule formation from the kinetochores toward the centrosomes. (c) New research finds that the original importin beta/RanGTP team have been further co-opted by evolution to help regulate other cellular and organismal activities, ranging from the actual positioning of the spindle within the cell perimeter, to regulation of a newly discovered spindle microtubule branching activity, to regulation of the interaction of microtubule structures with specific actin structures. (d) Lastly, because of the multitudinous roles of karyopherins throughout the cell cycle, a recent large push toward testing their potential as chemotherapeutic targets has begun to yield burgeoning progress in the clinic. PMID:26196321

  20. Complement activation induced by rabbit rheumatoid factor.

    PubMed Central

    Meyer, R R; Brown, J C

    1980-01-01

    Rabbit rheumatoid factor produced in animals by hyperimmunized with group C streptococcal vaccine activated guinea pig complement. Anti-streptococcal serum was fractionated by Sephacryl S-200 chromatography into excluded (19S) and included (7S) material and examined for hemolytic activity in a sensitive homologous hemolytic assay system. In the presence of complement, both 19S and 7S antistreptococcal serum fractions induced lysis of bovine (ox) erythrocytes coated with mildly reduced and carboxymethylated rabbit anti-erythrocyte immunoglobulin G. That rabbit rheumatoid factor was responsible for the observed hemolytic activity was substantiated by hemolytic inhibition assays. Significant inhibition of hemolysis was effected when antistreptococcal serum fractions were incubated in the presence of human immunoglobulin G, rabbit immunoglobulin G, and Fc, whereas, no inhibition was detected when the same fractions were tested in the presence of rabbit Fab or F(ab')2 fragments. Deaggregation of inhibitor preparations revealed a preferential reactivity of rheumatoid factor for rabbit immunoglobulin G. In addition to the rheumatoid factor-dependent hemolytic activity observed in humoral preparations, immunoglobulin G-specific antibody-forming cells in spleen and peripheral blood lymphocyte isolates were enumerated by plaque-forming cell assay. PMID:7399707

  1. Factors Associated with Evaluating Public Relations Activities.

    ERIC Educational Resources Information Center

    McElreath, Mark P.

    More than 150 public relations practitioners responded to a survey designed to identify and clarify factors associated with evaluative research in public relations. Responses indicated that (1) no more than half the practitioners formally evaluate their public relations activities on a regular basis; (2) the majority of evaluation is done…

  2. Proaggregant nuclear factor(s) trigger rapid formation of α-synuclein aggregates in apoptotic neurons.

    PubMed

    Jiang, Peizhou; Gan, Ming; Yen, Shu-Hui; Moussaud, Simon; McLean, Pamela J; Dickson, Dennis W

    2016-07-01

    Cell-to-cell transmission of α-synuclein (αS) aggregates has been proposed to be responsible for progressive αS pathology in Parkinson disease (PD) and related disorders, including dementia with Lewy bodies. In support of this concept, a growing body of in vitro and in vivo experimental evidence shows that exogenously introduced αS aggregates can spread into surrounding cells and trigger PD-like pathology. It remains to be determined what factor(s) lead to initiation of αS aggregation that is capable of seeding subsequent propagation. In this study we demonstrate that filamentous αS aggregates form in neurons in response to apoptosis induced by staurosporine or other toxins-6-hydroxy-dopamine and 1-methyl-4-phenylpyridinium (MPP+). Interaction between αS and proaggregant nuclear factor(s) is associated with disruption of nuclear envelope integrity. Knocking down a key nuclear envelop constituent protein, lamin B1, enhances αS aggregation. Moreover, in vitro and in vivo experimental models demonstrate that aggregates released upon cell breakdown can be taken up by surrounding cells. Accordingly, we suggest that at least some αS aggregation might be related to neuronal apoptosis or loss of nuclear membrane integrity, exposing cytosolic α-synuclein to proaggregant nuclear factors. These findings provide new clues to the pathogenesis of PD and related disorders that can lead to novel treatments of these disorders. Specifically, finding ways to limit the effects of apoptosis on αS aggregation, deposition, local uptake and subsequent propagation might significantly impact progression of disease. PMID:26839082

  3. Measurements of ϒ Production and Nuclear Modification Factor at STAR

    NASA Astrophysics Data System (ADS)

    Kesich, Anthony

    2013-08-01

    Thermal suppression of quarkonium production in heavy-ion collisions, due to Debye screening of the quark-antiquark potential, has been proposed as a clear signature of Quark-Gluon Plasma (QGP) formation. At RHIC energies, the ϒ meson is a clean probe of the early system due to negligible levels of enhancement from bbbar recombination and non-thermal suppression from co-mover absorption. We report on our measurement of the ϒ →e+e- cross section in Au+Au collisions at √{sNN} = 200 GeV. We compute the Nuclear Modification Factor by comparing these results to new p+p measurements from 2009 (21pb-1 in 2009 compared to 7.9pb-1 in 2006). In order to have a complete assessment of both hot and cold nuclear matter effects on Upsilon production we also report on results from d+Au collisions.

  4. Human Factors Engineering Review Model for advanced nuclear power reactors

    SciTech Connect

    O'Hara, J.; Higgins, J. ); Goodman, C.; Galletti, G.: Eckenrode, R. )

    1993-01-01

    One of the major issues to emerge from the initial design reviews under the certification process was that detailed human-systems interface (HSI) design information was not available for staff review. To address the lack of design detail issue. The Nuclear Regulatory Commission (NRC) is performing the design certification reviews based on a design process plan which describes the human factors engineering (HFE) program elements that are necessary and sufficient to develop an acceptable detailed design specification. Since the review of a design process is unprecedented in the nuclear industry. The criteria for review are not addressed by current regulations or guidance documents and. therefore, had to be developed. Thus, an HFE Program Review Model was developed. This paper will describe the model's rationale, scope, objectives, development, general characteristics. and application.

  5. Human Factors Engineering Review Model for advanced nuclear power reactors

    SciTech Connect

    O`Hara, J.; Higgins, J.; Goodman, C.; Galletti, G.: Eckenrode, R.

    1993-05-01

    One of the major issues to emerge from the initial design reviews under the certification process was that detailed human-systems interface (HSI) design information was not available for staff review. To address the lack of design detail issue. The Nuclear Regulatory Commission (NRC) is performing the design certification reviews based on a design process plan which describes the human factors engineering (HFE) program elements that are necessary and sufficient to develop an acceptable detailed design specification. Since the review of a design process is unprecedented in the nuclear industry. The criteria for review are not addressed by current regulations or guidance documents and. therefore, had to be developed. Thus, an HFE Program Review Model was developed. This paper will describe the model`s rationale, scope, objectives, development, general characteristics. and application.

  6. Approximate penetration factors for nuclear reactions of astrophysical interest

    NASA Technical Reports Server (NTRS)

    Humblet, J.; Fowler, W. A.; Zimmerman, B. A.

    1987-01-01

    The ranges of validity of approximations of P(l), the penetration factor which appears in the parameterization of nuclear-reaction cross sections at low energies and is employed in the extrapolation of laboratory data to even lower energies of astrophysical interest, are investigated analytically. Consideration is given to the WKB approximation, P(l) at the energy of the total barrier, approximations derived from the asymptotic expansion of G(l) for large eta, approximations for small values of the parameter x, applications of P(l) to nuclear reactions, and the dependence of P(l) on channel radius. Numerical results are presented in tables and graphs, and parameter ranges where the danger of serious errors is high are identified.

  7. Nuclear localization of Src-family tyrosine kinases is required for growth factor-induced euchromatinization

    SciTech Connect

    Takahashi, Akinori; Obata, Yuuki; Fukumoto, Yasunori; Nakayama, Yuji; Kasahara, Kousuke; Kuga, Takahisa; Higashiyama, Yukihiro; Saito, Takashi; Yokoyama, Kazunari K.; Yamaguchi, Naoto

    2009-04-15

    Src-family kinases (SFKs), which participate in various signaling events, are found at not only the plasma membrane but also several subcellular compartments, including the nucleus. Nuclear structural changes are frequently observed during transcription, cell differentiation, senescence, tumorigenesis, and cell cycle. However, little is known about signal transduction in the alteration of chromatin texture. Here, we develop a pixel imaging method for quantitatively evaluating chromatin structural changes. Growth factor stimulation increases euchromatic hypocondensation and concomitant heterochromatic hypercondensation in G{sub 1} phase, and the levels reach a plateau by 30 min, sustain for at least 5 h and return to the basal levels after 24 h. Serum-activated SFKs in the nucleus were more frequently detected in the euchromatin areas than the heterochromatin areas. Nuclear expression of kinase-active SFKs, but not unrelated Syk kinase, drastically increases both euchromatinization and heterochromatinization in a manner dependent on the levels of nuclear tyrosine phosphorylation. However, growth factor stimulation does not induce chromatin structural changes in SYF cells lacking SFKs, and reintroduction of one SFK member into SYF cells can, albeit insufficiently, induce chromatin structural changes. These results suggest that nuclear tyrosine phosphorylation by SFKs plays an important role in chromatin structural changes upon growth factor stimulation.

  8. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1).

    PubMed

    Terranova, Christopher; Narla, Sridhar T; Lee, Yu-Wei; Bard, Jonathan; Parikh, Abhirath; Stachowiak, Ewa K; Tzanakakis, Emmanuel S; Buck, Michael J; Birkaya, Barbara; Stachowiak, Michal K

    2015-01-01

    Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development. PMID:25923916

  9. Molecular geometric phase from the exact electron-nuclear factorization

    NASA Astrophysics Data System (ADS)

    Requist, Ryan; Tandetzky, Falk; Gross, E. K. U.

    2016-04-01

    The Born-Oppenheimer electronic wave function ΦRBO(r ) picks up a topological phase factor ±1 , a special case of Berry phase, when it is transported around a conical intersection of two adiabatic potential energy surfaces in R space. We show that this topological quantity reverts to a geometric quantity ei γ if the geometric phase γ =∮Im <ΦR|∇μΦR> .d Rμ is evaluated with the conditional electronic wave function ΦR(r ) from the exact electron-nuclear factorization ΦR(r ) χ (R ) instead of the adiabatic function ΦRBO(r ) . A model of a pseudorotating triatomic molecule, also applicable to dynamical Jahn-Teller ions in bulk crystals, provides examples of nontrivial induced vector potentials and molecular geometric phase from the exact factorization. The induced vector potential gives a contribution to the circulating nuclear current that cannot be removed by a gauge transformation. The exact potential energy surface is calculated and found to contain a term depending on the Fubini-Study metric for the conditional electronic wave function.

  10. Germ Cell Nuclear Factor Regulates Gametogenesis in Developing Gonads

    PubMed Central

    Sabour, Davood; Xu, Xueping; Chung, Arthur C. K.; Le Menuet, Damien; Ko, Kinarm; Tapia, Natalia; Araúzo-Bravo, Marcos J.; Gentile, Luca; Greber, Boris; Hübner, Karin; Sebastiano, Vittorio; Wu, Guangming; Schöler, Hans R.; Cooney, Austin J.

    2014-01-01

    Expression of germ cell nuclear factor (GCNF; Nr6a1), an orphan member of the nuclear receptor gene family of transcription factors, during gastrulation and neurulation is critical for normal embryogenesis in mice. Gcnf represses the expression of the POU-domain transcription factor Oct4 (Pou5f1) during mouse post-implantation development. Although Gcnf expression is not critical for the embryonic segregation of the germ cell lineage, we found that sexually dimorphic expression of Gcnf in germ cells correlates with the expression of pluripotency-associated genes, such as Oct4, Sox2, and Nanog, as well as the early meiotic marker gene Stra8. To elucidate the role of Gcnf during mouse germ cell differentiation, we generated an ex vivo Gcnf-knockdown model in combination with a regulated CreLox mutation of Gcnf. Lack of Gcnf impairs normal spermatogenesis and oogenesis in vivo, as well as the derivation of germ cells from embryonic stem cells (ESCs) in vitro. Inactivation of the Gcnf gene in vivo leads to loss of repression of Oct4 expression in both male and female gonads. PMID:25140725

  11. Galaxy interactions and the stimulation of nuclear activity

    NASA Technical Reports Server (NTRS)

    Heckman, Timothy M.

    1990-01-01

    The author discusses the idea that interactions between galaxies can lead to enhanced galactic activity. He discusses whether, apart from the observational evidence, there is a strong theoretical or heuristic motivation for investigating galaxy interactions as stimulators of nuclear activity in galaxies. Galactic interactions as mechanisms for triggering nuclear starbursts are covered.

  12. Inhibition of endogenous heat shock protein 70 attenuates inducible nitric oxide synthase induction via disruption of heat shock protein 70/Na(+) /H(+) exchanger 1-Ca(2+) -calcium-calmodulin-dependent protein kinase II/transforming growth factor β-activated kinase 1-nuclear factor-κB signals in BV-2 microglia.

    PubMed

    Huang, Chao; Lu, Xu; Wang, Jia; Tong, Lijuan; Jiang, Bo; Zhang, Wei

    2015-08-01

    Inducible nitric oxide synthase (iNOS) critically contributes to inflammation and host defense. The inhibition of heat shock protein 70 (Hsp70) prevents iNOS induction in lipopolysaccharide (LPS)-stimulated macrophages. However, the role and mechanism of endogenous Hsp70 in iNOS induction in microglia remains unclear. This study addresses this issue in BV-2 microglia, showing that Hsp70 inhibition or knockdown prevents LPS-induced iNOS protein expression and nitric oxide production. Real-time PCR experiments showed that LPS-induced iNOS mRNA transcription was blocked by Hsp70 inhibition. Further studies revealed that the inhibition of Hsp70 attenuated LPS-stimulated nuclear translocation and phosphorylation of nuclear factor (NF)-κB as well as the degradation of inhibitor of κB (IκB)-α and phosphorylation of IκB kinase β (IKKβ). This prevention effect of Hsp70 inhibition on IKKβ-NF-κB activation was found to be dependent on the Ca(2+) /calcium-calmodulin-dependent protein kinase II (CaMKII)/transforming growth factor β-activated kinase 1 (TAK1) signals based on the following observations: 1) chelation of intracellular Ca(2+) or inhibition of CaMKII reduced LPS-induced increases in TAK1 phosphorylation and 2) Hsp70 inhibition reduced LPS-induced increases in CaMKII/TAK1 phosphorylation, intracellular pH value, [Ca(2+) ]i , and CaMKII/TAK1 association. Mechanistic studies showed that Hsp70 inhibition disrupted the association between Hsp70 and Na(+) /H(+) exchanger 1 (NHE1), which is an important exchanger responsible for Ca(2+) influx in LPS-stimulated cells. These studies demonstrate that the inhibition of endogenous Hsp70 attenuates the induction of iNOS, which likely occurs through the disruption of NHE1/Hsp70-Ca(2+) -CaMKII/TAK1-NF-κB signals in BV-2 microglia, providing further insight into the functions of Hsp70 in the CNS. PMID:25691123

  13. Nuclear actions of insulin-like growth factor binding protein-3.

    PubMed

    Baxter, Robert C

    2015-09-10

    In addition to its actions outside the cell, cellular uptake and nuclear import of insulin-like growth factor binding protein-3 (IGFBP-3) has been recognized for almost two decades, but knowledge of its nuclear actions has been slow to emerge. IGFBP-3 has a functional nuclear localization signal and interacts with the nuclear transport protein importin-β. Within the nucleus IGFBP-3 appears to have a role in transcriptional regulation. It can bind to the nuclear receptor, retinoid X receptor-α and several of its dimerization partners, including retinoic acid receptor, vitamin D receptor (VDR), and peroxisome proliferator-activated receptor-γ (PPARγ). These interactions modulate the functions of these receptors, for example inhibiting VDR-dependent transcription in osteoblasts and PPARγ-dependent transcription in adipocytes. Nuclear IGFBP-3 can be detected by immunohistochemistry in cancer and other tissues, and its presence in the nucleus has been shown in many cell culture studies to be necessary for its pro-apoptotic effect, which may also involve interaction with the nuclear receptor Nur77, and export from the nucleus. IGFBP-3 is p53-inducible and in response to DNA damage, forms a complex with the epidermal growth factor receptor (EGFR), translocating to the nucleus to interact with DNA-dependent protein kinase. Inhibition of EGFR kinase activity or downregulation of IGFBP-3 can inhibit DNA double strand-break repair by nonhomologous end joining. IGFBP-3 thus has the ability to influence many cell functions through its interactions with intranuclear pathways, but the importance of these interactions in vivo, and their potential to be targeted for therapeutic benefit, require further investigation. PMID:26074086

  14. Complexes between nuclear factor-κB p65 and signal transducer and activator of transcription 3 are key actors in inducing activation-induced cytidine deaminase expression and immunoglobulin A production in CD40L plus interleukin-10-treated human blood B cells.

    PubMed

    Lafarge, S; Hamzeh-Cognasse, H; Richard, Y; Pozzetto, B; Cogné, M; Cognasse, F; Garraud, O

    2011-11-01

    The signal transducer and activator of transcription 3 (STAT3) transcription factor pathway plays an important role in many biological phenomena. STAT3 transcription is triggered by cytokine-associated signals. Here, we use isolated human B cells to analyse the role of STAT3 in interleukin (IL)-10 induced terminal B cell differentiation and in immunoglobulin (Ig)A production as a characteristic readout of IL-10 signalling. We identified optimal conditions for inducing in-vitro IgA production by purified blood naive B cells using IL-10 and soluble CD40L. We show that soluble CD40L consistently induces the phosphorylation of nuclear factor (NF)-κB p65 but not of STAT3, while IL-10 induces the phosphorylation of STAT3 but not of NF-κB p65. Interestingly, while soluble CD40L and IL-10 were synergistic in driving the terminal maturation of B cells into IgA-producing plasma cells, they did not co-operate earlier in the pathway with regard to the transcription factors NF-κB p65 or STAT3. Blocking either NF-κB p65 or STAT3 profoundly altered the production of IgA and mRNA for activation-induced cytidine deaminase (AID), an enzyme strictly necessary for Ig heavy chain recombination. Finally, the STAT3 pathway was directly activated by IL-10, while IL-6, the main cytokine otherwise known for activating the STAT3 pathway, did not appear to be involved in IL-10-induced-STAT3 activation. Our results suggest that STAT3 and NF-κB pathways co-operate in IgA production, with soluble CD40L rapidly activating the NF-κB pathway, probably rendering STAT3 probably more reactive to IL-10 signalling. This novel role for STAT3 in B cell development reveals a potential therapeutic or vaccine target for eliciting IgA humoral responses at mucosal interfaces. PMID:21985363

  15. Complexes between nuclear factor-κB p65 and signal transducer and activator of transcription 3 are key actors in inducing activation-induced cytidine deaminase expression and immunoglobulin A production in CD40L plus interleukin-10-treated human blood B cells

    PubMed Central

    Lafarge, S; Hamzeh-Cognasse, H; Richard, Y; Pozzetto, B; Cogné, M; Cognasse, F; Garraud, O

    2011-01-01

    The signal transducer and activator of transcription 3 (STAT3) transcription factor pathway plays an important role in many biological phenomena. STAT3 transcription is triggered by cytokine-associated signals. Here, we use isolated human B cells to analyse the role of STAT3 in interleukin (IL)-10 induced terminal B cell differentiation and in immunoglobulin (Ig)A production as a characteristic readout of IL-10 signalling. We identified optimal conditions for inducing in-vitro IgA production by purified blood naive B cells using IL-10 and soluble CD40L. We show that soluble CD40L consistently induces the phosphorylation of nuclear factor (NF)-κB p65 but not of STAT3, while IL-10 induces the phosphorylation of STAT3 but not of NF-κB p65. Interestingly, while soluble CD40L and IL-10 were synergistic in driving the terminal maturation of B cells into IgA-producing plasma cells, they did not co-operate earlier in the pathway with regard to the transcription factors NF-κB p65 or STAT3. Blocking either NF-κB p65 or STAT3 profoundly altered the production of IgA and mRNA for activation-induced cytidine deaminase (AID), an enzyme strictly necessary for Ig heavy chain recombination. Finally, the STAT3 pathway was directly activated by IL-10, while IL-6, the main cytokine otherwise known for activating the STAT3 pathway, did not appear to be involved in IL-10-induced-STAT3 activation. Our results suggest that STAT3 and NF-κB pathways co-operate in IgA production, with soluble CD40L rapidly activating the NF-κB pathway, probably rendering STAT3 probably more reactive to IL-10 signalling. This novel role for STAT3 in B cell development reveals a potential therapeutic or vaccine target for eliciting IgA humoral responses at mucosal interfaces. PMID:21985363

  16. Human Factors Considerations in New Nuclear Power Plants: Detailed Analysis.

    SciTech Connect

    OHara,J.; Higgins, J.; Brown, W.; Fink, R.

    2008-02-14

    This Nuclear Regulatory Commission (NRC) sponsored study has identified human-performance issues in new and advanced nuclear power plants. To identify the issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were organized into seven high-level HFE topic areas: Role of Personnel and Automation, Staffing and Training, Normal Operations Management, Disturbance and Emergency Management, Maintenance and Change Management, Plant Design and Construction, and HFE Methods and Tools. The issues where then prioritized into four categories using a 'Phenomena Identification and Ranking Table' methodology based on evaluations provided by 14 independent subject matter experts. The subject matter experts were knowledgeable in a variety of disciplines. Vendors, utilities, research organizations and regulators all participated. Twenty issues were categorized into the top priority category. This Brookhaven National Laboratory (BNL) technical report provides the detailed methodology, issue analysis, and results. A summary of the results of this study can be found in NUREG/CR-6947. The research performed for this project has identified a large number of human-performance issues for new control stations and new nuclear power plant designs. The information gathered in this project can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas through regulatory research. Addressing human-performance issues will provide the technical basis from which regulatory review guidance can be developed to meet these challenges. The availability of this review guidance will help set clear expectations for how the NRC staff will evaluate new designs, reduce regulatory uncertainty, and provide a well-defined path to new nuclear power plant licensing.

  17. Serine phosphorylation by SYK is critical for nuclear localization and transcription factor function of Ikaros

    PubMed Central

    Uckun, Fatih M.; Ma, Hong; Zhang, Jian; Ozer, Zahide; Dovat, Sinisa; Mao, Cheney; Ishkhanian, Rita; Goodman, Patricia; Qazi, Sanjive

    2012-01-01

    Ikaros is a zinc finger-containing DNA-binding protein that plays a pivotal role in immune homeostasis through transcriptional regulation of the earliest stages of lymphocyte ontogeny and differentiation. Functional deficiency of Ikaros has been implicated in the pathogenesis of acute lymphoblastic leukemia, the most common form of childhood cancer. Therefore, a stringent regulation of Ikaros activity is considered of paramount importance, but the operative molecular mechanisms responsible for its regulation remain largely unknown. Here we provide multifaceted genetic and biochemical evidence for a previously unknown function of spleen tyrosine kinase (SYK) as a partner and posttranslational regulator of Ikaros. We demonstrate that SYK phoshorylates Ikaros at unique C-terminal serine phosphorylation sites S358 and S361, thereby augmenting its nuclear localization and sequence-specific DNA binding activity. Mechanistically, we establish that SYK-induced Ikaros activation is essential for its nuclear localization and optimal transcription factor function. PMID:23071339

  18. Nuclear fear and children: the impact of parental nuclear activism, responsivity, and fear

    SciTech Connect

    LaGuardia, M.R.

    1986-01-01

    This study examines the extent to which parental nuclear fear, parental activism, and parental responsivity is associated with children's (age 10) nuclear fear. Other associated variables investigated include: nuclear denial, general anxiety and fear, and the personal characteristics of sex, socio-economic status, and academic aptitude. Findings indicate that children attend to nuclear issues when their parents attend to a significant degree. Children's hopelessness about the arms race is increased as parents' worry about nuclear war increases. Children's fear about not surviving a nuclear war increases as parents' worry about survivability decreases. Children who have more general fears also indicated that they have a high level of hopelessness, pervasive worry, and much concern about being able to survive a nuclear war. Children with a high degree of general anxiety did not indicate high degrees of nuclear fears. Children with high academic aptitude were more knowledgeable about nuclear issues and expressed more fears about the nuclear threat. Boys demonstrated more knowledge about nuclear issues than girls, and girls expressed much more frequent fear and worry about the nuclear threat than boys. Parents of lower socio-economic statues (SES) expressed more denial about the nuclear threat and were more pro-military than the higher SES parents.

  19. Plumbagin inhibits LPS-induced inflammation through the inactivation of the nuclear factor-kappa B and mitogen activated protein kinase signaling pathways in RAW 264.7 cells.

    PubMed

    Wang, Tingyu; Wu, Feihua; Jin, Zhigui; Zhai, Zanjing; Wang, Yugang; Tu, Bing; Yan, Wei; Tang, Tingting

    2014-02-01

    Plumbagin (PL) has been reported to exhibit anti-carcinogenic, anti-inflammatory and analgesic activities, but little is known about its mechanism. In this study, we investigated the anti-inflammatory property of PL and its mechanism of action. Although no significant cytotoxicity of PL was observed over the concentration range tested, PL (2.5-7.5 μM) significantly and dose-dependently suppressed the secretion of pro-inflammatory mediators and inhibited the expression of TNF-α, IL-1β, IL-6 and iNOS in LPS-stimulated RAW 264.7 cells. Furthermore, PL consistently suppressed the activity of iNOS in LPS-induced RAW 264.7 cells. To elucidate the mechanism underlying the anti-inflammatory activity of PL, we assessed the effects of PL on the MAPK pathway and the activity and expression of NF-κB. These experiments demonstrated that PL significantly reduced the luciferase activity of an NF-κB promoter reporter and p65 nuclear translocation. The LPS-induced phosphorylation of MAP kinases was also attenuated by PL; significant changes were observed in the levels of phosphorylated ERK1/2, JNK and p38 MAPK. Additionally, MAPK inhibitors confirmed the inhibitory effect of PL on the MAPK pathway. Taken together, these data suggest that PL exerts its anti-inflammatory effects by down-regulating the expression of pro-inflammatory mediators through inhibition of NF-κB and MAPK signaling in LPS-stimulated RAW 264.7 cells. PMID:24296134

  20. Establishing a value chain for human factors in nuclear power plantcontrol room modernization

    SciTech Connect

    Joe, Jeffrey Clark; Thomas, Kenneth David; Boring, Ronald Laurids

    2015-07-01

    Commercial nuclear power plants in the United States (U.S.) have operated reliably and efficiently for decades. With the life extensions of plants now being planned for operation beyond their original operating licenses, there are opportunities to achieve even greater efficiencies, while maintaining high operational reliabilities, with strategic, risk- and economically-informed, upgrades to plant systems and infrastructure. The U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) program supports the commercial nuclear industry’s modernization efforts through research and development (R&D) activities across many areas to help establish the technical and economic bases for modernization activities. The Advanced Instrumentation, Information, and Control Systems Technologies pathway is one R&D focus area for the LWRS program, and has researchers at Idaho National Laboratory working with select utility partners to use human factors and instrumentation and controls R&D to help modernize the plant’s main control room. However, some in the nuclear industry have not been as enthusiastic about using human factors R&D to inform life extension decision making. Part of the reason for this may stem from uncertainty decision-makers have regarding how human factors fits into the value chain for nuclear power plant control room modernization. This paper reviews past work that has attempted to demonstrate the value of human factors, and then describes the value chain concept, how it applies to control room modernization, and then makes a case for how and why human factors is an essential link in the modernization value chain.

  1. Roles of hepatocyte nuclear factors in hepatitis B virus infection.

    PubMed

    Kim, Doo Hyun; Kang, Hong Seok; Kim, Kyun-Hwan

    2016-08-21

    Approximately 350 million people are estimated to be persistently infected with hepatitis B virus (HBV) worldwide. HBV maintains persistent infection by employing covalently closed circular DNA (cccDNA), a template for all HBV RNAs. Chronic hepatitis B (CHB) patients are currently treated with nucleos(t)ide analogs such as lamivudine, adefovir, entecavir, and tenofovir. However, these treatments rarely cure CHB because they are unable to inhibit cccDNA transcription and inhibit only a late stage in the HBV life cycle (the reverse transcription step in the nucleocapsid). Therefore, an understanding of the factors regulating cccDNA transcription is required to stop this process. Among numerous factors, hepatocyte nuclear factors (HNFs) play the most important roles in cccDNA transcription, especially in the generation of viral genomic RNA, a template for HBV replication. Therefore, proper control of HNF function could lead to the inhibition of HBV replication. In this review, we summarize and discuss the current understanding of the roles of HNFs in the HBV life cycle and the upstream factors that regulate HNFs. This knowledge will enable the identification of new therapeutic targets to cure CHB. PMID:27610013

  2. Roles of hepatocyte nuclear factors in hepatitis B virus infection

    PubMed Central

    Kim, Doo Hyun; Kang, Hong Seok; Kim, Kyun-Hwan

    2016-01-01

    Approximately 350 million people are estimated to be persistently infected with hepatitis B virus (HBV) worldwide. HBV maintains persistent infection by employing covalently closed circular DNA (cccDNA), a template for all HBV RNAs. Chronic hepatitis B (CHB) patients are currently treated with nucleos(t)ide analogs such as lamivudine, adefovir, entecavir, and tenofovir. However, these treatments rarely cure CHB because they are unable to inhibit cccDNA transcription and inhibit only a late stage in the HBV life cycle (the reverse transcription step in the nucleocapsid). Therefore, an understanding of the factors regulating cccDNA transcription is required to stop this process. Among numerous factors, hepatocyte nuclear factors (HNFs) play the most important roles in cccDNA transcription, especially in the generation of viral genomic RNA, a template for HBV replication. Therefore, proper control of HNF function could lead to the inhibition of HBV replication. In this review, we summarize and discuss the current understanding of the roles of HNFs in the HBV life cycle and the upstream factors that regulate HNFs. This knowledge will enable the identification of new therapeutic targets to cure CHB. PMID:27610013

  3. Platelet activating factor activity in the phospholipids of bovine spermatozoa

    SciTech Connect

    Parks, J.E.; Hough, S.; Elrod, C. )

    1990-11-01

    Platelet activating factor (PAF) has been detected in sperm from several mammalian species and can affect sperm motility and fertilization. Because bovine sperm contain a high percentage of ether-linked phospholipid precursors required for PAF synthesis, a study was undertaken to determine the PAF activity of bovine sperm phospholipids. Total lipids of washed, ejaculated bull sperm were extracted, and phospholipids were fractionated by thin-layer chromatography. Individual phospholipid fractions were assayed for PAF activity on the basis of (3H)serotonin release from equine platelets. PAF activity was detected in the PAF fraction (1.84 pmol/mumol total phospholipid) and in serine/inositol (PS/PI), choline (CP), and ethanolamine phosphoglyceride (EP) and cardiolipin (CA) fractions. Activity was highest in the CP fraction (8.05 pmol/mumol total phospholipid). Incomplete resolution of PAF and neutral lipids may have contributed to the activity in the PS/PI and CA fractions, respectively. Phospholipids from nonsperm sources did not stimulate serotonin release. Platelet activation by purified PAF and by sperm phospholipid fractions was inhibited by the receptor antagonist SRI 63-675. These results indicate that bovine sperm contain PAF and that other sperm phospholipids, especially CP and EP, which are high in glycerylether components, are capable of receptor-mediated platelet activation.

  4. Particle emission factors during cooking activities

    NASA Astrophysics Data System (ADS)

    Buonanno, G.; Morawska, L.; Stabile, L.

    Exposure to particles emitted by cooking activities may be responsible for a variety of respiratory health effects. However, the relationship between these exposures and their subsequent effects on health cannot be evaluated without understanding the properties of the emitted aerosol or the main parameters that influence particle emissions during cooking. Whilst traffic-related emissions, stack emissions and concentrations of ultrafine particles (UFPs, diameter < 100 nm) in urban ambient air have been widely investigated for many years, indoor exposure to UFPs is a relatively new field and in order to evaluate indoor UFP emissions accurately, it is vital to improve scientific understanding of the main parameters that influence particle number, surface area and mass emissions. The main purpose of this study was to characterise the particle emissions produced during grilling and frying as a function of the food, source, cooking temperature and type of oil. Emission factors, along with particle number concentrations and size distributions were determined in the size range 0.006-20 μm using a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS). An infrared camera was used to measure the temperature field. Overall, increased emission factors were observed to be a function of increased cooking temperatures. Cooking fatty foods also produced higher particle emission factors than vegetables, mainly in terms of mass concentration, and particle emission factors also varied significantly according to the type of oil used.

  5. Mechanisms of Specificity for Hox Factor Activity

    PubMed Central

    Zandvakili, Arya; Gebelein, Brian

    2016-01-01

    Metazoans encode clusters of paralogous Hox genes that are critical for proper development of the body plan. However, there are a number of unresolved issues regarding how paralogous Hox factors achieve specificity to control distinct cell fates. First, how do Hox paralogs, which have very similar DNA binding preferences in vitro, drive different transcriptional programs in vivo? Second, the number of potential Hox binding sites within the genome is vast compared to the number of sites bound. Hence, what determines where in the genome Hox factors bind? Third, what determines whether a Hox factor will activate or repress a specific target gene? Here, we review the current evidence that is beginning to shed light onto these questions. In particular, we highlight how cooperative interactions with other transcription factors (especially PBC and HMP proteins) and the sequences of cis-regulatory modules provide a basis for the mechanisms of Hox specificity. We conclude by integrating a number of the concepts described throughout the review in a case study of a highly interrogated Drosophila cis-regulatory module named “The Distal-less Conserved Regulatory Element” (DCRE). PMID:27583210

  6. Identification and characterization of a Nuclear Factor Kappa B p65 proteolytic fragment in nuclei of porcine hepatocytes in monolayer culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hepatocytes prepared from suckling pigs, and maintained in monolayer culture were used to investigate transcription factor activity at the cellular level. The hepatic response to proinflammatory signals is controlled by the activation of several transcription factors, including, Nuclear Factor-Kapp...

  7. Nuclear factor kappa B role in inflammation associated gastrointestinal malignancies

    PubMed Central

    Gambhir, Sahil; Vyas, Dinesh; Hollis, Michael; Aekka, Apporva; Vyas, Arpita

    2015-01-01

    Nuclear factor kappa B (NF-κB) has an established role in the regulation of innate immunity and inflammation. NF-κB is also involved in critical mechanisms connecting inflammation and cancer development. Recent investigations suggest that the NF-κB signaling cascade may be the central mediator of gastrointestinal malignancies including esophageal, gastric and colorectal cancers. This review will explore NF-κB’s function in inflammation-associated gastrointestinal malignancies, highlighting its oncogenic contribution to each step of carcinogenesis. NF-κB’s role in the inflammation-to-carcinoma sequence in gastrointestinal malignancies warrants stronger emphasis upon targeting this pathway in achieving greater therapeutic efficacy. PMID:25805923

  8. Diverse roles of assembly factors revealed by structures of late nuclear pre-60S ribosomes.

    PubMed

    Wu, Shan; Tutuncuoglu, Beril; Yan, Kaige; Brown, Hailey; Zhang, Yixiao; Tan, Dan; Gamalinda, Michael; Yuan, Yi; Li, Zhifei; Jakovljevic, Jelena; Ma, Chengying; Lei, Jianlin; Dong, Meng-Qiu; Woolford, John L; Gao, Ning

    2016-06-01

    Ribosome biogenesis is a highly complex process in eukaryotes, involving temporally and spatially regulated ribosomal protein (r-protein) binding and ribosomal RNA remodelling events in the nucleolus, nucleoplasm and cytoplasm. Hundreds of assembly factors, organized into sequential functional groups, facilitate and guide the maturation process into productive assembly branches in and across different cellular compartments. However, the precise mechanisms by which these assembly factors function are largely unknown. Here we use cryo-electron microscopy to characterize the structures of yeast nucleoplasmic pre-60S particles affinity-purified using the epitope-tagged assembly factor Nog2. Our data pinpoint the locations and determine the structures of over 20 assembly factors, which are enriched in two areas: an arc region extending from the central protuberance to the polypeptide tunnel exit, and the domain including the internal transcribed spacer 2 (ITS2) that separates 5.8S and 25S ribosomal RNAs. In particular, two regulatory GTPases, Nog2 and Nog1, act as hub proteins to interact with multiple, distant assembly factors and functional ribosomal RNA elements, manifesting their critical roles in structural remodelling checkpoints and nuclear export. Moreover, our snapshots of compositionally and structurally different pre-60S intermediates provide essential mechanistic details for three major remodelling events before nuclear export: rotation of the 5S ribonucleoprotein, construction of the active centre and ITS2 removal. The rich structural information in our structures provides a framework to dissect molecular roles of diverse assembly factors in eukaryotic ribosome assembly. PMID:27251291

  9. The Protein Phosphatase 2A Regulatory Subunit B56γ Mediates Suppression of T Cell Receptor (TCR)-induced Nuclear Factor-κB (NF-κB) Activity*

    PubMed Central

    Breuer, Rebecca; Becker, Michael S.; Brechmann, Markus; Mock, Thomas; Arnold, Rüdiger; Krammer, Peter H.

    2014-01-01

    NF-κB is an important transcription factor in the immune system, and aberrant NF-κB activity contributes to malignant diseases and autoimmunity. In T cells, NF-κB is activated upon TCR stimulation, and signal transduction to NF-κB activation is triggered by a cascade of phosphorylation events. However, fine-tuning and termination of TCR signaling are only partially understood. Phosphatases oppose the role of kinases by removing phosphate moieties. The catalytic activity of the protein phosphatase PP2A has been implicated in the regulation of NF-κB. PP2A acts in trimeric complexes in which the catalytic subunit is promiscuous and the regulatory subunit confers substrate specificity. To understand and eventually target NF-κB-specific PP2A functions it is essential to define the regulatory PP2A subunit involved. So far, the regulatory PP2A subunit that mediates NF-κB suppression in T cells remained undefined. By performing a siRNA screen in Jurkat T cells harboring a NF-κB-responsive luciferase reporter, we identified the PP2A regulatory subunit B56γ as negative regulator of NF-κB in TCR signaling. B56γ was strongly up-regulated upon primary human T cell activation, and B56γ silencing induced increased IκB kinase (IKK) and IκBα phosphorylation upon TCR stimulation. B56γ silencing enhanced NF-κB activity, resulting in increased NF-κB target gene expression including the T cell cytokine IL-2. In addition, T cell proliferation was increased upon B56γ silencing. These data help to understand the physiology of PP2A function in T cells and the pathophysiology of diseases involving PP2A and NF-κB. PMID:24719332

  10. Hepatic nuclear factor 3 is an accessory factor required for the stimulation of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids.

    PubMed

    Wang, J C; Strömstedt, P E; O'Brien, R M; Granner, D K

    1996-07-01

    Transcription of the hepatic phosphoenolpyruvate carboxykinase gene is stimulated by glucocorticoids and inhibited by insulin. The glucocorticoid response is mediated by a complex glucocorticoid response unit that consists of two glucocorticoid receptor (GR)-binding sites (GR1 and GR2) and two accessory factor-binding sites (AF1 and AF2). The complete unit is required for the full glucocorticoid response. The dominant insulin effect is mediated in part through an insulin response sequence that is coincident with the AF2 element. Members of the hepatic nuclear factor 3 (HNF3) and CCAAT enhancer binding protein (C/EBP) families bind to the AF2 element; however, there is no correlation between binding of these factors and the ability of the AF2 element to mediate an insulin response. We show here that binding of HNF3 does correlate with the stimulation of the glucocorticoid response by the AF2 element and that C/EBP is apparently not involved in this effect. This requirement for HNF3 is quite specific since the substitution of elements known to enhance the action of the GR in other promoters fails to recapitulate AF2 accessory factor activity. By contrast, an HNF3-binding site from the transthyretin gene is able to substitute for the wild type AF2 sequence and elicit a maximal glucocorticoid response. Based on current and previous observations, the glucocorticoid response unit consists of four DNA elements that bind four different proteins. These are: AF1 (hepatic nuclear factor 4/chicken ovalbumin upstream promoter transcription factor), AF2 (HNF3), GR1 (GR), and GR2 (GR). PMID:8813720

  11. PARP activation promotes nuclear AID accumulation in lymphoma cells

    PubMed Central

    Böttcher, Katrin; Schmidt, Angelika; Davari, Kathrin; Müller, Peter; Kremmer, Elisabeth; Hemmerich, Peter; Pfeil, Ines; Jungnickel, Berit

    2016-01-01

    Activation-induced cytidine deaminase (AID) initiates immunoglobulin diversification in germinal center B cells by targeted introduction of DNA damage. As aberrant nuclear AID action contributes to the generation of B cell lymphoma, the protein's activity is tightly regulated, e.g. by nuclear/cytoplasmic shuttling and nuclear degradation. In the present study, we asked whether DNA damage may affect regulation of the AID protein. We show that exogenous DNA damage that mainly activates base excision repair leads to prevention of proteasomal degradation of AID and hence its nuclear accumulation. Inhibitor as well as knockout studies indicate that activation of poly (ADP-ribose) polymerase (PARP) by DNA damaging agents promotes both phenomena. These findings suggest that PARP inhibitors influence DNA damage dependent AID regulation, with interesting implications for the regulation of AID function and chemotherapy of lymphoma. PMID:26921193

  12. The Dose Rate Conversion Factors for Nuclear Fallout

    SciTech Connect

    Spriggs, G D

    2009-02-13

    In a previous paper, the composite exposure rate conversion factor (ECF) for nuclear fallout was calculated using a simple theoretical photon-transport model. The theoretical model was used to fill in the gaps in the FGR-12 table generated by ORNL. The FGR-12 table contains the individual conversion factors for approximate 1000 radionuclides. However, in order to calculate the exposure rate during the first 30 minutes following a nuclear detonation, the conversion factors for approximately 2000 radionuclides are needed. From a human-effects standpoint, it is also necessary to have the dose rate conversion factors (DCFs) for all 2000 radionuclides. The DCFs are used to predict the whole-body dose rates that would occur if a human were standing in a radiation field of known exposure rate. As calculated by ORNL, the whole-body dose rate (rem/hr) is approximately 70% of the exposure rate (R/hr) at one meter above the surface. Hence, the individual DCFs could be estimated by multiplying the individual ECFs by 0.7. Although this is a handy rule-of-thumb, a more consistent (and perhaps, more accurate) method of estimating the individual DCFs for the missing radionuclides in the FGR-12 table is to use the linear relationship between DCF and total gamma energy released per decay. This relationship is shown in Figure 1. The DCFs for individual organs in the body can also be estimated from the estimated whole-body DCF. Using the DCFs given FGR-12, the ratio of the organ-specific DCFs to the whole-body DCF were plotted as a function of the whole-body DCF. From these plots, the asymptotic ratios were obtained (see Table 1). Using these asymptotic ratios, the organ-specific DCFs can be estimated using the estimated whole-body DCF for each of the missing radionuclides in the FGR-12 table. Although this procedure for estimating the organ-specific DCFs may over-estimate the value for some low gamma-energy emitters, having a finite value for the organ-specific DCFs in the table is

  13. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease

    PubMed Central

    Naranjo, José R.; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M.; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C.; Arrabal, María D.; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-01-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  14. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease.

    PubMed

    Naranjo, José R; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C; Arrabal, María D; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-02-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  15. Transcriptional regulation of the human TR2 orphan receptor gene by nuclear factor 1-A

    SciTech Connect

    Lin, Y.-L.; Wang, Y.-H.; Lee, H.-J. . E-mail: hjlee@mail.ndhu.edu.tw

    2006-11-17

    The human testicular receptor 2 (TR2), a member of the nuclear hormone receptor superfamily, has no identified ligand yet. Previous evidence demonstrated that a 63 bp DNA fragment, named the promoter activating cis-element (PACE), has been identified as a positive regulatory region in the 5' promoter region of the human TR2 gene. In the present report, the human nuclear factor 1-A (NF1-A) was identified as a transcriptional activator to recognize the center of the PACE, called the PACE-C. NF1-A could bind to the 18 bp PACE-C region, and enhance about 13- to 17-fold of the luciferase reporter gene activity via the PACE-C in dose-dependent and orientation-independent manners. This transcriptional activation was further confirmed by real-time RT-PCR assay. In conclusion, our results indicated that NF1-A transcription factor plays an important role in the transcriptional activation of the TR2 gene expression via the PACE-C in the minimal promoter region.

  16. CTCF, a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein differentially expressed in multiple forms.

    PubMed Central

    Klenova, E M; Nicolas, R H; Paterson, H F; Carne, A F; Heath, C M; Goodwin, G H; Neiman, P E; Lobanenkov, V V

    1993-01-01

    A novel sequence-specific DNA-binding protein, CTCF, which interacts with the chicken c-myc gene promoter, has been identified and partially characterized (V. V. Lobanenkov, R. H. Nicolas, V. V. Adler, H. Paterson, E. M. Klenova, A. V. Polotskaja, and G. H. Goodwin, Oncogene 5:1743-1753, 1990). In order to test directly whether binding of CTCF to one specific DNA region of the c-myc promoter is important for chicken c-myc transcription, we have determined which nucleotides within this GC-rich region are responsible for recognition of overlapping sites by CTCF and Sp1-like proteins. Using missing-contact analysis of all four nucleotides in both DNA strands and homogeneous CTCF protein purified by sequence-specific chromatography, we have identified three sets of nucleotides which contact either CTCF or two Sp1-like proteins binding within the same DNA region. Specific mutations of 3 of 15 purines required for CTCF binding were designed to eliminate binding of CTCF without altering the binding of other proteins. Electrophoretic mobility shift assay of nuclear extracts showed that the mutant DNA sequence did not bind CTCF but did bind two Sp1-like proteins. When introduced into a 3.3-kbp-long 5'-flanking noncoding c-myc sequence fused to a reporter CAT gene, the same mutation of the CTCF binding site resulted in 10- and 3-fold reductions, respectively, of transcription in two different (erythroid and myeloid) stably transfected chicken cell lines. Isolation and analysis of the CTCF cDNA encoding an 82-kDa form of CTCF protein shows that DNA-binding domain of CTCF is composed of 11 Zn fingers: 10 are of C2H2 class, and 1 is of C2HC class. CTCF was found to be abundant and conserved in cells of vertebrate species. We detected six major nuclear forms of CTCF protein differentially expressed in different chicken cell lines and tissues. We conclude that isoforms of 11-Zn-finger factor CTCF which are present in chicken hematopoietic HD3 and BM2 cells can act as a positive

  17. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  18. Defective entry into mitosis 1 (Dim1) negatively regulates osteoclastogenesis by inhibiting the expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1).

    PubMed

    An, Daniel; Kim, Kyunghwan; Lu, Wange

    2014-08-29

    Bone remodeling is a continuous process of osteoblastic bone formation and osteoclastic bone resorption to maintain normal bone mass. NFATc1 is the master regulator of osteoclastogensis and transcriptionally activated by c-Fos and NF-κB in response to receptor activator of NF-κB ligand (RANKL) treatment. Defective entry into mitosis 1 (Dim1) is a nuclear protein that is implicated in pre-mRNA splicing and cell cycle progression, but the possible role of Dim1 in regulating other cellular processes remains unknown. Here, we demonstrate that Dim1 attenuates RANKL-induced osteoclastogenesis by targeting NFATc1 signaling pathway. Expression levels of Dim1 and NFATc1 are significantly increased during the formation of multinucleated osteoclasts. RNAi-mediated knockdown of Dim1 markedly enhances the expression of NFATc1 and its target genes, leading to the increase of RANKL-induced osteoclastogenesis in bone marrow-derived macrophages. Conversely, ectopic expression of Dim1 decreases RANKL-induced osteoclast differentiation by silencing NFATc1 and its target genes, further linking Dim1 to the dynamic regulation of osteoclastogenesis. Consistent with this notion, ChIP and interaction studies show that Dim1 directly associates with c-Fos and prevents c-Fos from binding to the NFATc1 promoter, resulting in targeted inactivation of the NFATc1 gene. Therefore, our studies reveal an unrecognized role for Dim1 as a master modulator of osteoclast differentiation, as well as the molecular mechanism underlying its repressive action toward osteoclastogensis. PMID:25023277

  19. Peripheral KATP activation inhibits pain sensitization induced by skin/muscle incision and retraction via the nuclear factor-κB/c-Jun N-terminal kinase signaling pathway.

    PubMed

    Qian, Li-Ping; Shen, Shi-Ren; Chen, Jun-Jie; Ji, Lu-Lu; Cao, Su

    2016-09-01

    The aim of the current study was to assess the effect of pinacidil activation of ATP‑sensitive potassium (KATP) channels prior to skin/muscle incision and retraction (SMIR) surgery on peripheral and central sensitization, and investigate molecular interferential targets for preventive analgesia. Male Sprague-Dawley rats were randomly assigned to one of the following five groups: Control, incision (sham surgery), incision plus retraction (SMIR) group, SMIR plus pinacidil (pinacidil) group and the SMIR plus pyrrolidine dithiocarbamate (PDTC) group. The rats in the pinacidil and PDTC groups were intraperitoneally injected with pinacidil or PDTC, respectively, prior to the SMIR procedure. The mechanical withdrawal threshold (MWT) was determined. Western blotting was performed to detect the alterations in the subunits of the KATP channels, Kir6.1 and SUR2, levels of nuclear factor‑κB (NF‑κB) in the tissue around the incision and c‑Jun N‑terminal kinase (JNK) in the spinal cord. There was a significant increase observed in the levels of NF‑κB and JNK following SMIR surgery compared with the control group, and a significant reduction in MWT and the levels of Kir6.1 and SUR2. Additionally, intraperitoneal administration of pinacidil inhibited the reduction in MWT, and Kir6.1 and SUR2 levels. SMIR was observed to result in increases in the levels of NF‑κB and JNK. In addition, in the PDTC group, the alterations in MWT, NF‑κB, JNK, Kir6.1 and SUR2 resulting from SMIR were blocked. The results of the current study suggest that the deteriorations in the microenvironment resulting from the SMIR procedure can induce peripheral and central sensitization, and that the activation of peripheral KATP by pinacidil prior to SMIR is able to inhibit peripheral and central sensitization via the NF‑κB/JNK signaling pathway, thus resulting in preventive analgesia. PMID:27484116

  20. Transcription factors nuclear factor I and Sp1 interact with the murine collagen alpha 1 (I) promoter.

    PubMed Central

    Nehls, M C; Rippe, R A; Veloz, L; Brenner, D A

    1991-01-01

    The collagen alpha 1(I) promoter, which is efficiently transcribed in NIH 3T3 fibroblasts, contains four binding sites for trans-acting factors, as demonstrated by DNase I protection assays (D. A. Brenner, R. A. Rippe, and L. Veloz, Nucleic Acids Res. 17:6055-6064, 1989). This study characterizes the DNA-binding proteins that interact with the two proximal footprinted regions, both of which contain a reverse CCAAT box and a G + C-rich 12-bp direct repeat. Analysis by DNase I protection assays, mobility shift assays, competition with specific oligonucleotides, binding with recombinant proteins, and reactions with specific antisera showed that the transcriptional factors nuclear factor I (NF-I) and Sp1 bind to these two footprinted regions. Because of overlapping binding sites, NF-I binding and Sp1 binding appear to be mutually exclusive. Overexpression of NF-I in cotransfection experiments with the alpha 1(I) promoter in NIH 3T3 fibroblasts increased alpha 1(I) expression, while Sp1 overexpression reduced this effect, as well as basal promoter activity. The herpes simplex virus thymidine kinase promoter, which contains independent NF-I- and Sp1-binding sites, was stimulated by both factors. Therefore, expression of the collagen alpha 1(I) gene may depend on the relative activities of NF-I and Sp1. Images PMID:2072909

  1. Active Faults and Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Chapman, Neil; Berryman, Kelvin; Villamor, Pilar; Epstein, Woody; Cluff, Lloyd; Kawamura, Hideki

    2014-01-01

    The destruction of the Fukushima Daiichi Nuclear Power Plant (NPP) following the March 2011 Tohoku earthquake and tsunami brought into sharp focus the susceptibility of NPPs to natural hazards. This is not a new issue—seismic hazard has affected the development of plants in the United States, and volcanic hazard was among the reasons for not commissioning the Bataan NPP in the Philippines [Connor et al., 2009].

  2. Complement activating factor(s) of Trypanosoma lewisi: some physiochemical characteristics of the active components.

    PubMed Central

    Nielsen, K; Sheppard, J; Tizard, I; Holmes, W

    1978-01-01

    Of the complement activating factors present in Trypanosoma lewisi, the major component, a carbohydrate containing substance was further investigated. This component was found to have a lag time of complete activation of 2 CH50 units of bovine complement of approximately 15 minutes while 1% trypsin (a known activator of complement, used as a control system) was capable of instant consumption of a similar quantity of complement. In addition, the complement activating factor of trypanosomes was observed to be stable at 100 degrees C for 15 minutes and over a pH range of 3.0 to 11.0. Thin layer chromatography studies suggested that at least part of the active component contained lipid, perhaps indicating that it may be glycolipid in nature. PMID:25701

  3. Hepatocyte nuclear factor-4α, a multifunctional nuclear receptor associated with cardiovascular disease and cholesterol catabolism.

    PubMed

    Tavares-Sanchez, Olga Lidia; Rodriguez, Carmen; Gortares-Moroyoqui, Pablo; Estrada, Maria Isabel

    2015-01-01

    Cardiovascular diseases (CVDs), the leading cause of death worldwide, are associated with high plasma cholesterol levels. The conversion of cholesterol to bile acids (BAs) accounts for about 50% of total cholesterol elimination from the body. This phenomenon occurs in the liver and is regulated by nuclear receptors such as hepatocyte nuclear factor-4α (HNF-4α). Therefore, special emphasis is given to HNF-4α properties and its multifunctional role, particularly in the conversion of cholesterol to BAs. HNF-4α is a highly conserved transcription factor that has the potential capacity to transactivate a vast number of genes, including CYP7 which codes for cholesterol 7α-hydroxylase (CYP7A1; EC 1.14.13.17), the rate-limiting enzyme of BA biosynthesis. The fact that HNF-4α transactivation potential can be modulated via phosporylation is of particular interest. Additional findings on structural and functional characteristics of HNF-4α may eventually present alternatives to control the levels of cholesterol in the body and consequently reduce the risk of CVDs. PMID:24848804

  4. Hepatocyte nuclear factor 1 coordinates multiple processes in a model of intestinal epithelial cell function.

    PubMed

    Yang, Rui; Kerschner, Jenny L; Harris, Ann

    2016-04-01

    Mutations in hepatocyte nuclear factor 1 transcription factors (HNF1α/β) are associated with diabetes. These factors are well studied in the liver, pancreas and kidney, where they direct tissue-specific gene regulation. However, they also have an important role in the biology of many other tissues, including the intestine. We investigated the transcriptional network governed by HNF1 in an intestinal epithelial cell line (Caco2). We used chromatin immunoprecipitation followed by direct sequencing (ChIP-seq) to identify HNF1 binding sites genome-wide. Direct targets of HNF1 were validated using conventional ChIP assays and confirmed by siRNA-mediated depletion of HNF1, followed by RT-qPCR. Gene ontology process enrichment analysis of the HNF1 targets identified multiple processes with a role in intestinal epithelial cell function, including properties of the cell membrane, cellular response to hormones, and regulation of biosynthetic processes. Approximately 50% of HNF1 binding sites were also occupied by other members of the intestinal transcriptional network, including hepatocyte nuclear factor 4A (HNF4A), caudal type homeobox 2 (CDX2), and forkhead box A2 (FOXA2). Depletion of HNF1 in Caco2 cells increases FOXA2 abundance and decreases levels of CDX2, illustrating the coordinated activities of the network. These data suggest that HNF1 plays an important role in regulating intestinal epithelial cell function, both directly and through interactions with other intestinal transcription factors. PMID:26855178

  5. Sensor Fusion for Nuclear Proliferation Activity Monitoring

    SciTech Connect

    Adel Ghanem, Ph D

    2007-03-30

    The objective of Phase 1 of this STTR project is to demonstrate a Proof-of-Concept (PoC) of the Geo-Rad system that integrates a location-aware SmartTag (made by ZonTrak) and a radiation detector (developed by LLNL). It also includes the ability to transmit the collected radiation data and location information to the ZonTrak server (ZonService). The collected data is further transmitted to a central server at LLNL (the Fusion Server) to be processed in conjunction with overhead imagery to generate location estimates of nuclear proliferation and radiation sources.

  6. Recent Nuclear Astrophysics Data Activities at ORNL

    NASA Astrophysics Data System (ADS)

    Smith, Michael S.; Bardayan, Daniel W.; Blackmon, Jeffery C.; Meyer, Richard A.; Chae, Kyungyuk; Guidry, Michael W.; Hix, W. Raphael; Lingerfelt, Eric J.; Ma, Zhanwen; Scott, Jason P.; Kozub, Raymond L.

    2005-12-01

    Recent measurements with radioactive beams at ORNL's Holifield Radioactive Ion Beam Facility (HRIBF) have prompted the evaluation of a number of reactions involving unstable nuclei needed for stellar explosion studies. We discuss these evaluations, as well as the development of a new computational infrastructure to enable the rapid incorporation of the latest nuclear physics results in astrophysics models. This infrastructure includes programs that simplify the generation of reaction rates, manage rate databases, and visualize reaction rates, all hosted at a new website .

  7. Summary of aerospace and nuclear engineering activities

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Texas A&M Nuclear and Aerospace engineering departments have worked on five different projects for the NASA/USRA Advanced Design Program during the 1987/88 year. The aerospace department worked on two types of lunar tunnelers that would create habitable space. The first design used a heated cone to melt the lunar regolith, and the second used a conventional drill to bore its way through the crust. Both used a dump truck to get rid of waste heat from the reactor as well as excess regolith from the tunneling operation. The nuclear engineering department worked on three separate projects. The NEPTUNE system is a manned, outer-planetary explorer designed with Jupiter exploration as the baseline mission. The lifetime requirement for both reactor and power-conversion systems was twenty years. The second project undertaken for the power supply was a Mars Sample Return Mission power supply. This was designed to produce 2 kW of electrical power for seven years. The design consisted of a General Purpose Heat Source (GPHS) utilizing a Stirling engine as the power conversion unit. A mass optimization was performed to aid in overall design. The last design was a reactor to provide power for propulsion to Mars and power on the surface. The requirements of 300 kW of electrical power output and a mass of less than 10,000 Rg were set. This allowed the reactor and power conversion unit to fit within the Space Shuttle cargo bay.

  8. Nuclear Factor-Erythroid-2-Related Factor 2 in Aging and Lung Fibrosis.

    PubMed

    Swamy, Shobha M; Rajasekaran, Namakkal S; Thannickal, Victor J

    2016-07-01

    Aging and age-related diseases have been associated with elevated oxidative stress, which may be related to increased production of reactive species and/or a deficiency in antioxidant defenses. The nuclear factor-erythroid-2-related factor 2 (Nrf2)-mediated antioxidant response pathway maintains cellular reduction-oxidation homeostasis by inducing the transcription of an array of cytoprotective genes. However, there is evidence of impaired Nrf2 response in aging contributing to age-related fibrotic diseases. Herein, we review mechanisms for the dysregulation of Nrf2 signaling in aging. This understanding will pave the way for the design of novel therapeutic strategies that restore Nrf2 signaling to reestablish cellular homeostasis in aging and age-related fibrotic diseases. PMID:27338106

  9. The nuclear factor-kappaB-interleukin-6 signalling pathway mediating vascular inflammation.

    PubMed

    Brasier, Allan R

    2010-05-01

    Vascular inflammation is a common pathophysiological response to diverse cardiovascular disease processes, including atherosclerosis, myocardial infarction, congestive heart failure, and aortic aneurysms/dissection. Inflammation is an ordered process initiated by vascular injury that produces enhanced leucocyte adherence, chemotaxis, and finally activation in situ. This process is coordinated by local secretion of adhesion molecules, chemotactic factors, and cytokines whose expression is the result of vascular injury-induced signal transduction networks. A wide variety of mediators of the vascular injury response have been identified; these factors include vasoactive peptides (angiotensin II, Ang II), CD40 ligands, oxidized cholesterol, and advanced glycation end-products. Downstream, the nuclear factor-kappaB (NF-kappaB) transcription factor performs an important signal integration step, responding to mediators of vascular injury in a stimulus-dependent and cell type-specific manner. The ultimate consequence of NF-kappaB signalling is the activation of inflammatory genes including adhesion molecules and chemotaxins. However, clinically, the hallmark of vascular NF-kappaB activation is the production of interleukin-6 (IL-6), whose local role in vascular inflammation is relatively unknown. The recent elucidation for the role of the IL-6 signalling pathway in Ang II-induced vascular inflammation as one that controls monocyte activation as well as its diverse signalling mechanism will be reviewed. These new discoveries further our understanding for the important role of the NF-kappaB-IL-6 signalling pathway in the process of vascular inflammation. PMID:20202975

  10. Nuclear erythroid 2-related factor 2: a novel potential therapeutic target for liver fibrosis.

    PubMed

    Yang, Jing-Jing; Tao, Hui; Huang, Cheng; Li, Jun

    2013-09-01

    Hepatic stellate cells (HSC) are the key fibrogenic cells of the liver. HSC activation is a process of cellular transdifferentiation that occurs upon liver injury, but the mechanisms underlying liver fibrosis are unknown. Nuclear erythroid 2-related factor 2 (Nrf2) is an oxidative stress-mediated transcription factor with a variety of downstream targets aimed at cytoprotection. However, Nrf2 has recently been implicated as a new therapeutic target for the treatment of liver fibrosis. This review focuses on the transcriptional repressors that either control liver injury or regulate specific fibrogenic functions of liver fibrosis. We also show that Nrf2 may reveal significant gene expression changes, suggesting that Nrf2 activation may ameliorate liver fibrosis. PMID:23793039

  11. IL-1R/TLR2 through MyD88 Divergently Modulates Osteoclastogenesis through Regulation of Nuclear Factor of Activated T Cells c1 (NFATc1) and B Lymphocyte-induced Maturation Protein-1 (Blimp1).

    PubMed

    Chen, Zhihong; Su, Lingkai; Xu, Qingan; Katz, Jenny; Michalek, Suzanne M; Fan, Mingwen; Feng, Xu; Zhang, Ping

    2015-12-11

    Toll-like receptors (TLR) and the receptor for interleukin-1 (IL-1R) signaling play an important role in bacteria-mediated bone loss diseases including periodontitis, rheumatoid arthritis, and osteomyelitis. Recent studies have shown that TLR ligands inhibit the receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation from un-committed osteoclast precursors, whereas IL-1 potentiates RANKL-induced osteoclast formation. However, IL-1R and TLR belong to the same IL-1R/TLR superfamily, and activate similar intracellular signaling pathways. Here, we investigate the molecular mechanisms underlying the distinct effects of IL-1 and Porphyromonas gingivalis lipopolysaccharide (LPS-PG) on RANKL-induced osteoclast formation. Our results show that LPS-PG and IL-1 differentially regulate RANKL-induced activation of osteoclast genes encoding Car2, Ctsk, MMP9, and TRAP, as well as expression of NFATc1, a master transcription factor of osteoclastogenesis. Regulation of osteoclast genes and NFATc1 by LPS-PG and IL-1 is dependent on MyD88, an important signaling adaptor for both TLR and IL-1R family members. Furthermore, LPS-PG and IL-1 differentially regulate RANKL-costimulatory receptor OSCAR (osteoclast-associated receptor) expression and Ca(2+) oscillations induced by RANKL. Moreover, LPS-PG completely abrogates RANKL-induced gene expression of B lymphocyte-induced maturation protein-1 (Blimp1), a global transcriptional repressor of anti-osteoclastogenic genes encoding Bcl6, IRF8, and MafB. However, IL-1 enhances RANKL-induced blimp1 gene expression but suppresses the gene expression of bcl6, irf8, and mafb. Our study reveals the involvement of multiple signaling molecules in the differential regulation of RANKL-induced osteoclastogenesis by TLR2 and IL-1 signaling. Understanding the signaling cross-talk among TLR, IL-1R, and RANK is critical for identifying therapeutic strategies to control bacteria-mediated bone loss. PMID:26483549

  12. Phylogenomics of caspase-activated DNA fragmentation factor

    SciTech Connect

    Eckhart, Leopold . E-mail: leopold.eckhart@meduniwien.ac.at; Fischer, Heinz; Tschachler, Erwin

    2007-04-27

    The degradation of nuclear DNA by DNA fragmentation factor (DFF) is a key step in apoptosis of mammalian cells. Using comparative genomics, we have here determined the evolutionary history of the genes encoding the two DFF subunits, DFFA (also known as ICAD) and DFFB (CAD). Orthologs of DFFA and DFFB were identified in Nematostella vectensis, a representative of the primitive metazoan clade cnidarians, and in various vertebrates and insects, but not in representatives of urochordates, echinoderms, and nematodes. The domains mediating the interaction of DFFA and DFFB, a caspase cleavage site in DFFA, and the amino acid residues critical for endonuclease activity of DFFB were conserved in Nematostella. These findings suggest that DFF has been a part of the primordial apoptosis system of the eumetazoan common ancestor and that the ancient cell death machinery has degenerated in several evolutionary lineages, including the one leading to the prototypical apoptosis model, Caenorhabditis elegans.

  13. Myocyte nuclear factor, a novel winged-helix transcription factor under both developmental and neural regulation in striated myocytes.

    PubMed Central

    Bassel-Duby, R; Hernandez, M D; Yang, Q; Rochelle, J M; Seldin, M F; Williams, R S

    1994-01-01

    A sequence motif (CCAC box) within an upstream enhancer region of the human myoglobin gene is essential for transcriptional activity in both cardiac and skeletal muscle. A cDNA clone, myocyte nuclear factor (MNF), was isolated from a murine expression library on the basis of sequence-specific binding to the myoglobin CCAC box motif and was found to encode a novel member of the winged-helix or HNF-3/fork head family of transcription factors. Probes based on this sequence identify two mRNA species that are upregulated during myocyte differentiation, and antibodies raised against recombinant MNF identify proteins of approximately 90, 68, and 65 kDa whose expression is regulated following differentiation of myogenic cells in culture. In addition, the 90-kDa form of MNF is phosphorylated and is upregulated in intact muscles subjected to chronic motor nerve stimulation, a potent stimulus to myoglobin gene regulation. Amino acid residues 280 to 389 of MNF demonstrate 35 to 89% sequence identity to the winged-helix domain from other known members of this family, but MNF is otherwise divergent. A proline-rich amino-terminal region (residues 1 to 206) of MNF functions as a transcriptional activation domain. These studies provide the first evidence that members of the winged-helix family of transcription factors have a role in myogenic differentiation and in remodeling processes of adult muscles that occur in response to physiological stimuli. Images PMID:8007964

  14. Nuclear Factor 1 and T-Cell Factor/LEF Recognition Elements Regulate Pitx2 Transcription in Pituitary Development▿

    PubMed Central

    Ai, Di; Wang, Jun; Amen, Melanie; Lu, Mei-Fang; Amendt, Brad A.; Martin, James F.

    2007-01-01

    Pitx2, a paired-related homeobox gene that is mutated in Rieger syndrome I, is the earliest known marker of oral ectoderm. Pitx2 was previously shown to be required for tooth, palate, and pituitary development in mice; however, the mechanisms regulating Pitx2 transcription in the oral ectoderm are poorly understood. Here we used an in vivo transgenic approach to investigate the mechanisms regulating Pitx2 transcription. We identified a 7-kb fragment that directs LacZ expression in oral ectoderm and in many of its derivatives. Deletion analysis of transgenic embryos reduced this fragment to a 520-bp region that directed LacZ activity to Rathke's pouch. A comparison of the mouse and human sequences revealed a conserved nuclear factor 1 (NF-1) recognition element near a consensus T-cell factor (TCF)/LEF binding site. The mutation of either site individually abolished LacZ activity in transgenic embryos, identifying Pitx2 as a direct target of Wnt signaling in pituitary development. These findings uncover a requirement for NF-1 and TCF factors in Pitx2 transcriptional regulation in the pituitary and provide insight into the mechanisms controlling region-specific transcription in the oral ectoderm and its derivatives. PMID:17562863

  15. Nuclear Concepts & Technological Issues Institute: Teacher Activity Booklet.

    ERIC Educational Resources Information Center

    Davison, Candace C., Ed.; Lunetta, Lois W., Ed.

    For many summers the Radiation Science and Engineering Center at Pennsylvania State University has been the site of a Nuclear Concepts and Technological Issues Institute for secondary school science teachers. As a culminating activity of the institute teachers develop lesson plans, laboratory experiments, demonstrations, or other activities and…

  16. Cleavage and activation of human factor IX by serine proteases

    SciTech Connect

    Enfield, D.L.; Thompson, A.R.

    1984-10-01

    Human factor IX circulates as a single-chain glycoprotein. Upon activation in vitro, it is cleaved into disulfide-linked light and heavy chains and an activation peptide. After reduction of activated /sup 125/I-factor IX, the heavy and light chains are readily identified by gel electrophoresis. A direct, immunoradiometric assay for factor IXa was developed to assess activation of factor IX for proteases that cleaved it. The assay utilized radiolabeled antithrombin III with heparin to identify the active site and antibodies to distinguish factor IX. After cleavage of factor IX by factor XIa, factor VIIa-tissue thromboplastin complex, or the factor X-activating enzyme from Russell's viper venom, antithrombin III bound readily to factor IXa. Cleavage of /sup 125/I-factor IX by trypsin, chymotrypsin, and granulocyte elastase in the presence of calcium yielded major polypeptide fragments of the sizes of the factor XIa-generated light and heavy chains. When the immunoradiometric assay was used to assess trypsin-cleaved factor IX, the product bound antithrombin III, but not maximally. After digesting with insolubilized trypsin, clotting activity confirmed activation. In evaluating activation of factor IX, physical evidence of activation cleavages does not necessarily correlate with generation of an active site.

  17. Activities of the PNC Nuclear Safety Working Group

    SciTech Connect

    Kato, W.Y.

    1991-12-31

    The Nuclear Safety Working Group of the Pacific Nuclear Council promotes nuclear safety cooperation among its members. Status of safety research, emergency planning, development of lists of technical experts, severe accident prevention and mitigation have been the topics of discussion in the NSWG. This paper reviews and compares the severe accident prevention and mitigation program activities in some of the areas of the Pacific Basin region based on papers presented at a special session organized by the NSWG at an ANS Topical Meeting as well as papers from other sources.

  18. Activities of the PNC Nuclear Safety Working Group

    SciTech Connect

    Kato, W.Y.

    1991-01-01

    The Nuclear Safety Working Group of the Pacific Nuclear Council promotes nuclear safety cooperation among its members. Status of safety research, emergency planning, development of lists of technical experts, severe accident prevention and mitigation have been the topics of discussion in the NSWG. This paper reviews and compares the severe accident prevention and mitigation program activities in some of the areas of the Pacific Basin region based on papers presented at a special session organized by the NSWG at an ANS Topical Meeting as well as papers from other sources.

  19. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1.

    PubMed Central

    Forsythe, J A; Jiang, B H; Iyer, N V; Agani, F; Leung, S W; Koos, R D; Semenza, G L

    1996-01-01

    Expression of vascular endothelial growth factor (VEGF) is induced in cells exposed to hypoxia or ischemia. Neovascularization stimulated by VEGF occurs in several important clinical contexts, including myocardial ischemia, retinal disease, and tumor growth. Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic helix-loop-helix protein that activates transcription of the human erythropoietin gene in hypoxic cells. Here we demonstrate the involvement of HIF-1 in the activation of VEGF transcription. VEGF 5'-flanking sequences mediated transcriptional activation of reporter gene expression in hypoxic Hep3B cells. A 47-bp sequence located 985 to 939 bp 5' to the VEGF transcription initiation site mediated hypoxia-inducible reporter gene expression directed by a simian virus 40 promoter element that was otherwise minimally responsive to hypoxia. When reporters containing VEGF sequences, in the context of the native VEGF or heterologous simian virus 40 promoter, were cotransfected with expression vectors encoding HIF-1alpha and HIF-1beta (ARNT [aryl hydrocarbon receptor nuclear translocator]), reporter gene transcription was much greater in both hypoxic and nonhypoxic cells than in cells transfected with the reporter alone. A HIF-1 binding site was demonstrated in the 47-bp hypoxia response element, and a 3-bp substitution eliminated the ability of the element to bind HIF-1 and to activate transcription in response to hypoxia and/or recombinant HIF-1. Cotransfection of cells with an expression vector encoding a dominant negative form of HIF-1alpha inhibited the activation of reporter transcription in hypoxic cells in a dose-dependent manner. VEGF mRNA was not induced by hypoxia in mutant cells that do not express the HIF-1beta (ARNT) subunit. These findings implicate HIF-1 in the activation of VEGF transcription in hypoxic cells. PMID:8756616

  20. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation.

    PubMed

    Faria, Jerusa A Q A; de Andrade, Carolina; Goes, Alfredo M; Rodrigues, Michele A; Gomes, Dawidson A

    2016-09-01

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. PMID:27462018

  1. Mechanism of a transcriptional cross talk between transforming growth factor-beta-regulated Smad3 and Smad4 proteins and orphan nuclear receptor hepatocyte nuclear factor-4.

    PubMed

    Chou, Wan-Chih; Prokova, Vassiliki; Shiraishi, Keiko; Valcourt, Ulrich; Moustakas, Aristidis; Hadzopoulou-Cladaras, Margarita; Zannis, Vassilis I; Kardassis, Dimitris

    2003-03-01

    We have shown previously that the transforming growth factor-beta (TGFbeta)-regulated Sma-Mad (Smad) protein 3 and Smad4 proteins transactivate the apolipoprotein C-III promoter in hepatic cells via a hormone response element that binds the nuclear receptor hepatocyte nuclear factor 4 (HNF-4). In the present study, we show that Smad3 and Smad4 but not Smad2 physically interact with HNF-4 via their Mad homology 1 domains both in vitro and in vivo. The synergistic transactivation of target promoters by Smads and HNF-4 was shown to depend on the specific promoter context and did not require an intact beta-hairpin/DNA binding domain of the Smads. Using glutathione S-transferase interaction assays, we established that two regions of HNF-4, the N-terminal activation function 1 (AF-1) domain (aa 1-24) and the C-terminal F domain (aa 388-455) can mediate physical Smad3/HNF-4 interactions in vitro. In vivo, Smad3 and Smad4 proteins enhanced the transactivation function of various GAL4-HNF-4 fusion proteins via the AF-1 and the adjacent DNA binding domain, whereas a single tyrosine to alanine substitution in AF-1 abolished coactivation by Smads. The findings suggest that the transcriptional cross talk between the TGFbeta-regulated Smads and HNF-4 is mediated by specific functional domains in the two types of transcription factors. Furthermore, the specificity of this interaction for certain target promoters may play an important role in various hepatocyte functions, which are regulated by TGFbeta and the Smads. PMID:12631740

  2. p35 Regulates the CRM1-Dependent Nucleocytoplasmic Shuttling of Nuclear Hormone Receptor Coregulator-Interacting Factor 1 (NIF-1)

    PubMed Central

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W. Y.; Li, Zhen; Fu, Amy K. Y.; Ip, Nancy Y.

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators. PMID:25329792

  3. Protective role of nuclear factor erythroid 2-related factor 2 in the hemorrhagic shock-induced inflammatory response

    PubMed Central

    ZHAO, HAIGE; HAO, SIJING; XU, HONGFEI; MA, LIANG; ZHANG, ZHENG; NI, YIMING; YU, LUYANG

    2016-01-01

    Hemorrhagic shock (HS) following trauma or major surgery significantly contributes to mortality. However, the mechanisms through which HS activates the inflammatory response are not yet fully understood. Nuclear factor-erythroid 2 (NF-E2) p45-related factor-2 (Nrf2), a bZIP transcription factor, is a master regulator of robust cytoprotective defenses. The present study investigated the role of Nrf2 in the pathophysiology of HS. Nrf2 expression in peripheral leukocytes obtained from patients with surgery-associated hemorrhage subjected to resuscitation treatment (termed HS patients) or healthy donors was examined by RT-qPCR. A marked increase in Nrf2 expression was detected in the leukocytes obtained from the HS patients, which indicates a correlation between Nrf2 expression and the development of HS. Wild-type (WT; Nrf2+/+) and Nrf2-deficient [Nrf2−/− or Nrf2-knockout (KO)] mice were subjected to surgery to induce HS. Systemic inflammation was significantly elevated in the Nrf2-KO mice compared with the WT mice following HS, as assessed by an increase in serum cytokine levels [interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-1β], as well as high-mobility group box 1 protein (HMGB1) expression. The Nrf2-KO mice exhibited more severe lung and liver injury following HS as evidenced by increased tissue damage, increased myeloperoxidase (MPO) activity and the increased production of pro-inflammatory cytokines. Additionally, Nrf2 deficiency augmented cytokine production induced by the exposure of peritoneal mouse macrophages to lipopolysaccha-ride (LPS) following HS. Taken together, these results suggest that Nrf2 is a critical host factor which limits immune dysregulation and organ injury following HS. PMID:26935388

  4. Protective role of nuclear factor erythroid 2-related factor 2 in the hemorrhagic shock-induced inflammatory response.

    PubMed

    Zhao, Haige; Hao, Sijing; Xu, Hongfei; Ma, Liang; Zhang, Zheng; Ni, Yiming; Yu, Luyang

    2016-04-01

    Hemorrhagic shock (HS) following trauma or major surgery significantly contributes to mortality. However, the mechanisms through which HS activates the inflammatory response are not yet fully understood. Nuclear factor-erythroid 2 (NF-E2) p45-related factor-2 (Nrf2), a bZIP transcription factor, is a master regulator of robust cytoprotective defenses. The present study investigated the role of Nrf2 in the pathophysiology of HS. Nrf2 expression in peripheral leukocytes obtained from patients with surgery-associated hemorrhage subjected to resuscitation treatment (termed HS patients) or healthy donors was examined by RT-qPCR. A marked increase in Nrf2 expression was detected in the leukocytes obtained from the HS patients, which indicates a correlation between Nrf2 expression and the development of HS. Wild-type (WT; Nrf2+/+) and Nrf2-deficient [Nrf2-/- or Nrf2‑knockout (KO)] mice were subjected to surgery to induce HS. Systemic inflammation was significantly elevated in the Nrf2-KO mice compared with the WT mice following HS, as assessed by an increase in serum cytokine levels [interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-1β], as well as high-mobility group box 1 protein (HMGB1) expression. The Nrf2-KO mice exhibited more severe lung and liver injury following HS as evidenced by increased tissue damage, increased myeloperoxidase (MPO) activity and the increased production of pro-inflammatory cytokines. Additionally, Nrf2 deficiency augmented cytokine production induced by the exposure of peritoneal mouse macrophages to lipopolysaccharide (LPS) following HS. Taken together, these results suggest that Nrf2 is a critical host factor which limits immune dysregulation and organ injury following HS. PMID:26935388

  5. Laser-Induced Nuclear Activation Studies

    NASA Astrophysics Data System (ADS)

    Simons, Andrew; Gardner, Matthew; Thompson, Peter; Allwork, Christopher; Rubery, Michael; Clarke, Robert

    2009-10-01

    A series of experimental campaigns, each designed to activated carefully selected materials, have been conducted with high- power short-pulse laser systems. These relatively new CPA laser systems can produce large bursts of X-rays, electrons, protons and other ions. Characterising the nature of these mixed radiation fields is neccessary for both physics experiments and facility safety. Three campaigns, two with the HELEN laser faility at AWE and one with the Vulcan Petawatt laser at the Rutherford Appleton laboratory, were designed to accelerate protons. These protons irradiated secondary activation targets of pure foils and various optical glasses, typically those used in target chamber environments such as those found at NIF, Omega and AWE's Orion laser facility. This talk discusses these experiments and covers the production of laser-produced radiation fields, the selection of activation targets, the interpretation the radioactive decay signals, the current status of the analysis and the future applications of this research.

  6. Modification of generalized vector form factors and transverse charge densities of the nucleon in nuclear matter

    NASA Astrophysics Data System (ADS)

    Jung, Ju-Hyun; Yakhshiev, Ulugbek; Kim, Hyun-Chul

    2016-03-01

    We investigate the medium modification of the generalized vector form factors of the nucleon, which include the electromagnetic and energy-momentum tensor form factors, based on an in-medium modified π -ρ -ω soliton model. We find that the vector form factors of the nucleon in nuclear matter fall off faster than those in free space, which implies that the charge radii of the nucleon become larger in nuclear medium than in free space. We also compute the corresponding transverse charge densities of the nucleon in nuclear matter, which clearly reveal the increasing of the nucleon size in nuclear medium.

  7. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions.

    PubMed

    Nefiodov, A V; Plunien, G; Soff, G

    2002-08-19

    The influence of nuclear polarization on the bound-electron g factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron g factor in highly charged ions. PMID:12190457

  8. NMDA-induced neuronal survival is mediated through nuclear factor I-A in mice

    PubMed Central

    Zheng, Sika; Eacker, Stephen M.; Hong, Suk Jin; Gronostajski, Richard M.; Dawson, Ted M.; Dawson, Valina L.

    2010-01-01

    Identification of the signaling pathways that mediate neuronal survival signaling could lead to new therapeutic targets for neurologic disorders and stroke. Sublethal doses of NMDA can induce robust endogenous protective mechanisms in neurons. Through differential analysis of primary library expression and microarray analyses, here we have shown that nuclear factor I, subtype A (NFI-A), a member of the NFI/CAAT-box transcription factor family, is induced in mouse neurons by NMDA receptor activation in a NOS- and ERK-dependent manner. Knockdown of NFI-A induction using siRNA substantially reduced the neuroprotective effects of sublethal doses of NMDA. Further analysis indicated that NFI-A transcriptional activity was required for the neuroprotective effects of NMDA receptor activation. Additional evidence of the neuroprotective effects of NFI-A w