Science.gov

Sample records for activates toll-like receptor

  1. Mincle suppresses Toll-like receptor 4 activation.

    PubMed

    Greco, Stephanie H; Mahmood, Syed Kashif; Vahle, Anne-Kristin; Ochi, Atsuo; Batel, Jennifer; Deutsch, Michael; Barilla, Rocky; Seifert, Lena; Pachter, H Leon; Daley, Donnele; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Miller, George

    2016-07-01

    Regulation of Toll-like receptor responses is critical for limiting tissue injury and autoimmunity in both sepsis and sterile inflammation. We found that Mincle, a C-type lectin receptor, regulates proinflammatory Toll-like receptor 4 signaling. Specifically, Mincle ligation diminishes Toll-like receptor 4-mediated inflammation, whereas Mincle deletion or knockdown results in marked hyperresponsiveness to lipopolysaccharide in vitro, as well as overwhelming lipopolysaccharide-mediated inflammation in vivo. Mechanistically, Mincle deletion does not up-regulate Toll-like receptor 4 expression or reduce interleukin 10 production after Toll-like receptor 4 ligation; however, Mincle deletion decreases production of the p38 mitogen-activated protein kinase-dependent inhibitory intermediate suppressor of cytokine signaling 1, A20, and ABIN3 and increases expression of the Toll-like receptor 4 coreceptor CD14. Blockade of CD14 mitigates the increased sensitivity of Mincle(-/-) leukocytes to Toll-like receptor 4 ligation. Collectively, we describe a major role for Mincle in suppressing Toll-like receptor 4 responses and implicate its importance in nonmycobacterial models of inflammation.

  2. Toll-Like Receptors in Chronic Pain

    PubMed Central

    Nicotra, Lauren; Loram, Lisa C; Watkins, Linda R; Hutchinson, Mark R

    2011-01-01

    Proinflammatory central immune signaling contributes significantly to the initiation and maintenance of heightened pain states. Recent discoveries have implicated the innate immune system, pattern recognition Toll-like receptors in triggering these proinflammatory central immune signaling events. These exciting developments have been complemented by the discovery of neuronal expression of Toll-like receptors, suggesting pain pathways can be activated directly by the detection of pathogen associated molecular patterns or danger associated molecular patterns. This review will examine the evidence to date implicating Toll-like receptors and their associated signaling components in heightened pain states. In addition, insights into the impact Toll-like receptors have on priming central immune signaling systems for heightened pain states will be discussed. The influence possible sex differences in Toll-like receptor signaling have for female pain and the recognition of small molecule xenobiotics by Toll-like receptors will also be reviewed. PMID:22001158

  3. Activation of Toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development.

    PubMed

    Zurolo, Emanuele; Iyer, Anand; Maroso, Mattia; Carbonell, Caterina; Anink, Jasper J; Ravizza, Teresa; Fluiter, Kees; Spliet, Wim G M; van Rijen, Peter C; Vezzani, Annamaria; Aronica, Eleonora

    2011-04-01

    Recent evidence in experimental models of seizures and in temporal lobe epilepsy support an important role of high-mobility group box 1 and toll-like receptor 4 signalling in the mechanisms of hyperexcitability leading to the development and perpetuation of seizures. In this study, we investigated the expression and cellular distribution of toll-like receptors 2 and 4, and of the receptor for advanced glycation end products, and their endogenous ligand high-mobility group box 1, in epilepsy associated with focal malformations of cortical development. Immunohistochemistry showed increased expression of toll-like receptors 2 and 4 and receptor for advanced glycation end products in reactive glial cells in focal cortical dysplasia, cortical tubers from patients with the tuberous sclerosis complex and in gangliogliomas. Toll-like receptor 2 was predominantly detected in cells of the microglia/macrophage lineage and in balloon cells in focal cortical dysplasia, and giant cells in tuberous sclerosis complex. The toll-like receptor 4 and receptor for advanced glycation end products were expressed in astrocytes, as well as in dysplastic neurons. Real-time quantitative polymerase chain reaction confirmed the increased receptors messenger RNA level in all pathological series. These receptors were not detected in control cortex specimens. In control cortex, high-mobility group box 1 was ubiquitously detected in nuclei of glial and neuronal cells. In pathological specimens, protein staining was instead detected in the cytoplasm of reactive astrocytes or in tumour astrocytes, as well as in activated microglia, predictive of its release from glial cells. In vitro experiments in human astrocyte cultures showed that nuclear to cytoplasmic translocation of high-mobility group box 1 was induced by interleukin-1β. Our findings provide novel evidence of intrinsic activation of these pro-inflammatory signalling pathways in focal malformations of cortical development, which could

  4. Sleep deprivation and divergent toll-like receptor-4 activation of cellular inflammation in aging.

    PubMed

    Carroll, Judith E; Carrillo, Carmen; Olmstead, Richard; Witarama, Tuff; Breen, Elizabeth C; Yokomizo, Megumi; Seeman, Teresa; Irwin, Michael R

    2015-02-01

    Sleep disturbance and aging are associated with increases in inflammation, as well as increased risk of infectious disease. However, there is limited understanding of the role of sleep loss on age-related differences in immune responses. This study examines the effects of sleep deprivation on toll-like receptor activation of monocytic inflammation in younger compared to older adults. Community-dwelling adults (n = 70) who were categorized as younger (25-39 y old, n = 21) and older (60-84 y old, n = 49) participants, underwent a sleep laboratory-based experimental partial sleep deprivation (PSD) protocol including adaptation, an uninterrupted night of sleep, sleep deprivation (sleep restricted to 03:00-07:00), and recovery. Blood samples were obtained each morning to measure toll-like receptor-4 activation of monocyte intracellular production of the inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Partial sleep deprivation induced a significant increase in the production of IL-6 and/or TNF-α that persisted after a night of recovery sleep (F(2,121.2) = 3.8, P < 0.05). Age moderated the effects of sleep loss, such that younger adults had an increase in inflammatory cytokine production that was not present in older adults (F(2,121.2) = 4.0, P < 0.05). Older adults exhibit reduced toll-like receptor 4 stimulated cellular inflammation that, unlike in younger adults, is not activated after a night of partial sleep loss. Whereas sleep loss increases cellular inflammation in younger adults and may contribute to inflammatory disorders, blunted toll-like receptor activation in older adults may increase the risk of infectious disease seen with aging. © 2015 Associated Professional Sleep Societies, LLC.

  5. Activation of Toll-like receptor 3 induces apoptosis of oral squamous carcinoma cells in vitro and in vivo.

    PubMed

    Luo, Qingqiong; Hu, Shuiqing; Yan, Ming; Sun, Zujun; Chen, Wantao; Chen, Fuxiang

    2012-08-01

    Toll-like receptors are well known as molecular sensors of pathogen-associated molecular patterns. They control activation of the innate immune response and subsequently shape the adaptive immune response. Recent publications have demonstrated that Toll-like receptors also play important roles in multiple human cancers, yet their function in oral squamous cell carcinoma remains unclear. In this study, we showed that both oral squamous cell carcinoma cell lines and tissues from oral squamous carcinoma patients express relatively high levels of Toll-like receptor 3. We also found that synthetic dsRNA-polyinosinic-polycytidilic acid, a Toll-like receptor 3 ligand, induced apoptosis of oral squamous carcinoma cells mainly via Toll-like receptor 3, through interferon-β production and activation of caspases 3 and 9. Moreover, in an oral squamous cell carcinoma xenograft mouse model, we demonstrated for the first time that activation of Toll-like receptor 3 inhibited oral squamous cell carcinoma tumor growth in vivo. Therefore, the direct proapoptotic activity of Toll-like receptor 3 in human oral squamous carcinoma cells may make this protein a viable therapeutic target in the treatment of oral squamous cell carcinoma.

  6. Sleep Deprivation and Divergent Toll-like Receptor-4 Activation of Cellular Inflammation in Aging

    PubMed Central

    Carroll, Judith E.; Carrillo, Carmen; Olmstead, Richard; Witarama, Tuff; Breen, Elizabeth C.; Yokomizo, Megumi; Seeman, Teresa E.; Irwin, Michael R.

    2015-01-01

    Objectives: Sleep disturbance and aging are associated with increases in inflammation, as well as increased risk of infectious disease. However, there is limited understanding of the role of sleep loss on age-related differences in immune responses. This study examines the effects of sleep deprivation on toll-like receptor activation of monocytic inflammation in younger compared to older adults. Design, Setting, and Participants: Community-dwelling adults (n = 70) who were categorized as younger (25–39 y old, n = 21) and older (60–84 y old, n = 49) participants, underwent a sleep laboratory-based experimental partial sleep deprivation (PSD) protocol including adaptation, an uninterrupted night of sleep, sleep deprivation (sleep restricted to 03:00–07:00), and recovery. Measurement and Results: Blood samples were obtained each morning to measure toll-like receptor-4 activation of monocyte intracellular production of the inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Partial sleep deprivation induced a significant increase in the production of IL-6 and/or TNF-α that persisted after a night of recovery sleep (F(2,121.2) = 3.8, P < 0.05). Age moderated the effects of sleep loss, such that younger adults had an increase in inflammatory cytokine production that was not present in older adults (F(2,121.2) = 4.0, P < 0.05). Conclusion: Older adults exhibit reduced toll-like receptor 4 stimulated cellular inflammation that, unlike in younger adults, is not activated after a night of partial sleep loss. Whereas sleep loss increases cellular inflammation in younger adults and may contribute to inflammatory disorders, blunted toll-like receptor activation in older adults may increase the risk of infectious disease seen with aging. Citation: Carroll JE, Carrillo C, Olmstead R, Witarama T, Breen EC, Yokomizo M, Seeman TE, Irwin MR. Sleep deprivation and divergent toll-like receptor-4 activation of cellular inflammation in aging. SLEEP

  7. Induction of Direct Antimicrobial Activity Through Mammalian Toll-Like Receptors

    NASA Astrophysics Data System (ADS)

    Thoma-Uszynski, Sybille; Stenger, Steffen; Takeuchi, Osamu; Ochoa, Maria Teresa; Engele, Matthias; Sieling, Peter A.; Barnes, Peter F.; Röllinghoff, Martin; Bölcskei, Pal L.; Wagner, Manfred; Akira, Shizuo; Norgard, Michael V.; Belisle, John T.; Godowski, Paul J.; Bloom, Barry R.; Modlin, Robert L.

    2001-02-01

    The mammalian innate immune system retains from Drosophila a family of homologous Toll-like receptors (TLRs) that mediate responses to microbial ligands. Here, we show that TLR2 activation leads to killing of intracellular Mycobacterium tuberculosis in both mouse and human macrophages, through distinct mechanisms. In mouse macrophages, bacterial lipoprotein activation of TLR2 leads to a nitric oxide-dependent killing of intracellular tubercle bacilli, but in human monocytes and alveolar macrophages, this pathway was nitric oxide-independent. Thus, mammalian TLRs respond (as Drosophila Toll receptors do) to microbial ligands and also have the ability to activate antimicrobial effector pathways at the site of infection.

  8. FATTY ACIDS MODULATE TOLL-LIKE RECEPTOR 4 ACTIVATION THROUGH REGULATION OF RECEPTOR DIMERIZATION AND RECRUITMENT INTO LIPID RAFTS

    USDA-ARS?s Scientific Manuscript database

    The saturated fatty acids acylated on Lipid A of lipopolysaccharide (LPS) or bacterial lipoproteins play critical roles in ligand recognition and receptor activation for Toll-like Receptor 4 (TLR4) and TLR2. The results from our previous studies (J Biol Chem 2003, 2004) demonstrated that saturated ...

  9. Cinnamaldehyde suppresses toll-like receptor 4 activation mediated through the inhibition of receptor oligomerization.

    PubMed

    Youn, Hyung S; Lee, Jun K; Choi, Yong J; Saitoh, Shin I; Miyake, Kensuke; Hwang, Daniel H; Lee, Joo Y

    2008-01-15

    Toll-like receptors (TLRs) play a critical role in induction of innate immune and inflammatory responses by recognizing invading pathogens or non-microbial endogenous molecules. TLRs have two major downstream signaling pathways, MyD88- and TRIF-dependent pathways leading to the activation of NFkappaB and IRF3 and the expression of inflammatory mediators. Deregulation of TLR activation is known to be closely linked to the increased risk of many chronic diseases. Cinnamaldehyde (3-phenyl-2-propenal) has been reported to inhibit NFkappaB activation induced by pro-inflammatory stimuli and to exert anti-inflammatory and anti-bacterial effects. However, the underlying mechanism has not been clearly identified. Our results showed that cinnamaldehyde suppressed the activation of NFkappaB and IRF3 induced by LPS, a TLR4 agonist, leading to the decreased expression of target genes such as COX-2 and IFNbeta in macrophages (RAW264.7). Cinnamaldehyde did not inhibit the activation of NFkappaB or IRF3 induced by MyD88-dependent (MyD88, IKKbeta) or TRIF-dependent (TRIF, TBK1) downstream signaling components. However, oligomerization of TLR4 induced by LPS was suppressed by cinnamaldehyde resulting in the downregulation of NFkappaB activation. Further, cinnamaldehyde inhibited ligand-independent NFkappaB activation induced by constitutively active TLR4 or wild-type TLR4. Our results demonstrated that the molecular target of cinnamaldehyde in TLR4 signaling is oligomerization process of receptor, but not downstream signaling molecules suggesting a novel mechanism for anti-inflammatory activity of cinnamaldehyde.

  10. Discovery of Small Molecules as Multi-Toll-like Receptor Agonists with Proinflammatory and Anticancer Activities.

    PubMed

    Zhang, Lei; Dewan, Varun; Yin, Hang

    2017-06-22

    Therapies based on activation of multiple Toll-like receptors (TLRs) may offer superior therapeutic profiles than that of single TLR activation. To discover new small molecules that could activate multiple TLRs, we performed a cell-based high-throughput screening of a small-molecule library based on TLR3-mediated NF-κB activation. Subsequent structural optimization and counterscreening of other TLRs produced the first small molecule 17e (CU-CPT17e) capable of simultaneously activating TLRs 3, 8, and 9. Biochemical studies demonstrated that 17e could induce a strong immune response via the production of various cytokines in human monocytic THP-1 cells. Furthermore, 17e inhibited the proliferation of HeLa cancer cells by triggering apoptosis and arresting the cell cycle at the S phase. These results showcase potential therapeutic applications of 17e in both vaccine adjuvants and anticancer therapies based on multi-TLR activation.

  11. Toll-Like Receptor 4 Activation in Cancer Progression and Therapy

    PubMed Central

    Oblak, Alja; Jerala, Roman

    2011-01-01

    Cancer immunotherapy has been the focus of intense research since the late 19th century when Coley observed that bacterial components can contribute to cancer regression by eliciting an antitumor immune response. Successful activation and maturation of tumor-specific immune cells is now known to be mediated by bacterial endotoxin, which activates Toll-like receptor 4 (TLR4). TLR4 is expressed on a variety of immune as well as tumor cells, but its activation can have opposing effects. While TLR4 activation can promote antitumor immunity, it can also result in increased tumor growth and immunosuppression. Nevertheless, TLR4 engagement by endotoxin as well as by endogenous ligands represents notable contribution to the outcome of different cancer treatments, such as radiation or chemotherapy. Further research of the role and mechanisms of TLR4 activation in cancer may provide novel antitumor vaccine adjuvants as well as TLR4 inhibitors that could prevent inflammation-induced carcinogenesis. PMID:22110526

  12. The activation of liver X receptors inhibits toll-like receptor-9-induced foam cell formation.

    PubMed

    Sorrentino, Rosalinda; Morello, Silvana; Chen, Shuang; Bonavita, Eduardo; Pinto, Aldo

    2010-04-01

    Toll-like receptors (TLRs) are related to foam cell formation (FCF), key event in the establishment/progression of atherosclerosis. The activation of TLR2 and TLR4 can increase FCF. The aim of this study was to evaluate the role of TLR9 in FCF. Murine macrophages were treated with CpG-ODN, TLR9 agonist, and oxidized particles of LDL (Paz-PC) and FCF was analyzed by means of Oil Red O staining. The administration of CpG-ODN plus Paz-PC onto macrophages increased the amount of lipid droplets, correlated to increased levels of tumor necrosis factor (TNF)-alpha, IFNbeta, and IP-10. The underlying mechanism by which TLR9 ligation influenced Paz-PC in the FCF was NF-kappaB- and IRF7-dependent, as observed by higher levels of phosphorylated IkappaBalpha, increased nuclear translocation of the p65 subunit, lower levels of the total IKKalpha protein and higher release of interferon-dependent cytokines, such as IP-10. Liver X receptors (LXRs) regulate lipid cellular transport and negatively modulate TLR-dependent signaling pathways. Indeed, the addition of GW3965, synthetic LXRs agonist, significantly reduced FCF after CpG-ODN plus Paz-PC stimulation. In this condition, we observed decreased levels of the nuclear translocation of the p65 subunit, related to the higher presence of LXRalpha into the nucleus. TNF-alpha, IP-10, and IFNbeta levels were reduced by the administration of GW3965 following CpG-ODN and Paz-PC treatment. In conclusion, the activation of TLR9 facilitates the formation of foam cells in an NF-kappaB- and IRF7-dependent manner, countered by the activation of LXRs. This study further support LXRs as potential anti-atherosclerotic target.

  13. Adenomatous polyposis coli genotype-dependent toll-like receptor 4 activity in colon cancer.

    PubMed

    Wen, Feng; Liu, Yongmei; Wang, Wei; Li, Meng; Guo, Fuchun; Sang, Yaxiong; Qin, Qing; Wang, Yongsheng; Li, Qiu

    2016-02-16

    Toll-like receptors (TLRs)/NF-κB activation stimulated by lipopolysaccharide (LPS) was associated with diverse biological response in colon cancer, but the underlying mechanism was largely unknown. In the current study, we reported cell proliferation was elevated in adenomatous polyposis coli (APC) mutated- and APC knockdown cell lines, while the proliferation was inhibited in APC wild-type cell lines. Besides, in vivo experiments showed that LPS promoted APC knockdown tumor growth while inhibited proliferation of APC wild type. Further study confirmed that activation of TLRs/NF-κB signaling pathway by LPS cross regulated with APC/GSK-3β/β-catenin pathway, which were depend on APC status of cell lines. Taken together, APC genotypes play a key role in LPS induced different colon cancer biological response by cross-regulating β-catenin and NF-κB, which may provide a novel strategy for carcinogenesis prevention.

  14. Detection of Neu1 sialidase activity in regulating Toll-like receptor activation.

    PubMed

    Amith, Schammim R; Jayanth, Preethi; Finlay, Trisha; Franchuk, Susan; Gilmour, Alanna; Abdulkhalek, Samar; Szewczuk, Myron R

    2010-09-07

    Mammalian Toll-like receptors (TLRs) are a family of receptors that recognize pathogen-associated molecular patterns. Not only are TLRs crucial sensors of microbial (e.g., viruses, bacteria and parasite) infections, they also play an important role in the pathophysiology of infectious diseases, inflammatory diseases, and possibly in autoimmune diseases. Thus, the intensity and duration of TLR responses against infectious diseases must be tightly controlled. It follows that understanding the structural integrity of sensor receptors, their ligand interactions and signaling components is essential for subsequent immunological protection. It would also provide important opportunities for disease modification through sensor manipulation. Although the signaling pathways of TLR sensors are well characterized, the parameters controlling interactions between the sensors and their ligands still remain poorly defined. We have recently identified a novel mechanism of TLR activation by its natural ligand, which has not been previously observed. It suggests that ligand-induced TLR activation is tightly controlled by Neu1 sialidase activation. We have also reported that Neu1 tightly regulates neurotrophin receptors like TrkA and TrkB, which involve Neu1 and matrix metalloproteinase-9 (MMP-9) cross-talk in complex with the receptors. The sialidase assay has been initially use to find a novel ligand, thymoquinone, in the activation of Neu4 sialidase on the cell surface of macrophages, dendritic cells and fibroblast cells via GPCR Gαi proteins and MMP-9. For TLR receptors, our data indicate that Neu1 sialidase is already in complex with TLR-2, -3 and -4 receptors, and is induced upon ligand binding to either receptor. Activated Neu1 sialidase hydrolyzes sialyl α-2,3-linked β-galactosyl residues distant from ligand binding to remove steric hinderance to TLR-4 dimerization, MyD88/TLR4 complex recruitment, NFkB activation and pro-inflammatory cell responses. In a collaborative

  15. Treponema denticola activates mitogen-activated protein kinase signal pathways through Toll-like receptor 2.

    PubMed

    Ruby, John; Rehani, Kunal; Martin, Michael

    2007-12-01

    Treponema denticola, a spirochete indigenous to the oral cavity, is associated with host inflammatory responses to anaerobic polymicrobial infections of the root canal, periodontium, and alveolar bone. However, the cellular mechanisms responsible for the recognition of T. denticola by the innate immune system and the underlying cell signaling pathways that regulate the inflammatory response to T. denticola are currently unresolved. In this study, we demonstrate that T. denticola induces innate immune responses via the utilization of Toll-like receptor 2 (TLR2) but not TLR4. Assessment of TLR2/1 and TLR2/6 heterodimers revealed that T. denticola predominantly utilizes TLR2/6 for the induction of cellular responses. Analysis of the mitogen-activated protein kinase (MAPK) signaling pathway in T. denticola-stimulated monocytes identified a prolonged up-regulation of the MAPK extracellular signal-related kinase 1/2 (ERK1/2) and p38, while no discernible increase in phospho-c-Jun N-terminal kinase 1/2 (JNK1/2) levels was observed. With the aid of pharmacological inhibitors selectively targeting ERK1/2 via the mitogen-activated protein kinase/extracellular signal-related kinase 1/2 kinase and p38, we further demonstrate that ERK1/2 and p38 play a major role in T. denticola-mediated pro- and anti-inflammatory cytokine production.

  16. Toll-Like Receptor 9-Activation during Onset of Myocardial Ischemia Does Not Influence Infarct Extension

    PubMed Central

    Ohm, Ingrid Kristine; Gao, Erhe; Belland Olsen, Maria; Alfsnes, Katrine; Bliksøen, Marte; Øgaard, Jonas; Ranheim, Trine; Nymo, Ståle Haugset; Holmen, Yangchen Dhondup; Aukrust, Pål; Yndestad, Arne; Vinge, Leif Erik

    2014-01-01

    Aim Myocardial infarction (MI) remains a major cause of death and disability worldwide, despite available reperfusion therapies. Inflammatory signaling is considered nodal in defining final infarct size. Activation of the innate immune receptor toll-like receptors (TLR) 9 prior to ischemia and reperfusion (I/R) reduces infarct size, but the consequence of TLR9 activation timed to the onset of ischemia is not known. Methods and Results The TLR9-agonist; CpG B was injected i.p. in C57BL/6 mice immediately after induction of ischemia (30 minutes). Final infarct size, as well as area-at-risk, was measured after 24 hours of reperfusion. CpG B injection resulted in a significant increase in circulating granulocytes and monocytes both in sham and I/R mice. Paradoxically, clear evidence of reduced cardiac infiltration of both monocytes and granulocytes could be demonstrated in I/R mice treated with CpG B (immunocytochemistry, myeloperoxidase activity and mRNA expression patterns). In addition, systemic TLR9 activation elicited significant alterations of cardiac inflammatory genes. Despite these biochemical and cellular changes, there was no difference in infarct size between vehicle and CpG B treated I/R mice. Conclusion Systemic TLR9-stimulation upon onset of ischemia and subsequent reperfusion does not alter final infarct size despite causing clear alterations of both systemic and cardiac inflammatory parameters. Our results question the clinical usefulness of TLR9 activation during cardiac I/R. PMID:25126943

  17. Toll-like receptor 9-activation during onset of myocardial ischemia does not influence infarct extension.

    PubMed

    Ohm, Ingrid Kristine; Gao, Erhe; Belland Olsen, Maria; Alfsnes, Katrine; Bliksøen, Marte; Øgaard, Jonas; Ranheim, Trine; Nymo, Ståle Haugset; Holmen, Yangchen Dhondup; Aukrust, Pål; Yndestad, Arne; Vinge, Leif Erik

    2014-01-01

    Myocardial infarction (MI) remains a major cause of death and disability worldwide, despite available reperfusion therapies. Inflammatory signaling is considered nodal in defining final infarct size. Activation of the innate immune receptor toll-like receptors (TLR) 9 prior to ischemia and reperfusion (I/R) reduces infarct size, but the consequence of TLR9 activation timed to the onset of ischemia is not known. The TLR9-agonist; CpG B was injected i.p. in C57BL/6 mice immediately after induction of ischemia (30 minutes). Final infarct size, as well as area-at-risk, was measured after 24 hours of reperfusion. CpG B injection resulted in a significant increase in circulating granulocytes and monocytes both in sham and I/R mice. Paradoxically, clear evidence of reduced cardiac infiltration of both monocytes and granulocytes could be demonstrated in I/R mice treated with CpG B (immunocytochemistry, myeloperoxidase activity and mRNA expression patterns). In addition, systemic TLR9 activation elicited significant alterations of cardiac inflammatory genes. Despite these biochemical and cellular changes, there was no difference in infarct size between vehicle and CpG B treated I/R mice. Systemic TLR9-stimulation upon onset of ischemia and subsequent reperfusion does not alter final infarct size despite causing clear alterations of both systemic and cardiac inflammatory parameters. Our results question the clinical usefulness of TLR9 activation during cardiac I/R.

  18. The Toll-Like Receptor Agonist Imiquimod Is Active against Prions

    PubMed Central

    Beringue, Vincent; Soubigou, Flavie; Pang, Yanhong; Desban, Nathalie; Massacrier, Catherine; Morel, Yannis; Paturel, Carine; Contesse, Marie-Astrid; Bouaziz, Serge; Sanyal, Suparna; Galons, Hervé; Blondel, Marc; Voisset, Cécile

    2013-01-01

    Using a yeast-based assay, a previously unsuspected antiprion activity was found for imiquimod (IQ), a potent Toll-like receptor 7 (TLR7) agonist already used for clinical applications. The antiprion activity of IQ was first detected against yeast prions [PSI+] and [URE3], and then against mammalian prion both ex vivo in a cell-based assay and in vivo in a transgenic mouse model for prion diseases. In order to facilitate structure-activity relationship studies, we conducted a new synthetic pathway which provides a more efficient means of producing new IQ chemical derivatives, the activity of which was tested against both yeast and mammalian prions. The comparable antiprion activity of IQ and its chemical derivatives in the above life forms further emphasizes the conservation of prion controlling mechanisms throughout evolution. Interestingly, this study also demonstrated that the antiprion activity of IQ and IQ-derived compounds is independent from their ability to stimulate TLRs. Furthermore, we found that IQ and its active chemical derivatives inhibit the protein folding activity of the ribosome (PFAR) in vitro. PMID:23977222

  19. Improved Chemotherapeutic Activity by Morus alba Fruits through Immune Response of Toll-Like Receptor 4

    PubMed Central

    Chang, Bo Yoon; Kim, Seon Beom; Lee, Mi Kyeong; Park, Hyun; Kim, Sung Yeon

    2015-01-01

    Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE). MFE stimulated the production of cytokines, nitric oxide (NO) and tumor necrosis factor-α (TNF-α) and tumoricidal properties of macrophages. MFE activated macrophages through the mitogen-activated protein kinase (MAPKinase) and nuclear factor-κB (NF-κB) signaling pathways downstream from toll-like receptor (TLR) 4. MFE was shown to exhibit cytotoxicity of CT26 cells via the activated macrophages, even though MFE did not directly affect CT26 cells. In a xenograft mouse model, MFE significantly enhanced anti-cancer activity combined with 5-fluorouracil and markedly promoted splenocyte proliferation, natural killer (NK) cell activity, cytotoxic T lymphocyte (CTL) activity and IFN-γ production. Immunoglobulin G (IgG) antibody levels were significantly increased. These results indicate the indirect anti-cancer activity of MFE through improved immune response mediated by TLR4 signaling. M. alba L. fruit extract might be a potential anti-tumor immunomodulatory candidate chemotherapy agent. PMID:26473845

  20. Methamphetamine Inhibits Toll-Like Receptor 9-Mediated Anti-HIV Activity in Macrophages

    PubMed Central

    Cen, Ping; Ye, Li; Su, Qi-Jian; Wang, Xu; Li, Jie-Liang; Lin, Xin-Qin

    2013-01-01

    Abstract Toll-like receptor 9 (TLR9) is one of the key sensors that recognize viral infection/replication in the host cells. Studies have demonstrated that methamphetamine (METH) dysregulated host cell innate immunity and facilitated HIV infection of macrophages. In this study, we present new evidence that METH suppressed TLR9-mediated anti-HIV activity in macrophages. Activation of TLR9 by its agonist CpG-ODN 2216 inhibits HIV replication, which was demonstrated by increased expression of TLR9, interferon (IFN)-α, IFN regulatory factor-7 (IRF-7), myeloid differentiation factor 88 (MyD88), and myxovirus resistance gene A (MxA) in macrophages. However, METH treatment of macrophages greatly compromised the TLR9 signaling-mediated anti-HIV effect and inhibited the expression of TLR9 downstream signaling factors. Dopamine D1 receptor (D1R) antagonists (SCH23390) could block METH-mediated inhibition of anti-HIV activity of TLR9 signaling. Investigation of the underlying mechanisms of the METH action showed that METH treatment selectively down-regulated the expression of TLR9 on macrophages, whereas it had little effect on the expression of other TLRs. Collectively, our results provide further evidence that METH suppresses host cell innate immunity against HIV infection by down-regulating TLR9 expression and its signaling-mediated antiviral effect in macrophages. PMID:23751096

  1. Saturated fatty acids activate microglia via Toll-like receptor 4/NF-κB signalling.

    PubMed

    Wang, Zhen; Liu, Dexiang; Wang, Fuwu; Liu, Shangming; Zhao, Shidou; Ling, Eng-Ang; Hao, Aijun

    2012-01-01

    Diets rich in SFA have been implicated in Alzheimer's disease (AD). There is strong evidence to suggest that microglial activation augments the progression of AD. However, it remains uncertain whether SFA can initiate microglial activation and whether this response can cause neuronal death. Using the BV-2 microglial cell line and primary microglial culture, we showed that palmitic acid (PA) and stearic acid (SA) could activate microglia, as assessed by reactive morphological changes and significantly increased secretion of pro-inflammatory cytokines, NO and reactive oxygen species, which trigger primary neuronal death. In addition, the mRNA level of these pro-inflammatory mediators determined by RT-PCR was also increased by PA and SA. We further investigated the intracellular signalling mechanism underlying the release of pro-inflammatory mediators from PA-activated microglial cells. The present results showed that PA activated the phosphorylation and nuclear translocation of the p65 subunit of NF-κB. Furthermore, pyrrolidine dithiocarbamate, a NF-κB inhibitor, attenuated the production of pro-inflammatory mediators except for IL-6 in PA-stimulated microglia. Administration of anti-Toll-like receptor (TLR)4-neutralising antibody repressed PA-induced NF-κB activation and pro-inflammatory mediator production. In conclusion, the present in vitro study demonstrates that SFA could activate microglia and stimulate the TLR4/NF-κB pathway to trigger the production of pro-inflammatory mediators, which may contribute to neuronal death.

  2. Toll-like receptors: key activators of leucocytes and regulator of haematopoiesis.

    PubMed

    McGettrick, Anne F; O'Neill, Luke A J

    2007-10-01

    Toll-like receptors (TLRs) play a critical role in the induction of the immune response to invading pathogens. The detection of pathogens by TLRs initiates a signalling cascade that results in the activation of transcription factors such as nuclear factor (NF)-kappaB and interferon regulatory factors leading to the production of pro-inflammatory cytokines and type 1 interferons. Five cytoplasmic adaptors, MyD88, Mal, Trif, TRAM and SARM, are utilized by the TLRs to activate these signalling pathways. Through the years the main focus of research has been on the activation and function of TLRs in monocytic cells. This review discusses several additional roles of TLRs. TLR activation plays a role in influencing the differentiation of haematopoietic stem cells. Their activation also prevents apoptosis in neutrophils following pathogen invasion. B cells and T cells proliferation and differentiation is influenced by TLR activation and the possible therapeutic benefits of using TLR ligands for the treatment of chronic lymphocytic leukaemia will also be discussed.

  3. γ-Glutamyltranspeptidase is an endogenous activator of Toll-like receptor 4-mediated osteoclastogenesis

    PubMed Central

    Moriwaki, Sawako; Into, Takeshi; Suzuki, Keiko; Miyauchi, Mutsumi; Takata, Takashi; Shibayama, Keigo; Niida, Shumpei

    2016-01-01

    Chronic inflammation-associated bone destruction, which is observed in rheumatoid arthritis (RA) and periodontitis, is mediated by excessive osteoclastogenesis. We showed previously that γ-glutamyltranspeptidase (GGT), an enzyme involved in glutathione metabolism, acts as an endogenous activator of such pathological osteoclastogenesis, independent of its enzymatic activity. GGT accumulation is clinically observed in the joints of RA patients, and, in animals, the administration of recombinant GGT to the gingival sulcus as an in vivo periodontitis model induces an increase in the number of osteoclasts. However, the underlying mechanisms of this process remain unclear. Here, we report that Toll-like receptor 4 (TLR4) recognizes GGT to activate inflammation-associated osteoclastogenesis. Unlike lipopolysaccharide, GGT is sensitive to proteinase K treatment and insensitive to polymyxin B treatment. TLR4 deficiency abrogates GGT-induced osteoclastogenesis and activation of NF-κB and MAPK signaling in precursor cells. Additionally, GGT does not induce osteoclastogenesis in cells lacking the signaling adaptor MyD88. The administration of GGT to the gingival sulcus induces increased osteoclastogenesis in wild-type mice, but does not induce it in TLR4-deficient mice. Our findings elucidate a novel mechanism of inflammation-associated osteoclastogenesis, which involves TLR4 recognition of GGT and subsequent activation of MyD88-dependent signaling. PMID:27775020

  4. Expression and activation of toll-like receptor 3 and toll-like receptor 4 on human corneal epithelial and conjunctival fibroblasts

    PubMed Central

    2014-01-01

    Background Toll-like receptors (TLRs) are recognized as important contributors to the initiation and modulation of the inflammatory response in the eye. This study investigated the precise expression patterns and functionality of TLRs in human corneal epithelial cells (HCE) and in conjunctival fibroblasts (HCF). Methods The cell surface expression of TLRs 2-4, TLR7 and TLR9 in HCE and HCF was examined by flow cytometry with or without stimulation with lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (poly I:C). The mRNA expression of the TLRs was determined by real-time PCR. The protein content levels of interleukin (IL)-6, IL-8, IL-1β and tumor necrosis factor-α (TNF-α) were measured in HCE and HCF using multiplex fluorescent bead immunoassay (FBI). Results The surface expression of TLR3 and TLR4 was detected on both HCE and HCF. Following incubation with LPS, the percentage of HCE cells staining for TLR4 decreased from 10.18% to 0.62% (P < 0.001). Incubation with poly I:C lowered the percentage of HCE cells positive for TLR3 from 10.44% to 2.84% (P < 0.001). The mRNA expression of TLRs2, 4, 7 and 9 was detected in HCE only. Activation of HCE with LPS complex elicited protein secretion up to 4.51 ± 0.85-fold higher levels of IL-6 (P < 0.05), 2.5 ± 0.36-fold IL-8 (P > 0.05), 4.35 ± 1.12-fold IL-1β (P > 0.05) and 29.35 ± 2.3-fold TNFα (P < 0.05) compared to cells incubated in medium. Conclusions HCF and HCE both express TLRs that respond to specific ligands by increasing cytokine expression. Following activation, the surface expression of TLR3 and TLR4 on HCE is decreased, thus creating a negative feedback loop, mitigating the effect of TLR activation. PMID:24491080

  5. Nitric oxide increases susceptibility of toll-like receptor-activated macrophages to spreading Listeria monocytogenes

    PubMed Central

    Cole, Caroline; Thomas, Stacey; Filak, Holly; Henson, Peter M.; Lenz, Laurel L.

    2012-01-01

    SUMMARY Toll-like receptor (TLR) stimulation activates macrophages to resist intracellular pathogens. Yet, the intracellular bacterium Listeria monocytogenes (Lm) causes lethal infections in spite of innate immune cell activation. Lm uses direct cell-cell spread to disseminate within its host. Here, we have shown that TLR-activated macrophages killed cell-free Lm but failed to prevent infection by spreading Lm. Instead, TLR signals increased the efficiency of Lm spread from “donor” to “recipient” macrophages. This enhancement required nitric oxide (NO) production by nitric oxide synthase-2 (NOS2). NO increased Lm escape from secondary vacuoles in recipient cells and delayed maturation of phagosomes containing membrane-like particles that mimic Lm-containing pseudopods. NO also promoted Lm spread during systemic in vivo infection, as inhibition of NOS2 with 1400W reduced spread-dependent Lm burdens in mouse livers. These findings reveal a mechanism by which pathogens capable of cell-cell spread can avoid the consequences of innate immune cell activation by TLR stimuli. PMID:22542147

  6. Starring role of toll-like receptor-4 activation in the gut-liver axis

    PubMed Central

    Carotti, Simone; Guarino, Michele Pier Luca; Vespasiani-Gentilucci, Umberto; Morini, Sergio

    2015-01-01

    Since the introduction of the term “gut-liver axis”, many studies have focused on the functional links of intestinal microbiota, barrier function and immune responses to liver physiology. Intestinal and extra-intestinal diseases alter microbiota composition and lead to dysbiosis, which aggravates impaired intestinal barrier function via increased lipopolysaccharide translocation. The subsequent increased passage of gut-derived product from the intestinal lumen to the organ wall and bloodstream affects gut motility and liver biology. The activation of the toll-like receptor 4 (TLR-4) likely plays a key role in both cases. This review analyzed the most recent literature on the gut-liver axis, with a particular focus on the role of TLR-4 activation. Findings that linked liver disease with dysbiosis are evaluated, and links between dysbiosis and alterations of intestinal permeability and motility are discussed. We also examine the mechanisms of translocated gut bacteria and/or the bacterial product activation of liver inflammation and fibrogenesis via activity on different hepatic cell types. PMID:26600967

  7. Structure-activity relationships in toll-like receptor 2-agonists leading to simplified monoacyl lipopeptides.

    PubMed

    Agnihotri, Geetanjali; Crall, Breanna M; Lewis, Tyler C; Day, Timothy P; Balakrishna, Rajalakshmi; Warshakoon, Hemamali J; Malladi, Subbalakshmi S; David, Sunil A

    2011-12-08

    Toll-like receptor 2-agonistic lipopeptides typified by S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-R-cysteinyl-S-serine (PAM(2)CS) compounds are potential vaccine adjuvants. In continuation of previously reported structure-activity relationships on this chemotype, we have determined that at least one acyl group of optimal length (C(16)) and an appropriately oriented ester carbonyl group is essential for TLR2-agonistic activity. The spacing between one of the palmitoyl ester carbonyl and the thioether is crucial to allow for an important H-bond, which observed in the crystal structure of the lipopeptide:TLR2 complex; consequently, activity is lost in homologated compounds. Penicillamine-derived analogues are also inactive, likely due to unfavorable steric interactions with the carbonyl of Ser 12 in TLR2. The thioether in this chemotype can be replaced with a selenoether. Importantly, the thioglycerol motif can be dispensed with altogether and can be replaced with a thioethanol bridge. These results have led to a structurally simpler, synthetically more accessible, and water-soluble analogue possessing strong TLR2-agonistic activities in human blood.

  8. Structure-Activity Relationships in Toll-like Receptor 2-Agonists Leading to Simplified Monoacyl Lipopeptides

    PubMed Central

    Agnihotri, Geetanjali; Crall, Breanna M.; Lewis, Tyler C.; Day, Timothy P.; Balakrishna, Rajalakshmi; Warshakoon, Hemamali J.; Malladi, Subbalakshmi S.; David, Sunil A.

    2011-01-01

    Toll-like receptor 2-agonistic lipopeptides typified by S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-R-cysteinyl-S-serine (PAM2CS) compounds are potential vaccine adjuvants. In continuation of previously reported structure-activity relationships on this chemotype, we have determined that at least one acyl group of optimal length (C16) and an appropriately orientated ester carbonyl group is essential for TLR2-agonistic activity. The spacing between one of the palmitoyl ester carbonyl and the thioether is crucial to allow for an important H-bond, which observed in the crystal structure of the lipopeptide:TLR2 complex; consequently, activity is lost in homologated compounds. Penicillamine-derived analogues are also inactive, likely due to unfavorable steric interactions with the carbonyl of Ser 12 in TLR2. The thioether in this chemotype can be replaced with a selenoether. Importantly, the thioglycerol motif can be dispensed with altogether, and can be replaced with a thioethanol bridge. These results have led to a structurally simpler, synthetically more accessible, and water-soluble analogue possessing strong TLR2-agonistic activities in human blood. PMID:22007676

  9. Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals.

    PubMed

    Bulut, Yonca; Michelsen, Kathrin S; Hayrapetian, Linda; Naiki, Yoshikazu; Spallek, Ralf; Singh, Mahavir; Arditi, Moshe

    2005-06-03

    Although the Toll-like receptors used by Mycobacterium tuberculosis membrane and secreted factors are known, the pathways activated by M. tuberculosis heat shock proteins are not. An efficient immune response against the intracellular pathogen M. tuberculosis is critically dependent on rapid detection of the invading pathogen by the innate immune system and coordinated activation of the adaptive immune response. Macrophage phagocytosis of M. tuberculosis is accompanied by activation of the transcription factor NF-kappaB and secretion of inflammatory mediators that play an important role in granuloma formation and immune protection during M. tuberculosis infection. The interaction between M. tuberculosis and the various Toll-like receptors is complex, and it appears that distinct mycobacterial components may interact with different members of the Toll-like receptor family. Here we show that recombinant, purified, mycobacterial heat shock proteins 65 and 70 induce NF-kappaB activity in a dose-dependent manner in human endothelial cells. Furthermore, we show that whereas mycobacterial heat shock protein 65 signals exclusively through Toll-like receptor 4, heat shock protein 70 also signals through Toll-like receptor 2. Mycobacterial heat shock protein 65-induced NF-kappaB activation was MyD88-, TIRAP-, TRIF-, and TRAM-dependent and required the presence of MD-2. A better understanding of the recognition of mycobacterial heat shock proteins and their role in the host immune response to the pathogen may open the way to a better understanding of the immunological processes induced by this important human pathogen and the host-pathogen interactions and may help in the rational design of more effective vaccines or vaccine adjuvants.

  10. Toll-like receptor 3 activation is required for normal skin barrier repair following UV damage

    PubMed Central

    Borkowski, Andrew W.; Kuo, I-Hsin; Bernard, Jamie J.; Yoshida, Takeshi; Williams, Michael R.; Hung, Nai-Jung; Yu, Benjamin D.; Beck, Lisa A.; Gallo, Richard L.

    2014-01-01

    Ultraviolet (UV) damage to the skin leads to the release of noncoding RNA (ncRNA) from necrotic keratinocytes that activates toll-like receptor 3 (TLR3). This release of ncRNA triggers inflammation in the skin following UV damage. Recently, TLR3 activation was also shown to aid wound repair and increase expression of genes associated with permeability barrier repair. Here, we sought to test if skin barrier repair after UVB damage is dependent on the activation of TLR3. We observed that multiple ncRNAs induced expression of skin barrier repair genes, that the TLR3 ligand Poly (I:C) also induced expression and function of tight junctions, and that the ncRNA U1 acts in a TLR3-dependent manner to induce expression of skin barrier repair genes. These observations were shown to have functional relevance as Tlr3−/− mice displayed a delay in skin barrier repair following UVB damage. Combined, these data further validate the conclusion that recognition of endogenous RNA by TLR3 is an important step in the program of skin barrier repair. PMID:25118157

  11. Toll-like receptor 3 activation is required for normal skin barrier repair following UV damage.

    PubMed

    Borkowski, Andrew W; Kuo, I-Hsin; Bernard, Jamie J; Yoshida, Takeshi; Williams, Michael R; Hung, Nai-Jung; Yu, Benjamin D; Beck, Lisa A; Gallo, Richard L

    2015-02-01

    UV damage to the skin leads to the release of noncoding RNA (ncRNA) from necrotic keratinocytes that activates Toll-like receptor 3 (TLR3). This release of ncRNA triggers inflammation in the skin following UV damage. Recently, TLR3 activation was also shown to aid wound repair and increase the expression of genes associated with permeability barrier repair. Here, we sought to test whether skin barrier repair after UVB damage is dependent on the activation of TLR3. We observed that multiple ncRNAs induced expression of skin barrier repair genes, that the TLR3 ligand Poly (I:C) also induced expression and function of tight junctions, and that the ncRNA U1 acts in a TLR3-dependent manner to induce expression of skin barrier repair genes. These observations were shown to have functional relevance as Tlr3-/- mice displayed a delay in skin barrier repair following UVB damage. Combined, these data further validate the conclusion that recognition of endogenous RNA by TLR3 is an important step in the program of skin barrier repair.

  12. Modulation of Adult Mesenchymal Stem Cells Activity by Toll-Like Receptors: Implications on Therapeutic Potential

    PubMed Central

    DelaRosa, Olga; Lombardo, Eleuterio

    2010-01-01

    Mesenchymal stem cells (MSCs) are of special interest as therapeutic agents in the settings of both chronic inflammatory and autoimmune diseases. Toll-like receptors (TLR) ligands have been linked with the perpetuation of inflammation in a number of chronic inflammatory diseases due to the permanent exposure of the immune system to TLR-specific stimuli. Therefore, MSCs employed in therapy can be potentially exposed to TLR ligands, which may modulate MSC therapeutic potential in vivo. Recent results demonstrate that MSCs are activated by TLR ligands leading to modulation of the differentiation, migration, proliferation, survival, and immunosuppression capacities. However inconsistent results among authors have been reported suggesting that the source of MSCs, TLR stimuli employed or culture conditions play a role. Notably, activation by TLR ligands has not been reported to modulate the “immunoprivileged” phenotype of MSCs which is of special relevance regarding the use of allogeneic MSC-based therapies. In this review, we discuss the available data on the modulation of MSCs activity through TLR signalling. PMID:20628526

  13. Toll-like receptor 2 activation and comedogenesis: implications for the pathogenesis of acne

    PubMed Central

    2013-01-01

    Background Acne is a common disorder of the human pilosebaceous unit, yet the mechanisms underlying hyperkeratinisation and subsequent inflammation (comedogenesis) remain to be determined, although cutaneous pathogens are implicated. Previously, it was reported that the release of the cytokine interleukin-1α (IL-1α) by keratinocytes of the sebaceous duct was pivotal in the life cycle of the comedone, mediating both its development and its spontaneous resolution. Toll-like receptors are a family of molecules that recognise pathogen associated molecular patterns (PAMPs) presented by microorganisms, initiating a signalling cascade terminating in the release of antimicrobial compounds and cytokines. Methods We used ex vivo sebaceous gland and primary monolayer keratinocyte culture, alongside ELISAs, immunohistochemistry, Western blotting and RT-PCR to investigate the contribution of TLR activation to acne pathogenesis. Results We found TLR2 to be expressed in basal and infundibular keratinocytes, and sebaceous glands, and its activation provoked the release of IL-1α from primary human keratinocytes in vitro. The exposure of microdissected human sebaceous glands to PAMPs specific for TLR2 in vitro resulted in a pattern of IL-1α like cornification after seven days of exposure. Conclusions TLR activation and secretion of IL-1α from keratinocytes may be initiating steps in comedogenesis and, therefore, critical to the pathophysiology of acne. PMID:24011352

  14. Toll-like receptor 7 mediates pruritus.

    PubMed

    Liu, Tong; Xu, Zhen-Zhong; Park, Chul-Kyu; Berta, Temugin; Ji, Ru-Rong

    2010-12-01

    Toll-like receptors are typically expressed in immune cells to regulate innate immunity. We found that functional Toll-like receptor 7 (TLR7) was expressed in C-fiber primary sensory neurons and was important for inducing itch (pruritus), but was not necessary for eliciting mechanical, thermal, inflammatory and neuropathic pain in mice. Our results indicate that TLR7 mediates itching and is a potential therapeutic target for anti-itch treatment in skin disease conditions.

  15. Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants.

    PubMed

    Hanzelmann, Dennis; Joo, Hwang-Soo; Franz-Wachtel, Mirita; Hertlein, Tobias; Stevanovic, Stefan; Macek, Boris; Wolz, Christiane; Götz, Friedrich; Otto, Michael; Kretschmer, Dorothee; Peschel, Andreas

    2016-07-29

    Sepsis caused by Gram-positive bacterial pathogens is a major fatal disease but its molecular basis remains elusive. Toll-like receptor 2 (TLR2) has been implicated in the orchestration of inflammation and sepsis but its role appears to vary for different pathogen species and clones. Accordingly, Staphylococcus aureus clinical isolates differ substantially in their capacity to activate TLR2. Here we show that strong TLR2 stimulation depends on high-level production of phenol-soluble modulin (PSM) peptides in response to the global virulence activator Agr. PSMs are required for mobilizing lipoproteins, the TLR2 agonists, from the staphylococcal cytoplasmic membrane. Notably, the course of sepsis caused by PSM-deficient S. aureus is similar in wild-type and TLR2-deficient mice, but TLR2 is required for protection of mice against PSM-producing S. aureus. Thus, a crucial role of TLR2 depends on agonist release by bacterial surfactants. Modulation of this process may lead to new therapeutic strategies against Gram-positive infections.

  16. Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants

    PubMed Central

    Hanzelmann, Dennis; Joo, Hwang-Soo; Franz-Wachtel, Mirita; Hertlein, Tobias; Stevanovic, Stefan; Macek, Boris; Wolz, Christiane; Götz, Friedrich; Otto, Michael; Kretschmer, Dorothee; Peschel, Andreas

    2016-01-01

    Sepsis caused by Gram-positive bacterial pathogens is a major fatal disease but its molecular basis remains elusive. Toll-like receptor 2 (TLR2) has been implicated in the orchestration of inflammation and sepsis but its role appears to vary for different pathogen species and clones. Accordingly, Staphylococcus aureus clinical isolates differ substantially in their capacity to activate TLR2. Here we show that strong TLR2 stimulation depends on high-level production of phenol-soluble modulin (PSM) peptides in response to the global virulence activator Agr. PSMs are required for mobilizing lipoproteins, the TLR2 agonists, from the staphylococcal cytoplasmic membrane. Notably, the course of sepsis caused by PSM-deficient S. aureus is similar in wild-type and TLR2-deficient mice, but TLR2 is required for protection of mice against PSM-producing S. aureus. Thus, a crucial role of TLR2 depends on agonist release by bacterial surfactants. Modulation of this process may lead to new therapeutic strategies against Gram-positive infections. PMID:27470911

  17. Toll-like receptor 2 promiscuity is responsible for the immunostimulatory activity of nucleic acid nanocarriers.

    PubMed

    Pizzuto, Malvina; Gangloff, Monique; Scherman, Daniel; Gay, Nicholas J; Escriou, Virginie; Ruysschaert, Jean-Marie; Lonez, Caroline

    2017-02-10

    Lipopolyamines (LPAs) are cationic lipids; they interact spontaneously with nucleic acids to form lipoplexes used for gene delivery. The main hurdle to using lipoplexes in gene therapy lies in their immunostimulatory properties, so far attributed to the nucleic acid cargo, while cationic lipids were considered as inert to the immune system. Here we demonstrate for the first time that di-C18 LPAs trigger pro-inflammatory responses through Toll-like receptor 2 (TLR2) activation, and this whether they are bound to nucleic acids or not. Molecular docking experiments suggest potential TLR2 binding modes reminiscent of bacterial lipopeptide sensing. The di-C18 LPAs share the ability of burying their lipid chains in the hydrophobic cavity of TLR2 and, in some cases, TLR1, at the vicinity of the dimerization interface; the cationic headgroups form multiple hydrogen bonds, thus crosslinking TLRs into functional complexes. Unravelling the molecular basis of TLR1 and TLR6-driven heterodimerization upon LPA binding underlines the highly collaborative and promiscuous ligand binding mechanism. The prevalence of non-specific main chain-mediated interactions demonstrates that potentially any saturated LPA currently used or proposed as transfection agent is likely to activate TLR2 during transfection. Hence our study emphasizes the urgent need to test the inflammatory properties of transfection agents and proposes the use of docking analysis as a preliminary screening tool for the synthesis of new non-immunostimulatory nanocarriers. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Increased toll-like receptor activity in patients with metabolic syndrome.

    PubMed

    Jialal, Ishwarlal; Huet, Beverley A; Kaur, Harmeet; Chien, Alexander; Devaraj, Sridevi

    2012-04-01

    The metabolic syndrome (MetS) is highly prevalent and confers an increased risk for diabetes and cardiovascular disease (CVD). While MetS is a proinflammatory state, there is a paucity of data on cellular inflammation in MetS. Toll-like receptors (TLRs) are classical pattern recognition receptors of the innate immune response. The aim of this study was to examine monocyte TLR2 and TLR4 in MetS patients without diabetes or CVD and control subjects since both of the receptors have been implicated in atherosclerosis and insulin resistance. Fasting blood was obtained for TLR expression and activity. Circulating levels of high-sensitivity C-reactive protein, interleukin (IL)-1β, IL-6, IL-8, and soluble tumor necrosis factor receptor 1 (sTNFR1) were significantly increased in MetS versus control subjects following adjustment for waist circumference. There was a significant increase in both TLR2 and TLR4 surface expression and mRNA on monocytes after adjustment for waist circumference. In addition to increased nuclear factor-κB nuclear binding, there was significantly increased release of IL-1β, IL-6, and IL-8 in MetS versus control subjects following priming of the monocytes with lipopolysaccharides. While both plasma free fatty acids and endotoxin were increased in MetS, they correlated significantly with TLR4 only. In conclusion, we make the novel observation that both TLR2 and TLR4 expression and activity are increased in the monocytes of patients with MetS and could contribute to increased risk for diabetes and CVD.

  19. Acute toll-like receptor 4 activation impairs rat renal microvascular autoregulatory behaviour.

    PubMed

    Van Beusecum, J P; Zhang, S; Cook, A K; Inscho, E W

    2017-05-25

    Little is known about how toll-like receptor 4 (TLR4) influences the renal microvasculature. We hypothesized that acute TLR4 stimulation with lipopolysaccharide (LPS) impairs afferent arteriole autoregulatory behaviour, partially through reactive oxygen species (ROS). We assessed afferent arteriole autoregulatory behaviour after LPS treatment (1 mg kg(-1) ; i.p.) using the in vitro blood-perfused juxtamedullary nephron preparation. Autoregulatory behaviour was assessed by measuring diameter responses to stepwise changes in renal perfusion pressure. TLR4 expression was assessed by immunofluorescence, immunohistochemistry and Western blot analysis in the renal cortex and vasculature. Baseline arteriole diameter at 100 mmHg averaged 15.2 ± 1.2 μm and 12.2 ± 1.0 μm for control and LPS groups (P < 0.05) respectively. When perfusion pressure was increased in 15 mmHg increments from 65 to 170 mmHg, arteriole diameter in control kidneys decreased significantly to 69 ± 6% of baseline diameter. In the LPS-treated group, arteriole diameter remained essentially unchanged (103 ± 9% of baseline), indicating impaired autoregulatory behaviour. Pre-treatment with anti-TLR4 antibody or the TLR4 antagonist, LPS-RS, preserved autoregulatory behaviour during LPS treatment. P2 receptor reactivity was normal in control and LPS-treated rats. Pre-treatment with Losartan (angiotensin type 1 receptor blocker; (AT1 ) 2 mg kg(-1) ; i.p.) increased baseline afferent arteriole diameter but did not preserve autoregulatory behaviour in LPS-treated rats. Acute exposure to Tempol (10(-3) mol L(-1) ), a superoxide dismutase mimetic, restored pressure-mediated vasoconstriction in kidneys from LPS-treated rats. These data demonstrate that TLR4 activation impairs afferent arteriole autoregulatory behaviour, partially through ROS, but independently of P2 and AT1 receptor activation. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  20. Differential involvement of IFN-beta in Toll-like receptor-stimulated dendritic cell activation.

    PubMed

    Hoshino, Katsuaki; Kaisho, Tsuneyasu; Iwabe, Tomio; Takeuchi, Osamu; Akira, Shizuo

    2002-10-01

    Toll-like receptor (TLR) can activate dendritic cells (DC) through common signaling pathways requiring a cytoplasmic adapter, MyD88. However, the signaling is differentially regulated among TLR family members. TLR4 can activate MyD88-deficient bone marrow-derived DC (BMDC), and lead to induction of IFN-inducible genes and up-regulation of co-stimulatory molecules such as CD40, implying that the MyD88-independent signaling pathway functions downstream of TLR4. Because these effects can also be induced by type I IFN, we have analyzed whether type I IFN is involved in TLR4-induced responses. In response to lipopolysaccharide (LPS), IFN-beta gene expression was augmented in both wild-type and MyD88-deficient BMDC. Expression of all IFN-inducible genes except immune-responsive gene 1 (IRG1) was abolished and CD40 up-regulation was decreased in LPS-stimulated BMDC lacking either IFN-alpha/beta receptor (IFN-alpha/betaR) or signal transducer and activator of transcription 1 (STAT-1). Similar to the LPS response, TLR9 signaling can also induce expression of IFN-beta and IFN-inducible genes, and up-regulation of CD40. However, all these effects were MyD88 dependent. Thus, in TLR4 signaling, IFN-beta expression can be induced either by the MyD88-dependent or -independent pathway, whereas, in TLR9 signaling, it is dependent on MyD88. In CpG DNA-stimulated DC, expression of IFN-inducible genes except IRG1 was dependent on type I IFN signaling as in LPS-stimulated DC. However, in contrast to TLR4 signaling, TLR9 signaling requires type I IFN signaling for CD40 up-regulation. Taken together, this study demonstrates differential involvement of type I IFN in TLR4- and TLR9-induced effects on DC.

  1. Activation of Toll-like Receptor 4 (TLR4) Attenuates Adaptive Thermogenesis via Endoplasmic Reticulum Stress*

    PubMed Central

    Okla, Meshail; Wang, Wei; Kang, Inhae; Pashaj, Anjeza; Carr, Timothy; Chung, Soonkyu

    2015-01-01

    Adaptive thermogenesis is the cellular process transforming chemical energy into heat in response to cold. A decrease in adaptive thermogenesis is a contributing factor to obesity. However, the molecular mechanisms responsible for the compromised adaptive thermogenesis in obese subjects have not yet been elucidated. In this study we hypothesized that Toll-like receptor 4 (TLR4) activation and subsequent inflammatory responses are key regulators to suppress adaptive thermogenesis. To test this hypothesis, C57BL/6 mice were either fed a palmitate-enriched high fat diet or administered with chronic low-dose LPS before cold acclimation. TLR4 stimulation by a high fat diet or LPS were both associated with reduced core body temperature and heat release. Impairment of thermogenic activation was correlated with diminished expression of brown-specific markers and mitochondrial dysfunction in subcutaneous white adipose tissue (sWAT). Defective sWAT browning was concomitant with elevated levels of endoplasmic reticulum (ER) stress and autophagy. Consistently, TLR4 activation by LPS abolished cAMP-induced up-regulation of uncoupling protein 1 (UCP1) in primary human adipocytes, which was reversed by silencing of C/EBP homologous protein (CHOP). Moreover, the inactivation of ER stress by genetic deletion of CHOP or chemical chaperone conferred a resistance to the LPS-induced suppression of adaptive thermogenesis. Collectively, our data indicate the existence of a novel signaling network that links TLR4 activation, ER stress, and mitochondrial dysfunction, thereby antagonizing thermogenic activation of sWAT. Our results also suggest that TLR4/ER stress axis activation may be a responsible mechanism for obesity-mediated defective brown adipose tissue activation. PMID:26370079

  2. Pulmonary Surfactant Protein-A regulates Toll-like receptor expression and activity in human macrophages

    PubMed Central

    Henning, Lisa N.; Azad, Abul K.; Parsa, Kishore V. L.; Crowther, Joy E.; Tridandapani, Susheela; Schlesinger, Larry S.

    2008-01-01

    The pulmonary innate immune system responds to various airborne microbes. Although its specificity is broad and based on the recognition of pathogen-associated molecular patterns (PAMPs), it is uniquely regulated to limit inflammation and thereby prevent damage to the gas-exchanging alveoli. Macrophages, critical cell determinants of this system, recognize microbes through pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) which typically mediate pro-inflammatory responses. The lung collectin, surfactant protein-A (SP-A), has emerged as an important innate immune determinant that regulates microbe-macrophage interactions in this environment. Here we report the basal and SP-A-induced transcriptional and post-translational regulation of TLR2 and TLR4 expression during the differentiation of primary human monocytes into macrophages. Despite SP-A’s ability to up-regulate TLR2 expression on human macrophages, it dampens TLR2 and TLR4 signaling in these cells. SP-A decreases the phosphorylation of IκBα, a key regulator of NFκB activity, and nuclear translocation of p65 which result in diminished TNFα secretion in response to TLR ligands. SP-A also reduces the phosphorylation of TLR signaling proteins upstream of NFκB, including members of the MAP kinase family. Finally, we report for the first time that SP-A decreases the phosphorylation of Akt, a major cell regulator of NFκB and potentially MAP kinases. These data identify a critical role for SP-A in modulating the lung inflammatory response by regulating macrophage TLR activity. PMID:18523248

  3. Toll-like receptor activation by helminths or helminth products to alleviate inflammatory bowel disease.

    PubMed

    Sun, ShuMin; Wang, XueLin; Wu, XiuPing; Zhao, Ying; Wang, Feng; Liu, XiaoLei; Song, Yanxia; Wu, ZhiLiang; Liu, MingYuan

    2011-09-27

    Helminth infection may modulate the expression of Toll like receptors (TLR) in dendritic cells (DCs) and modify the responsiveness of DCs to TLR ligands. This may regulate aberrant intestinal inflammation in humans with helminthes and may thus help alleviate inflammation associated with human inflammatory bowel disease (IBD). Epidemiological and experimental data provide further evidence that reducing helminth infections increases the incidence rate of such autoimmune diseases. Fine control of inflammation in the TLR pathway is highly desirable for effective host defense. Thus, the use of antagonists of TLR-signaling and agonists of their negative regulators from helminths or helminth products should be considered for the treatment of IBD.

  4. Toll-like receptor activation by helminths or helminth products to alleviate inflammatory bowel disease

    PubMed Central

    2011-01-01

    Helminth infection may modulate the expression of Toll like receptors (TLR) in dendritic cells (DCs) and modify the responsiveness of DCs to TLR ligands. This may regulate aberrant intestinal inflammation in humans with helminthes and may thus help alleviate inflammation associated with human inflammatory bowel disease (IBD). Epidemiological and experimental data provide further evidence that reducing helminth infections increases the incidence rate of such autoimmune diseases. Fine control of inflammation in the TLR pathway is highly desirable for effective host defense. Thus, the use of antagonists of TLR-signaling and agonists of their negative regulators from helminths or helminth products should be considered for the treatment of IBD. PMID:21943110

  5. Local Interleukin-1-Driven Joint Pathology Is Dependent on Toll-Like Receptor 4 Activation

    PubMed Central

    Abdollahi-Roodsaz, Shahla; Joosten, Leo A.B.; Koenders, Marije I.; van den Brand, Ben T.; van de Loo, Fons A.J.; van den Berg, Wim B.

    2009-01-01

    Toll-like receptors (TLRs) may contribute to the pathogenesis of chronic inflammatory destructive diseases through the recognition of endogenous ligands produced on either inflammation or degeneration of the extracellular matrix. The presence of endogenous TLR agonists has been reported in rheumatoid joints. In the present study, we investigated the significance of TLR2 and TLR4 activation by locally- produced endogenous ligands in the severity of joint inflammation and destruction. Local joint pathology independent of systemic immune activation was induced by overexpression of interleukin (IL)-1 and TNF in naive joints using adenoviral gene transfer. Here, we report that at certain doses, IL-1-induced local joint inflammation, cartilage proteoglycan depletion, and bone erosion are dependent on TLR4 activation, whereas TLR2 activation is not significantly involved. In comparison, tumor necrosis factor α-driven joint pathology seemed to be less dependent on TLR2 and TLR4. The severity of IL-1-induced bone erosion and irreversible cartilage destruction was markedly reduced in TLR4−/− mice, even though the degree of inflammation was similar, suggesting uncoupled processes. Furthermore, the expression of cathepsin K, a marker for osteoclast activity, induced by IL-1β was dependent on TLR4. Overexpression of IL-1β in the joint as well as ex vivo IL-1 stimulation of patellae provoked the release of endogenous TLR4 agonists capable of inducing TLR4-mediated cytokine production. These data emphasize the potential relevance of TLR4 activation in rheumatoid arthritis, particularly with respect to IL-1-mediated joint pathology. PMID:19834062

  6. Central role of liver in anticancer and radioprotective activities of Toll-like receptor 5 agonist

    PubMed Central

    Burdelya, Lyudmila G.; Brackett, Craig M.; Kojouharov, Bojidar; Gitlin, Ilya I.; Leonova, Katerina I.; Gleiberman, Anatoli S.; Aygun-Sunar, Semra; Veith, Jean; Johnson, Christopher; Haderski, Gary J.; Stanhope-Baker, Patricia; Allamaneni, Shyam; Skitzki, Joseph; Zeng, Ming; Martsen, Elena; Medvedev, Alexander; Scheblyakov, Dmitry; Artemicheva, Nataliya M.; Logunov, Denis Y.; Gintsburg, Alexander L.; Naroditsky, Boris S.; Makarov, Sergei S.; Gudkov, Andrei V.

    2013-01-01

    Vertebrate Toll-like receptor 5 (TLR5) recognizes bacterial flagellin proteins and activates innate immune responses to motile bacteria. In addition, activation of TLR5 signaling can inhibit growth of TLR5-expressing tumors and protect normal tissues from radiation and ischemia-reperfusion injuries. To understand the mechanisms behind these phenomena at the organismal level, we assessed nuclear factor kappa B (NF-κB) activation (indicative of TLR5 signaling) in tissues and cells of mice treated with CBLB502, a pharmacologically optimized flagellin derivative. This identified the liver and gastrointestinal tract as primary CBLB502 target organs. In particular, liver hepatocytes were the main cell type directly and specifically responding to systemic administration of CBLB502 but not to that of the TLR4 agonist LPS. To assess CBLB502 impact on other pathways, we created multireporter mice with hepatocytes transduced in vivo with reporters for 46 inducible transcription factor families and found that along with NF-κB, CBLB502 strongly activated STAT3-, phenobarbital-responsive enhancer module (PREM), and activator protein 1 (AP-1–) -driven pathways. Livers of CBLB502-treated mice displayed induction of numerous immunomodulatory factors and massive recruitment of various types of immune cells. This led to inhibition of growth of liver metastases of multiple tumors regardless of their TLR5 status. The changed liver microenvironment was not, however, hepatotoxic, because CBLB502 induced resistance to Fas-mediated apoptosis in normal liver cells. Temporary occlusion of liver blood circulation prevented CBLB502 from protecting hematopoietic progenitors in lethally irradiated mice, indicating involvement of a factor secreted by responding liver cells. These results define the liver as the key mediator of TLR5-dependent effects in vivo and suggest clinical applications for TLR5 agonists as hepatoprotective and antimetastatic agents. PMID:23630282

  7. Select steroid hormone glucuronide metabolites can cause Toll-like receptor 4 activation and enhanced pain

    PubMed Central

    Lewis, Susannah S.; Hutchinson, Mark R.; Frick, Morin M.; Zhang, Yingning; Maier, Steven F.; Sammakia, Tarek; Rice, Kenner C.; Watkins, Linda R.

    2014-01-01

    We have recently shown that several classes of glucuronide metabolites, including the morphine metabolite morphine-3-glucuronide and the ethanol metabolite ethyl glucuronide, cause toll like receptor 4 (TLR4)-dependent signalling in vitro and enhanced pain in vivo. Steroid hormones, including estrogens and corticosterone, are also metabolized through glucuronidation. Here we demonstrate that in silico docking predicts that corticosterone, corticosterone-21-glucuronide, estradiol, estradiol-3-glucuronide and estradiol-17-glucuronide all dock with the MD-2 component of the TLR4 receptor complex. In addition to each docking with MD-2, the docking of each was altered by pre-docking with (+)-naloxone, a TLR4 signaling inhibitor. As agonist versus antagonist activity cannot be determined from these in silico interactions, an in vitro study was undertaken to clarify which of these compounds can act in an agonist fashion. Studies using a cell line transfected with TLR4, necessary co-signaling molecules, and a reporter gene revealed that only estradiol-3-glucuronide and estradiol-17-glucuronide increased reporter gene product, indicative of TLR4 agonism. Finally, in in vivo studies, each of the 5 drugs was injected intrathecally at equimolar doses. In keeping with the in vitro results, only estradiol-3-glucuronide and estradiol-17-glucuronide caused enhanced pain. For both compounds, pain enhancement was blocked by the TLR4 antagonist lipopolysaccharide from Rhodobacter sphaeroides, evidence for the involvement in TLR4 in the resultant pain enhancement. These findings have implications for several chronic pain conditions, including migraine and tempromandibular joint disorder, in which pain episodes are more likely in cycling females when estradiol is decreasing and estradiol metabolites are at their highest. PMID:25218902

  8. Regulation of toll-like receptor 3 activation by S100A9

    PubMed Central

    Tsai, Su-Yu; Segovia, Jesus A.; Chang, Te-Hung; Shil, Niraj K.; Pokharel, Swechha M.; Kannan, T.R.; Baseman, Joel B.; Defrêne, Joan; Pagé, Nathalie; Cesaro, Annabelle; Tessier, Philippe A.; Bose, Santanu

    2015-01-01

    Recognition of viral dsRNA by endosomal toll-like receptor 3 (TLR3) activates innate immune response during virus infection. Trafficking of TLR3 to the endo-lysosomal (EL) compartment arising from fusion of late endosome (LE) with lysosome is required for recognition and detection of Pathogen Associated Molecular Patterns (PAMP). PAMP detection results in activation of TLR3-dependent signaling cascade. Existing knowledge about the mechanism(s) and cellular factor(s) governing TLR3 trafficking is limited. In the current study we have identified intracellular S100A9 protein as a critical regulator of TLR3 trafficking. S100A9 was required for maturation of TLR3 containing early endosome (EE) into LE, the compartment that fuses with lysosome to form EL compartment. Drastic reduction in cytokine production was observed in S100A9 knockout (KO) primary macrophages following RNA virus infection and treatment of cells with polyIC (a dsRNA mimetic that acts as a TLR3 agonist). Mechanistic studies revealed co-localization and interaction of S100A9 with TLR3 following polyIC treatment. S100A9-TLR3 interaction was critical for maturation of TLR3 containing EE into LE since TLR3 could not be detected in the LE of polyIC treated S100A9 KO macrophages. Subsequently, TLR3 failed to co-localize with its agonist (i.e. biotin-labeled polyIC) in S100A9 deficient macrophages. The in vivo physiological role of S100A9 was evident from loss of cytokine production in polyIC treated S100A9 KO mice. Thus, we have identified intracellular S100A9 as a regulator of TLR3 signaling and demonstrated that S100A9 functions during pre-TLR3 activation stages by facilitating maturation of TLR3 containing EE into LE. PMID:26385519

  9. Toll-like receptor 2 activation and serum amyloid A regulate smooth muscle cell extracellular matrix

    PubMed Central

    Bishop, Christopher A.; Best, Michael; Rich, Celeste B.; Stone, Phillip J.

    2017-01-01

    Smooth muscle cells contribute to extracellular matrix remodeling during atherogenesis. De-differentiated, synthetic smooth muscle cells are involved in processes of migration, proliferation and changes in expression of extracellular matrix components, all of which contribute to loss of homeostasis accompanying atherogenesis. Elevated levels of acute phase proteins, including serum amyloid A (SAA), are associated with an increased risk for atherosclerosis. Although infection with periodontal and respiratory pathogens via activation of inflammatory cell Toll-like receptor (TLR)2 has been linked to vascular disease, little is known about smooth muscle cell TLR2 in atherosclerosis. This study addresses the role of SAA and TLR2 activation on smooth muscle cell matrix gene expression and insoluble elastin accumulation. Cultured rat aortic smooth muscle cells were treated with SAA or TLR2 agonists and the effect on expression of matrix metallopeptidase 9 (MMP9) and tropoelastin studied. SAA up-regulated MMP9 expression. Tropoelastin is an MMP9 substrate and decreased tropoelastin levels in SAA-treated cells supported the concept of extracellular matrix remodeling. Interestingly, SAA-induced down-regulation of tropoelastin was not only evident at the protein level but at the level of gene transcription as well. Contributions of proteasomes, nuclear factor κ B and CCAAT/enhancer binding protein β on regulation of MMP9 vs. tropoleastin expression were revealed. Effects on Mmp9 and Eln mRNA expression persisted with long-term SAA treatment, resulting in decreased insoluble elastin accumulation. Interestingly, the SAA effects were TLR2-dependent and TLR2 activation by bacterial ligands also induced MMP9 expression and decreased tropoelastin expression. These data reveal a novel mechanism whereby SAA and/or infection induce changes in vascular elastin consistent with atherosclerosis. PMID:28257481

  10. Toll-like receptor 2-mediated alternative activation of microglia is protective after spinal cord injury.

    PubMed

    Stirling, David P; Cummins, Karen; Mishra, Manoj; Teo, Wulin; Yong, V Wee; Stys, Peter

    2014-03-01

    Improving neurological outcome after spinal cord injury is a major clinical challenge because axons, once severed, do not regenerate but 'dieback' from the lesion site. Although microglia, the immunocompetent cells of the brain and spinal cord respond rapidly to spinal cord injury, their role in subsequent injury or repair remains unclear. To assess the role of microglia in spinal cord white matter injury we used time-lapse two-photon and spectral confocal imaging of green fluorescent protein-labelled microglia, yellow fluorescent protein-labelled axons, and Nile Red-labelled myelin of living murine spinal cord and revealed dynamic changes in white matter elements after laser-induced spinal cord injury in real time. Importantly, our model of acute axonal injury closely mimics the axonopathy described in well-characterized clinically relevant models of spinal cord injury including contusive-, compressive- and transection-based models. Time-lapse recordings revealed that microglia were associated with some acute pathophysiological changes in axons and myelin acutely after laser-induced spinal cord injury. These pathophysiological changes included myelin and axonal spheroid formation, spectral shifts in Nile Red emission spectra in axonal endbulbs detected with spectral microscopy, and 'bystander' degeneration of axons that survived the initial injury, but then succumbed to secondary degeneration. Surprisingly, modulation of microglial-mediated release of neurotoxic molecules failed to protect axons and myelin. In contrast, sterile stimulation of microglia with the specific toll-like receptor 2 agonist Pam2CSK4 robustly increased the microglial response to ablation, reduced secondary degeneration of central myelinated fibres, and induced an alternative (mixed M1:M2) microglial activation profile. Conversely, Tlr2 knock out: Thy1 yellow fluorescent protein double transgenic mice experienced greater axonal dieback than littermate controls. Thus, promoting an alternative

  11. Cardiolipins Act as a Selective Barrier to Toll-Like Receptor 4 Activation in the Intestine

    PubMed Central

    Coats, Stephen R.; Hashim, Ahmed; Paramonov, Nikolay A.; Curtis, Michael A.

    2016-01-01

    ABSTRACT Intestinal homeostasis mechanisms must protect the host intestinal tissue from endogenous lipopolysaccharides (LPSs) produced by the intestinal microbiota. In this report, we demonstrate that murine intestinal fecal lipids effectively block Toll-like receptor 4 (TLR4) responses to naturally occurring Bacteroidetes sp. LPS. Cardiolipin (CL) represents a significant proportion of the total intestinal and fecal lipids and, furthermore, potently antagonizes TLR4 activation by reducing LPS binding at the lipopolysaccharide binding protein (LBP), CD14, and MD-2 steps of the TLR4 signaling pathway. It is further demonstrated that intestinal lipids and CL are less effective at neutralizing more potent Enterobacteriaceae-type LPS, which is enriched in feces obtained from mice with dextran sodium sulfate (DSS)-treated inflammatory bowel disease. The selective inhibition of naturally occurring LPS structures by intestinal lipids may represent a novel homeostasis mechanism that blocks LPS activation in response to symbiotic but not dysbiotic microbial communities. IMPORTANCE The guts of animals harbor a variety of Gram-negative bacteria associated with both states of intestinal health and states of disease. Environmental factors, such as dietary habits, can drive the microbial composition of the host animal's intestinal bacterial community toward a more pathogenic state. Both beneficial and harmful Gram-negative bacteria are capable of eliciting potentially damaging inflammatory responses from the host intestinal tissues via a lipopolysaccharide (LPS)-dependent pathway. Physical mucosal barriers and antibodies produced by the intestinal immune system protect against the undesired inflammatory effects of LPS, although it is unknown why some bacteria are more effective at overcoming the protective barriers than others. This report describes the discovery of a lipid-type protective barrier in the intestine that reduces the deleterious effects of LPSs from beneficial

  12. Counteracting interactions between lipopolysaccharide molecules with differential activation of toll-like receptors.

    PubMed

    Hajishengallis, George; Martin, Michael; Schifferle, Robert E; Genco, Robert J

    2002-12-01

    We investigated counteracting interactions between the lipopolysaccharides (LPS) from Escherichia coli (Ec-LPS) and Porphyromonas gingivalis (Pg-LPS), which induce cellular activation through Toll-like receptor 4 (TLR4) and TLR2, respectively. We found that Ec-LPS induced tolerance in THP-1 cells to subsequent tumor necrosis factor alpha (TNF-alpha) and interleukin 1 beta (IL-1beta) induction by Pg-LPS, though the reverse was not true, and looked for explanatory differential effects on the signal transduction pathway. Cells exposed to Pg-LPS, but not to Ec-LPS, displayed persisting expression of IL-1 receptor-associated kinase without apparent degradation, presumably allowing prolonged relay of downstream signals. Accordingly, cells pretreated with Pg-LPS, but not with Ec-LPS, were effectively activated in response to subsequent exposure to either LPS molecule, as evidenced by assessing nuclear factor (NF)-kappaB activity. In fact, Pg-LPS primed THP-1 cells for enhanced NF-kappaB activation and TNF-alpha release upon restimulation with the same LPS. This was a dose-dependent effect and correlated with upregulation of surface TLR2 expression. Furthermore, we observed inhibition of NF-kappaB-dependent transcription in a reporter cell line pretreated with Ec-LPS and restimulated with Pg-LPS (compared to cells pretreated with medium only and restimulated with Pg-LPS), but not when the reverse treatment was made. Although Pg-LPS could not make cells tolerant to subsequent activation by Ec-LPS, Pg-LPS inhibited Ec-LPS-induced TNF-alpha and IL-6 release when the two molecules were added simultaneously into THP-1 cell cultures. Pg-LPS also suppressed P. gingivalis FimA protein-induced NF-kappaB-dependent transcription in the 3E10/huTLR4 reporter cell line, which does not express TLR2. This rules out competition for common signaling intermediates, suggesting that Pg-LPS may block component(s) of the TLR4 receptor complex. Interactions between TLR2 and TLR4 agonists may be

  13. Toll-Like Receptors in Atherosclerosis

    PubMed Central

    Falck-Hansen, Mika; Kassiteridi, Christina; Monaco, Claudia

    2013-01-01

    Atherosclerosis, the leading cause of cardiovascular disease (CVD), is driven by inflammation. Increasing evidence suggests that toll-like receptors (TLRs) are key orchestrators of the atherosclerotic disease process. Interestingly, a distinct picture is being revealed for individual receptors in atherosclerosis. TLRs exhibit a complex nature enabling the detection of multiple motifs named danger-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). Activation of these receptors triggers an intracellular signalling cascade mediated through MyD88 or TRIF, leading to the production of pro- and anti-inflammatory cytokines. In this review we explore key novel findings pertaining to TLR signalling in atherosclerosis, including recently described endosomal TLRs and future directions in TLR research. PMID:23880853

  14. Toll-like 2 receptor mediates apolipoprotein CIII-induced monocyte activation

    PubMed Central

    Kawakami, Akio; Osaka, Mizuko; Aikawa, Masanori; Uematsu, Satoshi; Akira, Shizuo; Libby, Peter; Shimokado, Kentaro; Sacks, Frank M; Yoshida, Masayuki

    2009-01-01

    Apolipoprotein CIII (apoCIII) predicts risk for coronary heart disease. We recently reported that apoCIII directly activates human monocytes. Recent evidence indicates that toll-like receptor 2 (TLR2) can contribute to atherogenesis through transduction of inflammatory signals. We tested here the hypothesis that apoCIII activates human monocytoid THP-1 cells through TLR2. ApoCIII induced the association of TLR2 with MyD88, activated NF-κB in THP-1 cells, and increased their adhesion to human umbilical vein endothelial cells (HUVECs). Anti-TLR2 blocking antibody, but not anti-TLR4 blocking antibody or isotype-matched IgG, inhibited these processes (p<0.05). ApoCIII bound with high affinity to human recombinant TLR2 protein, and showed a significantly higher (p<0.05) and saturable binding to 293 cells overexpressing human TLR2 than to parental 293 cells with no endogenous TLR2. Overexpression of TLR2 in 293 cells augmented apoCIII-induced NF-κB activation and β1-integrin expression, processes inhibited by anti-apoCIII antibody as well as anti-TLR2 antibody. Exposure of peripheral blood monocytes isolated from C57BL/6 (wild-type) mice to apoCIII activated their NF-κB, and increased their adhesiveness to HUVECs. In contrast, apoCIII did not activate monocytes from TLR2 deficient mice. Finally, intravenous administration to C57BL/6 mice of apoCIII-rich VLDL, but not of apoCIII-deficient VLDL, activated monocytes and increased their adhesiveness to HUVECs, processes attenuated by anti-TLR2 or anti-apoCIII antibody. ApoCIII-rich VLDL did not activate monocytes from TLR2 deficient mice. In conclusion, apoCIII activated monocytes at least partly through a TLR2-dependent pathway. The present study identifies a novel mechanism for proinflammatory and proatherogenic effects of apoCIII, and a role for TLR2 in atherosclerosis induced by atherogenic lipoproteins. PMID:18974386

  15. Mycobacterial signaling through toll-like receptors

    PubMed Central

    Basu, Joyoti; Shin, Dong-Min; Jo, Eun-Kyeong

    2012-01-01

    Studies over the past decade have helped to decipher molecular networks dependent on Toll-like receptor (TLR) signaling, in mycobacteria-infected macrophages. Stimulation of TLRs by mycobacteria and their antigenic components rapidly induces intracellular signaling cascades involved in the activation of nuclear factor-κB and mitogen-activated protein kinase pathways, which play important roles in orchestrating proinflammatory responses and innate defense through generation of a variety of antimicrobial effector molecules. Recent studies have provided evidence that mycobacterial TLR-signaling cross talks with other intracellular antimicrobial innate pathways, the autophagy process and functional vitamin D receptor (VDR) signaling. In this article we describe recent advances in the recognition, responses, and regulation of mycobacterial signaling through TLRs. PMID:23189273

  16. Serum lipoproteins attenuate macrophage activation and Toll-Like Receptor stimulation by bacterial lipoproteins

    PubMed Central

    2010-01-01

    Background Chlamydia trachomatis was previously shown to express a lipoprotein, the macrophage infectivity potentiator (Mip), exposed at the bacterial surface, and able to stimulate human primary monocytes/macrophages through Toll Like Receptor (TLR)2/TLR1/TLR6, and CD14. In PMA-differentiated THP-1 cells the proinflammatory activity of Mip was significantly higher in the absence than in the presence of serum. The present study aims to investigate the ability of different serum factors to attenuate Mip proinflammatory activity in PMA-differentiated THP-1 cells and in primary human differentiated macrophages. The study was also extend to another lipoprotein, the Borrelia burgdorferi outer surface protein (Osp)A. The proinflammatory activity was studied through Tumor Necrosis Factor alpha (TNF-α) and Interleukin (IL)-8 release. Finally, TLR1/2 human embryonic kidney-293 (HEK-293) transfected cells were used to test the ability of the serum factors to inhibit Mip and OspA proinflammatory activity. Results In the absence of any serum and in the presence of 10% delipidated FBS, production of Mip-induced TNF-α and IL-8 in PMA-differentiated THP-1 cells were similar whereas they were significantly decreased in the presence of 10% FBS suggesting an inhibiting role of lipids present in FBS. In the presence of 10% human serum, the concentrations of TNF-α and IL-8 were 2 to 5 times lower than in the presence of 10% FBS suggesting the presence of more potent inhibitor(s) in human serum than in FBS. Similar results were obtained in primary human differentiated macrophages. Different lipid components of human serum were then tested (total lipoproteins, HDL, LDL, VLDL, triglyceride emulsion, apolipoprotein (apo)A-I, B, E2, and E3). The most efficient inhibitors were LDL, VLDL, and apoB that reduced the mean concentration of TNF-α release in Mip-induced macrophages to 24, 20, and 2%, respectively (p < 0.0001). These lipid components were also able to prevent TLR1/2 induced

  17. Lipopolysaccharides belonging to different Salmonella serovars are differentially capable of activating Toll-like receptor 4.

    PubMed

    Chessa, Daniela; Spiga, Luisella; De Riu, Nicola; Delaconi, Paola; Mazzarello, Vittorio; Ganau, Giulia; Rubino, Salvatore

    2014-11-01

    Salmonella enterica subsp. enterica serovar (serotype) Abortusovis is a member of the Enterobacteriaceae. This serotype is naturally restricted to ovine species and does not infect humans. Limited information is available about the immune response of sheep to S. Abortusovis. S. Abortusovis, like Salmonella enterica subsp. enterica serovar Typhi, causes a systemic infection in which, under natural conditions, animals are not able to raise a rapid immune response. Failure to induce the appropriate response allows pathogens to reach the placenta and results in an abortion. Lipopolysaccharides (LPSs) are pathogen-associated molecular patterns (PAMPs) that are specific to bacteria and are not synthesized by the host. Toll-like receptors (TLRs) are a family of receptors that specifically recognize PAMPs. As a first step, we were able to identify the presence of Toll-like receptor 4 (TLR4) on the ovine placenta by using an immunohistochemistry technique. To our knowledge, this is the first work describing the interaction between S. Abortusovis LPS and TLR4. Experiments using an embryonic cell line (HEK293) transfected with human and ovine TLR4s showed a reduction of interleukin 8 (IL-8) production by S. Abortusovis and Salmonella enterica subsp. enterica serovar Paratyphi upon LPS stimulation compared to Salmonella enterica subsp. enterica serovar Typhimurium. Identical results were observed using heat-killed bacteria instead of LPS. Based on data obtained with TLR4 in vitro stimulation, we demonstrated that the serotype S. Abortusovis is able to successfully evade the immune system whereas S. Typhimurium and other serovars fail to do so.

  18. Toll-like receptors and liver disease.

    PubMed

    Kesar, Vivek; Odin, Joseph A

    2014-02-01

    Toll-like receptors (TLRs) are pattern recognition receptors that play an important role in host defence by recognizing pathogen-associated molecular patterns (PAMP). Recent studies indicate that TLR signalling plays an important role in progression of chronic liver diseases. Ongoing clinical trials suggest that therapeutic manipulation of TLR pathways may offer novel means of reversing chronic liver diseases. Upon activation by their respective ligands, TLRs initiate an intracellular pro-inflammatory/anti-inflammatory signalling cascade via recruitment of various adaptor proteins. TLR associated signalling pathways are tightly regulated to keep a check on inappropriate production of pro-inflammatory cytokines and interferons thereby preventing various autoimmune and inflammatory processes. Herein, we review the current state of knowledge of hepatic distribution, signalling pathways and therapeutic modulation of TLRs in chronic liver diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Toll-like receptor signaling in transplantation

    PubMed Central

    Alegre, Maria-Luisa; Goldstein, Daniel R.; Chong, Anita S.

    2008-01-01

    Purpose of the review This review summarizes recent advances on the role of endogenous and exogenous Toll-like receptor (TLR) ligands in the activation and inhibition of immune responses in transplantation. Recent findings During an alloresponse, TLRs can be engaged by both damage-induced endogenous ligands or microbial-associated molecular patterns. The damage-induced molecule high mobility group box 1 protein (HGMB1) and its binding to TLR4 have been identified as major initiators of anti-tumor and anti-transplant immune responses. Type I interferon (IFN) signaling plays an important role in the pro-rejection effect mediated by TLR agonists and some bacteria. However, similar pathways in neonates can result in inhibition rather than activation of alloimmune responses. Summary The consequences of TLR engagement by endogenous and exogenous ligands in transplantation may depend on the relative induction of inflammatory and regulatory pathways and the stage of development of the immune system. PMID:18685330

  20. Toll-like receptors and cutaneous melanoma

    PubMed Central

    Coati, Ilaria; Miotto, Serena; Zanetti, Irene; Alaibac, Mauro

    2016-01-01

    Innate immune cells recognize highly conserved pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs). Previous studies have demonstrated that PRRs also recognize endogenous molecules, termed damage-associated molecular patterns (DAMPs) that are derived from damaged cells. PRRs include Toll-like receptors (TLRs), scavenger receptors, C-type lectin receptors and nucleotide oligomerization domain-like receptors. To date, 10 TLRs have been identified in humans and each receptor responds to a different ligand. The recognition of PAMPS or DAMPs by TLRs leads to the activation of signaling pathways and cellular responses with subsequent pro-inflammatory cytokine release, phagocytosis and antigen presentation. In the human skin, TLRs are expressed by keratinocytes and melanocytes: The main cells from which skin cancers arise. TLRs 1–6 and 9 are expressed in keratinocytes, while TLRs 2–5, 7, 9 and 10 have been identified in melanocytes. It is hypothesized that TLRs may present a target for melanoma therapies. In this review, the involvement of TLRs in the pathogenesis and treatment of melanoma was discussed. PMID:27900049

  1. Toll-like receptor activation modulates antimicrobial peptide expression by ocular surface cells.

    PubMed

    Redfern, Rachel L; Reins, Rose Y; McDermott, Alison M

    2011-03-01

    The ability of the ocular surface to respond to pathogens is in part attributed to toll-like receptors (TLRs) that recognize conserved motifs on various microbes. This study examines TLR expression on various ocular surface cells, if TLR agonists can modulate the expression of antimicrobial peptides (AMPs), human beta defensins (hBD) and cathelicidin (hCAP-18/LL-37) which maybe functionally active against Pseudomonas aeruginosa (PA) and if TLR agonists or AMPs can modulate TLR mRNA expression. TLR1-10 mRNA expression was examined in corneal epithelial, corneal stromal cells and conjunctival epithelial cells by RT-PCR. To confirm protein expression flow cytometry or immunostaining was performed for selected TLRs on some cell cultures. Ocular surface cells were cultured with a range of TLR agonists and then hBD-1, 2, 3, or hCAP-18 mRNA and protein expression was determined by RT-PCR and immunoblotting. In some experiments, cells were cultured with a cocktail of agonists for TLR3, 5 and 6/2 and the antimicrobial activity of the culture media was tested against PA. TLR mRNA expression was also examined in primary human corneal epithelial cells (HCEC) treated with either 3 μg/ml of hBD-2, 5 μg/ml of LL-37 or TLR4, 5 and 9 agonists. Overall, the ocular surface cells expressed mRNA for most of the TLRs but some differences were found. TLR2 was not detected in corneal fibroblasts, TLR4 was not detected in primary cultured or freshly isolated HCEC, TLR5 was not detected in conjunctival epithelial cells (IOBA-NHC) and corneal fibroblasts, TLR7 was not detected in freshly isolated HCEC and TLR10 was not detected in HCEC and IOBA-NHC. TLR8 mRNA was not expressed by any of the samples tested. Immunostaining of cadaver corneas revealed TLR5 and 9 expression throughout the cornea while TLR3 was significantly expressed only in the epithelium. Flow cytometry and immunostaining revealed cultured fibroblasts expressed TLR9 but had no significant TLR3 expression. hBD-2 expression

  2. Toll-like receptor 4 signalling pathway activation in a rat model of Acanthamoeba Keratitis.

    PubMed

    Ren, M Y; Wu, X Y

    2011-01-01

    The pathogenesis of Acanthamoeba keratitis (AK) is complicated. In our previous studies, TLR4 was found involved in the process of infection by Acanthamoeba in human corneal cells. The purpose of this study was to investigate the role of Toll-like receptor 4 (TLR4) signalling pathway in Wistar rats challenged with Acanthamoeba. The rat model of AK was established. Corneas were collected and analysed by real-time PCR to assess the mRNA levels of TLR 2, 4, myeloid differentiation protein (MyD)88, nuclear factor (NF)-κB, extracellular signal-regulated kinase (ERK), interleukin (IL)-8, tumour necrosis factor (TNF)-α and interferon (IFN) -β. Immunocytochemistry and Western blot were conducted to examine the proteins of TLR2, TLR4, p-Erk1/2 and p-IκB. Specific inhibitors PDTC and U0126 were used to pretreat the animals to determine the exact receptor and signalling pathway involved in pathogenesis. Expressions of TLR4, MyD88, all three cytokines, NF-κB, p-IκB and p-Erk1/2 were increased in Acanthamoeba-treated rat corneas. PDTC inhibited the production of IL-8 and TNF-α, while U0126 inhibited the synthesis of IFN-β. TLR4 was involved in sensing the challenge of Acanthamoeba and inducing production of cytokines through TLR4-NF-κB and TLR4-Erk1/2 pathways in corneas of Wistar rats. © 2010 Blackwell Publishing Ltd.

  3. Toll-like Receptor-7 Mediates Pruritus

    PubMed Central

    Liu, Tong; Xu, Zhen-Zhong; Park, Chul-Kyu; Berta, Temugin; Ji, Ru-Rong

    2010-01-01

    Toll-like receptors (TLRs) are typically expressed in immune cells to regulate innate immunity. Here we report that functional TLR7 is expressed in C-fiber primary sensory neurons and important for inducing itch (pruritis) but not necessary for eliciting mechanical, thermal, inflammatory and neuropathic pain in mice. Thus, we have uncovered TLR7 as a novel itch mediator and a potential therapeutic target for anti-itch treatment in skin disease conditions. PMID:21037581

  4. Evidence of activation of the Toll-like receptor-4 proinflammatory pathway in patients with schizophrenia

    PubMed Central

    García-Bueno, Borja; Gassó, Patricia; MacDowell, Karina S.; Callado, Luis F.; Mas, Sergi; Bernardo, Miguel; Lafuente, Amalia; Meana, J. Javier; Leza, Juan C.

    2016-01-01

    Background Alterations in the innate immune/inflammatory system may underlie the pathophysiology of schizophrenia, but we do not understand the mechanisms involved. The main agents of innate immunity are the Toll-like receptors (TLRs), which detect molecular patterns associated with damage and pathogens. The TLR first reported was TLR4, and it is still the most studied one. Methods We aimed to describe putative modifications to the TLR4 proinflammatory pathway using 2 different strategies in 2 cohorts of patients with schizophrenia and matched controls: 1) quantification of protein and mRNA expression in postmortem prefrontal cortex samples from 30 patients with schizophrenia and 30 controls, and 2) identification of single nucleotide polymorphisms associated with the risk of schizophrenia using whole blood samples from 214 patients with schizophrenia and 216 controls. Results We found evidence of alterations in the expression of the initial elements of the TLR4 signalling pathway (TLR4, Myeloid differentiation primary response gene 88 [MyD88] and nuclear factor-κ B [NF-κB]) in the PFC of patients with schizophrenia. These alterations seem to depend on the presence/absence of antipsychotic treatment at death. Moreover, a polymorphism within the MyD88 gene was significantly associated with schizophrenia risk. Limitations The use of 2 different approaches in 2 different cohorts, the lack of a complementary neuropsychiatric group, the possible confounding effects of antipsychotic treatment and suicide are the main limitations of our study. Conclusion The evidence from this dual approach suggests there is an altered innate immune response in patients with chronic schizophrenia in which the TLR4 proinflammatory pathway could be affected. Improved understanding of the stimuli and mechanisms responsible for this response could lead to improved schizophrenia treatment and better control of the side effects of current antipsychotics. PMID:27070349

  5. Immunostimulatory bioactivity of algal polysaccharides from Chlorella pyrenoidosa activates macrophages via Toll-like receptor 4.

    PubMed

    Hsu, Hsien-Yeh; Jeyashoke, Narumon; Yeh, Chin-Hsi; Song, Yuan-Jaw; Hua, Kuo-Feng; Chao, Louis Kuoping

    2010-01-27

    Much research suggests that a dietary supplement of Chlorella pyrenoidosa may be helpful to human health, but the molecular mechanism involved remains unclear. The aim of this research was to investigate the effects of certain hot-water-soluble polysaccharides from Chlorella pyrenoidosa (CWSP) on cytokine production, human leukocyte antigen (HLA) expression, and costimulatory molecule expression in macrophages. We demonstrated that CWSP induced IL-1beta secretion in macrophages via Toll-like receptor 4 (TLR4) mediated protein kinase signaling pathways. In addition, CWSP also stimulated the cell surface expression of HLA-DA, -DB, and -DC, and HLA-DR, -DP, and -DQ as well as the expression of costimulatory family molecules such as CD80 and CD86 in macrophages. Furthermore, we demonstrated that preinjection of C57BL/6J mice with CWSP increased lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha and IL-1beta secretion into serum in vivo. This outcome was consistent with the corresponding outcome for cells treated with CWSP in vitro. Our current results provide support for the possible use of CWSP as a modulation agent of immune responses in humans and certain animal species. Finally, in using GC-MS to analyze the polysaccharides, we found that the major monosaccharides of CWSP were rhamnose (31.8%), glucose (20.42%), galactose (10.28%), mannose (5.23%), and xylose (1.27%). This study is the first to report the molecular mechanism of immune-modulated signal transduction in vitro from the polysaccharides of Chlorella pyrenoidosa.

  6. Glucose activation of islets of Langerhans up-regulates Toll-like receptor 5: possible mechanism of protection.

    PubMed

    Weile, C; Josefsen, K; Buschard, K

    2011-11-01

    Toll-like receptors are pattern-recognition receptors of the innate immune system that are activated during viral, bacterial or other infections, as well as during disease progression of type 1 and type 2 diabetes. Toll-like receptor 5 (TLR-5) specifically recognizes bacterial infection through binding of flagellin from pathogenic bacteria such as Salmonella and Listeria species. We have found that the expression of TLR5 is up-regulated by glucose activation of isolated islets of Langerhans, in contrast to other investigated TLRs (TLR-2, -3, -4, -6 and -9. Stimulation of islets with 10 mm glucose increased the levels of TLR5 mRNA 10-fold (P=0·03) and the TLR-5 protein levels twofold (P=0·04). Furthermore, the protein level of downstream signalling molecule myeloid differentiation primary response gene 88 (MyD88) increased 1·6-fold (P=0·01). Activation of TLR-5 in islets lead to a marked reduction of both stimulated and basal secretion of insulin, as well as an increase in production of nitric oxide, proinflammatory cytokines, anti-inflammatory heat-shock protein and major histocompatibility complex (MHC) class I transporter. We observe no effects of TLR-5 activation on islet survival. We suggest that this regulation by TLR-5 might be beneficial during serious infection such as sepsis by limiting the activity of beta cells during peaks of insulin demand to counteract beta cell damage. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.

  7. Sustained Toll-Like Receptor 9 Activation Promotes Systemic and Cardiac Inflammation, and Aggravates Diastolic Heart Failure in SERCA2a KO Mice

    PubMed Central

    Dhondup, Yangchen; Sjaastad, Ivar; Scott, Helge; Sandanger, Øystein; Zhang, Lili; Haugstad, Solveig Bjærum; Aronsen, Jan Magnus; Ranheim, Trine; Holmen, Sigve Dhondup; Alfsnes, Katrine; Ahmed, Muhammad Shakil; Attramadal, Håvard; Gullestad, Lars; Aukrust, Pål; Christensen, Geir; Yndestad, Arne; Vinge, Leif Erik

    2015-01-01

    Aim Cardiac inflammation is important in the pathogenesis of heart failure. However, the consequence of systemic inflammation on concomitant established heart failure, and in particular diastolic heart failure, is less explored. Here we investigated the impact of systemic inflammation, caused by sustained Toll-like receptor 9 activation, on established diastolic heart failure. Methods and Results Diastolic heart failure was established in 8–10 week old cardiomyocyte specific, inducible SERCA2a knock out (i.e., SERCA2a KO) C57Bl/6J mice. Four weeks after conditional KO, mice were randomized to receive Toll-like receptor 9 agonist (CpG B; 2μg/g body weight) or PBS every third day. After additional four weeks, echocardiography, phase contrast magnetic resonance imaging, histology, flow cytometry, and cardiac RNA analyses were performed. A subgroup was followed, registering morbidity and death. Non-heart failure control groups treated with CpG B or PBS served as controls. Our main findings were: (i) Toll-like receptor 9 activation (CpG B) reduced life expectancy in SERCA2a KO mice compared to PBS treated SERCA2a KO mice. (ii) Diastolic function was lower in SERCA2a KO mice with Toll-like receptor 9 activation. (iii) Toll-like receptor 9 stimulated SERCA2a KO mice also had increased cardiac and systemic inflammation. Conclusion Sustained activation of Toll-like receptor 9 causes cardiac and systemic inflammation, and deterioration of SERCA2a depletion-mediated diastolic heart failure. PMID:26461521

  8. CD14 and Toll-like receptors 2 and 4 are required for fibrillar Aβ-stimulated microglial activation

    PubMed Central

    Reed-Geaghan, Erin G.; Savage, Julie C.; Hise, Amy G.; Landreth, Gary E.

    2009-01-01

    Microglia are the brain's tissue macrophages and are found in an activated state surrounding β-amyloid plaques in the Alzheimer's disease brain. Microglia interact with fibrillar β-amyloid (fAβ) through an ensemble of surface receptors composed of the α6β1 integrin, CD36, CD47, and the class A scavenger receptor. These receptors act in concert to initiate intracellular signaling cascades and phenotypic activation of these cells. However, it is unclear how engagement of this receptor complex is linked to the induction of an activated microglial phenotype. We report that the response of microglial cells to fibrillar forms of Aβ requires the participation of Toll like receptors (TLRs) and the co-receptor CD14. The response of microglia to fAβ is reliant upon CD14, which act together with TLR4 and TLR2 to bind fAβ and to activate intracellular signaling. We find that cells lacking these receptors could not initiate a Src-Vav-Rac signaling cascade leading to reactive oxygen species production and phagocytosis. The fAβ-mediated activation of p38 MAPK also required CD14, TLR4, and TLR2. Inhibition of p38 abrogated fAβ-induced reactive oxygen species production and attenuated the induction of phagocytosis. Microglia lacking CD14, TLR4, and TLR2 showed no induction of phosphorylated IκBα following fAβ. These data indicate these innate immune receptors function as members of the microglial fAβ receptor complex and identify the signaling mechanisms whereby they contribute to microglial activation. PMID:19776284

  9. Toll-like receptors and airway inflammation.

    PubMed

    Gon, Yasuhiro

    2008-03-01

    The respiratory tract opens to the external environment at the oral side edge, and the other edge of the respiratory tract connects to the closed space (alveoli), and so to preserve the sterility in the terminal respiratory tract is critical for protection against pathogens. The recognition machinery for the invasion of microbes is indispensable for the preservation of the sterility in the lungs. Our general understanding of how microbes are recognized by the innate immune system has increased considerably over the past several years, and the contribution of Toll-Like Receptors (TLRs) to innate immunity is now well documented. In the meantime, it has come to understand that many inflammatory processes may depend on TLR signaling, it has been considered to be involved in the pathogenesis of airway inflammatory diseases such as airway infections, bronchial asthma, and occupational airway diseases. In this review, we focus on physiological roles of TLRs in defense mechanisms of the airways, and pathophysiological roles on airway diseases.

  10. Role of Toll-Like Receptors in Tuberculosis Infection

    PubMed Central

    Biyikli, Oguz Oben; Baysak, Aysegul; Ece, Gulfem; Oz, Adnan Tolga; Ozhan, Mustafa Hikmet; Berdeli, Afig

    2016-01-01

    Background One-third of the world’s population is infected with Mycobacterium tuberculosis. Investigation of Toll-like receptors (TLRs) has revealed new information regarding the immunopathogenesis of this disease. Toll-like receptors can recognize various ligands with a lipoprotein structure in the bacilli. Toll-like receptor 2 and TLR-4 have been identified in association with tuberculosis infection. Objectives The aim of our study was to investigate the relationship between TLR polymorphism and infection progress. Methods Twenty-nine patients with a radiologically, microbiologically, and clinically proven active tuberculosis diagnosis were included in this 25-month study. Toll-like receptor 2 and TLR-4 polymorphisms and allele distributions were compared between these 29 patients and 100 healthy control subjects. Peripheral blood samples were taken from all patients. Genotyping of TLR-2, TLR-4, and macrophage migration inhibitory factor was performed. The extraction step was completed with a Qiagen mini blood purification system kit (Qiagen, Ontario, Canada) using a peripheral blood sample. The genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism. Results In total, 19 of the 29 patients with tuberculosis infection had a TLR-2 polymorphism, and 20 of the 100 healthy subjects had a TLR-2 polymorphism (P < 0.001). The TLR-4 polymorphism and interferon-γ allele distributions were not statistically correlated. Conclusions Toll-like receptor 2 polymorphism is a risk factor for tuberculosis infection. The limiting factor in this study was the lack of investigation of the interferon-γ and tumor necrosis factor-α levels, which are important in the development of infection. Detection of lower levels of these cytokines in bronchoalveolar lavage specimens, especially among patients with TLR-2 defects, will provide new data that may support the results of this study. PMID:27942355

  11. Enhanced activation of human dendritic cells by inducible CD40 and Toll-like receptor-4 ligation.

    PubMed

    Lapteva, Natalia; Seethammagari, Mamatha R; Hanks, Brent A; Jiang, Jianghong; Levitt, Jonathan M; Slawin, Kevin M; Spencer, David M

    2007-11-01

    Despite the potency of dendritic cells (DC) as antigen-presenting cells for priming adaptive immunity, DC-based cancer vaccines have been largely insufficient to effectively reduce tumor burden or prevent tumor progression in most patients. To enhance DC-based vaccines, we used the combination of a synthetic ligand-inducible CD40 receptor (iCD40) along with Toll-like receptor-4 (TLR-4) ligation in human monocyte-derived DCs. The iCD40 receptor permits targeted, reversible activation of CD40 in vivo, potentially bypassing the essential role of CD4(+) T cells for activation of DCs. As a rigorous preclinical study of this approach, we evaluated key parameters of DC activation and function. Whereas neither iCD40 nor TLR-4 signaling alone led to high levels of interleukin (IL)-12p70 and IL-6, using iCD40 in combination with lipopolysaccharide (LPS) or monophosphoryl lipid A led to strongly synergistic production of both. Furthermore, this approach led to high expression of DC maturation markers, epitope-specific CTL and T helper 1 responses, as well as DC migration in vitro and in vivo. Moreover, use of iCD40-modified and LPS-stimulated DCs led to targeted expansion of autologous T cells against tumor-associated antigens, including prostate-specific membrane antigen, and elimination of preestablished tumors, supporting this technology as a potent strategy for DC-based cancer immunotherapy.

  12. Activation of macrophages stimulated by the bengkoang fiber extract through toll-like receptor 4.

    PubMed

    Kumalasari, Ika Dyah; Nishi, Kosuke; Putra, Agus Budiawan Naro; Sugahara, Takuya

    2014-07-25

    Bengkoang (Pachyrhizus erosus (L.) Urban) is an edible root tuber containing fairly large amounts of carbohydrates and crude fibers. Our previous studies showed that the bengkoang fiber extract (BFE) stimulates activation of macrophages, leading to induction of phagocytotic activity and cytokine production. In the present study we investigated the mechanism underlying activation of murine macrophages by BFE. BFE increased production of TNF-α, IL-6, and nitric oxide by J774.1 cells. In addition BFE also facilitated the gene expression levels of inducible nitric oxide synthase. We examined the effect of a TLR4 inhibitor on cytokine production to investigate the membrane receptor of macrophage activation by BFE. Treatment of J774.1 cells with the TLR4 inhibitor significantly inhibited production of IL-6 and TNF-α, suggesting that TLR4 is the target membrane receptor for BFE. The main signal molecules located downstream of TLR4 such as JNK, p38, ERK, and NF-κB were activated by BFE treatment. The immunostimulatory effect of BFE was cancelled by the pectinase treatment, suggesting that the active ingredient in BFE is pectin-like molecules. Overall results suggested that BFE activates J774.1 cells via the MAPK and NF-κB signaling pathways.

  13. The GTPase-activating protein GIT2 protects against colitis by negatively regulating Toll-like receptor signaling

    PubMed Central

    Wei, Juncheng; Wei, Chao; Wang, Min; Qiu, Xiao; Li, Yang; Yuan, Yanzhi; Jin, Chaozhi; Leng, Ling; Wang, Jian; Yang, Xiaoming; He, Fuchu

    2014-01-01

    G protein-coupled receptor kinase-interactor 2 (GIT2) regulates thymocyte positive selection, neutrophil-direction sensing, and cell motility during immune responses by regulating the activity of the small GTPases ADP ribosylation factors (Arfs) and Ras-related C3 botulinum toxin substrate 1 (Rac1). Here, we show that Git2-deficient mice were more susceptible to dextran sodium sulfate (DSS)-induced colitis, Escherichia coli, or endotoxin-shock challenge, and a dramatic increase in proinflammatory cytokines was observed in Git2 knockout mice and macrophages. GIT2 is a previously unidentified negative regulator of Toll-like receptor (TLR)-induced NF-κB signaling. The ubiquitination of TNF receptor associated factor 6 (TRAF6) is critical for the activation of NF-κB. GIT2 terminates TLR-induced NF-κB and MAPK signaling by recruiting the deubiquitinating enzyme Cylindromatosis to inhibit the ubiquitination of TRAF6. Finally, we show that the susceptibility of Git2-deficient mice to DSS-induced colitis depends on TLR signaling. Thus, we show that GIT2 is an essential terminator of TLR signaling and that loss of GIT2 leads to uncontrolled inflammation and severe organ damage. PMID:24879442

  14. Human platelet interaction with E. coli O111 promotes tissue-factor-dependent procoagulant activity, involving Toll like receptor 4.

    PubMed

    Matus, Valeria; Valenzuela, J Guillermo; Hidalgo, Patricia; Pozo, L María; Panes, Olga; Wozniak, Aniela; Mezzano, Diego; Pereira, Jaime; Sáez, Claudia G

    2017-01-01

    Platelets have a major role in clotting activation and contribute to the innate immune response during systemic infections. Human platelets contain tissue factor (TF) and express functional Toll-like receptor 4 (TLR4). However, the role of TLR4 in triggering the procoagulant properties of platelets, upon challenge with bacteria, is yet unknown. Our hypothesis is that E. coli O111-TLR4 interaction activates platelets and elicits their procoagulant activity. We demonstrated that the strain, but not ultrapure LPS, increased surface P-selectin expression, platelet dependent TF procoagulant activity (TF-PCA) and prompted a faster thrombin generation (TG). Blockade of TLR4 resulted in decreased platelet activation, TF-PCA and TG, revealing the participation of this immune receptor on the procoagulant response of platelets. Our results provide a novel mechanism by which individuals with bacterial infections would have an increased incidence of blood clots. Furthermore, the identification of platelet TF and TLR4 as regulators of the effect of E. coli O111 might represent a novel therapeutic target to reduce the devastating consequences of the hemostatic disorder during sepsis.

  15. Pathogen recognition by Toll-like receptor 2 activates Weibel-Palade body exocytosis in human aortic endothelial cells.

    PubMed

    Into, Takeshi; Kanno, Yosuke; Dohkan, Jun-ichi; Nakashima, Misako; Inomata, Megumi; Shibata, Ken-ichiro; Lowenstein, Charles J; Matsushita, Kenji

    2007-03-16

    The endothelial cell-specific granule Weibel-Palade body releases vasoactive substances capable of modulating vascular inflammation. Although innate recognition of pathogens by Toll-like receptors (TLRs) is thought to play a crucial role in promotion of inflammatory responses, the molecular basis for early-phase responses of endothelial cells to bacterial pathogens has not fully been understood. We here report that human aortic endothelial cells respond to bacterial lipoteichoic acid (LTA) and synthetic bacterial lipopeptides, but not lipopolysaccharide or peptidoglycan, to induce Weibel-Palade body exocytosis, accompanied by release or externalization of the storage components von Willebrand factor and P-selectin. LTA could activate rapid Weibel-Palade body exocytosis through a TLR2- and MyD88-dependent mechanism without de novo protein synthesis. This process was at least mediated through MyD88-dependent phosphorylation and activation of phospholipase Cgamma. Moreover, LTA activated interleukin-1 receptor-associated kinase-1-dependent delayed exocytosis with de novo protein synthesis and phospholipase Cgamma-dependent activation of the NF-kappaB pathway. Increased TLR2 expression by transfection or interferon-gamma treatment increased TLR2-mediated Weibel-Palade body exocytosis, whereas reduced TLR2 expression under laminar flow decreased the response. Thus, we propose a novel role for TLR2 in induction of a primary proinflammatory event in aortic endothelial cells through Weibel-Palade body exocytosis, which may be an important step for linking innate recognition of bacterial pathogens to vascular inflammation.

  16. Activation of cell membrane-localized Toll-like receptor 3 by siRNA.

    PubMed

    Pirher, Nina; Pohar, Jelka; Manček-Keber, Mateja; Benčina, Mojca; Jerala, Roman

    2017-09-01

    Small interfering RNA molecules (siRNA) are short dsRNAs that are used for different therapeutic applications. On the other hand, dsRNAs can bind to and activate cell RNA sensors and consequently trigger inflammatory response. Here we show that siRNA activates primary human endothelial cells and human lymphatic endothelial cells and that this response is inhibited by antibodies against TLR3. In contrast, the activation of human lymphatic endothelial cells by poly(I:C) was inhibited by bafilomycin but not by anti-TLR3 antibodies. Bafilomycin also inhibited poly(I:C) but not siRNA cell stimulation in TLR3-transfected HEK293. The response to siRNA required the expression of UNC93B1, which directs TLR3 to the surface of HEK293 cells. We propose that the engaged signaling pathway of TLR3 depends on the receptor localization and on the length of the dsRNA, where the activation of cell membrane TLR3 by short dsRNA leads to a predominantly proinflammatory response, whereas TLR3 activation in endosomal compartments by long dsRNA is characterized by the production of type I IFN. A molecular model suggests that the siRNA can bind to the binding sites of the TLR3 ectodomain and trigger receptor dimerization. These results contribute to understanding of the mechanism of side effects seen in the therapeutic application of naked, unmodified siRNA as a result of the activation of TLR3 localized at the plasma membrane. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  17. Fibrinogen, an endogenous ligand of Toll-like receptor 4, activates monocytes in pre-eclamptic patients.

    PubMed

    Al-ofi, Ebtisam; Coffelt, Seth B; Anumba, Dilly O

    2014-06-01

    Pre-eclampsia (PE) remains the leading cause of pregnancy-associated mortality and morbidity, urging the need for a better understanding of its aetiology and pathophysiological progression. A key characteristic of PE is a systemic, exaggerated, inflammatory condition involving abnormal cytokine levels in serum, altered immune cell phenotype and Th1/Th2-type immunological imbalance. However, it is unknown how this heightened inflammatory condition manifests. We previously reported increased expression of the lipopolysaccharide receptor, Toll-like receptor 4 (TLR4), on monocytes from PE patients compared with normotensive, pregnant patients (NP). This upregulation of TLR4 on PE monocytes was accompanied by a hyper-responsiveness to bacterial TLR4 ligands. To determine whether non-microbial, endogenous TLR4 ligands also activate monocytes from PE patients, we investigated the expression of host-derived TLR4 ligands and the response of monocytes to these endogenous ligands. Plasma levels of fibrinogen - but not fibronectin or heparan sulphate - were higher in PE patients than in NP. Exposure to fibrinogen was associated with significantly increased production of inflammatory cytokines by monocytes from PE patients. Interestingly, this effect was not observed with NP monocytes. Our findings suggest that the fibrinogen-TLR4 axis might play an important role in the atypical activation of monocytes observed in PE patients that may contribute to the exaggerated inflammatory condition.

  18. Lithium Ameliorates LPS-Induced Astrocytes Activation Partly via Inhibition of Toll-Like Receptor 4 Expression.

    PubMed

    Li, Nana; Zhang, Xiang; Dong, Hongquan; Zhang, Susu; Sun, Jie; Qian, Yanning

    2016-01-01

    Astrocytes are critical for the development of postoperative cognitive dysfunction (POCD). In addition, astrocytes express toll-like receptors 4 (TLR4) and build up responses to innate immune triggers by releasing pro-inflammatory molecules. The pathogenesis of neurological disorders often involves the activation of astrocytes and associated inflammatory processes. Lithium, a primary drug for the treatment of bipolar disorder, has recently been suggested to have a role in neuroprotection during neurodegenerative diseases. In this study, we aimed to investigate whether lithium can ameliorate LPS-induced astrocytes activation via inhibition of TLR4 expression. Primary astrocytes cells were pretreated with lithium and stimulated with lipopolysaccharide (LPS). Cellular activation, cytokine production, and TLR4 expression, were assessed. Lithium significantly inhibited LPS-induced astrocytes activation and pro-inflammatory cytokine production, as well as LPS-induced TLR4 expression. Lithium can inhibit LPS-induced TLR4 expression and astrocytes activation. These results indicate that lithium plays an important role in astrocytes activation and neuroinflammation-related diseases, which may open new avenues for neuroscience and biomedical research, and also offers new insight into the treatment of POCD. © 2016 The Author(s) Published by S. Karger AG, Basel.

  19. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity.

    PubMed

    Modhiran, Naphak; Watterson, Daniel; Muller, David A; Panetta, Adele K; Sester, David P; Liu, Lidong; Hume, David A; Stacey, Katryn J; Young, Paul R

    2015-09-09

    Complications arising from dengue virus infection include potentially fatal vascular leak, and severe disease has been linked with excessive immune cell activation. An understanding of the triggers of this activation is critical for the development of appropriately targeted disease control strategies. We show here that the secreted form of the dengue virus nonstructural protein 1 (NS1) is a pathogen-associated molecular pattern (PAMP). Highly purified NS1 devoid of bacterial endotoxin activity directly activated mouse macrophages and human peripheral blood mononuclear cells (PBMCs) via Toll-like receptor 4 (TLR4), leading to the induction and release of proinflammatory cytokines and chemokines. In an in vitro model of vascular leak, treatment with NS1 alone resulted in the disruption of endothelial cell monolayer integrity. Both NS1-mediated activation of PBMCs and NS1-induced vascular leak in vitro were inhibited by a TLR4 antagonist and by anti-TLR4 antibody treatment. The importance of TLR4 activation in vivo was confirmed by the reduction in capillary leak by a TLR4 antagonist in a mouse model of dengue virus infection. These results pinpoint NS1 as a viral toxin counterpart of the bacterial endotoxin lipopolysaccharide (LPS). Similar to the role of LPS in septic shock, NS1 might contribute to vascular leak in dengue patients, which highlights TLR4 antagonists as a possible therapeutic option.

  20. Activation of macrophages by polysaccharide isolated from Paecilomyces cicadae through toll-like receptor 4.

    PubMed

    Kim, Hyung Sook; Kim, Yeon Jin; Lee, Hong Kyung; Ryu, Hwa Sun; Kim, Ji Sung; Yoon, Mi Jung; Kang, Jong Soon; Hong, Jin Tae; Kim, Youngsoo; Han, Sang-Bae

    2012-09-01

    Paecilomyces cicadae have been reported to have immunomodulatory properties. In this study, we investigated the effect of polysaccharide (PCP) isolated from P. cicadae on the macrophages. PCP increased the production of nitric oxide (NO) and the gene expression of IL-1β, IL-6, and TNF-α in RAW 264.7 cells. To investigate the membrane receptor, we examined the effect of PCP on primary macrophages isolated from wild type C3H/HeN and C3H/HeJ mice having mutant-TLR4. PCP induced NO production and cytokine gene expression in macrophages from C3H/HeN, but not from tlr4-mutated C3H/HeJ mice, which suggests that TLR4 is the membrane receptor for PCP. PCP induced the phosphorylation of ERK, JNK, and p38, and the nuclear translocation of NF-κB p50/p65, which are the main signaling molecules downstream from TLR4. Among them, p38 and NF-κB signaling played a crucial role in PCP-induced NO production by macrophages. These results indicate that PCP activates macrophages through the TLR4 signaling pathway. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Intestinal Serotonin Transporter Inhibition by Toll-Like Receptor 2 Activation. A Feedback Modulation.

    PubMed

    Latorre, Eva; Layunta, Elena; Grasa, Laura; Castro, Marta; Pardo, Julián; Gomollón, Fernando; Alcalde, Ana I; Mesonero, José E

    2016-01-01

    TLR2 is a microbiota recognition receptor that has been described to contribute to intestinal homeostasis and to ameliorate inflammatory intestinal injury. In this context, serotonin (5-HT) has shown to be an essential intestinal physiological neuromodulator that is also involved in intestinal inflammatory diseases. Since the interaction between TLR2 activation and the intestinal serotoninergic system remains non-investigated, our main aim was to analyze the effect of TLR2 on intestinal serotonin transporter (SERT) activity and expression and the intracellular pathways involved. Caco-2/TC7 cells were used to analyze SERT and TLR2 molecular expression and SERT activity by measuring 5-HT uptake. The results showed that apical TLR2 activation inhibits SERT activity in Caco-2/TC7 cells mainly by reducing SERT protein level either in the plasma membrane, after short-term TLR2 activation or in both the plasma membrane and cell lysate, after long-term activation. cAMP/PKA pathway appears to mediate short-term inhibitory effect of TLR2 on SERT; however, p38 MAPK pathway has been shown to be involved in both short- and long-term TLR2 effect. Reciprocally, 5-HT long-term treatment yielded TLR2 down regulation in Caco-2/TC7 cells. Finally, results from in vivo showed an augmented intestinal SERT expression in mice Tlr2-/-, thus confirming our inhibitory effect of TLR2 on intestinal SERT in vitro. The present work infers that TLR2 may act in intestinal pathophysiology, not only by its inherent innate immune role, but also by regulating the intestinal serotoninergic system.

  2. Intestinal Serotonin Transporter Inhibition by Toll-Like Receptor 2 Activation. A Feedback Modulation

    PubMed Central

    Layunta, Elena; Grasa, Laura; Castro, Marta; Pardo, Julián; Gomollón, Fernando; Mesonero, José E.

    2016-01-01

    TLR2 is a microbiota recognition receptor that has been described to contribute to intestinal homeostasis and to ameliorate inflammatory intestinal injury. In this context, serotonin (5-HT) has shown to be an essential intestinal physiological neuromodulator that is also involved in intestinal inflammatory diseases. Since the interaction between TLR2 activation and the intestinal serotoninergic system remains non-investigated, our main aim was to analyze the effect of TLR2 on intestinal serotonin transporter (SERT) activity and expression and the intracellular pathways involved. Caco-2/TC7 cells were used to analyze SERT and TLR2 molecular expression and SERT activity by measuring 5-HT uptake. The results showed that apical TLR2 activation inhibits SERT activity in Caco-2/TC7 cells mainly by reducing SERT protein level either in the plasma membrane, after short-term TLR2 activation or in both the plasma membrane and cell lysate, after long-term activation. cAMP/PKA pathway appears to mediate short-term inhibitory effect of TLR2 on SERT; however, p38 MAPK pathway has been shown to be involved in both short- and long-term TLR2 effect. Reciprocally, 5-HT long-term treatment yielded TLR2 down regulation in Caco-2/TC7 cells. Finally, results from in vivo showed an augmented intestinal SERT expression in mice Tlr2-/-, thus confirming our inhibitory effect of TLR2 on intestinal SERT in vitro. The present work infers that TLR2 may act in intestinal pathophysiology, not only by its inherent innate immune role, but also by regulating the intestinal serotoninergic system. PMID:28033388

  3. Histone deacetylase inhibitors decrease Toll-like receptor-mediated activation of proinflammatory gene expression by impairing transcription factor recruitment

    PubMed Central

    Bode, Konrad A; Schroder, Kate; Hume, David A; Ravasi, Timothy; Heeg, Klaus; Sweet, Matthew J; Dalpke, Alexander H

    2007-01-01

    Post-translational modifications of histone proteins are major mechanisms that modify chromatin structure and regulate gene expression in eukaryotes. Activation of histone acetyltransferases or inhibition of histone deacetylases (HDACs) is generally believed to allow chromatin to assume a more open state, permitting transcriptional activity. We report here the surprising observation that treatment of murine dendritic cells with the HDAC inhibitors trichostatin A (TSA) or suberoylanilide hydroxamic acid (SAHA) in non-apoptotic concentrations strongly inhibited induction of both interleukin-12 protein p40 (IL-12p40) mRNA and protein upon stimulation of Toll-like receptors (TLRs). Moreover, TLR-mediated up-regulation of costimulatory molecules was also inhibited. Up-regulation of tumour necrosis factor-α mRNA and protein in response to TLR agonists was only affected upon prolonged exposure to HDAC inhibitors and regulation of IL-1β was not affected. Similar effects were apparent in murine and human macrophages. Regarding the mode of action, HDAC inhibition increased the acetylation status at the IL-12p40 locus. Nevertheless, IL-12p40 chromatin remodelling, binding of Rel-A and IRF1 to the IL-12p40 promoter and transcriptional activation were abrogated. In contrast, HDAC inhibitors had no effects on upstream nuclear factor-κB and mitogen-activated protein kinase activation. Thus HDACs positively regulate the expression of a subset of cytokine genes by enabling transcription factor recruitment. PMID:17635610

  4. Apocynin inhibits Toll-like receptor-4-mediated activation of NF-κB by suppressing the Akt and mTOR pathways.

    PubMed

    Nam, Yoon Jeong; Kim, Arum; Sohn, Dong Suep; Lee, Chung Soo

    2016-12-01

    Microbial product lipopolysaccharide has been shown to be involved in the pathogenesis of inflammatory skin diseases. Apocynin has demonstrated to have an anti-inflammatory effect. However, the effect of apocynin on the Toll-like receptor-4-dependent activation of Akt, mammalian target of rapamycin (mTOR), and nuclear factor (NF)-κB pathway, which is involved in productions of inflammatory mediators in keratinocytes, has not been studied. Using human keratinocytes, we investigated the effect of apocynin on the inflammatory mediator production in relation to the Toll-like receptor-4-mediated-Akt/mTOR and NF-κB pathways, which regulates the transcription genes involved in immune and inflammatory responses. Apocynin, Akt inhibitor SH-5, Bay 11-7085 and N-acetylcysteine each attenuated the lipopolysaccharide-induced production of cytokines, PGE2, and chemokines, changes in the levels of Toll-like receptor-4, p-Akt, mTOR, and NF-κB, and production of reactive oxygen species in keratinocytes. The results show that apocynin appears to attenuate the lipopolysaccharide-stimulated production of inflammatory mediators in keratinocytes by suppressing the Toll-like receptor-4-mediated activation of the Akt, mTOR, and NF-κB pathways. The effect of apocynin appears to be attributed to its inhibitory effect on the production of reactive oxygen species. Apocynin appears to attenuate the microbial product-mediated inflammatory skin diseases.

  5. Hyper-responsive Toll-like receptor 7 and 9 activation in NADPH oxidase-deficient B lymphoblasts.

    PubMed

    McLetchie, Shawna; Volpp, Bryan D; Dinauer, Mary C; Blum, Janice S

    2015-12-01

    Chronic granulomatous disease (CGD) is an inherited immunodeficiency linked with mutations in the multi-subunit leucocyte NADPH oxidase. Myeloid-derived phagocytic cells deficient in NADPH oxidase fail to produce sufficient levels of reactive oxygen species to clear engulfed pathogens. In this study we show that oxidase also influences B-cell functions, including responses to single-stranded RNA or unmethylated DNA by endosomal Toll-like receptors (TLRs) 7 and 9. In response to TLR7/9 ligands, B-cell lines derived from patients with CGD with mutations in either the NADPH oxidase p40(phox) or p47(phox) subunits produced only low levels of reactive oxygen species. Remarkably, cytokine secretion and p38 mitogen-activated protein kinase activation by these oxidase-deficient B cells was significantly increased upon TLR7/9 activation when compared with oxidase-sufficient B cells. Increased TLR responsiveness was also detected in B cells from oxidase-deficient mice. NADPH oxidase-deficient patient-derived B cells also expressed enhanced levels of TLR7 and TLR9 mRNA and protein compared with the same cells reconstituted to restore oxidase activity. These data demonstrate that the loss of oxidase function associated with CGD can significantly impact B-cell TLR signalling in response to nucleic acids with potential repercussions for auto-reactivity in patients.

  6. The Role of Interleukin-1β in Direct and Toll-Like Receptor 4-Mediated Neutrophil Activation and Survival

    PubMed Central

    Prince, Lynne R.; Allen, Lucy; Jones, Elizabeth C.; Hellewell, Paul G.; Dower, Steven K.; Whyte, Moira K.B.; Sabroe, Ian

    2004-01-01

    The regulation of systemic and local neutrophil activation is crucial to the clearance of infections and the successful resolution of inflammation without progress to tissue damage or disseminated inflammatory reactions. Using purified lipopolysaccharide (pLPS) and highly purified neutrophils, we have previously shown that Toll-like receptor 4 signaling is a potent neutrophil activator, but a poor stimulator of survival. In the presence of peripheral blood mononuclear cells (PBMCs), however, pLPS becomes a potent neutrophil survival factor. Interleukin (IL)-1β has been identified as an important neutrophil activator and prosurvival cytokine, and is produced in abundance by LPS-stimulated PBMCs. We now show that IL-1β fails to activate highly purified neutrophils or enhance their survival, but in the presence of PBMCs, IL-1β induces neutrophil survival. We hypothesized that LPS-primed neutrophils might become responsive to IL-1β, but were unable to demonstrate this. Moreover, IL-1ra failed to prevent pLPS + PBMC-dependent neutrophil survival. In studies of IL-1R1−/− mice, we found that LPS was still able to mediate neutrophil survival, and neutrophil survival was enhanced by the addition of monocytic cells. Thus an important paradigm of neutrophil regulation needs to be viewed in the context of a cellular network in which actions of IL-1β on neutrophils are indirect and mediated by other cells. PMID:15509550

  7. Promising Role of Toll-Like Receptor 8 Agonist in Concert with Prostratin for Activation of Silent HIV

    PubMed Central

    Schlaepfer, E.

    2016-01-01

    all latently infected cells. Moreover, HIV-associated exhaustion of the immune system hinders the efficient elimination of the reactivated cells. In this study, we demonstrated synergistic latency reversion by combining agonists for protein kinase C and Toll-like receptor 8 in a coculture of latently infected cells with myeloid dendritic cells. The drug prostratin stimulates directly the transcriptional machinery of latently infected cells, and the TLR8 agonist acts indirectly by maturing dendritic cells. These findings highlight the importance of the immune system and its activation, in combination with direct-acting compounds, to reverse latency. PMID:27928016

  8. The Novel Toll-Like Receptor 2 Agonist SUP3 Enhances Antigen Presentation and T Cell Activation by Dendritic Cells

    PubMed Central

    Guo, Xueheng; Wu, Ning; Shang, Yingli; Liu, Xin; Wu, Tao; Zhou, Yifan; Liu, Xin; Huang, Jiaoyan; Liao, Xuebin; Wu, Li

    2017-01-01

    Dendritic cells (DCs) are highly specialized antigen-presenting cells that play crucial roles in innate and adaptive immunity. Previous studies suggested that Toll-like receptor (TLR) agonists could be used as potential adjuvants, as activation of TLRs can boost DC-induced immune responses. TLR2 agonists have been shown to enhance DC-mediated immune responses. However, classical TLR2 agonists such as Pam3CSK4 are not stable enough in vivo, which limits their clinical applications. In this study, a novel structurally stable TLR2 agonist named SUP3 was designed. Functional analysis showed that SUP3 induced much stronger antitumor response than Pam3CSK4 by promoting cytotoxic T lymphocytes activation in vivo. This effect was achieved through the following mechanisms: SUP3 strongly enhanced the ability of antigen cross-presentation by DCs and subsequent T cell activation. SUP3 upregulated the expression of costimulatory molecules on DCs and increased antigen deposition in draining lymph nodes. More interestingly, SUP3 induced less amount of pro-inflammatory cytokine production in vivo compared to other TLR agonists such as lipopolysaccharide. Taken together, SUP3 could serve as a novel promising immune adjuvant in vaccine development and immune modulations. PMID:28270814

  9. CBLB502, an agonist of Toll-like receptor 5, has antioxidant and scavenging free radicals activities in vitro.

    PubMed

    Li, Weiguang; Ge, Changhui; Yang, Liu; Wang, Ruixue; Lu, Yiming; Gao, Yan; Li, Zhihui; Wu, Yonghong; Zheng, Xiaofei; Wang, Zhaoyan; Zhang, Chenggang

    2016-01-01

    The bacterial protein flagellin is the known agonist of Toll-like receptor 5 (TLR5). It has been reported that CBLB502, a novel agonist of TLR5 derived from Salmonella flagellin, could reduce radiation toxicity in mouse and primate models, protect mice from dermatitis and oral mucositis caused by radiation, inhibit acute renal ischemic failure, and inhibit the growth of A549 lung cancer cell. The property of CBLB502 is able to bind to TLR5 and activates NF-κB signaling. In this study, we investigated the antioxidant potential and free radicals scavenging properties of CBLB502 in vitro. Interestingly, we found that CBLB502 has a direct and distinct antioxidant capacity and can efficiently scavenge a variety of free radicals, including superoxide anion, hydroxyl radical, and ABTS cation (ABTS(+)). Through wave scanning and kinetic evaluation of scavenging ABTS(+), we found that the ABTS(+) scavenging process of CBLB502 is relatively slow, and the ABTS(+) scavenging activity of CBLB502 has a consistently kinetics characteristics. In conclusion, our results suggested that CBLB502 has antioxidant and scavenging free radicals activities in vitro. It is implied that CBLB502 might partially promote the beneficial protective effect through its scavenging free radicals.

  10. Apolipoprotein E inhibits toll-like receptor (TLR)-3- and TLR-4-mediated macrophage activation through distinct mechanisms.

    PubMed

    Zhu, Yanjuan; Kodvawala, Ahmer; Hui, David Y

    2010-04-28

    Previous studies have shown that apoE (apolipoprotein E) expression in macrophages suppresses inflammatory responses; however, whether endogenously synthesized apoE acts intracellularly or after its secretion in suppressing macrophage inflammation remains unclear. The present study used the murine monocyte macrophage cell line RAW 264.7 to examine the influence of exogenous apoE on macrophage inflammatory responses induced by TLR (Toll-like receptor)-4 and TLR-3 agonists LPS (lipopolysaccharide) and poly(I-C) respectively. Results showed that exogenously added apoE suppressed the LPS and poly(I-C) induction of IL (interleukin)-6, IL-1beta and TNF-alpha (tumour necrosis factor-alpha) secretion by RAW 264.7 cells. The mechanism was related to apoE suppression of TLR-agonist-induced phosphorylation of JNK (c-Jun N-terminal kinase) and c-Jun. A peptide containing the tandem repeat sequence of the receptor-binding domain of apoE, apoE-(141-155)2, was similarly effective in inhibiting LPS- and poly(I-C)-induced macrophage inflammatory responses. Reductive methylation of lysine residues in apoE, which abolished its receptor-binding capability without affecting its ability to interact with HSPGs (heparin sulfate proteoglycans), inhibited the ability of apoE to suppress macrophage responses to LPS, but had no effect on apoE suppression of poly(I-C)-induced macrophage activation. The ability of apoE to suppress poly(I-C)-induced pro-inflammatory cytokine production was abolished by heparinase treatment of RAW 264.7 cells to remove cell-surface HSPGs. Taken together, these results indicate that exogenous apoE inhibits macrophage inflammatory responses to TLR-4 and TLR-3 agonists through distinct mechanisms related to receptor and HSPG binding respectively, and that these inhibitory effects converged on suppression of JNK and c-Jun activation which are necessary for macrophage activation.

  11. Lubricin/Proteoglycan 4 binds to and regulates the activity of Toll-Like Receptors In Vitro.

    PubMed

    Iqbal, S M; Leonard, C; Regmi, S C; De Rantere, D; Tailor, P; Ren, G; Ishida, H; Hsu, Cy; Abubacker, S; Pang, D Sj; Salo, P T; Vogel, H J; Hart, D A; Waterhouse, C C; Jay, G D; Schmidt, T A; Krawetz, R J

    2016-01-11

    Proteoglycan 4 (PRG4/lubricin) is secreted by cells that reside in articular cartilage and line the synovial joint. Lubricin may play a role in modulating inflammatory responses through interaction with CD44. This led us to examine if lubricin could be playing a larger role in the modulation of inflammation/immunity through interaction with Toll-like receptors (TLRs). Human Embryonic Kidney (HEK) cells overexpressing TLRs 2, 4 or 5 and surface plasmon resonance were employed to determine if full length recombinant human lubricin was able to bind to and activate TLRs. Primary human synovial fibroblasts were also examined using flow cytometry and Luminex multiplex ELISA. A rat destabilization model of osteoarthritis (OA) was used to determine if lubricin injections were able to regulate pain and/or inflammation in vivo. Lubricin can bind to and regulate the activity of TLRs, leading to downstream changes in inflammatory signalling independent of HA. We confirmed these findings in vivo through intra-articular injections of lubricin in a rat OA model where the inhibition of systemic inflammatory signaling and reduction in pain were observed. Lubricin plays an important role in regulating the inflammatory environment under both homeostatic and tissue injury states.

  12. Lubricin/Proteoglycan 4 binds to and regulates the activity of Toll-Like Receptors In Vitro

    PubMed Central

    Iqbal, S.M.; Leonard, C.; C. Regmi, S.; De Rantere, D.; Tailor, P.; Ren, G.; Ishida, H.; Hsu, CY.; Abubacker, S.; Pang, D. SJ.; T. Salo, P.; Vogel, H.J.; Hart, D.A.; Waterhouse, C.C.; Jay, G.D; Schmidt, T.A.; Krawetz, R.J.

    2016-01-01

    Proteoglycan 4 (PRG4/lubricin) is secreted by cells that reside in articular cartilage and line the synovial joint. Lubricin may play a role in modulating inflammatory responses through interaction with CD44. This led us to examine if lubricin could be playing a larger role in the modulation of inflammation/immunity through interaction with Toll-like receptors (TLRs). Human Embryonic Kidney (HEK) cells overexpressing TLRs 2, 4 or 5 and surface plasmon resonance were employed to determine if full length recombinant human lubricin was able to bind to and activate TLRs. Primary human synovial fibroblasts were also examined using flow cytometry and Luminex multiplex ELISA. A rat destabilization model of osteoarthritis (OA) was used to determine if lubricin injections were able to regulate pain and/or inflammation in vivo. Lubricin can bind to and regulate the activity of TLRs, leading to downstream changes in inflammatory signalling independent of HA. We confirmed these findings in vivo through intra-articular injections of lubricin in a rat OA model where the inhibition of systemic inflammatory signaling and reduction in pain were observed. Lubricin plays an important role in regulating the inflammatory environment under both homeostatic and tissue injury states. PMID:26752378

  13. Human Toll-Like Receptor 8-Selective Agonistic Activities in 1-Alkyl-1H-benzimidazol-2-amines

    PubMed Central

    2015-01-01

    Toll-like receptor (TLR)-8 agonists strongly induce the production of T helper 1-polarizing cytokines and may therefore serve as promising candidate vaccine adjuvants, especially for the very young and the elderly. Earlier structure-based ligand design led to the identification of 3-pentyl-quinoline-2-amine as a novel, human TLR8-specific agonist. Comprehensive structure–activity relationships in ring-contracted 1-alkyl-1H-benzimidazol-2-amines were undertaken, and the best-in-class compound, 4-methyl-1-pentyl-1H-benzo[d]imidazol-2-amine, was found to be a pure TLR8 agonist, evoking strong proinflammatory cytokine and Type II interferon responses in human PBMCs, with no attendant CD69 upregulation in natural lymphocytic subsets. The 1-alkyl-1H-benzimidazol-2-amines represent a novel, alternate chemotype with pure TLR8-agonistic activities and will likely prove useful not only in understanding TLR8 signaling but also perhaps as a candidate vaccine adjuvant. PMID:25102141

  14. CCL-34, a synthetic toll-like receptor 4 activator, modulates differentiation and maturation of myeloid dendritic cells.

    PubMed

    Fu, Shu-Ling; Lin, Chun-Cheng; Hsu, Ming-Ling; Liu, Sheng-Hung; Huang, Yu-Chuen; Chen, Yu-Jen

    2016-03-08

    CCL-34, a synthetic α-galactosylceramide analog, has been reported as an activator of toll-like receptor 4 (TLR4) in macrophages. TLR4 is highly expressed in dendritic cell (DC) and several TLR4 agonists are known to trigger DC maturation. We herein evaluated the effect of CCL-34 on DC maturation. Human CD14+ monocyte-derived immature DC were treated with CCL-34, its inactive structural analog CCL-44, or LPS to assess the DC maturation. CCL-34 induced DC maturation according to their characteristically dendrite-forming morphology, CD83 expression and IL-12p70 production. The allostimulatory activity of DC on proliferation of naive CD4+CD45+RA+ T cells and their secretion of interferon-γ was increased by CCL-34. Phagocytosis, an important function of immature DC, was reduced after CCL-34 treatment. All these effects related to DC maturation were evidently induced by positive control LPS but not by CCL-44 treatment. TLR4 neutralization impaired human DC maturation triggered by CCL-34. The induction of IL-12, a hallmark of DC maturation, by CCL-34 and LPS was only evident in TLR4-competent C3H/HeN, but not in TLR4-defective C3H/HeJ mice. CCL-34 could further elicit the antigen presentation capability in mice inoculated with doxorubicin-treated colorectal cancer cells. In summary, CCL-34 triggers DC maturation via a TLR4-dependent manner, which supports its potential application as an immunostimulator.

  15. Chemokine, cytokine and type I interferon production induced by Toll-like receptor activation in common variable immune deficiency.

    PubMed

    Lollo, Camila de; de Moraes Vasconcelos, Dewton; Oliveira, Luanda Mara da Silva; Domingues, Rosana; Carvalho, Gabriel Costa de; Duarte, Alberto José da Silva; Sato, Maria Notomi

    2016-08-01

    Common variable immunodeficiency (CVID) is the most common symptomatic primary antibody deficiency and is associated with recurrent infections and chronic inflammatory diseases. We evaluated the ability of Toll-like receptor (TLR) ligands to induce secretion of chemokines, cytokines and type I interferons by peripheral blood mononuclear cells (PBMCs) from CVID patients. High levels of CXCL10, CCL2, CXCL9, CCL5, CXCL8, and IL-6 were detected in sera of CVID patients compared with healthy controls. Increased chemokine levels were observed in unstimulated PBMCs, but after stimulation with TLR2 and TLR4 agonists, equivalent chemokine and pro-inflammatory cytokine secretion, as in healthy controls, was observed, whereas TLR4 agonist induced a decreased secretion of CCL2 and CXCL8 and increased secretion of TNF. Decreased IFN-α secretion induced by TLR7/TLR8 activation was observed in CVID, which was recovered with TLR9 signaling. Our findings revealed that TLR9 activation has an adjuvant effect on the altered type I response in CVID. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Dependence of pathogen molecule-induced toll-like receptor activation and cell function on Neu1 sialidase.

    PubMed

    Amith, Schammim Ray; Jayanth, Preethi; Franchuk, Susan; Siddiqui, Sarah; Seyrantepe, Volkan; Gee, Katrina; Basta, Sameh; Beyaert, Rudi; Pshezhetsky, Alexey V; Szewczuk, Myron R

    2009-12-01

    The signaling pathways of mammalian Toll-like receptors (TLR) are well characterized, but the initial molecular mechanisms activated following ligand interactions with the receptors remain poorly defined. Here, we show a membrane controlling mechanism that is initiated by ligand binding to TLR-2, -3 and-4 to induce Neu1 sialidase activity within minutes in live primary bone marrow (BM) macrophage cells and macrophage and dendritic cell lines. Central to this process is that Neu1 and not Neu2,-3 and-4 forms a complex with TLR-2,-3 and-4 on the cell surface of naïve macrophage cells. Neuraminidase inhibitors BCX1827, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA), zanamivir and oseltamivir carboxylate have a limited significant inhibition of the LPS-induced sialidase activity in live BMC-2 macrophage cells but Tamiflu (oseltamivir phosphate) completely blocks this activity. Tamiflu inhibits LPS-induced sialidase activity in live BMC-2 cells with an IC(50) of 1.2 microM compared to an IC(50) of 1015 microM for its hydrolytic metabolite oseltamivir carboxylate. Tamiflu blockage of LPS-induced Neu1 sialidase activity is not affected in BMC-2 cells pretreated with anticarboxylesterase agent clopidogrel. Endotoxin LPS binding to TLR4 induces Neu1 with subsequent activation of NFkappaB and the production of nitric oxide and pro-inflammatory IL-6 and TNFalpha cytokines in primary and macrophage cell lines. Hypomorphic cathepsin A mice with a secondary Neu1 deficiency respond poorly to LPS-induced pro-inflammatory cytokines compared to the wild-type or hypomorphic cathepsin A with normal Neu1 mice. Our findings establish an unprecedented mechanism for pathogen molecule-induced TLR activation and cell function, which is critically dependent on Neu1 sialidase activity associated with TLR ligand treated live primary macrophage cells and macrophage and dendritic cell lines.

  17. Toll-Like Receptors of Deuterostome Invertebrates

    PubMed Central

    Satake, Honoo; Sekiguchi, Toshio

    2012-01-01

    Defensive systems against pathogens are responsible not only for survival or lifetime of an individual but also for the evolution of a species. Innate immunity is expected to be more important for invertebrates than mammals, given that adaptive immunity has not been acquired in the former. Toll-like receptors (TLRs) have been shown to play a crucial role in host defense of pathogenic microbes in innate immunity of mammals. Recent genome-wide analyses have suggested that TLR or their related genes are conserved in invertebrates. In particular, numerous TLR-related gene candidates were detected in deuterostome invertebrates, including a sea urchin (222 TLR-related gene candidates) and amphioxus (72 TLR-related gene candidates). Molecular phylogenetic analysis verified that most of sea urchin or amphioxus TLR candidates are paralogous, suggesting that these organisms expanded TLR-related genes in a species-specific manner. In contrast, another deuterostome invertebrate, the ascidian Ciona intestinalis, was found to possess only two TLR genes. Moreover, Ciona TLRs, Ci-TLR1 and Ci-TLR2, were shown to possess “hybrid” functionality of mammalian TLRs. Such functionality of Ci-TLRs could not be predicted by sequence comparison with vertebrate TLRs, indicating confounding evolutionary lineages of deuterostome invertebrate TLRs or their candidates. In this review article, we present recent advances in studies of TLRs or their candidates among deuterostome invertebrates, and provide insight into an evolutionary process of TLRs. PMID:22566918

  18. Messenger RNA encoding constitutively active Toll-like receptor 4 enhances effector functions of human T cells

    PubMed Central

    Pato, A; Eisenberg, G; Machlenkin, A; Margalit, A; Cafri, G; Frankenburg, S; Merims, S; Peretz, T; Lotem, M; Gross, G

    2015-01-01

    Adoptive T cell therapy of cancer employs a large number of ex-vivo-propagated T cells which recognize their targets either by virtue of their endogenous T cell receptor (TCR) or via genetic reprogramming. However, both cell-extrinsic and intrinsic mechanisms often diminish the in-vivo potency of these therapeutic T cells, limiting their clinical efficacy and broader use. Direct activation of human T cells by Toll-like receptor (TLR) ligands induces T cell survival and proliferation, boosts the production of proinflammatory cytokines and augments resistance to regulatory T cell (Treg) suppression. Removal of the TLR ligand-binding region results in constitutive signalling triggered by the remaining cytosolic Toll/interleukin-1 receptor (TIR) domain. The use of such TIR domains therefore offers an ideal means for equipping anti-tumour T cells with the arsenal of functional attributes required for improving current clinical protocols. Here we show that constitutively active (ca)TLR-4 can be expressed efficiently in human T cells using mRNA electroporation. The mere expression of caTLR-4 mRNA in polyclonal CD8 and CD4 T cells induced the production of interferon (IFN)-γ, triggered the surface expression of CD25, CD69 and 4-1BB and up-regulated a panel of cytokines and chemokines. In tumour-infiltrating lymphocytes prepared from melanoma patients, caTLR-4 induced robust IFN-γ secretion in all samples tested. Furthermore, caTLR-4 enhanced the anti-melanoma cytolytic activity of tumour-infiltrating lymphocytes and augmented the secretion of IFN-γ, tumour necrosis factor (TNF)-α and granulocyte–macrophage colony-stimulating factor (GM-CSF) for at least 4 days post-transfection. Our results demonstrate that caTLR-4 is capable of exerting multiple T cell-enhancing effects and can potentially be used as a genetic adjuvant in adoptive cell therapy. PMID:26212048

  19. Effect of cobalt-mediated Toll-like receptor 4 activation on inflammatory responses in endothelial cells

    PubMed Central

    Holland, James P.; Kirby, John A.; Deehan, David J.; Tyson, Alison J.

    2016-01-01

    Cobalt-containing metal-on-metal hip replacements are associated with adverse reactions to metal debris (ARMD), including inflammatory pseudotumours, osteolysis, and aseptic implant loosening. The exact cellular and molecular mechanisms leading to these responses are unknown. Cobaltions (Co2+) activate human Toll-like receptor 4 (TLR4), an innate immune receptor responsible for inflammatory responses to Gram negative bacterial lipopolysaccharide (LPS). We investigated the effect of Co2+-mediated TLR4 activation on human microvascular endothelial cells (HMEC-1), focusing on the secretion of key inflammatory cytokines and expression of adhesion molecules. We also studied the role of TLR4 in Co2+-mediated adhesion molecule expression in MonoMac 6 macrophages. We show that Co2+ increases secretion of inflammatory cytokines, including IL-6 and IL-8, in HMEC-1. The effects are TLR4-dependent as they can be prevented with a small molecule TLR4 antagonist. Increased TLR4-dependent expression of intercellular adhesion molecule 1 (ICAM1) was also observed in endothelial cells and macrophages. Furthermore, we demonstrate for the first time that Co2+ activation of TLR4 upregulates secretion of a soluble adhesion molecule, sICAM-1, in both endothelial cells and macrophages. Although sICAM-1 can be generated through activity of matrix metalloproteinase-9 (MMP-9), we did not find any changes in MMP9 expression following Co2+ stimulation. In summary we show that Co2+ can induce endothelial inflammation via activation of TLR4. We also identify a role for TLR4 in Co2+-mediated changes in adhesion molecule expression. Finally, sICAM-1 is a novel target for further investigation in ARMD studies. PMID:27835611

  20. Toll-like receptor stimulation in splenic marginal zone lymphoma can modulate cell signaling, activation and proliferation

    PubMed Central

    Fonte, Eleonora; Agathangelidis, Andreas; Reverberi, Daniele; Ntoufa, Stavroula; Scarfò, Lydia; Ranghetti, Pamela; Cutrona, Giovanna; Tedeschi, Alessandra; Xochelli, Aliki; Caligaris-Cappio, Federico; Ponzoni, Maurilio; Belessi, Chrysoula; Davis, Zadie; Piris, Miguel A.; Oscier, David; Ghia, Paolo; Stamatopoulos, Kostas; Muzio, Marta

    2015-01-01

    Recent studies on splenic marginal zone lymphoma identified distinct mutations in genes belonging to the B-cell receptor and Toll-like receptor signaling pathways, thus pointing to their potential implication in the biology of the disease. However, limited data is available regarding the exact role of TLRs. We aimed at characterizing the expression pattern of TLRs in splenic marginal zone lymphoma cells and their functional impact on the activation, proliferation and viability of malignant cells in vitro. Cells expressed significant levels of TLR1, TLR6, TLR7, TLR8, TLR9 and TLR10 mRNA; TLR2 and TLR4 showed a low, variable pattern of expression among patients whereas TLR3 and TLR5 mRNAs were undetectable; mRNA specific for TLR signaling molecules and adapters was also expressed. At the protein level, TLR1, TLR6, TLR7, TLR9 and TLR10 were detected. Stimulation of TLR1/2, TLR2/6 and TLR9 with their respective ligands triggered the activation of IRAK kinases, MAPK and NF-κB signaling pathways, and the induction of CD86 and CD25 activation molecules, although in a heterogeneous manner among different patient samples. TLR-induced activation and cell viability were also inhibited by a specific IRAK1/4 inhibitor, thus strongly supporting the specific role of TLR signaling in these processes. Furthermore, TLR2/6 and TLR9 stimulation also significantly increased cell proliferation. In conclusion, we demonstrate that splenic marginal zone lymphoma cells are equipped with functional TLR and signaling molecules and that the stimulation of TLR1/2, TLR2/6 and TLR9 may play a role in regulating disease pathobiology, likely promoting the expansion of the neoplastic clone. PMID:26294727

  1. Mycobacterium indicus pranii and Mycobacterium bovis BCG lead to differential macrophage activation in Toll-like receptor-dependent manner.

    PubMed

    Kumar, Pawan; Tyagi, Rohit; Das, Gobardhan; Bhaskar, Sangeeta

    2014-10-01

    Mycobacterium indicus pranii (MIP) is an atypical mycobacterial species possessing strong immunomodulatory properties. It is a potent vaccine candidate against tuberculosis, promotes Th1 immune response and protects mice from tumours. In previous studies, we demonstrated higher protective efficacy of MIP against experimental tuberculosis as compared with bacillus Calmette-Guérin (BCG). Since macrophages play an important role in the pathology of mycobacterial diseases and cancer, in the present study, we evaluated the MIP in live and killed form for macrophage activation potential, compared it with BCG and investigated the underlying mechanisms. High levels of tumour necrosis factor-α, interleukin-12p40 (IL-12p40), IL-6 and nitric oxide were produced by MIP-stimulated macrophages as compared with BCG-stimulated macrophages. Prominent up-regulation of co-stimulatory molecules CD40, CD80 and CD86 was also observed in response to MIP. Loss of response in MyD88-deficient macrophages showed that both MIP and BCG activate the macrophages in a MyD88-dependent manner. MyD88 signalling pathway culminates in nuclear factor-κB/activator protein-1 (NF-κB/AP-1) activation and higher activation of NF-κB/AP-1 was observed in response to MIP. With the help of pharmacological inhibitors and Toll-like receptor (TLR) -deficient macrophages, we observed the role of TLR2, TLR4 and intracellular TLRs in MIP-mediated macrophage activation. Stimulation of HEK293 cells expressing TLR2 in homodimeric or heterodimeric form showed that MIP has a distinctly higher level of TLR2 agonist activity compared with BCG. Further experiments suggested that TLR2 ligands are well exposed in MIP whereas they are obscured in BCG. Our findings establish the higher macrophage activation potential of MIP compared with BCG and delineate the underlying mechanism.

  2. Activation of Toll-like receptor 2 on microglia promotes cell uptake of Alzheimer disease-associated amyloid beta peptide.

    PubMed

    Chen, Keqiang; Iribarren, Pablo; Hu, Jinyue; Chen, Jianhong; Gong, Wanghua; Cho, Edward H; Lockett, Stephen; Dunlop, Nancy M; Wang, Ji Ming

    2006-02-10

    The human G-protein-coupled formyl peptide receptor-like 1 (FPRL1) and its mouse homologue mFPR2 mediate the chemotactic activity of a variety of polypeptides associated with inflammation and bacterial infection, including the 42-amino acid form of amyloid beta peptide (Abeta42), a pathogenic factor in Alzheimer disease. Because mFPR2 was inducible in mouse microglial cells by proinflammatory stimulants, such as bacterial lipopolysaccharide, a ligand for the Toll-like receptor 4 (TLR4), we investigated the role of TLR2 in the regulation of mFPR2. We found that a TLR2 agonist, peptidoglycan (PGN) derived from Gram-positive bacterium Staphylococcus aureus, induced considerable mFpr2 mRNA expression in a mouse microglial cell line and primary microglial cells. This was associated with a markedly increased chemotaxis of the cells in response to mFPR2 agonist peptides. In addition, activation of TLR2 markedly enhanced mFPR2-mediated uptake of Abeta42 by microglia. Studies of the mechanistic basis showed that PGN activates MAPK and IkappaBalpha, and the effect of PGN on induction of mFPR2 was dependent on signaling pathways via ERK1/2 and p38 MAPKs. The use of TLR2 on microglial cells by PGN was supported by the fact that N9 cells transfected with short interfering RNA targeting mouse TLR2 failed to show increased expression of functional mFPR2 after stimulation with PGN. Our results demonstrated a potentially important role for TLR2 in microglial cells of promoting cell responses to chemoattractants produced in lesions of inflammatory and neurodegenerative diseases in the brain.

  3. Long term potentiation is impaired in membrane glycoprotein CD200-deficient mice: a role for Toll-like receptor activation.

    PubMed

    Costello, Derek A; Lyons, Anthony; Denieffe, Stephanie; Browne, Tara C; Cox, F Fionnuala; Lynch, Marina A

    2011-10-07

    The membrane glycoprotein CD200 is expressed on several cell types, including neurons, whereas expression of its receptor, CD200R, is restricted principally to cells of the myeloid lineage, including microglia. The interaction between CD200 and CD200R maintains microglia and macrophages in a quiescent state; therefore, CD200-deficient mice express an inflammatory phenotype exhibiting increased macrophage or microglial activation in models of arthritis, encephalitis, and uveoretinitis. Here, we report that lipopolysaccharide (LPS) and Pam(3)CysSerLys(4) exerted more profound effects on release of the proinflammatory cytokines, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNFα), in glia prepared from CD200(-/-) mice compared with wild type mice. This effect is explained by the loss of CD200 on astrocytes, which modulates microglial activation. Expression of Toll-like receptors 4 and 2 (TLR4 and -2) was increased in glia prepared from CD200(-/-) mice, and the evidence indicates that microglial activation, assessed by the increased numbers of CD11b(+) cells that stained positively for both MHCII and CD40, was enhanced in CD200(-/-) mice compared with wild type mice. These neuroinflammatory changes were associated with impaired long term potentiation (LTP) in CA1 of hippocampal slices prepared from CD200(-/-) mice. One possible explanation for this is the increase in TNFα in hippocampal tissue prepared from CD200(-/-) mice because TNFα application inhibited LTP in CA1. Significantly, LPS and Pam(3)CysSerLys(4), at concentrations that did not affect LTP in wild type mice, inhibited LTP in slices prepared from CD200(-/-) mice, probably due to the accompanying increase in TLR2 and TLR4. Thus, the neuroinflammatory changes that result from CD200 deficiency have a negative impact on synaptic plasticity.

  4. Functional activity but not gene expression of toll-like receptors is decreased in the preterm versus term human placenta.

    PubMed

    Patni, Shalini; Bryant, Aled H; Wynen, Louise P; Seager, Anna L; Morgan, Gareth; Thornton, Catherine A

    2015-09-01

    Toll-like receptor (TLR) activity within gestation-associated tissues might have a role in normal pregnancy progression as well as adverse obstetric outcomes such as preterm birth (PTB). The expression and activity of TLRs 1-9 in placentas collected following preterm vaginal delivery after infection-associated preterm labour (IA-PTL) at 25-36 weeks of gestation (preterm-svd, n = 10) were compared with those obtained after normal vaginal delivery at term (term-laboured; n = 17). Placental explants were cultured in the presence of agonists for TLR2, 3, 4, 5, 7, 8 and 9 and cytokine production after 24 h examined. Expression of TLR transcripts was determined using real time quantitative PCR. Reactivity to all agonists except CpG oligonucleotides was observed indicating that other than TLR9 all of the receptors studied yielded functional responses both term and preterm. Significantly less TNFα and IL-6, but not IL-10, were produced by preterm than term samples in response to all TLR agonists. Changes in TLR mRNA expression did not underlie functional differences in the preterm and term groups; nor does a pre-exposure/tolerance model mimic this finding. While glucocorticoids suppressed cytokine production in an in vitro model using term tissue the association between lower gestational age and decreased cytokine outputs suggests a temporally regulated response. Pro-inflammatory cytokine output in response to multiple TLR ligands was decreased in the preterm compared to the term placenta but gene expression for each TLR tended to be similar. Reduced cytokine production by the preterm placenta in response to stimulation of TLRs therefore must be regulated at the post-transcriptional level in a gestational age dependent manner. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Increased immunoglobulin A in alcoholic liver cirrhosis: exploring the response of B cells to Toll-like receptor 9 activation

    PubMed Central

    Massonnet, B; Delwail, A; Ayrault, J-M; Chagneau-Derrode, C; Lecron, J-C; Silvain, C

    2009-01-01

    Alcoholic liver cirrhosis (ALC) is characterized by increased circulating levels of immunoglobulins (Igs). ALC patients undergo bacterial translocation evidenced by the presence of bacterial DNA in peripheral blood. Bacterial pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide (LPS), peptidoglycan (PGN) and unmethylated cytosine-guanine dinucleotide (CpG) DNA are ligands of Toll-like receptor (TLR)-4, TLR-2 and TLR-9, respectively. Although TLR activation results generally in the secretion of proinflammatory cytokines, activation of B cells through TLR-7 or TLR-9 is involved in their maturation and Ig synthesis. The aim of the present study was to assess Ig synthesis by ALC B cells under PAMP activation in order to evaluate the possible involvement of TLR pathways in the increased Ig levels, and especially the hyper-IgA observed in ALC. CpG, in combination with interleukin (IL)-10 or IL-21, enhanced IgA, IgG and IgM synthesis by healthy donor (HD) PBMCs, but had only a weak effect on ALC PBMCs. Relative CpG-induced IgA production by purified ALC B cells was less important when compared to HD B cells, in accordance with the lower TLR-9 expression on ALC B cells compared to HD B cells, but the absolute IgA production by CpG-activated B cells was enhanced significantly for ALC when compared to HD, in agreement with their intrinsic ability to produce spontaneously more IgA than HD. LPS and PGN had no direct activity on B cells, whereas R848 also enhanced Ig synthesis, as reported recently. Taken together, these results suggest that TLR priming of B cells could account for the hyperimmunoglobulinaemia observed in ALC patients. PMID:19737238

  6. Increased immunoglobulin A in alcoholic liver cirrhosis: exploring the response of B cells to Toll-like receptor 9 activation.

    PubMed

    Massonnet, B; Delwail, A; Ayrault, J-M; Chagneau-Derrode, C; Lecron, J-C; Silvain, C

    2009-10-01

    Alcoholic liver cirrhosis (ALC) is characterized by increased circulating levels of immunoglobulins (Igs). ALC patients undergo bacterial translocation evidenced by the presence of bacterial DNA in peripheral blood. Bacterial pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide (LPS), peptidoglycan (PGN) and unmethylated cytosine-guanine dinucleotide (CpG) DNA are ligands of Toll-like receptor (TLR)-4, TLR-2 and TLR-9, respectively. Although TLR activation results generally in the secretion of proinflammatory cytokines, activation of B cells through TLR-7 or TLR-9 is involved in their maturation and Ig synthesis. The aim of the present study was to assess Ig synthesis by ALC B cells under PAMP activation in order to evaluate the possible involvement of TLR pathways in the increased Ig levels, and especially the hyper-IgA observed in ALC. CpG, in combination with interleukin (IL)-10 or IL-21, enhanced IgA, IgG and IgM synthesis by healthy donor (HD) PBMCs, but had only a weak effect on ALC PBMCs. Relative CpG-induced IgA production by purified ALC B cells was less important when compared to HD B cells, in accordance with the lower TLR-9 expression on ALC B cells compared to HD B cells, but the absolute IgA production by CpG-activated B cells was enhanced significantly for ALC when compared to HD, in agreement with their intrinsic ability to produce spontaneously more IgA than HD. LPS and PGN had no direct activity on B cells, whereas R848 also enhanced Ig synthesis, as reported recently. Taken together, these results suggest that TLR priming of B cells could account for the hyperimmunoglobulinaemia observed in ALC patients.

  7. Lipid IVa incompletely activates MyD88-independent Toll-like receptor 4 signaling in mouse macrophage cell lines.

    PubMed

    Ogura, Norihiko; Muroi, Masashi; Sugiura, Yuka; Tanamoto, Ken-ichi

    2013-04-01

    We investigated the difference in the effect of synthetic lipid A compounds on MyD88-dependent and -independent Toll-like receptor 4 (TLR4) signaling in mouse macrophage cells. At higher concentrations, Escherichia coli-type hexa-acylated lipid A 506, Salmonella-type hepta-acylated lipid A 516, the lipid A precursor lipid IVa and monophosphoryl lipid A induced similar levels of production of the MyD88-dependent cytokine IL-1β although their potencies varied, whereas the maximum production of the MyD88-independent cytokine RANTES induced by lipid IVa was less than 50% that of other lipid A compounds. A maximum level of NF-κB activation, which is involved in IL-1β gene transcription, was also induced to a similar level by these four lipid A compounds, while the maximum level of IFN-β promoter activity induced during MyD88-independent signaling was also less than 50% for lipid IVa stimulation compared with other lipid A compounds. Early IκBα phosphorylation activated by MyD88-dependent signaling was similarly induced by 506 and lipid IVa, whereas lipid IVa barely stimulated the phosphorylation of IRF3, a MyD88-independent transcription factor, although efficient phosphorylation was observed with 506 stimulation. These results indicate that lipid IVa has limited activity toward MyD88-independent signaling of TLR4, in macrophage cell lines, despite having efficient activity in the MyD88-dependent pathway. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. Toll-like receptor agonists in cancer therapy

    PubMed Central

    Adams, Sylvia

    2010-01-01

    Toll-like receptors (TLRs) are pattern-recognition receptors related to the Drosophila Toll protein. TLR activation alerts the immune system to microbial products and initiates innate and adaptive immune responses. The naturally powerful immunostimulatory property of TLR agonists can be exploited for active immunotherapy against cancer. Antitumor activity has been demonstrated in several cancers, and TLR agonists are now undergoing extensive clinical investigation. This review discusses recent advances in the field and highlights potential opportunities for the clinical development of TLR agonists as single agent immunomodulators, vaccine adjuvants and in combination with conventional cancer therapies. PMID:20563267

  9. CCL-34, a synthetic toll-like receptor 4 activator, modulates differentiation and maturation of myeloid dendritic cells

    PubMed Central

    Fu, Shu-Ling; Lin, Chun-Cheng; Hsu, Ming-Ling; Liu, Sheng-Hung; Huang, Yu-Chuen; Chen, Yu-Jen

    2016-01-01

    CCL-34, a synthetic α-galactosylceramide analog, has been reported as an activator of toll-like receptor 4 (TLR4) in macrophages. TLR4 is highly expressed in dendritic cell (DC) and several TLR4 agonists are known to trigger DC maturation. We herein evaluated the effect of CCL-34 on DC maturation. Human CD14+ monocyte-derived immature DC were treated with CCL-34, its inactive structural analog CCL-44, or LPS to assess the DC maturation. CCL-34 induced DC maturation according to their characteristically dendrite-forming morphology, CD83 expression and IL-12p70 production. The allostimulatory activity of DC on proliferation of naive CD4+CD45+RA+ T cells and their secretion of interferon-γ was increased by CCL-34. Phagocytosis, an important function of immature DC, was reduced after CCL-34 treatment. All these effects related to DC maturation were evidently induced by positive control LPS but not by CCL-44 treatment. TLR4 neutralization impaired human DC maturation triggered by CCL-34. The induction of IL-12, a hallmark of DC maturation, by CCL-34 and LPS was only evident in TLR4-competent C3H/HeN, but not in TLR4-defective C3H/HeJ mice. CCL-34 could further elicit the antigen presentation capability in mice inoculated with doxorubicin-treated colorectal cancer cells. In summary, CCL-34 triggers DC maturation via a TLR4-dependent manner, which supports its potential application as an immunostimulator. PMID:26883191

  10. Toll-like receptor 4 contributes to chronic itch, alloknesis and spinal astrocyte activation in male mice

    PubMed Central

    Liu, Tong; Han, Qingjian; Chen, Gang; Huang, Ya; Zhao, Lin-Xia; Berta, Temugin; Gao, Yong-Jing; Ji, Ru-Rong

    2016-01-01

    Increasing evidence suggests that Toll-like receptor 4 (TLR4) contributes importantly to spinal cord glial activation and chronic pain sensitization; however, its unique role in acute and chronic itch is unclear. In this study, we investigated the involvement of TLR4 in acute and chronic itch models in male mice using both transgenic and pharmacological approaches. Tlr4−/− mice exhibited normal acute itch induced by compound 48/80 and chloroquine, but these mice showed substantial reductions in scratching in chronic itch models of dry skin, induced by acetone and diethyether followed by water (AEW), contact dermatitis, and allergic contact dermatitis on the neck. Intrathecal (spinal) inhibition of TLR4 with lipopolysaccharide Rhodobacter sphaeroides (LPS-RS) did not affect acute itch but suppressed AEW-induced chronic itch. Compound 48/80 and AEW also produced robust alloknesis, a touch-elicited itch in wild-type mice, which was suppressed by intrathecal LPS-RS and Tlr4−/− deletion. AEW induced persistent upregulation of Tlr4 mRNA and increased TLR4 expression in GFAP-expressing astrocytes in spinal cord dorsal horn. AEW also induced TLR4-dependent astrogliosis (GFAP upregulation) in spinal cord. Intrathecal injection of astroglial inhibitor L-α-aminoadipate reduced AEW-induced chronic itch and alloknesis without affecting acute itch. Spinal TLR4 was also necessary for AEW-induced chronic itch in the cheek model. Interestingly, scratching plays an essential role in spinal astrogliosis, since AEW-induced astrogliosis was abrogated by putting Elizabethan Collars on the neck to prevent scratching the itchy skin. Our findings suggest that spinal TLR4 signaling is important for spinal astrocyte activation and astrogliosis that may underlie alloknesis and chronic itch. PMID:26645545

  11. Toll-like receptor 4 contributes to chronic itch, alloknesis, and spinal astrocyte activation in male mice.

    PubMed

    Liu, Tong; Han, Qingjian; Chen, Gang; Huang, Ya; Zhao, Lin-Xia; Berta, Temugin; Gao, Yong-Jing; Ji, Ru-Rong

    2016-04-01

    Increasing evidence suggests that Toll-like receptor 4 (TLR4) contributes importantly to spinal cord glial activation and chronic pain sensitization; however, its unique role in acute and chronic itch is unclear. In this study, we investigated the involvement of TLR4 in acute and chronic itch models in male mice using both transgenic and pharmacological approaches. Tlr4 mice exhibited normal acute itch induced by compound 48/80 and chloroquine, but these mice showed substantial reductions in scratching in chronic itch models of dry skin, induced by acetone and diethylether followed by water (AEW), contact dermatitis, and allergic contact dermatitis on the neck. Intrathecal (spinal) inhibition of TLR4 with lipopolysaccharide Rhodobacter sphaeroides did not affect acute itch but suppressed AEW-induced chronic itch. Compound 48/80 and AEW also produced robust alloknesis, a touch-elicited itch in wild-type mice, which was suppressed by intrathecal lipopolysaccharide R sphaeroides and Tlr4 deletion. Acetone and diethylether followed by water induced persistent upregulation of Tlr4 mRNA and increased TLR4 expression in GFAP-expressing astrocytes in spinal cord dorsal horn. Acetone and diethylether followed by water also induced TLR4-dependent astrogliosis (GFAP upregulation) in spinal cord. Intrathecal injection of astroglial inhibitor L-α-aminoadipate reduced AEW-induced chronic itch and alloknesis without affecting acute itch. Spinal TLR4 was also necessary for AEW-induced chronic itch in the cheek model. Interestingly, scratching plays an essential role in spinal astrogliosis because AEW-induced astrogliosis was abrogated by putting Elizabethan collars on the neck to prevent scratching the itchy skin. Our findings suggest that spinal TLR4 signaling is important for spinal astrocyte activation and astrogliosis that may underlie alloknesis and chronic itch.

  12. Toll-like receptor 2 and 4 induced interleukin-19 dampens immune reactions and associates inversely with spondyloarthritis disease activity.

    PubMed

    Kragstrup, T W; Andersen, T; Holm, C; Schiøttz-Christensen, B; Jurik, A G; Hvid, M; Deleuran, B

    2015-05-01

    Spondyloarthritis (SpA) is a group of immune mediated inflammatory diseases affecting joints, gut, skin and entheses. The inflammatory process involves activation of Toll-like receptor (TLR)-2 and TLR-4 and production of cytokines and chemokines such as monocyte chemoattractant protein 1 (CCL2/MCP-1). This proinflammatory chemokine recruits monocytes to sites of inflammation and is central in the development of several immune-mediated inflammatory diseases. Interleukin (IL)-19 is a member of the IL-10 family of cytokines. IL-19-deficient mice are more susceptible to innate-mediated colitis and develop more severe inflammation in response to injury. In this work, we studied inducers of IL-19 production and effect of IL-19 on the production of CCL2/MCP-1 and proinflammatory cytokines in peripheral blood mononuclear cells (PBMCs) from healthy controls (HCs) and in PBMCs and synovial fluid mononuclear cells (SFMCs) from SpA patients. Further, we measured IL-19 in plasma from HCs and in plasma and synovial fluid from SpA patients. Constitutive IL-19 expression was present in both PBMCs and SFMCs and the secretion of IL-19 was increased by TLR-2 and TLR-4 ligands. Neutralizing IL-19 in HC PBMCs and SpA SFMCs resulted in increased production of CCL-2/MCP-1. IL-19 concentrations were decreased in synovial fluid compared with plasma and associated inversely with disease activity in SpA. SpA SFMCs produced less IL-19 in response to LPS compared with HC PBMCs. These findings indicate that IL-19 production is diminished in SpA. Taken together, impaired IL-19 control of the innate immune system might be involved in the pathogenesis of SpA.

  13. Impaired toll like receptor-7 and 9 induced immune activation in chronic spinal cord injured patients contributes to immune dysfunction

    PubMed Central

    Gungor, Bilgi; Kahraman, Tamer; Gursel, Mayda; Yilmaz, Bilge

    2017-01-01

    Reduced immune activation or immunosuppression is seen in patients withneurological diseases. Urinary and respiratory infections mainly manifested as septicemia and pneumonia are the most frequent complications following spinal cord injuries and they account for the majority of deaths. The underlying reason of these losses is believed to arise due to impaired immune responses to pathogens. Here, we hypothesized that susceptibility to infections of chronic spinal cord injured (SCI) patients might be due to impairment in recognition of pathogen associated molecular patterns and subsequently declining innate and adaptive immune responses that lead to immune dysfunction. We tested our hypothesis on healthy and chronic SCI patients with a level of injury above T-6. Donor PBMCs were isolated and stimulated with different toll like receptor ligands and T-cell inducers aiming to investigate whether chronic SCI patients display differential immune activation to multiple innate and adaptive immune cell stimulants. We demonstrate that SCI patients' B-cell and plasmacytoid dendritic cells retain their functionality in response to TLR7 and TLR9 ligand stimulation as they secreted similar levels of IL6 and IFNα. The immune dysfunction is not probably due to impaired T-cell function, since neither CD4+ T-cell dependent IFNγ producing cell number nor IL10 producing regulatory T-cells resulted different outcomes in response to PMA-Ionomycin and PHA-LPS stimulation, respectively. We showed that TLR7 dependent IFNγ and IP10 levels and TLR9 mediated APC function reduced substantially in SCI patients compared to healthy subjects. More importantly, IP10 producing monocytes were significantly fewer compared to healthy subjects in response to TLR7 and TLR9 stimulation of SCI PBMCs. When taken together this work implicated that these defects could contribute to persistent complications due to increased susceptibility to infections of chronic SCI patients. PMID:28170444

  14. Toll-like receptor 2 and 4 induced interleukin-19 dampens immune reactions and associates inversely with spondyloarthritis disease activity

    PubMed Central

    Kragstrup, T W; Andersen, T; Holm, C; Schiøttz-Christensen, B; Jurik, A G; Hvid, M; Deleuran, B

    2015-01-01

    Spondyloarthritis (SpA) is a group of immune mediated inflammatory diseases affecting joints, gut, skin and entheses. The inflammatory process involves activation of Toll-like receptor (TLR)-2 and TLR-4 and production of cytokines and chemokines such as monocyte chemoattractant protein 1 (CCL2/MCP-1). This proinflammatory chemokine recruits monocytes to sites of inflammation and is central in the development of several immune-mediated inflammatory diseases. Interleukin (IL)-19 is a member of the IL-10 family of cytokines. IL-19-deficient mice are more susceptible to innate-mediated colitis and develop more severe inflammation in response to injury. In this work, we studied inducers of IL-19 production and effect of IL-19 on the production of CCL2/MCP-1 and proinflammatory cytokines in peripheral blood mononuclear cells (PBMCs) from healthy controls (HCs) and in PBMCs and synovial fluid mononuclear cells (SFMCs) from SpA patients. Further, we measured IL-19 in plasma from HCs and in plasma and synovial fluid from SpA patients. Constitutive IL-19 expression was present in both PBMCs and SFMCs and the secretion of IL-19 was increased by TLR-2 and TLR-4 ligands. Neutralizing IL-19 in HC PBMCs and SpA SFMCs resulted in increased production of CCL-2/MCP-1. IL-19 concentrations were decreased in synovial fluid compared with plasma and associated inversely with disease activity in SpA. SpA SFMCs produced less IL-19 in response to LPS compared with HC PBMCs. These findings indicate that IL-19 production is diminished in SpA. Taken together, impaired IL-19 control of the innate immune system might be involved in the pathogenesis of SpA. PMID:25639337

  15. Serum retinol-binding protein-induced endothelial inflammation is mediated through the activation of toll-like receptor 4

    PubMed Central

    Du, Mei; Martin, Ashley; Hays, Franklin; Johnson, Jennifer; Farjo, Rafal A.

    2017-01-01

    Purpose Elevation of serum retinol-binding protein 4 (RBP4) induces inflammation in primary human retinal microvascular endothelial cells (HRECs) via a retinol-independent mechanism; thus, it may play a causative role in the development and progression of vascular lesions in diabetic retinopathy (DR). Since HRECs do not express the classical RBP4 receptor, stimulated by retinoic acid gene 6 (STRA6), this study focuses on identifying the endothelial cell receptor and signaling that mediate RBP4-induced inflammation. Methods HRECs were treated with a toll-like receptor 4 (TLR4) small molecule inhibitor (Cli95, also known as TAK-242), TLR4 neutralizing antibody, or mitogen-activated protein kinase (MAPK) inhibitors before treatment with purified recombinant RBP4. The HREC inflammatory response was quantified by in vitro leukostasis assays, western blotting, and enzyme-linked immunosorbent assay (ELISA). To understand how the serum binding partner for RBP4, transthyretin (TTR), may affect RBP4 activity, we also measured RBP4 and TTR levels in serum and retinal lysates from RBP4-Tg and wild-type mice. Results TLR4 inhibition significantly reduced RBP4-induced expression of pro-inflammatory proteins and in vitro leukostasis. RBP4 treatment significantly increased phosphoactivation of p38 and c-Jun N-terminal protein kinase (JNK). The p38 inhibitor (SB203580) attenuated RBP4-stimulated vascular cell adhesion molecule 1 (VCAM-1), intracellular adhesion molecule 1 (ICAM-1), monocyte chemoattractant protein (MCP-1), and interleukin 6 (IL-6) production, while the JNK inhibitor (SP600125) reduced RBP4-stimulated sICAM-1, endothelial cell selectin (E-selectin), and MCP-1 production. The MAPK inhibitors only showed partial (50–70%) suppression of the RBP4-stimulated proinflammatory response. Moreover, TLR4 inhibition did not decrease RBP4-induced MAPK phosphoactivation, suggesting that RBP4-mediated MAPK activation is TLR4 independent and occurs through a secondary unknown

  16. Definitive activation of endogenous antitumor immunity by repetitive cycles of cyclophosphamide with interspersed Toll-like receptor agonists

    PubMed Central

    Manrique, Soraya Zorro; Dominguez, Ana L.; Mirza, Noweeda; Spencer, Christopher D.; Bradley, Judy M.; Finke, James H.; Lee, James J.; Pease, Larry R.; Gendler, Sandra J.; Cohen, Peter A.

    2016-01-01

    Many cancers both evoke and subvert endogenous anti-tumor immunity. However, immunosuppression can be therapeutically reversed in subsets of cancer patients by treatments such as checkpoint inhibitors or Toll-like receptor agonists (TLRa). Moreover, chemotherapy can leukodeplete immunosuppressive host elements, including myeloid-derived suppressor cells (MDSCs) and regulatory T-cells (Tregs). We hypothesized that chemotherapy-induced leukodepletion could be immunopotentiated by co-administering TLRa to emulate a life-threatening infection. Combining CpG (ODN 1826) or CpG+poly(I:C) with cyclophosphamide (CY) resulted in uniquely well-tolerated therapeutic synergy, permanently eradicating advanced mouse tumors including 4T1 (breast), Panc02 (pancreas) and CT26 (colorectal). Definitive treatment required endogenous CD8+ and CD4+ IFNγ-producing T-cells. Tumor-specific IFNγ-producing T-cells persisted during CY-induced leukopenia, whereas Tregs were progressively eliminated, especially intratumorally. Spleen-associated MDSCs were cyclically depleted by CY+TLRa treatment, with residual monocytic MDSCs requiring only continued exposure to CpG or CpG+IFNγ to effectively attack malignant cells while sparing non-transformed cells. Such tumor destruction occurred despite upregulated tumor expression of Programmed Death Ligand-1, but could be blocked by clodronate-loaded liposomes to deplete phagocytic cells or by nitric oxide synthase inhibitors. CY+TLRa also induced tumoricidal myeloid cells in naive mice, indicating that CY+TLRa's immunomodulatory impacts occurred in the complete absence of tumor-bearing, and that tumor-induced MDSCs were not an essential source of tumoricidal myeloid precursors. Repetitive CY+TLRa can therefore modulate endogenous immunity to eradicate advanced tumors without vaccinations or adoptive T-cell therapy. Human blood monocytes could be rendered similarly tumoricidal during in vitro activation with TLRa+IFNγ, underscoring the potential

  17. Messenger RNA encoding constitutively active Toll-like receptor 4 enhances effector functions of human T cells.

    PubMed

    Pato, A; Eisenberg, G; Machlenkin, A; Margalit, A; Cafri, G; Frankenburg, S; Merims, S; Peretz, T; Lotem, M; Gross, G

    2015-11-01

    Adoptive T cell therapy of cancer employs a large number of ex-vivo-propagated T cells which recognize their targets either by virtue of their endogenous T cell receptor (TCR) or via genetic reprogramming. However, both cell-extrinsic and intrinsic mechanisms often diminish the in-vivo potency of these therapeutic T cells, limiting their clinical efficacy and broader use. Direct activation of human T cells by Toll-like receptor (TLR) ligands induces T cell survival and proliferation, boosts the production of proinflammatory cytokines and augments resistance to regulatory T cell (Treg) suppression. Removal of the TLR ligand-binding region results in constitutive signalling triggered by the remaining cytosolic Toll/interleukin-1 receptor (TIR) domain. The use of such TIR domains therefore offers an ideal means for equipping anti-tumour T cells with the arsenal of functional attributes required for improving current clinical protocols. Here we show that constitutively active (ca)TLR-4 can be expressed efficiently in human T cells using mRNA electroporation. The mere expression of caTLR-4 mRNA in polyclonal CD8 and CD4 T cells induced the production of interferon (IFN)-γ, triggered the surface expression of CD25, CD69 and 4-1BB and up-regulated a panel of cytokines and chemokines. In tumour-infiltrating lymphocytes prepared from melanoma patients, caTLR-4 induced robust IFN-γ secretion in all samples tested. Furthermore, caTLR-4 enhanced the anti-melanoma cytolytic activity of tumour-infiltrating lymphocytes and augmented the secretion of IFN-γ, tumour necrosis factor (TNF)-α and granulocyte-macrophage colony-stimulating factor (GM-CSF) for at least 4 days post-transfection. Our results demonstrate that caTLR-4 is capable of exerting multiple T cell-enhancing effects and can potentially be used as a genetic adjuvant in adoptive cell therapy. © 2015 British Society for Immunology.

  18. Roles of Toll-like receptors in innate immune responses.

    PubMed

    Takeda, K; Akira, S

    2001-09-01

    Innate immunity recognizes invading micro-organisms and triggers a host defence response. However, the molecular mechanism for innate immune recognition was unclear. Recently, a family of Toll-like receptors (TLRs) was identified, and crucial roles for these receptors in the recognition of microbial components have been elucidated. The TLR family consists of 10 members and will be expanding. Each TLR distinguishes between specific patterns of microbial components to provoke innate immune responses. The activation of innate immunity then leads to the development of antigen-specific adaptive immunity. Thus, TLRs control both innate and adaptive immune responses.

  19. Toll-like receptor 4 signalling is specifically TGF-beta-activated kinase 1 independent in synovial fibroblasts.

    PubMed

    Geurts, Jeroen; van den Brand, Ben T; Wolf, Alexander; Abdollahi-Roodsaz, Shahla; Arntz, Onno J; Kracht, Michael; van den Berg, Wim B; van de Loo, Fons A J

    2011-07-01

    Activated synovial fibroblasts are key players in the pathogenesis of RA by driving inflammation and joint destruction. Numerous molecules including cytokines and Toll-like receptor (TLR) ligands induce pro-inflammatory signalling and gene expression through a hierarchical network of kinases. Upstream mitogen-activated protein kinase kinase kinases (MAP3Ks) represent an attractive target for RA treatment. In this study, we sought to determine the role of the MAP3K TGF-β-activated kinase 1 (TAK1) in cytokine and TLR-mediated signalling. TAK1 activity was inhibited using either a small molecule inhibitor or lentivirally overexpressed kinase-inactive TAK1-K63W mutant in murine embryonic and human dermal and synovial fibroblasts. Fibroblasts were stimulated with IL-1, TNF, TLR2 or TLR4 agonists and responses were evaluated using transcriptional reporters, western blotting and analysis of gene expression of collagenases (MMP3 and MMP13), cytokines (IL-1β and IL-6) and chemokines (IL-8 and MCP-1). TAK1 inhibition abrogated cytokine- and TLR-induced nuclear factor-κB (NF-κB) and Saa3-promoter reporter activation in murine and human dermal fibroblasts. In synovial fibroblasts, TAK1 regulated IL-1 and TNF-mediated NF-κB, but not Saa3-promoter reporter activation. Inducible mRNA expression of cytokines, collagenases and chemokines, except MCP-1, was TAK1 dependent for IL-1, TNF and TLR2 signalling. Unexpectedly, TLR4-mediated NF-κB reporter activation and inducible mRNA expression was fully TAK1 independent. Accordingly, NF-κB p65 and p38 MAPK phosphorylation was unaffected by TAK1 inhibition. In general, TAK1 crucially regulates IL-1 and TNF signalling in fibroblasts. Interestingly, TLR4 signalling is specifically TAK1 independent in synovial fibroblasts. Consequently, therapeutic TAK1 inhibition in arthropathies may not dampen the damage-associated molecular pattern-mediated TLR4 activation of synovial fibroblasts.

  20. Toll/Interleukin-1 Receptor Domain Dimers as the Platform for Activation and Enhanced Inhibition of Toll-like Receptor Signaling*

    PubMed Central

    Fekonja, Ota; Benčina, Mojca; Jerala, Roman

    2012-01-01

    TIR (Toll/IL-1 receptor) domains mediate interactions between TLR (Toll-like) or IL-1 family receptors and signaling adapters. While homotypic TIR domain interactions mediate receptor activation they are also usurped by microbial TIR domain containing proteins for immunosuppression. Here we show the role of a dimerized TIR domain platform for the suppression as well as for the activation of MyD88 signaling pathway. Coiled-coil dimerization domain, present in many bacterial TCPs, potently augments suppression of TLR/IL-1R signaling. The addition of a strong coiled-coil dimerization domain conferred the superior inhibition against the wide spectrum of TLRs and prevented the constitutive activation by a dimeric TIR platform. We propose a molecular model of MyD88-mediated signaling based on the dimerization of TIR domains as the limiting step. PMID:22829600

  1. Clinical Effects of a Topically Applied Toll-like Receptor 9 Agonist in Active Moderate-to-Severe Ulcerative Colitis

    PubMed Central

    Atreya, Raja; Bloom, Stuart; Scaldaferri, Franco; Gerardi, Viviana; Admyre, Charlotte; Karlsson, Åsa; Knittel, Thomas; Kowalski, Jan; Lukas, Milan; Löfberg, Robert; Nancey, Stephane; Petryka, Robert; Rydzewska, Grazyna; Schnabel, Robert; Seidler, Ursula; Neurath, Markus F.

    2016-01-01

    Background and Aims: Toll-like receptors [TLRs] are potential drug targets for immunomodulation. We determined the safety and efficacy of the TLR-9 agonist DNA-based immunomodulatory sequence 0150 [DIMS0150] in ulcerative colitis [UC] patients refractory to standard therapy. Methods: In this randomized, double-blind, placebo-controlled trial, 131 patients with moderate-to-severe active UC were randomized to receive two single doses of the oligonucleotide DIMS0150 [30 mg] or placebo administered topically during lower GI endoscopy at baseline and Week 4. The primary endpoint was clinical remission, defined as Clinical Activity Index [CAI] ≤4, at Week 12. Secondary endpoints included mucosal healing and symptomatic remission of key patient-reported outcomes [absence of blood in stool and weekly stool frequency <35]. Results: There was no statistical significant difference between the groups in the induction of clinical remission at Week 12, with 44.4% in the DIMS0150 group vs. 46.5% in the placebo group. However, the proportion of patients who achieved symptomatic remission was 32.1% in the DIMS0150 group vs. 14.0% in the placebo group at Week 4 [p = 0.020], and 44.4% vs. 27.9% at Week 8 [p = 0.061]. More patients on DIMS0150 compared with those on placebo had mucosal healing [34.6% vs. 18.6%; p = 0.09] and histological improvement regarding the Geboes score [30.9% vs. 9.3%; p = 0.0073] at Week 4. Significantly more patients on DIMS0150 were in clinical remission with mucosal healing at Week 4: 21% vs. 4.7% in the placebo group [p = 0.02]. DIMS0150 was well tolerated, and no safety signals compared with placebo were evident. Conclusions: Therapy with the topically applied TLR-9 agonist DIMS0150 is a promising and well-tolerated novel therapeutic option for treatment-refractory, chronic active UC patients, warranting further clinical trials. PMID:27208386

  2. Increased Toll-Like Receptor (TLR) Activation and TLR Ligands in Recently Diagnosed Type 2 Diabetic Subjects

    PubMed Central

    Dasu, Mohan R.; Devaraj, Sridevi; Park, Samuel; Jialal, Ishwarlal

    2010-01-01

    OBJECTIVE Individuals with type 2 diabetes have a myriad of metabolic aberrations including increased inflammation, increasing their cardiovascular risk. Toll-like receptors (TLRs) and their ligands play a key role in insulin resistance and atherosclerosis. However, there is a paucity of data examining the expression and activity of TLRs in type 2 diabetes. Thus, in the present study, we examined TLR2 and TLR4 mRNA and protein expression, their ligands, and signaling in monocytes of recently diagnosed type 2 diabetic patients. RESEARCH DESIGN AND METHODS TLR mRNA, protein expression, TLR ligands, and TLR signaling were measured in freshly isolated monocytes from healthy human control subjects (n = 23) and type 2 diabetic subjects (n = 23) using real-time RT-PCR, Western blot, and flow cytometric assays. RESULTS Type 2 diabetic subjects had significantly increased TLR2, TLR4 mRNA, and protein in monocytes compared with control subjects (P < 0.05). Increased TLR2 and TLR4 expression correlated with BMI, homeostasis model assessment–insulin resistance (HOMA-IR), glucose, A1C, Nε-(carboxymethyl) lysine (CML), and free fatty acid (FFA). Ligands of TLR2 and TLR4, namely, HSP60, HSP70, HMGB1, endotoxin, and hyaluronan levels, were elevated in type 2 diabetic subjects and positively correlated with TLR2 and TLR4. Type 2 diabetic subjects showed increased MyD88, phosphorylated IRAK-1, Trif, TICAM-1, IRF-3, and NF-κB p65 expression in monocytes compared with control subjects. Furthermore, TLR-MyD88-NF-κB signaling resulted in elevated levels of cytokines (P < 0.05), but increased interleukin (IL)-1β, interferon (IFN)-γ, and endotoxin were not significant when adjusted for BMI. CONCLUSIONS In this comprehensive study, we make the novel observation that TLR2 and TLR4 expression and their ligands, signaling, and functional activation are increased in recently diagnosed type 2 diabetes and contribute to the proinflammatory state. PMID:20067962

  3. Toll-like receptor sensing of human herpesvirus infection

    PubMed Central

    West, John A.; Gregory, Sean M.; Damania, Blossom

    2012-01-01

    Toll-like receptors (TLRs) are evolutionarily conserved pathogen sensors that constitute the first line of defense in the human immune system. Herpesviruses are prevalent throughout the world and cause significant disease in the human population. Sensing of herpesviruses via TLRs has only been documented in the last 10 years and our understanding of the relationship between these sentinels of the immune system and herpesvirus infection has already provided great insight into how the host cell responds to viral infection. This report will summarize the activation and modulation of TLR signaling in the context of human herpesvirus infections. PMID:23061052

  4. Toll-like receptors are key players in neurodegeneration.

    PubMed

    Arroyo, Daniela S; Soria, Javier A; Gaviglio, Emilia A; Rodriguez-Galan, Maria C; Iribarren, Pablo

    2011-10-01

    The activation of innate immune response is initiated by engagement of pattern-recognition receptors (PPRs), such as Toll-like receptors (TLRs). These receptors are expressed in peripheral leukocytes and in many cell types in the central nervous system (CNS). The expression of TLRs in CNS was mainly studied in astrocytes and microglial cells. However, new evidence indicates that these receptors may play an important role in neuronal homeostasis. The expression of TLRs in the CNS is variable and can be modulated by multiple factors, including pro-inflammatory molecules, which are elevated in neurodegenerative diseases and can increase the expression of TLRs in CNS cells. Moreover, activation of TLRs induces the release of pro-inflammatory cytokines. Therefore, TLRs have been shown to play a role in several aspects of neurodegenerative diseases. Here we will discuss results reported in the recent literature concerning the participation of TLRs in neurodegenerative diseases.

  5. Regulation of peroxisome proliferator-activated receptors (PPAR) α and -γ of rat brain astrocytes in the course of activation by toll-like receptor agonists.

    PubMed

    Chistyakov, Dmitry V; Aleshin, Stepan E; Astakhova, Alina A; Sergeeva, Marina G; Reiser, Georg

    2015-07-01

    Peroxisome proliferator-activated receptors (PPAR)-α and -γ in astrocytes play important roles in inflammatory brain pathologies. Understanding the regulation of both activity and expression levels of PPARs is an important neuroscience issue. Toll-like receptor (TLR) agonists are inflammatory stimuli that could modulate PPAR, but the mechanisms of their control in astrocytes are poorly understood. In the present study, we report that lipopolysaccharide, peptidoglycan, and flagellin, which are agonists of TLR4, TLR1/2, and TLR5, respectively, exert time- and nuclear factor kappa-light-chain-enhancer of activated B cells-dependent suppression of mRNA, protein and activity of PPARα and PPARγ. In naïve astrocytes, PPARα and PPARγ mRNA have short turnover time (half-life about 30 min for PPARα, 75 min for PPARγ) with a nearly two-fold stabilization after TLR-activation. p38 inhibition abolished TLR-induced stabilization. The levels of PPARα and PPARγ mRNA, and protein and DNA-binding activity could be modified using c-Jun N-terminal Kinase and p38 inhibitors. In addition, the expression levels of both PPARα and PPARγ isotypes were induced after inhibition of protein synthesis. This induction signifies participation of additional regulatory proteins with short life-time. They are p38-sensitive for PPARα and c-Jun N-terminal Kinase-sensitive for PPARγ. Thus, PPARα and PPARγ are regulated in astrocytes on mRNA and protein levels, mRNA stability, and DNA-binding activity during TLR-mediated responses. Astrocytes have the triad of PPARα, PPARβ/δ, and PPARγ in regulation of proinflammatory responses. Activation of Toll-like receptors (TLR) leads to PPARβ/δ overexpression, PPARα and PPARγ suppression via TLR/NF-κB pathway on mRNA, protein and activity levels. Mitogen-activated protein kinases (MAPK) p38 and JNK are involved in regulation of PPAR expression. p38 MAPK plays a special role in stabilization of PPAR mRNA. © 2015 International Society

  6. PGE2 released by primary sensory neurons modulates Toll-like receptor 4 activities through an EP4 receptor-dependent process.

    PubMed

    Tse, Kai-Hei; Chow, Kevin B S; Wise, Helen

    2016-04-15

    Exogenous prostaglandin E2 (PGE2) displays mixed regulatory properties with regard to inflammatory gene expression in dorsal root ganglion (DRG) cells. We show here that endogenously-produced nanomolar concentrations of PGE2, such as that generated in response to Toll-like receptor 4 (TLR4) stimulation, inhibits both cyclooxygenase-2 (COX-2) and tumour necrosis factor alpha (TNFα) mRNA expression in DRG cells in an EP4 receptor-dependent manner. DRG neurons appear to be the major source of PGE2 in the DRG and likely serve as both an autocrine and paracrine system for limiting over-activation of both DRG neurons and glial cells in response to TLR4 stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A Temporal Gate for Viral Enhancers to Co-opt Toll-Like-Receptor Transcriptional Activation Pathways upon Acute Infection

    PubMed Central

    Kropp, Kai A.; Hsieh, Wei Yuan; Isern, Elena; Forster, Thorsten; Krause, Eva; Brune, Wolfram; Angulo, Ana; Ghazal, Peter

    2015-01-01

    Viral engagement with macrophages activates Toll-Like-Receptors (TLRs) and viruses must contend with the ensuing inflammatory responses to successfully complete their replication cycle. To date, known counter-strategies involve the use of viral-encoded proteins that often employ mimicry mechanisms to block or redirect the host response to benefit the virus. Whether viral regulatory DNA sequences provide an opportunistic strategy by which viral enhancer elements functionally mimic innate immune enhancers is unknown. Here we find that host innate immune genes and the prototypical viral enhancer of cytomegalovirus (CMV) have comparable expression kinetics, and positively respond to common TLR agonists. In macrophages but not fibroblasts we show that activation of NFκB at immediate-early times of infection is independent of virion-associated protein, M45. We find upon virus infection or transfection of viral genomic DNA the TLR-agonist treatment results in significant enhancement of the virus transcription-replication cycle. In macrophage time-course infection experiments we demonstrate that TLR-agonist stimulation of the viral enhancer and replication cycle is strictly delimited by a temporal gate with a determined half-maximal time for enhancer-activation of 6 h; after which TLR-activation blocks the viral transcription-replication cycle. By performing a systematic siRNA screen of 149 innate immune regulatory factors we identify not only anticipated anti-viral and pro-viral contributions but also new factors involved in the CMV transcription-replication cycle. We identify a central convergent NFκB-SP1-RXR-IRF axis downstream of TLR-signalling. Activation of the RXR component potentiated direct and indirect TLR-induced activation of CMV transcription-replication cycle; whereas chromatin binding experiments using wild-type and enhancer-deletion virus revealed IRF3 and 5 as new pro-viral host transcription factor interactions with the CMV enhancer in macrophages. In a

  8. A temporal gate for viral enhancers to co-opt Toll-like-receptor transcriptional activation pathways upon acute infection.

    PubMed

    Kropp, Kai A; Hsieh, Wei Yuan; Isern, Elena; Forster, Thorsten; Krause, Eva; Brune, Wolfram; Angulo, Ana; Ghazal, Peter

    2015-04-01

    Viral engagement with macrophages activates Toll-Like-Receptors (TLRs) and viruses must contend with the ensuing inflammatory responses to successfully complete their replication cycle. To date, known counter-strategies involve the use of viral-encoded proteins that often employ mimicry mechanisms to block or redirect the host response to benefit the virus. Whether viral regulatory DNA sequences provide an opportunistic strategy by which viral enhancer elements functionally mimic innate immune enhancers is unknown. Here we find that host innate immune genes and the prototypical viral enhancer of cytomegalovirus (CMV) have comparable expression kinetics, and positively respond to common TLR agonists. In macrophages but not fibroblasts we show that activation of NFκB at immediate-early times of infection is independent of virion-associated protein, M45. We find upon virus infection or transfection of viral genomic DNA the TLR-agonist treatment results in significant enhancement of the virus transcription-replication cycle. In macrophage time-course infection experiments we demonstrate that TLR-agonist stimulation of the viral enhancer and replication cycle is strictly delimited by a temporal gate with a determined half-maximal time for enhancer-activation of 6 h; after which TLR-activation blocks the viral transcription-replication cycle. By performing a systematic siRNA screen of 149 innate immune regulatory factors we identify not only anticipated anti-viral and pro-viral contributions but also new factors involved in the CMV transcription-replication cycle. We identify a central convergent NFκB-SP1-RXR-IRF axis downstream of TLR-signalling. Activation of the RXR component potentiated direct and indirect TLR-induced activation of CMV transcription-replication cycle; whereas chromatin binding experiments using wild-type and enhancer-deletion virus revealed IRF3 and 5 as new pro-viral host transcription factor interactions with the CMV enhancer in macrophages. In a

  9. Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause Toll-like receptor 4 activation and enhanced pain

    PubMed Central

    Lewis, Susannah S.; Hutchinson, Mark R.; Zhang, Yingning; Hund, Dana K.; Maier, Steven F.; Rice, Kenner C.; Watkins, Linda R.

    2013-01-01

    We have previously observed that the non-opioid morphine metabolite, morphine-3-glucuronide, enhances pain via a toll-like receptor 4 (TLR4) dependent mechanism. The present studies were undertaken to determine whether TLR4-dependent pain enhancement generalizes to other classes of glucuronide metabolites. In silico modeling predicted that glucuronic acid alone and ethyl glucuronide, a minor but long-lasting ethanol metabolite, would dock to the same MD-2 portion of the TLR4 receptor complex previously characterized as the docking site for morphine-3-glucuronide. Glucuronic acid, ethyl glucuronide and ethanol all caused an increase in TLR4-dependent reporter protein expression in a cell line transfected with TLR4 and associated co-signaling molecules. Glucuronic acid-, ethyl glucuronide-, and ethanol-induced increases in TLR4 signaling were blocked by the TLR4 antagonists LPS-RS and (+)-naloxone. Glucuronic acid and ethyl glucuronide both caused allodynia following intrathecal injection in rats, which was blocked by intrathecal co-administration of the TLR4 antagonist LPS-RS. The finding that ethyl glucuronide can cause TLR4-dependent pain could have implications for human conditions such as hangover headache and alcohol withdrawal hyperalgesia, as well as suggesting that other classes of glucuronide metabolites could have similar effects. PMID:23348028

  10. Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause toll-like receptor 4 activation and enhanced pain.

    PubMed

    Lewis, Susannah S; Hutchinson, Mark R; Zhang, Yingning; Hund, Dana K; Maier, Steven F; Rice, Kenner C; Watkins, Linda R

    2013-05-01

    We have previously observed that the non-opioid morphine metabolite, morphine-3-glucuronide, enhances pain via a toll-like receptor 4 (TLR4) dependent mechanism. The present studies were undertaken to determine whether TLR4-dependent pain enhancement generalizes to other classes of glucuronide metabolites. In silico modeling predicted that glucuronic acid alone and ethyl glucuronide, a minor but long-lasting ethanol metabolite, would dock to the same MD-2 portion of the TLR4 receptor complex previously characterized as the docking site for morphine-3-glucuronide. Glucuronic acid, ethyl glucuronide and ethanol all caused an increase in TLR4-dependent reporter protein expression in a cell line transfected with TLR4 and associated co-signaling molecules. Glucuronic acid-, ethyl glucuronide-, and ethanol-induced increases in TLR4 signaling were blocked by the TLR4 antagonists LPS-RS and (+)-naloxone. Glucuronic acid and ethyl glucuronide both caused allodynia following intrathecal injection in rats, which was blocked by intrathecal co-administration of the TLR4 antagonist LPS-RS. The finding that ethyl glucuronide can cause TLR4-dependent pain could have implications for human conditions such as hangover headache and alcohol withdrawal hyperalgesia, as well as suggesting that other classes of glucuronide metabolites could have similar effects. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling.

    PubMed

    Carty, Michael; Goodbody, Rory; Schröder, Martina; Stack, Julianne; Moynagh, Paul N; Bowie, Andrew G

    2006-10-01

    Toll-like receptors discriminate between different pathogen-associated molecules and activate signaling cascades that lead to immune responses. The specificity of Toll-like receptor signaling occurs by means of adaptor proteins containing Toll-interleukin 1 receptor (TIR) domains. Activating functions have been assigned to four TIR adaptors: MyD88, Mal, TRIF and TRAM. Here we characterize a fifth TIR adaptor, SARM, as a negative regulator of TRIF-dependent Toll-like receptor signaling. Expression of SARM blocked gene induction 'downstream' of TRIF but not of MyD88. SARM associated with TRIF, and 'knockdown' of endogenous SARM expression by interfering RNA led to enhanced TRIF-dependent cytokine and chemokine induction. Thus, the fifth mammalian TIR adaptor SARM is a negative regulator of Toll-like receptor signaling.

  12. Activation of μ-opioid receptor and Toll-like receptor 4 by plasma from morphine-treated mice.

    PubMed

    Xie, Nan; Gomes, Fabio P; Deora, Vandana; Gregory, Kye; Vithanage, Tharindu; Nassar, Zeyad D; Cabot, Peter J; Sturgess, David; Shaw, Paul N; Parat, Marie-Odile

    2017-03-01

    In this study, we quantified the ability of opioids present in biological samples to activate the μ-opioid receptor and TLR4 using cell-based assays. Each assay was standardised, in the presence of plasma, using morphine, its μ receptor-active metabolite morphine-6 glucuronide (M6G) and its μ receptor-inactive, but TLR4-active metabolite morphine-3 glucuronide (M3G). Specificity was verified using antagonists. Morphine- and M6G-spiked plasma samples exhibited μ receptor activation, which M3G-spiked plasma lacked. In contrast, M3G showed moderate but consistent activation of TLR-4. Plasma samples were collected at a number of time points from mice administered morphine (1 or 10mg/kg every 12h for 3days) or saline. Morphine administration led to intermittent μ receptor activation, reversed by μ receptor antagonists, and to TRL4 activation at time points where M3G is measured in plasma. Interestingly, this protocol of morphine administration also led to TLR4-independent NF-κB activation, at time points where M3G was not detected, presumably via elevation of circulating cytokines including, but not limited to, TNFα. Circulating TNFα was increased after three days of morphine administration, and TNFα mRNA elevated in the spleen of morphine-treated mice.

  13. Toll-Like Receptor 9 Activation Rescues Impaired Antibody Response in Needle-free Intradermal DNA Vaccination

    PubMed Central

    Arunachalam, Prabhu S.; Mishra, Ria; Badarinath, Krithika; Selvam, Deepak; Payeli, Sravan K.; Stout, Richard R.; Ranga, Udaykumar

    2016-01-01

    The delivery of plasmid DNA to the skin can target distinct subsets of dermal dendritic cells to confer a superior immune response. The needle-free immunization technology offers a reliable, safe and efficient means to administer intradermal (ID) injections. We report here that the ID injection of DNA vectors using an NF device (NF-ID) elicits a superior cell-mediated immune response, at much lesser DNA dosage, comparable in magnitude to the traditional intramuscular immunization. However, the humoral response is significantly impaired, possibly at the stage of B cell isotype switching. We found that the NF-ID administration deposits the DNA primarily on the epidermis resulting in a rapid loss of the DNA as well as the synthesized antigen due to the faster regeneration rate of the skin layers. Therefore, despite the immune-rich nature of the skin, the NF-ID immunization of DNA vectors may be limited by the impaired humoral response. Additional booster injections are required to augment the antibody response. As an alternative and a viable solution, we rescued the IgG response by coadministration of a Toll-like receptor 9 agonist, among other adjuvants examined. Our work has important implication for the optimization of the emerging needle-free technology for ID immunization. PMID:27658623

  14. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer.

    PubMed

    Kang, Jin Young; Nan, Xuehua; Jin, Mi Sun; Youn, Suk-Jun; Ryu, Young Hee; Mah, Shinjee; Han, Seung Hyun; Lee, Hayyoung; Paik, Sang-Gi; Lee, Jie-Oh

    2009-12-18

    Toll-like receptor 2 (TLR2) initiates potent immune responses by recognizing diacylated and triacylated lipopeptides. Its ligand specificity is controlled by whether it heterodimerizes with TLR1 or TLR6. We have determined the crystal structures of TLR2-TLR6-diacylated lipopeptide, TLR2-lipoteichoic acid, and TLR2-PE-DTPA complexes. PE-DTPA, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-diethylenetriaminepentaacetic acid, is a synthetic phospholipid derivative. Two major factors contribute to the ligand specificity of TLR2-TLR1 or TLR2-TLR6 heterodimers. First, the lipid channel of TLR6 is blocked by two phenylalanines. Simultaneous mutation of these phenylalanines made TLR2-TLR6 fully responsive not only to diacylated but also to triacylated lipopeptides. Second, the hydrophobic dimerization interface of TLR2-TLR6 is increased by 80%, which compensates for the lack of amide lipid interaction between the lipopeptide and TLR2-TLR6. The structures of the TLR2-lipoteichoic acid and the TLR2-PE-DTPA complexes demonstrate that a precise interaction pattern of the head group is essential for a robust immune response by TLR2 heterodimers.

  15. Moraxella catarrhalis activates murine macrophages through multiple toll like receptors and has reduced clearance in lungs from TLR4 mutant mice.

    PubMed

    Hassan, Ferdaus; Ren, Dabin; Zhang, Wenhong; Merkel, Tod J; Gu, Xin-Xing

    2012-01-01

    Moraxella catarrhalis is a gram negative bacterium and a leading causative agent of otitis media (OM) in children. Several recent reports have provided strong evidence for an association between toll like receptors and OM. It has been found that both Streptococcus pneumoniae and nontypeable Haemophilus influenzae activate host protective immune responses through toll like receptors (TLRs), however, the precise mechanism by which Moraxella catarrhalis initiates the host immune response is currently unknown. In this report, using murine macrophages generated from a series of knock-out mice, we have demonstrated that M. catarrhalis lipooligosaccharide (LOS) and either heat killed or live bacteria are recognized by one or more TLRs. LOS activates the host immune response through a membrane bound CD14-TLR4 complex, while both heat killed and live M.cat require recognition by multiple toll like receptors such as TLR2, TLR4 and TLR9 without the requirement of CD14. We have also shown that M.cat stimuli are capable of triggering the host innate immune response by both MyD88- and TRIF- dependent signaling pathways. We further showed that M.cat induced activation of mitogen activated protein kinase (MAPK) is essential in order to achieve optimal secretion of pro-inflammatory cytokine TNF-α. We finally showed that TLR4 mutant C3H/HeJ mice produce significantly lower levels of pro-inflammatory cytokines TNF-α and IL-6 in vivo, An increased bacterial loads at 12 and 24 hours (P<0.001) in their lungs upon challenge with live M.cat in an aerosol chamber compared to wild-type (WT) control mice. These data suggest that TLRs are crucial for an effective innate immune response induced by M.cat. The results of these studies contribute to an increased understanding of molecular mechanism and possible novel treatment strategies for diseases caused by M.cat by specifically targeting TLRs and their signaling pathways.

  16. Novel drugs targeting Toll-like receptors for antiviral therapy

    PubMed Central

    Patel, Mira C; Shirey, Kari Ann; Pletneva, Lioubov M; Boukhvalova, Marina S; Garzino-Demo, Alfredo; Vogel, Stefanie N; Blanco, Jorge CG

    2014-01-01

    Toll-like receptors (TLRs) are sentinel receptors of the host innate immune system that recognize conserved ‘pathogen-associated molecular patterns’ of invading microbes, including viruses. The activation of TLRs establishes antiviral innate immune responses and coordinates the development of long-lasting adaptive immunity in order to control viral pathogenesis. However, microbe-induced damage to host tissues may release ‘danger-associated molecular patterns’ that also activate TLRs, leading to an overexuberant inflammatory response and, ultimately, to tissue damage. Thus, TLRs have proven to be promising targets as therapeutics for the treatment of viral infections that result in inflammatory damage or as adjuvants in order to enhance the efficacy of vaccines. Here, we explore recent advances in TLR biology with a focus on novel drugs that target TLRs (agonists and antagonists) for antiviral therapy. PMID:25620999

  17. Activation of Toll-like receptor 9 inhibits LPS-induced receptor activator of NF-κB ligand expression in rat B lymphocytes

    PubMed Central

    Yu, Xiaoqian; Lin, Jiang; Yu, Qing; Kawai, Toshihisa; Taubman, Martin A.; Han, Xiaozhe

    2014-01-01

    B lymphocytes express multiple Toll-like receptors (TLRs) that regulate cytokine production by these B cells. We investigated the effect of TLR4 and TLR9 activation on receptor activator of NF-κB ligand (RANKL) expression by rat spleen B cells. Splenocytes or purified spleen B cells from Rowett rats were cultured with TLR4 ligand E. coli LPS and/or TLR9 ligand CpG-oligodeoxynucleotide (CpG-ODN) for 2 days. RANKL mRNA expressions and the percentage of RANKL-positive B cells were increased in rat splenocytes challenged by E. coli LPS alone. Such increase was diminished when cells were treated with both CpG-ODN and E. coli LPS. Microarray results revealed that expressions of multiple cyclin-dependent kinase (CDK) pathway-related genes were up-regulated only in cells treated with both E. coli LPS and CpG-ODN. This study suggests that CpG-ODN inhibit LPS-induced RANKL expression in rat B cells via regulation of CDK pathway. PMID:24661200

  18. Toll-like receptor signalling through macromolecular protein complexes.

    PubMed

    Bryant, Clare E; Symmons, Martyn; Gay, Nicholas J

    2015-02-01

    The molecular mechanisms by which pattern recognition receptors (PRRs) signal are increasingly well understood. Toll-like receptor 4 (TLR4) signals through two separate pairs of adaptor proteins Mal/MyD88 and Tram/Trif. Structural studies have revealed a common theme for PRR signalling in that their signalling proteins form large macromolecular complexes which are thought to form the active signalling complex. The first of these to be characterised was the MyD88 signalling complex Myddosome. Many questions remain unanswered however. In particular it is unclear whether these signalling complexes form within the living cell, how many of each signalling protein is within the intracellular Myddosome and whether the stoichiometry can vary in a ligand-dependent manner. In this review we will discuss what is known about the macromolecular complexes thought to be important for TLR4 signalling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Plasma membrane Toll-like receptor activation increases bacterial uptake but abrogates endosomal Lactobacillus acidophilus induction of interferon-β.

    PubMed

    Boye, Louise; Welsby, Iain; Lund, Lisbeth Drozd; Goriely, Stanislas; Frøkiaer, Hanne

    2016-11-01

    Lactobacillus acidophilus induces a potent interferon-β (IFN-β) response in dendritic cells (DCs) by a Toll-like receptor 2 (TLR2) -dependent mechanism, in turn leading to strong interleukin-12 (IL-12) production. In the present study, we investigated the involvement of different types of endocytosis in the L. acidophilus-induced IFN-β and IL-12 responses and how TLR2 or TLR4 ligation by lipopolysaccharide and Pam3/4CSK4 influenced endocytosis of L. acidophilus and the induced IFN-β and IL-12 production. Lactobacillus acidophilus was endocytosed by constitutive macropinocytosis taking place in the immature cells as well as by spleen tyrosine kinase (Syk) -dependent phagocytosis but without involvement of plasma membrane TLR2. Stimulation with TLR2 or TLR4 ligands increased macropinocytosis in a Syk-independent manner. As a consequence, incubation of DCs with TLR ligands before incubation with L. acidophilus enhanced the uptake of the bacteria. However, in these experimental conditions, induction of IFN-β and IL-12 was strongly inhibited. As L. acidophilus-induced IFN-β depends on endocytosis and endosomal degradation before signalling and as TLR stimulation from the plasma membrane leading to increased macropinocytosis abrogates IFN-β induction we conclude that plasma membrane TLR stimulation leading to increased macropinocytosis decreases endosomal induction of IFN-β and speculate that this is due to competition between compartments for molecules involved in the signal pathways. In summary, endosomal signalling by L. acidophilus that leads to IFN-β and IL-12 production is inhibited by TLR stimulation from the plasma membrane. © 2016 John Wiley & Sons Ltd.

  20. Toll-like Receptors at the Ocular Surface

    PubMed Central

    Pearlman, Eric; Johnson, Angela; Adhikary, Gautam; Sun, Yan; Chinnery, Holly R.; Fox, Todd; Kester, Mark; Mcmenamin, Paul G.

    2012-01-01

    The Toll-like receptor (TLR) family of pathogen recognition molecules has an important role in recognizing microbial pathogens and microbial breakdown products. Activation of TLRs in the corneal epithelium induces CXC chemokine production and recruitment of neutrophils to the corneal stroma. Although essential for pathogen killing, neutrophils can cause extensive tissue damage, leading to visual impairment and blindness. In this review, we examine the role of TLRs in microbial keratitis and in noninfectious corneal inflammation, most commonly associated with contact lens wear. We present recent findings on TLR signaling pathways in the cornea, including MyD88- and TRIF-dependent responses and discuss the role of resident macrophages and dendritic cells. Finally, we examine the potential for targeting the TLR pathway as a potential therapeutic intervention for microbial keratitis and contact lens-associated corneal inflammation. PMID:18781257

  1. Toll-like receptor 2 and type 2 diabetes.

    PubMed

    Sepehri, Zahra; Kiani, Zohre; Nasiri, Ali Akbar; Kohan, Farhad

    2016-01-01

    Innate immunity plays a crucial role in the pathogenesis of type 2 diabetes and related complications. Since the toll-like receptors (TLRs) are central to innate immunity, it appears that they are important participants in the development and pathogenesis of the disease. Previous investigations demonstrated that TLR2 homodimers and TLR2 heterodimers with TLR1 or TLR6 activate innate immunity upon recognition of damage-associated molecular patterns (DAMPs). Several DAMPs are released during type 2 diabetes, so it may be hypothesized that TLR2 is significantly involved in its progression. Here, we review recent data on the important roles and status of TLR2 in type 2 diabetes and related complications.

  2. Breast milk protects against the development of necrotizing enterocolitis through inhibition of Toll Like Receptor 4 in the intestinal epithelium via activation of the epidermal growth factor receptor

    PubMed Central

    Good, Misty; Sodhi, Chhinder P.; Egan, Charlotte E.; Afrazi, Amin; Jia, Hongpeng; Yamaguchi, Yukihiro; Lu, Peng; Branca, Maria F.; Ma, Congrong; Prindle, Thomas; Mielo, Samantha; Pompa, Anthony; Hodzic, Zerina; Ozolek, John A.; Hackam, David J.

    2015-01-01

    Breast milk is the most effective strategy to protect infants against necrotizing enterocolitis (NEC), a devastating disease which is characterized by severe intestinal necrosis. Previous studies have demonstrated that the lipopolysaccharide receptor toll-like receptor 4 (TLR4) plays a critical role in NEC development via deleterious effects on mucosal injury and repair. We now hypothesize that breast milk protects against NEC by inhibiting TLR4 within the intestinal epithelium, and sought to determine the mechanisms involved. Breast milk protected against NEC and reduced TLR4 signaling in wild-type neonatal mice, but not in mice lacking the epidermal growth factor receptor (EGFR), while selective removal of EGF from breast milk reduced its protective properties, indicating that breast milk inhibits NEC and attenuates TLR4 signaling via EGF/EGFR activation. Over-expression of TLR4 in the intestinal epithelium reversed the protective effects of breast milk. The protective effects of breast milk occurred via inhibition of enterocyte apoptosis and restoration of enterocyte proliferation. Importantly, in IEC-6 enterocytes, breast milk inhibited TLR4 signaling via inhibition of GSK3β. Taken together, these findings offer mechanistic insights into the protective role for breast milk in NEC, and support a link between growth factor and innate immune receptors in NEC pathogenesis. PMID:25899687

  3. [Negative regulation of Toll-like receptor signalling].

    PubMed

    Antosz, Halina; Choroszyńska, Dorota

    2013-04-25

    The mechanism of innate immunity is based on the pattern recognition receptors (PRR) that recognize molecular patterns associated with pathogens (PAMPs). Among PRR receptors Toll-like receptors (TLR) are distinguished. As a result of contact with pathogens, TLRs activate specific intracellular signaling pathways. It happens through proteins such as adaptor molecules, e.g. MyD88, TIRAP, TRIF, TRAM, and IPS-1, which participate in the cascade activation of kinases (IKK, MAP, RIP-1, TBK-1) as well as transcription factors (NF-κB, AP-1) and regulatory factor (IRF3). The result of this activation is the production of active proinflammatory cytokines, chemokines, interferons and enzymes. The PRR pathways are controlled by extra- and intracellular molecules to prevent overexpression of PRR. They include soluble receptors (sTLR), transmembrane proteins (ST2, SIGIRR, RP105, TRAIL-R) and intracellular inhibitors (SOCS-1, SOCS-3, sMyD88, TOLLIP, IRAK-M, SARM, A20, β-arrestin, CYLD, SHP). These molecules maintain the balance between activation and inhibition and ensure balancing of the beneficial and adverse effects of antigen recognition.

  4. Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid.

    PubMed

    Hwang, Daniel H; Kim, Jeong-A; Lee, Joo Young

    2016-08-15

    Saturated fatty acids can activate Toll-like receptor 2 (TLR2) and TLR4 but polyunsaturated fatty acids, particularly docosahexaenoic acid (DHA) inhibit the activation. Lipopolysaccharides (LPS) and lipopetides, ligands for TLR4 and TLR2, respectively, are acylated by saturated fatty acids. Removal of these fatty acids results in loss of their ligand activity suggesting that the saturated fatty acyl moieties are required for the receptor activation. X-ray crystallographic studies revealed that these saturated fatty acyl groups of the ligands directly occupy hydrophobic lipid binding domains of the receptors (or co-receptor) and induce the dimerization which is prerequisite for the receptor activation. Saturated fatty acids also induce the dimerization and translocation of TLR4 and TLR2 into lipid rafts in plasma membrane and this process is inhibited by DHA. Whether saturated fatty acids induce the dimerization of the receptors by interacting with these lipid binding domains is not known. Many experimental results suggest that saturated fatty acids promote the formation of lipid rafts and recruitment of TLRs into lipid rafts leading to ligand independent dimerization of the receptors. Such a mode of ligand independent receptor activation defies the conventional concept of ligand induced receptor activation; however, this may enable diverse non-microbial molecules with endogenous and dietary origins to modulate TLR-mediated immune responses. Emerging experimental evidence reveals that TLRs play a key role in bridging diet-induced endocrine and metabolic changes to immune responses. Published by Elsevier B.V.

  5. Lipids Derived from Virulent Francisella tularensis Broadly Inhibit Pulmonary Inflammation via Toll-Like Receptor 2 and Peroxisome Proliferator-Activated Receptor α

    PubMed Central

    Crane, Deborah D.; Ireland, Robin; Alinger, Joshua B.; Small, Pamela

    2013-01-01

    Francisella tularensis is a Gram-negative facultative intracellular pathogen that causes an acute lethal respiratory disease in humans. The heightened virulence of the pathogen is linked to its unique ability to inhibit Toll-like receptor (TLR)-mediated inflammatory responses. The bacterial component and mechanism of this inhibition are unknown. Here we show that lipids isolated from virulent but not attenuated strains of F. tularensis are not detected by host cells, inhibit production of proinflammatory cytokines by primary macrophages in response to known TLR ligands, and suppress neutrophil recruitment in vivo. We further show that lipid-mediated inhibition of inflammation is dependent on TLR2, MyD88, and the nuclear hormone and fatty acid receptor peroxisome proliferator-activated receptor α (PPARα). Pathogen lipid-mediated interference with inflammatory responses through the engagement of TLR2 and PPARα represents a novel manipulation of host signaling pathways consistent with the ability of highly virulent F. tularensis to efficiently evade host immune responses. PMID:23925884

  6. Macrophages exposed continuously to lipopolysaccharide and other agonists that act via toll-like receptors exhibit a sustained and additive activation state

    PubMed Central

    Hume, David A; Underhill, David M; Sweet, Matthew J; Ozinsky, Adrian O; Liew, Foo Y; Aderem, Alan

    2001-01-01

    Background Macrophages sense microorganisms through activation of members of the Toll-like receptor family, which initiate signals linked to transcription of many inflammation associated genes. In this paper we examine whether the signal from Toll-like receptors [TLRs] is sustained for as long as the ligand is present, and whether responses to different TLR agonists are additive. Results RAW264 macrophage cells were doubly-transfected with reporter genes in which the IL-12p40, ELAM or IL-6 promoter controls firefly luciferase, and the human IL-1β promoter drives renilla luciferase. The resultant stable lines provide robust assays of macrophage activation by TLR stimuli including LPS [TLR4], lipopeptide [TLR2], and bacterial DNA [TLR9], with each promoter demonstrating its own intrinsic characteristics. With each of the promoters, luciferase activity was induced over an 8 hr period, and thereafter reached a new steady state. Elevated expression required the continued presence of agonist. Sustained responses to different classes of agonist were perfectly additive. This pattern was confirmed by measuring inducible cytokine production in the same cells. While homodimerization of TLR4 mediates responses to LPS, TLR2 appears to require heterodimerization with another receptor such as TLR6. Transient expression of constitutively active forms of TLR4 or TLR2 plus TLR6 stimulated IL-12 promoter activity. The effect of LPS, a TLR4 agonist, was additive with that of TLR2/6 but not TLR4, whilst that of lipopeptide, a TLR2 agonist, was additive with TLR4 but not TLR2/6. Actions of bacterial DNA were additive with either TLR4 or TLR2/6. Conclusions These findings indicate that maximal activation by any one TLR pathway does not preclude further activation by another, suggesting that common downstream regulatory components are not limiting. Upon exposure to a TLR agonist, macrophages enter a state of sustained activation in which they continuously sense the presence of a

  7. α-Synuclein Alters Toll-Like Receptor Expression

    PubMed Central

    Béraud, Dawn; Twomey, Margaret; Bloom, Benjamin; Mittereder, Andrew; Ton, Vy; Neitzke, Katherine; Chasovskikh, Sergey; Mhyre, Timothy R.; Maguire-Zeiss, Kathleen A.

    2011-01-01

    Parkinson's disease, an age-related neurodegenerative disorder, is characterized by the loss of dopamine neurons in the substantia nigra, the accumulation of α-synuclein in Lewy bodies and neurites, and neuroinflammation. While the exact etiology of sporadic Parkinson's disease remains elusive, a growing body of evidence suggests that misfolded α-synuclein promotes inflammation and oxidative stress resulting in neurodegeneration. α-Synuclein has been directly linked to microglial activation in vitro and increased numbers of activated microglia have been reported in an α-synuclein overexpressing mouse model prior to neuronal loss. However, the mechanism by which α-synuclein incites microglial activation has not been fully described. Microglial activation is governed in part, by pattern recognition receptors that detect foreign material and additionally recognize changes in homeostatic cellular conditions. Upon proinflammatory pathway initiation, activated microglia contribute to oxidative stress through release of cytokines, nitric oxide, and other reactive oxygen species, which may adversely impact adjacent neurons. Here we show that microglia are directly activated by α-synuclein in a classical activation pathway that includes alterations in the expression of toll-like receptors. These data suggest that α-synuclein can act as a danger-associated molecular pattern. PMID:21747756

  8. Computational Approaches to Toll-Like Receptor 4 Modulation.

    PubMed

    Billod, Jean-Marc; Lacetera, Alessandra; Guzmán-Caldentey, Joan; Martín-Santamaría, Sonsoles

    2016-07-30

    Toll-like receptor 4 (TLR4), along with its accessory protein myeloid differentiation factor 2 (MD-2), builds a heterodimeric complex that specifically recognizes lipopolysaccharides (LPS), which are present on the cell wall of Gram-negative bacteria, activating the innate immune response. Some TLR4 modulators are undergoing preclinical and clinical evaluation for the treatment of sepsis, inflammatory diseases, cancer and rheumatoid arthritis. Since the relatively recent elucidation of the X-ray crystallographic structure of the extracellular domain of TLR4, research around this fascinating receptor has risen to a new level, and thus, new perspectives have been opened. In particular, diverse computational techniques have been applied to decipher some of the basis at the atomic level regarding the mechanism of functioning and the ligand recognition processes involving the TLR4/MD-2 system at the atomic level. This review summarizes the reported molecular modeling and computational studies that have recently provided insights into the mechanism regulating the activation/inactivation of the TLR4/MD-2 system receptor and the key interactions modulating the molecular recognition process by agonist and antagonist ligands. These studies have contributed to the design and the discovery of novel small molecules with promising activity as TLR4 modulators.

  9. Toll-like receptors (TLRs) in transplantation

    PubMed Central

    Alegre, Maria-Luisa; Chong, Anita

    2015-01-01

    TLRs have been extensively studied over the past decade for their ability to recognize microbial molecular patterns and activate innate immune cells to fight infections. They have also been described to provide a link between innate and adaptive immunity, as TLR signals also enhance the antigen presenting capacity of innate immune cells to T cells. In recent years, a contribution of TLR pathways to immune responses elicited by ischemia/reperfusion injury (IRI), allografts and xenografts has been uncovered, although the ligands that bind TLRs in these settings remain to be revealed. Such research has the potential to identify novel therapeutic targets that may facilitate allograft acceptance. In this review, we will summarize the results published to date on the role of TLRs in experimental and clinical transplantation. PMID:19482622

  10. Brain Interleukin-1β and the Intrinsic Receptor Antagonist Control Peripheral Toll-Like Receptor 3-Mediated Suppression of Spontaneous Activity in Rats

    PubMed Central

    Yamato, Masanori; Tamura, Yasuhisa; Eguchi, Asami; Kume, Satoshi; Miyashige, Yukiharu; Nakano, Masayuki; Watanabe, Yasuyoshi; Kataoka, Yosky

    2014-01-01

    During acute viral infections such as influenza, humans often experience not only transient fever, but also prolonged fatigue or depressive feelings with a decrease in social activity for days or weeks. These feelings are thought to be due to neuroinflammation in the brain. Recent studies have suggested that chronic neuroinflammation is a precipitating event of various neurological disorders, but the mechanism determining the duration of neuroinflammation has not been elucidated. In this study, neuroinflammation was induced by intraperitoneal injection of polyriboinosinic:polyribocytidylic acid (poly I:C), a Toll-like receptor-3 agonist that mimics viral infection in male Sprague-Dawley rats, and then investigated how the neuroinflammation shift from acute to the chronic state. The rats showed transient fever and prolonged suppression of spontaneous activity for several days following poly I:C injection. NS-398, a cyclooxygenase-2 inhibitor, completely prevented fever, but did not improve spontaneous activity, indicating that suppression of spontaneous activity was not induced by the arachidonate cascade that generated the fever. The animals overexpressed interleukin (IL)-1β and IL-1 receptor antagonist (IL-1ra) in the brain including the cerebral cortex. Blocking the IL-1 receptor in the brain by intracerebroventricular (i.c.v.) infusion of recombinant IL-1ra completely blocked the poly I:C-induced suppression of spontaneous activity and attenuated amplification of brain interferon (IFN)-α expression, which has been reported to produce fatigue-like behavior by suppressing the serotonergic system. Furthermore, i.c.v. infusion of neutralizing antibody for IL-1ra prolonged recovery from suppression of spontaneous activity. Our findings indicated that IL-1β is the key trigger of neuroinflammation and that IL-1ra prevents the neuroinflammation entering the chronic state. PMID:24621600

  11. Differential expression of key regulators of Toll-like receptors in ulcerative colitis and Crohn's disease: a role for Tollip and peroxisome proliferator-activated receptor gamma?

    PubMed

    Fernandes, P; MacSharry, J; Darby, T; Fanning, A; Shanahan, F; Houston, A; Brint, E

    2016-03-01

    The innate immune system is currently seen as the probable initiator of events which culminate in the development of inflammatory bowel disease (IBD) with Toll-like receptors (TLRs) known to be involved in this disease process. Many regulators of TLRs have been described, and dysregulation of these may also be important in the pathogenesis of IBD. The aim of this study was to perform a co-ordinated analysis of the expression levels of both key intestinal TLRs and their inhibitory proteins in the same IBD cohorts, both ulcerative colitis (UC) and Crohn's disease (CD), in order to evaluate the potential roles of these proteins in the pathogenesis of IBD. Of the six TLRs (TLRs 1, 2, 4, 5, 6 and 9) examined, only TLR-4 was increased significantly in IBD, specifically in active UC. In contrast, differential alterations in expression of TLR inhibitory proteins were observed. A20 and suppressor of cytokine signalling 1 (SOCS1) were increased only in active UC while interleukin-1 receptor-associated kinase 1 (IRAK-m) and B cell lymphoma 3 protein (Bcl-3) were increased in both active UC and CD. In contrast, expression of both peroxisome proliferator-activated receptor gamma (PPARγ) and Toll interacting protein (Tollip) was decreased in both active and inactive UC and CD and at both mRNA and protein levels. In addition, expression of both PPARγ and A20 expression was increased by stimulation of a colonic epithelial cell line Caco-2 with both TLR ligands and commensal bacterial strains. These data suggest that IBD may be associated with distinctive changes in TLR-4 and TLR inhibitory proteins, implying that alterations in these may contribute to the pathogenesis of IBD.

  12. Novel toll-like receptor 9 agonist induces epidermal growth factor receptor (EGFR) inhibition and synergistic antitumor activity with EGFR inhibitors.

    PubMed

    Damiano, Vincenzo; Caputo, Rosa; Bianco, Roberto; D'Armiento, Francesco P; Leonardi, Antonio; De Placido, Sabino; Bianco, A Raffaele; Agrawal, Sudhir; Ciardiello, Fortunato; Tortora, Giampaolo

    2006-01-15

    Immunostimulating Toll-like receptor 9 (TLR9) agonists cause antitumor activity interfering also with cancer proliferation and angiogenesis by mechanisms still incompletely understood. We hypothesized that modified TLR9 agonists could impair epidermal growth factor receptor (EGFR) signaling and, by this means, greatly enhance EGFR inhibitors effect, acting on both the receptor targeting and the immunologic arm. We used a novel second-generation, modified, immunomodulatory TLR9 agonist (IMO), alone and in combination with the anti-EGFR monoclonal antibody cetuximab or tyrosine kinase inhibitor gefitinib, on the growth of GEO and cetuximab-resistant derivatives GEO-CR colon cancer xenografts. We have also evaluated the expression of several proteins critical for cell proliferation, apoptosis, and angiogenesis, including EGFR, mitogen-activated protein kinase, Akt, bcl-2, cyclooxygenase-2, vascular endothelial growth factor, and nuclear factor-kappaB. IMO inhibited GEO growth and signaling by EGFR and the other proteins critical for cell proliferation and angiogenesis. IMO plus the anti-EGFR antibody cetuximab synergistically inhibited tumor growth, signaling proteins, and microvessel formation. EGFR signaling inhibition by IMO is relevant because IMO cooperated also with EGFR tyrosine kinase inhibitor gefitinib in GEO tumors, while it was inactive against GEO-CR xenografts. On the other hand, IMO boosted the non-EGFR-dependent cetuximab activity, causing a cooperative antitumor effect in GEO-CR cells. Finally, combination of IMO, cetuximab and chemotherapeutic irinotecan eradicated the tumors in 90% of mice. IMO interferes with EGFR-related signaling and angiogenesis and has a synergistic antitumor effect with EGFR inhibitors, especially with cetuximab, boosting both the EGFR dependent and independent activity of this agent. Moreover, this therapeutic strategy could be translated in patients affected by colorectal cancer.

  13. Mechanisms of disease: Toll-like receptors in cardiovascular disease.

    PubMed

    Frantz, Stefan; Ertl, Georg; Bauersachs, Johann

    2007-08-01

    The innate immune system detects highly conserved, relatively invariant structural motifs of pathogens. Toll-like receptors (TLRs) have been identified as the primary innate immune receptors. TLRs distinguish between different patterns of pathogens and activate a rapid innate immune response; however, TLRs can also be activated by host-derived molecules. In addition to being expressed in immune cells, TLRs are expressed in other tissues, such as those of the cardiovascular system. TLRs could, therefore, be a key link between cardiovascular disease development and the immune system. Indeed, evidence that TLR activation contributes to the development and progression of atherosclerosis, cardiac dysfunction in sepsis, and congestive heart failure, is convincing. Although much has been learned about TLR activation in cellular components of the cardiovascular system, the role individual TLR family members have in the pathophysiology of cardiovascular diseases and hence in clinical practice remains to be defined. Here we review the rapid progress that has been made in this field, which has improved our understanding of vascular as well as myocardial TLR function in basic and clinical science.

  14. Rhamnogalacturonan II is a Toll-like receptor 4 agonist that inhibits tumor growth by activating dendritic cell-mediated CD8+ T cells.

    PubMed

    Park, Sung Nam; Noh, Kyung Tae; Jeong, Young-Il; Jung, In Duk; Kang, Hyun Kyu; Cha, Gil Sun; Lee, Su Jung; Seo, Jong Keun; Kang, Dae Hwan; Hwang, Tae-Ho; Lee, Eun Kyung; Kwon, Byungsuk; Park, Yeong-Min

    2013-02-08

    We evaluated the effectiveness of rhamnogalacturonan II (RG-II)-stimulated bone marrow-derived dendritic cells (BMDCs) vaccination on the induction of antitumor immunity in a mouse lymphoma model using EG7-lymphoma cells expressing ovalbumin (OVA). BMDCs treated with RG-II had an activated phenotype. RG-II induced interleukin (IL)-12, IL-1β, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) production during dendritic cell (DC) maturation. BMDCs stimulated with RG-II facilitate the proliferation of CD8+ T cells. Using BMDCs from the mice deficient in Toll-like receptors (TLRs), we revealed that RG-II activity is dependent on TLR4. RG-II showed a preventive effect of immunization with OVA-pulsed BMDCs against EG7 lymphoma. These results suggested that RG-II expedites the DC-based immune response through the TLR4 signaling pathway.

  15. Alternate transcription of the Toll-like receptor signaling cascade

    PubMed Central

    Wells, Christine A; Chalk, Alistair M; Forrest, Alistair; Taylor, Darrin; Waddell, Nic; Schroder, Kate; Himes, S Roy; Faulkner, Geoffrey; Lo, Sandra; Kasukawa, Takeya; Kawaji, Hideya; Kai, Chikatoshi; Kawai, Jun; Katayama, Shintaro; Carninci, Piero; Hayashizaki, Yoshihide; Hume, David A; Grimmond, Sean M

    2006-01-01

    Background Alternate splicing of key signaling molecules in the Toll-like receptor (Tlr) cascade has been shown to dramatically alter the signaling capacity of inflammatory cells, but it is not known how common this mechanism is. We provide transcriptional evidence of widespread alternate splicing in the Toll-like receptor signaling pathway, derived from a systematic analysis of the FANTOM3 mouse data set. Functional annotation of variant proteins was assessed in light of inflammatory signaling in mouse primary macrophages, and the expression of each variant transcript was assessed by splicing arrays. Results A total of 256 variant transcripts were identified, including novel variants of Tlr4, Ticam1, Tollip, Rac1, Irak1, 2 and 4, Mapk14/p38, Atf2 and Stat1. The expression of variant transcripts was assessed using custom-designed splicing arrays. We functionally tested the expression of Tlr4 transcripts under a range of cytokine conditions via northern and quantitative real-time polymerase chain reaction. The effects of variant Mapk14/p38 protein expression on macrophage survival were demonstrated. Conclusion Members of the Toll-like receptor signaling pathway are highly alternatively spliced, producing a large number of novel proteins with the potential to functionally alter inflammatory outcomes. These variants are expressed in primary mouse macrophages in response to inflammatory mediators such as interferon-γ and lipopolysaccharide. Our data suggest a surprisingly common role for variant proteins in diversification/repression of inflammatory signaling. PMID:16507160

  16. Possible involvement of Toll-Like Receptor 4/MD-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences

    PubMed Central

    Hutchinson, Mark R.; Lewis, Susannah S.; Coats, Benjamen D.; Rezvani, Niloofar; Zhang, Yingning; Wieseler, Julie L.; Somogyi, Andrew A.; Yin, Hang; Maier, Steven F.; Rice, Kenner C.; Watkins, Linda R.

    2010-01-01

    Opioid-induced glial activation and its proinflammatory consequences have been associated with both reduced acute opioid analgesia and the enhanced development of tolerance, hyperalgesia and allodynia following chronic opioid administration. Intriguingly, recent evidence demonstrates that these effects can result independently from the activation of classical, stereoselective opioid receptors. Here, a structurally disparate range of opioids cause activation of signaling by the innate immune receptor Toll Like Receptor 4 (TLR4), resulting in proinflammatory glial activation. In the present series of studies, we demonstrate that the (+)-isomers of methadone and morphine, which bind with negligible affinity to classical opioid receptors, induced upregulation of proinflammatory cytokine and chemokine production in rat isolated dorsal spinal cord. Chronic intrathecal (+)-methadone produced hyperalgesia and allodynia, which were associated with significantly increased spinal glial activation (TLR4 mRNA and protein) and the expression of multiple chemokines and cytokines. Statistical analysis suggests that a cluster of cytokines and chemokines may contribute to these nociceptive behavioral changes. Acute intrathecal (+)-methadone and (+)-morphine were also found to induce microglial, interleukin-1 and TLR4/MD-2 dependent enhancement of pain responsivity. In silico docking analysis demonstrated (+)-naloxone sensitive docking of (+)-methadone and (+)-morphine to human MD-2. Collectively, these data provide the first evidence of the pro-nociceptive consequences of small molecule xenobiotic activation of spinal TLR4 signaling independent of classical opioid receptor involvement. PMID:20178837

  17. Free cholesterol accumulation in macrophage membranes activates Toll-like receptors and p38 mitogen-activated protein kinase and induces cathepsin K.

    PubMed

    Sun, Yu; Ishibashi, Minako; Seimon, Tracie; Lee, Mingsum; Sharma, Sudarshana M; Fitzgerald, Katherine A; Samokhin, Andriy O; Wang, Yibin; Sayers, Scott; Aikawa, Masanori; Jerome, W Gray; Ostrowski, Michael C; Bromme, Dieter; Libby, Peter; Tabas, Ira A; Welch, Carrie L; Tall, Alan R

    2009-02-27

    The molecular events linking lipid accumulation in atherosclerotic plaques to complications such as aneurysm formation and plaque disruption are poorly understood. BALB/c-Apoe(-/-) mice bearing a null mutation in the Npc1 gene display prominent medial erosion and atherothrombosis, whereas their macrophages accumulate free cholesterol in late endosomes and show increased cathepsin K (Ctsk) expression. We now show increased cathepsin K immunostaining and increased cysteinyl proteinase activity using near infrared fluorescence imaging over proximal aortas of Apoe(-/-), Npc1(-/-) mice. In mechanistic studies, cholesterol loading of macrophage plasma membranes (cyclodextrin-cholesterol) or endosomal system (AcLDL+U18666A or Npc1 null mutation) activated Toll-like receptor (TLR) signaling, leading to sustained phosphorylation of p38 mitogen-activated protein kinase and induction of p38 targets, including Ctsk, S100a8, Mmp8, and Mmp14. Studies in macrophages from knockout mice showed major roles for TLR4, following plasma membrane cholesterol loading, and for TLR3, after late endosomal loading. TLR signaling via p38 led to phosphorylation and activation of the transcription factor Microphthalmia transcription factor, acting at E-box elements in the Ctsk promoter. These studies suggest that free cholesterol enrichment of either plasma or endosomal membranes in macrophages leads to activation of signaling via various TLRs, prolonged p38 mitogen-activated protein kinase activation, and induction of Mmps, Ctsk, and S100a8, potentially contributing to plaque complications.

  18. Toll-like receptors in skin infections and inflammatory diseases.

    PubMed

    Lai, Yuping; Gallo, Richard L

    2008-09-01

    The skin is the ultimate example of the function of innate immunity, it alerts the host of danger by many systems including sensing pathogen-associated molecule patterns (PAMPs) through Toll-like receptors and other pattern recognition receptors (PRRs), yet normally provides defense without inflammation. The skin responds rapidly to invading microbes by producing antimicrobial peptides or other antimicrobial intermediates before cytokine release results in inflammation. To achieve maximal immune responses for clearing invading microbes, the activation of select PRRs in skin then initiates and shapes adaptive immune responses through the activation of dendritic cells and recruitment of T cell subsets. Importantly, cross-talk between TLRs can influence this system in several ways including augmenting or suppressing the immune response. As a consequence of their pivotal role, TLR responses need to be tightly controlled by associated negative regulators or negative feedback loops to prevent detrimental effects from TLRs overactivation. This review focuses on describing the involvement of TLRs in the development of skin infections and inflammatory diseases, and highlights the potential application of TLR agonists or antagonists in these skin diseases.

  19. Lithium ameliorates lipopolysaccharide-induced microglial activation via inhibition of toll-like receptor 4 expression by activating the PI3K/Akt/FoxO1 pathway.

    PubMed

    Dong, Hongquan; Zhang, Xiang; Dai, Xiaonan; Lu, Shunmei; Gui, Bo; Jin, Wenjie; Zhang, Susu; Zhang, Shu; Qian, Yanning

    2014-08-14

    Lithium, an effective mood stabilizer for the treatment of bipolar disorders, has been recently suggested to have a role in neuroprotection during neurodegenerative diseases. The pathogenesis of neurological disorders often involves the activation of microglia and associated inflammatory processes. Thus, in this study, we aimed to understand the role of lithium in microglial activation and to elucidate the underlying mechanism(s). Primary microglial cells were pretreated with lithium and stimulated with lipopolysaccharide (LPS). The cells were assessed regarding the responses of pro-inflammatory cytokines, and the associated signaling pathways were evaluated. Lithium significantly inhibited LPS-induced microglial activation and pro-inflammatory cytokine production. Further analysis showed that lithium could activate PI3K/Akt signaling. Analyses of the associated signaling pathways demonstrated that the lithium pretreatment led to the suppression of LPS-induced toll-like receptor 4 (TLR4) expressions via the PI3K/Akt/FoxO1 pathway. This study demonstrates that lithium can inhibit LPS-induced TLR4 expression and microglial activation through the PI3K/Akt/FoxO1 signaling pathway. These results suggest that lithium plays an important role in microglial activation and neuroinflammation-related diseases, which may lead to a new therapeutic strategy for the treatment of neuroinflammation-related disorders.

  20. Toll-like receptor signaling in primary immune deficiencies

    PubMed Central

    Maglione, Paul J.; Simchoni, Noa; Cunningham-Rundles, Charlotte

    2015-01-01

    Toll-like receptors (TLRs) recognize common microbial or host-derived macromolecules and have important roles in early activation of the immune system. Patients with primary immune deficiencies (PIDs) affecting TLR signaling can elucidate the importance of these proteins to the human immune system. Defects in interleukin-1 receptor-associated kinase (IRAK)-4 and myeloid differentiation factor 88 (MyD88) lead to susceptibility to infections with bacteria, while mutations in nuclear factor-κB essential modulator (NEMO) and other downstream mediators generally induce broader susceptibility to bacteria, viruses, and fungi. In contrast, TLR3 signaling defects are specific for susceptibility to herpes simplex virus type 1 (HSV-1) encephalitis. Other PIDs induce functional alterations of TLR signaling pathways, such as common variable immunodeficiency in which plasmacytoid dendritic cell (pDC) defects enhance defective responses of B cells to shared TLR agonists. Dampening of TLR responses is seen for TLRs 2 and 4 in chronic granulomatous disease (CGD) and X-linked agammaglobulinemia (XLA). Enhanced TLR responses, meanwhile, are seen for TLRs 5 and 9 in CGD, TLRs 4, 7/8, and 9 in XLA, TLRs 2 and 4 in hyper IgE syndrome, and for most TLRs in adenosine deaminase deficiency. PMID:25930993

  1. The Role of Toll-Like Receptors in Hematopoietic Malignancies

    PubMed Central

    Monlish, Darlene A.; Bhatt, Sima T.; Schuettpelz, Laura G.

    2016-01-01

    Toll-like receptors (TLRs) are a family of pattern recognition receptors that shape the innate immune system by identifying pathogen-associated molecular patterns and host-derived damage-associated molecular patterns. TLRs are widely expressed on both immune cells and non-immune cells, including hematopoietic stem and progenitor cells, effector immune cell populations, and endothelial cells. In addition to their well-known role in the innate immune response to acute infection or injury, accumulating evidence supports a role for TLRs in the development of hematopoietic and other malignancies. Several hematopoietic disorders, including lymphoproliferative disorders and myelodysplastic syndromes, which possess a high risk of transformation to leukemia, have been linked to aberrant TLR signaling. Furthermore, activation of TLRs leads to the induction of a number of proinflammatory cytokines and chemokines, which can promote tumorigenesis by driving cell proliferation and migration and providing a favorable microenvironment for tumor cells. Beyond hematopoietic malignancies, the upregulation of a number of TLRs has been linked to promoting tumor cell survival, proliferation, and metastasis in a variety of cancers, including those of the colon, breast, and lung. This review focuses on the contribution of TLRs to hematopoietic malignancies, highlighting the known direct and indirect effects of TLR signaling on tumor cells and their microenvironment. In addition, the utility of TLR agonists and antagonists as potential therapeutics in the treatment of hematopoietic malignancies is discussed. PMID:27733853

  2. Role of Toll-like receptors in diabetic nephropathy.

    PubMed

    Mudaliar, Harshini; Pollock, Carol; Panchapakesan, Usha

    2014-05-01

    Diabetic nephropathy is the leading cause of kidney failure and its increasing prevalence and incidence has imposed global socio-economic stress on healthcare systems worldwide. Although historically considered a metabolic disorder, recent studies have established that inflammatory responses are central to the pathogenesis of diabetic nephropathy. TLRs (Toll-like receptors) are a family of pattern recognition receptors responsible for the initiation of inflammatory and immune responses. The regulation of TLR2 and TLR4 have been implicated in the pathogenesis of various kidney diseases, and emerging evidence shows their involvement in the perpetuation of inflammation in the diabetic kidney. The present review focuses on the relative contributions of TLR2 and TLR4 in recognizing endogenous ligands relevant to diabetic nephropathy and their subsequent activation of NF-κB (nuclear factor κB), which results in the synthesis and secretion of pro-inflammatory cytokines and chemokines. Moreover, we discuss the pro-inflammatory signalling pathways of TLR2 and TLR4, in which their interruption or blockade may prove to be important therapeutic targets, potentially translated into clinical treatments for diabetic nephropathy. Currently, inhibitors to TLR2 and TLR4 are undergoing clinical trials in various inflammatory models of disease, but none in patients with diabetic nephropathy. Given the existing literature, there is a fundamental necessity to undertake trials in patients with diabetic nephropathy with a focus on renal end points.

  3. Toll-like receptor signaling in cell proliferation and survival

    PubMed Central

    Li, Xinyan; Jiang, Song; Tapping, Richard I.

    2009-01-01

    Toll-like receptors (TLRs) are important sensors of foreign microbial components as well as products of damaged or inflamed self tissues. Upon sensing these molecules, TLRs initiate a series of downstream signaling events that drive cellular responses including the production of cytokines, chemokines and other inflammatory mediators. This outcome results from the intracellular assembly of protein complexes that drive phosphorylation and other signaling cascades ultimately leading to chromatin remodeling and transcription factor activation. In addition to driving inflammatory responses, TLRs also regulate cell proliferation and survival which serves to expand useful immune cells and integrate inflammatory responses and tissue repair processes. In this context, central TLR signaling molecules, such as the mitogen-activated protein kinases (MAPK) and phosphoinositide 3-kinase (PI3K), play key roles. In addition, four major groups of transcription factors which are targets of TLR activation also control cell fate. This review focuses on the role of TLR signaling as it relates to cell proliferation and survival. This topic not only has important implications for understanding host defense and tissue repair, but also cancer which is often associated with conditions of chronic inflammation. PMID:19775907

  4. Toll-Like Receptor 9 Agonists for Cancer Therapy

    PubMed Central

    Melisi, Davide; Frizziero, Melissa; Tamburrino, Anna; Zanotto, Marco; Carbone, Carmine; Piro, Geny; Tortora, Giampaolo

    2014-01-01

    The immune system has acquired increasing importance as a key player in cancer maintenance and growth. Thus, modulating anti-tumor immune mediators has become an attractive strategy for cancer treatment. Toll-like receptors (TLRs) have gradually emerged as potential targets of newer immunotherapies. TLR-9 is preferentially expressed on endosome membranes of B-cells and plasmacytoid dendritic cells (pDC) and is known for its ability to stimulate specific immune reactions through the activation of inflammation-like innate responses. Several synthetic CpG oligonucleotides (ODNs) have been developed as TLR-9 agonists with the aim of enhancing cancer immune surveillance. In many preclinical models, CpG ODNs were found to suppress tumor growth and proliferation both in monotherapy and in addition to chemotherapies or target therapies. TLR-9 agonists have been also tested in several clinical trials in patients with solid tumors. These agents showed good tolerability and usually met activity endpoints in early phase trials. However, they have not yet been demonstrated to significantly impact survival, neither as single agent treatments, nor in combination with chemotherapies or cancer vaccines. Further investigations in larger prospective studies are required. PMID:28548068

  5. Toll-Like Receptor 9 Agonists for Cancer Therapy.

    PubMed

    Melisi, Davide; Frizziero, Melissa; Tamburrino, Anna; Zanotto, Marco; Carbone, Carmine; Piro, Geny; Tortora, Giampaolo

    2014-08-04

    The immune system has acquired increasing importance as a key player in cancer maintenance and growth. Thus, modulating anti-tumor immune mediators has become an attractive strategy for cancer treatment. Toll-like receptors (TLRs) have gradually emerged as potential targets of newer immunotherapies. TLR-9 is preferentially expressed on endosome membranes of B-cells and plasmacytoid dendritic cells (pDC) and is known for its ability to stimulate specific immune reactions through the activation of inflammation-like innate responses. Several synthetic CpG oligonucleotides (ODNs) have been developed as TLR-9 agonists with the aim of enhancing cancer immune surveillance. In many preclinical models, CpG ODNs were found to suppress tumor growth and proliferation both in monotherapy and in addition to chemotherapies or target therapies. TLR-9 agonists have been also tested in several clinical trials in patients with solid tumors. These agents showed good tolerability and usually met activity endpoints in early phase trials. However, they have not yet been demonstrated to significantly impact survival, neither as single agent treatments, nor in combination with chemotherapies or cancer vaccines. Further investigations in larger prospective studies are required.

  6. Cathepsins are required for Toll-like receptor 9 responses

    SciTech Connect

    Matsumoto, Fumi; Saitoh, Shin-ichiroh; Fukui, Ryutaroh; Kobayashi, Toshihiko; Tanimura, Natsuko; Konno, Kazunori; Kusumoto, Yutaka; Akashi-Takamura, Sachiko; Miyake, Kensuke

    2008-03-14

    Toll-like receptors (TLR) recognize a variety of microbial products and activate defense responses. Pathogen sensing by TLR2/4 requires accessory molecules, whereas little is known about a molecule required for DNA recognition by TLR9. After endocytosis of microbes, microbial DNA is exposed and recognized by TLR9 in lysosomes. We here show that cathepsins, lysosomal cysteine proteases, are required for TLR9 responses. A cell line Ba/F3 was found to be defective in TLR9 responses despite enforced TLR9 expression. Functional cloning with Ba/F3 identified cathepsin B/L as a molecule required for TLR9 responses. The protease activity was essential for the complementing effect. TLR9 responses were also conferred by cathepsin S or F, but not by cathepsin H. TLR9-dependent B cell proliferation and CD86 upregulation were apparently downregulated by cathepsin B/L inhibitors. Cathepsin B inhibitor downregulated interaction of CpG-B with TLR9 in 293T cells. These results suggest roles for cathepsins in DNA recognition by TLR9.

  7. Toll-Like Receptor 9 Mediated Responses in Cardiac Fibroblasts

    PubMed Central

    Ohm, Ingrid Kristine; Alfsnes, Katrine; Belland Olsen, Maria; Ranheim, Trine; Sandanger, Øystein; Dahl, Tuva Børresdatter; Aukrust, Pål; Finsen, Alexandra Vanessa; Yndestad, Arne; Vinge, Leif Erik

    2014-01-01

    Altered cardiac Toll-like receptor 9 (TLR9) signaling is important in several experimental cardiovascular disorders. These studies have predominantly focused on cardiac myocytes or the heart as a whole. Cardiac fibroblasts have recently been attributed increasing significance in mediating inflammatory signaling. However, putative TLR9-signaling through cardiac fibroblasts remains non-investigated. Thus, our aim was to explore TLR9-signaling in cardiac fibroblasts and investigate the consequence of such receptor activity on classical cardiac fibroblast cellular functions. Cultivated murine cardiac fibroblasts were stimulated with different TLR9 agonists (CpG A, B and C) and assayed for the secretion of inflammatory cytokines (tumor necrosis factor α [TNFα], CXCL2 and interferon α/β). Expression of functional cardiac fibroblast TLR9 was proven as stimulation with CpG B and –C caused significant CXCL2 and TNFα-release. These responses were TLR9-specific as complete inhibition of receptor-stimulated responses was achieved by co-treatment with a TLR9-antagonist (ODN 2088) or chloroquine diphosphate. TLR9-stimulated responses were also found more potent in cardiac fibroblasts when compared with classical innate immune cells. Stimulation of cardiac fibroblasts TLR9 was also found to attenuate migration and proliferation, but did not influence myofibroblast differentiation in vitro. Finally, results from in vivo TLR9-stimulation with subsequent fractionation of specific cardiac cell-types (cardiac myocytes, CD45+ cells, CD31+ cells and cardiac fibroblast-enriched cell-fractions) corroborated our in vitro data and provided evidence of differentiated cell-specific cardiac responses. Thus, we conclude that cardiac fibroblast may constitute a significant TLR9 responder cell within the myocardium and, further, that such receptor activity may impact important cardiac fibroblast cellular functions. PMID:25126740

  8. Toll-like receptor 9 mediated responses in cardiac fibroblasts.

    PubMed

    Ohm, Ingrid Kristine; Alfsnes, Katrine; Belland Olsen, Maria; Ranheim, Trine; Sandanger, Øystein; Dahl, Tuva Børresdatter; Aukrust, Pål; Finsen, Alexandra Vanessa; Yndestad, Arne; Vinge, Leif Erik

    2014-01-01

    Altered cardiac Toll-like receptor 9 (TLR9) signaling is important in several experimental cardiovascular disorders. These studies have predominantly focused on cardiac myocytes or the heart as a whole. Cardiac fibroblasts have recently been attributed increasing significance in mediating inflammatory signaling. However, putative TLR9-signaling through cardiac fibroblasts remains non-investigated. Thus, our aim was to explore TLR9-signaling in cardiac fibroblasts and investigate the consequence of such receptor activity on classical cardiac fibroblast cellular functions. Cultivated murine cardiac fibroblasts were stimulated with different TLR9 agonists (CpG A, B and C) and assayed for the secretion of inflammatory cytokines (tumor necrosis factor α [TNFα], CXCL2 and interferon α/β). Expression of functional cardiac fibroblast TLR9 was proven as stimulation with CpG B and -C caused significant CXCL2 and TNFα-release. These responses were TLR9-specific as complete inhibition of receptor-stimulated responses was achieved by co-treatment with a TLR9-antagonist (ODN 2088) or chloroquine diphosphate. TLR9-stimulated responses were also found more potent in cardiac fibroblasts when compared with classical innate immune cells. Stimulation of cardiac fibroblasts TLR9 was also found to attenuate migration and proliferation, but did not influence myofibroblast differentiation in vitro. Finally, results from in vivo TLR9-stimulation with subsequent fractionation of specific cardiac cell-types (cardiac myocytes, CD45+ cells, CD31+ cells and cardiac fibroblast-enriched cell-fractions) corroborated our in vitro data and provided evidence of differentiated cell-specific cardiac responses. Thus, we conclude that cardiac fibroblast may constitute a significant TLR9 responder cell within the myocardium and, further, that such receptor activity may impact important cardiac fibroblast cellular functions.

  9. Toll-like receptors as targets for allergen immunotherapy.

    PubMed

    Aryan, Zahra; Rezaei, Nima

    2015-12-01

    Toll-like receptors (TLRs) are novel and promising targets for allergen immunotherapy. Bench studies suggest that TLR agonists reduce Th2 responses and ameliorate airway hyper-responsiveness. In addition, clinical trials are at initial phases to evaluate the safety and efficacy of TLR agonists for the allergen immunotherapy of patients with allergic rhinitis and asthma. (Figure is included in full-text article.) To date, two allergy vaccine-containing TLR agonists have been investigated in clinical trials; Pollinex Quattro and AIC. The former contains monophosphoryl lipid, a TLR4 agonist and the latter contains, CpG motifs activating the TLR9 cascade. Preseasonal subcutaneous injection of both of these allergy vaccines has been safe and efficacious in control of nasal symptoms of patients with allergic rhinitis. CRX-675 (a TLR4 agonist), AZD8848 (a TLR7 agonist), VTX-1463 (a TLR8 agonist) and 1018 ISS and QbG10 (TLR9 agonists) are currently in clinical development for allergic rhinitis and asthma. TLR agonists herald promising results for allergen immunotherapy of patients with allergic rhinitis and asthma. Future research should be directed at utilizing these agents for immunotherapy of food allergy (for instance, peanut allergy) as well.

  10. Phosphoinositide turnover in Toll-like receptor signaling and trafficking

    PubMed Central

    Tu Le, Oanh Thi; Ngoc Nguyen, Tu Thi; Lee, Sang Yoon

    2014-01-01

    Lipid components in biological membranes are essential for maintaining cellular function. Phosphoinositides, the phosphorylated derivatives of phosphatidylinositol (PI), regulate many critical cell processes involving membrane signaling, trafficking, and reorganization. Multiple metabolic pathways including phosphoinositide kinases and phosphatases and phospholipases tightly control spatio-temporal concentration of membrane phosphoinositides. Metabolizing enzymes responsible for PI 4,5-bisphosphate (PI(4,5)P2) production or degradation play a regulatory role in Toll-like receptor (TLR) signaling and trafficking. These enzymes include PI 4-phosphate 5-kinase, phosphatase and tensin homolog, PI 3-kinase, and phospholipase C. PI(4,5)P2 mediates the interaction with target cytosolic proteins to induce their membrane translocation, regulate vesicular trafficking, and serve as a precursor for other signaling lipids. TLR activation is important for the innate immune response and is implicated in diverse pathophysiological disorders. TLR signaling is controlled by specific interactions with distinct signaling and sorting adaptors. Importantly, TLR signaling machinery is differentially formed depending on a specific membrane compartment during signaling cascades. Although detailed mechanisms remain to be fully clarified, phosphoinositide metabolism is promising for a better understanding of such spatio-temporal regulation of TLR signaling and trafficking. [BMB Reports 2014; 47(7): 361-368] PMID:24856829

  11. Damage-associated molecular pattern activated Toll-like receptor 4 signalling modulates blood pressure in L-NAME-induced hypertension.

    PubMed

    Sollinger, Daniel; Eißler, Ruth; Lorenz, Steffen; Strand, Susanne; Chmielewski, Stefan; Aoqui, Cristiane; Schmaderer, Christoph; Bluyssen, Hans; Zicha, Josef; Witzke, Oliver; Scherer, Elias; Lutz, Jens; Heemann, Uwe; Baumann, Marcus

    2014-03-01

    Recent publications have shed new light on the role of the adaptive and innate immune system in the pathogenesis of hypertension. However, there are limited data whether receptors of the innate immune system may influence blood pressure. Toll-like receptor 4 (TLR4), a pattern recognition receptor, is a key component of the innate immune system, which is activated by exogenous and endogenous ligands. Hypertension is associated with end-organ damage and thus might lead to the release of damage-associated molecular patterns (DAMPs), which are endogenous activators of TLR4 receptors. The present study aimed to elucidate whether TLR4 signalling is able to modulate vascular contractility in an experimental model of hypertension thus contributing to blood pressure regulation. NG-nitro-l-arginine methyl ester (l-NAME)-induced hypertension was blunted in TLR4(-/-) when compared with wild-type mice. Treatment with l-NAME was associated with a release of DAMPs, leading to reactive oxygen species production of smooth muscle cells in a TLR4-dependent manner. As oxidative stress leads to an impaired function of the NO-sGC-cyclic GMP (cGMP) pathway, we were able to demonstrate that TLR4(-/-) was protected from sGC inactivation. Consequently, arterial contractility was reduced in TLR4(-/-). Cell damage-associated TLR4 signalling might act as a direct mediator of vascular contractility providing a molecular link between inflammation and hypertension.

  12. The Importance of Toll-like Receptors in NF-κB Signaling Pathway Activation by Helicobacter pylori Infection and the Regulators of this Response.

    PubMed

    Hu, Yi; Liu, Jian-Ping; Zhu, Yin; Lu, Nong-Hua

    2016-10-01

    Helicobacter pylori (H. pylori) is a common pathogenic bacterium in the stomach that infects almost half of the population worldwide and is closely related to gastric diseases and some extragastric diseases, including iron-deficiency anemia and idiopathic thrombocytopenic purpura. Both the Maastricht IV/Florence consensus report and the Kyoto global consensus report have proposed the eradication of H. pylori to prevent gastric cancer as H.pylori has been shown to be a major cause of gastric carcinogenesis. The interactions between H. pylori and host receptors induce the release of the proinflammatory cytokines by activating proinflammatory signaling pathways such as nuclear factor kappa B (NF-κB), which plays a central role in inflammation, immune response, and carcinogenesis. Among these receptors, Toll-like receptors (TLRs) are classical pattern recognition receptors in the recognition of H. pylori and the mediation of the host inflammatory and immune responses to H. pylori. TLR polymorphisms also contribute to the clinical consequences of H. pylori infection. In this review, we focus on the functions of TLRs in the NF-κB signaling pathway activated by H. pylori, the regulators modulating this response, and the functions of TLR polymorphisms in H.pylori-related diseases. © 2016 John Wiley & Sons Ltd.

  13. Activation of Human Toll-like Receptor 4 (TLR4)·Myeloid Differentiation Factor 2 (MD-2) by Hypoacylated Lipopolysaccharide from a Clinical Isolate of Burkholderia cenocepacia.

    PubMed

    Di Lorenzo, Flaviana; Kubik, Łukasz; Oblak, Alja; Lorè, Nicola Ivan; Cigana, Cristina; Lanzetta, Rosa; Parrilli, Michelangelo; Hamad, Mohamad A; De Soyza, Anthony; Silipo, Alba; Jerala, Roman; Bragonzi, Alessandra; Valvano, Miguel A; Martín-Santamaría, Sonsoles; Molinaro, Antonio

    2015-08-28

    Lung infection by Burkholderia species, in particular Burkholderia cenocepacia, accelerates tissue damage and increases post-lung transplant mortality in cystic fibrosis patients. Host-microbe interplay largely depends on interactions between pathogen-specific molecules and innate immune receptors such as Toll-like receptor 4 (TLR4), which recognizes the lipid A moiety of the bacterial lipopolysaccharide (LPS). The human TLR4·myeloid differentiation factor 2 (MD-2) LPS receptor complex is strongly activated by hexa-acylated lipid A and poorly activated by underacylated lipid A. Here, we report that B. cenocepacia LPS strongly activates human TLR4·MD-2 despite its lipid A having only five acyl chains. Furthermore, we show that aminoarabinose residues in lipid A contribute to TLR4-lipid A interactions, and experiments in a mouse model of LPS-induced endotoxic shock confirmed the proinflammatory potential of B. cenocepacia penta-acylated lipid A. Molecular modeling combined with mutagenesis of TLR4-MD-2 interactive surfaces suggests that longer acyl chains and the aminoarabinose residues in the B. cenocepacia lipid A allow exposure of the fifth acyl chain on the surface of MD-2 enabling interactions with TLR4 and its dimerization. Our results provide a molecular model for activation of the human TLR4·MD-2 complex by penta-acylated lipid A explaining the ability of hypoacylated B. cenocepacia LPS to promote proinflammatory responses associated with the severe pathogenicity of this opportunistic bacterium.

  14. Activation of Human Toll-like Receptor 4 (TLR4)·Myeloid Differentiation Factor 2 (MD-2) by Hypoacylated Lipopolysaccharide from a Clinical Isolate of Burkholderia cenocepacia*

    PubMed Central

    Di Lorenzo, Flaviana; Kubik, Łukasz; Oblak, Alja; Lorè, Nicola Ivan; Cigana, Cristina; Lanzetta, Rosa; Parrilli, Michelangelo; Hamad, Mohamad A.; De Soyza, Anthony; Silipo, Alba; Jerala, Roman; Bragonzi, Alessandra; Valvano, Miguel A.; Martín-Santamaría, Sonsoles; Molinaro, Antonio

    2015-01-01

    Lung infection by Burkholderia species, in particular Burkholderia cenocepacia, accelerates tissue damage and increases post-lung transplant mortality in cystic fibrosis patients. Host-microbe interplay largely depends on interactions between pathogen-specific molecules and innate immune receptors such as Toll-like receptor 4 (TLR4), which recognizes the lipid A moiety of the bacterial lipopolysaccharide (LPS). The human TLR4·myeloid differentiation factor 2 (MD-2) LPS receptor complex is strongly activated by hexa-acylated lipid A and poorly activated by underacylated lipid A. Here, we report that B. cenocepacia LPS strongly activates human TLR4·MD-2 despite its lipid A having only five acyl chains. Furthermore, we show that aminoarabinose residues in lipid A contribute to TLR4-lipid A interactions, and experiments in a mouse model of LPS-induced endotoxic shock confirmed the proinflammatory potential of B. cenocepacia penta-acylated lipid A. Molecular modeling combined with mutagenesis of TLR4-MD-2 interactive surfaces suggests that longer acyl chains and the aminoarabinose residues in the B. cenocepacia lipid A allow exposure of the fifth acyl chain on the surface of MD-2 enabling interactions with TLR4 and its dimerization. Our results provide a molecular model for activation of the human TLR4·MD-2 complex by penta-acylated lipid A explaining the ability of hypoacylated B. cenocepacia LPS to promote proinflammatory responses associated with the severe pathogenicity of this opportunistic bacterium. PMID:26160169

  15. Implicating Receptor Activator of NF-κB (RANK)/RANK Ligand Signalling in Microglial Responses to Toll-Like Receptor Stimuli.

    PubMed

    Kichev, Anton; Eede, Pascale; Gressens, Pierre; Thornton, Claire; Hagberg, Henrik

    2017-01-01

    Inflammation in the perinatal brain caused by maternal or intrauterine fetal infection is now well established as an important contributor to the development of perinatal brain injury. Exposure to inflammatory products can impair perinatal brain development and act as a risk factor for neurological dysfunction, cognitive disorders, cerebral palsy, or preterm birth. Pre-exposure to inflammation significantly exacerbates brain injury caused by hypoxic/ischaemic insult. Tumour necrosis factor (TNF) is a family of cytokines largely involved in inflammation signalling. In our previous study, we identified the importance of TNF-related apoptosis-inducing ligand (TRAIL) signalling in the development of perinatal brain injury. We observed a significant increase in the expression levels of a soluble decoy receptor for TRAIL, osteoprotegerin (OPG). Besides TRAIL, OPG is able to bind the receptor activator of the NF-κB (RANK) ligand (RANKL) and inhibit its signalling. The function of the RANK/RANKL/OPG system in the brain has not come under much scrutiny. The aim of this research study was to elucidate the role of RANK, RANKL, and OPG in microglial responses to the proinflammatory stimuli lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (Poly I:C). Here, we show that RANK signalling is important for regulating the activation of the BV2 microglial cell line. We found that LPS treatment causes a significant decrease in the expression of RANK in the BV2 cell line while significantly increasing the expression of OPG, Toll-like receptor (TLR)3, and the adaptor proteins MyD88 and TRIF. We found that pretreatment of BV2 cells with RANKL for 24 h before the LPS or Poly I:C exposure decreases the expression of inflammatory markers such as inducible nitric oxide synthase and cyclooxygenase. This is accompanied by a decreased expression of the TLR adaptor proteins MyD88 and TRIF, which we observed after RANKL treatment. Similar results were obtained in our experiments with

  16. Activation of c-Src: A hub for exogenous prooxidant-induced activation of Toll-like receptor 4 signaling #

    PubMed Central

    Karki, Rajendra; Zhang, Yan; Igwe, Orisa J.

    2014-01-01

    Summary To study the role of c-Src kinase in prooxidant-induced stimulation of TLR4, we used LPS-EK and MPLA as TLR4 specific agonists and positive controls, and SIN-1 and PPC as prooxidant sources. We used HEK-Blue mTLR4 cell line that is stably transfected with mouse TLR4 and that expresses optimized SEAP reporter under the control of a promoter inducible by NF-κB transcription factor. The level of SEAP released due to TLR4 stimulation was a measure of NF-κB activation. Treatment with either the prooxidants or LPS-EK increased SEAP release and TNF-α production in these cells. These treatments also increased intracellular ROS accumulation with an enhanced production of nitric oxide and TBARS to confirm oxidant stress in these cells. Pretreatment with c-Src kinase inhibitors, PP2 and CA-pY, which act by different mechanisms, decreased these parameters. Pretreatment with SSG, a c-Src activator, enhanced the effects promoted by LPS-EK and prooxidants, and rescued cells from PP2- and Ca-pY-induced effects. Curiously, prooxidants but not TLR4 agonist increased the ratio of TNFα to IL-10 released suggesting that prooxidants can initiate and maintain an imbalance of TNFα production over IL-10. To different degrees, both prooxidant and TLR4 agonist increased formation of c-Src complexes with TLR4 and IκB-α as coimmunoprecipitates. Both prooxidant and TLR4 agonist increased c-Src phosphorylation of Tyr-42 residue in IκB-α, but prooxidant-induced effect was more robust and much longer lasting. Taken together, these studies provide a mechanism whereby c-Src assumes a central role in prooxidant-induced NF-κB activation in TLR4 signaling. Prooxidant-induced activation of TLR4 through c-Src/NFκB/IκB-α coupling provides a basis for a molecular dissection of the initiation and maintenance of sterile inflammation that may serve as a “pathophysiologic primer” for many diseases. PMID:24637265

  17. Expression and activity of Toll-like receptors 1-9 in the human term placenta and changes associated with labor at term.

    PubMed

    Patni, Shalini; Wynen, Louise P; Seager, Anna L; Morgan, Gareth; White, John O; Thornton, Catherine A

    2009-02-01

    Inflammatory processes are involved in the initiation and maintenance of labor, suggesting that Toll-like receptor (TLR) activity within gestation-associated tissues, such as the placenta, might contribute to the process of parturition. Expression of transcripts for TLR1-TLR10 was examined in term (>37 wk of gestation) human placentas collected in the absence of labor (elective caesarean sections; ECS; n = 11) and after the completion of labor (normal vaginal delivery; NVD; n = 12). Placental explants were cultured in the presence of agonists for TLR2, TLR3, TLR4, TLR5, TLR7, TLR8, and TLR9, and cytokine production after 24 h was examined. All placentas expressed transcripts for TLR1-TLR10. Reactivity to all agonists except CpG oligonucleotides was observed, indicating that, other than TLR9, all of the receptors studied yielded functional responses. Placental explants prepared from NVD placentas (n = 17) produced significantly more TNFA in response to lipopolysaccharide (TLR4 agonist) and resiquimod (TLR7/8 agonist) than explants from ECS placentas (n = 17). In contrast, gene expression analysis revealed that only transcripts for TLR2 and TLR5 were significantly elevated in association with labor. The human term placenta expresses a variety of functional TLRs, indicating that this family of receptors has an important role in parturition via as yet undetermined cell types and signaling pathways.

  18. Altered IL-10 and TNF-α production in peripheral blood mononuclear cells of systemic lupus erythematosus patients after Toll-like receptor 2, 4, or 9 activation.

    PubMed

    Tsao, Jeng-Ting; Hsieh, Song-Chou; Chiang, Bor-Luen; Yu, Chia-Li; Lin, Shih-Chang

    2012-09-01

    Toll-like receptor (TLR) activation and cytokines have been linked to the disease flare of systemic lupus erythematosus (SLE), yet the expression profiles of TLRs and cytokines in response to TLR activation in SLE patients remain unclear. In this study, we evaluated the expression levels of IL-10, TNF-α, interferon-γ (IFN-γ), TLR-2, TLR-4, and TLR-9 in peripheral blood mononuclear cells (PBMCs) from SLE patients and normal controls after PBMCs were stimulated with a TLR-2, TLR-4, or TLR-9 agonist. The expression levels in SLE patient group were statistically compared with those in normal control group. It was found in SLE patients that the IL-10 protein production was down-regulated after the activation of TLR-2, TLR-4, or TLR-9 and that the TNF-α protein production was decreased after the activation of TLR-2 or TLR-9, but not TLR-4. However, the transcript levels of IL-10 and TNF-α as well as the protein and transcript levels of IFN-γ were comparable between SLE and normal control groups. In addition, the TLR-2 transcript levels seem to be diminished after the activation of TLR-2, TLR-4, or TLR-9, but TLR-4 and TLR-9 transcript levels were not altered. The results indicate that the cytokine production from PBMCs in response to TLR activation is dysregulated in SLE patients, supporting the possibility that TLR activation may influence lupus disease activity through regulating cytokine production.

  19. Enteroendocrine cells express functional Toll-like receptors.

    PubMed

    Bogunovic, Milena; Davé, Shaival H; Tilstra, Jeremy S; Chang, Diane T W; Harpaz, Noam; Xiong, Huabao; Mayer, Lloyd F; Plevy, Scott E

    2007-06-01

    Intestinal epithelial cells (IECs) provide a physical and immunological barrier against enteric microbial flora. Toll-like receptors (TLRs), through interactions with conserved microbial patterns, activate inflammatory gene expression in cells of the innate immune system. Previous studies of the expression and function of TLRs in IECs have reported varying results. Therefore, TLR expression was characterized in human and murine intestinal sections, and TLR function was tested in an IEC line. TLR1, TLR2, and TLR4 are coexpressed on a subpopulation of human and murine IECs that reside predominantly in the intestinal crypt and belong to the enteroendocrine lineage. An enteroendocrine cell (EEC) line demonstrated a similar expression pattern of TLRs as primary cells. The murine EEC line STC-1 was activated with specific TLR ligands: LPS or synthetic bacterial lipoprotein. In STC-1 cells stimulated with bacterial ligands, NF-kappaB and MAPK activation was demonstrated. Furthermore, the expression of TNF and macrophage inhibitory protein-2 were induced. Additionally, bacterial ligands induced the expression of the anti-inflammatory gene transforming growth factor-beta. LPS triggered a calcium flux in STC-1 cells, resulting in a rapid increase in CCK secretion. Finally, conditioned media from STC-1 cells inhibited the production of nitric oxide and IL-12 p40 by activated macrophages. In conclusion, human and murine IECs that express TLRs belong to the enteroendocrine lineage. Using a murine EEC model, a broad range of functional effects of TLR activation was demonstrated. This study suggests a potential role for EECs in innate immune responses.

  20. Enteroendocrine cells express functional Toll-like receptors

    PubMed Central

    Bogunovic, Milena; Davé, Shaival H.; Tilstra, Jeremy S.; Chang, Diane T. W.; Harpaz, Noam; Xiong, Huabao; Mayer, Lloyd F.; Plevy, Scott E.

    2011-01-01

    Intestinal epithelial cells (IECs) provide a physical and immunological barrier against enteric microbial flora. Toll-like receptors (TLRs), through interactions with conserved microbial patterns, activate inflammatory gene expression in cells of the innate immune system. Previous studies of the expression and function of TLRs in IECs have reported varying results. Therefore, TLR expression was characterized in human and murine intestinal sections, and TLR function was tested in an IEC line. TLR1, TLR2, and TLR4 are coexpressed on a subpopulation of human and murine IECs that reside predominantly in the intestinal crypt and belong to the enteroendocrine lineage. An enteroendocrine cell (EEC) line demonstrated a similar expression pattern of TLRs as primary cells. The murine EEC line STC-1 was activated with specific TLR ligands: LPS or synthetic bacterial lipoprotein. In STC-1 cells stimulated with bacterial ligands, NF-κB and MAPK activation was demonstrated. Furthermore, the expression of TNF and macrophage inhibitory protein-2 were induced. Additionally, bacterial ligands induced the expression of the anti-inflammatory gene transforming growth factor-β. LPS triggered a calcium flux in STC-1 cells, resulting in a rapid increase in CCK secretion. Finally, conditioned media from STC-1 cells inhibited the production of nitric oxide and IL-12 p40 by activated macrophages. In conclusion, human and murine IECs that express TLRs belong to the enteroendocrine lineage. Using a murine EEC model, a broad range of functional effects of TLR activation was demonstrated. This study suggests a potential role for EECs in innate immune responses. PMID:17395901

  1. Roles of toll-like receptors signaling in organ transplantation.

    PubMed

    Li, Ting; Chen, Guodong; Zhang, Zheng

    2011-12-01

    Organ transplantation is the gold standard of treatment for patients with end-stage organ failure. However, transplant recipients must take immunosuppressive drugs lifelong to fight against rejection, which is inevitably caused by the recipient's immune system in response to transplanted foreign tissues. Despite advances in the prevention of acute rejection, it is still a significant and potentially devastating complication of solid organ transplantation. Moreover, chronic allograft dysfunction as a result of acute and chronic alloimmune-mediated injury still develops in a majority of transplant recipients regardless of continuous immunosuppression. While host adaptive immune responses elicited by T lymphocytes are primarily responsible for allotransplant rejection, emerging evidence supports an important role of the innate immune system in the development of organ rejection. Innate immune recognition is initiated by a set of diverse receptors that belong to different protein families including the family of toll-like receptors (TLRs). TLR signaling is a highly specialized system that can identify a variety of microbial and endogenous mediators, and activate the innate immune system in response to danger. The discovery of TLRs over the past 10 years has started a new era in understanding the molecular events that initiate and regulate the inflammatory response following organ transplantation. They influence the adaptive immune reactions and contribute to ischemic reperfusion injury, acute and chronic allograft rejection, and tolerance induction. Their role as potential targets for therapeutic intervention has just begun to be appreciated. In this article, we summarize the structural and functional characteristics of TLRs and their ligands. We focus on the studies to define the roles of TLRs in ischemic reperfusion injury, allotransplant rejection, and immune regulation in both animal models and clinical transplantation.

  2. VB-201, an oxidized phospholipid small molecule, inhibits CD14- and Toll-like receptor-2-dependent innate cell activation and constrains atherosclerosis

    PubMed Central

    Mendel, I; Feige, E; Yacov, N; Salem, Y; Levi, I; Propheta-Meiran, O; Shoham, A; Ishai, E; George, J; Harats, D; Breitbart, E

    2014-01-01

    Atherosclerosis is an inflammatory disease of the vascular wall. Activated monocytes and dendritic cells (DC) in the intima layer of the vasculature promote atherogenesis. Toll-like receptor (TLR)-2 and TLR-4, which are predominantly expressed on these cells and mediate their activation, are essential for atherosclerosis development. In this study we demonstrate that VB-201, an oxidized phospholipid (Ox-PL) small molecule, inhibits TLR signalling restricted to TLR-2 and TLR-4 in human and mouse monocytes and DC. Mechanistically, we show that VB-201 binds directly to TLR-2 and CD14, the TLR-4 co-receptor, to impair downstream cues and cytokine production. In a rabbit model, oral administration of VB-201 constrained atherosclerosis progression. This effect was not due to reduced cholesterol abundance, as hyperlipidaemia was sustained. We suggest that VB-201 may counter inflammation where TLR-2 and/or CD14 complicity is essential, and is therefore beneficial for the treatment of atherosclerosis. PMID:24116867

  3. A new benzenediamine derivative modulates Toll-like receptors-induced myeloid dendritic cells activation and ameliorates lupus-like syndrome in MRLlpr/lpr mice.

    PubMed

    Gao, Sheng; Gong, Yongsheng; Ji, Jianjian; Yuan, Linbo; Han, Liping; Guo, Yimin; Fan, Xiaofang; Hou, Yayi; Hua, Chunyan

    2017-03-23

    Modulators of the over-activation of myeloid dendritic cells (mDCs) by Toll-like receptors (TLRs) have an advantage in the treatment of systemic lupus erythematosus (SLE). This study was designed to evaluate the effects of FC-99, a novel benzenediamine derivative, on TLR-induced activation of mDCs, and to assess the efficacy of FC-99 in a murine model of SLE. In vitro, FC-99 inhibited the phenotypic (CD40 and MHC-II) and functional activation (IL-12 and CXCL10) of mDCs induced by TLR ligands. In vivo, MRLlpr/lpr mice displayed renal diseases associated with increased levels of proteinuria and immunoglobulin, which were ameliorated by FC-99. Enhanced accumulation and activation of mDCs in lymphoid organs was also impaired by FC-99. Additionally, FC-99 inhibited the activation of IκB-α and upregulated the expression of TNFα-induced protein 3 (TNFAIP3) in vitro and in vivo. These results indicate that FC-99 modulates TLR-induced activation of mDCs and ameliorates lupus-like syndrome in MRLlpr/lpr mice. This effect is closely associated with the inhibition of IκB-α and upregulation of TNFAIP3.

  4. Toll-like receptor 4 dependent responses to lung injury in a murine model of pulmonary contusion

    PubMed Central

    Hoth, J. Jason; Wells, Jonathan D.; Brownlee, Noel A.; Hiltbold, Elizabeth M.; Meredith, J. Wayne; McCall, Charles E.; Yoza, Barbara K.

    2010-01-01

    Blunt chest trauma resulting in pulmonary contusion with an accompanying acute inflammatory response is a common but poorly understood injury. We previously demonstrated that toll-like receptor 2 participates in the inflammatory response to lung injury. We hypothesized that the toll-like receptor 4, in a MyD88-dependent manner, may also participate in the response to lung injury. To investigate this, we used a model of pulmonary contusion in the mouse that is similar to that observed clinically in humans and evaluated post injury lung function, pulmonary neutrophil recruitment and the systemic innate immune response. Comparisons were made between wild type mice and mice deficient in toll like receptor 4 or MyD88. We found toll-like receptor 4 dependent responses to pulmonary contusion that include hypoxemia, edema, and neutrophil infiltration. Increased expression of interleukin 6 and chemokine (C-X-C motif) ligand-1 in the bronchoalveolar lavage and serum was also dependent on TLR4 activation. We further demonstrated that these responses to pulmonary contusion were dependent on MyD88, an adapter protein in the signal transduction pathway mediated by toll-like receptors. These results show that toll-like receptors have a primary role in the response to acute lung injury. Lung inflammation and systemic innate immune responses are dependent on toll-like receptor activation by pulmonary contusion. PMID:18665044

  5. Unique Toll-Like Receptor 4 Activation by NAMPT/PBEF Induces NFκB Signaling and Inflammatory Lung Injury

    PubMed Central

    Camp, Sara M.; Ceco, Ermelinda; Evenoski, Carrie L.; Danilov, Sergei M.; Zhou, Tong; Chiang, Eddie T.; Moreno-Vinasco, Liliana; Mapes, Brandon; Zhao, Jieling; Gursoy, Gamze; Brown, Mary E.; Adyshev, Djanybek M.; Siddiqui, Shahid S.; Quijada, Hector; Sammani, Saad; Letsiou, Eleftheria; Saadat, Laleh; Yousef, Mohammed; Wang, Ting; Liang, Jie; Garcia, Joe G. N.

    2015-01-01

    Ventilator-induced inflammatory lung injury (VILI) is mechanistically linked to increased NAMPT transcription and circulating levels of nicotinamide phosphoribosyl-transferase (NAMPT/PBEF). Although VILI severity is attenuated by reduced NAMPT/PBEF bioavailability, the precise contribution of NAMPT/PBEF and excessive mechanical stress to VILI pathobiology is unknown. We now report that NAMPT/PBEF induces lung NFκB transcriptional activities and inflammatory injury via direct ligation of Toll–like receptor 4 (TLR4). Computational analysis demonstrated that NAMPT/PBEF and MD-2, a TLR4-binding protein essential for LPS-induced TLR4 activation, share ~30% sequence identity and exhibit striking structural similarity in loop regions critical for MD-2-TLR4 binding. Unlike MD-2, whose TLR4 binding alone is insufficient to initiate TLR4 signaling, NAMPT/PBEF alone produces robust TLR4 activation, likely via a protruding region of NAMPT/PBEF (S402-N412) with structural similarity to LPS. The identification of this unique mode of TLR4 activation by NAMPT/PBEF advances the understanding of innate immunity responses as well as the untoward events associated with mechanical stress-induced lung inflammation. PMID:26272519

  6. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-κB.

    PubMed

    Chow, Amy; Zhou, Weiying; Liu, Liang; Fong, Miranda Y; Champer, Jackson; Van Haute, Desiree; Chin, Andrew R; Ren, Xiubao; Gugiu, Bogdan Gabriel; Meng, Zhipeng; Huang, Wendong; Ngo, Vu; Kortylewski, Marcin; Wang, Shizhen Emily

    2014-07-18

    Growing evidence links tumor progression with chronic inflammatory processes and dysregulated activity of various immune cells. In this study, we demonstrate that various types of macrophages internalize microvesicles, called exosomes, secreted by breast cancer and non-cancerous cell lines. Although both types of exosomes targeted macrophages, only cancer-derived exosomes stimulated NF-κB activation in macrophages resulting in secretion of pro-inflammatory cytokines such as IL-6, TNFα, GCSF, and CCL2. In vivo mouse experiments confirmed that intravenously injected exosomes are efficiently internalized by macrophages in the lung and brain, which correlated with upregulation of inflammatory cytokines. In mice bearing xenografted human breast cancers, tumor-derived exosomes were internalized by macrophages in axillary lymph nodes thereby triggering expression of IL-6. Genetic ablation of Toll-like receptor 2 (TLR2) or MyD88, a critical signaling adaptor in the NF-κB pathway, completely abolished the effect of tumor-derived exosomes. In contrast, inhibition of TLR4 or endosomal TLRs (TLR3/7/8/9) failed to abrogate NF-κB activation by exosomes. We further found that palmitoylated proteins present on the surface of tumor-secreted exosomes contributed to NF-κB activation. Thus, our results highlight a novel mechanism used by breast cancer cells to induce pro-inflammatory activity of distant macrophages through circulating exosomal vesicles secreted during cancer progression.

  7. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-κB

    PubMed Central

    Chow, Amy; Zhou, Weiying; Liu, Liang; Fong, Miranda Y.; Champer, Jackson; Van Haute, Desiree; Chin, Andrew R.; Ren, Xiubao; Gugiu, Bogdan Gabriel; Meng, Zhipeng; Huang, Wendong; Ngo, Vu; Kortylewski, Marcin; Wang, Shizhen Emily

    2014-01-01

    Growing evidence links tumor progression with chronic inflammatory processes and dysregulated activity of various immune cells. In this study, we demonstrate that various types of macrophages internalize microvesicles, called exosomes, secreted by breast cancer and non-cancerous cell lines. Although both types of exosomes targeted macrophages, only cancer-derived exosomes stimulated NF-κB activation in macrophages resulting in secretion of pro-inflammatory cytokines such as IL-6, TNFα, GCSF, and CCL2. In vivo mouse experiments confirmed that intravenously injected exosomes are efficiently internalized by macrophages in the lung and brain, which correlated with upregulation of inflammatory cytokines. In mice bearing xenografted human breast cancers, tumor-derived exosomes were internalized by macrophages in axillary lymph nodes thereby triggering expression of IL-6. Genetic ablation of Toll-like receptor 2 (TLR2) or MyD88, a critical signaling adaptor in the NF-κB pathway, completely abolished the effect of tumor-derived exosomes. In contrast, inhibition of TLR4 or endosomal TLRs (TLR3/7/8/9) failed to abrogate NF-κB activation by exosomes. We further found that palmitoylated proteins present on the surface of tumor-secreted exosomes contributed to NF-κB activation. Thus, our results highlight a novel mechanism used by breast cancer cells to induce pro-inflammatory activity of distant macrophages through circulating exosomal vesicles secreted during cancer progression. PMID:25034888

  8. Mycobacterium leprae Activates Toll-Like Receptor-4 Signaling and Expression on Macrophages Depending on Previous Bacillus Calmette-Guerin Vaccination.

    PubMed

    Polycarpou, Anastasia; Holland, Martin J; Karageorgiou, Ioannis; Eddaoudi, Ayad; Walker, Stephen L; Willcocks, Sam; Lockwood, Diana N J

    2016-01-01

    Toll-like receptor (TLR)-1 and TLR2 have been shown to be receptors for Mycobacterium leprae (M. leprae), yet it is unclear whether M. leprae can signal through alternative TLRs. Other mycobacterial species possess ligands for TLR4 and genetic association studies in human populations suggest that people with TLR4 polymorphisms may be protected against leprosy. Using human embryonic kidney (HEK)-293 cells co-transfected with TLR4, we demonstrate that M. leprae activates TLR4. We used human macrophages to show that M. leprae stimulation of cytokine production is diminished if pre-treated with TLR4 neutralizing antibody. TLR4 protein expression was up-regulated on macrophages derived from non-bacillus Calmette-Guerin (BCG) vaccinated healthy volunteers after incubation with M. leprae, whereas it was down-regulated in macrophages derived from BCG-vaccinated donors. Finally, pre-treatment of macrophages derived from BCG-naive donors with BCG reversed the effect of M. leprae on TLR4 expression. This may be a newly described phenomenon by which BCG vaccination stimulates "non-specific" protection to the human immune system.

  9. Activation of epidermal toll-like receptor 2 enhances tight junction function – Implications for atopic dermatitis and skin barrier repair

    PubMed Central

    Kuo, I-Hsin; Carpenter-Mendini, Amanda; Yoshida, Takeshi; McGirt, Laura Y.; Ivanov, Andrei I.; Barnes, Kathleen C.; Gallo, Richard L.; Borkowski, Andrew W.; Yamasaki, Kenshi; Leung, Donald Y.; Georas, Steve N.; De Benedetto, Anna; Beck, Lisa A.

    2012-01-01

    Atopic dermatitis (AD) is characterized by epidermal tight junction (TJ) defects and a propensity for Staphylococcus aureus (S. aureus) skin infections. S. aureus is sensed by many pattern recognition receptors including toll-like receptor (TLR) 2. We hypothesized that an effective innate immune response will include skin barrier repair and that this response is impaired in AD subjects. S. aureus-derived peptidoglycan (PGN) and synthetic TLR2 agonists enhanced TJ barrier and increased expression of TJ proteins, CLDN1, CLDN23, occludin and ZO-1 in primary human keratinocytes. A TLR2 agonist enhanced skin barrier recovery in human epidermis wounded by tape-stripping. Tlr2−/− mice had a delayed and incomplete barrier recovery following tape-stripping. AD subjects had reduced epidermal TLR2 expression as compared to nonatopic (NA) subjects, which inversely correlated (r= 0.654, P= 0.0004) with transepidermal water loss (TEWL). These observations indicate that TLR2 activation enhances skin barrier in murine and human skin and is an important part of a wound repair response. Reduced epidermal TLR2 expression observed in AD patients may play a role in their incompetent skin barrier. PMID:23223142

  10. Bacterial sphingophospholipids containing non-hydroxy fatty acid activate murine macrophages via Toll-like receptor 4 and stimulate bacterial clearance.

    PubMed

    Fujiwara, Nagatoshi; Porcelli, Steven A; Naka, Takashi; Yano, Ikuya; Maeda, Shinji; Kuwata, Hirotaka; Akira, Shizuo; Uematsu, Satoshi; Takii, Takemasa; Ogura, Hisashi; Kobayashi, Kazuo

    2013-06-01

    Sphingobacterium spiritivorum has five unusual sphingophospholipids (SPLs). Our previous study determined the complete chemical structures of these SPLs. The compositions of the long-chain bases/fatty acids in the ceramide portion, isoheptadecasphingosine/isopentadecanoate or isoheptadecasphingosine/2-hydroxy isopentadecanoate, are characteristic. The immune response against bacterial lipid components is considered to play important roles in microbial infections. It is reported that several bacterial sphingolipids composed of ceramide are recognized by CD1-restricted T and NKT cells and that a non-peptide antigen is recognized by γδ T cells. In this study, we demonstrated that these bacterial SPLs activated murine bone marrow macrophages (BMMs) via Toll-like receptor (TLR) 4 but not TLR2, although they slightly activated CD1d-restricted NKT and γδT cells. Interestingly, this TLR 4-recognition pathway of bacterial SPLs involves the fatty acid composition of ceramide in addition to the sugar moiety. A non-hydroxy fatty acid composed of ceramide was necessary to activate murine BMMs. The bacterial survival was significantly higher in TLR4-KO mice than in TLR2-KO and wild-type mice. The results indicate that activation of the TLR4-dependent pathway of BMMs by SPLs induced an innate immune response and contributed to bacterial clearance.

  11. Mapping of the toll like receptor family in channel catfish, Ictalurus punctatus

    USDA-ARS?s Scientific Manuscript database

    The Toll Like Receptors (TLRs) are key elements of the innate response to pathogens. They recognize Pathogen Associated Molecular Patterns (PAMPs) and activate the host defense responses. As such, they are candidate genes for disease resistance. In teleost, eight homologs of the endothermic vertebra...

  12. Toll-like receptor 4 signalling attenuates experimental allergic conjunctivitis.

    PubMed

    Chung, S-H; Choi, S H; Cho, K J; Joo, C-K

    2011-05-01

    Allergic conjunctivitis from an allergen-driven T helper type 2 (Th2) response is characterized by conjunctival eosinophilic infiltration. Association between signalling through Toll-like receptor 4 (TLR-4) and adaptive immune responses has been observed in allergic airway disease. We examined whether administration of bacterial lipopolysaccharide (LPS), a prototypic bacterial product that activates immune cells via TLR-4, could affect the development of allergic conjunctivitis and modify the immune response to ovalbumin (OVA) allergen in an experimental allergic conjunctivitis (EAC) model. Mice were challenged with two doses of OVA via conjunctival sac after systemic challenge with OVA in alum. Several indicators for allergy were evaluated in wild-type and TLR-4(-/-) mice with or without adding of different doses of LPS into OVA in alum. Mice challenged with OVA via conjunctival sac following systemic challenge with OVA in alum had severe allergic conjunctivitis. Of interest, LPS administration markedly suppressed immunoglobulin (Ig)E-mediated and eosinophil-dependent conjunctival inflammation. In addition, mice sensitized with OVA plus LPS had less interleukin (IL)-4, IL-5 and eotaxin secretion than mice sensitized with OVA only. The suppression of allergic response by LPS administration was due to Th1 shift. In contrast, the presence of LPS during sensitization with OVA had no effect on severity of allergic conjunctivitis and Th2 responses in TLR4-4(-/-) mice. Our findings demonstrate, for the first time, that LPS suppresses Th2 responses via the TLR-4-dependent pathway in the EAC model. © 2011 The Authors; Clinical and Experimental Immunology © 2011 British Society for Immunology.

  13. Toll-like Receptors of the Ascidian Ciona intestinalis

    PubMed Central

    Sasaki, Naoko; Ogasawara, Michio; Sekiguchi, Toshio; Kusumoto, Shoichi; Satake, Honoo

    2009-01-01

    Key transmembrane proteins in the innate immune system, Toll-like receptors (TLRs), have been suggested to occur in the genome of non-mammalian organisms including invertebrates. However, authentic invertebrate TLRs have been neither structurally nor functionally investigated. In this paper, we originally present the structures, localization, ligand recognition, activities, and inflammatory cytokine production of all TLRs of the ascidian Ciona intestinalis, designated as Ci-TLR1 and Ci-TLR2. The amino acid sequence of Ci-TLR1 and Ci-TLR2 were found to possess unique structural organization with moderate sequence similarity to functionally characterized vertebrate TLRs. ci-tlr1 and ci-tlr2 genes were expressed predominantly in the stomach and intestine as well as in hemocytes. Ci-TLR1 and Ci-TLR2 expressed in HEK293 cells, unlike vertebrate TLRs, were localized to both the plasma membrane and endosomes. Intriguingly, both Ci-TLR1 and Ci-TLR2 stimulate NF-κB induction in response to multiple pathogenic ligands such as double-stranded RNA, and bacterial cell wall components that are differentially recognized by respective vertebrate TLRs, revealing that Ci-TLRs recognize broader pathogen-associated molecular patterns than vertebrate TLRs. The Ci-TLR-stimulating pathogenic ligands also induced the expression of Ci-TNFα in the intestine and stomach where Ci-TLRs are expressed. These results provide evidence that the TLR-triggered innate immune systems are essentially conserved in ascidians, and that Ci-TLRs possess “hybrid” biological and immunological functions, compared with vertebrate TLRs. Moreover, it is presumed that chordate TLR ancestors also acquired the Ci-TLR-like multiple cellular localization and pathogen-associated molecular pattern recognition. PMID:19651780

  14. Transgenic cloned sheep overexpressing ovine toll-like receptor 4.

    PubMed

    Deng, Shoulong; Li, Guiguan; Zhang, Jinlong; Zhang, Xiaosheng; Cui, Maosheng; Guo, Yong; Liu, Guoshi; Li, Guangpeng; Feng, Jianzhong; Lian, Zhengxing

    2013-07-01

    An ovine fetal fibroblast cell line highly expressing TLR4 was established by inserting TLR4 into a reconstructive p3S-LoxP plasmid. Transgenic sheep overexpressing TLR4 were produced by transferring TLR4-transfected fetal fibroblasts into metaphase (M)II-stage enucleated oocytes (using SCNT). Because reconstructed embryos derived from MII-stage enucleated oocytes matured in vivo using a delayed-activated method had a higher pregnancy rate (18.52%) than that from MII-stage enucleated oocytes matured in vitro, the former procedure was used. Nine TLR4-transgenic live births were confirmed using polymerase chain reaction and Southern blot analysis. Increased expression of TLR4 at mRNA and protein levels in ear tissues of transgenic lambs were verified using reverse transcription polymerase chain reaction and immunohistochemistry, respectively. More toll-like receptor 4 protein was expressed by peripheral blood monocytes and/or macrophages collected from 3-month-old TLR4-transgenic than nontransgenic lambs at 0, 1, and 4 hours after lipopolysaccharide stimulation. Furthermore, interferon-γ and tumor necrosis factor α secreted by monocytes and/or macrophages of TLR4-transgenic lambs were significantly higher at 1 hour. Therefore, lipopolysaccharide-induced inflammatory responses from monocytes and/or macrophages occurred sooner in TLR4-transgenic lambs, consistent with an enhanced host immune response. In conclusion, transgenic sheep overexpressing TLR4 are a primary model to investigate the role of transgenic animals in disease resistance and have potential for breeding sheep with disease resistance.

  15. Toll-like receptor 4 signalling attenuates experimental allergic conjunctivitis

    PubMed Central

    Chung, S-H; Choi, S H; Cho, K J; Joo, C-K

    2011-01-01

    Allergic conjunctivitis from an allergen-driven T helper type 2 (Th2) response is characterized by conjunctival eosinophilic infiltration. Association between signalling through Toll-like receptor 4 (TLR-4) and adaptive immune responses has been observed in allergic airway disease. We examined whether administration of bacterial lipopolysaccharide (LPS), a prototypic bacterial product that activates immune cells via TLR-4, could affect the development of allergic conjunctivitis and modify the immune response to ovalbumin (OVA) allergen in an experimental allergic conjunctivitis (EAC) model. Mice were challenged with two doses of OVA via conjunctival sac after systemic challenge with OVA in alum. Several indicators for allergy were evaluated in wild-type and TLR-4−/− mice with or without adding of different doses of LPS into OVA in alum. Mice challenged with OVA via conjunctival sac following systemic challenge with OVA in alum had severe allergic conjunctivitis. Of interest, LPS administration markedly suppressed immunoglobulin (Ig)E-mediated and eosinophil-dependent conjunctival inflammation. In addition, mice sensitized with OVA plus LPS had less interleukin (IL)-4, IL-5 and eotaxin secretion than mice sensitized with OVA only. The suppression of allergic response by LPS administration was due to Th1 shift. In contrast, the presence of LPS during sensitization with OVA had no effect on severity of allergic conjunctivitis and Th2 responses in TLR4-4−/− mice. Our findings demonstrate, for the first time, that LPS suppresses Th2 responses via the TLR-4-dependent pathway in the EAC model. PMID:21391988

  16. Toll-like Receptor 7 Rapidly Relaxes Human Airways

    PubMed Central

    Scott, Gregory D.; Proskocil, Becky J.; Fryer, Allison D.; Jacoby, David B.; Kaufman, Elad H.

    2013-01-01

    Rationale: Toll-like receptors (TLRs) 7 and 8 detect respiratory virus single-stranded RNA and trigger an innate immune response. We recently described rapid TLR7-mediated bronchodilation in guinea pigs. Objectives: To characterize TLR7 expression and TLR7-induced airway relaxation in humans and in eosinophilic airway inflammation in guinea pigs. To evaluate the relaxant effects of other TLRs. Methods: Human airway smooth muscle strips were contracted with methacholine in vitro, and responses to TLR7 and TLR8 agonists were assessed. TLR7-mediated nitric oxide production was measured using a fluorescent indicator, and TLR7 expression was characterized using immunofluorescence. TLR7 signaling was also evaluated in ovalbumin-challenged guinea pigs. Measurements and Main Results: The TLR7 agonist imiquimod (R837) caused rapid dose-dependent relaxation of methacholine-contracted human airways in vitro. This was blocked by the TLR7 antagonist IRS661 and by inhibiting nitric oxide production but not by inhibiting prostaglandin production. TLR7 activation markedly increased fluorescence of a nitric oxide detector. TLR7 was expressed on airway nerves, but not airway smooth muscle, implicating airway nerves as the source of TLR7-induced nitric oxide production. TLR7-mediated relaxation persisted in inflamed guinea pigs airways in vivo. The TLR8 agonists polyuridylic acid and polyadenylic acid also relaxed human airways, and this was not blocked by the TLR7 antagonist or by blocking nitric oxide or prostaglandin production. No other TLRs relaxed the airways. Conclusions: TLR7 is expressed on airway nerves and mediates relaxation of human and animal airways through nitric oxide production. TLR7-mediated bronchodilation may be a new therapeutic strategy in asthma. PMID:23924358

  17. Immunobiotic Lactobacillus jensenii elicits anti-inflammatory activity in porcine intestinal epithelial cells by modulating negative regulators of the Toll-like receptor signaling pathway.

    PubMed

    Shimazu, Tomoyuki; Villena, Julio; Tohno, Masanori; Fujie, Hitomi; Hosoya, Shoichi; Shimosato, Takeshi; Aso, Hisashi; Suda, Yoshihito; Kawai, Yasushi; Saito, Tadao; Makino, Seiya; Ikegami, Shuji; Itoh, Hiroyuki; Kitazawa, Haruki

    2012-01-01

    The effect of Lactobacillus jensenii TL2937 on the inflammatory immune response triggered by enterotoxigenic Escherichia coli (ETEC) and lipopolysaccharide (LPS) in a porcine intestinal epitheliocyte cell line (PIE cells) was evaluated. Challenges with ETEC or LPS elicited Toll-like receptor 4 (TLR4)-mediated inflammatory responses in cultured PIE cells, indicating that our cell line may be useful for studying inflammation in the guts of weaning piglets. In addition, we demonstrated that L. jensenii TL2937 attenuated the expression of proinflammatory cytokines and chemokines caused by ETEC or LPS challenge by downregulating TLR4-dependent nuclear factorκB (NF-κB) and mitogen-activated protein kinase (MAPK) activation. Furthermore, we demonstrated that L. jensenii TL2937 stimulation of PIE cells upregulated three negative regulators of TLRs: A20, Bcl-3, and MKP-1, deepening the understanding of an immunobiotic mechanism of action. L. jensenii TL2937-mediated induction of negative regulators of TLRs would have a substantial physiological impact on homeostasis in PIE cells, because excessive TLR inflammatory signaling would be downregulated. These results indicated that PIE cells can be used to study the mechanisms involved in the protective activity of immunobiotics against intestinal inflammatory damage and may provide useful information for the development of new immunologically functional feeds that help to prevent inflammatory intestinal disorders, including weaning-associated intestinal inflammation.

  18. Inhibition of indoleamine 2,3-dioxygenase activity enhances the anti-tumour effects of a Toll-like receptor 7 agonist in an established cancer model.

    PubMed

    Ito, Hiroyasu; Ando, Tatsuya; Arioka, Yuko; Saito, Kuniaki; Seishima, Mitsuru

    2015-04-01

    Toll-like receptor (TLR) agonists have been shown to have anti-tumour activity in basic research and clinical studies. However, TLR agonist monotherapy does not sufficiently eliminate tumours. Activation of the innate immune response by TLR agonists is effective at driving adaptive immunity via interleukin-12 (IL-12) or IL-1, but is counteracted by the simultaneous induction of immunosuppressive cytokines and other molecules, including IL-10, transforming growth factor-β, and indoleamine 2,3-dioxygenase (IDO). In the present study, we evaluated the anti-cancer effect of the TLR7 agonist, imiquimod (IMQ), in the absence of IDO activity. The administration of IMQ in IDO knockout (KO) mice inoculated with tumour cells significantly suppressed tumour progression compared with that in wild-type (WT) mice, and improved the survival rate. Moreover, injection with IMQ enhanced the tumour antigen-specific T helper type 1 response in IDO-KO mice with tumours. Combination therapy with IMQ and an IDO inhibitor also significantly inhibited tumour growth. Our results indicated that the enhancement of IDO expression with TLR agonists in cancer treatment might impair host anti-tumour immunity while the inhibition of IDO could enhance the therapeutic efficacy of TLR agonists via the increase of T helper type 1 immune response. © 2014 John Wiley & Sons Ltd.

  19. Toll-Like Receptors: Role in Dermatological Disease

    PubMed Central

    Hari, Aswin; Flach, Tracy L.; Shi, Yan; Mydlarski, P. Régine

    2010-01-01

    Toll-like receptors (TLRs) are a class of conserved receptors that recognize pathogen-associated molecular patterns (PAMPs) present in microbes. In humans, at least ten TLRs have been identified, and their recognition targets range from bacterial endotoxins to lipopeptides, DNA, dsRNA, ssRNA, fungal products, and several host factors. Of dermatological interest, these receptors are expressed on several skin cells including keratinocytes, melanocytes, and Langerhans cells. TLRs are essential in identifying microbial products and are known to link the innate and adaptive immune systems. Over the years, there have been significant advances in our understanding of TLRs in skin inflammation, cutaneous malignancies, and defence mechanisms. In this paper, we will describe the association between TLRs and various skin pathologies and discuss proposed TLR therapeutics. PMID:20847936

  20. The role of toll-like receptor mediated signalling in the pathogenesis of multiple myeloma.

    PubMed

    Abdi, Jahangir; Engels, Ferdi; Garssen, Johan; Redegeld, Frank

    2011-11-01

    Toll-like receptors are critical structures in sensing the invading pathogens via conserved moieties termed pathogen associated molecular patterns and in directing the innate and adaptive immune responses. Studies have shown that Toll-like receptors are not limited to normal immune cells but are expressed on tumour cells as well, including those of lymphoid neoplasms particularly B-cell malignancies, multiple myeloma and chronic lymphocytic leukemia. Neoplastic plasma cells in multiple myeloma usually show a different pattern of Toll-like receptor expression compared to normal B cells. These receptors on multiple myeloma cells, have been indicated to have a role in their proliferation, differentiation and survival, probably through induction of autocrine IL-6 secretion, and in their immunomodulatory functions. Moreover, it is speculated that these molecules may contribute to osteolytic lesions through activation of osteoclasts, and to angiogenesis through induction of pro-angiogenic factors. Knowledge on Toll-like receptor signalling in the biology of malignant plasma cells or their cellular microenvironment may give new insights into pathogenesis of multiple myeloma and may open new avenues for the therapy of this disease. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Local activation of uterine Toll-like receptor 2 and 2/6 decreases embryo implantation and affects uterine receptivity in mice.

    PubMed

    Sanchez-Lopez, Javier Arturo; Caballero, Ignacio; Montazeri, Mehrnaz; Maslehat, Nasim; Elliott, Sarah; Fernandez-Gonzalez, Raul; Calle, Alexandra; Gutierrez-Adan, Alfonso; Fazeli, Alireza

    2014-04-01

    Embryo implantation is a complex interaction between maternal endometrium and embryonic structures. Failure to implant is highly recurrent and impossible to diagnose. Inflammation and infections in the female reproductive tract are common causes of infertility, embryo loss, and preterm labor. The current work describes how the activation of endometrial Toll-like receptor (TLR) 2 and 2/6 reduces embryo implantation chances. We developed a morphometric index to evaluate the effects of the TLR 2/6 activation along the uterine horn (UH). TLR 2/6 ligation reduced the endometrial myometrial and glandular indexes and increased the luminal index. Furthermore, TLR 2/6 activation increased the proinflammatory cytokines such as interleukin (IL)-1beta and monocyte chemotactic protein (MCP)-1 in UH lavages in the preimplantation day and IL-1 receptor antagonist in the implantation day. The engagement of TLR 2/6 with its ligand in the UH during embryo transfer severely affected the rate of embryonic implantation (45.00% ± 6.49% vs. 16.69% ± 5.01%, P < 0.05, control vs. test, respectively). Furthermore, this interference with the embryo implantation process was verified using an in vitro model of human embryo implantation where trophoblast spheroids failed to adhere to a monolayer of TLR 2- and TLR 2/6-activated endometrial cells. The inhibition of TLR receptors 2 and 6 in the presence of their specific ligands restored the ability of the spheroids to bind to the endometrial cells. In conclusion, the activation of the innate immune system in the uterus at the time of implantation interfered with the endometrial receptivity and reduced the chances of implantation success.

  2. Toll-like receptor-2-activating bifidobacteria strains differentially regulate inflammatory cytokines in the porcine intestinal epithelial cell culture system: finding new anti-inflammatory immunobiotics.

    PubMed

    Fujie, Hitomi; Villena, Julio; Tohno, Masanori; Morie, Kyoko; Shimazu, Tomoyuki; Aso, Hisashi; Suda, Yoshihito; Shimosato, Takeshi; Iwabuchi, Noriyuki; Xiao, Jin-Zhong; Yaeshima, Tomoko; Iwatsuki, Keiji; Saito, Tadao; Numasaki, Muneo; Kitazawa, Haruki

    2011-10-01

    A total of 23 strains of bifidobacteria taxonomically belonging to five species were tested for their potent immunomodulatory effect using a combination of two methods: the NF-κB-reporter assay using a toll-like receptor 2-expressing transfectant (HEK(pTLR2) system) and the mitogenic assay using porcine Peyer's patches immunocompetent cells. Among the four preselected strains from different immunomodulatory groups, Bifidobacterium breve MCC-117 was able to efficiently modulate the inflammatory response triggered by enterotoxigenic Escherichia coli (ETEC) in a porcine intestinal epithelial (PIE) cell line. Moreover, using PIE cells and swine Peyer's patches immunocompetent cell co-culture system, we demonstrated that the immunoregulatory effect of B. breve MCC-117 was related to the capacity of the strain to influence PIE and immune cell interactions, leading to the stimulation of regulatory T cells. The results suggested that bifidobacteria that express high activity in both the HEK(pTLR2) and the mitogenic assays may behave like potential anti-inflammatory strains. The combination of the HEK(pTLR2) system, the evaluation of mitogenic activity and PIE cells will be of value for the development of new immunologically functional foods and feeds that could prevent inflammatory intestinal disorders. Although our findings should be proven in appropriate experiments in vivo, the results of the present work provide a scientific rationale for the use of B. breve MCC-117 to prevent ETEC-induced intestinal inflammation.

  3. The toll-like receptor ligands Hiltonol(®) (polyICLC) and imiquimod effectively activate antigen-specific immune responses in Tasmanian devils (Sarcophilus harrisii).

    PubMed

    Patchett, Amanda L; Tovar, Cesar; Corcoran, Lynn M; Lyons, A Bruce; Woods, Gregory M

    2017-11-01

    Devil facial tumour disease (DFTD) describes two genetically distinct transmissible tumours that pose a significant threat to the survival of the Tasmanian devil. A prophylactic vaccine could protect devils from DFTD transmission. For this vaccine to be effective, potent immune adjuvants will be required. Toll-like receptors (TLRs) promote robust immune responses in human cancer studies and are highly conserved across mammalian species. In this study, we investigated the proficiency of TLR ligands for immune activation in the Tasmanian devil using in vitro mononuclear cell stimulations and in vivo immunisation trials with a model antigen. We identified two such TLR ligands, polyICLC (Hiltonol(®)) (TLR3) and imiquimod (TLR7), that in combination induced significant IFNγ production from Tasmanian devil lymphocytes in vitro. Immunisation with these ligands and the model antigen keyhole limpet haemocyanin activated robust antigen-specific primary, secondary and long-term memory IgG responses. Our results support the conserved nature of TLR signaling across mammalian species. PolyICLC and imiquimod will be trialed as immune adjuvants in future DFTD vaccine formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Engagement of Toll-like receptor 2 enhances interleukin (IL)-17(+) autoreactive T cell responses via p38 mitogen-activated protein kinase signalling in dendritic cells.

    PubMed

    Wei, R; Dong, L; Xiao, Q; Sun, D; Li, X; Nian, H

    2014-11-01

    Functional analysis of single Toll-like receptors (TLRs) in vivo is necessary to understand how they shape the ocular inflammation involved in uveitis. In this study we explored the role and mechanisms of TLR-2 agonists on the autoreactive T helper type 17 (Th17) response in experimental autoimmune uveitis (EAU). Treatment by peptidoglycan (PGN), a specific TLR-2 agonist, remarkably increased mRNA levels of Th17-lineage genes interleukin (IL)-17A, IL-21 and RAR-related orphan receptor (ROR)γt and promoted antigen-specific Th17 response in EAU mice. A mixture of PGN and interphotoreceptor retinoid-binding protein peptide (IRBP161-180 ) could effectively induce EAU in the absence of complete Freund's adjuvant (CFA). PGN treatment also enhanced the pathogenic activities of activated antigen-specific Th17 cells in vivo. PGN significantly increased the production of IL-1β, IL-6 and IL-23 of dendritic cells (DCs) and enhanced their ability to promote IL-17(+) uveitogenic T cells. Enhanced immunostimulatory activities of PGN-DCs depend upon p38 activation. Inhibition of p38 mitogen-activated protein kinase (MAPK) activity dramatically decreased IL-17 gene expression and antigen-specific Th17 responses stimulated by PGN-DCs. Our findings suggest that PGN treatment dramatically promotes the IL-17(+) uveitogenic T cell responses via enhancing the immunostimulatory activities of DCs. This effect may be mediated, at least in part, by activation of the p38 signalling pathway in DCs. © 2014 British Society for Immunology.

  5. Application potential of toll-like receptors in cancer immunotherapy

    PubMed Central

    Shi, Ming; Chen, Xi; Ye, Kangruo; Yao, Yuanfei; Li, Yu

    2016-01-01

    Abstract Toll-like receptors (TLRs), as the most important pattern recognition receptors in innate immunity, play a pivotal role in inducing immune response through recognition of microbial invaders or specific agonists. Recent studies have suggested that TLRs could serve as important regulators in the development of a variety of cancer. However, increasing evidences have shown that TLRs may display quite opposite outcomes in cancer development. Although several potential therapeutic Toll-like receptor ligands have been found, the mechanism and therapy prospect of TLRs in cancer development has to be further elucidated to accelerate the clinical application. By performing a systematic review of the present findings on TLRs in cancer immunology, we attempted to evaluate the therapeutic potential of TLRs in cancer therapy and elucidate the potential mechanism of cancer progress regulated by TLR signaling and the reported targets on TLRs for clinical application. An electronic databases search was conducted in PubMed, Chinese Scientific Journal Database, and Chinese Biomedical Literature Database from their inception to February 1, 2016. The following keywords were used to search the databases: Toll-like receptors, cancer therapy, therapeutic target, innate immunity. Of 244 studies that were identified, 97 nonrelevant studies were excluded. In total, 147 full-text articles were assessed, and from these, 54 were excluded as they did not provide complete key information. Thus, 93 studies were considered eligible and included in the analysis. According to the data from the included trials, 14 TLR ligands (77.8%) from 82 studies have been demonstrated to display antitumor property in various cancers, whereas 4 ligands (22.2%) from 11 studies promote tumors. Among them, only 3 TLR ligands have been approved for cancer therapy, and 9 ligands were in clinical trials. In addition, the potential mechanism of recently reported targets on TLRs for clinical application was also

  6. Endogenous toll-like receptor ligands and their biological significance

    PubMed Central

    Yu, Li; Wang, Liantang; Chen, Shangwu

    2010-01-01

    Abstract Toll-like receptors (TLRs), a family of pattern recognition receptors, recognize and respond to conserved components of microbes and play a crucial role in both innate and adaptive immunity. In addition to binding exogenous ligands derived from pathogens, TLRs interact with endogenous molecules released from damaged tissues or dead cells and regulate many sterile inflammation processes. Putative endogenous TLR ligands include proteins and peptides, polysaccharides and proteoglycan, nucleic acids and phospholipids, which are cellular components, particularly extracellular matrix degradation products. Accumulating evidence demonstrates that endogenous ligand-mediated TLR signalling is involved in pathological conditions such as tissue injury, repair and regeneration; autoimmune diseases and tumorigenesis. The ability of TLRs to recognize endogenous stimulators appears to be essential to their function in regulating non-infectious inflammation. In this review, we summarize current knowledge of endogenous TLR ligands and discuss the biological significance of TLR signalling triggered by endogenous ligands in several sterile inflammation conditions. PMID:20629986

  7. Lipid A structural modifications in extreme conditions and identification of unique modifying enzymes to define the Toll-like receptor 4 structure-activity relationship.

    PubMed

    Scott, Alison J; Oyler, Benjamin L; Goodlett, David R; Ernst, Robert K

    2017-01-17

    Strategies utilizing Toll-like receptor 4 (TLR4) agonists for treatment of cancer, infectious diseases, and other targets report promising results. Potent TLR4 antagonists are also gaining attention as therapeutic leads. Though some principles for TLR4 modulation by lipid A have been described, a thorough understanding of the structure-activity relationship (SAR) is lacking. Only through a complete definition of lipid A-TLR4 SAR is it possible to predict TLR4 signaling effects of discrete lipid A structures, rendering them more pharmacologically relevant. A limited 'toolbox' of lipid A-modifying enzymes has been defined and is largely composed of enzymes from mesophile human and zoonotic pathogens. Expansion of this 'toolbox' will result from extending the search into lipid A biosynthesis and modification by bacteria living at the extremes. Here, we review the fundamentals of lipid A structure, advances in lipid A uses in TLR4 modulation, and the search for novel lipid A-modifying systems in extremophile bacteria. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.

  8. High mobility group box protein-1 promotes cerebral edema after traumatic brain injury via activation of toll-like receptor 4.

    PubMed

    Laird, Melissa D; Shields, Jessica S; Sukumari-Ramesh, Sangeetha; Kimbler, Donald E; Fessler, R David; Shakir, Basheer; Youssef, Patrick; Yanasak, Nathan; Vender, John R; Dhandapani, Krishnan M

    2014-01-01

    Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Cerebral edema, a life-threatening medical complication, contributes to elevated intracranial pressure (ICP) and a poor clinical prognosis after TBI. Unfortunately, treatment options to reduce post-traumatic edema remain suboptimal, due in part, to a dearth of viable therapeutic targets. Herein, we tested the hypothesis that cerebral innate immune responses contribute to edema development after TBI. Our results demonstrate that high-mobility group box protein 1 (HMGB1) was released from necrotic neurons via a NR2B-mediated mechanism. HMGB1 was clinically associated with elevated ICP in patients and functionally promoted cerebral edema after TBI in mice. The detrimental effects of HMGB1 were mediated, at least in part, via activation of microglial toll-like receptor 4 (TLR4) and the subsequent expression of the astrocytic water channel, aquaporin-4 (AQP4). Genetic or pharmacological (VGX-1027) TLR4 inhibition attenuated the neuroinflammatory response and limited post-traumatic edema with a delayed, clinically implementable therapeutic window. Human and rodent tissue culture studies further defined the cellular mechanisms demonstrating neuronal HMGB1 initiates the microglial release of interleukin-6 (IL-6) in a TLR4 dependent mechanism. In turn, microglial IL-6 increased the astrocytic expression of AQP4. Taken together, these data implicate microglia as key mediators of post-traumatic brain edema and suggest HMGB1-TLR4 signaling promotes neurovascular dysfunction after TBI.

  9. Self-Assembly of the Toll-Like Receptor Agonist Macrophage-Activating Lipopeptide MALP-2 and of Its Constituent Peptide.

    PubMed

    Castelletto, Valeria; Kirkham, Steven; Hamley, Ian W; Kowalczyk, Radoslaw; Rabe, Martin; Reza, Mehedi; Ruokolainen, Janne

    2016-02-08

    The self-assembly of the macrophage-activating lipopeptide MALP-2 in aqueous solution has been investigated and is compared to that of the constituent peptide GNNDESNISFKEK. MALP-2 is a toll-like receptor agonist lipopeptide with diverse potential biomedical applications and its self-assembly has not previously been examined. It is found to self-assemble, above a critical aggregation concentration (cac), into remarkable "fibre raft" structures, based on lateral aggregation of β-sheet based bilayer tapes. Peptide GNNDESNISFKEK also forms β-sheet structures above a cac, although the morphology is distinct, comprising highly extended and twisted tape structures. A detailed insight into the molecular packing within the MALP-2 raft and GNNDESNISFKEK nanotape structures is obtained through X-ray diffraction and small-angle X-ray scattering. These results point to the significant influence of the attached lipid chains on the self-assembly motif, which lead to the raft structure for the lipopeptide assemblies.

  10. A Toll-like receptor 7, 8, and 9 antagonist inhibits Th1 and Th17 responses and inflammasome activation in a model of IL-23-induced psoriasis.

    PubMed

    Jiang, Weiwen; Zhu, Fu-Gang; Bhagat, Lakshmi; Yu, Dong; Tang, Jimmy X; Kandimalla, Ekambar R; La Monica, Nicola; Agrawal, Sudhir

    2013-07-01

    Psoriasis is a chronic inflammatory skin disease that involves the induction of T-helper 1 (Th1) and T-helper 17 (Th17) cell responses and the aberrant expression of proinflammatory cytokines, including IL-1β. Copious evidence suggests that abnormal activation of Toll-like receptors (TLRs) contributes to the initiation and maintenance of psoriasis. We have evaluated an antagonist of TLR7, 8, and 9 as a therapeutic agent in an IL-23-induced psoriasis model in mice. Psoriasis-like skin lesions were induced in C57BL/6 mice by intradermal injection of IL-23 in the ear or dorsum. IL-23-induced increase in ear thickness was inhibited in a dose-dependent manner by treatment with antagonist. Histological examination of ear and dorsal skin tissues demonstrated a reduction in epidermal hyperplasia in mice treated with the antagonist. Treatment with antagonist also reduced the induction of Th1 and Th17 cytokines in skin and/or serum, as well as dermal expression of inflammasome components, NLRP3 and AIM2, and antimicrobial peptides. These results indicate that targeting TLR7, 8, and 9 may provide a way to neutralize multiple inflammatory pathways that are involved in the development of psoriasis. The antagonist has the potential for the treatment of psoriasis and other autoimmune diseases.

  11. Mumps virus induces innate immune responses in mouse ovarian granulosa cells through the activation of Toll-like receptor 2 and retinoic acid-inducible gene I.

    PubMed

    Wang, Qing; Wu, Han; Cheng, Lijing; Yan, Keqin; Shi, Lili; Zhao, Xiang; Jiang, Qian; Wang, Fei; Chen, Yongmei; Li, Qihan; Han, Daishu

    2016-11-15

    Mumps virus (MuV) infection may lead to oophoritis and perturb ovarian function. However, the mechanisms underlying the activation of innate immune responses to MuV infection in the ovary have not been investigated. This study showed that Toll-like receptor 2 (TLR2) and retinoic acid-inducible gene I (RIG-I) cooperatively initiate innate immune responses to MuV infection in mouse ovarian granulosa cells. Ovarian granulosa cells infected with MuV significantly produced pro-inflammatory cytokines and chemokines, including interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemotactic protein 1 (MCP-1), and type 1 interferons (IFN-α and IFN-β). Knockdown of RIG-I significantly decreased MuV-induced cytokine expression. TLR2 deficiency reduced the expression of IL-1β, TNF-α, and MCP-1 but did not affect the expression of IFN-α and IFN-β in granulosa cells after infection with MuV. Intraperitoneal injection of MuV induced the ovarian innate immune responses in vivo, which suppressed estradiol synthesis and induced granulosa cell apoptosis. The results provide novel insights into the mechanisms underlying MuV-induced innate immune responses in the mouse ovary. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Suppression of Toll-like receptor 4 activation by caffeic acid phenethyl ester is mediated by interference of LPS binding to MD2

    PubMed Central

    Kim, So Young; Koo, Jung Eun; Seo, Yun Jee; Tyagi, Nisha; Jeong, Eunshil; Choi, Jaeyoung; Lim, Kyung-Min; Park, Zee-Yong; Lee, Joo Young

    2013-01-01

    Background and Purpose Toll-like receptors (TLRs) play a crucial role in recognizing invading pathogens and endogenous danger signal to induce immune and inflammatory responses. Since dysregulation of TLRs enhances the risk of immune disorders and chronic inflammatory diseases, modulation of TLR activity by phytochemicals could be useful therapeutically. We investigated the effect of caffeic acid phenethyl ester (CAPE) on TLR-mediated inflammation and the underlying regulatory mechanism. Experimental Approach Inhibitory effects of CAPE on TLR4 activation were assessed with in vivo murine skin inflammation model and in vitro production of inflammatory mediators in macrophages. In vitro binding assay, cell-based immunoprecipitation study and liquid chromatography-tandem mass spectrometry analysis were performed to determine lipopolysaccharide (LPS) binding to MD2 and to identify the direct binding site of CAPE in MD2. Key Results Topical application of CAPE attenuated dermal inflammation and oedema induced by intradermal injection of LPS (a TLR4 agonist). CAPE suppressed production of inflammatory mediators and activation of NFκB and interferon-regulatory factor 3 (IRF3) in macrophages stimulated with LPS. CAPE interrupted LPS binding to MD2 through formation of adduct specifically with Cys133 located in hydrophobic pocket of MD2. The inhibitory effect on LPS-induced IRF3 activation by CAPE was not observed when 293T cells were reconstituted with MD2 (C133S) mutant. Conclusions and Implications Our results show a novel mechanism for anti-inflammatory activity of CAPE to prevent TLR4 activation by interfering with interaction between ligand (LPS) and receptor complex (TLR4/MD2). These further provide beneficial information for the development of therapeutic strategies to prevent chronic inflammatory diseases. PMID:23231684

  13. Enteroaggregative Escherichia coli flagellin-induced interleukin-8 secretion requires Toll-like receptor 5-dependent p38 MAP kinase activation

    PubMed Central

    Khan, Mohammed A S; Kang, Jian; Steiner, Theodore S

    2004-01-01

    Enteroaggregative Escherichia coli (EAEC) is an emerging enteric pathogen that causes acute and chronic diarrhoea in a number of clinical settings. EAEC diarrhoea involves bacterial aggregation, adherence to intestinal epithelial cells and elaboration of several toxigenic bacterial mediators. Flagellin (FliC-EAEC), a major bacterial surface protein of EAEC, causes interleukin (IL)-8 release from several epithelial cell lines. The host response to flagellins from E. coli and several other bacteria is mediated by Toll-like receptor 5 (TLR5), which signals through nuclear factor kappa B (NF-κB) to induce transcription of pro-inflammatory cytokines. p38 mitogen-activating protein (MAP) kinase (MAPK) is a member of a family of stress-related kinases that influences a diverse range of cellular functions including host inflammatory responses to microbial products. We studied the role of p38 MAPK in FliC-EAEC-induced IL-8 secretion from Caco-2 human intestinal epithelial cells and THP-1 human monocytic cells. We found that IL-8 secretion from both cell types is dependent on p38 MAPK, which is phospho-activated in response to FliC-EAEC. The role of TLR5 in p38 MAPK-dependent IL-8 secretion was verified in HEp-2 cells transiently transfected with a TLR5 expression construct. Activation of interleukin-1 receptor-associated kinase (IRAK) was also observed in Caco-2 and TLR5-transfected HEp-2 cells after exposure to FliC-EAEC. Finally, we demonstrated that pharmacological inhibition of p38 MAPK reduced IL-8 transcription and mRNA levels, but did not affect NF-κB activation. Collectively, our results suggest that TLR5 mediates p38 MAPK-dependent IL-8 secretion from epithelial and monocytic cells incubated with FliC-EAEC, and that this effect requires IL-8 promoter activation independent of NF-κB nuclear migration. PMID:15270737

  14. Toll-Like Receptor 2 Is a Regulator of Circadian Active and Inactive State Consolidation in C57BL/6 Mice

    PubMed Central

    DeKorver, Nicholas W.; Chaudoin, Tammy R.; Bonasera, Stephen J.

    2017-01-01

    Regulatory systems required to maintain behavioral arousal remain incompletely understood. We describe a previously unappreciated role that toll-like receptor 2 (Tlr2, a membrane bound pattern recognition receptor that recognizes specific bacterial, viral, and fungal peptides), contributes toward regulation of behavioral arousal. In 4–4.5 month old mice with constitutive loss of Tlr2 function (Tlr2−/− mice), we note a marked consolidation in the circadian pattern of both active and inactive states. Specifically, Tlr2−/− mice demonstrated significantly fewer but longer duration active states during the circadian dark cycle, and significantly fewer but longer duration inactive states during the circadian light cycle. Tlr2−/− mice also consumed less food and water, and moved less during the circadian light cycle. Analysis of circadian rhythms further suggested that Tlr2−/− mice demonstrated less day-to-day variability in feeding, drinking, and movement behaviors. Reevaluation of this same mouse cohort at age 8–8.5 months revealed a clear blunting of these differences. However, Tlr2−/− mice were still noted to have fewer short-duration active states during the circadian dark cycle, and continued to demonstrate significantly less day-to-day variability in feeding, drinking, and movement behaviors. These results suggest that Tlr2 function may have a role in promoting transitions between active and inactive states. Prior studies have demonstrated that Tlr2 regulates sickness behaviors including hypophagia, hyperthermia, and decreased activity. Our work suggests that Tlr2 function also evokes behavioral fragmentation, another aspect of sickness behavior and a clinically significant problem of older adults. PMID:28769782

  15. 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated suppression of toll-like receptor stimulated B-lymphocyte activation and initiation of plasmacytic differentiation.

    PubMed

    North, Colin M; Crawford, Robert B; Lu, Haitian; Kaminski, Norbert E

    2010-07-01

    2,3,7,8-Tetrachlordibenzo-p-dioxin (TCDD) is a potent suppressor of humoral immunity, disrupting antibody production in response to both T cell-dependent and T cell-independent antigens. Among the cell types required for humoral responses, the B cell is highly, and directly, sensitive to TCDD. B cells become antibody-secreting cells via plasmacytic differentiation, a process regulated by several transcription factors, including activator protein-1, B-cell CLL/lymphoma 6 (BCL-6), and B lymphocyte-induced maturation protein 1 (Blimp-1). The overarching conceptual framework guiding experimentation is that TCDD disrupts plasmacytic differentiation by altering the expression or activity for upstream regulators of Blimp-1. Multiparametric flow cytometry was used to investigate TCDD-induced alterations in both activation marker and transcription factor expression following lipopolysaccharide (LPS) activation of purified B cells. TCDD significantly impaired LPS-activated expression of major histocompatibility complex class II, cluster of differentiation (CD)69, CD80, and CD86. Immunosuppressive concentrations of TCDD also suppressed LPS-activated Blimp-1 and phosphorylated c-Jun expression, whereas elevating BCL-6 expression. Because BCL-6 and c-Jun are directly and indirectly regulated by the kinases AKT, extracellular signal-regulated kinase (ERK), and Jun N-terminal kinase (JNK), it was hypothesized that TCDD alters toll-like receptor-activated kinase phosphorylation. TCDD at 0.03 and 0.3 nM significantly impaired phosphorylation of AKT, ERK, and JNK in CH12.LX B cells activated with LPS, CpG oligonucleotides, or resiquimod (R848). In primary B cells, R848-activated phosphorylation of AKT, ERK, and JNK was also impaired by TCDD at 30 nM. These results suggest that impairment of plasmacytic differentiation by TCDD involves altered transcription factor expression, in part, by suppressed kinase phosphorylation.

  16. Interleukin-10 and prostaglandin E2 have complementary but distinct suppressive effects on Toll-like receptor-mediated dendritic cell activation in ovarian carcinoma.

    PubMed

    Brencicova, Eva; Jagger, Ann L; Evans, Hayley G; Georgouli, Mirella; Laios, Alex; Attard Montalto, Steve; Mehra, Gautam; Spencer, Jo; Ahmed, Ahmed A; Raju-Kankipati, Shanti; Taams, Leonie S; Diebold, Sandra S

    2017-01-01

    Dendritic cells (DC) have the potential to instigate a tumour-specific immune response, but their ability to prime naïve lymphocytes depends on their activation status. Thus, for tumour immunotherapy to be effective, the provision of appropriate DC activation stimuli such as Toll-like receptor (TLR) agonists is crucial in order to overcome immunosuppression associated with the tumour microenvironment. To address this, we investigated how ovarian carcinoma (OC)-associated ascites impedes activation of DC by TLR agonists. Our results show that ascites reduces the TLR-mediated up-regulation of CD86 and partially inhibits the production of the pro-inflammatory cytokines interleukin 6 (IL-6), IL-12 and tumour necrosis factor α (TNFα) in monocyte-derived DC from healthy controls. We further observe an impaired T cell stimulatory capacity of DC upon activation with TLR agonists in the presence of ascites, indicating that their functionality is affected by the immunosuppressive factors. We identify IL-10 and prostaglandin E2 (PGE2) as the pivotal immunosuppressive components in OC-associated ascites compromising TLR-mediated DC activation. Interestingly, IL-10 is present in both ascites from patients with malignant OC and in peritoneal fluid from patients with benign ovarian conditions and both fluids have similar ability to reduce TLR-mediated DC activation. However, depletion of IL-10 from ascites revealed that the presence of paracrine IL-10 is not crucial for ascites-mediated suppression of DC activation in response to TLR activation. Unlike IL-10, PGE2 is absent from peritoneal fluid of patients with benign conditions and selectively reduces TNFα induction in response to TLR-mediated activation in the presence of OC-associated ascites. Our study highlights PGE2 as an immunosuppressive component of the malignant OC microenvironment rendering PGE2 a potentially important target for immunotherapy in OC.

  17. Sustained activation of toll-like receptor 9 induces an invasive phenotype in lung fibroblasts: possible implications in idiopathic pulmonary fibrosis.

    PubMed

    Kirillov, Varvara; Siler, Jonathan T; Ramadass, Mahalakshmi; Ge, Lingyin; Davis, James; Grant, Geraldine; Nathan, Steven D; Jarai, Gabor; Trujillo, Glenda

    2015-04-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by excessive scarring of the lung parenchyma, resulting in a steady decline of lung function and ultimately respiratory failure. The disease course of IPF is extremely variable, with some patients exhibiting stability of symptoms for prolonged periods of time, whereas others exhibit rapid progression and loss of lung function. Viral infections have been implicated in IPF and linked to disease severity; however, whether they directly contribute to progression is unclear. We previously classified patients as rapid and slow progressors on the basis of clinical features and expression of the pathogen recognition receptor, Toll-like receptor 9 (TLR9). Activation of TLR9 in vivo exacerbated IPF in mice and induced differentiation of myofibroblasts in vitro, but the mechanism of TLR9 up-regulation and progression of fibrosis are unknown. Herein, we investigate whether transforming growth factor (TGF)-β, a pleiotropic cytokine central to IPF pathogenesis, regulates TLR9 in lung myofibroblasts. Results showed induction of TLR9 expression by TGF-β in lung myofibroblasts and a distinct profibrotic myofibroblast phenotype driven by stimulation with the TLR9 agonist, CpG-DNA. Chronic TLR9 stimulation resulted in stably differentiated α-smooth muscle actin(+)/platelet-derived growth factor receptor α(+)/CD44(+)/matrix metalloproteinase-14(+)/matrix metalloproteinase-2(+) myofibroblasts, which secrete inflammatory cytokines, invade Matrigel toward platelet-derived growth factor, and resist hypoxia-induced apoptosis. These results suggest a mechanism by which TGF-β and TLR9 responses in myofibroblasts collaborate to drive rapid progression of IPF.

  18. HIV and HCV Activate the Inflammasome in Monocytes and Macrophages via Endosomal Toll-Like Receptors without Induction of Type 1 Interferon

    PubMed Central

    Chattergoon, Michael A.; Latanich, Rachel; Quinn, Jeffrey; Winter, Matthew E.; Buckheit, Robert W.; Blankson, Joel N.; Pardoll, Drew; Cox, Andrea L.

    2014-01-01

    Innate immune sensing of viral infection results in type I interferon (IFN) production and inflammasome activation. Type I IFNs, primarily IFN-α and IFN-β, are produced by all cell types upon virus infection and promote an antiviral state in surrounding cells by inducing the expression of IFN-stimulated genes. Type I IFN production is mediated by Toll-like receptor (TLR) 3 in HCV infected hepatocytes. Type I IFNs are also produced by plasmacytoid dendritic cells (pDC) after sensing of HIV and HCV through TLR7 in the absence of productive pDC infection. Inflammasomes are multi-protein cytosolic complexes that integrate several pathogen-triggered signaling cascades ultimately leading to caspase-1 activation and generation pro-inflammatory cytokines including interleukin (IL)-18 and IL-1β. Here, we demonstrate that HIV and HCV activate the inflammasome, but not Type I IFN production, in monocytes and macrophages in an infection-independent process that requires clathrin-mediated endocytosis and recognition of the virus by distinct endosomal TLRs. Knockdown of each endosomal TLR in primary monocytes by RNA interference reveals that inflammasome activation in these cells results from HIV sensing by TLR8 and HCV recognition by TLR7. Despite its critical role in type I IFN production by pDCs stimulated with HIV, TLR7 is not required for inflammasome activation by HIV. Similarly, HCV activation of the inflammasome in monocytes does not require TLR3 or its downstream signaling adaptor TICAM-1, while this pathway leads to type I IFN in infected hepatocytes. Monocytes and macrophages do not produce type I IFN upon TLR8 or TLR7 sensing of HIV or HCV, respectively. These findings reveal a novel infection-independent mechanism for chronic viral induction of key anti-viral programs and demonstrate distinct TLR utilization by different cell types for activation of the type I IFN vs. inflammasome pathways of inflammation. PMID:24788318

  19. HIV and HCV activate the inflammasome in monocytes and macrophages via endosomal Toll-like receptors without induction of type 1 interferon.

    PubMed

    Chattergoon, Michael A; Latanich, Rachel; Quinn, Jeffrey; Winter, Matthew E; Buckheit, Robert W; Blankson, Joel N; Pardoll, Drew; Cox, Andrea L

    2014-05-01

    Innate immune sensing of viral infection results in type I interferon (IFN) production and inflammasome activation. Type I IFNs, primarily IFN-α and IFN-β, are produced by all cell types upon virus infection and promote an antiviral state in surrounding cells by inducing the expression of IFN-stimulated genes. Type I IFN production is mediated by Toll-like receptor (TLR) 3 in HCV infected hepatocytes. Type I IFNs are also produced by plasmacytoid dendritic cells (pDC) after sensing of HIV and HCV through TLR7 in the absence of productive pDC infection. Inflammasomes are multi-protein cytosolic complexes that integrate several pathogen-triggered signaling cascades ultimately leading to caspase-1 activation and generation pro-inflammatory cytokines including interleukin (IL)-18 and IL-1β. Here, we demonstrate that HIV and HCV activate the inflammasome, but not Type I IFN production, in monocytes and macrophages in an infection-independent process that requires clathrin-mediated endocytosis and recognition of the virus by distinct endosomal TLRs. Knockdown of each endosomal TLR in primary monocytes by RNA interference reveals that inflammasome activation in these cells results from HIV sensing by TLR8 and HCV recognition by TLR7. Despite its critical role in type I IFN production by pDCs stimulated with HIV, TLR7 is not required for inflammasome activation by HIV. Similarly, HCV activation of the inflammasome in monocytes does not require TLR3 or its downstream signaling adaptor TICAM-1, while this pathway leads to type I IFN in infected hepatocytes. Monocytes and macrophages do not produce type I IFN upon TLR8 or TLR7 sensing of HIV or HCV, respectively. These findings reveal a novel infection-independent mechanism for chronic viral induction of key anti-viral programs and demonstrate distinct TLR utilization by different cell types for activation of the type I IFN vs. inflammasome pathways of inflammation.

  20. Dual activation of Toll-like receptors 7 and 9 impairs the efficacy of antitumor vaccines in murine models of metastatic breast cancer.

    PubMed

    Moreno Ayala, Mariela A; Gottardo, María Florencia; Gori, María Soledad; Nicola Candia, Alejandro Javier; Caruso, Carla; De Laurentiis, Andrea; Imsen, Mercedes; Klein, Slobodanka; Bal de Kier Joffé, Elisa; Salamone, Gabriela; Castro, Maria G; Seilicovich, Adriana; Candolfi, Marianela

    2017-04-21

    Since combination of Toll-like receptor (TLR) ligands could boost antitumor immunity, we evaluated the efficacy of dendritic cell (DC) vaccines upon dual activation of TLR9 and TLR7 in breast cancer models. DCs were generated from mouse bone marrow or peripheral blood from healthy human donors and stimulated with CpG1826 (mouse TLR9 agonist), CpG2006 or IMT504 (human TLR9 agonists) and R848 (TLR7 agonist). Efficacy of antitumor vaccines was evaluated in BALB/c mice bearing metastatic mammary adenocarcinomas. CpG-DCs improved the survival of tumor-bearing mice, reduced the development of lung metastases and generated immunological memory. However, dual activation of TLRs impaired the efficacy of DC vaccines. In vitro, we found that R848 inhibited CpG-mediated maturation of murine DCs. A positive feedback loop in TLR9 mRNA expression was observed upon CpG stimulation that was inhibited in the presence of R848. Impaired activation of NF-κB was detected when TLR9 and TLR7 were simultaneously activated. Blockade of nitric oxide synthase (NOS) and indoleamine-pyrrole-2,3-dioxygenase (IDO) improved the activation of CpG-DCs. When we evaluated the effect of combined activation of TLR9 and TLR7 in human DCs, we found that R848 induced robust DC activation that was inhibited by TLR9 agonists. These observations provide insight in the biology of TLR9 and TLR7 crosstalk and suggest caution in the selection of agonists for multiple TLR stimulation. Blockade of NOS and IDO could improve the maturation of antitumor DC vaccines. R848 could prove a useful adjuvant for DC vaccines in human patients.

  1. Pyrexia, anorexia, adipsia, and depressed motor activity in rats during systemic inflammation induced by the Toll-like receptors-2 and -6 agonists MALP-2 and FSL-1.

    PubMed

    Hübschle, Thomas; Mütze, Jörg; Mühlradt, Peter F; Korte, Stefan; Gerstberger, Rüdiger; Roth, Joachim

    2006-01-01

    Macrophage-activating lipopeptide-2 (MALP-2) from Mycoplasma fermentans has been identified as a pathogen-associated molecular pattern of Mycoplasmas that causes activation of the innate immune system through the activation of the heterodimeric Toll-like receptors (TLRs)-2 and -6. The aim of this study was to characterize the ability of MALP-2 and a synthetic analog fibroblast-stimulating lipopeptide-1 (FSL-1; represents the NH2-terminal sequence of a lipoprotein from M. salivarium) to act as exogenous pyrogens, to induce formation of cytokines (endogenous pyrogens), and to cause sickness behavior, such as depressed motor activity, anorexia, and adipsia. For this purpose, body temperature, activity, food intake, and water intake were recorded for 3 days by use of telemetry devices in several groups of rats treated with MALP-2/FSL-1 or the respective control solutions. Intraperitoneal injections of FSL-1 caused fever at doses of 10 or 100 microg/kg, which was preceded by a pronounced phase of hypothermia in response to a dose of 1,000 microg/kg. The maximal fever (a peak of 1.5 degrees C above baseline) was caused by the 100 microg/kg dose with almost identical responses to both MALP-2 and FSL-1. Fever was accompanied by pronounced rises of the proinflammatory cytokines TNF and IL-6 in plasma. Treatment with the TLR-2 and -6 agonists further induced a dose-dependent manifestation of anorexia and adipsia, as well as a reduction of motor activity. We could thus demonstrate that activation of TLR-2 and -6 can induce systemic inflammation in rats accompanied by the classical signs of brain-controlled illness responses.

  2. The mouse dendritic cell marker CD11c is down-regulated upon cell activation through Toll-like receptor triggering.

    PubMed

    Singh-Jasuja, Harpreet; Thiolat, Allan; Ribon, Matthieu; Boissier, Marie-Christophe; Bessis, Natacha; Rammensee, Hans-Georg; Decker, Patrice

    2013-01-01

    Dendritic cells (DC) play a key role in regulating immune responses and are the best professional antigen-presenting cells. Two major DC populations are defined in part according to cell surface CD11c expression levels. Unexpectedly, we observed that mouse DC strongly down-regulate the typical DC marker CD11c upon activation. To better characterize DC responses, we have analyzed CD11c expression on mouse and human myeloid DC after Toll-like receptor (TLR) triggering. Here we show that mouse bone marrow-derived DC (BMDC) as well as spleen DC down-regulate cell surface CD11c upon activation by TLR3/4/9 agonists. In all cases, full DC activation was reached, as determined by cytokine secretion, cell stimulation in mixed leukocyte reactions (MLR), and CD40/CD86/major histocompatibility complex (MHC) up-regulation. Interestingly, membrane CD11c down-regulation correlated with increased cytoplasmic pools of CD11c. In contrast to the up-regulation of CD40 and MHC class II molecules, lipopolysaccharide (LPS)-induced CD11c down-regulation was MyD88-dependent. Polyinosinic-polycytidylic acid (poly I:C), which does not signal through MyD88, also induced cell surface CD11c down-regulation. Notably, CD11c down-regulation was not observed upon activation of human DC, either through TLR-dependent or -independent cell activation. Thus, activated mouse DC may be transiently CD11c-negative in vivo, hampering the identification of those cells. On the other hand, cell surface CD11c down-regulation may serve as a new activation marker for mouse DC. Copyright © 2012 Elsevier GmbH. All rights reserved.

  3. Assembly and localization of Toll-like receptor signalling complexes.

    PubMed

    Gay, Nicholas J; Symmons, Martyn F; Gangloff, Monique; Bryant, Clare E

    2014-08-01

    Signal transduction by the Toll-like receptors (TLRs) is central to host defence against many pathogenic microorganisms and also underlies a large burden of human disease. Thus, the mechanisms and regulation of signalling by TLRs are of considerable interest. In this Review, we discuss the molecular basis for the recognition of pathogen-associated molecular patterns, the nature of the protein complexes that mediate signalling, and the way in which signals are regulated and integrated at the level of allosteric assembly, post-translational modification and subcellular trafficking of the components of the signalling complexes. These fundamental molecular mechanisms determine whether the signalling output leads to a protective immune response or to serious pathologies such as sepsis. A detailed understanding of these processes at the molecular level provides a rational framework for the development of new drugs that can specifically target pathological rather than protective signalling in inflammatory and autoimmune disease.

  4. Toll-like receptors in antiviral innate immunity

    PubMed Central

    Lester, Sandra N.; Li, Kui

    2014-01-01

    Toll-like receptors (TLRs) are fundamental sensor molecules of the host innate immune system, which detect conserved molecular signatures of a wide range of microbial pathogens and initiate innate immune responses via distinct signaling pathways. Various TLRs are implicated in the early interplay of host cells with invading viruses, which regulates viral replication and/or host responses, ultimately impacting on viral pathogenesis. To survive the host innate defense mechanisms, many viruses have developed strategies to evade or counteract signaling through the TLR pathways, creating an advantageous environment for their propagation. Here we review the current knowledge of the roles TLRs play in antiviral innate immune responses, discuss examples of TLR-mediated viral recognition, and describe strategies used by viruses to antagonize the host antiviral innate immune responses. PMID:24316048

  5. Epigallocatechin gallate improves insulin signaling by decreasing toll-like receptor 4 (TLR4) activity in adipose tissues of high-fat diet rats.

    PubMed

    Bao, Suqing; Cao, Yanli; Fan, Chenling; Fan, Yuxin; Bai, Shuting; Teng, Weiping; Shan, Zhongyan

    2014-04-01

    In this study, we investigated the beneficial effects and the underlying mechanism of epigallocatechin gallate (EGCG) in adipose tissues of rats fed with a high-fat diet (HFD). Fasting plasma insulin, epididymal fat coefficient and free fatty acids, homeostasis model assessment-insulin resistance index, and the average glucose infusion rate were determined. EGCG significantly decreased free fatty acids, fasting insulin, homeostasis model assessment-insulin resistance index, and epididymal fat coefficient, and increased glucose infusion rate in HFD group. The levels of toll-like receptor 4, TNF receptor associated factor 6, inhibitor-kappa-B kinase β, p-nuclear factor κB, tumor necrosis factor α, and IL-6 in the EGCG group were all significantly lower than the HFD control group. EGCG also decreased the level of phosphorylated insulin receptor substrate 1 and increased phosphoinositide-3-kinase and glucose transporter isoform 4 in the HFD group. Decreased macrophage infiltration was in EGCG group versus HFD group, and the protein level of CD68 in EGCG group was also significantly lower than that of HFD group. EGCG attenuated inflammation by decreasing the content of macrophages, interfered the toll-like receptor 4 mediated inflammatory response pathway, thus, improving insulin signaling in adipose tissues. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Distinct Profile of Tryptophan Metabolism along the Kynurenine Pathway Downstream of Toll-Like Receptor Activation in Irritable Bowel Syndrome

    PubMed Central

    Clarke, Gerard; McKernan, Declan P.; Gaszner, Gabor; Quigley, Eamonn M.; Cryan, John F.; Dinan, Timothy G.

    2012-01-01

    Irritable bowel syndrome (IBS), a disorder of the brain-gut axis, is characterised by the absence of reliable biological markers. Tryptophan is an essential amino acid that serves as a precursor to serotonin but which can alternatively be metabolised along the kynurenine pathway leading to the production of other neuroactive agents. We previously reported an increased degradation of tryptophan along this immunoresponsive pathway in IBS. Recently, altered cytokine production following activation of specific members of the toll-like receptor (TLR) family (TLR1-9) has also been demonstrated in IBS. However, the relationship between TLR activation and kynurenine pathway activity in IBS is unknown. In this study, we investigated whether activation of specific TLRs elicits exaggerated kynurenine production in IBS patients compared to controls. Whole blood from IBS patients and healthy controls was cultured with a panel of nine different TLR agonists for 24 h. Cell culture supernatants were then analyzed for both tryptophan and kynurenine concentrations, as were plasma samples from both cohorts. IBS subjects had an elevated plasma kynurenine:tryptophan ratio compared to healthy controls. Furthermore, we demonstrated a differential downstream profile of kynurenine production subsequent to TLR activation in IBS patients compared to healthy controls. This profile included alterations at TLR1/2, TLR2, TLR3, TLR5, TLR7, and TLR8. Our data expands on our previous understanding of altered tryptophan metabolism in IBS and suggests that measurement of tryptophan metabolites downstream of TLR activation may ultimately find utility as components of a biomarker panel to aid gastroenterologists in the diagnosis of IBS. Furthermore, these studies implicate the modulation of TLRs as means through which aberrant tryptophan metabolism along the kynurenine pathway can be controlled, a novel potential therapeutic strategy in this and other disorders. PMID:22661947

  7. Photoreceptor proteins initiate microglial activation via Toll-like receptor 4 in retinal degeneration mediated by all-trans-retinal.

    PubMed

    Kohno, Hideo; Chen, Yu; Kevany, Brian M; Pearlman, Eric; Miyagi, Masaru; Maeda, Tadao; Palczewski, Krzysztof; Maeda, Akiko

    2013-05-24

    Although several genetic and biochemical factors are associated with the pathogenesis of retinal degeneration, it has yet to be determined how these different impairments can cause similar degenerative phenotypes. Here, we report microglial/macrophage activation in both a Stargardt disease and age-related macular degeneration mouse model caused by delayed clearance of all-trans-retinal from the retina, and in a retinitis pigmentosa mouse model with impaired retinal pigment epithelium (RPE) phagocytosis. Mouse microglia displayed RPE cytotoxicity and increased production of inflammatory chemokines/cytokines, Ccl2, Il1b, and Tnf, after coincubation with ligands that activate innate immunity. Notably, phagocytosis of photoreceptor proteins increased the activation of microglia/macrophages and RPE cells isolated from model mice as well as wild-type mice. The mRNA levels of Tlr2 and Tlr4, which can recognize proteins as their ligands, were elevated in mice with retinal degeneration. Bone marrow-derived macrophages from Tlr4-deficient mice did not increase Ccl2 after coincubation with photoreceptor proteins. Tlr4(-/-)Abca4(-/-)Rdh8(-/-) mice displayed milder retinal degenerative phenotypes than Abca4(-/-)Rdh8(-/-) mice. Additionally, inactivation of microglia/macrophages by pharmacological approaches attenuated mouse retinal degeneration. This study demonstrates an important contribution of TLR4-mediated microglial activation by endogenous photoreceptor proteins in retinal inflammation that aggravates retinal cell death. This pathway is likely to represent an underlying common pathology in degenerative retinal disorders.

  8. Paliperidone Prevents Brain Toll-Like Receptor 4 Pathway Activation and Neuroinflammation in Rat Models of Acute and Chronic Restraint Stress

    PubMed Central

    MacDowell, KS; Caso, JR; Martín-Hernández, D; Madrigal, JL; Leza, JC

    2015-01-01

    Background: Alterations in the innate immune/inflammatory system have been proposed to underlie the pathophysiology of psychotic disease, but the mechanisms implicated remain elusive. The main agents of the innate immunity are the family of toll-like receptors (TLRs), which detect circulating pathogen-associated molecular patterns and endogenous damage-associated molecular patterns (DAMPS). Current antipsychotics are able to modulate pro- and anti-inflammatory pathways, but their actions on TLRs remain unexplored. Methods: This study was conducted to elucidate the effects of paliperidone (1mg/Kg i.p.) on acute (6 hours) and chronic (6 hours/day during 21 consecutive days) restraint stress–induced TLR-4 pathway activation and neuroinflammation, and the possible mechanism(s) related (bacterial translocation and/or DAMPs activation). The expression of the elements of a TLR-4-dependent proinflammatory pathway was analyzed at the mRNA and protein levels in prefrontal cortex samples. Results: Paliperidone pre-treatment prevented TLR-4 activation and neuroinflammation in the prefrontal cortices of stressed rats. Regarding the possible mechanisms implicated, paliperidone regulated stress-induced increased intestinal inflammation and plasma lipopolysaccharide levels. In addition, paliperidone also prevented the activation of the endogenous activators of TLR-4 HSP70 and HGMB-1. Conclusions: Our results showed a regulatory role of paliperidone on brain TLR-4, which could explain the therapeutic benefits of its use for the treatment of psychotic diseases beyond its effects on dopamine and serotonin neurotransmission. The study of the mechanisms implicated suggests that gut-increased permeability, inflammation, and bacterial translocation of Gram-negative microflora and HSP70 and HGMB1 expression could be potential adjuvant therapeutic targets for the treatment of psychotic and other stress-related psychiatric pathologies. PMID:25522409

  9. Deletion of the Mucin-Like Molecule Muc1 Enhances Dendritic Cell Activation in Response to Toll-Like Receptor Ligands

    PubMed Central

    Williams, Marc A.; Bauer, Stephen; Lu, Wenju; Guo, Jia; Walter, Scott; Bushnell, Timothy P.; Lillehoj, Erik P.; Georas, Steve N.

    2010-01-01

    Dendritic cells (DC) are potent professional antigen-presenting cells that drive primary immune responses to infections or other agonists perceived as ‘dangerous’. Muc1 is the only cell surface mucin or MUC gene product that is expressed in DC. Unlike other members of this glycoprotein family, Muc1 possesses a unique cytosolic region capable of signal transduction and attenuating toll-like receptor (TLR) activation. The expression and function of Muc1 has been intensively investigated on epithelial and tumor cells, but relatively little is known about its function on DC. We hypothesized that Muc1 would influence in vitro generation and primary DC activation in response to the TLR4 and TLR5 ligands lipopolysaccharide and flagellin. Compared with Muc1+/+ DC, we found that Muc1−/− DC were constitutively activated, as determined by higher expression of co-stimulatory molecules (CD40, CD80 and CD86), greater secretion of immunoregulatory cytokines (TNF-α and VEGF), and better stimulation of allogeneic naïve CD4+ T cell proliferation. After activation by either LPS or flagellin and co-culture with allogeneic CD4+ T cells, Muc1−/− DC also induced greater secretion of TNF-α and IFN-γ compared to similarly activated Muc1+/+ DC. Taken together, our results indicate that deletion of Muc1 promotes a heightened functional response of DC in response to TLR4 and TLR5 signaling pathways, and suggests a previously under-appreciated role for Muc1 in regulating innate immune responses of DC. PMID:20375631

  10. Photoreceptor Proteins Initiate Microglial Activation via Toll-like Receptor 4 in Retinal Degeneration Mediated by All-trans-retinal*

    PubMed Central

    Kohno, Hideo; Chen, Yu; Kevany, Brian M.; Pearlman, Eric; Miyagi, Masaru; Maeda, Tadao; Palczewski, Krzysztof; Maeda, Akiko

    2013-01-01

    Although several genetic and biochemical factors are associated with the pathogenesis of retinal degeneration, it has yet to be determined how these different impairments can cause similar degenerative phenotypes. Here, we report microglial/macrophage activation in both a Stargardt disease and age-related macular degeneration mouse model caused by delayed clearance of all-trans-retinal from the retina, and in a retinitis pigmentosa mouse model with impaired retinal pigment epithelium (RPE) phagocytosis. Mouse microglia displayed RPE cytotoxicity and increased production of inflammatory chemokines/cytokines, Ccl2, Il1b, and Tnf, after coincubation with ligands that activate innate immunity. Notably, phagocytosis of photoreceptor proteins increased the activation of microglia/macrophages and RPE cells isolated from model mice as well as wild-type mice. The mRNA levels of Tlr2 and Tlr4, which can recognize proteins as their ligands, were elevated in mice with retinal degeneration. Bone marrow-derived macrophages from Tlr4-deficient mice did not increase Ccl2 after coincubation with photoreceptor proteins. Tlr4−/−Abca4−/−Rdh8−/− mice displayed milder retinal degenerative phenotypes than Abca4−/−Rdh8−/− mice. Additionally, inactivation of microglia/macrophages by pharmacological approaches attenuated mouse retinal degeneration. This study demonstrates an important contribution of TLR4-mediated microglial activation by endogenous photoreceptor proteins in retinal inflammation that aggravates retinal cell death. This pathway is likely to represent an underlying common pathology in degenerative retinal disorders. PMID:23572532

  11. Toll-Like Receptor 8 Agonist and Bacteria Trigger Potent Activation of Innate Immune Cells in Human Liver

    PubMed Central

    Ussher, James E.; Sandalova, Elena; Tang, Xin-Zi; Tan-Garcia, Alfonso; To, Natalie; Hong, Michelle; Chia, Adeline; Gill, Upkar S.; Kennedy, Patrick T.; Tan, Kai Chah; Lee, Kang Hoe; De Libero, Gennaro; Gehring, Adam J.; Willberg, Christian B.; Klenerman, Paul; Bertoletti, Antonio

    2014-01-01

    The ability of innate immune cells to sense and respond to impending danger varies by anatomical location. The liver is considered tolerogenic but is still capable of mounting a successful immune response to clear various infections. To understand whether hepatic immune cells tune their response to different infectious challenges, we probed mononuclear cells purified from human healthy and diseased livers with distinct pathogen-associated molecules. We discovered that only the TLR8 agonist ssRNA40 selectively activated liver-resident innate immune cells to produce substantial quantities of IFN-γ. We identified CD161Bright mucosal-associated invariant T (MAIT) and CD56Bright NK cells as the responding liver-resident innate immune cells. Their activation was not directly induced by the TLR8 agonist but was dependent on IL-12 and IL-18 production by ssRNA40-activated intrahepatic monocytes. Importantly, the ssRNA40-induced cytokine-dependent activation of MAIT cells mirrored responses induced by bacteria, i.e., generating a selective production of high levels of IFN-γ, without the concomitant production of TNF-α or IL-17A. The intrahepatic IFN-γ production could be detected not only in healthy livers, but also in HBV- or HCV-infected livers. In conclusion, the human liver harbors a network of immune cells able to modulate their immunological responses to different pathogen-associated molecules. Their ability to generate a strong production of IFN-γ upon stimulation with TLR8 agonist opens new therapeutic opportunities for the treatment of diverse liver pathologies. PMID:24967632

  12. Double-Stranded RNA Interacts With Toll-Like Receptor 3 in Driving the Acute Inflammatory Response Following Lung Contusion.

    PubMed

    Suresh, Madathilparambil V; Thomas, Bivin; Machado-Aranda, David; Dolgachev, Vladislov A; Kumar Ramakrishnan, Sadeesh; Talarico, Nicholas; Cavassani, Karen; Sherman, Matthew A; Hemmila, Mark R; Kunkel, Steven L; Walter, Nils G; Hogaboam, Cory M; Raghavendran, Krishnan

    2016-11-01

    Lung contusion is a major risk factor for the development of acute respiratory distress syndrome. We set to determine the role of toll-like receptor 3 and the binding of double-stranded RNA in the pathogenesis of sterile injury following lung contusion. Toll-like receptor 3 expression was analyzed in postmortem lung samples from patients with lung contusion. Unilateral lung contusion was induced in toll-like receptor 3 (-/-), TIR-domain-containing adapter-inducing interferon-β (-/-), and wild-type mice. Subsequently, lung injury and inflammation were evaluated. Apoptotic indices, phagocytic activity, and phenotypic characterization of the macrophages were determined. Double-stranded RNA in bronchoalveolar lavage and serum samples following lung contusion was measured. A toll-like receptor 3/double-stranded RNA ligand inhibitor was injected into wild-type mice prior to lung contusion. Toll-like receptor 3 expression was higher in patients and wild-type mice with lung contusion. The degree of lung injury, inflammation, and macrophage apoptosis was reduced in toll-like receptor 3 (-/-), TIR-domain-containing adapter-inducing interferon-β (-/-), and wild-type mice with toll-like receptor 3 antibody neutralization. Alveolar macrophages from toll-like receptor 3 (-/-) mice had a lower early apoptotic index, a predominant M2 phenotype and increased surface translocation of toll-like receptor 3 from the endosome to the surface. When compared with viral activation pathways, lung injury in lung contusion demonstrated increased p38 mitogen-activated protein kinases, extracellular signal-regulated kinase 1/2 phosphorylation with inflammasome activation without a corresponding increase in nuclear factor-κB or type-1 interferon production. Additionally, pretreatment with toll-like receptor 3/double-stranded RNA ligand inhibitor led to a reduction in injury, inflammation, and macrophage apoptosis. We conclude that the interaction of double-stranded RNA from injured cells with

  13. Stimulation of monocytes by placental microparticles involves toll-like receptors and nuclear factor kappa-light-chain-enhancer of activated B cells.

    PubMed

    Joerger-Messerli, Marianne Simone; Hoesli, Irene Mathilde; Rusterholz, Corinne; Lapaire, Olav

    2014-01-01

    Human pregnancy is accompanied by a mild systemic inflammatory response, which includes the activation of monocytes circulating in maternal blood. This response is exaggerated in preeclampsia, a placental-dependent disorder specific to human pregnancies. We and others showed that placental syncytiotrophoblast membrane microparticles (STBM) generated in vitro from normal placentas stimulated peripheral blood monocytes, which suggest a contribution of STBM to the systemic maternal inflammation. Here, we analyzed the inflammatory potential of STBM prepared from preeclamptic placentas on primary monocytes and investigated the mode of action in vitro. STBM generated in vitro by placental villous explants of normal or preeclamptic placentas were co-incubated with human peripheral blood monocytes. In some cases, inhibitors of specific cellular functions or signaling pathways were used. The analysis of the monocytic response was performed by flow cytometry, enzyme-linked immunoassays, real-time PCR, and fluorescence microscopy. STBM derived from preeclamptic placentas up-regulated the cell surface expression of CD54, and stimulated the secretion of the pro-inflammatory interleukin (IL)-6 and IL-8 in a similar, dose-dependent manner as did STBM prepared from normal placentas. STBM bound to the cell surface of monocytes, but phagocytosis was not necessary for activation. STBM-induced cytokine secretion was impaired in the presence of inhibitors of toll-like receptor (TLR) signaling or when nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation was blocked. Our results suggest that the inflammatory reaction in monocytes may be initiated by the interaction of STBM with TLRs, which in turn signal through NF-κB to mediate the transcription of genes coding for pro-inflammatory factors.

  14. Stimulation of Monocytes by Placental Microparticles Involves Toll-Like Receptors and Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells

    PubMed Central

    Joerger-Messerli, Marianne Simone; Hoesli, Irene Mathilde; Rusterholz, Corinne; Lapaire, Olav

    2014-01-01

    Human pregnancy is accompanied by a mild systemic inflammatory response, which includes the activation of monocytes circulating in maternal blood. This response is exaggerated in preeclampsia, a placental-dependent disorder specific to human pregnancies. We and others showed that placental syncytiotrophoblast membrane microparticles (STBM) generated in vitro from normal placentas stimulated peripheral blood monocytes, which suggest a contribution of STBM to the systemic maternal inflammation. Here, we analyzed the inflammatory potential of STBM prepared from preeclamptic placentas on primary monocytes and investigated the mode of action in vitro. STBM generated in vitro by placental villous explants of normal or preeclamptic placentas were co-incubated with human peripheral blood monocytes. In some cases, inhibitors of specific cellular functions or signaling pathways were used. The analysis of the monocytic response was performed by flow cytometry, enzyme-linked immunoassays, real-time PCR, and fluorescence microscopy. STBM derived from preeclamptic placentas up-regulated the cell surface expression of CD54, and stimulated the secretion of the pro-inflammatory interleukin (IL)-6 and IL-8 in a similar, dose-dependent manner as did STBM prepared from normal placentas. STBM bound to the cell surface of monocytes, but phagocytosis was not necessary for activation. STBM-induced cytokine secretion was impaired in the presence of inhibitors of toll-like receptor (TLR) signaling or when nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation was blocked. Our results suggest that the inflammatory reaction in monocytes may be initiated by the interaction of STBM with TLRs, which in turn signal through NF-κB to mediate the transcription of genes coding for pro-inflammatory factors. PMID:24782870

  15. The Expression and Functions of Toll-Like Receptors in Atherosclerosis

    PubMed Central

    Cole, Jennifer E.; Georgiou, Ektoras; Monaco, Claudia

    2010-01-01

    Inflammation drives atherosclerosis. Both immune and resident vascular cell types are involved in the development of atherosclerotic lesions. The phenotype and function of these cells are key in determining the development of lesions. Toll-like receptors are the most characterised innate immune receptors and are responsible for the recognition of exogenous conserved motifs on pathogens, and, potentially, some endogenous molecules. Both endogenous and exogenous TLR agonists may be present in atherosclerotic plaques. Engagement of toll-like receptors on immune and resident vascular cells can affect atherogenesis as signalling downstream of these receptors can elicit proinflammatory cytokine release, lipid uptake, and foam cell formation and activate cells of the adaptive immune system. In this paper, we will describe the expression of TLRs on immune and resident vascular cells, highlight the TLR ligands that may act through TLRs on these cells, and discuss the consequences of TLR activation in atherosclerosis. PMID:20652007

  16. Mechanisms Underlying the Anti-Inflammatory Effects of Clinacanthus nutans Lindau Extracts: Inhibition of Cytokine Production and Toll-Like Receptor-4 Activation.

    PubMed

    Mai, Chun W; Yap, Kok S I; Kho, Mee T; Ismail, Nor H; Yusoff, Khatijah; Shaari, Khozirah; Chin, Swee Y; Lim, Erin S H

    2016-01-01

    Clinacanthus nutans has had a long history of use in folk medicine in Malaysia and Southeast Asia; mostly in the relief of inflammatory conditions. In this study, we investigated the effects of different extracts of C. nutans upon lipopolysaccharide (LPS) induced inflammation in order to identify its mechanism of action. Extracts of leaves and stem bark of C. nutans were prepared using polar and non-polar solvents to produce four extracts, namely polar leaf extract (LP), non-polar leaf extract (LN), polar stem extract (SP), and non-polar stem extracts (SN). The extracts were standardized by determining its total phenolic and total flavonoid contents. Its anti-inflammatory effects were assessed on LPS induced nitrite release in RAW264.7 macrophages and Toll-like receptor (TLR-4) activation in TLR-4 transfected human embryonic kidney cells (HEK-Blue(TM)-hTLR4 cells). The levels of inflammatory cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-12p40, and IL-17) in treated RAW264.7 macrophages were quantified to verify its anti-inflammatory effects. Western blotting was used to investigate the effect of the most potent extract (LP) on TLR-4 related inflammatory proteins (p65, p38, ERK, JNK, IRF3) in RAW264.7 macrophages. All four extracts produced a significant, concentration-dependent reduction in LPS-stimulated nitric oxide, LPS-induced TLR-4 activation in HEK-Blue(TM)-hTLR4 cells and LPS-stimulated cytokines production in RAW264.7 macrophages. The most potent extract, LP, also inhibited all LPS-induced TLR-4 inflammatory proteins. These results provide a basis for understanding the mechanisms underlying the previously demonstrated anti-inflammatory activity of C. nutans extracts.

  17. Mechanisms Underlying the Anti-Inflammatory Effects of Clinacanthus nutans Lindau Extracts: Inhibition of Cytokine Production and Toll-Like Receptor-4 Activation

    PubMed Central

    Mai, Chun W.; Yap, Kok S. I.; Kho, Mee T.; Ismail, Nor H.; Yusoff, Khatijah; Shaari, Khozirah; Chin, Swee Y.; Lim, Erin S. H.

    2016-01-01

    Clinacanthus nutans has had a long history of use in folk medicine in Malaysia and Southeast Asia; mostly in the relief of inflammatory conditions. In this study, we investigated the effects of different extracts of C. nutans upon lipopolysaccharide (LPS) induced inflammation in order to identify its mechanism of action. Extracts of leaves and stem bark of C. nutans were prepared using polar and non-polar solvents to produce four extracts, namely polar leaf extract (LP), non-polar leaf extract (LN), polar stem extract (SP), and non-polar stem extracts (SN). The extracts were standardized by determining its total phenolic and total flavonoid contents. Its anti-inflammatory effects were assessed on LPS induced nitrite release in RAW264.7 macrophages and Toll-like receptor (TLR-4) activation in TLR-4 transfected human embryonic kidney cells (HEK-BlueTM-hTLR4 cells). The levels of inflammatory cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-12p40, and IL-17) in treated RAW264.7 macrophages were quantified to verify its anti-inflammatory effects. Western blotting was used to investigate the effect of the most potent extract (LP) on TLR-4 related inflammatory proteins (p65, p38, ERK, JNK, IRF3) in RAW264.7 macrophages. All four extracts produced a significant, concentration-dependent reduction in LPS-stimulated nitric oxide, LPS-induced TLR-4 activation in HEK-BlueTM-hTLR4 cells and LPS-stimulated cytokines production in RAW264.7 macrophages. The most potent extract, LP, also inhibited all LPS-induced TLR-4 inflammatory proteins. These results provide a basis for understanding the mechanisms underlying the previously demonstrated anti-inflammatory activity of C. nutans extracts. PMID:26869924

  18. Central role of endogenous Toll-like receptor-2 activation in regulating inflammation, reactive oxygen species production, and subsequent neointimal formation after vascular injury

    SciTech Connect

    Shishido, Tetsuro . E-mail: Tetsuro_Shishido@URMC.Rochester.edu; Nozaki, Naoki; Takahashi, Hiroki; Arimoto, Takanori; Niizeki, Takeshi; Koyama, Yo; Abe, Jun-ichi; Takeishi, Yasuchika; Kubota, Isao

    2006-07-14

    Background: It is now evident that inflammation after vascular injury has significant impact on the restenosis after revascularization procedures such as angioplasty, stenting, and bypass grafting. However, the mechanisms that regulate inflammation and repair after vascular injury are incompletely understood. Here, we report that vascular injury-mediated cytokine expression, reactive oxygen species (ROS) production, as well as subsequent neointimal formation requires Toll-like receptor-2 (TLR-2) mediated signaling pathway in vivo. Methods and results: Vascular injury was induced by cuff-placement around the femoral artery in non-transgenic littermates (NLC) and TLR-2 knockout (TLR-2KO) mice. After cuff-placement in NLC mice, expression of TLR-2 was significantly increased in both smooth muscle medial layer and adventitia. Interestingly, we found that inflammatory genes expression such as tumor necrosis factor-{alpha}, interleukin-1{beta} (IL-1{beta}), IL-6, and monocyte chemoattractant protein-1 were markedly decreased in TLR-2KO mice compared with NLC mice. In addition, ROS production after vascular injury was attenuated in TLR-2KO mice compared with NLC mice. Since we observed the significant role of endogenous TLR-2 activation in regulating inflammatory responses and ROS production after vascular injury, we determined whether inhibition of endogenous TLR-2 activation can inhibit neointimal proliferation after vascular injury. Neointimal hyperplasia was markedly suppressed in TLR-2KO mice compared with WT mice at both 2 and 4 weeks after vascular injury. Conclusions: These findings suggested that endogenous TLR-2 activation might play a central role in the regulation of vascular inflammation as well as subsequent neointimal formation in injured vessels.

  19. Polygonum cuspidatum and Its Active Components Inhibit Replication of the Influenza Virus through Toll-Like Receptor 9-Induced Interferon Beta Expression

    PubMed Central

    Lin, Chao-jen; Lin, Hui-Ju; Chen, Ter-Hsin; Hsu, Yu-An; Liu, Chin-San; Hwang, Guang-Yuh; Wan, Lei

    2015-01-01

    Influenza virus infection is a global public health issue. The effectiveness of antiviral therapies for influenza has been limited by the emergence of drug-resistant viral strains. Therefore, there is an urgent need to identify novel antiviral therapies. Here we tested the effects of 300 traditional Chinese medicines on the replication of various influenza virus strains in a lung cell line, A549, using an influenza-specific luciferase reporter assay. Of the traditional medicines tested, Polygonum cuspidatum (PC) and its active components, resveratrol and emodin, were found to attenuate influenza viral replication in A549 cells. Furthermore, they preferentially inhibited the replication of influenza A virus, including clinical strains isolated in 2009 and 2011 in Taiwan and the laboratory strain A/WSN/33 (H1N1). In addition to inhibiting the expression of hemagglutinin and neuraminidase, PC, emodin, and resveratrol also increased the expression of interferon beta (IFN-β) through Toll-like receptor 9 (TLR9). Moreover, the anti-viral activity of IFN-β or resveratrol was reduced when the A549 cells were treated with neutralizing anti-IFN-β antibodies or a TLR9 inhibitor, suggesting that IFN-β likely acts synergistically with resveratrol to inhibit H1N1 replication. This potential antiviral mechanism, involving direct inhibition of virus replication and simultaneous activation of the host immune response, has not been previously described for a single antiviral molecule. In conclusion, our data support the use of PC, resveratrol or emodin for inhibiting influenza virus replication directly and via TLR-9–induced IFN-β production. PMID:25658356

  20. Micrococcus luteus Teichuronic Acids Activate Human and Murine Monocytic Cells in a CD14- and Toll-Like Receptor 4-Dependent Manner

    PubMed Central

    Yang, Shuhua; Sugawara, Shunji; Monodane, Toshihiko; Nishijima, Masahiro; Adachi, Yoshiyuki; Akashi, Sachiko; Miyake, Kensuke; Hase, Sumihiro; Takada, Haruhiko

    2001-01-01

    Teichuronic acid (TUA), a component of the cell walls of the gram-positive organism Micrococcus luteus (formerly Micrococcus lysodeikticus), induced inflammatory cytokines in C3H/HeN mice but not in lipopolysaccharide (LPS)-resistant C3H/HeJ mice that have a defect in the Toll-like receptor 4 (TLR4) gene, both in vivo and in vitro, similarly to LPS (T. Monodane, Y. Kawabata, S. Yang, S. Hase, and H. Takada, J. Med. Microbiol. 50:4–12, 2001). In this study, we found that purified TUA (p-TUA) induced tumor necrosis factor alpha (TNF-α) in murine monocytic J774.1 cells but not in mutant LR-9 cells expressing membrane CD14 at a lower level than the parent J774.1 cells. The TNF-α-inducing activity of p-TUA in J774.1 cells was completely inhibited by anti-mouse CD14 monoclonal antibody (MAb). p-TUA also induced interleukin-8 (IL-8) in human monocytic THP-1 cells differentiated to macrophage-like cells expressing CD14. Anti-human CD14 MAb, anti-human TLR4 MAb, and synthetic lipid A precursor IVA, an LPS antagonist, almost completely inhibited the IL-8-inducing ability of p-TUA, as well as LPS, in the differentiated THP-1 cells. Reduced p-TUA did not exhibit any activities in J774.1 or THP-1 cells. These findings strongly suggested that M. luteus TUA activates murine and human monocytic cells in a CD14- and TLR4-dependent manner, similar to LPS. PMID:11254554

  1. Micrococcus luteus teichuronic acids activate human and murine monocytic cells in a CD14- and toll-like receptor 4-dependent manner.

    PubMed

    Yang, S; Sugawara, S; Monodane, T; Nishijima, M; Adachi, Y; Akashi, S; Miyake, K; Hase, S; Takada, H

    2001-04-01

    Teichuronic acid (TUA), a component of the cell walls of the gram-positive organism Micrococcus luteus (formerly Micrococcus lysodeikticus), induced inflammatory cytokines in C3H/HeN mice but not in lipopolysaccharide (LPS)-resistant C3H/HeJ mice that have a defect in the Toll-like receptor 4 (TLR4) gene, both in vivo and in vitro, similarly to LPS (T. Monodane, Y. Kawabata, S. Yang, S. Hase, and H. Takada, J. Med. Microbiol. 50:4-12, 2001). In this study, we found that purified TUA (p-TUA) induced tumor necrosis factor alpha (TNF-alpha) in murine monocytic J774.1 cells but not in mutant LR-9 cells expressing membrane CD14 at a lower level than the parent J774.1 cells. The TNF-alpha-inducing activity of p-TUA in J774.1 cells was completely inhibited by anti-mouse CD14 monoclonal antibody (MAb). p-TUA also induced interleukin-8 (IL-8) in human monocytic THP-1 cells differentiated to macrophage-like cells expressing CD14. Anti-human CD14 MAb, anti-human TLR4 MAb, and synthetic lipid A precursor IV(A), an LPS antagonist, almost completely inhibited the IL-8-inducing ability of p-TUA, as well as LPS, in the differentiated THP-1 cells. Reduced p-TUA did not exhibit any activities in J774.1 or THP-1 cells. These findings strongly suggested that M. luteus TUA activates murine and human monocytic cells in a CD14- and TLR4-dependent manner, similar to LPS.

  2. Lycium barbarum polysaccharide LBPF4-OL may be a new Toll-like receptor 4/MD2-MAPK signaling pathway activator and inducer.

    PubMed

    Zhang, Xiao-rui; Qi, Chun-hui; Cheng, Jun-ping; Liu, Gang; Huang, Lin-juan; Wang, Zhong-fu; Zhou, Wen-xia; Zhang, Yong-xiang

    2014-03-01

    Recognition of the utility of the traditional Chinese medicine Lycium barbarum L. has been gradually increasing in Europe and the Americas. Many immunoregulation and antitumor effects of L. barbarum polysaccharides (LBP) have been reported, but its molecular mechanism is not yet clear. In this study, we reported that the activity of the polysaccharide LBPF4-OL, which was purified from LBP, is closely associated with the TLR4-MAPK signaling pathway. We found that LBPF4-OL can significantly induce TNF-α and IL-1β production in peritoneal macrophages isolated from wild-type (C3H/HeN) but not TLR4-deficient mice (C3H/HeJ). We also determined that the proliferation of LBPF4-OL-stimulated lymphocytes from C3H/HeJ mice is significantly weaker than that of lymphocytes from C3H/HeN mice. Furthermore, through a bio-layer interferometry assay, we found that LPS but not LBPF4-OL can directly associate with the TLR4/MD2 molecular complex. Flow cytometry analysis indicated that LBPF4-OL markedly upregulates TLR4/MD2 expression in both peritoneal macrophages and Raw264.7 cells. As its mechanism of action, LBPF4-OL increases the phosphorylation of p38-MAPK and inhibits the phosphorylation of JNK and ERK1/2, as was observed through Western blot analysis. These data suggest that the L. barbarum polysaccharide LBPF4-OL is a new Toll-like receptor 4/MD2-MAPK signaling pathway activator and inducer.

  3. Helicobacter pylori augments growth of gastric cancers via the lipopolysaccharide-toll-like receptor 4 pathway whereas its lipopolysaccharide attenuates antitumor activities of human mononuclear cells.

    PubMed

    Chochi, Kentaro; Ichikura, Takashi; Kinoshita, Manabu; Majima, Takashi; Shinomiya, Nariyoshi; Tsujimoto, Hironori; Kawabata, Toshinobu; Sugasawa, Hidekazu; Ono, Satoshi; Seki, Shuhji; Mochizuki, Hidetaka

    2008-05-15

    Helicobacter pylori is reportedly involved in the development of gastric cancer. We investigated the mechanisms by which H. pylori affects gastric cancer growth and antitumor immunities in the host, focusing on H. pylori-derived lipopolysaccharide (LPS). H. pylori and four gastric cancer cell lines (MKN28, MKN45, NUGC3, and KATOIII) were used. We examined the effect of H. pylori or its LPS stimulation on cancer growth and the involvement of the H. pylori LPS-toll-like receptor 4 (TLR4) pathway. We also examined the cytotoxicities of H. pylori/LPS-stimulated human mononuclear cells (MNC) against gastric cancer cells and the effect of H. pylori LPS stimulation on cytokine production by MNC. H. pylori, as well as its LPS, augmented the growth of gastric cancers, all of which expressed TLR4. Neutralization of TLR4 almost completely abrogated the H. pylori-induced proliferative activity of cancer cells. Escherichia coli LPS also augmented cancer growth via the LPS-TLR4 pathway. However, only H. pylori-derived LPS attenuated the cytotoxicity of MNC against gastric cancer cells. Stimulation with H. pylori/LPS also down-regulated perforin production in cancer cell-cocultured CD56+ natural killer cells. H. pylori LPS induced neither interleukin-12 nor IFN-gamma production by MNC, although E. coli LPS did induce production of both significantly. Nevertheless, interleukin-12 stimulation restored the IFN-gamma-producing capacity of H. pylori LPS-stimulated MNC. H. pylori augmented the growth of gastric cancers via the LPS-TLR4 pathway, whereas it attenuated the antitumor activity and IFN-gamma-mediated cellular immunity of MNC. H. pylori infection might thereby promote proliferation and progression of gastric cancers.

  4. Toll-Like Receptor 4 Promotes Autonomic Dysfunction, Inflammation and Microglia Activation in the Hypothalamic Paraventricular Nucleus: Role of Endoplasmic Reticulum Stress

    PubMed Central

    Dange, Rahul B.; Silva-Soares, Pedro Paulo; Michelini, Lisete C.; Francis, Joseph

    2015-01-01

    Background & Purpose Toll-like receptor 4 (TLR4) signaling induces tissue pro-inflammatory cytokine release and endoplasmic reticulum (ER) stress. We examined the role of TLR4 in autonomic dysfunction and the contribution of ER stress. Experimental approach Our study included animals divided in 6 experimental groups: rats treated with saline (i.v., 0.9%), LPS (i.v., 10mg/kg), VIPER (i.v., 0.1 mg/kg), or 4-PBA (i.p., 10 mg/kg). Two other groups were pretreated either with VIPER (TLR4 viral inhibitory peptide) LPS + VIPER (i.v., 0.1 mg/kg) or 4-Phenyl butyric acid (4-PBA) LPS + PBA (i.p., 10 mg/kg). Arterial pressure (AP) and heart rate (HR) were measured in conscious Sprague-Dawley rats. AP, HR variability, as well as baroreflex sensitivity (BrS), was determined after LPS or saline treatment for 2 hours. Immunofluorescence staining for NeuN, Ib1a, TLR4 and GRP78 in the hypothalamic paraventricular nucleus (PVN) was performed. TNF-α, TLR4 and GRP78 protein expression in the PVN were evaluated by western blot. Plasma norepinephrine levels were determined by ELISA. Key Results Acute LPS treatment increased HR and plasma norepinephrine concentration. It also decreased HR variability and high frequency (HF) components of HR variability, as well BrS. Acute LPS treatment increased TLR4 and TNF-α protein expression in the PVN. These hemodynamic and molecular effects were partially abrogated with TLR4 blocker or ER stress inhibitor pretreatment. In addition, immunofluorescence study showed that TLR4 is co-localized with GRP78in the neurons. Further inhibition of TLR4 or ER stress was able to attenuate the LPS-induced microglia activation. Conclusions & Implications TLR4 signaling promotes autonomic dysfunction, inflammation and microglia activation, through neuronal ER stress, in the PVN. PMID:25811788

  5. Toll-like receptor-2 mediates adaptive cardiac hypertrophy in response to pressure overload through interleukin-1β upregulation via nuclear factor κB activation.

    PubMed

    Higashikuni, Yasutomi; Tanaka, Kimie; Kato, Megumi; Nureki, Osamu; Hirata, Yasunobu; Nagai, Ryozo; Komuro, Issei; Sata, Masataka

    2013-11-18

    Inflammation is induced in the heart during the development of cardiac hypertrophy. The initiating mechanisms and the role of inflammation in cardiac hypertrophy, however, remain unclear. Toll-like receptor-2 (TLR2) recognizes endogenous molecules that induce noninfectious inflammation. Here, we examined the role of TLR2-mediated inflammation in cardiac hypertrophy. At 2 weeks after transverse aortic constriction, Tlr2(-/-) mice showed reduced cardiac hypertrophy and fibrosis with greater left ventricular dilatation and impaired systolic function compared with wild-type mice, which indicated impaired cardiac adaptation in Tlr2(-/-) mice. Bone marrow transplantation experiment revealed that TLR2 expressed in the heart, but not in bone marrow-derived cells, is important for cardiac adaptive response to pressure overload. In vitro experiments demonstrated that TLR2 signaling can induce cardiomyocyte hypertrophy and fibroblast and vascular endothelial cell proliferation through nuclear factor-κB activation and interleukin-1β upregulation. Systemic administration of a nuclear factor-κB inhibitor or anti-interleukin-1β antibodies to wild-type mice resulted in impaired adaptive cardiac hypertrophy after transverse aortic constriction. We also found that heat shock protein 70, which was increased in murine plasma after transverse aortic constriction, can activate TLR2 signaling in vitro and in vivo. Systemic administration of anti-heat shock protein 70 antibodies to wild-type mice impaired adaptive cardiac hypertrophy after transverse aortic constriction. Our results demonstrate that TLR2-mediated inflammation induced by extracellularly released heat shock protein 70 is essential for adaptive cardiac hypertrophy in response to pressure overload. Thus, modulation of TLR2 signaling in the heart may provide a novel strategy for treating heart failure due to inadequate adaptation to hemodynamic stress.

  6. The Role of Toll Like Receptors in Pregnancy

    PubMed Central

    Amirchaghmaghi, Elham; Taghavi, Seyed Abdolvahab; Shapouri, Farnaz; Saeidi, Shaghayegh; Rezaei, Abbas; Aflatoonian, Reza

    2013-01-01

    For many years, the innate immunity was of less interest than the adaptive immunity because it was perceived to have secondary importance in the functionality of the immune system. During the past decades, with the advancement of knowledge about innate immune system, interest in innate immunity has grown dramatically and thus its function has been extensively studied. Innate immunity plays fundamental roles in the initiation and induction of adaptive immune responses. It consists of several cells and receptors including natural killer (NK) cells, macrophages (MQs), dendritic cells (DCs) and pattern recognition receptors (PRRs). Two decades ago, Toll like receptors (TLRs) family was known as one of the important PRRs with unique functions especially in protection against invading pathogens. Since the female reproductive tract has access to the outside environment and has a unique interaction with different pathogens whether invading microorganisms or normal flora, allogenic sperm and semi allogenic fetus, it has an essential need for effective immune responses. It has therefore been suggested that TLRs may play important roles in the immune regulation of the female reproductive tract. In addition, it has been demonstrated that immune disturbance may be responsible for some adverse pregnancy outcomes such as preeclampsia (PE), recurrent spontaneous abortion (RSA) and intrauterine growth restriction (IUGR). Our focus in this review is to show the importance of TLRs in pregnancy with emphasis on the expression of these receptors in different tissues related to pregnancy. PMID:24520479

  7. The role of toll like receptors in pregnancy.

    PubMed

    Amirchaghmaghi, Elham; Taghavi, Seyed Abdolvahab; Shapouri, Farnaz; Saeidi, Shaghayegh; Rezaei, Abbas; Aflatoonian, Reza

    2013-10-01

    For many years, the innate immunity was of less interest than the adaptive immunity because it was perceived to have secondary importance in the functionality of the immune system. During the past decades, with the advancement of knowledge about innate immune system, interest in innate immunity has grown dramatically and thus its function has been extensively studied. Innate immunity plays fundamental roles in the initiation and induction of adaptive immune responses. It consists of several cells and receptors including natural killer (NK) cells, macrophages (MQs), dendritic cells (DCs) and pattern recognition receptors (PRRs). Two decades ago, Toll like receptors (TLRs) family was known as one of the important PRRs with unique functions especially in protection against invading pathogens. Since the female reproductive tract has access to the outside environment and has a unique interaction with different pathogens whether invading microorganisms or normal flora, allogenic sperm and semi allogenic fetus, it has an essential need for effective immune responses. It has therefore been suggested that TLRs may play important roles in the immune regulation of the female reproductive tract. In addition, it has been demonstrated that immune disturbance may be responsible for some adverse pregnancy outcomes such as preeclampsia (PE), recurrent spontaneous abortion (RSA) and intrauterine growth restriction (IUGR). Our focus in this review is to show the importance of TLRs in pregnancy with emphasis on the expression of these receptors in different tissues related to pregnancy.

  8. A Toll-like receptor in horseshoe crabs.

    PubMed

    Inamori, Kei-ichiro; Ariki, Shigeru; Kawabata, Shun-ichiro

    2004-04-01

    Non-self-recognition of invading microbes relies on the pattern-recognition of pathogen-associated molecular patterns (PAMPs) derived from microbial cell-wall components. Insects and mammals conserve a signaling pathway of the innate immune system through cell-surface receptors called Tolls and Toll-like receptors (TLRs). Bacterial lipopolysaccharides (LPSs) are an important trigger of the horseshoe crab's innate immunity to infectious microorganisms. Horseshoe crabs' granular hemocytes respond specifically to LPS stimulation, inducing the secretion of various defense molecules from the granular hemocytes. Here, we show a cDNA which we named tToll, coding for a TLR identified from hemocytes of the horseshoe crab Tachypleus tridentatus. tToll is most closely related to Drosophila Toll in both domain architecture and overall length. Human TLRs have been suggested to contain numerous PAMP-binding insertions located in the leucine-rich repeats (LRRs) of their ectodomains. However, the LRRs of tToll contained no obvious PAMP-binding insertions. Furthermore, tToll was non-specifically expressed in horseshoe crab tissues. These observations suggest that tToll does not function as an LPS receptor on granular hemocytes.

  9. Toll-like receptor signalling and their therapeutic targeting in colorectal cancer.

    PubMed

    Moossavi, Shirin; Rezaei, Nima

    2013-06-01

    Intestinal homeostasis is dependent on the proper host/microbiota interaction via pattern recognition receptors. Toll-like receptors are a specialised group of membrane receptors which detect pathogen-associated conserved structures. They are present in the intestinal tract and are required for intestinal homeostasis. Dysregulation in the Toll-like receptor signalling can conceivably result in a dysregulated immune response which could contribute to major intestinal pathologies including colorectal cancer. Evidence for the role of microbiota and toll-like receptors in colorectal cancer is emerging. In this report the evidence for the contribution of toll-like receptors to the pathogenesis of colorectal cancer; potential mechanisms affecting toll-like receptor signalling; and their therapeutic targeting in colorectal cancer are reviewed. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Increased expression of Toll-like receptors 7 and 9 in myasthenia gravis thymus characterized by active Epstein-Barr virus infection.

    PubMed

    Cavalcante, Paola; Galbardi, Barbara; Franzi, Sara; Marcuzzo, Stefania; Barzago, Claudia; Bonanno, Silvia; Camera, Giorgia; Maggi, Lorenzo; Kapetis, Dimos; Andreetta, Francesca; Biasiucci, Amelia; Motta, Teresio; Giardina, Carmelo; Antozzi, Carlo; Baggi, Fulvio; Mantegazza, Renato; Bernasconi, Pia

    2016-04-01

    Considerable data implicate the thymus as the main site of autosensitization to the acetylcholine receptor in myasthenia gravis (MG), a B-cell-mediated autoimmune disease affecting the neuromuscular junction. We recently demonstrated an active Epstein-Barr virus (EBV) infection in the thymus of MG patients, suggesting that EBV might contribute to the onset or maintenance of the autoimmune response within MG thymus, because of its ability to activate and immortalize autoreactive B cells. EBV has been reported to elicit and modulate Toll-like receptor (TLR) 7- and TLR9-mediated innate immune responses, which are known to favor B-cell dysfunction and autoimmunity. Aim of this study was to investigate whether EBV infection is associated with altered expression of TLR7 and TLR9 in MG thymus. By real-time PCR, we found that TLR7 and TLR9 mRNA levels were significantly higher in EBV-positive MG compared to EBV-negative normal thymuses. By confocal microscopy, high expression levels of TLR7 and TLR9 proteins were observed in B cells and plasma cells of MG thymic germinal centers (GCs) and lymphoid infiltrates, where the two receptors co-localized with EBV antigens. An increased frequency of Ki67-positive proliferating B cells was found in MG thymuses, where we also detected proliferating cells expressing TLR7, TLR9 and EBV antigens, thus supporting the idea that EBV-associated TLR7/9 signaling may promote abnormal B-cell activation and proliferation. Along with B cells and plasma cells, thymic epithelium, plasmacytoid dendritic cells and macrophages exhibited enhanced TLR7 and TLR9 expression in MG thymus; TLR7 was also increased in thymic myeloid dendritic cells and its transcriptional levels positively correlated with those of interferon (IFN)-β. We suggested that TLR7/9 signaling may be involved in antiviral type I IFN production and long-term inflammation in EBV-infected MG thymuses. Our overall findings indicate that EBV-driven TLR7- and TLR9-mediated innate immune

  11. Toll-like receptor 4-mediated nuclear factor kappa B activation is essential for sensing exogenous oxidants to propagate and maintain oxidative/nitrosative cellular stress.

    PubMed

    Karki, Rajendra; Igwe, Orisa J

    2013-01-01

    The mechanism(s) by which cells can sense exogenous oxidants that may contribute to intracellular oxidative/nitrosative stress is not clear. The objective of this study was to determine how cells might respond to exogenous oxidants to potentially initiate, propagate and/or maintain inflammation associated with many human diseases through NF-κB activation. First, we used HEK-Blue cells that are stably transfected with mouse toll-like receptor 4 (mTLR4) or mouse TLR2. These cells also express optimized secreted embryonic alkaline phosphatase (SEAP) reporter gene under the control of a promoter inducible by NF-κB transcription factor. These cells were challenged with their respective receptor-specific ligands, different pro-oxidants and/or inhibitors that act at different levels of the receptor signaling pathways. A neutralizing antibody directed against TLR4 inhibited responses to both TLR4-specific agonist and a prooxidant, which confirmed that both agents act through TLR4. We used the level of SEAP released into the culture media due to NF-κB activation as a measure of TLR4 or TLR2 stimulation. Pro-oxidants evoked increased release of SEAP from HEK-Blue mTLR4 cells at a much lower concentration compared with release from the HEK-Blue mTLR2 cells. Specific TLR4 signaling pathway inhibitors and oxidant scavengers (anti-oxidants) significantly attenuated oxidant-induced SEAP release by TLR4 stimulation. Furthermore, a novel pro-oxidant that decays to produce the same reactants as activated phagocytes induced inflammatory pain responses in the mouse orofacial region with increased TLR4 expression, and IL-1β and TNFα tissue levels. EUK-134, a synthetic serum-stable scavenger of oxidative species decreased these effects. Our data provide in vitro and related in vivo evidence that exogenous oxidants can induce and maintain inflammation by acting mainly through a TLR4-dependent pathway, with implications in many chronic human ailments.

  12. Toll-Like Receptor 4–Mediated Nuclear Factor Kappa B Activation Is Essential for Sensing Exogenous Oxidants to Propagate and Maintain Oxidative/Nitrosative Cellular Stress

    PubMed Central

    Karki, Rajendra; Igwe, Orisa J.

    2013-01-01

    The mechanism(s) by which cells can sense exogenous oxidants that may contribute to intracellular oxidative/nitrosative stress is not clear. The objective of this study was to determine how cells might respond to exogenous oxidants to potentially initiate, propagate and/or maintain inflammation associated with many human diseases through NF-κB activation. First, we used HEK-Blue cells that are stably transfected with mouse toll-like receptor 4 (mTLR4) or mouse TLR2. These cells also express optimized secreted embryonic alkaline phosphatase (SEAP) reporter gene under the control of a promoter inducible by NF-κB transcription factor. These cells were challenged with their respective receptor-specific ligands, different pro-oxidants and/or inhibitors that act at different levels of the receptor signaling pathways. A neutralizing antibody directed against TLR4 inhibited responses to both TLR4-specific agonist and a prooxidant, which confirmed that both agents act through TLR4. We used the level of SEAP released into the culture media due to NF-κB activation as a measure of TLR4 or TLR2 stimulation. Pro-oxidants evoked increased release of SEAP from HEK-Blue mTLR4 cells at a much lower concentration compared with release from the HEK-Blue mTLR2 cells. Specific TLR4 signaling pathway inhibitors and oxidant scavengers (anti-oxidants) significantly attenuated oxidant-induced SEAP release by TLR4 stimulation. Furthermore, a novel pro-oxidant that decays to produce the same reactants as activated phagocytes induced inflammatory pain responses in the mouse orofacial region with increased TLR4 expression, and IL-1β and TNFα tissue levels. EUK-134, a synthetic serum-stable scavenger of oxidative species decreased these effects. Our data provide in vitro and related in vivo evidence that exogenous oxidants can induce and maintain inflammation by acting mainly through a TLR4-dependent pathway, with implications in many chronic human ailments. PMID:24058497

  13. Toll-like Receptor 1 Polymorphisms Increase Susceptibility to Candidemia

    PubMed Central

    Plantinga, Theo S.; Johnson, Melissa D.; Scott, William K.; van de Vosse, Esther; Velez Edwards, Digna R.; Smith, P. Brian; Alexander, Barbara D.; Yang, John C.; Kremer, Dennis; Laird, Gregory M.; Oosting, Marije; Joosten, Leo A. B.; van der Meer, Jos W. M.; van Dissel, Jaap T.; Walsh, Thomas J.; Perfect, John R.; Kullberg, Bart Jan

    2012-01-01

    (See the editorial commentary by Bagni and Whitby, on pages 873–4.) Background. Candidemia is a severe invasive fungal infection with high mortality. Recognition of Candida species is mediated through pattern recognition receptors such as Toll-like receptors (TLRs). This study assessed whether genetic variation in TLR signaling influences susceptibility to candidemia. Methods. Thirteen mostly nonsynonymous single nucleotide polymorphisms (SNPs) in genes encoding TLRs and signaling adaptors MyD88 and Mal/TIRAP were genotyped in 338 patients (237 white, 93 African American, 8 other race) with candidemia and 351 noninfected controls (263 white, 88 African American). The SNPs significant in univariate analysis were further analyzed with multivariable logistic regression to determine association with clinical outcomes. Functional consequences of these polymorphisms were assessed via in vitro stimulation assays. Results. Analyses of TLR SNPs revealed that 3 TLR1 SNPs (R80T, S248N, I602S) were significantly associated with candidemia susceptibility in whites. This association was not found in African Americans, likely due to lower power in this smaller study population. Furthermore, these TLR1 polymorphisms displayed impaired cytokine release by primary monocytes. No associations with susceptibility to candidemia were observed for SNPs in TLR2, TLR4, TLR6, TLR9, MyD88, or TIRAP. Conclusions. Nonsynonymous SNPs in TLR1 are associated with impaired TLR1 function, decreased cytokine responses, and predisposition to candidemia in whites. PMID:22301633

  14. Controversial role of toll-like receptors in acute pancreatitis

    PubMed Central

    Vaz, Juan; Akbarshahi, Hamid; Andersson, Roland

    2013-01-01

    Acute pancreatitis (AP) is a common clinical condition with an incidence of about 300 or more patients per million annually. About 10%-15% of patients will develop severe acute pancreatitis (SAP) and of those, 10%-30% may die due to SAP-associated complications. Despite the improvements done in the diagnosis and management of AP, the mortality rate has not significantly declined during the last decades. Toll-like receptors (TLRs) are pattern-recognition receptors that seem to play a major role in the development of numerous diseases, which make these molecules attractive as potential therapeutic targets. TLRs are involved in the development of the systemic inflammatory response syndrome, a potentially lethal complication in SAP. In the present review, we explore the current knowledge about the role of different TLRs that have been described associated with AP. The main candidate for targeting seems to be TLR4, which recognizes numerous damage-associated molecular patterns related to AP. TLR2 has also been linked with AP, but there are only limited studies that exclusively studied its role in AP. There is also data suggesting that TLR9 may play a role in AP. PMID:23431068

  15. Toll-Like Receptor Pathways in Autoimmune Diseases.

    PubMed

    Chen, Ji-Qing; Szodoray, Peter; Zeher, Margit

    2016-02-01

    Autoimmune diseases are a family of chronic systemic inflammatory disorders, characterized by the dysregulation of the immune system which finally results in the break of tolerance to self-antigen. Several studies suggest that Toll-like receptors (TLRs) play an essential role in the pathogenesis of autoimmune diseases. TLRs belong to the family of pattern recognition receptors (PRRs) that recognize a wide range of pathogen-associated molecular patterns (PAMPs). TLRs are type I transmembrane proteins and located on various cellular membranes. Two main groups have been classified based on their location; the extracelluar group referred to the ones located on the plasma membrane while the intracellular group all located in endosomal compartments responsible for the recognition of nucleic acids. They are released by the host cells and trigger various intracellular pathways which results in the production of proinflammatory cytokines, chemokines, as well as the expression of co-stimulatory molecules to protect against invading microorganisms. In particular, TLR pathway-associated proteins, such as IRAK, TRAF, and SOCS, are often dysregulated in this group of diseases. TLR-associated gene expression profile analysis together with single nucleotide polymorphism (SNP) assessment could be important to explain the pathomechanism driving autoimmune diseases. In this review, we summarize recent findings on TLR pathway regulation in various autoimmune diseases, including Sjögren's syndrome (SS), systemic lupus erythematosus (SLE), multiple sclerosis (MS), rheumatoid arthritis (RA), systemic sclerosis (SSc), and psoriasis.

  16. Toll-like receptors in pathophysiology of liver diseases

    PubMed Central

    Kiziltas, Safak

    2016-01-01

    Toll-like receptors (TLRs) are pattern recognition receptors that participate in host defense by recognizing pathogen-associated molecular patterns alongside inflammatory processes by recognizing damage associated molecular patterns. Given constant exposure to pathogens from gut, strict control of TLR-associated signaling pathways is essential in the liver, which otherwise may lead to inappropriate production of pro-inflammatory cytokines and interferons and may generate a predisposition to several autoimmune and chronic inflammatory diseases. The liver is considered to be a site of tolerance induction rather than immunity induction, with specificity in hepatic cell functions and distribution of TLR. Recent data emphasize significant contribution of TLR signaling in chronic liver diseases via complex immune responses mediating hepatocyte (i.e., hepatocellular injury and regeneration) or hepatic stellate cell (i.e., fibrosis and cirrhosis) inflammatory or immune pathologies. Herein, we review the available data on TLR signaling, hepatic expression of TLRs and associated ligands, as well as the contribution of TLRs to the pathophysiology of hepatic diseases. PMID:27917262

  17. Gain-of-Function Mutations in the Toll-Like Receptor Pathway: TPL2-Mediated ERK1/ERK2 MAPK Activation, a Path to Tumorigenesis in Lymphoid Neoplasms?

    PubMed Central

    Rousseau, Simon; Martel, Guy

    2016-01-01

    Lymphoid neoplasms form a family of cancers affecting B-cells, T-cells, and NK cells. The Toll-Like Receptor (TLR) signaling adapter molecule MYD88 is the most frequently mutated gene in these neoplasms. This signaling adaptor relays signals from TLRs to downstream effector pathways such as the Nuclear Factor kappa B (NFκB) and Mitogen Activated Protein Kinase (MAPK) pathways to regulate innate immune responses. Gain-of-function mutations such as MYD88[L265P] activate downstream signaling pathways in absence of cognate ligands for TLRs, resulting in increased cellular proliferation and survival. This article reports an analysis of non-synonymous somatic mutations found in the TLR signaling network in lymphoid neoplasms. In accordance with previous reports, mutations map to MYD88 pro-inflammatory signaling and not TRIF-mediated Type I IFN production. Interestingly, the analysis of somatic mutations found downstream of the core TLR-signaling network uncovered a strong association with the ERK1/2 MAPK cascade. In support of this analysis, heterologous expression of MYD88[L265P] in HEK293 cells led to ERK1/2 MAPK phosphorylation in addition to NFκB activation. Moreover, this activation is dependent on the protein kinase Tumor Promoting Locus 2 (TPL2), activated downstream of the IKK complex. Activation of ERK1/2 would then lead to activation, amongst others, of MYC and hnRNPA1, two proteins previously shown to contribute to tumor formation in lymphoid neoplasms. Taken together, this analysis suggests that TLR-mediated ERK1/2 activation via TPL2 may be a novel path to tumorigenesis. Therefore, the hypothesis proposed is that inhibition of ERK1/2 MAPK activation would prevent tumor growth downstream of MYD88[L265]. It will be interesting to test whether pharmacological inhibitors of this pathway show efficacy in primary tumor cells derived from hematologic malignancies such as Waldenstrom's Macroglobulinemia, where the majority of the cells carry the MYD88[L265P

  18. UV Radiation Activates Toll-Like Receptor 9 Expression in Primary Human Keratinocytes, an Event Inhibited by Human Papillomavirus 38 E6 and E7 Oncoproteins.

    PubMed

    Pacini, Laura; Ceraolo, Maria Grazia; Venuti, Assunta; Melita, Giusi; Hasan, Uzma A; Accardi, Rosita; Tommasino, Massimo

    2017-10-01

    Several lines of evidence indicate that cutaneous human papillomavirus (HPV) types belonging to the beta genus of the HPV phylogenetic tree synergize with UV radiation in the development of skin cancer. Accordingly, the E6 and E7 oncoproteins from some beta HPV types are able to deregulate pathways related to immune response and cellular transformation. Toll-like receptor 9 (TLR9), in addition to playing a role in innate immunity, has been shown to be involved in the cellular stress response. Using primary human keratinocytes as experimental models, we have shown that UV irradiation (and other cellular stresses) activates TLR9 expression. This event is closely linked to p53 activation. Silencing the expression of p53 or deleting its encoding gene affected the activation of TLR9 expression after UV irradiation. Using various strategies, we have also shown that the transcription factors p53 and c-Jun are recruited onto a specific region of the TLR9 promoter after UV irradiation. Importantly, the E6 and E7 oncoproteins from beta HPV38, by inducing the accumulation of the p53 antagonist ΔNp73α, prevent the UV-mediated recruitment of these transcription factors onto the TLR9 promoter, with subsequent impairment of TLR9 gene expression. This study provides new insight into the mechanism that mediates TLR9 upregulation in response to cellular stresses. In addition, we show that HPV38 E6 and E7 are able to interfere with this mechanism, providing another explanation for the possible cooperation of beta HPV types with UV radiation in skin carcinogenesis.IMPORTANCE Beta HPV types have been suggested to act as cofactors in UV-induced skin carcinogenesis by altering several cellular mechanisms activated by UV radiation. We show that the expression of TLR9, a sensor of damage-associated molecular patterns produced during cellular stress, is activated by UV radiation in primary human keratinocytes (PHKs). Two transcription factors known to be activated by UV radiation, p53 and

  19. Plexin-A1 is required for Toll-like receptor-mediated microglial activation in the development of lipopolysaccharide-induced encephalopathy

    PubMed Central

    ITO, TAKUJI; YOSHIDA, KENJI; NEGISHI, TAKAYUKI; MIYAJIMA, MASAYASU; TAKAMATSU, HYOTA; KIKUTANI, HITOSHI; KUMANOGOH, ATSUSHI; YUKAWA, KAZUNORI

    2014-01-01

    Recent investigations have suggested that semaphorins, which are known repulsive axon guidance molecules, may play a crucial role in maintaining brain homeostasis by regulating microglial activity. Sema3A, secreted in higher amounts from injured neurons, is considered to suppress excessive inflammatory responses by inducing microglial apoptosis through its binding to Plexin-A1 receptors on activated microglia. To clarify the in vivo role of Plexin-A1-mediated signaling in lipopolysaccharide (LPS)-induced injury in mouse brain, we examined the neuroinflammatory changes initiated by LPS administration to the cerebral ventricles of wild-type (WT) and Plexin-A1-deficient (−/−) mice. WT mice administered LPS exhibited a significantly higher expression of COX-2, iNOS, IL-1β and TNF-α in the hippocampus, and a significantly greater ventricular enlargement and intracerebral infiltration of leukocytes, as compared with the saline-treated group. By contrast, Plexin-A1−/− mice administered LPS did not exhibit a significantly increased expression of COX-2, iNOS, IL-1β or TNF-α in the hippocampus as compared with the saline-treated group. Plexin-A1−/− mice administered LPS did not show significant increases in ventricle size or infiltration of leukocytes into the brain, as compared with the saline-treated group. In WT, but not in the Plexin-A1−/− primary microglia treated with LPS, Sema3A induced significantly more nitric oxide production than in the immunoglobulin G control. These results revealed the crucial role of the Sema3A-Plexin-A1 interaction in the Toll-like receptor 4-mediated signaling of the LPS-induced activation of microglia. Thus, results of the present study revealed the essential role of Plexin-A1 in the development of LPS-induced neuroinflammation in mice, suggesting the possible application of microglial control of the semaphorin-plexin signaling system to the treatment of LPS-induced encephalopathy and other psychiatric diseases

  20. Toll-like receptor 8: augmentation of innate immunity in platinum resistant ovarian carcinoma

    PubMed Central

    Brueseke, Taylor J; Tewari, Krishnansu S

    2013-01-01

    Ovarian cancer is the most deadly gynecologic cancer, with 15,000 anticipated deaths within the United States alone in 2012, and new treatment strategies are needed. Ovarian cancer tumors are known to host an immunosuppressive microenvironment. This suppression may be reversible via activation of the innate immune response. Toll-like receptor 8 activates innate immunity while simultaneously inhibiting the effects of regulatory T cells within the ovarian cancer tumors. VTX-2337 is a novel small molecule ligand of Toll-like receptor 8 and is currently the subject of a Phase II randomized, double-blind, placebo-controlled trial Gynecologic Oncology Group (GOG)-3003 for patients with recurrent platinum-resistant ovarian cancer. We look forward to the results of this trial as support for the paradigm of process therapy in the treatment of ovarian cancer. PMID:23723721

  1. Toll-like receptors recognize distinct proteinase-resistant glycoconjugates in Campylobacter jejuni and Escherichia coli.

    PubMed

    Phongsisay, Vongsavanh; Hara, Hiromitsu; Fujimoto, Shuji

    2015-03-01

    Campylobacter jejuni causes gastroenteritis and autoimmune neuropathy Guillain-Barré syndrome. The mechanism by which C. jejuni infection results in such the hyperimmunity is not completely understood. Host immunity plays an important role in the disease pathogenesis; however, little is known how immune system recognizes this human pathogen. In this study, we report that Toll-like receptors recognize distinct proteinase K-resistant glycoconjugates in C. jejuni and Escherichia coli. Lipopolysaccharide is solely proteinase-resistant glycoconjugate in E. coli. In contrast, C. jejuni possesses at least five different components that are resistant to proteinase digestion and are capable of inducing NF-κB activation through TLR2 and TLR4. Possession of multiple activators of Toll-like receptors may be the unique strategy of C. jejuni to trigger hyperimmunity.

  2. The Toll-like receptor 4-activated neuroprotective microglia subpopulation survives via granulocyte macrophage colony-stimulating factor and JAK2/STAT5 signaling.

    PubMed

    Kamigaki, Mayumi; Hide, Izumi; Yanase, Yuhki; Shiraki, Hiroko; Harada, Kana; Tanaka, Yoshiki; Seki, Takahiro; Shirafuji, Toshihiko; Tanaka, Shigeru; Hide, Michihiro; Sakai, Norio

    2016-02-01

    Toll-like receptor (TLR) 4 mediates inflammation and is also known to trigger apoptosis in microglia. Our time-lapse observations showed that lipopolysaccharide (LPS) stimulation induced rapid death in primary cultures of rat microglia, while a portion of the microglia escaped from death and survived for much longer than 2 days, in which time, all of the control cells had died. However, it remains unclear how the LPS-stimulated microglia subpopulation could continue to survive in the absence of any supplied growth factors. In the present study, to clarify the mechanism underlying the LPS-stimulated survival, we investigated whether microglia could produce their own survival factors in response to LPS, focusing on macrophage colony-stimulating factor (M-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-34, which are mainly supplied by astrocytes or neurons. The LPS-stimulated microglia drastically induced the expression of the GM-CSF mRNA and protein, while M-CSF and IL-34 levels were unchanged. The surviving microglia also significantly upregulated the expression of GM-CSF receptor (GM-CSFR) mRNA without affecting M-CSFR. As for the GM-CSFR downstream signal, LPS resulted in the phosphorylation of STAT5 and its translocation to the nucleus in the surviving microglia. Moreover, a specific JAK2 inhibitor, NVP-BSK805, suppressed STAT5 phosphorylation and microglia survival in response to LPS, indicating a critical role of the JAK2/STAT5 pathway in this survival mechanism. Together, these results suggest that a subpopulation of TLR4-activated microglia may survive by producing GM-CSF and up-regulating GM-CSFR. This autocrine GM-CSF pathway may activate the JAK2/STAT5 signaling pathway, which controls the transcription of survival-related genes. Finally, these surviving microglia may have neuroprotective functions because the neurons remained viable in co-cultures with these microglia. Copyright © 2016 Elsevier Ltd. All rights

  3. Stimulation of PBMC and Monocyte-Derived Macrophages via Toll-Like Receptor Activates Innate Immune Pathways in HIV-Infected Patients on Virally Suppressive Combination Antiretroviral Therapy

    PubMed Central

    Merlini, Esther; Tincati, Camilla; Biasin, Mara; Saulle, Irma; Cazzaniga, Federico Angelo; d’Arminio Monforte, Antonella; Cappione, Amedeo J.; Snyder-Cappione, Jennifer; Clerici, Mario; Marchetti, Giulia Carla

    2016-01-01

    In HIV-infected, combination antiretroviral therapy (cART)-treated patients, immune activation and microbial translocation persist and associate with inadequate CD4 recovery and morbidity/mortality. We analyzed whether alterations in the toll-like receptor (TLR) pathway could be responsible for the immune hyperactivation seen in these patients. PBMC/monocyte-derived macrophages (MDMs) of 28 HIV+ untreated and 35 cART-treated patients with HIV-RNA < 40 cp/mL [20 Full Responders (FRs): CD4 ≥ 350; 15 Immunological Non-Responders (INRs): CD4 < 350], as well as of 16 healthy controls were stimulated with a panel of TLR agonists. We measured: CD4/CD8/CD14/CD38/HLA-DR/Ki67/AnnexinV/CD69/TLR4/8 (Flow Cytometry); PBMC expression of 84 TLR pathway genes (qPCR); PBMC/MDM cytokine release (Multiplex); and plasma lipopolysaccharide (LPS)/sCD14 (LAL/ELISA). PBMC/MDM from cART patients responded weakly to LPS stimulation but released high amounts of pro-inflammatory cytokines. MDM from these patients were characterized by a reduced expression of HLA-DR+ MDM and failed to expand activated HLA-DR+ CD38+ T-lymphocytes. PBMC/MDM from cART patients responded more robustly to ssRNA stimulation; this resulted in a significant expansion of activated CD38 + CD8 and the release of amounts of pro-inflammatory cytokines comparable to those seen in untreated viremic patients. Despite greater constitutive TLR pathway gene expression, PBMC from INRs seemed to upregulate only type I IFN genes following TLR stimulation, whereas PBMC from full responders showed a broader response. Systemic exposure to microbial antigens drives immune activation during cART by triggering TLRs. Bacterial stimulation modifies MDM function/pro-inflammatory profile in cART patients without affecting T-lymphocytes; this suggests translocating bacteria as selective stimulus to chronic innate activation during cART. High constitutive TLR activation is seen in patients lacking CD4 recovery, suggesting

  4. The co-stimulatory effects of MyD88-dependent Toll-like receptor signaling on activation of murine γδ T cells.

    PubMed

    Zhang, Jinping; Wang, Jia; Pang, Lan; Xie, Guorui; Welte, Thomas; Saxena, Vandana; Wicker, Jason; Mann, Brian; Soong, Lynn; Barrett, Alan; Born, Willi; O'Brien, Rebecca; Wang, Tian

    2014-01-01

    γδ T cells express several different toll-like receptor (TLR)s. The role of MyD88- dependent TLR signaling in TCR activation of murine γδ T cells is incompletely defined. Here, we report that Pam3CSK4 (PAM, TLR2 agonist) and CL097 (TLR7 agonist), but not lipopolysaccharide (TLR4 agonist), increased CD69 expression and Th1-type cytokine production upon anti-CD3 stimulation of γδ T cells from young adult mice (6-to 10-week-old). However, these agonists alone did not induce γδ T cell activation. Additionally, we noted that neither PAM nor CL097 synergized with anti-CD3 in inducing CD69 expression on γδ T cells of aged mice (21-to 22-month-old). Compared to young γδ T cells, PAM and CL097 increased Th-1 type cytokine production with a lower magnitude from anti-CD3- stimulated, aged γδ T cells. Vγ1+ and Vγ4+ cells are two subpopulations of splenic γδ T cells. PAM had similar effects in anti-CD3-activated control and Vγ4+ subset- depleted γδ T cells; whereas CL097 induced more IFN-γ production from Vγ4+ subset-depleted γδ T cells than from the control group. Finally, we studied the role of MyD88-dependent TLRs in γδ T cell activation during West Nile virus (WNV) infection. γδ T cell, in particular, Vγ1+ subset expansion was significantly reduced in both MyD88- and TLR7- deficient mice. Treatment with TLR7 agonist induced more Vγ1+ cell expansion in wild-type mice during WNV infection. In summary, these results suggest that MyD88-dependent TLRs provide co-stimulatory signals during TCR activation of γδ T cells and these have differential effects on distinct subsets.

  5. An introduction to Toll-like receptors and their possible role in the initiation of labour.

    PubMed

    Patni, S; Flynn, P; Wynen, L P; Seager, A L; Morgan, G; White, J O; Thornton, C A

    2007-11-01

    Toll-like receptors (TLR) have emerged as key upstream mediators of inflammation at many tissue sites in humans. Inflammatory processes are involved in the process of parturition suggesting that TLR activity within gestation-associated tissues might have an important role in the initiation and/or maintenance of normal term labour and in various pathological states of pregnancy such as infection-associated preterm labour. Either TLRs or their signalling molecules might be excellent therapeutic targets for prevention of preterm labour.

  6. Microbiota regulates type 1 diabetes through Toll-like receptors

    PubMed Central

    Burrows, Michael P.; Volchkov, Pavel; Kobayashi, Koichi S.; Chervonsky, Alexander V.

    2015-01-01

    Deletion of the innate immune adaptor myeloid differentiation primary response gene 88 (MyD88) in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D) results in microbiota-dependent protection from the disease: MyD88-negative mice in germ-free (GF), but not in specific pathogen-free conditions develop the disease. These results could be explained by expansion of particular protective bacteria (“specific lineage hypothesis”) or by dominance of negative (tolerizing) signaling over proinflammatory signaling (“balanced signal hypothesis”) in mutant mice. Here we found that colonization of GF mice with a variety of intestinal bacteria was capable of reducing T1D in MyD88-negative (but not wild-type NOD mice), favoring the balanced signal hypothesis. However, the receptors and signaling pathways involved in prevention or facilitation of the disease remained unknown. The protective signals triggered by the microbiota were revealed by testing NOD mice lacking MyD88 in combination with knockouts of several critical components of innate immune sensing for development of T1D. Only MyD88- and TIR-domain containing adapter inducing IFN β (TRIF) double deficient NOD mice developed the disease. Thus, TRIF signaling (likely downstream of Toll-like receptor 4, TLR4) serves as one of the microbiota-induced tolerizing pathways. At the same time another TLR (TLR2) provided prodiabetic signaling by controlling the microbiota, as reduction in T1D incidence caused by TLR2 deletion was reversed in GF TLR2-negative mice. Our results support the balanced signal hypothesis, in which microbes provide signals that both promote and inhibit autoimmunity by signaling through different receptors, including receptors of the TLR family. PMID:26216961

  7. Comparative studies of Toll-like receptor signalling using zebrafish.

    PubMed

    Kanwal, Zakia; Wiegertjes, Geert F; Veneman, Wouter J; Meijer, Annemarie H; Spaink, Herman P

    2014-09-01

    Zebrafish model systems for infectious disease are increasingly used for the functional analysis of molecular pattern recognition processes. These studies benefit from the high conservation level of all innate immune factors in vertebrates. Zebrafish studies are strategically well positioned for this because of the ease of comparisons with studies in other fish species of which the immune system also has been intensively studied, but that are currently still less amendable to detailed genetic or microscopic studies. In this paper we focus on Toll-like receptor (TLR) signalling factors, which currently are the best characterized in mammalian systems. We review the knowledge on TLR signalling in the context of recent advances in zebrafish studies and discuss possibilities for future approaches that can complement studies in cell cultures and rodent models. A focus in these comparisons is the role of negative control mechanisms in immune responses that appear very important in a whole organism to keep adverse systemic responses in check. We also pay much attention to comparisons with studies in common carp that is highly related to zebrafish and that because of its large body mass can complement immune studies in zebrafish. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Trial Watch: Toll-like receptor agonists in oncological indications.

    PubMed

    Aranda, Fernando; Vacchelli, Erika; Obrist, Florine; Eggermont, Alexander; Galon, Jérôme; Sautès-Fridman, Catherine; Cremer, Isabelle; Henrik Ter Meulen, Jan; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    Toll-like receptors (TLRs) are an evolutionarily conserved group of enzymatically inactive, single membrane-spanning proteins that recognize a wide panel of exogenous and endogenous danger signals. Besides constituting a crucial component of the innate immune response to bacterial and viral pathogens, TLRs appear to play a major role in anticancer immunosurveillance. In line with this notion, several natural and synthetic TLR ligands have been intensively investigated for their ability to boost tumor-targeting immune responses elicited by a variety of immunotherapeutic and chemotherapeutic interventions. Three of these agents are currently approved by the US Food and Drug Administration (FDA) or equivalent regulatory agencies for use in cancer patients: the so-called bacillus Calmette-Guérin, monophosphoryl lipid A, and imiquimod. However, the number of clinical trials testing the therapeutic potential of both FDA-approved and experimental TLR agonists in cancer patients is stably decreasing, suggesting that drug developers and oncologists are refocusing their interest on alternative immunostimulatory agents. Here, we summarize recent findings on the use of TLR agonists in cancer patients and discuss how the clinical evaluation of FDA-approved and experimental TLR ligands has evolved since the publication of our first Trial Watch dealing with this topic.

  9. The evolution of vertebrate Toll-like receptors

    USGS Publications Warehouse

    Roach, J.C.; Glusman, G.; Rowen, L.; Kaur, A.; Purcell, M.K.; Smith, K.D.; Hood, L.E.; Aderem, A.

    2005-01-01

    The complete sequences of Takifugu Toll-like receptor (TLR) loci and gene predictions from many draft genomes enable comprehensive molecular phylogenetic analysis. Strong selective pressure for recognition of and response to pathogen-associated molecular patterns has maintained a largely unchanging TLR recognition in all vertebrates. There are six major families of vertebrate TLRs. This repertoire is distinct from that of invertebrates. TLRs within a family recognize a general class of pathogen-associated molecular patterns. Most vertebrates have exactly one gene ortholog for each TLR family. The family including TLR1 has more species-specific adaptations than other families. A major family including TLR11 is represented in humans only by a pseudogene. Coincidental evolution plays a minor role in TLR evolution. The sequencing phase of this study produced finished genomic sequences for the 12 Takifugu rubripes TLRs. In addition, we have produced > 70 gene models, including sequences from the opossum, chicken, frog, dog, sea urchin, and sea squirt. ?? 2005 by The National Academy of Sciences of the USA.

  10. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia

    PubMed Central

    2013-01-01

    Background Hypoxia induces microglial activation which causes damage to the developing brain. Microglia derived inflammatory mediators may contribute to this process. Toll-like receptor 4 (TLR4) has been reported to induce microglial activation and cytokines production in brain injuries; however, its role in hypoxic injury remains uncertain. We investigate here TLR4 expression and its roles in neuroinflammation in neonatal rats following hypoxic injury. Methods One day old Wistar rats were subjected to hypoxia for 2 h. Primary cultured microglia and BV-2 cells were subjected to hypoxia for different durations. TLR4 expression in microglia was determined by RT-PCR, western blot and immunofluorescence staining. Small interfering RNA (siRNA) transfection and antibody neutralization were employed to downregulate TLR4 in BV-2 and primary culture. mRNA and protein expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS) was assessed. Reactive oxygen species (ROS), nitric oxide (NO) and NF-κB levels were determined by flow cytometry, colorimetric and ELISA assays respectively. Hypoxia-inducible factor-1 alpha (HIF-1α) mRNA and protein expression was quantified and where necessary, the protein expression was depleted by antibody neutralization. In vivo inhibition of TLR4 with CLI-095 injection was carried out followed by investigation of inflammatory mediators expression via double immunofluorescence staining. Results TLR4 immunofluorescence and protein expression in the corpus callosum and cerebellum in neonatal microglia were markedly enhanced post-hypoxia. In vitro, TLR4 protein expression was significantly increased in both primary microglia and BV-2 cells post-hypoxia. TLR4 neutralization in primary cultured microglia attenuated the hypoxia-induced expression of TNF-α, IL-1β and iNOS. siRNA knockdown of TLR4 reduced hypoxia-induced upregulation of TNF-α, IL-1β, iNOS, ROS and NO in BV-2 cells. TLR4

  11. Methods to Investigate the Role of Toll-Like Receptors in Allergic Contact Dermatitis.

    PubMed

    Schmidt, Marc; Goebeler, Matthias; Martin, Stefan F

    2016-01-01

    Allergic contact disease is a common inflammatory skin disease resulting from hyperresponsiveness to harmless nonprotein substances such as metals, fragrances, or rubber. Recent research has highlighted a prominent role of Toll-like receptors, particularly TLR4 in contact allergen-induced innate immune activation that crucially contributes to the pathogenesis of this disease. Here we describe several methods to investigate the role of Toll-like receptors in contact allergen-induced pro-inflammatory responses. These include expansion of disease-relevant human primary cells including endothelial cells and keratinocytes and their manipulation of TLR signaling by transfection, retroviral infection and RNA interference, basic methods to induce contact hypersensitivity in mice, and protocols for adoptive transfer of hapten-stimulated dendritic cells and T cells from TLR-deficient mice to wild-type mice and vice versa wild-type mice to TLR-deficient mice in order to explore cell-specific roles of TLRs in contact hypersensitivity responses.

  12. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling.

    PubMed

    Wald, David; Qin, Jinzhong; Zhao, Zhendong; Qian, Youcun; Naramura, Mayumi; Tian, Liping; Towne, Jennifer; Sims, John E; Stark, George R; Li, Xiaoxia

    2003-09-01

    The Toll-like receptor-interleukin 1 receptor signaling (TLR-IL-1R) receptor superfamily is important in differentially recognizing pathogen products and eliciting appropriate immune responses. These receptors alter gene expression, mainly through the activation of nuclear factor-kappaB and activating protein 1. SIGIRR (single immunoglobulin IL-1R-related molecule), a member of this family that does not activate these factors, instead negatively modulates immune responses. Inflammation is enhanced in SIGIRR-deficient mice, as shown by their enhanced chemokine induction after IL-1 injection and reduced threshold for lethal endotoxin challenge. Cells from SIGIRR-deficient mice showed enhanced activation in response to either IL-1 or certain Toll ligands. Finally, biochemical analysis indicated that SIGIRR binds to the TLR-IL-1R signaling components in a ligand-dependent way. Our data show that SIGIRR functions as a biologically important modulator of TLR-IL-1R signaling.

  13. Differential activation of dendritic cells by toll-like receptors causes diverse differentiation of naïve CD4+ T cells from allergic patients

    PubMed Central

    Deifl, S.; Kitzmüller, C.; Steinberger, P.; Himly, M.; Jahn-Schmid, B.; Fischer, G. F.; Zlabinger, G. J.; Bohle, B.

    2014-01-01

    Background To avert the differentiation of allergen-specific Th2 cells in atopic individuals is a major goal in the prevention and therapy of IgE-mediated allergy. We aimed to compare different toll-like receptor (TLR) agonists regarding their effects on antigen-presenting cells and the differentiation of naïve T cells from allergic patients. Methods Monocytes and monocyte-derived dendritic cells (mdDC) from allergic patients were stimulated with Pam3CSK4 (TLR1/2 ligand), FSL-1 (TLR2/6 ligand), monophosphoryl lipid (MPL)-A, lipopolysaccharide (LPS, both TLR4 ligands), and flagellin (TLR5 ligand). Allergen uptake and upregulation of CD40, CD80, CD83, CD86, CD58, CCR7 and PD-L1 were analyzed by flow cytometry. Functional maturation of mdDC was tested in mixed leukocyte reactions, and the synthesis of proinflammatory cytokines, IL-10 and members of the IL-12 family was assessed. TLR-ligand-activated mdDC were used to stimulate naïve CD4+ T cells, and cytokine responses were assessed in supernatants and intracellularly. Results All TLR ligands except flagellin enhanced allergen uptake. All TLR ligands induced functional maturation of mdDC with differential expression of surface molecules and cytokines and promoted the differentiation of IFN-γ-producing T cells. LPS-matured mdDC exclusively induced Th1-like responses, whereas mdDC stimulated with the other TLR ligands induced both Th1- and Th0-like cells. Pam3CSK4 and flagellin additionally induced Th2-like cells. Th1-like responses were associated with higher expression levels of co-stimulatory molecules, PD-L1, IL-6, TNF-α, and IL-12p70. None of the TLR-ligand-stimulated mdDC induced IL-10- or IL-17-producing T cells. Conclusion Different TLR ligands differently influence T-cell responses due to varying activation of the three signals relevant for T-cell activation, that is, antigen presentation, co-stimulation and cytokine milieu. PMID:25093709

  14. The amino acid sequence of Neisseria lactamica PorB surface-exposed loops influences Toll-like receptor 2-dependent cell activation.

    PubMed

    Toussi, Deana N; Carraway, Margaretha; Wetzler, Lee M; Lewis, Lisa A; Liu, Xiuping; Massari, Paola

    2012-10-01

    Toll-like receptors (TLRs) play a major role in host mucosal and systemic defense mechanisms by recognizing a diverse array of conserved pathogen-associated molecular patterns (PAMPs). TLR2, with TLR1 and TLR6, recognizes structurally diverse bacterial products such as lipidated factors (lipoproteins and peptidoglycans) and nonlipidated proteins, i.e., bacterial porins. PorB is a pan-neisserial porin expressed regardless of organisms' pathogenicity. However, commensal Neisseria lactamica organisms and purified N. lactamica PorB (published elsewhere as Nlac PorB) induce TLR2-dependent proinflammatory responses of lower magnitude than N. meningitidis organisms and N. meningitidis PorB (published elsewhere as Nme PorB). Both PorB types bind to TLR2 in vitro but with different apparent specificities. The structural and molecular details of PorB-TLR2 interaction are only beginning to be unraveled and may be due to electrostatic attraction. PorB molecules have significant strain-specific sequence variability within surface-exposed regions (loops) putatively involved in TLR2 interaction. By constructing chimeric recombinant PorB loop mutants in which surface-exposed loop residues have been switched between N. lactamica PorB and N. meningitidis PorB, we identified residues in loop 5 and loop 7 that influence TLR2-dependent cell activation using HEK cells and BEAS-2B cells. These loops are not uniquely responsible for PorB interaction with TLR2, but NF-κB and MAP kinases signaling downstream of TLR2 recognition are likely influenced by a hypothetical "TLR2-binding signature" within the sequence of PorB surface-exposed loops. Consistent with the effect of purified PorB in vitro, a chimeric N. meningitidis strain expressing N. lactamica PorB induces lower levels of interleukin 8 (IL-8) secretion than wild-type N. meningitidis, suggesting a role for PorB in induction of host cell activation by whole bacteria.

  15. A species-specific activation of Toll-like receptor signaling in bovine and sheep bronchial epithelial cells triggered by Mycobacterial infections.

    PubMed

    Ma, Yan; Han, Fei; Liang, Jinping; Yang, Jiali; Shi, Juan; Xue, Jing; Yang, Li; Li, Yong; Luo, Meihui; Wang, Yujiong; Wei, Jun; Liu, Xiaoming

    2016-03-01

    Pulmonary tuberculosis caused by a Mycobacterium infection remains a major public health problem in most part of the world, in part owing to the transmission of its pathogens between hosts including human, domestic and wild animals. To date, molecular mechanisms of the pathogenesis of TB are still incompletely understood. In addition to alveolar macrophages, airway epithelial cells have also been recently recognized as main targets for Mycobacteria infections. In an effort to understand the pathogen-host interaction between Mycobacteria and airway epithelial cells in domestic animals, in present study, we investigated the Toll-like receptor (TLR) signaling in bovine and sheep airway epithelial cells in response to an infection of Mycobacterium tuberculosis avirulent H37Ra stain or Mycobacterium bovis BCG vaccine strain, using primary air-liquid interface (ALI) bronchial epithelial culture models. Our results revealed a host and pathogen species-specific TLR-mediated recognition of pathogen-associated molecular patterns (PAMPs), induction and activation of TLR signaling pathways, and substantial induction of inflammatory response in bronchial epithelial cells in response to Mycobacteria infections between these two species. Interestingly, the activation TLR signaling in bovine bronchial epithelial cells induced by Mycobacteria infection was mainly through a myeloid differentiation factor 88 (MyD88)-independent TLR signaling pathway, while both MyD88-dependent and independent TLR signaling cascades could be induced in sheep epithelial cells. Equally noteworthy, a BCG infection was able to induce both MyD88-dependent and independent signaling in sheep and bovine airway epithelial cells, but more robust inflammatory responses were induced in sheep epithelial cells relative to the bovines; whereas an H37Ra infection displayed an ability to mainly trigger a MyD88-independent TLR signaling cascade in these two host species, and induce a more extent expression of

  16. Sevoflurane Inhibits Nuclear Factor-κB Activation in Lipopolysaccharide-Induced Acute Inflammatory Lung Injury via Toll-Like Receptor 4 Signaling

    PubMed Central

    Sun, Xi Jia; Li, Xiao Qian; Wang, Xiao Long; Tan, Wen Fei; Wang, Jun Ke

    2015-01-01

    Background Infection is a common cause of acute lung injury (ALI). This study was aimed to explore whether Toll-like receptors 4 (TLR4) of airway smooth muscle cells (ASMCs) play a role in lipopolysaccharide (LPS)-induced airway hyperresponsiveness and potential mechanisms. Methods In vivo: A sensitizing dose of LPS (50 µg) was administered i.p. to female mice before anesthesia with either 3% sevoflurane or phenobarbital i.p. After stabilization, the mice were challenged with 5 µg of intratracheal LPS to mimic inflammatory attack. The effects of sevoflurane were assessed by measurement of airway responsiveness to methacholine, histological examination, and IL-1, IL-6, TNF-α levels in bronchoalveolar lavage fluid (BALF). Protein and gene expression of TLR4 and NF-κB were also assessed. In vitro: After pre-sensitization of ASMCs and ASM segments for 24h, levels of TLR4 and NF-κB proteins in cultured ASMCs were measured after continuous LPS exposure for 1, 3, 5, 12 and 24h in presence or absence of sevoflurane. Constrictor and relaxant responsiveness of ASM was measured 24 h afterwards. Results The mRNA and protein levels of NF-κB and TLR4 in ASM were increased and maintained at high level after LPS challenge throughout 24h observation period, both in vivo and in vitro. Sevoflurane reduced LPS-induced airway hyperresponsiveness, lung inflammatory cell infiltration and proinflammatory cytokines release in BALF as well as maximal isometric contractile force of ASM segments to acetylcholine, but it increased maximal relaxation response to isoproterenol. Treatment with specific NF-κB inhibitor produced similar protections as sevoflurane, including decreased expressions of TLR4 and NF-κB in cultured ASMCs and improved pharmacodynamic responsiveness of ASM to ACh and isoproterenol. Conclusions This study demonstrates the crucial role of TLR4 activation in ASMCs during ALI in response to LPS. Sevoflurane exerts direct relaxant and anti-inflammatory effects in vivo

  17. Toll-like receptor polymorphisms in allogeneic hematopoietic cell transplantation.

    PubMed

    Kornblit, Brian; Enevold, Christian; Wang, Tao; Spellman, Stephen; Haagenson, Mike; Lee, Stephanie J; Müller, Klaus

    2015-02-01

    To assess the impact of the genetic variation in toll-like receptors (TLRs) on outcome after allogeneic myeloablative conditioning hematopoietic cell transplantation (HCT), we investigated 29 single nucleotide polymorphisms across 10 TLRs in 816 patients and donors. Only donor genotype of TLR8 rs3764879, which is located on the X chromosome, was significantly associated with outcome at the Bonferroni-corrected level P ≤ .001. Male hemizygosity and female homozygosity for the minor allele were significantly associated with disease-free survival (hazard ratio [HR], 1.47 [95% confidence interval {CI}, 1.16 to 1.85]; P = .001). Further analysis stratified by donor sex due to confounding by sex was suggestive for associations with overall survival (male donor: HR, 1.41 [95% CI, 1.09 to 1.83], P = .010; female donor: HR, 2.78 [95% CI, 1.43 to 5.41], P = .003), disease-free survival (male donor: HR, 1.45 [95% CI, 1.12 to 1.87], P = .005; female donor: HR, 2.34 [95% CI, 1.18 to 4.65], P = .015), and treatment-related mortality (male donor: HR, 1.49 [95% CI, 1.09 to 2.04], P = .012; female donor: HR, 3.12 [95% CI, 1.44 to 6.74], P = .004). In conclusion, our findings suggest that the minor allele of TLR8 rs3764879 of the donor is associated with outcome after myeloablative conditioned allogeneic HCT.

  18. Toll like receptor polymorphisms in allogeneic hematopoietic cell transplantation

    PubMed Central

    Kornblit, Brian; Enevold, Christian; Wang, Tao; Spellman, Stephen; Haagenson, Mike; Lee, Stephanie J; Müller, Klaus

    2014-01-01

    To assess the impact of the genetic variation in toll-like receptors (TLR) on outcome after allogeneic myeloablative conditioning hematopoietic cell transplantation (HCT) we have investigated 29 single nucleotide polymorphisms (SNP) across 10 TLRs in 816 patients and donors. Only donor genotype of TLR8 rs3764879, which is located on the X chromosome, was significantly associated with outcome at the Bonferroni corrected level P≤0.001. Male hemizygosity and female homozygosity for the minor allele were significantly associated with disease free survival (DFS) (hazard ratio (HR) 1.47 (95% confidence interval (CI) 1.16–1.85); P=0.001). Further analysis stratified by donor sex due to confounding by sex, was suggestive for associations with overall survival (male donor: HR 1.41 (95% CI 1.09–1.83), P=0.010); female donor: (HR 2.78 (95% CI 1.43–5.41), P=0.003), DFS (male donor: HR 1.45 (95% CI 1.12–1.87), P=0.005; female donor: HR 2.34 (95% CI 1.18–4.65), P=0.015) and treatment related mortality (male donor: HR 1.49 (95% CI 1.09–2.04), P=0.012; female donor: HR 3.12 (95% CI 1.44–6.74), P=0.004). In conclusion our findings suggest that the minor allele of TLR8 rs3764879 of the donor is associated with outcome after myeloablative conditioned allogeneic HCT. PMID:25464115

  19. Selection, Preparation, and Evaluation of Small-Molecule Inhibitors of Toll-Like Receptor 4

    PubMed Central

    2010-01-01

    Toll-like receptor 4 (TLR4), a membrane-spanning receptor protein that functions in complex with its accessory protein MD-2, is an intriguing target for therapeutic development. Herein, we report the identification of a series of novel TLR4 inhibitors and the development of a robust, enantioselective synthesis using an unprecedented Mannich type reaction to functionalize a pyrazole ring. In silico and cellular assay results demonstrated that compound 1 and its analogues selectively block TLR4 activation in live cells. Animal model tests showed that 1 and its derivatives could potentiate morphine-induced analgesia in vivo, presumably by attenuating the opioid-induced TLR4 activation. PMID:20824192

  20. Anti-Inflammatory Activity of Fruit Fractions in Vitro, Mediated through Toll-Like Receptor 4 and 2 in the Context of Inflammatory Bowel Disease

    PubMed Central

    Nasef, Noha Ahmed; Mehta, Sunali; Murray, Pamela; Marlow, Gareth; Ferguson, Lynnette R.

    2014-01-01

    Pattern recognition receptors such as Toll-Like Receptor 2 (TLR2) and 4 (TLR4) are important in detecting and responding to stress and bacterial stimuli. Defect or damage in the TLR2 and TLR4 pathways can lead to sustained inflammation, characteristic of inflammatory bowel disease (IBD). The goal of this study was to identify fruit fractions that can be tested further to develop them as complementary therapies for IBD. In order to do this, we identified fruit fractions that mediate their anti-inflammatory response through the TLR4 and TLR2 pathway. Human Embryonic Kidney (HEK)-hTLR4 and hTLR2 cells were stimulated with their respective ligands to induce inflammation. These cells were treated with one of the 12 fractionated fruits and the inflammatory effect measured. 10 of the fruits came up as anti-inflammatory in the hTLR4 assay and nine in the hTLR2 assays. Many of the fruit fractions mediated their anti-inflammatory actions either mainly in their hydrophobic fractions (such as elderberry) or hydrophilic fractions (such as red raspberry), or both. The strongest anti-inflammatory effects were seen for feijoa and blackberry. This study shows that fruits can have multiple fractions eliciting anti-inflammatory effects in a pathway specific manner. This suggests that the compounds found in fruits can act together to produce health benefits by way of reducing inflammation. Exploiting this property of fruits can help develop complimentary therapies for inflammatory diseases. PMID:25415606

  1. Anti-inflammatory activity of fruit fractions in vitro, mediated through toll-like receptor 4 and 2 in the context of inflammatory bowel disease.

    PubMed

    Nasef, Noha Ahmed; Mehta, Sunali; Murray, Pamela; Marlow, Gareth; Ferguson, Lynnette R

    2014-11-19

    Pattern recognition receptors such as Toll-Like Receptor 2 (TLR2) and 4 (TLR4) are important in detecting and responding to stress and bacterial stimuli. Defect or damage in the TLR2 and TLR4 pathways can lead to sustained inflammation, characteristic of inflammatory bowel disease (IBD). The goal of this study was to identify fruit fractions that can be tested further to develop them as complementary therapies for IBD. In order to do this, we identified fruit fractions that mediate their anti-inflammatory response through the TLR4 and TLR2 pathway. Human Embryonic Kidney (HEK)-hTLR4 and hTLR2 cells were stimulated with their respective ligands to induce inflammation. These cells were treated with one of the 12 fractionated fruits and the inflammatory effect measured. 10 of the fruits came up as anti-inflammatory in the hTLR4 assay and nine in the hTLR2 assays. Many of the fruit fractions mediated their anti-inflammatory actions either mainly in their hydrophobic fractions (such as elderberry) or hydrophilic fractions (such as red raspberry), or both. The strongest anti-inflammatory effects were seen for feijoa and blackberry. This study shows that fruits can have multiple fractions eliciting anti-inflammatory effects in a pathway specific manner. This suggests that the compounds found in fruits can act together to produce health benefits by way of reducing inflammation. Exploiting this property of fruits can help develop complimentary therapies for inflammatory diseases.

  2. Mouse Hepatitis Virus Infection Induces a Toll-Like Receptor 2-Dependent Activation of Inflammatory Functions in Liver Sinusoidal Endothelial Cells during Acute Hepatitis

    PubMed Central

    Bleau, Christian; Filliol, Aveline; Samson, Michel

    2016-01-01

    ABSTRACT Under physiological conditions, the liver sinusoidal endothelial cells (LSECs) mediate hepatic immune tolerance toward self or foreign antigens through constitutive expression of anti-inflammatory mediators. However, upon viral infection or Toll-like receptor 2 (TLR2) activation, LSECs can achieve proinflammatory functions, but their role in hepatic inflammation during acute viral hepatitis is unknown. Using the highly virulent mouse hepatitis virus type 3 (MHV3) and the attenuated variants 51.6-MHV3 and YAC-MHV3, exhibiting lower tropism for LSECs, we investigated in vivo and in vitro the consequence of LSEC infection on their proinflammatory profiles and the aggravation of acute hepatitis process. In vivo infection with virulent MHV3, in comparison to attenuated strains, resulted in fulminant hepatitis associated with higher hepatic viral load, tissue necrosis, and levels of inflammatory mediators and earlier recruitment of inflammatory cells. Such hepatic inflammatory disorders correlated with disturbed production of interleukin-10 (IL-10) and vascular factors by LSECs. We next showed in vitro that infection of LSECs by the virulent MHV3 strain altered their production of anti-inflammatory cytokines and promoted higher release of proinflammatory and procoagulant factors and earlier cell damage than infection by attenuated strains. This higher replication and proinflammatory activation in LSECs by the virulent MHV3 strain was associated with a specific activation of TLR2 signaling by the virus. We provide evidence that TLR2 activation of LSCEs by MHV3 is an aggravating factor of hepatic inflammation and correlates with the severity of hepatitis. Taken together, these results indicate that preservation of the immunotolerant properties of LSECs during acute viral hepatitis is imperative in order to limit hepatic inflammation and damage. IMPORTANCE Viral hepatitis B and C infections are serious health problems affecting over 350 million and 170 million

  3. Toll-like receptors in the pathogenesis of autoimmune diseases: recent and emerging translational developments

    PubMed Central

    Duffy, Laura; O’Reilly, Steven C

    2016-01-01

    Autoinflammatory diseases are defined as the loss of self-tolerance in which an inflammatory response to self-antigens occurs, which are a significant global burden. Toll-like receptors are key pattern recognition receptors, which integrate signals leading to the activation of transcription factors and ultimately proinflammatory cytokines. Recently, it has become apparent that these are at the nexus of autoinflammatory diseases making them viable and attractive drug targets. The aim of this review was to evaluate the role of innate immunity in autoinflammatory conditions alongside the role of negative regulation while suggesting possible therapeutic targets. PMID:27579291

  4. Effects of dietary n-3 fatty acids on Toll-like receptor activation in primary leucocytes from Atlantic salmon (Salmo salar).

    PubMed

    Arnemo, Marianne; Kavaliauskis, Arturas; Andresen, Adriana Magalhaes Santos; Bou, Marta; Berge, Gerd Marit; Ruyter, Bente; Gjøen, Tor

    2017-03-09

    The shortage of the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the international markets has led to increasing substitution of fish oil by plant oils in Atlantic salmon (Salmo salar) feed and thereby reducing the EPA and DHA content in salmon. However, the minimum required levels of these fatty acids in fish diets for securing fish health are unknown. Fish were fed with 0, 1 or 2% EPA or DHA alone or in combination of both over a period, growing from 50 to 400 g. Primary head kidney leucocytes were isolated and stimulated with Toll-like receptor (TLR) ligands to determine if EPA and DHA deficiency can affect expression of important immune genes and eicosanoid production. Several genes related to viral immune response did not vary between groups. However, there was a tendency that the high-level EPA and DHA groups expressed lower levels of IL-1β in non-stimulated leucocytes. These leucocytes were also more responsive to the TLR ligands, inducing higher expression levels of IL-1β and Mx1 after stimulation. The levels of prostaglandin E2 and leukotriene B4 in serum and media from stimulated leucocytes were lower in both low and high EPA and DHA groups. In conclusion, leucocytes from low EPA and DHA groups seemed to be less responsive towards immunostimulants, like TLR ligands, indicating that low levels or absence of dietary EPA and DHA may have immunosuppressive effects.

  5. Activation of Toll-Like Receptors 2 by High-Mobility Group Box 1 in Monocytes from Patients with Ischemic Stroke.

    PubMed

    Sadat-Hatamnezhad, Leila; Tanomand, Asghar; Mahmoudi, Javad; Sandoghchian Shotorbani, Siamak

    2016-09-01

    Stroke is a leading cause of death all around the world, and ischemic stroke is considered to be the most common stroke type. Toll-like receptors (TLRs) are important molecules for detection of both pathogen invasion and tissue damage. In this regard, the purpose of this study was to assess the expression level of TLR2 on monocytes in patients with ischemic stroke and to evaluate the expression change profile following high-mobility group box 1 (HMGB1) stimulation. A total of 30 patients with ischemic stroke were enrolled from November 2013 to September 2014. The real-time PCR and ELISA assays were applied to detect the concentrations of TLR2 mRNAs. TLR2 expression was found to be increased in patients with ischemic stroke, as compared to the healthy control group (P<0.001). Also, anti-TLR2 antibodies were able to decrease the expression levels of IL-17, IL-6 and IL-33. This result implies that the enhanced TLR2 pathway and Th17 cell polarization may be due to HMGB1 stimulation in ischemic stroke. Further clinical studies are needed for development of a new treatment strategy to inhibit the HMGB1 pathway, thus preventing the inflammation in ischemic stroke patients.

  6. Crosstalk between toll-like receptors and hypoxia-dependent pathways in health and disease.

    PubMed

    Crifo, Bianca; Taylor, Cormac T

    2016-02-01

    Toll-like receptors (TLRs) play an important role in shaping the host immune response to infection and inflammation. Tissue hypoxia is a common microenvironmental feature of infected and inflamed tissues. Furthermore, hypoxia significantly impacts the development of immune and inflammatory responses through the regulation of host innate and adaptive immunity. Here, we will discuss current knowledge in relation to the crosstalk that exists between toll-like receptor- and hypoxia-dependent signaling pathways in health and disease.

  7. Antibody WN1 222-5 mimics Toll-like receptor 4 binding in the recognition of LPS

    PubMed Central

    Gomery, Kathryn; Müller-Loennies, Sven; Brooks, Cory L.; Brade, Lore; Kosma, Paul; Di Padova, Franco; Brade, Helmut; Evans, Stephen V.

    2012-01-01

    Escherichia coli infections, a leading cause of septic shock, remain a major threat to human health because of the fatal action to endotoxin (LPS). Therapeutic attempts to neutralize endotoxin currently focus on inhibiting the interaction of the toxic component lipid A with myeloid differentiating factor 2, which forms a trimeric complex together with Toll-like receptor 4 to induce immune cell activation. The 1.73-Å resolution structure of the unique endotoxin-neutralizing protective antibody WN1 222-5 in complex with the core region shows that it recognizes LPS of all E. coli serovars in a manner similar to Toll-like receptor 4, revealing that protection can be achieved by targeting the inner core of LPS and that recognition of lipid A is not required. Such interference with Toll-like receptor complex formation opens new paths for antibody sepsis therapy independent of lipid A antagonists. PMID:23184990

  8. Histamine Regulates Actin Cytoskeleton in Human Toll-like Receptor 4-activated Monocyte-derived Dendritic Cells Tuning CD4+ T Lymphocyte Response.

    PubMed

    Aldinucci, Alessandra; Bonechi, Elena; Manuelli, Cinzia; Nosi, Daniele; Masini, Emanuela; Passani, Maria Beatrice; Ballerini, Clara

    2016-07-08

    Histamine, a major mediator in allergic diseases, differentially regulates the polarizing ability of dendritic cells after Toll-like receptor (TLR) stimulation, by not completely explained mechanisms. In this study we investigated the effects of histamine on innate immune reaction during the response of human monocyte-derived DCs (mDCs) to different TLR stimuli: LPS, specific for TLR4, and Pam3Cys, specific for heterodimer molecule TLR1/TLR2. We investigated actin remodeling induced by histamine together with mDCs phenotype, cytokine production, and the stimulatory and polarizing ability of Th0. By confocal microscopy and RT-PCR expression of Rac1/CdC42 Rho GTPases, responsible for actin remodeling, we show that histamine selectively modifies actin cytoskeleton organization induced by TLR4, but not TLR2 and this correlates with increased IL4 production and decreased IFNγ by primed T cells. We also demonstrate that histamine-induced cytoskeleton organization is at least in part mediated by down-regulation of small Rho GTPase CdC42 and the protein target PAK1, but not by down-regulation of Rac1. The presence and relative expression of histamine receptors HR1-4 and TLRs were determined as well. Independently of actin remodeling, histamine down-regulates IL12p70 and CXCL10 production in mDCs after TLR2 and TLR4 stimulation. We also observed a trend of IL10 up-regulation that, despite previous reports, did not reach statistical significance.

  9. 2,3,7,8-Tetrachlorodibenzo-p-dioxin–Mediated Suppression of Toll-Like Receptor Stimulated B-Lymphocyte Activation and Initiation of Plasmacytic Differentiation

    PubMed Central

    North, Colin M.; Crawford, Robert B.; Lu, Haitian; Kaminski, Norbert E.

    2010-01-01

    2,3,7,8-Tetrachlordibenzo-p-dioxin (TCDD) is a potent suppressor of humoral immunity, disrupting antibody production in response to both T cell–dependent and T cell–independent antigens. Among the cell types required for humoral responses, the B cell is highly, and directly, sensitive to TCDD. B cells become antibody-secreting cells via plasmacytic differentiation, a process regulated by several transcription factors, including activator protein-1, B-cell CLL/lymphoma 6 (BCL-6), and B lymphocyte–induced maturation protein 1 (Blimp-1). The overarching conceptual framework guiding experimentation is that TCDD disrupts plasmacytic differentiation by altering the expression or activity for upstream regulators of Blimp-1. Multiparametric flow cytometry was used to investigate TCDD-induced alterations in both activation marker and transcription factor expression following lipopolysaccharide (LPS) activation of purified B cells. TCDD significantly impaired LPS-activated expression of major histocompatibility complex class II, cluster of differentiation (CD)69, CD80, and CD86. Immunosuppressive concentrations of TCDD also suppressed LPS-activated Blimp-1 and phosphorylated c-Jun expression, whereas elevating BCL-6 expression. Because BCL-6 and c-Jun are directly and indirectly regulated by the kinases AKT, extracellular signal–regulated kinase (ERK), and Jun N-terminal kinase (JNK), it was hypothesized that TCDD alters toll-like receptor–activated kinase phosphorylation. TCDD at 0.03 and 0.3nM significantly impaired phosphorylation of AKT, ERK, and JNK in CH12.LX B cells activated with LPS, CpG oligonucleotides, or resiquimod (R848). In primary B cells, R848-activated phosphorylation of AKT, ERK, and JNK was also impaired by TCDD at 30nM. These results suggest that impairment of plasmacytic differentiation by TCDD involves altered transcription factor expression, in part, by suppressed kinase phosphorylation. PMID:20348231

  10. Toll-Like Receptor Activation by Generalized Modules for Membrane Antigens from Lipid A Mutants of Salmonella enterica Serovars Typhimurium and Enteritidis

    PubMed Central

    Rossi, Omar; Caboni, Mariaelena; Negrea, Aurel; Necchi, Francesca; Alfini, Renzo; Micoli, Francesca; Saul, Allan; MacLennan, Calman A.

    2016-01-01

    Invasive nontyphoidal Salmonella (iNTS) disease is a neglected disease with high mortality in children and HIV-positive individuals in sub-Saharan Africa, caused primarily by Africa-specific strains of Salmonella enterica serovars Typhimurium and Enteritidis. A vaccine using GMMA (generalized modules for membrane antigens) from S. Typhimurium and S. Enteritidis containing lipid A modifications to reduce potential in vivo reactogenicity is under development. GMMA with penta-acylated lipid A showed the greatest reduction in the level of cytokine release from human peripheral blood monocytes from that for GMMA with wild-type lipid A. Deletion of the lipid A modification genes msbB and pagP was required to achieve pure penta-acylation. Interestingly, ΔmsbB ΔpagP GMMA from S. Enteritidis had a slightly higher stimulatory potential than those from S. Typhimurium, a finding consistent with the higher lipopolysaccharide (LPS) content and Toll-like receptor 2 (TLR2) stimulatory potential of the former. Also, TLR5 ligand flagellin was found in Salmonella GMMA. No relevant contribution to the stimulatory potential of GMMA was detected even when the flagellin protein FliC from S. Typhimurium was added at a concentration as high as 10% of total protein, suggesting that flagellin impurities are not a major factor for GMMA-mediated immune stimulation. Overall, the stimulatory potential of S. Typhimurium and S. Enteritidis ΔmsbB ΔpagP GMMA was close to that of Shigella sonnei GMMA, which are currently in phase I clinical trials. PMID:26865597

  11. MicroRNAs: the fine-tuners of Toll-like receptor signalling.

    PubMed

    O'Neill, Luke A; Sheedy, Frederick J; McCoy, Claire E

    2011-03-01

    Toll-like receptor (TLR) signalling must be tightly regulated to avoid excessive inflammation and to allow for tissue repair and the return to homeostasis after infection and tissue injury. MicroRNAs (miRNAs) have emerged as important controllers of TLR signalling. Several miRNAs are induced by TLR activation in innate immune cells and these and other miRNAs target the 3' untranslated regions of mRNAs encoding components of the TLR signalling system. miRNAs are also proving to be an important link between the innate and adaptive immune systems, and their dysregulation might have a role in the pathogenesis of inflammatory diseases.

  12. Innate immunity and toll-like receptors: clinical implications of basic science research.

    PubMed

    Abreu, Maria T; Arditi, Moshe

    2004-04-01

    Humans are constantly exposed to a wide variety of microorganisms that can cause infection. In self-defense, the human host has evolved complex protective mechanisms, and Toll-like receptors (TLRs) have emerged as a central point in defense. These receptors bind molecular structures that are expressed by microbes but are not expressed by the human host, eg, lipopolysaccharides (LPS) or double-stranded RNA (dsRNA). Activation of these receptors initiates an inflammatory cascade that attempts to clear the offending pathogen and set in motion a specific adaptive immune response. Defects in sensing of pathogens may predispose the host to recurrent infections. The relative rarity of these syndromes of defective innate immunity, however, speaks to the redundancy in sensing of pathogens by the innate immune system. More common, polymorphisms in TLR4 are associated with increased predisposition to severe and recurrent infections but protection against atherosclerotic disease due to diminished inflammation. Toll-like receptor signaling may also contribute to the pathophysiology of disease and injure the host by activating a deleterious immune response such as in sepsis or inflammatory bowel disease (IBD). The focus of this article is to describe the role of TLRs in the innate immune response in health and disease.

  13. Porphyromonas gingivalis Stimulates Bone Resorption by Enhancing RANKL (Receptor Activator of NF-κB Ligand) through Activation of Toll-like Receptor 2 in Osteoblasts*

    PubMed Central

    Kassem, Ali; Henning, Petra; Lundberg, Pernilla; Souza, Pedro P. C.; Lindholm, Catharina; Lerner, Ulf H.

    2015-01-01

    Periodontitis has been associated with rheumatoid arthritis. In experimental arthritis, concomitant periodontitis caused by oral infection with Porphyromonas gingivalis enhances articular bone loss. The aim of this study was to investigate how lipopolysaccharide (LPS) from P. gingivalis stimulates bone resorption. The effects by LPS P. gingivalis and four other TLR2 ligands on bone resorption, osteoclast formation, and gene expression in wild type and Tlr2-deficient mice were assessed in ex vivo cultures of mouse parietal bones and in an in vivo model in which TLR2 agonists were injected subcutaneously over the skull bones. LPS P. gingivalis stimulated mineral release and matrix degradation in the parietal bone organ cultures by increasing differentiation and formation of mature osteoclasts, a response dependent on increased RANKL (receptor activator of NF-κB ligand). LPS P. gingivalis stimulated RANKL in parietal osteoblasts dependent on the presence of TLR2 and through a MyD88 and NF-κB-mediated mechanism. Similarly, the TLR2 agonists HKLM, FSL1, Pam2, and Pam3 stimulated RANKL in osteoblasts and parietal bone resorption. LPS P. gingivalis and Pam2 robustly enhanced osteoclast formation in periosteal/endosteal cell cultures by increasing RANKL. LPS P. gingivalis and Pam2 also up-regulated RANKL and osteoclastic genes in vivo, resulting in an increased number of periosteal osteoclasts and immense bone loss in wild type mice but not in Tlr2-deficient mice. These data demonstrate that LPS P. gingivalis stimulates periosteal osteoclast formation and bone resorption by stimulating RANKL in osteoblasts via TLR2. This effect might be important for periodontal bone loss and for the enhanced bone loss seen in rheumatoid arthritis patients with concomitant periodontal disease. PMID:26085099

  14. Toll-like receptor signaling increases production of 1,25-dihydroxyvitamin D3 in bovine macrophages

    USDA-ARS?s Scientific Manuscript database

    Activation of macrophages can occur through Toll-like receptor (TLR) recognition of pathogen associated molecular patterns (PAMP). Recently, it has been discovered that TLR signaling can increase 1alpha-hydroxylase (Cyp27B1) expression in human and mouse macrophages. The enzymatic activity of 1alp...

  15. The Role of Toll-Like Receptor 4 in Infectious and Noninfectious Inflammation

    PubMed Central

    Molteni, Monica; Gemma, Sabrina

    2016-01-01

    Toll-like receptor 4 (TLR4) belongs to the family of pattern recognition receptors (PRRs). They are highly conserved receptors that recognize conserved pathogen-associated molecular patterns (PAMPs), thus representing the first line of defense against infections. TLR4 has been long recognized as the sensing receptor for gram-negative lipopolysaccharide (LPS). In addition, it also binds endogenous molecules produced as a result of tissue injury. Hence, TLR4 represents a key receptor on which both infectious and noninfectious stimuli converge to induce a proinflammatory response. TLR4-mediated inflammation, triggered by exogenous or endogenous ligands, is also involved in several acute and chronic diseases, having a pivotal role as amplifier of the inflammatory response. This review focuses on the research progress about the role of TLR4 activation in infectious and noninfectious (e.g., sterile) inflammation and the effects of TLR4 signaling in some pathological conditions. PMID:27293318

  16. Toll-like receptor 2 ligands promote microglial cell death by inducing autophagy

    PubMed Central

    Arroyo, Daniela S.; Soria, Javier A.; Gaviglio, Emilia A.; Garcia-Keller, Constanza; Cancela, Liliana M.; Rodriguez-Galan, Maria C.; Wang, Ji Ming; Iribarren, Pablo

    2013-01-01

    Microglial cells are phagocytes in the central nervous system (CNS) and become activated in pathological conditions, resulting in microgliosis, manifested by increased cell numbers and inflammation in the affected regions. Thus, controlling microgliosis is important to prevent pathological damage to the brain. Here, we evaluated the contribution of Toll-like receptor 2 (TLR2) to microglial survival. We observed that activation of microglial cells with peptidoglycan (PGN) from Staphylococcus aureus and other TLR2 ligands results in cell activation followed by the induction of autophagy and autophagy-dependent cell death. In C57BL/6J mice, intracerebral injection of PGN increased the autophagy of microglial cells and reduced the microglial/macrophage cell number in brain parenchyma. Our results demonstrate a novel role of TLRs in the regulation of microglial cell activation and survival, which are important for the control of microgliosis and associated inflammatory responses in the CNS.—Arroyo, D. S., Soria, J. A., Gaviglio, E. A., Garcia-Keller, C., Cancela, L. M., Rodriguez-Galan, M. C., Wang, J. M., Iribarren, P. Toll-like receptor 2 ligands promote microglial cell death by inducing autophagy. PMID:23073832

  17. Recognition of herpes simplex viruses: toll-like receptors and beyond.

    PubMed

    Ma, Yijie; He, Bin

    2014-03-20

    Herpes simplex viruses (HSVs) are human pathogens that establish lytic and latent infections. Reactivation from latency occurs intermittently, which represents a lifelong source of recurrent infection. In this complex process, HSV triggers and neutralizes innate immunity. Therefore, a dynamic equilibrium between HSV and the innate immune system determines the outcome of viral infection. Detection of HSV involves pathogen recognition receptors that include Toll-like receptors, retinoic acid-inducible gene I-like receptors, and cytosolic DNA sensors. Moreover, innate components or pathways exist to sense membrane fusion upon viral entry into host cells. Consequently, this surveillance network activates downstream transcription factors, leading to the induction of type I interferon and inflammatory cytokines. Not surprisingly, with the capacity to establish chronic infection HSV has evolved strategies that modulate or evade innate immunity. In this review, we describe recent advances pertinent to the interplay of HSV and the induction of innate immunity mediated by pathogen recognition receptors or pathways.

  18. Breast milk protects against the development of necrotizing enterocolitis through inhibition of Toll-like receptor 4 in the intestinal epithelium via activation of the epidermal growth factor receptor.

    PubMed

    Good, M; Sodhi, C P; Egan, C E; Afrazi, A; Jia, H; Yamaguchi, Y; Lu, P; Branca, M F; Ma, C; Prindle, T; Mielo, S; Pompa, A; Hodzic, Z; Ozolek, J A; Hackam, D J

    2015-09-01

    Breast milk is the most effective strategy to protect infants against necrotizing enterocolitis (NEC), a devastating disease that is characterized by severe intestinal necrosis. Previous studies have demonstrated that the lipopolysaccharide receptor Toll-like receptor 4 (TLR4) plays a critical role in NEC development via deleterious effects on mucosal injury and repair. We now hypothesize that breast milk protects against NEC by inhibiting TLR4 within the intestinal epithelium, and sought to determine the mechanisms involved. Breast milk protected against NEC and reduced TLR4 signaling in wild-type neonatal mice, but not in mice lacking the epidermal growth factor receptor (EGFR), whereas selective removal of EGF from breast milk reduced its protective properties, indicating that breast milk inhibits NEC and attenuates TLR4 signaling via EGF/EGFR activation. Overexpression of TLR4 in the intestinal epithelium reversed the protective effects of breast milk. The protective effects of breast milk occurred via inhibition of enterocyte apoptosis and restoration of enterocyte proliferation. Importantly, in IEC-6 enterocytes, breast milk inhibited TLR4 signaling via inhibition of glycogen synthase kinase-3β (GSK3β). Taken together, these findings offer mechanistic insights into the protective role for breast milk in NEC, and support a link between growth factor and innate immune receptors in NEC pathogenesis.

  19. Toll-like receptor signalling in liver disease: ER stress the missing link?

    PubMed

    Lawless, M W; Greene, C M

    2012-08-01

    Toll-like receptors induce a complex inflammatory response that can function to alert the body to infection, neutralize pathogens and repair damaged tissues. Toll-like receptors are expressed on kupffer, endothelial, dendritic, biliary epithelial, hepatic stellate cells, and hepatocytes in the liver. The endoplasmic reticulum (ER) is a central organelle of eukaryotic cells that exists as a place of lipid synthesis, protein folding and protein maturation. The ER is a major signal transduction organelle that senses and responds to changes in homeostasis. Conditions interfering with the function of the ER are collectively known as ER stress and can be induced by accumulation of unfolded protein aggregates or by excessive protein traffic as can occur during viral infection. The ability of ER stress to induce an inflammatory response is considered to play a role in disease pathogenesis. Importantly, ER stress is viewed as a contributor to the pathogenesis of liver diseases with evidence linking components of ER homeostasis as requirements for optimal Toll-like receptor function. In this context this review discusses the association of Toll-like receptors with ER stress. This is an emerging paradigm in the understanding of Toll-like receptor signalling which may have an underlying role in the pathogenesis of liver disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Mannose-Binding Lectin and Toll-Like Receptor Polymorphisms and Chagas Disease in Chile

    PubMed Central

    Zulantay, Inés; Danquah, Ina; Hamann, Lutz; Schumann, Ralf R.; Apt, Werner; Mockenhaupt, Frank P.

    2012-01-01

    Mannose-binding lectin (MBL) and Toll-like receptor (TLR) polymorphisms may influence susceptibility and manifestation of Trypanosoma cruzi infection. In northern Chile, we examined 61 asymptomatic patients with chronic Chagas disease (CD), 64 patients with chronic Chagas cardiomyopathy (CCC), and 45 healthy individuals. Low-producer MBL2*B genotypes were more common in CD patients (48%) than healthy individuals (31%; adjusted odds ratio = 2.3, 95% confidence interval = 1.01–5.4, P = 0.047) but did not differ with manifestation. In contrast, the heterozygous Toll-like receptor 4 (TLR4)-deficiency genotype D299G/T399I occurred more frequently in asymptomatic (14.8%) than CCC patients (3.1%; P = 0.02). TLR1-I602S, TLR2-R753Q, TLR6-S249P, and MAL/TIRAP-S180L did not associate with CD or CCC. These findings support the complement system to be involved in defense against Trypanosoma cruzi infection and indicate that curbed TLR4 activation might be beneficial in preventing CCC. PMID:22302853

  1. Mannose-binding lectin and Toll-like receptor polymorphisms and Chagas disease in Chile.

    PubMed

    Weitzel, Thomas; Zulantay, Inés; Danquah, Ina; Hamann, Lutz; Schumann, Ralf R; Apt, Werner; Mockenhaupt, Frank P

    2012-02-01

    Mannose-binding lectin (MBL) and Toll-like receptor (TLR) polymorphisms may influence susceptibility and manifestation of Trypanosoma cruzi infection. In northern Chile, we examined 61 asymptomatic patients with chronic Chagas disease (CD), 64 patients with chronic Chagas cardiomyopathy (CCC), and 45 healthy individuals. Low-producer MBL2*B genotypes were more common in CD patients (48%) than healthy individuals (31%; adjusted odds ratio = 2.3, 95% confidence interval = 1.01-5.4, P = 0.047) but did not differ with manifestation. In contrast, the heterozygous Toll-like receptor 4 (TLR4)-deficiency genotype D299G/T399I occurred more frequently in asymptomatic (14.8%) than CCC patients (3.1%; P = 0.02). TLR1-I602S, TLR2-R753Q, TLR6-S249P, and MAL/TIRAP-S180L did not associate with CD or CCC. These findings support the complement system to be involved in defense against Trypanosoma cruzi infection and indicate that curbed TLR4 activation might be beneficial in preventing CCC.

  2. Patents for Toll-like receptor ligands as radiation countermeasures for acute radiation syndrome.

    PubMed

    Singh, Vijay K; Pollard, Harvey B

    2015-01-01

    Acute radiation exposure induces apoptosis of tissues in the hematopoietic, digestive, cutaneous, cardiovascular and nervous systems; extensive apoptosis of these tissues ultimately leads to acute radiation syndrome. A novel strategy for developing radiation countermeasures has been to imitate the genetic mechanisms acquired by radiation-resistant tumors. Two mechanisms that underlie this ability of tumor cells are the p53 and NF-κB pathways. The loss of p53 function results in the inactivation of pro-apoptotic control mechanisms, while constitutive activation of NF-κB results in the up-regulation of anti-apoptotic genes. Various Toll-like receptor ligands are capable of up regulating the NF-κB pathway, which increases radio-resistance and reduces radiation-induced apoptosis in various tissues. Several Toll-like receptor ligands have been patented and are currently under development as radiation countermeasures for acute radiation syndrome. Ongoing studies suggest that a few of these attractive agents are progressing well along the US FDA approval pathway to become radiation countermeasures.

  3. Patents for Toll-like receptor ligands as radiation countermeasures for acute radiation syndrome

    PubMed Central

    Singh, Vijay K; Pollard, Harvey B

    2015-01-01

    Acute radiation exposure induces apoptosis of tissues in the hematopoietic, digestive, cutaneous, cardiovascular and nervous systems; extensive apoptosis of these tissues ultimately leads to acute radiation syndrome. A novel strategy for developing radiation countermeasures has been to imitate the genetic mechanisms acquired by radiation-resistant tumors. Two mechanisms that underlie this ability of tumor cells are the p53 and NF-κB pathways. The loss of p53 function results in the inactivation of pro-apoptotic control mechanisms, while constitutive activation of NF-κB results in the up-regulation of anti-apoptotic genes. Various Toll-like receptor ligands are capable of up regulating the NF-κB pathway, which increases radio-resistance and reduces radiation-induced apoptosis in various tissues. Several Toll-like receptor ligands have been patented and are currently under development as radiation countermeasures for acute radiation syndrome. Ongoing studies suggest that a few of these attractive agents are progressing well along the US FDA approval pathway to become radiation countermeasures. PMID:26135043

  4. Coxsackievirus B3 induces viral myocarditis by upregulating toll-like receptor 4 expression.

    PubMed

    Zhao, Zhao; Cai, Tian-Zhi; Lu, Yan; Liu, Wen-Jun; Cheng, Man-Li; Ji, Yu-Qiang

    2015-04-01

    In the present study, we investigated the potential pathogenesis of coxsackievirus B3 (CVB3)-induced viral myocarditis and the promising protective effect of silencing RNA (small interfering RNA, siRNA). One hundred and twenty mice were included in the study, and 30 mice were intraperitoneally inoculated with CVB3 to establish an acute viral myocarditis model. The survival rate was observed for the CVB3-infected mouse model (MOD), and myocardial injury was examined by HE (hematoxylin and eosin) staining assay. Real-time PCR (RT-PCR) and Western blot assay were selected to detect the toll-like receptor 4 (TLR4) expression in myocardial tissues. The TLR4 gene was silenced for the MOD mice, and the effects of this treatment were observed. The results indicate that the expression of TLR4 mRNA and the protein significantly and persistently increased during the progression of CVB3-induced myocarditis. The activities of cardiac enzymes including CK, LDH, AST, and CK-MB were also enhanced in CVB3-induced myocardial tissues. Interestingly, when the TLR4 gene was silenced, the CVB3-induced TLR4 production was significantly decreased and the severity of myocarditis was significantly lessened. In conclusion, CVB3 may induce viral myocarditis by upregulating toll-like receptor 4 expression. The viral myocarditis can be ameliorated by silencing the TLR4 gene in the CVB3 viral myocarditis model, which may be a feasible therapeutic method for treatment of viral myocarditis.

  5. Toll-Like Receptor 4 (TLR4) and Triggering Receptor Expressed on Myeloid Cells-2 (TREM-2) Activation Balance Astrocyte Polarization into a Proinflammatory Phenotype.

    PubMed

    Rosciszewski, Gerardo; Cadena, Vanesa; Murta, Veronica; Lukin, Jeronimo; Villarreal, Alejandro; Roger, Thierry; Ramos, Alberto Javier

    2017-05-25

    Astrocytes react to brain injury with a generic response known as reactive gliosis, which involves activation of multiple intracellular pathways including several that may be beneficial for neuronal survival. However, by unknown mechanisms, reactive astrocytes can polarize into a proinflammatory phenotype that induces neurodegeneration. In order to study reactive gliosis and astroglial polarization into a proinflammatory phenotype, we used cortical devascularization-induced brain ischemia in Wistar rats and primary astroglial cell cultures exposed to oxygen-glucose deprivation (OGD). We analyzed the profile of TLR4 expression and the consequences of its activation by gain- and loss-of-function studies, and the effects produced by the activation of triggering receptor expressed on myeloid cells-2 (TREM-2), a negative regulator of TLR4 signaling. Both OGD exposure on primary astroglial cell cultures and cortical devascularization brain ischemia in rats induced TLR4 expression in astrocytes. In vivo, astroglial TLR4 expression was specifically observed in the ischemic penumbra surrounding necrotic core. Functional studies showed that OGD increased the astroglial response to the TLR4 agonist lipopolysaccharide (LPS), and conversely, TLR4 knockout primary astrocytes had impaired nuclear factor kappa-B (NF-κB) activation when exposed to LPS. In gain-of-function studies, plasmid-mediated TLR4 over-expression exacerbated astroglial response to LPS as shown by sustained NF-κB activation and increased expression of proinflammatory cytokines IL-1β and TNFα. TREM-2 expression, although present in naïve primary astrocytes, was induced by OGD, LPS, or high-mobility group box 1 protein (HMGB-1) exposure. TREM-2 activation by antibody cross-linking or the overexpression of TREM-2 intracellular adaptor, DAP12, partially suppressed LPS-induced NF-κB activation in purified astrocytic cultures. In vivo, TREM-2 expression was observed in macrophages and astrocytes located in the

  6. Red blood cell alloimmunization is influenced by the delay between Toll-like receptor agonist injection and transfusion.

    PubMed

    Elayeb, Rahma; Tamagne, Marie; Bierling, Philippe; Noizat-Pirenne, France; Vingert, Benoît

    2016-02-01

    Murine models of red blood cell transfusion show that inflammation associated with viruses or methylated DNA promotes red blood cell alloimmunization. In vaccination studies, the intensity of antigen-specific responses depends on the delay between antigen and adjuvant administration, with a short delay limiting immune responses. In mouse models of alloimmunization, the delay between the injection of Toll-like receptor agonists and transfusion is usually short. In this study, we hypothesized that the timing of Toll-like receptor 3 agonist administration affects red blood cell alloimmunization. Poly(I:C), a Toll-like receptor 3 agonist, was administered to B10BR mice at various time points before the transfusion of HEL-expressing red blood cells. For each time point, we measured the activation of splenic HEL-presenting dendritic cells, HEL-specific CD4(+) T cells and anti-HEL antibodies in serum. The phenotype of activated immune cells depended on the delay between transfusion and Toll-like receptor-dependent inflammation. The production of anti-HEL antibodies was highest when transfusion occurred 7 days after agonist injection. The proportion of HEL-presenting CD8α(+) dendritic cells producing interleukin-12 was highest in mice injected with poly(I:C) 3 days before transfusion. Although the number of early-induced HEL-specific CD4(+) T cells was similar between groups, a high proportion of these cells expressed CD134, CD40 and CD44 in mice injected with poly(I:C) 7 days before transfusion. This study clearly shows that the delay between transfusion and Toll-like receptor-induced inflammation influences the immune response to transfused red blood cells.

  7. The emerging role of Toll-like receptor 4 in myocardial inflammation

    PubMed Central

    Yang, Y; Lv, J; Jiang, S; Ma, Z; Wang, D; Hu, W; Deng, C; Fan, C; Di, S; Sun, Y; Yi, W

    2016-01-01

    Toll-like receptors (TLRs) are a family of pattern recognition receptors involved in cardiovascular diseases. Notably, numerous studies have demonstrated that TLR4 activates the expression of several of pro-inflammatory cytokine genes that play pivotal roles in myocardial inflammation, particularly myocarditis, myocardial infarction, ischemia-reperfusion injury, and heart failure. In addition, TLR4 is an emerging target for anti-inflammatory therapies. Given the significance of TLR4, it would be useful to summarize the current literature on the molecular mechanisms and roles of TLR4 in myocardial inflammation. Thus, in this review, we first introduce the basic knowledge of the TLR4 gene and describe the activation and signaling pathways of TLR4 in myocardial inflammation. Moreover, we highlight the recent progress of research on the involvement of TLR4 in myocardial inflammation. The information reviewed here may be useful to further experimental research and to increase the potential of TLR4 as a therapeutic target. PMID:27228349

  8. Toll Like Receptor-9 Mediated Invasion in Breast Cancer

    DTIC Science & Technology

    2012-07-01

    breast cancers. A likely mechanism of this clinical finding involves dif- ferential responses to hypoxia. Our pre-clinical studies indicate that while...outcome of TLR activation is an innate immune reaction characterized by increased production of inflammatory mediators [2]. Recent studies indicate that...A 14. ABSTRACT TLR9 is a cellular DNA-receptor that is widely expressed in breast cancers. The aim of this work was to study whether DNA

  9. Epigallocatechin gallate (EGCG) suppresses lipopolysaccharide-induced Toll-like receptor 4 (TLR4) activity via 67 kDa laminin receptor (67LR) in 3T3-L1 adipocytes.

    PubMed

    Bao, Suqing; Cao, Yanli; Zhou, Haicheng; Sun, Xin; Shan, Zhongyan; Teng, Weiping

    2015-03-18

    Obesity-related insulin resistance is associated with chronic systemic low-grade inflammation, and toll-like receptor 4 (TLR4) regulates inflammation. We investigated the pathways involved in epigallocatechin gallate (EGCG) modulation of insulin and TLR4 signaling in adipocytes. Inflammation was induced in adipocytes by lipopolysaccharide (LPS). An antibody against the 67 kDa laminin receptor (67LR, to which EGCG exclusively binds) was used to examine the effect of EGCG on TLR4 signaling, and a TLR4/MD-2 antibody was used to inhibit TLR4 activity and to determine the insulin sensitivity of differentiated 3T3-L1 adipocytes. We found that EGCG dose-dependently inhibited LPS stimulation of adipocyte inflammation by reducing inflammatory mediator and cytokine levels (IKKβ, p-NF-κB, TNF-α, and IL-6). Pretreatment with the 67LR antibody prevented EGCG inhibition of inflammatory cytokines, decreased glucose transporter isoform 4 (GLUT4) expression, and inhibited insulin-stimulated glucose uptake. TLR4 inhibition attenuated inflammatory cytokine levels and increased glucose uptake by reversing GLUT4 levels. These data suggest that EGCG suppresses TLR4 signaling in LPS-stimulated adipocytes via 67LR and attenuates insulin-stimulated glucose uptake associated with decreased GLUT4 expression.

  10. The role of Toll-like receptors in retinal ischemic diseases.

    PubMed

    Xu, Wen-Qin; Wang, Yu-Sheng

    2016-01-01

    Toll-like receptors (TLRs) are commonly referred to a series of evolutionary conserved receptors which recognize and respond to various microbes and endogenous ligands. Growing evidence has demonstrated that the expression of TLRs in the retina is regulated during retinal ischemic diseases, including ischemia-reperfusion injury, glaucoma, diabetic retinopathy (DR) and retinopathy of prematurity (ROP). TLRs can be expressed in multiple cells in the retina, such as glial cells, retinal pigment epithelium (RPE), as well as photoreceptor cells and endothelium cells. Activation of TLRs in retina could initiate a complex signal transduction cascade, induce the production of inflammatory cytokines and regulate the level of co-stimulatory molecules, which play prominent roles in the pathogenesis of retinal ischemic diseases. In this review, we summarized current studies about the relationship between TLRs and ischemic retinopathy. A greater understanding of the effect of TLRs on ischemic injuries may contribute to the development of specific TLR targeted therapeutic strategies in these conditions.

  11. The role of Toll-like receptors in retinal ischemic diseases

    PubMed Central

    Xu, Wen-Qin; Wang, Yu-Sheng

    2016-01-01

    Toll-like receptors (TLRs) are commonly referred to a series of evolutionary conserved receptors which recognize and respond to various microbes and endogenous ligands. Growing evidence has demonstrated that the expression of TLRs in the retina is regulated during retinal ischemic diseases, including ischemia-reperfusion injury, glaucoma, diabetic retinopathy (DR) and retinopathy of prematurity (ROP). TLRs can be expressed in multiple cells in the retina, such as glial cells, retinal pigment epithelium (RPE), as well as photoreceptor cells and endothelium cells. Activation of TLRs in retina could initiate a complex signal transduction cascade, induce the production of inflammatory cytokines and regulate the level of co-stimulatory molecules, which play prominent roles in the pathogenesis of retinal ischemic diseases. In this review, we summarized current studies about the relationship between TLRs and ischemic retinopathy. A greater understanding of the effect of TLRs on ischemic injuries may contribute to the development of specific TLR targeted therapeutic strategies in these conditions. PMID:27672603

  12. DAT isn’t all that: cocaine reward and reinforcement requires Toll Like Receptor 4 signaling

    PubMed Central

    Northcutt, A.L.; Hutchinson, M.R.; Wang, X.; Baratta, M.V.; Hiranita, T.; Cochran, T.A.; Pomrenze, M.B.; Galer, E.L.; Kopajtic, T.A.; Li, C.M.; Amat, J.; Larson, G.; Cooper, D.C.; Huang, Y.; O’Neill, C.E.; Yin, H.; Zahniser, N.R.; Katz, J.L.; Rice, K.C.; Maier, S.F.; Bachtell, R.K.; Watkins, L.R.

    2014-01-01

    The initial reinforcing properties of drugs of abuse, such as cocaine, are largely attributed to their ability to activate the mesolimbic dopamine system. Resulting increases in extracellular dopamine in the nucleus accumbens (NAc) are traditionally thought to result from cocaine’s ability to block dopamine transporters (DATs). Here we demonstrate that cocaine also interacts with the immunosurveillance receptor complex, Toll-Like Receptor 4 (TLR4), on microglial cells to initiate central innate immune signaling. Disruption of cocaine signaling at TLR4 suppresses cocaine-induced extracellular dopamine in the NAc, as well as cocaine conditioned place preference and cocaine self-administration. These results provide a novel understanding of the neurobiological mechanisms underlying cocaine reward/reinforcement that includes a critical role for central immune signaling, and offer a new target for medication development for cocaine abuse treatment. PMID:25644383

  13. Toll-like receptor 2 ligands promote microglial cell death by inducing autophagy.

    PubMed

    Arroyo, Daniela S; Soria, Javier A; Gaviglio, Emilia A; Garcia-Keller, Constanza; Cancela, Liliana M; Rodriguez-Galan, Maria C; Wang, Ji Ming; Iribarren, Pablo

    2013-01-01

    Microglial cells are phagocytes in the central nervous system (CNS) and become activated in pathological conditions, resulting in microgliosis, manifested by increased cell numbers and inflammation in the affected regions. Thus, controlling microgliosis is important to prevent pathological damage to the brain. Here, we evaluated the contribution of Toll-like receptor 2 (TLR2) to microglial survival. We observed that activation of microglial cells with peptidoglycan (PGN) from Staphylococcus aureus and other TLR2 ligands results in cell activation followed by the induction of autophagy and autophagy-dependent cell death. In C57BL/6J mice, intracerebral injection of PGN increased the autophagy of microglial cells and reduced the microglial/macrophage cell number in brain parenchyma. Our results demonstrate a novel role of TLRs in the regulation of microglial cell activation and survival, which are important for the control of microgliosis and associated inflammatory responses in the CNS.

  14. [Innate immunity: cutaneous expression of Toll-like receptors].

    PubMed

    Musette, Philippe; Auquit Auckbur, Isabelle; Begon, Edouard

    2006-02-01

    Toll receptors were first identified as an essential molecule for embryonic patterning in Drosophila and were subsequently shown to be a key in antibacterial and antifungal immunity in adult flies. Toll receptors have been conserved throughout evolution. In mammals, TLRs have been implicated in both inflammatory responses and innate host defense to pathogens. The 11 different TLRs recognize conserved molecular patterns of microbial pathogens termed pathogen-specific molecular patterns (PAMPs), that permit to confer responsiveness to a wide variety of pathogens. Endogenous ligands are also able to activate TLRs. All adult tissue is capable to express at least one of member of TLR family, but a largest repertoire of TLRs is found in tissues exposed to the external environment. The TLR activation induce the NF-kappaB translocation to the nucleus and cytokine secretion. Since the primary function of skin is to provide an effective barrier against outside agression, it is likely that keratinocytes may play a role in a rapid and efficient host defence system, and the fact that keratinocytes are capable of expressing a wide variety of TLRs is subsequently not surprising.

  15. Innate immune receptor Toll-like receptor 4 signalling in neuropsychiatric diseases.

    PubMed

    García Bueno, B; Caso, J R; Madrigal, J L M; Leza, J C

    2016-05-01

    The innate immunity is a stereotyped first line of defense against pathogens and unspecified damage signals. One of main actors of innate immunity are the Toll-like receptors (TLRs), and one of the better characterized members of this family is TLR-4, that it is mainly activated by Gram-negative bacteria lipopolysaccharide. In brain, TLR-4 organizes innate immune responses against infections or cellular damage, but also possesses other physiological functions. In the last years, some evidences suggest a role of TLR-4 in stress and stress-related neuropsychiatric diseases. Peripheral and brain TLR-4 activation triggers sickness behavior, and its expression is a risk factor of depression. Some elements of the TLR-4 signaling pathway are up-regulated in peripheral samples and brain post-mortem tissue from depressed and suicidal patients. The "leaky gut" hypothesis of neuropsychiatric diseases is based on the existence of an increase of the intestinal permeability which results in bacterial translocation able to activate TLR-4. Enhanced peripheral TLR-4 expression/activity has been described in subjects diagnosed with schizophrenia, bipolar disorder and in autistic children. A role for TLR-4 in drugs abuse has been also proposed. The therapeutic potential of pharmacological/genetic modulation of TLRs signaling pathways in neuropsychiatry is promising, but a great preclinical/clinical scientific effort is still needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4

    PubMed Central

    Pålsson-McDermott, Eva M; O'Neill, Luke A J

    2004-01-01

    An understanding of lipopolysaccharide (LPS) signal transduction is a key goal in the effort to provide a molecular basis for the lethal effect of LPS during septic shock and point the way to novel therapies. Rapid progress in this field during the last 6 years has resulted in the discovery of not only the receptor for LPS – Toll-like receptor 4 (TLR4) – but also in a better appreciation of the complexity of the signalling pathways activated by LPS. Soon after the discovery of TLR4, the formation of a receptor complex in response to LPS, consisting of dimerized TLR4 and MD-2, was described. Intracellular events following the formation of this receptor complex depend on different sets of adapters. An early response, which is dependent on MyD88 and MyD88-like adapter (Mal), leads to the activation of nuclear factor-κB (NF-κB). A later response to LPS makes use of TIR-domain-containing adapter-inducing interferon-β (TRIF) and TRIF-related adapter molecule (TRAM), and leads to the late activation of NF-κB and IRF3, and to the induction of cytokines, chemokines, and other transcription factors. As LPS signal transduction is an area of intense research and rapid progress, this review is intended to sum up our present understanding of the events following LPS binding to TLR4, and we also attempt to create a model of the signalling pathways activated by LPS. PMID:15379975

  17. The acylation state of mycobacterial lipomannans modulates innate immunity response through toll-like receptor 2.

    PubMed

    Gilleron, Martine; Nigou, Jérôme; Nicolle, Delphine; Quesniaux, Valérie; Puzo, Germain

    2006-01-01

    Detection of Mycobacterium tuberculosis antigens by professional phagocytes via toll-like receptors (TLR) contributes to controlling chronic M. tuberculosis infection. Lipomannans (LM), which are major lipoglycans of the mycobacterial envelope, were recently described as agonists of TLR2 with potent activity on proinflammatory cytokine regulation. LM correspond to a heterogeneous population of acyl- and glyco-forms. We report here the purification and the complete structural characterization of four LM acyl-forms from Mycobacterium bovis BCG using MALDI MS and 2D (1)H-(31)P NMR analyses. All this biochemical work provided the tools to investigate the implication of LM acylation degree on its proinflammatory activity. The latter was ascribed to the triacylated LM form, essentially an agonist of TLR2, using TLR2/TLR1 heterodimers for signaling. Altogether, these findings shed more light on the molecular basis of LM recognition by TLR.

  18. Correlation of serum toll like receptor 9 and trace elements with lipid peroxidation in the patients of breast diseases.

    PubMed

    Karki, Kanchan; Pande, Deepti; Negi, Reena; Khanna, Seema; Khanna, Ranjana S; Khanna, Hari D

    2015-04-01

    Toll-like receptors are recognized as redox sensitive receptor proteins and have been implicated in cellular response to oxidative stress. Altered pro-oxidant-antioxidant balance leads to an increased oxidative damage and consequently play an important role in breast diseases. The study was designed to access the oxidative stress status by quantification of byproducts generated during lipid peroxidation and inadequate trace elements during oxidative damage and its effects on the toll like receptor (TLR) activity in patients of breast diseases. Decreased levels of selenium, copper, zinc, magnesium and iron with elevated levels of malondialdehyde (marker of lipid peroxidation) were accompanied by decreased TLR activity in patients of benign breast diseases as well as breast carcinoma. A similar pattern was observed with the advancement of disease and its subsequent progression in breast carcinoma patients. Results of multinomial regression analysis suggest benign breast disease patients are at higher risk of developing breast cancer with high odds ratio of lipid damage.

  19. DIESEL EXHAUST ENHANCES TOLL-LIKE RECEPTOR 3 EXPRESSION AND SIGNALING IN RESPIRATORY EPITHELIAL CELLS

    EPA Science Inventory

    Our previous studies have shown that prior exposure of respiratory epithelial cells to an aqueous-trapped solution of DE (DEas) enhances the susceptibility to Influenza infections. Here we examined the effect of DEas on the toll-like receptor 3 (TLR3) pathway, which is responsib...

  20. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance

    USDA-ARS?s Scientific Manuscript database

    Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammat...

  1. DIESEL EXHAUST ENHANCES TOLL-LIKE RECEPTOR 3 EXPRESSION AND SIGNALING IN RESPIRATORY EPITHELIAL CELLS

    EPA Science Inventory

    Our previous studies have shown that prior exposure of respiratory epithelial cells to an aqueous-trapped solution of DE (DEas) enhances the susceptibility to Influenza infections. Here we examined the effect of DEas on the toll-like receptor 3 (TLR3) pathway, which is responsib...

  2. Burn Enhances Toll-Like Receptor Induced Responses by Circulating Leukocytes

    DTIC Science & Technology

    2012-04-30

    lipoproteins of Mycobacterium tuberculosis . Cell Immunol 2009; 258: 29-37. [10] Cairns B, Maile R, Barnes CM, Frelinger JA and Meyer AA. Increased Toll...like receptors in the pathogenesis of human disease. Nat Immunol 2004; 5: 975-979. [21] Medzhitov R, Preston-Hurlburt P and Janeway CA Jr. A human

  3. DNA-Encoded Flagellin Activates Toll-Like Receptor 5 (TLR5), Nod-like Receptor Family CARD Domain-Containing Protein 4 (NRLC4), and Acts as an Epidermal, Systemic, and Mucosal-Adjuvant

    PubMed Central

    Nyström, Sanna; Bråve, Andreas; Falkeborn, Tina; Devito, Claudia; Rissiek, Björn; Johansson, Daniel X.; Schröder, Ulf; Uematsu, Satoshi; Akira, Shizuo; Hinkula, Jorma; Applequist, Steven E.

    2013-01-01

    Eliciting effective immune responses using non-living/replicating DNA vaccines is a significant challenge. We have previously shown that ballistic dermal plasmid DNA-encoded flagellin (FliC) promotes humoral as well as cellular immunity to co-delivered antigens. Here, we observe that a plasmid encoding secreted FliC (pFliC(-gly)) produces flagellin capable of activating two innate immune receptors known to detect flagellin; Toll-like Receptor 5 (TLR5) and Nod-like Receptor family CARD domain-containing protein 4 (NRLC4). To test the ability of pFliC(-gly) to act as an adjuvant we immunized mice with plasmid encoding secreted FliC (pFliC(-gly)) and plasmid encoding a model antigen (ovalbumin) by three different immunization routes representative of dermal, systemic, and mucosal tissues. By all three routes we observed increases in antigen-specific antibodies in serum as well as MHC Class I-dependent cellular immune responses when pFliC(-gly) adjuvant was added. Additionally, we were able to induce mucosal antibody responses and Class II-dependent cellular immune responses after mucosal vaccination with pFliC(-gly). Humoral immune responses elicited by heterologus prime-boost immunization with a plasmid encoding HIV-1 from gp160 followed by protein boosting could be enhanced by use of pFliC(-gly). We also observed enhancement of cross-clade reactive IgA as well as a broadening of B cell epitope reactivity. These observations indicate that plasmid-encoded secreted flagellin can activate multiple innate immune responses and function as an adjuvant to non-living/replicating DNA immunizations. Moreover, the capacity to elicit mucosal immune responses, in addition to dermal and systemic properties, demonstrates the potential of flagellin to be used with vaccines designed to be delivered by various routes. PMID:26344341

  4. The potential role of Toll-like receptors in programming of vascular dysfunction

    PubMed Central

    Thompson, Jennifer A.; Webb, R. Clinton

    2014-01-01

    The developmental origins of metabolic syndrome have been established through the consistent observation that small-for-gestational age and large-for-gestational age fetuses have an increased risk for hypertension and related metabolic disorders later in life. These phenotypes have been reproduced in various species subjected to a range of intrauterine insults and ongoing research is directed towards understanding the underlying molecular mechanisms. Current evidence suggests that the creation of a pro-inflammatory and pro-oxidant intrauterine milieu is a common thread among prenatal factors that impact upon fetal size. Furthermore, studies demonstrate that a shift in fetal redox status consequent to environmental cues persists after birth and drives the progression of vascular dysfunction and hypertension in postnatal life. Toll-like receptor signaling has emerged as a key link between inflammation and oxidative stress and pathogenic contributor to hypertension, insulin resistance and obesity, in both human patients and animal models of disease. Thus, Toll-like receptor activation and dysregulation of its signaling components represent potential molecular underpinnings of programmed hypertension and related disorders in those subjected to sub-optimal intrauterine conditions, yet their contributions to developmental programming remain unexplored. We propose that danger signals mobilized by the placenta or fetal tissues during complicated pregnancy activate the fetal innate immune system through TLRs and thereby potentiate the generation of reactive oxygen species and orchestrate fetal adaptive responses, including changes in gene expression which later translate to vascular dysfunction. Further, we suggest that after birth, continual activation of TLR signaling propagates vascular oxidative stress and thereby accelerates the advancement of hypertension and heart failure. PMID:23485061

  5. CPG-7909 (PF-3512676, ProMune): toll-like receptor-9 agonist in cancer therapy.

    PubMed

    Murad, Yanal M; Clay, Timothy M; Lyerly, H Kim; Morse, Michael A

    2007-08-01

    Stimulation of toll-like receptor (TLR)9 activates human plasmacytoid dendritic cells and B cells, and induces potent innate immune responses in preclinical tumor models and in patients. CpG oligodeoxynucleotides (ODNs) are TLR9 agonists that show promising results as vaccine adjuvants and in the treatment of cancers, infections, asthma and allergy. PF-3512676 (ProMune) was developed as a TLR9 agonist for the treatment of cancer as monotherapy and as an adjuvant in combination with chemo- and immunotherapy. Phase I and II trials have tested this drug in several hematopoietic and solid tumors. Pfizer has initiated Phase III trials to test PF-3512676 in combination with standard chemotherapy for non-small-cell lung cancer.

  6. Toll-like receptor signaling is functional in immune cells of the endangered Tasmanian devil.

    PubMed

    Patchett, Amanda L; Latham, Roger; Brettingham-Moore, Kate H; Tovar, Cesar; Lyons, A Bruce; Woods, Gregory M

    2015-11-01

    Devil facial tumour disease (DFTD) is a fatally transmissible cancer that threatens the Tasmanian devil population. As Tasmanian devils do not produce an immune response against DFTD cells, an effective vaccine will require a strong adjuvant. Activation of innate immune system cells through toll-like receptors (TLRs) could provide this stimulation. It is unknown whether marsupials, including Tasmanian devils, express functional TLRs. We isolated RNA from peripheral blood mononuclear cells and, with PCR, detected transcripts for TLRs 2, 3, 4, 5, 6, 7, 8, 9, 10 and 13. Stimulation of the mononuclear cells with agonists to these TLRs increased the expression of downstream TLR signaling products (IL1α, IL6, IL12A and IFNβ). Our data provide the first evidence that TLR signaling is functional in the mononuclear cells of the Tasmanian devil. Future DFTD vaccination trials will incorporate TLR agonists to enhance the immune response against DFTD. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  7. Toll-like receptor 3 signalling mediates angiogenic response upon shock wave treatment of ischaemic muscle.

    PubMed

    Holfeld, Johannes; Tepeköylü, Can; Reissig, Christin; Lobenwein, Daniela; Scheller, Bertram; Kirchmair, Elke; Kozaryn, Radoslaw; Albrecht-Schgoer, Karin; Krapf, Christoph; Zins, Karin; Urbschat, Anja; Zacharowski, Kai; Grimm, Michael; Kirchmair, Rudolf; Paulus, Patrick

    2016-02-01

    Shock wave therapy (SWT) represents a clinically widely used angiogenic and thus regenerative approach for the treatment of ischaemic heart or limb disease. Despite promising results in preclinical and clinical trials, the exact mechanism of action remains unknown. Toll-like receptor 3, which is part of the innate immunity, is activated by binding double-stranded (ds) RNA. It plays a key role in inflammation, a process that is needed also for angiogenesis. We hypothesize that SWT causes cellular cavitation without damaging the target cells, thus liberating cytoplasmic RNA that in turn activates TLR3. SWT induces TLR3 and IFN-β1 gene expression as well as RNA liberation from endothelial cells in a time-dependant manner. Conditioned medium from SWT-treated HUVECs induced TLR3 signalling in reporter cells. The response was lost when the medium was treated with RNase III to abolish dsRNAs or when TLR3 was silenced using siRNAs. In a mouse hind limb ischaemia model using wt and TLR3(-/-) mice (n = 6), SWT induced angiogenesis and arteriogenesis only in wt animals. These effects were accompanied by improved blood perfusion of treated limbs. Analysis of main molecules of the TLR3 pathways confirmed TLR3 signalling in vivo following SWT. Our data reveal a central role of the innate immune system, namely Toll-like receptor 3, to mediate angiogenesis upon release of cytoplasmic RNAs by mechanotransduction of SWT. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  8. Toll-like receptor 3 activation promotes desensitization of histamine response in human gingival fibroblasts: Poly (I:C) induces histamine receptor desensitization in human gingival fibroblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Rodríguez-Pérez, Citlalli Ekaterina

    2012-01-01

    Viruses are associated with the development of periodontal disease, particularly during periods of suppressed cellular immunity. For this reason, we evaluated the hypothesis that viral components regulate the actions of histamine, an important mediator of immune responses. We assessed the effect of Poly (I:C) on histamine-mediated intracellular calcium mobilization in human gingival fibroblasts. Our results show that histamine induces an increase in intracellular calcium concentrations in a dose-dependent manner. This response was blocked when cells were incubated in the presence of Poly (I:C). In addition, phorbol esters, a diacylglycerol analog, mimics the inhibitory actions of Poly (I:C) in response to histamine. The effect of Poly (I:C) was reversed by Stuarosporine (1 μM), GÖ6983 (7 μM), Bisindolylmaleimide (1 μM) [a protein inhibitor (PKC)], and SB 203580 (3 μM) (a p38-MAPK inhibitor). These findings suggest that Poly (I:C) regulates histamine-induced calcium mobilization through activation of PKC and p38.

  9. Roles of lipoxin A4 receptor activation and anti-interleukin-1β antibody on the toll-like receptor 2/mycloid differentiation factor 88/nuclear factor-κB pathway in airway inflammation induced by ovalbumin

    PubMed Central

    KONG, XIA; WU, SHENG-HUA; ZHANG, LI; CHEN, XIAO-QING

    2015-01-01

    Previous studies investigating the role of toll-like receptors (TLRs) in asthma have been inconclusive. It has remained elusive whether the toll-like receptors (TLR2)/mycloid differentiation factor 88 (MyD88)/nuclear factor (NF)-κB signaling pathway is involved in lipoxin A4 (LXA4)-induced protection against asthma. Therefore, the present study investigated whether ovalbumin (OVA)-induced airway inflammation is mediated by upregulation of the TLR2/MyD88/NF-κB signaling pathway, and whether it proceeds via the inhibition of the activation of the LXA4 receptor and anti-interleukin (IL)-1β antibodies. Mice with airway inflammation induced by OVA administration were treated with or without a LXA4 receptor agonist, BML-111 and anti-IL-1β antibody. Serum levels of IL-1β, IL-4, IL-8 and interferon-γ (IFN-γ) were assessed, and levels of IL-1β, IL-4, IL-8 and OVA-immunoglobulin (Ig)E, as well as leukocyte counts in the bronchoalveolar lavage fluid (BALF) were measured. Pathological features and expression of TLR2, MyD88 and NF-κB in the lungs were analyzed. Expression of TLR2 and MyD88, and activation of NF-κB in leukocytes as well as levels of IL-4, IL-6 and IL-8 released from leukocytes exposed to IL-1β were assessed. OVA treatment increased the levels of IL-1β, IL-4 and IL-8 in the serum and BLAF, the number of leukocytes and the levels of OVA-IgE in the BALF, the expression of TLR2 and MyD88, and the activation of NF-κB in the lung. These increments induced by OVA were inhibited by treatment with BML-111 and anti-IL-1β antibodies. Treatment of the leukocytes with BML-111 or TLR2 antibody, or MyD88 or NF-κB inhibitor, all blocked the IL-1β-triggered production of IL-4, IL-6 and IL-8 and activation of NF-κB. Treatment of the leukocytes with BML-111 or TLR2 antibody suppressed IL-1β-induced TLR2 and MyD88 expression. The present study therefore suggested that OVA-induced airway inflammation is mediated by the TLR2/MyD88/NF-κB pathway. IL-1β has a

  10. Neu1 sialidase and matrix metalloproteinase-9 cross-talk regulates nucleic acid-induced endosomal TOLL-like receptor-7 and -9 activation, cellular signaling and pro-inflammatory responses.

    PubMed

    Abdulkhalek, Samar; Szewczuk, Myron R

    2013-11-01

    The precise mechanism(s) by which intracellular TOLL-like receptors (TLRs) become activated by their ligands remains unclear. Here, we report a molecular organizational G-protein coupled receptor (GPCR) signaling platform to potentiate a novel mammalian neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B GPCR, all of which form a tripartite complex with TLR-7 and -9. siRNA silencing Neu1, MMP-9 and neuromedin-B GPCR in RAW-blue macrophage cells significantly reduced TLR7 imiquimod- and TLR9 ODN1826-induced NF-κB (NF-κB-pSer(536)) activity. Tamiflu, specific MMP-9 inhibitor, neuromedin B receptor specific antagonist BIM23127, and the selective inhibitor of whole heterotrimeric G-protein complex BIM-46174 significantly block nucleic acid-induced TLR-7 and -9 MyD88 recruitment, NF-κB activation and proinflammatory TNFα and MCP-1 cytokine responses. For the first time, Neu1 clearly plays a central role in mediating nucleic acid-induced intracellular TLR activation, and the interactions involving NMBR-MMP9-Neu1 cross-talk constitute a novel intracellular TLR signaling platform that is essential for NF-κB activation and pro-inflammatory responses.

  11. BURN-INDUCED ACUTE LUNG INJURY REQUIRES A FUNCTIONAL TOLL-LIKE RECEPTOR 4

    PubMed Central

    Krzyzaniak, Michael; Cheadle, Gerald; Peterson, Carrie; Loomis, William; Putnam, James; Wolf, Paul; Baird, Andrew; Eliceiri, Brian; Bansal, Vishal; Coimbra, Raul

    2014-01-01

    The role of the Toll-like receptor 4 (TLR4), a component of the innate immune system, in the development of burn-induced acute lung injury (ALI) has not been completely defined. Recent data suggested that an intact TLR4 plays a major role in the development of organ injury in sterile inflammation. We hypothesized that burn-induced ALI is a TLR4-dependent process. Male C57BL/6J (TLR4 wild-type [WT]) and C57BL/10ScN (TLR4 knockout [KO]) mice were subjected to a 30% total body surface area steam burn. Animals were killed at 6 and 24 h after the insult. Lung specimens were harvested for histological examination after hematoxylin-eosin staining. In addition, lung myeloperoxidase (MPO) and intercellular adhesion molecule 1 immunostaining was performed. Lung MPO was measured by an enzymatic assay. Total lung keratinocyte-derived chemoattractant (IL-8) content was measured by enzyme-linked immunosorbent assay. Western blot was performed to quantify phosphorylated IκBα, phosphorylated nuclear factor κB p65 (NF-κBp65), and high mobility group box 1 expression. Acute lung injury, characterized by thickening of the alveolar-capillary membrane, hyaline membrane formation, intraalveolar hemorrhage, and neutrophil infiltration, was seen in WT but not KO animals at 24 h. Myeloperoxidase and intercellular adhesion molecule 1 immunostaining of KO animals was also similar to sham but elevated in WT animals. In addition, a reduction in MPO enzymatic activity was observed in KO mice as well as a reduction in IL-8 levels compared with their WT counterparts. Burn-induced ALI develops within 24 h after the initial thermal insult in our model. Toll-like receptor 4 KO animals were clearly protected and had a much less severe lung injury. Our data suggest that burn-induced ALI is a TLR4-dependent process. PMID:21330948

  12. Burn-induced acute lung injury requires a functional Toll-like receptor 4.

    PubMed

    Krzyzaniak, Michael; Cheadle, Gerald; Peterson, Carrie; Loomis, William; Putnam, James; Wolf, Paul; Baird, Andrew; Eliceiri, Brian; Bansal, Vishal; Coimbra, Raul

    2011-07-01

    The role of the Toll-like receptor 4 (TLR4), a component of the innate immune system, in the development of burn-induced acute lung injury (ALI) has not been completely defined. Recent data suggested that an intact TLR4 plays a major role in the development of organ injury in sterile inflammation. We hypothesized that burn-induced ALI is a TLR4-dependent process. Male C57BL/6J (TLR4 wild-type [WT]) and C57BL/10ScN (TLR4 knockout [KO]) mice were subjected to a 30% total body surface area steam burn. Animals were killed at 6 and 24 h after the insult. Lung specimens were harvested for histological examination after hematoxylin-eosin staining. In addition, lung myeloperoxidase (MPO) and intercellular adhesion molecule 1 immunostaining was performed. Lung MPO was measured by an enzymatic assay. Total lung keratinocyte-derived chemoattractant (IL-8) content was measured by enzyme-linked immunosorbent assay. Western blot was performed to quantify phosphorylated IκBα, phosphorylated nuclear factor κB p65 (NF-κBp65), and high mobility group box 1 expression. Acute lung injury, characterized by thickening of the alveolar-capillary membrane, hyaline membrane formation, intraalveolar hemorrhage, and neutrophil infiltration, was seen in WT but not KO animals at 24 h. Myeloperoxidase and intercellular adhesion molecule 1 immunostaining of KO animals was also similar to sham but elevated in WT animals. In addition, a reduction in MPO enzymatic activity was observed in KO mice as well as a reduction in IL-8 levels compared with their WT counterparts. Burn-induced ALI develops within 24 h after the initial thermal insult in our model. Toll-like receptor 4 KO animals were clearly protected and had a much less severe lung injury. Our data suggest that burn-induced ALI is a TLR4-dependent process.

  13. Central Resistin Overexposure Induces Insulin Resistance Through Toll-Like Receptor 4

    PubMed Central

    Benomar, Yacir; Gertler, Arieh; De Lacy, Pamela; Crépin, Delphine; Ould Hamouda, Hassina; Riffault, Laure; Taouis, Mohammed

    2013-01-01

    Resistin promotes both inflammation and insulin resistance associated with energy homeostasis impairment. However, the resistin receptor and the molecular mechanisms mediating its effects in the hypothalamus, crucial for energy homeostasis control, and key insulin-sensitive tissues are still unknown. In the current study, we report that chronic resistin infusion in the lateral cerebral ventricle of normal rats markedly affects both hypothalamic and peripheral insulin responsiveness. Central resistin treatment inhibited insulin-dependent phosphorylation of insulin receptor (IR), AKT, and extracellular signal–related kinase 1/2 associated with reduced IR expression and with upregulation of suppressor of cytokine signaling-3 and phosphotyrosine phosphatase 1B, two negative regulators of insulin signaling. Additionally, central resistin promotes the activation of the serine kinases Jun NH2-terminal kinase and p38 mitogen-activated protein kinase, enhances the serine phosphorylation of insulin receptor substrate-1, and increases the expression of the proinflammatory cytokine interleukin-6 in the hypothalamus and key peripheral insulin-sensitive tissues. Interestingly, we also report for the first time, to our knowledge, the direct binding of resistin to Toll-like receptor (TLR) 4 receptors in the hypothalamus, leading to the activation of the associated proinflammatory pathways. Taken together, our findings clearly identify TLR4 as the binding site for resistin in the hypothalamus and bring new insight into the molecular mechanisms involved in resistin-induced inflammation and insulin resistance in the whole animal. PMID:22961082

  14. Posttranslational Modification of HOIP Blocks Toll-Like Receptor 4-Mediated Linear-Ubiquitin-Chain Formation

    PubMed Central

    Bowman, James; Rodgers, Mary A.; Shi, Mude; Amatya, Rina; Hostager, Bruce; Iwai, Kazuhiro; Gao, Shou-Jiang

    2015-01-01

    ABSTRACT Linear ubiquitination is an atypical posttranslational modification catalyzed by the linear-ubiquitin-chain assembly complex (LUBAC), containing HOIP, HOIL-1L, and Sharpin. LUBAC facilitates NF-κB activation and inflammation upon receptor stimulation by ligating linear ubiquitin chains to critical signaling molecules. Indeed, linear-ubiquitination-dependent signaling is essential to prevent pyogenic bacterial infections that can lead to death. While linear ubiquitination is essential for intracellular receptor signaling upon microbial infection, this response must be measured and stopped to avoid tissue damage and autoimmunity. While LUBAC is activated upon bacterial stimulation, the mechanisms regulating LUBAC activity in response to bacterial stimuli have remained elusive. We demonstrate that LUBAC activity itself is downregulated through ubiquitination, specifically, ubiquitination of the catalytic subunit HOIP at the carboxyl-terminal lysine 1056. Ubiquitination of Lys1056 dynamically altered HOIP conformation, resulting in the suppression of its catalytic activity. Consequently, HOIP Lys1056-to-Arg mutation led not only to persistent LUBAC activity but also to prolonged NF-κB activation induced by bacterial lipopolysaccharide-mediated Toll-like receptor 4 (TLR4) stimulation, whereas it showed no effect on NF-κB activation induced by CD40 stimulation. This study describes a novel posttranslational regulation of LUBAC-mediated linear ubiquitination that is critical for specifically directing TLR4-mediated NF-κB activation. PMID:26578682

  15. SIGIRR inhibits interleukin-1 receptor- and toll-like receptor 4-mediated signaling through different mechanisms.

    PubMed

    Qin, Jinzhong; Qian, Youcun; Yao, Jianhong; Grace, Cui; Li, Xiaoxia

    2005-07-01

    The Toll-interleukin-1 receptor (TIR) domain-containing orphan receptor SIGIRR (single immunoglobulin interleukin-1 receptor-related protein) acts as a negative regulator of interleukin (IL)-1 and lipopolysaccharide (LPS) signaling. Endogenous SIGIRR transiently interacted with IL-1 receptor and the receptor-proximal signaling components (MyD88, IRAK, and tumor necrosis factor receptor-associated factor 6) upon IL-1 stimulation, indicating that SIGIRR interacts with the IL-1 receptor complex in a ligand-dependent manner. Similar interaction was also observed between SIGIRR and Toll-like receptor 4 receptor complex upon LPS stimulation. To identify the domains of SIGIRR required for its interaction with the Toll-like receptor 4 and IL-1 receptor complexes, several SIGIRR deletion mutants were generated, including DeltaN (lacking the extracellular immunoglobulin (Ig) domain with deletion of amino acids 1-119), DeltaC (lacking the C-terminal domain with deletion of amino acids 313-410), and DeltaTIR (lacking the TIR domain with deletion of amino acids 161-313). Whereas both the extracellular Ig domain and the intracellular TIR domains are important for SIGIRR to inhibit IL-1 signaling, only the TIR domain is necessary for SIGIRR to inhibit LPS signaling. The extracellular Ig domain exerts its inhibitory role in IL-1 signaling by interfering with the heterodimerization of IL-1 receptor and IL-1RAcP, whereas the intracellular TIR domain inhibits both IL-1 and LPS signaling by attenuating the recruitment of receptor-proximal signaling components to the receptor. These results indicate that SIGIRR inhibits IL-1 and LPS signaling pathways through differential mechanisms.

  16. Pleiotropic Effects of Blastocystis spp. Subtypes 4 and 7 on Ligand-Specific Toll-Like Receptor Signaling and NF-κB Activation in a Human Monocyte Cell Line

    PubMed Central

    Teo, Joshua D. W.; MacAry, Paul A.; Tan, Kevin S. W.

    2014-01-01

    Blastocystis spp. is a common enteric stramenopile parasite that colonizes the colon of hosts of a diverse array of species, including humans. It has been shown to compromise intestinal epithelial cell barrier integrity and mediate the production of pro-inflammatory cytokines and chemokines. Mucosal epithelial surfaces, including the intestinal epithelium, are increasingly recognized to perform a vital surveillance role in the context of innate immunity, through the expression of pathogen recognition receptors, such as Toll-like receptors (TLRs). In this study, we use the human TLR reporter monocytic cell line, THP1-Blue, which expresses all human TLRs, to investigate effects of Blastocystis on TLR activation, more specifically the activation of TLR-2, -4 and -5. We have observed that live Blastocystis spp. parasites and whole cell lysate (WCL) alone do not activate TLRs in THP1-Blue. Live ST4-WR1 parasites inhibited LPS-mediated NF-κB activation in THP1-Blue. In contrast, ST7-B WCL and ST4-WR1 WCL induced pleiotropic modulation of ligand-specific TLR-2 and TLR-4 activation, with no significant effects on flagellin-mediated TLR-5 activation. Real time-qPCR analysis on SEAP reporter gene confirmed the augmenting effect of ST7-B on LPS-mediated NF-κB activation in THP1-Blue. Taken together, this is the first study to characterize interactions between Blastocystis spp. and host TLR activation using an in vitro reporter model. PMID:24551212

  17. Signal transducer and activator of transcription-3 licenses Toll-like receptor 4-dependent interleukin (IL)-6 and IL-8 production via IL-6 receptor-positive feedback in endometrial cells

    PubMed Central

    Cronin, J G; Kanamarlapudi, V; Thornton, C A; Sheldon, I M

    2016-01-01

    Interleukin 6 (IL-6), acting via the IL-6 receptor (IL6R) and signal transducer and activator of transcription-3 (STAT3), limits neutrophil recruitment once bacterial infections are resolved. Bovine endometritis is an exemplar mucosal disease, characterized by sustained neutrophil infiltration and elevated IL-6 and IL-8, a neutrophil chemoattractant, following postpartum Gram-negative bacterial infection. The present study examined the impact of the IL6R/STAT3 signaling pathway on IL-8 production by primary endometrial cells in response to short- or long-term exposure to lipopolysaccharide (LPS) from Gram-negative bacteria. Tyrosine phosphorylation of STAT3 is required for DNA binding and expression of specific targets genes. Immunoblotting indicated constitutive tyrosine phosphorylation of STAT3 in endometrial cells was impeded by acute exposure to LPS. After 24 h exposure to LPS, STAT3 returned to a tyrosine phosphorylated state, indicating cross-talk between the Toll-like receptor 4 (TLR4) and the IL6R/STAT3 signaling pathways. This was confirmed by short interfering RNA targeting the IL6R, which abrogated the accumulation of IL-6 and IL-8, induced by LPS. Furthermore, there was a differential endometrial cell response, as the accumulation of IL-6 and IL-8 was dependent on STAT3, suppressor of cytokine signaling 3, and Src kinase signaling in stromal cells, but not epithelial cells. In conclusion, positive feedback through the IL6R amplifies LPS-induced IL-6 and IL-8 production in the endometrium. These findings provide a mechanistic insight into how elevated IL-6 concentrations in the postpartum endometrium during bacterial infection leads to marked and sustained neutrophil infiltration. PMID:26813342

  18. Cholesterol Ester Transfer Protein, Interleukin 8, Peroxisome Proliferator Activator Receptor Alpha and Toll-Like Receptor 4 Genetic Variations and Risk of Incident Non-Fatal Myocardial Infarction and Ischemic Stroke

    PubMed Central

    Enquobahrie, Daniel A.; Smith, Nicholas L.; Bis, Joshua C.; Carty, Cara L.; Rice, Kenneth M.; Lumley, Thomas; Hindorff, Lucia A.; Lemaitre, Rozenn N.; Williams, Michelle A.; Siscovick, David S.; Heckbert, Susan R.; Psaty, Bruce M.

    2008-01-01

    Variations in candidate genes participating in oxidative stress, inflammation and their interactions are potentially associated with diseases of atherosclerotic origin. We investigated independent and joint associations of variations in cholesterol ester transfer protein (CETP), interleukin 8 (IL8), peroxisome proliferator activator receptor alpha (PPARA) and toll-like receptor 4 (TLR4) genes with incident non-fatal myocardial infarction (MI) or ischemic stroke. In a population-based case-control study, cases (848 MI and 368 ischemic stroke) and controls (2682) were recruited from postmenopausal women and hypertensive men/women who were members of Group Health in Western Washington State. Common tag single nucleotide polymorphisms (n=34) representing gene-wide variations were selected from gene sequencing data using pairwise linkage disequilibrium. Haplotypes were inferred using a modified expectation maximization algorithm. Multivariate logistic regression evaluated individual haplotype and SNP-disease associations in log-additive models. Global haplotype tests assessed overall gene-disease associations. Logic regression was used to evaluate gene-gene interactions. False discovery rates and permutation tests were used for multiple testing adjustment in evaluating independent associations and interactions respectively. Overall, gene-wide variations in PPARA and TLR4 genes were associated with MI. The minor allele of the PPARA SNP, rs4253623, was associated with a higher risk of MI (odds ratio: 1.25, 95%CI: 1.08–1.46) while the minor allele of the TLR4 SNP, rs1927911, was associated with a lower risk of MI (odds ratio: 0.88, 95%CI: 0.77–0.99). No within gene or gene-gene interaction was associated with MI or ischemic stroke risk. Potential SNP-disease associations identified in the current study are novel. PMID:18549840

  19. Cholesterol ester transfer protein, interleukin-8, peroxisome proliferator activator receptor alpha, and Toll-like receptor 4 genetic variations and risk of incident nonfatal myocardial infarction and ischemic stroke.

    PubMed

    Enquobahrie, Daniel A; Smith, Nicholas L; Bis, Joshua C; Carty, Cara L; Rice, Kenneth M; Lumley, Thomas; Hindorff, Lucia A; Lemaitre, Rozenn N; Williams, Michelle A; Siscovick, David S; Heckbert, Susan R; Psaty, Bruce M

    2008-06-15

    Variations in candidate genes participating in oxidative stress, inflammation, and their interactions are potentially associated with diseases of atherosclerotic origin. We investigated independent and joint associations of variations in cholesterol ester transfer protein (CETP), interleukin-8 (IL8), peroxisome proliferator activator receptor-alpha (PPARA), and Toll-like receptor 4 (TLR4) genes with incident nonfatal myocardial infarction (MI) or ischemic stroke. In a population-based case-control study, patients (848 with MI and 368 with ischemic stroke) and controls (2,682) were recruited from postmenopausal women and hypertensive men/women who were members of Group Health in western Washington State. Common tag single-nucleotide polymorphisms (SNPs; n=34) representing gene-wide variations were selected from gene sequencing data using pairwise linkage disequilibrium. Haplotypes were inferred using a modified expectation maximization algorithm. Multivariate logistic regression evaluated individual haplotype and SNP-disease associations in log-additive models. Global haplotype tests assessed overall gene-disease associations. Logic regression was used to evaluate gene-gene interactions. False discovery rates and permutation tests were used for multiple testing adjustment in evaluating independent associations and interactions, respectively. Overall, gene-wide variations in PPARA and TLR4 genes were associated with MI. The minor allele of the PPARA SNP, rs4253623, was associated with a higher risk of MI (odds ratio 1.25, 95% confidence interval 1.08 to 1.46), whereas the minor allele of the TLR4 SNP, rs1927911, was associated with a lower risk of MI (odds ratio 0.88, 95% confidence interval 0.77 to 0.99). No within-gene or gene-gene interaction was associated with MI or ischemic stroke risk. In conclusion, potential SNP-disease associations identified in the present study are novel and need further investigation.

  20. Toll-like receptors: the swiss army knife of immunity and vaccine development

    PubMed Central

    Dowling, Jennifer K; Mansell, Ashley

    2016-01-01

    Innate immune cells have a critical role in defense against infection and disease. Central to this is the broad specificity with which they can detect pathogen-associated patterns and danger-associated patterns via the pattern recognition receptors (PRRs) they express. Several families of PRRs have been identified including: Toll-like receptors (TLRs), C-type lectin-like receptors, retinoic acid-inducible gene-like receptors and nucleotide-binding oligomerization domain–like receptors. TLRs are one of the most largely studied families of PRRs. The binding of ligands to TLRs on antigen presenting cells (APCs), mainly dendritic cells, leads to APC maturation, induction of inflammatory cytokines and the priming of naive T cells to drive acquired immunity. Therefore, activation of TLRs promotes both innate inflammatory responses and the induction of adaptive immunity. Consequently, in the last two decades mounting evidence has inextricably linked TLR activation with the pathogenesis of immune diseases and cancer. It has become advantageous to harness these aspects of TLR signaling therapeutically to accelerate and enhance the induction of vaccine-specific responses and also target TLRs with the use of biologics and small molecule inhibitors for the treatment of disease. In these respects, TLRs may be considered a ‘Swiss Army' knife of the immune system, ready to respond in a multitude of infectious and disease states. Here we describe the latest advances in TLR-targeted therapeutics and the use of TLR ligands as vaccine adjuvants. PMID:27350884

  1. Toll-Like Receptor 2 and Mincle Cooperatively Sense Corynebacterial Cell Wall Glycolipids.

    PubMed

    Schick, Judith; Etschel, Philipp; Bailo, Rebeca; Ott, Lisa; Bhatt, Apoorva; Lepenies, Bernd; Kirschning, Carsten; Burkovski, Andreas; Lang, Roland

    2017-07-01

    Nontoxigenic Corynebacterium diphtheriae and Corynebacterium ulcerans cause invasive disease in humans and animals. Host sensing of corynebacteria is largely uncharacterized, albeit the recognition of lipoglycans by Toll-like receptor 2 (TLR2) appears to be important for macrophage activation by corynebacteria. The members of the order Corynebacterineae (e.g., mycobacteria, nocardia, and rhodococci) share a glycolipid-rich cell wall dominated by mycolic acids (termed corynomycolic acids in corynebacteria). The mycolic acid-containing cord factor of mycobacteria, trehalose dimycolate, activates the C-type lectin receptor (CLR) Mincle. Here, we show that glycolipid extracts from the cell walls of several pathogenic and nonpathogenic Corynebacterium strains directly bound to recombinant Mincle in vitro Macrophages deficient in Mincle or its adapter protein Fc receptor gamma chain (FcRγ) produced severely reduced amounts of granulocyte colony-stimulating factor (G-CSF) and of nitric oxide (NO) upon challenge with corynebacterial glycolipids. Consistently, cell wall extracts of a particular C. diphtheriae strain (DSM43989) lacking mycolic acid esters neither bound Mincle nor activated macrophages. Furthermore, TLR2 but not TLR4 was critical for sensing of cell wall extracts and whole corynebacteria. The upregulation of Mincle expression upon encountering corynebacteria required TLR2. Thus, macrophage activation by the corynebacterial cell wall relies on TLR2-driven robust Mincle expression and the cooperative action of both receptors. Copyright © 2017 American Society for Microbiology.

  2. Herpes virus entry mediator synergizes with Toll-like receptor mediated neutrophil inflammatory responses

    PubMed Central

    Haselmayer, Philipp; Tenzer, Stefan; Kwon, Byoung S; Jung, Gundram; Schild, Hansjörg; Radsak, Markus P

    2006-01-01

    In microbial infections polymorphnuclear neutrophils (PMN) constitute a major part of the innate host defence, based upon their ability to rapidly accumulate in inflamed tissues and clear the site of infection from microbial pathogens by their potent effector mechanisms. The recently described transmembrane receptor herpes virus entry mediator (HVEM) is a member of the tumour necrosis factor receptor super family and is expressed on many haematopoietic cells, including T cells, B cells, natural killer cells, monocytes and PMN. Interaction of HVEM with the natural ligand LIGHT on T cells has a costimulatory effect, and increases the bactericidal activity of PMN. To further characterize the function of HVEM on PMN, we evaluated the effect of receptor ligation on human PMN effector functions using an agonistic monoclonal antibody. Here we demonstrate that activation of HVEM causes activation of neutrophil effector functions, including respiratory burst, degranulation and release of interleukin-8 in synergy with ligands for Toll-like receptors or GM-CSF. In addition, stimulation via HVEM enhanced neutrophil phagocytic activity of complement opsonized, but not of non-opsonized, particles. In conclusion, these results indicate a new, as yet unknown, participation of HVEM in the innate immune response and points to a new link between innate and adaptive immunity. PMID:17067315

  3. Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation

    PubMed Central

    2016-01-01

    Since the discovery of the endocannabinoid system consisting of cannabinoid receptors, endogenous ligands, and biosynthetic and metabolizing enzymes, interest has been renewed in investigating the promise of cannabinoids as therapeutic agents. Abundant evidence indicates that cannabinoids modulate immune responses. An inflammatory response is triggered when innate immune cells receive a danger signal provided by pathogen- or damage-associated molecular patterns engaging pattern-recognition receptors. Toll-like receptor family members are prominent pattern-recognition receptors expressed on innate immune cells. Cannabinoids suppress Toll-like receptor-mediated inflammatory responses. However, the relationship between the endocannabinoid system and innate immune system may not be one-sided. Innate immune cells express cannabinoid receptors and produce endogenous cannabinoids. Hence, innate immune cells may play a role in regulating endocannabinoid homeostasis, and, in turn, the endocannabinoid system modulates local inflammatory responses. Studies designed to probe the interaction between the innate immune system and the endocannabinoid system may identify new potential molecular targets in developing therapeutic strategies for chronic inflammatory diseases. This review discusses the endocannabinoid system and Toll-like receptor family and evaluates the interaction between them. PMID:27597805

  4. Toll-like receptor 4 decoy, TOY, attenuates gram-negative bacterial sepsis.

    PubMed

    Jung, Keehoon; Lee, Jung-Eun; Kim, Hak-Zoo; Kim, Ho Min; Park, Beom Seok; Hwang, Seong-Ik; Lee, Jie-Oh; Kim, Sun Chang; Koh, Gou Young

    2009-10-09

    Lipopolysaccharide (LPS), the Gram-negative bacterial outer membrane glycolipid, induces sepsis through its interaction with myeloid differentiation protein-2 (MD-2) and Toll-like receptor 4 (TLR4). To block interaction between LPS/MD-2 complex and TLR4, we designed and generated soluble fusion proteins capable of binding MD-2, dubbed TLR4 decoy receptor (TOY) using 'the Hybrid leucine-rich repeats (LRR) technique'. TOY contains the MD-2 binding ectodomain of TLR4, the LRR motif of hagfish variable lymphocyte receptor (VLR), and the Fc domain of IgG1 to make it soluble, productive, and functional. TOY exhibited strong binding to MD-2, but not to the extracellular matrix (ECM), resulting in a favorable pharmacokinetic profile in vivo. TOY significantly extended the lifespan, when administered in either preventive or therapeutic manners, in both the LPS- and cecal ligation/puncture-induced sepsis models in mice. TOY markedly attenuated LPS-triggered NF-kappaB activation, secretion of proinflammatory cytokines, and thrombus formation in multiple organs. Taken together, the targeting strategy for sequestration of LPS/MD-2 complex using the decoy receptor TOY is effective in treating LPS- and bacteria-induced sepsis; furthermore, the strategy used in TOY development can be applied to the generation of other novel decoy receptor proteins.

  5. Immunomodulatory parasites and toll-like receptor-mediated tumour necrosis factor alpha responsiveness in wild mammals

    PubMed Central

    Jackson, Joseph A; Friberg, Ida M; Bolch, Luke; Lowe, Ann; Ralli, Catriona; Harris, Philip D; Behnke, Jerzy M; Bradley, Janette E

    2009-01-01

    Background Immunological analyses of wild populations can increase our understanding of how vertebrate immune systems respond to 'natural' levels of exposure to diverse infections. A major recent advance in immunology has been the recognition of the central role of phylogenetically conserved toll-like receptors in triggering innate immunity and the subsequent recruitment of adaptive response programmes. We studied the cross-sectional associations between individual levels of systemic toll-like receptor-mediated tumour necrosis factor alpha responsiveness and macro- and microparasite infections in a natural wood mouse (Apodemus sylvaticus) population. Results Amongst a diverse group of macroparasites, only levels of the nematode Heligmosomoides polygyrus and the louse Polyplax serrata were correlated (negatively) with innate immune responsiveness (measured by splenocyte tumour necrosis factor alpha responses to a panel of toll-like receptor agonists). Polyplax serrata infection explained a strikingly high proportion of the total variation in innate responses. Contrastingly, faecal oocyst count in microparasitic Eimeria spp. was positively associated with innate immune responsiveness, most significantly for the endosomal receptors TLR7 and TLR9. Conclusion Analogy with relevant laboratory models suggests the underlying causality for the observed patterns may be parasite-driven immunomodulatory effects on the host. A subset of immunomodulatory parasite species could thus have a key role in structuring other infections in natural vertebrate populations by affecting the 'upstream' innate mediators, like toll-like receptors, that are important in initiating immunity. Furthermore, the magnitude of the present result suggests that populations free from immunosuppressive parasites may exist at 'unnaturally' elevated levels of innate immune activation, perhaps leading to an increased risk of immunopathology. PMID:19386086

  6. Cathelicidin Antimicrobial Peptides with Reduced Activation of Toll-Like Receptor Signaling Have Potent Bactericidal Activity against Colistin-Resistant Bacteria

    PubMed Central

    Lin, Xiaoyan; Yi, Guanghui; Zhang, Yunliang; Rowe-Magnus, Dean A.; Bush, Karen

    2016-01-01

    ABSTRACT The world is at the precipice of a postantibiotic era in which medical procedures and minor injuries can result in bacterial infections that are no longer effectively treated by antibiotics. Cathelicidins are peptides produced by animals to combat bacterial infections and to regulate innate immune responses. However, cathelicidins are potent activators of the inflammatory response. Cathelicidins with reduced proinflammatory activity and potent bactericidal activity in the low micromolar range against Gram-negative bacteria have been identified. Motifs in cathelicidins that impact bactericidal activity and cytotoxicity to human cells have been elucidated and used to generate peptides that have reduced activation of proinflammatory cytokine production and reduced cytotoxicity to human cells. The resultant peptides have bactericidal activities comparable to that of colistin and can kill colistin-resistant bacteria. PMID:27651360

  7. Acute kidney injury: what part do toll-like receptors play?

    PubMed Central

    Vallés, Patricia G; Lorenzo, Andrea Gil; Bocanegra, Victoria; Vallés, Roberto

    2014-01-01

    The innate immune system plays an important role as a first response to tissue injury. This first response is carried out via germline-encoded receptors. Toll-like receptors (TLRs) are the first identified and best studied family of pattern recognition receptors. TLRs are expressed on a variety of cell types, including epithelial cells, endothelia, dendritic cells, monocytes/macrophages, and B- and T-cells. TLRs initiate innate immune responses and concurrently shape the subsequent adaptive immune response. They are sensors of both pathogens, through the exogenous pathogen-associated molecular patterns (PAMPs), and tissue injury, through the endogenous danger-associated molecular patterns (DAMPs). TLR signaling is critical in defending against invading microorganisms; however, sustained receptor activation is also implicated in the pathogenesis of inflammatory diseases. Ischemic kidney injury involves early TLR-driven immunopathology, and the resolution of inflammation is needed for rapid regeneration of injured tubule cells. Notably, the activation of TLRs also has been implicated in epithelial repair. This review focuses on the role of TLRs and their endogenous ligands within the inflammatory response of acute kidney injury. PMID:24971030

  8. Origin of Toll-like receptor-mediated innate immunity.

    PubMed

    Kanzok, Stefan M; Hoa, Ngo T; Bonizzoni, Mariangela; Luna, Coralia; Huang, Yaming; Malacrida, Anna R; Zheng, Liangbiao

    2004-04-01

    Toll-related receptors (TLR) have been found in four animal phyla: Nematoda, Arthropoda, Echinodermata, and Chordata. No TLR has been identified thus far in acoelomates. TLR genes play a pivotal role in the innate immunity in both fruit fly and mammals. The prevailing view is that TLR-mediated immunity is ancient. The two pseudocoelomate TLRs, one each from Caenorhabditis elegans and Strongyloides stercoralis, were distinct from the coelomate ones. Further, the only TLR gene (Tol-1) in Ca. elegans did not appear to play a role in innate immunity. We argue that TLR-mediated innate immunity developed only in the coelomates, after they split from pseudocoelomates and acoelomates. We hypothesize that the function of TLR-mediated immunity is to prevent microbial infection in the body cavity present only in the coelomates. Phylogenetic analysis showed that almost all arthropod TLRs form a separate cluster from the mammalian counterparts. We further hypothesize that TLR-mediated immunity developed independently in the protostomia and deuterostomia coelomates.

  9. Toll-like receptor-2, but not Toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infection.

    PubMed

    Darville, Toni; O'Neill, Joshua M; Andrews, Charles W; Nagarajan, Uma M; Stahl, Lynn; Ojcius, David M

    2003-12-01

    The roles of Toll-like receptor (TLR) 2 and TLR4 in the host inflammatory response to infection caused by Chlamydia trachomatis have not been elucidated. We examined production of TNF-alpha and IL-6 in wild-type TLR2 knockout (KO), and TLR4 KO murine peritoneal macrophages infected with the mouse pneumonitis strain of C. trachomatis. Furthermore, we compared the outcomes of genital tract infection in control, TLR2 KO, and TLR4 KO mice. Macrophages lacking TLR2 produced significantly less TNF-alpha and IL6 in response to active infection. In contrast, macrophages from TLR4 KO mice consistently produced higher TNF-alpha and IL-6 responses than those from normal mice on in vitro infection. Infected TLR2-deficient fibroblasts had less mRNA for IL-1, IL-6, and macrophage-inflammatory protein-2, but TLR4-deficient cells had increased mRNA levels for these cytokines compared with controls, suggesting that ligation of TLR4 by whole chlamydiae may down-modulate signaling by other TLRs. In TLR2 KO mice, although the course of genital tract infection was not different from that of controls, significantly lower levels of TNF-alpha and macrophage-inflammatory protein-2 were detected in genital tract secretions during the first week of infection, and there was a significant reduction in oviduct and mesosalpinx pathology at late time points. TLR4 KO mice responded to in vivo infection similarly to wild-type controls and developed similar pathology. TLR2 is an important mediator in the innate immune response to C. trachomatis infection and appears to play a role in both early production of inflammatory mediators and development of chronic inflammatory pathology.

  10. Orphan receptor IL-17RD regulates Toll-like receptor signalling via SEFIR/TIR interactions.

    PubMed

    Mellett, Mark; Atzei, Paola; Bergin, Ronan; Horgan, Alan; Floss, Thomas; Wurst, Wolfgang; Callanan, John J; Moynagh, Paul N

    2015-03-26

    Receptor families of the innate immune response engage in 'cross-talk' to tailor optimal immune responses against invading pathogens. However, these responses are subject to multiple levels of regulation to keep in check aberrant inflammatory signals. Here, we describe a role for the orphan receptor interleukin-17 receptor D (IL-17RD) in negatively regulating Toll-like receptor (TLR)-induced responses. Deficiency of IL-17RD expression in cells leads to enhanced pro-inflammatory signalling and gene expression in response to TLR stimulation, and Il17rd(-/-) mice are more susceptible to TLR-induced septic shock. We demonstrate that the intracellular Sef/IL-17R (SEFIR) domain of IL-17RD targets TIR adaptor proteins to inhibit TLR downstream signalling thus revealing a paradigm involving cross-regulation of members of the IL-17R and TLR families.

  11. The innate immune system, toll-like receptors and dermal wound healing: A review.

    PubMed

    Portou, M J; Baker, D; Abraham, D; Tsui, J

    2015-08-01

    Wound healing is a complex physiological process comprised of discrete but inter-related and overlapping stages, requiring exact timing and regulation to successfully progress, yet occurs spontaneously in response to injury. It is characterised by four phases, coagulation, inflammation, proliferation and remodelling. Each phase is predominated by particular cell types, cytokines and chemokines. The innate immune system represents the first line of defence against invading microorganisms. It is entirely encoded with the genome, and comprised of a cellular response with specificity provided by pattern recognition receptors (PRRs) such as toll-like receptors (TLRs). TLRs are activated by exogenous microbial pathogen associated molecular patterns (PAMPs), initiating an immune response through the production of pro-inflammatory cytokines and further specialist immune cell recruitment. TLRs are also activated by endogenous molecular patterns termed damage associated molecular patterns (DAMPs). These ligands, usually shielded from the immune system, act as alarm signals alerting the immune system to damage and facilitate the normal wound healing process. TLRs are expressed by cells essential to wound healing such as keratinocytes and fibroblasts, however the specific role of TLRs in this process remains controversial. This article reviews the current knowledge on the potential role of TLRs in dermal wound healing where inflammation arising from pathogenic activation of these receptors appears to play a role in chronic ulceration associated with diabetes, scar hypertrophy and skin fibrosis. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  12. A role for the adaptor proteins TRAM and TRIF in toll-like receptor 2 signaling.

    PubMed

    Nilsen, Nadra J; Vladimer, Gregory I; Stenvik, Jørgen; Orning, M Pontus A; Zeid-Kilani, Maria V; Bugge, Marit; Bergstroem, Bjarte; Conlon, Joseph; Husebye, Harald; Hise, Amy G; Fitzgerald, Katherine A; Espevik, Terje; Lien, Egil

    2015-02-06

    Toll-like receptors (TLRs) are involved in sensing invading microbes by host innate immunity. TLR2 recognizes bacterial lipoproteins/lipopeptides, and lipopolysaccharide activates TLR4. TLR2 and TLR4 signal via the Toll/interleukin-1 receptor adaptors MyD88 and MAL, leading to NF-κB activation. TLR4 also utilizes the adaptors TRAM and TRIF, resulting in activation of interferon regulatory factor (IRF) 3. Here, we report a new role for TRAM and TRIF in TLR2 regulation and signaling. Interestingly, we observed that TLR2-mediated induction of the chemokine Ccl5 was impaired in TRAM or TRIF deficient macrophages. Inhibition of endocytosis reduced Ccl5 release, and the data also suggested that TRAM and TLR2 co-localize in early endosomes, supporting the hypothesis that signaling may occur from an intracellular compartment. Ccl5 release following lipoprotein challenge additionally involved the kinase Tbk-1 and Irf3, as well as MyD88 and Irf1. Induction of Interferon-β and Ccl4 by lipoproteins was also partially impaired in cells lacking TRIF cells. Our results show a novel function of TRAM and TRIF in TLR2-mediated signal transduction, and the findings broaden our understanding of how Toll/interleukin-1 receptor adaptor proteins may participate in signaling downstream from TLR2.

  13. [Structural Analyses of Toll-like Receptor Sensing Single-stranded Nucleic Acids and Its Application].

    PubMed

    Shimizu, Toshiyuki

    2016-01-01

    Toll-like receptors (TLRs) are a family of pattern-recognition receptors that recognize microbial components and initiate subsequent immune responses. TLR7 and TLR8 recognize single-stranded (ss)RNA and initiate innate immune responses. Moreover, several small-molecule compounds have been identified as TLR7 and TLR8 activators. We determined the crystal structures of unliganded and ligand-induced activated human TLR8 dimers. Upon ligand stimulation, the TLR8 dimer was reorganized such that the two C-termini were brought into proximity. Ligand binding induces reorganization of the TLR8 dimer, which enables downstream signaling processes. To elucidate how TLR8 recognizes its natural ligand, ssRNA, as well as how the receptor can be activated by ssRNA that is structurally and chemically very different from the chemical ligands, we performed crystallographic studies of TLR8 in complex with ssRNA. TLR8 recognizes, at distinct sites, uridine and small oligonucleotides derived from the degradation of ssRNA. Uridine bound the site on the dimerization interface where small chemical ligands are recognized, whereas short oligonucleotides bound a newly identified site. Based on structural information, new compounds have been developed. We describe the crystal structure of a newly developed agonist, C2-butyl furo[2,3-c]quinolone.

  14. Selective TRIF-Dependent Signaling by a Synthetic Toll-Like Receptor 4 Agonist

    PubMed Central

    Bowen, William S.; Minns, Laurie A.; Johnson, David A.; Mitchell, Thomas C.; Hutton, Melinda M.; Evans, Jay T.

    2013-01-01

    In response to ligand binding to the Toll-like receptor 4 (TLR4) and myeloid differentiation-2 (MD-2) receptor complex, two major signaling pathways are activated that involve different adaptor proteins. One pathway depends on myeloid differentiation marker 88 (MyD88), which elicits proinflammatory responses, whereas the other depends on Toll–IL-1 receptor (TIR) domain–containing adaptor inducing interferon-β (TRIF), which elicits type I interferon production. Here, we showed that the TLR4 agonist and vaccine adjuvant CRX-547, a member of the aminoalkyl glucosaminide 4-phosphate (AGP) class of synthetic lipid A mimetics, displayed TRIF-selective signaling in human cells, which was dependent on a minor structural modification to the carboxyl bioisostere corresponding to the 1-phosphate group on most lipid A types. CRX-547 stimulated little or no activation of MyD88-dependent signaling molecules or cytokines, whereas its ability to activate the TRIF-dependent pathway was similar to that of a structurally related inflammatory AGP and of lipopolysaccharide from Salmonella minnesota. This TRIF-selective signaling response resulted in the production of substantially less of the proinflammatory mediators that are associated with MyD88 signaling, thereby potentially reducing toxicity and improving the therapeutic index of this synthetic TLR4 agonist and vaccine adjuvant. PMID:22337809

  15. Divergent functions of Toll-like receptors during bacterial lung infections.

    PubMed

    Baral, Pankaj; Batra, Sanjay; Zemans, Rachel L; Downey, Gregory P; Jeyaseelan, Samithamby

    2014-10-01

    Lower respiratory tract infections caused by bacteria are a major cause of death in humans irrespective of sex, race, or geography. Indeed, accumulated data indicate greater mortality and morbidity due to these infections than cancer, malaria, or HIV infection. Successful recognition of, followed by an appropriate response to, bacterial pathogens in the lungs is crucial for effective pulmonary host defense. Although the early recruitment and activation of neutrophils in the lungs is key in the response against invading microbial pathogens, other sentinels, such as alveolar macrophages, epithelial cells, dendritic cells, and CD4(+) T cells, also contribute to the elimination of the bacterial burden. Pattern recognition receptors, such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptors, are important for recognizing and responding to microbes during pulmonary infections. However, bacterial pathogens have acquired crafty evasive strategies to circumvent the pattern recognition receptor response and thus establish infection. Increased understanding of the function of TLRs and evasive mechanisms used by pathogens during pulmonary infection will deepen our knowledge of immunopathogenesis and is crucial for developing effective therapeutic and/or prophylactic measures. This review summarizes current knowledge of the multiple roles of TLRs in bacterial lung infections and highlights the mechanisms used by pathogens to modulate or interfere with TLR signaling in the lungs.

  16. Microbe-inducible trafficking pathways that control Toll-like receptor signaling.

    PubMed

    Tan, Yunhao; Kagan, Jonathan C

    2017-01-01

    The receptors of the mammalian innate immune system are designed for rapid microbial detection, and are located in organelles that are conducive to serve these needs. However, emerging evidence indicates that the sites of microbial detection are not the sites of innate immune signal transduction. Rather, microbial detection triggers the movement of receptors to regions of the cell where factors called sorting adaptors detect active receptors and promote downstream inflammatory responses. These findings highlight the critical role that membrane trafficking pathways play in the initiation of innate immunity to infection. In this review, we describe pathways that promote the microbe-inducible endocytosis of Toll-like receptors (TLRs), and the microbe-inducible movement of TLRs between intracellular compartments. We highlight a new class of proteins called Transporters Associated with the eXecution of Inflammation (TAXI), which have the unique ability to transport TLRs and their microbial ligands to signaling-competent regions of the cell, and we discuss the means by which the subcellular sites of signal transduction are defined. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Divergent Functions of Toll-like Receptors during Bacterial Lung Infections

    PubMed Central

    Baral, Pankaj; Batra, Sanjay; Zemans, Rachel L.; Downey, Gregory P.

    2014-01-01

    Lower respiratory tract infections caused by bacteria are a major cause of death in humans irrespective of sex, race, or geography. Indeed, accumulated data indicate greater mortality and morbidity due to these infections than cancer, malaria, or HIV infection. Successful recognition of, followed by an appropriate response to, bacterial pathogens in the lungs is crucial for effective pulmonary host defense. Although the early recruitment and activation of neutrophils in the lungs is key in the response against invading microbial pathogens, other sentinels, such as alveolar macrophages, epithelial cells, dendritic cells, and CD4+ T cells, also contribute to the elimination of the bacterial burden. Pattern recognition receptors, such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain–like receptors, are important for recognizing and responding to microbes during pulmonary infections. However, bacterial pathogens have acquired crafty evasive strategies to circumvent the pattern recognition receptor response and thus establish infection. Increased understanding of the function of TLRs and evasive mechanisms used by pathogens during pulmonary infection will deepen our knowledge of immunopathogenesis and is crucial for developing effective therapeutic and/or prophylactic measures. This review summarizes current knowledge of the multiple roles of TLRs in bacterial lung infections and highlights the mechanisms used by pathogens to modulate or interfere with TLR signaling in the lungs. PMID:25033332

  18. Structure–activity correlations of variant forms of the B pentamer of Escherichia coli type II heat-labile enterotoxin LT-IIb with Toll-like receptor 2 binding

    SciTech Connect

    Cody, Vivian; Pace, Jim; Nawar, Hesham F.; King-Lyons, Natalie; Liang, Shuang; Connell, Terry D.; Hajishengallis, George

    2012-12-01

    Structural data for the S74D variant of the pentameric B subunit of type II heat-labile enterotoxin of Escherichia coli reveal a smaller pore opening that may explain its reduced Toll-like receptor binding affinity compared to that of the wild type enterotoxin. The explanation for the enhanced Toll-like receptor binding affinity of the S74A variant is more complex than simply being attributed to the pore opening. The pentameric B subunit of the type II heat-labile enterotoxin of Escherichia coli (LT-IIb-B{sub 5}) is a potent signaling molecule capable of modulating innate immune responses. It has previously been shown that LT-IIb-B{sub 5}, but not the LT-IIb-B{sub 5} Ser74Asp variant [LT-IIb-B{sub 5}(S74D)], activates Toll-like receptor (TLR2) signaling in macrophages. Consistent with this, the LT-IIb-B{sub 5}(S74D) variant failed to bind TLR2, in contrast to LT-IIb-B{sub 5} and the LT-IIb-B{sub 5} Thr13Ile [LT-IIb-B{sub 5}(T13I)] and LT-IIb-B{sub 5} Ser74Ala [LT-IIb-B{sub 5}(S74A)] variants, which displayed the highest binding activity to TLR2. Crystal structures of the Ser74Asp, Ser74Ala and Thr13Ile variants of LT-IIb-B{sub 5} have been determined to 1.90, 1.40 and 1.90 Å resolution, respectively. The structural data for the Ser74Asp variant reveal that the carboxylate side chain points into the pore, thereby reducing the pore size compared with that of the wild-type or the Ser74Ala variant B pentamer. On the basis of these crystallographic data, the reduced TLR2-binding affinity of the LT-IIb-B{sub 5}(S74D) variant may be the result of the pore of the pentamer being closed. On the other hand, the explanation for the enhanced TLR2-binding activity of the LT-IIb-B{sub 5}(S74A) variant is more complex as its activity is greater than that of the wild-type B pentamer, which also has an open pore as the Ser74 side chain points away from the pore opening. Data for the LT-IIb-B{sub 5}(T13I) variant show that four of the five variant side chains point to the outside

  19. IκB kinase-induced interaction of TPL-2 kinase with 14-3-3 is essential for Toll-like receptor activation of ERK-1 and -2 MAP kinases

    PubMed Central

    Ben-Addi, Abduelhakem; Mambole-Dema, Agnes; Brender, Christine; Martin, Stephen R.; Janzen, Julia; Kjaer, Sven; Smerdon, Stephen J.; Ley, Steven C.

    2014-01-01

    The MEK-1/2 kinase TPL-2 is critical for Toll-like receptor activation of the ERK-1/2 MAP kinase pathway during inflammatory responses, but it can transform cells following C-terminal truncation. IκB kinase (IKK) complex phosphorylation of the TPL-2 C terminus regulates full-length TPL-2 activation of ERK-1/2 by a mechanism that has remained obscure. Here, we show that TPL-2 Ser-400 phosphorylation by IKK and TPL-2 Ser-443 autophosphorylation cooperated to trigger TPL-2 association with 14-3-3. Recruitment of 14-3-3 to the phosphorylated C terminus stimulated TPL-2 MEK-1 kinase activity, which was essential for TPL-2 activation of ERK-1/2. The binding of 14-3-3 to TPL-2 was also indispensible for lipopolysaccharide-induced production of tumor necrosis factor by macrophages, which is regulated by TPL-2 independently of ERK-1/2 activation. Our data identify a key step in the activation of TPL-2 signaling and provide a mechanistic insight into how C-terminal deletion triggers the oncogenic potential of TPL-2 by rendering its kinase activity independent of 14-3-3 binding. PMID:24912162

  20. Toll-like receptor 4 deficiency causes pulmonary emphysema.

    PubMed

    Zhang, Xuchen; Shan, Peiying; Jiang, Ge; Cohn, Lauren; Lee, Patty J

    2006-11-01

    TLRs have been studied extensively in the context of pathogen challenges, yet their role in the unchallenged lung is unknown. Given their direct interface with the external environment, TLRs in the lungs are prime candidates to respond to air constituents, namely particulates and oxygen. The mechanism whereby the lung maintains structural integrity in the face of constant ambient exposures is essential to our understanding of lung disease. Emphysema is characterized by gradual loss of lung elasticity and irreversible airspace enlargement, usually in the later decades of life and after years of insult, most commonly cigarette smoke. Here we show Tlr4(-/-) mice exhibited emphysema as they aged. Adoptive transfer experiments revealed that TLR4 expression in lung structural cells was required for maintaining normal lung architecture. TLR4 deficiency led to the upregulation of what we believe to be a novel NADPH oxidase (Nox), Nox3, in lungs and endothelial cells, resulting in increased oxidant generation and elastolytic activity. Treatment of Tlr4(-/- )mice or endothelial cells with chemical NADPH inhibitors or Nox3 siRNA reversed the observed phenotype. Our data identify a role for TLR4 in maintaining constitutive lung integrity by modulating oxidant generation and provide insights into the development of emphysema.

  1. Intrinsic Toll-like receptor signalling drives regulatory function in B cells.

    PubMed

    Shen, Ping; Lampropoulou, Vicky; Stervbo, Ulrik; Hilgenberg, Ellen; Ries, Stefanie; Mecqinion, Aurelie; Fillatreau, Simon

    2013-01-01

    B cells can contribute to immunity through production of antibodies, presentation of antigen to T cells, and secretion of cytokines. B cell activation can result in various outcomes for the host. In general B cell responses are beneficial during infections, and deleterious during autoimmune diseases. However, B cells can also limit host defence against pathogens, and protect from autoimmune pathologies. B cells can therefore act both as drivers and as regulators of immunity. Understanding how these opposite functions are mediated shall stimulate the elaboration of novel approaches for manipulating the immune system. B cells might acquire distinct functional properties depending on their mode of activation. Antigen-specific B cell responses require triggering of B cell receptor (BCR) by antigen, and provision of helper signals by T cells. B cells also express various innate immune receptors, and can directly respond to microbial products. Here, we discuss how intrinsic signalling via Toll-like receptors contributes to the suppressive functions of B cells during autoimmune and infectious diseases.

  2. Lysosomal trafficking regulator Lyst links membrane trafficking to toll-like receptor-mediated inflammatory responses.

    PubMed

    Westphal, Andreas; Cheng, Weijia; Yu, Jinbo; Grassl, Guntram; Krautkrämer, Martina; Holst, Otto; Föger, Niko; Lee, Kyeong-Hee

    2017-01-01

    Subcellular compartmentalization of receptor signaling is an emerging principle in innate immunity. However, the functional integration of receptor signaling pathways into membrane trafficking routes and its physiological relevance for immune responses is still largely unclear. In this study, using Lyst-mutant beige mice, we show that lysosomal trafficking regulator Lyst links endolysosomal organization to the selective control of toll-like receptor 3 (TLR3)- and TLR4-mediated proinflammatory responses. Consequently, Lyst-mutant mice showed increased susceptibility to bacterial infection and were largely resistant to endotoxin-induced septic shock. Mechanistic analysis revealed that Lyst specifically controls TLR3- and TLR4-induced endosomal TRIF (TIR domain-containing adapter-inducing interferon β) signaling pathways. Loss of functional Lyst leads to dysregulated phagosomal maturation, resulting in a failure to form an activation-induced Rab7(+) endosomal/phagosomal compartment. This specific Rab7(+) compartment was further demonstrated to serve as a major site for active TRIF signaling events, thus linking phagosomal maturation to specific TLR signaling pathways. The immunoregulatory role of Lyst on TLR signaling pathways was confirmed in human cells by CRISPR/Cas9-mediated gene inactivation. As mutations in LYST cause human Chédiak-Higashi syndrome, a severe immunodeficiency, our findings also contribute to a better understanding of human disease mechanisms. © 2016 Westphal et al.

  3. Toll-like Receptor 4 (TLR4) modulation by synthetic and natural compounds: an update

    PubMed Central

    Peri, Francesco; Calabrese, Valentina

    2014-01-01

    Toll-like receptor 4 (TLR4), together with MD-2, binds bacterial endotoxins (E) with high affinity, triggering formation of the activated homodimer (E-MD-2-TLR4)2. Activated TLR4 induces intracellular signaling leading to activation of transcription factors that result in cytokine and chemokine production and initiation of inflammatory and immune responses. TLR4 also responds to endogenous ligands called danger associated molecular patterns (DAMPs). Increased sensitivity to infection and a variety of immune pathologies have been associated with either too little or too much TLR4 activation. We review here the molecular mechanisms of TLR4 activation (agonism) or inhibition (antagonism) by small organic molecules of both natural and synthetic origin. The role of co-receptors MD-2 and CD14 in the TLR4 modulation process is also discussed. Recent achievements in the field of chemical TLR4 modulation are reviewed, with special focus on non-classical TLR4 ligands with a chemical structure different from lipid A. PMID:24188011

  4. Toll-Like Receptor 2 Ligation Enhances HIV-1 Replication in Activated CCR6+ CD4+ T Cells by Increasing Virus Entry and Establishing a More Permissive Environment to Infection

    PubMed Central

    Bolduc, Jean-François; Ouellet, Michel; Hany, Laurent

    2016-01-01

    ABSTRACT In this study, we investigated the effect of Toll-like receptor 2 (TLR2) ligation on the permissiveness of activated CD4+ T cells to HIV-1 infection by focusing our experiments on the relative susceptibility of cell subsets based on their expression of CCR6. Purified primary human CD4+ T cells were first subjected to a CD3/CD28 costimulation before treatment with the TLR2 agonist Pam3CSK4. Finally, cells were inoculated with R5-tropic HIV-1 particles that permit us to study the effect of TLR2 triggering on virus production at both population and single-cell levels. We report here that HIV-1 replication is augmented in CD3/CD28-costimulated CCR6+ CD4+ T cells upon engagement of the cell surface TLR2. Additional studies indicate that a higher virus entry and polymerization of the cortical actin are seen in this cell subset following TLR2 stimulation. A TLR2-mediated increase in the level of phosphorylated NF-κB p65 subunit was also detected in CD3/CD28-costimulated CCR6+ CD4+ T cells. We propose that, upon antigenic presentation, an engagement of TLR2 acts specifically on CCR6+ CD4+ T cells by promoting virus entry in an intracellular milieu more favorable for productive HIV-1 infection. IMPORTANCE Following primary infection, HIV-1 induces an immunological and structural disruption of the gut mucosa, leading to bacterial translocation and release of microbial components in the bloodstream. These pathogen-derived constituents include several agonists of Toll-like receptors that may affect gut-homing CD4+ T cells, such as those expressing the chemokine receptor CCR6, which are highly permissive to HIV-1 infection. We demonstrate that TLR2 ligation in CD3/CD28-costimulated CCR6+ CD4+ T cells leads to enhanced virus production. Our results highlight the potential impact of bacterial translocation on the overall permissiveness of CCR6+ CD4+ T cells to productive HIV-1 infection. PMID:27928019

  5. Toll-Like Receptor 2 Ligation Enhances HIV-1 Replication in Activated CCR6+ CD4+ T Cells by Increasing Virus Entry and Establishing a More Permissive Environment to Infection.

    PubMed

    Bolduc, Jean-François; Ouellet, Michel; Hany, Laurent; Tremblay, Michel J

    2017-02-15

    In this study, we investigated the effect of Toll-like receptor 2 (TLR2) ligation on the permissiveness of activated CD4(+) T cells to HIV-1 infection by focusing our experiments on the relative susceptibility of cell subsets based on their expression of CCR6. Purified primary human CD4(+) T cells were first subjected to a CD3/CD28 costimulation before treatment with the TLR2 agonist Pam3CSK4. Finally, cells were inoculated with R5-tropic HIV-1 particles that permit us to study the effect of TLR2 triggering on virus production at both population and single-cell levels. We report here that HIV-1 replication is augmented in CD3/CD28-costimulated CCR6(+) CD4(+) T cells upon engagement of the cell surface TLR2. Additional studies indicate that a higher virus entry and polymerization of the cortical actin are seen in this cell subset following TLR2 stimulation. A TLR2-mediated increase in the level of phosphorylated NF-κB p65 subunit was also detected in CD3/CD28-costimulated CCR6(+) CD4(+) T cells. We propose that, upon antigenic presentation, an engagement of TLR2 acts specifically on CCR6(+) CD4(+) T cells by promoting virus entry in an intracellular milieu more favorable for productive HIV-1 infection. Following primary infection, HIV-1 induces an immunological and structural disruption of the gut mucosa, leading to bacterial translocation and release of microbial components in the bloodstream. These pathogen-derived constituents include several agonists of Toll-like receptors that may affect gut-homing CD4(+) T cells, such as those expressing the chemokine receptor CCR6, which are highly permissive to HIV-1 infection. We demonstrate that TLR2 ligation in CD3/CD28-costimulated CCR6(+) CD4(+) T cells leads to enhanced virus production. Our results highlight the potential impact of bacterial translocation on the overall permissiveness of CCR6(+) CD4(+) T cells to productive HIV-1 infection. Copyright © 2017 American Society for Microbiology.

  6. Toll-Like Receptor Expression in the Blood and Brain of Patients and a Mouse Model of Parkinson’s Disease

    PubMed Central

    St-Amour, Isabelle; Saint-Pierre, Martine; Lamontagne-Proulx, Jérôme; Kriz, Jasna; Barker, Roger A.

    2015-01-01

    Background: Accumulating evidence supports a role for the immune system in the pathogenesis of Parkinson’s disease. Importantly, recent preclinical studies are now suggesting a specific contribution of inflammation to the α-synuclein-induced pathology seen in this condition. Methods: We used flow cytometry and western blots to detect toll-like receptor 2 and 4 expression in blood and brain samples of Parkinson’s disease patients and mice overexpressing human α-synuclein. To further assess the effects of α-synuclein overexpression on the innate immune system, we performed a longitudinal study using Thy1.2-α-synuclein mice that expressed a bicistronic DNA construct (reporter genes luciferase and green fluorescent protein) under the transcriptional control of the murine toll-like receptor 2 promoter. Results: Here, we report increases in toll-like receptors 2 and 4 expression in circulating monocytes and of toll-like receptor 4 in B cells and in the caudate/putamen of Parkinson’s disease patients. Monthly bioluminescence imaging of Thy1.2-α-synuclein mice showed increasing toll-like receptor 2 expression from 10 months of age, although no change in toll-like receptor 2 and 4 expression was observed in the blood and brain of these mice at 12 months of age. Dexamethasone treatment starting at 5 months of age for 1 month significantly decreased the microglial response in the brain of these mice and promoted functional recovery as observed using a wheel-running activity test. Conclusion: Our results show that toll-like receptors 2 and 4 are modulated in the blood and brain of Parkinson’s disease patients and that overexpression of α-synuclein leads to a progressive microglial response, the inhibition of which has a beneficial impact on some motor phenotypes of an animal model of α-synucleinopathy. PMID:25522431

  7. Structural Relationship of the Lipid A Acyl Groups to Activation of Murine Toll-Like Receptor 4 by Lipopolysaccharides from Pathogenic Strains of Burkholderia mallei, Acinetobacter baumannii, and Pseudomonas aeruginosa

    PubMed Central

    Korneev, Kirill V.; Arbatsky, Nikolay P.; Molinaro, Antonio; Palmigiano, Angelo; Shaikhutdinova, Rima Z.; Shneider, Mikhail M.; Pier, Gerald B.; Kondakova, Anna N.; Sviriaeva, Ekaterina N.; Sturiale, Luisa; Garozzo, Domenico; Kruglov, Andrey A.; Nedospasov, Sergei A.; Drutskaya, Marina S.; Knirel, Yuriy A.; Kuprash, Dmitry V.

    2015-01-01

    Toll-like receptor 4 (TLR4) is required for activation of innate immunity upon recognition of lipopolysaccharide (LPS) of Gram-negative bacteria. The ability of TLR4 to respond to a particular LPS species is important since insufficient activation may not prevent bacterial growth while excessive immune reaction may lead to immunopathology associated with sepsis. Here, we investigated the biological activity of LPS from Burkholderia mallei that causes glanders, and from the two well-known opportunistic pathogens Acinetobacter baumannii and Pseudomonas aeruginosa (causative agents of nosocomial infections). For each bacterial strain, R-form LPS preparations were purified by hydrophobic chromatography and the chemical structure of lipid A, an LPS structural component, was elucidated by HR-MALDI-TOF mass spectrometry. The biological activity of LPS samples was evaluated by their ability to induce production of proinflammatory cytokines, such as IL-6 and TNF, by bone marrow-derived macrophages. Our results demonstrate direct correlation between the biological activity of LPS from these pathogenic bacteria and the extent of their lipid A acylation. PMID:26635809

  8. Contribution of toll-like receptor signaling pathways to breast tumorigenesis and treatment

    PubMed Central

    Kidd, La Creis R; Rogers, Erica N; Yeyeodu, Susan T; Jones, Dominique Z; Kimbro, K Sean

    2013-01-01

    Mounting evidence indicates that anomalies in the inflammatory and immune response pathways are essential to tumorigenesis. However, tumor-based innate immunity initiated by transformed breast epithelia tissues has received much less attention. This review summarizes published reports on the role of the toll-like receptor signaling pathway on breast cancer risk, disease progression, survival, and disease recurrence. Specifically, we discuss the underlying biological mechanisms that contribute to the tumorigenic and/or anti-tumorigenic properties of toll-like receptors and their associated agonists in relation to breast tumorigenesis and cancer treatment. Further, we use results from preclinical, clinical, and population-based studies as prompts for the exploration of new and more effective breast cancer therapies. As the knowledge base of innate immunity’s involvement in breast cancer progression increases, current and new immune-modifying strategies will be refined to effectively treat breast cancer. PMID:24648757

  9. Cleavage of Toll-like receptor 3 by cathepsins B and H is essential for signaling.

    PubMed

    Garcia-Cattaneo, Alejandra; Gobert, François-Xavier; Müller, Mélanie; Toscano, Florent; Flores, Marcella; Lescure, Aurianne; Del Nery, Elaine; Benaroch, Philippe

    2012-06-05

    Toll-like receptor (TLR) 3 is an endosomal TLR that mediates immune responses against viral infections upon activation by its ligand double-stranded RNA, a replication intermediate of most viruses. TLR3 is expressed widely in the body and activates both the innate and adaptive immune systems. However, little is known about how TLR3 intracellular trafficking and maturation are regulated. Here we show that newly synthesized endogenous TLR3 is transported through the ER and Golgi apparatus to endosomes, where it is rapidly cleaved. TLR3 protein expression is up-regulated by its own ligand, leading to the accumulation of its cleaved form. In agreement with its proposed role as a transporter, UNC93B1 expression is required for TLR3 cleavage and signaling. Furthermore, TLR3 signaling and cleavage are sensitive to cathepsin inhibition. Cleavage occurs between aa 252 and 346, and results in a functional receptor that signals upon activation. A truncated form of TLR3 lacking the N-terminal 345 aa also signals from acidic compartments in response to ligand activation. Screening of the human cathepsin family by RNA interference identified cathepsins B and H as key mediators of TLR3 processing. Taken together, our data indicate that TLR3 proteolytic processing is essential for its function, and suggest a mechanism of tight control of TLR3 signaling and thus immunity.

  10. Toll-like receptors in hepatocellular carcinoma: potential novel targets for pharmacological intervention.

    PubMed

    Zou, Hai; Wang, Wu-Ke; Liu, Yan-Long; Braddock, Martin; Zheng, Ming-Hua; Huang, Dong-Sheng

    2016-09-01

    Toll-like receptors (TLRs) are expressed by a wide variety of cell types including immune cells. They play a crucial role in the inflammatory and host defense response against microorganisms, and triggering TLRs can mediate the activation of innate immunity. Furthermore, research suggests that various TLRs may function differently on different tumor cells. The change in TLR activity may elicit an anti-tumor activity in hepatocellular carcinoma (HCC) cells and may serve as a novel therapeutic target for HCC therapy. This review discusses the role of the TLR family in HCC and the underlying signaling pathway of TLRs as a form of pattern recognition receptor in mediating inflammation and HCC immunity responses. Agonists and antagonists of TLRs, which render TLRs as potential therapeutic targets, activate downstream molecules, subsequently causing HCC cell survival. The proliferation or protection against the development of HCC is also described. A series of studies have highlighted a crucial role of TLRs in HCC and consider TLR signaling pathways as potential therapeutic targets for HCC. However, the conclusions of these studies are in part paradoxical and controversial. Thus, it is necessary to extend further research to help determine the signaling pathways involved.

  11. Evolution of toll-like receptors in the context of terrestrial ungulates and cetaceans diversification.

    PubMed

    Ishengoma, Edson; Agaba, Morris

    2017-02-16

    Toll-like receptors (TLRs) are the frontline actors in the innate immune response to various pathogens and are expected to be targets of natural selection in species adapted to habitats with contrasting pathogen burdens. The recent publication of genome sequences of giraffe and okapi together afforded the opportunity to examine the evolution of selected TLRs in broad range of terrestrial ungulates and cetaceans during their complex habitat diversification. Through direct sequence comparisons and standard evolutionary approaches, the extent of nucleotide and protein sequence diversity in seven Toll-like receptors (TLR2, TLR3, TLR4, TLR5, TLR7, TLR9 and TLR10) between giraffe and closely related species was determined. In addition, comparison of the patterning of key TLR motifs and domains between giraffe and related species was performed. The quantification of selection pressure and divergence on TLRs among terrestrial ungulates and cetaceans was also performed. Sequence analysis shows that giraffe has 94-99% nucleotide identity with okapi and cattle for all TLRs analyzed. Variations in the number of Leucine-rich repeats were observed in some of TLRs between giraffe, okapi and cattle. Patterning of key TLR domains did not reveal any significant differences in the domain architecture among giraffe, okapi and cattle. Molecular evolutionary analysis for selection pressure identifies positive selection on key sites for all TLRs examined suggesting that pervasive evolutionary pressure has taken place during the evolution of terrestrial ungulates and cetaceans. Analysis of positively selected sites showed some site to be part of Leucine-rich motifs suggesting functional relevance in species-specific recognition of pathogen associated molecular patterns. Notably, clade analysis reveals significant selection divergence between terrestrial ungulates and cetaceans in viral sensing TLR3. Mapping of giraffe TLR3 key substitutions to the structure of the receptor indicates that

  12. Conservation and Divergence of Ligand Recognition and Signal Transduction Mechanisms in Toll-Like Receptors.

    PubMed

    Ohto, Umeharu

    2017-01-01

    Toll-like receptors (TLRs) play a central role in innate immunity as pathogen sensors. During the last decade, structural analyses of TLRs have revealed the mechanisms of ligand recognition and signal transduction. Each TLR recognizes its cognate ligand in a different manner, whereas signal transduction is achieved by a common mechanism. In this review, the mechanisms of ligand recognition and signal transduction by TLRs are summarized based on recent structural information.

  13. Bioconjugation of Small Molecules to RNA Impedes Its Recognition by Toll-Like Receptor 7

    PubMed Central

    Hellmuth, Isabell; Freund, Isabel; Schlöder, Janine; Seidu-Larry, Salifu; Thüring, Kathrin; Slama, Kaouthar; Langhanki, Jens; Kaloyanova, Stefka; Eigenbrod, Tatjana; Krumb, Matthias; Röhm, Sandra; Peneva, Kalina; Opatz, Till; Jonuleit, Helmut; Dalpke, Alexander H.; Helm, Mark

    2017-01-01

    A fundamental mechanism of the innate immune system is the recognition, via extra- and intracellular pattern-recognition receptors, of pathogen-associated molecular patterns. A prominent example is represented by foreign nucleic acids, triggering the activation of several signaling pathways. Among these, the endosomal toll-like receptor 7 (TLR7) is known to be activated by single-stranded RNA (ssRNA), which can be specifically influenced through elements of sequence structure and posttranscriptional modifications. Furthermore, small molecules TLR7 agonists (smTLRa) are applied as boosting adjuvants in vaccination processes. In this context, covalent conjugations between adjuvant and vaccines have been reported to exhibit synergistic effects. Here, we describe a concept to chemically combine three therapeutic functions in one RNA bioconjugate. This consists in the simultaneous TLR7 stimulation by ssRNA and smTLRa as well as the therapeutic function of the RNA itself, e.g., as a vaccinating or knockdown agent. We have hence synthesized bioconjugates of mRNA and siRNA containing covalently attached smTLRa and tested their function in TLR7 stimulation. Strikingly, the bioconjugates displayed decreased rather than synergistically increased stimulation. The decrease was distinct from the antagonistic action of an siRNA bearing a Gm motive, as observed by direct comparison of the effects in the presence of otherwise stimulatory RNA. In summary, these investigations showed that TRL7 activation can be impeded by bioconjugation of small molecules to RNA. PMID:28392787

  14. Toll-Like Receptors 2 and 4 Modulate Autonomic Control of Heart Rate and Energy Metabolism

    PubMed Central

    Okun, Eitan; Griffioen, Kathleen J.; Sarah, Rothman; Wan, Ruiqian; Cong, Wei-Na; De Cabo, Rafael; Montalvo, Alejandro Martin; Levette, Andrew; Maudsley, Stuart; Martin, Bronwen; Arumugam, Thiruma Valavan; Mattson, Mark P.

    2013-01-01

    Toll-like receptors (TLR) are innate immune receptors typically activated by microbial-associated molecular patterns (MAMPs) during infection or damage-associated molecular patterns (DAMPs) as a result of tissue injury. Recent findings suggest that TLR2 and TLR4 signaling play important roles in developmental and adult neuroplasticity, and in learning and memory. In addition, activation of TLR2 and TLR4 worsens ischemic injury to the heart and brain in animal models of myocardial infarction and stroke. TLR activation is also implicated in thermoregulation and fever in response to infection. However, it is not known whether TLRs participate in the regulation of the sympathetic and/or parasympathetic components of the autonomic nervous system (ANS). Here we provide evidence that TLR2 and TLR4 influence autonomic regulation of heart rate (HR) body temperature and energy metabolism in mice. We show that mice lacking TLR2 or TLR4 exhibit reduced basal HR, which results from an increase of parasympathetic tone. In addition, thermoregulatory responses to stress are altered in TLR2−/− and TLR4−/− mice, and brown fat-dependent thermoregulation is altered in TLR4−/− mice. Moreover, TLR2−/− and TLR4−/− mice consume less food and exhibit a greater mass compared to wild type mice. Collectively, our findings suggest important roles for TLR2 and TLR4 in the ANS regulation of cardiovascular function, thermoregulation, and energy metabolism. PMID:24145051

  15. Toll-like receptor 7 mediates early innate immune responses to malaria.

    PubMed

    Baccarella, Alyssa; Fontana, Mary F; Chen, Eunice C; Kim, Charles C

    2013-12-01

    Innate immune recognition of malaria parasites is the critical first step in the development of the host response. At present, Toll-like receptor 9 (TLR9) is thought to play a central role in sensing malaria infection. However, we and others have observed that Tlr9(-/-) mice, in contrast to mice deficient in the downstream adaptor, Myeloid differentiation primary response gene 88 (MYD88), exhibit few deficiencies in immune function during early infection with the malaria parasite Plasmodium chabaudi, implying that another MYD88-dependent receptor also contributes to the antimalarial response. Here we use candidate-based screening to identify TLR7 as a key sensor of early P. chabaudi infection. We show that TLR7 mediates a rapid systemic response to infection through induction of cytokines such as type I interferons (IFN-I), interleukin 12, and gamma interferon. TLR7 is also required for induction of IFN-I by other species and strains of Plasmodium, including an etiological agent of human disease, P. falciparum, suggesting that malaria parasites harbor a common pathogen-associated molecular pattern (PAMP) recognized by TLR7. In contrast to the nonredundant requirement for TLR7 in early immune activation, sensing through both TLR7 and TLR9 was required for proinflammatory cytokine production and immune cell activation during the peak of parasitemia. Our findings indicate that TLR7 plays a central role in early immune activation during malaria infection, whereas TLR7 and TLR9 contribute combinatorially to immune responses as infection progresses.

  16. Activation of adult rat CNS endothelial cells by opioid-induced toll-like receptor 4 (TLR4) signaling induces proinflammatory, biochemical, morphological, and behavioral sequelae

    PubMed Central

    Grace, Peter M.; Ramos, Khara M.; Rodgers, Krista M.; Wang, Xiaohui; Hutchinson, Mark R.; Lewis, Makenzie T.; Morgan, Kelly N.; Kroll, Juliet L.; Taylor, Frederick R.; Strand, Keith A.; Zhang, Yingning; Berkelhammer, Debra; Huey, Madeline G.; Greene, Lisa I.; Cochran, Thomas A.; Yin, Hang; Barth, Daniel S.; Johnson, Kirk W.; Rice, Kenner; Maier, Steven F.; Watkins, Linda R.

    2014-01-01

    CNS immune signaling contributes to deleterious opioid effects including hyperalgesia, tolerance, reward, and dependence/withdrawal. Such effects are mediated by opioid signaling at TLR4, presumptively of glial origin. Whether CNS endothelial cells express TLR4 is controversial. If so, they would be well positioned for activation by blood-borne opioids, contributing to opioid-induced pro-inflammatory responses. These studies examined adult primary rat CNS endothelial cell responses to (-)-morphine or its mu-opioid receptor (MOR) inactive metabolite morphine-3-glucuronide (M3G), both known TLR4 agonists. We demonstrate that adult rat CNS endothelial cells express functional TLR4. M3G activated NFκB, increased tumor necrosis factor-α (TNFα) and cyclooxygenase-2 (COX2) mRNAs, and released prostaglandin E2 from these cells. (-)-Morphine-induced upregulation of TNFα mRNA and prostaglandin E2 release were unmasked by pre-treatment with nalmefene, a MOR antagonist without TLR4 activity (unlike CTAP, shown to have both MOR- and TLR4-activity), suggestive of an interplay between MOR and TLR4 co-activation by (-)-morphine. In support, MOR-dependent Protein Kinase A (PKA) opposed TLR4 signaling, as PKA inhibition (H-89) also unmasked (-)-morphine-induced TNFα and COX2 mRNA upregulation. Intrathecal injection of CNS endothelial cells, stimulated in vitro with M3G, produced TLR4-dependent tactile allodynia. Further, cortical suffusion with M3G in vivo induced TLR4-dependent vasodilation. Finally, endothelial cell TLR4 activation by lipopolysaccharide and/or M3G was blocked by the glial inhibitors AV1013 and propentofylline, demonstrating endothelial cells as a new target of such drugs. These data indicate that (-)-morphine and M3G can activate CNS endothelial cells via TLR4, inducing proinflammatory, biochemical, morphological, and behavioral sequalae. CNS endothelial cells may have previously unanticipated roles in opioid-induced effects, in phenomena blocked by

  17. Association of Toll-like receptors 2, 3, and 4 genes polymorphisms with periapical pathosis risk

    PubMed Central

    Özan, Ülkü; Ocak, Zeynep; Özan, Fatih; Oktay, Elif-Aybala; Şahman, Halil; Yikilgan, İhsan; Oruçoğlu, Hasan; Er, Kürşat

    2016-01-01

    Background The aim of this study was to investigate the role of gene variations of Toll-like receptors (TLR) 2, 3, and 4 on genetic susceptibility to periapical pathosis. Material and Methods One hundred patients were included in the study and divided into two groups as follows; Control Group (n=50) that have root canal treatment and no periapical lesion, Patient Group (n=50) that have root canal treatment and periapical lesion. TLR2 Arg753Gln, TLR3 (c.1377C/T) and TLR4 Asp299Gly and Thr399Ile polymorphisms were genotyped by using PCR-RFLP. Genotypical analysis of control and patient groups were investigated to disclose whether there is any association between periapical lesions and gene variations. Results There are no significant statistical differences between control and patient groups according to TLR 2 and 4 gene sequence. On the contrary, CC allele detected 74% for TLR 3 in patient group, and this difference was found to be statistically significant (p < 0.005). Conclusions According to these results, it can be suggested that patients with Toll-like receptor 3 gene polymorphisms could be susceptible to periapical pathosis. Key words:Toll-like receptors, periapical pathosis, endodontics. PMID:27031066

  18. Bacterial lipopolysaccharide induces increased expression of toll-like receptor (TLR) 4 and downstream TLR signaling molecules in bovine mammary epithelial cells

    USDA-ARS?s Scientific Manuscript database

    Bovine mammary epithelial cells contribute to the innate immune response to intramammary infections by recognizing pathogens through specialized pattern recognition receptors. Toll-like receptor 4 (TLR4) is one such receptor that binds and is activated by lipopolysaccharide (LPS), a component of the...

  19. [Toll-like receptor 4 in regional acupoints and initiation of acupuncture signals].

    PubMed

    Cui, Rui; Xi, Qiang

    2014-02-01

    It has been well documented that acupuncture effect is produced through suitable manipulation stimulation of the inserted acupuncture needle, and subsequent activation of the body' s inherent nerve-endocrine-immune regulating network. As a physical stimulus, the acupuncture stimulation exerted onto the local acupoint needs being converted into biological signal first, further reaching favorable regulation in the body. Toll-like receptor 4 (TLR 4), an important molecular pattern recognition receptor, can not only recognize the exogenous pathogen-associated molecular patterns but also identify endogenous damage-associated molecular patterns, leading to activation of innate immunity. What's more, TLR 4 has a close relationship with nervous and immune system of the body. In the present paper, the authors make a discussion on the correlation between TLR 4 and acupuncture intervention from 1) TLR 4 and acupuncture signal conversion, 2) TLR 4 and acupuncture clinical phenomenon, and 3) TLR 4 and related mechanisms of acupuncture intervention. Moreover, the authors also think that TLR 4 in the acupoint area may participate in the initiation process of acupuncture stimulation information.

  20. Role of Toll-like receptors in photodynamic-therapy-elicited host response

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen

    2004-07-01

    Treatment of solid tumors by photodynamic therapy (PDT) induces a host reaction, coordinated through a network of inflammatory and immune responses, that plays an important role in the therapy outcome. It is suggested that this host response is initiated by altered self-associated endogenous danger signals massively released from PDT-treated tumors. Toll-like receptors, localized predominantly in the membrane of immune cells, are the major sensors of the recognition arm of the innate immune system. The engagement of these receptors by PDT-generated danger signals prompts the activation of the networks of innate immunity signaling pathways leading to the downstream activation of nuclear transcription factors responsible for the transcription of inflammatory/immune response-associated genes. The contribution of PDT-induced host response to the therapeutic outcome depends on the balance between the tissue-destructive action of inflammatory/immune effectors and the impact of concomitantly mobilized negative regulatory mechanisms evolved for controlling the intensity and duration of inflammatory and immune responses.

  1. Beyond dsRNA: Toll-like receptor 3 signalling in RNA-induced immune responses.

    PubMed

    Tatematsu, Megumi; Seya, Tsukasa; Matsumoto, Misako

    2014-03-01

    The innate immune system recognizes pathogen- and damage-associated molecular patterns using pattern-recognition receptors that activate a wide range of signalling cascades to maintain host homoeostasis against infection and inflammation. Endosomal TLR3 (Toll-like receptor 3), a type I transmembrane protein, senses RNAs derived from cells with viral infection or sterile tissue damage, leading to the induction of type I interferon and cytokine production, as well as dendritic cell maturation. It has been accepted that TLR3 recognizes perfect dsRNA, but little has been addressed experimentally with regard to the structural features of virus- or host-derived RNAs that activate TLR3. Recently, a TLR3 agonist was identified, which was a virus-derived 'structured' RNA with incomplete stem structures. Both dsRNA and structured RNA are similarly internalized through clathrin- and raftlin-dependent endocytosis and delivered to endosomal TLR3. The dsRNA uptake machinery, in addition to TLR3, is critical for extracellular viral RNA-induced immune responses. A wide spectrum of TLR3 ligand structures beyond dsRNA and their delivery systems provide new insights into the physiological role of TLR3 in virus- or host-derived RNA-induced immune responses. In the present paper, we focus on the system for extracellular recognition of RNA and its delivery to TLR3.

  2. Energetics of Endotoxin Recognition in the Toll-Like Receptor 4 Innate Immune Response.

    PubMed

    Paramo, Teresa; Tomasio, Susana M; Irvine, Kate L; Bryant, Clare E; Bond, Peter J

    2015-12-09

    Bacterial outer membrane lipopolysaccharide (LPS) potently stimulates the mammalian innate immune system, and can lead to sepsis, the primary cause of death from infections. LPS is sensed by Toll-like receptor 4 (TLR4) in complex with its lipid-binding coreceptor MD-2, but subtle structural variations in LPS can profoundly modulate the response. To better understand the mechanism of LPS-induced stimulation and bacterial evasion, we have calculated the binding affinity to MD-2 of agonistic and antagonistic LPS variants including lipid A, lipid IVa, and synthetic antagonist Eritoran, and provide evidence that the coreceptor is a molecular switch that undergoes ligand-induced conformational changes to appropriately activate or inhibit the receptor complex. The plasticity of the coreceptor binding cavity is shown to be essential for distinguishing between ligands, whilst similar calculations for a model bacterial LPS bilayer reveal the "membrane-like" nature of the protein cavity. The ability to predict the activity of LPS variants should facilitate the rational design of TLR4 therapeutics.

  3. Energetics of Endotoxin Recognition in the Toll-Like Receptor 4 Innate Immune Response

    PubMed Central

    Paramo, Teresa; Tomasio, Susana M.; Irvine, Kate L.; Bryant, Clare E.; Bond, Peter J.

    2015-01-01

    Bacterial outer membrane lipopolysaccharide (LPS) potently stimulates the mammalian innate immune system, and can lead to sepsis, the primary cause of death from infections. LPS is sensed by Toll-like receptor 4 (TLR4) in complex with its lipid-binding coreceptor MD-2, but subtle structural variations in LPS can profoundly modulate the response. To better understand the mechanism of LPS-induced stimulation and bacterial evasion, we have calculated the binding affinity to MD-2 of agonistic and antagonistic LPS variants including lipid A, lipid IVa, and synthetic antagonist Eritoran, and provide evidence that the coreceptor is a molecular switch that undergoes ligand-induced conformational changes to appropriately activate or inhibit the receptor complex. The plasticity of the coreceptor binding cavity is shown to be essential for distinguishing between ligands, whilst similar calculations for a model bacterial LPS bilayer reveal the “membrane-like” nature of the protein cavity. The ability to predict the activity of LPS variants should facilitate the rational design of TLR4 therapeutics. PMID:26647780

  4. Discovery of toll-like receptor 13 exists in the teleost fish: Miiuy croaker (Perciformes, Sciaenidae).

    PubMed

    Wang, Yanjin; Bi, Xueyi; Chu, Qing; Xu, Tianjun

    2016-08-01

    Toll-like receptors (TLRs) play an indispensable role in the immune response for pathogen recognition and triggering not only innate immunity but also adaptive immunity. Here we report the TLR13 homologue, one member of TLRs, in Perciformes (especially Sciaenidae). And we used the miiuy croaker as represented species for further functional experiments. Former study reported the TLR13 only expressed in murine, and we are the first to report the teleost TLR13 (mmiTLR13). MmiTLR13 expressed highly in immune defense related tissues, such as the liver, spleen, and kidney, and Vibrio anguillarum or poly(I:C) infection showed the immune response of mmiTLR13. Further luciferase reporter assays showed the ability for activation of ISRE luciferase reporter, but it failed to active NF-κB. And further gene silence by short hairpin RNA (shRNA) confirmed the results. Immunofluorescence of mmiTLR13 presents the cytoplasmic distribution in Hela cell. In addition, the Toll/interleukin 1 receptor (TIR) domain of mammal TLR5 exhibits high identity with TLR13, which indicated the high homology between TLR5 and TLR13. These findings will lay the fundamental cornerstone for further research of teleost TLR13 and expand the horizon for better understand the teleost TLRs system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Toll-like receptors in prostate infection and cancer between bench and bedside

    PubMed Central

    Gambara, Guido; Cesaris, Paola; Nunzio, Cosimo; Ziparo, Elio; Tubaro, Andrea; Filippini, Antonio; Riccioli, Anna

    2013-01-01

    Toll-Like receptors (TLRs) are a family of evolutionary conserved transmembrane proteins that recognize highly conserved molecules in pathogens. TLR-expressing cells represent the first line of defence sensing pathogen invasion, triggering innate immune responses and subsequently priming antigen-specific adaptive immunity. In vitro and in vivo studies on experimental cancer models have shown both anti- and pro-tumoural activity of different TLRs in prostate cancer, indicating these receptors as potential targets for cancer therapy. In this review, we highlight the intriguing duplicity of TLR stimulation by pathogens: their protective role in cases of acute infections, and conversely their negative role in favouring hyperplasia and/or cancer onset, in cases of chronic infections. This review focuses on the role of TLRs in the pathophysiology of prostate infection and cancer by exploring the biological bases of the strict relation between TLRs and prostate cancer. In particular, we highlight the debated question of how reliable mutations or deregulated expression of TLRs are as novel diagnostic or prognostic tools for prostate cancer. So far, the anticancer activity of numerous TLR ligands has been evaluated in clinical trials only in organs other than the prostate. Here we review recent clinical trials based on the most promising TLR agonists in oncology, envisaging a potential application also in prostate cancer therapy. PMID:23551576

  6. Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9.

    PubMed

    Ohto, Umeharu; Shibata, Takuma; Tanji, Hiromi; Ishida, Hanako; Krayukhina, Elena; Uchiyama, Susumu; Miyake, Kensuke; Shimizu, Toshiyuki

    2015-04-30

    Innate immunity serves as the first line of defence against invading pathogens such as bacteria and viruses. Toll-like receptors (TLRs) are examples of innate immune receptors, which sense specific molecular patterns from pathogens and activate immune responses. TLR9 recognizes bacterial and viral DNA containing the cytosine-phosphate-guanine (CpG) dideoxynucleotide motif. The molecular basis by which CpG-containing DNA (CpG-DNA) elicits immunostimulatory activity via TLR9 remains to be elucidated. Here we show the crystal structures of three forms of TLR9: unliganded, bound to agonistic CpG-DNA, and bound to inhibitory DNA (iDNA). Agonistic-CpG-DNA-bound TLR9 formed a symmetric TLR9-CpG-DNA complex with 2:2 stoichiometry, whereas iDNA-bound TLR9 was a monomer. CpG-DNA was recognized by both protomers in the dimer, in particular by the amino-terminal fragment (LRRNT-LRR10) from one protomer and the carboxy-terminal fragment (LRR20-LRR22) from the other. The iDNA, which formed a stem-loop structure suitable for binding by intramolecular base pairing, bound to the concave surface from LRR2-LRR10. This structure serves as an important basis for improving our understanding of the functional mechanisms of TLR9.

  7. Toll-like receptors (TLRs) in aquatic animals: signaling pathways, expressions and immune responses.

    PubMed

    Rauta, Pradipta R; Samanta, Mrinal; Dash, Hirak R; Nayak, Bismita; Das, Surajit

    2014-01-01

    The innate system's recognition of non-self and danger signals is mediated by a limited number of germ-line encoded pattern recognition receptors (PRRs) that recognize pathogen associated molecular patterns (PAMPs). Toll-like receptors (TLRs) are single, non-catalytic, membrane-spanning PRRs present in invertebrates and vertebrates. They act by specifically recognizing PAMPs of a variety of microbes and activate signaling cascades to induce innate immunity. A large number of TLRs have been identified in various aquatic animals of phyla Cnidaria, Annelida, Mollusca, Arthropoda, Echinodermata and Chordata. TLRs of aquatic and warm-blooded higher animals exhibit some distinctive features due to their diverse evolutionary lineages. However, majority of them share conserve signaling pathways in pathogen recognition and innate immunity. Functional analysis of novel TLRs in aquatic animals is very important in understanding the comparative immunology between warm-blooded and aquatic animals. In additions to innate immunity, recent reports have highlighted the additional roles of TLRs in adaptive immunity. Therefore, vaccines against many critical diseases of aquatic animals may be made more effective by supplementing TLR activators which will stimulate dendritic cells. This article describes updated information of TLRs in aquatic animals and their structural and functional relationship with warm-blooded animals.

  8. Toll-like receptor cascade and gene polymorphism in host–pathogen interaction in Lyme disease

    PubMed Central

    Rahman, Shusmita; Shering, Maria; Ogden, Nicholas H; Lindsay, Robbin; Badawi, Alaa

    2016-01-01

    Lyme disease (LD) risk occurs in North America and Europe where the tick vectors of the causal agent Borrelia burgdorferi sensu lato are found. It is associated with local and systemic manifestations, and has persistent posttreatment health complications in some individuals. The innate immune system likely plays a critical role in both host defense against B. burgdorferi and disease severity. Recognition of B. burgdorferi, activation of the innate immune system, production of proinflammatory cytokines, and modulation of the host adaptive responses are all initiated by Toll-like receptors (TLRs). A number of Borrelia outer-surface proteins (eg, OspA and OspB) are recognized by TLRs. Specifically, TLR1 and TLR2 were identified as the receptors most relevant to LD. Several functional single-nucleotide polymorphisms have been identified in TLR genes, and are associated with varying cytokines types and synthesis levels, altered pathogen recognition, and disruption of the downstream signaling cascade. These single-nucleotide polymorphism-related functional alterations are postulated to be linked to disease development and posttreatment persistent illness. Elucidating the role of TLRs in LD may facilitate a better understanding of disease pathogenesis and can provide an insight into novel therapeutic targets during active disease or postinfection and posttreatment stages. PMID:27330321

  9. Immunotherapeutic Impact of Toll-like Receptor Agonists in Breast Cancer.

    PubMed

    Zhang, Christine; Ben, Atheena; Reville, Jade; Calabrese, Victoria; Villa, Nina Nicole; Bandyopadhyay, Mausumi; Dasgupta, Subhajit

    2015-01-01

    Onset of tumors in breast cancer is a multi-factorial event at different ages and ethnic populations. The conventional treatment strategy suggests use of anti-estrogen drugs and selective estrogen receptor modulators (SERMs). Although, this strategy has achieved significant success to prevent tumor growth and metastasis and is still developing under an active field of research, the emergence of immunotherapy is a potential modern approach for breast cancer. In addition to SERMs, the screening of selective agonists for toll-like receptor (TLR) signals confers a new area of breast cancer therapy. Recent investigations also indicate significance of TLR signals in the regulation of tumor suppressor p53 gene expression. The TLR agonists have an ability to facilitate activation of natural killer cells, CD8 T cells, B cells, and alpha and beta interferons and induce cellular cytotoxicity. The ongoing developments in cancer research also suggested an approach for intra-tumoral generation of cellular cytotoxicity to induce apoptosis. Both of these events promote destruction of tumor cells in a localized manner and thus, having impact on immunotherapy. Keeping a cautious eye on the context, we propose the prospect of TLR signals in the development of therapy for breast cancer.

  10. The critical role of toll-like receptors - From microbial recognition to autoimmunity: A comprehensive review

    PubMed Central

    Jiménez-Dalmaroni, Maximiliano Javier; Gerswhin, M. Eric; Adamopoulos, Iannis E.

    2015-01-01

    Toll-like receptors (TLRs) constitute an important mechanism in the activation of innate immune cells including monocytes, macrophages and dendritic cells. Macrophage activation by TLRs is pivotal in the initiation of the rapid expression of pro-inflammatory cytokines TNF, IL-1β and IL-6 whilst promoting Th17 responses, all of which play critical roles in autoimmunity. Surprisingly, in inflammatory arthritis, activation of specific TLRs can not only induce but also inhibit cellular processes associated with bone destruction. The intercellular and intracellular orchestration of signals from different TLRs, their endogenous or microbial ligands and accessory molecules determines the activating or inhibitory responses. Herein, we review the TLR-mediated activation of innate immune cells in their activation and differentiation to osteoclasts and the capacity of these signals to contribute to bone destruction in arthritis. Detailed understanding of the opposing mechanisms of TLRs in the induction and suppression of cellular processes in arthritis may pave the way to develop novel therapies to treat autoimmunity. PMID:26299984

  11. Cervical Cancer Cell Supernatants Induce a Phenotypic Switch from U937-Derived Macrophage-Activated M1 State into M2-Like Suppressor Phenotype with Change in Toll-Like Receptor Profile

    PubMed Central

    Sánchez-Reyes, Karina; Bravo-Cuellar, Alejandro; Hernández-Flores, Georgina; Lerma-Díaz, José Manuel; Jave-Suárez, Luis Felipe; Gómez-Lomelí, Paulina; de Celis, Ruth; Aguilar-Lemarroy, Adriana; Domínguez-Rodríguez, Jorge Ramiro; Ortiz-Lazareno, Pablo Cesar

    2014-01-01

    Cervical cancer (CC) is the second most common cancer among women worldwide. Infection with human papillomavirus (HPV) is the main risk factor for developing CC. Macrophages are important immune effector cells; they can be differentiated into two phenotypes, identified as M1 (classically activated) and M2 (alternatively activated). Macrophage polarization exerts profound effects on the Toll-like receptor (TLR) profile. In this study, we evaluated whether the supernatant of human CC cells HeLa, SiHa, and C-33A induces a shift of M1 macrophage toward M2 macrophage in U937-derived macrophages. Results. The results showed that soluble factors secreted by CC cells induce a change in the immunophenotype of macrophages from macrophage M1 into macrophage M2. U937-derived macrophages M1 released proinflammatory cytokines and nitric oxide; however, when these cells were treated with the supernatant of CC cell lines, we observed a turnover of M1 toward M2. These cells increased CD163 and IL-10 expression. The expression of TLR-3, -7, and -9 is increased when the macrophages were treated with the supernatant of CC cells. Conclusions. Our result strongly suggests that CC cells may, through the secretion of soluble factors, induce a change of immunophenotype M1 into M2 macrophages. PMID:25309919

  12. Cervical cancer cell supernatants induce a phenotypic switch from U937-derived macrophage-activated M1 state into M2-like suppressor phenotype with change in Toll-like receptor profile.

    PubMed

    Sánchez-Reyes, Karina; Bravo-Cuellar, Alejandro; Hernández-Flores, Georgina; Lerma-Díaz, José Manuel; Jave-Suárez, Luis Felipe; Gómez-Lomelí, Paulina; de Celis, Ruth; Aguilar-Lemarroy, Adriana; Domínguez-Rodríguez, Jorge Ramiro; Ortiz-Lazareno, Pablo Cesar

    2014-01-01

    Cervical cancer (CC) is the second most common cancer among women worldwide. Infection with human papillomavirus (HPV) is the main risk factor for developing CC. Macrophages are important immune effector cells; they can be differentiated into two phenotypes, identified as M1 (classically activated) and M2 (alternatively activated). Macrophage polarization exerts profound effects on the Toll-like receptor (TLR) profile. In this study, we evaluated whether the supernatant of human CC cells HeLa, SiHa, and C-33A induces a shift of M1 macrophage toward M2 macrophage in U937-derived macrophages. The results showed that soluble factors secreted by CC cells induce a change in the immunophenotype of macrophages from macrophage M1 into macrophage M2. U937-derived macrophages M1 released proinflammatory cytokines and nitric oxide; however, when these cells were treated with the supernatant of CC cell lines, we observed a turnover of M1 toward M2. These cells increased CD163 and IL-10 expression. The expression of TLR-3, -7, and -9 is increased when the macrophages were treated with the supernatant of CC cells. Our result strongly suggests that CC cells may, through the secretion of soluble factors, induce a change of immunophenotype M1 into M2 macrophages.

  13. Interplay between Inflammation and Stemness in Cancer Cells: The Role of Toll-Like Receptor Signaling

    PubMed Central

    Yeh, Da-Wei; Huang, Li-Rung; Chen, Ya-Wen; Huang, Chi-Ying F.

    2016-01-01

    Cancer stem cells (CSCs) are a small population of cancer cells that exhibit stemness. These cells contribute to cancer metastasis, treatment resistance, and relapse following therapy; therefore, they may cause malignancy and reduce the success of cancer treatment. Nuclear factor kappa B- (NF-κB-) mediated inflammatory responses increase stemness in cancer cells, and CSCs constitutively exhibit higher NF-κB activation, which in turn increases their stemness. These opposite effects form a positive feedback loop that further amplifies inflammation and stemness in cancer cells, thereby expanding CSC populations in the tumor. Toll-like receptors (TLRs) activate NF-κB-mediated inflammatory responses when stimulated by carcinogenic microbes and endogenous molecules released from cells killed during cancer treatment. NF-κB activation by extrinsic TLR ligands increases stemness in cancer cells. Moreover, it was recently shown that increased NF-κB activity and inflammatory responses in CSCs may be caused by altered TLR signaling during the enrichment of stemness in cancer cells. Thus, the activation of TLR signaling by extrinsic and intrinsic factors drives a positive interplay between inflammation and stemness in cancer cells. PMID:28116318

  14. Targeting the Toll of Drug Abuse: The Translational Potential of Toll-Like Receptor 4.

    PubMed

    Bachtell, Ryan; Hutchinson, Mark R; Wang, Xiaohui; Rice, Kenner C; Maier, Steven F; Watkins, Linda R

    2015-01-01

    There is growing recognition that glial proinflammatory activation importantly contributes to the rewarding and reinforcing effects of a variety of drugs of abuse, including cocaine, methamphetamine, opioids, and alcohol. It has recently been proposed that glia are recognizing, and becoming activated by, such drugs as a CNS immunological response to these agents being xenobiotics; that is, substances foreign to the brain. Activation of glia, primarily microglia, by various drugs of abuse occurs via toll like receptor 4 (TLR4). The detection of such xenobiotics by TLR4 results in the release of glial neuroexcitatory and neurotoxic substances. These glial products of TLR4 activation enhance neuronal excitability within brain reward circuitry, thereby enhancing their rewarding and reinforcing effects. Indeed, selective pharmacological blockade of TLR4 activation, such as with the non-opioid TLR4 antagonist (+)-naltrexone, suppresses a number of indices of drug reward/reinforcement. These include: conditioned place preference, self-administration, drugprimed reinstatement, incubation of craving, and elevations of nucleus accumbens shell dopamine. Notably, TLR4 blockade fails to alter self-administration of food, indicative of a selective effect on drugs of abuse. Genetic disruption of TLR4 signaling recapitulates the effects of pharmacological TLR4 blockade, providing converging lines of evidence of a central importance of TLR4. Taken together, multiple lines of evidence converge to raise TLR4 as a promising therapeutic target for drug abuse.

  15. Effects of age, gender, and immunosuppressive agents on in vivo toll-like receptor pathway responses.

    PubMed

    Khan, Niamat; Summers, Colin W; Helbert, Matthew R; Arkwright, Peter D

    2010-04-01

    Toll-like receptors (TLRs) are important in the initiation of immune responses in both health and disease. How TLR activity alters with age, gender, and also with immunosuppressive agents is still largely unexplored. We studied TLR activity in 49 healthy individuals as well as in 26 patients receiving immunosuppressive drugs. TLR activity did not alter significantly between the ages of 2 and 67 years. However, females had twice the TLR7 ligand-induced interferon-I response of males (OR [95% CI] 2.7 [1.4-5.1]), whereas TLR3 and four activities were not significantly different between the sexes. The T-cell immunosuppressant agents cyclosporine, tacrolimus, and azathioprine, as well as low dose glucocorticosteroids did not significantly alter TLR pathway responses. In contrast, high dose glucocorticosteroids reduced in vivo TLR responses by 70%-90%. We suggest that gender differences in TLR responses may help to explain the female preponderance of some autoimmune disorders. Furthermore, an understanding the effects of immunosuppressive agents on TLR-pathway activity should allow more focused therapy for autoimmune disorders.

  16. Interplay between Inflammation and Stemness in Cancer Cells: The Role of Toll-Like Receptor Signaling.

    PubMed

    Yeh, Da-Wei; Huang, Li-Rung; Chen, Ya-Wen; Huang, Chi-Ying F; Chuang, Tsung-Hsien

    2016-01-01

    Cancer stem cells (CSCs) are a small population of cancer cells that exhibit stemness. These cells contribute to cancer metastasis, treatment resistance, and relapse following therapy; therefore, they may cause malignancy and reduce the success of cancer treatment. Nuclear factor kappa B- (NF-κB-) mediated inflammatory responses increase stemness in cancer cells, and CSCs constitutively exhibit higher NF-κB activation, which in turn increases their stemness. These opposite effects form a positive feedback loop that further amplifies inflammation and stemness in cancer cells, thereby expanding CSC populations in the tumor. Toll-like receptors (TLRs) activate NF-κB-mediated inflammatory responses when stimulated by carcinogenic microbes and endogenous molecules released from cells killed during cancer treatment. NF-κB activation by extrinsic TLR ligands increases stemness in cancer cells. Moreover, it was recently shown that increased NF-κB activity and inflammatory responses in CSCs may be caused by altered TLR signaling during the enrichment of stemness in cancer cells. Thus, the activation of TLR signaling by extrinsic and intrinsic factors drives a positive interplay between inflammation and stemness in cancer cells.

  17. Targeting the Toll of Drug Abuse: The Translational Potential of Toll-Like Receptor 4

    PubMed Central

    Bachtell, Ryan; Hutchinson, Mark R.; Wang, Xiaohui; Rice, Kenner C.; Maier, Steven F; Watkins, Linda R.

    2017-01-01

    There is growing recognition that glial proinflammatory activation importantly contributes to the rewarding and reinforcing effects of a variety of drugs of abuse, including cocaine, methamphetamine, opioids, and alcohol. It has recently been proposed that glia are recognizing, and becoming activated by, such drugs as a CNS immunological response to these agents being xenobiotics; that is, substances foreign to the brain. Activation of glia, primarily microglia, by various drugs of abuse occurs via toll like receptor 4 (TLR4). The detection of such xenobiotics by TLR4 results in the release of glial neuroexcitatory and neurotoxic substances. These glial products of TLR4 activation enhance neuronal excitability within brain reward circuitry, thereby enhancing their rewarding and reinforcing effects. Indeed, selective pharmacological blockade of TLR4 activation, such as with the non-opioid TLR4 antagonist (+)-naltrexone, suppresses a number of indices of drug reward/reinforcement. These include: conditioned place preference, self-administration, drug-primed reinstatement, incubation of craving, and elevations of nucleus accumbens shell dopamine. Notably, TLR4 blockade fails to alter self-administration of food, indicative of a selective effect on drugs of abuse. Genetic disruption of TLR4 signaling recapitulates the effects of pharmacological TLR4 blockade, providing converging lines of evidence of a central importance of TLR4. Taken together, multiple lines of evidence converge to raise TLR4 as a promising therapeutic target for drug abuse. PMID:26022268

  18. Basic and Translational Understandings of Microbial Recognition by Toll-Like Receptors in the Intestine

    PubMed Central

    2011-01-01

    Microbial recognition by multicellular organisms is initially accomplished by a group of pattern recognition receptors which are specialized to recognize microbe-associated molecular patterns (MAMPs) such as lipopolysaccharide, bacterial lipoprotein, CpG DNA motif, double strand RNA and flagellin. Toll-like receptors (TLRs) are the representative pattern recognition receptors, and microbial recognition by TLRs elicits innate and inflammatory responses. Ten TLR family members have been presently identified in human genome, and numerous studies discovered that intracellular responses from MAMPs-TLR engagements are mediated by a participation of at least 4 immediate adaptor molecules such as myeloid differentiation primary response gene-88 (MyD88), MyD88 adaptor-like (Mal) (also known as Toll/IL-1 receptor domain-containing adaptor protein [TIRAP]), Toll/IL-1 receptor domain-containing adaptor-inducing interferon-β (TRIF) and TRIF-related adaptor molecule (TRAM) leading to activate transcription factors including nuclear factor κB, activator protein-1 and interferon-regulatory factors. Given that large amounts of commensal microbiota constantly reside in the intestinal lumen, enteric microbial recognition by TLRs at the intestinal epithelium provides a critical impact on regulating intestinal homeostasis. Indeed, aberrant TLR4 and TLR5 activations are etiologically associated with the development and progress of intestinal inflammatory diseases including inflammatory bowel disease and necrotizing enterocolitis. In this review article, we present the molecular mechanism by which TLRs elicit intracellular signal transduction, and summarize the physiological relevance of TLRs related to the gastrointestinal tract. PMID:21369489

  19. Resistin-induced stromal cell-derived factor-1 expression through Toll-like receptor 4 and activation of p38 MAPK/ NFκB signaling pathway in gastric cancer cells.

    PubMed

    Hsieh, Yung-Yu; Shen, Chien-Heng; Huang, Wen-Shih; Chin, Chih-Chien; Kuo, Yi-Hung; Hsieh, Meng Chiao; Yu, Hong-Ren; Chang, Te-Sheng; Lin, Tseng-Hsi; Chiu, Yung-Wei; Chen, Cheng-Nan; Kuo, Hsing-Chun; Tung, Shui-Yi

    2014-06-14

    Stromal cell-derived factor-1 (SDF-1) (CXC chemokine ligand-12)/CXC chemokine receptor 4 (CXCR4) is involved in the carcinogenesis of human gastric cancer, where it stimulates angiogenesis and favors metastasis of tumor cells to distant organs. In addition, resistin is suggested to be an important link between obesity and the development of gastric cancer. Resistin has identified as an important player in inflammatory responses, and emerged as a mediator in inflammation-associated cancer. A limited number of studies have investigated the association of resistin and SDF-1 with gastric cancer. Herein, we investigated the molecular mechanisms by which resistin influences the expression of SDF-1 in gastric carcinoma cells. Human gastric cancer cell lines were exposed to doses of resistin; SDF-1 expression and secretion levels were then determined. Real-time polymerase chain reaction and western blotting analyses were performed to clarify molecular changes. Inhibition of Toll-like receptor 4 (TLR4) by a competitive antagonist inhibited resistin-induced SDF-1 expression. Pharmacological inhibitors and small interfering RNA (siRNA) demonstrated that activation of the p38 mitogen-activated protein kinase (MAPK) pathway is critical for resistin-induced SDF-1 expression mediated by TLR4. The promoter activity and transcription factor enzyme-linked immunosorbent assay revealed that resistin induced expression of SDF-1 mediated by NF-κB in gastric cancer cells. Inhibition of p38 MARK activation blocked the SDF-1-induced expression and the SDF-1 promoter activity in the cancer gastric cells. Chromatin immunoprecipitation assay revealed that inhibition of p38 MARK activation also blocked the resistin-increased NF-κB-DNA-binding activity. Resistin-induced SDF-1 upregulation by activation of TLR4, p38 MARK and NF-κB may explain a new role of resistin in the link of obesity and gastric cancer.

  20. Resistin-induced stromal cell-derived factor-1 expression through Toll-like receptor 4 and activation of p38 MAPK/ NFκB signaling pathway in gastric cancer cells

    PubMed Central

    2014-01-01

    Background Stromal cell-derived factor-1 (SDF-1) (CXC chemokine ligand-12)/CXC chemokine receptor 4 (CXCR4) is involved in the carcinogenesis of human gastric cancer, where it stimulates angiogenesis and favors metastasis of tumor cells to distant organs. In addition, resistin is suggested to be an important link between obesity and the development of gastric cancer. Resistin has identified as an important player in inflammatory responses, and emerged as a mediator in inflammation-associated cancer. A limited number of studies have investigated the association of resistin and SDF-1 with gastric cancer. Herein, we investigated the molecular mechanisms by which resistin influences the expression of SDF-1 in gastric carcinoma cells. Results Human gastric cancer cell lines were exposed to doses of resistin; SDF-1 expression and secretion levels were then determined. Real-time polymerase chain reaction and western blotting analyses were performed to clarify molecular changes. Inhibition of Toll-like receptor 4 (TLR4) by a competitive antagonist inhibited resistin-induced SDF-1 expression. Pharmacological inhibitors and small interfering RNA (siRNA) demonstrated that activation of the p38 mitogen-activated protein kinase (MAPK) pathway is critical for resistin-induced SDF-1 expression mediated by TLR4. The promoter activity and transcription factor enzyme-linked immunosorbent assay revealed that resistin induced expression of SDF-1 mediated by NF-κB in gastric cancer cells. Inhibition of p38 MARK activation blocked the SDF-1-induced expression and the SDF-1 promoter activity in the cancer gastric cells. Chromatin immunoprecipitation assay revealed that inhibition of p38 MARK activation also blocked the resistin-increased NF-κB-DNA-binding activity. Conclusions Resistin-induced SDF-1 upregulation by activation of TLR4, p38 MARK and NF-κB may explain a new role of resistin in the link of obesity and gastric cancer. PMID:24929539

  1. Toll-Like Receptor 4 Is a Regulator of Monocyte and Electroencephalographic Responses to Sleep Loss

    PubMed Central

    Wisor, Jonathan P.; Clegern, William C.; Schmidt, Michelle A.

    2011-01-01

    Study Objectives: Sleep loss triggers changes in inflammatory signaling pathways in the brain and periphery. The mechanisms that underlie these changes are ill-defined. The Toll-like receptor 4 (TLR4) activates inflammatory signaling cascades in response to endogenous and pathogen-associated ligands known to be elevated in association with sleep loss. TLR4 is therefore a possible mediator of some of the inflammation-related effects of sleep loss. Here we describe the baseline electroencephalographic sleep phenotype and the biochemical and electroencephalographic responses to sleep loss in TLR4-deficient mice. Design, Measurements and Results: TLR4-deficient mice and wild type controls were subjected to electroencephalographic and electromyographic recordings during spontaneous sleep/wake cycles and during and after sleep restriction sessions of 3, 6, and 24-h duration, during which sleep was disrupted by an automated sleep restriction system. Relative to wild type control mice, TLR4-deficient mice exhibited an increase in the duration of the primary daily waking bout occurring at dark onset in a light/dark cycle. The amount of time spent in non-rapid eye movement sleep by TLR4-deficient mice was reduced in proportion to increased wakefulness in the hours immediately after dark onset. Subsequent to sleep restriction, EEG measures of increased sleep drive were attenuated in TLR4-deficient mice relative to wild-type mice. TLR4 was enriched 10-fold in brain cells positive for the cell surface marker CD11b (cells of the monocyte lineage) relative to CD11b-negative cells in wild type mouse brains. To assess whether this population was affected selectively by TLR4 knockout, flow cytometry was used to count F4/80- and CD45-positive cells in the brains of sleep deprived and time of day control mice. While wild-type mice exhibited a significant reduction in the number of CD11b-positive cells in the brain after 24-h sleep restriction, TLR4-deficient mice did not. Conclusion

  2. Non-cell-autonomous Neurotoxicity of α-synuclein Through Microglial Toll-like Receptor 2.

    PubMed

    Kim, Changyoun; Lee, He-Jin; Masliah, Eliezer; Lee, Seung-Jae

    2016-06-01

    Synucleinopathies are a collection of neurological diseases that are characterized by deposition of α-synuclein aggregates in neurons and glia. These diseases include Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. Although it has been increasingly clear that α-synuclein is implicated in the pathogenesis of PD and other synucleinopathies, the precise mechanism underlying the disease process remains to be unraveled. The past studies on how α-synuclein exerts pathogenic actions have focused on its direct, cell-autonomous neurotoxic effects. However, recent findings suggested that there might be indirect, non-cell-autonomous pathways, perhaps through the changes in glial cells, for the pathogenic actions of this protein. Here, we present evidence that α-synuclein can cause neurodegeneration through a non-cell-autonomous manner. We show that α-synuclein can be secreted from neurons and induces inflammatory responses in microglia, which in turn secreted neurotoxic agents into the media causing neurodegeneration. The neurotoxic response of microglia was mediated by activation of toll-like receptor 2 (TLR2), a receptor for neuron-derived α-synuclein. This work suggests that TLR2 is the key molecule that mediates non-cell-autonomous neurotoxic effects of α-synuclein, hence a candidate for the therapeutic target.

  3. Role of Toll-like receptors in Helicobacter pylori infection and immunity

    PubMed Central

    Smith, Sinéad M

    2014-01-01

    The gram-negative bacterium Helicobacter pylori (H. pylori) infects the stomachs of approximately half of the world’s population. Although infection induces an immune response that contributes to chronic gastric inflammation, the response is not sufficient to eliminate the bacterium. H. pylori infection causes peptic ulcers, gastric cancer and mucosa-associated lymphoid tissue lymphoma. Disease outcome is linked to the severity of the host inflammatory response. Gastric epithelial cells represent the first line of innate immune defence against H. pylori, and respond to infection by initiating numerous cell signalling cascades, resulting in cytokine induction and the subsequent recruitment of inflammatory cells to the gastric mucosa. Pathogen recognition receptors of the Toll-like receptor (TLR) family mediate many of these cell signalling events. This review discusses recent findings on the role of various TLRs in the recognition of H. pylori in distinct cell types, describes the TLRs responsible for the recognition of individual H. pylori components and outlines the influence of innate immune activation on the subsequent development of the adaptive immune response. The mechanistic identification of host mediators of H. pylori-induced pathogenesis has the potential to reveal drug targets and opportunities for therapeutic intervention or prevention of H. pylori-associated disease by means of vaccines or immunomodulatory therapy. PMID:25133016

  4. Toll-Like Receptor Polymorphisms, Inflammatory and Infectious Diseases, Allergies, and Cancer

    PubMed Central

    2013-01-01

    Toll-like receptors (TLRs) are germ-line-encoded innate immune sensors that recognize conserved microbial structures and host alarmins and signal expression of MHC proteins, costimulatory molecules, and inflammatory mediators by macrophages, neutrophils, dendritic cells, and other cell types. These processes activate immediate and early mechanisms of innate host defense, as well as initiate and orchestrate adaptive immune responses. Several single-nucleotide polymorphisms (SNPs) within the TLR genes have been associated with altered susceptibility to infectious, inflammatory, and allergic diseases, and have been found to play a role in tumorigenesis. Critical advances in our understanding of innate immune functions and genome-wide association studies (GWAS) have uncovered complex interactions of genetic polymorphisms within TLRs and environmental factors. However, conclusions obtained in the course of such analyses are restricted by limited power of many studies that is likely to explain controversial findings. Further, linkages to certain ethnic backgrounds, gender, and the presence of multigenic effects further complicate the interpretations of how the TLR SNPs affect immune responses. For many TLRs, the molecular mechanisms by which SNPs impact receptor functions remain unknown. In this review, I have summarized current knowledge about the TLR polymorphisms, their impact on TLR signaling, and associations with various inflammatory, infectious, allergic diseases and cancers, and discussed the directions of future scientific research. PMID:23675778

  5. Toll-Like Receptors in Liver Fibrosis: Cellular Crosstalk and Mechanisms

    PubMed Central

    Yang, Ling; Seki, Ekihiro

    2012-01-01

    Toll-like receptors (TLRs) are pattern recognition receptors that distinguish conserved microbial products, also known as pathogen-associated molecular patterns (PAMPs), from host molecules. Liver is the first filter organ between the gastrointestinal tracts and the rest of the body through portal circulation. Thus, the liver is a major organ that must deal with PAMPs and microorganisms translocated from the intestine and to respond to the damage associated molecular patterns (DAMPs) released from injured organs. These PAMPs and DAMPs preferentially activate TLR signaling on various cell types in the liver inducing the production of inflammatory and fibrogenic cytokines that initiate and prolong liver inflammation, thereby leading to fibrosis. We summarize recent findings on the role of TLRs, ligands, and intracellular signaling in the pathophysiology of liver fibrosis due to different etiology, as well as to highlight the potential role of TLR signaling in liver fibrosis associated with hepatitis C infection, non-alcoholic and alcoholic steatoheoatitis, primary biliary cirrhosis, and cystic fibrosis. PMID:22661952

  6. Novel Toll-like receptor-4 antagonist (+)-naloxone protects mice from inflammation-induced preterm birth.

    PubMed

    Chin, Peck Yin; Dorian, Camilla L; Hutchinson, Mark R; Olson, David M; Rice, Kenner C; Moldenhauer, Lachlan M; Robertson, Sarah A

    2016-11-07

    Toll-like receptor 4 (TLR4) activation by bacterial infection, or by sterile inflammatory insult is a primary trigger of spontaneous preterm birth. Here we utilize mouse models to investigate the efficacy of a novel small molecule TLR4 antagonist, (+)-naloxone, the non-opioid isomer of the opioid receptor antagonist (-)-naloxone, in infection-associated preterm birth. Treatment with (+)-naloxone prevented preterm delivery and alleviated fetal demise in utero elicited by i.p. LPS administration in late gestation. A similar effect with protection from preterm birth and perinatal death, and partial correction of reduced birth weight and postnatal mortality, was conferred by (+)-naloxone administration after intrauterine administration of heat-killed E. coli. Local induction by E. coli of inflammatory cytokine genes Il1b, Il6, Tnf and Il10 in fetal membranes was suppressed by (+)-naloxone, and cytokine expression in the placenta, and uterine myometrium and decidua, was also attenuated. These data demonstrate that inhibition of TLR4 signaling with the novel TLR4 antagonist (+)-naloxone can suppress the inflammatory cascade of preterm parturition, to prevent preterm birth and perinatal death. Further studies are warranted to investigate the utility of small molecule inhibition of TLR-driven inflammation as a component of strategies for fetal protection and delaying preterm birth in the clinical setting.

  7. A Comparative Review of Toll-Like Receptor 4 Expression and Functionality in Different Animal Species

    PubMed Central

    Vaure, Céline; Liu, Yuanqing

    2014-01-01

    Toll-like receptors (TLRs) belong to the pattern recognition receptor (PRR) family, a key component of the innate immune system. TLRs detect invading pathogens and initiate an immediate immune response to them, followed by a long-lasting adaptive immune response. Activation of TLRs leads to the synthesis of pro-inflammatory cytokines and chemokines and the expression of co-stimulatory molecules. TLR4 specifically recognizes bacterial lipopolysaccharide, along with several other components of pathogens and endogenous molecules produced during abnormal situations, such as tissue damage. Evolution across species can lead to substantial diversity in the TLR4’s affinity and specificity to its ligands, the TLR4 gene and cellular expression patterns and tissue distribution. Consequently, TLR4 functions vary across different species. In recent years, the use of synthetic TLR agonists as adjuvants has emerged as a realistic therapeutic goal, notably for the development of vaccines against poorly immunogenic targets. Given that an adjuvanted vaccine must be assessed in pre-clinical animal models before being tested in humans, the extent to which an animal model represents and predicts the human condition is of particular importance. This review focuses on the current knowledge on the critical points of divergence between human and the mammalian species commonly used in vaccine research and development (non-human primate, mouse, rat, rabbit, swine, and dog), in terms of molecular, cellular, and functional properties of TLR4. PMID:25071777

  8. Inflammatory Role of Toll-Like Receptors in Human and Murine Adipose Tissue

    PubMed Central

    Poulain-Godefroy, Odile; Le Bacquer, Olivier; Plancq, Pauline; Lecœur, Cécile; Pattou, François; Frühbeck, Gema; Froguel, Philippe

    2010-01-01

    It was recently demonstrated that TLR4 activation via dietary lipids triggers inflammatory pathway and alters insulin responsiveness in the fat tissue during obesity. Here, we question whether other TLR family members could participate in the TLR-mediated inflammatory processes occurring in the obese adipose tissue. We thus studied the expression of TLR1, TLR2, TLR4, and TLR6 in adipose tissue. These receptors are expressed in omental and subcutaneous human fat tissue, the expression being higher in the omental tissue, independently of the metabolic status of the subject. We demonstrated a correlation of TLRs expression within and between each depot suggesting a coregulation. Murine 3T3-L1 preadipocyte cells stimulated with Pam3CSK4 induced the expression of some proinflammatory markers. Therefore, beside TLR4, other toll-like receptors are differentially expressed in human fat tissue, and functional in an adipocyte cell line, suggesting that they might participate omental adipose tissue-related inflammation that occurs in obesity. PMID:20339530

  9. Histone deacetylase inhibitors impair innate immune responses to Toll-like receptor agonists and to infection.

    PubMed

    Roger, Thierry; Lugrin, Jérôme; Le Roy, Didier; Goy, Geneviève; Mombelli, Matteo; Koessler, Thibaud; Ding, Xavier C; Chanson, Anne-Laure; Reymond, Marlies Knaup; Miconnet, Isabelle; Schrenzel, Jacques; François, Patrice; Calandra, Thierry

    2011-01-27

    Regulated by histone acetyltransferases and deacetylases (HDACs), histone acetylation is a key epigenetic mechanism controlling chromatin structure, DNA accessibility, and gene expression. HDAC inhibitors induce growth arrest, differentiation, and apoptosis of tumor cells and are used as anticancer agents. Here we describe the effects of HDAC inhibitors on microbial sensing by macrophages and dendritic cells in vitro and host defenses against infection in vivo. HDAC inhibitors down-regulated the expression of numerous host defense genes, including pattern recognition receptors, kinases, transcription regulators, cytokines, chemokines, growth factors, and costimulatory molecules as assessed by genome-wide microarray analyses or innate immune responses of macrophages and dendritic cells stimulated with Toll-like receptor agonists. HDAC inhibitors induced the expression of Mi-2β and enhanced the DNA-binding activity of the Mi-2/NuRD complex that acts as a transcriptional repressor of macrophage cytokine production. In vivo, HDAC inhibitors increased the susceptibility to bacterial and fungal infections but conferred protection against toxic and septic shock. Thus, these data identify an essential role for HDAC inhibitors in the regulation of the expression of innate immune genes and host defenses against microbial pathogens.

  10. Toll-like receptor polymorphisms, inflammatory and infectious diseases, allergies, and cancer.

    PubMed

    Medvedev, Andrei E

    2013-09-01

    Toll-like receptors (TLRs) are germ-line-encoded innate immune sensors that recognize conserved microbial structures and host alarmins and signal expression of MHC proteins, costimulatory molecules, and inflammatory mediators by macrophages, neutrophils, dendritic cells, and other cell types. These processes activate immediate and early mechanisms of innate host defense, as well as initiate and orchestrate adaptive immune responses. Several single-nucleotide polymorphisms (SNPs) within the TLR genes have been associated with altered susceptibility to infectious, inflammatory, and allergic diseases, and have been found to play a role in tumorigenesis. Critical advances in our understanding of innate immune functions and genome-wide association studies (GWAS) have uncovered complex interactions of genetic polymorphisms within TLRs and environmental factors. However, conclusions obtained in the course of such analyses are restricted by limited power of many studies that is likely to explain controversial findings. Further, linkages to certain ethnic backgrounds, gender, and the presence of multigenic effects further complicate the interpretations of how the TLR SNPs affect immune responses. For many TLRs, the molecular mechanisms by which SNPs impact receptor functions remain unknown. In this review, I have summarized current knowledge about the TLR polymorphisms, their impact on TLR signaling, and associations with various inflammatory, infectious, allergic diseases and cancers, and discussed the directions of future scientific research.

  11. NOD2 and Toll-Like Receptors Are Nonredundant Recognition Systems of Mycobacterium tuberculosis

    PubMed Central

    2005-01-01

    Infection with Mycobacterium tuberculosis is one of the leading causes of death worldwide. Recognition of M. tuberculosis by pattern recognition receptors is crucial for activation of both innate and adaptive immune responses. In the present study, we demonstrate that nucleotide-binding oligomerization domain 2 (NOD2) and Toll-like receptors (TLRs) are two nonredundant recognition mechanisms of M. tuberculosis. CHO cell lines transfected with human TLR2 or TLR4 were responsive to M. tuberculosis. TLR2 knock-out mice displayed more than 50% defective cytokine production after stimulation with mycobacteria, whereas TLR4-defective mice also released 30% less cytokines compared to controls. Similarly, HEK293T cells transfected with NOD2 responded to stimulation with M. tuberculosis. The important role of NOD2 for the recognition of M. tuberculosis was demonstrated in mononuclear cells of individuals homozygous for the 3020insC NOD2 mutation, who showed an 80% defective cytokine response after stimulation with M. tuberculosis. Finally, the mycobacterial TLR2 ligand 19-kDa lipoprotein and the NOD2 ligand muramyl dipeptide synergized for the induction of cytokines, and this synergism was lost in cells defective in either TLR2 or NOD2. Together, these results demonstrate that NOD2 and TLR pathways are nonredundant recognition mechanisms of M. tuberculosis that synergize for the induction of proinflammatory cytokines. PMID:16322770

  12. Novel Toll-like receptor-4 antagonist (+)-naloxone protects mice from inflammation-induced preterm birth

    PubMed Central

    Chin, Peck Yin; Dorian, Camilla L.; Hutchinson, Mark R.; Olson, David M.; Rice, Kenner C.; Moldenhauer, Lachlan M.; Robertson, Sarah A.

    2016-01-01

    Toll-like receptor 4 (TLR4) activation by bacterial infection, or by sterile inflammatory insult is a primary trigger of spontaneous preterm birth. Here we utilize mouse models to investigate the efficacy of a novel small molecule TLR4 antagonist, (+)-naloxone, the non-opioid isomer of the opioid receptor antagonist (−)-naloxone, in infection-associated preterm birth. Treatment with (+)-naloxone prevented preterm delivery and alleviated fetal demise in utero elicited by i.p. LPS administration in late gestation. A similar effect with protection from preterm birth and perinatal death, and partial correction of reduced birth weight and postnatal mortality, was conferred by (+)-naloxone administration after intrauterine administration of heat-killed E. coli. Local induction by E. coli of inflammatory cytokine genes Il1b, Il6, Tnf and Il10 in fetal membranes was suppressed by (+)-naloxone, and cytokine expression in the placenta, and uterine myometrium and decidua, was also attenuated. These data demonstrate that inhibition of TLR4 signaling with the novel TLR4 antagonist (+)-naloxone can suppress the inflammatory cascade of preterm parturition, to prevent preterm birth and perinatal death. Further studies are warranted to investigate the utility of small molecule inhibition of TLR-driven inflammation as a component of strategies for fetal protection and delaying preterm birth in the clinical setting. PMID:27819333

  13. Toll-like receptor 2: An important immunomodulatory molecule during Helicobacter pylori infection.

    PubMed

    Nemati, Maryam; Larussa, Tiziana; Khorramdelazad, Hossein; Mahmoodi, Merat; Jafarzadeh, Abdollah

    2017-06-01

    Toll like receptors (TLRs) are an essential subset of pathogen recognition receptors (PRRs) which identify the microbial components and contribute in the regulation of innate and adaptive immune responses against the infectious agents. The TLRs, especially TLR2, TLR4, TLR5 and TLR9, participate in the induction of immune response against H. pylori. TLR2 is expressed on a number of immune and non-immune cells and recognizes a vast broad of microbial components due to its potential to form heterodimers with other TLRs, including TLR1, TLR6 and TLR10. A number of H. pylori-related molecules may contribute to TLR2-dependent responses, including HP-LPS, HP-HSP60 and HP-NAP. TLR2 plays a pivotal role in regulation of immune response to H. pylori through activation of NF-κB and induction of cytokine expression in epithelial cells, monocytes/macrophages, dendritic cells, neutrophils and B cells. The TLR2-related immune response that is induced by H. pylori-derived components may play an important role regarding the outcome of the infection toward bacterial elimination, persistence or pathological reactions. The immunomodulatory and immunoregulatory roles of TLR2 during H. pylori infection were considered in this review. TLR2 could be considered as an interesting therapeutic target for treatment of H. pylori-related diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A Critical Role for MAPK Signalling Pathways in the Transcriptional Regulation of Toll Like Receptors

    PubMed Central

    Peroval, Marylene Y.; Boyd, Amy C.; Young, John R.; Smith, Adrian L.

    2013-01-01

    Toll-like Receptors (TLR) are phylogenetically conserved transmembrane proteins responsible for detection of pathogens and activation of immune responses in diverse animal species. The stimulation of TLR by pathogen-derived molecules leads to the production of pro-inflammatory mediators including cytokines and nitric oxide. Although TLR-induced events are critical for immune induction, uncontrolled inflammation can be life threatening and regulation is a critical feature of TLR biology. We used an avian macrophage cell line (HD11) to determine the relationship between TLR agonist-induced activation of inflammatory responses and the transcriptional regulation of TLR. Exposure of macrophages to specific TLR agonists induced upregulation of cytokine and nitric oxide pathways that were inhibited by blocking various components of the TLR signalling pathways. TLR activation also led to changes in the levels of mRNA encoding the TLR responsible for recognising the inducing agonist (cognate regulation) and cross-regulation of other TLR (non-cognate regulation). Interestingly, in most cases, regulation of TLR mRNA was independent of NFκB activity but dependent on one or more of the MAPK pathway components. Moreover, the relative importance of ERK, JNK and p38 was dependent upon both the stimulating agonist and the target TLR. These results provide a framework for understanding the complex pathways involved in transcriptional regulation of TLR, immune induction and inflammation. Manipulation of these pathways during vaccination or management of acute inflammatory disease may lead to improved clinical outcome or enhanced vaccine efficacy. PMID:23405061

  15. Discovery of Imidazoquinolines with Toll-Like Receptor 7/8 Independent Cytokine Induction

    PubMed Central

    2012-01-01

    Toll-like receptors (TLRs) are key targets in the design of immunomodulating agents for use as vaccine adjuvants and anticancer treatments. The imidazoquinolines, imiquimod and resiquimod, have been shown to activate TLR-7 and -8, which in turn induce cytokine production as part of the innate immune response. Herein, we report the synthesis and discovery of a C7-methoxycarbonyl derivative of imiquimod that stimulates cytokine production but is devoid of TLR-7/8 activity. Data are presented that shows that this analogue not only induces IL-12p40 and TNF production, similar to that of imiquimod and resiquimod, but greatly enhances the production of IL-1β, a key cytokine involved in the activation of CD4 T cells. It is further demonstrated that TLR-7/8 activation can be recovered by the addition of a C2-alkyl substituent to this newly discovered analogue. The results support the existence of an alternative mechanism of action by which imidazoquinolines can stimulate cytokine production. PMID:22837811

  16. Structural analogs of pulmonary surfactant phosphatidylglycerol inhibit toll-like receptor 2 and 4 signaling.

    PubMed

    Kandasamy, Pitchaimani; Numata, Mari; Berry, Karin Zemski; Fickes, Rachel; Leslie, Christina C; Murphy, Robert C; Voelker, Dennis R

    2016-06-01

    The pulmonary surfactant phospholipid, 1-palmitoyl-2-oleoylphosphatidylglycerol (POPG), potently inhibits toll-like receptor (TLR)2 and TLR4 signaling from the cell surface of macrophages. Analogs of POPG that vary in polar head group length, hydroxylation, and alkyl branching were synthesized using a phospholipase D-catalyzed transphosphatidylation reaction and a 1-palmitoyl-2-oleoyl phosphatidylcholine substrate. Lipid analogs with C3 and C4 alkyl head group length (POP-propanol and POP-butanol) are less effective than POPG as TLR2 and TLR4 antagonists. However, adding a hydroxyl group at the alkyl chain 3- or 4-position (POP-propanediols or POP-butanediols) greatly increased their inhibitory effects against TLR2 and TLR4. POP-2',2'-dimethylpropanediol is a weak inhibitor of TLR2 and TLR4 activation that results in arachidonic acid release, but an effective inhibitor of TLR4 activation that results in TNF-α production. Addition of an amino group at the alkyl-2 position (POP-2'-aminopropanediol) completely abolished the antagonism of TLRs 2 and 4. Multiple analogs strongly bind to the TLR4 coreceptors, cluster of differentiation 14 (CD14) and myeloid differentiation 2, but competition for di[3-deoxy-D-manno-octulosonyl]-lipid A binding to CD14 is the best predictor of biological activity at the cellular level. Collectively, these findings identify new compounds for antagonizing TLR2 and TLR4 activation and define structural properties of POPG analogs for discriminating between two TLR systems.

  17. Natural Modulators of Endosomal Toll-Like Receptor-Mediated Psoriatic Skin Inflammation

    PubMed Central

    Lai, Chao-Yang; Su, Yu-Wen; Lin, Kuo-I

    2017-01-01

    Psoriasis is a chronic inflammatory autoimmune disease that can be initiated by excessive activation of endosomal toll-like receptors (TLRs), particularly TLR7, TLR8, and TLR9. Therefore, inhibitors of endosomal TLR activation are being investigated for their ability to treat this disease. The currently approved biological drugs adalimumab, etanercept, infliximab, ustekinumab, ixekizumab, and secukizumab are antibodies against effector cytokines that participate in the initiation and development of psoriasis. Several immune modulatory oligonucleotides and small molecular weight compounds, including IMO-3100, IMO-8400, and CPG-52364, that block the interaction between endosomal TLRs and their ligands are under clinical investigation for their effectiveness in the treatment of psoriasis. In addition, several chemical compounds, including AS-2444697, PF-05387252, PF-05388169, PF-06650833, ML120B, and PHA-408, can inhibit TLR signaling. Although these compounds have demonstrated anti-inflammatory activity in animal models, their therapeutic potential for the treatment of psoriasis has not yet been tested. Recent studies demonstrated that natural compounds derived from plants, fungi, and bacteria, including mustard seed, Antrodia cinnamomea extract, curcumin, resveratrol, thiostrepton, azithromycin, and andrographolide, inhibited psoriasis-like inflammation induced by the TLR7 agonist imiquimod in animal models. These natural modulators employ different mechanisms to inhibit endosomal TLR activation and are administered via different routes. Therefore, they represent candidate psoriasis drugs and might lead to the development of new treatment options. PMID:28894754

  18. Berberine reduces Toll-like receptor-mediated macrophage migration by suppression of Src enhancement.

    PubMed

    Cheng, Wei-Erh; Ying Chang, Miao; Wei, Jyun-Yan; Chen, Yen-Jen; Maa, Ming-Chei; Leu, Tzeng-Horng

    2015-06-15

    Berberine is an isoquinoline with anti-inflammatory activity. We previously demonstrated that there was a loop of signal amplification between nuclear factor kappa B and Src for macrophage mobility triggered by the engagement of Toll-like receptors (TLRs). The simultaneous suppression of lipopolysaccharide (LPS)-mediated upregulation of inducible nitric oxide synthase, cyclooxygenase 2, and cell mobility in berberine-treated macrophages suggested Src might be a target of berberine. Indeed, th reduced migration, greatly suppressed Src induction in both protein and RNA transcript by berberine were observed in macrophages exposed to LPS, peptidoglycan, polyinosinic-polycytidylic acid, and CpG-oligodeoxynucleotides. In addition to Src induction, berberine also inhibited LPS-mediated Src activation in Src overexpressing macrophages and S-nitroso-N-acetylpenicillamine (a nitric oxide donor) could partly restore it. Moreover, berberine suppressed Src activity in fibronectin-stimulated macrophages and in v-Src transformed cells. These results implied that by effectively reducing Src expression and activity, berberine inhibited TLR-mediated cell motility in macrophages.

  19. Peptides targeting Toll-like receptor signalling pathways for novel immune therapeutics.

    PubMed

    Gomariz, R P; Gutiérrez-Cañas, I; Arranz, A; Carrión, M; Juarranz, Y; Leceta, J; Martínez, C

    2010-01-01

    Toll-like receptors (TLRs) are a family of key proteins that permit mammals to detect microbes and endogenous molecules, which are present in body fluids, cell membranes and cytoplasm. They confer mechanisms to the host for maintaining homeostasis, activating innate immunity and inducing signals that lead to the activation of adaptive immunity. TLR signalling induces the expression of pro-inflammatory and anti-viral genes through different and intricate pathways. However, persistent signalling can be dangerous and all members of the TLR family are involved in the pathogenesis of acute and chronic inflammation, autoimmunity, allergy, cancer and aging. The pharmaceutical industry has begun intensive work developing novel immunotherapeutic approaches based on both activation and inhibition of TLR triggering. Further, clinical trials are pending to evaluate TLR agonists as novel vaccine adjuvants and for the treatment of infectious diseases, allergic diseases and asthma. Since systemic, metabolic and neuroendocrine changes are elicited by inflammation, TLR activity is susceptible of regulation by hormones and neuroendocrine factors. Neuroendocrine mediators are important players in modulating different phases of TLR regulation contributing to the endogenous control of homeostasis through local, regional and systemic routes. Vasoactive intestinal peptide (VIP) is an important signal molecule of the neuroendocrine-immune network that has recently emerged as a potential candidate for the treatment of inflammatory and autoimmune disorders by controlling innate and adaptive immunity. This review shows current advances in the understanding of TLR modulation by VIP that could contribute to the use of this natural peptide as a therapeutic tool.

  20. Natural Modulators of Endosomal Toll-Like Receptor-Mediated Psoriatic Skin Inflammation.

    PubMed

    Lai, Chao-Yang; Su, Yu-Wen; Lin, Kuo-I; Hsu, Li-Chung; Chuang, Tsung-Hsien

    2017-01-01

    Psoriasis is a chronic inflammatory autoimmune disease that can be initiated by excessive activation of endosomal toll-like receptors (TLRs), particularly TLR7, TLR8, and TLR9. Therefore, inhibitors of endosomal TLR activation are being investigated for their ability to treat this disease. The currently approved biological drugs adalimumab, etanercept, infliximab, ustekinumab, ixekizumab, and secukizumab are antibodies against effector cytokines that participate in the initiation and development of psoriasis. Several immune modulatory oligonucleotides and small molecular weight compounds, including IMO-3100, IMO-8400, and CPG-52364, that block the interaction between endosomal TLRs and their ligands are under clinical investigation for their effectiveness in the treatment of psoriasis. In addition, several chemical compounds, including AS-2444697, PF-05387252, PF-05388169, PF-06650833, ML120B, and PHA-408, can inhibit TLR signaling. Although these compounds have demonstrated anti-inflammatory activity in animal models, their therapeutic potential for the treatment of psoriasis has not yet been tested. Recent studies demonstrated that natural compounds derived from plants, fungi, and bacteria, including mustard seed, Antrodia cinnamomea extract, curcumin, resveratrol, thiostrepton, azithromycin, and andrographolide, inhibited psoriasis-like inflammation induced by the TLR7 agonist imiquimod in animal models. These natural modulators employ different mechanisms to inhibit endosomal TLR activation and are administered via different routes. Therefore, they represent candidate psoriasis drugs and might lead to the development of new treatment options.

  1. [Nle4, D-Phe7]-α-MSH Inhibits Toll-Like Receptor (TLR)2- and TLR4-Induced Microglial Activation and Promotes a M2-Like Phenotype

    PubMed Central

    Carniglia, Lila; Ramírez, Delia; Durand, Daniela; Saba, Julieta; Caruso, Carla; Lasaga, Mercedes

    2016-01-01

    α-melanocyte stimulating hormone (α-MSH) is an anti-inflammatory peptide, proved to be beneficial in many neuroinflammatory disorders acting through melanocortin receptor 4 (MC4R). We previously determined that rat microglial cells express MC4R and that NDP-MSH, an analog of α-MSH, induces PPAR-γ expression and IL-10 release in these cells. Given the great importance of modulation of glial activation in neuroinflammatory disorders, we tested the ability of NDP-MSH to shape microglial phenotype and to modulate Toll-like receptor (TLR)-mediated inflammatory responses. Primary rat cultured microglia were stimulated with NDP-MSH followed by the TLR2 agonist Pam3CSK4 or the TLR4 agonist LPS. NDP-MSH alone induced expression of the M2a/M2c marker Ag1 and reduced expression of the M2b marker Il-4rα and of the LPS receptor Tlr4. Nuclear translocation of NF-κB subunits p65 and c-Rel was induced by LPS and these effects were partially prevented by NDP-MSH. NDP-MSH reduced LPS- and Pam3CSK4-induced TNF-α release but did not affect TLR-induced IL-10 release. Also, NDP-MSH inhibited TLR2-induced HMGB1 translocation from nucleus to cytoplasm and TLR2-induced phagocytic activity. Our data show that NDP-MSH inhibits TLR2- and TLR4-mediated proinflammatory mechanisms and promotes microglial M2-like polarization, supporting melanocortins as useful tools for shaping microglial activation towards an alternative immunomodulatory phenotype. PMID:27359332

  2. [Nle4, D-Phe7]-α-MSH Inhibits Toll-Like Receptor (TLR)2- and TLR4-Induced Microglial Activation and Promotes a M2-Like Phenotype.

    PubMed

    Carniglia, Lila; Ramírez, Delia; Durand, Daniela; Saba, Julieta; Caruso, Carla; Lasaga, Mercedes

    2016-01-01

    α-melanocyte stimulating hormone (α-MSH) is an anti-inflammatory peptide, proved to be be